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Abstract

English

This thesis concerns the correlation structure of interacting Fermi gases on a torus in
the mean-field regime. A bosonization method in the spirit of Sawada[6] is developed to
analyze the system, and is applied to obtain an upper bound for the correlation energy
of the system for a wide class of repulsive interaction potentials, including the Coulomb
potential.

This upper bound includes both a bosonic contribution, as found in the bosonic model
of Sawada, and an exchange contribution, as was found by Gell-Mann and Brueckner[5]
but which was missed by Sawada’s model.

An extension to weakly attractive potentials is also presented, as is an outline of the
derivation of an effective Hamiltonian for regular interaction potentials, and the construc-
tion of plasmon states for this outside of the mean-field setting.

This thesis is based on the papers [11], 12, [13].

Deutsch

Diese Dissertation betrifft die Korrelationsstruktur der wechselwirkenden Fermi Gase auf
einem Torus im Mittelfeldregime. Es wird eine Bosonisierungsmethode im Geist von
Sawadal[6] entwickelt, um das System zu analysieren und zur Herleitung einer oberen
Schranke der Korrelationsenergie des Systems fiir eine breite Klasse von abstoflenden Wech-
selwirkungspotenziale, einschliellich des Coulomb-Potenzials.

Diese obere Schranke beinhaltet sowohl einen bosonisches Beitrag, wie in dem bosonis-
chen Modell von Sawada, als auch einen Vertauschungsbeitrag, wie er von Gell-Mann und
Brueckner[5] entdeckt wurde, der aber von Sawadas Modell nicht erfasst wurde.

Eine Erweiterung zu schwach attraktiven Potenzialen wird ebenfalls vorgestellt, ebenso
wie ein Umriss der Herleitung eines effektiven Hamiltonoperators fiir regulare Wechsel-
wirkungspotenziale, und die Konstruktion von Plasmonzustanden fiir diesen auflerhalb des
Mittelfeldrahmens.

Diese Dissertation basiert auf den Fachartikeln [111 12| [13].
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Chapter 1

Introduction

A Fermi gas is a quantum system described by a Hamiltonian of the form

N
HI—ZA@—F Z V(l’i—ﬂ?j)
=1

1<i<j<N

on a fermionic N-particle space. Here the first term represents the kinetic energy of the
fermions (in units where % = 1) while the second term represents pair interactions through
a potential V.

The potential of greatest physical interest is the (background-subtracted) Coulomb
potential, in which case the system is referred to as jellium. Jellium is the simplest model
of electrons in a metal which still includes all electron-electron interactions.

In the 1930-40’s, theoretical calculations based on applying the Hartree-Fock approxi-
mation to the jellium model exhibited a large discrepancy when compared to experimental
values. Furthermore, pertubative methods broke down already at second-order, present-
ing the physicists of the time with the puzzle of how to model an interacting many-body
system without being able to apply perturbative methods.

As the Hartree-Fock approximation amounts to neglecting particle correlations, the
question was how to include these in the computation. The first steps toward this was
taken in the early 1950’s by Bohm and Pines[I] 2] 3, [4], who argued that the correlations
at play were of an essentially bosonic nature, which would manifest itself as quantized
collective electron oscillations, which they dubbed plasmons.

Adding plasmon modes to the jellium model by hand, they argued that these served
to regularize the electron-electron interaction to the point that second-order perturbation
could be applied - provided that certain terms appearing in their analysis could be ne-
glected, the assumption of which was referred to as the “Random Phase Approximation”
(RPA).

The validity of the RPA and the manner in which the plasmons were introduced was
a somewhat controversial issue, but they were effectively justified by two later works: The
first was by Gell-Mann and Brueckner[5], who were able to derive the correlation energy
- the difference between the ground state and Fermi state energies - of the jellium model
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directly, by performing a formal resummation of the divergent perturbation series for this,
and finding agreement with Pines’ calculation.

The second work was by Sawada[6] (and expanded on by Sawada-Brueckner-Fukuda-
Brout[7]). He observed that certain terms of the Hamiltonian could, when expressed in the
second-quantized picture, be interpreted as quadratic operators with respect to almost-
bosonic operators. By studying this corresponding bosonic Hamiltonian, he was also able
to derive the correlation energy - with the exception of one term, which was explicitly
fermionic in nature.

With these works, the correlation energy was thought to be well-understood by the
physics community, but presenting a mathematically rigorous derivation of this remains a
major open problem in mathematical physics to this day. Recently there has however been
much progress on the corresponding mean-field problem, in which the potential is scaled
by a factor proportional to N -3

The first results on this problem were by Benedikter-Nam-Porta-Schlein-Seiringer[8, [9]
(see also [10]), who were able to prove an asymptotic formula for the correlation energy
for highly regular potentials V' by employing a bosonization method, albeit in a manner
different from Sawada’s original observation, to define an analog of a bosonic Bogolubov
transformation which could be applied to analyze the system.

Subsequently T and my Ph.D. advisors extended this result significantly in [I1], in
which we both proved an asymptotic formula for the correlation energy for more general
potentials and additionally derived an effective quasi-bosonic Hamiltonian governing the
low-lying eigenstates of the Fermi gas. We accomplished this by developing a bosonization
method different from that of [8, 9] and more in the spirit of Sawada.

The aim of this thesis is to present this method and the results we have obtained by it.

1.1 Main Results

Before stating the main results, let us introduce the setting properly and define some
notation: We consider for a given Fermi momentum kz > 0 the mean-field Hamiltonian

N
i=1 1<i<j<N

on Hy = AV L*(T?;C?), where T? is the 3-torus of sidelength 2 and s € N is the number
of spin states of the system. The number of particles, N, is determined by kr through the
relation N = 5 |B(0, kr) N Z3).

We take the interaction potential V' to admit the Fourier decomposition

3 Vet (1.1.2)
(27T 3 kez3

and assume that the Fourier coefficients obey (with Z2 = Z3\{0})
Vi=V., and V., >0, keZ (1.1.3)
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in other words we consider a symmetric and repulsive interaction potential.
We define for k € Z3 the lune L; by

Lk:{P€Z3 | p— k| <kp< |p|} (1.1.4)
and let further A\, = %(|p|2 —|p - k:|2) for p € Ly.

The main focus of the thesis is the derivation of the following:

Theorem 1.1.1. Let Y8 VZ < 0o. Then it holds that

lnf(U(HN>> < EF + Ecorr,bos + Ecorr,ex + C Z ‘A/k? min {lk?‘ ,]CF}, kF — 0OQ,
kez3

where Er = (Yp, Hyop) is the energy of the Fermi state,

Ska’ )\k,
corr bos — Z / ( F3 Z )\z —ﬁt2> dt, F(l‘) = IOg(l + l’) — X,
7p

keZS pELy

is the bosonic contribution (to the correlation enerqy) and

skp? 0,
— F E : p4q,k+1
Ecorr,ex - 4 (2 6 k:V E Moo+ A
klez3 p,geLNL; "\k:p k.q

is the exchange contribution, for a constant C > 0 depending only on 3 .z V,f and s.

This result was originally presented in [13] (for s = 1). Although we have so far
only been able to prove this asymptotic statement as an upper bound, it constitutes a
major improvement over the corresponding one of [I1]: Not only does it apply to singular
potentials (including the Coulomb potential), it also includes the “exchange contribution”
Ecorrex, which is the term that was missing from Sawada’s purely bosonic model, and
which was also lacking in the previously proved results for non-singular potentials (for
which Eeopex 18 of much lower order than the rest).

In the case of the Coulomb potential, i.e. Vi ~ |k|72, Ecorrpos 1s of order kplog(kr)

and Egop ex 18 of order kp, while the error term of the theorem is of order y/log(kr). The
precision of the result is thus almost an entire order of magnitude. Furthermore, we may
observe that for any potential with Y,z V,f < 00, the error term is at most of order /kp
whereas Feorrbos 1S at least order kp, so there is always a sharp distinction between the
correlation energy and the error term.

After concluding this theorem we will make the observation that our proof in fact allows
us to generalize this result to slightly attractive potentials, proving the following:

Theorem 1.1.2. Assuming the weaker condition that Vi, > —(1 — e)% for some € > 0
and all k € 72, it continues to hold that

lnf(U(HN)) < EF + Ecorr,bos + Ecorr,ex + C\/Z VkQ mln{lk‘ ,k’F}, kF — 0Q,

kez3

where now C' > 0 depends on Y czs ‘A/,f, s and e.
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This result has not been presented before. We remark that the condition on Vv is nearly
optimal, in the sense that if V, < —% for some k € Z3 then the corresponding term of
Ecorrpos 18 not even well-defined, as the argument of the logarithm of the integrand is then
strictly negative near ¢ = 0.

These results only concern upper bounds for the ground state energy of Hy. In [I1]
we also proved the following stronger operator-level result regarding Hy, albeit only under
high regularity assumptions on V:

Theorem 1.1.3. Let 3 ey V. |k| < oo. Then there exists a unitary transformation U :
Hy — Huy, depending implicitly upon kg, such that

UHNU* = EF + Ecorr,bos + Heﬂ + &

where

Hep = Higy +2 3 D {ep, (B — hi)eq)b ,brg

keZ3 p,q€Lly

1
. 1 1\ 2
for By (h,g (hy + 2Pk)h,§> g
Furthermore, it holds for every normalized eigenstate W of Hy with (U, HyW) < Er +
kkp, kK > 0, that the error operator £ obeys

_1.,
(T, EDY|, (U, EUTY| < Ckp P, kp — o0,

or any € > 0, the constant C' > 0 depending only on V, k and €.

[ Y ; p g only ;

In words, the theorem states that the Hamiltonian Hy is, with respect to the low-lying
eigenstates (as demarked by the condition (¥, HyWV) < Ep + kkpg), up to the constant
terms Epr + Eeorbos Unitarily equivalent with the effective Hamiltonian Heg, to leading
order in kp.

Here the effective Hamiltonian consists of two parts: The localized kinetic operator Hy; ,
which appears naturally during the extraction of EFr, and a quasi-bosonic term involving
the excitation operators (for s = 1)

bp = Cp1Cpy  brp=CpCpk, kE 73, p € Ly, (1.1.5)

where (c)),ezs and (cp),ezs denote the fermionic creation and annihilation operators asso-
ciated with the plane-wave states. In the definition of the quasi-bosonic term also appears
certain “one-body operators” hy, Py, : £2(Ly) — ¢*>(Lx) which naturally appear during the
diagonalization process which extracts Feor bos-

From the fact that Ej > hy, it follows that H.g > 0, so (as the ground state certainly
is low-lying) the theorem in particular implies that

1
1-g7te

inf(c(Hy)) = Er + Ecorrpos + O(k‘F >, kp — oo, (1.1.6)
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i.e. the ground-state energy is indeed E'r+ FEcorr bos to leading order, provided >3 Vk |k| <
0o. Note that Eguyex is absent, which is a consequence of the assumed regularity - even
just assuming boundedness of V', i.e. that > ;.43 \A/k < 00, it holds that Feoyex < C’k;l.

We will not give a full proof of Theorem|[1.1.3|in this thesis, but in Section [10] we present
the main ideas and techniques that lead to its conclusion.

What is particularly noteworthy about Theorem [1.1.3]is that it not only yields a lower
bound on the correlation energy, but also identifies the operator which should govern the
low-lying excitations of the system - in the physical case this would include the plasmon
states. Unfortunately the mean-field scaling suppresses these states, making it difficult to
say much about H.g in this setting.

Given the physical importance of plasmons it is however interesting to extrapolate
this result and consider H.g by itself without imposing the mean-field scaling or strict
regularity assumptions on the potential, which is what we did in [12], obtaining a result of
the following form:

Theorem 1.1.4. In the non-mean-field scaled setting the following holds: Let Vi, = g |k‘|_2,
k € Z3, for some g > 0. Then for any § € (O,%) and ¢ € (0,2) there exists for all
ke E(O, kfp) NZ3 and M < k% a normalized state ¥ € Hy such that

|(Hogg — Mep)0|| < C k|7 \kpM?,  kp — oo,

. 3
where €, denotes the greatest eigenvalue of 2E},. € obeys €, > ckp and

S > A3 _1
Ogﬁk—2$<2ﬂ-)3’k‘g|2 Z )\k’p_'_ﬁngFQ ‘k|4’ kF_>OO7
peLly P

PELg

for constants ¢,C' > 0 depending only on g.

We present a proof of this in Section [11]

The theorem states that for k and M in certain ranges, there exists an “approximate
eigenvector” ¥ for H.g with approximate eigenvalue Mej - in fact U is explicitly given as
the normalization of

b(0) e, Bp(0) = 3 (e, ) biy (1.1.7)
PEL
where ¢ is the normalized eigenstate of 2E with eigenvalue ¢, which mimics the definition
of a bosonic state with M “¢ excitations”.

Calling ¥ an approximate eigenvector is justified by Markov’s inequality in the operator

form 1g\(p_s pis(H) <6~ |H — E|, as it implies that

HlR\[Mz-:kfé,MskJr(ﬂ(Heff)\IjH <1, |k|™"VErM: <6, (1.1.8)

3

i.e. U is spectrally localized at E = Mey on the scale |k| ™" vEkpM32. As Mej, ~ Mk2
2

this is a nontrivial statement for M < (kr|k|)®. One can also view this in a dynamical
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setting: By the time evolution estimate H (e‘“H — e‘“E>wH < ||(H — E)v|| t the theorem
implies that
H(e‘itHeH — eiME’“t)‘IJH <1, Met < kplk| M2 (1.1.9)

s (M ek)_l is the characteristic timescale of oscillation of W this is again non-trivial for
2
The formula for € is also interesting - if one formally replaces the Riemann sums by
their corresponding integrals, one finds that (to leading order)

12
€ ~ \/2gn+5k%]k|2 (1.1.10)
where n = 2y = sBel 1 475 k3 is the number density of the system. In the physical

2m)?  (2m)® T (20)°
case g = 4me? (e being the elementary charge), so recalling that % = 1 we find

h drne?  12k% |k 3
\/87r62n2+k k|* = \/ - + — . h2’ —h\/w8+gv%|k|2 (1.1.11)

where wy = \/4”"6 is the famous plasmon frequency (in CGS units) and vp = m™'hkp =

2h~'kp is the Fermi velocity, corresponding to the well-known plasmon frequency dispersion
relation

3
w? %w8+gv%|k|2. (1.1.12)

This shows that if Theorem could be generalized to the full physical setting, it would
not only account for the correlatlon energy but also for the plasmons predicted by Bohm
and Pines in the 1950’s.

Although proving such a result would be an extremely challenging task, it is our hope
that the work covered by this thesis will be useful in this endeavor.

1.2 Outline of the Thesis

We begin our analysis of the Hamiltonian Hy in Section [2| by extracting the leading order
contribution to the ground state energy of Hpy, which is the energy of the Fermi state ¢ p.
We do this by normal-ordering Hy (in its second-quantized form) “with respect to ¢¥r".
After doing so we observe that the resulting terms which violate the separation between
states inside and outside the Fermi ball are quasi-bosonic, in that they obey commutation
relations reminiscent of the canonical commutation relations of a bosonic system.

In Section [3| we review the theory of bosonic Bogolubov transformations, originally
introduced in [I4] to explain the phenomenon of superfluidity, to prepare for the analysis
of the quasi-bosonic operators. In particular we describe how one may explicitly define a
Bogolubov transformation which diagonalizes a given positive-definite quadratic Hamilto-
nian.
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We then apply the bosonic theory to our study of the Fermi gas in Section 4] wherein
we implement the diagonalization procedure in the quasi-bosonic setting. This is done by
mimicking the bosonic case to define a quasi-bosonic Bogolubov transformation e* which
diagonalizes the bosonizable terms of Hy up to exchange terms - terms which arise due to
the deviation from the exact CCR.

In Section [5| we justify that the transformation e is well-defined by establishing that
the generating kernel K is in fact a bounded operator under the condition »jczs V,f < 00.
More generally we establish a bound on K in terms of the excitation number operator Ng
which will also allow us to control error terms later on by a Gronwall-type argument.

In order to analyze the exchange terms which appeared during the diagonalization
procedure we require detailed information on the one-body operators of the correspond-
ing bosonic problem. We analyze these in section [0 obtaining asymptotically optimal
elementwise estimates of the main operators.

We then turn to the exchange terms themselves in Section [7] By performing a detailed
analysis of all of the possible kinds of terms which emerge from these upon normal-ordering
with respect to ¥p, we extract the exchange contribution Ecoyex and bound the remaining
terms using NVg.

In Section |8 we bring all our work together. After deriving bounds on the non-
bosonizable terms - the terms of Hy which do not fit into the quasi-bosonic setting -

we apply our prior results to estimate the energy of the trial state v, which results in
the proof of Theorem [I.1.1]

This is followed by Section [9] wherein we describe the modifications necessary to extend
Theorem to weakly attractive potentials in order to conclude Theorem (1.1.2]

In Section [10] we first present a general outline of the approach that leads to Theorem
1.1.3] followed by a more detalied examination of the key ideas which leads to its conclusion.

Finally, in Section [11], we consider plasmon states for the effective operator of Theorem
in the non-mean-field setting, proving a generalization of Theorem valid for
arbitrary repulsive potentials V.
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Chapter 2

Localization of the Hamiltonian at
the Fermi State

In this section we begin our study of the interacting Fermi gas by extracting the energy
of the Fermi state ¢z from the Hamiltonian operator Hy. We do this by normal-ordering
Hy “with respect to ¢r”, a procedure which we refer to as localization since it serves to
fix ¥ as our point of reference, making it analogous to the vacuum state of a field theory.

The result of this procedure is summarized in the following:

Proposition 2.0.1. It holds that

Viky!
Hy = Ep + Hy, + LF;;(QBZBk + BrB_i + BikBZ> +C+9Q
reze 2 (27)

where Er = (Yp, Hyop) is the energy of the Fermi state,

o o o
H{(in = Z ‘p’2 C;;,O'pro' - Z |p‘20P70'C;,0'7 Bk = Z C;—k,acp70'7

pEBY, pEBFR pELy
and
e S Veke((Bo+ 82,) 12)
C= ViRe((Br + B Dy,
(27)3 kez3 ’
kat N a
Q=7 3 Z Vie| DDk — Z (C;,acp,a + CP*k,UC;—k,a)
2 (2m) kez3 pELy

for Dy, = dT'(Pp,e~ ™7 Py, ) + dT'(Pg; e Py, ).

After carrying out this procedure we will see how the concept of quasi-bosonicity
emerges: The operators By, of the above representation obey commutation relations which
are analogous to the canonical commutation relations of a bosonic system. We end the
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section by exploring this phenomenon, in particular showing how the kinetic operator Hy;
can be made to fit into such a bosonic picture by considering the excitation operators

1 & J
bk, = = C*— oCp,os b* = = C* oCp—k,o- <201)
D \/E(; p—k,0-P k,p \/E; p,0 P

2.1 Notation and Conventions

Before we begin the analysis proper we review the notation which we will use throughout
the paper.

We consider the one-particle space h = L*(T3; C*), where T? = [0, 27]> with periodic
boundary conditions and s € N is the number of spin states of the system. We denote by
Hy = AN b the associated fermionic N-particle space.

b is spanned by the orthonormal basis of plane wave states (upﬁ);ggfs, given by

Upo(T) = (27?)_36“9'%0, pEZ, (2.1.1)

where v, denotes the o-th standard basis vector of C?.
We denote by ¢, ¢, the creation and annihilation operators associated to the plane
wave states, which obey the canonical anticommutation relations (CAR)

{cpp, C;,T} = 0p4007, {CposCor}=0= {c;‘w, cZ,T} , (2.1.2)

for all p,g € Z3 and 1 < 0,7 < s.

Sums involving the creation and annihilation operators will generally run over all spin
states. To reduce clutter we will denote this by writing the summed indices over the sum
signs, leaving the summation range implicit, e.g. for the number operators N we simply
write

N=> Zc;yacpyg = €y oCpo- (2.1.3)

peZ3 o=1 pEeEZ3

For a given Fermi momentum kz > 0 we denote by Bp the (closed) Fermi ball
Br = B(0,kp)NZ? (2.1.4)

and write B% for the complement of Br with respect to Z*. We define 1 to be the Fermi
state

Vr= N\ wo€Hy, N=s|Bpl. (2.1.5)

pEBFR

For the sake of brevity we define Z2 = Z?\ {0} and for k € Z3 define the lune L; by

Ly = (Br + k)\Br = {p € Z* | [p— k| < kr < |p|} . (2.1.6)
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The Hamiltonian Operator Hy

We consider for given kr > 0 the mean-field Hamiltonian
Hy = Hyy + kp' Hy, D(Hy) = D(Hyy), (2.1.7)

on Hy, where N = s|Bp|. Hyy, is the standard kinetic operator

Hygn = dT(—A) = — i A;,  D(Hyy) = }V\H2 (T%C), (2.1.8)

and Hi,, describes the pairwise interaction between N particles through a potential V' :
T — R,
Hye = Y, V(z;— ). (2.1.9)
1<i<j<N
We will take V' € L?(T3), in which case Hy is a self-adjoint operator on Hy. Letting the
Fourier decomposition of V' be given by

Vi(z) = > Ve (2.1.10)

we furthermore assume that Vk = V_k and \A/k > 0 for all k € Z2, i.e. that V is repulsive.
For the remainder of the thesis we will work in the second-quantized picture, in which
it is well-known that Hy;, and H;, can be expressed as

Hy, = Z P> ¢ oCpor Hing = 2@ SV Z Ch o CorCarCpao- (2.1.11)
peL® ( kez3 p,qEZ3

2.2 Extraction of the Fermi State Energy

It is well-known that the Fermi state ¢y is characterized by the conditions
prF =0= Csza JAS B%? qc BF) (221)

and so the Fermi state energy Er = (¢, Hytr) can be extracted from Hy by normal-

ordering this “with respect to ¥r”, in the sense that the creation and annihilation operators

of equation (2.1.11)) are normal-ordered as if ¢, , were an annihilation operator for p € Bp.
Consider first the kinetic operator: By the CAR we can write Hy;, in the form

Hkin_ Z ‘p’ cp7 + Z ‘p‘ CP7 Z |p’ pacpv + Z ‘p’2_ Z ’p|2cpﬂc;;

pEBY pEBFR PEBY pEBR pEBR

— 5 Y b+ H, (2.2.2)

pEBR
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where we define the localized kinetic operator Hi,, : D(Hyin) C Hy — Hn by

g o
2 % 2 *
Higo= > o> gene — D DI Cpoth o (2.2.3)

pEB; pEBF

Hy,, is clearly normal-ordered with respect to ¢r, and so the quantity s > ¢ s, | 10|2 is simply
the kinetic energy of 1r, whence we can write the relation between Hy;, and H, as

Hyin = (Yr, Henthr) + Hi,. (2.2.4)

To normal-order H;,; we first rewrite this in a factorized form: By the CAR we can write

Hiny = 3 Z Z Cerk U(CP ch kr 61074*]660,7’) Cq,r

kezZ3 p,qEZ3

= 3 Z ((Z CpikoCpo ) (i cz_,mcw) - i Cq.0Ca.0 ) (2.2.5)

(71' kez3 peZd q€Z3 qeZ3
_ m Z i (dr(e*ik*f)*dr(e*ik'x) —N)

N(N —1 —ikz\* —ik-x
<<>> Somy 3, Velar(e ) ar(e) - )

where we recognized the operator dI' (e_“”) as

o,T

o, T T
—itkx\ __ —ik-x * _ * _ *
dl (6 ) = § : <up,m € uq77> CpoCqr = E : 5P7q—k5077'cp,06q77 = E : Co—k,rCq,r

P,qEZ3 p,qEZ3 q€Z3
(2.2.6)

and used that dF( —i(02) ) =dI'(1) =N = N on Hy. Now, with Pg, : h — b denoting the
orthogonal projection onto span(upya);ggggs and Ppe = 1 — Pp,, denoting its complement,

we can decompose dI’ (e‘“‘”) as

dr<e—ik‘x) _ dF(<PBF L pB%>e—ik‘W (pBF + PB%)> = B+ B, + Dy, (2.2.7)

where the operator By is given by

B, = dF(PBFe_ik'”PB%) = Z Z pa—k007Cp 5 Corr Z Cy—krCar (2.2.8)

pEBF qEBY, q€ Ly

as the Kronecker delta 0, ,_j precisely restrict the summation to ¢ € Ly, and the operator
Dy, is simply
Dk = dF(PBFe_ik.IPBF) + dF(PBge_lkxPB%) (229)
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We can thus write H;,; as

Hin = N;i\;;)gl) o+ Rt ng:d Vk(((Bk + Bik)*(Bk + Bik) — N) (2.2.10)

+2Re((By + B*,) D) + DiDy).

Now, it is easily verified that Byp = Dytop = Djipp = 0 for any k € Z2, and so the terms
on the last line are effectively normal-ordered, and it only remains to normal-order the
terms of the first sum. For this we calculate the commutator [By, Bj|: By the CAR and
basic commutator identities, we find that

Bk? Z Z {p kacpmcqfcq kT}

pELk qELk
* *
Z Z p ko |Cpos Cq rCq—k,T + Cp—k,0s Cq,rCq—k,7| Cp,o
pELy qELY,
ag T
. * * *
- Z Z Cp—k,o ({Cpﬂ” Cq,‘r} Cq—k,r — Cq,r {CPJ’ qukﬂ'}) (2211)
PELk qELk
>k *
+ Z Z ({ p ko> qT} Cq—k,r — Cq,T {Cp—k,a7 CQ*]C»T})CPJ
pELy gLy
ag T g T
_ * *
= Z Z 5]0746‘7:76}7—]6,004*]%7' - Z Z 5pfk,q7k5<mcq,7-cp,d
pELE qELy pELy qELy
ag ag g
o * * . * *
- Z Cp—k,oCp—k,o — Z CpoCpo = S ‘Lk’ - Z (Cp,acpvcf + Cp*hUcp—k,a)
pELY pELY pELY

and using also that Vk = V,k we may then write H;, as

NV = 1)
2 (2m)? 2(

1 N
Z Vk — S |Lk|) +—= Z Vk<2BZBk + BZBik + B_kBk>
kez? 2(2m) kez?

int —

n % S (2 Re((Bk + Bik)*Dk) +DIDy, — i (¢} oCpo + cp_k,gc;_k,o)) :
2(2m)" yezs peLy,

(2.2.12)

Note that the sum ;s Vi(N — s|Ly|) is actually finite, as s|L;| = s|Bp| = N when
The terms on the right-hand side of this equation are now normal-ordered, and in
particular we see that

N(N-1),

<¢F,Hint¢F> = W - 2(

2@’ > V(N = s|Ly) (2.2.13)

keZ3
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whence we can write
—1 -1 kagl * * %
kez3 m

where the cubic and quartic terms C and Q are defined by

knt

C=—C5 3 ViRe((Bi+B7,) Di) (2.2.15)
(2m) kez3
k! N g
9=~ = > Vi| DiDy— > (c;‘)’gcpﬂ + cp_kpc;fk’g) )
2(2m) kez3 pELY

The terms C and Q constitute the non-bosonizable terms: They fall outside the quasi-
bosonic approach we will introduce below, and so we consider them as error terms to be
analyzed separately at the end.

Combining the equations (2.2.4]) and (2.2.14) now yields Proposition

2.3 Remarks on the Localization Procedure

Before continuing with our analysis we must comment on some subtle details of the local-
ization procedure.
Consider the localized kinetic operator Hy;,, which we defined by

g o

2 x 2 *
Hiz, = > 107 ¢ olpo — 2 1Pl oo (2.3.1)

pEBf,, pEBF

This expression is a sum of two terms, one manifestly positive and one manifestly nega-
tive. As the creation and annihilation operator for orthogonal states are (algebraically)
independent, one would therefore not expect Hy. to have a definite sign. But this is not
the case, as we can argue that

Hyg, = Hn — (Y, Hintpr) > 0 (2.3.2)

since (Yp, Hyintr) is the ground state energy of Hyg,.

The resolution of this apparent paradox lies in the domains of definition: The argument
for non-definiteness of Hy; is valid when viewed as an operator on the full Fock space F~(b),
where the assertion that (¢r, Hxn®r) is the ground state energy of Hy;, is wrong.

That H{,, > 0 is nonetheless correct when viewed as an operator on Hy, precisely
by the second observation. The first argument fails in this case because the creation and

annihilation operators (or more precisely, the products cp’gcpgo) are not independent on

Hy: Normal-ordering N with respect to 1, we see that

N=N=) ¢.,000= D Cotpat >, 1= o, (2.3.3)

peZs pEBL PEBF PEBF
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o2 g
_ * *
= s|Br| + Z Cp,oCp,o — Z Cp,oCp.os

pGB; pEBF

so as N = s|Bpr| we conclude the identity

D Calpo = D, CpoChy, ONHy. (2.3.4)

pEBf, pEBR

This is the statement of particle-hole symmetry: The expression on the left-hand side is
appropriately labeled the excitation number operator Ng, since just as N “counts” the
number of particles in a state of the full Fock space, Ng “counts” the number of states
lying outside Bp in a state on Hy, which is to say the number of excitations relative to
Yr.

The expression on the right-hand side may be similarly thought of as a “hole number
operator”, as it similarly counts the number of states lying inside Br that a given state is
lacking. Equation thus makes explicit the observation that any excitation relative
to ¥ r must be accompanied by a “hole”.

This also explains why H{, , despite being the difference of two positive operators,
remains positive: To take advantage of the negative part, one must create a hole in the
Fermi ball. But particle number conservation then demands that one must create an
excitation outside this, and as |p| > kr > |q| for all p € BS,, ¢ € Bp, this procedure will
always lead to an increase in energy.

In fact we can use equation to make this argument precise, since it implies that

Hiy = Hiy = kiNe + kiNe = 3 (I = k) potpe + 2 (K = pI*)epocy, (2.35)

pGB% pEBF

and now both of the sums on the right-hand side are manifestly non-negative.

2.4 The Quasi-Bosonic Excitation Operators

Now we consider the structure of the terms

2B By, + B:B*, + B_;B},), 2.4.1

which appear in the decomposition of Hy of Proposition [2.0.1] further. Consider the
operators By = Y.0.; b Cpo: It is easily seen that for any k,I € Z?2 it holds that
[By, B)| = [B;, Bf] = 0, while a slight modification of the calculation of equation (2.2.11))
shows that

(B, B = 5Ll 0i = 32 Y (Op-ka-i€ oo + OpaCataCy i) (2.4.2)

pELE qEL,
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Consider the sum on the right: By the Cauchy-Schwarz and triangle inequalities we can
bound the first part as

DI DR A ML 1 S Wi Sy o 7 /1A | (2.4.3)
pELy qEL, pEL qEL,
Z 2 Z 2
< J > llego | J > leno ¥ < (W, V)
qel, pELy

for any ¥ € Hpy, and likewise for the second part of the sum. If one now defines the

1
rescaled operators B, = (s|Ly|)” 2 By, one sees that these obey commutation relations of
the form

(B (B)"] = 6ra + O(ke2N3), (B Bl =0 =[(By)".(B)"]. (2.4.4)

since (as we will see) |Ly| > ck%. With respect to states for which (¥, NxW¥) is small,
these relations approximate the canonical commutation relations for bosonic creation and
annihilation operators aj, ay, which are

lag, a;] = Ok, |ak, ] =0 = [a;, af]. (2.4.5)

This motivates describing the By as being quasi-bosonic operators. In view of this, it is
tempting to view the terms

Vi
2 (2m)°

(2BiBi + BiB, + B_iBy) (2.4.6)

as analogous to a quadratic Hamiltonian in the bosonic setting, to which the theory of
Bogolubov transformations applies. This is the spirit of what we will do, but there is a
catch: The kinetic operator H]; is not of a similar form, and the operators By do not
behave bosonically with respect to it.

The solution to this problem is to further decompose the operators By: We define for
k € Z3, p € Ly, the excitation operators bj.ps brp DY

1 & 1 &
bk, = = C*— +Cp,o> b, = —F&= c, oCp—k,o- <247)
D \/g(; p—k,o0-P k,p \/g(; p,0-P

The name is due to the fact that the action of by , is to annihilate a state at momentum
p — k € Br and create a state at momentum p € BS, (irrespective of spin), which is to say
excite the state p — k to p.

Note that the by, and B}, operators are simply related as By, = \/s > ,¢r, brp. Further-
more, the excitation operators also obey quasi-bosonic commutation relations:

Lemma 2.4.1. For any k,l € Z2, p € L;, and q € L, it holds that
[bk,pa bzq} - 6k,15p,q + 5k,l(p; Q)v [bk,p7 bl,q] =0= [ Z,p? bziq} )

. _ -1 s
where e (p;q) = —s7 X5y (5p,ch—l,z70;—k,a + 5p—k,q—lcz,acp,a)-
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Proof: By the CAR and commutator identities we calculate that

J 1<
_ * * _ * * k *
[bkalﬂ bva] - Z [Cp—k:,acp,m Cq—l,TCQJ] - Z (Cp—k,a [Cp#ﬂ cq—lﬂ'c%’r} + [Cp—k,o’ Cq—l,TCfLT} vaff)
s o,7=1 s o,m=1
1 S
_ * * * * _
=~ > (Cpfk:,o {cpyo, quz,T} Cor — Cqtr {cpflw, cq,T} cpﬁ) =0 (2.4.8)
o,r=1
as the anticommutators vanish by disjointness of By and Bg. [bf b ] then likewise

vanishes, while for [by,, b} ]

1 8
* | __ _ * * * *
[bk,m bl,q} - Z { Cp—k,0Cp,0y Cy, ch ZT} - g Z (Cpfk,a {CP,(T? Cq,‘r} Cq—lr — Cq 7 {Cpfk,m Cl]—lﬂ'} CP,U)
o,7=1 o,7=1
* * .
= S Z (5p7qcp—k,JC(I*l:U - 5pfk,qflcq,ocp,0) = Ok 10p.q + €1 (D5 Q)- (2.4.9)
o=1

O

Again these commutation relations are similar to those of bosonic operators, now in-
dexed by k € Z2 and p € Ly, but differing by the appearance of the exchange correction
er1(p; @), which evidently acts by exchanging the hole states with momenta p — k and g — [
if p = ¢, i.e. if the excited states match, or swaps the states with momenta p and ¢ if
p—k =q—1,1ie. if the hole states match.

The presence of €;,(p;q) can be considered a consequence of the fact that holes and
excited states are not uniquely associated with one another - indeed, for any p € B,
every hole state can be excited into this state, so there is a kind of “overlap” between the
excitation operators, which the exchange correction accounts for.

Unlike what was the case for the Bj operators, these correction terms can however
not be expected to be “small” individually. They can however still be considered small
“on average”, as the sum Y ,c;. > .cr, €ki(P; ) simply reproduces the correction term of
equation (2.4.2)) (up to a spin factor).

This is generally an unavoidable point: As we will see in Section [7] the exchange
contribution of Theorem in fact originates from these exchange corrections, so an
attempt at treating these as simple error terms (as was done in the works [8, 9, 10]) is
bound to miss this.

Now, the reason that the excitation operators are preferable to the By operators is that
these do in fact behave bosonically with respect to Hy;:

Lemma 2.4.2. For any k € Z3 and p € Ly it holds that
[Hbr,] = (I = Ip — kF)b7,

3 ! T 2 x T 2 * .
Proof: As Hy;, = Yiepe |q]” ¢ -Cor — 2gen, lal” cqrcy, we calculate the commutator with
each sum: First is

g, T

ZT: [l ¢ rqr by, ] = \f > a6 oCar € o Cpt] (2.4.10)

q€BY qEB%
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\/— Z |q‘ ( {Cl]ﬂ'ﬂ po}cp kU—C;,a {Cz,‘r?cp*kﬂ}Cq,T)

qEB%

p
%;Tcp_k,a_’ i z o = DB

1 o,T
- % Z Op.q00,r

qEB%

as the second anticommutator vanishes by disjointness of Bp and Bf. Similarly, for the
second sum

T 1 o, T

> lal® encyri by, = \/— > lal* [eqr€)rr 6 oComrol (2.4.11)

qEBF qEBF

* * * *
Z ‘Q| <_Cq77'cp,o {Cqﬂ'? CP*’WT} + {0%7'7 Cp,a} Cp*kﬁcq,ﬂ')

qEBF

1 2 * 2 g%
= _ﬁ Z |91 Oq.p—k0o,7CqrCh e = Z p— Kk’ c CpoCp—ho = [P — k|" b,

qEBF

and the claim follows.
O
This commutation relation mimicks that of a diagonal bosonic quadratic operator,
which is

[Z Elvqaiqahtp alt:,p] = Ek,pa;p (2412)
whence we may informally think of H], as
! 2 2 *
Higy ~ >0 3 (I = Ip = k) b5 ybip (2.4.13)
keZ3 peLy

In fact the lemma tells us that Hy;, is much better behaved than the expression on the right-
hand side: Unlike that, the commutator [Hy;,,bj ] behaves evactly bosonically, without
any additional error terms. In the subsequent sections we will see that it is precisely
through such commutators that H{, will enter our analysis. For this reason, working with
the excitation operators by, will prove to be extremely advantageous.



Chapter 3

Overview of Bosonic Bogolubov
Transformations

In this section we review some of the general theory of Bogolubov transformations in the
bosonic setting. Although the object of study of this thesis is a fermionic system, our
approach to this will be through a quasi-bosonic analysis of the fermionic Hamiltonian,
and while this of course differs from the exact bosonic case, we will carry out the quasi-
bosonic analysis by imitating the exact bosonic setting. For this reason we find it best
to review this first so that we may focus on the implementation of the analysis and the
discrepancies arising from the quasi-bosonicity in the remainder of the thesis.

This is particularly important as our treatment of Bogolubov transformations will differ
from the “usual” one, in that we will view quadratic operators, formed by pairs of creation
and annihilation operators, as the fundamental object of study, rather than the creation
and annihilation operators themselves.

Before we begin the review we must remark on the level of rigor of this section: Bosonic
creation and annihilation operators are inherently unbounded operators, and so a full
account of this subject would necessitate discussing domains of definition and other subtle
details. As the purpose of this section is only to motivate our approach to the fermionic
problem later on we will however not address these here.

We will employ the following notation: V' denotes a real n-dimensional Hilbert space, to
which is associated the bosonic Fock space (V) = @¥_, ®X.,, V. To any element ¢ € V
there corresponds the creation and annihilation operators a*(¢) and a(y), which act on
F*T (V). These are (formal) adjoints of one another and obey the canonical commutation

relations (CCR): For any ¢, € V it holds that

[a(p), a" (V)] = (g, ), lalp), a(¥)] = 0 = [a"(¢),a*(¥)]. (3.0.1)

Furthermore, the mappings ¢ +— a(y),a*(p) are linear.
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3.1 Quadratic Hamiltonians and Bogolubov Transfor-
mations

Similarly to how we can to any ¢ € V associate the two operators a(yp) and a*(p), we
can to any symmetric operators A, B : V — V associate two kinds of quadratic operators
acting on F*(V): The first kind is the usual second-quantization, given by

n n

dD(A) = > (e, Aej) a*(e;)ale;) = a*(Ae;)a(e;) (3.1.1)

i,j=1 i=1

where (e;);_, denotes any orthonormal basis of V' (the operator is independent of this
choice, as guaranteed by Lemma below). The second kind is of the form

Q(B) = ) (i, Bej) (alei)ale;) + a”(e;)a™(e:)) (3.1.2)

1

A

2

I

(a(Be;)a(e;) + a*(e;)a™(Be;)).

=1

We define a quadratic Hamiltonian to be an operator H, acting on F*(V), of the form
H =2dI'(A) + Q(B). (3.1.3)

(The factor of 2 will be convenient below.)

The importance of quadratic Hamiltonians lies in the fact that they can (under suitable
assumptions) be diagonalized, in the sense that there exists a unitary transformation U :
FH(V) — F(V) such that

UHU® =2dT°(F) + Ey (3.1.4)

for a symmetric operator £ : V' — V and E; € R, i.e. a quadratic Hamiltonian is unitarily
equivalent to a second-quantized one-body operator plus a constant. As second-quantized
operators are simple objects, the properties of quadratic Hamiltonians are thus in principle
also simple, provided one can describe U explicitly enough to relate the operators A and
B to E.

In this section we review the explicit construction of such Bogolubov transformations
U. More precisely, we will consider the Bogolubov transformations which can be written
as U = e* where K is of the form

n

K= 3 3 {en Kej) (aledaley) — a*(e))a’ () (3.15)

i,j=1
1

i(a(Kei)a(ei) —a*(e;)a*(Ke;))

N |

for a symmetric operator K : V' — V (the transformation kernel). Note that from the
second line it is clear that K* = —/C, so such a IC will indeed generate a unitary transfor-
mation.
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The action of €X on creation and annihilation operators can be determined as follows:
By the CCR we compute that

€.a(0)] = 5 3= la(ea(e) = o* ()’ (Ke0), ale)] = 5 3 lato).a(e)a’ ()
- 52000 (el (K] + ). ) (Kes) (316)
= 2060 (oK) + (i)' (Ke)
(7 (G rern) (Ké e ) =i
and taking the adjoint likewise shows that [KC, a*(¢)] = a(Ky), so

(K, alp)] = *(Kw) (3.1.7)
(K, a*(p)] = a(Kp).

[IC, -] thus acts on creation and annihilation operators by “swapping” each type into the
other and applying the operator K to their arguments. From this one can now deduce that

*a(p)e™ = a(cosh(K)) + a*(sinh(K)) (3.1.8)
*a*(p)e™ = a*(cosh(K)) + a(sinh(K))
since by the Baker-Campbell-Hausdorff formula

Falp)e™ = alg) + IC.alg)] + o I I, ale)] + 51 UC, IE K al)]] + -+
=a(p) +a"(Kp)+ 21'a<K2 ) ;a*(K?’@) +--- (3.1.9)
:a(<1+21!K2+-~-)<p) (<K+3'K3 )gp) = a(cosh(K)) + a*(sinh(K))

and likewise for e*a*(p)e ",

3.2 The Action of ¢ on Quadratic Operators

As our interest in Bogolubov transformations lie in their diagonalization of quadratic
Hamiltonians it is however not the transformation of a(-) and a*(-) that will interest us,
but rather the transformation of dI'(-) and Q(-). The latter can of course be deduced from
the former, but this approach is disadvantageous in the quasi-bosonic setting, which is why
we will proceed differently.

First, let us make an observation on the structure of the quadratic operators which will
simplify calculation significantly: The operators

n

dl(A) =D a*(Ae;)ale;) (3.2.1)

i=1
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n

Q(B) = > _(a(Bei)ale;) + a*(e;)a’(Be))
i=1
are both of a “trace-form”, in the sense that we can write dI'(A) (say) in the form dI'(A) =
> qles, e;) where
q(z,y) = a*(Az)aly), =yeV, (3.2.2)

defines a bilinear mapping from V' x V' into the space of operators on F*(V'), similar to how
tr(T) = >, q(es, ;) for q(x,y) = (x, Ty). This is worth noting since all such expressions
are both basis-independent and obey an additional property, which for the trace is the
familiar cyclicity property.

As we will encounter such trace-form sums repeatedly throughout this paper, we state
this property in full generality:

Lemma 3.2.1. Let (V,(-,-)) be an n-dimensional Hilbert space and let q: V xV — W be
a sesquilinear mapping into a vector space W. Let (e;);_, be an orthonormal basis for V.
Then for any linear operators S, T : V' — V it holds that

n n

Z q(Sei, Te;) = Z q(ST"e;, e;).
i=1 i=1

As a particular consequence, the expression >, q(e;, ;) is independent of the basis chosen.

Proof: By orthonormal expansion we find that

> q(Sei, Te;)) => ¢ (Sel,z ej,Te;)e ) = Y (T"ej, i) q(Sey, ¢5) (3.2.3)

i=1 i=1 i=1 i=1
n n n
*
= < > e, Ty ez,ej> = q(ST"e;, ;).
7j=1 =1 =1

The basis-independence follows from this by noting that if (¢})?"_; is any other orthonormal
basis, then with U : V' — V denoting the unitary transformation defined by Ue; = e,
1 <i < n, we see that

n n n

> oqlee)) => qUe;,Ue;) =Y qUU%e;,e;) = qles, €). (3.2.4)
i=1 i=1 i=1 =1
O

(In the present real case sesquilinearity is of course just bilinearity.)

The lemma thus allows us to move operators from one argument to the other when
under a sum, which will be immensely useful when simplifying expressions. This can
indeed be seen as a generalization of the cyclicity property of the trace, since the lemma
can be applied to see that

= Z (e;,STe;) = Z (S*e;, Te;) = Z (S*T™e;, €;) = Z (e;,TSe;) = tr(T9),
i=1 i=1 i=1 i=1
(3.2.5)
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but it should be noted that cyclicity in this sense is not a general property of trace-form
sums.
With this lemma we can easily calculate the commutators of I with dI'(-) and Q(-):

Proposition 3.2.2. For any symmetric operators A, B : V. — V it holds that

[, 2dl(A)] = QUK A})
K, Q(B)] = 2dI'({K, B}) + tr({K, B}).

Proof: Using equation (3 and the lemma we compute

M=

€, dl(A)] = Y K, a"(Aes)ales)] = i(a*(flei) [, alen)] + K, a"(Aeq)] ale;)) (3.2.6)

n

(a*(Aey)a*(Ke;) + a(K Aey)ale;)) = > (a(K Ae;)ale;) + a*(e;)a* (K Ae;)),

i=1

s
I
—

I

s
I
_

and since the annihilation operators commute there holds the identity

n

Za (K Ae;)a(e;) Za Za (AKe;)a(e;) (3.2.7)
i=1 =1

=1
and likewise for the second term, so including a factor of 2 we can write

n

[’C’ 2 dF(A)] = Z(a({K7 A} ei)a(ei) + a*(ei)a*({K7 A} 61)) = Q({K7 B}) (328)

=1

as claimed. For Q(B) we note that Q(B) = 2Re(X1, a(Be;)a(e;)) and calculate as above
that

n

K, a(Bei)a(ei)]> = 2Re (Z(a(Bei) K, ale:)] + [K, a(Be;)] a(ei))>

=1

(K, Q(B)]

Il
DO
-
S/\
M 8

=2 Re( _l(a(Bei)a*(Kei) + a*(KBei)a(ei))> (3.2.9)
= 2Re (i(a(BKei)a*(ei) + a*(KBei)a(ei)))
By the lemma we see that

2 Re (211:1 a(BKei)a*(ei)> =) (a(BKe;)a*(e;) + ale;)a*(BKe;))

-

1

(2

I

s
I
—

(a(e;)a*((BK)"e;) + a(e;)a*(BKe;)) (3.2.10)

I

@
Il
—

ale;)a*({K, B} e;)
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and likewise
n

2Re (Xn: a*(KBei)a(ei)> = a"({K, B} e;)a(e;), (3.2.11)

=1

so by the CCR

K, Q(B)] = > _(alex)a”({K, B} &) + a”({ K, B} e;)a(e;))

=1

Zf: ({K, B} ei)a ei)+i<€ia{KaB}€i> (3.2.12)

i=1

=2dI'{K, B}) + tr({ K, B}).

O

Note the similarity between these commutators and those of equation - again

[IC, -] acts by “swapping the types and applying K to the argument”, although now the types

are those of the quadratic operators and the application of K is taking the anticommutator.

Although the action of e* on the quadratic operators can again be deduced from the

Baker-Campbell-Hausdorff formula, we now derive this by an “ODE-style” argument, as
this will generalize better to the quasi-bosonic setting of the next section:

Proposition 3.2.3. For any symmetric operator T : V — V it holds that
M2dAI(T))e™ = 2dI(TY) + Q(Ty) + tr(Ty — 1)
FQT)e™ = 2dD(1y) + Q(T3) + tr(Ty)
where T, T5 : V. — V' are given by

T, = ;(GKTGK + e_KTe_K), T, = ;(GKTGK — e_KTe_K>.

Proof: We prove the first identity, the second following similarly.

Consider an expression of the form e~ (2dT'(A(t)) + Q(B(t)))e™ where A(t), B(t) :
V' — V are any symmetric operators with ¢ — A(¢), B(t) differentiable. Taking the
derivative, we find by Proposition that

e 2ar(A(r) + QUB())e”

= e 2dD(A'(1) + Q(B'(t)) — [K,2dT(A(t)) + Q(B(t))])e™ (3.2.13)

= e dD(A(t) — {K, B(t)})e™ + e Q(B'(t) — {K, A()})e™ — tr({K, B(1)}).
Consequently, if A(t) and B(t) are solutions of the system

A(t) = {K,B(t)}, B(t)={K, A¢)}, (3.2.14)

then the first two terms vanish, i.e.

jte_”c(Q AT(A(D) + Q(B(1))e!® = —tr({K, B(t)}). (3.2.15)
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The fundamental theorem of calculus thus implies that
e M(2dI (A1) + Q(B(1)))e* = 2dI'(A(0)) + Q(B(0)) — /01 tr({K, B(t)})dt (3.2.16)
= 2dT'(A(0)) + Q(B(0)) — tr(A(1) — A(0)),
and imposing also the initial conditions
A(0) =T, B(0)=0, (3.2.17)
this can be rearranged to
M (2dT(T))e ™ = 2d0(A(1)) + Q(B(1)) + tr(A(1) = T). (3.2.18)

The claim now follows by the observation that

1
At) = §<etKTetK + e_tKTe_tK) (3.2.19)
B(t) = 1(etKTetK — e_tKTe_tK)

2

are precisely the solutions of this system: The initial conditions are clearly satisfied, as is
the ODE since

d
%(etKTetK + e—tKTe—tK> — etK {[(7 T} etK + e—tK {—K, T} €_tK
= {K, e Te! 5 e K Te ] (3.2.20)

g

Diagonalization of Quadratic Hamiltonians

Having derived the transformation laws we can now describe how to diagonalize the
quadratic Hamiltonian H = 2dI'(A) 4+ Q(B): By Proposition [3.2.3] this transforms as

cHe ™ = 2dF(; (eKAeK + eKAeK)) + Q(; (eKAeK — eKAeK))

L e Beff — e_KBe_K)) + Q(; (eKBeK + e_KBe_K)>
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As the diagonalization of H is the statement that the Q(-) term vanishes, we see that the
diagonalization condition is that K obeys

X (A+ B)e =e ¥ (A~ B)e ™. (3.2.22)
Indeed, if this holds then we evidently have that
MHe™™ = 2dT(E) + tr(E — A) (3.2.23)

for E=e®(A+ B)eX = e X (A— B)e ¥.

There remains the question of when such a kernel K exists. For this it holds that the
condition A+ B > 0 not only suffices, but in this case a diagonalizing K can be explicitly
defined, which is furthermore unique (the following is a generalization and simplification
of the arguments used in [§, 15]):

Proposition 3.2.4. Let A, B : V — V be symmetric operators such that A+ B > 0. Then

)

(NI

((A=B)?(A+ B)(A - B)é)é(A —B)”

(NI

1
K = —5 10g<(A — B)~
is the unique symmetric solution of
M (A+ B)e =e (A - B)e ¥,

Proof: Write AL = A £+ B for brevity. Then we can write the diagonalization condition
as
AL =e A (3.2.24)

Multiplying by A_2 on both sides yields
1 1 1 1 1 1\2
ATA AT — AZe 2K 4 o 2K AT — (Aie2KA3> , (3.2.25)
1 1 1 1
so as both A2 A, A2 and A2e 2K A2 are positive operators it must be the case that

A

[ ol

1
2K AT = (A5A+A5) ’ (3.2.26)

whence

9K — 1og<A_§<A§A+Aé>2A_ ) (3.2.27)

[N

which is the claim.



Chapter 4

Diagonalization of the Bosonizable
Terms

In this section we diagonalize the bosonizable terms, which is to say the expression

Vikp!
Hl/dn + Z :
kezd ( W)d

(2B;Bi + BB_x + B*,B}). (4.0.1)

In Section [2| we saw that these behave in a quasi-bosonic fashion, and this “diagonalization”
is indeed in the sense of Bogolubov transformations. To this end we start by casting the
bosonizable terms into a form which more closely mirrors that of the quadratic operators
which we considered in the previous section.

Once this is done it will be clear how to define a quasi-bosonic Bogolubov transforma-
tion eX which emulates the properties of the transformation in the exact bosonic setting.
We can then repeat the calculations of the previous section - keeping also in mind the
additional terms which arise from the exchange correction - to determine the action of this
transformation on the bosonizable terms.

With this established we then specify a particular generator K which will diagonalize
these terms, and in the process extract the bosonic contribution to the correlation energy.
The main result of this section is summarized in the following (in notation defined below):
Theorem 4.0.1. Let 3y XA/,f < 00. Then there exists a unitary transformation e* :
Hy — Hy such that

Vikp!
K / kvp
€ Hkin + Z

( i 2 (2n)?

= tr(ekahkefK’“ — hy — Pk) + Hy, +2 >0 QF (e’K’“hke’K’c — hk)

kez? kez?

+ 2 /01 U (e ({ Kk, Br(t)}) + 2 Re(E4(Ax(1))) + 2 Re(E(Br(1))) Je - at

kez3

(2BiBi + BB + BikB;;)) oK
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where for any k € Z3 the operators hy, Py : (?(Ly) — (?(Ly,) are defined by

heey = Mepep  Mp = (IpI° = Ip— K[?)
sViek ot
Pe(-) = (vg, ) vx v = Q(I;T?,ZPGL,C%,

the operator Ky : (2(Ly,) — (*(Ly) is defined by
1 1/ 1 1Nz, _1
Ki=—3 log<hk : (h,g (hio + 2Pk)h,§) h )
and for t € [0, 1] the operators Ag(t), By(t) : ¢*(Ly) — (*(Ly,) are given by

1
Ag(t) = §<€th(hk + 2P, )etie ¢ e—thhke—th) _

1
Bk(t) = 5(eth(hk + 2Pk>€th _ efthhkefth)'

The condition that 3;czs V,f < oo arises to ensure that the diagonalizing generator K
is a well-defined (and even bounded) operator. We will however postpone the proof of this
until the next section, to focus on the diagonalization procedure first.

(Even though K is bounded, there are still some subleties to address due to the unbound-
edness of the transformed operators. We have included these considerations in appendix
section |C| for the interested reader.)

4.1 Formalizing the Bosonic Analogy

Recall that we defined the quasi-bosonic excitation operators by

1 2 k k 1 > k
Per = NG Y CkoCpos bip= NG > CroCohar kELLpE Ly, (4.1.1)
o=1 o=1
which obey the commutation relations

(b U1y | = Oki0pg + eka(Pi0)s [brps big) = 0= [, b7, (4.1.2)

-1 s

] (5p,ch,l,gc;§fk o T 0pkg1Cy Ucp,(,). The relation between these and the

for Egl = —S
By, operators is simply By = /s e, brp, 50 we can express the non-kinetic part of the
bosonizable terms as

Vikr'!

——=—(2B;B), + B,B_i. + B*, B} 4.1.3
kGZ:}( 2 (27_[_)3 ( k k k k:) ( )

Ska;1 Ska‘El
=23 by + Y (b b, 07 b))
kezi( g€ Ly 2(27T)3 o p,qE€ Ly 2(27T)3( ' g Y 7p)
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The expressions inside the parenthesis are similar to the quadratic operators we considered
in the previous section, and to exploit this similarly we define for any operators A, B :
(%(Ly) — ?(Ly,) quasi-bosonic quadratic operators Q¥(A) and Q%(B) by

Qlf(A) = Z <€paA6q> blt:,pbk’,q (4.1.4)
p,gELy

Qg(B) = Z <€P7 BeQ> (bk,pb*k,*q + btk,fqbz,p)7
p,qELy

where (ep) ; is the standard orthonormal basis of (%(Ly).

Note that the spaces ¢?(L;) play the role of the one-body space V of the previous
section]l] and that Q¥(A) and Q4(B) are analogous to dI'(4) and Q(B) of the equations
(3.1.1)) and (since we already use dI'(+) to denote the fermionic second-quantization
on Hy, we deviate slightly from that notation for the quasi-bosonic operators).

Note also that the Q&(-) terms involve excitation operators of both momentum & and
—k. For this reason we will have to treat operators corresponding to the lunes L, and L_;
simultaneously when deriving the transformation identities below.

To write the right-hand side of equation in this notation, define a vector vy €
€2<Lk) by

sVikp!
Vi =

> e (4.1.5)

3
2 (27T) pGLk

and consider the operator Py : £*(Ly) — ¢*(L) which acts according to Py(+) = (vg, -) vg.
Then

Skagl
(eps Peq) = (€p) Vi) (Vk: €q) = 3, D4 € Ly, (4.1.6)
2 (2m)
so we simply have
Veki' (o0 - . )
> s (2BiBy+ BB+ BLB) = 3 (2Q1(P) + Q(P:)). (417)
nezz 2 (2) nezs

Generalized Excitation Operators

For the purpose of computation (in particular so that we can exploit Lemma to the
fullest) it is convenient to also introduce a basis-independent notation for the quasi-bosonic
operators. We thus define, for any k € Z2 and ¢ € (*(Ly), the generalized excitation
operators by(v) and b} (v) by

bi() = 2 {@ren) b i) = D {en, ) iy (4.1.8)

PELg pELg

L As in that case we will only consider £2(L;) as a real vector space.
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The assignments ¢ — by (@), bi(p) are then linear, and so it follows from equation (4.1.2))
that the generalized excitation operators obey the commutation relations

[0k (0), bu(¥)] = [bi (), by (¥)] = 0 (4.1.9)
[0 (©), b7 (¥)] = 61y (0, 0) + (@)

for all k,1 € Z3, p € (*(Ly) and ¢ € (*(L;), where the exchange correction e ;(p;1)) is
given by
1 * *
eri(p;h) = —= Z Z ©, ep) (€q, >((5p7ch_l7gcp_kvg +5p—k,q—qu,UCp,a>- (4.1.10)

pELK gLy

In terms of these the quadratic operators Q¥(A) and Q%(B) are expressed as

Qi (A) = > bj(Aey)bry (4.1.11)
pELy

Q5(B) = > (be(Bey)boy—p + b, bi(Bey)).
pELy

It will also be useful to express the relation
[Hiins U] = (I = Ip = K[*)b7,, (4.1.12)

of Lemma in a basis-independent way: Defining operators hy, : £2(Ly) — (*(Ly;) by

1
hrep = Akpp,  Akp = §(|p|2 —|p— k|2), (4.1.13)
linearity yields the general commutator

(Hi b)) = 3 (IpI* = Ip = EI?) (e, ) O}, = 205 (). (4.1.14)

pELg

4.2 The Quasi-Bosonic Bogolubov Transformation

Let a collection of symmetric operators K; : £2(L;) — (*(L;), | € Z32, be given. Then we
define the associated quasi-bosonic Bogolubov kernel K : Hy — Hy by

Z > lep Kieq) (bipb-t—q — by b7,) (4.2.1)

leZ3 P,gELy

5 Z S (BKieg)boi—q — b5y obi (Kiey)),

ZEZ3 qEL;

in analogy with equation (3.1.5)). It is clear from the second equation that £* = —K, and

so K generates a unitary transformation e*.
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This of course depends on K being well-defined - as it is an infinite sum, this is not
obvious. As mentioned at the beginning of this section, we will consider this issue in
the next section, in which we establish that KC is in fact a bounded operator provided
Iizs < oo

We will make the additional assumption about the operators Kj that they are sym-
metric under the negation £ — —k, in the sense that

(ep, Kieg) = (e_p, K _re_,), k€Z pq€ L. (4.2.2)

Letting Iy : ¢*(Ly) — ¢*(L_j) denote the unitary mapping acting according to Ire, = e_,,
p € Ly, this condition is expressed in terms of operators as

LKy = K_ I, (4.2.3)

It is easily seen that the operators hy and P, defined above also satisfy this relation.
The reason for imposing this condition is to ensure that Lemma allows us to move
operators between arguments also for Q’;(-)—type terms, since e.g.

Z bl Kleq b l,—q — Z bl Kleq Z bl Kleq Ileq) (424)
qgel, qeL qeL;
= Z bl eq IlKl 6q Z blq IlKlG Z blq K_le )
q€Ly qeLy qeLy

K Commutators

As in the previous section we must calculate several commutators involving K before we
can determine the action of eX on the bosonizable terms. We start by computing the
commutator of K with an excitation operator:

Proposition 4.2.1. For any k € Z2 and ¢ € (*(Ly,) it holds that

(K, b ()] = 0" (1K) + ()
IC, b ()] = boi (I Krp) + Erp)”

where

l\'J\H

D {5kl 5 €q), (K—le—q)}-
€72 gLy

Proof: It suffices to determine [/, bx(¢)]. Using Lemma we calculate that

[, bi (e Zz([bz Kieg)b-i(e—q) = b (o)} (Kieg), bi(9)])

lEZ3 qeL;

5 Z > (b7 4le—g) [br(0), by (Kieg)] + [bi(0), b1 (e—g)| b (Kie))  (4.2.5)

leZ3 qeL,
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ZL( K_ieq) [br(9), b7 (e)] + [br(0), 07y (e )| ] (Kiey))

l\')\»—t [\')\r—\

Z
Z {[ ), b5 u(eg)] b (Kieg)}

hM

where we lastly substituted | — —I, ¢ — —q in the first term. Using the commutation
relations of equation (4.1.9)) we then find that

(b)) = 5 30 3 (Bt o1 eg) + 2ri(prey), b (Kiey)

1€73 q€Ly
= Z <§07 e*Q>b (K*keq +3 Z Z {gk -1 907 )7b7(Kleq)} (426)
qeL_y leZ3 qeLy
=b", (Kk[k Z (p,eq) € ) + = Z Z {akl wre,), b (K_je q)}
qeLy leZ“ qel,

= 0", (L Kkp) + Ex(p).

O
Note how these commutators compare to those of equation - again IC “swaps
the type and applies K7, but now there is also a reflection from L; to L_, as well as an
additional term involving the exchange correction.
Using this relation we can now determine the commutator with Q¥ terms:

Proposition 4.2.2. For any k € Z2 and symmetric operators Ay : *(Ligx) — 0*(Liy)
such that I, A, = A_i 1}, it holds that

[, 2Q4(A) +2Q7"(A)| = Q5({Kw, A}) +2Re(EL(AD) + (k — —k)

where

Ex(Ar) = DD D bilArey) {5k,l(€p3eq)vbil<Kfl€7q)}-

1ez3 pELy qeLy

Proof: Using Proposition [4.2.1] (and Lemma together with symmetry of Ay) we find

that

€. Q1 (AW = ZL: [IC, bi(Arep)br(ep)] = ZL: (b (Arep) [IC, br(ep)] + (K, b (Axep)] bi(ep))
— Z (bZ(Akep)bik(IkKkep) —|— b_k(IkKkAkep)bk(ep)>
+ > (0p(Arep)Erley) + Ex(Are,) br(ey)) (4.2.7)

= Z (bZ(AkKkep)b*_k,—p + b—k,—pbk(AkKk€p>) + 2 Re( Z bZ(Akep)Ek(ep)>

peLy pELg
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= Qg(AkKk) + 2 Re( Z b;;(Akep)Sk(ep)) .

PELg

Now, the assumption that I, Ay = A_,I; yields

Z bk(AkKkep)b_k,_p = Z bk(Ik kK_ke_p €_p Z bk €p K_kA ke_p)

pELy pELy pELy
= Z b,k(K,kA,kep)bk’,p (428)
pEL_
and likewise 3 ,cp, 0%y 0i(ArKiep) = Xper , bn 0% (K1 A_rep), whence
Q5 (AK) = Q5" (K Ay). (4.2.9)

Summing over both k and —k, and introducing a factor of 2, we thus find

€, 2 Q5 (Ak) +2Q7(A k)| = 2Q5(ALKy) + 2Re (2 3 bZ(Akep)Ek(ep)) (4.2.10)

pELy

+20Q57"(A_1LK_}) + 2Re (2 > b*_k(A—kep)g—k(ep)>

peEL_y

= QS({ Kk, Ax}) + 2Re(EL(AL)) + (k — —k)

where EL(Ax) = 23 ,e, b (Arep)Ex(e,) follows simply by expansion.

O
To state the commutator of K with Q&-type terms, we first note the identity
> bile)bi(Avey) = 3 bi(Aen)bulen) + 3 [bile,). bi(Avey)]
pEL pEL pELy
= > bp(Arep)bilep) + Y (e, Arep) + D ennlep; Arep)  (4.2.11)
pELy pELy pELy
= QY (Ag) + tr(Ay) + i (Ar)
where we introduced the convenient notation
1 o
ex(Ak) = Z Ek,k(€p; Akep) = - Z <€qvAkep> (5107‘16‘1—]‘3700;—]6,0 + 5p—k7q—kcz,ocp,v)
pGLk P,qE L
=~ Z €p, Akep) ( +Cp,o + Cp—k,0C ko’) (4.2.12)
PELk

The commutator is then given by the following:

Proposition 4.2.3. For any k € Z3 and symmetric operators Byy : *(Lyy) — (*(Liy)
such that Iy B, = B_i I}, it holds that

[, Q5(By) + Q2" (Bi)| = 2Q({ K, Bi}) + tr({ Ky, Bi}) + ex({ Ky, Bi})
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+2Re(EX(BY)) + (k — —k)

where

EX(By) = Z Z Z {bk(Brep), {e—k,—1(e—pie—q), b (Kieq) }} -

leZ3p€qu€Lz
Proof: Writing Q%(By) as Q%(By) = 2 Re(zpeLk bk(Bkep)b_k(e_p)), we calculate

K, Q5(By)| = 2Re( 3= (bu(Brey) [, bor(e—p)] + K. bi(Brey)] b (e—p)))

pELy

= 2Re Z (bk(Bkep) [’C, b_k<€_p)] + [IC, bk(ep)] b_k(B_ke_p))>

pELy

=2Re Z (bk(Bkep)b}’;(]_kK_ke_p) + b*_k(IkKkep)b_k(B_ke_p)>) (4213)

pELy

+ 2 Re( Z (bk(Bkep)g_k(e_p) + Ek(ep)b_k(B_ke_p)))

=2 Re( Z (bk’pr(KkBkt?p) + b*_k(K—kB—ke—p>b—k,—p)>

pELy

+ 2 Re( Z (bk(Bkep)S_k(e_p) + Ek(ep)b_k(B_ke_p))) .

pELy

Now

2Re( Z bk,pr(KkBkep)> = Z bk7pb]:(KkBk€p) + Z bk(KkBkep)b};,p

pELy pELy pELy
= Y bipbi(KipBrep) + Y bipbi(BeKrey) (4.2.14)

pELy pELy

= > bepbi ({ Kk, B} ey)

pEL

and likewise QRG(ZpELk b L (K_gB_ge_p)b_y, p) =Y per, U ({ Kk, B_g}e_p), so

2 Re( Z (bk,pr(KkBkep> + b*k<KkBk€p)bk,p>)

PELg

= Z bk’pr({Kk,Bk} Gp) + Z b*_k({K—kaB—k} 6_p)b_k7_p (4215)

pELy pELy,

= Q1({ Kk, Bi}) + tr({ K, Bi}) + ex({ K, Bi}) + Q7 ({K -, B-}),



4.3 Transformation of the Bosonizable Terms 35

whence summing over k and —k yields

[IC, Q5(Br) + Q;’“(B_k)} = 2Q"{ Ky, ByY) + tr({ Ky, BuY) + en({ Ky, By})  (4.2.16)

+ 2 Re( Z {bk(Bkep), Sk(ep)}) + (k — —]i])

PELy

and EX(By) = Y per, {bk(Brep), E—k(e—p)} follows by expansion, yielding the claim.

O
Finally, for the transformation of Hj; , we also calculate the commutator [K, Hy,,|:
Proposition 4.2.4. It holds that
I, Hiy = > Q5({ K, hi}).
kez3
Proof: By equation (4.1.14]) we have
[Hiin, 0r(0)] = =2bi(hie),  [Hign, b (0)] = 25 (hap), (4.2.17)
so using that I h, = h_,I; we find
[Kﬂ Hkln = Z Z (bk Kkeq ( —q)7 Hl/dn] - [bik(e—q)b;;(Kkeq)? Hl,qn})
k€Z3 q€Ly
=75 Z Z bk Kkeq k1n7b (e*q)] [Hl/ﬂm bk(Kkeq>] b*k(e*q))
keZ5q€Lk
g 305 (0 lea) [ b))+ [l o) B Ky
keZ2 q€Ly
= Z Z bk Kkeq _k(h_ke_q) +bk(thk€q)b—k<€—q)) (4218)
kez2 gLy,
+ 30 30 (b aleg)bi(hiKeq) + b7 (hoye o)y (Kie,))
keZ3 qeLy
= > 3 (K i} eg)brle—gq) + b7 (e )by ({ K, hu} ) )
keZ3 qeLy
= > Q5({ Kk hu}).
kez3
O

4.3 Transformation of the Bosonizable Terms

With all the commutators calculated we can now determine the action of X on quadratic
operators:
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Proposition 4.3.1. For any k € Z2 and symmetric operators Tyy, : (*(Lix) — (*(Lig)
such that I, T, = T 11, it holds that

F2Q5(T) +2Q7M(Tx))e ™ = u(TH1) - T) +2QF(TH()) + Q5(TR(1))

b [0 (K T20)) + 2Re(€1(T0)) + 2Re(82 (T20))) )00+ (k — k)
and

(Q5(T) + QM (Th) )™ = tr(T2(1)) +2QF (TR (1)) + Q5(TH(1))

+ /O 1 e (e ({Kn, T }) + 2Re(EL(TR(1))) + 2Re(E2(T3 (1)) ) )e %t + (k — —k)

where for t € [0,1]

Proof: We prove the first identity, the second following by a similar argument.
As in the proof of Proposition |3.2.3|we consider the expression e~ (2 QY (T (1)) + QS(Tﬁ(t))) s

where T} (t) and T{(t) are the solutions of the system

(1)) = {K. T2}, (T2) () = { K T (43.1)

with initial conditions T} (0) = Ty, TZ(0) = 0.
By the Propositions [4.2.2] and [4.2.3| the derivative of such an expression satisfies

so by the fundamental theorem of calculus
e (201 (THD) + Q5 (TR (D) )X + (k — —k) = 2Q5(T) — (T}H(1) — Ty (4.3.3)
- /01 e (en({K TE®)}) + 2Re(E(TL(®))) +2Re(E2(T2(1))) )™ dt + (k — —k)
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whence conjugation by eX and rearrangement yields
F(2Q8(T) + 207 (T )e ™ = te(THQ) = Th) +2Q5 (TH)) + @5(TR(1)  (4.3.4)
+ /01 U (e ({ K, TR()}) + 2Re(EL(TH®)) ) + 2Re(EX(TR(1))) )e~ " dt + (k — —k)

which is the claim.
O
With the transformation of quadratic operators determined we can also derive the
transformation of Hy,,:

Proposition 4.3.2. It holds that

¢ Hiye™ = 37 tr(hp(1) = b)) + Hig + D2 (2Q5(hA(1) — hi) + Q5(R2(1))

kez3 kez3

+ Z/ O08 (e ({ K, BR(D)}) + 2Re (4 (hh(£) — b)) + 2Re(EZ(hR(1)) ) )e Nt

kez3

where for t € [0,1]

1
h]{;(t) — §(ethhk€th + e—thhke—th)

1
Bi(t) = 5 (et — e hpye ).

Proof: By the Propositions |4.2.2] and [4.2.4] we see that

o Hip = 3 2@’;(@)] =~ 3 2Re(gl(h)) (135)

kez3 kez3

whence by the fundamental theorem of calculus

(= 5 20800 ) - - 5 20800 - T [ (omefeln)e

keZ3 kez3 kez3
(4.3.6)
or
e Hiye ™ = Hiy + > ((2Q5 () )e ™™ = 2QF () (4.3.7)
kez3
- Z/ (-0K (2 Re (€} () ) )&% dr.

kez3

Applying Proposition now yields the claim.
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With the transformation formulas derived we can now conclude the main part of The-
orem 4.0.1; By the two previous propositions, we see that

(Hl’m+ > (2Q5(P) + Q5(P) )) = > tr(hi(1) = by + PH(1) — Po+ P2(1))

kezZ3 kez3

+ Hip+ Y (2QF (h(1) = hie + L) + P2(1)) + Q5 (h2(1) + B(1) + PL(1))) (4.3.8)

kez3

F X[ ey ({ K i) + PR + BLOY) + 2Re(8L (1) — b+ AL + PE()))

kez3
+ 2Re(E2(RE(1) + PX(t) + PL(t))) )e %,

which is to say

-~ (H;(m - 5 (ot @é(Pw))

= 3 tr(Ak(1) = Po) + Hiyy + Y (2Q5(Ax(1)) + Q5(Bi(1))) (4.3.9)
kez3 kez3
+ Z/ 020K (e ({ K, Bi()}) + 2Re(E}(Ax(t))) + 2 Re(EX(B(1))) Je - at

where the operators Ay(t), By(t) : >(Ly) — ¢*(Ly) are given by

1

Anlt) = i(etK'“<hk + 2P ) 4 e Fihye ) — (4.3.10)
1

Bk(t) = §(€th<hk + 2Pk)6th _ e—thhke_th)‘

We can now choose the kernels K such that this expression is diagonalized, i.e. such
that the Q5(+) terms vanish. Evidently this is saying that By(1) = 0, so we arrive at the
diagonalization condition

Rk (hy + 2P ) ek = e Krpye i, (4.3.11)

Note that this is really the condition of equation (3.2.22)) of the previous section, with
A= hy, + P, and By, = P,. As such we see by Proposition - 3.2.4] that we must choose

1 - 1
Since the diagonalization condition is then fulfilled, it follows that also

Ap(1) = e Brhpe 6 — py (4.3.13)
and the formula of Theorem is proved.



Chapter 5

Controlling the Transformation
Kernel

In this section we prove that under the condition 37z || K |[5g < 00, the operator defined
by

1
K= 5 Z Z <€P7 Kleq) (bl,pb—l,—q - b*,l’,qbzp) (501)

1eZ3 p,g€Ly

is bounded. More precisely, we prove the following estimate:

Proposition 5.0.1. For all &,V € Hy it holds that

(@, K0)| < V5 | [IKillfsy/(®, (N5 + 1)@) (T, (N5 + 1)),

lez3
Recalling that i i
Ne= Y Colpo= D, CpoChy (5.0.2)
peBS, pEBF
we have the trivial bound Ng = Y7 5 ¢,0¢,, < s|Br| = N, whence the proposition

indeed implies boundedness, as an estimate of the form [(®, V)| < C'[|®|| || V]| follows.
Additionally, we will see in the next section that the kernels of equation (4.3.12)) obey

1Kllgs < CVi, k€ Z2, (5.0.3)

for a constant C' > 0 independent of %, so the criterion 3 ;czs Vk2 < o0 does indeed imply
boundedness of our diagonalizing kernel /C hence existence of the unitary transformation
e’ asserted by Theorem [4.0.1]

Preliminary Analysis

Define
K= Z <€p, Kleq> bl,pb—l,—q (504)

p.9€Ly

N | —
* W

leZ
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so that K = K — K£*. Then for any ®, U € Hy
(D, KW)| < [(@,KW)| + (¥, KD)| (5.0.5)

so we need only bound a quantity of the form [(®, KT)|.
Note that by expanding b_; _, = sT2YS, €% 4+1.0C—q0 We can write K as

K= \/— > Z ep K1€q) bipC” g 41,5C—q0 = Z (Z > 11,(a) ey, Kaey) bl,PC*qul,a) C—go

1eZ3 p,g€Ly qu} lez2 pel,
(5.0.6)
whence we may estimate
~ 1
(@, Kw)| = <Z 3 11,a) R ) c-gst ol .o
1eZ2 peLy
S Z Z Z 1,(q) (Kieg, €p) C—q11,0b7, P || [|c—g.0 V]| (5.0.7)
quC lez? pely

2
1 o )
< W Z Z Z 11,(q) (Kieg, €,) C—q+l0blp \l Z [c—q.0 ¥l
qEBY, ||1eZ3 peLy q€BY,
111 ?
- 92 Z Z Z 1Ll Kl€q7€p> C—q—l-loblpq) <\I’7NE‘I]>
qEBY, ||1€73 pELy

Now, the operator appearing under the root can be written as

Z Z 17,(q) (Kieg, ep) c —q+l,opr \/— Z Z 17,(q) (Kieq, €p) C;,Tcp—lﬁc—tﬁlﬂ

lez3 pely lez3 pely

Z Z (Z Z O pOgt p—16r —g1lr,(q) (Keq, ep>) C;/,ch’ﬁcr’,a- (5.0.8)

p '€BS. ¢ ;r'eBr \1€Z3 pELy

The introduction of these Kronecker ¢’s has no effect by itself, but it highlights that this
operator can be written simply in the form

Z Z APQT Cq,'l’cr,a (509)

peBC q,r€EBF

for some coefficients A, ,,. We will now derive a general estimate for such an expression.

5.1 A Higher Order Fermionic Estimate

Recall that the “standard fermionic estimate” can be stated as

H 3 A < 3 1A e, (5.1.1)
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which can be proved by appealing to the CAR as follows: Trivially

I At = (X A, Y A = (0, (X Aer) (S Ae)w)  (5.12)
< <\IJ, (Z Akck)*(z Alcl)\IJ> + <\IJ, (Z Alcl) (Z Akck)*\Il>
= (A Aen) (X Ac)  9)

since all that was done was the addition of a non-negative term. By the CAR, however,

{(Z Akck)*, (Z Alcl)} = ZIkAl {C;;, Cl} = ZTkAlék,l = Z ’AHQ (513)

whence the bound immediately follows. This establishes the uniquely fermionic property
that sums of creation and annihilation operators can be estimated independently of the
number operator, unlike in the bosonic case.

One can imagine generalizing this to quadratic expressions of the form 7, ; Ay crey,
but this fails: The issue is that the CAR only yields a commutation relation for such
expressions, and not an anticommutation relation, whence the argument above can not be
applied.

We may however make the observation that for cubic expressions, such as 3 ; ,, Ak1.mCiCiCm,
the CAR does yield an anticommutation relation, allowing the trick to be applied. The
anticommutator is of course not constant, but rather a combination of quadratic, linear and
constant expressions, but this still yields a reduction in “number operator order”, which
will be crucial for our estimation of AN 2e™* later on.

To derive such an estimate we first calculate the following basic anticommutator:

Lemma 5.1.1. For any p,p’ € B%, q,¢',r,v" € Bp and 1 < o,7,7" < s it holds that

* ’ /

* * _ST,T * * 7,7 % * * *
{(cwcq,rcw) s Cpt 71 Cyl cr/,,,} = 0y €/ 7/ Crt 5 Cr s Cq v O’y Cyp 11Crt 5Cr s Cpir =+ O/ Cy 1 Cp 1€ - Cp
T,0 % *
q,r/cp’,T’Cq/J/ cr,acpﬂ'

7,7 T, T

! ! /
_ T, T £ _ 5 ES _ T, T ES
5q7q’ 57”7“019’,7’61%7 5p,p/ 0.q' ¢r'0Cro 5p,p’ O Cq' ' Cor

o 50,7’ * * -5
g Cp’Vr’CT‘/,UC(LTCp,T

! ! ! !
T,0 CO,T ES T, T g, T ES T,T T,0 >k
+ 5(1,7“’ rg Cp i Cpr Tt 5p,p/ rq Cr'oCqr + 5p,p’ g, Cd' ;7' Cro

/ ! ! /
R A S ot s
k)

0’ Y a,q pp' Vg,

Proof: The proof is a straightforward but lengthy calculation using the CAR: First we
note

*
* > * * k
(Cp,rcanCT»U> Cp 71Cq' 7' Cr' 0 = Cp 6Cq 7Cp7Cp 71Cq 7' Crl o

’
*

* k% T, T *
1CprCq 7' Crt o+ p.p CroCqrCd 7 Crlio (5' 1 '4)

= _CT7o.Cq7TCp/ 7T

/
ok % T % %
= Cy 7Cr 5Cq 7 Cq' 7 Cr' 0 Cp,r + p.p CroCqrCq 7 Cr' o

and

/ /
* % % * 7,7 % _x x _ STO % T,7" %
Cr,acqﬁcq/ﬂ'/c?“/ﬂ - cr,acq/ﬂ" Cq,TCT/J + 9,9’ CT‘,UCT/70' - CT,UCq/ﬂ'ICTI:UCqﬂ' 5q,r’cr,ocq/77/ + q,q’ CT,JCT/,O'
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!
= —Cq 7/Cr 5 Crt o Cl o + 0] ,cr oCor 57"’,cjacq/ 7 0 0 CroCr s (5.1.5)
T,0
= Cq 71Cp Ucwch — (5M/cq/ T/c + 0 ,cr Uc 5qr 7"ch -+ qq,cmcr -
= Cq/ +/Cp/ UCM qT — (5 ,cr ac — 5T7r/cq/7T/c + o ,cr gc + 5 ,cq T/c

T,T T,0 SO T
+ 5(1:61/ 51”,1”/ - 5(1:,,./5,,,’7(1/ .

Consequently
7,7 * *
cp T’Cr acq +Cq' 7' Cr! o Cpr = Cp 7 Cq' ;7' Cr! Ucra q, Tcp: + C (5q,q’ CT/7UC7",U + 57" 7 Cq T'C )cpﬂ'
T,0 * * 7,7 T,0 <O, T
— Cpy (5 ) Crt 9 Cyr + 5q7r,cq/;rcna)cp77 — Cp <(5q’q,5 — OOy )Cpir
*
>k * >k >k >k
= _Cp’,T’ Cq';v'Crl o (CPJ'C‘LTCrvU) + q, q’ Cp 7 Cr',oCr o Cp,r + 57“77”'Cp’,T’quyT'cq,TCPJ
T, 0' >k *
— 0, cp 71Crt 5CqCpir — O 1 Cy 21Cqt 71Cr yCp (5.1.6)

’TT T,0 UT
- 5 o Or'Coy o1 Cpr =+ 0710, Cpy 1 Cp
and

T,T T,T
/c Cr Coqt 7Crt g = (5 ,cq 7Crt 5 Cp 5 Cop o — O ( ,cr oCrg  OrpCy T/ch)

T,0°q,T
+5T’T,(Z’qT/crgac* +5Tﬂ,cq,7,c*) oy (Ogg Orar — 072077 ) (5.1.7)

7',7— TT T,T TT

= 0y Cot 7 Crt 5 Cp 5 Cyr = Oy O cr oCro = Oy O/ Cof 1 Cy

T,T o, T TT TT 7—7' _ ’7—7' T,0 0'7'
+5p,p/ ,cr o Car O 00 Cyr 21 Cr oy 0, 5qq Ot — O O 0,0

Insertion of these two identities into equation ([5.1.4)) yields the claim.

We can now conclude the desired bound:

Proposition 5.1.2. Let A, ., € C forp € By and q,7 € Br with e pe Ygreny [Apar
oo be given. Then for any ¥ € Hy

72 Z Z qur +Cq7Cro ¥ <5SZ Z par| <\Ija(NE+1)‘I’>-

o=1||p€B{, q,r€BF pEBY, ¢,r€BF

Proof: As in the proof of the standard fermionic estimate, we have

2

-
*

Z Z Ap,q,rcp,rcq,fcr,crlp

pEBS q,r€Br

,7_/

-
k& *
= Z Z ApqrCprCarCro¥, Z Z Ay gt vt Cpt 1 Cot 71 Crr 0 U

pEBY, q,r€BFR p'€BL ¢, r'EBFR

T,’T/ %
A * *
< X > AparAras <\II7 {(Cp,rcwcm) vcp’,T’cq’f’Cr’,a} \Ij>

p,p'€BS q,q',r,r'€EBR
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so by the identity of the preceding lemma

2

Z Z Z Ap7q7rc;cqcr\11

o=1 pEBf,, q,TEBF

s
a *
S Z Z Z AP#L"‘AP',Q'J" <\I/7 (5 ’Cq ' Cp! UCT ocq T + q, q’ Cp T’CT/,UCT,JCP:T

o,7,7'=1p,p'€BY q,q',r,r'€BF

+0yp c;,yT/cq/,T/c;TcpJ) \IJ> (5.1.8)

*
Q’ r,q p 7 Cr O'Cq Cp,r + qr’cp T’Cf]/ﬂ'lcr,ocpﬂ')qj>

o,7,7'=1p,p'€BY q,q',;r,r'€BF

S Y Y G

o,7,7'=1p,p'€BY q,q',r,;r' €BF

S
Y. 2 X AgAvew
! .0’ Ya,q

s
T o, 7! 7,7 cor! * 7,7 oT,0
+ Z Z Z ApgrAp g (Vs (Og g’ p 7 Cpr T+ 51)710’ rq Cr'oCqr 5pp g, Ca' 7! 'c; )\Ij>

0—77-77—,:1 p,p’eB(F q7q/7T7T/€BF

LD DRED DI D PR P

o,7,7'=1p,p'€BY q,q',r,r'€BF

7,7 o1’ 7,7 ¢1T,0 o1’
v 5pp 5qq o 517713’ q,r’'Vrg )\I]> :

Y

(v (077

(U, (6773 Ot € s+ Oy O Cor g+ O3 O oy ) W)
(. (07

(o

We estimate the different types of expressions appearing above. Firstly, by the standard
fermionic estimate,

S
Z Z Z ApgrAp g/ 27 <\I/7 ’Cq 71Crt 5 Cr gy, T\II>

o,7,7'=1p,p'€BY q,q',r,r'€BF

2
o,T o,T
= Z Z APQ T/CT 0 q T\Ij Z APQTCTJ q,T v) = Z Z quTCT‘UCqT\IJ
pEBY, q',r’'€Bp q,r€EBF pEBY ||¢,rEBF
o,T 2 o,T 2
< Z Z Z qurcwch\If < Z Z Z par] ‘C;T\IJH (5.1.9)
pEBY, \¢€BF ||r€BF pEBY, \¢€BF | reBr
o,T
bl 2 2
SO X Al | X et ) =5 X0 X A N )
pEBE \q¢,r€BFR q€EBF pEB% q,reBr

and likewise for the other two terms on the first line of equation ((5.1.8)). For the terms on
the second line we similarly estimate

S
n o, % *
Z Z Z AP:‘LTAP/#]/,T/ <\Il7 T‘,q/ Cp’,T’CT"/ﬂCq,TCP,T\Ij

o,7,7'=1p,p'€BY q,q' ,r,r'€EBF

o,T

= Z Z Z Ap 11 Crr o Cpr 0P, Z Z ApgrCqrCpr¥

re€Br \p'€Bf r'€BF pEBY. q€EBF
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o,T
<IN D AV || DD D Apganhpr Y (5.1.10)
rEBF ||p EBE r'"€Bp pEB% qEBFR

IA

o,
2 2

> 2 2 el e ¥l [ D (Al llep T

r€Br p,p'€B. || r'€BF qEBF

o o T T
< > J PIEDD \Ap',r,w\QJ > Hcpf,a‘PHZ\J > D IAp,q,rw > lleps ¥l
r€Bp \p'€B% r'€BF p'€B% pPEBY gEBF pEBY,
<s Y > A (W NY).

pEBY, q,r€BF

The terms on the third line of equation (5.1.8) all factorize in a manifestly non-positive
fashion, and so can be dropped, while for the fourth line

S
S Y A Ay (V6007 G ) (5.1.11)
o,7,7'=1p,p'€BY q,q',r,r'€EBFR
(e g
= Z < Z Ap gt 0¥ Z Ap,q,rcp,o\l’> < Z Z Ay rqCpr eV Z ApgrCpo¥
q,r€Br \p'€BY peBY, q,r€BF ||p'€EBS, peBY,
< Z Z |Ay rq’ Z ’qur‘ H\IJH <s Z Z P, ‘\IJH
q,r€BF \| pEB} PEBYL pEBY. ¢,r€BFR

Lastly, the terms on the fifth line are seen to simply be constant and easily bounded by
s YopeBe YqreBy |Aporl? 17, whence the proposition follows.
O

We can now conclude the following bound for K:

Proposition 5.1.3. For any ®,V € Hy it holds that

NG

2

(@, KUY < L2 I3 [ Killis (@, (N + 1)@) (¥, NpD).

lez3

Proof: By the equations ([5.0.7) and (5.0.8), combined with the estimate of the previous

proposition, we can estimate

@<Ly Yy

qEB%, p'eBY, ¢/ ,r'€BR

2

Z Z Op pOg’ p—10r —qr11,(q) (Kieg, €p) (5.1.12)

1ez3 pel,

(@, (Vg + 1)®) (¥, Npl),

and by repeated elimination of the Kronecker ¢’s the sum reduces to

2

2 2. X

q€Bg p'€BY ¢/ ;7' €BFR

Z Z 5p’,p5q’,p—15r’,—q+l1Lz(Q) <Kleq7 €p>

1ez3 peL,
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2

= Z Z Z Z Zép’yp(sq’vp—llllz(q) (Kieq, ep) (5.1.13)

qEBS, p'€BS, ¢'€Br 173 |pely

=3 > 30D ypln(a) (Kieg, ) = 30 30 (Kieg ) = 3 1Killgs

qE€BL ¢'€BF €73 pELy 1€73 p,g€Ly lez3

U
The bound of Proposition now follows by the observation that |(®,KW¥)| <
(@, KW)| + (¥, £)|.
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Chapter 6

Analysis of One-Body Operators

In this section we analyze the operators Ky, Aj(t) and Bg(t) which appeared during the
diagonalization process of Section [4]

We first consider operators of the form e 2K and e*/* in detail, obtaining asymptot-
ically optimal matrix element estimates for these. We then extend these estimates to Kj
itself, as well as sinh(—tK}) and cosh(—tK}) for any ¢ € [0,1]. With these we then turn
to Ag(t) and By(t).

We end the analysis with the integral fol By.(t) dt, which will appear in the next section
during our extraction of the exchange contribution.

In all, we prove the following:

Theorem 6.0.1. It holds for any k € Z2 that

1 oo [ sViki! A
tr{e e = A = F( o 2 kfﬂ)dt’
Y

pELy

where F(x) =log(1 + z) — x. Furthermore, as kp — oo,
1Kl < CVemin {1, k. [k}

and for all p,q € Ly, and t € [0, 1]

Vikr'!

Kpe,)| < O—E"F

|<ep7 /CGQ>| — )\k;7p +)\k7q
A V2kyt

(-K , <o JRfE
(ep (=Ki)eq) 2(27)° Mg+ Mg | Mg + Mo

[(ep Ar(t)eq)] 1{en, Br(theg)| < C(1+ V) Vik!

! SkaEI S\ 27 —1

(o (f 20 )) - S| < - 7
[{ep, {Kk, Be(t)} eg)] < C(1+ V2) Wk

for a constant C > 0 depending only on s.
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6.1 Matrix Element Estimates for A-Quantities

To ease the notation we will abstract the problem slightly: Instead of £2(L;) we consider
a general n-dimensional Hilbert space (V,(-,-)), let h : V. — V be a positive self-adjoint
operator on V' with eigenbasis (z;);_, and eigenvalues (\;);_,, and let v € V be any vector
such that (z;,v) > 0 for all 1 <i < n. Theorem will then be obtained at the end by
insertion of the particular operators hy and Py.

Throughout this section we will also write P, : V — V, w € V, to denote the operator

P,(-) = (w,-)w. (6.1.1)
We define K : V. — V by

1 3 1 2
K=—5 1og(h—%(h%(h +2P)h}) Qh‘5> - —210g<h—%(h2 +2P 1v)2h—%>. (6.1.2)

Then e~ 2K is given by
1 1 1
e =h2(R242P, VPh (6.1.3)

1 —5.1 1 “1\3 1
K —wi(t 2P, ) hE=nb (2P, ) ) Tt (6.1.4)
We can rewrite the inverse of h? + 2Ph 1, using the Sherman-Morrison formula:

Lemma 6.1.1 (The Sherman-Morrison Formula). Let A : V. — V be an invertible self-
adjoint operator. Then for any w € V and g € C, the operator A+ gP,, is invertible if and
only if (w, A= w) # —gt, with inverse

At gP) t=A1 g Py,

Applying the Sherman-Morrison formula with A = h%, w = hzv and g = 2 we obtain

2
P s (6.1.5)

(r? +2P , )’1 —h?
h3v 1+2 (v, hv) h 2w

so e 2K and e*K are given by

[V

e =h2 (k2P ) h (6.1.6)

1
2K —pa (2 — 2 P s | he.
1+ 2(v,h~tv)y h"2v

To proceed further we apply the following integral representation of the square root of a
one-dimensional perturbation, first presented in [§]:
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Proposition 6.1.2. Let A : V. — V be a positive self-adjoint operator. Then for any
w eV and g € R such that A+ gP,, > 0 it holds that
t2

1 1 29 ©
At PwQ:Aer—/ Py, di
( 9Pu) = Jo 1+g<w,(A+t2)_lw> (A+12)

() ) L [ (41 ) o

We have included a proof of this in appendix section [A.T]
By the trace formula we can immediately deduce the following identity:

Proposition 6.1.3. It holds that

1 00 _
tr(e_Khe_K —h— PU> = —/ F<2 <v, h<h2 + t2) 1v>>dt
7 Jo
where F(z) = log(1l + x) — x.

Proof: By cyclicity of the trace and the previous proposition
1
tr(e_Khe_K —h— PU) = tr(h%e_ﬂ(h%) —tr(h) —tr(P,) = tr<(h2 + 2Ph%v) 2) —tr(h) — ||v||?

— 1 /Oo log<1 +2 <v, h<h2 + tQ)_lv>>dt — ||v||2 , (6.1.7)

m Jo
so noting that the integral identity [5° Zedt = 3, a >0, implies that
L oo 2, 2\ ! 2L 2 [ N < 2 2
~ [T 2(on(n 4 2) v>dt—7ri§:1]<ei,v>| / 7yt =2 el =l
(6.1.8)

we can absorb the term — ||v||* into the integral for the claim.
U

Estimation of ¢ 2% and 2%
Using the square-root formula we now derive elementwise estimates for e 2% and e2%:

Proposition 6.1.4. For all1 <1i,5 < n it holds that

2 i , L _ i) , Lj
1+ 2 (v, h~1v) w ):)ﬁi\jxﬁ < <xi, (e K 1)xj> 5 <x¢, (1 — €2K)5Uj> < QW

Proof: From the first equality of equation (6.1.6) we can apply the identity of Proposition
with A = h2, w = h3v and g = 2 to see that

4 foo t2 1
—2K _ p,-3 h+f/ P Ly odt| K 6.1.9
’ mJo 14 2(hzv, (B2 +2) " hav) B ni (6.1.9)
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4 oo t?
vy, :
™ Jo 1+2<v,h(h2—|—t2) v>

P(hQ-l-tQ)_lvdt

whence for any 1 <1,7 <n

4 [ t2 (i, v) (v, ;)
o e — 1)z, :f/ & PIL g 6.1.10
<:C (6 )'T-]> T Jo 1 + 2<’U,h(h2 +t2)_1v> )\12 +t2 )\3 +t2 ( )

=Sy ) [

1 t t &
1+2 <U, h(h? + t2)_lv> AN+

Noting that
1 1

< <1, t>0, 6.1.11
1+2(v,h7v) 1+2<v,h(h2+t2)_1v> B ( )

and recalling that (z;,v) > 0 by assumption, we conclude
4 (x;,v) (v,x;) /00 t t
T142(w,h7t) Jo A7 +12 X% + 12

(s (7 = 1))

(i, (7 = 1);) i (i 0) v, 25) /ooo X i 1202 + a2

from which the claim follows by an application of the integral identity

v

dt (6.1.12)

IN

1 t T 1
/0 mmdtzgm, a,b > 0. (6.1.13)

Similarly, for 2! we have by equation (6.1.6)) that applying Proposition with A =
h2 w=h"%vand g = —2(1+2(v,h )" yields

2K L 4/°° t? 1
er =hilhT - P L dt |
( mJo 142(v,ho) — 2(h7R, (b2 + #2) T ARy (TR
4 t2

:1_7/“’ P ooty di 6.1.14
7 Jo 1+2<'U, hil(h72+t2>7lv> t2 (h 2+t2) h—1 ( )

from which the claimed inequality follows as before by the observation that

1 1

< <1, t>0, 6.1.15
L+ 2(,h7'o) = 14 2 (v, h o (B2 4 42) Ty 2 ( )
as well as the integral identity
1 foo t t s
— dt = ——— b> 0. 6.1.16
ab/o a2+ 1202 + 2 2a+0b’ @ ( )
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Note that these estimates are asymptotically optimal, in the sense that the left-hand
side reduces to the right-hand side as (v,h™'v) — 0. In our case we will see that
<vk., h,;lvk.> ~ Vk, so this amounts to optimal estimates for “small” Vk

Below it will be more convenient to consider the hyperbolic functions sinh(—2K’) and
cosh(—2K) rather than e 2% and e*!. The previous proposition implies the following for
these operators:

Corollary 6.1.5. For any 1 <1i,5 < n it holds that

<$i7 U> <Ua xj>
PNy

2 (v, h ) (zi,v) (v, z;)
(z, (cosh(—2K) — 1)z;) < TH 20 0) Nty

(x;,sinh(—2K)z;) <2

Proof: As sinh(—2K) = %((e‘QK — 1) + (1 — eZK» we can bound

. 1 oKk 2K Tiy V) \U, Ty
(s, sinh(=2)z;) = 5 (s, (7 = 1)) + (o, (1= )a;)) < 2<A>+<A>

(6.1.17)
and as similarly cosh(—2K) — 1 = %((e_ﬂ( — 1) — (1 — 62K)> also
(i, (cosh(—2K) — 1)z;) = ;(<x,, (6_2K — l)xj> - <x,~, (1 - eQK)xj>)
L[ (zi,v) (v,x5) 2 (@i, ) (v, z5)
= 2(2 NN 12k ) N+ ) (6.1.18)
_ 2(y, h=tv) (@, v) (v, ;)
1 + 2 <’U, h711)> )\z =+ )\j ’
U

General Estimates

Now we extend our elementwise estimates to more general operators. First we consider K
itself:

Proposition 6.1.6. For any 1 <1i,7 <n it holds that

1 <$Z‘,U> <U,ZL‘]‘>
1 +2(v,h—1v) >\z —|—/\]

(i, v) (v, 7))

A+ A

< (@, (= K)z)) <

2

Proof: As K = —110g<h_§(h2 + 2Ph%v)2h_§> and

)
[SIE
/N
=
no
+
[\
g
.
——
N|=
N
(S
Vv
N
N|=
=
N
(NI
Il
—_

(6.1.19)
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we see that K < 0. From the identity
11 m
=353 Z ~(1-e)", z<o, (6.1.20)
—m

which follows by the Mercator series, we thus have that —K = 3 Ly m(l — ezK)
Noting that Proposition [6.1.4] in particular implies that <xi, (1 — K )xj> >0forall 1<

1,7 <n, whence also <$i, (1 — 62K)mxj> > 0 for any m € N, we may estimate

(i, (1= ) ay) (6.1.21)

DO | —

(zi, (—K)z;) = ; i nlz<x“ (1 _ 62K>m$j> >
1

> <£Ci,U> <Uv'rj>
— 142 <U, h711)> )\z + )\j

which is the lower bound. This similarly implies that (z;, (—K)"z;) > Oforalll <i,j <mn,
m € N, so the upper bound now also follows from Proposition by noting that

W > ;<x27 (6_2K - 1)ij> - 1 i i <xi7 (_QK)mxj> 2 <in, <_K>xj> )

(6.1.22)

O

The fact that (z;,(=K)"z;) > 0 for all 1 < 4,5 < n, m € N, has the important
consequence that for any such ¢ and j, the functions

t = (z;,sinh(—tK)x;), (z;, (sinh(—tK) +tK)z;), (x;, (cosh(—tK) — 1)x;)  (6.1.23)

are non-negative and convex for t € [0, 00), as follows by considering the Taylor expansions
of the operators involved. This allows us to extend the bounds of Corollary to
arbitrary ¢ € [0, 1]:

Proposition 6.1.7. For all1 <i,7 <n andt € [0,1] it holds that

1 (i, v) (v, x;)
142 <U, hfl’U> )\z + )‘j

t < (x;,sinh(—tK)x;) < Wt

<U hilv> <[L’i,’l)> <U7 xj>
_1+2<,h_1?]> /\z+)\]

o (%~ 1)) < Wﬁﬂ

0 < (z;, (cosh(—tK) — 1)z;) <

Proof: By the noted convexity we immediately conclude the upper bounds

(21, sinh(—2K )5} < o0 s 2a), (6.1.24)

(w;, sinh(—tK)x;) < Wy

DN |+
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(2, (cosh(—2K) — 1)z;) < (v,h"2)  (z;,0) (v, 2;)

, _ _ N\ <
(xi, (cosh(—tK) — 1)a;) < 1420w, b)Y N+ A

N+

and by non-negativity of (z;, (sinh(—tK) + tK)x;) and Proposition [6.1.6] the lower bound

1 (x,v) (v, x4)
s,sinh(—tK)x;) > (x;, (—tK)z;) > ’ AN 6.1.25
(i siUb(—E)2,) 2 (o, (~HK0) 2 g ke ks (6.1.25)
Lastly we can apply the non-negativity of the hyperbolic operators to conclude the bound
for e — 1 as

‘<xi, (etK - 1)$j>‘ = |(z;, ((cosh(—tK) — 1) — sinh(—tK))x;)] (6.1.26)
. (i, v) (v, 7))
< max {(z;, (cosh(—tK) — 1)z;), (z;,sinh(—tK)z;) } < I
U
6.2 Matrix Element Estimates for A(t) and B(t)
We now consider operators A(t), B(t) : V' — V defined by
A(t) = ;(etK(h +2P,)e ™ e he ) — h (6.2.1)
1 t t —t —t
B(t) = 5(6 K(h42P,))e™ — e he K)
for t € [0,1]. We decompose these as
A(t) = Ap(t) + F Pe™ (6.2.2)
B(t) = (1 = t)P, + Bu(t) + " Pe™ — P,
where, with
Ck(t) =cosh(—=tK) —1 and Sk(t) = sinh(—tK), (6.2.3)
the operators Ap(t) and By(t) are given by
Ap(t) = cosh(—tK) hcosh(—tK) + sinh(—tK) hsinh(—tK) — h (6.2.4)
={h,Cx(t)} + Sk(t) h Sk(t) + Ck(t) h Ck(t)
and
By (t) = —sinh(—tK) hcosh(—tK) — cosh(—tK) hsinh(—tK) + tP, (6.2.5)

—tP, — {h, Sx(t)} — Sxc(t) h Cre(t) — Cre(t) h S (t).

We begin by estimating the e P,et® terms:
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Proposition 6.2.1. For all 1 <i,j <n and t € [0,1] it holds that
(i, (" Poe™ = P)aj)| < (24 (v,h7'0)) (0,h7'0) (@i, 0) (v, 25) -
Proof: Writing
Pyt — Py ={P,, ™ — 1} + (e — 1) P, (e~ 1) (6.2.6)
we see that
(i, (" Poe™ = P)ay) = (wi, ) (e = Vv, 25) + (2, (" = 1)v) (v,25)  (6.2.7)
+ (i, (e = 1)v) (¢ = 1)v, ;).

Now, by Proposition we can for any 1 <17 < n estimate
(i, (¢ = 1)) (a,0)] < iw (r;,0)  (6.2.8)
9 J ]7 — : )\ + )\ VR

(i (e = 1)v)| =
< (x;,v) Zn: w = (x;,v) <v,h’1v>
j
whence the claim follows.

Note that for <xi, etK P etk :Uj> this in particular implies the bound

K:pi, etKPvethj>‘ < (1 + <v, h_lv>)2 (xi,v) (v, ;) . (6.2.9)
We now consider Ay (t) and By (t):
Proposition 6.2.2. For all1 <i,j <n andt € [0,1] it holds that

(i, An(t)x)], [(2i, Bu(t)x;)] < 4 <U> h_lv> (zi,0) (v, z;) .
Proof: The estimates of Proposition imply that

(v,h"1v) (4, 0) (v, ;)
1+2<v,h—1v> )\z+)\]

< <v, h_1v> (xi,v) (v, x5) (6.2.10)

[(zi, {h, Cr ()} 25)[ = (N + Aj) (@3, O (D)) < (N + A))

and

< i A (@i, v) (v, zg) (), V) (V, 75)

(e, S1c(0) B Sie (D)) = 3 Ae (s, Sic(t)a) G, Sic (1)

P >\+/\k M+ A

n 2
< (25,0) (v,25) Y = xk’ <v,h’1’u> (x5, v) (v, ;) . (6.2.11)
k=1

k=1
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The latter estimate only relied on the inequality

(@i, Sk (t)z;)] < W (6.2.12)

which is also true for Ck(t), so the terms
Ck(t)hCk(t), Ck(t)hSk(t) and Sk(t)hCk(t) (6.2.13)

also obey this estimate. It thus only remains to bound tP, — {h, Sk(t)}. From Proposition
we see that

(i, v) (v, ;)
[+2 <v,h—1v)t <Az, {h, Sk(t)} ;) < (x;,v) (v,2;)t (6.2.14)
whence
(i, Py — {h, Sk (t)})zj)| = (@i, Poy) t — (i, {h, Sk ()} ;)
< <1 - 1+2(i,h‘lv>> (2,0} (v, 2) t = - ig’é‘ h% (0 0) (0,20t (6.2.15)

<2 <v, h’lv> (i, 0) (v, ;) .

Combining equation (6 and Proposition we conclude the following:

Proposition 6.2.3. For all1 <i,j <n andt € [0,1] it holds that
B 2
(i, A®))], [, B < 3(1+ (v, h7 ) (w4,0) (v, 25

Analysis of {K, B(t)} and [} B(t)dt

We end by estimating {K, B(t)} and [ B(t)dt, the latter of which will be needed for the
analysis of the exchange contribution in the next section.
First is { K, B(t)}:

Proposition 6.2.4. For all1 <i,j <n andt € [0,1] it holds that

(o, {16, B(t)} 2,0 < 6(1+ (v, i) (v, i) (@3, 0) (v, 2).

Proof: Using the Propositions [6.1.6| and [6.2.3| we see that

WE

(i, KB(t)z,)| = |3 (s, Kag) {ay, B(t);) <3( + (0,70’ - “’“A +”A:"’f> (@, v) (v, ;)

k=1

k

3( <v h™ v>> zi: Lk (@i, v) (v, z5) (6.2.16)

1

IN



56 6. Analysis of One-Body Operators

= 3(1 + <v, h’1v>)2 <v, h’lv> (@i, v) (v, ;) .

This estimate is also valid for |(x;, B(t)Kz;)| so the claim follows.

Finally is [, B(t) dt: -
Proposition 6.2.5. For all 1 <1,7 <n it holds that
<xi, (/01 B(t) dt)xj> - ; (i, 0) (v, ;)| < (6 + <U, h’lv>> <v, h’lv> (i, v) (v, ;) .
Proof: Noting that 3 (z;,v) (v, x;) = & (z;, P,;) and that
/01 B(t)dt — ;PU = /01((1 —t)P, + By(t) + T P! — P,,) dt — ;Pv (6.2.17)

1
_ / (Bu(t) + ¢S Pet™ — P,) dt
0

we can estimate using the Propositions [6.2.1] and [6.2.2] that

<mi, (/01 B(t)dt — ;Pv>xj>

< [ e Butoldt + [ (o (P — P at
< (6 + <v, hflv>) <U, hflv> (xi,v) (v, z5) . (6.2.18)

g

Insertion of the Particular Operators h; and P,

Recall that the particular operators we must consider are hy, Py : *(Ly) — (*(Ly,) defined
by

hkep - Ak,pep )\k,p = %(‘p|2 - |p - k|2)
Uikl (6.2.19)
Pk() = <Uk,'> Vk Vk = 2( ZpGLk ep
For these we have that
v k‘_
(v, hig o) = X 20 S A (6.2.20)
( pELy

In appendix section [B| we obtain the following estimates for sums of the form > ., )\’,ip:

Proposition 6.2.6. For any k € Z3 and 3 € [—1,0] it holds that

EEP 1R (k| < 2kp
k3 k| k| > 2kp

Z/\kp—

pELy

for a constant Cz > 0 independent of k and kp.
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In particular, it holds that 3,7, A;) < Ckpmin {1, k%, k| 7*}, so
<vk, h;lvk> <OV (6.2.21)

for a constant C' > 0 depending only on s. Additionally, independently of p and ¢ it holds
that

Ska’}l
€y, V) Vg, €q) = ————= 6.2.22
< p k> < k (I> 2 (27T)3 ( )
and for any ¢t > 0
-1 S‘A/kkil )\k
v, h(h?® + 2 v> = E P (6.2.23)
< ( ) 2 (2m)° pe% A7, + 12

Inserting these quantities into the statements of the Propositions [6.1.3], [6.1.6] [6.2.3] and
yields Theorem [6.0.1], noting also that by Proposition [6.1.6

S‘A/kkgl 1 S‘A/kkf;l 1
1Kkllns = [ D [ep Kieg)|* < > < > AL
" p,qELy 8 ! 2 (27T)3 p,qELy ()‘k,P + )‘k7Q>2 2 (271’)3 pELy g

< OV, min {1, k% |k| 7}
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Chapter 7

Analysis of Exchange Terms

In this section we analyze the exchange terms, by which we mean the quantities of the
expression

S [ et R (K B0} + 2 Re(E (A1) + 2Re(2(Bu(e)) ) Kt (T.0.1)

kezZ3

which appears in Theorem [£.0.1]- the name is apt, as these enter our calculations due to the
presence of the exchange correction £4;(p; ¢) of the quasi-bosonic commutation relations.
To be more precise, what we consider in this section are the operators e, ({ Ky, Bx(t)}),
EL(AR(t)) and EF(By,(t)) - the effect of the integration will be handled by Gronwall estimates
in the next section.
The exchange terms are primarily to be regarded as error terms, and the main result
of this section is the following estimates for them:

Theorem 7.0.1. For any V € Hy and t € [0,1] it holds that

(W e ({ Kk, Br(t)})W)| < Chp' (U, Np¥)

kez3

> E(A)T)| < C [ VEmin {[k], ke} (0, (N + 1))

kez3 kez2

ZSK (E2(Br() — (v, EX(Br()ur)) ¥) SC\/Zsf/k?minﬂmakF}<\I/»N£%‘I’>

or a constant C' > 0 depending only on > cy3 V2 and s.
f p g only rezs Vi

Note the presence of the constant terms (¢, EZ(By(t))Yr) in the final estimate of the
theorem. By adding and subtracting these, we see that

Exchange Terms = ) | / Vr, 2 Re(gk(Bk( )))¢F> dt + Error Terms. (7.0.2)

keZ3
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The quantity Y ez fo (r, 2 Re(E2(By(t)))1br) dt is the exchange contribution (to the cor-
relation energy), which is not generally negligible for singular potentials V. We end the
section by determining the leading behavior of these:

Proposition 7.0.2. It holds that

S [ (i 2Re(E(BU0)) ) dt — B

kez3

< c\/z V2 min {|&|, kr}

kez3

for a constant C > 0 depending only on 3 czs sz and s, where

E Sk ? Z V V Z 5p+q,k+l
corr,ex — 6 k U
4 (2 klez3 p,q€LNL; )"“vp + /\/%q

Analysis of ¢; Terms

Let us first consider terms of the form -;czs e (Ax), where we recall that e,(Ay) is given
by

1 ag
er(Ag) = - > (e, Agep) (c;acpp + cp_kﬂc;_hg). (7.0.3)

pELg

When summing over k € Z3, we can split the sum into two parts and interchange the
summations as follows:

- Z gk‘(Ak) = Z Z 6P7Akep pacp, + - Z Z <e!I+k7AkelI+k> Cq,ocj;,a

kezd 5 kez? pely 5 kez? qe(Li—k)
1 & .
== > (Z 1., (p) (ep,Akep>) Cp oCpo (7.0.4)
pEBS \keZ3
1 & *
+ = Z (Z 1p, (¢ +k) <€q+kv Akeq—Hc)) Cq,0Cq,0
q€BF \kez3
Recalling that the excitation number operator is given by
Ne= > CpoCpo = > Cq.0Ch0 (7.0.5)
pGB; qEBF

on Hy, we can then immediately conclude that

1
+ > en(Ar) < = . (Sup > 15,(p) [(ep, Arep)| + sup D> 1p, (¢ + k) \(€q+k7Ak€q+k>\)NE

kez3 PEBE pez? 9€BF ez

<

. ( Z sup |<epv Ak6p>|)NE- (7.0.6)

5 \kezs PELr

By the estimates of the previous section we thus obtain the first estimate of Theorem
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Proposition 7.0.3. For any ¥V € Hy and t € [0,1] it holds that

> (W e ({ Ky, Br(t)})W)| < Chp' (U, Np¥)

kez3

for a constant C' > 0 depending only on 3 yczs V,f and s.
Proof: By Theorem we have that

(ep {Bk, Br(t)} )| < C(1+ V2)V2kp!, k€ Z: p.q€ Ly, (7.0.7)
for a constant C' > 0 depending only on s, so

> (T en({ Ky, Br(t)}) W)

kez3

< Chit 3 (1+ VE)VE (U NpW) < Ok (14 V1) X V2 (3, Np®)

kezZ3 kezs

< i(z sup \(ep,{Kk,Bk(t)}epH) (Nl (7.0.8)

kez3 PELk

As V]2 < V)13 = Srezs V32 the claim follows.

7.1 Analysis of £ Terms

We consider terms of the form

E (AR =30 D0 3 bilAkep) {erilen eq) by (K e ) } - (7.1.1)

1€73 peLy q€L,

Recalling that e (e,; e,) is given by

S

1 y "
eri(€p;€q) = s Z (5p7ch—l,acp—lc,o— + 5p—k’,q—lcq,acp,a) (7.1.2)

o=1

we see that £} (Ay) splits into two sums as

—s&(Ay) = > Z > bi(Arey) { p.aCa—L.oCp ko U (K—le—q)}

1ez3 peLy q€Ly

+> > > bi(Arepin) {5pch+lacp+kmb (K oie_q- l)} (7.1.3)

1€23 pe(Li—k) qe(L;—1)

=3 > i) {106 o (K e y)

lez3 peLyNLy

+> > b (Akepr) {CZ+z,an+k,m br (K —le—p—l)} :

1€z pe(Li—k)N(L—1)
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The two sums on the right-hand side have the same “schematic form”: They can both be
written as

- c, peE BS
Z Z bk (Axep,) { Cpy o Cps,os OZ (K—lem)} v G = Z ", (7.1.4)
1673 pESKNS) ¢, PEBr

where the index set is either the lune S, = L; or the set of corresponding hole states
Sk = Ly — k, and depending on this index set the variables py, po, p3, ps are given by

(p7p_l7p_k7_p) Sk:Lk

B | (7.1.5)

(p17p2;]?3ap4) = {

Note that in either case pi, p3 depend only on p and k, while p,, ps depend only on p and
[. Additionally, p; 1s always an element of L, and p, is always an element of L_;.

Since by, = s~ ED S CpkoCpo = sTTYS_, Cp—k.oCpo 1t s easily seen that [b, ¢] = 0, so
in normal-ordering (with respect to 1r) the summand of equation ((7.1.4)) we find

by, (Akem) { Cp,, acp3 oy O (K—lem)}

- bk<Ak€p1) Cp,, acp37 bfl(K*lem) + b} (Ak€p1>bil(K lep4)c Cps o (716)
=2 6;2 ab* (Akem)b* (K_16p4)6p3 ot C Cps, abk<‘4k€p1) [Cps,m b (K—lem)} .

To bound a sum of the form Y 4czs EF(Ay) it thus suffices to estimate the two schematic
forms

Z Z Cp,, po,o Ok Akepl)b l(K—lepal)épg,o (7.1.7)

k,1€73 peSENS;

Z Z Cps, abk Akepl) {b_l(K_l€p4)7 6;3,0}*

k,lezZ3 peSENS)

Preliminary Estimates

We prepare for the estimation of these schematic forms by deriving some auxilliary bounds
for the operators involved.
Recall that for any k € Z2 and ¢ € (*(Ly), the excitation operator by(y) is given by

bi(p) = Z (@, ep) brp = \/— Z ©,ep)C p k,oCpo- (7.1.8)

PELy pELy

We observe that the exchange correction e, ;(¢; ¢) arising from the commutator [by (), bj(¢)]
is non-positive: Indeed, this is given by
1 ~ * *
eek(p; ) = s Z (p, ep) (€q, ¥) (5p7ch—kﬂcp—k,a + 5p—k,q—kcq,acp,0) (7.1.9)

p,gELy
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= _Z Z |{ep, ¢ (cp k.o Cp ,M+cpgcpg) <0.

PGLk
Using this we can bound both by (¢) and b;(¢) as follows:

Proposition 7.1.1. For any k € Z3, ¢ € (*(Ly) and ¥ € Hy it holds that

k() < lloll INZ W], 152l < ol NG+ 13
where Niy = X e r, U pbkop-

Proof: By the triangle and Cauchy-Schwarz inequalities we immediately obtain

1
1ok (@)1 < 37 (s e 10kl < llell [ 32 N ¥l* = lloll IV (7.1.10)
pEL pELg

and the bound for [|b}(¢)¥| now follows from this, since the above observation implies
that

bi(0)bi(0) = b (0)bi() + (0, @) + (5 0) < llol” (N + 1). (7.1.11)

O
Note that the operator

Ne=D bppbip = Z oCp—hoCo i Cprr (7.1.12)

pELy PELk

can be estimated directly in terms of Ny as M, < N, since for any ¥ € Hy

2
\I} Nk Z kup\IJH Z \/—Z p— kchpU Z ( p kanU\IIH>
pELg pELy pELy
< e notno ] < 3 llep WP < (2, NE) (7.1.13)
pELy pELY

by the usual fermionic estimate. Below we will generally only use this cruder estimate,
but N, is useful for some bounds since it can be summed over k € Z3: By rearranging the
summations one concludes that

Z (U, N 0) < Z i Hc;_kjacpJ\I/H Z Z < , pacpgcp kan ,w\I/>

kez3 kez? peLy kez2 peLy
a
_ * *
= <\Il, D G alpo Y 1Lk(p)cpk,gcpk7o\lf> (7.1.14)
pEBS, keZ3

o o
_ * * _ * *
= <‘I’ 2 Cpolro D Cpk,ocpk,a‘y> = <‘I’ 2 Cpolro 2 Cq,acq,a‘l’>7

pEBE, ke(Br+p) PEBY q€Br
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so noting that > cp, CooCh, = Ng — z;ng Cq,rCy » We can estimate

o o TH#C
> (TN < <\I/, > c;ﬁacpvg/\/'E\I/> - <\I/, Dl D cquc;T\I/> (7.1.15)

kez3 pEBY pEBY, q€EBR

(U, N30) — Zaj < : pa(f cq,fch)cpaxp> < (W, NZY)

pGB% qEBFR

i.e. Ypezs N < NE. (Equality even holds for s = 1.)
We also note that for any ¥ € Hy and p € Z?

s 1 S0 1 S0 1
Z INZE W% < S (16 N2 < 3 (16, N2 |2 (7.1.16)
o=1 o=1
Z INe + DE60 02 < S lepn Wi+ 1202 < S 1600 Ve + 1)) 2,
o=1 o=1 o=1

as follows by the inequality (considering p € B¢ for definiteness)

S 1 a,T,P 1 o,T,P
~% ~ _ - * * *
Z cp,aNkcp,U - Z cp Neg q ch k ch k pcq pCp,o S Z Cq,TCQ*kﬂ'Cq—k,p (Cq”@cpp 5107'15077') Cp,o
o=1 qGLk qELy
>k *
=N Z CpoCpo — = Z 12, (P)C 1 Cp—krCp ko Cpoo (7.1.17)
o=1 o,7=1

=Ni D oo — L (D)) 0rp S NK D € oCoo
o=1 o=1
and the fact that > ) _ [ cpg,/\/'k] =0=>7_, [ ;’Uépm./\/'E}. Similarl

D INEGTIP < D (16, . NE TP, Z [Ne +1)26,, |1 < D (160 (Ne +1)2 0|1
o=1 o=1 o=1
(7.1.18)

To analyze the commutator term {b,l(K,lem), 5;3,0} we calculate a general identity: For
any | € 73+ € (*(L;) and p € Z?

p € Br

[bl<w ) p7 } pe B%

%\

*
Cq—l,TC‘LT’ Cp,o
Z (1, €q)
k k
cL, C

qfl,‘rcq,T ’ Cp,a

Z { Cur Gt oy D€ Br (7.1.19)
el C

* c
q—1,7 {cq,ﬂcp,a} pE BF

%\

IThere is a slight ambiguity here: Nz = ZZGB; Cp.oCpo = ZZGBF Cq,0Cy,0 Dolds on H v, but an element
such as ¢ ¥ belongs to H+1. This is of no importance, however, since these inequalities hold no matter
if Ng is understood as Z;GB% Cp oCp,o OF ZZGBF Cq,0Ch 5~ On the same note, the estimate of equation
(7.1.13|) is valid for either case even if ¥ € H y41.

q,0°
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D=

_ —1.,(p+ 1)5_% (Y, ept1) Cpr1o P € Br
]-Ll (p)s <1/}7 €p> ép—l,o‘ p S B% ’

so for our particular commutator we obtain
- ~1p ,(ps = 1)s72 (K_yep,, €pyt) Cpy—to S = Ly,
|:b—l<K—lep4)7cp37a':| = l( . ) < p4~ p3 > P3 . (7120)
1L—l(p3)5 2 <K—l€p47 €P3> Cps+l,o Sk =L —k
It will be crucial to our estimates that the prefactors obey the following:

Proposition 7.1.2. For any k,l € Z3 and p € S, N S, it holds that

_1 N 1p  (p2— k)1 ,(ps—1
‘1L—l(p3 - l)S : <K—lep47€p3—l>‘ < C’Vv—lkFl = k( & ) = l< ° ) , Sk = Ly,
\/)\k‘,pl _'_ A*k,p27k\/)\fl,p3fl + )\—lypll

and
1p (p2)lr ,(ps) S, =L —k

< Ov—lkgl )
\/Akipl + )\_kvp2 \/>\_17P3 + >\—l7P4

_1
‘1L_z(p3)3 2 <K—lep4’ ep3>

for a constant C' > 0 depending only on s.
Proof: Recall that py, ps, p3, ps are given by
(p.p—Lp—Fk —p) Sk = Ly
, D2, D3, D4) = . 7.1.21
(1o s 1) {(p+k,p+l,p+k,—p—l) S = Ly — k (7121

From this we see that for any p € Sy NS,

Lia(ps=0) Se=Le  _ [la(p—k=Dle(p—k) Si= L
() Se=Li—k |l +Mlee(p+h+1) Sp=Li—k

p+l)1Bp(p+l+k) Sk:Lk—k’
_ {1L—k(p2 —k) Sk=Ly

(

(
(=1l =k)lp.(p—1) Sk= Ly (7.1.22)
o 1.

) 1 () Spg=1Ly—k

where the assumption that p € S, NS; enters to ensure that 1p,.(p — k) =1=15.(p—1)
or 1pe(p+k) =1 = 1pc(p+1), respectively. Importantly this also implies that, when

combined with such an indicator function, we also have the identity

Aips—t +Aip, Sk =Ly
Mipn + Aty Se=Lp—k
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R L e e e e (e b R (71.23)
2\Ip+ kP = lp+ k1P +=p— I = |=p =1+ Sp=Li—k
LIpP = lp =k +lp— 1=k —[p— 1=k + k" S =L
p+EP—p+k—kP+lp+1>—|p+1+E> Sp=1Lp—k
_ >\k,p1 + )\7k,p27k Sk = Lk
/\k,pl + )‘—kmz Sp =Ly —k
The claim now follows by applying these identities to the estimates
, 1 — D)V k!
1o (ps = 1)s™2 (K iy, ep,0)| < C (P = OVoik S = Ly, (7.1.24)
Alps—t + A,
) 1 Vokp!
‘1L—l(p3)57§ <K—l6p47€p3> S C sz(p?)) e ) Sk = Lk - k?
A—l,pg, + A_lzpél
which are given by Theorem [6.0.1]
O
Below we will only use the simpler bound
_1 N
1L71(p3)3 2 <K—lep4v ep3> Sk =Ly—k )\k,p1 )\—l,p4

but for the £ terms the more general ones will be needed.

Estimation of ez & (Ax(t))
Now the main estimate of this subsection:

Proposition 7.1.3. For any collection of symmetric operators (Ay) and U € Hy it holds
that

S X (W B A VK 16 W] < €[S e Ay 7|V + 130

k€72 peSENS; ke Z3

S e, i) K ie). 5] ‘1’>]SCkF2JZ Ak * s (W + 12

k,lezZ3 peSENS) kez3

Jor a constant C' > 0 depending only on 3 yczs V,f and s.
Proof: Using the triangle and Cauchy-Schwarz inequalities and Proposition we esti-

mate

Z Z ’< » Cpa, pa.0 Uk Akepl)bil(K—lep4>5p370\11>‘

k,lez3 peSENS)
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< Z ZU: ku(AkePl)Em,U\IjH Hb*—l<K—l€p4)5p37Cf\IIH

k,lezZ3 peSENS)

Z Z Z 151 |A/€6p1|| ||K—lep4|| ||Nk Cpa, U\IIHH( 1)§5p370\11||

ke72 pESk lcz3

> (maxllAue ) 3

kez3 pESk

IN

IA

JZ pao (N + 1) 2\1f||2¢z Lo 1K el (71.26)
o=1 lez3

\l Z 151 |Cp20Nk \IIHQ

lez3

1 1
< 3 (max | Aee | ) INEAZ WL 3 ooV + DR0IR, (5 3 150) K 16,7
kez3 PELk pESk pESy 1€Z3
< [3 maxlAel? [ 1Kl |Ne + 0¥ | 3 IVEAZ D2
keZ3 lez3 kez3

\/Z max || Axey[|* /37 1K s | (Ve + 1) ¥ IV

k:eZ?’ lez3

and the first bound now follows by recalling that || K;||5s < C'V;. For the second we have

by the equations ([7.1.20)) and ([7.1.25) that

S Y (08 b A [ o), 5] W)

k,lez3 peSpNS;

<Y % | [-1(K160,), G5, ] B o ® | 103 (Arey, ) O

k€72 peSKNS;

V,lkil » 5 1
<C Z Z Z 1Sk HAkemu . Hcpsﬂyacpz,a\ljl‘ H(Nk +1)> |
1€72 peS keZ3 vV )‘k‘pl/\ l,pa
1
< Ok Wi + DRl 30 S s )y b, (7.1.27)
P lez3 M kez3

s 2
J 3 1sk<p>(z H5p3¢1,05p2,0‘1’|\>
o=1

kez3

p kez3 lez?

1 V2
sc*kFlr|<NE+1>W|12Jlek Pl epﬂJlel Py
—bpa

\J Z 151 ||Cp2 <7~/\/’E\Il”2

lez3
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)‘ l,pa

keZ3 pESk lez3 PES]

< CRE | Wi + D3| [N J Yy HAkhZemHQJ REDS

kez3 lez3 pELy

<O | & WA | 5 7 5 S+ D
where we noted that ||Age,, || )\,;1%1 = ||A;€h,;%ep1 | and also estimated

° s ~ 2
> 1&(1?)(2 ||cp3¢z,ocp2,a‘1’||> <s Z L5, (9) Ensz1.08m.0 YII* < C Z Lo, (P) psv1.7Cpa.o V|

kez3 o=1 kez3 kez?
S 1
<O INEE,. T (7.1.28)
o=1

The claim follows as 3 ¢, /\l_ﬂy1 < Ckp.
U
The bound on Y ez Ef(Ax(t)) of Theorem now follows by our matrix element

estimates:

Proposition 7.1.4. For any V € Hy and t € [0, 1] it holds that

> (W, gL (AT < (VZ V2 min {[K| ,kr} (O, (N3 +1)0)

keZ3 kez?

for a constant C > 0 depending only on 3 czs V,f and s.

Proof: By Theorem [6.0.1| we have
[(ep, Ar(t)eg)| < C(1+ V2 )Vikz!, k€ ZE, p,q € Ly, (7.1.29)

SO
> max | A(B)e, I = X max 3 [(e A(t)ey)” < Ok 3 (1+ V) V2 L)
keZ3 keZ3 * qeLy, kez?
< Chp? Y (V2 + Vi) min {k7 |k, k3 } (7.1.30)
keZ3
<C(1+VII%) 3 Vi min {|k],ke}
kez3

where we used that |L| < C'min {k% |k|,k}}. Likewise

2 A
Y A0 = Y Y <e,,,Ak Vi ? eq> <Ok Y (14 V) V21l Y /\k
»q

kez3 keZ3 p,q€Ly kez? qE€Ly
< Chp(1+|V[%) Y V2 min {|k], kr} (7.1.31)

kez3

since > qer, )\,;}1 < Ckp. Inserting these estimates into Proposition yields the claim.
O
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7.2 Analysis of £ Terms
Now we come to the terms
gk Bk Z Z Z {bk Bkep {8 k, l(e_p,e_q) bl (Kleq)}} (721)
leZ3 peLy gely
We will analyze these similarly to the £} (Ay) terms. Noting that
1 > > *
e—k-t(e—pie—q) = s > (5p,qch+l,oc—p+k,a + 5pfk,qflc—q,acfp,cr> (7.2.2)
o=1
we find that EZ(By) splits into two sums as
—2s 5k Bk Z Z Z {bk Bkep {5p7qc_q+lygc*_p+k7g,bZ‘(Kleq)}}
1€Z3 pELy q€Ly
1YY Y (B {Gnaatro b (Kieg)}) (7.23)
lez3 pG(Lk k) q€(Li—1)
= Z Z {bk Bkep { *erl,O'C*—p—i-k,O'?b;((Klep)}}
1€z pELLNL,
+ 2 > {br(Brepin) {7 pioCp o b (Kicpi) |}
1€23 pe(Li—k)N(Li—1)
and again these share a common schematic form, namely
Z Z {bk Bkepl { p2 Udea,b (Klem)}} (724)
1€Z3 PESKNS,
where the momenta are now
Y Y ) - . 7.2.5
(P1, P2, P3; Pa) {(p+k,—p—l,—p—k,p+l) Sy =Ly —k ( )
Again py, p3 only depend on p and k£ while p,, ps only depend on p and I.
We normal order the summand: As
bi(Biep,) {35, oo U (K, ) |
= &, oD Bren,) (G i (Kiep)} + [De(Buens). &, o] {0 b (Krep,)}
= 28, ;bi(Brep, )b (Kiep,)Cpy 0 + Gy, 50k (Brey,) {bl(Klem)a Crs, a}
+2 [bk(Bkem)v Cpoo }bl (Klem)cpsg + {bk<Bkem)7 Cpyo } [bl(Kl€p4>7 Cps,o } (726)

=26, b (Kiep, )b (Brep, )Cps0 +2€ pQ o [0k (Brep, ), b (Kiep,)] Cpy o

p2,0
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+ 5, o [(Kien,). o] 0u(Brey,) + 3, o [be(Brep,), [bi(Fiey,), &, ] ]
+2 bzk(Klem) [bk(Bkepl)v p2 0'} Cps o 2 {bl(Klem) [bk(Bkem)v 5;2 0'} *} ' 6103767
— [(Kien,), & 0] [be(Brep), G0 + { [oe(Bren). 65,00] » [ Kiep) 6]

and simply

{8, 0%y b (K16,) } br(Biey,) =y o (%0 by (K13,) } bi(Brey,) (7.2.7)
=28, b (Kiep,)b(Biep, )epy o + &, o [i(Kiey,), &, a} bi(Brep, )

the summand decomposes into 8 schematic forms as

@mmm{mﬁwmw%ﬁ}

=4¢,, b (Kiep, )bk (Brep, )Cps0 + 28, 5 [br(Brey, ), b (Kiep,)] Cps.0

+20§20 bi(Kiep,), &, } bi(Brep,) + 26 (Kiep,) [be(Biep, ), &, 4| Gy (7.2.8)
Gy [0k (Brep)). [i(Kien,). 0, o] | + 2 [i(Kiep,), [br(Bren,). 2, 0] ] Coso

{bl(Klem) Grool [0(Bren) &, 0]+ {[Br(Bren). &, ] [i(Kien,), &5, ,] )

Of these it should be noted that only the last one is proportional to a constant (i.e. does
not contain any creation or annihilation operators). As the rest annihilate ¢, it follows
that (when summed) the constant term yields precisely (x, Ef(By)¥r), whence bounding
the other terms amounts to estimating the operator

Er(By) — <¢F, 513(Bk)¢F> (7.2.9)

as in the statement of Theorem [7.0.1]

Estimation of the Top Terms
We begin by bounding the “top” terms
Z Z Cpa, 92001 (K10, ) b1 (Brep, ) Cps o and Z Z p2 o [0k (Brep, ), b (Kiep,)] Eps o
k,1ez3 pESKNS, k,l€Z3 pESKNS]
By the quasi-bosonic commutation relations, the commutator term reduces to

Z Z pz o bk Bkepl) bT(Kl€p4)] Cps,o (7.2.10)

k,lez3 peSKNS;

Z Z (Brep,, Kyep,) pgacp30+ Z Z pgagkl (Brep,; Kiep,)Cps. o

keZ3 peSk k,lez3 peSpNS;
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where we used that p; = py and p; = p3 when k = [. Now, the exchange correction of the
second sum splits as

-
—seri(Brep,; Kiep,) = Z Z (Brep,, €q) (eqs Kiep,) (5q,q’cq’flﬁc;—k:,r + 5qfk,q’flCZ’,qu,T)

q€Ly '€y
T
= Y. (Brepeq) (eq, Kiep,) Cy1-Ca—hyr (7.2.11)
qeLNL,;
-
+ Z (Brep, s €qik) (€qr1; Kiep,) EZH,réq—Hc,T

q€(Lx—k)N(L;—1)

which are both of the schematic form >20c ¢ o (Brep,, €q,) (€qus Kiep,) Gy, Coyr-

: o ~x . ~ .
To estimate Y-y 1cz3 255, 5, Crp.oEhi(Brepy; Kiep,)Cps 0 it thus suffices to consider
Z Z Z BkePl’ €q <€Q47 Klep4> Cp2 O'ng TCQ3 Tcpa o (7'2'12)
k€72 pESKNS; geS;NS]
The estimates for the top terms are as follows:

Proposition 7.2.1. For any collection of symmetric operators (By) and ¥ € Hy it holds
that

S5 [0, b i b Bre oo W) < € > max | By PG 0

klEZS peSKNS; ke ZB
S % (e, BB b (Kiep)] ) < €[5 > max|(e,, Breg)|” [Vp¥|”
k,lez3 peSENS; kez3 peLy

for a constant C' > 0 depending only on 3 yczs VkQ and s.
Proof: The first term we can estimate as in Proposition [7.1.3] by

S0 (b (i (B oo )

k€72 peSKNS;

< X D buEiep,) G o Ul 1Bk (Brep, )Eps o U

k,leZ3 pESKNS;

<Y S X 150) I Bren |l Kiep, | 1N eI o] (7.2.13)
keZ3 pESk 173
1
< 3 (max 1Beey ) S @ncpw IO SERSTTESTAD SRR MY 1%
kez3 PE&k pESk lez3 lez3
< [N Z(ngankepNZ [N T2 [3 3 15,(0) [ Kicpal?
peS

kez3 pESk 1eZ3
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< [ KR Wl Y (max | By ) INENG 0
ez kez3

¢ > max | Bl [3 1Killfs NV INZ 0.

ke Z3 lez3

For the commutator term we first consider > yczs >o0cs, (Brep, Ki€p,) Gy, 5Cpso: This is
trivially bounded by

Z Z ‘ Bkep1>Kk€p1><\Ij7 Cps,o CP3U >) < Z maX| Bkevakep ‘ Z < ) p3 CP37‘7\D>

keZ3 peSk kezd ¥ PES),
<>y rréax| ep, B Kiep)| (U, NpW) (7.2.14)
kezs

and by the matrix element estimate for Kj of Theorem we have for any p € L that

‘A/kk?_l
[(Brep, Kiep)| < Y [(Brep, eq)| e Kiep)| < C ) |{ep, Brey)] ﬁ (7.2.15)
q€Ly q€Ly, k.q k,p
~ 1
< OVikp! (max |(ep,Bkeq>|> Z — <OV max |{ep, Breg)|
q€Ly, q€Ly )\kq
since > ger, )\,;}I < Ckp. Consequently
Z Z ‘(Bk6p1kaep1> <\P7Cp3 oCps.o >’ <C Z Vk(mgx |<6paBkeq>|) (W, Np¥)
keZ3 pESk kez3 P4
<C |3 V2 3 max (e, Biey)|” (¥, Np¥)
kez3 keZ3pq€L

and clearly max, 4cr, |(€,, Breg)|? < >per, MaXger, |{(ep, Byeg)|”. Finally

Z Z Z ’ Brepy, eqr) {eas, Kiep,) <\P’Cp20 Cyz,7Cas.~Cps, U\IJ>‘

k,leZ3 peSLNS; geS)NS]

o T
< Z Z Z |<Bkep17€(h>| |<e(I47Kl€p4>’ H5Q2,Tép2,U‘I/H ||EQ3,T6P370\IIH

k,leZ3 pESKNSL g8, NS]

< Z Z Z (Brep, s €q; ’ | €42,7Cps, \DH
k,lez3 pESLNS) qeS;NS]
Z Z Z 6flzxvl(lem | ||cq3 Tcp3 U\IIHZ (7'2'16)
kle€Z3 peSKNS) g€, NS]
< $ Z Z maX| (epr, Breg)| Z Ls, ()| Eps, a/\/’E\IJH2

kez3 peSy ! lez3
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Jzzumemu S 16, (0) [0 O

lez3 pesS; kez3

2. 2 max (e, Breg) IR

kez3 peLy < lez3

whence the claim follows as || K|z < CV.

Estimation of the Single Commutator Terms

For the single commutator terms

Z Z pgo’ [bl Klep4)7 Cps, o] bk(Bkepl) and Z Z bl Klem) {bk(Bkepl)v Cps, a} Cpscf

k,leZ3 peSENS) k,lez3 pESKNS)

we note that by equation ([7.1.19)), the commutator {bl(KleM) cy } is given by

? 7p3,0
[bl(Kle ) ] _ _1Lz (p3 + l)S_% <Klep47 6p3+l> épa—i-l,a Sk = Lk (7 9 17)
) o 17, (p3)s™2 (Ki€py, €py) Epymto Sk=1Lp—Fk o

The prefactors again obey an estimate as in Proposition
Proposition 7.2.2. For any k,l € Z3 and p € S, N S, it holds that

1, (p2 + k)1, (ps +1)

1L D3 + l)S 2 <Kl€ 1 € +l> < CVk“ ! Sk = Lk7
‘ l e ‘ \/>‘lC D1 + Ak P2+k\/)‘l p3+1 + A P4
and
1 N 1 1
’1Ll <p3)57§ <Kl€p47 6P3> < kagl =L (pZ) b (p3> ) Sk = Lk - k?

\/)\kz,pl + )‘k7p2 \/)‘17]33 + >‘l7p4

for a constant C' > 0 depending only on s.

The proof is essentially the same as that of Proposition (indeed, this proposition
can be obtained directly from the former by appropriate substition, but some care must
be used since the p;’s differ in their definition).

For the single commutator terms we again only need the simpler bound

Ly (ps + )57 (Kiepy gt} Sk =L Vikz!
. <C

k
{ 1Ll (p?»)si <Kl€p47 €P3> Sk =Ly—k \/ Ak,pl/\l,m

but the full one will be needed for the double commutator terms below. Now the estimate:

(7.2.18)
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Proposition 7.2.3. For any collection of symmetric operators (By) and U € Hy it holds
that

>3 (g i) 50 bk<Bkem>‘1’>\SC’f?JZI|Bkh;5||%s AT

k,leZ3 peSENS) kez?

S Y (Wb (i) (B 0] ema )] < €[5S maxl (e Buey) P ING

k,1€73 peSrNS kez3 peLy

Jor a constant C' > 0 depending only on 3 czs V,f and s.
Proof: As in the second estimate of Proposition we have

S 3 (G i), ] B )

k€72 peSKNS;

<Y % |[Br(Kre,), T, o] o ¥ 151 (Brey, ) ¥

k,leZ3 pESKNS;
r7.—1
ik

<CZZZlS ) || Beep, | ————
1€73 pES| keZ? ' " A/ )‘k‘,m)‘l,m

! Ls,(p
< CkleNE‘I'HZ > = JZ Ls, (p) I Brhy, > 6le2 Z L5, (P) |Cpyt,rEp 0 V||

1
€051, Cpr o W || [| NV 0| (7.2.19)

P 1ez3 1,pa kezZ3 keZ3

s%g%WgM@Jmk PIB 2 |3 1) les, ICAY e

p kez3 lez? lez3

< Ci7 NG HNE\DHJ SN LE eplw S Y
P4

keZ3 peSk lez3 PES

< cr;h J S 1Bty s [3 VRN A

kez3 lez?

By equation ([7.1.19)) it holds that

1 N
_1Lk (p2 + k)8_5 <Bk’6p17€p2+k’> Cpotko D E Br

1 - (7.2.20)
Lp, (p2)s—z <Bk€p1v€p2> Cpy—k,o p € By

|:bk(Bk’€p1% pz 0':| = {
so the second term can be bounded as

Z Z ‘<\I' by (Kiep, ) [bk(Bkepl)y Cps, U} Cps, J\If>’

k,lezZ3 peSKNS)

S Y e | [ Bren)s ] Y|

k,lez3 peSKNS;
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< 53 X 15 (max eps Beea)l) 1Ky | ING | [t ¥ (7.2.21)

keZ3 pESk 173

< ”NL*Q\IJH Z Z 1Sk(p) (gé%i(‘(epuBkeq >\/Z 151 ‘KlemH Z 15’1 ‘szik Tcps U\Il”

P kezd lez3 lez3

IV 3 1a) [Hep J

p lez3

Z 15k(p)<rq%%};|<€p173keq )\J Z 1Sk ||Cp3 U-/\/’E\IIH2

kez3 kez3

1
< IVBIHINEI 3 3 IKepll (32 > max { ep1s Breg)|”

1€73 peS) kez3 peSy ¢

> zn%xf e, Brey)|’ > HKZHHS “NEQ\IJH INEY|.

kez3 peLy, lez3

Estimation of the Double Commutator Terms
Finally we have the double commutator terms

z Z pga [bk Bkepl) {bl(KlelM ? p3 0':| } Z Z [ Kl€p4 [bk(Bkepl) p2 0':| } 6p370
k,lez3 peSENS) k,lez3 peSpNS;

and

Z i [bl(Klem)v ;3 a} [bk(Bkem)? Cpa, crj|'

k€72 pESENSI

An identity for the iterated commutators is obtained by applying the identity of equation
(7.1.19) to itself: For any k,l € Z3, ¢ € (*(Ly), ¥ € (*(L;) and p € Z3

b b ST L o e 0

)
{ k( )1Lz (p + l) a <907 6p-l—l> <€p+la ¢> 5p+l—k,a pE BF
(p

1Lk -1+ k)le( ) - <907 6p—l+k> <€paw> ép—l-i-k,o JUES B% ‘
The estimates are the following:

Proposition 7.2.4. For any collection of symmetric operators (By) and ¥ € Hy it holds
that

I

S [, B (i), 0] ] )

k,leZ3 peSENS;

IS

k,lez3 peSENS;

9

< [ (Kiep), [oe(Bue). &, U]*]*5p3,0m>
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I

Z Z ’< [bl Klep4), ;3 U} [bk(Bkem), p2 0} \I/>

k,leZ3 peSENS;

1 _1
are all bounded by C’kF2\/Zk€Z§ maxper, ||y, 2 Brepl|? (U, Ng¥) for a constant C > 0 de-
pending only on Y czs f/,f and s.

Proof: For these estimates we consider only the case Sy = Lj for the sake of clarity, i.e.
we let

(p1,p2,p3,p4) = (p,—p + I, —p + k., p); (7.2.23)

the case S, = Ly — k can be handled by similar manipulations.
Using the identity of equation ((7.2.22)) we start by estimating (by the bound of Propo-

sition
S S (W lBren) (i), 7] ] W)

k,lez3 peLrNL;

= Z Z ’1Lk <p3 + l)le (p3 + l)s_l <Bkep17€p3+l> <ep3+lv Klem) <\D’ é;g,aépsﬂfk,aqjﬂ

k,lez3 pELLNL,

7 Vk1p+k1p+l -
SCY S Lnlon+ D) |(Bueps eppoi)] o all2 EOL B Dy e G g
k€73 peLrNLy \/)\k T Ak p2+k\/)\z ps+l T Al
o 2
<O TS Y 1, (0)1n, (s +1) <ep,hk QBkep3+,> (7.2.24)
lez? peL; \ kez?

1Ll (p3 + l)
: R RIS A
$kgz:3 Alps+i < prbeTe >

2

<Ckp> Vi X |3 1,0+ D1, (ps)

lez?  pe(L;—1) \ kez

<Ckp® S ISV 1+ D1, (ps)

pEBF \ 1€73 klczZ3

1
< Ckg® | Y max||hk BkepH2 STV (T, Npl)
keZ3 pek 1eZ3

where we used that Ypezs 12, (ps + DA, < Sger, Ay < Chr.
From equation (|7.2.22)) we have

<e,,+l, hy? Bkep3> (0,8, p0¥)

2

(0,8, .6 p0)

_1
<€p+z7 hy, QBk€p3>

[bl(Klem) {bk<Bkep1)v pa} } = _1Ll (p2 + k>1Lk (p2 + k)sil <Kl€p47 6P2+k> <€p2+k7 Bkepl) 6P2+kfl,cr
= 11, (P2 + E)1p, (ps + D)5~ (Kiep,, €py i) (€paths Brep,) Engo
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so the second term can be similarly estimated as

DS

< [bl Klep4) {bk<Bkep1)v pQ a} *} ) 6P3,U\I]>‘
k€73 pESKNS;

o Cr7.—1

k172 peLiNL; \//\iwn + )‘k7p2+k \/)‘lvm-&-l + )‘171?4

<o £ 3 S|

kez3 peLly \| lezZ3 lez3

epss Brep )| (U, 8, Gy V)

2
~
<\D C—p—i—k acfp+k,0\ll>

1
2
<ep2+/€7 hk Bk6p1>

o 1,(p+k i
<Ckpt Y 14, (p JZ et lp+k )||hk23kep+k\|< & potpa¥) (7.2.25)

PEBF keZ3 lez3

< ~ 1z, (p+ k)
<Cki' ¥ \JZ 2y Ll(pJ > 2 Bk€p+kH < pac_pa\I’>
!

pEBr \1€73  kezd ALpt kez3

<Ckp? | Y max||thBkep||2 S U2 (0, Npl).
ke ZS lez3

Finally, from the equations ((7.2.17]) and ([7.2.20]) we see that

[bl(Klepél)? ;)3 U] [bk(Bk€p1)7 p2 0'j| (7226)
= 1Lk (p2 + k>1Lz (p3 + Z)S <Bkep1 ) €p2+k> <eP3+lv Kl€p4> Cps+l, acp2+k o

so we estimate

S0 [ (i) 0] Beca). ] )

k,lez3 peSENS;

o Vg, (2 + k)1, (ps + 1)
<cC Z Z L s l ’<Bk’ep17 €p2+k’>’ <\Ij Cp‘;-f-l acp2+/€ U\D>
k,lez3 peLrNL; \//\k D1 + Ak D2tk \/)‘l,p3+l + )\l,p4

< CkF Z Z 1LkﬂLl 1LkﬁLl( p + k + l)

Vi
pEBY k,lezZ3 \/ )\l,p

(7.2.27)

_1
<€p7 hk 2 Bke—p+k+l>
~ ~
! <‘IJ7 C—p+k+l,oc—p+k+l,o‘q}>

I v ! .
= Ck' Y. Y lian(0+k +Dlnon(—p)—— <€P+k+lahk23kep> (0,858 poT)

pEBY, k173 \ )‘l7p+k+l

g _1
< Ckf;l Z \l Z 1Lk(p +k+ l)lLk(_p) <ep+k+l7 hk 2Bk€—10>

pEBL. \ k,leZ3

\J Z VZM <\Il C*poc—po > < CkF \l Z maXHhk Bk%llﬂ/Z V2 U, Np¥).
lez3

2

k ZEZS )\l p-l—k—i—l kEZS
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The & bound of Theorem now follows:
Proposition 7.2.5. For any U € Hy and t € [0, 1] it holds that

ZK (E2(BL(1) — (v, E(BL(t)vr)) V)| < C |3 V2 min {[k] , kr} (¥, N3T)

keZ3

for a constant C > 0 depending only on 3 czs V,f and s.

Proof: Clearly

_1 _1
s [ Buey | < 3 max (e, B, max b Bueyl < |1 Bibi* s, (7:2:28)
k

€L
pELL qe Ll

for any By, and as our estimate for By (t) in Theorem is the same as that for A(t),
the bounds

_1 A N
> 3 max (e Beg)|*, kgt 3 (1 Bil s < C(L+(IVIL) > V2 min {|k|, kr}
keZ3 peLly ! kez3 kez3

(7.2.29)
follow exactly as those of Proposition|(7.1.4] Insertion into the Propositions|7.2.1], and

yields the claim.
O

7.3 Analysis of the Exchange Contribution

Finally we determine the leading order of the exchange contribution. To begin we derive
a general formula for a quantity of the form (¢p, Ef(By)r): We can write

-2 <¢F,gk(Bk 77Z)F> Z Z Z (Vr, bi(Brep)e k., —1(e—p; e—g) by (Kieq)tr)

1€73 peLy gLy

,Z Z <¢F,bk Bye,)é p+lac_p+k(,bl(Klep)¢F> (7.3.1)

l€Z3 peLrNLy

1
+- 2 Z (Vi Ok (Brepin) & 168-p-robi (Kiepri)tor)

1€73 pe(Li—k)N(L;—1)

= A+ B
where, using equation ([7.1.19)) in the form

bone,] - —sl‘% Yger Opa-i(¥€q) &qe P € Br (7.3.2)
’ pg 872 2 ge(1y-1) Opgti (¥, €q41) G0 P € Bfy
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the terms A and B are given by

A= - Z Z <¢F’ [bk Bkep) p+l,o':| [bl(Klep) —p+k, 0':| wF> (733)

leZ3 pELKNL;

52 Z Z <¢F’ (Z O—piq—k (Br€p, €q) 661,0) (Z O—pihg—1 (€q Ki€p) 5;’,0’) @Z’F>

lez3 peLrNL, qELy g€l

= Z Z 5p+q,k+l <6p7 Bk€q> <€Q7 Kl€p>

leZ3 p,q€LNLy

and

Z Z <¢F’ [bk(Bkep‘f‘k)’é*—p—l,a} [bl(Klep—H) —p— ko':| ¢F> (7-3-4)

lez2 pe(Ly—k)N(Ly—1)

>

€73
1€Z2 p,g€(Li—k)N(Li—1)

0—p—qk+l <6p+k7 Bkeq+k> <€q+la Kl€p+l> .

[V c:;\»—l

Although it is not obvious, there holds the identity A = B. To see this we rewrite both
terms: First, for A, note that the presence of the 6, %4 makes the L; of the summation
p,q € Ly N L; redundant: For any p, q € B there holds the equivalence

P4 € Lpygr & p,q € Ly, (7.3.5)
by the trivial identities
p—kl=lg—(+a—FKI|, lg—kl=lp—@+a-FK), (7.3.6)

so A can be written as

Z Z Optqh+i (€ps Breg) (€q, Kiep) = Z ep, Breg) (€qs Kpiq—rep) . (7.3.7)

Sp, q€Ly 1ez3 q€L

Oa\»—t

A similar observation applies to B: For any p,q € Br we likewise have

P.q€(Lpygr+p+q+k)ep+kqt+ke Ly <pqge(Ly—k) (7.3.8)
SO
1
B=- Z Z R <ep+ka Bkeq+k> <€q+la Kl€p+l> (7.3.9)
5 pae(Lp—k) 173
1 1
= S Z <ep+ka Bkeq+k> <e,p by Kpgk€—g- k) ; Z €p> Bkeq 6q, Kp+qfk6p>
p,q€(Li,—k) p,q€L

where we lastly used that the kernels K obey

(e—ps K_re—q) = (€p, Kieg) = (€4, Kyep), k€ Z}, p,q € Ly. (7.3.10)
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In all we thus have the identity

<¢F75k (Br) ¢F> -2 Yo > Oprawni{ep Breg) (eq, Kiey) (7.3.11)

l€Z3 D, qELkﬂLl
1
=7 Z <€P7 BketI> <6q7 KP+Q7k€p> .
s
P,gELK
Our matrix element estimates of the last section now yield the following:

Proposition (7.0.2)). It holds that

<C [ Vmin{k] . kr)
kez3

Z / wF72Re(gk<Bk( )))¢F> dt — Ecorr,ex

keZ3

for a constant C' > 0 depending only on 3 yczs V,f and s, where

skp? 0

F p+q,k+l

Ecorr,ex = 4(2r 6 kV E Mo+ A .
( k,lez3 p,geLNL; \kp k.q

Proof: Since all the one-body operators are real-valued we can drop the Re(:) and apply
the above identity for

S [ (e 2Re(g2Bue))ur)dt = X 2 (vr g2 ([ Butydt)or)  (13.12)

keZ3 kez3

- Z Z Optq,k+i <ep> (/ By(t dt>€q> (eq (—Ki)ep) -

s k€73 p,geLyNL,

Now, note that Ecorex can be written as

sf/kk}l s‘%k;l 1
corr ex — Z Z 5p+q,k+l 3 3
2(2m)” 2(2m)” Aip + Aig

k; 1€72 p,gELrNLy

(7.3.13)

since, much as in Proposition [7.1.2, the 0,444 implies the following identity for the
denominators:
Alp +ALg =

(Ipl* = lp = 11%) +

=~ (IpI* = lg— k") +

(laP — la— 1) (7.3.14)

(lal* = Ip = k%) = ey + Mg

[\J\r—tl\:)\r—\
[\D\t—lw‘

We thus see that

S [ (e 2Re(E2(BA(0) ) ) dt — Fropeen

keZ3



7.3 Analysis of the Exchange Contribution 81

N Z Y Oprgk <<ep, (/01 By (t) dt) eq> — W) (eq, (—K))ep)  (7.3.15)

2r)?
kledeqGLkﬁL

stkgl sVlk;l 1
= st (e (—K)ey) — — A+ B.
2 2 Oty e\ o RS = o e

kleZ3pq€LkﬂLz

We estimate A and B. By the matrix element estimates of Theorem we have that
(using our freedom to replace A;, + A g by App + Aiyg)

~ Vikpt
Lp T

k€72 p,qeLrNL,

<CRP(1+V]se) WY Voras (7.3.16)

kez3 pELy \/)‘kp qGLk \/ k,q

3 N
<Chp* (14 Vlloe) [ VR VY. ——
" ( ) lez3 kez3 kpeLk /\kp

CL+ (V) [3 V2 S V2 k| min {1, k3 [k}

lez3 keZz3

where we applied the inequality > cp, )\,;(11 < Ckp and also used that Proposition m
implies that

1 3 1 3 _3
3 o < Ck2 |k|? min {1, k2 |k| 2} (7.3.17)
pEL) k.,p

for a C' > 0 independent of all quantities. By Cauchy-Schwarz we can further estimate

A 1 3 ~ ~
S V2 kFmin {1,k2 (K2} < [ V2 [ V2 (k| min {1, k3 [k} (7.3.18)
keZ3 keZ3 kez3
< IS V2 ST V2min {|k|, ke}
kez3 kez3

for the bound of the statement. By similar estimation also

V k A A, 1 . 3 _3
Bl <C > Y OpqhrVik ! ﬁ <C > VRS VAP min {1,k 1|2}
a kezZ?

k,lez3 p,qeLxNL, lez3
(7.3.19)

and the claim follows.
OJ
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Chapter 8

Estimation of the Non-Bosonizable
Terms and Gronwall Estimates

In this section we perform the final work which will allow us to conclude Theorem [I.1.1]
The main content of this section lies in the estimation of the non-bosonizable terms,
which we recall are the cubic and quartic terms

kil )
C =253 ViRe((Bi+ B"}) Dx) (8.0.1
(2m)" pezs
kg S D*D—i(c* o he o )
= 2(27‘(’)3 S k kk = D,0 D0 p—k,0Cp_k.o .

The cubic terms C will not present a big obstacle to us: As was first noted in [8] (in their
formulation), the expectation value of these in fact vanish identically with respect to the
type of trial state we will consider. The bulk of the work will thus be to estimate the
quartic terms. We prove the following bounds:

Theorem 8.0.1. It holds that Q = G + Qrr + Osr where for any ¥ € Hy

(W, GW)| < C | V2min{|k|, ke} (¥, NpD)

kez3

(W, QupW)| < C | > V2min {|k], ke} (¥, NZ¥)

kez3

and X Qspe™ = Qgr + [y e (2Re(G))e Kdt for an operator G obeying

(@, GW)| < C [> V2min{[k], ke} (U, (N} +1)T),

kez3

C > 0 being a constant depending only on 3 ez V,f.
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(Again there are some technical questions which arise due to the unboundedness of
Osr. We consider these in appendix section )

With these all the general bounds are established. As all our error estimates are with
respect to Ng and powers thereof, it then only remains to control the effect which the
transformation €* has on these. By a standard Gronwall-type argument this control will
follow from the estimate of Proposition [5.1.3] and we then end the section by concluding

Theorem [L1.1]

Analysis of the Cubic Terms

Expanding the Re(:), the cubic terms are
kz! N . . .
C=—""3 Vk’((Bk: + B_x) Dy + Dj, (Bk + B_k>). (8.0.2)
2 (2m) rez

The operators By can be written simply as By, = s3>, brp in terms of the excitation
operators by, = 572 POy Cp—te o Cpos whence it is easily seen that

Ng, By) = =By, [Ng, Bj) = B;. (8.0.3)

As a consequence, By, maps the eigenspace {Ng = M} into {Ng = M — 1} and B; maps
{Ng = M} into {Ng = M + 1}. Meanwhile, the operators Dj preserve the eigenspaces:
Writing Dk = Dl,k + D27]€ for

g g
_ —ik-x _ * - ko~
Dig=d0(Ppe ™ Pp) = > GpgiChoCpo=— > Ciolytra  (804)
P,q€BF g€BrN(Br+k)
g ag
_ —ik-x _ * o ~x o~
Dyj=dU(Ppee ™ Py ) = 3 GpqkChoCoo = D Cholpino
P9EB;, pEBLN(BE—k)
these annihilate and create one hole or excitation, respectively, whence [Ng, D] = 0 =

NE, Dil.
It follows that C maps the eigenspace {Ngz = M} into {Ngp = M — 1}&{Ng = M + 1}.
Decomposing Hy orthogonally as Hy = Hy™ & H for

Hy = @ (Np=2m}, HWM = P {Np=2m+1}, (8.0.5)
m=0

m=0
we thus see that C maps each subspace into the other. On the other hand, since our
transformation kernel K is of the form

1 * *
K= 92 Z Z <€P’ Kleq) (bl,pb—l,—q - b_l7_qbl7p) (8.0.6)
ez paclh
we note that I maps each {Ng = M} into {Ng =M —2} & {Ng = M + 2}, hence K

preserves HYye" and H3%, and so too does the transformation e ™. As any eigenstate

U € Hy of N is contained in either HY™ or H34, and these are orthogonal, we conclude
the following:
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Proposition 8.0.2. For any eigenstate ¥ of Ny it holds that
<6_’C\II,66_’C\I/> =0.

8.1 Analysis of the Quartic Terms

Now we consider the quartic terms

SNV (D,’:Dk = > (oo + cp_mc;_,w)). (8.1.1)

kez3 pELy

_ kg
- 2(27)°

We begin by rewriting these: Recalling the decomposition Dy = Dy + Dy above, we
calculate

o, T

* _ ~k ~ ek~
Dl,leyk - Z Cop—k,0Cp,0Cq,rCa—k,T
P,q€BRN(BF+k)
o, o
_ ~k ~%k ~ ~ ~%k ~
— Z Cp—k,acq,TCq—k,Tcva + Z cq—k,ocq—kﬂ (812)
p,q€BFN(BF+k) q€BFN(Bp+k)

o,T

o
— > & koo CaiirCpo + > 1p.(g+ k)¢ 5Cq.o

p,g€BrN(Br+k) q€BF
and similarly
o,T
* _ ~x ~ ok
p.a€B&N(Bs—k)
o, T o
_ ~% ~k o~ ~ ~k o~
= Y kol lrkalpe + Y g (D — k)T, Cp0 (8.1.3)
p.a€ByN(Bs—k) pEBS,

o,T o
= Z 6;+k706;,76q+k,7'6p,0' + NE - Z 1BF (p - k)éz,aépva'
p,qEB%ﬂ(B;—k) pEBE

For any k € Z3 we can likewise write > el (c*,acp,g + Cpk,oCp ,m) in the form

p

g

> (G otro T koCyrs) = 2 15, (P— k) olpo+ . lpelq+ k) 000 (8.1.4)

PEL pEBS qEBF
g ag
= Z ]'BF (p - k)é;,aépﬂ +NE - Z 1BF (q + k)é:;,aé%lf‘
pEBL qeBR

Noting that Dy = 0 for |k| > 2kp, as then Br N (Bp +k) = 0, we thus obtain the
decomposition

Q=G+ 9ir + 9sr (8.1.5)
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where G is

kit

G = 3
(2m)

> Vk( > 1. (q+ k)G oo — Y 1p.(p— k)é;aép,a), (8.1.6)

kez3 q€BFr pEBE

the long-range terms Qpgr are given by

kil 9 i ~x ~x o~ ~ * *
OQrr = —— 3 Z Vi Z Cp—t,oCaqrCahrCpo + D1 Do + D3 D1
2(2”) k€B(0,2kp)NZ3 P,q€EBrN(Br+k)
(8.1.7)
and the short-range terms Qgsgr are
kEl R o,T
QSR = m Z Vk Z é;+k,U&Z,Té(I+k,TéP,0' (818)
n kez3 p,qEB;ﬂ(BC —k:)

F

Estimation of G and Oy

G and the long-range terms are easily controlled: First, interchanging the summations we
can write G as

G:

k_l o N\ k,—l o ~\ L
F Z Z Vk) CqoCao — ﬁ Z ( Z Vk) CpoCpo (8.1.9)
NZ3 ke( VNZ3

3
(27T) qEBF (ke(qu pEBYL, Br+p

from which it is obvious that G obeys

—1
+G < max( i > Vk>NE (8.1.10)

3
re2i \ 7)" ke(mrrpra:
This implies the following;:

Proposition 8.1.1. For any ¥ € Hy it holds that

(W, GW)| < C [ V2min {|k|, kr} (T, NpW)

kez3
for a constant C' > 0 independent of all quantities.

Proof: For any p € Z® we estimate by Cauchy-Schwarz
Y < S VP2wmin {|k], kr} S° min{|k,ke} " (8.1.11)
ke(Bp+p)NZ3 ke(Bp+p)NZ3 ke(Brp+p)NZ3

< Y VEmin k|, ke} [ S kTN kR

kez3 ke Brp\{0}
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where we lastly used that k& — min {|k|, kz} ™" is radially non-increasing and that (Bp + p)N
Z3? contains at most |Br| points. As it is well-known that Y keB0,R)\{0} k|”' < CR? as
R — oo the bound follows.

U

O1r can be handled in a similar manner:

Proposition 8.1.2. For any ¥ € Hy it holds that

(W, QueW)| < €[> Vi2min {[k|, kr} (¥, NZV)

kez3
for a constant C > 0 independent of all quantities.

Proof: Consider the first term in the parenthesis of equation (8.1.7)): For any k € Z2 we
can estimate

o,T o,T
Z ‘<1117 6;—k7g5;7—6q—k,7'6p,0\1]>‘ S Z ||Eq7Tép—k7U\I[|| ||5g—k,75p,0\11||
p,q€BrN(Br+k) p,q€BFN(BFr+k)

< J 3 ]|Eq775pk7o\IJH2\l S e kepo ¥ < (WANZE) . (8.112)

p,gEBFN(Br+k) p,g€EBFrN(Br+k)
Ase.g.
o T
* ~% ~ o~k ~
Dy Do = Z Z Cq—k,7Cq,7Cp,oCptk,o (8.1.13)
pEB%I"I(B%fk) ge€BrN(Br+k)
g T

- Z Z éz,aész;éqﬁép+k,cr

pEBEN(Bi—k) 4€BrN(Br+k)

since Br and By are disjoint, the terms D7, Doy and D3, D1y can be handled similarly,
whence

3k . S
womW)|< Tl X G (wARe) < C\/Z V2 min { |k, kp} (¥, NZD)
(2m) kEB(0,2kp)NZ3 kez?
(8.1.14)
where 32 c5(0,25)nzs Vi Was bounded as in equation (8.1.11)).
OJ
Analysis of Ogpr
Lastly we come to
kEl R o,T
Our = T SV Y ekt (8.1.15)
T) kez?  pqeBin(Bs—k)
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Recall that the transformation kernel K can be written as K = K — K* for

K:: Z Z €p,Kl€q blpb—l —q = Z Z bl Kleq b_l —q- (8116)

leZS P,qELy leZ3 qeLy

To determine eXQgre ™ we will need the commutator [, OQsr] = 2 Re([/@, QSR]). Noting
that for any p € B and | € Z2, ¢ € L;, we have

b~*—18* * Op a0, —16~ 8.1.17
[ l,q7cp,a:| = %; [qul,TClIﬂ'?Cp,U} \/— Z pa0o.rCh 1 = % p.aCq—1l.o> (8.1.17)

we deduce (with the help of Lemma (3.2.1]) that

Ko5) = Y 3 (blKieq) [bran 8] + [bKico). 8| i)
leZz q€ Ly
fzg XL:(bl Kieg) [b-1,-: G o] + [brg: 0] bt (K iey)) (8.1.18)
leZ qely

\/— 23 Z (bu( Kleq —qC—qtlo T 5p,qéq—l,ob—l(K—le—q))
1eZ2 9Ly

\/— Z Z bl Kleq C—q-{—la = Z 1Ll bl Kle—p)cp-‘rla

lez3 qely leZS
Using this we conclude the following:

Proposition 8.1.3. It holds that ¢*Qgsre™ = Qgg + [y e (2Re(G))e~*dt for

S 5 kF o, T

- 9 Z Vk Z 1Ll(q)é;abl(Kleq)équrl,Téqurk,Tép*k,U
(W) k,lez3 pqEB%ﬁ(B%-‘rk)

_1k o,T
F3 Z 1, (p) 1y, (q) <Kl€q> ep> Cp—1,6C—q+1,7C—gtk,7Cp—k,o-

2 (2m)" 1623 P, qu;m(B;Jrk)

Proof: By the fundamental theorem of calculus

¢ Qepe ™™ = Qup + / [KC, Qsg] e~ dt (8.1.19)

and as noted [IC, Qggr] = QRe([I@, QSR])' Using equation (8.1.18)) we compute that G :=
(K, Qsg] is given by

g T

3 > > (G.K.6,04 K. ,)8 ) égrrrtoto

l~ceZ5 pEBLN(BE+k) g€ BLN(BE—k)

_2(
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1
sfikgl N ¢ . = G C C
T2 (27r)3 23 Vi > > 10, (=)@, s bi(Kie—g)Cq41.7Cotk rCobo
kKIEZE  peBeN(By+k) a€BeN(Bs—k)
o T
TS on 3 > Yo 1L (-p)bi(Kie p)ept10C  CarkrCpto
( kleZ3 peB%ﬂ Bg+k) g€ BN(Bs—k)
B s’%kgl ~ - -

SV X S (=) {bKie ), 6 o} Eqiirlornrtp ko
kI€LE  peBEN(Bg+k) qeBEN(Be—Fk)

o, T

= 2 (2n) > Vi Z( 1r,(q ){bz(Kle ) pa}é—q+l,T6—q+k775p—k707

klez3 p,g€BLN( BS +k)

where we for the third inequality substituted (p,o) <> (¢,7) and & — —k in the second
sum, noting that then

1Lz (_ q) équl,‘r 5;,aép*k705q+kn' = 1Lz (_Q) 6;,aéq+ln'5q+kﬂ'5pfk,a (8- 1 -20)

as the indicator function (and summation range) ensures that ¢ + | # p.
By the identity of equation ([7.1.19) the anti-commutator is given by

{bi(Kieg), & .} =2 bi(Kieg) + 11,(p)s 2 (Kieg, ) Gyt (8.1.21)

which is inserted into the previous equation for the claim.

O
We bound the G operator as follows:

Proposition 8.1.4. For any ¥ € Hy it holds that

(T, GT)| < (VZ V2 min {[k] kp} (0, (NG +1)0)

kez3

for a constant C' > 0 depending only on 3 yczs V,f.

Proof: Using Proposition [7.1.1 we estimate the sum of the first term of G as
R o,
SV Y (@)W 8 b(Kie)e gist gkt ko))
kI€ZZ  pgeBen(Bg+k)
o,T
< Z Vi Z 1r,(q) ||b7(Kleq)ép,0\IJ|| ||5—q+l775—q+k,76p—k70\1/||
kIEL?  pgeBen(Bg+k)
~ o,T ~ 1 ~ ~ ~
<2 Ve X 1@ IEeglHIepe(Ne + 12U 1EpkoCgiirlqins Y

kI€ZE  pqgeBsN (BCF+k)

IN

[N+ DS S Kl S g et @) Vil nt g NA (8.1.22)

1ez3 qely keZz3
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< 2 VRIWNE + DY 3 I Kiegll le-gs1-Np Y|

kez3 1ez3 qely

<Vs > ‘7/3(2 HKZHHS> | + D [N,

kez3 lez3

Now, the || K[| estimate of Theorem and Cauchy-Schwarz lets us estimate

min {1, k% |l€|74}

> [Killys <C Y Vemin (L& B} < ¢ | Y >~ V2 min {Jk| ke

kez3 kez3 kez3 min {|k| ) kF} kez?
and \ A
min {1, kg |k| "} 3 1 3 1 2
> — = — 4k Y — <CkL (8.1.23)
keZ? min {|k], kr} keBF\{O}‘k7| kezi\3F|kﬂ4

for a constant C' > 0 independent of all quantities, so in all the first term of G obeys

1
3kt N
Y U Y 1,0 (W @Kkl i) (8.1.24)

2(2m)" oem p.a€BEN(By+k)

<C 3 VR 3 VEmin{|k| ke} [|(Np + 10 [NV .

kez3 kez3

Similarly, for the second term (using simply that [&,—14/|o, = 1 at the beginning)

o, T

Z ‘A/k Z 1, (p>1Lz(q) |<Kl€q7 ep> (v, épfl,d6fq+l,757q+k,76p7k,0qj)|
kIEZE  pgeBeLN(Bgtk)

< ||\I/|| Z Vk Z 1Lz(p)1Lz<Q) |<Kl6q76p>| ||5p—k705—q+l,75—q+k77\1}|| (8.1.25)

kIEL?  pgeBen(Bg+k)

T ~ 1
<V S Kl Y s @Vl grnroqiin VA

€73 q€ly kez3

~ 3
<s /2 VE(Z HKzHHs) W] [N W]
kez3 ez

8.2 Gronwall Estimates

We now establish control over the operators e N 2e=* for m = 1,2,3. Consider first the
mapping t — e®Nge . Noting that for any ¥ € Hy
d

0 (W, e (Ng + 1)e W) = (W, e [K, Ng| e W), (8.2.1)
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Gronwall’s lemma implies that to bound e (Ng 4 1)e™** it suffices to control [, Ng] with
respect to Ng + 1 itself. We determine the commutator: As K = K — K* for

~ 1
K= 5 Z Z <€p,Kl€q> bl,pbfl,fq (822)

lez paclhy
and [b;,, Ni] = by, it holds that [K, Nz] = 2K, whence
[, Ng] = 2Re([K, Nz]) = 2K + 2K". (8.2.3)
The estimate of Proposition immediately yields that
+ [K,Ng] < C(Ng+1) (8.2.4)

for a constant C' > 0 depending only on >czs VkZ and s, whence by Gronwall’s lemma
(W, ™ (Vg + 1)e ™ W) < M (W, (N + 1)) < C' (¥, (N + 1)), [ <1 (825)

This proves the bound for Ng; for N2 we will as in [I1] apply the following lemma:

Lemma 8.2.1. Let A, B,Z be given with A > 0, Z > 0 and [A,Z] = 0. Then if
+[A,[A, B]] < Z it holds that

+[Az,[Az, B]] < iAlZ.

We include the proof in appendix section
The estimates are as follows:

Proposition 8.2.2. For any V € Hy and |t| <1 it holds that
(e™W, (N + 1)e ™) < C(W, (Vg + )W), m=1,23,

for a constant C' > 0 depending only on 3 yczs V,f and s.

Proof: The case of m = 1 was proved above. For m = 2 it suffices to control [k, N3] in
terms of N2 + 1; by the identity {A, B} = A2 BAz + [Az,[Az, B]] we can write

G, NE| = N (K, Ne] + (K, Ne] Nie = {Ng, [K, Nel}
= {Ng +1,[K,Ng]} — 2[K, Ng] (8.2.6)
= (Ng + 1)% [K,Ng] W+ 1)F + [(We + 1)F, [NV + 1), [K, Nal]] — 2 [K, N

and note that the commutator [K, Nz] = 2K also implies that

NE, (Ng, [K,NE]]] =4 [K,N&], (8.2.7)
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so by Lemma and equation ([8.2.4])
+ KN <C(We +1)P +1+ We+1)) <C/(NZ+1). (8.2.8)
Similarly, for N3,

K NE| = NEIK, Ng] + Ni [K, N N + [K, Ng] N7
= 3N [K, Np] N + Ng [N, [, Ng]] + [[K, Ng] , Ne] g (8.2.9)
=3Ng [K,Ne]Ng + [Ng, Ng, [K,NEg]|] = 3NEg [K,Ng|Ng + 4K, Ng]

implies that
+ [K, N3] < CWeWe + DNE + We +1)) < /(NG +1) (8.2.10)

hence the m = 3 bound.
OJ

Conclusion of Theorem [1.1.1]

We can now conclude:

Theorem (1.1.1)). It holds that

ian(HN) < EF + Ecorr,bos + Ecorr,ex +C Z sz min {’]{| , k’F}, kF — 00,
keZ3

for a constant C > 0 depending only on 3 czs V,f and s.

Proof: By the variational principle applied to the trial state e~z we have by Proposition

[2.0.J and the Theorems [4.0.1] [6.0.1 and [8.0.] that

O 7.—1
kg

Vi
5 €2w)3 (2BiBi + ByB_y + BikB;;)) e"%F>

info(Hy) < Er + <77Z)F7 e’ (Hl,dn +

kez3
+ (Y, & Ce ™ Pr) + (vr, Qe Fr)
— EF + Ecorr,bos + <wF7 Hl/dnwF> + 2 Z <1/JF7 Qlf (e_Kk hke_Kk - hk)1/JF>

kez3

Ly /01 (e yp, (ex({Kx, Be(t)}) + 2Re(EL(A(1))) + 2Re(EX(Bi(1))) )e~ " up ) dt

kez3

1
+ (e, (G + Qur)e ™tr) + (¥r, Qsntor) + /0 (e, (2Re(G))e ) dt
= EF + Ecorr,bos + Ecorr,ex + €1 + €2 + €3,
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where we also used that

Hyyr = QY(A)¢r = Qsptop =0 (8.2.11)

and that <¢F, e’CCe_’CwF> = 0 by Proposition [8.0.2, The errors €1, €5 and €3 obey

1 A
€1 = Z A <¢F’ 2Re<glg(Bk(t)))¢F> dt — Ecornex S C Z Z Vk2 mln{]k| , kF}
keZd kezd \ kezd
(8.2.12)

by Proposition [7.0.2),

r= 5 [, (i Bl)]) + 2Re(E1(AL0)) )0 ) e

+ 2 /01 (e"0=9%yp, (2Re(EX(Bi(t)) — (vr. EX(Bu(t)vr)) e pp) dt (8.2.13)
kez3

< Ckp' +C | S V2min{|k|, kr} < C |3 V2min {|k|, kr}

kez3 kez3

by Theorem and

_ /K K e —tK
€3 <e Yr, (G + Qur)e @/}F> —i—/o <e Ve, (2Re(G))e @/}F> dt (8.2.14)
<C [ VZmin{|k|, kp}

kez3

by Theorem where we for the last error terms also used that
(e pp, (N + e ™ yp) <C, [t <1,m=1,23, (8.2.15)

as follows by Proposition [8.2.2]
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Chapter 9

Extension to Attractive Potentials

We now make the observation that the result of Theorem generalizes to weakly
attractive potentials.

To determine under what conditions we can do this, let us consider where we applied
the assumption V;, > 0. This condition did not enter anywhere in Section , so the

conclusion of that section, i.e. the representation
Viky! 5(2B;B * B}

A _(2BIB, + BiB_j + B_kBk) +C+ 0, (9.0.1)
kez3 2( 7T)

continues to hold. The first time we applied the condition was in Section [3| when we wrote
the bosonizable interaction terms in the form

S (2B;By+ BBy + B By) = Y (2Q4(P) + Q5(R)), (9.0.2)
kez 2 (27T) kez?
since we defined Py, : £2(Ly) — (*(Ly,) to act as Py(-) = (g, -) vy for vy = SQVI“L S pel, Ep-
This definition was made to ensure that
sVikpt
(ep, Preq) = (e, 0h) (Vk ) = —=L5, p,q € Ly, (9.0.3)
2 (2m)

but it is clear that this can still be enforced by a slight modification: If we more generally
define P, and vy by

Slvk‘kF

Py(-) = sen(Ve) (vk, -) vk, vk = 2 (2m)?

> ey, (9.0.4)

pELy

then We recover the previous definition for Vi > 0, but now also have that (e,, Pye,) =
stk
2(2n )d

even if Vk < 0.
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As the calculations of Section |3| were purely algebraic, we see that the conclusion, i.e.
the existence of a unitary transformation e such that

e
N Hip + Y Vi FS(QB;:Bk 4+ BuB_, + BikBZ) oK
keZ3 2(2m)
= 3 tr(e e = = ) 4 g 2 32 QU (e e — ) (9.05)
kez? keZ?
1
+ > /0 S(1-tK (€k({Kk7 Bi(t)}) + 2Re(8,i(Ak(t))> + 2Re(gg(Bk(t))))ef(lft)lcdt,
kez3

continues to hold (keeping the new definition of P, in mind), provided the diagonalizing
kernels

1 _1 1 1 % _1
Ky, = —; log (hk, 2 (h,g (hy, + 2Pk)h,§) hy, 2) (9.0.6)

are still well-defined when V}, < 0.
This is the condition that hy +2P, = hy —2F,, > 0. By the Sherman-Morrison formula
(Lemma - as well as motonotony of ¢ — hy + tPy) this is the case if and only if

1= 2 (vg, hy o) > 0 (9.0.7)
which can be expanded and rearranged to

5 (27)°
Vk > = _ 1>
skp' Ypery Mo
In appendix section [Bl we prove the following asymptotic behaviour of the Riemann sum

—1.
ZPELk )‘k,p'

Proposition 9.0.1. For any v € (O 1 ) and k € B(0,k}) it holds that

)11

kel (9.0.8)

S AL = 2k + 0(1og(kF)3k;(2“”)), ki — oo,

PELy
The condition of equation (9.0.8) thus asymptotically amounts to

~ 42
V> kerzd (9.0.9)

S

but as in the statement of Theorem we will for the purposes of analysis make the
slightly stronger assumption that

N A2
Vo> (11— keZ? (9.0.10)
S

for some € > 0. With this we can uniformly bound 1 — 2 <Uk, h,;lvk> away from O:
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Lemma 9.0.2. Let Yz V2 < 00 and Vi>—(1- e)% for all k € Z2. Then

{kezi;'lé <0}(1 —2 <Uka hﬁlvk» > C, kF — 00,
#1Vi

for a constant C' > 0 depending only on e.

Proof Expanding the definitions and applying Proposition 9.0.1, we have for all k£ €
B(0, k: ) (say) with Vj < 0 that

_ S|Vk|k}F 4m? skt
1—2 (v, hylog) =1 — SNy >1l—(1—e)——5 > N\ (9.0.11)
< ‘ > (27T) pELy o s (27T)3 pELy i
Fr! 31 0-5)
:e+(1—e)2 2rkp — Z)\kp >e— Clog(kp)3kp
pELy

> '

i
as kr — oo for some C’ > 0 depending only on e. If instead k € Z3\ B(0, k%) we may note
that by the general bound >/, )\,;]13 < Ckp, we can always estimate

1= 2 (v, hy'og) > 1= Cs|Vil, (9.0.12)
so noting that
sup  |[Vi] < S V20, kp— o, (9.0.13)
]{:EZ%\E(O,k’FZ%) k€Z3\B( FQ%)

since Y jezs sz < oo we see that we can for kp sufficiently large assume that

sup (1 -2 <’Uk, h,;lfuk>) > ; (9.0.14)
keZ3\B(0,k ;é%)

(say), so either way the claim holds.

0

We remark that a similar argument shows that our condition on Vj, is nearly optimal,

in the sense that if for some & € Z3 it holds that Vi, < =% then the asymptotic result of
Proposition in fact implies that

1—2 (v, hy've) <0 (9.0.15)

for all sufficiently large kg, in which case the corresponding term of E oy pos 1S nOt even
well-defined as the integrand involves

sVikpt Mep )\ - >
1og<1+ 2n)’ p%;)\ P —log(l 2<vk,hk<hk—|—t) vk>. (9.0.16)
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The condition Vj, > —(1 — e)% thus ensures that our diagonalization procedure (and
Ecorrpos) remains well-defined, but it is not immediately clear how the one-body estimates
of Section [0l are to be modified for the attractive case.

This is the main information that is needed for the generalization to attractive po-
tentials, but it turns out that Theorem [6.0.1] continues to hold almost exactly as stated
before, the only difference being an e-dependence and the substitution Vi — |Vk| in the
error terms:

Proposition 9.0.3. It holds for any k € Z2 that

1 oo [ sViky! A
tr(e e = b= B = F( an 2 3+ t2)dt’
P

pELy

where F(z) = log(1l + x) — x. Furthermore, as kr — 00,
el < €IV min {1, 2 [k}
and for all p,q € Ly, and t € [0, 1]

[Velkz"
)\]@p + )\k,q
sVikpt 1 V2ks!
ey, (—Ki)e,) — <C—"A+t—
< D ( k) Q> 9 (277')3 )\k,p i >\lc,q — )\k,p + )\k,q

[(eps Ax(B)eg)] s (g, Br(t)eg)| < C(1+ Vi) [Vilkz!
<ep, (/01 Bi(t) dt> eq> i‘(/’;k; < C(1+ |Vil)Vi2ki!
[(eps { Kk, B(t)} eq)| < C(1+ V2 V2kz!

|<€pa Kkeqﬂ <C

for a constant C > 0 depending only on s and e.

We momentarily postpone the proof to subsection below.

With these estimates we are essentially done, since the computations of the Sections
and [§ only relied on these, as well as the triangle and Cauchy-Schwarz inequalities.
Whenever the triangle mequahty was applied, the only difference that is required for at-
tractive potentials is that Vj is substituted with |Vk| but since we generally apply the
Cauchy-Schwarz inequality to estimate in terms of V/,C this makes no difference in the end.

The only modification to Theorem [I.1.1] that is necessary to generalize to the condition
Vi > —(1—- 6)475T is therefore that the constant in the error term is e-dependent, which is

Theorem [[.1.2]
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9.1 One-Body Estimates for Attractive Modes

To prove Proposition we return to the general setting of Section [6] i.e. we consider
an n-dimensional Hilbert space (V) (-,-)), a positive self-adjoint operator h : V' — V with
eigenbasis (z;);_, and a vector v € V such that (z;,v) >0,1<i<n.

The calculations of this subsection are very reminiscent of those of Section [6] and for
that reason we will adopt a brisk pacing, mainly pointing out the necessary modifications
- these will mainly be various sign reversals.

We let K : V — V be given by
K—-1 h‘%(h%(h—ZP)h%)%h‘% ~ -4 ho3(h? 2P )%h‘% . (9.1.1)
= —5log g = —5 log 'y (9.1

we assume that 1 — 2 (v, A7) > 0 so that K is well-defined. In this case we have that
e 2K and e*! are given by

NI
[N

e 2K — h—%(h2 2P, )

h2v

h (9.1.2)

o=
o=

2
2K _ p3 (2 P h
‘ * 1—2(v,h~t) 3

and it follows from Proposition [6.1.2| that tr (e‘Khe_K —h+ Pv) is given by

tr(e_Khe_K —h+ Pv> = 71T/00o F<—2 <v, h(h2 + t2>_lv>>dt, F(z) =log(1+ x) — .
(9.1.3)

2

The operators e 2% and e** obey the following matrix element estimates:

Proposition 9.1.1. For all 1 <1i,5 < n it holds that

i X _ 2 i) X
2W < (oo (L= e ay) s (o (5 — ) < 1—2(v, 1) . A?:>+<Zj%>'

Proof: By Proposition we have that

1 4 foo tQ
L B U : Py dt|hE (9.14)
mJo 1 —2(hrv, (b2 +2) Thiy) (TR
4 /OO 12
—_ — P —1 dt
TJo 1-—2 <v, h(h? + t2)_lv> (B2 4+e2)
and now it holds that
1 1
1< t>0, (9.1.5)

< ) iy
T 1=2(vh(h2+ 1)) T L=2(v, k)
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whence the element estimate follows as in Proposition [6.1.4. Similarly, for X,

N

4 oo t?
2K _ 1t h—1+7/ - 757 i Py 3,0 B
TJo 1—2(v,h 1v)+2<h 20, (h=24+12)"h 2v> v
4 oo t?
ULy, .
mJo 1—2<v,h*1(h*2+t2) v>t2

P(h72+t2)71h711)dt (916)

so the claim follows as

1 1
1< < , t>0 9.1.7
T 1-2 <v, h=1(h=2 + t2)7lv> 27 1=2(v,h'v) (817)
O
As in Corollary we can then conclude the bounds
9 ) A
(25, sinh(2K)z;) < (i v) (0, 2) (9.1.8)

—1-2 <U, h_1U> >\z —+ /\j

2(v, h M) (i, v) (v, @5)
(zi, (cosh(2K) — 1)z;) < 1—2(v,h"0)  N+X

and we note that cosh(2K) also obeys

(wi, (cosh(2K) — 1)z;) = ;(<x“ (eQK _ 1)xj> _ <$i, (1 _ 6_21()%» (9.1.9)

1 1 is »
< 2 <5CZ (62K - 1)1‘J‘> = 1—2(v,h1v) . A?ij)vﬁjm

so in fact
min {1,2 (v, A=) } (@, v) (v, ;)

1—-2 <U, h_l’U> )\Z —+ /\j
By the same arguments used in Proposition [6.1.0} it follows from Proposition that K
obeys the following elementwise bounds:

(@i, (cosh(2K) — 1)z;) < (9.1.10)

Proposition 9.1.2. For any 1 < 1,7 <n it holds that

<£L‘i,’U> <U,ZE]‘> 1 <CCZ‘,?)> <U,£L‘j>
— = < (x;, Kz;) <
)\z’ -+ )\j - <l’ 13]) 1-2 <U, h_1U> >\z + /\j

As this in particular implies that (x;, Kx;) > 0 for all 1 <i,j < n, it follows that the
functions

te (i, (€™ = 1)a;), (ws,simh(tK)a;) , (s, (sinh(tK) — tK)a;) , (2, (cosh(tK) — 1)ay),
(9.1.11)
are non-negative and convex, whence we obtain the following analogue of Proposition|6.1.
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Proposition 9.1.3. For all1 <i,j <n andt € [0,1] it holds that

(i, v) (v, ;) : 1 (i, v) (v, ;)
t < (w;,sinh(tK)z;) <
>\z‘ —+ )\j - <$ St ( )xj> 1—-2 <1), h_1U> )\1 + /\j

0 < (zi, (cosh(tK) — 1)z;) < min_{127<<1)1}7’}?__1:)>} <xz’)\zj>+<1j\7]x]>

1 i R
0< <gji, (etK — 1)93j> < 1—2 (v, h~1v) “ )\Z]>+<1;\jx]>'

t

Estimation of A(t) and B(t)
We thus come to the estimation of A(t) and B(t), which are now given by

1
A(t) = 5 (" (h = 2P)et™ + e Fhe™™) — h (9.1.12)

1
B(t) = 5 (¢ (h = 2P)e™ — e he X)),

As in Section [6] we decompose these as
A(t) = Ay(t) — B P et (9.1.13)
B(t) = —(1 —t)P, + By(t) — e Pe'™ + P,
for
Ap(t) = cosh(tK) hcosh(tK) + sinh(tK) hsinh(tK) — h (9.1.14)
={h,Ck(t)} + Sk(t) h Sk(t) + Ck(t) hCk(t)
and
By (t) = sinh(tK') hcosh(tK) + cosh(tK) hsinh(tK) — tP, (9.1.15)
={h, Sk(t)} —tP, + Sk(t) hCk(t) + Ck(t) h Sk (t),
where Sk (t) and Ck(t) are now given by
Ck(t) = cosh(tK) —1 and Sgk(t) =sinh(tK). (9.1.16)

Since the only effective difference between the statement of Proposition and that of
Proposition is a factor of (1 — 2 (v, h~ v)) ™", the bound of Proposition general-
izes as (using also the trivial estimate 1 < (1 — 2 (v, h=10))™")

tK p tK 2+ (v, h')) (v, h ™)
o (5P = PoJay)| < =32 m S

(@i, v) (v, ;) . (9.1.17)

Consequently also

(s, e Peta,)| < (11 _+2<Zjvhh__1fz>> (@i, 0) (v, ;) (9.1.18)
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and by the same argument

(v, h~v)
—2(v,h v

[, {h, Cr ()} )] < 5 ) (i, v) (v, ;) (9.1.19)

and
(v, h"10)
(1 —2 (v, h~1v))*
the latter extending also to the operators C (t) h Ck (t), Sk(t) h Ck(t) and Ck(t) h Sk(t).
Proposition finally implies that
(i, ({h, Sk (W)} = tP)xj)| = (i, {h, Sk (1)} 25) — (s, Po) t

< (1 —5 (i,h—lw — 1) (i, v) (v, x) (9.1.21)

 2(w,h7M)
C1-2{v,h v

(24, Sk (t) h Sk (t)x;)| < (@i, v) (v, x5) , (9.1.20)

> <xiv U) <U> xj> t7

so combining all the estimates we conclude the following analogue of the Propositions|6.2.2

and [6.2.3
Proposition 9.1.4. For all 1 <1,5 < n it holds that

4 (v, h~ o)
(1—2(v,h~10))?

i, A2} i, Bt))| < 3(11f2<2’;,hh_f’2>) (22, 0) {0,25).

(@i, An(®)x5) |, {26, Br(t)z;)| <

(i, 0) (v, 7))

These estimates again only differ from those of Section @ by a factor of (1 — 2 (v, h_lv))ﬂ,
so the statements of the Propositions [6.2.4] and [6.2.5] likewise generalize as

2 oy < (64w h710) (v, A1)
[{za {K, B(t)} 5)| < 10— 20 h-10))

(i, v) (v, ;) (9.1.22)

and

(i, 0) (v, 25)

(9.1.23)

(o 30)e e < O

respectively.

Conclusion of Proposition [9.0.3

We have now obtained estimates similar to those of Section [6] with only two differences:
First, the left-hand sides differ by a sign whenever v (or rather P,) appears. This only
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serves to negative the absolute value of |V;| in our new definition of v, and P, however,
which is the reason that \Vk] only appears on the right-hand sides of Proposition .

The second difference (apart from the absolute value) is various factors of (1 — 2 (v, A 10)) ™"
By Lemma we can however estimate

1-2 <vk., h,;lvk> >C (9.1.24)
uniformly in £ for a C' > 0 depending only on €, whence also (1 -2 <vk, h,;lvk>)71 < (' de-

pending only on €. Absorbing this dependence into the overall constant yields Proposition

9.0.91
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Chapter 10

Overview of the Operator Result

In this section we review the main points which lead to the conclusion of Theorem [I.1.3]
We first present a general outline of the approach, and then consider the main points
in greater detail in the rest of the section. As in [I1] we will focus on the case s = 1 for
simplicity, and assume as in the theorem that ;.3 Vi |k| < 0.
First we should note that the statement in [I1] is slightly more general than that of
Theorem [I.1.3] in that with respect to the decomposition

UHNU" = Ep + Ecorrpos + Hep + & (10.0.1)

the error operator £ is shown to generally obey
_1,
+E < Chp™ " (kp + Higy + ki NpHY,) (10.0.2)

with respect to D(H}; ), and not just the low-lying eigenstates. The particular statement
of Theorem then follows by a priori bounds on such states: Define a normalized state
U € D(H{;,) to be low-lying (with respect to Hy) if

(U, HyV) < Ep + kkp (10.0.3)
for some fixed k > 0. Then the following holds:
Proposition 10.0.1. For any low-lying eigenstate W € D(H}, ) it holds that
(U, Ng¥) < (¥, Hj;, V) < Ckp, (U, NgHy}, V) < Ckj,
for a constant C' > 0 depending only on 3 ey Vi |k| and k.

Let us comment on the quality of these estimates: That (U, H, ¥) < O(kp) is
presumably optimal, since H}, enters directly in Hy — Er and we already know that
inf(c(Hy)) ~ Er + O(kr). The bound (¥, NpV¥) < O(kr) is likely far from optimal,
however, since the trial state we applied for the upper bound had only (U, Np¥) < O(1).
(It can also be shown that for this state, (¥, NgH, V) < O(kr).)

This point is important for the estimation of error terms later on, since it means that
in order to bound these well, they must be bounded in terms of H];, to the greatest extent
possible, rather than just Nz and its powers (as we have done for the upper bound).
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Decomposition of the Hamiltonian

With these a priori bounds at our disposal we can turn to the Hamiltonian proper. Here we
must at the outset make a slight modification compared to the decomposition of Theorem
2.0.1} We now write

Hy=H+ > (20Q5F) +Q5(A) +ND+C+Q (10.0.4)

keﬁ(o,k})mzz

for some v > 0 to be optimized at the end, where the non-diagonalized terms ND are the
tail of the interaction terms,

kz!

2 (2m)°

S° V(2BiBi+ BiB_y + B ,B}). (10.0.5)

kez3 \E(o,k})

We do this as we will later on need to estimate Riemann sums which are more singular
than 3 ,c;, A, and these we can only establish for |k| sufficiently small compared to k.
This necessitates a cut-off in the transformation, hence in the number of terms we can
diagonalize for a given kp. As B(0,k}) N Z? exhausts Z2 when kr — oo, all terms are
“eventually” diagonalized, but the tail terms of ND must be treated as errors rather than
included in the transformation.

The non-bosonizable terms C and Q are likewise bounded prior to the transformation.
This is a difficult task since, as mentioned above, these are to be bounded in terms of the
kinetic operator. Nonetheless we obtain the following:

Proposition 10.0.2. [t holds that

X2
2

£ND < Ckp? (kr + Hy,)
+(C + Q) < Clog(kp) k™ (Hiy, + ki NipHy, )

as kg — oo for a constant C' > 0 depending only on Y-z Vi |k|.

We remark that in the end it will be ND which is the dominant error term of £ - the
Riemann sum estimates impose the condition v < 4=, whence £ND < Chp™ " (kp + Hl,).
This is not surprising since the non-diagonalizable terms do contribute to the correlation
energy, we simply lack singular Riemann sum estimates which are sufficiently uniform in

k to meaningfully extract this.

Analysis of Bosonizable Terms

With these bounds the remaining analysis reduces entirely to the (now cut-off) bosonizable
terms. For these, Theorem continues to hold in the form

Vikpt
KHL+ Y ; ’“2 " (2B; By + BiB_ + B*,.By) | e
keB(0,k},)NZ3 (27
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= > tr(Ey — b — Pr) + Hig, +2 > QY (Ey — hy) (10.0.6)

keB(0,k).)NZ3 keB(0,k})NZ3
+ Y /1e<1t>’<(5k({Kk,Bk(t)})+2Re(5,1(Ak(t)))+2Re(5g(3k(t))))e<1t>’Cdt

keB(0,k} )NZ3 0

where Ej, = e X*hye 5% The cut-off means that we only recover part of Ecorr bos; but the
remainder is of lower order as kr — oo. Additionally, the following kinetic estimates of
the exchange terms, and Gronwall estimates for the kinetic operators, can be derived:

Proposition 10.0.3. [t holds that

Z tl"(Ek — hk - Pk) = Ecorr,bos + O(ké:w)

keB(0,k})NZ3

Wl

8.
+ Exchange Terms < C’log(/fp)%k]j?;7 (kF + Hj;, + k;lNEHliin)

and for any t € [—1,1]

e Hige™™ < C(Hy, + k)
et’CNEHlldne_t’C < C(NEHliin + kFHlldn + k'F)

for a constant C' > 0 depending only on Y ¢y Vi |kl

This leaves only HJ; + 2 Eke§<0 K )z QY(E) — hi). Now, if we were only considering
b F *
a lower bound, it would be tempting to think that we are done, since Ej, = e Kthje 5+ =

11
e Kkp2h2e K is isospectral to

1
Ey=hie Mg Krep2 = p2e2Mhp2 = (hi +2P 4 ) (10.0.7)

h,f v

and E), > hy, so one might suspect that Ej, > hy, which would imply that QY¥(Ey — hy) > 0.
This is not so, however - Fj — hj is not non-negative.

To get around this issue we consider a second transformation e’ : Hy — Hy for J of
the form

J= 2 > olep Jeeq) bihog = D > bi(Jkep)biyp (10.0.8)

keB(0,k}. )Nz P4ELk keB(0,k],)nz2 PEL

where we take Ji, : (2(Ly) — (*(Ly), k € Z32, to be a collection of skew-symmetric operators.
It follows that J is also skew-symmetric, as

T = 3 Sobilelhe) = S S bi(Jiey)bi(e,) = -, (10.0.9)

keB(0,k7 )Nz PELE keB(0,k},)nZ2 PEL
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so e’ is a unitary transformation.
In the exact bosonic case, a transformation of such a form obeys eZdI'(A)e 7/ =

dr (eJ Ae™’ ) We thus take the operators J, to be the principal logarithms of the op-
erators Uy, given by

1
1 1Nz _1
Uy = (hgemhg) B2, (10.0.10)
which precisely act by taking Ej, to Ej:

1 1

. 5 2Knp5 \2p "% Kk Kip —Ki Kep 3 (15 —2K,p3 )2
U EU; = (hke khk) By 2 ke Kby oKk Ko g (hke khk> (10.0.11)

1 1 % 1 1 % 1 1 ~
= (mie )" (hieoni)” = hieon = Ey.

It can then be shown to hold that

| Hiw+2 Y Qi(Ei—hy) |7 (10.0.12)
keB(0,k})NZ3
- 1
= Hy;, +2 Z Qlf (Ek — hk) + 2 Z 6(1—t)~75]§>(Ek(t))e—(l—t)Jdt
keE(o,k})mZi keE(o,k})mZi

where £2(+) is of a similar form to EL(-) and EZ(-) of the first transformation, while Fj(¢) :
(*(Ly,) — €*(Ly,) is given by

Ey(t) = e Rip e Kre I (10.0.13)

The following estimate for the error term, and Gronwall estimates for the kinetic operators
with respect to the second transformation, can then be obtained:

Proposition 10.0.4. [t holds for all 0 < v < 4% that

(5+3)-4

Y E(E() < Clog(kr) (Higo + k' NiHJ, )

keE(o,k})mzé
and for t € [—1,1]

tT ! —tJ !
€ E[kin6 S CHkin
etj/\/'EH{dne_w S CNEH{QH

for a constant C' > 0 depending only on Y ¢y Vi |kl

As mentioned, the condition v < 4—17 enters in the estimation of one-body estimates for

Ei(t) and the Gronwall argument - the Gronwall argument is particularly sensitive to this,
as the exponential prefactor diverges as kr — oo if these are not estimated optimally.
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Theorem now follows by taking U = e7e*, for which
UHNU* =Fr+ Ecorr,bos + Hlldn +2 Z Qlf (Ek - hk)
keB(0,k})NZ3
+ Y. tr(By—hi— Pi) — Ecorpos + UND +C + QU (10.0.14)
keB(0,k})NZ3

1
+ e/ (Exchange Terms)e™ + 2 > / eI E3(Ey(t))e 1D dt;
keB(0,k})NZ3 0

by the estimates obtained, the terms on the second and third lines are bounded by

(+1)-4

_ _ 1
C(kF2 + log(kp)3ky + 1og(kp)ékF18) (kp + Hig, + k' NpHl,,)  (10.0.15)

1
. . .. 1 gaT€
which is optimized as v — -

estimate the tail of >, 73 Qk (Ek — hk), but it is not too difficult to show that these obey

for the prefactor k. , € > 0. It then only remains to

+ Y Q(Ex— ) < Chy HY, (10.0.16)
keZ3\B(0,k%.)

and so are likewise negligible.

10.1 A Priort Bounds

In this subsection we prove Proposition [10.0.1} For the sake of brevity we will write
H)\, = Hy — EFp, so the definition of a low-lying state is simply that

(U, H\ W) < rkp. (10.1.1)
First we obtain an a priori bound for Hj, itself. Recall that we in Section [2 found that
Hiin = (Yr, Hantr) + Hyy, (10.1.2)
and note that it follows from the equations (2.2.5)) and ([2.2.13]) that
1 ¥ —ik-z\* —ik-x
Hine = (b, Hithp) + ——— > Vi(dD(e7*7) dT (e ) — |Ly|) (10.1.3)
2 (2m) rez?
SO .
ko ~ . * .
Hjy = Hiy + — 2 > (dD(e7™7) d0 (e7*7) — | Ly). (10.1.4)

2 (2m)? s

As trivially dF(e‘ik'm)*dF(e_ik'I) > 0 we can thus apply the bound |Li| < Ck% |k| to
conclude that
kit ~ ~
Hy > Hly — ———= 3" Vi |Ly| > Hyy, — C'kp Y. Vi k| = Hy, — Cky (10.1.5)
2 (2m) kez3 kezd
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for a constant C' > 0 depending only on ;73 V. |k|.

This immediately implies that the correlation energy is (at most) of order kg in this
case, but more crucial is the implied bound on H,: Equation implies that any
low-lying state must obey

(U, Hi, O) < (U, HyW) + Chp < (C + k)kr, (10.1.6)

which is our first a priori bound.
This in turn yields an a priori bound for (U, NgW¥) as well, for recall that we found
that the particle-hole symmetry allowed us to express

Hy = Y e, — > ol e (10.1.7)

pEBf, peBF

in the manifestly positive form

Hiw = 3 (IpF = k&) e+ 3 (ki = IpI*) . (10.1.8)

pGB% pEBR

This particular form is not useful, as the prefactors in the sums can be arbitrarily small.
The only condition we used to obtain this was however that |p| > kr > |q|, so the same

pﬂ it holds that

argument shows that for any ¢ € {supqE B \q]2 ,infpepe

Hiw =3 (I = ¢)cpeo + X2 (¢ = 10) ey (10.1.9)

pEB; pEBp

and choosing ¢ = %(infpeg; Ip” + SUD e, |q|2) we have

1
inf ||p|? —¢| > = 10.1.10
Inf ||pI” = ¢l = 5 ( )

since infyepe - SUD,c B, lg]> > 1 as |p|*,|q]> € Z but |¢|* < |p|* for any p € B and

S BF.
We thus conclude the general operator inequality (first noted in [9])

km e 2 Z c Cp+ Z Cp (10111)

pGBC pGBF
and conclude the following:

Proposition 10.1.1. For any low-lying state ¥ € D(H,,,) it holds that
(U, Np¥) < (¥, Hjy, V) < (C+ K)kr

for a C >0 depending only on 3 ez Vi |k|.
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Bootstrapped Bounds for Eigenstates

In the particular case that ¥ is additionally an eigenstate we can also obtain an a priori
bound on (¥, NgH, V) by employing a bootstrapping argument (similar to an idea of
[17]). It turns out to be easier to bound (¥, NZH{; ¥) and then obtain (¥, NzH{; V)
as a corollary, so let us consider this: First, by equation , we have the operator
inequality

2H = NegH Ng < NeHyNg + CkpN7 (10.1.12)
= 3 (NEHY + HNZ — W, N, HJ)) + ChedZ,
so if U € D(H];,) is an eigenstate of Hy such that Hy W = EWV, it holds that
(U, NEH, V) < (B + Chyp) (U, NZV) — ; (U, [Ng, [Ng, Hy]] ©) (10.1.13)
< (B -+ Ohp) (¥, N Hy ) — 3 (0, [N, Wi, )

where we also used that Nz < H{;, for the first term.
We must therefore consider [Nz, [Nz, Hy]]. Note that by the decomposition of Propo-
sition [2.0.1 we can write

ki .
Hy = Ha+ —2— > Vi(BiB_y + B*,.B;) +C (10.1.14)
2(2m)” ez
for -
Ha = Hjy+ 5 > ViBiBy + Q, (10.1.15)

3

(2) kez3
where we recall that the cubic terms C are given by
kit

2 (2m)?

C= > Vi((Bi + B_x) Dy + Dy(Bi + B,)). (10.1.16)

kez3
As remarked at the start of Section [§] there holds the commutators

(Ng, Bx] = =B, [Ng,Bi]=B;j, [Ng,Dy]=0=[Ng, D;], (10.1.17)
which imply that [Nz, Ha] = 0 and thus

kit

Wi, Wi, HY) = o5 - Vi(4BkBoi + 4B Bi + (Bi + By) Dy + Di(Bi + BZ,.))
2 (2m) rezo
kel ¢ .
= > ViRe(4ByB_i, + (B, 4+ B_i)Dy). (10.1.18)

3
(27?) kez?

We note the following estimates for the By and Dy, operators (the kinetic bound on By was
first obtained in [16]):
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Proposition 10.1.2. For any k € Z2 and V € D(H], ) it holds that

1BLY|* < Chp (¥, Hy;, V)
1Brw|® < C(kp (W, Hy;, @) + ki [K] [ 9])
DR |* < 8 (U, NZT)

for a constant C' > 0 independent of all quantities.

Proof: For By we can by Cauchy-Schwarz estimate

1BRY|| =

> by, U

pELy

1
< 3 |b,Y < ¢ 3 A’“W S Mg b1 < ow S Ny 106, %12

pEL PEL PEL PEL

(10.1.19)
where we also used that 3° ¢, )\,;;) < Ckp. For the remaining factor we expand and bound
as

> Ak 10k, @) = ; S (In — 1o — k1) e _ecr®| (10.1.20)
pELg pELy
=5 2 (b =) s+ 5 3 (6= =) [ a0
PEL PEL
<3 3 (P = k) N+ 5 3 (K o — K)ot
PEL pEL
= oW, H, )

where we applied the representation of Hy,, given by equation (10.1.8)). This implies the
first bound. The second then follows as the commutator of equation ([2.2.11)) shows that
| BiW||* = (U, By Bi W) = (¥, B B, V) + (U, [B;, B}] ¥) (10.1.21)
< || + Ll 12 ])” < C (kp (0, H, W) + K2 (k][ 2]).
For Dy, recall the decomposition Dy = Dy + Day we used in Section . As HDk\IfH2 <

2D p¥|* 4 2| Doy ¥ it suffices to bound D; and Dy, Equation (8.1.2) says that
(with s = 1)

Dy Dy = > CokCqCorCo+ Y 1, (g + k)cgc) (10.1.22)

p,q€ BpN(Br+k) qEBF

and the first term we bounded in equation (8.1.12)) as

S (Vo) V) < (U, NRD) (10.1.23)

p,q€ BpN(BF+k)
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while the second term trivially obeys

> 1 (g + k)t < Np < NE, (10.1.24)

qEBFR

50 || Dyp 0> < 2(W, N2W) = 2 |[Ne¥|]®. || D2x¥|” can be bounded similarly for the claim.
O
A bound on [Ng, [Ng, Hy|] immediately follows:

Proposition 10.1.3. [t holds that

for a constant C' > 0 depending only on Y jczs V. ||
The main eigenstate bound can then be obtained:

Proposition 10.1.4. For any normalized eigenstate V of Hy with HyW = EV it holds
that
(U, NZH, W) < Cmax {E, kp}’

for a constant C' > 0 depending only on Y ¢z Vi |kl
Proof: Inserting the previous estimate into equation (10.1.13]), we obtain
(U, NZH, W) < (E + Chp) (W, NpHl, W) + C (W, (kp + Hiy, + kp' NZ) W) (10.1.25)
S CkF + C max {E, /{ZF} <\II,NEH{{IH\II>

where we also used that H, , N3 < NgHj],, to simplify the expression. Now, by the
Cauchy-Schwarz inequality for Hy;, we can estimate

<\I]7 NEHI/(m\II> < \/<\Ij7 Hllqn‘;[j> <‘I}7 NEH{(mNE\I’> < \/C max {E7 kF}\/<\I]7NgHﬁ:m\I}>
(10.1.26)
where we also applied the inequality H},, < H}j +Ckp. It follows by the Cauchy inequality
that

max {E, ke} (U, NpH., U) < C(max {E, kp}) /(U N2H._ ) (10.1.27)
< Cmax {E, kp}® + ; <\D,N§H{(m\11>
which upon insertion into equation ([10.1.25) upon rearrangement yields
(U, NEH}, W) < 2(Chp + Cmax {E, kp}*) < Cmax {E, kr}®. (10.1.28)

O
We can now conclude the desired estimate:
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Corollary 10.1.5. For any low-lying eigenstate ¥ € D(H{,,) it holds that
(U, NpHy, ¥) < Cki,
for a constant C' > 0 depending only on 3 ez Vi |k| and .

Proof: Estimating as in equation (10.1.26)) we have by the proposition that

(O, N Hiy ) < (W, ], ) (O, NRHL, ) < Cy/max {rkp, ke}' < Ok, (10.1.29)
O

10.2 Bounding the Non-Diagonalized and Non-Bosonizable
Terms
We consider the bounds of Proposition [10.0.2] The non-diagonalized terms

knt

2 (27)°

> Vi(2BiB+ BiB_y + B*,B;) (10.2.1)
keZ3\B(0,k})

can be immediately estimated by Proposition [10.1.2] as

kp' A ,
(W, NDW)| < L S V(1B + || Brv| [ B )
) keZ3\B(0,k%.)

SO Y Uik (0 H ) (ke (0, H )+ K 4] 0)) (1022)
keZ3\B(0,k}.)

<C( ) W’fé)(OP,Hﬁm‘PHkF\PQ)

keZ3\B(0,k}.)
< Chy? ( > Vi rm) (0, Hiy, W) + ke || 9]
kez3

for any W € D(Hy,;,), i.e.

X
2

£ND < Cky? (kp + H,.). (10.2.3)
We again recall the non-bosonizable terms (for s = 1):

oy 3 kel (B 54) D)
C= 3 Vk Re Bk + Bik Dk (10.2.4)

(27T) kez3

kp' ~

Q= = > Vil DiD, = > (c;cp + cp_kc;_k) .

2 (2m) kez3 pELy
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When ;73 Vi, < 0o the second terms of Q are entirely negligible, as

-1
) Vi > (C;Cp + Cp—kc;—k) < ig ( > Vk)-/\/’E < Ckx'Ng  (10.2.5)

0< _kr
kez?  peLy (2ﬂ? kez?

—1
F
~2(2n)°

so we may disregard these. For the remaining terms we rewrite C: Straightforward compu-
tation shows that [B_j, Di] =0 = [Bik, D,’;} for any k € Z3, and as furthermore D} = D_,
we can write C as
k! ~
C=—L2 > Vi((Bj+ B_i)Dy, + Dji( B, + B,
2y 2, M ( )
k! ~
= L 3" Vi(BiDi + DBy + DiBy + B* . D;) (10.2.6)
2(27)° s
_ k!
- @2n)

> Vi(BiDy + Dy By)

kez3
so the terms that we need to control are

kit
(27)°

1
2

NB = 3 W(B;Dk + DBy +

kez3

D,’;Dk) (10.2.7)
Dividing the summation range into k& € E(O, k};) NZ3 and k € Z3\B(0, k:}i) for some § > 0,
we write NB = NB; + NBy and estimate NBs using Proposition [10.1.2] as

ENB, < Chi' Y Vi(BiBi+DiDy) < Chpt Y Vi(krHp, +N3)
keZ3\B(0,k3) kEZI\B(0,k,)

<C S Vi | (Higa + k' NeHy,) < Chi’ (Hig, + kp' NeHi, ). (102.8)
keZN\B(0,k%.)

For NB; we note that by Cauchy-Schwarz and the B estimate of Proposition [10.1.2]
'<\p (Bka + DB+ 2Dka.>\I/>‘ < c<k;,/<qf, HL W) + ||Dk\11||> 1D, (10.2.9)
so it suffices to obtain an improved D, estimate for small k.

Detailed Analysis of D;
We begin by noting the following:

Proposition 10.2.1. For all k € Z2 and any X > 0 it holds that

DDy < C(l + ’Sli,)\‘ + ‘SI%A’)NE + O)\_%NEHl,dn
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for a constant C > 0 independent of k and kg, where
Sia={p e Brn(Br+k) | max{|p|” = ¢|,|Ip— k> = |} < A}
Sta={peBen(Bg+k) | max{[|p|> = ¢, |Ip— kI’ = |} < A}.
Proof: It suffices to consider D, and D, j; we focus on D, ;. Recall again that

D7Dy = > CokCqCorCo+ Y 1, (¢ + k)cgc) (10.2.10)

p,g€ BrN(Br+k) q€BF
so for any W € D(H/,,)
1D < >

p,q€BrN(Br+k)

< > e, W NN + (U, Np¥) .

pEBFN(Br+k)

cyen 0| |lcg_nep ]| + (¥, N ) (10.2.11)

To estimate the sum, we decompose Bp N (Bp + k) = Sj., U SL, where S} , is as in the
statement of the theorem, and

Siy={p € Brn (Br+k) | max{||p]" = ¢|,|Ip— k> = (|} > A}. (10.2.12)
By this definition and equation ((10.1.10)) it holds for all p € Sé/\ that
Vbl = ¢ lp — k2 = ¢l > 27503 (102.13)
so we can estimate
1 1
> s W NE N (10.2.14)
pEBFN(BFr+k)
LHINVAT2 - vaA S S TP — V] — k= Cllle N T oA
< Sk,,\ [NBWI 4 vV2A72 Z o™ =<V I p — K _C|”Cp—k E\IJHHCpNE\DH
pGSéA
1 1 N 1
< SpA| (U NEE) +V2A72 | S [ pP = ClleNEY| | > [lp— kP = (e NET|2
pESIZ)\ pesé)\
< |SEA(U, NeW) + V2A~2 (U, NgHy, W)

by equation ({10.1.9)), whence the claim follows.
O
By employing precise lattice point counting techniques of the same kind used in ap-
pendix section [B.3] the following was obtained in [11]:

Proposition 10.2.2. For all k € B(0,kp) NZ2 and 0 < X\ < ¢k} (depending on k and
kr) it holds that

1 2 -1 3+2 2 2
RN §O<|k| A+ K] s1og(kF>skF)<A+|k|), ki — o0,

for a constant C > 0 independent of all quantities.
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From this and Proposition [10.2.1f one can then conclude a stronger Dj bound:

Proposition 10.2.3. For all k € E(O, /{;5) NZ3,0<6< 2, it holds that

8
DDy < Ck|? log(kp) k (Hiyy + k' NeHiy, ), ke — o0,
for a constant C' > 0 independent of all quantities.

It now follows from equation ((10.2.9) that

©l=

1 1
(. (BiDe + DB+ 5D ) V)| < C k| log(ke) ki (W, (Hyyy + ki NipHy, ) 0)

(10.2.15)
for |k| < k%, 0 < &, whence
1
+NB; < Clog(kp)kp™ (Hiy, + k' NiHiy, ). (10.2.16)
As 5 > E? 0 can be chosen such that the NBy bound matches this one, yielding Proposition
M.

10.3 Controlling the Diagonalization

We begin by considering the tail estimate for Eeorpos. Recall that by Theorem m (with
s=1)

1 o kaf;l Ak
tr(Ey — hy, — B :f/ F M Vg P(2) = log(1 + ) — . (10.3.1
r(Ey, — hy — By) — ((2#)3 2 e (z) =log(l+x) —x. ( )

As F obeys |F(z)| < 3a? for z > 0, we may estimate

2
Vikn A Vk kF Ao M
tr(Ey, — hiy, — P / P = / P 9 _dt
(B = h = Pl < 52 ((%)3 = Azﬁp+t2) )3 N AN A1

qEL
k2 1 k2 1
_ Fﬁ < Vi P — (10.3.2)
4(2m)° ety Mep t Akg 4(2m)° peLly \/ Mep
Vekr® ( : 1)2 o
< Ckxlk|?2) < CkpVi|k
where we used the integral identity
© a b ™ 1
————dt = ———— b>0 10.3.3
/0 crep+e” " 2avy BT (10.3.3)
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1 3
and the estimate 3,7, Ay, < CkZ ]k\% Consequently ZkeE(o k) tr(Ex — hy — P) —
Eeorr,bos 1s bounded by

S By —he— P <Ckp Y. VEEKI<Ckp? Y V2K
keZ\B(0,k}.) keZI\B(0,k}.) keZ\B(0,k7.)

2
< Ckp " ( SV |ky) < Ckp? (10.3.4)

keZ3

as claimed in Proposition , where we used that 3 |ag|® < (X% lax])*.

We will not prove the exchange term bounds of the proposition here, but let us mention
the idea behind kinetic estimation: The thing to note is that the idea of the kinetic estimate
of Proposition immediately generalizes as

pELY pELY

()Tl < 3 sl 5 ven®] <[>0 WWPHQJ )y Moo |4 ?|| (10.3.5)
pely

and so, as e, ,(p; ) <0, also

1) I* < [bk() 1P + e l® W1 < 5 (0 b ') (0, Higo ) + [lel* 1217, (10.3.6)

N | —

so for any ¥ € D(H},;,)

_1 _1
10 (@)W < [y, 2 pll\/ (P, Higy W), (|6 (@) W < (R 2ol (W, Hig, @) + [l 1] -

(10.3.7)
These inequalities allow us to arbitrage between the one-body and many-body kinetic
operators. As we have good control on both the one-body quantities and the many-body
kinetic energy, this is a significant improvement over pure Nz estimates given our poor
control of this quantity.
To illustrate the application of these bounds, let us derive the Gronwall estimate for
e H]. e~*: this amounts to controlling

K Hyl = > Q5({Kk, hw}) (10.3.8)

keB(0,k})NZ2

in terms of H{; + kp. We derive a general kinetic bound for a Q5(B) operator: By the
kinetic estimate

(0, Q5B <2 3 [(W.be(Bep)br )| <2 3 [0i(Be,) V| [bos— W] (10.3.9)

PELy PELy

<2 Y (i Beylly/ (0, Hi¥) + 1By | 191]) ooy

pELg
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and by Cauchy-Schwarz we have that

3 [k Bey| by ]| < z:&ymﬁB%w¢§:A%ruw%www (10.3.10)
pELy pELy pELy
11 11
< | 22 W 2Bhy 2 ep|2/ (W, H;, ) = ||y ? Bhy, ? ||us\/ (¥, Hy;, P)
pELy
and similarly
_1
EZHB%mwhpwusJE:AguB%W > Mol (10.3.10)
PELy pELy pELy
_1
S ||Bhk : ||HS \/ <\Ij7 Hl/dnqj>7
whence

(W, Q5(BYY)| < ||y, ? Bl *[|us (¥, Hiy W) + | Bhy ? [lus [ W] (¥, Hi, W), (10.3.12)
For B = { K, h}, it follows from our one-body operator estimates that
e 2 { K, b} by 2 las < CViy || { Kk, B} by, 2 |lus < CkEVi K2, (10.3.13)
SO
A 1 . 1
(W, QE({ K, i })W)| < CVi (W, Hiy, W) + CREVR [K|? | W]| (W, HY, U)  (10.3.14)
ie. +£QE({ Ky hi}) < CV |k|% (Hy,, + kr), whence
E[CHG < Cl Y Vilkl? | (Hiy + ki) < C(Hig, + k) (10.3.15)
keB(0,k} )NZ3

as desired.

10.4 The Second Transformation

In this last subsection we consider the one-body operator estimates needed to control the
second transformation. First note that for J as defined by equation (|10.0.8]), computation
using the quasi-bosonic commutation relations as in Section {4 establishes that J obeys

[T 0u(@)] = bi(Jep) + > Y enalys eq)bi(Jieg) (10.4.1)

1€B(0,k}, )Nz 9€ L
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hence
7, Q(A)] = QF([Jk, A]) + E5(A) (10.4.2)
for symmetric A : (2(Ly) — €*(Ly), where £¥(A) is given by
gAy=2 Y > > Re(bj(Aey)eri(ep; e)bi(Jieg)). (10.4.3)

leﬁ(o,k})mzi peLy qely

We estimate a generic term of £¥(A) using the kinetic bound of equation (10.3.7) in the

manner of [I1]: We have
Z Z ‘<\Ijﬁ bl:(Aep)CpflC;—kbl(Jlep)\Ij>‘
1€B(0,k7, )Nz PELKN Ly

< ¥ > |[be(Aey)e; | [bu(iey)cp 0 | (10.4.4)

1€B(0,k7, )Nz PELKNLY

< XY It Aellln QJzepn¢<w,cp_zﬂlzmc;_»lf>¢<w,cp_kHﬁmc;_M
1€B(0,k3,)nZ3 PELKNLy
_1
< (max i A VW L) X X el (Vi)

1€B(0,k7, )Nz PELKN Ly

1
< (maximt Acy )| 2y P llas | (0 Hig ) (0 N HL )
P 1€B(0,k}.)NZ3
Controlling the error term of the transformation of equation ((10.0.12)) thus requires us to
1
estimate one-body quantities of the form max,cy, ||h; * Ex(t)e,||, where Ej(t) is given by
Ei(t) = eke K ppeRee™ e — (10.4.5)
We consider this in the abstract one-body setting of Section [6] In this case, the unitary
transformation U is given by

1

h™2el, (10.4.6)

Al

U= (h2+2pl)

and by using the integral identity

at = 2\f/ ( v )dt a>0, (10.4.7)

a+t*

1
one can derive a representation formula for an operator of the form (A + gP,)* similar to
that of Proposition with the following consequence:

Proposition 10.4.1. For all 1 <i,5 < n it holds that

(22} 1)) 2 Nt
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This implies the following elementwise bounds for U:

Proposition 10.4.2. For all 1 <i,5 < n it holds that

(e, (U = )] [, (UF = D) < 3(1+ (w, h_lv»W'

Proof: It suffices to consider U — 1. Writing

1

1 1 1
U-1-= ((h2 +2p, )’ h2>h—zeK FhEhReK 1 (10.4.8)

- (eK - 1) + <(h2 + 2Ph%®)i _ hé)hi + ((h2 + 2Ph%0)

we estimate each part in turn. Firstly, we already know that

=
|
>
ol
N
>
ol
~~
9]
=
|
—
~—

[ (a2, (5 = 1)z;)] < W (10.4.9)

by Proposition [6.1.7 Meanwhile, by the previous proposition

(oo (w2 +28,,)F =0t )ty <

M) (v,5) ) (0,25)

\/>\/—+\f XN+ T i + A

(10.4.10)
and using both of these estimates we also find that
(s (0228, )T = 1303 (e = 1))
3 <x ((h2 + 2Ph%v)i - hé)h—%xk> (ks (€5 = 1)ay)| (10.4.11)

(i, v) (v, 7g) (TR, V) (V, T5) " ok, v) P (@, 0) (v, ;)
<2 Z >\—|—)\k Ak + A §2<Z )

B (xi,v) (v, x5)
=2{v ) ST

where we used that (a +¢) " (b+¢) " < ¢ Ha+b) ' fora,b,c>0(ascla+b) < (a+c)(b+c)
follows by expansion). Combining the estimates yields the claim.
O

Recall that for the particular operators hy and P,, it holds that <vk, h,;lvk> < CVk, SO

for the purposes of estimation this matrix element estimate for U = e’ is almost as good

as that for eX of Proposition Unlike that proposition, however, we can not extend
this to ¢!’ for general t € [0, 1], as we now lack the required monotonicity.
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We can work around this by finding a way to reduce estimates involving e*’/ to ones
involving U. To provide a concrete example, let us consider a term we would need to
control EF(Ex(t)): In the general setting, we consider E(t) defined by

Et)=cYe ®heXe™ —h = (et‘]he*t‘] — h) + et (e*Khe*K — h)e*t‘] =: Ey(t) + Ex(t)
(10.4.12)
and decompose Fi(t) further as

Ey(t) = (¢ = 1)h+h(e —1) + (e = 1) = 1). (10.4.13)

We consider the first term, and so need to estimate maxj<;<, ||h_%<e” - 1)hxi||. As

mentioned we are to find a way to replace e’/ — 1 by U — 1 (and possibly U* — 1). Now, J
is the principal logarithm of U, and as U is unitary, hence normal, and we are working on
a finite-dimensional space (which we now consider as a complex vector space), there exists
an orthonormal basis (w;)’_; and real numbers (6;)7_, C [, 7) such that

e w; = eFiw;, 1< <n. (10.4.14)
With respect to this basis, our task thus amounts to estimating e**? — 1 in terms of ¥ — 1
and e — 1. To that end we note the following: There exists a C' > 0 such that for all
te[-1,1] and 0 € [—7, 7]

it0 0 tl -t 0 —i6
(¢~ 1) —t(e? 1) + U (0 om0 g)

. 3
<cle? 1] (10.4.15)

(There is a particular reason for why we want a cubic error bound - we will explain this at
the end.)

This bound follows by considering the series expansion for e* and compactness of
[—1,1] x [, 7|. Motivated by this, we define the operator F; for ¢ € [0, 1] by

tH1—t)
2

F,=tU—1)— (U +U" —2). (10.4.16)

We then have the following:

Proposition 10.4.3. Forany T :V —V,z €V, m € {1,2} and t € [0,1] it holds that

fr(e 1)

T(e —1- F)a| < CITU = 1)"||ys |(U = 1)

)

and for all 1 <i,5 <n

. _ (@i, 0) (v, x;)
o B o Fa)| < C(1+ (v, 5

for a constant C > 0 independent of all quantities.
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Proof: It suffices to consider HT (e“ —1- Ft)xH By orthonormal expansion using the
basis (w ) _, it holds by equation (10.4.15) and Cauchy-Schwarz that

I <1 )l = S (e -1 R
w;, T( 1 Ft)wk> (wy, )

>
7=1lk=1
_ . . ’Ltek _ _ 0 t(]‘ — t) 0, —if, . ’
=> Z ( 1) + 5 (e +e 2) (w;, Twy,) (wy, )
7j=11k=1

i0p 1‘2(3*’”)

<§n: e’ —1] [(w;, Twg)| [(wk, >|) (10.4.17)
( eife _ 1’2m ](wj,ka)|2> (z": e

k=1

oy

:C(ij |(w;, T(U —1)™ )(ZKwk, —1)* mx>‘2)
= CT(W — )" | — 1)

which implies the first claim. The elementwise estimates for F; and F;* follow immediately

from Proposition [10.4.2]
U

By the proposition we then have that
B2 (e = 1) hail| < [|h™2 Fyhas]| + A2 (e — 1 = Fy)ha (10.4.18)
< |72 Fohai]| + C[|h2 (U = 1)°|lus [|(U = 1)hasi|

and so have reduced the estimation to operators which we have good control over. We can
estimate that

l\')

Z Al [(z;, Fya;) | (10.4.19)
]:
2

50(1 (0,870))" (0,070 (2, 0)

|h™2 Fyhay||® = znj (5, h*%Fthxi>
j=1

(i, 0) (v, 7))

L2 A2
§C’(1—|—<v,h v>) ;AJ Y

and likewise

(xi,0) (v, ;) 2

H(U_l)hxl.HQ:Zn:)\f\(xj,(U—l)xin < C<1 <U h™ U>) zi: i + A

j=1

< O(1+ (o, h70)) Yol s, 0) 2, (10.4.20)
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while

I = 1?3 = ”21]@, U - 1)) = Z Z Jax) (z, (U — 1)z;)
<01+ {v,h7 M)’ En: 5 Enj y L@:ﬂk) <xkA:>+<1; 2l (10.4.21)
<C(1+{(v,h >) Z: %14 <U§>|2(,§’<ig;?2)
= O+ (0.h7)) (o)

so in all

||h_%(et‘] - 1>hxz|| < C’(l + <v, h_lv>)3< (v, A=) + |Jvg]| <v, h_iv>2> |{x;, v)].
(10.4.22)
For the particular operators h; and P,,, this implies that

_1 A N3~ Lo _5 2
max || hy, ( = 1) ey || < Chg® (1+ Vi) Vk<1 + k2 |k|2 <vk, hy 4vk> ) (10.4.23)

pELy

The inner product is

_5 V%kF
vk, h 4vk> S (10.4.24)
< g 2 (2 )3 pELy

and this Riemann sum is more singular than what we consider in appendix section [B]
Nonetheless, the methods used therein - in particular, the summation formula of Proposi-

tion - implies the following:

Proposition 10.4.4. For all k € B(0,k}) NZ3, 0 <~ < 4=, it holds that

ST Aed < Ckj [k

peLy
for a constant C' > 0 depending only on .

With this we arrive at

max [y, * (e = 1) hpe,|| < Chp? (14 V1) Vi (10.4.25)

pELY

provided v < 47, which is sufficient for the purposes of Proposition |10.0.4}
Finally, regarding the bound of (|10.4.15)), it likewise holds that

(e =1) 1 —1)[ <

i (10.4.26)

2
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and so, considering simply F, = t(U — 1), that e.g.
1h=2 (" =1 = F))hasl| < C||h~2 (U = D)l|ass | (U = 1)hai]|. (10.4.27)

The issue with this lies in the fact that we now have to deal with [|h~2 (U — 1)||us instead
of ||h=2 (U — 1)?||us; this can be estimated similarly, but with the result

I3 (U — Dllus < C(1+ (v, i) (v, h730). (10.4.28)

_3
Formally - i.e. if one replaces the Riemann sums with integrals - it is true that <vk, hy, ® vk> ~

5\ 2
<vk, hy, 4vk> with respect to kg, and so there should not be a difference. The result of ap-
pendix section [B{ however only extends (optimally) to Riemann sums of the form >, )\’,fyp
for 5 > —%,
with a cut-off in k.

_3
and so <vk, hy, 20k> it outside the range which we are able to control, even
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Chapter 11

Plasmon Modes of the Effective
Hamiltonian

In this final section we consider the effective operator

Hep = Higy, +2 Y Qu(Br—hi) = Hiyy +2 5 > bi (B — b )ep )by (11.0.1)
kez} kez3 pELy

where Ej, = (h} + 2Ph 1 )%, in detail. As we will consider Heg in isolation from the proper
Kk Uk

Hamiltonian, we will now omit the mean-field scaling factor k' - concretely this means
that vy, € £2(Ly,) is now given by

st
Vg =——73 > €. (11.0.2)
2(27T) pELy 8

For this section we will fix a k € Bp, let ¢ € £*(Ly) denote the normalized eigenvector of
2FE), corresponding to the greatest eigenvalue ¢, and define ¥y, € {Np = M} by

Uy =bi(0)p, M eN,. (11.0.3)
(For the statements of certain propositions below we will understand W_;, ¥_5 = 0.)
The main result of this section is the following bound for W ,,:

Theorem 11.0.1. There exists constants ¢,C > 0 such that if Vj, > cky' it holds for all
M < CK2 k| that Wy = || W]~ Wy obeys

" M3
VPP ——  kp —
l’| \/E|k|7 F 007

lez3

|(Hog — Mep) Wy || < (J’\l >~ min {1, kpVi, k§Vi 172}

. 3.0 a1
where €} denotes the greatest eigenvalue of 2E)., which obeys € > c’s%kfm |k| V.2 and

(g, hjvg)

<Uk> hkvk>

(N1

_1 A
OSEk—2J2<Uk,hkUk>+ SC//{ZFQ |/{Z|Vk R kF—>OO,

for constants ¢, C" > 0. The constants c,c,C,C" are independent of all quantities.
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Note that Theorem is an immediate consequence of this result: For Vi, = g |k| >,

the condition V; > cky' becomes
k| < o/ Lkp (11.0.4)
c

which is ensured for all k£ € E(O, k:%) NZ3 for kp suffiently large provided § € (O, %) That

M < k% for € € (0,2) similarly ensures that M < Ck#. |k| for kr sufficiently large, so the
conditions of the theorem hold, and the sum can be estimated as

>~ min {1, kpVi, KV 172} Vi I]P < max {1, g} > min {1, ke |17, &5 17}

lez? lez3
<C S 14k Y 72+ ks > ! (11.0.5)
1€B(0,vkp ))NZ3 1€Bp\B(0,VkF) 1€Z3\Bp

3
< c((x/kp> R k%) < CR2.

The statement regarding ¢ follows by expanding the inner products <vk, hka> and insert-

ing Vi = g |/<;|_2.

11.1 Properties of the Plasmon State UV,

Owing to the inequality (which in the exact bosonic case would be an equality)

1
1Warll” = 105(@) Car1 | < (N +1)2 U P = M@ (11.1.1)
we can control the ratio || ¥ || ™" || 1| well from below, but for the purposes of Theorem
11.0.1] it is an upper bound which will be needed. To that end we begin by noting the
following;:

Lemma 11.1.1. For anyp € By, ¢ € Bp, 1 <o <s and M € N it holds that

Cp,o‘I]M = 1Lk (p)MSié <ep7 ¢> Cpfk,U\Ilel
o Uy =—1p5,(q+k)Ms™

q7o-

NI

(€qih> @) C;—i-k,a\IjMfl-
As a consequence it holds for any | € Z3 and p € L, that

M(M-1) &
bipWar = Ok M (ep, &) War—q + 1z, (10)g D Optgk (€p, D) (€q: O) C; 5 Cpto Unr—a-
S qELy

njw

Proof: By equation ([7.1.19)) we have

[Cp»m b2(¢)] - 1Lk (p)s_% <€p7 ¢> Cp—k,a (1112)
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[ qa? by ((b)] = _1Lk (q + kl)sié <€q+k7 ¢> CZJrk,o-’

SO

CpoVar = Cpobi(0) r = b (¢)" cp ot + Z bi(0) [epor (@) bi(@) " b

7=0
Zb* (10, (p)s™H (e 0) i )3 (0) " 00p (11.1.3)

= 1Lk (p)Ms~ 3 (ep; @) Cp—k,obit(ﬁb)Mil?/)F =1, (p)Ms_% (€ps @) Cp—toVnr—1

and likewise for ¢ , Wy, ¢ € Br. The expression for b, Wy, then follows as

bl,pleM Z Cp lgcp U\IJM - Z 1Lk €p, p—l7o‘cp7k,0'mM71
M S
= Ol (p)? > (ep, ) U1 — 1, (p Z €ps D) Cp—koCp 1o Va1
o=1 o=1
= 5k71M <€p, ¢> \I/M 1 (1114)
M(M "
—1r,(p) % Z I, (p—1+k)(ep &) (epirk; @) Cp*kacpfl+k,U\IlM*2
M %
= 0paM (ep, &) Yr—1 + 1, (p)——5— Z Op—tg—k (€p, @) (€, D) Cp o Cp—to U rr—2
52 qeLy

where we used the identity 1z, (p — I +k)f(p — 1+ k) = X er, Op—1,4-1f(q) to rewrite the
second term.

O
This implies the following bound:
Corollary 11.1.2. For any M € N it holds that
M-1
[l = 3 (1= 2= o) Iaral?
where ||l = supyer, [{ep, @)
Proof: We estimate
H\I’MHz - <\I’M 1, b(¢ M Z ¢a ep <\IIM—1a C;—k7o'cp,U\I]M>
\/_peLk
M ag
- Z |<ep7 ¢>‘2 <\PM—17 C;_k7gcp—k,a\IjM—1> (1115)
5 peLy
M

o M g .
= Z |<epv¢>‘2 ||\I]M—1||2 - Z ‘<€p>¢>|2 <\I’M—17cp—k,ccp—k,a\IjM—1>

pELy pELy
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M—-1
s

M
> M || U |” - . 16112 (Tar—1, NP ar_y) = M(l — ||¢||io> [Nz

where we used that NpWy, 1 = (M — 1)Uy, 4.
O
Note that this bound actually applies to all (normalized) ¢ € (L) in the form

M—-1
s

162wl 2 M (1= = el2 ) Wi (11.16)

- this is even optimal, with equality holding for all ¢ which are uniformly supported on
some S C Lj in the sense that

5|72 pes
o) = , 11.1.7
[{ep, @)1 {0 e LS (11.1.7)

Although ¢ is not uniformly supported, we will see below that it is “almost completely
delocalized” as )
16l < C'|Li| "2, (11.1.8)

so the corollary and the inequality ||¥]|> < M ||¥r_1]|* implies that

M [ @ara® M
1< < <14+C'+—, M<|L, (11.1.9)
W] 1-Crg | L]

e, MWl 72 | War_s|]? ~ 1 for all M < |Ly| ~ O(k2 |k]).

The Action of H.g on V¥,

Having established control on the state W, itself we now turn to the action of H.g upon
it:

Proposition 11.1.3. For all M € N it holds that

QM (M — 1
[(Hg — Me)wy] = 2D e )

S2

where £ : Hy — Hy is given by

£ = i (€p, @) (eq, D) (Z Op—tg-k1L, (p)@k((El - hl)%)) CoCr—hio

p,qELy lez3

Proof: By the commutation relation [H{,,, bj(¢)] = 2b;(hi¢) it follows as H{; 1¥r = 0 that

HnWar = MU (20 )W sy, (11.1.10)
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so applying Lemma we find
Heff\I/M = Hllqin\IjM + 2 Z Z b?((El — hl>€p>bl,quM

ez pely
= MbZ(2hk¢)\PM71 -+ 2M Z Z (Sk,lb?<<<E~1[ — hl)ep) <€p, ¢> \IJM,1
172 pely
2M (M — 1 g .
+ ( 3 ) Z Z Z Op—t.q—k (€p, D) (€q, ) bzk(<El - hl)%) CpoCp—koo VM2
52 1e€z2 peLyNL; geLy
= Mbj(2hd) sy + MU (2( B — hy) ) Wy (11.1.11)
2M(M —1) & -
4 % Z <ep, eq, (Z 6;: Lg— lez )b?((El — hl)ep)) C;UCp_k,g\I/M_z
§2 P.gE€Lk 1e73
- 2M (M — 1
= Mb;(2Ex¢) Wy + (8§>5\11M2.

By our choice of ¢ the claim now follows as
Mb;(2Ep¢) Wasy = Mepb(¢) Va1 = Mep Wy (11.1.12)

U
To bound ||EV ;2| we note the following generalization of Proposition [7.1.1}

Proposition 11.1.4. For any collection of vectors gy, € (2(Ly), k € Z2, with Y yezs ||kl <

oo it holds for all V € Hy that
1 1
> bulen¥| < 13 el *INE I, < I3 el Ve + 1)2 ).
kez? kez?

kez3
Proof: By the triangle and Cauchy-Schwarz inequalities and the usual fermionic estimate
we can bound

> bi(on)¥| =

Z br.(ox) ¥

kez3

1

G

Z Z 907617 P— kacpaqj

g

XU: ( Z 1z, (p> <907 ep> C;—k,a) Cpo ¥

kez3 keZ3 pELy pEBS \keZ3
(Z 11, (p) (p, €p) ;_M,)cpya\lf (11.1.13)
keZ3
Z Z 1Lk 907 ep>| ||CPU\I[H
pEB‘ kez3
2 Z 2 20 £ ra
o> @ Keenl | Do Newa®l” = /> lerllP[NZ T
PEBY, keZ3 pEBY kez3

for the first claim. The second follows from this, since

(Z bk(@k)) (Z bk(@k)) = (Z bk(wk)) (Z bk(s%)) + 3 el + ST erilons o)

kez3 kez3 kez3 kez? kez? klez3
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< (Z ||90kH2) WNe+1)+ D erilor o) (11.1.14)

kez3 k,leZ3

and we claim that Zk,lezi eri(pr; i) < 0. Indeed, as

5kl(90kaS0l = = Z Z @k’ep eqv@l) (5pch lO’ kg+5p k,q— lcngpU) (11115)
PGthIGLz

. *
we see that for the sum corresponding to the o, ,¢4-1,5C,_ , terms,

Z Z Z <90k7€p> <eq7901> 6177110(1—110'6;—]6,0 = Z Z gpk,ep €p7901> Cp—lﬂc;;—k,o

k,leZ3 p€Ly gL k,leZ3 peLiNL;
= > (Z 11,(p) (e, €p) € lo) (Z 17, (p) (Pr: €p) C;—k,a) >0, (11.1.16)
pEBE \1eZ3 kez3

and a similar observation applies to the 5p_k7q_lcq’gcp,g terms.

O
We can then bound [|[EW,/_s| in the following form:
Proposition 11.1.5. For all M € N it holds that
1 ~
1€V a |l < MVM = Tsz [|g]I%, [D° 1B = hullfis [|War—a]| -
lez3
Proof: Write B, , = >c73 Op—1,4—k11, (p)bl(<El — hl)ep) for brevity, so that
&= Z <€p7 ¢> <eq7 ¢> B;qczgcpfk,a, (11117)
P,q€Ly
and note that by the previous proposition, the operators By , obey
* 2 n 2 1 2
> B < XN bprg sl ) (B = hue | 1N + 1T
P,gELy p,q€Ly 172
~ 2 2
=M-1)> > H(Ez - hl)epH W22l (11.1.18)
1€73 pELLNL,
= 2
M —=1) > 1B = hulliis Wl
lezs
Due to the identity
(€5 o Cairs ke | = OO — 070 Co o — O Cot e rCy s (11.1.19)

it follows by a partial normal-ordering of £*&€ that

o, T

[CAZYEY b Y. (Dep) (Dieg) (e, 9) (eq, O) <\I’M 2, CpkoCaoBpaBy o Cy. ‘rcp’*k,T\IjM*2>

p,p',q,q4' €Ly
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= Z (9. €p) (9, €q) (er, D) (€', D) <C;/fk,rcq/,TB;,q‘;[lM*27 C;;fk,acq,oB;’,q’\IjM72>
p,p',q,q4' €Ly
— Y Hep O (req) (eq, ) <Cq',aB;q‘1’M—2, Cq,oB;7q/\IjM—2> (11.1.20)
P,q,9" €Ly
- 2 * *
- Z |<€qu ¢>| <¢7 6p> <€p” ¢> < / —k O-Bp q\IIM—27 Cp—k7a'Bp”q\IjM—2>
p,p',q€Ly
o ) . 9
+ 3 Hew O eq O | By War—s|
p,qELy

:ZT1+TQ+T3—|—T4.

We bound these terms individually. For T} we have by Cauchy-Schwarz that

o,T
T <ol 3 [eponrconBra®us| [chrotoo By o Yus

p,p',q,9' €Ly,
(oa
4 4 2
SSHQSHOO Z Cp— kUCQUB* ’\DM 2” SSHQSHOO Z Z H Cp—k,0Cq,7 pq/\I]M QH
p:p',q,9' €Ly p’',q' €Ly p,gE Lk
2 2
=slelll, > |NeBy,Una| =M= 17s|gll, > |Byg¥as (11.1.21)
p',q' €Lk p',q'ELy
< (M= 1)%s[10l1% D 1B — hullfis 1922 ®
lez3

and similarly for T3

I

g g
B <llolsy > |lewo By aro| ||cao By ®ara| < lloll > |eqoByyUars

P,q,9' €Ly P,q,9' €L
4
<ol D IWE GVl = [0l (M —=1) > (1B}, Yarolf? (11.1.22)
pqELk P,qE€E L
2
< (M —1)%||o]l5, STE — hallfis [[War—2|* -
lez?

T3 obeys the same bound and obviously |Ty| < (M — 1)s ||¢||%, Yiezs
The claim follows by combining these estimates.

2
— Il ([ nr—2 |

g
We summarize this subsection in the following:

Proposition 11.1.6. It holds for all M € N with M < ||¢||° that Wy = ||[Wa]| ™" Wy
obeys

A 2 -
|(Het — Me)rus]| < IWII—W S~ 1B — hn M.

lez3
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Proof: By inserting the previous estimate into the statement of Proposition [11.1.3] we
obtain

A : = W
|(Far — Me) ]| < 202 — D} o) 52 3 1B — mnlfasio=2l - (11.1.23)
ZGZE ||\I]M||
and by the lower bound of Corollary [11.1.2]it holds that
Marall _ ol Wl 1 L e
Wl il 19wl = Jarr — 11— Mo
for M < ||6]] 2.
O

11.2 Estimates of One-Body Quantities

To conclude Theorem |11.0.1] it only remains to control the one-body quantities gb||io,
I1E; — hllfis and €. To this end we return a final time to the setting of Section |6 and
consider ¥ : V' — V given by

1
. 2 2
E=(h+2P, ) (11.2.1)
with normalized eigenvector ¢ € V' (chosen such that <h%v, ¢> > 0) corresponding to the

greatest eigenvalue € of ~2E Below it will be more convenient to work in terms of the
greatest eigenvalue ¢ of E?; the eigenvalues are simply related by ¢ = 24/e.
The eigenvalue equation for ¢ is

¢ =E% = (h*+2P,, )¢ =h%6+2(hiv,¢) htv (11.2.2)

2 =: \2 _ this can be rearranged to

i max

and assuming that € > max;<;<, A
6 =2(hv,0) (e — 1?) "hiv. (11.2.3)

As ¢ is by assumption normalized and <h%v, gz5> > 0, this implies that ¢ is determined with
¢ as the only unknown quantity by the formula

o =(c— 1) hiol (e —h2)

"hiv. (11.2.4)

In particular, the components of ¢ with respect to the eigenvectors (z;);_, of h obey

1 VA

e e e

5(ri,v), 1<i<n. (11.2.5)
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To ensure that £ > \2

<h%v, (h2 + 2Ph%v)h%v>
<h%v,hév>

note that by the variational principle there holds the inequality

(v, h3v)

>
c (v, hv)

= 2 (v, hv) +

(11.2.6)

so e > A2 is assured if 2 (v, hv) > A2 . Under this condition we then have the following
bound:
Corollary 11.2.1. Provided 2 (v, hv) > N2 it holds that

00} A
°°_2(vh> A2

max

Proof: As ¢ t(t — A2, )" is decreasing for ¢ € (A2, 00), equation (11.2.5) shows that
forany 1 <i:<n

]l

1 >\max € )\max
Z;, < T Ti, V)| = T,V 11.2.7
o0 < oL il = =Pl (127
2 v, hv )\max 2 <'U, hU> )\max
e LU N T T i,

2 (v, hvy — \2 (v, hv) U= (v, hv) — A2

max
Under the same assumption we can also control € well:

Proposition 11.2.2. Provided 2 (v, hv) > A2, it holds that
(v, h3v) 4 (v, h3v) N2

max

(v,hv) (2 (v, hv) — A2, )*

max

h3
2 (v, hv) + <<Uv’7 h:; <e<2(v,hv)+

Proof: We noted the lower bound above. For the upper bound we estimate
<¢ h2¢> B <U,h3(5 - h2)_20> - £ ? (v, B30) - 2 (v, hv) ? (v, h3v)
’ B <U, h(z’f — h2)_2?]> - \E— A%nax <U7 hU> B </U7 hU) )\IQnax <U7 hU>
4 (v, ) (v,h%)  (v,hPv) 4 (v, h) = (2 (v, ) — A2 )7 (v, B3v)

max

(2 (v, ) — A2, )% (v,hv) (v, ho) (2 (v, hv) — \2,.)° (v, hv)

max max

(v, h3v) 4 (v, hv) N2 (v,h%v) (v, h*v) 4 (v, h3v) N2

max max

(v,hv)  (2(v, ) — X2, ) (v, ho) (v, ho) (2 (v, ho) — A2, )

max max

<

and see that by the eigevalue equation for ¢ and the Cauchy-Schwarz inequality in the form
‘<h2v ¢>‘ (v, hvy,

(v, h3v) 4 (v, h3v) N2
S G ey (129

max

= (9.126) + 2 |(h¥v,0)| <2 (v, hv) +

U
Lastly we bound ||E — h|4q:
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Proposition 11.2.3. [t holds that
1B = hllfs < min {2 (v, ho), [lo]| '}
Proof: The first bound is easily obtained as
IE — h||%g = tr((E - h)2> = (B = 2{B,h} + h?) =2tx(R*+ P, — h?Eh3)
(11.2.9)
< 2tr(Ph%v) = 2 (v, hv)

since h < E implies that h2 — h:Eh? < 0. For the second, note that E = hie 2K p3
whence Proposition affords us the elementwise estimate

K%4E_@%ﬂ:¢MMNm@QK—D%HSN+xgwwMuwhquMu@>

for 1 <14,5 <n, so

n

1B = i} = zﬂ@mwrhﬁ»fs§Zmeww»F=mw. (11.2.11)

7,7=1 2,7=1

11.3 Final Details

We now insert the particular operators hy, and P. For the quantity 2 (v, hxvy) — )x,imax,
we note that the inequalities defining Ly imply that

1
Ak7p=k-p—§|k|2:k‘-(p k) + |k:| < |k| (k:p+ |k:|> p€E Ly, (11.3.1)

SO
At max < Ok} [K? (11.3.2)

as we assumed that k € Br. The quantity 2 (vg, hyvg) is

SV’“S S (11.3.3)

2 (g, hpvg) =
( ) peLy
and for a lower bound we prove the following in appendix section [B.4}

Proposition 11.3.1. For all k € B and § € {0} U[1,00) it holds that
oL, = ek kY, ke — o0,

pELy

for a ¢ > 0 depending only on f3.
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It follows that
2 (U hiU) — Ajmax = CL8KG k| (Vk - cl’lkgl), (11.3.4)
so if Vi > ckp for ¢ = 2¢;!, say, it holds that
2 (U, k) — Mo > sk [KI* Vi (11.3.5)
for some ¢ > 0 independent of all quantities. For 5 € [0, 00) we also have that

SVk

(27T)3 pELk (27

so Corollary [11.2.1] allows us to bound ||¢|| as

(vr, hfvg ) = N LR N, e < Ok RV (11.3.6)

161 2\/( ks PEVE) Ak masx ol < ,\/(Ski’«“|k|2‘7k)(kF|k|) ‘7)% c’
0o Villoo = =< S = 1-
= 2 {0k, hOR) — Mo sk |k[* Vi kr [k|?
(11.3.7)
Note that since |Li| ~ O(k%|k|), ¢ is indeed almost completely delocalized, and we can
estimate that

l6ll = M > C'ki: k| (11.3.8)
for all M € N such that M < Ck% |k| for some C' also independent of all quantities.
Finally, by Proposition [11.2.3]
1By = hullfis < min {2 (g, hyor) , [Jorl|*} < Cmin {sk3 Vi1, 52V | L)
< Cs*min {FV 117 KRV 117 RSV (11.3.9)
= Cs*min {1, kpVi, K3V 1|72} k3 Vi1

for any [ € Z3. Inserting these bounds into Proposition [11.1.6 yields the first claim of
Theorem TT.0.Tk

Proposition 11.3.2. There exists constants ¢,C' > 0 such that if Vi, > ckz' it holds for
all M < CkZ |k| that Uy = |0~ War obeys

5

~ ~ ~ ~ M2
Heg — Me) Uy < C' min {1, kxVi, K3V 1|2V |1)?
| (Hu — M) $§ e

for a constant C" > 0. ¢,C,C" are independent of all quantities.
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The Eigenvalue ¢,

For ¢, we have by Proposition [11.2.2| that (recalling the relation € = 2./¢)

<Uk7 h%vk>
(Vg hivk)

<Uk;, h%’U}J i 4 <Uk7 hivk> )‘z,max
3
(Uk, hyvg) (2 (Vg hpvg) — A%}max)
(11.3.10)

<ep <2 |2 (vg, hyvg) +

Q\J 2 <Uk, hkvk> +

The lower bound given in Theorem [11.0.1]is then immediate since

1.3 ALl
€k 2 2\/2 <Uk, hk’ljk> Z C/SEIC% |]€‘ V,f (11311)

as above, while the inequality va +b—/a < 5 f yields the upper bound

<U/€a hkvk> 4 <Uk" hzvk> )‘i,max
2
Uk’ hvk \/2 ’Uk, hk’l}k <vk I vk) < <UI€7 hkvk> - )‘z,max>

(vi,hvg)
1 (kR R VR) (ke [R])?
VekEREVe (k3 K2R

1 A3
= Ckp? |k V), 2

€L — Q\I 2 <’Uk, h]ﬂ]k;) +

<C (11.3.12)

For the form given in Theorem for Vi = g|k|*, note that expanding the inner
products gives

sV, 3
h} Vi 7 2opely A
€ ~ 2,12 (v, hyog) + 0, o) = o a3 D N 2\/ 26 Ve T (11.3.13)
<Uk:7h/vk;> 2(2 ) pELy 2f27_l:3 ZPELk )\kp

3

) 3 g st
P
( ) ‘k| pELy ZPELk )‘k,p

and formally replacing the Riemann sums by integrals according to equation (B.3.28|) shows
that

=2

2T

> Xy ~ kFyk| >N —kF\k| + kF|k] N—kF]ky (11.3.14)
pELy pELy
whence
s g 2m o ERy k[ ( 1 4rws ) 12
€p ~ 20| ——= 25—k |k —1—7 2 + —k? kI? 11.3.15

5

N _ s|Bp| ~ 1 @k3
@n® — en® Y @ s

12
~ \/2gn + —k k|

for n =



Appendix A

Some Functional Analysis Results

A.1 The Square Root of a Rank One Perturbation

Let (V,(-,-)) be an n-dimensional Hilbert space. With the notation
P,(-) =(w,yw, weV, (A.1.1)
we recall the Sherman-Morrison formula:

Lemma A.1.1. Let A:V — V be an invertible operator. Then for any w € V and g € C,
the operator A+ gP,, is invertible if and only if (w, A= w) # g~', in which case the inverse
is given by

(A+gP,)  =A1 — J Py,

By applying this we conclude the following representation (first presented in [g]):

Proposition (6.1.2). Let A : V. — V be a positive self-adjoint operator. Then for any
w €V and g € R such that A+ gP,, > 0 it holds that
t2

1 1 2g o0
A+ng2:A2+—/ Py, dt
( ) T o 14 g (w, (At ) )

" s =) (oo a ) )

Proof: For any a > 0 there holds the integral identity

ﬁ:i/ooo a dt:Q/OOO<1— e )dt (A.1.2)

a + t2 T

so by the spectral theorem the same is true for a positive operator A, provided the fraction
is understood as a resolvent. As the Sherman-Morrison formula lets us write

(A+gP, + t2)—1 = (A+ tQ)_l o o (:Z . t2)1w>P(A+t2)1w (A.1.3)
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for any ¢t > 0, we thus conclude that

(A+gP, %:f/ (1—t2(A+gP +12) 1>dt (A.1.4)

_g > . —1_ g 1
=l (1 ﬂ(04+ﬂ) 1+g<wmA+¢%lw>HM#>w>)“

2 [oo ) o 1 29 [ t?
mJo 7 Jo 1+g<w,(A+t2) w>
1 29 t2
= A§ + 7/ P 2 71’!1}
T o 14 g (w, (A+ ) Tw) 4T

dt.

The trace formula now follows by partial integration as
t2

w, (A + tg)_1w> H(

tr((A+ng)% — 43) :2:/000 o A+ ) w2t

I e T e
1+ -

g (w, (A+1) >
17r{tlog<1+g< (A+2) w>>} += / log( +g< (A+t2)_1w>)dt
= a1 g (u (44 2) ) Y

since ‘log(l +g <w, (A4 t2)71w>)’ < ‘g <w, (A+ t2)71w>‘ < Ct 2 for t — 0.

A.2 A Square Root Estimation Result

Lemma (8.2.1). Let A, B,Z be given with A > 0, Z > 0 and [A,Z] = 0. Then if
+ (A, [A, B]] < Z it holds that

+[Az,[Az, B]] < iAlZ.

Proof: Applying the identity Az = 2 = ( —t3(A+ t2)71> dt as above, we find that
L 2 [ 2 2\ 7! 2 [ 2) 71 2
[Az,B]:—/ [1—t(A+t> ,B}dt:—/ [<A+t) ,B]tdt
7 Jo 7 Jo
2 00 _ —
_ 7/ (4+#) ' [A+2.B] (A+1) "2t (A.2.1)

7/ (A+) AB](AJFtQ)*lt?dt
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where we also used the general identity [A™!, B] = —A™![A, B] A~!. Tterating this formula
we conclude that

b 1ab B = 2 [7 (a4 2) A [ By (A4 2) ar o
= () [F(ae) (A B (A ) (A s ) e

whence the asumptions imply that

+[43,[43, B]) < (2)2/000 (A+2) (a+s) Z(A+s) (A4 e) Prdr (A23)

AT
o — 2 1 2
— <2/ (A+t2) 2t2dt> Z = <1A—2> 7z=Lta1y
m Jo 2 4

as the identity [;° ﬁdt = %a_%, a > 0, similarly yields that [;°(A + t2)_2t2dt =

A

jus
4

-1
U

A.3 Operators of the Form e*® Ae *!* for Unbounded
A

We prove the following:

Proposition A.3.1. Let X be a Banach space, A : D(A) — X be a closed operator and let
K : X — X be a bounded operator which preserves D(A). Suppose that AK : D(A) — X
is A-bounded.

Then for every z € C the operator e : X — X likewise preserves D(A) and
e K Ae K . D(A) — X is closed. If additionally X is a Hilbert space, A is self-adjoint and

K is skew-symmetric then e'® Ae™' is self-adjoint for all t € R.
—zK

K

Eurthermore, for every x € D(A) the mapping z — e*X Ae=*Kx is complex differentiable

and C* with
d

— e Aem Ry = *F [K, Ale *Fa.

dz

For the remainder of this section we impose the following assumptions: A : D(A) — X
is a closed operator on a Banach space X and K : X — X is a bounded operator on X,
which preserves D(A) such that AK : D(A) — X is A-bounded according to

|AKz|| < a||Az|| +b|z|, =€ D(A), (A.3.1)

for some a,b > 0.
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Well-Definedness of ¢*% Ae=*K

We begin with a lemma:

Lemma A.3.2. Under the assumptions on A and K, the operator AK™ : D(A) — X is
A-bounded for any m € Ny with

[AK™z|| < a™ [|Az|| +mc™ b |2l 2 € D(A),

for ¢ = max {a, ||K||Op}.

Proof: The claim is clearly true for m = 0,1 (by assumption). We prove the general claim
by induction: Suppose that case m — 1 holds. Then we obtain case m by estimating

Ak = [AK (K" o) < aAR™ e+ o[ a
< a(@" | Az] + (m— 1) 20 2ll) +b|| K™ e (A.3.2)
< a™ [[Ax]| + ((m — Dac™ > + || K[| )b |12
< a™||Ax|| +mc™ b |2
O
We can now conclude the first part of Proposition , namely that e*® preserves

D(A) for any z € C, so that e Ae™*¥ : D(A) — X is well-defined. For use below we
prove the following more general statement:

Proposition A.3.3. Under the assumptions on A and K, it holds for any entire function
f(z) = X% dmnz™ with d,, > 0, m € Ny, that f(zK) : X — X also preserves D(A) for
any z € C, and that Af(zK) : D(A) — X is A-bounded as

IAf Kzl < flalz)) 1Azl + blz] f'(c[z]) =], =€ D(A),

for ¢ = max {a, HKHOp}.

Proof: By definition of f(2K) = 3200 d,,(2K)™ we can for any x € D(A) express f(zK)z
as the limit

mz:o dm(zK)"x = hm Z Ay 2" K™x = kh_}rgo Yk (A.3.3)
where y, = Y8 _ dpz" K™z, k € N.
Since K preserves D(A), so too does K™ for any m € Ny, whence y;, € D(A) for every
k € N. In order to prove that f(zK)z is an element of D(A) it thus suffices to prove that
the sequence

k
Ay, = > dpz"AK™z, k€N, (A.3.4)

m=0
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converges. As X is a Banach space this is ensured if Y 0°_ ||dn 2™ AK™z|| < co. By the
lemma this is indeed the case, as we may estimate

S 2" AR ]| = 3 d 2" JAK™ 2] < 3 d |2™ @™ [ Azl + 3 mdyn 2™ ¢ b ]

m=0 m=0 m=0 m=0
Z (al)™ | Az] + b2 > mdym(c|z)™ " [|=] (A.3.5)
m= m=0

= flalz)) [ Az] +blz] f'(c]2]) ll=]l -

We can then similarly conclude the A-boundedness as

IAf (2K )zl = lim [[Ayall < D7 lldmz™AK™ || < f(alz]) [|Az]| +b]z] f'(c]2]) =]l

m=0
(A.3.6)
Ul

Qualitative Properties of e*X Ae *K

Having ensured that e*® Ae=*X is well-defined, we now show the second part of Proposition

[A.3.1] i.e. that e* Ae=*K also inherits the properties of A:

Proposition A.3.4. Under the assumptions on A and K , the operator e% Ae=*K : D(A) —
X is closed for any z € C.

Proof: Let (z),—, C D(A) be a sequence such that 2, — = and e"® Ae "K'z, — y for
some z,y € X. We must show that z € D(A) and y = e* Ae K z.
By boundedness of K, hence of e #%_ it holds that also e %z, — e *£z, and similarly

Ae gy =K (eZKAe_ZK:z:) — e Ky, (A.3.7)

so by closedness of A, e™*5x € D(A) and Ae Kz = e=*Ky. Since e*X preserves D(A), it
follows that also x = e* (e_ZK x) € D(A), and furthermore

e Ae ™Ky = 2K (Ae_ZKx) =K (e_ZKy) =y (A.3.8)

as was to be shown.
O
If A is a self-adjoint operator on a Hilbert space, self-adjointness is also inherited (for
appropriate tK):

Proposition A.3.5. Suppose that X is a Hilbert space, that A is self-adjoint and that K
is skew-symmetric. Then under the assumptions on A and K, the operator e Ae=t¥
D(A) — X is self-adjoint for any t € R.
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Proof: The assumptions clearly imply that et Ae7*¥ is at least symmetric. Letting

x € D((etKAe_tK>*> be arbitrary, we must thus show that = € D(etKAe_tK> = D(A).
The assumption is that there exists a z € X such that

<x, etKAe_tKy> =(z,y), ye€ D). (A.3.9)
Rearranging this, we have

<e_th, A(e_tKy)> = <$, etKAe_tKy> = (z,y) = <e_th, (e_tKy>>, y € D(A),
(A.3.10)
which implies that e * 2 € D(A*) = D(A) by self-adjointness of A, hence x € D(A) as in
the previous proposition.
Il

Differentiability of z — e*f Ae *K gz

Finally we come to the last part of Proposition which is the statement regarding
the mapping z + e*X Ae *Kz for x € D(A). We begin by observing that this is indeed
differentiable:

Proposition A.3.6. Under the assumptions on A and K, it holds for every x € D(A)
that the mapping z — X Ae *K | 2 € C, is complex differentiable with derivative

ie‘ZKAe_ZKx =N [K, Ale g,
dz

Proof: The claim is that for any zg € C

GZKAQ_ZKJ: _ ezoKAe—Zon

— KK Ale Ky
Z — 20

—0, z— 2. (A.3.11)

By the identity

K Ae K gy — oK fem20K p — (e'ZK — ezOK)Ae_ZOKI + ezOKA<e_ZK — e_zOK)m
(eZK - eZOK)A<e’ZK - e’ZOK)a: (A.3.12)
_ 0K (e(szO)K B 1)A€fzoKI + eZQKA(ef(Zf,ZQ)K _ 1)67201(%
(eZK — ezOK)A(e_(’Z—ZO)K — 1>€_ZOKZE

we see that we can write the argument of ||-|| of the previous equation as a sum of three
terms:

6ZKA6—ZKx _ €Z0KA€_Z()KI

Z — 20

(z—z0)K __ 1 —(z—z0)K __ 1
_ ezoK (6 _ K) Ae*ZDKx + eZOKA<€ -+ K) eiZOK:L' (A313)

Z— 20

— KK Ale Ky
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+—GﬁK-—e%K)A<6_&;a»K__1>e‘me.

zZ— 20

We show that each term converges to 0 separately as z — zy. First we have

(z—z0)K __ 1 (z—2z0)K __ 1
oK (6 — K) Ae K ¢l < ezoKH ¢ — K‘ HAe’ZOK:cH
Z— 2 Op Z— 2 o
p
(A.3.14)
which vanishes as d% _0 e*® = K in operator norm by boundedness of K. For the second

we estimate using Proposition with f(2/) =e¥ —1—2 and 2/ = —(z — %)) that

e—(z—zo)K -1
AEA L K ey
zZ— 20

ezoKH
O

1 e )

-
> ‘Z—Z()Or)((ea|z_20| —1—a |Z — ZO|> HAe—zoKwH +b |Z N ZO| <6c|z—zo\ _ 1) He—zoKl,H)
=[], ((ejz__ozal - 1) | Ae=0% x| + b(ecte=l — 1) He—zoK:p’D (A.3.15)

e* = 1. Similarly, for the last

z=0

term we can apply Proposition with f(2/) = ¢¥ — 1 to bound

p p 6_(Z_ZO)K 1 p zK __ €ZOKH
(€z — e )A — e %
Z — 20

which likewise vanishes since z — e* is continuous and d%

e
<

Op HA(e—(z—zo)K . 1>€—zonH

|z — 2|

ezK _ ezoKH
< Op

e ) (A.3.16)

((60\2—20‘ — 1) HAe_ZonH + b |Z o Z0| €c|z—zo|

=)

which vanishes since the term in parenthesis is uniformly bounded for z near zy by differ-
entiability of z — e* while e*® — €K as z — 2, by boundedness of K.

|2 — 2|

K K etl=l 1 K
et —e® H —_ HAe‘ZO :BH + beclz =l
Op ’Z — Z(]’

4

A similar argument now shows that the derivative is even continuous:

Proposition A.3.7. Under the assumptions on A and K, it holds for every x € D(A)
that the mapping z — e*X Ae K, 2 € C, is C".

Proof: We must show that for any z5 € C

e F K, Ale K r — K [K, A] e_ZOKxH —0, z— 2. (A.3.17)
As in the previous proposition we can write the argument of ||| as a sum of three terms:

N K, Ale K x — e [K, Ale g = K (e(z_ZO)K - 1) (K, Al e "y
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+ 2K (K, Al (e—<Z—ZO>K - 1)6_ZOK:1: (A.3.18)
+ (eZK — ezOK) (K, A] (e’(z’ZO)K — 1)6’Z°K;1:.

The first term vanishes as

eZQK (e(szO)K . 1) [K, A] —

oK N H(e“*zo)K _ 1) (K, Al efzng;H (A.3.19)

and 720K 3 1 as z — 2, while [K, A]e™*% ¢ is a fixed vector. For the other two terms
we note that since

o 15 A1 (7670 — 1)o7

e [K, A] (e G0 — 1)/ | <

TERTR (A i ity M

it suffices to prove that H[K, A (e_(Z_ZO)K - 1)6_Z°K;EH — 0. By boundedness of K, the
assumed A-boundedness of AK implies that [K, A] = KA — AK is also A-bounded, since

I[K, Alz]| < | KAz| + [AKz| < (K]l +a) [|Az] + b llall, =€ D(A), (A.3.20)

SO

H[K, Al (e_(Z_ZO)K - 1)6_Z°KxH < (||K||OID + a) HA(e_(Z_ZO)K - 1>€_ZOKZEH (A.3.21)
+0b H(e_(Z_ZO)K - 1)6_Z°K93H

and again H (e*(Z*ZO)K — 1)6*Z0Kx — 0 while HA(e*(Z*ZO)K — 1)6*ZOKmH is seen to vanish

when z — zp as in equation (|A.3.16)).
O



Appendix B

Riemann Sum Estimates

In this section we establish three results. The first is the following general bound on sums
of the form > ¢/, )\gp:

Proposition B.0.1 (6.2.6). For any k € Z2 and 3 € [—1,0] it holds that

kT (k] < 2k
Yo, <0 ‘2; M <2ke
peLy ki [k| k| > 2kp
for a constant C' > 0 depending only on f3.

The second result is the precise asymptotic behaviour of 37/, )\,;;) for small k:

Proposition B.0.2 (9.0.1). For any v € (O i) and k € B(0,k}) it holds that

711

SN = 2k + 0(1og(kF)3k§(2*“’”), ki — 0o,

pELy
Finally we prove the following lower bounds for the sums >, /\f’p:
Proposition B.0.3 (11.3.1). For all k € Bp and 5 € {0} U[1,00) it holds that

SN, = ki Pk k= oo,
pELY

for a ¢ > 0 depending only on .

Some General Riemann Sum Estimation Results

To prove these propositions we first note some general Riemann sum estimation results.
Let S C R™", n € N, be given, define for £ € Z" the translated unit cube C; by

Co=[-27"27" +k (B.0.1)

and let Cs = Upegnzn Cr denote the union of the cubes centered at the lattice points
contained in S. We then note the following:



148 B. Riemann Sum Estimates

Lemma B.0.4. Let f € C(Cs) be a function which is convex on Cy for all k € S NZ™.

Then
S S < [ S

keSnzn
Proof: As a convex function admits a supporting hyperplane at every interior point of its
domain, there exists for every k € SNZ" a ¢ € R" such that

fp) > f(k)+c-(p—k), pé€Cy, (B.0.2)

and so integration yields
L f@do= [ fkydpt [ e (o= kydp = f () (B.0.3)
k k

as fe, ¢+ (p— k) dp = 0 by antisymmetry. Consequently

> fkh) < Z(/f )dp = /f (B.0.4)

keSnzn keSnzn
O
This lemma lets us replace a sum by an integral, but over an integration domain Cg
which will generally be complicated. An exception is the n = 1 case which we record in
the following (generalizing also the statement to any lattice spacing [):

Corollary B.0.5. Let for a,b € Z and | > 0 a convex function f € C’([la — %l, b+ %ZD

be given. Then
b Ib+31
wamgjlﬁumx
m=a a—3gy
For n # 1 we instead require an additional step that lets us replace Cs by a simpler
integration domain. Define S, C R" by

Sy = {pER” | inf [p —¢q| < \/ﬁ} (B.0.5)
q€S 2

Observe that Cg C Si: Indeed, for any p € Cg there exists by assumption a k € SNZ"
such that p € Cg; consequently

flp—q|l <lp—Fk| <-— B.0.6
inflp—ql <lp— k[ < (B.0.6)
since every point of a unit cube is a distance at most @ from its center. The containment
Cs C S, and the lemma now easily imply the following:

Corollary B.0.6. Let f € C(Sy) be a positive function which is convexr on Cy for all

ke SNZ" Then
> rws [ s

kesnzn
Note that in the particular case that f is identically 1 this yields a bound on the lattice
points contained in S

1SN Z" < Vol(S,). (B.0.7)
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B.1 Simple Upper Bounds for 5 € [—1,0]

We now consider the sums > ¢, )\fm. In this subsection we prove the 5 € (—1, 0] statement
of Proposition [B.0.1] i.e. that

k2P kP (k| < 2k
DN, <CY s |2ﬁ| 1 ", Be(-1,0], (B.1.1)
pEL: ky |k| k| > 2kp
as well as the partial statement for § = —1 that
1+ k| log(kr) ) kr  |k| < 2k
S al<o (3 +|_2| og( F)) ro K] o (B.1.2)
= K || k| > 2k

The improvement of the latter estimate to >, )\,;; < Ckp for |k| < 2kp will be handled
by more precise estimates later in the section.
Recall that the lunes Lj are given by

Ly={peZ®||p—k <kp<|p|} = SNZ* (B.1.3)

where S = B(k, kr)\B(0, kr). The relevant integrand for our Riemann sums,
1 A - 1N
pr My = (5001 = o= kP)) = I#l” (ep = 5 11]) (B.L4)

IS convex on ek k- > = utsinuarwenA- = = |Kk|. e must therefore
i {peR|k-p>Llkl} b gular when & -p = L |k|. Wi heref

introduce a cut-off to the Riemann sum >,/ )\g’p: We write Lj, = Li U L? for

L;:{peLk|l%-p§;|k|+1+\é§} (B.1.5)
Liz{peLk|/%-p>;\k\+1+\f}.

Then also Li = S*NZ3, i = 1,2, for
Slz{p65|l%-p§;|k|+1+\é§} (B.1.6)
Szz{peS]/;’-p>;|k|+1+\é§}

so we can by Corollary estimate that

N~ 2 N« N L Ekl° (k- —lk Bd B.1.7
D My = 2 Nept 2 Nep S sup A | | Li| + [ K7 (Bep— S IKl) dp o (B.1LT)
peLy, Sk

PELy pel} pel?
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. 1 B
< 27 Vol (S1) + W/SQ (k-p -3 |k]) dp.

+

Here we also used the observation that

(B.1.8)

My = 5 (2 = Ip = k) 2 3

for all k € Z2 and p € Ly, as |p|2 and |p — /<:|2 are then non-equal integers.

To estimate Vol(Sle) and the integral over S we will replace these by simpler sets once
more: Let S C R? be given by

S = B(k:, kp -+ ?) \B (o, kp — ?) (B.1.9)

and define the subsets S',S? C S by

—_

81:{p68|_\é§§]%.p_|k;|§1+\/§} (B.1.10)

[\

“ 1
SQZ{pGS\lgk-p—QW}.
Then we have the following;:
Proposition B.1.1. It holds that
S}r c St and Si c S

Proof: We first show that S, C S: Let p € S5, = {p’ € R? | infes|p —q| < ?} be
arbitrary. Then we can for any ¢ € S estimate that

ol > lal = p—al > kr—|p—q| (B.1.11)
lp—kl <lg—kl+Ip—d <kr+Ip—d
whence taking the supremum and infimum over ¢ € S yields

3 3
|p| ka—é_, lp — ki Skp+\g—, (B.1.12)

which is to say that p € S as claimed. Supposing then that p € S} we furthermore note
that for any ¢ € S!, Cauchy-Schwarz implies that

) 1 . 1 A V3
kep=glkl=k-qg= Skl +k-(p—q) <1+ - +1Ip—d (B.1.13)

and similarly
N 1 A 1 A
kep=glhl=k-q= 5k +k-(p—q)>~Ip—dq (B.1.14)
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(B.1.15)

so taking the supremum and infimum over ¢ € S! again yields
3 - 1
fsk-p—Qlk\ <1+V3
0

2
i.e. pe S That ST C §? follows similarly.
By this proposition it now follows from equation (B.1.7) that
_ - IR
S A, <277Vl (S + |/<;yﬂ/82 (k.p— S \k|> dp (B.1.16)

pELy
To compute Vol(S') and the integral over S we will integrate along the k-axis, so we must
(B.1.17)

now consider the behaviour of the “slices”
St:Sﬂ{p€R3 | l%-p:t}.

The Case |k| < 2kp
= (ko +%7) + |K
SR =T VBEe (K> V3

Suppose first that |k| < 2kp. Then when moving along the k-axis, it holds that
k| <+/3
k< V3 (B.1.18)
) is entirely contained in

inf({t | S, # 0}) = {
e

where the first case corresponds to the case that B(O, krp —
we need not consider this case, since
anyway. In this

V3
2
b
)
(B.1.19)

B(0.kr + 25).
As the lower end of S' is at t = 1 |k| —
hep =3 |k| — 2} will intersect both B(k, kr + %2) and B(0, kp —
ey

case the slice §; forms an annulus, and elementary trigonometry shows that
2
V3 ) - tg)

2
3
Area(S;) = W((kfp + g) —(t— |k|)2) — 7T(<
1
— (2VBkp — (K = 2|k])) = 27r<|k| (t -5 |k;|> + \/§k:p)
with t = kp — *ég corresponding to the “upper end” of

)

for Jlk| — 2 <t < kp— 2L,
B(O, kp — § . Thereafter the planes intersect only E(k, kr + ?), whence
2 2
1
Area(S) = w((k;F + ?) ot |k|)2) _ W(<kF 4 ‘f) 242k (t -3 |k:|>)
2
kp — ?) - t2> (B.1.20)

— 27r<|k‘| <t— ; |k:|> + \/§kp) +7r(<
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S%OMG—;WD+v€m>

for kp — Y8 <t < kp+ L+ |k].
With thls we can now prove the |k| < 2kp bounds:

Proposition B.1.2. For all k € B(0,2kr) NZ2 and B € [—1,0] it holds that

ket k|7 € (~1,0
Z)\kp_ F “_1 B ( 7]’ k'F_>OO,
= (1+ k[ log(kr) Jhp B =~
for a constant C > 0 depending only on f3.
Proof: Recall that
. 1 B
B -8 1 B p— =
S A, <27 Vol(S') + Ik /S(k: p—s |k:|> dp. (B.1.21)

PELg
The volume of S' obeys

Llkl+1+v3 Llkl+1+v3

L 1
)= < (1 (£ = g 1) + Ve ) e (B.1
Vol(s') /;w—%f Area(St)dt_27r/%|kl_é§ Kl (=5 K]} + V3 ke ) dt (B.1.22)

1+V3
:27r/ﬁ (1klt +V3ke) dt < C(k| + kp) < Chp, kp — oo,

which is O(kifﬂ |k]1+ﬁ) for all g € [—1,0]. For g € (—1,0] the integral is

) o= 50U Areasy) d
L (k=S = foner (1= Ib1) Axeas) a

kp+3 k| 1 B 1
<or [T (t—Q\k]) (w (t—z\ko +\/§kp) dt

51k[+1

kp+33+ 11k kp+2+1 k|
:%Qm/F me+¢ﬁm/p ﬁﬁ) (B.1.23)
1 1
2+ 1+
k 3 1 3k 1
gzw(H<kF+\/_+2|k|> +\/_ F(kp \g 2|l<;|) )

2
fﬁsz) < CERP K|, kp — oo,

2+ B 1+ 8

k2P k| +

IA

2m (2+5

while the § = —1 case is

. 1 kp+ 42+ 4 |k| kp+%3+ 11K
/2<k‘.p—2|k|> dp§27r(|k|/F 1dt+\/§kF/F t1dt
S 1 1
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<27r<|k;| (k;F+\f+ |k‘|>+\/_k?F10g<kF+\g§+ Ikl)>

< C|k| (14 [k| " log (k) ) ip. (B.1.24)

Combining the estimates yields the claim.
OJ

The Case |k| > 2kp

Now suppose instead that |k| > 2kp. In this case the lune S = B(k, kr)\B(0, kr) degen-
erates into a ball, and so we simply have that

S, :S:B<k,kp+\é§>. (B.1.25)

Now, if §|k| > kp+ 1+ § then every p € S satisfies k - p — 5 |k| > 1 and the cut-off set
S! is unnecessary. If this is not the case then it still holds that

_ 7 1 B
ZL: Nep <277 Vol(S) + !klﬂ/y <k-p— 3 |k|> dp (B.1.26)
pELE

for
A 1
81:{p68|k~p—2|k|§1+\/§} (B.1.27)
S = op—
—{peS|1<hp— Ik},

and we may easily estimate Vol(S!) as 8! is now seen to be a spherical cap of radius
kr + ¥ and height

<;|k|+1+\/§)—<|k|—kF—\f>_kF—|k|+1+3\2/_<1+3\/_ (B.1.28)

whence

Vol (8') < ; (1 + 3[) (3 (k:p + ?) —1- 3\/_> < Ckp (B.1.29)

which is again O(kifﬁ k|7 ) We thus only need to estimate the integral for the |k| > 2kg
bounds:

Proposition B.1.3. For all k € Z3\B(0,2kr) and 8 € [—1,0] it holds that
SN, < CEL R, kp — oo,

pELg

for a constant C > 0 depending only on f3.



154 B. Riemann Sum Estimates

Proof: We again note that

2
3
Area(S;) =7 ((k‘p + {) —(t— |/€|)2)7 (B.1.30)
now for \k\—kp—— <t< \k|+kp+f If 1 |k| < kF+1+‘fwejust saw that the
contribution coming from the cut-off set S 3 is negligible, while the integral term is
5 LB kK IR
k| / ( p—z |1<:|> dp = |k / . (t - |k:|> Area(S)) dt (B.1.31)
+1

< CEEP K™ kp — oo,

as calculated in the previous proposition, which is O(kif’7 ]k|25 ) since 5 \k\ <kp+1+ f

(Here we also used that for § = —1, the term |k| " log(kp) can be disregarded When
|k| > 2kp.)
If 21kl >kp+1+ § then we simply have

1 [kl 1 \?
SN < |k;|5/(k; p—2|k‘|> dp = |1<|f3/| . < —2|k:|> Area(S)) df, (B.1.32)

pELy kl—kr—

and noting that

(6= Il)* = (1 - ; ym)Q — Il (1 - ; )+ i 2 (B.1.33)

we can now estimate Area(S;) as

Area(S,) = 7 (kp + ?)2 —(t- IW)

o (kp + \f)? - (- ; w)Q + I (1 - ; K1) - i W) (B.1.34)

= |kl (t— ; !kF) — (le |k|* — (’fF+ ?>2> - (t_ ; W)z)

1
<mlklt—<|k|).
SLIEE)

Consequently
|| +kp+52 1 1+ |kl +kp+52
SN < w2 (k=S k) dt=w|k|”ﬁ/2 Ty
veln el =k =52 2 kl—kr—

2+ 2+
2+B|k|1+5(<;|k|+kF+\é§> —<;|k:|—k;p—\é§> ) (B.1.35)
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< C ’k’3+25 .

If additionally |k| < 3 kp (say) then this is O(ki?7 || ), and if not then we can nonetheless
trivially estimate

Y < ]k|5/<l%-p—1]k])ﬁdp< k[ (inf(/%-p—llk|>>ﬁ/ 1dp
vl T S 2 - pES 2 S
B
1 _
< |k|? <|k| - ‘f = yk|> vol<B (o, ko + ‘f)) (B.1.36)
V3

B
1 1
< ORI (S0 - =50 ) < ORI, b b,

for the claim.

B.2 Some Lattice Concepts

To improve upon our bound on 3° /. )\,;11) (and in particular to establish its asymptotic
behaviour) we will need some results regarding lattices, which we now review.

A lattice A in a real n-dimensional vector space V is defined to be a subset of V' with
the following property: There exists a basis (v;);_, of V such that A equals the integral
span of (v;);_, i.e.

A= {z:mmZ |m1,...,mn€Z}. (B.2.1)
i=1
Given a basis (v;);_,, the right-hand side of this equation always defines a lattice, called

the lattice generated by (v;);_,, and denoted by (vi,...,v,). Two different bases (v;);_,
and (w;);_, may generate the same lattice, in which case the following is well-known:

Proposition B.2.1. Let (v;);_, and (w;);_, be bases of V. Then (v, ..., v,) = (wy, ..., wy)
if and only if the transition matriz (T;;); defined by the relation

i,j=1’
n
w; =Y Tiv;, 1<i<n,
j=1

has integer entries and determinant +1.

This result has an important consequence when V' is endowed with an inner product:
Then one can define the hypervolume of the parallelepiped spanned by (v;);_, by

(er,v1) -+ (en,v1) (vi,v1) =+ (Vp,v1)
det : : = |det : : (B.2.2)

(e1,vn) -+ (en,Un) (U1, Un) =+ (Un, )



156 B. Riemann Sum Estimates

for any orthonormal basis (e;);_, (the expression on the right-hand side follows by or-

thonormal expansion). It is however a general fact that if two bases (v;);_, and (w;)}_, are
related by a transition matrix 7', then

(er,wr) - (en,wr) (er,v1) == (en, 1)
det : : = det(T") det : : (B.2.3)
(e, wn) -+ (en,wp) (e1,vn) -+ {€n,Vn)

whence one concludes the following:

Proposition B.2.2. Let A be a lattice in (V,(-,-)) and let (v;);_, generate A. Then the
quantity

(er,v1) -+ (en,v1) (vi,v1) o+ (vg,v1)
d(A) = |det : - : = |det :
(e1,vn) -+ {€n,Vn) (V1,vn) =+ (Un,Vn)

n
1=

is an invariant of A, independent of the choice of generators (v;);_,.

The quantity d(A) is referred to as the covolume of A.
For a lattice A in an inner product space V', one defines the succesive minima (relative

to B(0,1)), (Ai)i—y, by
i = inf({)\ | B(0,\) N A contains 4 linearly independent Vectors}), 1<i<n. (B.24)
A well-known theorem due to Minkowski relates succesive minima and covolumes:

Theorem B.2.3 (Minkowski’s Second Theorem). Let A be a lattice in an n-dimensional
inner product space V. Then it holds that

24y, < 2
n!Vol(B(0,1)) Vol (B(0, 1))

Note that although the quantity A, is such that B(0,\,) N A contains n linearly inde-
pendent vectors, it is not ensured that these can be chosen to generate A. For n = 2 this
is nonetheless the case:

Proposition B.2.4. Let A be a lattice in a 2-dimensional inner product space V. Then
there exists vectors vi,vo € A which generate A such that

4
< —d(N).
lorl[ vzl < —d(X)
Proof: By definition there exists linearly independent vectors vy, vy € A such that [jvq]| <

A1, [Jva]| < A2, and by Minkowski’s second theorem vy || |lvo]| < 2d()). We argue that v,
and vy must generate A.
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Suppose otherwise, i.e. let v € A be such that v # myv; + movy for my,mqe € Z. As v,
and vy are linearly independent and dim(V') = 2 they span V| so we can nonetheless write
v = c1v1 + vy for some ¢q, co € R. By subtracting integer multiplies of v; and v, we may
further assume that |c1],[co| < 3.

As (vi,v) < |Jv1|| |lve]| by Cauchy-Schwarz (the inequality being strict due to linear
independence) we can then estimate that

2 2 2 2 2 2 2 2 2
[v]|” = [er|” Joal]” + |ea]” [Jva|” 4 2c162 (v1, v2) < |ea|” [loi]™ + [ea|” [Jval|” + 2 |ex] ea| (o] [|v2]]

1 1.\?
= (erloall+ leal oal)” < (Fra+30) =X, (B.25)

i.e. ||v|| < A2. But this contradicts the minimality of Ay, so such a v can not exist.

The Sublattice Orthogonal to a Vector k € Z3

Consider Z? as a lattice in R3, endowed with the usual dot product. Let k = (ky, ko, k3) €
73 be arbitrary, and write k = |k|”" k. We now characterize sets of the form

{peZ®|kp=t}, tekR (B.2.6)
For this we note the following well-known result on linear Diophantine equations:

Theorem B.2.5. Let (kyi, ko, k3) € Z2 and ¢ € Z be given. Then the linear Diophantine
equation

kimq + komso + ksms = ¢

is solvable with (my,ma, m3) € Z3 if and only if ¢ is a multiple of ged(ky, ko, ks3).

If this is the case then there exists linearly independent vectors vy, ve € Z3, which are
independent of ¢, such that if (mf,ms, m}) is any particular solution of the equation then
all solutions are given by

{(ml,mQ,mg) € Z? | kymy + kymy + ksms = c} = (mj, my, m3)+{a1vy + asve | a1, ay € Z}.
This theorem implies the following:

Proposition B.2.6. Let k = (ki ky, ks) € Z2 and define | = |k|™" ged(ky, ky, ks). Then

there holds the disjoint union of non-empty sets

70 = J{peZ’ | kp=1Im}

meZ

and {p € 73 | k-p = 0} is a lattice in k* = {p € R® | k-p = 0}.
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Proof: Clearly Z? = U,cr{p € Z* | k-p = t} so we must determine for which values of ¢
the set {p € Z3 | k-p = t} is non-empty. For an arbitrary p = (p1, p2, ps) € Z? the equation
i - p =t is equivalent with

kip1 + kopo + ksps = |k|t (B.2.7)

and as the left-hand side is the sum of products of integers, the right-hand side must
likewise be an integer, i.e. t = |k|™' ¢ for some ¢ € Z. By the theorem it must then hold
that ¢ = ged(ky, ks, k3) - m for some m € Z, i.e.

t = k| ged(ky, ko, k3) - m = Im. (B.2.8)

As p was arbitrary we see that Z3 = U,,cz{p € Z* | k-p = Im} as claimed. That all
sets {p € Z3 | k-p = Im} are non-empty likewise follows from the theorem, as does the
existence of linearly independent vy, v, € Z? such that

{peZ®|kp=1Im}=q+{av, +ayw | ay,ay € Z} (B.2.9)

for any particular ¢ € {p € Z? | k- p = Im}. Taking ¢ = 0 as a particular solution, we see
that A
{(peZ? | k-p=0} ={ayv +av, | a1,a, € Z} (B.2.10)

which is precisely the statement that {p € Z? | k-p = 0} is a lattice (in k™).
U
The covolume d({p €Z3 | kp= 0}) = \/HU1H2 |va2]|” = (vy - v3)* is given by the follow-
ing:

Proposition B.2.7. For any generators vy,ve € Z3 of {p € Z? | fep = 0} it holds that

A({p € Z* | b-p = 0}) = v/l fleall* = (01 - 0)* = 17"
Proof: Let w € {p € Z* | k-p = I} be arbitrary. Then by linearity
{peZ|kp=Iim}=mw+{peZ®|kp=0} (B.2.11)
for any m € Z, so by the previous proposition
73 = U (mw—l— {peZ®| l%-p: 0}) = {myv; + mavs + maw | my, mg, mz € Z},

meZ

(B.2.12)
i.e. (v1,v2,w) is a set of generators for Z3. Let (e;, e3) be an orthonormal basis for k* so
that (ey, es, k) forms an orthonormal basis for R3. Then

(e1-v1) (es-vy) (/% - vy) (e1-v1) (ez-v1) 0O
d(Z3) = |det| (e;-v2) (e3-v2) (]f vg) || = |det]| (e1-v2) (ea-wv2) O (B.2.13)
(e1-w) (ew-w) (k-w) (e1-w) (ew-w) I



B.3 Precise Estimates 159

=1

dal (070 ) >| —1-d(fpe 7| kp=0})

(61 : U2) (62 : ’02)

and as it is clear that d(Z3) = 1 the result follows.
U

Finally we note that Proposition implies a bound on the norms of a generating
set of {p € Z% | k-p =0}

Corollary B.2.8. There exists a constant C > 0 independent of k such that {p € Z3 |
k-p =0} admits generators vy and ve obeying

oa])? + [|oa)* < CI72.

Proof: By the proposition there exists generators vy, vs such that

4 4
lorl fleall < —d(X) = I, (B.2.14)

and as every v € Z2 obeys ||v|| > 1 this implies that |[v; ], ||| < 217!, Consequently
32

loall® + floal* < 5072 = €172, (B.2.15)

g

B.3 Precise Estimates

Throughout this section we let k = (ky, ko, ks) € B(0,2kp) N Z3 be fixed and write k =
k| ™" k for brevity.
We now decompose the lune

Li={peZ||p—k| < kr<Ip|} (B.3.1)

along the {k-p =t} planes. Note that for any p € Ly it holds that

T (Y T B (B.3.2)
and that
kep =k (p— k) + |k|* < |k| (ke + |]) (B.3.3)
SO
; | < op< kgt k| (B.3.4)

Let [ = |k| " ged(ky, ks, ks) as in Proposition [B.2.6| and let m* be the least integer and M*
the greatest integer such that

1
S Ikl <, LM< ke + [ (B.3.5)
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It then follows by the decomposition of Proposition that Lj can be expressed as the
disjoint union

M*
L,= | L} (B.3.6)
where the subsets L]" are given by
L={pelylk-p=im}, m"<m< M. (B.3.7)
Consequently, a Riemann sum of the form 3°,c;  f(Ar,) can be written as
M* R 1 M* 1
St = 3 5 F(Ik (ep =5 10l)) = 3 £(16 (1= 5 ) ) 1221
pELy m=m* peL® m=m*
(B.3.8)

To proceed we must analyze |L}"|, the number of points contained in L}*. For this, note that
by expanding and rearranging the inequalities defining L;, we may equivalently express it
as

Ly ={peZ® |k} <|pf <k} — k" + 2k - p}. (B.3.9)

Letting P, : R® — k' denote the orthogonal projection onto &+, it holds that |p|2 =
|PLpl” + (k - p)?, whence

Le={peZ|k:—(k-p)?<|Pp|” <k:—|k]>+2k-p—(k-p)?} (B.3.10)
={peZ’| ki — (k-p)® <|Pp|* <k} — (k-p—|k|)*}
so the sets L7 = L, N {p € Z? | k -p =Im} can be written as
Ly ={peZ® | k-p=1im, k} - (Im)® < |Pop* <k} — (Im — [k|)*} (B.3.11)
= {peZ|k-p=1im, (R)* < |Pip|” < (R}")}

where the real numbers R* and R5' are given by

R = k2 — (Im)®, RP = k& — (Im — [k|)%, m* <m < M*. (B.3.12)

Let vy, vy € Z3 generate {p € Z3 kop= 0}. For a fixed m, let g € {p € Z* | kop= Im} be
arbitrary. Then Proposition asserts that p € Z? is an element of {p € Z* | k-p = Im}
if and only if it can be written as

P = aiv, + asvs +q, ay,as € Z. (B.3.13)

As v, and v, span k* it must hold that P, ¢ = bjv; + bovy for some by, by € R, whence we
see that P, p is of the form

Py p=ayvy + agvy + P1q = (a; + by)vy + (ag + by) vy, (B.3.14)
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and so we can express |L}'| as

L] = [{(a1,a2) € 22 | (RT)? < (a1 + b1)? [Jon|* + (a2 + ba) [l (B.3.15)
+2(ar + by)(az + ba)(vr - v2) < (RY)*}|

= [{(z.9) € (R4 (b1, 02)) [ (R)? < [fon]*a® o+ [foal]* 5 + 2(0n - vo)ay < (RE)*} 027
= |(BE\ET" + (b1, b)) N Z°|

where the sets E7" and EJ* are given by

EP ={(x,9) € R [ [Jui]|*2” + ool v” + 2(v1 - wo)ay < (R7?}, i=1,2. (B3.16)

Lattice Point Estimation

The sets E™ are seen to be (closed interiors of) ellipses, and analyzing |L}'| amounts to
estimating the lattice points enclosed by these. To do this we will apply the following
general result:

Theorem B.3.1 ([18]). Let K C R? be a compact, strictly convez set with C* boundary
and let 0K have minimal and maximal radii of curvature 0 < ry < ryo. If ro > 1 then
2

1N 3
2

|K N 2| - Area(K)| < C:?T;’ log(l + 2\/§r2>

for a constant C' > 0 independent of all quantities.

This result follows from the techniques of Chapter 8 of [I§], but is not explicitly stated
in this fashion. Giving a proof of this result is out of the scope of this thesis, but a detailed
derivation is available upon request.

In our present case we note that this implies that for any ellipse £ C R?, it holds that

2 1\ 3
|Enz?| — Area(E)| < O(l + 205 log<1 + 2\/51»;) 3), (B.3.17)
T1
the ro < 1 case being accounted for by the constant term. It follows that |L}*| obeys

2 1 2 ! 2 1 2
|L7| = Area(EYS\ET") + O(l + BT; log(l + 2\/57“2"’) gt T—?(T’Z)g log<1 + 2\/5(7";)2) 3>

T1 ™
(B.3.18)
where r1,r] and 79,75 are the minimal and maximal radii of curvature of EJ* and EJ,
respectively.
We thus need to obtain some information on the geometry of the ellipses £/™. Consulting
a reference on conic sections, one finds that the semi axes a; > b; > 0 of EI", as defined by
equation (B.3.16|), are given by

N

: _
a; = \/§R§”(H’01H2 + lloall* ~ \/(HUlH2 — lleal?)” + 4(0n ‘712)2> (B.3.19)
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N

2
b = mr(uvlw e oall? /(e = [lal?)” + 4wy >)

We can then describe the geometry of the ellipses in terms of k and m:
Proposition B.3.2. It holds that
2m k| (lm — 2 1k])L Im* <Im <k
Area(E3"\ET") = 7T’2’(m d |)2 e
(k3 = (m = [K)*) ke < lm < 1M

and the minimal and maximal radii of curvature O < r1 < ry of either of ET*, EJ* can be
assumed to obey the estimates

9 < Cl_37 T2 < Cl_lkF7
T

for a constant C' > 0 independent of all quantities.

Proof: The area enclosed by an ellipse with semi-axes a and b is wab, so for Im* < Im < kp,
when () # ET* C ET",

2 ((Ry)* = (R1")?)

e+ 1) = (el = )+ 401 -07)
_ 2m (kg — (Im — [K])* = (k3 — (im)°))

VAl vl [[va® = 4(v; - v2)?
27 (|k| (2im — |K]) 1
= =2 — =
o [kl (1 - K )1

Area(EJ'\ET") =

(B.3.20)

where we used that \/||v1||2 l|va]|* = (v - v3)* = 1! by Proposition [B.2.7, while for kp <
Im < IM*, when E" = (),

27 (Ry')’
201
For the radii of curvature we note that for an ellipse with semi axes a > b > 0 these are
given by 1 = a7 'b* and ro = b~ 1a?, respectively, so for either of E" we can estimate that

Area(EJ\E") = Area(E}") = = (K — (Im — |k)*)L. (B.3.21)

bi

2
_(n) loal? + ezl + /(o = fleel®)” + 4oy - v

r a 2 2 2 2\ 2 2
1 Joal? + el = /(o |? = flel®)” + 4o -v2)

3

2\ 2
2
(ol et Qe = o)+ 01 0
= . : . = . (B.3.22)
ol + oall” = ( (onl® = lloall®)” + 4(vr - 0)
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2\ 2
2 2 2 2\ 2 2 2 2
(ot Bl P+ el = 4o P el = o100 )

1
n 2 2 2
4 ||U1|| ||U2|| — (v1 - v2)

Nlw

3 -
= (llosl® + floz)®) 2

< (S + 1))

and that

2
@ i+ ol ol = o)’ + 4 - 0

ry = -+ = V2RI -
foal|* + floa 1 — \/(HUlH2 - ||Uz||2) +4(vr - v2)”

bi

3
2

2
(ot Bl P = e )+ v
2 2 2 2\ 2 2
Joal? + ool = ( (ol = s l?)’ + 4o - 2
3
2

(2(flea? + lva]1?))

Corollary asserts that v, and vy can be chosen to obey [|v1]|* + [Jvo]|* < C172, in

which case these estimates become

= V2R (B.3.23)

3
< V2Ry = (loal® + llvall?)* 2Ry

Zo(aYr<ort, < (01-2)%#3;" < Ol ky, (B.3.24)

1

as claimed (using also that R" < kg for all m* < m < M*).

O
Noting that [ obeys
= ||
= <k B.3.25
ged(ky, ko, k3) — g ( )
we can by equation (B.3.18|) and the proposition estimate that
2 1N 3
1| — Area(B\ED)| < C | 1+ 1717 ke )? log(l (1) )

2

3+2 1.3 8
< C(l + | k|73 kR log(l + /|| k;F) ) (B.3.26)

342 2,2
< C k|73 log(kp)3kp, kr — oo,
for a constant C' > 0 independent of all quantities, which is to say

o {2w|k|(zm—;|k|)l Im* < lm < kp
k pr—

+o(k3+§1 k k> B.3.27
7 (k2 — (Im = K])*) ke < lm < LM I log(kr)hs ). (B.3.27)
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The Summation Formula

From equation (B we can now conclude a general summation formula:

Proposition B.3.3. For all k = (k1, ko, k3) € Z2 with |k| < 2kg and f : (0,00) — R it
holds that

GZka ey) = 27 || Z f(\k\ (zm—yky»(zm_;w)z
> NCICE \k|))(k — (im — Ik)?)!

(st £ s - 20)

as kp — oo, where | = ]k!fl ged(ky, ko, k3) and m* is the least integer and M, M* the
greatest integers for which

0«\!\3

—+c>(}kﬁ+§1og<kF>

1
g bl <im®, UM <kp, DM < kp + [k

Note that the two first terms are exactly what one would expect from the continuum
case, since

/B(k’kF)\B(MF) £(kp- - 6 )dp = 2 [k /k: (1w (¢~ - ) ) (¢ - = W)t (B.3.25)
o [ (1 (= ) ) (2 = )

The summation formula thus allows us to convert the 3-dimensional Riemann sum > ¢ ;. f(Arp)
into the 1-dimensional Riemann sums corresponding to the integrals above, up to an ad-
ditional error term.

We can then finally conclude the precise estimate of Proposition [B.0.2

Proposition B.3.4. For all k € B(0,2kr) it holds that

Y Aoy —2mkp| < C B> 5 log(kp) 3k},  kp — oo,

pELy

for a constant C > 0 independent of all quantities.

Proof: By the summation formula we have that

tm — 3|1 VB (= [K)?

PRI TR

l (B.3.29)
e i K] maais1 k| (Im = 5 [k])
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2 MT 1
O k>3 log(kp) Sk S ——— .
ro(it b ntiad Xt
The first sum is what contributes the term 27k, as we can estimate
1 |k| M
27 | k| Z 21 | —2mkp| =21 | > l—kp|=2r|(IM —Im"+1)— kp|
mm*m( — 3 [#]) iz
<2n(l(m* = 1)+ |IM — kg| + 21) (B.3.30)

1
< 27r<2 k| + 3) < C k|

which is <|k|3+3 log(kp)gkrlé) as kp — oo (above we also used that [ < 1). Noting that

1 1
k2 — (Im — k) = k2 — (Im) + 2|k (lm -5 |1<;|> <2k (lm -5 |k:|> (B.3.31)
for m > M + 1, we can similarly estimate the second sum as
S~ k= (m = [k])’
o<rm > L =27 Z T(IM* —IM +1) (B.3.32)
minisn [k (Im — f|/<:|) mEM 41
=2n(IM* —I(M +1)+2l) <2n(kp + |k| — kr+2) < Ck|.
For the main error term we first note that Im* — 3 |k| >
implies that

3 |k|', as the definition of m*

2 ged(ky, k, ks)m™ > |k|”
so as both sides are integers

(B.3.33)
1 _
We can thus apply Corollary to estimate
M 1 1 M 1 M3l ]
+ 1 71<2k+l*1/ ————d
D e T R T IO i 37 N SRS T
IM* + 11— Lk
<Clk|[1+1 2 2 B.3.35
<ol (1o TG (B389

k k L L
<Ok <1+1og< S H[f 2 |)>
2
< Clkl (14 log(lk| kr)) < C|k|log(kr), kp — oo,

where we also used that ! < |k|. In all the last error term thus obeys

2 2 2 M7 1 5 2
’k|2+3 log(kF)”f% Z m < C ’k’3+3 log(kp)‘ikl‘} (B336)
m=m* 2
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and the claim follows by combining the estimates.
O
Note that the condition |k| < k}, v € (O, 11), of the statement of Proposition [B.0.2
arises to ensure that the error term is always o(kp). Although we must require this condi-

tion to control the precise asymptotics, we can however still conclude the bound

> Ay S Ckp, k| < 2kp, (B.3.37)

PELy

of Proposition [B.0.1}, since it at least shows that >, )\,;11) is O(kp) for |k] < kP (say),
and we previously established the bound

S b < C(1+ k| log(kp) )k, k| < 2k, (B.3.38)

pELy

of which the right-hand side is also O(kp) if |k| > kfi, so either way the claimed estimate
holds.

B.4 Lower Bounds for g € {0} U[1, )

For the lower bound of Proposition we must similarly divide our analysis into a
“small k£” and a “large k” part. The result of Proposition is sufficiently precise that
we can obtain the small k estimate almost immediately by the following lower bound for
1-dimensional Riemann sums of convex functions:

Lemma B.4.1. Let for a,b € Z andl > 0 a convex function f € C([la,lb]) be given. Then

Z Fim)l >/ z)dx + l(f(la)+f(lb)).
Proof: Convexity implies that for every m € {a,a+1,...,b— 1},
F@) < (1= (17" = m)) ftm) + (I7'z = m) f(U(m + 1)), x € [lm,I(m +1)], (B.4.1)

/l:mw fleyde= </z:m+l) (1= ("2 —m)) dx) f(lm) + ( /l:n(m“) (7' —m) dw) f((m+1))
_ f(lm)l/ol(l _ ) de+ fl(m + 1))1/013:@ (B.4.2)
= Uy + f(im+ 1))
whence
> fm)l = L)+ £00) + 3 2(sam)t+ Fa(m+ D)) (B.43)

m=a m=a
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> () + 7)) + [ f@)dr

O
By applying this we obtain the following:
Proposition B.4.2. For all k € B(0,2kr) and B € {0} U[1,00) it holds that
8 |- o+ 3+2 2, =5\ 1.248 |1 1+8
SN > (1 ~ ki |ky) — O tog(kr) hin® | K2 (B[P ke — oo,
PELy
for constants ¢,C' > 0 depending only on (.
Proof: By Proposition [B.3.3]it holds that
M 1 1+8 2 2 M 1 B
S ok S (lm -3 \k|> L= C KPP log(kr)3kE 3 (lm -3 yky)
pELY m=m* m=m*
(B.4.4)

where we discarded the second sum as every term of this is non-negative. By the previous
lemma we can bound

M 1 143 IM 1 1+ l 1 14 1 14+
_Z > _Z Z _Z * _ 2
mg;n*(zm ; |k|> iz [ (x ; |/<;|) du + 2((11\4 ; |/<;|> + (zm . |I<:|> )

1 1 2+ 1 2+
> — M — — — R B.4.
= 2+B<(l 2 W) (lm 2 ’k’) ) (B45)

1 1 2+ 1 2+
> 0 (ke — Sl —1) — 2| > (1—k1k:) }2H0
> s (e gl =) ) o1 ) e

as kp— 00, where we used that [ < 1 and that by the definition of m* and M,
1
I(lm"—1) < 5 k|, krp<U(M+1). (B.4.6)

Meanwhile, Corollary lets us bound the sum of the error term as

M 1 B IM*+11 1 B
3 (lm—|k:|> <t (x—|k;|> dz
. 2 Im*—11 2

e _ 1:—_15 <<ZM* . 1 ‘k|>1+ﬁ — (lm* — ; |k’|>1+6> (B.4.7)

< IF (k;F+ |k|)l+ﬁ<(]\k|k1+ﬁ, ki — o0,
=148

and combining the estimates yields the claim.

O
As was the case for our precise bound on > ,c;, )\,;IIJ, this implies that

SN, = cki PR ke — o0, (B.4.8)

pEL

uniformly for |k| <k}, v € (0, 111> but to extend this to all £ € Br we must also establish

some simpler bounds for larger k.



168 B. Riemann Sum Estimates

Large k Estimates

We begin by observing that

B
. 1 V3
SN, Iklﬂ/U . max{(k-p—Q\M —~ ) ,o} dp (B.4.9)
qeLy, q

pELy 2

where we recall that C, = [-271,27'] + ¢. Indeed, for any p € C, it holds that

1 R 1

Akg = 5(@2 —lg—k[*) = |k| (k =g !kl) (B.4.10)
~ 1 ~ . 1 \/g

— 1 (ep = g W= =) 2 i (Bep = g - )

by Cauchy-Schwarz, as p € C, implies that [p — ¢| < § as also used earlier. We then note
the following inclusion:

Proposition B.4.3. For any € > 0 it holds that

SE:B<I<;,/<:F—\gg—e)\B(O,k:FJr\ere) c ¢,

qE€Ly

Proof: We first show that S_ C Uy, C, where S_ is given by

3
S ={pelR’®| _inf Ip—q| > £ : (B.4.11)
9€R?\(B(k.kp)\B(0.kr)) 2

Indeed, for any p € R?® we have that C, N Z* # 0, so if additionally p € S_ then it holds
for ¢ € C, N Z? that

_inf _ ¢ —q| > _inf _ lp—ql—1¢d —p| >0 (B.4.12)
g€R3\ (B(kkr)\B(0,kr) ) q€R3\ (B(kkp)\B(0,kr) )

hence ¢’ € Z3N (E(/{:, kr)\B(0, k;F)) = Li. As ¢ € C, & p € Cy by symmetry of the cube,
this shows that p € U,er, Cq-

Now it holds that S C S_, as p € S, implies that if ¢ € R?’\(E(k,kp)\E(O, kp)) =
(RS\E(k, kp)) U B(0, kr) then at least one of the inequalities

V3
|p—q|2IIP—k‘I—Iq—kH=|q—k’|—lp—k‘|>k:F—kF+7+e=7+6 (B.4.13)

2
V3 V3

Ip—qIZ||p|—IQ||=|p|—|QI>kF+7+e—kF=7+e

B
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are valid, according to whether ¢ € R¥\ B(k, k) or ¢ € B(0, kr), hence

3 3
inf lp—q| > £ +e> £ (B.4.14)
g€R3\(B(kkr)\B(0,kr)) 2 2
U
From equation (B.4.9)) we can now obtain
B
A 1 3
> Ay Zlimsup|/<:|’8/ max | k-p— = |k] —£ ,0 0 dp (B.4.15)
P e—07t Se 2 2
pELg
B
R 1 V3
:kﬁ/ bop— =k -Y2) a
[ (for - o= )

for § = E(k, kp — @)\F(O, kr + @), where we also used that k-p > 2 || +§ forp e S.

Note that S = 0 unless |k| > /3.
_ Similar to what we did for the simple upper bounds, we consider the slices §; = SN
{k “p= t}: The area of S; is

Area(S;) = W((kF _ ?)2 —(t- \k])) - w((kF + ?)2 B tZ) (B.4.16)
= 2 (14l (1 - ; K1) = Ve )

for £ |k| + V3K ke <t < kp+ ?; the area for t > kp + ? is unnecessary since the
integrand under consideration is non-negative and we are looking for a lower bound. We
can then estimate as follows:

Proposition B.4.4. For all k € B(0, 2krp)\§(0, \/§) and € {0} U [1,00) it holds that

8 LoV -1 Lo —@2+8) | \ 1248 (. 1+8
Sl ze( (1= ket ) = o (1= Sk k) )
PEL

as kp — oo for constants ¢,C > 0 depending only on [3.

Proof: By the considerations above

ket 2 1 3\’ 1
S AL,z 2wk [ (t— S Ikl = f) (|k;| (t— ; |/<:|) - \/§k:F)dt

vele Lk|+V3]k| " kp 2
k=L Y
> or kP [ |k t1+ﬁdt—\/§k/ odt B.A17
L G - (B.417)
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o (- o) 252

2+p 1+
1 2+ 1 1+83
= C((l - kr' Ikl) - C(Ik:l1 (1 L |k|) + |k|(2+5)>>k§+5 k|7
O
This implies that
SN, = ckn kT ke = o0, (B.4.18)
pELy

uniformly for k). < |k| < kp, v > 0, which combined with the small k result yields
Proposition [B.0.3]



Appendix C

Careful Justification of the
Transformation Formulas

In this section we give a more detailed justification of the transformation identities which
we derived in the sections [] and [§ for the operator K. Although we proved in Section
that ]

=33 X (e Kiey) (bipbt—g — b1 _gb7,,) (C.0.1)

1€73 p,g€Ly

defines a bounded operator whenever >, s K|l < oo, and so most of the subleties
involving unbounded operators can be avoided, the fact that the operators we apply the
transformation to are themselves unbounded still raises some technical questions.

The first transformation rules we consider are those for the bosonizable terms

Hy = Hiy, + Y (2Q5(P) + Q5(Py)). (C.0.2)

kez3
In this section we prove the following precise statement for these:

Proposition C.0.1. The transformation e™® preserves D(H},,), ¢“Hge™™ : D(H, ) —
Hy is self-adjoint and both Hg — H{. and e“Hge ™™ — H{, extend to bounded operators
on all of Hy.

In words, the transformation of the bosonizable terms does indeed make rigorous sense,
and the tranformation does not generate any “new” unboundedness, in so far as Hy,, is
the only unbounded part of Hg both before and after the transformation.

The second transformation formula we consider is the one concerning Qsg. Here we
will prove the following:

Proposition C.0.2. Qsgand e*Qsre™™ are well-defined in quadratic form sense on D(H{;,)
and e*Qgre™™ — Qgr extends to a bounded operator on all of Hy.

Due to a technical point we will not verify whether the transformation identity is valid
on an operator level, but it is valid in the quadratic form sense (which is all we apply in
the main text) and again the transformation does not generate any new unboundedness.
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As we are chiefly concerned with qualitative properties of operators in this section, we
will generally estimate rather roughly and not keep track of kr and s dependencies. In
this case the bound of Proposition can simply be summarized as

IKllop < C |3 1 Killis (C.0.3)
lez3

for any operator of the form of equation (C.0.1)), since (as also remarked in Section
Ng < N <Cski <.

Elaboration on the Well-Definedness of

On the same note, let us also elaborate on how this bound implies that I is well-defined
- since this is a sum of infinitely many terms, this is not immediately clear, and so the
bound of equation (C.0.3) might only constitute a formal calculation.

The reason this is not so is that Proposition [5.0.1] applies to any operator of the form
of equation , and so if we for R € N define g by

Ke=5 Y (epKiey) (biphoi—q — by _gb7,), (C.0.4)

1€B(0,R)NZ3 P,a€ L

i.e. let ICr be a cut-off version of IC, then this is a priori well-defined, as the summation is
now only over finitely many terms. The bound then certainly applies in this case to show
that

chuopscd Y K. (C.0.5)

1€B(0,R)NZ3

This implies that if the limit K = limg_, . Kr exists then it obeys the claimed bound.
Existence is however automatically guaranteed by the same argument, as (Kg)5_, is in
fact Cauchy: For any r, R € N, the difference Kz — K, is also of the form of equation
(C.0.1), whence (assuming that » < R for definiteness)

||KR—KT||OPSOJ > HKZH%SSOJ Y Kl (Co0)

1€B(0,R)\B(0,r)NZ3 1€Z3\B(0,r)

which implies the Cauchy property.

For our argument we considered the particular cut-off sets B(0, R)NZ3, but an argument
similar to this last one shows that the limit exists for, and is independent of, any particular
exhaustion of Z2, so K is indeed unambigously defined.

C.1 Transformation of Quadratic Operators

We begin by considering the transformation law for quadratic operators. This is greatly
simplified by the fact that these are in fact bounded - not only are

Qli(A): Z (ep, Aeg) blt:,pbk,q (C.1.1)

p,gE€Ly



C.1 Transformation of Quadratic Operators 173

Qi(B) = Z <6p7 Beq> (bk’,pb—k,—q + bik,—qblt:,p>

p,qELy

bounded for any k € Z2 and A, B : (*(L;) — (*(Ly;) simply by virtue of being sums of
finitely many terms of bounded operators, the infinite sums 3"cz3 QF (Ax) and Yy cz3 Q5 (By)
also define bounded operators, as we claim the following holds:

Proposition C.1.1. For any collections of symmetric operators (Ay), (Bg) and ¥ € Hy
it holds that

> (V. QIADY) < V3 3 ([ Akl (¥ Nib)

kez3 kez?

> (W QEBYY) <2V5 |3 1Bl (U, (Wp +1)¥).

kez3 kez?

Qualitatively this implies that

<C Y 1Akl <C Y IBis (C12)
Op keZs op kez3

(Here we also use the assumed symmetry of (Ay) and (By), though this isn’t necessary.)
The same argument we just illustrated with IC thus implies that these sums are well-
defined bounded operators provided the right-hand sides are finite.
Before we turn to the transformation law, let us prove this proposition. First we note
that we have effectively already proven the Q% bound, since we can write

> Q5(Bw)

kez3

> QY (Aw)

keZ3

Q5(B) = > (ep Beg) (brpb—t—g + b7 _4bi,)) = 2Re(Q5(B)) (C.1.3)
P,q€L
for .
Q12€<B): Z (ep; Beg) brpb—k,—q, (C.1.4)
P,q€Ly

and Y pezs Q%(By,) is (up to a factor of 2) of the same form as K in Proposition

whence

<2v5 |37 IBullas (¥, Ve + 1)) .

kez3

> (U, Q5(BY)

kez3

<2

> (U, Q5(B)Y)

kez3

(C.1.5)
The Q% bound follows similarly to how we obtained Proposition (although simpler,
as there is less computation necessary): Writing

1 g
Z QF(Ay) = Z Z (€p, Areq) by, pbrg = ﬁ Z Z (€p, Ar€q) bf, yCqk,oCq0 (C-1.6)

kez3 keZ2 p,g€ Ly keZ3 p,g€ Ly
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1 Z .
Z Z Z ]‘Lk (q) <6P7Ak€q> bz,pcqfk,a Cq,0

Vs g€B% \kez? pely

we can bound

g

Z Z Z 1Lk Ak6q7€p> Cq— kabkp v ng\If (C.1.7)

q€BL kez3 pELy

> (0, QF(AnT) =

keZ3

-

o

Z Z Z 11,.(q) (Axeq, €p) Cqt,obrpV Z chxf\l’”z

% ||k€Z3 pELg q€BY,

IN

Sl-
3
X

> 2 11(9) (Aregs ep) Corobip | /(U NpT)

qEBY%, ||keZ2 pELk

I
Sl
(]

and note that

Z Z 11,(q) (Areq, €p) Cq—t,obrp = \/— Z Z 11, (q) (Axey, €p) Cq—k0C —k:,TCp,T

kez2 pELy, keZ3 pELy

\/— Z Z Z Z Oppr p—k,q’éq—kw’lLk(Q) <Ak€q7€p> CT"JC;’,TCP',T (C.1.8)

p'€BY, ¢/, 7' €Br \keZ3 pELy

so that it suffices to consider expressions of the form

\/— Z Y ApgrCroChCpr. (C.1.9)

pEB q,r€EBFR
We calculate the following commutator:

Lemma C.1.2. For any p,p' € B%, q,¢,r',r" € Br and 1 < o,7,7" < s it holds that

*
* * _ *
{(cr,gcqﬁcpﬁ) ,crf,gcq,ﬁ,cpw} 5 ,cr Uc ~Cq, TCM + 5 /CT ocp T'CpTCm

>k ES T, T CT,T
+ (5T7r/cp7ch7ch,7T,cp/7T (5pp o cr Uc

Proof: Repeatedly applying the CAR we find

*
* * o * * *
(CT,ch Tcva) CT'»ch’,T/CP/,T' - Cp,TCq,Tcr,aCT'ﬂcq’,T’CP'J"
_ >k *
- C Cq,TCT UCT acq 1 Cp ! + 57“77”'Cp,TC%TCq’,T’Cp/J/

* >k *
= —Cpt,6Cp 1 CqrCop 71Cp 7/ Cr g + O 1 € CqrCor 11Cpp 77 (C.1.10)

/
_ * _ ST,T * * * *
= Gy Ucp ch T’Cq,Tcp/J/Cr,a 5q,q’ CT/7UCp,Tcp/77'/cr,U + 57‘77”'cp,TC%TCq’,T’Cp'J/

!
_ ES T, T >k ES T, T T, T
= cp ch . cp +Cp 7 CqrCrp t 5q g Cr' o Cy, T/cp TCM + (5T7r/cp,ch7ch,7T,cp/7T (SM 0 cr Uc

/
_ * * * T, T * *
= —Cpt o Cly 11Cyf 71Cp CqrCry + O ,cr 0 Cqt 71CarCrg + Oglar Cot o Cpt 71Cy 1 Crr o+ Op g1 Cpy - CarCop 1 Cpf 1t
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67’7’ T, T
— Ypp qq’cr UC

g

The bound on 3¢ pe 32y re By Ap.girCrioCyrCpr NOW follows:

Proposition C.1.3. Let A, ,, € C forp € By and q,r € Br with }",cp,. >4 reBy |A][,7q,r\2 <
oo be given. Then for any ¥ € Hy

*Z

o=1

Z Z Ap grCroCyrCprV

pEB q, ’I’EBF

<3S Z Z |qu7n \I/NE >

pEB q, TEBF

Proof: Arguing as in Proposition and applying the lemma, we estimate

2

*Z

o=1

Z Z ApgrCrioCyrCpr ¥

pGB q, TGBF

—_

*
* *
= Z Y. ApgrAygw <‘I/7 {(Cr,ocq,rcpﬁ) acr’,ocq',r/cp’,f’} \I’>

Spp €B% q,9',r,7'€BF
2
A *
S Z > Ap,q,rcqfcr,aq’ Z YooY Ay Y
pGBC q,r€BR qEBF pEBY, reBr
/ 2 2
-
* Ak
- LSS S Apgactepnt| 2 SIS Aew| oy
TGBF p'€B$. ¢ €BF peB‘ gE€Br ||r€Bp
1
g CTU‘I’H

(2[5 i cmwu) S (z 5 T
’I‘EBF qEBF EBF TEBF
+ Z ( Z Z ‘Ap’,q’,r‘2|’0p’ﬁ’\1/||)

TGBF p'€BS \| ¢'€Br

< (24 8) (U, Np¥) < 35 (T, Np¥).

O
Applying this to equation ((C.1.8|) we conclude the desired bound:
kez3

. 2
SNk D00 D |2 D GpwOpka ek 1r, (@) (Areg, €p)| (U, NET)

s q€BS, p'€BS, ¢ ' €Br |keZd peLli

2
=32 > > D | GOk lr(a) (Areg 6)| (¥, NpT) (C.1.12)
qE€BE p'€BY, ¢'€Br keZ? |pELy
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= f) S0 Y Y 1l (a) (Areg, )P (B, N W)

qEBS. p'€BS, k€73 pELy

= B33 ey Areg) P (U, NpT) = V3 |3 || Al (T, NpT) .
kez3 p,g€Ly kezi

Justification of the Transformation

We can now justify the transformation. First note that the expression we consider,

> (2 QF (Py) + Qg(Pk))7 (C.1.13)

kez3

defines a bounded operator as

st ~
S 1P =[S foell = z( ki k|) <0 [S oo, (CLLY
2 (2m) nezs

kez3 kez3 kez?

where we simply estimate that |Li| < Ck}..
Now we note that the transformation rules of Proposition [4.3.1} i.e.

F(2Q1(TH) +2QrH(T))e ™ = (T (1) — Th) +2QF (T (1)) + Q5(T2(1)) (C.1.15)
+ /01 U (e ({ K, TR ) + 2Re(EL(TE)) ) + 2Re(EX(TR(1))) )e K dt + (k — —k)
and
¢ (QB(T) + QzH(Tx) )™ = tr(TR(1)) + 2 Q5 (TR (1)) + Q5(TH(1)) (C.1.16)
+ /0 1 U (e ({ K, T }) + 2Re(E(T2(1))) + 2Re(EX(TR (1)) )e~ " dt + (k — —k)
for
TH(t) = ;(ethTkeka + e Tt (C.1.17)
T(t) = ;(ethTketh — e et

do actually hold without further justification by boundednesd] so it is the summation over
k € Z3 that must be justified. Again we consider a cut-off: The above implies that for any
R € N (taking the Q¥ case for definiteness)

&2 > Q¥(Ty) |e7*

keB(0,R)NZ3

!Strictly speaking, as the £} (A) and £Z(B) operators are also defined as infinite sums (due to the sum
over [ in their definition), one should also justify that these are bounded operators. This can be done by
considering limits of cut-offs in [ and the kind of estimation we perform in Section m - we omit the details.
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= Y uw@m-T)+2 > QNTO)+ X QTR) (C.L18)

k€B(0,R)NZ3 keB(0,R)NZ3 k€B(0,R)NZ3

+ > /le“—t)’c(ek({Kk,T,f(t)})+2Re(5,§(T,§(t)))+2Re(g,f(Tg(t))))e—“—t)’Cdt

- 0
keB(0,R)NZ3

and we must argue that the limit R — oo is well-defined. By Proposition and the
estimates of Section [7| this is assured if (for j = 1,2)

2 (T =T, 1Tl < o0 (C.L.19)
kez3
and
> sup ‘<€p7 {Kk,Tzﬁ(t)}ep> > 2 IréaxKep,Tk > > T3 () e 2||Hs < 0.
kez3 PELw kez? pely, ! kez?
(C.1.20)
In our particular case Ty, = P, and P}(t), P2(t) can be written as
) 1,1 , T
P;(t) = P, + §Pk (t) + §Pk (t), P(t)= §Pk (t) — §Pk (1), (C.1.21)
for
PF = K pe*tis — p (C.1.22)
Arguing as in Proposition (which really concerns P, (t)) one can see that
(e, PE(t)eq)| < CV2 (C.1.23)

independently of ¢, and naturally |(e,, Prey)| < CVj which implies finiteness of the sums
above.
In conclusion:

Proposition C.1.4. The expression Y jeczs (2 QY (Pr) + Q’;(Pk)) defines a bounded opera-
tor on Hy and it holds that

e ( > (2Q8P) + @‘;(Pk))) e ®

keZ3

=3 u(P)+ RO - A)+ X (0B + BOD) + Q5(R() + F()))

kez3 kez3

+ Z / (1-t)k (5k({Kk,Pk( )+ P2t )}) +5,i(P,§(t) + P,f(t)) -1-5]3(]3]3(75) + pk?(t)))e—(l—t)icdt

kez3

with the right-hand side likewise defining a bounded operator.
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C.2 Transformation of Hj,

We now come to Hy;,. As this is a proper unbounded operator we must exercise more care
in working with this than we did with the quadratic operators.
To work with H{,, we will apply the following general result, which we prove in appendix

section [A.3}

Proposition . Let X be a Banach space, A : D(A) — X be a closed operator and let
K : X — X be a bounded operator which preserves D(A). Suppose that AK : D(A) - X
is A-bounded.

Then for every z € C the operator e’ : X — X likewise preserves D(A) and
K Ae™K . D(A) — X is closed. If additionally X is a Hilbert space, A is self-adjoint and
K is skew-symmetric then e'® Ae™'X is self-adjoint for all t € R.

Furthermore, for every x € D(A) the mapping z — e*X Ae™*Fx is complex differentiable

and C' with
d

— e ARy = B [K, Al e *Fa.

dz

To apply the result we must show that K preserves D(H},;,) and that Hy, K is Hy,,-
bounded. To do this we will work with the cut-off operators g, and obtain the corre-
sponding results for K by the following lemma:

Lemma C.2.1. Let X be a Banach space, A : D(A) — X be a closed operator and
(Bi)pey C B(X) a collection of bounded operators such that By, — B € B(X) (in norm).
Suppose that all By preserve D(A) and that the commutators [By, Al : D(A) — X
converge pointwise to some C' : D(A) — X.
Then B also preserves D(A) and [B, Al = C.

Proof: Let © € D(A) be arbitrary. Then Byz — Bz by assumption, and likewise
AByx = BrAz — By, Alx — BAx — Ch. (C.2.1)
It follows by closedness of A that Bx € D(A), i.e. that B preserves D(A), and that
ABx = BAz — Cx (C.2.2)

ie. [B,A]=C.
O
We consider the operators Kg. For this we require another general result:

Lemma C.2.2. Let A: D(A) — X be a closed operator with core C and let K : X — X
be a bounded operator which maps C into D(A). Suppose that AK|, : C — X is Al.-
bounded. Then K preserves D(A) and AK : D(A) — X is A-bounded (with the same
relative bounds).
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Proof: Let x € D(A) be arbitrary. AsC is a core for A, there exists a sequence (zj),-, C C
such that
vy —x and Az — Az, k — oo. (C.2.3)

Since K is bounded, Kz, — Kz, and as AK|, is A|,-bounded, the fact that (Azy),,
converges implies that (AKxy),, also converges. By closedness of A it then follows that
Kz € D(A) and AKz, — AKxz. The first statement shows that K indeed preserves
D(A), while the second implies that AK : D(A) — X is A-bounded, since if ||[AK2'|| <
al|Ax'|| + b |z'|| for 2’ € C then also

|AKz|| = kILm |AK 2| < liznsup(a |Azg|| + 0|zk]|) = a||Ax|| + b]|z]] (C.24)
o —00

for x € D(A).

We can now prove that [Kg, Hy;, ] behaves as expected:

Proposition C.2.3. For any R € N it holds that Kr preserves D(H}, ) and

Kr, Hial = Y Q5({Kx, I })

keB(0,R)NZ3
( ) * D<H1,(1n)

H?(T3; C?), which is a core for Hj

Proof: First we note that Xz maps AL Lins into D(H; )

The operator by, can be written as

alg

1 S
brp = 73 Z C;—k:,acp,a = Z Z Opt p—kOg Pcp’ oCq o
= 0' 1p ,q 'c73
Z Z Up/ﬂ-, Up_k70> <up7m uq/77/> C;'J—Cq’,T’ (025)
0‘ 1p ,q rc7.3
1< ()

where ngi)kp |Up—k0) (Upo|. Now, dF(P( )kp) preserves AN H?(T®; C?) for any k,p € Z3
and 1 <o < s, as P( ) p Simply takes an inner product and projects onto u, , € H?(T3;C?®),

alg
s0 by, likewise preserves AN, H?(T?;C?). The same argument applies to bj. p» SO as a finite
sum of products of operators which preserve /\alg H?(T3;C?®), Kr also preserves this, hence
certainly maps it into D(H{;,) = D(Hyn) = NV H?(T3; (CS)

Having established that Hy, K is Well defined on AX
calculation we performed in Proposition shows that

Kr, Hil = > Q5({Kx, h}), (C.2.6)

keB(0,R)NZ3

alg

ag H2(T?; C*), we note that the
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at least on this domain. It follows that H{, g is H], -bounded here, since for any ¥ €
Nag H*(T?; C°)

[Hign KaW | < 1R Higy V| + 1R, Higo] VI < IKklop [Hig VI + TR, Higollop |(!‘I’H- |
C.2.7
Lemma now implies that ICg in fact preserves all of D(H];,) and the commutator

identity continues to hold.
O

We can now extend this to IC proper:

Proposition C.2.4. K preserves D(H,;,), the commutator

K, Hig,) = 3 Q5({Kx, lu})

kez3

D(Hllﬂn)
extends to a bounded operator on all of Hy, and H[; K is Hy,,-bounded.

Proof: By Lemma it only remains to be shown that limg e ;. c50.p)nz2 QE({ Ky, hi.})
exists on D(Hy;,). In fact this exists everywhere, since Proposition says that this is

ensured if Yy czs [[{ K, hi}||5g < o0, and by the one-body operator estimates of Section @
K hidlis = D Hew (K hud e = 30 [(Akp + Arg) (s Kreg)|
D,qELy P,gELy

<6P7Uk><vkveQ>
Akm'+'Akg

=D

p,qELy

()‘k‘,p + Ak,q)

- (Z \<ep,fuk>\2) (C.2.8)

PELy

A~ 2

ekt . .

= [ 2R <o(Ll) <CVR, ke
pELy 2<27T>

]
Proposition now gives us the following:

Corollary C.2.5. The operator e® H], e=* : D(H{,,) — Hx is a well-defined, self-adjoint
operator for all t € R, and for any ¥ € D(H},,) it holds that

d
76t’CH{dne—ﬂC\p = [K> Hl/dn] e = Z GUCQ];({KI«» hk})e_mq]

dt kez3
and this is continuous in t.
We now have all the necessary prerequisites to carefully implement Proposition [4.3.2}

Proposition C.2.6. The statement of Proposition holds pointwise on D(H,;,) and
eMH] e — H|. extends continuously to all of Hy .
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Proof: For any R € N, ¥\ 5 pynzs Q%(hy,) defines a bounded operator. Given ¥ €
D(H,;,;,) we can then conclude by the corollary that

aeﬁc Hin—2 Y Qi) |e ™
keB

B(0,R)NZ3

= etk ( Z Q5 ({ Ky, hi}) — Z {’C, Qlf(hk)}) ek (C.2.9)

kez3 keB(0,R)NZ3

eﬂC( Y Q({ K- Y QRe(f:;(hk)))e“C\y,

k€Z3\B(0,R) keB(0,R)NZ3

which upon rearrangement reads

d d
%et’CHﬁine’t’C\D = Eet’c (2 > Q’f(hk)) e (C.2.10)

k€eB(0,R)NZ3

—|—et’c( o UKL - Y 2Re(5;(hk)))et’<\1/.

k€Z3\B(0,R) keB(0,R)NZ3

As the corollary also ensures that this is continuous in ¢, hence Riemann integrable, the
fundamental theorem of calculus together with equation ((C.1.18)) shows that

K rr/ -K
e Hy e ™\

Hﬁm‘l“re’c(? > @’f(hk>)e’<wz S Qv

keB(0,R)NZ3 keB(0,R)NZ3

+/ ( > @UEGhb) - > 2Re(5;i(hk)))e“cxpdt (C.2.11)

keZ3\B(0,R) k€eB(0,R)NZ3

= > () k)T H, T+ S (2QF(hk(1) — ki) + Q5 (RE(1)) ) W

keB(0,R)\Z3 k€B(0,R)\Z3

+ Y / ti-ox (ex({Kr: hE(0)}) + 2Re(& (hp(t) — hi) ) + 2Re(ER(RA(1)) ) )~  wat

k€B(0,R)\Z3 0
1

+ Y / QR ([, hy e Wt
keZ3\B(0,R) 0

The formula of Proposition now follows provided we can take R — oo. As in the
previous subsection, this is possible if various sums involving the one-body operators h}(t)
and h}(t) are finite - but with respect to the notation in Section @,

hi(t) — hy = An, (t), hi(t) = By (t) —tP,,, (C.2.12)
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and the bounds derived in that section for these operators yield the desired estimates. The
same bounds also imply the boundedness of e*H}, e™ — H{, by the same argument.

O
C.3 Transformation of Oggr
For the short-range quartic terms
kEl R o,T
Qgp = m Z Vi Z Cpik.oCyrCathrCpo (C.3.1)
) kezs p.a€Ben(Bs—k)

we will switch our argument around and rather than cutting-off IC, cut-off Qgr instead,
and so consider for R € N the bounded operators

]{;*1 R o,T
> 3 Z Vi Z Cp+k,0Cq,7Cq+k,mCp,o- (032)
2 (2m)

k€B(0,R)NZE  p,geByn(Bs—k)

R
Q(SR) =

Now, we would like to say that Qsr¥ = limg_, Q(S?{)\IJ for any ¥ € D(Hy,,), but here
arises a technical point: How is QsrV defined? We obtained Qsr by manipulating the
second-quantized form of Hy, but a priori the action of this representation need only
be defined for elements of /\ivlg H?(T3;C*), with the general action captured by extension
arguments. Manipulating such forms can therefore be a delicate issue (had we not included
the additional quadratic terms in our definition of Q, for instance, this would not be a well-
defined operator, as an unavoidable infinity then appears for unbounded V).

We must therefore clarify what we mean by Qgg. We note the following:

Proposition C.3.1. Let >";cys V2 < 0o. Then for any ¥ € D(H],) = D(Hyy) it holds
that
R
(v, Q@w)| < C(I]° + || Hian W|I*)

for a C' > 0 independent of R.

Proof: By Cauchy-Schwarz and the triangle inequality in the form |k| = |[p+k — p| <
lp + k| + |p| we can estimate

k_l R o, T

R

(oW < X G Y et eVl (C33)
(2m) k€B(0,R)NZI  p,qeBEN(Bg—k)

; - I+ p+ Kl gl + lg + K|
<C Z Vi Z I&] B [¢qrCorho | Cqtnrcpo |

keB(0,R)NZ3 p,qu;m(BcF—k)

‘Zﬂ o,T
<C Y 3 > (pllal +Iplla + &) llegrepino ¥l g s rcoo Yl

L
keB(0,R)NZ3 p.a€BEN(Bs—k)
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where we apply the symmetry of the summations to reduce the consideration of
(Il + lp + E)(la| + lg + k) (C.3.4)

to the two terms |p| |g| and |p| |¢ + k|. For the first kind of terms we bound as

o, T

> Ipllalllcarcpino®ll lcgrnrcoo Yl
p.a€BEN(Bs—k)
o,T o,T
2 2 2 2
< Z IpI” leqga,rCpo V| Z 19 [|cqrcpino Y| (C.3.5)
P.a€BEN(Bg—k) P.a€BEN(Bg—k)
ag 1 ag
2 1 Af3 2 2
< > pPINVMEg P X IpFlle.Yll
peB&N(Bs—k) peB&N(Bs—k)

< Oz, < C(I10IP + | Hia ).

1
For the second, observe that in the same manner one can show that %, [NZ¢,,P|]? <
1
S5 lep o NP2, as noted in equation (7.1.18)), it follows that

S 1 i 1
> HZ ooVl < Y [lep o HE T (C.3.6)
o=1 o=1
We may then estimate
> Il + El llcgrcpino ¥l llcginrcpo P
p.a€BEN(Bs—k)
o, T 2 2 2 o, T 2
< > P la+F llcgirrcno | S legrtpina Y (C3.7)
p.a€ByN(Bs—k) p.a€BEN(Bg—k)
< S P IHA Y NEY] < C Y [ Han V]| < C(1[W]* + || Hian V]I*),
peB&N(Bs—k)
so in all
Vi ) 2
W Qun <Ol > o (1w )® + || Hign @) (C.3.8)

keB(0,R)NZ3

<O [ S IR + | Han W) < C(10 ) + ([ Hian ¥ ).
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By the proposition (or rather, its argument) it follows as we have used repeatedly
throughout this section that for any W € D(H},,), the sequence <<\If, Q(SIEE{)\IJ»Z{CL1 is
Cauchy, hence converges, and so we can define Qgg in quadratic form sense on all of
D(HY;,) by this limiting procedure?]

Having clarified Qggr, the transformation formula now follows by the calculations of the
main text: For any R € N we have

LRk = ol 4 / (2Re(G™M))e™at (C.3.9)

where G is given by

o,T

1
ngk,—l 9 * *
g(R) - £ Z Z V;c Z 1Lz<Q)Cp,obl(Kl6q)c—q+l,7—c—q+k,7'cp—k,o

(2m)°

T keB(0,R)NZ3 1€Z3 p,qugﬂ(B;Hf)

sV k! o

2 (27) Z Z Vi Z 17,(p)1r,(q) (Kieq, ep) Cp—t,0C 1,7 C— k7 Cp—kio-
( 7T) k€B(0,R)NZ3 IEZE  p, qu%m(B%+k)

The same estimates used in Proposition now apply to show G — G in norm as
R — o0, so for any ¥ € D(H},,)

U, e~ Qspe ™ W) = lim \Il,e’CQéﬁ)e*K\If
R—o0
:1%1320(@, QéRR’\I/>+/01 (0, (2Re(GM)) e 0) dt) (C.3.10)
= (V.05 ¥) + [ (W, e (2Re(@))e™ W ) dt

which is the claim.

2The cubic terms C arguably warrant a similar justification, but this can be handled by the same kind
of arguments we have just used, so we omit this.
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