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Abstract

English
This thesis concerns the correlation structure of interacting Fermi gases on a torus in
the mean-field regime. A bosonization method in the spirit of Sawada[6] is developed to
analyze the system, and is applied to obtain an upper bound for the correlation energy
of the system for a wide class of repulsive interaction potentials, including the Coulomb
potential.

This upper bound includes both a bosonic contribution, as found in the bosonic model
of Sawada, and an exchange contribution, as was found by Gell-Mann and Brueckner[5]
but which was missed by Sawada’s model.

An extension to weakly attractive potentials is also presented, as is an outline of the
derivation of an effective Hamiltonian for regular interaction potentials, and the construc-
tion of plasmon states for this outside of the mean-field setting.

This thesis is based on the papers [11, 12, 13].

Deutsch
Diese Dissertation betrifft die Korrelationsstruktur der wechselwirkenden Fermi Gase auf
einem Torus im Mittelfeldregime. Es wird eine Bosonisierungsmethode im Geist von
Sawada[6] entwickelt, um das System zu analysieren und zur Herleitung einer oberen
Schranke der Korrelationsenergie des Systems für eine breite Klasse von abstoßenden Wech-
selwirkungspotenziale, einschließlich des Coulomb-Potenzials.

Diese obere Schranke beinhaltet sowohl einen bosonisches Beitrag, wie in dem bosonis-
chen Modell von Sawada, als auch einen Vertauschungsbeitrag, wie er von Gell-Mann und
Brueckner[5] entdeckt wurde, der aber von Sawadas Modell nicht erfasst wurde.

Eine Erweiterung zu schwach attraktiven Potenzialen wird ebenfalls vorgestellt, ebenso
wie ein Umriss der Herleitung eines effektiven Hamiltonoperators für reguläre Wechsel-
wirkungspotenziale, und die Konstruktion von Plasmonzuständen für diesen außerhalb des
Mittelfeldrahmens.

Diese Dissertation basiert auf den Fachartikeln [11, 12, 13].
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Chapter 1

Introduction

A Fermi gas is a quantum system described by a Hamiltonian of the form

H = −
N∑

i=1
∆i +

∑
1≤i<j≤N

V (xi − xj)

on a fermionic N -particle space. Here the first term represents the kinetic energy of the
fermions (in units where ℏ2

2m
= 1) while the second term represents pair interactions through

a potential V .
The potential of greatest physical interest is the (background-subtracted) Coulomb

potential, in which case the system is referred to as jellium. Jellium is the simplest model
of electrons in a metal which still includes all electron-electron interactions.

In the 1930-40’s, theoretical calculations based on applying the Hartree-Fock approxi-
mation to the jellium model exhibited a large discrepancy when compared to experimental
values. Furthermore, pertubative methods broke down already at second-order, present-
ing the physicists of the time with the puzzle of how to model an interacting many-body
system without being able to apply perturbative methods.

As the Hartree-Fock approximation amounts to neglecting particle correlations, the
question was how to include these in the computation. The first steps toward this was
taken in the early 1950’s by Bohm and Pines[1, 2, 3, 4], who argued that the correlations
at play were of an essentially bosonic nature, which would manifest itself as quantized
collective electron oscillations, which they dubbed plasmons.

Adding plasmon modes to the jellium model by hand, they argued that these served
to regularize the electron-electron interaction to the point that second-order perturbation
could be applied - provided that certain terms appearing in their analysis could be ne-
glected, the assumption of which was referred to as the “Random Phase Approximation”
(RPA).

The validity of the RPA and the manner in which the plasmons were introduced was
a somewhat controversial issue, but they were effectively justified by two later works: The
first was by Gell-Mann and Brueckner[5], who were able to derive the correlation energy
- the difference between the ground state and Fermi state energies - of the jellium model
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directly, by performing a formal resummation of the divergent perturbation series for this,
and finding agreement with Pines’ calculation.

The second work was by Sawada[6] (and expanded on by Sawada-Brueckner-Fukuda-
Brout[7]). He observed that certain terms of the Hamiltonian could, when expressed in the
second-quantized picture, be interpreted as quadratic operators with respect to almost-
bosonic operators. By studying this corresponding bosonic Hamiltonian, he was also able
to derive the correlation energy - with the exception of one term, which was explicitly
fermionic in nature.

With these works, the correlation energy was thought to be well-understood by the
physics community, but presenting a mathematically rigorous derivation of this remains a
major open problem in mathematical physics to this day. Recently there has however been
much progress on the corresponding mean-field problem, in which the potential is scaled
by a factor proportional to N− 1

3 .
The first results on this problem were by Benedikter-Nam-Porta-Schlein-Seiringer[8, 9]

(see also [10]), who were able to prove an asymptotic formula for the correlation energy
for highly regular potentials V by employing a bosonization method, albeit in a manner
different from Sawada’s original observation, to define an analog of a bosonic Bogolubov
transformation which could be applied to analyze the system.

Subsequently I and my Ph.D. advisors extended this result significantly in [11], in
which we both proved an asymptotic formula for the correlation energy for more general
potentials and additionally derived an effective quasi-bosonic Hamiltonian governing the
low-lying eigenstates of the Fermi gas. We accomplished this by developing a bosonization
method different from that of [8, 9] and more in the spirit of Sawada.

The aim of this thesis is to present this method and the results we have obtained by it.

1.1 Main Results
Before stating the main results, let us introduce the setting properly and define some
notation: We consider for a given Fermi momentum kF > 0 the mean-field Hamiltonian

HN = −
N∑

i=1
∆i + k−1

F

∑
1≤i<j≤N

V (xi − xj) (1.1.1)

on HN = ∧N L2(T3;Cs), where T3 is the 3-torus of sidelength 2π and s ∈ N is the number
of spin states of the system. The number of particles, N , is determined by kF through the
relation N = s

∣∣∣B(0, kF ) ∩ Z3
∣∣∣.

We take the interaction potential V to admit the Fourier decomposition

V (x) = 1
(2π)3

∑
k∈Z3

V̂ke
ik·x (1.1.2)

and assume that the Fourier coefficients obey (with Z3
∗ = Z3\{0})

V̂k = V̂−k and V̂k ≥ 0, k ∈ Z3
∗, (1.1.3)
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in other words we consider a symmetric and repulsive interaction potential.
We define for k ∈ Z3

∗ the lune Lk by

Lk =
{
p ∈ Z3 | |p− k| ≤ kF < |p|

}
(1.1.4)

and let further λk,p = 1
2

(
|p|2 − |p− k|2

)
for p ∈ Lk.

The main focus of the thesis is the derivation of the following:
Theorem 1.1.1. Let ∑k∈Z3 V̂ 2

k < ∞. Then it holds that

inf(σ(HN)) ≤ EF + Ecorr,bos + Ecorr,ex + C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }, kF → ∞,

where EF = ⟨ψF , HNψF ⟩ is the energy of the Fermi state,

Ecorr,bos = 1
π

∑
k∈Z3

∗

∫ ∞

0
F

sV̂kk
−1
F

(2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

dt, F (x) = log(1 + x) − x,

is the bosonic contribution (to the correlation energy) and

Ecorr,ex = sk−2
F

4 (2π)6
∑

k,l∈Z3
∗

V̂kV̂l

∑
p,q∈Lk∩Ll

δp+q,k+l

λk,p + λk,q

is the exchange contribution, for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.
This result was originally presented in [13] (for s = 1). Although we have so far

only been able to prove this asymptotic statement as an upper bound, it constitutes a
major improvement over the corresponding one of [11]: Not only does it apply to singular
potentials (including the Coulomb potential), it also includes the “exchange contribution”
Ecorr,ex, which is the term that was missing from Sawada’s purely bosonic model, and
which was also lacking in the previously proved results for non-singular potentials (for
which Ecorr,ex is of much lower order than the rest).

In the case of the Coulomb potential, i.e. V̂k ∼ |k|−2, Ecorr,bos is of order kF log(kF )
and Ecorr,ex is of order kF , while the error term of the theorem is of order

√
log(kF ). The

precision of the result is thus almost an entire order of magnitude. Furthermore, we may
observe that for any potential with ∑k∈Z3 V̂ 2

k < ∞, the error term is at most of order
√
kF

whereas Ecorr,bos is at least order kF , so there is always a sharp distinction between the
correlation energy and the error term.

After concluding this theorem we will make the observation that our proof in fact allows
us to generalize this result to slightly attractive potentials, proving the following:
Theorem 1.1.2. Assuming the weaker condition that V̂k ≥ −(1 − ϵ)4π2

s
for some ϵ > 0

and all k ∈ Z3
∗, it continues to hold that

inf(σ(HN)) ≤ EF + Ecorr,bos + Ecorr,ex + C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }, kF → ∞,

where now C > 0 depends on ∑
k∈Z3

∗
V̂ 2

k , s and ϵ.
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This result has not been presented before. We remark that the condition on V̂k is nearly
optimal, in the sense that if V̂k < −4π2

s
for some k ∈ Z3

∗ then the corresponding term of
Ecorr,bos is not even well-defined, as the argument of the logarithm of the integrand is then
strictly negative near t = 0.

These results only concern upper bounds for the ground state energy of HN . In [11]
we also proved the following stronger operator-level result regarding HN , albeit only under
high regularity assumptions on V :

Theorem 1.1.3. Let ∑k∈Z3
∗
V̂k |k| < ∞. Then there exists a unitary transformation U :

HN → HN , depending implicitly upon kF , such that

UHNU∗ = EF + Ecorr,bos +Heff + E

where
Heff = H ′

kin + 2
∑

k∈Z3
∗

∑
p,q∈Lk

⟨ep, (Ẽk − hk)eq⟩b∗
k,pbk,q

for Ẽk =
(
h

1
2
k (hk + 2Pk)h

1
2
k

) 1
2
.

Furthermore, it holds for every normalized eigenstate Ψ of HN with ⟨Ψ, HNΨ⟩ ≤ EF +
κkF , κ > 0, that the error operator E obeys

|⟨Ψ, EΨ⟩| , |⟨UΨ, EUΨ⟩| ≤ Ck
1− 1

94 +ε

F , kF → ∞,

for any ε > 0, the constant C > 0 depending only on V , κ and ε.

In words, the theorem states that the Hamiltonian HN is, with respect to the low-lying
eigenstates (as demarked by the condition ⟨Ψ, HNΨ⟩ ≤ EF + κkF ), up to the constant
terms EF + Ecorr,bos unitarily equivalent with the effective Hamiltonian Heff , to leading
order in kF .

Here the effective Hamiltonian consists of two parts: The localized kinetic operator H ′
kin,

which appears naturally during the extraction of EF , and a quasi-bosonic term involving
the excitation operators (for s = 1)

bk,p = c∗
p−kcp, b∗

k,p = c∗
pcp−k, k ∈ Z3

∗, p ∈ Lk, (1.1.5)

where (c∗
p)p∈Z3

∗
and (cp)p∈Z3

∗
denote the fermionic creation and annihilation operators asso-

ciated with the plane-wave states. In the definition of the quasi-bosonic term also appears
certain “one-body operators” hk, Pk : ℓ2(Lk) → ℓ2(Lk) which naturally appear during the
diagonalization process which extracts Ecorr,bos.

From the fact that Ẽk ≥ hk it follows that Heff ≥ 0, so (as the ground state certainly
is low-lying) the theorem in particular implies that

inf(σ(HN)) = EF + Ecorr,bos +O
(
k

1− 1
94 +ε

F

)
, kF → ∞, (1.1.6)
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i.e. the ground-state energy is indeed EF +Ecorr,bos to leading order, provided∑k∈Z3
∗
V̂k |k| <

∞. Note that Ecorr,ex is absent, which is a consequence of the assumed regularity - even
just assuming boundedness of V , i.e. that ∑k∈Z3

∗
V̂k < ∞, it holds that Ecorr,ex ≤ Ck−1

F .
We will not give a full proof of Theorem 1.1.3 in this thesis, but in Section 10 we present

the main ideas and techniques that lead to its conclusion.
What is particularly noteworthy about Theorem 1.1.3 is that it not only yields a lower

bound on the correlation energy, but also identifies the operator which should govern the
low-lying excitations of the system - in the physical case this would include the plasmon
states. Unfortunately the mean-field scaling suppresses these states, making it difficult to
say much about Heff in this setting.

Given the physical importance of plasmons it is however interesting to extrapolate
this result and consider Heff by itself without imposing the mean-field scaling or strict
regularity assumptions on the potential, which is what we did in [12], obtaining a result of
the following form:

Theorem 1.1.4. In the non-mean-field scaled setting the following holds: Let V̂k = g |k|−2,
k ∈ Z3

∗, for some g > 0. Then for any δ ∈
(
0, 1

2

)
and ε ∈ (0, 2) there exists for all

k ∈ B
(
0, kδ

F

)
∩ Z3

∗ and M ≤ kε
F a normalized state Ψ ∈ HN such that

∥(Heff −Mϵk)Ψ∥ ≤ C |k|−1
√
kFM

5
2 , kF → ∞,

where ϵk denotes the greatest eigenvalue of 2Ẽk. ϵk obeys ϵk ≥ ck
3
2
F and

0 ≤ ϵk − 2
√√√√ s

(2π)3
g

|k|2
∑

p∈Lk

λk,p +
∑

p∈Lk
λ3

k,p∑
p∈Lk

λk,p

≤ Ck
− 1

2
F |k|4 , kF → ∞,

for constants c, C > 0 depending only on g.

We present a proof of this in Section 11.
The theorem states that for k and M in certain ranges, there exists an “approximate

eigenvector” Ψ for Heff with approximate eigenvalue Mϵk - in fact Ψ is explicitly given as
the normalization of

b∗(ϕ)MψF , b∗
k(ϕ) =

∑
p∈Lk

⟨ep, ϕ⟩ b∗
k,p, (1.1.7)

where ϕ is the normalized eigenstate of 2Ẽ with eigenvalue ϵk, which mimics the definition
of a bosonic state with M “ϕ excitations”.

Calling Ψ an approximate eigenvector is justified by Markov’s inequality in the operator
form 1R\[E−δ,E+δ](H) ≤ δ−1 |H − E|, as it implies that∥∥∥1R\[Mεk−δ,Mεk+δ](Heff)Ψ

∥∥∥ ≪ 1, |k|−1
√
kFM

5
2 ≪ δ, (1.1.8)

i.e. Ψ is spectrally localized at E = Mεk on the scale |k|−1 √
kFM

5
2 . As Mεk ∼ Mk

3
2
F

this is a nontrivial statement for M ≪ (kF |k|)
2
3 . One can also view this in a dynamical
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setting: By the time evolution estimate
∥∥∥(e−itH − e−itE

)
ψ
∥∥∥ ≤ ∥(H − E)ψ∥ t the theorem

implies that ∥∥∥(e−itHeff − eiMϵkt
)
Ψ
∥∥∥ ≪ 1, Mϵkt ≪ kF |k|M− 3

2 ; (1.1.9)

as (Mϵk)−1 is the characteristic timescale of oscillation of Ψ this is again non-trivial for
M ≪ (kF |k|)

2
3 .

The formula for ϵk is also interesting - if one formally replaces the Riemann sums by
their corresponding integrals, one finds that (to leading order)

ϵk ∼
√

2gn+ 12
5 k

2
F |k|2 (1.1.10)

where n = N
(2π)3 = s|BF |

(2π)3 ∼ 1
(2π)3

4πs
3 k

3
F is the number density of the system. In the physical

case g = 4πe2 (e being the elementary charge), so recalling that ℏ2

2m
= 1 we find

ϵk ∼
√

8πe2n
ℏ2

2m + 12
5 k

2
F |k|2 = ℏ

√
4πne2

m
+ 12

5
k2

F |k|2

ℏ2 = ℏ
√
ω2

0 + 3
5v

2
F |k|2 (1.1.11)

where ω0 =
√

4πne2

m
is the famous plasmon frequency (in CGS units) and vF = m−1ℏkF =

2ℏ−1kF is the Fermi velocity, corresponding to the well-known plasmon frequency dispersion
relation

ω2
k ≈ ω2

0 + 3
5v

2
F |k|2 . (1.1.12)

This shows that if Theorem 1.1.3 could be generalized to the full physical setting, it would
not only account for the correlation energy but also for the plasmons predicted by Bohm
and Pines in the 1950’s.

Although proving such a result would be an extremely challenging task, it is our hope
that the work covered by this thesis will be useful in this endeavor.

1.2 Outline of the Thesis
We begin our analysis of the Hamiltonian HN in Section 2 by extracting the leading order
contribution to the ground state energy of HN , which is the energy of the Fermi state ψF .
We do this by normal-ordering HN (in its second-quantized form) “with respect to ψF ”.
After doing so we observe that the resulting terms which violate the separation between
states inside and outside the Fermi ball are quasi-bosonic, in that they obey commutation
relations reminiscent of the canonical commutation relations of a bosonic system.

In Section 3 we review the theory of bosonic Bogolubov transformations, originally
introduced in [14] to explain the phenomenon of superfluidity, to prepare for the analysis
of the quasi-bosonic operators. In particular we describe how one may explicitly define a
Bogolubov transformation which diagonalizes a given positive-definite quadratic Hamilto-
nian.



1.2 Outline of the Thesis 7

We then apply the bosonic theory to our study of the Fermi gas in Section 4 wherein
we implement the diagonalization procedure in the quasi-bosonic setting. This is done by
mimicking the bosonic case to define a quasi-bosonic Bogolubov transformation eK which
diagonalizes the bosonizable terms of HN up to exchange terms - terms which arise due to
the deviation from the exact CCR.

In Section 5 we justify that the transformation eK is well-defined by establishing that
the generating kernel K is in fact a bounded operator under the condition ∑k∈Z3

∗
V̂ 2

k < ∞.
More generally we establish a bound on K in terms of the excitation number operator NE

which will also allow us to control error terms later on by a Gronwall-type argument.
In order to analyze the exchange terms which appeared during the diagonalization

procedure we require detailed information on the one-body operators of the correspond-
ing bosonic problem. We analyze these in section 6, obtaining asymptotically optimal
elementwise estimates of the main operators.

We then turn to the exchange terms themselves in Section 7. By performing a detailed
analysis of all of the possible kinds of terms which emerge from these upon normal-ordering
with respect to ψF , we extract the exchange contribution Ecorr,ex and bound the remaining
terms using NE.

In Section 8 we bring all our work together. After deriving bounds on the non-
bosonizable terms - the terms of HN which do not fit into the quasi-bosonic setting -
we apply our prior results to estimate the energy of the trial state eKψF , which results in
the proof of Theorem 1.1.1.

This is followed by Section 9 wherein we describe the modifications necessary to extend
Theorem 1.1.1 to weakly attractive potentials in order to conclude Theorem 1.1.2.

In Section 10 we first present a general outline of the approach that leads to Theorem
1.1.3, followed by a more detalied examination of the key ideas which leads to its conclusion.

Finally, in Section 11, we consider plasmon states for the effective operator of Theorem
1.1.3 in the non-mean-field setting, proving a generalization of Theorem 1.1.4 valid for
arbitrary repulsive potentials V .
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Chapter 2

Localization of the Hamiltonian at
the Fermi State

In this section we begin our study of the interacting Fermi gas by extracting the energy
of the Fermi state ψF from the Hamiltonian operator HN . We do this by normal-ordering
HN “with respect to ψF ”, a procedure which we refer to as localization since it serves to
fix ψF as our point of reference, making it analogous to the vacuum state of a field theory.

The result of this procedure is summarized in the following:

Proposition 2.0.1. It holds that

HN = EF +H ′
kin +

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
+ C + Q

where EF = ⟨ψF , HNψF ⟩ is the energy of the Fermi state,

H ′
kin =

σ∑
p∈Bc

F

|p|2 c∗
p,σcp,σ −

σ∑
p∈BF

|p|2 cp,σc
∗
p,σ, Bk =

σ∑
p∈Lk

c∗
p−k,σcp,σ,

and

C = k−1
F

(2π)3
∑

k∈Z3
∗

V̂k Re
((
Bk +B∗

−k

)∗
Dk

)

Q = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

D∗
kDk −

σ∑
p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

)
for Dk = dΓ

(
PBF

e−ik·xPBF

)
+ dΓ

(
PBc

F
e−ik·xPBc

F

)
.

After carrying out this procedure we will see how the concept of quasi-bosonicity
emerges: The operators Bk of the above representation obey commutation relations which
are analogous to the canonical commutation relations of a bosonic system. We end the
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section by exploring this phenomenon, in particular showing how the kinetic operator H ′
kin

can be made to fit into such a bosonic picture by considering the excitation operators

bk,p = 1√
s

s∑
σ=1

c∗
p−k,σcp,σ, b∗

k,p = 1√
s

s∑
σ=1

c∗
p,σcp−k,σ. (2.0.1)

2.1 Notation and Conventions
Before we begin the analysis proper we review the notation which we will use throughout
the paper.

We consider the one-particle space h = L2(T3;Cs), where T3 = [0, 2π]3 with periodic
boundary conditions and s ∈ N is the number of spin states of the system. We denote by
HN = ∧N h the associated fermionic N -particle space.

h is spanned by the orthonormal basis of plane wave states (up,σ)1≤σ≤s
p∈Z3 , given by

up,σ(x) = (2π)− 3
2 eip·xvσ, p ∈ Z3, (2.1.1)

where vσ denotes the σ-th standard basis vector of Cs.
We denote by c∗

p,σ, cp,σ the creation and annihilation operators associated to the plane
wave states, which obey the canonical anticommutation relations (CAR){

cp,σ, c
∗
q,τ

}
= δp,qδσ,τ , {cp,σ, cq,τ } = 0 =

{
c∗

p,σ, c
∗
q,τ

}
, (2.1.2)

for all p, q ∈ Z3 and 1 ≤ σ, τ ≤ s.
Sums involving the creation and annihilation operators will generally run over all spin

states. To reduce clutter we will denote this by writing the summed indices over the sum
signs, leaving the summation range implicit, e.g. for the number operators N we simply
write

N =
∑

p∈Z3

s∑
σ=1

c∗
p,σcp,σ =

σ∑
p∈Z3

c∗
p,σcp,σ. (2.1.3)

For a given Fermi momentum kF > 0 we denote by BF the (closed) Fermi ball

BF = B(0, kF ) ∩ Z3 (2.1.4)

and write Bc
F for the complement of BF with respect to Z3. We define ψF to be the Fermi

state
ψF =

σ∧
p∈BF

up,σ ∈ HN , N = s |BF | . (2.1.5)

For the sake of brevity we define Z3
∗ = Z3\ {0} and for k ∈ Z3

∗ define the lune Lk by

Lk = (BF + k)\BF =
{
p ∈ Z3 | |p− k| ≤ kF < |p|

}
. (2.1.6)
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The Hamiltonian Operator HN

We consider for given kF > 0 the mean-field Hamiltonian

HN = Hkin + k−1
F Hint, D(HN) = D(Hkin), (2.1.7)

on HN , where N = s |BF |. Hkin is the standard kinetic operator

Hkin = dΓ(−∆) = −
N∑

i=1
∆i, D(Hkin) =

N∧
H2
(
T3;Cs

)
, (2.1.8)

and Hint describes the pairwise interaction between N particles through a potential V :
T3 → R,

Hint =
∑

1≤i<j≤N

V (xi − xj). (2.1.9)

We will take V ∈ L2(T3), in which case HN is a self-adjoint operator on HN . Letting the
Fourier decomposition of V be given by

V (x) = 1
(2π)3

∑
k∈Z3

V̂ke
ik·x (2.1.10)

we furthermore assume that V̂k = V̂−k and V̂k ≥ 0 for all k ∈ Z3
∗, i.e. that V is repulsive.

For the remainder of the thesis we will work in the second-quantized picture, in which
it is well-known that Hkin and Hint can be expressed as

Hkin =
σ∑

p∈Z3

|p|2 c∗
p,σcp,σ, Hint = 1

2 (2π)3
∑

k∈Z3

V̂k

σ,τ∑
p,q∈Z3

c∗
p+k,σc

∗
q−k,τcq,τcp,σ. (2.1.11)

2.2 Extraction of the Fermi State Energy
It is well-known that the Fermi state ψF is characterized by the conditions

cpψF = 0 = c∗
qψF , p ∈ Bc

F , q ∈ BF , (2.2.1)

and so the Fermi state energy EF = ⟨ψF , HNψF ⟩ can be extracted from HN by normal-
ordering this “with respect to ψF ”, in the sense that the creation and annihilation operators
of equation (2.1.11) are normal-ordered as if c∗

p,σ were an annihilation operator for p ∈ BF .
Consider first the kinetic operator: By the CAR we can write Hkin in the form

Hkin =
σ∑

p∈Bc
F

|p|2 c∗
p,σcp,σ +

σ∑
p∈BF

|p|2 c∗
p,σcp,σ =

σ∑
p∈Bc

F

|p|2 c∗
p,σcp,σ +

σ∑
p∈BF

|p|2 −
σ∑

p∈BF

|p|2 cp,σc
∗
p,σ

= s
∑

p∈BF

|p|2 +H ′
kin (2.2.2)
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where we define the localized kinetic operator H ′
kin : D(Hkin) ⊂ HN → HN by

H ′
kin =

σ∑
p∈Bc

F

|p|2 c∗
p,σcp,σ −

σ∑
p∈BF

|p|2 cp,σc
∗
p,σ. (2.2.3)

H ′
kin is clearly normal-ordered with respect to ψF , and so the quantity s∑p∈BF

|p|2 is simply
the kinetic energy of ψF , whence we can write the relation between Hkin and H ′

kin as

Hkin = ⟨ψF , HkinψF ⟩ +H ′
kin. (2.2.4)

To normal-order Hint we first rewrite this in a factorized form: By the CAR we can write

Hint = 1
2 (2π)3

∑
k∈Z3

V̂k

σ,τ∑
p,q∈Z3

c∗
p+k,σ

(
cp,σc

∗
q−k,τ − δp,q−kδσ,τ

)
cq,τ

= 1
2 (2π)3

∑
k∈Z3

V̂k

 σ∑
p∈Z3

c∗
p+k,σcp,σ

 τ∑
q∈Z3

c∗
q−k,τcq,τ

−
σ∑

q∈Z3

c∗
q,σcq,σ

 (2.2.5)

= 1
2 (2π)3

∑
k∈Z3

V̂k

(
dΓ
(
e−ik·x

)∗
dΓ
(
e−ik·x

)
− N

)

= N(N − 1)
2 (2π)3 V̂0 + 1

2 (2π)3
∑

k∈Z3
∗

V̂k

(
dΓ
(
e−ik·x

)∗
dΓ
(
e−ik·x

)
−N

)

where we recognized the operator dΓ
(
e−ik·x

)
as

dΓ
(
e−ik·x

)
=

σ,τ∑
p,q∈Z3

〈
up,σ, e

−ik·xuq,τ

〉
c∗

p,σcq,τ =
σ,τ∑

p,q∈Z3

δp,q−kδσ,τc
∗
p,σcq,τ =

τ∑
q∈Z3

c∗
q−k,τcq,τ

(2.2.6)
and used that dΓ

(
e−i(0·x)

)
= dΓ(1) = N = N on HN . Now, with PBF

: h → h denoting the
orthogonal projection onto span(up,σ)1≤σ≤s

p∈Z3 and PBc
F

= 1 − PBF
denoting its complement,

we can decompose dΓ
(
e−ik·x

)
as

dΓ
(
e−ik·x

)
= dΓ

((
PBF

+ PBc
F

)
e−ik·x

(
PBF

+ PBc
F

))
= Bk +B∗

−k +Dk (2.2.7)

where the operator Bk is given by

Bk = dΓ
(
PBF

e−ik·xPBc
F

)
=

σ∑
p∈BF

τ∑
q∈Bc

F

δp,q−kδσ,τc
∗
p,σcq,τ =

τ∑
q∈Lk

c∗
q−k,τcq,τ (2.2.8)

as the Kronecker delta δp,q−k precisely restrict the summation to q ∈ Lk, and the operator
Dk is simply

Dk = dΓ
(
PBF

e−ik·xPBF

)
+ dΓ

(
PBc

F
e−ik·xPBc

F

)
. (2.2.9)
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We can thus write Hint as

Hint = N(N − 1)
2 (2π)3 V̂0 + 1

2 (2π)3
∑

k∈Z3
∗

V̂k

(((
Bk +B∗

−k

)∗(
Bk +B∗

−k

)
−N

)
(2.2.10)

+2 Re
((
Bk +B∗

−k

)∗
Dk

)
+D∗

kDk

)
.

Now, it is easily verified that BkψF = DkψF = D∗
kψF = 0 for any k ∈ Z3

∗, and so the terms
on the last line are effectively normal-ordered, and it only remains to normal-order the
terms of the first sum. For this we calculate the commutator [Bk, B

∗
k]: By the CAR and

basic commutator identities, we find that

[Bk, B
∗
k] =

σ∑
p∈Lk

τ∑
q∈Lk

[
c∗

p−k,σcp,σ, c
∗
q,τcq−k,τ

]

=
σ∑

p∈Lk

τ∑
q∈Lk

(
c∗

p−k,σ

[
cp,σ, c

∗
q,τcq−k,τ

]
+
[
c∗

p−k,σ, c
∗
q,τcq−k,τ

]
cp,σ

)

=
σ∑

p∈Lk

τ∑
q∈Lk

c∗
p−k,σ

({
cp,σ, c

∗
q,τ

}
cq−k,τ − c∗

q,τ {cp,σ, cq−k,τ }
)

(2.2.11)

+
σ∑

p∈Lk

τ∑
q∈Lk

({
c∗

p−k,σ, c
∗
q,τ

}
cq−k,τ − c∗

q,τ

{
c∗

p−k,σ, cq−k,τ

})
cp,σ

=
σ∑

p∈Lk

τ∑
q∈Lk

δp,qδσ,τc
∗
p−k,σcq−k,τ −

σ∑
p∈Lk

τ∑
q∈Lk

δp−k,q−kδσ,τc
∗
q,τcp,σ

=
σ∑

p∈Lk

c∗
p−k,σcp−k,σ −

σ∑
p∈Lk

c∗
p,σcp,σ = s |Lk| −

σ∑
p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

)

and using also that V̂k = V̂−k we may then write Hint as

Hint = N(N − 1)
2 (2π)3 V̂0 − 1

2 (2π)3
∑

k∈Z3
∗

V̂k(N − s |Lk|) + 1
2 (2π)3

∑
k∈Z3

∗

V̂k

(
2B∗

kBk +B∗
kB

∗
−k +B−kBk

)

+ 1
2 (2π)3

∑
k∈Z3

∗

V̂k

2 Re
((
Bk +B∗

−k

)∗
Dk

)
+D∗

kDk −
σ∑

p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

).
(2.2.12)

Note that the sum ∑
k∈Z3

∗
V̂k(N − s |Lk|) is actually finite, as s |Lk| = s |BF | = N when

|k| > 2kF .
The terms on the right-hand side of this equation are now normal-ordered, and in

particular we see that

⟨ψF , HintψF ⟩ = N(N − 1)
2 (2π)3 V̂0 − 1

2 (2π)3
∑

k∈Z3
∗

V̂k(N − s |Lk|) (2.2.13)
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whence we can write

k−1
F Hint =

〈
ψF , k

−1
F HintψF

〉
+
∑

k∈Z3
∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +B∗
kB

∗
−k +B−kBk

)
+ C + Q (2.2.14)

where the cubic and quartic terms C and Q are defined by

C = k−1
F

(2π)3
∑

k∈Z3
∗

V̂k Re
((
Bk +B∗

−k

)∗
Dk

)
(2.2.15)

Q = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

D∗
kDk −

σ∑
p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

).
The terms C and Q constitute the non-bosonizable terms: They fall outside the quasi-
bosonic approach we will introduce below, and so we consider them as error terms to be
analyzed separately at the end.

Combining the equations (2.2.4) and (2.2.14) now yields Proposition 2.0.1.

2.3 Remarks on the Localization Procedure
Before continuing with our analysis we must comment on some subtle details of the local-
ization procedure.

Consider the localized kinetic operator H ′
kin, which we defined by

H ′
kin =

σ∑
p∈Bc

F

|p|2 c∗
p,σcp,σ −

σ∑
p∈BF

|p|2 cp,σc
∗
p,σ. (2.3.1)

This expression is a sum of two terms, one manifestly positive and one manifestly nega-
tive. As the creation and annihilation operator for orthogonal states are (algebraically)
independent, one would therefore not expect H ′

kin to have a definite sign. But this is not
the case, as we can argue that

H ′
kin = Hkin − ⟨ψF , HkinψF ⟩ ≥ 0 (2.3.2)

since ⟨ψF , HkinψF ⟩ is the ground state energy of Hkin.
The resolution of this apparent paradox lies in the domains of definition: The argument

for non-definiteness ofH ′
kin is valid when viewed as an operator on the full Fock space F−(h),

where the assertion that ⟨ψF , HkinψF ⟩ is the ground state energy of Hkin is wrong.
That H ′

kin ≥ 0 is nonetheless correct when viewed as an operator on HN , precisely
by the second observation. The first argument fails in this case because the creation and
annihilation operators (or more precisely, the products c∗

p,σcp,σ) are not independent on
HN : Normal-ordering N with respect to ψF , we see that

N = N =
σ∑

p∈Z3

c∗
p,σcp,σ =

σ∑
p∈Bc

F

c∗
p,σcp,σ +

σ∑
p∈BF

1 −
σ∑

p∈BF

cp,σc
∗
p,σ (2.3.3)
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= s |BF | +
σ∑

p∈Bc
F

c∗
p,σcp,σ −

σ∑
p∈BF

cp,σc
∗
p,σ,

so as N = s |BF | we conclude the identity
σ∑

p∈Bc
F

c∗
p,σcp,σ =

σ∑
p∈BF

cp,σc
∗
p,σ on HN . (2.3.4)

This is the statement of particle-hole symmetry: The expression on the left-hand side is
appropriately labeled the excitation number operator NE, since just as N “counts” the
number of particles in a state of the full Fock space, NE “counts” the number of states
lying outside BF in a state on HN , which is to say the number of excitations relative to
ψF .

The expression on the right-hand side may be similarly thought of as a “hole number
operator”, as it similarly counts the number of states lying inside BF that a given state is
lacking. Equation (2.3.4) thus makes explicit the observation that any excitation relative
to ψF must be accompanied by a “hole”.

This also explains why H ′
kin, despite being the difference of two positive operators,

remains positive: To take advantage of the negative part, one must create a hole in the
Fermi ball. But particle number conservation then demands that one must create an
excitation outside this, and as |p| > kF ≥ |q| for all p ∈ Bc

F , q ∈ BF , this procedure will
always lead to an increase in energy.

In fact we can use equation (2.3.4) to make this argument precise, since it implies that

H ′
kin = H ′

kin − k2
F NE + k2

F NE =
σ∑

p∈Bc
F

(
|p|2 − k2

F

)
c∗

p,σcp,σ +
σ∑

p∈BF

(
k2

F − |p|2
)
cp,σc

∗
p,σ (2.3.5)

and now both of the sums on the right-hand side are manifestly non-negative.

2.4 The Quasi-Bosonic Excitation Operators
Now we consider the structure of the terms

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +B∗
kB

∗
−k +B−kBk

)
, (2.4.1)

which appear in the decomposition of HN of Proposition 2.0.1, further. Consider the
operators Bk = ∑σ

p∈Lk
c∗

p−k,σcp,σ: It is easily seen that for any k, l ∈ Z3
∗ it holds that

[Bk, Bl] = [B∗
k, B

∗
l ] = 0, while a slight modification of the calculation of equation (2.2.11)

shows that

[Bk, B
∗
l ] = s |Lk| δk,l −

σ∑
p∈Lk

∑
q∈Ll

(
δp−k,q−lc

∗
q,σcp,σ + δp,qcq−l,σc

∗
p−k,σ

)
. (2.4.2)
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Consider the sum on the right: By the Cauchy-Schwarz and triangle inequalities we can
bound the first part as∣∣∣∣∣∣

σ∑
p∈Lk

∑
q∈Ll

〈
Ψ, δp−k,q−lc

∗
q,σcp,σΨ

〉∣∣∣∣∣∣ ≤
σ∑

p∈Lk

∑
q∈Ll

δp−k,q−l ∥cq,σΨ∥ ∥cp,σΨ∥ (2.4.3)

≤
√√√√ σ∑

q∈Ll

∥cq,σΨ∥2

√√√√ σ∑
p∈Lk

∥cp,σΨ∥2 ≤ ⟨Ψ,NEΨ⟩

for any Ψ ∈ HN , and likewise for the second part of the sum. If one now defines the
rescaled operators B′

k = (s |Lk|)− 1
2Bk, one sees that these obey commutation relations of

the form [
B′

k, (B′
l)

∗] = δk,l +O
(
k−2

F NE

)
, [B′

k, B
′
l] = 0 =

[
(B′

k)∗
, (B′

l)
∗]
, (2.4.4)

since (as we will see) |Lk| ≥ ck2
F . With respect to states for which ⟨Ψ,NEΨ⟩ is small,

these relations approximate the canonical commutation relations for bosonic creation and
annihilation operators a∗

k, ak, which are

[ak, a
∗
l ] = δk,l, [ak, al] = 0 = [a∗

k, a
∗
l ] . (2.4.5)

This motivates describing the Bk as being quasi-bosonic operators. In view of this, it is
tempting to view the terms

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +B∗
kB

∗
−k +B−kBk

)
(2.4.6)

as analogous to a quadratic Hamiltonian in the bosonic setting, to which the theory of
Bogolubov transformations applies. This is the spirit of what we will do, but there is a
catch: The kinetic operator H ′

kin is not of a similar form, and the operators Bk do not
behave bosonically with respect to it.

The solution to this problem is to further decompose the operators Bk: We define for
k ∈ Z3

∗, p ∈ Lk, the excitation operators b∗
k,p, bk,p by

bk,p = 1√
s

s∑
σ=1

c∗
p−k,σcp,σ, b∗

k,p = 1√
s

s∑
σ=1

c∗
p,σcp−k,σ. (2.4.7)

The name is due to the fact that the action of b∗
k,p is to annihilate a state at momentum

p− k ∈ BF and create a state at momentum p ∈ Bc
F (irrespective of spin), which is to say

excite the state p− k to p.
Note that the bk,p and Bk operators are simply related as Bk =

√
s
∑

p∈Lk
bk,p. Further-

more, the excitation operators also obey quasi-bosonic commutation relations:
Lemma 2.4.1. For any k, l ∈ Z3

∗, p ∈ Lk and q ∈ Ll it holds that[
bk,p, b

∗
l,q

]
= δk,lδp,q + εk,l(p; q), [bk,p, bl,q] = 0 =

[
b∗

k,p, b
∗
l,q

]
,

where εk,l(p; q) = −s−1∑s
σ=1

(
δp,qcq−l,σc

∗
p−k,σ + δp−k,q−lc

∗
q,σcp,σ

)
.
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Proof: By the CAR and commutator identities we calculate that

[bk,p, bl,q] = 1
s

s∑
σ,τ=1

[
c∗

p−k,σcp,σ, c
∗
q−l,τcq,τ

]
= 1
s

s∑
σ,τ=1

(
c∗

p−k,σ

[
cp,σ, c

∗
q−l,τcq,τ

]
+
[
c∗

p−k,σ, c
∗
q−l,τcq,τ

]
cp,σ

)

= 1
s

s∑
σ,τ=1

(
c∗

p−k,σ

{
cp,σ, c

∗
q−l,τ

}
cq,τ − c∗

q−l,τ

{
c∗

p−k,σ, cq,τ

}
cp,σ

)
= 0 (2.4.8)

as the anticommutators vanish by disjointness of BF and Bc
F . [b∗

k,p, b
∗
l,q] then likewise

vanishes, while for [bk,p, b
∗
l,q][

bk,p, b
∗
l,q

]
= 1
s

s∑
σ,τ=1

[
c∗

p−k,σcp,σ, c
∗
q,τcq−l,τ

]
= 1
s

s∑
σ,τ=1

(
c∗

p−k,σ

{
cp,σ, c

∗
q,τ

}
cq−l,τ − c∗

q,τ

{
c∗

p−k,σ, cq−l,τ

}
cp,σ

)

= 1
s

s∑
σ=1

(
δp,qc

∗
p−k,σcq−l,σ − δp−k,q−lc

∗
q,σcp,σ

)
= δk,lδp,q + εk,l(p; q). (2.4.9)

□
Again these commutation relations are similar to those of bosonic operators, now in-

dexed by k ∈ Z3
∗ and p ∈ Lk, but differing by the appearance of the exchange correction

εk,l(p; q), which evidently acts by exchanging the hole states with momenta p− k and q− l
if p = q, i.e. if the excited states match, or swaps the states with momenta p and q if
p− k = q − l, i.e. if the hole states match.

The presence of εk,l(p; q) can be considered a consequence of the fact that holes and
excited states are not uniquely associated with one another - indeed, for any p ∈ Bc

F ,
every hole state can be excited into this state, so there is a kind of “overlap” between the
excitation operators, which the exchange correction accounts for.

Unlike what was the case for the B′
k operators, these correction terms can however

not be expected to be “small” individually. They can however still be considered small
“on average”, as the sum ∑

p∈Lk

∑
q∈Ll

εk,l(p; q) simply reproduces the correction term of
equation (2.4.2) (up to a spin factor).

This is generally an unavoidable point: As we will see in Section 7, the exchange
contribution of Theorem 1.1.1 in fact originates from these exchange corrections, so an
attempt at treating these as simple error terms (as was done in the works [8, 9, 10]) is
bound to miss this.

Now, the reason that the excitation operators are preferable to the Bk operators is that
these do in fact behave bosonically with respect to H ′

kin:

Lemma 2.4.2. For any k ∈ Z3
∗ and p ∈ Lk it holds that[

H ′
kin, b

∗
k,p

]
=
(
|p|2 − |p− k|2

)
b∗

k,p.

Proof: As H ′
kin = ∑τ

q∈Bc
F

|q|2 c∗
q,τcq,τ −∑τ

q∈BF
|q|2 cq,τc

∗
q,τ we calculate the commutator with

each sum: First is
τ∑

q∈Bc
F

[
|q|2 c∗

q,τcq,τ , b
∗
k,p

]
= 1√

s

σ,τ∑
q∈Bc

F

|q|2
[
c∗

q,τcq,τ , c
∗
p,σcp−k,σ

]
(2.4.10)
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= 1√
s

σ,τ∑
q∈Bc

F

|q|2
(
c∗

q,τ

{
cq,τ , c

∗
p,σ

}
cp−k,σ − c∗

p,σ

{
c∗

q,τ , cp−k,σ

}
cq,τ

)

= 1√
s

σ,τ∑
q∈Bc

F

δp,qδσ,τ |q|2 c∗
q,τcp−k,σ = |p|2√

s

s∑
σ=1

c∗
p,σcp−k,σ = |p|2 b∗

k,p

as the second anticommutator vanishes by disjointness of BF and Bc
F . Similarly, for the

second sum
τ∑

q∈BF

[
|q|2 cq,τc

∗
q,τ , b

∗
k,p

]
= 1√

s

σ,τ∑
q∈BF

|q|2
[
cq,τc

∗
q,τ , c

∗
p,σcp−k,σ

]
(2.4.11)

= 1√
s

σ,τ∑
q∈BF

|q|2
(
−cq,τc

∗
p,σ

{
c∗

q,τ , cp−k,σ

}
+
{
cq,τ , c

∗
p,σ

}
cp−k,σc

∗
q,τ

)

= − 1√
s

σ,τ∑
q∈BF

|q|2 δq,p−kδσ,τcq,τc
∗
p,σ = 1√

s

s∑
σ=1

|p− k|2 c∗
p,σcp−k,σ = |p− k|2 b∗

k,p

and the claim follows.
□

This commutation relation mimicks that of a diagonal bosonic quadratic operator,
which is [∑

ϵl,qa
∗
l,qal,q, a

∗
k,p

]
= ϵk,pa

∗
k,p (2.4.12)

whence we may informally think of H ′
kin as

H ′
kin ∼

∑
k∈Z3

∑
p∈Lk

(
|p|2 − |p− k|2

)
b∗

k,pbk,p. (2.4.13)

In fact the lemma tells us that H ′
kin is much better behaved than the expression on the right-

hand side: Unlike that, the commutator [H ′
kin, b

∗
k,p] behaves exactly bosonically, without

any additional error terms. In the subsequent sections we will see that it is precisely
through such commutators that H ′

kin will enter our analysis. For this reason, working with
the excitation operators bk,p will prove to be extremely advantageous.



Chapter 3

Overview of Bosonic Bogolubov
Transformations

In this section we review some of the general theory of Bogolubov transformations in the
bosonic setting. Although the object of study of this thesis is a fermionic system, our
approach to this will be through a quasi-bosonic analysis of the fermionic Hamiltonian,
and while this of course differs from the exact bosonic case, we will carry out the quasi-
bosonic analysis by imitating the exact bosonic setting. For this reason we find it best
to review this first so that we may focus on the implementation of the analysis and the
discrepancies arising from the quasi-bosonicity in the remainder of the thesis.

This is particularly important as our treatment of Bogolubov transformations will differ
from the “usual” one, in that we will view quadratic operators, formed by pairs of creation
and annihilation operators, as the fundamental object of study, rather than the creation
and annihilation operators themselves.

Before we begin the review we must remark on the level of rigor of this section: Bosonic
creation and annihilation operators are inherently unbounded operators, and so a full
account of this subject would necessitate discussing domains of definition and other subtle
details. As the purpose of this section is only to motivate our approach to the fermionic
problem later on we will however not address these here.

We will employ the following notation: V denotes a real n-dimensional Hilbert space, to
which is associated the bosonic Fock space F+(V ) = ⊕∞

N=0
⊗N

sym V . To any element φ ∈ V
there corresponds the creation and annihilation operators a∗(φ) and a(φ), which act on
F+(V ). These are (formal) adjoints of one another and obey the canonical commutation
relations (CCR): For any φ, ψ ∈ V it holds that

[a(φ), a∗(ψ)] = ⟨φ, ψ⟩ , [a(φ), a(ψ)] = 0 = [a∗(φ), a∗(ψ)] . (3.0.1)

Furthermore, the mappings φ 7→ a(φ), a∗(φ) are linear.
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3.1 Quadratic Hamiltonians and Bogolubov Transfor-
mations

Similarly to how we can to any φ ∈ V associate the two operators a(φ) and a∗(φ), we
can to any symmetric operators A,B : V → V associate two kinds of quadratic operators
acting on F+(V ): The first kind is the usual second-quantization, given by

dΓ(A) =
n∑

i,j=1
⟨ei, Aej⟩ a∗(ei)a(ej) =

n∑
i=1

a∗(Aei)a(ei) (3.1.1)

where (ei)n
i=1 denotes any orthonormal basis of V (the operator is independent of this

choice, as guaranteed by Lemma 3.2.1 below). The second kind is of the form

Q(B) =
n∑

i,j=1
⟨ei, Bej⟩ (a(ei)a(ej) + a∗(ej)a∗(ei)) (3.1.2)

=
n∑

i=1
(a(Bei)a(ei) + a∗(ei)a∗(Bei)).

We define a quadratic Hamiltonian to be an operator H, acting on F+(V ), of the form

H = 2 dΓ(A) +Q(B). (3.1.3)

(The factor of 2 will be convenient below.)
The importance of quadratic Hamiltonians lies in the fact that they can (under suitable

assumptions) be diagonalized, in the sense that there exists a unitary transformation U :
F+(V ) → F+(V ) such that

UHU∗ = 2 dΓ(E) + E0 (3.1.4)
for a symmetric operator E : V → V and E0 ∈ R, i.e. a quadratic Hamiltonian is unitarily
equivalent to a second-quantized one-body operator plus a constant. As second-quantized
operators are simple objects, the properties of quadratic Hamiltonians are thus in principle
also simple, provided one can describe U explicitly enough to relate the operators A and
B to E.

In this section we review the explicit construction of such Bogolubov transformations
U . More precisely, we will consider the Bogolubov transformations which can be written
as U = eK where K is of the form

K = 1
2

n∑
i,j=1

⟨ei, Kej⟩ (a(ei)a(ej) − a∗(ej)a∗(ei)) (3.1.5)

= 1
2

n∑
i=1

(a(Kei)a(ei) − a∗(ei)a∗(Kei))

for a symmetric operator K : V → V (the transformation kernel). Note that from the
second line it is clear that K∗ = −K, so such a K will indeed generate a unitary transfor-
mation.
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The action of eK on creation and annihilation operators can be determined as follows:
By the CCR we compute that

[K, a(φ)] = 1
2

n∑
i=1

[a(Kei)a(ei) − a∗(ei)a∗(Kei), a(φ)] = 1
2

n∑
i=1

[a(φ), a∗(ei)a∗(Kei)]

= 1
2

n∑
i=1

(a∗(ei) [a(φ), a∗(Kei)] + [a(φ), a∗(ei)] a∗(Kei)) (3.1.6)

= 1
2

n∑
i=1

(a∗(ei) ⟨φ,Kei⟩ + ⟨φ, ei⟩ a∗(Kei))

= 1
2

(
a∗
(

n∑
i=1

⟨ei, Kφ⟩ ei

)
+ a∗

(
K

n∑
i=1

⟨ei, φ⟩ ei

))
= a∗(Kφ)

and taking the adjoint likewise shows that [K, a∗(φ)] = a(Kφ), so

[K, a(φ)] = a∗(Kφ) (3.1.7)
[K, a∗(φ)] = a(Kφ).

[K, ·] thus acts on creation and annihilation operators by “swapping” each type into the
other and applying the operator K to their arguments. From this one can now deduce that

eKa(φ)e−K = a(cosh(K)) + a∗(sinh(K)) (3.1.8)
eKa∗(φ)e−K = a∗(cosh(K)) + a(sinh(K))

since by the Baker-Campbell-Hausdorff formula

eKa(φ)e−K = a(φ) + [K, a(φ)] + 1
2! [K, [K, a(φ)]] + 1

3! [K, [K, [K, a(φ)]]] + · · ·

= a(φ) + a∗(Kφ) + 1
2!a

(
K2φ

)
+ 1

3!a
∗
(
K3φ

)
+ · · · (3.1.9)

= a
((

1 + 1
2!K

2 + · · ·
)
φ
)

+ a∗
((
K + 1

3!K
3 + · · ·

)
φ
)

= a(cosh(K)) + a∗(sinh(K))

and likewise for eKa∗(φ)e−K.

3.2 The Action of eK on Quadratic Operators
As our interest in Bogolubov transformations lie in their diagonalization of quadratic
Hamiltonians it is however not the transformation of a(·) and a∗(·) that will interest us,
but rather the transformation of dΓ(·) and Q(·). The latter can of course be deduced from
the former, but this approach is disadvantageous in the quasi-bosonic setting, which is why
we will proceed differently.

First, let us make an observation on the structure of the quadratic operators which will
simplify calculation significantly: The operators

dΓ(A) =
n∑

i=1
a∗(Aei)a(ei) (3.2.1)
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Q(B) =
n∑

i=1
(a(Bei)a(ei) + a∗(ei)a∗(Bei))

are both of a “trace-form”, in the sense that we can write dΓ(A) (say) in the form dΓ(A) =∑n
i=1 q(ei, ei) where

q(x, y) = a∗(Ax)a(y), x, y ∈ V, (3.2.2)
defines a bilinear mapping from V ×V into the space of operators on F+(V ), similar to how
tr(T ) = ∑n

i=1 q(ei, ei) for q(x, y) = ⟨x, Ty⟩. This is worth noting since all such expressions
are both basis-independent and obey an additional property, which for the trace is the
familiar cyclicity property.

As we will encounter such trace-form sums repeatedly throughout this paper, we state
this property in full generality:

Lemma 3.2.1. Let ⟨V, ⟨·, ·⟩⟩ be an n-dimensional Hilbert space and let q : V × V → W be
a sesquilinear mapping into a vector space W . Let (ei)n

i=1 be an orthonormal basis for V .
Then for any linear operators S, T : V → V it holds that

n∑
i=1

q(Sei, T ei) =
n∑

i=1
q(ST ∗ei, ei).

As a particular consequence, the expression ∑n
i=1 q(ei, ei) is independent of the basis chosen.

Proof: By orthonormal expansion we find that
n∑

i=1
q(Sei, T ei) =

n∑
i=1

q

Sei,
n∑

j=1
⟨ej, T ei⟩ ej

 =
n∑

i,j=1
⟨T ∗ej, ei⟩ q(Sei, ej) (3.2.3)

=
n∑

j=1
q

(
S

n∑
i=1

⟨ei, T
∗ej⟩ ei, ej

)
=

n∑
i=1

q(ST ∗ei, ei).

The basis-independence follows from this by noting that if (e′
i)

n
i=1 is any other orthonormal

basis, then with U : V → V denoting the unitary transformation defined by Uei = e′
i,

1 ≤ i ≤ n, we see that
n∑

i=1
q(e′

i, e
′
i) =

n∑
i=1

q(Uei, Uei) =
n∑

i=1
q(UU∗ei, ei) =

n∑
i=1

q(ei, ei). (3.2.4)

□
(In the present real case sesquilinearity is of course just bilinearity.)
The lemma thus allows us to move operators from one argument to the other when

under a sum, which will be immensely useful when simplifying expressions. This can
indeed be seen as a generalization of the cyclicity property of the trace, since the lemma
can be applied to see that

tr(ST ) =
n∑

i=1
⟨ei, STei⟩ =

n∑
i=1

⟨S∗ei, T ei⟩ =
n∑

i=1
⟨S∗T ∗ei, ei⟩ =

n∑
i=1

⟨ei, TSei⟩ = tr(TS),

(3.2.5)
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but it should be noted that cyclicity in this sense is not a general property of trace-form
sums.

With this lemma we can easily calculate the commutators of K with dΓ(·) and Q(·):

Proposition 3.2.2. For any symmetric operators A,B : V → V it holds that

[K, 2 dΓ(A)] = Q({K,A})
[K, Q(B)] = 2 dΓ({K,B}) + tr({K,B}).

Proof: Using equation (3.1.7) and the lemma we compute

[K, dΓ(A)] =
n∑

i=1
[K, a∗(Aei)a(ei)] =

n∑
i=1

(a∗(Aei) [K, a(ei)] + [K, a∗(Aei)] a(ei)) (3.2.6)

=
n∑

i=1
(a∗(Aei)a∗(Kei) + a(KAei)a(ei)) =

n∑
i=1

(a(KAei)a(ei) + a∗(ei)a∗(KAei)),

and since the annihilation operators commute there holds the identity
n∑

i=1
a(KAei)a(ei) =

n∑
i=1

a(ei)a((KA)∗ei) =
n∑

i=1
a(AKei)a(ei) (3.2.7)

and likewise for the second term, so including a factor of 2 we can write

[K, 2 dΓ(A)] =
n∑

i=1
(a({K,A} ei)a(ei) + a∗(ei)a∗({K,A} ei)) = Q({K,B}) (3.2.8)

as claimed. For Q(B) we note that Q(B) = 2 Re(∑n
i=1 a(Bei)a(ei)) and calculate as above

that

[K, Q(B)] = 2 Re
(

n∑
i=1

[K, a(Bei)a(ei)]
)

= 2 Re
(

n∑
i=1

(a(Bei) [K, a(ei)] + [K, a(Bei)] a(ei))
)

= 2 Re
(

n∑
i=1

(a(Bei)a∗(Kei) + a∗(KBei)a(ei))
)

(3.2.9)

= 2 Re
(

n∑
i=1

(a(BKei)a∗(ei) + a∗(KBei)a(ei))
)
.

By the lemma we see that

2 Re
(

n∑
i=1

a(BKei)a∗(ei)
)

=
n∑

i=1
(a(BKei)a∗(ei) + a(ei)a∗(BKei))

=
n∑

i=1
(a(ei)a∗((BK)∗ei) + a(ei)a∗(BKei)) (3.2.10)

=
n∑

i=1
a(ei)a∗({K,B} ei)
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and likewise
2 Re

(
n∑

i=1
a∗(KBei)a(ei)

)
=

n∑
i=1

a∗({K,B} ei)a(ei), (3.2.11)

so by the CCR

[K, Q(B)] =
n∑

i=1
(a(ei)a∗({K,B} ei) + a∗({K,B} ei)a(ei))

= 2
n∑

i=1
a∗({K,B} ei)a(ei) +

n∑
i=1

⟨ei, {K,B} ei⟩ (3.2.12)

= 2 dΓ({K,B}) + tr({K,B}).

□
Note the similarity between these commutators and those of equation (3.1.7) - again

[K, ·] acts by “swapping the types and applyingK to the argument”, although now the types
are those of the quadratic operators and the application of K is taking the anticommutator.

Although the action of eK on the quadratic operators can again be deduced from the
Baker-Campbell-Hausdorff formula, we now derive this by an “ODE-style” argument, as
this will generalize better to the quasi-bosonic setting of the next section:

Proposition 3.2.3. For any symmetric operator T : V → V it holds that

eK(2 dΓ(T ))e−K = 2 dΓ(T1) +Q(T2) + tr(T1 − T )
eKQ(T )e−K = 2 dΓ(T2) +Q(T1) + tr(T2)

where T1, T2 : V → V are given by

T1 = 1
2
(
eKTeK + e−KTe−K

)
, T2 = 1

2
(
eKTeK − e−KTe−K

)
.

Proof: We prove the first identity, the second following similarly.
Consider an expression of the form e−tK(2 dΓ(A(t)) +Q(B(t)))etK where A(t), B(t) :

V → V are any symmetric operators with t 7→ A(t), B(t) differentiable. Taking the
derivative, we find by Proposition 3.2.2 that

d

dt
e−tK(2 dΓ(A(t)) +Q(B(t)))etK

= e−tK(2 dΓ(A′(t)) +Q(B′(t)) − [K, 2 dΓ(A(t)) +Q(B(t))])etK (3.2.13)
= e−tK(2 dΓ(A′(t) − {K,B(t)}))etK + e−tKQ(B′(t) − {K,A(t)})etK − tr({K,B(t)}).

Consequently, if A(t) and B(t) are solutions of the system

A′(t) = {K,B(t)} , B′(t) = {K,A(t)} , (3.2.14)

then the first two terms vanish, i.e.
d

dt
e−tK(2 dΓ(A(t)) +Q(B(t)))etK = − tr({K,B(t)}). (3.2.15)
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The fundamental theorem of calculus thus implies that

e−K(2 dΓ(A(1)) +Q(B(1)))eK = 2 dΓ(A(0)) +Q(B(0)) −
∫ 1

0
tr({K,B(t)})dt (3.2.16)

= 2 dΓ(A(0)) +Q(B(0)) − tr(A(1) − A(0)),

and imposing also the initial conditions

A(0) = T, B(0) = 0, (3.2.17)

this can be rearranged to

eK(2 dΓ(T ))e−K = 2 dΓ(A(1)) +Q(B(1)) + tr(A(1) − T ). (3.2.18)

The claim now follows by the observation that

A(t) = 1
2
(
etKTetK + e−tKTe−tK

)
(3.2.19)

B(t) = 1
2
(
etKTetK − e−tKTe−tK

)
are precisely the solutions of this system: The initial conditions are clearly satisfied, as is
the ODE since

d

dt

(
etKTetK ± e−tKTe−tK

)
= etK {K,T} etK ± e−tK {−K,T} e−tK

=
{
K, etKTetK ∓ e−tKTe−tK

}
. (3.2.20)

□

Diagonalization of Quadratic Hamiltonians
Having derived the transformation laws we can now describe how to diagonalize the
quadratic Hamiltonian H = 2 dΓ(A) +Q(B): By Proposition 3.2.3, this transforms as

eKHe−K = 2 dΓ
(1

2
(
eKAeK + e−KAe−K

))
+Q

(1
2
(
eKAeK − e−KAe−K

))
+ 2 dΓ

(1
2
(
eKBeK − e−KBe−K

))
+Q

(1
2
(
eKBeK + e−KBe−K

))
+ tr

(1
2
(
eKAeK + e−KAe−K

)
− A

)
+ tr

(1
2
(
eKBeK − e−KBe−K

))
(3.2.21)

= 2 dΓ
(1

2
(
eK(A+B)eK + e−K(A−B)e−K

))
+Q

(1
2
(
eK(A+B)eK − e−K(A−B)e−K

))
+ tr

(1
2
(
eK(A+B)eK + e−K(A−B)e−K

)
− A

)
.
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As the diagonalization of H is the statement that the Q(·) term vanishes, we see that the
diagonalization condition is that K obeys

eK(A+B)eK = e−K(A−B)e−K . (3.2.22)

Indeed, if this holds then we evidently have that

eKHe−K = 2 dΓ(E) + tr(E − A) (3.2.23)

for E = eK(A+B)eK = e−K(A−B)e−K .
There remains the question of when such a kernel K exists. For this it holds that the

condition A±B > 0 not only suffices, but in this case a diagonalizing K can be explicitly
defined, which is furthermore unique (the following is a generalization and simplification
of the arguments used in [8, 15]):

Proposition 3.2.4. Let A,B : V → V be symmetric operators such that A±B > 0. Then

K = −1
2 log

(
(A−B)− 1

2
(
(A−B)

1
2 (A+B)(A−B)

1
2
) 1

2 (A−B)− 1
2

)

is the unique symmetric solution of

eK(A+B)eK = e−K(A−B)e−K .

Proof: Write A± = A ± B for brevity. Then we can write the diagonalization condition
as

A+ = e−2KA−e
−2K . (3.2.24)

Multiplying by A− 1
2

− on both sides yields

A
1
2
−A+A

1
2
− = A

1
2
−e

−2KA−e
−2KA

1
2
− =

(
A

1
2
−e

−2KA
1
2
−

)2
, (3.2.25)

so as both A
1
2
−A+A

1
2
− and A

1
2
−e

−2KA
1
2
− are positive operators it must be the case that

A
1
2
−e

−2KA
1
2
− =

(
A

1
2
−A+A

1
2
−

) 1
2

(3.2.26)

whence
−2K = log

(
A

− 1
2

−

(
A

1
2
−A+A

1
2
−

) 1
2
A

− 1
2

−

)
(3.2.27)

which is the claim.
□
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Diagonalization of the Bosonizable
Terms

In this section we diagonalize the bosonizable terms, which is to say the expression

H ′
kin +

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
. (4.0.1)

In Section 2 we saw that these behave in a quasi-bosonic fashion, and this “diagonalization”
is indeed in the sense of Bogolubov transformations. To this end we start by casting the
bosonizable terms into a form which more closely mirrors that of the quadratic operators
which we considered in the previous section.

Once this is done it will be clear how to define a quasi-bosonic Bogolubov transforma-
tion eK which emulates the properties of the transformation in the exact bosonic setting.
We can then repeat the calculations of the previous section - keeping also in mind the
additional terms which arise from the exchange correction - to determine the action of this
transformation on the bosonizable terms.

With this established we then specify a particular generator K which will diagonalize
these terms, and in the process extract the bosonic contribution to the correlation energy.
The main result of this section is summarized in the following (in notation defined below):

Theorem 4.0.1. Let ∑k∈Z3
∗
V̂ 2

k < ∞. Then there exists a unitary transformation eK :
HN → HN such that

eK

H ′
kin +

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)e−K

=
∑

k∈Z3
∗

tr
(
e−Kkhke

−Kk − hk − Pk

)
+H ′

kin + 2
∑

k∈Z3
∗

Qk
1

(
e−Kkhke

−Kk − hk

)

+
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
)

+ 2 Re
(
E2

k (Bk(t))
))
e−(1−t)Kdt
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where for any k ∈ Z3
∗ the operators hk, Pk : ℓ2(Lk) → ℓ2(Lk) are defined by

hkep = λk,pep λk,p = 1
2

(
|p|2 − |p− k|2

)
Pk(·) = ⟨vk, ·⟩ vk vk =

√
sV̂kk−1

F

2 (2π)3
∑

p∈Lk
ep,

the operator Kk : ℓ2(Lk) → ℓ2(Lk) is defined by

Kk = −1
2 log

(
h

− 1
2

k

(
h

1
2
k (hk + 2Pk)h

1
2
k

) 1
2
h

− 1
2

k

)

and for t ∈ [0, 1] the operators Ak(t), Bk(t) : ℓ2(Lk) → ℓ2(Lk) are given by

Ak(t) = 1
2
(
etKk(hk + 2Pk)etKk + e−tKkhke

−tKk

)
− hk

Bk(t) = 1
2
(
etKk(hk + 2Pk)etKk − e−tKkhke

−tKk

)
.

The condition that ∑k∈Z3
∗
V̂ 2

k < ∞ arises to ensure that the diagonalizing generator K
is a well-defined (and even bounded) operator. We will however postpone the proof of this
until the next section, to focus on the diagonalization procedure first.

(Even though K is bounded, there are still some subleties to address due to the unbound-
edness of the transformed operators. We have included these considerations in appendix
section C for the interested reader.)

4.1 Formalizing the Bosonic Analogy
Recall that we defined the quasi-bosonic excitation operators by

bk,p = 1√
s

s∑
σ=1

c∗
p−k,σcp,σ, b∗

k,p = 1√
s

s∑
σ=1

c∗
p,σcp−k,σ, k ∈ Z3

∗, p ∈ Lk, (4.1.1)

which obey the commutation relations[
bk,p, b

∗
l,q

]
= δk,lδp,q + εk,l(p; q), [bk,p, bl,q] = 0 =

[
b∗

k,p, b
∗
l,q

]
, (4.1.2)

for εk,l = −s−1∑s
σ=1

(
δp,qcq−l,σc

∗
p−k,σ + δp−k,q−lc

∗
q,σcp,σ

)
. The relation between these and the

Bk operators is simply Bk =
√
s
∑

p∈Lk
bk,p, so we can express the non-kinetic part of the

bosonizable terms as

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
(4.1.3)

=
∑

k∈Z3
∗

2
∑

p,q∈Lk

sV̂kk
−1
F

2 (2π)3 b
∗
k,pbk,p +

∑
p,q∈Lk

sV̂kk
−1
F

2 (2π)3

(
bk,pb−k,−p + b∗

−k,−pb
∗
k,p

).
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The expressions inside the parenthesis are similar to the quadratic operators we considered
in the previous section, and to exploit this similarly we define for any operators A,B :
ℓ2(Lk) → ℓ2(Lk) quasi-bosonic quadratic operators Qk

1(A) and Qk
2(B) by

Qk
1(A) =

∑
p,q∈Lk

⟨ep, Aeq⟩ b∗
k,pbk,q (4.1.4)

Qk
2(B) =

∑
p,q∈Lk

⟨ep, Beq⟩
(
bk,pb−k,−q + b∗

−k,−qb
∗
k,p

)
,

where (ep)p∈Lk
is the standard orthonormal basis of ℓ2(Lk).

Note that the spaces ℓ2(Lk) play the role of the one-body space V of the previous
section1, and that Qk

1(A) and Qk
2(B) are analogous to dΓ(A) and Q(B) of the equations

(3.1.1) and (3.1.2) (since we already use dΓ(·) to denote the fermionic second-quantization
on HN , we deviate slightly from that notation for the quasi-bosonic operators).

Note also that the Qk
2(·) terms involve excitation operators of both momentum k and

−k. For this reason we will have to treat operators corresponding to the lunes Lk and L−k

simultaneously when deriving the transformation identities below.
To write the right-hand side of equation (4.1.3) in this notation, define a vector vk ∈

ℓ2(Lk) by

vk =

√√√√sV̂kk
−1
F

2 (2π)3
∑

p∈Lk

ep (4.1.5)

and consider the operator Pk : ℓ2(Lk) → ℓ2(Lk) which acts according to Pk(·) = ⟨vk, ·⟩ vk.
Then

⟨ep, Pkeq⟩ = ⟨ep, vk⟩ ⟨vk, eq⟩ = sV̂kk
−1
F

2 (2π)3 , p, q ∈ Lk, (4.1.6)

so we simply have

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
=
∑

k∈Z3
∗

(
2Qk

1(Pk) +Qk
2(Pk)

)
. (4.1.7)

Generalized Excitation Operators
For the purpose of computation (in particular so that we can exploit Lemma 3.2.1 to the
fullest) it is convenient to also introduce a basis-independent notation for the quasi-bosonic
operators. We thus define, for any k ∈ Z3

∗ and φ ∈ ℓ2(Lk), the generalized excitation
operators bk(φ) and b∗

k(φ) by

bk(φ) =
∑

p∈Lk

⟨φ, ep⟩ bk,p, b∗
k(φ) =

∑
p∈Lk

⟨ep, φ⟩ b∗
k,p. (4.1.8)

1As in that case we will only consider ℓ2(Lk) as a real vector space.
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The assignments φ 7→ bk(φ), b∗
k(φ) are then linear, and so it follows from equation (4.1.2)

that the generalized excitation operators obey the commutation relations

[bk(φ), bl(ψ)] = [b∗
k(φ), b∗

l (ψ)] = 0 (4.1.9)
[bk(φ), b∗

l (ψ)] = δk,l ⟨φ, ψ⟩ + εk,l(φ;ψ)

for all k, l ∈ Z3, φ ∈ ℓ2(Lk) and ψ ∈ ℓ2(Ll), where the exchange correction εk,l(φ;ψ) is
given by

εk,l(φ;ψ) = −1
s

σ∑
p∈Lk

∑
q∈Ll

⟨φ, ep⟩ ⟨eq, ψ⟩
(
δp,qcq−l,σc

∗
p−k,σ + δp−k,q−lc

∗
q,σcp,σ

)
. (4.1.10)

In terms of these the quadratic operators Qk
1(A) and Qk

2(B) are expressed as

Qk
1(A) =

∑
p∈Lk

b∗
k(Aep)bk,p (4.1.11)

Qk
2(B) =

∑
p∈Lk

(
bk(Bep)b−k,−p + b∗

−k,−pb
∗
k(Bep)

)
.

It will also be useful to express the relation[
H ′

kin, b
∗
k,p

]
=
(
|p|2 − |p− k|2

)
b∗

k,p (4.1.12)

of Lemma 2.4.2 in a basis-independent way: Defining operators hk : ℓ2(Lk) → ℓ2(Lk) by

hkep = λk,pep, λk,p = 1
2
(
|p|2 − |p− k|2

)
, (4.1.13)

linearity yields the general commutator

[H ′
kin, b

∗
k(φ)] =

∑
p∈Lk

(
|p|2 − |p− k|2

)
⟨ep, φ⟩ b∗

k,p = 2 b∗
k(hkφ). (4.1.14)

4.2 The Quasi-Bosonic Bogolubov Transformation
Let a collection of symmetric operators Kl : ℓ2(Ll) → ℓ2(Ll), l ∈ Z3

∗, be given. Then we
define the associated quasi-bosonic Bogolubov kernel K : HN → HN by

K = 1
2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩
(
bl,pb−l,−q − b∗

−l,−qb
∗
l,p

)
(4.2.1)

= 1
2
∑
l∈Z3

∗

∑
q∈Ll

(
bl(Kleq)b−l,−q − b∗

−l,−qb
∗
l (Kleq)

)
,

in analogy with equation (3.1.5). It is clear from the second equation that K∗ = −K, and
so K generates a unitary transformation eK.
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This of course depends on K being well-defined - as it is an infinite sum, this is not
obvious. As mentioned at the beginning of this section, we will consider this issue in
the next section, in which we establish that K is in fact a bounded operator provided∑

l∈Z3
∗

∥Kl∥2
HS < ∞.

We will make the additional assumption about the operators Kk that they are sym-
metric under the negation k → −k, in the sense that

⟨ep, Kkeq⟩ = ⟨e−p, K−ke−q⟩ , k ∈ Z3
∗, p, q ∈ Lk. (4.2.2)

Letting Ik : ℓ2(Lk) → ℓ2(L−k) denote the unitary mapping acting according to Ikep = e−p,
p ∈ Lk, this condition is expressed in terms of operators as

IkKk = K−kIk. (4.2.3)

It is easily seen that the operators hk and Pk defined above also satisfy this relation.
The reason for imposing this condition is to ensure that Lemma 3.2.1 allows us to move
operators between arguments also for Qk

2(·)-type terms, since e.g.∑
q∈Ll

bl(Kleq)b−l,−q =
∑
q∈Ll

bl(Kleq)b−l(e−q) =
∑
q∈Ll

bl(Kleq)b−l(Ileq) (4.2.4)

=
∑
q∈Ll

bl(eq)b−l(IlK
∗
l eq) =

∑
q∈Ll

bl,qb−l(IlKleq) =
∑
q∈Ll

bl,qb−l(K−le−q).

K Commutators
As in the previous section we must calculate several commutators involving K before we
can determine the action of eK on the bosonizable terms. We start by computing the
commutator of K with an excitation operator:

Proposition 4.2.1. For any k ∈ Z3
∗ and φ ∈ ℓ2(Lk) it holds that

[K, bk(φ)] = b∗
−k(IkKkφ) + Ek(φ)

[K, b∗
k(φ)] = b−k(IkKkφ) + Ek(φ)∗

where
Ek(φ) = 1

2
∑
l∈Z3

∗

∑
q∈Ll

{
εk,l(φ; eq), b∗

−l(K−le−q)
}
.

Proof: It suffices to determine [K, bk(φ)]. Using Lemma 3.2.1 we calculate that

[K, bk(φ)] = 1
2
∑
l∈Z3

∗

∑
q∈Ll

([
bl(Kleq)b−l(e−q) − b∗

−l(e−q)b∗
l (Kleq), bk(φ)

])

= 1
2
∑
l∈Z3

∗

∑
q∈Ll

(
b∗

−l(e−q) [bk(φ), b∗
l (Kleq)] +

[
bk(φ), b∗

−l(e−q)
]
b∗

l (Kleq)
)

(4.2.5)
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= 1
2
∑
l∈Z3

∗

∑
q∈Ll

(
b∗

−l(K−le−q) [bk(φ), b∗
l (eq)] +

[
bk(φ), b∗

−l(e−q)
]
b∗

l (Kleq)
)

= 1
2
∑
l∈Z3

∗

∑
q∈Ll

{[
bk(φ), b∗

−l(e−q)
]
, b∗

l (Kleq)
}

where we lastly substituted l → −l, q → −q in the first term. Using the commutation
relations of equation (4.1.9) we then find that

[K, bk(φ)] = 1
2
∑
l∈Z3

∗

∑
q∈Ll

{δk,−l ⟨φ, e−q⟩ + εk,−l(φ; e−q), b∗
l (Kleq)}

=
∑

q∈L−k

⟨φ, e−q⟩ b∗
−k(K−keq) + 1

2
∑
l∈Z3

∗

∑
q∈Ll

{εk,−l(φ; e−q), b∗
l (Kleq)} (4.2.6)

= b∗
−k

K−kIk

∑
q∈Lk

⟨φ, eq⟩ eq

+ 1
2
∑
l∈Z3

∗

∑
q∈Ll

{
εk,l(φ; eq), b∗

−l(K−le−q)
}

= b∗
−k(IkKkφ) + Ek(φ).

□
Note how these commutators compare to those of equation (3.1.7) - again K “swaps

the type and applies K”, but now there is also a reflection from Lk to L−k, as well as an
additional term involving the exchange correction.

Using this relation we can now determine the commutator with Qk
1 terms:

Proposition 4.2.2. For any k ∈ Z3
∗ and symmetric operators A±k : ℓ2(L±k) → ℓ2(L±k)

such that IkAk = A−kIk, it holds that[
K, 2Qk

1(Ak) + 2Q−k
1 (A−k)

]
= Qk

2({Kk, Ak}) + 2 Re
(
E1

k (Ak)
)

+ (k → −k)

where
E1

k (Ak) =
∑
l∈Z3

∗

∑
p∈Lk

∑
q∈Ll

b∗
k(Akep)

{
εk,l(ep; eq), b∗

−l(K−le−q)
}
.

Proof: Using Proposition 4.2.1 (and Lemma 3.2.1 together with symmetry of Ak) we find
that[

K, Qk
1(Ak)

]
=
∑

p∈Lk

[K, b∗
k(Akep)bk(ep)] =

∑
p∈Lk

(b∗
k(Akep) [K, bk(ep)] + [K, b∗

k(Akep)] bk(ep))

=
∑

p∈Lk

(
b∗

k(Akep)b∗
−k(IkKkep) + b−k(IkKkAkep)bk(ep)

)
+
∑

p∈Lk

(b∗
k(Akep)Ek(ep) + Ek(Akep)∗bk(ep)) (4.2.7)

=
∑

p∈Lk

(
b∗

k(AkKkep)b∗
−k,−p + b−k,−pbk(AkKkep)

)
+ 2 Re

∑
p∈Lk

b∗
k(Akep)Ek(ep)


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= Qk
2(AkKk) + 2 Re

∑
p∈Lk

b∗
k(Akep)Ek(ep)

.
Now, the assumption that IkAk = A−kIk yields∑

p∈Lk

bk(AkKkep)b−k,−p =
∑

p∈Lk

bk(IkA−kK−ke−p)b−k(e−p) =
∑

p∈Lk

bk(ep)b−k(K−kA−ke−p)

=
∑

p∈L−k

b−k(K−kA−kep)bk,−p (4.2.8)

and likewise ∑p∈Lk
b∗

−k,−pb
∗
k(AkKkep) = ∑

p∈L−k
b∗

k,−pb
∗
−k(K−kA−kep), whence

Qk
2(AkKk) = Q−k

2 (K−kA−k). (4.2.9)

Summing over both k and −k, and introducing a factor of 2, we thus find

[
K, 2Qk

1(Ak) + 2Q−k
1 (A−k)

]
= 2Qk

2(AkKk) + 2 Re
2

∑
p∈Lk

b∗
k(Akep)Ek(ep)

 (4.2.10)

+ 2Q−k
2 (A−kK−k) + 2 Re

2
∑

p∈L−k

b∗
−k(A−kep)E−k(ep)


= Qk

2({Kk, Ak}) + 2 Re
(
E1

k (Ak)
)

+ (k → −k)

where E1
k (Ak) = 2∑p∈Lk

b∗
k(Akep)Ek(ep) follows simply by expansion.

□
To state the commutator of K with Qk

2-type terms, we first note the identity∑
p∈Lk

bk(ep)b∗
k(Akep) =

∑
p∈Lk

b∗
k(Akep)bk(ep) +

∑
p∈Lk

[bk(ep), b∗
k(Akep)]

=
∑

p∈Lk

b∗
k(Akep)bk(ep) +

∑
p∈Lk

⟨ep, Akep⟩ +
∑

p∈Lk

εk,k(ep;Akep) (4.2.11)

= Qk
1(Ak) + tr(Ak) + εk(Ak)

where we introduced the convenient notation

εk(Ak) =
∑

p∈Lk

εk,k(ep;Akep) = −1
s

σ∑
p,q∈Lk

⟨eq, Akep⟩
(
δp,qcq−k,σc

∗
p−k,σ + δp−k,q−kc

∗
q,σcp,σ

)

= −1
s

σ∑
p∈Lk

⟨ep, Akep⟩
(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

)
. (4.2.12)

The commutator is then given by the following:

Proposition 4.2.3. For any k ∈ Z3
∗ and symmetric operators B±k : ℓ2(L±k) → ℓ2(L±k)

such that IkBk = B−kIk, it holds that[
K, Qk

2(Bk) +Q−k
2 (B−k)

]
= 2Qk

1({Kk, Bk}) + tr({Kk, Bk}) + εk({Kk, Bk})
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+ 2 Re
(
E2

k (Bk)
)

+ (k → −k)

where
E2

k (Bk) = 1
2
∑
l∈Z3

∗

∑
p∈Lk

∑
q∈Ll

{bk(Bkep), {ε−k,−l(e−p; e−q), b∗
l (Kleq)}} .

Proof: Writing Qk
2(Bk) as Qk

2(Bk) = 2 Re
(∑

p∈Lk
bk(Bkep)b−k(e−p)

)
, we calculate

[
K, Qk

2(Bk)
]

= 2 Re
∑

p∈Lk

(bk(Bkep) [K, b−k(e−p)] + [K, bk(Bkep)] b−k(e−p))


= 2 Re
∑

p∈Lk

(bk(Bkep) [K, b−k(e−p)] + [K, bk(ep)] b−k(B−ke−p))


= 2 Re
∑

p∈Lk

(
bk(Bkep)b∗

k(I−kK−ke−p) + b∗
−k(IkKkep)b−k(B−ke−p)

) (4.2.13)

+ 2 Re
∑

p∈Lk

(bk(Bkep)E−k(e−p) + Ek(ep)b−k(B−ke−p))


= 2 Re
∑

p∈Lk

(
bk,pb

∗
k(KkBkep) + b∗

−k(K−kB−ke−p)b−k,−p

)
+ 2 Re

∑
p∈Lk

(bk(Bkep)E−k(e−p) + Ek(ep)b−k(B−ke−p))
.

Now

2 Re
∑

p∈Lk

bk,pb
∗
k(KkBkep)

 =
∑

p∈Lk

bk,pb
∗
k(KkBkep) +

∑
p∈Lk

bk(KkBkep)b∗
k,p

=
∑

p∈Lk

bk,pb
∗
k(KkBkep) +

∑
p∈Lk

bk,pb
∗
k(BkKkep) (4.2.14)

=
∑

p∈Lk

bk,pb
∗
k({Kk, Bk} ep)

and likewise 2 Re
(∑

p∈Lk
b∗

−k(K−kB−ke−p)b−k,−p

)
= ∑

p∈Lk
b∗

−k({K−k, B−k} e−p), so

2 Re
∑

p∈Lk

(
bk,pb

∗
k(KkBkep) + b∗

−k(K−kB−ke−p)b−k,−p

)
=
∑

p∈Lk

bk,pb
∗
k({Kk, Bk} ep) +

∑
p∈Lk

b∗
−k({K−k, B−k} e−p)b−k,−p (4.2.15)

= Qk
1({Kk, Bk}) + tr({Kk, Bk}) + εk({Kk, Bk}) +Q−k

1 ({K−k, B−k}),
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whence summing over k and −k yields[
K, Qk

2(Bk) +Q−k
2 (B−k)

]
= 2Qk

1({Kk, Bk}) + tr({Kk, Bk}) + εk({Kk, Bk}) (4.2.16)

+ 2 Re
∑

p∈Lk

{bk(Bkep), E−k(e−p)}
+ (k → −k)

and E2
k (Bk) = ∑

p∈Lk
{bk(Bkep), E−k(e−p)} follows by expansion, yielding the claim.

□
Finally, for the transformation of H ′

kin, we also calculate the commutator [K, H ′
kin]:

Proposition 4.2.4. It holds that

[K, H ′
kin] =

∑
k∈Z3

∗

Qk
2({Kk, hk}).

Proof: By equation (4.1.14) we have

[H ′
kin, bk(φ)] = −2 bk(hkφ), [H ′

kin, b
∗
k(φ)] = 2 b∗

k(hkφ), (4.2.17)

so using that Ikhk = h−kIk we find

[K, H ′
kin] = 1

2
∑

k∈Z3
∗

∑
q∈Lk

(
[bk(Kkeq)b−k(e−q), H ′

kin] −
[
b∗

−k(e−q)b∗
k(Kkeq), H ′

kin

])

= −1
2
∑

k∈Z3
∗

∑
q∈Lk

(bk(Kkeq) [H ′
kin, b−k(e−q)] + [H ′

kin, bk(Kkeq)] b−k(e−q))

+ 1
2
∑

k∈Z3
∗

∑
q∈Lk

(
b∗

−k(e−q) [H ′
kin, b

∗
k(Kkeq)] +

[
H ′

kin, b
∗
−k(e−q)

]
b∗

k(Kkeq)
)

=
∑

k∈Z3
∗

∑
q∈Lk

(bk(Kkeq)b−k(h−ke−q) + bk(hkKkeq)b−k(e−q)) (4.2.18)

+
∑

k∈Z3
∗

∑
q∈Lk

(
b∗

−k(e−q)b∗
k(hkKkeq) + b∗

−k(h−ke−q)b∗
k(Kkeq)

)
=
∑

k∈Z3
∗

∑
q∈Lk

(
bk({Kk, hk} eq)b−k(e−q) + b∗

−k(e−q)b∗
k({Kk, hk} eq)

)
=
∑

k∈Z3
∗

Qk
2({Kk, hk}).

□

4.3 Transformation of the Bosonizable Terms
With all the commutators calculated we can now determine the action of eK on quadratic
operators:
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Proposition 4.3.1. For any k ∈ Z3
∗ and symmetric operators T±k : ℓ2(L±k) → ℓ2(L±k)

such that IkTk = T−kIk it holds that

eK
(
2Qk

1(Tk) + 2Q−k
1 (T−k)

)
e−K = tr

(
T 1

k (1) − Tk

)
+ 2Qk

1

(
T 1

k (1)
)

+Qk
2

(
T 2

k (1)
)

+
∫ 1

0
e(1−t)K

(
εk

({
Kk, T

2
k (t)

})
+ 2 Re

(
E1

k

(
T 1

k (t)
))

+ 2 Re
(
E2

k

(
T 2

k (t)
)))

e−(1−t)Kdt+ (k → −k)

and

eK
(
Qk

2(Tk) +Q−k
2 (T−k)

)
e−K = tr

(
T 2

k (1)
)

+ 2Qk
1

(
T 2

k (1)
)

+Qk
2

(
T 1

k (1)
)

+
∫ 1

0
e(1−t)K

(
εk

({
Kk, T

1
k (t)

})
+ 2 Re

(
E1

k

(
T 2

k (t)
))

+ 2 Re
(
E2

k

(
T 1

k (t)
)))

e−(1−t)Kdt+ (k → −k)

where for t ∈ [0, 1]

T 1
k (t) = 1

2
(
etKkTke

tKk + e−tKkTke
−tKk

)
T 2

k (t) = 1
2
(
etKkTke

tKk − e−tKkTke
−tKk

)
.

Proof: We prove the first identity, the second following by a similar argument.
As in the proof of Proposition 3.2.3 we consider the expression e−tK

(
2Qk

1(T 1
k (t)) +Qk

2(T 2
k (t))

)
etK,

where T 1
k (t) and T 2

k (t) are the solutions of the system(
T 1

k

)′
(t) =

{
Kk, T

2
k (t)

}
,

(
T 2

k

)′
(t) =

{
Kk, T

1
k (t)

}
, (4.3.1)

with initial conditions T 1
k (0) = Tk, T 2

k (0) = 0.
By the Propositions 4.2.2 and 4.2.3 the derivative of such an expression satisfies

etK
(
d

dt
e−tK

(
2Qk

1

(
T 1

k (t)
)

+Qk
2

(
T 2

k (t)
))
etK
)
e−tK + (k → −k)

= 2Qk
1

((
T 1

k

)′
(t)
)

+Qk
2

((
T 2

k

)′
(t)
)

−
[
K, 2Qk

1

(
T 1

k (t)
)

+Qk
2

(
T 2

k (t)
)]

+ (k → −k) (4.3.2)

= 2Qk
1

((
T 1

k

)′
(t)
)

− 2Qk
1

({
Kk, T

2
k (t)

})
− tr

({
Kk, T

2
k (t)

})
− εk

({
Kk, T

2
k (t)

})
− 2 Re

(
E2

k

(
T 2

k (t)
))

+Qk
2

((
T 2

k

)′
(t)
)

−Qk
2

({
Kk, T

1
k (t)

})
− 2 Re

(
E1

k

(
T 1

k (t)
))

+ (k → −k)

= −tr
((
T 1

k

)′
(t)
)

− εk

({
Kk, T

2
k (t)

})
+ 2 Re

(
E1

k

(
T 1

k (t)
))

+ 2 Re
(
E2

k

(
T 2

k (t)
))

+ (k → −k),

so by the fundamental theorem of calculus

e−K
(
2Qk

1

(
T 1

k (1)
)

+Qk
2

(
T 2

k (1)
))
eK + (k → −k) = 2Qk

1(Tk) − tr
(
T 1

k (1) − Tk

)
(4.3.3)

−
∫ 1

0
e−tK

(
εk

({
Kk, T

2
k (t)

})
+ 2 Re

(
E1

k

(
T 1

k (t)
))

+ 2 Re
(
E2

k

(
T 2

k (t)
)))

etKdt+ (k → −k)
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whence conjugation by eK and rearrangement yields

eK
(
2Qk

1(Tk) + 2Q−k
1 (T−k)

)
e−K = tr

(
T 1

k (1) − Tk

)
+ 2Qk

1

(
T 1

k (1)
)

+Qk
2

(
T 2

k (1)
)

(4.3.4)

+
∫ 1

0
e(1−t)K

(
εk

({
Kk, T

2
k (t)

})
+ 2 Re

(
E1

k

(
T 1

k (t)
))

+ 2 Re
(
E2

k

(
T 2

k (t)
)))

e−(1−t)Kdt+ (k → −k)

which is the claim.
□

With the transformation of quadratic operators determined we can also derive the
transformation of H ′

kin:

Proposition 4.3.2. It holds that

eKH ′
kine

−K =
∑

k∈Z3
∗

tr
(
h1

k(1) − hk

)
+H ′

kin +
∑

k∈Z3
∗

(
2Qk

1

(
h1

k(1) − hk

)
+Qk

2

(
h2

k(1)
))

+
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
εk

({
Kk, h

2
k(t)

})
+ 2 Re

(
E1

k

(
h1

k(t) − hk

))
+ 2 Re

(
E2

k

(
h2

k(t)
)))

e−(1−t)Kdt

where for t ∈ [0, 1]

h1
k(t) = 1

2
(
etKkhke

tKk + e−tKkhke
−tKk

)
h2

k(t) = 1
2
(
etKkhke

tKk − e−tKkhke
−tKk

)
.

Proof: By the Propositions 4.2.2 and 4.2.4 we see thatK, H ′
kin −

∑
k∈Z3

∗

2Qk
1(hk)

 = −
∑

k∈Z3
∗

2 Re
(
E1

k (hk)
)

(4.3.5)

whence by the fundamental theorem of calculus

eK

H ′
kin −

∑
k∈Z3

∗

2Qk
1(hk)

e−K = H ′
kin −

∑
k∈Z3

∗

2Qk
1(hk) −

∑
k∈Z3

∗

∫ 1

0
etK
(
2 Re

(
E1

k (hk)
))
e−tKdt

(4.3.6)
or

eKH ′
kine

−K = H ′
kin +

∑
k∈Z3

∗

(
eK
(
2Qk

1(hk)
)
e−K − 2Qk

1(hk)
)

(4.3.7)

−
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
2 Re

(
E1

k (hk)
))
e−(1−t)Kdt.

Applying Proposition 4.3.1 now yields the claim.
□
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With the transformation formulas derived we can now conclude the main part of The-
orem 4.0.1: By the two previous propositions, we see that

eK

H ′
kin +

∑
k∈Z3

∗

(
2Qk

1(Pk) +Qk
2(Pk)

)e−K =
∑

k∈Z3
∗

tr
(
h1

k(1) − hk + P 1
k (1) − Pk + P 2

k (1)
)

+H ′
kin +

∑
k∈Z3

∗

(
2Qk

1

(
h1

k(1) − hk + P 1
k (1) + P 2

k (1)
)

+Qk
2

(
h2

k(1) + P 2
k (1) + P 1

k (1)
))

(4.3.8)

+
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
εk

({
Kk, h

2
k(t) + P 2

k (t) + P 1
k (t)

})
+ 2 Re

(
E1

k

(
h1

k(t) − hk + P 1
k (t) + P 2

k (t)
))

+ 2 Re
(
E2

k

(
h2

k(t) + P 2
k (t) + P 1

k (t)
)))

e−(1−t)Kdt,

which is to say

eK

H ′
kin +

∑
k∈Z3

∗

(
2Qk

1(Pk) +Qk
2(Pk)

)e−K

=
∑

k∈Z3
∗

tr(Ak(1) − Pk) +H ′
kin +

∑
k∈Z3

∗

(
2Qk

1(Ak(1)) +Qk
2(Bk(1))

)
(4.3.9)

+
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
)

+ 2 Re
(
E2

k (Bk(t))
))
e−(1−t)Kdt

where the operators Ak(t), Bk(t) : ℓ2(Lk) → ℓ2(Lk) are given by

Ak(t) = 1
2
(
etKk(hk + 2Pk)etKk + e−tKkhke

−tKk

)
− hk (4.3.10)

Bk(t) = 1
2
(
etKk(hk + 2Pk)etKk − e−tKkhke

−tKk

)
.

We can now choose the kernels Kk such that this expression is diagonalized, i.e. such
that the Qk

2(·) terms vanish. Evidently this is saying that Bk(1) = 0, so we arrive at the
diagonalization condition

eKk(hk + 2Pk)eKk = e−Kkhke
−Kk . (4.3.11)

Note that this is really the condition of equation (3.2.22) of the previous section, with
A = hk + Pk and Bk = Pk. As such we see by Proposition 3.2.4 that we must choose

Kk = −1
2 log

(
h

− 1
2

k

(
h

1
2
k (hk + 2Pk)h

1
2
k

) 1
2
h

− 1
2

k

)
. (4.3.12)

Since the diagonalization condition is then fulfilled, it follows that also

Ak(1) = e−Kkhke
−Kk − hk (4.3.13)

and the formula of Theorem 4.0.1 is proved.



Chapter 5

Controlling the Transformation
Kernel

In this section we prove that under the condition ∑l∈Z3
∗

∥Kl∥2
HS < ∞, the operator defined

by
K = 1

2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩
(
bl,pb−l,−q − b∗

−l,−qb
∗
l,p

)
(5.0.1)

is bounded. More precisely, we prove the following estimate:

Proposition 5.0.1. For all Φ,Ψ ∈ HN it holds that

|⟨Φ,KΨ⟩| ≤
√

5
√∑

l∈Z3
∗

∥Kl∥2
HS

√
⟨Φ, (NE + 1)Φ⟩ ⟨Ψ, (NE + 1)Ψ⟩.

Recalling that
NE =

σ∑
p∈Bc

F

c∗
p,σcp,σ =

σ∑
p∈BF

cp,σc
∗
p,σ (5.0.2)

we have the trivial bound NE = ∑σ
p∈BF

cp,σc
∗
p,σ ≤ s |BF | = N , whence the proposition

indeed implies boundedness, as an estimate of the form |⟨Φ,KΨ⟩| ≤ C ∥Φ∥ ∥Ψ∥ follows.
Additionally, we will see in the next section that the kernels of equation (4.3.12) obey

∥Kk∥HS ≤ CV̂k, k ∈ Z3
∗, (5.0.3)

for a constant C > 0 independent of k, so the criterion ∑k∈Z3
∗
V̂ 2

k < ∞ does indeed imply
boundedness of our diagonalizing kernel K hence existence of the unitary transformation
eK asserted by Theorem 4.0.1.

Preliminary Analysis
Define

K̃ = 1
2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩ bl,pb−l,−q (5.0.4)
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so that K = K̃ − K̃∗. Then for any Φ,Ψ ∈ HN

|⟨Φ,KΨ⟩| ≤ |⟨Φ, K̃Ψ⟩| + |⟨Ψ, K̃Φ⟩| (5.0.5)

so we need only bound a quantity of the form |⟨Φ, K̃Ψ⟩|.
Note that by expanding b−l,−q = s− 1

2
∑s

σ=1 c
∗
−q+l,σc−q,σ we can write K̃ as

K̃ = 1
2
√
s

∑
l∈Z3

∗

σ∑
p,q∈Ll

⟨ep, Kleq⟩ bl,pc
∗
−q+l,σc−q,σ = 1

2
√
s

σ∑
q∈Bc

F

∑
l∈Z3

∗

∑
p∈Ll

1Ll
(q) ⟨ep, Kleq⟩ bl,pc

∗
−q+l,σ

c−q,σ

(5.0.6)
whence we may estimate

|⟨Φ, K̃Ψ⟩| = 1
2
√
s

∣∣∣∣∣∣
σ∑

q∈Bc
F

〈∑
l∈Z3

∗

∑
p∈Ll

1Ll
(q) ⟨Kleq, ep⟩ c−q+l,σb

∗
l,pΦ, c−q,σΨ

〉∣∣∣∣∣∣
≤ 1

2
√
s

σ∑
q∈Bc

F

∥∥∥∥∥∥
∑
l∈Z3

∗

∑
p∈Ll

1Ll
(q) ⟨Kleq, ep⟩ c−q+l,σb

∗
l,pΦ

∥∥∥∥∥∥ ∥c−q,σΨ∥ (5.0.7)

≤ 1
2
√
s

√√√√√ σ∑
q∈Bc

F

∥∥∥∥∥∥
∑
l∈Z3

∗

∑
p∈Ll

1Ll
(q) ⟨Kleq, ep⟩ c−q+l,σb∗

l,pΦ

∥∥∥∥∥∥
2√√√√ σ∑

q∈Bc
F

∥c−q,σΨ∥2

= 1
2

√√√√√1
s

σ∑
q∈Bc

F

∥∥∥∥∥∥
∑
l∈Z3

∗

∑
p∈Ll

1Ll
(q) ⟨Kleq, ep⟩ c−q+l,σb∗

l,pΦ

∥∥∥∥∥∥
2√

⟨Ψ,NEΨ⟩.

Now, the operator appearing under the root can be written as
∑
l∈Z3

∗

∑
p∈Ll

1Ll
(q) ⟨Kleq, ep⟩ c−q+l,σb

∗
l,p = 1√

s

∑
l∈Z3

∗

τ∑
p∈Ll

1Ll
(q) ⟨Kleq, ep⟩ c∗

p,τcp−l,τc−q+l,σ

= 1√
s

τ∑
p′∈Bc

F

∑
q′,r′∈BF

∑
l∈Z3

∗

∑
p∈Ll

δp′,pδq′,p−lδr′,−q+l1Ll
(q) ⟨Kleq, ep⟩

c∗
p′,τcq′,τcr′,σ. (5.0.8)

The introduction of these Kronecker δ’s has no effect by itself, but it highlights that this
operator can be written simply in the form

1√
s

τ∑
p∈Bc

F

∑
q,r∈BF

Ap,q,rc
∗
p,τcq,τcr,σ (5.0.9)

for some coefficients Ap,q,r. We will now derive a general estimate for such an expression.

5.1 A Higher Order Fermionic Estimate
Recall that the “standard fermionic estimate” can be stated as∥∥∥∑AkckΨ

∥∥∥ , ∥∥∥∑Akc
∗
kΨ
∥∥∥ ≤

√∑
|Ak|2 ∥Ψ∥ , (5.1.1)
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which can be proved by appealing to the CAR as follows: Trivially∥∥∥∑AkckΨ
∥∥∥2

=
〈∑

AkckΨ,
∑

AlclΨ
〉

=
〈
Ψ,
(∑

Akck

)∗(∑
Alcl

)
Ψ
〉

(5.1.2)

≤
〈
Ψ,
(∑

Akck

)∗(∑
Alcl

)
Ψ
〉

+
〈
Ψ,
(∑

Alcl

)(∑
Akck

)∗
Ψ
〉

=
〈
Ψ,
{(∑

Akck

)∗
,
(∑

Alcl

)}
Ψ
〉

since all that was done was the addition of a non-negative term. By the CAR, however,{(∑
Akck

)∗
,
(∑

Alcl

)}
=
∑

AkAl {c∗
k, cl} =

∑
AkAlδk,l =

∑
|Ak|2 (5.1.3)

whence the bound immediately follows. This establishes the uniquely fermionic property
that sums of creation and annihilation operators can be estimated independently of the
number operator, unlike in the bosonic case.

One can imagine generalizing this to quadratic expressions of the form ∑
k,l Ak,lckcl,

but this fails: The issue is that the CAR only yields a commutation relation for such
expressions, and not an anticommutation relation, whence the argument above can not be
applied.

We may however make the observation that for cubic expressions, such as∑k,l,m Ak,l,mc
∗
kclcm,

the CAR does yield an anticommutation relation, allowing the trick to be applied. The
anticommutator is of course not constant, but rather a combination of quadratic, linear and
constant expressions, but this still yields a reduction in “number operator order”, which
will be crucial for our estimation of eKN m

E e
−K later on.

To derive such an estimate we first calculate the following basic anticommutator:

Lemma 5.1.1. For any p, p′ ∈ Bc
F , q, q′, r, r′ ∈ BF and 1 ≤ σ, τ, τ ′ ≤ s it holds that{(

c∗
p,τcq,τcr,σ

)∗
, c∗

p′,τ ′cq′,τ ′cr′,σ

}
= δτ,τ ′

p,p′ cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ + δτ,τ ′

q,q′ c∗
p′,τ ′cr′,σc

∗
r,σcp,τ + δr,r′c∗

p′,τ ′cq′,τ ′c∗
q,τcp,τ

− δσ,τ ′

r,q′ c∗
p′,τ ′cr′,σc

∗
q,τcp,τ − δτ,σ

q,r′c∗
p′,τ ′cq′,τ ′c∗

r,σcp,τ

− δτ,τ ′

q,q′ δr,r′c∗
p′,τ ′cp,τ − δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ cr′,σc
∗
r,σ − δτ,τ ′

p,p′ δr,r′cq′,τ ′c∗
q,τ

+ δτ,σ
q,r′δ

σ,τ ′

r,q′ c∗
p′,τ ′cp,τ + δτ,τ ′

p,p′ δ
σ,τ ′

r,q′ cr′,σc
∗
q,τ + δτ,τ ′

p,p′ δ
τ,σ
q,r′cq′,τ ′c∗

r,σ

+ δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ δr,r′ − δτ,τ ′

p,p′ δ
τ,σ
q,r′δ

σ,τ ′

r,q′ .

Proof: The proof is a straightforward but lengthy calculation using the CAR: First we
note(

c∗
p,τcq,τcr,σ

)∗
c∗

p′,τ ′cq′,τ ′cr′,σ = c∗
r,σc

∗
q,τcp,τc

∗
p′,τ ′cq′,τ ′cr′,σ

= −c∗
r,σc

∗
q,τc

∗
p′,τ ′cp,τcq′,τ ′cr′,σ + δτ,τ ′

p,p′ c∗
r,σc

∗
q,τcq′,τ ′cr′,σ (5.1.4)

= −c∗
p′,τ ′c∗

r,σc
∗
q,τcq′,τ ′cr′,σcp,τ + δτ,τ ′

p,p′ c∗
r,σc

∗
q,τcq′,τ ′cr′,σ

and

c∗
r,σc

∗
q,τcq′,τ ′cr′,σ = −c∗

r,σcq′,τ ′c∗
q,τcr′,σ + δτ,τ ′

q,q′ c∗
r,σcr′,σ = c∗

r,σcq′,τ ′cr′,σc
∗
q,τ − δτ,σ

q,r′c∗
r,σcq′,τ ′ + δτ,τ ′

q,q′ c∗
r,σcr′,σ
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= −cq′,τ ′c∗
r,σcr′,σc

∗
q,τ + δσ,τ ′

r,q′ cr′,σc
∗
q,τ − δτ,σ

q,r′c∗
r,σcq′,τ ′ + δτ,τ ′

q,q′ c∗
r,σcr′,σ (5.1.5)

= cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ − δr,r′cq′,τ ′c∗

q,τ + δσ,τ ′

r,q′ cr′,σc
∗
q,τ − δτ,σ

q,r′c∗
r,σcq′,τ ′ + δτ,τ ′

q,q′ c∗
r,σcr′,σ

= cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ − δτ,τ ′

q,q′ cr′,σc
∗
r,σ − δr,r′cq′,τ ′c∗

q,τ + δσ,τ ′

r,q′ cr′,σc
∗
q,τ + δτ,σ

q,r′cq′,τ ′c∗
r,σ

+ δτ,τ ′

q,q′ δr,r′ − δτ,σ
q,r′δ

σ,τ ′

r,q′ .

Consequently

−c∗
p′,τ ′c∗

r,σc
∗
q,τcq′,τ ′cr′,σcp,τ = −c∗

p′,τ ′cq′,τ ′cr′,σc
∗
r,σc

∗
q,τcp,τ + c∗

p′,τ ′

(
δτ,τ ′

q,q′ cr′,σc
∗
r,σ + δr,r′cq′,τ ′c∗

q,τ

)
cp,τ

− c∗
p′,τ ′

(
δσ,τ ′

r,q′ cr′,σc
∗
q,τ + δτ,σ

q,r′cq′,τ ′c∗
r,σ

)
cp,τ − c∗

p′,τ ′

(
δτ,τ ′

q,q′ δr,r′ − δτ,σ
q,r′δ

σ,τ ′

r,q′

)
cp,τ

= −c∗
p′,τ ′cq′,τ ′cr′,σ

(
c∗

p,τcq,τcr,σ

)∗
+ δτ,τ ′

q,q′ c∗
p′,τ ′cr′,σc

∗
r,σcp,τ + δr,r′c∗

p′,τ ′cq′,τ ′c∗
q,τcp,τ

− δσ,τ ′

r,q′ c∗
p′,τ ′cr′,σc

∗
q,τcp,τ − δτ,σ

q,r′c∗
p′,τ ′cq′,τ ′c∗

r,σcp,τ (5.1.6)
− δτ,τ ′

q,q′ δr,r′c∗
p′,τ ′cp,τ + δτ,σ

q,r′δ
σ,τ ′

r,q′ c∗
p′,τ ′cp,τ

and

δτ,τ ′

p,p′ c∗
r,σc

∗
q,τcq′,τ ′cr′,σ = δτ,τ ′

p,p′ cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ − δτ,τ ′

p,p′

(
δτ,τ ′

q,q′ cr′,σc
∗
r,σ + δr,r′cq′,τ ′c∗

q,τ

)
+ δτ,τ ′

p,p′

(
δσ,τ ′

r,q′ cr′,σc
∗
q,τ + δτ,σ

q,r′cq′,τ ′c∗
r,σ

)
+ δτ,τ ′

p,p′

(
δτ,τ ′

q,q′ δr,r′ − δτ,σ
q,r′δ

σ,τ ′

r,q′

)
(5.1.7)

= δτ,τ ′

p,p′ cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ − δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ cr′,σc
∗
r,σ − δτ,τ ′

p,p′ δr,r′cq′,τ ′c∗
q,τ

+ δτ,τ ′

p,p′ δ
σ,τ ′

r,q′ cr′,σc
∗
q,τ + δτ,τ ′

p,p′ δ
τ,σ
q,r′cq′,τ ′c∗

r,σ + δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ δr,r′ − δτ,τ ′

p,p′ δ
τ,σ
q,r′δ

σ,τ ′

r,q′ .

Insertion of these two identities into equation (5.1.4) yields the claim.
□

We can now conclude the desired bound:

Proposition 5.1.2. Let Ap,q,r ∈ C for p ∈ Bc
F and q, r ∈ BF with ∑p∈Bc

F

∑
q,r∈BF

|Ap,q,r|2 <
∞ be given. Then for any Ψ ∈ HN

1
s

s∑
σ=1

∥∥∥∥∥∥
τ∑

p∈Bc
F

∑
q,r∈BF

Ap,q,rc
∗
p,τcq,τcr,σΨ

∥∥∥∥∥∥
2

≤ 5s
∑

p∈Bc
F

∑
q,r∈BF

|Ap,q,r|2 ⟨Ψ, (NE + 1)Ψ⟩ .

Proof: As in the proof of the standard fermionic estimate, we have∥∥∥∥∥∥
τ∑

p∈Bc
F

∑
q,r∈BF

Ap,q,rc
∗
p,τcq,τcr,σΨ

∥∥∥∥∥∥
2

=
〈

τ∑
p∈Bc

F

∑
q,r∈BF

Ap,q,rc
∗
p,τcq,τcr,σΨ,

τ ′∑
p′∈Bc

F

∑
q′,r′∈BF

Ap′,q′,r′c∗
p′,τ ′cq′,τ ′cr′,σΨ

〉

≤
τ,τ ′∑

p,p′∈Bc
F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
{(
c∗

p,τcq,τcr,σ

)∗
, c∗

p′,τ ′cq′,τ ′cr′,σ

}
Ψ
〉
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so by the identity of the preceding lemma

s∑
σ=1

∥∥∥∥∥∥
∑

p∈Bc
F

∑
q,r∈BF

Ap,q,rc
∗
pcqcrΨ

∥∥∥∥∥∥
2

≤
s∑

σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
(
δτ,τ ′

p,p′ cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ + δτ,τ ′

q,q′ c∗
p′,τ ′cr′,σc

∗
r,σcp,τ

+δr,r′c∗
p′,τ ′cq′,τ ′c∗

q,τcp,τ

)
Ψ
〉

(5.1.8)

−
s∑

σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
(
δσ,τ ′

r,q′ c∗
p′,τ ′cr′,σc

∗
q,τcp,τ + δτ,σ

q,r′c∗
p′,τ ′cq′,τ ′c∗

r,σcp,τ

)
Ψ
〉

−
s∑

σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
(
δτ,τ ′

q,q′ δr,r′c∗
p′,τ ′cp,τ + δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ cr′,σc
∗
r,σ + δτ,τ ′

p,p′ δr,r′cq′,τ ′c∗
q,τ

)
Ψ
〉

+
s∑

σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
(
δτ,σ

q,r′δ
σ,τ ′

r,q′ c∗
p′,τ ′cp,τ + δτ,τ ′

p,p′ δ
σ,τ ′

r,q′ cr′,σc
∗
q,τ + δτ,τ ′

p,p′ δ
τ,σ
q,r′cq′,τ ′c∗

r,σ

)
Ψ
〉

+
s∑

σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
(
δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ δr,r′ − δτ,τ ′

p,p′ δ
τ,σ
q,r′δ

σ,τ ′

r,q′

)
Ψ
〉
.

We estimate the different types of expressions appearing above. Firstly, by the standard
fermionic estimate,

s∑
σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ, δτ,τ ′

p,p′ cq′,τ ′cr′,σc
∗
r,σc

∗
q,τ Ψ

〉

=
σ,τ∑

p∈Bc
F

〈 ∑
q′,r′∈BF

Ap,q′,r′c∗
r′,σc

∗
q′,τ Ψ,

∑
q,r∈BF

Ap,q,rc
∗
r,σc

∗
q,τ Ψ

〉
=

σ,τ∑
p∈Bc

F

∥∥∥∥∥∥
∑

q,r∈BF

Ap,q,rc
∗
r,σc

∗
q,τ Ψ

∥∥∥∥∥∥
2

≤
σ,τ∑

p∈Bc
F

 ∑
q∈BF

∥∥∥∥∥∥
∑

r∈BF

Ap,q,rc
∗
r,σc

∗
q,τ Ψ

∥∥∥∥∥∥
2

≤
σ,τ∑

p∈Bc
F

 ∑
q∈BF

√ ∑
r∈BF

|Ap,q,r|2
∥∥∥c∗

q,τ Ψ
∥∥∥
2

(5.1.9)

≤
σ,τ∑

p∈Bc
F

 ∑
q,r∈BF

|Ap,q,r|2
 ∑

q∈BF

∥∥∥c∗
q,τ Ψ

∥∥∥2
 = s

∑
p∈Bc

F

∑
q,r∈BF

|Ap,q,r|2 ⟨Ψ,NEΨ⟩

and likewise for the other two terms on the first line of equation (5.1.8). For the terms on
the second line we similarly estimate∣∣∣∣∣∣

s∑
σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ, δσ,τ ′

r,q′ c∗
p′,τ ′cr′,σc

∗
q,τcp,τ Ψ

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
σ,τ∑

r∈BF

〈 ∑
p′∈Bc

F

∑
r′∈BF

Ap′,r,r′c∗
r′,σcp′,σΨ,

∑
p∈Bc

F

∑
q∈BF

Ap,q,rc
∗
q,τcp,τ Ψ

〉∣∣∣∣∣∣
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≤
σ,τ∑

r∈BF

∥∥∥∥∥∥
∑

p′∈Bc
F

∑
r′∈BF

Ap′,r,r′c∗
r′,σcp′,σΨ

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

p∈Bc
F

∑
q∈BF

Ap,q,rc
∗
q,τcp,τ Ψ

∥∥∥∥∥∥ (5.1.10)

≤
σ,τ∑

r∈BF

∑
p,p′∈Bc

F

√ ∑
r′∈BF

|Ap′,r,r′|2 ∥cp′,σΨ∥
√ ∑

q∈BF

|Ap,q,r|2 ∥cp,τ Ψ∥

≤
∑

r∈BF

√√√√ σ∑
p′∈Bc

F

∑
r′∈BF

|Ap′,r,r′ |2
√√√√ σ∑

p′∈Bc
F

∥cp′,σΨ∥2
√√√√ τ∑

p∈Bc
F

∑
q∈BF

|Ap,q,r|2
√√√√ τ∑

p∈Bc
F

∥cp,τ Ψ∥2

≤ s
∑

p∈Bc
F

∑
q,r∈BF

|Ap,q,r|2 ⟨Ψ,NEΨ⟩ .

The terms on the third line of equation (5.1.8) all factorize in a manifestly non-positive
fashion, and so can be dropped, while for the fourth line∣∣∣∣∣∣

s∑
σ,τ,τ ′=1

∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ, δτ,σ

q,r′δ
σ,τ ′

r,q′ c∗
p′,τ ′cp,τ Ψ

〉∣∣∣∣∣∣ (5.1.11)

=

∣∣∣∣∣∣
σ∑

q,r∈BF

〈 ∑
p′∈Bc

F

Ap′,r,qcp′,σΨ,
∑

p∈Bc
F

Ap,q,rcp,σΨ
〉∣∣∣∣∣∣ ≤

σ∑
q,r∈BF

∥∥∥∥∥∥
∑

p′∈Bc
F

Ap′,r,qcp′,σΨ

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

p∈Bc
F

Ap,q,rcp,σΨ

∥∥∥∥∥∥
≤

σ∑
q,r∈BF

√ ∑
p∈Bc

F

|Ap′,r,q|2
√ ∑

p∈Bc
F

|Ap,q,r|2 ∥Ψ∥2 ≤ s
∑

p∈Bc
F

∑
q,r∈BF

|Ap,q,r|2 ∥Ψ∥2 .

Lastly, the terms on the fifth line are seen to simply be constant and easily bounded by
s2∑

p∈Bc
F

∑
q,r∈BF

|Ap,q,r|2 ∥Ψ∥2, whence the proposition follows.
□

We can now conclude the following bound for K̃:

Proposition 5.1.3. For any Φ,Ψ ∈ HN it holds that

|⟨Φ, K̃Ψ⟩| ≤
√

5
2

√∑
l∈Z3

∗

∥Kl∥2
HS

√
⟨Φ, (NE + 1)Φ⟩ ⟨Ψ,NEΨ⟩.

Proof: By the equations (5.0.7) and (5.0.8), combined with the estimate of the previous
proposition, we can estimate

|⟨Φ, K̃Ψ⟩| ≤
√

5
2

√√√√√ ∑
q∈Bc

F

∑
p′∈Bc

F

∑
q′,r′∈BF

∣∣∣∣∣∣
∑
l∈Z3

∗

∑
p∈Ll

δp′,pδq′,p−lδr′,−q+l1Ll
(q) ⟨Kleq, ep⟩

∣∣∣∣∣∣
2

(5.1.12)

·
√

⟨Φ, (NE + 1)Φ⟩ ⟨Ψ,NEΨ⟩,

and by repeated elimination of the Kronecker δ’s the sum reduces to

∑
q∈Bc

F

∑
p′∈Bc

F

∑
q′,r′∈BF

∣∣∣∣∣∣
∑
l∈Z3

∗

∑
p∈Ll

δp′,pδq′,p−lδr′,−q+l1Ll
(q) ⟨Kleq, ep⟩

∣∣∣∣∣∣
2
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=
∑

q∈Bc
F

∑
p′∈Bc

F

∑
q′∈BF

∑
l∈Z3

∗

∣∣∣∣∣∣
∑
p∈Ll

δp′,pδq′,p−l1Ll
(q) ⟨Kleq, ep⟩

∣∣∣∣∣∣
2

(5.1.13)

=
∑

q∈Bc
F

∑
q′∈BF

∑
l∈Z3

∗

∑
p∈Ll

|δq′,p−l1Ll
(q) ⟨Kleq, ep⟩|2 =

∑
l∈Z3

∗

∑
p,q∈Ll

|⟨Kleq, ep⟩|2 =
∑
l∈Z3

∗

∥Kl∥2
HS .

□
The bound of Proposition 5.0.1 now follows by the observation that |⟨Φ,KΨ⟩| ≤

|⟨Φ, K̃Ψ⟩| + |⟨Ψ, K̃Φ⟩|.
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Chapter 6

Analysis of One-Body Operators

In this section we analyze the operators Kk, Ak(t) and Bk(t) which appeared during the
diagonalization process of Section 4.

We first consider operators of the form e−2Kk and e2Kk in detail, obtaining asymptot-
ically optimal matrix element estimates for these. We then extend these estimates to Kk

itself, as well as sinh(−tKk) and cosh(−tKk) for any t ∈ [0, 1]. With these we then turn
to Ak(t) and Bk(t).

We end the analysis with the integral
∫ 1

0 Bk(t) dt, which will appear in the next section
during our extraction of the exchange contribution.

In all, we prove the following:

Theorem 6.0.1. It holds for any k ∈ Z3
∗ that

tr
(
e−Kkhke

−Kk − hk − Pk

)
= 1
π

∫ ∞

0
F

sV̂kk
−1
F

(2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

dt,
where F (x) = log(1 + x) − x. Furthermore, as kF → ∞,

∥Kk∥HS ≤ CV̂k min {1, k2
F |k|−2}

and for all p, q ∈ Lk and t ∈ [0, 1]

|⟨ep, Kkeq⟩| ≤ C
V̂kk

−1
F

λk,p + λk,q∣∣∣∣∣⟨ep, (−Kk)eq⟩ − sV̂kk
−1
F

2 (2π)3
1

λk,p + λk,q

∣∣∣∣∣ ≤ C
V̂ 2

k k
−1
F

λk,p + λk,q

|⟨ep, Ak(t)eq⟩| , |⟨ep, Bk(t)eq⟩| ≤ C
(
1 + V̂ 2

k

)
V̂kk

−1
F∣∣∣∣∣

〈
ep,
(∫ 1

0
Bk(t) dt

)
eq

〉
− sV̂kk

−1
F

4 (2π)3

∣∣∣∣∣ ≤ C
(
1 + V̂k

)
V̂ 2

k k
−1
F

|⟨ep, {Kk, Bk(t)} eq⟩| ≤ C
(
1 + V̂ 2

k

)
V̂ 2

k k
−1
F

for a constant C > 0 depending only on s.
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6.1 Matrix Element Estimates for K-Quantities
To ease the notation we will abstract the problem slightly: Instead of ℓ2(Lk) we consider
a general n-dimensional Hilbert space (V, ⟨·, ·⟩), let h : V → V be a positive self-adjoint
operator on V with eigenbasis (xi)n

i=1 and eigenvalues (λi)n
i=1, and let v ∈ V be any vector

such that ⟨xi, v⟩ ≥ 0 for all 1 ≤ i ≤ n. Theorem 6.0.1 will then be obtained at the end by
insertion of the particular operators hk and Pk.

Throughout this section we will also write Pw : V → V , w ∈ V , to denote the operator

Pw(·) = ⟨w, ·⟩w. (6.1.1)
We define K : V → V by

K = −1
2 log

(
h− 1

2
(
h

1
2 (h+ 2Pv)h 1

2
) 1

2h− 1
2

)
= −1

2 log
(
h− 1

2
(
h2 + 2P

h
1
2 v

) 1
2h− 1

2

)
. (6.1.2)

Then e−2K is given by
e−2K = h− 1

2
(
h2 + 2P

h
1
2 v

) 1
2h− 1

2 (6.1.3)

while e2K takes the form

e2K = h
1
2
(
h2 + 2P

h
1
2 v

)− 1
2h

1
2 = h

1
2

((
h2 + 2P

h
1
2 v

)−1
) 1

2
h

1
2 . (6.1.4)

We can rewrite the inverse of h2 + 2P
h

1
2 v

using the Sherman-Morrison formula:

Lemma 6.1.1 (The Sherman-Morrison Formula). Let A : V → V be an invertible self-
adjoint operator. Then for any w ∈ V and g ∈ C, the operator A+ gPw is invertible if and
only if ⟨w,A−1w⟩ ≠ −g−1, with inverse

(A+ gPw)−1 = A−1 − g

1 + g ⟨w,A−1w⟩
PA−1w.

Applying the Sherman-Morrison formula with A = h2, w = h
1
2v and g = 2 we obtain

(
h2 + 2P

h
1
2 v

)−1
= h−2 − 2

1 + 2 ⟨v, h−1v⟩
P

h− 3
2 v

(6.1.5)

so e−2K and e2K are given by

e−2K = h− 1
2
(
h2 + 2P

h
1
2 v

) 1
2h− 1

2 (6.1.6)

e2K = h
1
2

(
h−2 − 2

1 + 2 ⟨v, h−1v⟩
P

h− 3
2 v

) 1
2

h
1
2 .

To proceed further we apply the following integral representation of the square root of a
one-dimensional perturbation, first presented in [8]:
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Proposition 6.1.2. Let A : V → V be a positive self-adjoint operator. Then for any
w ∈ V and g ∈ R such that A+ gPw > 0 it holds that

(A+ gPw)
1
2 = A

1
2 + 2g

π

∫ ∞

0

t2

1 + g
〈
w, (A+ t2)−1w

〉P(A+t2)−1wdt

and
tr
(
(A+ gPw)

1
2
)

= tr
(
A

1
2
)

+ 1
π

∫ ∞

0
log
(

1 + g
〈
w,
(
A+ t2

)−1
w
〉)
dt.

We have included a proof of this in appendix section A.1.
By the trace formula we can immediately deduce the following identity:

Proposition 6.1.3. It holds that

tr
(
e−Khe−K − h− Pv

)
= 1
π

∫ ∞

0
F
(

2
〈
v, h

(
h2 + t2

)−1
v
〉)
dt

where F (x) = log(1 + x) − x.

Proof: By cyclicity of the trace and the previous proposition

tr
(
e−Khe−K − h− Pv

)
= tr

(
h

1
2 e−2Kh

1
2
)

− tr(h) − tr(Pv) = tr
((
h2 + 2P

h
1
2 v

) 1
2
)

− tr(h) − ∥v∥2

= 1
π

∫ ∞

0
log
(

1 + 2
〈
v, h

(
h2 + t2

)−1
v
〉)
dt− ∥v∥2 , (6.1.7)

so noting that the integral identity
∫∞

0
a

a2+t2dt = π
2 , a > 0, implies that

1
π

∫ ∞

0
2
〈
v, h

(
h2 + t2

)−1
v
〉
dt = 2

π

n∑
i=1

|⟨ei, v⟩|2
∫ ∞

0

λi

λ2
i + t2

dt =
n∑

i=1
|⟨ei, v⟩|2 = ∥v∥2

(6.1.8)
we can absorb the term − ∥v∥2 into the integral for the claim.

□

Estimation of e−2K and e2K

Using the square-root formula we now derive elementwise estimates for e−2K and e2K :

Proposition 6.1.4. For all 1 ≤ i, j ≤ n it holds that

2
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≤
〈
xi,
(
e−2K − 1

)
xj

〉
,
〈
xi,
(
1 − e2K

)
xj

〉
≤ 2⟨xi, v⟩ ⟨v, xj⟩

λi + λj

.

Proof: From the first equality of equation (6.1.6) we can apply the identity of Proposition
6.1.2 with A = h2, w = h

1
2v and g = 2 to see that

e−2K = h− 1
2

h+ 4
π

∫ ∞

0

t2

1 + 2
〈
h

1
2v, (h2 + t2)−1h

1
2v
〉P

(h2+t2)−1h
1
2 v
dt

h− 1
2 (6.1.9)
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= 1 + 4
π

∫ ∞

0

t2

1 + 2
〈
v, h(h2 + t2)−1v

〉P(h2+t2)−1vdt

whence for any 1 ≤ i, j ≤ n

〈
xi,
(
e−2K − 1

)
xj

〉
= 4
π

∫ ∞

0

t2

1 + 2
〈
v, h(h2 + t2)−1v

〉 ⟨xi, v⟩
λ2

i + t2
⟨v, xj⟩
λ2

j + t2
dt (6.1.10)

= 4
π

⟨xi, v⟩ ⟨v, xj⟩
∫ ∞

0

1
1 + 2

〈
v, h(h2 + t2)−1v

〉 t

λ2
i + t2

t

λ2
j + t2

dt.

Noting that
1

1 + 2 ⟨v, h−1v⟩
≤ 1

1 + 2
〈
v, h(h2 + t2)−1v

〉 ≤ 1, t ≥ 0, (6.1.11)

and recalling that ⟨xi, v⟩ ≥ 0 by assumption, we conclude
〈
xi,
(
e−2K − 1

)
xj

〉
≥ 4
π

⟨xi, v⟩ ⟨v, xj⟩
1 + 2 ⟨v, h−1v⟩

∫ ∞

0

t

λ2
i + t2

t

λ2
j + t2

dt (6.1.12)
〈
xi,
(
e−2K − 1

)
xj

〉
≤ 4
π

⟨xi, v⟩ ⟨v, xj⟩
∫ ∞

0

t

λ2
i + t2

t

λ2
j + t2

dt

from which the claim follows by an application of the integral identity∫ ∞

0

t

a2 + t2
t

b2 + t2
dt = π

2
1

a+ b
, a, b > 0. (6.1.13)

Similarly, for e2K , we have by equation (6.1.6) that applying Proposition 6.1.2 with A =
h−2, w = h− 3

2v and g = −2(1 + 2 ⟨v, h−1v⟩)−1 yields

e2K = h
1
2

h−1 − 4
π

∫ ∞

0

t2

1 + 2 ⟨v, h−1v⟩ − 2
〈
h− 3

2v, (h−2 + t2)−1h− 3
2v
〉P

(h−2+t2)−1h− 3
2 v
dt

h 1
2

= 1 − 4
π

∫ ∞

0

t2

1 + 2
〈
v, h−1(h−2 + t2)−1v

〉
t2
P(h−2+t2)−1h−1vdt (6.1.14)

from which the claimed inequality follows as before by the observation that

1
1 + 2 ⟨v, h−1v⟩

≤ 1
1 + 2

〈
v, h−1(h−2 + t2)−1v

〉
t2

≤ 1, t ≥ 0, (6.1.15)

as well as the integral identity

1
ab

∫ ∞

0

t

a−2 + t2
t

b−2 + t2
dt = π

2
1

a+ b
, a, b > 0. (6.1.16)

□
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Note that these estimates are asymptotically optimal, in the sense that the left-hand
side reduces to the right-hand side as ⟨v, h−1v⟩ → 0. In our case we will see that〈
vk, h

−1
k vk

〉
∼ V̂k, so this amounts to optimal estimates for “small” V̂k.

Below it will be more convenient to consider the hyperbolic functions sinh(−2K) and
cosh(−2K) rather than e−2K and e2K . The previous proposition implies the following for
these operators:

Corollary 6.1.5. For any 1 ≤ i, j ≤ n it holds that

⟨xi, sinh(−2K)xj⟩ ≤ 2⟨xi, v⟩ ⟨v, xj⟩
λi + λj

⟨xi, (cosh(−2K) − 1)xj⟩ ≤ 2 ⟨v, h−1v⟩
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

Proof: As sinh(−2K) = 1
2

((
e−2K − 1

)
+
(
1 − e2K

))
we can bound

⟨xi, sinh(−2K)xj⟩ = 1
2
(〈
xi,
(
e−2K − 1

)
xj

〉
+
〈
xi,
(
1 − e2K

)
xj

〉)
≤ 2⟨xi, v⟩ ⟨v, xj⟩

λi + λj

(6.1.17)
and as similarly cosh(−2K) − 1 = 1

2

((
e−2K − 1

)
−
(
1 − e2K

))
also

⟨xi, (cosh(−2K) − 1)xj⟩ = 1
2
(〈
xi,
(
e−2K − 1

)
xj

〉
−
〈
xi,
(
1 − e2K

)
xj

〉)
≤ 1

2

(
2⟨xi, v⟩ ⟨v, xj⟩

λi + λj

− 2
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

)
(6.1.18)

= 2 ⟨v, h−1v⟩
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

□

General Estimates
Now we extend our elementwise estimates to more general operators. First we consider K
itself:

Proposition 6.1.6. For any 1 ≤ i, j ≤ n it holds that

1
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≤ ⟨xi, (−K)xj⟩ ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

Proof: As K = −1
2 log

(
h− 1

2
(
h2 + 2P

h
1
2 v

) 1
2h− 1

2

)
and

h− 1
2
(
h2 + 2P

h
1
2 v

) 1
2h− 1

2 ≥ h− 1
2hh− 1

2 = 1 (6.1.19)
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we see that K ≤ 0. From the identity

−x = 1
2

∞∑
m=1

1
m

(
1 − e2x

)m
, x ≤ 0, (6.1.20)

which follows by the Mercator series, we thus have that −K = 1
2
∑∞

m=1
1
m

(
1 − e2K

)m
.

Noting that Proposition 6.1.4 in particular implies that
〈
xi,
(
1 − e2K

)
xj

〉
≥ 0 for all 1 ≤

i, j ≤ n, whence also
〈
xi,
(
1 − e2K

)m
xj

〉
≥ 0 for any m ∈ N, we may estimate

⟨xi, (−K)xj⟩ = 1
2

∞∑
m=1

1
m

〈
xi,
(
1 − e2K

)m
xj

〉
≥ 1

2
〈
xi,
(
1 − e2K

)
xj

〉
(6.1.21)

≥ 1
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

which is the lower bound. This similarly implies that ⟨xi, (−K)mxj⟩ ≥ 0 for all 1 ≤ i, j ≤ n,
m ∈ N, so the upper bound now also follows from Proposition 6.1.4 by noting that

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≥ 1
2
〈
xi,
(
e−2K − 1

)
xj

〉
= 1

2

∞∑
m=1

1
m! ⟨xi, (−2K)mxj⟩ ≥ ⟨xi, (−K)xj⟩ .

(6.1.22)
□

The fact that ⟨xi, (−K)mxj⟩ ≥ 0 for all 1 ≤ i, j ≤ n, m ∈ N, has the important
consequence that for any such i and j, the functions

t 7→ ⟨xi, sinh(−tK)xj⟩ , ⟨xi, (sinh(−tK) + tK)xj⟩ , ⟨xi, (cosh(−tK) − 1)xj⟩ (6.1.23)

are non-negative and convex for t ∈ [0,∞), as follows by considering the Taylor expansions
of the operators involved. This allows us to extend the bounds of Corollary 6.1.5 to
arbitrary t ∈ [0, 1]:

Proposition 6.1.7. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

1
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

t ≤ ⟨xi, sinh(−tK)xj⟩ ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

t

0 ≤ ⟨xi, (cosh(−tK) − 1)xj⟩ ≤ ⟨v, h−1v⟩
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj∣∣∣〈xi,

(
etK − 1

)
xj

〉∣∣∣ ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

Proof: By the noted convexity we immediately conclude the upper bounds

⟨xi, sinh(−tK)xj⟩ ≤ t

2 ⟨xi, sinh(−2K)xj⟩ ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

t (6.1.24)
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⟨xi, (cosh(−tK) − 1)xj⟩ ≤ t

2 ⟨xi, (cosh(−2K) − 1)xj⟩ ≤ ⟨v, h−1v⟩
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

and by non-negativity of ⟨xi, (sinh(−tK) + tK)xj⟩ and Proposition 6.1.6, the lower bound

⟨xi, sinh(−tK)xj⟩ ≥ ⟨xi, (−tK)xj⟩ ≥ 1
1 + 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

t. (6.1.25)

Lastly we can apply the non-negativity of the hyperbolic operators to conclude the bound
for etK − 1 as∣∣∣〈xi,

(
etK − 1

)
xj

〉∣∣∣ = |⟨xi, ((cosh(−tK) − 1) − sinh(−tK))xj⟩| (6.1.26)

≤ max {⟨xi, (cosh(−tK) − 1)xj⟩ , ⟨xi, sinh(−tK)xj⟩} ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

□

6.2 Matrix Element Estimates for A(t) and B(t)
We now consider operators A(t), B(t) : V → V defined by

A(t) = 1
2
(
etK(h+ 2Pv)etK + e−tKhe−tK

)
− h (6.2.1)

B(t) = 1
2
(
etK(h+ 2Pv)etK − e−tKhe−tK

)
for t ∈ [0, 1]. We decompose these as

A(t) = Ah(t) + etKPve
tK (6.2.2)

B(t) = (1 − t)Pv +Bh(t) + etKPve
tK − Pv

where, with
CK(t) = cosh(−tK) − 1 and SK(t) = sinh(−tK), (6.2.3)

the operators Ah(t) and Bh(t) are given by

Ah(t) = cosh(−tK)h cosh(−tK) + sinh(−tK)h sinh(−tK) − h (6.2.4)
= {h,CK(t)} + SK(t)hSK(t) + CK(t)hCK(t)

and

Bh(t) = − sinh(−tK)h cosh(−tK) − cosh(−tK)h sinh(−tK) + tPv (6.2.5)
= tPv − {h, SK(t)} − SK(t)hCK(t) − CK(t)hSK(t).

We begin by estimating the etKPve
tK terms:
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Proposition 6.2.1. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that∣∣∣〈xi,
(
etKPve

tK − Pv

)
xj

〉∣∣∣ ≤
(
2 +

〈
v, h−1v

〉) 〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ .

Proof: Writing

etKPve
tK − Pv =

{
Pv, e

tK − 1
}

+
(
etK − 1

)
Pv

(
etK − 1

)
(6.2.6)

we see that〈
xi,
(
etKPve

tK − Pv

)
xj

〉
= ⟨xi, v⟩

〈(
etK − 1

)
v, xj

〉
+
〈
xi,
(
etK − 1

)
v
〉

⟨v, xj⟩ (6.2.7)

+
〈
xi,
(
etK − 1

)
v
〉 〈(

etK − 1
)
v, xj

〉
.

Now, by Proposition 6.1.7 we can for any 1 ≤ i ≤ n estimate

∣∣∣〈xi,
(
etK − 1

)
v
〉∣∣∣ =

∣∣∣∣∣∣
n∑

j=1

〈
xi,
(
etK − 1

)
xj

〉
⟨xj, v⟩

∣∣∣∣∣∣ ≤
n∑

j=1

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

⟨xj, v⟩ (6.2.8)

≤ ⟨xi, v⟩
n∑

j=1

|⟨xj, v⟩|2

λj

= ⟨xi, v⟩
〈
v, h−1v

〉
whence the claim follows.

□
Note that for

〈
xi, e

tKPve
tKxj

〉
this in particular implies the bound

∣∣∣〈xi, e
tKPve

tKxj

〉∣∣∣ ≤
(
1 +

〈
v, h−1v

〉)2
⟨xi, v⟩ ⟨v, xj⟩ . (6.2.9)

We now consider Ah(t) and Bh(t):

Proposition 6.2.2. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

|⟨xi, Ah(t)xj⟩| , |⟨xi, Bh(t)xj⟩| ≤ 4
〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ .

Proof: The estimates of Proposition 6.1.7 imply that

|⟨xi, {h,CK(t)}xj⟩| = (λi + λj) |⟨xi, CK(t)xj⟩| ≤ (λi + λj)
⟨v, h−1v⟩

1 + 2 ⟨v, h−1v⟩
⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≤
〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ (6.2.10)

and

|⟨xi, SK(t)hSK(t)xj⟩| =
∣∣∣∣∣

n∑
k=1

λk ⟨xi, SK(t)xk⟩ ⟨xk, SK(t)xj⟩
∣∣∣∣∣ ≤

n∑
k=1

λk
⟨xi, v⟩ ⟨v, xk⟩
λi + λk

⟨xk, v⟩ ⟨v, xj⟩
λk + λj

≤ ⟨xi, v⟩ ⟨v, xj⟩
n∑

k=1

|⟨xk, v⟩|2

λk

=
〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ . (6.2.11)
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The latter estimate only relied on the inequality

|⟨xi, SK(t)xj⟩| ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

, (6.2.12)

which is also true for CK(t), so the terms

CK(t)hCK(t), CK(t)hSK(t) and SK(t)hCK(t) (6.2.13)

also obey this estimate. It thus only remains to bound tPv −{h, SK(t)}. From Proposition
6.1.7 we see that

⟨xi, v⟩ ⟨v, xj⟩
1 + 2 ⟨v, h−1v⟩

t ≤ ⟨xi, {h, SK(t)}xj⟩ ≤ ⟨xi, v⟩ ⟨v, xj⟩ t (6.2.14)

whence

|⟨xi, (tPv − {h, SK(t)})xj⟩| = ⟨xi, Pvxj⟩ t− ⟨xi, {h, SK(t)}xj⟩

≤
(

1 − 1
1 + 2 ⟨v, h−1v⟩

)
⟨xi, v⟩ ⟨v, xj⟩ t = 2 ⟨v, h−1v⟩

1 + 2 ⟨v, h−1v⟩
⟨xi, v⟩ ⟨v, xj⟩ t (6.2.15)

≤ 2
〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ .

□
Combining equation (6.2.9) and Proposition 6.2.2 we conclude the following:

Proposition 6.2.3. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

|⟨xi, A(t)xj⟩| , |⟨xi, B(t)xj⟩| ≤ 3
(
1 +

〈
v, h−1v

〉)2
⟨xi, v⟩ ⟨v, xj⟩ .

Analysis of {K,B(t)} and ∫ 1
0 B(t) dt

We end by estimating {K,B(t)} and
∫ 1

0 B(t) dt, the latter of which will be needed for the
analysis of the exchange contribution in the next section.

First is {K,B(t)}:

Proposition 6.2.4. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

|⟨xi, {K,B(t)}xj⟩| ≤ 6
(
1 +

〈
v, h−1v

〉)2 〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ .

Proof: Using the Propositions 6.1.6 and 6.2.3 we see that

|⟨xi, KB(t)xj⟩| =
∣∣∣∣∣

n∑
k=1

⟨xi, Kxk⟩ ⟨xk, B(t)xj⟩
∣∣∣∣∣ ≤ 3

(
1 +

〈
v, h−1v

〉)2 n∑
k=1

⟨xi, v⟩ ⟨v, xk⟩
λi + λk

⟨xk, v⟩ ⟨v, xj⟩

≤ 3
(
1 +

〈
v, h−1v

〉)2 n∑
k=1

|⟨xk, v⟩|2

λk

⟨xi, v⟩ ⟨v, xj⟩ (6.2.16)
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= 3
(
1 +

〈
v, h−1v

〉)2 〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ .

This estimate is also valid for |⟨xi, B(t)Kxj⟩| so the claim follows.
□

Finally is
∫ 1

0 B(t) dt:

Proposition 6.2.5. For all 1 ≤ i, j ≤ n it holds that∣∣∣∣〈xi,
(∫ 1

0
B(t) dt

)
xj

〉
− 1

2 ⟨xi, v⟩ ⟨v, xj⟩
∣∣∣∣ ≤

(
6 +

〈
v, h−1v

〉) 〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ .

Proof: Noting that 1
2 ⟨xi, v⟩ ⟨v, xj⟩ = 1

2 ⟨xi, Pvxj⟩ and that
∫ 1

0
B(t) dt− 1

2Pv =
∫ 1

0

(
(1 − t)Pv +Bh(t) + etKPve

tK − Pv

)
dt− 1

2Pv (6.2.17)

=
∫ 1

0

(
Bh(t) + etKPve

tK − Pv

)
dt

we can estimate using the Propositions 6.2.1 and 6.2.2 that∣∣∣∣〈xi,
(∫ 1

0
B(t) dt− 1

2Pv

)
xj

〉∣∣∣∣ ≤
∫ 1

0
|⟨xi, Bh(t)xj⟩| dt+

∫ 1

0

∣∣∣〈xi,
(
etKPve

tK − Pv

)
xj

〉∣∣∣ dt
≤
(
6 +

〈
v, h−1v

〉) 〈
v, h−1v

〉
⟨xi, v⟩ ⟨v, xj⟩ . (6.2.18)

□

Insertion of the Particular Operators hk and Pk

Recall that the particular operators we must consider are hk, Pk : ℓ2(Lk) → ℓ2(Lk) defined
by

hkep = λk,pep λk,p = 1
2

(
|p|2 − |p− k|2

)
Pk(·) = ⟨vk, ·⟩ vk vk =

√
sV̂kk−1

F

2 (2π)3
∑

p∈Lk
ep.

(6.2.19)

For these we have that 〈
vk, h

−1
k vk

〉
= sV̂kk

−1
F

2 (2π)3
∑

p∈Lk

λ−1
k,p. (6.2.20)

In appendix section B we obtain the following estimates for sums of the form ∑
p∈Lk

λβ
k,p:

Proposition 6.2.6. For any k ∈ Z3
∗ and β ∈ [−1, 0] it holds that

∑
p∈Lk

λβ
k,p ≤ Cβ

k
2+β
F |k|1+β |k| ≤ 2kF

k3
F |k|2β |k| > 2kF

for a constant Cβ > 0 independent of k and kF .
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In particular, it holds that ∑p∈Lk
λ−1

k,p ≤ CkF min {1, k2
F |k|−2}, so〈

vk, h
−1
k vk

〉
≤ CV̂k (6.2.21)

for a constant C > 0 depending only on s. Additionally, independently of p and q it holds
that

⟨ep, vk⟩ ⟨vk, eq⟩ = sV̂kk
−1
F

2 (2π)3 (6.2.22)

and for any t ≥ 0 〈
v, h

(
h2 + t2

)−1
v
〉

= sV̂kk
−1
F

2 (2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

. (6.2.23)

Inserting these quantities into the statements of the Propositions 6.1.3, 6.1.6, 6.2.3 and
6.2.4 yields Theorem 6.0.1, noting also that by Proposition 6.1.6

∥Kk∥HS =
√ ∑

p,q∈Lk

|⟨ep, Kkeq⟩|2 ≤ sV̂kk
−1
F

2 (2π)3

√√√√ ∑
p,q∈Lk

1
(λk,p + λk,q)2 ≤ sV̂kk

−1
F

2 (2π)3
∑

p∈Lk

λ−1
k,p

(6.2.24)
≤ CV̂k min {1, k2

F |k|−2}.
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Chapter 7

Analysis of Exchange Terms

In this section we analyze the exchange terms, by which we mean the quantities of the
expression

∑
k∈Z3

∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
)

+ 2 Re
(
E2

k (Bk(t))
))
e−(1−t)Kdt (7.0.1)

which appears in Theorem 4.0.1 - the name is apt, as these enter our calculations due to the
presence of the exchange correction εk,l(p; q) of the quasi-bosonic commutation relations.

To be more precise, what we consider in this section are the operators εk({Kk, Bk(t)}),
E1

k (Ak(t)) and E2
k (Bk(t)) - the effect of the integration will be handled by Gronwall estimates

in the next section.
The exchange terms are primarily to be regarded as error terms, and the main result

of this section is the following estimates for them:

Theorem 7.0.1. For any Ψ ∈ HN and t ∈ [0, 1] it holds that∣∣∣∣∣∣
∑

k∈Z3
∗

⟨Ψ, εk({Kk, Bk(t)})Ψ⟩

∣∣∣∣∣∣ ≤ Ck−1
F ⟨Ψ,NEΨ⟩

∑
k∈Z3

∗

∣∣∣〈Ψ, E1
k (Ak(t))Ψ

〉∣∣∣ ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

〈
Ψ,
(
N 3

E + 1
)
Ψ
〉

∑
k∈Z3

∗

∣∣∣〈Ψ, (E2
k (Bk(t)) −

〈
ψF , E2

k (Bk(t))ψF

〉)
Ψ
〉∣∣∣ ≤ C

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

〈
Ψ,N 3

EΨ
〉

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Note the presence of the constant terms ⟨ψF , E2
k (Bk(t))ψF ⟩ in the final estimate of the

theorem. By adding and subtracting these, we see that

Exchange Terms =
∑

k∈Z3
∗

∫ 1

0

〈
ψF , 2 Re

(
E2

k (Bk(t))
)
ψF

〉
dt+ Error Terms. (7.0.2)
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The quantity ∑k∈Z3
∗

∫ 1
0 ⟨ψF , 2 Re(E2

k (Bk(t)))ψF ⟩ dt is the exchange contribution (to the cor-
relation energy), which is not generally negligible for singular potentials V . We end the
section by determining the leading behavior of these:

Proposition 7.0.2. It holds that∣∣∣∣∣∣
∑

k∈Z3
∗

∫ 1

0

〈
ψF , 2 Re

(
E2

k (Bk(t))
)
ψF

〉
dt− Ecorr,ex

∣∣∣∣∣∣ ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s, where

Ecorr,ex = sk−2
F

4 (2π)6
∑

k,l∈Z3
∗

V̂kV̂l

∑
p,q∈Lk∩Ll

δp+q,k+l

λk,p + λk,q

.

Analysis of εk Terms
Let us first consider terms of the form ∑

k∈Z3
∗
εk(Ak), where we recall that εk(Ak) is given

by
εk(Ak) = −1

s

σ∑
p∈Lk

⟨ep, Akep⟩
(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

)
. (7.0.3)

When summing over k ∈ Z3
∗, we can split the sum into two parts and interchange the

summations as follows:

−
∑

k∈Z3
∗

εk(Ak) = 1
s

∑
k∈Z3

∗

σ∑
p∈Lk

⟨ep, Akep⟩ c∗
p,σcp,σ + 1

s

∑
k∈Z3

∗

σ∑
q∈(Lk−k)

⟨eq+k, Akeq+k⟩ cq,σc
∗
q,σ

= 1
s

σ∑
p∈Bc

F

∑
k∈Z3

∗

1Lk
(p) ⟨ep, Akep⟩

c∗
p,σcp,σ (7.0.4)

+ 1
s

σ∑
q∈BF

∑
k∈Z3

∗

1Lk
(q + k) ⟨eq+k, Akeq+k⟩

cq,σc
∗
q,σ.

Recalling that the excitation number operator is given by

NE =
σ∑

p∈Bc
F

c∗
p,σcp,σ =

σ∑
q∈BF

cq,σc
∗
q,σ (7.0.5)

on HN , we can then immediately conclude that

±
∑

k∈Z3
∗

εk(Ak) ≤ 1
s

 sup
p∈Bc

F

∑
k∈Z3

∗

1Lk
(p) |⟨ep, Akep⟩| + sup

q∈BF

∑
k∈Z3

∗

1Lk
(q + k) |⟨eq+k, Akeq+k⟩|

NE

≤ 2
s

∑
k∈Z3

∗

sup
p∈Lk

|⟨ep, Akep⟩|

NE. (7.0.6)

By the estimates of the previous section we thus obtain the first estimate of Theorem 7.0.1:
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Proposition 7.0.3. For any Ψ ∈ HN and t ∈ [0, 1] it holds that∣∣∣∣∣∣
∑

k∈Z3
∗

⟨Ψ, εk({Kk, Bk(t)})Ψ⟩

∣∣∣∣∣∣ ≤ Ck−1
F ⟨Ψ,NEΨ⟩

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: By Theorem 6.0.1 we have that

|⟨ep, {Kk, Bk(t)} eq⟩| ≤ C
(
1 + V̂ 2

k

)
V̂ 2

k k
−1
F , k ∈ Z3

∗, p, q ∈ Lk, (7.0.7)

for a constant C > 0 depending only on s, so∣∣∣∣∣∣
∑

k∈Z3
∗

⟨Ψ, εk({Kk, Bk(t)})Ψ⟩

∣∣∣∣∣∣ ≤ 2
s

∑
k∈Z3

∗

sup
p∈Lk

|⟨ep, {Kk, Bk(t)} ep⟩|

 ⟨Ψ,NEΨ⟩ (7.0.8)

≤ Ck−1
F

∑
k∈Z3

∗

(
1 + V̂ 2

k

)
V̂ 2

k ⟨Ψ,NEΨ⟩ ≤ Ck−1
F

(
1 + ∥V̂ ∥2

∞

) ∑
k∈Z3

∗

V̂ 2
k ⟨Ψ,NEΨ⟩ .

As ∥V̂ ∥2
∞ ≤ ∥V̂ ∥2

2 = ∑
k∈Z3

∗
V̂ 2

k the claim follows.
□

7.1 Analysis of E1
k Terms

We consider terms of the form

E1
k (Ak) =

∑
l∈Z3

∗

∑
p∈Lk

∑
q∈Ll

b∗
k(Akep)

{
εk,l(ep; eq), b∗

−l(K−le−q)
}
. (7.1.1)

Recalling that εk,l(ep; eq) is given by

εk,l(ep; eq) = −1
s

s∑
σ=1

(
δp,qcq−l,σc

∗
p−k,σ + δp−k,q−lc

∗
q,σcp,σ

)
(7.1.2)

we see that E1
k (Ak) splits into two sums as

−s E1
k (Ak) =

∑
l∈Z3

∗

σ∑
p∈Lk

∑
q∈Ll

b∗
k(Akep)

{
δp,qcq−l,σc

∗
p−k,σ, b

∗
−l(K−le−q)

}

+
∑
l∈Z3

∗

σ∑
p∈(Lk−k)

∑
q∈(Ll−l)

b∗
k(Akep+k)

{
δp,qc

∗
q+l,σcp+k,σ, b

∗
−l(K−le−q−l)

}
(7.1.3)

=
∑
l∈Z3

∗

σ∑
p∈Lk∩Ll

b∗
k(Akep)

{
cp−l,σc

∗
p−k,σ, b

∗
−l(K−le−p)

}

+
∑
l∈Z3

∗

σ∑
p∈(Lk−k)∩(Ll−l)

b∗
k(Akep+k)

{
c∗

p+l,σcp+k,σ, b
∗
−l(K−le−p−l)

}
.
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The two sums on the right-hand side have the same “schematic form”: They can both be
written as

∑
l∈Z3

∗

σ∑
p∈Sk∩Sl

b∗
k(Akep1)

{
c̃∗

p2,σ c̃p3,σ, b
∗
−l(K−lep4)

}
, c̃p =

cp p ∈ Bc
F

c∗
p p ∈ BF

, (7.1.4)

where the index set is either the lune Sk = Lk or the set of corresponding hole states
Sk = Lk − k, and depending on this index set the variables p1, p2, p3, p4 are given by

(p1, p2, p3, p4) =

(p, p− l, p− k,−p) Sk = Lk

(p+ k, p+ l, p+ k,−p− l) Sk = Lk − k
. (7.1.5)

Note that in either case p1, p3 depend only on p and k, while p2, p4 depend only on p and
l. Additionally, p1 is always an element of Lk and p4 is always an element of L−l.

Since bk,p = s− 1
2
∑s

σ=1 c
∗
p−k,σcp,σ = s− 1

2
∑s

σ=1 c̃p−k,σ c̃p,σ it is easily seen that [b, c̃] = 0, so
in normal-ordering (with respect to ψF ) the summand of equation (7.1.4) we find

b∗
k(Akep1)

{
c̃∗

p2,σ c̃p3,σ, b
∗
−l(K−lep4)

}
= b∗

k(Akep1)c̃∗
p2,σ c̃p3,σb

∗
−l(K−lep4) + b∗

k(Akep1)b∗
−l(K−lep4)c̃∗

p2,σ c̃p3,σ (7.1.6)
= 2 c̃∗

p2,σb
∗
k(Akep1)b∗

−l(K−lep4)c̃p3,σ + c̃∗
p2,σb

∗
k(Akep1)

[
c̃p3,σ, b

∗
−l(K−lep4)

]
.

To bound a sum of the form ∑
k∈Z3

∗
Ek

1 (Ak) it thus suffices to estimate the two schematic
forms

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σb

∗
k(Akep1)b∗

−l(K−lep4)c̃p3,σ (7.1.7)

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σb

∗
k(Akep1)

[
b−l(K−lep4), c̃∗

p3,σ

]∗
.

Preliminary Estimates
We prepare for the estimation of these schematic forms by deriving some auxilliary bounds
for the operators involved.

Recall that for any k ∈ Z3
∗ and φ ∈ ℓ2(Lk), the excitation operator bk(φ) is given by

bk(φ) =
∑

p∈Lk

⟨φ, ep⟩ bk,p = 1√
s

σ∑
p∈Lk

⟨φ, ep⟩ c∗
p−k,σcp,σ. (7.1.8)

We observe that the exchange correction εk,k(φ;φ) arising from the commutator [bk(φ), b∗
k(φ)]

is non-positive: Indeed, this is given by

εk,k(φ;φ) = −1
s

σ∑
p,q∈Lk

⟨φ, ep⟩ ⟨eq, φ⟩
(
δp,qcq−k,σc

∗
p−k,σ + δp−k,q−kc

∗
q,σcp,σ

)
(7.1.9)
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= −1
s

σ∑
p∈Lk

|⟨ep, φ⟩|2
(
cp−k,σc

∗
p−k,σ + c∗

p,σcp,σ

)
≤ 0.

Using this we can bound both bk(φ) and b∗
k(φ) as follows:

Proposition 7.1.1. For any k ∈ Z3
∗, φ ∈ ℓ2(Lk) and Ψ ∈ HN it holds that

∥bk(φ)Ψ∥ ≤ ∥φ∥ ∥N
1
2

k Ψ∥, ∥b∗
k(φ)Ψ∥ ≤ ∥φ∥ ∥(Nk + 1)

1
2 Ψ∥,

where Nk = ∑
p∈Lk

b∗
k,pbk,p.

Proof: By the triangle and Cauchy-Schwarz inequalities we immediately obtain

∥bk(φ)Ψ∥ ≤
∑

p∈Lk

|⟨φ, ep⟩| ∥bk,pΨ∥ ≤ ∥φ∥
√∑

p∈Lk

∥bk,pΨ∥2 = ∥φ∥ ∥N
1
2

k Ψ∥ (7.1.10)

and the bound for ∥b∗
k(φ)Ψ∥ now follows from this, since the above observation implies

that
bk(φ)b∗

k(φ) = b∗
k(φ)bk(φ) + ⟨φ, φ⟩ + εk,k(φ;φ) ≤ ∥φ∥2 (Nk + 1). (7.1.11)

□
Note that the operator

Nk =
∑

p∈Lk

b∗
k,pbk,p = 1

s

σ,τ∑
p∈Lk

c∗
p,σcp−k,σc

∗
p−k,τcp,τ (7.1.12)

can be estimated directly in terms of NE as Nk ≤ NE, since for any Ψ ∈ HN

⟨Ψ,NkΨ⟩ =
∑

p∈Lk

∥bk,pΨ∥2 =
∑

p∈Lk

∥∥∥∥∥ 1√
s

s∑
σ=1

c∗
p−k,σcp,σΨ

∥∥∥∥∥
2

≤
∑

p∈Lk

(
1√
s

s∑
σ=1

∥∥∥c∗
p−k,σcp,σΨ

∥∥∥)2

≤
σ∑

p∈Lk

∥∥∥c∗
p−k,σcp,σΨ

∥∥∥2
≤

σ∑
p∈Lk

∥cp,σΨ∥2 ≤ ⟨Ψ,NEΨ⟩ (7.1.13)

by the usual fermionic estimate. Below we will generally only use this cruder estimate,
but Nk is useful for some bounds since it can be summed over k ∈ Z3

∗: By rearranging the
summations one concludes that

∑
k∈Z3

∗

⟨Ψ,NkΨ⟩ ≤
∑

k∈Z3
∗

σ∑
p∈Lk

∥∥∥c∗
p−k,σcp,σΨ

∥∥∥2
=
∑

k∈Z3
∗

σ∑
p∈Lk

〈
Ψ, c∗

p,σcp,σcp−k,σc
∗
p−k,σΨ

〉

=
〈

Ψ,
σ∑

p∈Bc
F

c∗
p,σcp,σ

∑
k∈Z3

∗

1Lk
(p)cp−k,σc

∗
p−k,σΨ

〉
(7.1.14)

=
〈

Ψ,
σ∑

p∈Bc
F

c∗
p,σcp,σ

∑
k∈(BF +p)

cp−k,σc
∗
p−k,σΨ

〉
=
〈

Ψ,
σ∑

p∈Bc
F

c∗
p,σcp,σ

∑
q∈BF

cq,σc
∗
q,σΨ

〉
,
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so noting that ∑q∈BF
cq,σc

∗
q,σ = NE −∑τ ̸=σ

q∈BF
cq,τc

∗
q,τ we can estimate

∑
k∈Z3

∗

⟨Ψ,NkΨ⟩ ≤
〈

Ψ,
σ∑

p∈Bc
F

c∗
p,σcp,σNEΨ

〉
−
〈

Ψ,
σ∑

p∈Bc
F

c∗
p,σcp,σ

τ ̸=σ∑
q∈BF

cq,τc
∗
q,τ Ψ

〉
(7.1.15)

=
〈
Ψ,N 2

EΨ
〉

−
σ∑

p∈Bc
F

〈
Ψ, c∗

p,σ

 τ ̸=σ∑
q∈BF

cq,τc
∗
q,τ

cp,σΨ
〉

≤
〈
Ψ,N 2

EΨ
〉

i.e. ∑k∈Z3
∗

Nk ≤ N 2
E. (Equality even holds for s = 1.)

We also note that for any Ψ ∈ HN and p ∈ Z3

s∑
σ=1

∥N
1
2

k c̃p,σΨ∥2 ≤
s∑

σ=1
∥c̃p,σN

1
2

k Ψ∥2 ≤
s∑

σ=1
∥c̃p,σN

1
2

E Ψ∥2 (7.1.16)

s∑
σ=1

∥(Nk + 1)
1
2 c̃p,σΨ∥2 ≤

s∑
σ=1

∥c̃p,σ(Nk + 1)
1
2 Ψ∥2 ≤

s∑
σ=1

∥c̃p,σ(NE + 1)
1
2 Ψ∥2,

as follows by the inequality (considering p ∈ Bc
F for definiteness)

s∑
σ=1

c̃∗
p,σNkc̃p,σ = 1

s

σ,τ,ρ∑
q∈Lk

c∗
p,σc

∗
q,τcq−k,τc

∗
q−k,ρcq,ρcp,σ = 1

s

σ,τ,ρ∑
q∈Lk

c∗
q,τcq−k,τc

∗
q−k,ρ

(
cq,ρc

∗
p,σ − δp,qδσ,τ

)
cp,σ

= Nk

s∑
σ=1

c∗
p,σcp,σ − 1

s

s∑
σ,τ=1

1Lk
(p)c∗

p,τcp−k,τc
∗
p−k,σcp,σ (7.1.17)

= Nk

s∑
σ=1

c∗
p,σcp,σ − 1Lk

(p)b∗
k,pbk,p ≤ Nk

s∑
σ=1

c∗
p,σcp,σ

and the fact that ∑s
σ=1

[
c̃∗

p,σ c̃p,σ,Nk

]
= 0 = ∑s

σ=1

[
c̃∗

p,σ c̃p,σ,NE

]
. Similarly1

s∑
σ=1

∥N
1
2

E c̃p,σΨ∥2 ≤
s∑

σ=1
∥c̃p,σN

1
2

E Ψ∥2,
s∑

σ=1
∥(NE + 1)

1
2 c̃p,σΨ∥2 ≤

s∑
σ=1

∥c̃p,σ(NE + 1)
1
2 Ψ∥2.

(7.1.18)
To analyze the commutator term

[
b−l(K−lep4), c̃∗

p3,σ

]
we calculate a general identity: For

any l ∈ Z3
∗, ψ ∈ ℓ2(Ll) and p ∈ Z3

[
bl(ψ), c̃∗

p,σ

]
= 1√

s

τ∑
q∈Ll

⟨ψ, eq⟩


[
c∗

q−l,τcq,τ , cp,σ

]
p ∈ BF[

c∗
q−l,τcq,τ , c

∗
p,σ

]
p ∈ Bc

F

= 1√
s

τ∑
q∈Ll

⟨ψ, eq⟩

−cq,τ

{
c∗

q−l,τ , cp,σ

}
p ∈ BF

c∗
q−l,τ

{
cq,τ , c

∗
p,σ

}
p ∈ Bc

F

(7.1.19)

1There is a slight ambiguity here: NE =
∑σ

p∈Bc
F

c∗
p,σcp,σ =

∑σ
q∈BF

cq,σc∗
q,σ holds on HN , but an element

such as c̃p,σΨ belongs to HN±1. This is of no importance, however, since these inequalities hold no matter
if NE is understood as

∑σ
p∈Bc

F
c∗

p,σcp,σ or
∑σ

q∈BF
cq,σc∗

q,σ. On the same note, the estimate of equation
(7.1.13) is valid for either case even if Ψ ∈ HN±1.
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=

−1Ll
(p+ l)s− 1

2 ⟨ψ, ep+l⟩ c̃p+l,σ p ∈ BF

1Ll
(p)s− 1

2 ⟨ψ, ep⟩ c̃p−l,σ p ∈ Bc
F

,

so for our particular commutator we obtain

[
b−l(K−lep4), c̃∗

p3,σ

]
=

−1L−l
(p3 − l)s− 1

2 ⟨K−lep4 , ep3−l⟩ c̃p3−l,σ Sk = Lk

1L−l
(p3)s− 1

2 ⟨K−lep4 , ep3⟩ c̃p3+l,σ Sk = Lk − k
. (7.1.20)

It will be crucial to our estimates that the prefactors obey the following:

Proposition 7.1.2. For any k, l ∈ Z3
∗ and p ∈ Sk ∩ Sl it holds that

∣∣∣1L−l
(p3 − l)s− 1

2 ⟨K−lep4 , ep3−l⟩
∣∣∣ ≤ CV̂−lk

−1
F

1L−k
(p2 − k)1L−l

(p3 − l)√
λk,p1 + λ−k,p2−k

√
λ−l,p3−l + λ−l,p4

, Sk = Lk,

and∣∣∣1L−l
(p3)s− 1

2 ⟨K−lep4 , ep3⟩
∣∣∣ ≤ CV̂−lk

−1
F

1L−k
(p2)1L−l

(p3)√
λk,p1 + λ−k,p2

√
λ−l,p3 + λ−l,p4

, Sk = Lk − k,

for a constant C > 0 depending only on s.

Proof: Recall that p1, p2, p3, p4 are given by

(p1, p2, p3, p4) =

(p, p− l, p− k,−p) Sk = Lk

(p+ k, p+ l, p+ k,−p− l) Sk = Lk − k
. (7.1.21)

From this we see that for any p ∈ Sk ∩ Sl1L−l
(p3 − l) Sk = Lk

1L−l
(p3) Sk = Lk − k

=

1Bc
F
(p− k − l)1BF

(p− k) Sk = Lk

1Bc
F
(p+ k)1BF

(p+ k + l) Sk = Lk − k

=

1Bc
F
(p− l − k)1BF

(p− l) Sk = Lk

1Bc
F
(p+ l)1BF

(p+ l + k) Sk = Lk − k
(7.1.22)

=

1L−k
(p2 − k) Sk = Lk

1L−k
(p2) Sk = Lk − k

where the assumption that p ∈ Sk ∩ Sl enters to ensure that 1BF
(p− k) = 1 = 1BF

(p− l)
or 1Bc

F
(p+ k) = 1 = 1Bc

F
(p+ l), respectively. Importantly this also implies that, when

combined with such an indicator function, we also have the identityλ−l,p3−l + λ−l,p4 Sk = Lk

λ−l,p3 + λ−l,p4 Sk = Lk − k
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= 1
2

|p− k − l|2 − |p− k − l + l|2 + |−p|2 − |−p+ l|2 Sk = Lk

|p+ k|2 − |p+ k + l|2 + |−p− l|2 − |−p− l + l|2 Sk = Lk − k
(7.1.23)

= 1
2

|p|2 − |p− k|2 + |p− l − k|2 − |p− l − k + k|2 Sk = Lk

|p+ k|2 − |p+ k − k|2 + |p+ l|2 − |p+ l + k|2 Sk = Lk − k

=

λk,p1 + λ−k,p2−k Sk = Lk

λk,p1 + λ−k,p2 Sk = Lk − k
.

The claim now follows by applying these identities to the estimates

∣∣∣1L−l
(p3 − l)s− 1

2 ⟨K−lep4 , ep3−l⟩
∣∣∣ ≤ C

1L−l
(p3 − l)V̂−lk

−1
F

λ−l,p3−l + λ−l,p4

, Sk = Lk, (7.1.24)

∣∣∣1L−l
(p3)s− 1

2 ⟨K−lep4 , ep3⟩
∣∣∣ ≤ C

1L−l
(p3)V̂−lk

−1
F

λ−l,p3 + λ−l,p4

, Sk = Lk − k,

which are given by Theorem 6.0.1.
□

Below we will only use the simpler bound
∣∣∣1L−l

(p3 − l)s− 1
2 ⟨K−lep4 , ep3−l⟩

∣∣∣ Sk = Lk∣∣∣1L−l
(p3)s− 1

2 ⟨K−lep4 , ep3⟩
∣∣∣ Sk = Lk − k

≤ C
V̂−lk

−1
F√

λk,p1λ−l,p4

(7.1.25)

but for the E2
k terms the more general ones will be needed.

Estimation of ∑k∈Z3
∗
E1

k(Ak(t))
Now the main estimate of this subsection:

Proposition 7.1.3. For any collection of symmetric operators (Ak) and Ψ ∈ HN it holds
that

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σb

∗
k(Akep1)b∗

−l(K−lep4)c̃p3,σΨ
〉∣∣∣ ≤ C

√∑
k∈Z3

∗

max
p∈Lk

∥Akep∥2∥(NE + 1)
3
2 Ψ∥2

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σb

∗
k(Akep1)

[
b−l(K−lep4), c̃∗

p3,σ

]∗
Ψ
〉∣∣∣ ≤ Ck

− 1
2

F

√√√√∑
k∈Z3

∗

∥Akh
− 1

2
k ∥2

HS ∥(NE + 1)Ψ∥2

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: Using the triangle and Cauchy-Schwarz inequalities and Proposition 7.1.1 we esti-
mate

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σb

∗
k(Akep1)b∗

−l(K−lep4)c̃p3,σΨ
〉∣∣∣
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≤
∑

k,l∈Z3
∗

σ∑
p∈Sk∩Sl

∥bk(Akep1)c̃p2,σΨ∥
∥∥∥b∗

−l(K−lep4)c̃p3,σΨ
∥∥∥

≤
∑

k∈Z3
∗

σ∑
p∈Sk

∑
l∈Z3

∗

1Sl
(p) ∥Akep1∥ ∥K−lep4∥ ∥N

1
2

k c̃p2,σΨ∥∥(N−l + 1)
1
2 c̃p3,σΨ∥

≤
∑

k∈Z3
∗

(
max
p∈Lk

∥Akep∥
) ∑

p∈Sk

√√√√ s∑
σ=1

∥c̃p3,σ(NE + 1)
1
2 Ψ∥2

√∑
l∈Z3

∗

1Sl
(p) ∥K−lep4∥2 (7.1.26)

·
√√√√ σ∑

l∈Z3
∗

1Sl
(p)∥c̃p2,σN

1
2

k Ψ∥2

≤
∑

k∈Z3
∗

(
max
p∈Lk

∥Akep∥
)

∥N
1
2

E N
1
2

k Ψ∥
√√√√ σ∑

p∈Sk

∥c̃p3,σ(NE + 1)
1
2 Ψ∥2

√∑
p∈Sk

∑
l∈Z3

∗

1Sl
(p) ∥K−lep4∥2

≤
√∑

k∈Z3
∗

max
p∈Lk

∥Akep∥2
√∑

l∈Z3
∗

∥Kl∥2
HS ∥(NE + 1)Ψ∥

√√√√∑
k∈Z3

∗

∥N
1
2

E N
1
2

k Ψ∥2

=
√∑

k∈Z3
∗

max
p∈Lk

∥Akep∥2
√∑

l∈Z3
∗

∥Kl∥2
HS ∥(NE + 1)Ψ∥ ∥N

3
2

E Ψ∥

and the first bound now follows by recalling that ∥Kl∥2
HS ≤ CV̂l. For the second we have

by the equations (7.1.20) and (7.1.25) that

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σb

∗
k(Akep1)

[
b−l(K−lep4), c̃∗

p3,σ

]∗
Ψ
〉∣∣∣

≤
∑

k,l∈Z3
∗

σ∑
p∈Sk∩Sl

∥∥∥[b−l(K−lep4), c̃∗
p3,σ

]
c̃p2,σΨ

∥∥∥ ∥b∗
k(Akep1)Ψ∥

≤ C
∑
l∈Z3

∗

σ∑
p∈Sl

∑
k∈Z3

∗

1Sk
(p) ∥Akep1∥ V̂−lk

−1
F√

λk,p1λ−l,p4

∥c̃p3∓l,σ c̃p2,σΨ∥ ∥(Nk + 1)
1
2 Ψ∥

≤ Ck−1
F ∥(NE + 1)

1
2 Ψ∥

∑
p

∑
l∈Z3

∗

1Sl
(p)V̂−l√
λ−l,p4

√√√√∑
k∈Z3

∗

1Sk
(p)∥Akh

− 1
2

k ep1∥2 (7.1.27)

·

√√√√√∑
k∈Z3

∗

1Sk
(p)
(

s∑
σ=1

∥c̃p3∓l,σ c̃p2,σΨ∥
)2

≤ Ck−1
F ∥(NE + 1)

1
2 Ψ∥

∑
p

√√√√∑
k∈Z3

∗

1Sk
(p)∥Akh

− 1
2

k ep1∥2

√√√√√∑
l∈Z3

∗

1Sl
(p) V̂ 2

−l

λ−l,p4

·
√√√√ σ∑

l∈Z3
∗

1Sl
(p)∥c̃p2,σN

1
2

E Ψ∥2
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≤ Ck−1
F ∥(NE + 1)

1
2 Ψ∥ ∥NEΨ∥

√√√√∑
k∈Z3

∗

∑
p∈Sk

∥Akh
− 1

2
k ep1∥2

√√√√∑
l∈Z3

∗

V̂ 2
−l

∑
p∈Sl

1
λ−l,p4

≤ Ck−1
F

√√√√∑
k∈Z3

∗

∥Akh
− 1

2
k ∥2

HS

√√√√∑
l∈Z3

∗

V̂ 2
l

∑
p∈Ll

1
λl,p

∥(NE + 1)
1
2 Ψ∥ ∥NEΨ∥

where we noted that ∥Akep1∥λ− 1
2

k,p1 = ∥Akh
− 1

2
k ep1∥ and also estimated

∑
k∈Z3

∗

1Sk
(p)
(

s∑
σ=1

∥c̃p3∓l,σ c̃p2,σΨ∥
)2

≤ s
σ∑

k∈Z3
∗

1Sk
(p) ∥c̃p3∓l,σ c̃p2,σΨ∥2 ≤ C

σ,τ∑
k∈Z3

∗

1Sk
(p) ∥c̃p3∓l,τ c̃p2,σΨ∥2

≤ C
s∑

σ=1
∥N

1
2

E c̃p2,σΨ∥2. (7.1.28)

The claim follows as ∑p∈Ll
λ−1

l,p ≤ CkF .
□

The bound on ∑
k∈Z3

∗
E1

k (Ak(t)) of Theorem 7.0.1 now follows by our matrix element
estimates:
Proposition 7.1.4. For any Ψ ∈ HN and t ∈ [0, 1] it holds that∑

k∈Z3
∗

∣∣∣〈Ψ, E1
k (Ak(t))Ψ

〉∣∣∣ ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

〈
Ψ,
(
N 3

E + 1
)
Ψ
〉

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.
Proof: By Theorem 6.0.1 we have

|⟨ep, Ak(t)eq⟩| ≤ C
(
1 + V̂ 2

k

)
V̂kk

−1
F , k ∈ Z3

∗, p, q ∈ Lk, (7.1.29)

so ∑
k∈Z3

∗

max
p∈Lk

∥Ak(t)ep∥2 =
∑

k∈Z3
∗

max
p∈Lk

∑
q∈Lk

|⟨eq, Ak(t)ep⟩|2 ≤ Ck−2
F

∑
k∈Z3

∗

(
1 + V̂ 2

k

)2
V̂ 2

k |Lk|

≤ Ck−2
F

∑
k∈Z3

∗

(
V̂ 2

k + V̂ 6
k

)
min

{
k2

F |k| , k3
F

}
(7.1.30)

≤ C
(
1 + ∥V̂ ∥4

∞

) ∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

where we used that |Lk| ≤ C min {k2
F |k| , k3

F }. Likewise∑
k∈Z3

∗

∥Ak(t)h− 1
2

k ∥2
HS =

∑
k∈Z3

∗

∑
p,q∈Lk

∣∣∣∣〈ep, Ak(t)h− 1
2

k eq

〉∣∣∣∣2 ≤ Ck−2
F

∑
k∈Z3

∗

(
1 + V̂ 2

k

)2
V̂ 2

k |Lk|
∑

q∈Lk

1
λk,q

≤ CkF

(
1 + ∥V̂ ∥4

∞

) ∑
k∈Z3

∗

V̂ 2
k min {|k| , kF } (7.1.31)

since ∑q∈Lk
λ−1

k,q ≤ CkF . Inserting these estimates into Proposition 7.1.3 yields the claim.
□
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7.2 Analysis of E2
k Terms

Now we come to the terms

E2
k (Bk) = 1

2
∑
l∈Z3

∗

∑
p∈Lk

∑
q∈Ll

{bk(Bkep), {ε−k,−l(e−p; e−q), b∗
l (Kleq)}} . (7.2.1)

We will analyze these similarly to the E1
k (Ak) terms. Noting that

ε−k,−l(e−p; e−q) = −1
s

s∑
σ=1

(
δp,qc−q+l,σc

∗
−p+k,σ + δp−k,q−lc

∗
−q,σc−p,σ

)
(7.2.2)

we find that E2
k (Bk) splits into two sums as

−2s E2
k (Bk) =

∑
l∈Z3

∗

σ∑
p∈Lk

∑
q∈Ll

{
bk(Bkep),

{
δp,qc−q+l,σc

∗
−p+k,σ, b

∗
l (Kleq)

}}

+
∑
l∈Z3

∗

σ∑
p∈(Lk−k)

∑
q∈(Ll−l)

{
bk(Bkep+k),

{
δp,qc

∗
−q−l,σc−p−k,σ, b

∗
l (Kleq+l)

}}
(7.2.3)

=
∑
l∈Z3

∗

σ∑
p∈Lk∩Ll

{
bk(Bkep),

{
c−p+l,σc

∗
−p+k,σ, b

∗
l (Klep)

}}

+
∑
l∈Z3

∗

σ∑
p∈(Lk−k)∩(Ll−l)

{
bk(Bkep+k),

{
c∗

−p−l,σc−p−k,σ, b
∗
l (Klep+l)

}}

and again these share a common schematic form, namely

∑
l∈Z3

∗

σ∑
p∈Sk∩Sl

{
bk(Bkep1),

{
c̃∗

p2,σ c̃p3,σ, b
∗
l (Klep4)

}}
(7.2.4)

where the momenta are now

(p1, p2, p3, p4) =

(p,−p+ l,−p+ k, p) Sk = Lk

(p+ k,−p− l,−p− k, p+ l) Sk = Lk − k
. (7.2.5)

Again p1, p3 only depend on p and k while p2, p4 only depend on p and l.
We normal order the summand: As

bk(Bkep1)
{
c̃∗

p2,σ c̃p3,σ, b
∗
l (Klep4)

}
= c̃∗

p2,σbk(Bkep1) {c̃p3,σ, b
∗
l (Klep4)} +

[
bk(Bkep1), c̃∗

p2,σ

]
{c̃p3,σ, b

∗
l (Klep4)}

= 2 c̃∗
p2,σbk(Bkep1)b∗

l (Klep4)c̃p3,σ + c̃∗
p2,σbk(Bkep1)

[
bl(Klep4), c̃∗

p3,σ

]∗
+ 2

[
bk(Bkep1), c̃∗

p2,σ

]
b∗

l (Klep4)c̃p3,σ +
[
bk(Bkep1), c̃∗

p2,σ

] [
bl(Klep4), c̃∗

p3,σ

]∗
(7.2.6)

= 2 c̃∗
p2,σb

∗
l (Klep4)bk(Bkep1)c̃p3,σ + 2 c̃∗

p2,σ [bk(Bkep1), b∗
l (Klep4)] c̃p3,σ
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+ c̃∗
p2,σ

[
bl(Klep4), c̃∗

p3,σ

]∗
bk(Bkep1) + c̃∗

p2,σ

[
bk(Bkep1),

[
bl(Klep4), c̃∗

p3,σ

]∗]
+ 2 b∗

l (Klep4)
[
bk(Bkep1), c̃∗

p2,σ

]
c̃p3,σ + 2

[
bl(Klep4),

[
bk(Bkep1), c̃∗

p2,σ

]∗]∗
c̃p3,σ

−
[
bl(Klep4), c̃∗

p3,σ

]∗ [
bk(Bkep1), c̃∗

p2,σ

]
+
{[
bk(Bkep1), c̃∗

p2,σ

]
,
[
bl(Klep4), c̃∗

p3,σ

]∗}
and simply{

c̃∗
p2,σ c̃p3,σ, b

∗
l (Klep4)

}
bk(Bkep1) = c̃∗

p2,σ {c̃p3,σ, b
∗
l (Klep4)} bk(Bkep1) (7.2.7)

= 2 c̃∗
p2,σb

∗
l (Klep4)bk(Bkep1)c̃p3,σ + c̃∗

p2,σ

[
bl(Klep4), c̃∗

p3,σ

]∗
bk(Bkep1)

the summand decomposes into 8 schematic forms as{
bk(Bkep1),

{
c̃∗

p2,σ c̃p3,σ, b
∗
l (Klep4)

}}
= 4 c̃∗

p2,σb
∗
l (Klep4)bk(Bkep1)c̃p3,σ + 2 c̃∗

p2,σ [bk(Bkep1), b∗
l (Klep4)] c̃p3,σ

+ 2 c̃∗
p2,σ

[
bl(Klep4), c̃∗

p3,σ

]∗
bk(Bkep1) + 2 b∗

l (Klep4)
[
bk(Bkep1), c̃∗

p2,σ

]
c̃p3,σ (7.2.8)

+ c̃∗
p2,σ

[
bk(Bkep1),

[
bl(Klep4), c̃∗

p3,σ

]∗]
+ 2

[
bl(Klep4),

[
bk(Bkep1), c̃∗

p2,σ

]∗]∗
c̃p3,σ

−
[
bl(Klep4), c̃∗

p3,σ

]∗ [
bk(Bkep1), c̃∗

p2,σ

]
+
{[
bk(Bkep1), c̃∗

p2,σ

]
,
[
bl(Klep4), c̃∗

p3,σ

]∗}
.

Of these it should be noted that only the last one is proportional to a constant (i.e. does
not contain any creation or annihilation operators). As the rest annihilate ψF , it follows
that (when summed) the constant term yields precisely ⟨ψF , E2

k (Bk)ψF ⟩, whence bounding
the other terms amounts to estimating the operator

E2
k (Bk) −

〈
ψF , E2

k (Bk)ψF

〉
(7.2.9)

as in the statement of Theorem 7.0.1.

Estimation of the Top Terms
We begin by bounding the “top” terms

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σb

∗
l (Klep4)bk(Bkep1)c̃p3,σ and

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σ [bk(Bkep1), b∗

l (Klep4)] c̃p3,σ.

By the quasi-bosonic commutation relations, the commutator term reduces to

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σ [bk(Bkep1), b∗

l (Klep4)] c̃p3,σ (7.2.10)

=
∑

k∈Z3
∗

σ∑
p∈Sk

⟨Bkep1 , Kkep1⟩ c̃∗
p3,σ c̃p3,σ +

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σεk,l(Bkep1 ;Klep4)c̃p3,σ
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where we used that p1 = p4 and p2 = p3 when k = l. Now, the exchange correction of the
second sum splits as

−s εk,l(Bkep1 ;Klep4) =
τ∑

q∈Lk

∑
q′∈Ll

⟨Bkep1 , eq⟩ ⟨eq′ , Klep4⟩
(
δq,q′cq′−l,τc

∗
q−k,τ + δq−k,q′−lc

∗
q′,τcq,τ

)

=
τ∑

q∈Lk∩Ll

⟨Bkep1 , eq⟩ ⟨eq, Klep4⟩ c̃∗
q−l,τ c̃q−k,τ (7.2.11)

+
τ∑

q∈(Lk−k)∩(Ll−l)
⟨Bkep1 , eq+k⟩ ⟨eq+l, Klep4⟩ c̃∗

q+l,τ c̃q+k,τ

which are both of the schematic form ∑τ
q∈S′

k
∩S′

l
⟨Bkep1 , eq1⟩ ⟨eq4 , Klep4⟩ c̃∗

q2,τ c̃q3,τ .
To estimate ∑k,l∈Z3

∗

∑σ
p∈Sk∩Sl

c̃∗
p2,σεk,l(Bkep1 ;Klep4)c̃p3,σ it thus suffices to consider

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

τ∑
q∈S′

k
∩S′

l

⟨Bkep1 , eq1⟩ ⟨eq4 , Klep4⟩ c̃∗
p2,σ c̃

∗
q2,τ c̃q3,τ c̃p3,σ. (7.2.12)

The estimates for the top terms are as follows:

Proposition 7.2.1. For any collection of symmetric operators (Bk) and Ψ ∈ HN it holds
that

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σb

∗
l (Klep4)bk(Bkep1)c̃p3,σΨ

〉∣∣∣ ≤ C
√∑

k∈Z3
∗

max
p∈Lk

∥Bkep∥2∥N
3
2

E Ψ∥2

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σ [bk(Bkep1), b∗

l (Klep4)] c̃p3,σΨ
〉∣∣∣ ≤ C

√∑
k∈Z3

∗

∑
p∈Lk

max
q∈Lk

|⟨ep, Bkeq⟩|2 ∥NEΨ∥2

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: The first term we can estimate as in Proposition 7.1.3 by

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σb

∗
l (Klep4)bk(Bkep1)c̃p3,σΨ

〉∣∣∣
≤

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∥bl(Klep4)c̃p2,σΨ∥ ∥bk(Bkep1)c̃p3,σΨ∥

≤
∑

k∈Z3
∗

σ∑
p∈Sk

∑
l∈Z3

∗

1Sl
(p) ∥Bkep1∥ ∥Klep4∥ ∥N

1
2

l c̃p2,σΨ∥∥N
1
2

k c̃p3,σΨ∥ (7.2.13)

≤
∑

k∈Z3
∗

(
max
p∈Lk

∥Bkep∥
) ∑

p∈Sk

√√√√ s∑
σ=1

∥c̃p3,σN
1
2

k Ψ∥2
√∑

l∈Z3
∗

1Sl
(p) ∥Klep4∥2

√√√√ σ∑
l∈Z3

∗

1Sl
(p)∥c̃p2,σN

1
2

E Ψ∥2

≤ ∥NEΨ∥
∑

k∈Z3
∗

(
max
p∈Lk

∥Bkep∥
)√√√√ σ∑

p∈Sk

∥c̃p3,σN
1
2

k Ψ∥2
√∑

p∈Sk

∑
l∈Z3

∗

1Sl
(p) ∥Klep4∥2
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≤
√∑

l∈Z3
∗

∥Kl∥2
HS ∥NEΨ∥

∑
k∈Z3

∗

(
max
p∈Lk

∥Bkep∥
)

∥N
1
2

E N
1
2

k Ψ∥

≤
√∑

k∈Z3
∗

max
p∈Lk

∥Bkep∥2
√∑

l∈Z3
∗

∥Kl∥2
HS ∥NEΨ∥ ∥N

3
2

E Ψ∥.

For the commutator term we first consider ∑k∈Z3
∗

∑σ
p∈Sk

⟨Bkep1 , Kkep1⟩ c̃∗
p3,σ c̃p3,σ: This is

trivially bounded by
∑

k∈Z3
∗

σ∑
p∈Sk

∣∣∣⟨Bkep1 , Kkep1⟩
〈
Ψ, c̃∗

p3,σ c̃p3,σΨ
〉∣∣∣ ≤

∑
k∈Z3

∗

max
p∈Lk

|⟨Bkep, Kkep⟩|
σ∑

p∈Sk

〈
Ψ, c̃∗

p3,σ c̃p3,σΨ
〉

≤
∑

k∈Z3
∗

max
p∈Lk

|⟨ep, BkKkep⟩| ⟨Ψ,NEΨ⟩ (7.2.14)

and by the matrix element estimate for Kk of Theorem 6.0.1 we have for any p ∈ Lk that

|⟨Bkep, Kkep⟩| ≤
∑

q∈Lk

|⟨Bkep, eq⟩| |⟨eq, Kkep⟩| ≤ C
∑

q∈Lk

|⟨ep, Bkeq⟩|
V̂kk

−1
F

λk,q + λk,p

(7.2.15)

≤ CV̂kk
−1
F

(
max
q∈Lk

|⟨ep, Bkeq⟩|
) ∑

q∈Lk

1
λk,q

≤ CV̂k max
q∈Lk

|⟨ep, Bkeq⟩|

since ∑q∈Lk
λ−1

k,q ≤ CkF . Consequently

∑
k∈Z3

∗

σ∑
p∈Sk

∣∣∣⟨Bkep1 , Kkep1⟩
〈
Ψ, c̃∗

p3,σ c̃p3,σΨ
〉∣∣∣ ≤ C

∑
k∈Z3

∗

V̂k

(
max

p,q∈Lk

|⟨ep, Bkeq⟩|
)

⟨Ψ,NEΨ⟩

≤ C
√∑

k∈Z3
∗

V̂ 2
k

√∑
k∈Z3

∗

max
p,q∈Lk

|⟨ep, Bkeq⟩|2 ⟨Ψ,NEΨ⟩

and clearly maxp,q∈Lk
|⟨ep, Bkeq⟩|2 ≤ ∑

p∈Lk
maxq∈Lk

|⟨ep, Bkeq⟩|2. Finally

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

τ∑
q∈S′

k
∩S′

l

∣∣∣⟨Bkep1 , eq1⟩ ⟨eq4 , Klep4⟩
〈
Ψ, c̃∗

p2,σ c̃
∗
q2,τ c̃q3,τ c̃p3,σΨ

〉∣∣∣
≤

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

τ∑
q∈S′

k
∩S′

l

|⟨Bkep1 , eq1⟩| |⟨eq4 , Klep4⟩| ∥c̃q2,τ c̃p2,σΨ∥ ∥c̃q3,τ c̃p3,σΨ∥

≤

√√√√√ ∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

τ∑
q∈S′

k
∩S′

l

|⟨Bkep1 , eq1⟩|2 ∥c̃q2,τ c̃p2,σΨ∥2

·

√√√√√ ∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

τ∑
q∈S′

k
∩S′

l

|⟨eq4 , Klep4⟩|2 ∥c̃q3,τ c̃p3,σΨ∥2 (7.2.16)

≤
√√√√∑

k∈Z3
∗

∑
p∈Sk

max
q∈Lk

|⟨ep1 , Bkeq⟩|2
σ∑

l∈Z3
∗

1Sl
(p)∥c̃p2,σN

1
2

E Ψ∥2
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·
√√√√∑

l∈Z3
∗

∑
p∈Sl

∥Klep4∥2
σ∑

k∈Z3
∗

1Sk
(p) ∥c̃p3,σΨ∥2

≤
√∑

k∈Z3
∗

∑
p∈Lk

max
q∈Lk

|⟨ep, Bkeq⟩|2
√∑

l∈Z3
∗

∥Kl∥2
HS∥N

1
2

E Ψ∥ ∥NEΨ∥

whence the claim follows as ∥Kl∥HS ≤ CV̂l.
□

Estimation of the Single Commutator Terms
For the single commutator terms

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σ

[
bl(Klep4), c̃∗

p3,σ

]∗
bk(Bkep1) and

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

b∗
l (Klep4)

[
bk(Bkep1), c̃∗

p2,σ

]
c̃p3,σ

we note that by equation (7.1.19), the commutator
[
bl(Klep4), c̃∗

p3,σ

]
is given by

[
bl(Klep4), c̃∗

p3,σ

]
=

−1Ll
(p3 + l)s− 1

2 ⟨Klep4 , ep3+l⟩ c̃p3+l,σ Sk = Lk

1Ll
(p3)s− 1

2 ⟨Klep4 , ep3⟩ c̃p3−l,σ Sk = Lk − k
. (7.2.17)

The prefactors again obey an estimate as in Proposition 7.1.2:

Proposition 7.2.2. For any k, l ∈ Z3
∗ and p ∈ Sk ∩ Sl it holds that

∣∣∣1Ll
(p3 + l)s− 1

2 ⟨Klep4 , ep3+l⟩
∣∣∣ ≤ CV̂lk

−1
F

1Lk
(p2 + k)1Ll

(p3 + l)√
λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

, Sk = Lk,

and ∣∣∣1Ll
(p3)s− 1

2 ⟨Klep4 , ep3⟩
∣∣∣ ≤ CV̂lk

−1
F

1Lk
(p2)1Ll

(p3)√
λk,p1 + λk,p2

√
λl,p3 + λl,p4

, Sk = Lk − k,

for a constant C > 0 depending only on s.

The proof is essentially the same as that of Proposition 7.1.2 (indeed, this proposition
can be obtained directly from the former by appropriate substition, but some care must
be used since the pi’s differ in their definition).

For the single commutator terms we again only need the simpler bound
∣∣∣1Ll

(p3 + l)s− 1
2 ⟨Klep4 , ep3+l⟩

∣∣∣ Sk = Lk∣∣∣1Ll
(p3)s− 1

2 ⟨Klep4 , ep3⟩
∣∣∣ Sk = Lk − k

≤ C
V̂lk

−1
F√

λk,p1λl,p4

(7.2.18)

but the full one will be needed for the double commutator terms below. Now the estimate:
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Proposition 7.2.3. For any collection of symmetric operators (Bk) and Ψ ∈ HN it holds
that
∑

k,l∈Z3
∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σ

[
bl(Klep4), c̃∗

p3,σ

]∗
bk(Bkep1)Ψ

〉∣∣∣ ≤ Ck
− 1

2
F

√√√√∑
k∈Z3

∗

∥Bkh
− 1

2
k ∥2

HS ∥NEΨ∥2

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, b∗
l (Klep4)

[
bk(Bkep1), c̃∗

p2,σ

]
c̃p3,σΨ

〉∣∣∣ ≤ C
√∑

k∈Z3
∗

∑
p∈Lk

max
q∈Lk

|⟨ep, Bkeq⟩|2 ∥NEΨ∥2

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: As in the second estimate of Proposition 7.1.3 we have
∑

k,l∈Z3
∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σ

[
bl(Klep4), c̃∗

p3,σ

]∗
bk(Bkep1)Ψ

〉∣∣∣
≤

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∥∥∥[bl(Klep4), c̃∗
p3,σ

]
c̃p2,σΨ

∥∥∥ ∥bk(Bkep1)Ψ∥

≤ C
∑
l∈Z3

∗

σ∑
p∈Sl

∑
k∈Z3

∗

1Sk
(p) ∥Bkep1∥ V̂lk

−1
F√

λk,p1λl,p4

∥c̃p3±l,σ c̃p2,σΨ∥ ∥N
1
2

k Ψ∥ (7.2.19)

≤ Ck−1
F ∥N

1
2

E Ψ∥
∑

p

∑
l∈Z3

∗

1Sl
(p)V̂l√
λl,p4

√√√√∑
k∈Z3

∗

1Sk
(p)∥Bkh

− 1
2

k ep1∥2

√√√√√ σ,τ∑
k∈Z3

∗

1Sk
(p) ∥c̃p3±l,τ c̃p2,σΨ∥2

≤ Ck−1
F ∥N

1
2

E Ψ∥
∑

p

√√√√∑
k∈Z3

∗

1Sk
(p)∥Bkh

− 1
2

k ep1∥2

√√√√√∑
l∈Z3

∗

1Sl
(p) V̂

2
l

λl,p4

√√√√ σ∑
l∈Z3

∗

1Sl
(p)∥c̃p2,σN

1
2

E Ψ∥2

≤ Ck−1
F ∥N

1
2

E Ψ∥ ∥NEΨ∥
√√√√∑

k∈Z3
∗

∑
p∈Sk

∥Bkh
− 1

2
k ep1∥2

√√√√∑
l∈Z3

∗

V̂ 2
l

∑
p∈Sl

1
λl,p4

≤ Ck
− 1

2
F

√√√√∑
k∈Z3

∗

∥Bkh
− 1

2
k ∥2

HS

√∑
l∈Z3

∗

V̂ 2
l ∥N

1
2

E Ψ∥ ∥NEΨ∥ .

By equation (7.1.19) it holds that

[
bk(Bkep1), c̃∗

p2,σ

]
=

−1Lk
(p2 + k)s− 1

2 ⟨Bkep1 , ep2+k⟩ c̃p2+k,σ p ∈ BF

1Lk
(p2)s− 1

2 ⟨Bkep1 , ep2⟩ c̃p2−k,σ p ∈ Bc
F

(7.2.20)

so the second term can be bounded as∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, b∗
l (Klep4)

[
bk(Bkep1), c̃∗

p2,σ

]
c̃p3,σΨ

〉∣∣∣
≤

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∥bl(Klep4)Ψ∥
∥∥∥[bk(Bkep1), c̃∗

p2,σ

]
c̃p3,σΨ

∥∥∥
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≤
∑

k∈Z3
∗

σ∑
p∈Sk

∑
l∈Z3

∗

1Sl
(p)
(

max
q∈Lk

|⟨ep1 , Bkeq⟩|
)

∥Klep4∥ ∥N
1
2

l Ψ∥ ∥c̃p2±k,σ c̃p3,σΨ∥ (7.2.21)

≤ ∥N
1
2

E Ψ∥
∑

p

∑
k∈Z3

∗

1Sk
(p)
(

max
q∈Lk

|⟨ep1 , Bkeq⟩|
)√∑

l∈Z3
∗

1Sl
(p) ∥Klep4∥2

√√√√√ σ,τ∑
l∈Z3

∗

1Sl
(p) ∥c̃p2±k,τ c̃p3,σΨ∥2

≤ ∥N
1
2

E Ψ∥
∑

p

√∑
l∈Z3

∗

1Sl
(p) ∥Klep4∥2

√√√√∑
k∈Z3

∗

1Sk
(p)
(

max
q∈Lk

|⟨ep1 , Bkeq⟩|2
)√√√√ σ∑

k∈Z3
∗

1Sk
(p)∥c̃p3,σN

1
2

E Ψ∥2

≤ ∥N
1
2

E Ψ∥ ∥NEΨ∥
√∑

l∈Z3
∗

∑
p∈Sl

∥Klep4∥2
√∑

k∈Z3
∗

∑
p∈Sk

max
q∈Lk

|⟨ep1 , Bkeq⟩|2

≤
√∑

k∈Z3
∗

∑
p∈Lk

max
q∈Lk

|⟨ep, Bkeq⟩|2
√∑

l∈Z3
∗

∥Kl∥2
HS ∥N

1
2

E Ψ∥ ∥NEΨ∥ .

□

Estimation of the Double Commutator Terms
Finally we have the double commutator terms

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

c̃∗
p2,σ

[
bk(Bkep1),

[
bl(Klep4), c̃∗

p3,σ

]∗]
,
∑

k,l∈Z3
∗

σ∑
p∈Sk∩Sl

[
bl(Klep4),

[
bk(Bkep1), c̃∗

p2,σ

]∗]∗
c̃p3,σ

and ∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

[
bl(Klep4), c̃∗

p3,σ

]∗ [
bk(Bkep1), c̃∗

p2,σ

]
.

An identity for the iterated commutators is obtained by applying the identity of equation
(7.1.19) to itself: For any k, l ∈ Z3

∗, φ ∈ ℓ2(Lk), ψ ∈ ℓ2(Ll) and p ∈ Z3
∗

[
bk(φ),

[
bl(ψ), c̃∗

p,σ

]∗]
=

−1Ll
(p+ l)s− 1

2 ⟨ep+l, ψ⟩
[
bk(φ), c̃∗

p+l,σ

]
p ∈ BF

1Ll
(p)s− 1

2 ⟨ep, ψ⟩
[
bk(φ), c̃∗

p−l,σ

]
p ∈ Bc

F

(7.2.22)

=

−1Lk
(p+ l)1Ll

(p+ l)s−1 ⟨φ, ep+l⟩ ⟨ep+l, ψ⟩ c̃p+l−k,σ p ∈ BF

−1Lk
(p− l + k)1Ll

(p)s−1 ⟨φ, ep−l+k⟩ ⟨ep, ψ⟩ c̃p−l+k,σ p ∈ Bc
F

.

The estimates are the following:

Proposition 7.2.4. For any collection of symmetric operators (Bk) and Ψ ∈ HN it holds
that

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, c̃∗
p2,σ

[
bk(Bkep1),

[
bl(Klep4), c̃∗

p3,σ

]∗]
Ψ
〉∣∣∣ ,

∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣∣〈Ψ,
[
bl(Klep4),

[
bk(Bkep1), c̃∗

p2,σ

]∗]∗
c̃p3,σΨ

〉∣∣∣∣ ,
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∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, [bl(Klep4), c̃∗
p3,σ

]∗ [
bk(Bkep1), c̃∗

p2,σ

]
Ψ
〉∣∣∣ ,

are all bounded by Ck− 1
2

F

√∑
k∈Z3

∗
maxp∈Lk

∥h− 1
2

k Bkep∥2 ⟨Ψ,NEΨ⟩ for a constant C > 0 de-
pending only on ∑

k∈Z3
∗
V̂ 2

k and s.

Proof: For these estimates we consider only the case Sk = Lk for the sake of clarity, i.e.
we let

(p1, p2, p3, p4) = (p,−p+ l,−p+ k, p); (7.2.23)

the case Sk = Lk − k can be handled by similar manipulations.
Using the identity of equation (7.2.22) we start by estimating (by the bound of Propo-

sition 7.2.2)

∑
k,l∈Z3

∗

σ∑
p∈Lk∩Ll

∣∣∣〈Ψ, c̃∗
p2,σ

[
bk(Bkep1),

[
bl(Klep4), c̃∗

p3,σ

]∗]
Ψ
〉∣∣∣

=
∑

k,l∈Z3
∗

σ∑
p∈Lk∩Ll

∣∣∣1Lk
(p3 + l)1Ll

(p3 + l)s−1 ⟨Bkep1 , ep3+l⟩ ⟨ep3+l, Klep4⟩
〈
Ψ, c̃∗

p2,σ c̃p3+l−k,σΨ
〉∣∣∣

≤ C
∑

k,l∈Z3
∗

σ∑
p∈Lk∩Ll

1Lk
(p3 + l) |⟨Bkep1 , ep3+l⟩|

V̂lk
−1
F 1Lk

(p2 + k)1Ll
(p3 + l)√

λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

〈
Ψ, c̃∗

p2,σ c̃p2,σΨ
〉

≤ Ck−1
F

∑
l∈Z3

∗

V̂l

σ∑
p∈Ll

√√√√∑
k∈Z3

∗

1Lk
(p)1Lk

(p3 + l)
∣∣∣∣〈ep, h

− 1
2

k Bkep3+l

〉∣∣∣∣2 (7.2.24)

·
√√√√∑

k∈Z3
∗

1Ll
(p3 + l)
λl,p3+l

〈
Ψ, c̃∗

−p+l,σ c̃−p+l,σΨ
〉

≤ Ck
− 1

2
F

∑
l∈Z3

∗

V̂l

σ∑
p∈(Ll−l)

√√√√∑
k∈Z3

∗

1Lk
(p+ l)1Lk

(p3)
∣∣∣∣〈ep+l, h

− 1
2

k Bkep3

〉∣∣∣∣2 〈Ψ, c̃∗
−p,σ c̃−p,σΨ

〉

≤ Ck
− 1

2
F

σ∑
p∈BF

√∑
l∈Z3

∗

V̂ 2
l

√√√√ ∑
k,l∈Z3

∗

1Lk
(p+ l)1Lk

(p3)
∣∣∣∣〈ep+l, h

− 1
2

k Bkep3

〉∣∣∣∣2 〈Ψ, c̃∗
−p,σ c̃−p,σΨ

〉

≤ Ck
− 1

2
F

√√√√∑
k∈Z3

∗

max
p∈Lk

∥h− 1
2

k Bkep∥2
√∑

l∈Z3
∗

V̂ 2
l ⟨Ψ,NEΨ⟩

where we used that ∑k∈Z3
∗

1Ll
(p3 + l)λ−1

l,p3+l ≤ ∑
q∈Ll

λ−1
l,q ≤ CkF .

From equation (7.2.22) we have
[
bl(Klep4),

[
bk(Bkep1), c̃∗

p,σ

]∗]
= −1Ll

(p2 + k)1Lk
(p2 + k)s−1 ⟨Klep4 , ep2+k⟩ ⟨ep2+k, Bkep1⟩ c̃p2+k−l,σ

= −1Lk
(p2 + k)1Ll

(p3 + l)s−1 ⟨Klep4 , ep3+l⟩ ⟨ep2+k, Bkep1⟩ c̃p3,σ
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so the second term can be similarly estimated as
∑

k,l∈Z3
∗

σ∑
p∈Sk∩Sl

∣∣∣∣〈Ψ,
[
bl(Klep4),

[
bk(Bkep1), c̃∗

p2,σ

]∗]∗
c̃p3,σΨ

〉∣∣∣∣
≤ C

∑
k,l∈Z3

∗

σ∑
p∈Lk∩Ll

V̂lk
−1
F 1Lk

(p2 + k)1Ll
(p3 + l)√

λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

|⟨ep2+k, Bkep1⟩|
〈
Ψ, c̃∗

p3,σ c̃p3,σΨ
〉

≤ Ck−1
F

∑
k∈Z3

∗

σ∑
p∈Lk

√√√√√∑
l∈Z3

∗

1Ll
(p) V̂

2
l

λl,p4

√√√√∑
l∈Z3

∗

1Lk
(p2 + k)

∣∣∣∣〈ep2+k, h
− 1

2
k Bkep1

〉∣∣∣∣2 〈Ψ, c̃∗
−p+k,σ c̃−p+k,σΨ

〉

≤ Ck−1
F

σ∑
p∈BF

∑
k∈Z3

∗

1Lk−k(p)
√√√√∑

l∈Z3
∗

V̂ 2
l

1Ll
(p+ k)
λl,p+k

∥h− 1
2

k Bkep+k∥
〈
Ψ, c̃∗

−p,σ c̃−p,σΨ
〉

(7.2.25)

≤ Ck−1
F

σ∑
p∈BF

√√√√∑
l∈Z3

∗

V̂ 2
l

∑
k∈Z3

∗

1Ll
(p+ k)
λl,p+k

√√√√∑
k∈Z3

∗

∥h− 1
2

k Bkep+k∥2
〈
Ψ, c̃∗

−p,σ c̃−p,σΨ
〉

≤ Ck
− 1

2
F

√√√√∑
k∈Z3

∗

max
p∈Lk

∥h− 1
2

k Bkep∥2
√∑

l∈Z3
∗

V̂ 2
l ⟨Ψ,NEΨ⟩ .

Finally, from the equations (7.2.17) and (7.2.20) we see that[
bl(Klep4), c̃∗

p3,σ

]∗ [
bk(Bkep1), c̃∗

p2,σ

]
(7.2.26)

= 1Lk
(p2 + k)1Ll

(p3 + l)s−1 ⟨Bkep1 , ep2+k⟩ ⟨ep3+l, Klep4⟩ c̃∗
p3+l,σ c̃p2+k,σ

so we estimate∑
k,l∈Z3

∗

σ∑
p∈Sk∩Sl

∣∣∣〈Ψ, [bl(Klep4), c̃∗
p3,σ

]∗ [
bk(Bkep1), c̃∗

p2,σ

]
Ψ
〉∣∣∣

≤ C
∑

k,l∈Z3
∗

σ∑
p∈Lk∩Ll

V̂lk
−1
F 1Lk

(p2 + k)1Ll
(p3 + l)√

λk,p1 + λk,p2+k

√
λl,p3+l + λl,p4

|⟨Bkep1 , ep2+k⟩|
〈
Ψ, c̃∗

p3+l,σ c̃p2+k,σΨ
〉

≤ Ck−1
F

σ∑
p∈Bc

F

∑
k,l∈Z3

∗

1Lk∩Ll
(p)1Lk∩Ll

(−p+ k + l) V̂l√
λl,p

∣∣∣∣〈ep, h
− 1

2
k Bke−p+k+l

〉∣∣∣∣ (7.2.27)

·
〈
Ψ, c̃∗

−p+k+l,σ c̃−p+k+l,σΨ
〉

= Ck−1
F

σ∑
p∈Bc

F

∑
k,l∈Z3

∗

1Lk∩Ll
(p+ k + l)1Lk∩Ll

(−p) V̂l√
λl,p+k+l

∣∣∣∣〈ep+k+l, h
− 1

2
k Bke−p

〉∣∣∣∣ 〈Ψ, c̃∗
−p,σ c̃−p,σΨ

〉

≤ Ck−1
F

σ∑
p∈Bc

F

√√√√ ∑
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∣∣∣∣〈ep+k+l, h

− 1
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∗

V̂ 2
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1Ll
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λl,p+k+l

〈
Ψ, c̃∗

−p,σ c̃−p,σΨ
〉

≤ Ck
− 1

2
F

√√√√∑
k∈Z3

∗

max
p∈Lk

∥h− 1
2

k Bkep∥2
√∑

l∈Z3
∗

V̂ 2
l ⟨Ψ,NEΨ⟩ .
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□
The E2

k bound of Theorem 7.0.1 now follows:

Proposition 7.2.5. For any Ψ ∈ HN and t ∈ [0, 1] it holds that
∑

k∈Z3
∗

∣∣∣〈Ψ, (E2
k (Bk(t)) −

〈
ψF , E2

k (Bk(t))ψF

〉)
Ψ
〉∣∣∣ ≤ C

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

〈
Ψ,N 3

EΨ
〉

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: Clearly

max
p∈Lk

∥Bkep∥2 ≤
∑

p∈Lk

max
q∈Lk

|⟨ep, Bkeq⟩|2 , max
p∈Lk

∥h− 1
2

k Bkep∥2 ≤ ∥Bkh
− 1

2
k ∥2

HS, (7.2.28)

for any Bk, and as our estimate for Bk(t) in Theorem 6.0.1 is the same as that for Ak(t),
the bounds∑

k∈Z3
∗

∑
p∈Lk

max
q∈Lk

|⟨ep, Bkeq⟩|2 , k−1
F

∑
k∈Z3

∗

∥Bkh
− 1

2
k ∥2

HS ≤ C
(
1 + ∥V̂ ∥4

∞

) ∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

(7.2.29)
follow exactly as those of Proposition 7.1.4. Insertion into the Propositions 7.2.1, 7.2.3 and
7.2.4 yields the claim.

□

7.3 Analysis of the Exchange Contribution
Finally we determine the leading order of the exchange contribution. To begin we derive
a general formula for a quantity of the form ⟨ψF , E2

k (Bk)ψF ⟩: We can write

−2
〈
ψF , E2

k (Bk)ψF

〉
= −

∑
l∈Z3

∗

∑
p∈Lk

∑
q∈Ll

⟨ψF , bk(Bkep)ε−k,−l(e−p; e−q)b∗
l (Kleq)ψF ⟩

= 1
s

∑
l∈Z3

∗

σ∑
p∈Lk∩Ll

〈
ψF , bk(Bkep)c̃∗

−p+l,σ c̃−p+k,σb
∗
l (Klep)ψF

〉
(7.3.1)

+ 1
s

∑
l∈Z3

∗

σ∑
p∈(Lk−k)∩(Ll−l)

〈
ψF , bk(Bkep+k)c̃∗

−p−l,σ c̃−p−k,σb
∗
l (Klep+l)ψF

〉
=: A+B

where, using equation (7.1.19) in the form

[
bl(ψ), c̃∗

p,σ

]
=

−s− 1
2
∑

q∈Ll
δp,q−l ⟨ψ, eq⟩ c̃q,σ p ∈ BF

s− 1
2
∑

q∈(Ll−l) δp,q+l ⟨ψ, eq+l⟩ c̃q,σ p ∈ Bc
F

, (7.3.2)
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the terms A and B are given by

A = 1
s

∑
l∈Z3

∗

σ∑
p∈Lk∩Ll

〈
ψF ,

[
bk(Bkep), c̃∗

−p+l,σ

] [
bl(Klep), c̃∗

−p+k,σ

]∗
ψF

〉
(7.3.3)

= 1
s2

∑
l∈Z3

∗

σ∑
p∈Lk∩Ll

〈
ψF ,

∑
q∈Lk

δ−p+l,q−k ⟨Bkep, eq⟩ c̃q,σ

∑
q′∈Ll

δ−p+k,q′−l ⟨eq′ , Klep⟩ c̃∗
q′,σ

ψF

〉

= 1
s

∑
l∈Z3

∗

∑
p,q∈Lk∩Ll

δp+q,k+l ⟨ep, Bkeq⟩ ⟨eq, Klep⟩

and

B = 1
s

∑
l∈Z3

∗

σ∑
p∈(Lk−k)∩(Ll−l)

〈
ψF ,

[
bk(Bkep+k), c̃∗

−p−l,σ

] [
bl(Klep+l), c̃∗

−p−k,σ

]∗
ψF

〉
(7.3.4)

= 1
s

∑
l∈Z3

∗

∑
p,q∈(Lk−k)∩(Ll−l)

δ−p−q,k+l ⟨ep+k, Bkeq+k⟩ ⟨eq+l, Klep+l⟩ .

Although it is not obvious, there holds the identity A = B. To see this we rewrite both
terms: First, for A, note that the presence of the δp+q,k+l makes the Ll of the summation
p, q ∈ Lk ∩ Ll redundant: For any p, q ∈ Bc

F there holds the equivalence

p, q ∈ Lp+q−k ⇔ p, q ∈ Lk (7.3.5)

by the trivial identities

|p− k| = |q − (p+ q − k)| , |q − k| = |p− (p+ q − k)| , (7.3.6)

so A can be written as

A = 1
s

∑
p,q∈Lk

∑
l∈Z3

∗

δp+q,k+l ⟨ep, Bkeq⟩ ⟨eq, Klep⟩ = 1
s

∑
p,q∈Lk

⟨ep, Bkeq⟩ ⟨eq, Kp+q−kep⟩ . (7.3.7)

A similar observation applies to B: For any p, q ∈ BF we likewise have

p, q ∈ (L−p−q−k + p+ q + k) ⇔ p+ k, q + k ∈ Lp+q+k ⇔ p, q ∈ (Lk − k) (7.3.8)

so

B = 1
s

∑
p,q∈(Lk−k)

∑
l∈Z3

∗

δ−p−q,k+l ⟨ep+k, Bkeq+k⟩ ⟨eq+l, Klep+l⟩ (7.3.9)

= 1
s

∑
p,q∈(Lk−k)

⟨ep+k, Bkeq+k⟩ ⟨e−p−k, K−p−q−ke−q−k⟩ = 1
s

∑
p,q∈Lk

⟨ep, Bkeq⟩ ⟨eq, Kp+q−kep⟩

where we lastly used that the kernels Kk obey

⟨e−p, K−ke−q⟩ = ⟨ep, Kkeq⟩ = ⟨eq, Kkep⟩ , k ∈ Z3
∗, p, q ∈ Lk. (7.3.10)
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In all we thus have the identity
〈
ψF , E2

k (Bk)ψF

〉
= −1

s

∑
l∈Z3

∗

∑
p,q∈Lk∩Ll

δp+q,k+l ⟨ep, Bkeq⟩ ⟨eq, Klep⟩ (7.3.11)

= −1
s

∑
p,q∈Lk

⟨ep, Bkeq⟩ ⟨eq, Kp+q−kep⟩ .

Our matrix element estimates of the last section now yield the following:

Proposition (7.0.2). It holds that∣∣∣∣∣∣
∑

k∈Z3
∗

∫ 1

0

〈
ψF , 2 Re

(
E2

k (Bk(t))
)
ψF

〉
dt− Ecorr,ex

∣∣∣∣∣∣ ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s, where

Ecorr,ex = sk−2
F

4 (2π)6
∑

k,l∈Z3
∗

V̂kV̂l

∑
p,q∈Lk∩Ll

δp+q,k+l

λk,p + λk,q

.

Proof: Since all the one-body operators are real-valued we can drop the Re(·) and apply
the above identity for

∑
k∈Z3

∗

∫ 1

0

〈
ψF , 2 Re

(
E2

k (Bk(t))
)
ψF

〉
dt =

∑
k∈Z3

∗

2
〈
ψF , E2

k

(∫ 1

0
Bk(t) dt

)
ψF

〉
(7.3.12)

= 2
s

∑
k,l∈Z3

∗

∑
p,q∈Lk∩Ll

δp+q,k+l

〈
ep,
(∫ 1

0
Bk(t) dt

)
eq

〉
⟨eq, (−Kl)ep⟩ .

Now, note that Ecorr,ex can be written as

Ecorr,ex = 1
s

∑
k,l∈Z3

∗

∑
p,q∈Lk∩Ll

δp+q,k+l
sV̂kk

−1
F

2 (2π)3
sV̂lk

−1
F

2 (2π)3
1

λl,p + λl,q

(7.3.13)

since, much as in Proposition 7.1.2, the δp+q,k+l implies the following identity for the
denominators:

λl,p + λl,q = 1
2
(
|p|2 − |p− l|2

)
+ 1

2
(
|q|2 − |q − l|2

)
(7.3.14)

= 1
2
(
|p|2 − |q − k|2

)
+ 1

2
(
|q|2 − |p− k|2

)
= λk,p + λk,q.

We thus see that
∑

k∈Z3
∗

∫ 1

0

〈
ψF , 2 Re

(
E2

k (Bk(t))
)
ψF

〉
dt− Ecorr,ex
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= 2
s

∑
k,l∈Z3

∗

∑
p,q∈Lk∩Ll

δp+q,k+l

(〈
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(∫ 1

0
Bk(t) dt

)
eq

〉
− sV̂kk

−1
F

4 (2π)3

)
⟨eq, (−Kl)ep⟩ (7.3.15)

+ 1
s

∑
k,l∈Z3

∗

∑
p,q∈Lk∩Ll
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sV̂kk
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F

2 (2π)3

(
⟨eq, (−Kl)ep⟩ − sV̂lk

−1
F

2 (2π)3
1

λl,p + λl,q

)
=: A+B.

We estimate A and B. By the matrix element estimates of Theorem 6.0.1 we have that
(using our freedom to replace λl,p + λl,q by λk,p + λk,q)

|A| ≤ C
∑

k,l∈Z3
∗

∑
p,q∈Lk∩Ll

δp+q,k+l

(
1 + V̂k

)
V̂ 2

k k
−1
F

V̂lk
−1
F

λl,p + λl,q

≤ Ck−2
F

(
1 + ∥V̂ ∥∞

) ∑
k∈Z3

∗

V̂ 2
k

∑
p∈Lk

1√
λk,p

∑
q∈Lk

V̂p+q−k√
λk,q

(7.3.16)

≤ Ck
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2
F

(
1 + ∥V̂ ∥∞

)√∑
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∗

V̂ 2
l

∑
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∗

V̂ 2
k

∑
p∈Lk

1√
λk,p
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(
1 + ∥V̂ ∥∞

)√∑
l∈Z3

∗

V̂ 2
l

∑
k∈Z3

∗

V̂ 2
k |k|

1
2 min {1, k

3
2
F |k|−

3
2 }

where we applied the inequality ∑
q∈Lk

λ−1
k,q ≤ CkF and also used that Proposition 6.2.6

implies that ∑
p∈Lk

1√
λk,p

≤ Ck
3
2
F |k|

1
2 min {1, k

3
2
F |k|−

3
2 } (7.3.17)

for a C > 0 independent of all quantities. By Cauchy-Schwarz we can further estimate
∑

k∈Z3
∗

V̂ 2
k |k|

1
2 min {1, k

3
2
F |k|−

3
2 } ≤

√∑
k∈Z3

∗

V̂ 2
k

√∑
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∗

V̂ 2
k |k| min {1, k3

F |k|−3} (7.3.18)

≤
√∑

k∈Z3
∗

V̂ 2
k

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

for the bound of the statement. By similar estimation also

|B| ≤ C
∑

k,l∈Z3
∗

∑
p,q∈Lk∩Ll

δp+q,k+lV̂kk
−1
F

V̂ 2
l k
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F
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√∑
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∗

V̂ 2
k

∑
l∈Z3

∗

V̂ 2
l |l|

1
2 min {1, k

3
2
F |l|−

3
2 }

(7.3.19)
and the claim follows.

□
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Chapter 8

Estimation of the Non-Bosonizable
Terms and Gronwall Estimates

In this section we perform the final work which will allow us to conclude Theorem 1.1.1.
The main content of this section lies in the estimation of the non-bosonizable terms,

which we recall are the cubic and quartic terms

C = k−1
F

(2π)3
∑

k∈Z3
∗

V̂k Re
((
Bk +B∗

−k

)∗
Dk

)
(8.0.1)

Q = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

D∗
kDk −

σ∑
p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

).
The cubic terms C will not present a big obstacle to us: As was first noted in [8] (in their
formulation), the expectation value of these in fact vanish identically with respect to the
type of trial state we will consider. The bulk of the work will thus be to estimate the
quartic terms. We prove the following bounds:

Theorem 8.0.1. It holds that Q = G+ QLR + QSR where for any Ψ ∈ HN

|⟨Ψ, GΨ⟩| ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF } ⟨Ψ,NEΨ⟩

|⟨Ψ,QLRΨ⟩| ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

〈
Ψ,N 2

EΨ
〉

and eKQSRe
−K = QSR +

∫ 1
0 e

tK(2 Re(G))e−tKdt for an operator G obeying

|⟨Ψ,GΨ⟩| ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

〈
Ψ,
(
N 3

E + 1
)
Ψ
〉
,

C > 0 being a constant depending only on ∑
k∈Z3

∗
V̂ 2

k .
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(Again there are some technical questions which arise due to the unboundedness of
QSR. We consider these in appendix section C.3.)

With these all the general bounds are established. As all our error estimates are with
respect to NE and powers thereof, it then only remains to control the effect which the
transformation eK has on these. By a standard Gronwall-type argument this control will
follow from the estimate of Proposition 5.1.3, and we then end the section by concluding
Theorem 1.1.1.

Analysis of the Cubic Terms
Expanding the Re(·), the cubic terms are

C = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
(B∗

k +B−k)Dk +D∗
k

(
Bk +B∗

−k

))
. (8.0.2)

The operators Bk can be written simply as Bk = s
∑

p∈Lk
bk,p in terms of the excitation

operators bk,p = s− 1
2
∑s

σ=1 c
∗
p−k,σcp,σ, whence it is easily seen that

[NE, Bk] = −Bk, [NE, B
∗
k] = B∗

k. (8.0.3)

As a consequence, Bk maps the eigenspace {NE = M} into {NE = M − 1} and B∗
k maps

{NE = M} into {NE = M + 1}. Meanwhile, the operators Dk preserve the eigenspaces:
Writing Dk = D1,k +D2,k for

D1,k = dΓ
(
PBF

e−ik·xPBF

)
=

σ∑
p,q∈BF

δp,q−kc
∗
p,σcq,σ = −

σ∑
q∈BF ∩(BF +k)

c̃∗
q,σ c̃q−k,σ (8.0.4)

D2,k = dΓ
(
PBc

F
e−ik·xPBc

F

)
=

σ∑
p,q∈Bc

F

δp,q−kc
∗
p,σcq,σ =

σ∑
p∈Bc

F ∩(Bc
F −k)

c̃∗
p,σ c̃p+k,σ

these annihilate and create one hole or excitation, respectively, whence [NE, Dk] = 0 =
[NE, D

∗
k].

It follows that C maps the eigenspace {NE = M} into {NE = M − 1}⊕{NE = M + 1}.
Decomposing HN orthogonally as HN = Heven

N ⊕ Hodd
N for

Heven
N =

∞⊕
m=0

{NE = 2m} , Hodd
N =

∞⊕
m=0

{NE = 2m+ 1} , (8.0.5)

we thus see that C maps each subspace into the other. On the other hand, since our
transformation kernel K is of the form

K = 1
2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩
(
bl,pb−l,−q − b∗

−l,−qb
∗
l,p

)
(8.0.6)

we note that K maps each {NE = M} into {NE = M − 2} ⊕ {NE = M + 2}, hence K
preserves Heven

N and Hodd
N , and so too does the transformation e−K. As any eigenstate

Ψ ∈ HN of NE is contained in either Heven
N or Hodd

N , and these are orthogonal, we conclude
the following:
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Proposition 8.0.2. For any eigenstate Ψ of NE it holds that〈
e−KΨ, Ce−KΨ

〉
= 0.

8.1 Analysis of the Quartic Terms
Now we consider the quartic terms

Q = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

D∗
kDk −

σ∑
p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

). (8.1.1)

We begin by rewriting these: Recalling the decomposition Dk = D1,k + D2,k above, we
calculate

D∗
1,kD1,k =

σ,τ∑
p,q∈BF ∩(BF +k)

c̃∗
p−k,σ c̃p,σ c̃

∗
q,τ c̃q−k,τ

=
σ,τ∑

p,q∈BF ∩(BF +k)
c̃∗

p−k,σ c̃
∗
q,τ c̃q−k,τ c̃p,σ +

σ∑
q∈BF ∩(BF +k)

c̃∗
q−k,σ c̃q−k,σ (8.1.2)

=
σ,τ∑

p,q∈BF ∩(BF +k)
c̃∗

p−k,σ c̃
∗
q,τ c̃q−k,τ c̃p,σ +

σ∑
q∈BF

1BF
(q + k)c̃∗

q,σ c̃q,σ

and similarly

D∗
2,kD2,k =

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

c̃∗
p+k,σ c̃p,σ c̃

∗
q,τ c̃q+k,τ

=
σ,τ∑

p,q∈Bc
F ∩(Bc

F −k)
c̃∗

p+k,σ c̃
∗
q,τ c̃q+k,τ c̃p,σ +

σ∑
p∈Bc

F

1Bc
F
(p− k)c̃∗

p,σ c̃p,σ (8.1.3)

=
σ,τ∑

p,q∈Bc
F ∩(Bc

F −k)
c̃∗

p+k,σ c̃
∗
q,τ c̃q+k,τ c̃p,σ + NE −

σ∑
p∈Bc

F

1BF
(p− k)c̃∗

p,σ c̃p,σ.

For any k ∈ Z3
∗ we can likewise write ∑σ

p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

)
in the form

σ∑
p∈Lk

(
c∗

p,σcp,σ + cp−k,σc
∗
p−k,σ

)
=

σ∑
p∈Bc

F

1BF
(p− k)c̃∗

p,σ c̃p,σ +
σ∑

q∈BF

1Bc
F
(q + k)c̃∗

q,σ c̃q,σ (8.1.4)

=
σ∑

p∈Bc
F

1BF
(p− k)c̃∗

p,σ c̃p,σ + NE −
σ∑

q∈BF

1BF
(q + k)c̃∗

q,σ c̃q,σ.

Noting that D1,k = 0 for |k| > 2kF , as then BF ∩ (BF + k) = ∅, we thus obtain the
decomposition

Q = G+ QLR + QSR (8.1.5)
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where G is

G = k−1
F

(2π)3
∑

k∈Z3
∗

V̂k

 σ∑
q∈BF

1BF
(q + k)c̃∗

q,σ c̃q,σ −
σ∑

p∈Bc
F

1BF
(p− k)c̃∗

p,σ c̃p,σ

, (8.1.6)

the long-range terms QLR are given by

QLR = k−1
F

2 (2π)3
∑

k∈B(0,2kF )∩Z3
∗

V̂k

 σ,τ∑
p,q∈BF ∩(BF +k)

c̃∗
p−k,σ c̃

∗
q,τ c̃q−k,τ c̃p,σ +D∗

1,kD2,k +D∗
2,kD1,k


(8.1.7)

and the short-range terms QSR are

QSR = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

c̃∗
p+k,σ c̃

∗
q,τ c̃q+k,τ c̃p,σ. (8.1.8)

Estimation of G and QLR

G and the long-range terms are easily controlled: First, interchanging the summations we
can write G as

G = k−1
F

(2π)3

σ∑
q∈BF

 ∑
k∈(BF −q)∩Z3

∗

V̂k

c̃∗
q,σ c̃q,σ − k−1

F

(2π)3

σ∑
p∈Bc

F

 ∑
k∈(BF +p)∩Z3

∗

V̂k

c̃∗
p,σ c̃p,σ (8.1.9)

from which it is obvious that G obeys

±G ≤ max
p∈Z3

∗

 k−1
F

(2π)3
∑

k∈(BF +p)∩Z3
∗

V̂k

NE. (8.1.10)

This implies the following:

Proposition 8.1.1. For any Ψ ∈ HN it holds that

|⟨Ψ, GΨ⟩| ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF } ⟨Ψ,NEΨ⟩

for a constant C > 0 independent of all quantities.

Proof: For any p ∈ Z3 we estimate by Cauchy-Schwarz
∑

k∈(BF +p)∩Z3
∗

V̂k ≤
√ ∑

k∈(BF +p)∩Z3
∗

V̂ 2
k min {|k| , kF }

√ ∑
k∈(BF +p)∩Z3

∗

min {|k| , kF }−1 (8.1.11)

≤
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

√ ∑
k∈BF \{0}

|k|−1 + k−1
F
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where we lastly used that k 7→ min {|k| , kF }−1 is radially non-increasing and that (BF + p)∩
Z3

∗ contains at most |BF | points. As it is well-known that ∑k∈B(0,R)\{0} |k|−1 ≤ CR2 as
R → ∞ the bound follows.

□
QLR can be handled in a similar manner:

Proposition 8.1.2. For any Ψ ∈ HN it holds that

|⟨Ψ,QLRΨ⟩| ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

〈
Ψ,N 2

EΨ
〉

for a constant C > 0 independent of all quantities.

Proof: Consider the first term in the parenthesis of equation (8.1.7): For any k ∈ Z3
∗ we

can estimate
σ,τ∑

p,q∈BF ∩(BF +k)

∣∣∣〈Ψ, c̃∗
p−k,σ c̃

∗
q,τ c̃q−k,τ c̃p,σΨ

〉∣∣∣ ≤
σ,τ∑

p,q∈BF ∩(BF +k)
∥c̃q,τ c̃p−k,σΨ∥ ∥c̃q−k,τ c̃p,σΨ∥

≤
√√√√ σ,τ∑

p,q∈BF ∩(BF +k)
∥c̃q,τ c̃p−k,σΨ∥2

√√√√ σ,τ∑
p,q∈BF ∩(BF +k)

∥c̃q−k,τ c̃p,σΨ∥2 ≤
〈
Ψ,N 2

EΨ
〉
. (8.1.12)

As e.g.

D∗
1,kD2,k =

σ∑
p∈Bc

F ∩(Bc
F −k)

τ∑
q∈BF ∩(BF +k)

c̃∗
q−k,τ c̃q,τ c̃

∗
p,σ c̃p+k,σ (8.1.13)

=
σ∑

p∈Bc
F ∩(Bc

F −k)

τ∑
q∈BF ∩(BF +k)

c̃∗
p,σ c̃

∗
q−k,τ c̃q,τ c̃p+k,σ

since BF and Bc
F are disjoint, the terms D∗

1,kD2,k and D∗
2,kD1,k can be handled similarly,

whence

|⟨Ψ,QLRΨ⟩| ≤ 3k−1
F

2 (2π)3

 ∑
k∈B(0,2kF )∩Z3

∗

V̂k

〈Ψ,N 2
EΨ

〉
≤ C

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

〈
Ψ,N 2

EΨ
〉

(8.1.14)
where ∑k∈B(0,2kF )∩Z3

∗
V̂k was bounded as in equation (8.1.11).

□

Analysis of QSR

Lastly we come to

QSR = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

c̃∗
p+k,σ c̃

∗
q,τ c̃q+k,τ c̃p,σ. (8.1.15)
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Recall that the transformation kernel K can be written as K = K̃ − K̃∗ for

K̃ = 1
2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩ bl,pb−l,−q = 1
2
∑
l∈Z3

∗

∑
q∈Ll

bl(Kleq)b−l,−q. (8.1.16)

To determine eKQSRe
−K we will need the commutator [K,QSR] = 2 Re

(
[K̃,QSR]

)
. Noting

that for any p ∈ Bc
F and l ∈ Z3

∗, q ∈ Ll, we have

[
bl,q, c̃

∗
p,σ

]
= 1√

s

s∑
τ=1

[
c∗

q−l,τcq,τ , c
∗
p,σ

]
= 1√

s

s∑
τ=1

δp,qδσ,τc
∗
q−l,τ = 1√

s
δp,q c̃q−l,σ, (8.1.17)

we deduce (with the help of Lemma 3.2.1) that

[K̃, c̃∗
p,σ] = 1

2
∑
l∈Z3

∗

∑
q∈Ll

(
bl(Kleq)

[
b−l,−q, c̃

∗
p,σ

]
+
[
bl(Kleq), c̃∗

p,σ

]
b−l,−q

)

= 1
2
∑
l∈Z3

∗

∑
q∈Ll

(
bl(Kleq)

[
b−l,−q, c̃

∗
p,σ

]
+
[
bl,q, c̃

∗
p,σ

]
b−l(K−le−q)

)
(8.1.18)

= 1
2
√
s

∑
l∈Z3

∗

∑
q∈Ll

(bl(Kleq)δp,−q c̃−q+l,σ + δp,q c̃q−l,σb−l(K−le−q))

= 1√
s

∑
l∈Z3

∗

∑
q∈Ll

δp,−qbl(Kleq)c̃−q+l,σ = 1√
s

∑
l∈Z3

∗

1Ll
(−p)bl(Kle−p)c̃p+l,σ.

Using this we conclude the following:

Proposition 8.1.3. It holds that eKQSRe
−K = QSR +

∫ 1
0 e

tK(2 Re(G))e−tKdt for

G = s− 1
2k−1

F

(2π)3
∑

k,l∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(q)c̃∗

p,σbl(Kleq)c̃−q+l,τ c̃−q+k,τ c̃p−k,σ

+ s−1k−1
F

2 (2π)3
∑

k,l∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(p)1Ll

(q) ⟨Kleq, ep⟩ c̃p−l,σ c̃−q+l,τ c̃−q+k,τ c̃p−k,σ.

Proof: By the fundamental theorem of calculus

eKQSRe
−K = QSR +

∫ 1

0
etK [K,QSR] e−tKdt (8.1.19)

and as noted [K,QSR] = 2 Re
(
[K̃,QSR]

)
. Using equation (8.1.18) we compute that G :=

[K̃,QSR] is given by

G = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

σ∑
p∈Bc

F ∩(Bc
F +k)

τ∑
q∈Bc

F ∩(Bc
F −k)

(
c̃∗

p,σ[K̃, c̃∗
q,τ ] + [K̃, c̃∗

p,σ]c̃∗
q,τ

)
c̃q+k,τ c̃p−k,σ
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= s− 1
2k−1

F

2 (2π)3
∑

k,l∈Z3
∗

V̂k

σ∑
p∈Bc

F ∩(Bc
F +k)

τ∑
q∈Bc

F ∩(Bc
F −k)

1Ll
(−q)c̃∗

p,σbl(Kle−q)c̃q+l,τ c̃q+k,τ c̃p−k,σ

+ s− 1
2k−1

F

2 (2π)3
∑

k,l∈Z3
∗

V̂k

σ∑
p∈Bc

F ∩(Bc
F +k)

τ∑
q∈Bc

F ∩(Bc
F −k)

1Ll
(−p)bl(Kle−p)c̃p+l,σ c̃

∗
q,τ c̃q+k,τ c̃p−k,σ

= s− 1
2k−1

F

2 (2π)3
∑

k,l∈Z3
∗

V̂k

σ∑
p∈Bc

F ∩(Bc
F +k)

τ∑
q∈Bc

F ∩(Bc
F −k)

1Ll
(−q)

{
bl(Kle−q), c̃∗

p,σ

}
c̃q+l,τ c̃q+k,τ c̃p−k,σ

= s− 1
2k−1

F

2 (2π)3
∑

k,l∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(q)

{
bl(Kleq), c̃∗

p,σ

}
c̃−q+l,τ c̃−q+k,τ c̃p−k,σ,

where we for the third inequality substituted (p, σ) ↔ (q, τ) and k → −k in the second
sum, noting that then

1Ll
(−q)c̃q+l,τ c̃

∗
p,σ c̃p−k,σ c̃q+k,τ = 1Ll

(−q)c̃∗
p,σ c̃q+l,τ c̃q+k,τ c̃p−k,σ (8.1.20)

as the indicator function (and summation range) ensures that q + l ̸= p.
By the identity of equation (7.1.19) the anti-commutator is given by{

bl(Kleq), c̃∗
p,σ

}
= 2 c̃∗

p,σbl(Kleq) + 1Ll
(p)s− 1

2 ⟨Kleq, ep⟩ c̃p−l,σ (8.1.21)

which is inserted into the previous equation for the claim.
□

We bound the G operator as follows:

Proposition 8.1.4. For any Ψ ∈ HN it holds that

|⟨Ψ,GΨ⟩| ≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

〈
Ψ,
(
N 3

E + 1
)
Ψ
〉

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k .

Proof: Using Proposition 7.1.1 we estimate the sum of the first term of G as

∑
k,l∈Z3

∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(q)

∣∣∣〈Ψ, c̃∗
p,σbl(Kleq)c̃−q+l,τ c̃−q+k,τ c̃p−k,σΨ

〉∣∣∣
≤

∑
k,l∈Z3

∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(q) ∥b∗

l (Kleq)c̃p,σΨ∥ ∥c̃−q+l,τ c̃−q+k,τ c̃p−k,σΨ∥

≤
∑

k,l∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(q) ∥Kleq∥ ∥c̃p,σ(NE + 1)

1
2 Ψ∥ ∥c̃p−k,σ c̃−q+l,τ c̃−q+k,τ Ψ∥

≤ ∥(NE + 1)Ψ∥
∑
l∈Z3

∗

τ∑
q∈Ll

∥Kleq∥
∑

k∈Z3
∗

1Bc
F +k(q)V̂k∥c̃−q+k,τ c̃−q+l,τ N

1
2

E Ψ∥ (8.1.22)
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≤
√∑

k∈Z3
∗

V̂ 2
k ∥(NE + 1)Ψ∥

∑
l∈Z3

∗

τ∑
q∈Ll

∥Kleq∥ ∥c̃−q+l,τ NEΨ∥

≤
√
s
√∑

k∈Z3
∗

V̂ 2
k

∑
l∈Z3

∗

∥Kl∥HS

 ∥(NE + 1)Ψ∥ ∥N
3
2

E Ψ∥.

Now, the ∥Kk∥HS estimate of Theorem 6.0.1 and Cauchy-Schwarz lets us estimate

∑
k∈Z3

∗

∥Kk∥HS ≤ C
∑

k∈Z3
∗

V̂k min {1, k2
F |k|−2} ≤ C

√√√√√∑
k∈Z3

∗

min {1, k4
F |k|−4}

min {|k| , kF }

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF },

and ∑
k∈Z3

∗

min {1, k4
F |k|−4}

min {|k| , kF }
=

∑
k∈BF \{0}

1
|k|

+ k3
F

∑
k∈Z3

∗\BF

1
|k|4

≤ Ck2
F (8.1.23)

for a constant C > 0 independent of all quantities, so in all the first term of G obeys

s− 1
2k−1

F

2 (2π)3
∑

k,l∈Z3
∗

V̂k

∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(q)

∣∣∣〈Ψ, c̃∗
pbl(Kleq)c̃−q+lc̃−q+kc̃p−kΨ

〉∣∣∣ (8.1.24)

≤ C
√∑

k∈Z3
∗

V̂ 2
k

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF } ∥(NE + 1)Ψ∥ ∥N

3
2

E Ψ∥.

Similarly, for the second term (using simply that ∥c̃p−l,σ∥Op = 1 at the beginning)

∑
k,l∈Z3

∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(p)1Ll

(q) |⟨Kleq, ep⟩ ⟨Ψ, c̃p−l,σ c̃−q+l,τ c̃−q+k,τ c̃p−k,σΨ⟩|

≤ ∥Ψ∥
∑

k,l∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F +k)

1Ll
(p)1Ll

(q) |⟨Kleq, ep⟩| ∥c̃p−k,σ c̃−q+l,τ c̃−q+k,τ Ψ∥ (8.1.25)

≤
√
s ∥Ψ∥

∑
l∈Z3

∗

τ∑
q∈Ll

∥Kleq∥
∑

k∈Z3
∗

1Bc
F +k(q)V̂k∥c̃−q+k,τ c̃−q+l,τ N

1
2

E Ψ∥

≤ s
√∑

k∈Z3
∗

V̂ 2
k

∑
l∈Z3

∗

∥Kl∥HS

 ∥Ψ∥ ∥N
3
2

E Ψ∥.

□

8.2 Gronwall Estimates
We now establish control over the operators eKN m

E e
−K for m = 1, 2, 3. Consider first the

mapping t 7→ etKNEe
−tK: Noting that for any Ψ ∈ HN

d

dt

〈
Ψ, etK(NE + 1)e−tKΨ

〉
=
〈
Ψ, e−tK [K,NE] e−tKΨ

〉
, (8.2.1)
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Gronwall’s lemma implies that to bound etK(NE + 1)e−tK it suffices to control [K,NE] with
respect to NE + 1 itself. We determine the commutator: As K = K̃ − K̃∗ for

K̃ = 1
2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩ bl,pb−l,−q (8.2.2)

and [bl,p,NE] = bl,p it holds that [K̃,NE] = 2 K̃, whence

[K,NE] = 2 Re
(
[K̃,NE]

)
= 2 K̃ + 2 K̃∗. (8.2.3)

The estimate of Proposition 5.1.3 immediately yields that

± [K,NE] ≤ C(NE + 1) (8.2.4)

for a constant C > 0 depending only on ∑k∈Z3
∗
V̂ 2

k and s, whence by Gronwall’s lemma〈
Ψ, etK(NE + 1)e−tKΨ

〉
≤ eC|t| ⟨Ψ, (NE + 1)Ψ⟩ ≤ C ′ ⟨Ψ, (NE + 1)Ψ⟩ , |t| ≤ 1. (8.2.5)

This proves the bound for NE; for N 2
E we will as in [11] apply the following lemma:

Lemma 8.2.1. Let A,B,Z be given with A > 0, Z ≥ 0 and [A,Z] = 0. Then if
± [A, [A,B]] ≤ Z it holds that

±[A 1
2 , [A 1

2 , B]] ≤ 1
4A

−1Z.

We include the proof in appendix section A.2.
The estimates are as follows:

Proposition 8.2.2. For any Ψ ∈ HN and |t| ≤ 1 it holds that〈
e−tKΨ, (N m

E + 1)e−tKΨ
〉

≤ C ⟨Ψ, (N m
E + 1)Ψ⟩ , m = 1, 2, 3,

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: The case of m = 1 was proved above. For m = 2 it suffices to control [K,N 2
E] in

terms of N 2
E + 1; by the identity {A,B} = A

1
2BA

1
2 + [A 1

2 , [A 1
2 , B]] we can write[

K,N 2
E

]
= NE [K,NE] + [K,NE] NE = {NE, [K,NE]}
= {NE + 1, [K,NE]} − 2 [K,NE] (8.2.6)

= (NE + 1)
1
2 [K,NE] (NE + 1)

1
2 + [(NE + 1)

1
2 , [(NE + 1)

1
2 , [K,NE]]] − 2 [K,NE]

and note that the commutator [K̃,NE] = 2 K̃ also implies that

[NE, [NE, [K,NE]]] = 4 [K,NE] , (8.2.7)
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so by Lemma 8.2.1 and equation (8.2.4)

±
[
K,N 2

E

]
≤ C

(
(NE + 1)2 + 1 + (NE + 1)

)
≤ C ′

(
N 2

E + 1
)
. (8.2.8)

Similarly, for N 3
E,[

K,N 3
E

]
= N 2

E [K,NE] + NE [K,NE] NE + [K,NE] N 2
E

= 3 NE [K,NE] NE + NE [NE, [K,NE]] + [[K,NE] ,NE] NE (8.2.9)
= 3 NE [K,NE] NE + [NE, [NE, [K,NE]]] = 3 NE [K,NE] NE + 4 [K,NE]

implies that

±
[
K,N 3

E

]
≤ C(NE(NE + 1)NE + (NE + 1)) ≤ C ′

(
N 3

E + 1
)

(8.2.10)

hence the m = 3 bound.
□

Conclusion of Theorem 1.1.1
We can now conclude:

Theorem (1.1.1). It holds that

inf σ(HN) ≤ EF + Ecorr,bos + Ecorr,ex + C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }, kF → ∞,

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂ 2

k and s.

Proof: By the variational principle applied to the trial state e−KψF we have by Proposition
2.0.1 and the Theorems 4.0.1, 6.0.1 and 8.0.1 that

inf σ(HN) ≤ EF +
〈
ψF , e

K

H ′
kin +

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)e−KψF

〉

+
〈
ψF , e

KCe−KψF

〉
+
〈
ψF , e

KQe−KψF

〉
= EF + Ecorr,bos + ⟨ψF , H

′
kinψF ⟩ + 2

∑
k∈Z3

∗

〈
ψF , Q

k
1

(
e−Kkhke

−Kk − hk

)
ψF

〉

+
∑

k∈Z3
∗

∫ 1

0

〈
e−(1−t)KψF ,

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
)

+ 2 Re
(
E2

k (Bk(t))
))
e−(1−t)KψF

〉
dt

+
〈
eKψF , (G+ QLR)e−KψF

〉
+ ⟨ψF ,QSRψF ⟩ +

∫ 1

0

〈
e−tKψF , (2 Re(G))e−tKψF

〉
dt

= EF + Ecorr,bos + Ecorr,ex + ϵ1 + ϵ2 + ϵ3,
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where we also used that

H ′
kinψF = Qk

1(A)ψF = QSRψF = 0 (8.2.11)

and that
〈
ψF , e

KCe−KψF

〉
= 0 by Proposition 8.0.2. The errors ϵ1, ϵ2 and ϵ3 obey

ϵ1 =
∑

k∈Z3
∗

∫ 1

0

〈
ψF , 2 Re

(
E2

k (Bk(t))
)
ψF

〉
dt− Ecorr,ex ≤ C

∑
k∈Z3

∗

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

(8.2.12)
by Proposition 7.0.2,

ϵ2 =
∑

k∈Z3
∗

∫ 1

0

〈
e−(1−t)KψF ,

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
))
e−(1−t)KψF

〉
dt

+
∑

k∈Z3
∗

∫ 1

0

〈
e−(1−t)KψF ,

(
2 Re

(
E2

k (Bk(t)) −
〈
ψF , E2

k (Bk(t))ψF

〉))
e−(1−t)KψF

〉
dt (8.2.13)

≤ Ck−1
F + C

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF } ≤ C

√∑
k∈Z3

∗

V̂ 2
k min {|k| , kF }

by Theorem 7.0.1, and

ϵ3 =
〈
e−KψF , (G+ QLR)e−KψF

〉
+
∫ 1

0

〈
e−tKψF , (2 Re(G))e−tKψF

〉
dt (8.2.14)

≤ C
√∑

k∈Z3
∗

V̂ 2
k min {|k| , kF }

by Theorem 8.0.1, where we for the last error terms also used that〈
e−tKψF , (N m

E + 1)e−tKψF

〉
≤ C, |t| ≤ 1, m = 1, 2, 3, (8.2.15)

as follows by Proposition 8.2.2.
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Chapter 9

Extension to Attractive Potentials

We now make the observation that the result of Theorem 1.1.1 generalizes to weakly
attractive potentials.

To determine under what conditions we can do this, let us consider where we applied
the assumption V̂k ≥ 0. This condition did not enter anywhere in Section 2.0.1, so the
conclusion of that section, i.e. the representation

HN = EF +H ′
kin +

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
+ C + Q, (9.0.1)

continues to hold. The first time we applied the condition was in Section 3, when we wrote
the bosonizable interaction terms in the form

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
=
∑

k∈Z3
∗

(
2Qk

1(Pk) +Qk
2(Pk)

)
, (9.0.2)

since we defined Pk : ℓ2(Lk) → ℓ2(Lk) to act as Pk(·) = ⟨vk, ·⟩ vk for vk =
√

sV̂kk−1
F

2 (2π)3
∑

p∈Lk
ep.

This definition was made to ensure that

⟨ep, Pkeq⟩ = ⟨ep, vk⟩ ⟨vk, eq⟩ = sV̂kk
−1
F

2 (2π)3 , p, q ∈ Lk, (9.0.3)

but it is clear that this can still be enforced by a slight modification: If we more generally
define Pk and vk by

Pk(·) = sgn(V̂k) ⟨vk, ·⟩ vk, vk =

√√√√s|V̂k|k−1
F

2 (2π)3
∑

p∈Lk

ep, (9.0.4)

then we recover the previous definition for V̂k ≥ 0, but now also have that ⟨ep, Pkeq⟩ =
sV̂kk−1

F

2 (2π)3 even if V̂k < 0.
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As the calculations of Section 3 were purely algebraic, we see that the conclusion, i.e.
the existence of a unitary transformation eK such that

eK

H ′
kin +

∑
k∈Z3

∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)e−K

=
∑

k∈Z3
∗

tr
(
e−Kkhke

−Kk − hk − Pk

)
+H ′

kin + 2
∑

k∈Z3
∗

Qk
1

(
e−Kkhke

−Kk − hk

)
(9.0.5)

+
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
)

+ 2 Re
(
E2

k (Bk(t))
))
e−(1−t)Kdt,

continues to hold (keeping the new definition of Pk in mind), provided the diagonalizing
kernels

Kk = −1
2 log

(
h

− 1
2

k

(
h

1
2
k (hk + 2Pk)h

1
2
k

) 1
2
h

− 1
2

k

)
(9.0.6)

are still well-defined when V̂k < 0.
This is the condition that hk +2Pk = hk −2Pvk

> 0. By the Sherman-Morrison formula
(Lemma 6.1.1 - as well as motonotony of t 7→ hk + tPk) this is the case if and only if

1 − 2
〈
vk, h

−1
k vk

〉
> 0 (9.0.7)

which can be expanded and rearranged to

V̂k > − (2π)3

sk−1
F

∑
p∈Lk

λ−1
k,p

, k ∈ Z3
∗. (9.0.8)

In appendix section B we prove the following asymptotic behaviour of the Riemann sum∑
p∈Lk

λ−1
k,p:

Proposition 9.0.1. For any γ ∈
(
0, 1

11

)
and k ∈ B(0, kγ

F ) it holds that

∑
p∈Lk

λ−1
k,p = 2πkF +O

(
log(kF )

5
3k

1
3 (2+11γ)
F

)
, kF → ∞.

The condition of equation (9.0.8) thus asymptotically amounts to

V̂k > −4π2

s
, k ∈ Z3

∗, (9.0.9)

but as in the statement of Theorem 1.1.2 we will for the purposes of analysis make the
slightly stronger assumption that

V̂k ≥ −(1 − ϵ)4π2

s
, k ∈ Z3

∗, (9.0.10)

for some ϵ > 0. With this we can uniformly bound 1 − 2
〈
vk, h

−1
k vk

〉
away from 0:
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Lemma 9.0.2. Let ∑k∈Z3
∗
V̂ 2

k < ∞ and V̂k ≥ −(1 − ϵ)4π2

s
for all k ∈ Z3

∗. Then

inf
{k∈Z3

∗|V̂k<0}

(
1 − 2

〈
vk, h

−1
k vk

〉)
≥ C, kF → ∞,

for a constant C > 0 depending only on ϵ.

Proof: Expanding the definitions and applying Proposition 9.0.1, we have for all k ∈
B(0, k

1
20
F ) (say) with V̂k < 0 that

1 − 2
〈
vk, h

−1
k vk

〉
= 1 − s|V̂k|k−1

F

(2π)3
∑

p∈Lk

λ−1
k,p ≥ 1 − (1 − ϵ)4π2

s

sk−1
F

(2π)3
∑

p∈Lk

λ−1
k,p (9.0.11)

= ϵ+ (1 − ϵ)k
−1
F

2π

2πkF −
∑

p∈Lk

λ−1
k,p

 ≥ ϵ− C log(kF )
5
3k

− 1
3(1− 11

20)
F

≥ C ′

as kF → ∞ for some C ′ > 0 depending only on ϵ. If instead k ∈ Z3
∗\B(0, k

1
20
F ) we may note

that by the general bound ∑p∈Lk
λ−1

k,p ≤ CkF , we can always estimate

1 − 2
〈
vk, h

−1
k vk

〉
≥ 1 − Cs|V̂k|, (9.0.12)

so noting that

sup
k∈Z3

∗\B(0,k
1

20
F )

|V̂k| ≤
√√√√√ ∑

k∈Z3
∗\B(0,k

1
20
F )

V̂ 2
k → 0, kF → ∞, (9.0.13)

since ∑k∈Z3
∗
V̂ 2

k < ∞ we see that we can for kF sufficiently large assume that

sup
k∈Z3

∗\B(0,k
1

20
F )

(
1 − 2

〈
vk, h

−1
k vk

〉)
≥ 1

2 (9.0.14)

(say), so either way the claim holds.
□

We remark that a similar argument shows that our condition on V̂k is nearly optimal,
in the sense that if for some k ∈ Z3

∗ it holds that V̂k < −4π2

s
, then the asymptotic result of

Proposition 9.0.1 in fact implies that

1 − 2
〈
vk, h

−1
k vk

〉
< 0 (9.0.15)

for all sufficiently large kF , in which case the corresponding term of Ecorr,bos is not even
well-defined as the integrand involves

log
1 + sV̂kk

−1
F

(2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

 = log
(

1 − 2
〈
vk, hk

(
h2

k + t2
)−1

vk

〉)
. (9.0.16)
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The condition V̂k ≥ −(1 − ϵ)4π2

s
thus ensures that our diagonalization procedure (and

Ecorr,bos) remains well-defined, but it is not immediately clear how the one-body estimates
of Section 6 are to be modified for the attractive case.

This is the main information that is needed for the generalization to attractive po-
tentials, but it turns out that Theorem 6.0.1 continues to hold almost exactly as stated
before, the only difference being an ϵ-dependence and the substitution V̂k → |V̂k| in the
error terms:

Proposition 9.0.3. It holds for any k ∈ Z3
∗ that

tr
(
e−Kkhke

−Kk − hk − Pk

)
= 1
π

∫ ∞

0
F

sV̂kk
−1
F

(2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

dt,
where F (x) = log(1 + x) − x. Furthermore, as kF → ∞,

∥Kk∥HS ≤ C|V̂k| min
{
1, k2

F |k|−2
}

and for all p, q ∈ Lk and t ∈ [0, 1]

|⟨ep, Kkeq⟩| ≤ C
|V̂k|k−1

F

λk,p + λk,q∣∣∣∣∣⟨ep, (−Kk)eq⟩ − sV̂kk
−1
F

2 (2π)3
1

λk,p + λk,q

∣∣∣∣∣ ≤ C
V̂ 2

k k
−1
F

λk,p + λk,q

|⟨ep, Ak(t)eq⟩| , |⟨ep, Bk(t)eq⟩| ≤ C
(
1 + V̂ 2

k

)
|V̂k|k−1

F∣∣∣∣∣
〈
ep,
(∫ 1

0
Bk(t) dt

)
eq

〉
− sV̂kk

−1
F

4 (2π)3

∣∣∣∣∣ ≤ C
(
1 + |V̂k|

)
V̂ 2

k k
−1
F

|⟨ep, {Kk, Bk(t)} eq⟩| ≤ C
(
1 + V̂ 2

k

)
V̂ 2

k k
−1
F

for a constant C > 0 depending only on s and ϵ.

We momentarily postpone the proof to subsection 9.1 below.
With these estimates we are essentially done, since the computations of the Sections

7 and 8 only relied on these, as well as the triangle and Cauchy-Schwarz inequalities.
Whenever the triangle inequality was applied, the only difference that is required for at-
tractive potentials is that V̂k is substituted with |V̂k|, but since we generally apply the
Cauchy-Schwarz inequality to estimate in terms of V̂ 2

k this makes no difference in the end.
The only modification to Theorem 1.1.1 that is necessary to generalize to the condition

V̂k > −(1 − ϵ)4π2

s
is therefore that the constant in the error term is ϵ-dependent, which is

Theorem 1.1.2.



9.1 One-Body Estimates for Attractive Modes 99

9.1 One-Body Estimates for Attractive Modes
To prove Proposition 9.0.3 we return to the general setting of Section 6, i.e. we consider
an n-dimensional Hilbert space (V, ⟨·, ·⟩), a positive self-adjoint operator h : V → V with
eigenbasis (xi)n

i=1 and a vector v ∈ V such that ⟨xi, v⟩ ≥ 0, 1 ≤ i ≤ n.
The calculations of this subsection are very reminiscent of those of Section 6, and for

that reason we will adopt a brisk pacing, mainly pointing out the necessary modifications
- these will mainly be various sign reversals.

We let K : V → V be given by

K = −1
2 log

(
h− 1

2
(
h

1
2 (h− 2Pv)h 1

2
) 1

2h− 1
2

)
= −1

2 log
(
h− 1

2
(
h2 − 2P

h
1
2 v

) 1
2h− 1

2

)
; (9.1.1)

we assume that 1 − 2 ⟨v, h−1v⟩ > 0 so that K is well-defined. In this case we have that
e−2K and e2K are given by

e−2K = h− 1
2
(
h2 − 2P

h
1
2 v

) 1
2h− 1

2 (9.1.2)

e2K = h
1
2

(
h−2 + 2

1 − 2 ⟨v, h−1v⟩
P

h− 3
2 v

) 1
2

h
1
2

and it follows from Proposition 6.1.2 that tr
(
e−Khe−K − h+ Pv

)
is given by

tr
(
e−Khe−K − h+ Pv

)
= 1
π

∫ ∞

0
F
(

−2
〈
v, h

(
h2 + t2

)−1
v
〉)
dt, F (x) = log(1 + x) − x.

(9.1.3)
The operators e−2K and e2K obey the following matrix element estimates:

Proposition 9.1.1. For all 1 ≤ i, j ≤ n it holds that

2⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≤
〈
xi,
(
1 − e−2K

)
xj

〉
,
〈
xi,
(
e2K − 1

)
xj

〉
≤ 2

1 − 2 ⟨v, h−1v⟩
⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

Proof: By Proposition 6.1.2 we have that

1 − e−2K = 1 − h− 1
2

h− 4
π

∫ ∞

0

t2

1 − 2
〈
h

1
2v, (h2 + t2)−1h

1
2v
〉P

(h2+t2)−1h
1
2 v
dt

h− 1
2 (9.1.4)

= 4
π

∫ ∞

0

t2

1 − 2
〈
v, h(h2 + t2)−1v

〉P(h2+t2)−1vdt

and now it holds that

1 ≤ 1
1 − 2

〈
v, h(h2 + t2)−1v

〉 ≤ 1
1 − 2 ⟨v, h−1v⟩

, t ≥ 0, (9.1.5)
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whence the element estimate follows as in Proposition 6.1.4. Similarly, for e2K ,

e2K = h
1
2

h−1 + 4
π

∫ ∞

0

t2

1 − 2 ⟨v, h−1v⟩ + 2
〈
h− 3

2v, (h−2 + t2)−1h− 3
2v
〉P

(h−2+t2)−1h− 3
2 v
dt

h 1
2

= 1 + 4
π

∫ ∞

0

t2

1 − 2
〈
v, h−1(h−2 + t2)−1v

〉
t2
P(h−2+t2)−1h−1vdt (9.1.6)

so the claim follows as

1 ≤ 1
1 − 2

〈
v, h−1(h−2 + t2)−1v

〉
t2

≤ 1
1 − 2 ⟨v, h−1v⟩

, t ≥ 0. (9.1.7)

□
As in Corollary 6.1.5 we can then conclude the bounds

⟨xi, sinh(2K)xj⟩ ≤ 2
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

(9.1.8)

⟨xi, (cosh(2K) − 1)xj⟩ ≤ 2 ⟨v, h−1v⟩
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

,

and we note that cosh(2K) also obeys

⟨xi, (cosh(2K) − 1)xj⟩ = 1
2
(〈
xi,
(
e2K − 1

)
xj

〉
−
〈
xi,
(
1 − e−2K

)
xj

〉)
(9.1.9)

≤ 1
2
〈
xi,
(
e2K − 1

)
xj

〉
≤ 1

1 − 2 ⟨v, h−1v⟩
⟨xi, v⟩ ⟨v, xj⟩
λi + λj

so in fact
⟨xi, (cosh(2K) − 1)xj⟩ ≤ min {1, 2 ⟨v, h−1v⟩}

1 − 2 ⟨v, h−1v⟩
⟨xi, v⟩ ⟨v, xj⟩
λi + λj

. (9.1.10)

By the same arguments used in Proposition 6.1.6, it follows from Proposition 9.1.1 that K
obeys the following elementwise bounds:

Proposition 9.1.2. For any 1 ≤ i, j ≤ n it holds that

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≤ ⟨xi, Kxj⟩ ≤ 1
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

As this in particular implies that ⟨xi, Kxj⟩ ≥ 0 for all 1 ≤ i, j ≤ n, it follows that the
functions

t 7→
〈
xi,
(
etK − 1

)
xj

〉
, ⟨xi, sinh(tK)xj⟩ , ⟨xi, (sinh(tK) − tK)xj⟩ , ⟨xi, (cosh(tK) − 1)xj⟩ ,

(9.1.11)
are non-negative and convex, whence we obtain the following analogue of Proposition 6.1.7:



9.1 One-Body Estimates for Attractive Modes 101

Proposition 9.1.3. For all 1 ≤ i, j ≤ n and t ∈ [0, 1] it holds that

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

t ≤ ⟨xi, sinh(tK)xj⟩ ≤ 1
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

t

0 ≤ ⟨xi, (cosh(tK) − 1)xj⟩ ≤ min {1, ⟨v, h−1v⟩}
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

0 ≤
〈
xi,
(
etK − 1

)
xj

〉
≤ 1

1 − 2 ⟨v, h−1v⟩
⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

Estimation of A(t) and B(t)
We thus come to the estimation of A(t) and B(t), which are now given by

A(t) = 1
2
(
etK(h− 2Pv)etK + e−tKhe−tK

)
− h (9.1.12)

B(t) = 1
2
(
etK(h− 2Pv)etK − e−tKhe−tK

)
.

As in Section 6 we decompose these as

A(t) = Ah(t) − etKPve
tK (9.1.13)

B(t) = −(1 − t)Pv +Bh(t) − etKPve
tK + Pv

for

Ah(t) = cosh(tK)h cosh(tK) + sinh(tK)h sinh(tK) − h (9.1.14)
= {h,CK(t)} + SK(t)hSK(t) + CK(t)hCK(t)

and

Bh(t) = sinh(tK)h cosh(tK) + cosh(tK)h sinh(tK) − tPv (9.1.15)
= {h, SK(t)} − tPv + SK(t)hCK(t) + CK(t)hSK(t),

where SK(t) and CK(t) are now given by

CK(t) = cosh(tK) − 1 and SK(t) = sinh(tK). (9.1.16)

Since the only effective difference between the statement of Proposition 9.1.3 and that of
Proposition 6.1.7 is a factor of (1 − 2 ⟨v, h−1v⟩)−1, the bound of Proposition 6.2.1 general-
izes as (using also the trivial estimate 1 ≤ (1 − 2 ⟨v, h−1v⟩)−1)∣∣∣〈xi,

(
etKPve

tK − Pv

)
xj

〉∣∣∣ ≤ (2 + ⟨v, h−1v⟩) ⟨v, h−1v⟩
(1 − 2 ⟨v, h−1v⟩)2 ⟨xi, v⟩ ⟨v, xj⟩ . (9.1.17)

Consequently also
∣∣∣〈xi, e

tKPve
tKxj

〉∣∣∣ ≤
(

1 + ⟨v, h−1v⟩
1 − 2 ⟨v, h−1v⟩

)2

⟨xi, v⟩ ⟨v, xj⟩ (9.1.18)
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and by the same argument

|⟨xi, {h,CK(t)}xj⟩| ≤ ⟨v, h−1v⟩
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩ (9.1.19)

and
|⟨xi, SK(t)hSK(t)xj⟩| ≤ ⟨v, h−1v⟩

(1 − 2 ⟨v, h−1v⟩)2 ⟨xi, v⟩ ⟨v, xj⟩ , (9.1.20)

the latter extending also to the operators CK(t)hCK(t), SK(t)hCK(t) and CK(t)hSK(t).
Proposition 9.1.3 finally implies that

|⟨xi, ({h, SK(t)} − tPv)xj⟩| = ⟨xi, {h, SK(t)}xj⟩ − ⟨xi, Pvxj⟩ t

≤
(

1
1 − 2 ⟨v, h−1v⟩

− 1
)

⟨xi, v⟩ ⟨v, xj⟩ t (9.1.21)

= 2 ⟨v, h−1v⟩
1 − 2 ⟨v, h−1v⟩

⟨xi, v⟩ ⟨v, xj⟩ t,

so combining all the estimates we conclude the following analogue of the Propositions 6.2.2
and 6.2.3:

Proposition 9.1.4. For all 1 ≤ i, j ≤ n it holds that

|⟨xi, Ah(t)xj⟩| , |⟨xi, Bh(t)xj⟩| ≤ 4 ⟨v, h−1v⟩
(1 − 2 ⟨v, h−1v⟩)2 ⟨xi, v⟩ ⟨v, xj⟩

|⟨xi, A(t)xj⟩| , |⟨xi, B(t)xj⟩| ≤ 3
(

1 + ⟨v, h−1v⟩
1 − 2 ⟨v, h−1v⟩

)2

⟨xi, v⟩ ⟨v, xj⟩ .

These estimates again only differ from those of Section 6 by a factor of (1 − 2 ⟨v, h−1v⟩)−2,
so the statements of the Propositions 6.2.4 and 6.2.5 likewise generalize as

|⟨xi, {K,B(t)}xj⟩| ≤ (6 + ⟨v, h−1v⟩) ⟨v, h−1v⟩
(1 − 2 ⟨v, h−1v⟩)3 ⟨xi, v⟩ ⟨v, xj⟩ (9.1.22)

and ∣∣∣∣〈xi,
(∫ 1

0
B(t) dt

)
xj

〉
+ 1

2 ⟨xi, v⟩ ⟨v, xj⟩
∣∣∣∣ ≤ (6 + ⟨v, h−1v⟩) ⟨v, h−1v⟩

(1 − 2 ⟨v, h−1v⟩)2 ⟨xi, v⟩ ⟨v, xj⟩ ,

(9.1.23)
respectively.

Conclusion of Proposition 9.0.3
We have now obtained estimates similar to those of Section 6, with only two differences:
First, the left-hand sides differ by a sign whenever v (or rather Pv) appears. This only
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serves to negative the absolute value of |V̂k| in our new definition of vk and Pk, however,
which is the reason that |V̂k| only appears on the right-hand sides of Proposition 9.0.3.

The second difference (apart from the absolute value) is various factors of (1 − 2 ⟨v, h−1v⟩)−1.
By Lemma 9.0.2 we can however estimate

1 − 2
〈
vk, h

−1
k vk

〉
≥ C (9.1.24)

uniformly in k for a C > 0 depending only on ϵ, whence also
(
1 − 2

〈
vk, h

−1
k vk

〉)−1
≤ C ′ de-

pending only on ϵ. Absorbing this dependence into the overall constant yields Proposition
9.0.3.
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Chapter 10

Overview of the Operator Result

In this section we review the main points which lead to the conclusion of Theorem 1.1.3.
We first present a general outline of the approach, and then consider the main points

in greater detail in the rest of the section. As in [11] we will focus on the case s = 1 for
simplicity, and assume as in the theorem that ∑k∈Z3

∗
V̂k |k| < ∞.

First we should note that the statement in [11] is slightly more general than that of
Theorem 1.1.3, in that with respect to the decomposition

UHNU∗ = EF + Ecorr,bos +Heff + E (10.0.1)

the error operator E is shown to generally obey

±E ≤ Ck
− 1

94 +ε

F

(
kF +H ′

kin + k−1
F NEH

′
kin

)
(10.0.2)

with respect to D(H ′
kin), and not just the low-lying eigenstates. The particular statement

of Theorem 1.1.3 then follows by a priori bounds on such states: Define a normalized state
Ψ ∈ D(H ′

kin) to be low-lying (with respect to HN) if

⟨Ψ, HNΨ⟩ ≤ EF + κkF (10.0.3)

for some fixed κ > 0. Then the following holds:
Proposition 10.0.1. For any low-lying eigenstate Ψ ∈ D(H ′

kin) it holds that

⟨Ψ,NEΨ⟩ ≤ ⟨Ψ, H ′
kinΨ⟩ ≤ CkF , ⟨Ψ,NEH

′
kinΨ⟩ ≤ Ck2

F ,

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂k |k| and κ.

Let us comment on the quality of these estimates: That ⟨Ψ, H ′
kinΨ⟩ ≤ O(kF ) is

presumably optimal, since H ′
kin enters directly in HN − EF and we already know that

inf(σ(HN)) ∼ EF + O(kF ). The bound ⟨Ψ,NEΨ⟩ ≤ O(kF ) is likely far from optimal,
however, since the trial state we applied for the upper bound had only ⟨Ψ,NEΨ⟩ ≤ O(1).
(It can also be shown that for this state, ⟨Ψ,NEH

′
kinΨ⟩ ≤ O(kF ).)

This point is important for the estimation of error terms later on, since it means that
in order to bound these well, they must be bounded in terms of H ′

kin to the greatest extent
possible, rather than just NE and its powers (as we have done for the upper bound).
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Decomposition of the Hamiltonian
With these a priori bounds at our disposal we can turn to the Hamiltonian proper. Here we
must at the outset make a slight modification compared to the decomposition of Theorem
2.0.1: We now write

H ′
N = H ′

kin +
∑

k∈B(0,kγ
F )∩Z3

∗

(
2Qk

1(Pk) +Qk
2(Pk)

)
+ ND + C + Q (10.0.4)

for some γ > 0 to be optimized at the end, where the non-diagonalized terms ND are the
tail of the interaction terms,

ND = k−1
F

2 (2π)3
∑

k∈Z3
∗\B(0,kγ

F )
V̂k

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
. (10.0.5)

We do this as we will later on need to estimate Riemann sums which are more singular
than ∑p∈Lk

λ−1
k,p, and these we can only establish for |k| sufficiently small compared to kF .

This necessitates a cut-off in the transformation, hence in the number of terms we can
diagonalize for a given kF . As B(0, kγ

F ) ∩ Z3
∗ exhausts Z3

∗ when kF → ∞, all terms are
“eventually” diagonalized, but the tail terms of ND must be treated as errors rather than
included in the transformation.

The non-bosonizable terms C and Q are likewise bounded prior to the transformation.
This is a difficult task since, as mentioned above, these are to be bounded in terms of the
kinetic operator. Nonetheless we obtain the following:

Proposition 10.0.2. It holds that

±ND ≤ Ck
− γ

2
F (kF +H ′

kin)

±(C + Q) ≤ C log(kF )
1
9k

− 1
18

F

(
H ′

kin + k−1
F NEH

′
kin

)
as kF → ∞ for a constant C > 0 depending only on ∑

k∈Z3
∗
V̂k |k|.

We remark that in the end it will be ND which is the dominant error term of E - the
Riemann sum estimates impose the condition γ < 1

47 , whence ±ND ≤ Ck
− 1

94 +ε

F (kF +H ′
kin).

This is not surprising since the non-diagonalizable terms do contribute to the correlation
energy, we simply lack singular Riemann sum estimates which are sufficiently uniform in
k to meaningfully extract this.

Analysis of Bosonizable Terms
With these bounds the remaining analysis reduces entirely to the (now cut-off) bosonizable
terms. For these, Theorem 4.0.1 continues to hold in the form

eK

H ′
kin +

∑
k∈B(0,kγ

F )∩Z3
∗

V̂kk
−1
F

2 (2π)3

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)e−K
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=
∑

k∈B(0,kγ
F )∩Z3

∗

tr(Ek − hk − Pk) +H ′
kin + 2

∑
k∈B(0,kγ

F )∩Z3
∗

Qk
1(Ek − hk) (10.0.6)

+
∑

k∈B(0,kγ
F )∩Z3

∗

∫ 1

0
e(1−t)K

(
εk({Kk, Bk(t)}) + 2 Re

(
E1

k (Ak(t))
)

+ 2 Re
(
E2

k (Bk(t))
))
e−(1−t)Kdt

where Ek = e−Kkhke
−Kk . The cut-off means that we only recover part of Ecorr,bos, but the

remainder is of lower order as kF → ∞. Additionally, the following kinetic estimates of
the exchange terms, and Gronwall estimates for the kinetic operators, can be derived:

Proposition 10.0.3. It holds that∑
k∈B(0,kγ

F )∩Z3
∗

tr(Ek − hk − Pk) = Ecorr,bos +O
(
k1−γ

F

)

± Exchange Terms ≤ C log(kF )
2
3k

8
3 γ− 1

3
F

(
kF +H ′

kin + k−1
F NEH

′
kin

)
and for any t ∈ [−1, 1]

etKH ′
kine

−tK ≤ C(H ′
kin + kF )

etKNEH
′
kine

−tK ≤ C(NEH
′
kin + kFH

′
kin + kF )

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂k |k|.

This leaves only H ′
kin + 2∑k∈B(0,kγ

F )∩Z3
∗
Qk

1(Ek − hk). Now, if we were only considering
a lower bound, it would be tempting to think that we are done, since Ek = e−Kkhke

−Kk =
e−Kkh

1
2
k h

1
2
k e

−Kk is isospectral to

Ẽk = h
1
2
k e

−Kke−Kkh
1
2
k = h

1
2
k e

−2Kkh
1
2
k =

(
h2

k + 2P
h

1
2
k

vk

) 1
2

(10.0.7)

and Ẽk ≥ hk, so one might suspect that Ek ≥ hk which would imply that Qk
1(Ek − hk) ≥ 0.

This is not so, however - Ek − hk is not non-negative.
To get around this issue we consider a second transformation eJ : HN → HN for J of

the form

J =
∑

k∈B(0,kγ
F )∩Z3

∗

∑
p,q∈Lk

⟨ep, Jkeq⟩ b∗
k,pbk,q =

∑
k∈B(0,kγ

F )∩Z3
∗

∑
p∈Lk

b∗
k(Jkep)bk,p (10.0.8)

where we take Jk : ℓ2(Lk) → ℓ2(Lk), k ∈ Z3
∗, to be a collection of skew-symmetric operators.

It follows that J is also skew-symmetric, as

J ∗ =
∑

k∈B(0,kγ
F )∩Z3

∗

∑
p∈Lk

b∗
k(ep)bk(Jkep) =

∑
k∈B(0,kγ

F )∩Z3
∗

∑
p∈Lk

b∗
k(J∗

kep)bk(ep) = −J , (10.0.9)
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so eJ is a unitary transformation.
In the exact bosonic case, a transformation of such a form obeys eJ dΓ(A)e−J =

dΓ
(
eJAe−J

)
. We thus take the operators Jk to be the principal logarithms of the op-

erators Uk, given by

Uk =
(
h

1
2
k e

−2Kkh
1
2
k

) 1
2
h

− 1
2

k eKk , (10.0.10)

which precisely act by taking Ek to Ẽk:

UkEkU
∗
k =

(
h

1
2
k e

−2Kkh
1
2
k

) 1
2
h

− 1
2

k eKke−Kkhke
−KkeKkh

− 1
2

k

(
h

1
2
k e

−2Kkh
1
2
k

) 1
2

(10.0.11)

=
(
h

1
2
k e

−2Kkh
1
2
k

) 1
2
(
h

1
2
k e

−2Kkh
1
2
k

) 1
2

= h
1
2
k e

−2Kkh
1
2
k = Ẽk.

It can then be shown to hold that

eJ

H ′
kin + 2

∑
k∈B(0,kγ

F )∩Z3
∗

Qk
1(Ek − hk)

e−J (10.0.12)

= H ′
kin + 2

∑
k∈B(0,kγ

F )∩Z3
∗

Qk
1

(
Ẽk − hk

)
+ 2

∑
k∈B(0,kγ

F )∩Z3
∗

∫ 1

0
e(1−t)J E3

k (Ek(t))e−(1−t)J dt

where E3
k (·) is of a similar form to E1

k (·) and E2
k (·) of the first transformation, while Ek(t) :

ℓ2(Lk) → ℓ2(Lk) is given by

Ek(t) = etJke−Kkhke
−Kke−tJk − hk. (10.0.13)

The following estimate for the error term, and Gronwall estimates for the kinetic operators
with respect to the second transformation, can then be obtained:

Proposition 10.0.4. It holds for all 0 < γ < 1
47 that

±
∑

k∈B(0,kγ
F )∩Z3

∗

E3
k (Ek(t)) ≤ C log(kF )

5
3k

(5+ 2
3)γ− 1

3
F

(
H ′

kin + k−1
F NEH

′
kin

)

and for t ∈ [−1, 1]

etJH ′
kine

−tJ ≤ CH ′
kin

etJ NEH
′
kine

−tJ ≤ CNEH
′
kin

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂k |k|.

As mentioned, the condition γ < 1
47 enters in the estimation of one-body estimates for

Ek(t) and the Gronwall argument - the Gronwall argument is particularly sensitive to this,
as the exponential prefactor diverges as kF → ∞ if these are not estimated optimally.
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Theorem 1.1.3 now follows by taking U = eJ eK, for which

UHNU∗ = EF + Ecorr,bos +H ′
kin + 2

∑
k∈B(0,kγ

F )∩Z3
∗

Qk
1

(
Ẽk − hk

)
+

∑
k∈B(0,kγ

F )∩Z3
∗

tr(Ek − hk − Pk) − Ecorr,bos + U(ND + C + Q)U∗ (10.0.14)

+ eJ (Exchange Terms)e−J + 2
∑

k∈B(0,kγ
F )∩Z3

∗

∫ 1

0
e(1−t)J E3

k (Ek(t))e−(1−t)J dt;

by the estimates obtained, the terms on the second and third lines are bounded by

C
(
k

− γ
2

F + log(kF )
5
3k

(5+ 2
3)γ− 1

3
F + log(kF )

1
9k

− 1
18

F

)(
kF +H ′

kin + k−1
F NEH

′
kin

)
(10.0.15)

which is optimized as γ → 1
47 for the prefactor k− 1

94 +ε

F , ε > 0. It then only remains to
estimate the tail of ∑k∈Z3

∗
Qk

1

(
Ẽk − hk

)
, but it is not too difficult to show that these obey

±
∑

k∈Z3
∗\B(0,kγ

F )
Qk

1

(
Ẽk − hk

)
≤ Ck−γ

F H ′
kin (10.0.16)

and so are likewise negligible.

10.1 A Priori Bounds
In this subsection we prove Proposition 10.0.1. For the sake of brevity we will write
H ′

N = HN − EF , so the definition of a low-lying state is simply that

⟨Ψ, H ′
NΨ⟩ ≤ κkF . (10.1.1)

First we obtain an a priori bound for H ′
N itself. Recall that we in Section 2 found that

Hkin = ⟨ψF , HkinψF ⟩ +H ′
kin (10.1.2)

and note that it follows from the equations (2.2.5) and (2.2.13) that

Hint = ⟨ψF , HintψF ⟩ + 1
2 (2π)3

∑
k∈Z3

∗

V̂k

(
dΓ
(
e−ik·x

)∗
dΓ
(
e−ik·x

)
− |Lk|

)
(10.1.3)

so
H ′

N = H ′
kin + k−1

F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
dΓ
(
e−ik·x

)∗
dΓ
(
e−ik·x

)
− |Lk|

)
. (10.1.4)

As trivially dΓ
(
e−ik·x

)∗
dΓ
(
e−ik·x

)
≥ 0 we can thus apply the bound |Lk| ≤ Ck2

F |k| to
conclude that

H ′
N ≥ H ′

kin − k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k |Lk| ≥ H ′
kin − C ′kF

∑
k∈Z3

∗

V̂k |k| = H ′
kin − CkF (10.1.5)
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for a constant C > 0 depending only on ∑k∈Z3
∗
V̂k |k|.

This immediately implies that the correlation energy is (at most) of order kF in this
case, but more crucial is the implied bound on H ′

kin: Equation (10.1.5) implies that any
low-lying state must obey

⟨Ψ, H ′
kinΨ⟩ ≤ ⟨Ψ, H ′

NΨ⟩ + CkF ≤ (C + κ)kF , (10.1.6)

which is our first a priori bound.
This in turn yields an a priori bound for ⟨Ψ,NEΨ⟩ as well, for recall that we found

that the particle-hole symmetry allowed us to express

H ′
kin =

∑
p∈Bc

F

|p|2 c∗
pcp −

∑
p∈BF

|p|2 cpc
∗
p (10.1.7)

in the manifestly positive form

H ′
kin =

∑
p∈Bc

F

(
|p|2 − k2

F

)
c∗

pcp +
∑

p∈BF

(
k2

F − |p|2
)
cpc

∗
p. (10.1.8)

This particular form is not useful, as the prefactors in the sums can be arbitrarily small.
The only condition we used to obtain this was however that |p| ≥ kF ≥ |q|, so the same
argument shows that for any ζ ∈

[
supq∈BF

|q|2 , infp∈Bc
F

|p|2
]

it holds that

H ′
kin =

∑
p∈Bc

F

(
|p|2 − ζ

)
c∗

pcp +
∑

p∈BF

(
ζ − |p|2

)
cpc

∗
p, (10.1.9)

and choosing ζ = 1
2

(
infp∈Bc

F
|p|2 + supq∈BF

|q|2
)

we have

inf
p∈Z3

| |p|2 − ζ| ≥ 1
2 (10.1.10)

since infp∈Bc
F

|p|2 − supq∈BF
|q|2 ≥ 1 as |p|2 , |q|2 ∈ Z but |q|2 < |p|2 for any p ∈ Bc

F and
q ∈ BF .

We thus conclude the general operator inequality (first noted in [9])

H ′
kin ≥ 1

2
∑

p∈Bc
F

c∗
pcp + 1

2
∑

p∈BF

cpc
∗
p = NE (10.1.11)

and conclude the following:

Proposition 10.1.1. For any low-lying state Ψ ∈ D(H ′
kin) it holds that

⟨Ψ,NEΨ⟩ ≤ ⟨Ψ, H ′
kinΨ⟩ ≤ (C + κ)kF

for a C > 0 depending only on ∑
k∈Z3

∗
V̂k |k|.
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Bootstrapped Bounds for Eigenstates
In the particular case that Ψ is additionally an eigenstate we can also obtain an a priori
bound on ⟨Ψ,NEH

′
kinΨ⟩ by employing a bootstrapping argument (similar to an idea of

[17]). It turns out to be easier to bound ⟨Ψ,N 2
EH

′
kinΨ⟩ and then obtain ⟨Ψ,NEH

′
kinΨ⟩

as a corollary, so let us consider this: First, by equation (10.1.5), we have the operator
inequality

N 2
EH

′
kin = NEH

′
kinNE ≤ NEH

′
NNE + CkF N 2

E (10.1.12)

= 1
2
(
N 2

EH
′
N +H ′

NN 2
E − [NE, [NE, H

′
N ]]
)

+ CkF N 2
E,

so if Ψ ∈ D(H ′
kin) is an eigenstate of HN such that H ′

NΨ = EΨ, it holds that〈
Ψ,N 2

EH
′
kinΨ

〉
≤ (E + CkF )

〈
Ψ,N 2

EΨ
〉

− 1
2 ⟨Ψ, [NE, [NE, H

′
N ]] Ψ⟩ (10.1.13)

≤ (E + CkF ) ⟨Ψ,NEH
′
kinΨ⟩ − 1

2 ⟨Ψ, [NE, [NE, H
′
N ]] Ψ⟩

where we also used that NE ≤ H ′
kin for the first term.

We must therefore consider [NE, [NE, H
′
N ]]. Note that by the decomposition of Propo-

sition 2.0.1, we can write

H ′
N = H∆ + k−1

F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
BkB−k +B∗

−kB
∗
k

)
+ C (10.1.14)

for
H∆ = H ′

kin + k−1
F

(2π)3
∑

k∈Z3
∗

V̂kB
∗
kBk + Q, (10.1.15)

where we recall that the cubic terms C are given by

C = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
(B∗

k +B−k)Dk +D∗
k

(
Bk +B∗

−k

))
. (10.1.16)

As remarked at the start of Section 8 there holds the commutators

[NE, Bk] = −Bk, [NE, B
∗
k] = B∗

k, [NE, Dk] = 0 = [NE, D
∗
k] , (10.1.17)

which imply that [NE, H∆] = 0 and thus

[NE, [NE, H
′
N ]] = k−1

F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
4BkB−k + 4B∗

−kB
∗
k + (B∗

k +B−k)Dk +D∗
k

(
Bk +B∗

−k

))

= k−1
F

(2π)3
∑

k∈Z3
∗

V̂k Re(4BkB−k + (B∗
k +B−k)Dk). (10.1.18)

We note the following estimates for the Bk and Dk operators (the kinetic bound on Bk was
first obtained in [16]):
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Proposition 10.1.2. For any k ∈ Z3
∗ and Ψ ∈ D(H ′

kin) it holds that

∥BkΨ∥2 ≤ CkF ⟨Ψ, H ′
kinΨ⟩

∥B∗
kΨ∥2 ≤ C

(
kF ⟨Ψ, H ′

kinΨ⟩ + k2
F |k| ∥Ψ∥2

)
∥DkΨ∥2 ≤ 8

〈
Ψ,N 2

EΨ
〉

for a constant C > 0 independent of all quantities.

Proof: For Bk we can by Cauchy-Schwarz estimate

∥BkΨ∥ =

∥∥∥∥∥∥
∑

p∈Lk

bk,pΨ

∥∥∥∥∥∥ ≤
∑

p∈Lk

∥bk,pΨ∥ ≤
√∑

p∈Lk

λ−1
k,p

√∑
p∈Lk

λk,p ∥bk,pΨ∥2 ≤ Ck
1
2
F

√∑
p∈Lk

λk,p ∥bk,pΨ∥2

(10.1.19)
where we also used that ∑p∈Lk

λ−1
k,p ≤ CkF . For the remaining factor we expand and bound

as
∑

p∈Lk

λk,p ∥bk,pΨ∥2 = 1
2
∑

p∈Lk

(
|p|2 − |p− k|2

) ∥∥∥c∗
p−kcpΨ

∥∥∥2
(10.1.20)

= 1
2
∑

p∈Lk

(
|p|2 − k2

F

) ∥∥∥c∗
p−kcpΨ

∥∥∥2
+ 1

2
∑

p∈Lk

(
k2

F − |p− k|2
) ∥∥∥c∗

p−kcpΨ
∥∥∥2

≤ 1
2
∑

p∈Lk

(
|p|2 − k2

F

)
∥cpΨ∥2 + 1

2
∑

p∈Lk

(
k2

F − |p− k|2
) ∥∥∥c∗

p−kΨ
∥∥∥2

= 1
2 ⟨Ψ, H ′

kinΨ⟩

where we applied the representation of H ′
kin given by equation (10.1.8). This implies the

first bound. The second then follows as the commutator of equation (2.2.11) shows that

∥B∗
kΨ∥2 = ⟨Ψ, BkB

∗
kΨ⟩ = ⟨Ψ, B∗

kBkΨ⟩ + ⟨Ψ, [Bk, B
∗
k] Ψ⟩ (10.1.21)

≤ ∥BkΨ∥2 + |Lk| ∥Ψ∥2 ≤ C
(
kF ⟨Ψ, H ′

kinΨ⟩ + k2
F |k| ∥Ψ∥2

)
.

For Dk, recall the decomposition Dk = D1,k + D2,k we used in Section 8. As ∥DkΨ∥2 ≤
2 ∥D1,kΨ∥2 + 2 ∥D2,kΨ∥2 it suffices to bound D1,k and D2,k. Equation (8.1.2) says that
(with s = 1)

D∗
1,kD1,k =

∑
p,q∈BF ∩(BF +k)

cp−kcqc
∗
q−kc

∗
p +

∑
q∈BF

1BF
(q + k)cqc

∗
q (10.1.22)

and the first term we bounded in equation (8.1.12) as
∑

p,q∈BF ∩(BF +k)

〈
Ψ, cp−kcqc

∗
q−kc

∗
pΨ
〉

≤
〈
Ψ,N 2

EΨ
〉

(10.1.23)
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while the second term trivially obeys∑
q∈BF

1BF
(q + k)cqc

∗
q ≤ NE ≤ N 2

E, (10.1.24)

so ∥D1,kΨ∥2 ≤ 2 ⟨Ψ,N 2
EΨ⟩ = 2 ∥NEΨ∥2. ∥D2,kΨ∥2 can be bounded similarly for the claim.

□
A bound on [NE, [NE, H

′
N ]] immediately follows:

Proposition 10.1.3. It holds that

± [NE, [NE, H
′
N ]] ≤ C

(
kF +H ′

kin + k−1
F N 2

E

)
for a constant C > 0 depending only on ∑

k∈Z3
∗
V̂k |k|.

The main eigenstate bound can then be obtained:

Proposition 10.1.4. For any normalized eigenstate Ψ of HN with H ′
NΨ = EΨ it holds

that 〈
Ψ,N 2

EH
′
kinΨ

〉
≤ C max {E, kF }3

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂k |k|.

Proof: Inserting the previous estimate into equation (10.1.13), we obtain〈
Ψ,N 2

EH
′
kinΨ

〉
≤ (E + CkF ) ⟨Ψ,NEH

′
kinΨ⟩ + C

〈
Ψ,
(
kF +H ′

kin + k−1
F N 2

E

)
Ψ
〉

(10.1.25)
≤ CkF + C max {E, kF } ⟨Ψ,NEH

′
kinΨ⟩

where we also used that H ′
kin, N 2

E ≤ NEH
′
kin to simplify the expression. Now, by the

Cauchy-Schwarz inequality for Hkin we can estimate

⟨Ψ,NEH
′
kinΨ⟩ ≤

√
⟨Ψ, H ′

kinΨ⟩ ⟨Ψ,NEH ′
kinNEΨ⟩ ≤

√
C max {E, kF }

√
⟨Ψ,N 2

EH
′
kinΨ⟩
(10.1.26)

where we also applied the inequality H ′
kin ≤ H ′

N +CkF . It follows by the Cauchy inequality
that

max {E, kF } ⟨Ψ,NEH
′
kinΨ⟩ ≤ C(max {E, kF })

3
2
√

⟨Ψ,N 2
EH

′
kinΨ⟩ (10.1.27)

≤ C max {E, kF }3 + 1
2
〈
Ψ,N 2

EH
′
kinΨ

〉
which upon insertion into equation (10.1.25) upon rearrangement yields〈

Ψ,N 2
EH

′
kinΨ

〉
≤ 2

(
CkF + C max {E, kF }3

)
≤ C max {E, kF }3 . (10.1.28)

□
We can now conclude the desired estimate:
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Corollary 10.1.5. For any low-lying eigenstate Ψ ∈ D(H ′
kin) it holds that

⟨Ψ,NEH
′
kinΨ⟩ ≤ Ck2

F

for a constant C > 0 depending only on ∑
k∈Z3

∗
V̂k |k| and κ.

Proof: Estimating as in equation (10.1.26) we have by the proposition that

⟨Ψ,NEH
′
kinΨ⟩ ≤

√
⟨Ψ, H ′

kinΨ⟩ ⟨Ψ,N 2
EH

′
kinΨ⟩ ≤ C

√
max {κkF , kF }4 ≤ Ck2

F . (10.1.29)

□

10.2 Bounding the Non-Diagonalized and Non-Bosonizable
Terms

We consider the bounds of Proposition 10.0.2. The non-diagonalized terms

ND = k−1
F

2 (2π)3
∑

k∈Z3
∗\B(0,kγ

F )
V̂k

(
2B∗

kBk +BkB−k +B∗
−kB

∗
k

)
(10.2.1)

can be immediately estimated by Proposition 10.1.2 as

|⟨Ψ,NDΨ⟩| ≤ k−1
F

(2π)3
∑

k∈Z3
∗\B(0,kγ

F )
V̂k

(
∥BkΨ∥2 + ∥B∗

kΨ∥ ∥B−kΨ∥
)

≤ Ck−1
F

∑
k∈Z3

∗\B(0,kγ
F )
V̂k

√
kF ⟨Ψ, H ′

kinΨ⟩
(
kF ⟨Ψ, H ′

kinΨ⟩ + k2
F |k| ∥Ψ∥2

)
(10.2.2)

≤ C

 ∑
k∈Z3

∗\B(0,kγ
F )
V̂k |k|

1
2

(⟨Ψ, H ′
kinΨ⟩ + kF ∥Ψ∥2

)

≤ Ck
− γ

2
F

∑
k∈Z3

∗

V̂k |k|

(⟨Ψ, H ′
kinΨ⟩ + kF ∥Ψ∥2

)

for any Ψ ∈ D(H ′
kin), i.e.

±ND ≤ Ck
− γ

2
F (kF +H ′

kin). (10.2.3)
We again recall the non-bosonizable terms (for s = 1):

C = k−1
F

(2π)3
∑

k∈Z3
∗

V̂k Re
((
Bk +B∗

−k

)∗
Dk

)
(10.2.4)

Q = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

D∗
kDk −

∑
p∈Lk

(
c∗

pcp + cp−kc
∗
p−k

).
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When ∑k∈Z3
∗
V̂k < ∞ the second terms of Q are entirely negligible, as

0 ≤ k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

∑
p∈Lk

(
c∗

pcp + cp−kc
∗
p−k

)
≤ k−1

F

(2π)3

∑
k∈Z3

∗

V̂k

NE ≤ Ck−1
F NE (10.2.5)

so we may disregard these. For the remaining terms we rewrite C: Straightforward compu-
tation shows that [B−k, Dk] = 0 =

[
B∗

−k, D
∗
k

]
for any k ∈ Z3

∗, and as furthermore D∗
k = D−k

we can write C as

C = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
(B∗

k +B−k)Dk +D∗
k

(
Bk +B∗

−k

))

= k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

(
B∗

kDk +DkB−k +D∗
kBk +B∗

−kD
∗
k

)
(10.2.6)

= k−1
F

(2π)3
∑

k∈Z3
∗

V̂k(B∗
kDk +D∗

kBk)

so the terms that we need to control are

NB = k−1
F

(2π)3
∑

k∈Z3
∗

V̂k

(
B∗

kDk +D∗
kBk + 1

2D
∗
kDk

)
. (10.2.7)

Dividing the summation range into k ∈ B
(
0, kδ

F

)
∩Z3

∗ and k ∈ Z3
∗\B

(
0, kδ

F

)
for some δ > 0,

we write NB = NB1 + NB2 and estimate NB2 using Proposition 10.1.2 as

±NB2 ≤ Ck−1
F

∑
k∈Z3

∗\B(0,kδ
F )
V̂k(B∗

kBk +D∗
kDk) ≤ Ck−1

F

∑
k∈Z3

∗\B(0,kδ
F )
V̂k

(
kFH

′
kin + N 2

E

)

≤ C

 ∑
k∈Z3

∗\B(0,kδ
F )
V̂k

(H ′
kin + k−1

F NEH
′
kin

)
≤ Ck−δ

F

(
H ′

kin + k−1
F NEH

′
kin

)
. (10.2.8)

For NB1 we note that by Cauchy-Schwarz and the Bk estimate of Proposition 10.1.2,∣∣∣∣〈Ψ,
(
B∗

kDk +D∗
kBk + 1

2D
∗
kDk

)
Ψ
〉∣∣∣∣ ≤ C

(
k

1
2
F

√
⟨Ψ, H ′

kinΨ⟩ + ∥DkΨ∥
)

∥DkΨ∥ , (10.2.9)

so it suffices to obtain an improved Dk estimate for small k.

Detailed Analysis of Dk

We begin by noting the following:

Proposition 10.2.1. For all k ∈ Z3
∗ and any λ > 0 it holds that

D∗
kDk ≤ C

(
1 +

∣∣∣S1
k,λ

∣∣∣+ ∣∣∣S2
k,λ

∣∣∣)NE + Cλ− 1
2 NEH

′
kin
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for a constant C > 0 independent of k and kF , where

S1
k,λ =

{
p ∈ BF ∩ (BF + k) | max

{
| |p|2 − ζ|, | |p− k|2 − ζ|

}
< λ

}
S2

k,λ =
{
p ∈ Bc

F ∩ (Bc
F + k) | max

{
| |p|2 − ζ|, | |p− k|2 − ζ|

}
< λ

}
.

Proof: It suffices to consider D1,k and D2,k; we focus on D1,k. Recall again that

D∗
1,kD1,k =

∑
p,q∈BF ∩(BF +k)

cp−kcqc
∗
q−kc

∗
p +

∑
q∈BF

1BF
(q + k)cqc

∗
q (10.2.10)

so for any Ψ ∈ D(H ′
kin)

∥D1,kΨ∥2 ≤
∑

p,q∈BF ∩(BF +k)

∥∥∥c∗
qc

∗
p−kΨ

∥∥∥ ∥∥∥c∗
q−kc

∗
pΨ
∥∥∥+ ⟨Ψ,NEΨ⟩ (10.2.11)

≤
∑

p∈BF ∩(BF +k)
∥c∗

p−kN
1
2

E Ψ∥∥c∗
pN

1
2

E Ψ∥ + ⟨Ψ,NEΨ⟩ .

To estimate the sum, we decompose BF ∩ (BF + k) = S1
k,λ ∪ S1

≥λ where S1
k,λ is as in the

statement of the theorem, and

S1
≥λ =

{
p ∈ BF ∩ (BF + k) | max

{
| |p|2 − ζ|, | |p− k|2 − ζ|

}
≥ λ

}
. (10.2.12)

By this definition and equation (10.1.10) it holds for all p ∈ S1
≥λ that√

| |p|2 − ζ|
√

| |p− k|2 − ζ| ≥ 2− 1
2λ

1
2 (10.2.13)

so we can estimate∑
p∈BF ∩(BF +k)

∥c∗
p−kN

1
2

E Ψ∥∥c∗
pN

1
2

E Ψ∥ (10.2.14)

≤
∣∣∣S1

k,λ

∣∣∣ ∥N
1
2

E Ψ∥2 +
√

2λ− 1
2
∑

p∈S1
≥λ

√
| |p|2 − ζ|

√
| |p− k|2 − ζ|∥c∗

p−kN
1
2

E Ψ∥∥c∗
pN

1
2

E Ψ∥

≤
∣∣∣S1

k,λ

∣∣∣ ⟨Ψ,NEΨ⟩ +
√

2λ− 1
2

√√√√ ∑
p∈S1

≥λ

| |p|2 − ζ|∥c∗
pN

1
2

E Ψ∥2
√√√√ ∑

p∈S1
≥λ

| |p− k|2 − ζ|∥c∗
p−kN

1
2

E Ψ∥2

≤
∣∣∣S1

k,λ

∣∣∣ ⟨Ψ,NEΨ⟩ +
√

2λ− 1
2 ⟨Ψ,NEH

′
kinΨ⟩

by equation (10.1.9), whence the claim follows.
□

By employing precise lattice point counting techniques of the same kind used in ap-
pendix section B.3, the following was obtained in [11]:
Proposition 10.2.2. For all k ∈ B(0, kF ) ∩ Z3

∗ and 0 < λ ≤ 1
6k

2
F (depending on k and

kF ) it holds that∣∣∣S1
k,λ

∣∣∣+ ∣∣∣S2
k,λ

∣∣∣ ≤ C
(

|k|−1 λ+ |k|3+ 2
3 log(kF )

2
3k

2
3
F

)
(λ+ |k|), kF → ∞,

for a constant C > 0 independent of all quantities.
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From this and Proposition 10.2.1 one can then conclude a stronger Dk bound:

Proposition 10.2.3. For all k ∈ B
(
0, kδ

F

)
∩ Z3

∗, 0 < δ < 2
31 , it holds that

D∗
kDk ≤ C |k|

11
9 log(kF )

2
9k

8
9
F

(
H ′

kin + k−1
F NEH

′
kin

)
, kF → ∞,

for a constant C > 0 independent of all quantities.

It now follows from equation (10.2.9) that∣∣∣∣〈Ψ,
(
B∗

kDk +D∗
kBk + 1

2D
∗
kDk

)
Ψ
〉∣∣∣∣ ≤ C |k| log(kF )

1
9k

17
18
F

〈
Ψ,
(
H ′

kin + k−1
F NEH

′
kin

)
Ψ
〉

(10.2.15)
for |k| ≤ kδ

F , δ < 2
31 , whence

±NB1 ≤ C log(kF )
1
9k

− 1
18

F

(
H ′

kin + k−1
F NEH

′
kin

)
. (10.2.16)

As 2
31 >

1
18 , δ can be chosen such that the NB2 bound matches this one, yielding Proposition

10.0.2.

10.3 Controlling the Diagonalization
We begin by considering the tail estimate for Ecorr,bos. Recall that by Theorem 6.0.1 (with
s = 1)

tr(Ek − hk − Pk) = 1
π

∫ ∞

0
F

 V̂kk
−1
F

(2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

dt, F (x) = log(1 + x) − x. (10.3.1)

As F obeys |F (x)| ≤ 1
2x

2 for x ≥ 0, we may estimate

|tr(Ek − hk − Pk)| ≤ 1
2π

∫ ∞

0

 V̂kk
−1
F

(2π)3
∑

p∈Lk

λk,p

λ2
k,p + t2

2

dt = V̂ 2
k k

−2
F

(2π)7
∑

p,q∈Lk

∫ ∞

0

λk,p

λ2
k,p + t2

λk,q

λ2
k,q + t2

dt

= V̂ 2
k k

−2
F

4 (2π)6
∑

p,q∈Lk

1
λk,p + λk,q

≤ V̂ 2
k k

−2
F

4 (2π)6

∑
p∈Lk

1√
λk,p

2

(10.3.2)

≤ V̂ 2
k k

−2
F

4 (2π)6

(
Ck

3
2
F |k|

1
2

)2
≤ CkF V̂

2
k |k|

where we used the integral identity∫ ∞

0

a

a2 + t2
b

b2 + t2
dt = π

2
1

a+ b
, a, b > 0, (10.3.3)
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and the estimate ∑p∈Lk
λ

− 1
2

k,p ≤ Ck
3
2
F |k|

1
2 . Consequently ∑k∈B(0,kγ

F )∩Z3
∗

tr(Ek − hk − Pk) −
Ecorr,bos is bounded by∑

k∈Z3
∗\B(0,kγ

F )
|tr(Ek − hk − Pk)| ≤ CkF

∑
k∈Z3

∗\B(0,kγ
F )
V̂ 2

k |k| ≤ Ck1−γ
F

∑
k∈Z3

∗\B(0,kγ
F )
V̂ 2

k |k|2

≤ Ck1−γ
F

∑
k∈Z3

∗

V̂k |k|

2

≤ Ck1−γ
F (10.3.4)

as claimed in Proposition 10.0.3, where we used that ∑k |ak|2 ≤ (∑k |ak|)2.
We will not prove the exchange term bounds of the proposition here, but let us mention

the idea behind kinetic estimation: The thing to note is that the idea of the kinetic estimate
of Proposition 10.1.2 immediately generalizes as

∥bk(φ)Ψ∥ ≤
∑

p∈Lk

|⟨φ, ep⟩|
∥∥∥c∗

p−kcpΨ
∥∥∥ ≤

√∑
p∈Lk

λ−1
k,p |⟨φ, ep⟩|2

√√√√∑
p∈Lk

λk,p

∥∥∥c∗
p−kcpΨ

∥∥∥2
(10.3.5)

≤ 2− 1
2

√〈
φ, h−1

k φ
〉

⟨Ψ, H ′
kinΨ⟩

and so, as εk,k(φ;φ) ≤ 0, also

∥b∗
k(φ)Ψ∥2 ≤ ∥bk(φ)Ψ∥2 + ∥φ∥2 ∥Ψ∥2 ≤ 1

2
〈
φ, h−1

k φ
〉

⟨Ψ, H ′
kinΨ⟩ + ∥φ∥2 ∥Ψ∥2 , (10.3.6)

so for any Ψ ∈ D(H ′
kin)

∥bk(φ)Ψ∥ ≤ ∥h− 1
2

k φ∥
√

⟨Ψ, H ′
kinΨ⟩, ∥b∗

k(φ)Ψ∥ ≤ ∥h− 1
2

k φ∥
√

⟨Ψ, H ′
kinΨ⟩ + ∥φ∥ ∥Ψ∥ .

(10.3.7)
These inequalities allow us to arbitrage between the one-body and many-body kinetic
operators. As we have good control on both the one-body quantities and the many-body
kinetic energy, this is a significant improvement over pure NE estimates given our poor
control of this quantity.

To illustrate the application of these bounds, let us derive the Gronwall estimate for
etKH ′

kine
−tK; this amounts to controlling

[K, H ′
kin] =

∑
k∈B(0,kγ

F )∩Z3
∗

Qk
2({Kk, hk}) (10.3.8)

in terms of H ′
kin + kF . We derive a general kinetic bound for a Qk

2(B) operator: By the
kinetic estimate∣∣∣〈Ψ, Qk

2(B)Ψ
〉∣∣∣ ≤ 2

∑
p∈Lk

|⟨Ψ, bk(Bep)b−k,−pΨ⟩| ≤ 2
∑

p∈Lk

∥b∗
k(Bep)Ψ∥ ∥b−k,−pΨ∥ (10.3.9)

≤ 2
∑

p∈Lk

(
∥h− 1

2
k Bep∥

√
⟨Ψ, H ′

kinΨ⟩ + ∥Bep∥ ∥Ψ∥
)

∥b−k,−pΨ∥ ,
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and by Cauchy-Schwarz we have that

∑
p∈Lk

∥h− 1
2

k Bep∥ ∥b−k,−pΨ∥ ≤
√√√√∑

p∈Lk

λ−1
k,p∥h− 1

2
k Bep∥2

√∑
p∈Lk

λ−k,−p ∥b−k,−pΨ∥2 (10.3.10)

≤
√√√√∑

p∈Lk

∥h− 1
2

k Bh
− 1

2
k ep∥2

√
⟨Ψ, H ′

kinΨ⟩ = ∥h− 1
2

k Bh
− 1

2
k ∥HS

√
⟨Ψ, H ′

kinΨ⟩

and similarly

∑
p∈Lk

∥Bep∥ ∥b−k,−pΨ∥ ≤
√√√√∑

p∈Lk

λ
− 1

2
k,p ∥Bep∥2

√∑
p∈Lk

λ−k,−p ∥b−k,−pΨ∥2 (10.3.11)

≤ ∥Bh− 1
2

k ∥HS

√
⟨Ψ, H ′

kinΨ⟩,

whence∣∣∣〈Ψ, Qk
2(B)Ψ

〉∣∣∣ ≤ ∥h− 1
2

k Bh
− 1

2
k ∥HS ⟨Ψ, H ′

kinΨ⟩ + ∥Bh− 1
2

k ∥HS ∥Ψ∥
√

⟨Ψ, H ′
kinΨ⟩. (10.3.12)

For B = {Kk, hk}, it follows from our one-body operator estimates that

∥h− 1
2

k {Kk, hk}h− 1
2

k ∥HS ≤ CV̂k, ∥ {Kk, hk}h− 1
2

k ∥HS ≤ Ck
1
2
F V̂k |k|

1
2 , (10.3.13)

so ∣∣∣〈Ψ, Qk
2({Kk, hk})Ψ

〉∣∣∣ ≤ CV̂k ⟨Ψ, H ′
kinΨ⟩ + Ck

1
2
F V̂k |k|

1
2 ∥Ψ∥

√
⟨Ψ, H ′

kinΨ⟩ (10.3.14)

≤ CV̂k |k|
1
2 ⟨Ψ, (H ′

kin + kF )Ψ⟩

i.e. ±Qk
2({Kk, hk}) ≤ CV̂k |k|

1
2 (H ′

kin + kF ), whence

± [K, H ′
kin] ≤ C

 ∑
k∈B(0,kγ

F )∩Z3
∗

V̂k |k|
1
2

(H ′
kin + kF ) ≤ C(H ′

kin + kF ) (10.3.15)

as desired.

10.4 The Second Transformation
In this last subsection we consider the one-body operator estimates needed to control the
second transformation. First note that for J as defined by equation (10.0.8), computation
using the quasi-bosonic commutation relations as in Section 4 establishes that J obeys

[J , bk(φ)] = bk(Jkφ) +
∑

l∈B(0,kγ
F )∩Z3

∗

∑
q∈Ll

εk,l(φ; eq)bl(Jleq) (10.4.1)
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hence [
J , Qk

1(A)
]

= Qk
1([Jk, A]) + Ek

3 (A) (10.4.2)

for symmetric A : ℓ2(Lk) → ℓ2(Lk), where Ek
3 (A) is given by

Ek
3 (A) = 2

∑
l∈B(0,kγ

F )∩Z3
∗

∑
p∈Lk

∑
q∈Ll

Re(b∗
k(Aep)εk,l(ep; eq)bl(Jleq)). (10.4.3)

We estimate a generic term of Ek
3 (A) using the kinetic bound of equation (10.3.7) in the

manner of [11]: We have∑
l∈B(0,kγ

F )∩Z3
∗

∑
p∈Lk∩Ll

∣∣∣〈Ψ, b∗
k(Aep)cp−lc

∗
p−kbl(Jlep)Ψ

〉∣∣∣
≤

∑
l∈B(0,kγ

F )∩Z3
∗

∑
p∈Lk∩Ll

∥∥∥bk(Aep)c∗
p−lΨ

∥∥∥ ∥∥∥bl(Jlep)c∗
p−kΨ

∥∥∥ (10.4.4)

≤
∑

l∈B(0,kγ
F )∩Z3

∗

∑
p∈Lk∩Ll

∥h− 1
2

k Aep∥∥h− 1
2

l Jlep∥
√〈

Ψ, cp−lH ′
kinc

∗
p−lΨ

〉√〈
Ψ, cp−kH ′

kinc
∗
p−kΨ

〉

≤
(

max
p∈Lk

∥h− 1
2

k Aep∥
)√

⟨Ψ, H ′
kinΨ⟩

∑
l∈B(0,kγ

F )∩Z3
∗

∑
p∈Lk∩Ll

∥h− 1
2

l Jlep∥
√〈

Ψ, cp−lH ′
kinc

∗
p−lΨ

〉

≤
(

max
p∈Lk

∥h− 1
2

k Aep∥
) ∑

l∈B(0,kγ
F )∩Z3

∗

∥h− 1
2

l Jl∥HS

√⟨Ψ, H ′
kinΨ⟩ ⟨Ψ,NEH ′

kinΨ⟩.

Controlling the error term of the transformation of equation (10.0.12) thus requires us to
estimate one-body quantities of the form maxp∈Lk

∥h− 1
2

k Ek(t)ep∥, where Ek(t) is given by

Ek(t) = etJke−Kkhke
−Kke−tJk − hk. (10.4.5)

We consider this in the abstract one-body setting of Section 6. In this case, the unitary
transformation U is given by

U =
(
h2 + 2P

h
1
2 v

) 1
4h− 1

2 eK , (10.4.6)

and by using the integral identity

a
1
4 = 2

√
2

π

∫ ∞

0

(
1 − t4

a+ t4

)
dt, a > 0, (10.4.7)

one can derive a representation formula for an operator of the form (A+ gPw)
1
4 similar to

that of Proposition 6.1.2 with the following consequence:

Proposition 10.4.1. For all 1 ≤ i, j ≤ n it holds that
∣∣∣∣〈xi,

((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
xj

〉∣∣∣∣ ≤ 2

√
λiλj

√
λi +

√
λj

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.
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This implies the following elementwise bounds for U :

Proposition 10.4.2. For all 1 ≤ i, j ≤ n it holds that

|⟨xi, (U − 1)xj⟩| , |⟨xi, (U∗ − 1)xj⟩| ≤ 3
(
1 +

〈
v, h−1v

〉)⟨xi, v⟩ ⟨v, xj⟩
λi + λj

.

Proof: It suffices to consider U − 1. Writing

U − 1 =
((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
h− 1

2 eK + h
1
2h− 1

2 eK − 1 (10.4.8)

=
(
eK − 1

)
+
((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
h− 1

2 +
((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
h− 1

2
(
eK − 1

)
we estimate each part in turn. Firstly, we already know that

∣∣∣〈xi,
(
eK − 1

)
xj

〉∣∣∣ ≤ ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

(10.4.9)

by Proposition 6.1.7. Meanwhile, by the previous proposition

∣∣∣∣〈xi,
((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
h− 1

2xj

〉∣∣∣∣ ≤ 1√
λj

2
√
λiλj

√
λi +

√
λj

⟨xi, v⟩ ⟨v, xj⟩
λi + λj

≤ 2⟨xi, v⟩ ⟨v, xj⟩
λi + λj

(10.4.10)
and using both of these estimates we also find that∣∣∣∣〈xi,

((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
h− 1

2
(
eK − 1

)
xj

〉∣∣∣∣
≤

n∑
k=1

∣∣∣∣〈xi,
((
h2 + 2P

h
1
2 v

) 1
4 − h

1
2

)
h− 1

2xk

〉∣∣∣∣ ∣∣∣〈xk,
(
eK − 1

)
xj

〉∣∣∣ (10.4.11)

≤ 2
n∑

k=1

⟨xi, v⟩ ⟨v, xk⟩
λi + λk

⟨xk, v⟩ ⟨v, xj⟩
λk + λj

≤ 2
(

n∑
k=1

|⟨xk, v⟩|2

λk

)
⟨xi, v⟩ ⟨v, xj⟩
λi + λj

= 2
〈
v, h−1v

〉 ⟨xi, v⟩ ⟨v, xj⟩
λi + λj

where we used that (a+ c)−1(b+ c)−1 ≤ c−1(a+ b)−1 for a, b, c > 0 (as c(a+ b) ≤ (a+ c)(b+ c)
follows by expansion). Combining the estimates yields the claim.

□
Recall that for the particular operators hk and Pvk

it holds that
〈
vk, h

−1
k vk

〉
≤ CV̂k, so

for the purposes of estimation this matrix element estimate for U = eJ is almost as good
as that for eK of Proposition 6.1.7. Unlike that proposition, however, we can not extend
this to etJ for general t ∈ [0, 1], as we now lack the required monotonicity.



122 10. Overview of the Operator Result

We can work around this by finding a way to reduce estimates involving etJ to ones
involving U . To provide a concrete example, let us consider a term we would need to
control Ek

3 (Ek(t)): In the general setting, we consider E(t) defined by

E(t) = etJe−Khe−Ke−tJ − h =
(
etJhe−tJ − h

)
+ etJ

(
e−Khe−K − h

)
e−tJ =: E1(t) + E2(t)

(10.4.12)
and decompose E1(t) further as

E1(t) =
(
etJ − 1

)
h+ h

(
e−tJ − 1

)
+
(
etJ − 1

)
h
(
e−tJ − 1

)
. (10.4.13)

We consider the first term, and so need to estimate max1≤i≤n ∥h− 1
2
(
etJ − 1

)
hxi∥. As

mentioned we are to find a way to replace etJ − 1 by U − 1 (and possibly U∗ − 1). Now, J
is the principal logarithm of U , and as U is unitary, hence normal, and we are working on
a finite-dimensional space (which we now consider as a complex vector space), there exists
an orthonormal basis (wj)n

j=1 and real numbers (θj)n
j=1 ⊂ [−π, π) such that

e±tJwj = e±itθjwj, 1 ≤ j ≤ n. (10.4.14)

With respect to this basis, our task thus amounts to estimating eitθ − 1 in terms of eiθ − 1
and e−iθ − 1. To that end we note the following: There exists a C > 0 such that for all
t ∈ [−1, 1] and θ ∈ [−π, π]∣∣∣∣∣(eitθ − 1

)
− t

(
eiθ − 1

)
+ t(1 − t)

2
(
eiθ + e−iθ − 2

)∣∣∣∣∣ ≤ C
∣∣∣eiθ − 1

∣∣∣3 . (10.4.15)

(There is a particular reason for why we want a cubic error bound - we will explain this at
the end.)

This bound follows by considering the series expansion for ex and compactness of
[−1, 1] × [−π, π]. Motivated by this, we define the operator Ft for t ∈ [0, 1] by

Ft = t(U − 1) − t(1 − t)
2 (U + U∗ − 2). (10.4.16)

We then have the following:

Proposition 10.4.3. For any T : V → V , x ∈ V , m ∈ {1, 2} and t ∈ [0, 1] it holds that∥∥∥T(etJ − 1 − Ft

)
x
∥∥∥ , ∥∥∥T(e−tJ − 1 − F ∗

t

)
x
∥∥∥ ≤ C ∥T (U − 1)m∥HS

∥∥∥(U − 1)3−mx
∥∥∥

and for all 1 ≤ i, j ≤ n

|⟨xi, Ftxj⟩| , |⟨xi, F
∗
t xj⟩| ≤ C

(
1 +

〈
v, h−1v

〉)⟨xi, v⟩ ⟨v, xj⟩
λi + λj

for a constant C > 0 independent of all quantities.
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Proof: It suffices to consider
∥∥∥T(etJ − 1 − Ft

)
x
∥∥∥. By orthonormal expansion using the

basis (wj)n
j=1, it holds by equation (10.4.15) and Cauchy-Schwarz that

∥∥∥T(etJ − 1 − Ft

)
x
∥∥∥2

=
n∑

j=1

∣∣∣〈wj, T
(
etJ − 1 − Ft

)
x
〉∣∣∣2

=
n∑

j=1

∣∣∣∣∣
n∑

k=1

〈
wj, T

(
etJ − 1 − Ft

)
wk

〉
⟨wk, x⟩

∣∣∣∣∣
2

=
n∑

j=1

∣∣∣∣∣
n∑

k=1

((
eitθk − 1

)
− t

(
eiθk − 1

)
+ t(1 − t)

2
(
eiθk + e−iθk − 2

))
⟨wj, Twk⟩ ⟨wk, x⟩

∣∣∣∣∣
2

≤ C
n∑

j=1

(
n∑

k=1

∣∣∣eiθk − 1
∣∣∣3 |⟨wj, Twk⟩| |⟨wk, x⟩|

)2

(10.4.17)

≤ C
n∑

j=1

(
n∑

k=1

∣∣∣eiθk − 1
∣∣∣2m

|⟨wj, Twk⟩|2
)(

n∑
k=1

∣∣∣eiθk − 1
∣∣∣2(3−m)

|⟨wk, x⟩|2
)

= C

 n∑
j,k=1

|⟨wj, T (U − 1)mwk⟩|2
( n∑

k=1

∣∣∣〈wk, (U − 1)3−mx
〉∣∣∣2)

= C ∥T (U − 1)m∥2
HS

∥∥∥(U − 1)3−mx
∥∥∥2

which implies the first claim. The elementwise estimates for Ft and F ∗
t follow immediately

from Proposition 10.4.2.
□

By the proposition we then have that

∥h− 1
2
(
etJ − 1

)
hxi∥ ≤ ∥h− 1

2Fthxi∥ + ∥h− 1
2
(
etJ − 1 − Ft

)
hxi∥ (10.4.18)

≤ ∥h− 1
2Fthxi∥ + C∥h− 1

2 (U − 1)2∥HS ∥(U − 1)hxi∥

and so have reduced the estimation to operators which we have good control over. We can
estimate that

∥h− 1
2Fthxi∥2 =

n∑
j=1

∣∣∣〈xj, h
− 1

2Fthxi

〉∣∣∣2 =
n∑

j=1

λ2
i

λj

|⟨xj, Ftxi⟩|2 (10.4.19)

≤ C
(
1 +

〈
v, h−1v

〉)2 n∑
j=1

λ2
i

λj

∣∣∣∣∣⟨xi, v⟩ ⟨v, xj⟩
λi + λj

∣∣∣∣∣
2

≤ C
(
1 +

〈
v, h−1v

〉)2 〈
v, h−1v

〉
|⟨xi, v⟩|2

and likewise

∥(U − 1)hxi∥2 =
n∑

j=1
λ2

i |⟨xj, (U − 1)xi⟩|2 ≤ C
(
1 +

〈
v, h−1v

〉)2 n∑
j=1

λ2
i

∣∣∣∣∣⟨xi, v⟩ ⟨v, xj⟩
λi + λj

∣∣∣∣∣
2

≤ C
(
1 +

〈
v, h−1v

〉)2
∥v∥2 |⟨xi, v⟩|2 , (10.4.20)
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while

∥h− 1
2 (U − 1)2∥2

HS =
n∑

i,j=1

∣∣∣〈xi, h
− 1

2 (U − 1)2xj

〉∣∣∣2 =
n∑

i,j=1

1
λi

∣∣∣∣∣
n∑

k=1
⟨xi, (U − 1)xk⟩ ⟨xk, (U − 1)xj⟩

∣∣∣∣∣
2

≤ C
(
1 +

〈
v, h−1v

〉)4 n∑
i,j=1

1
λi

∣∣∣∣∣
n∑

k=1

⟨xi, v⟩ ⟨v, xk⟩
λi + λk

⟨xk, v⟩ ⟨v, xj⟩
λk + λj

∣∣∣∣∣
2

(10.4.21)

≤ C
(
1 +

〈
v, h−1v

〉)4 n∑
i,j=1

|⟨xi, v⟩|2

λ
5
4
i

|⟨v, xj⟩|2

λ
5
4
j

 n∑
k=1

|⟨xk, v⟩|2

λ
7
8
k λ

3
8
k

2

= C
(
1 +

〈
v, h−1v

〉)4 〈
v, h− 5

4v
〉4
,

so in all

∥h− 1
2
(
etJ − 1

)
hxi∥ ≤ C

(
1 +

〈
v, h−1v

〉)3
(√

⟨v, h−1v⟩ + ∥vk∥
〈
v, h− 5

4v
〉2
)

|⟨xi, v⟩| .
(10.4.22)

For the particular operators hk and Pvk
, this implies that

max
p∈Lk

∥h− 1
2

k

(
etJk − 1

)
hkep∥ ≤ Ck

− 1
2

F

(
1 + V̂k

)3
V̂k

(
1 + k

1
2
F |k|

1
2

〈
vk, h

− 5
4

k vk

〉2
)
. (10.4.23)

The inner product is 〈
vk, h

− 5
4

k vk

〉
= V̂kk

−1
F

2 (2π)3
∑

p∈Lk

λ
− 5

4
k,p (10.4.24)

and this Riemann sum is more singular than what we consider in appendix section B.
Nonetheless, the methods used therein - in particular, the summation formula of Proposi-
tion B.3.3 - implies the following:

Proposition 10.4.4. For all k ∈ B(0, kγ
F ) ∩ Z3

∗, 0 < γ < 1
47 , it holds that

∑
p∈Lk

λ
− 5

4
k,p ≤ Ck

3
4
F |k|−

1
4

for a constant C > 0 depending only on γ.

With this we arrive at

max
p∈Lk

∥h− 1
2

k

(
etJk − 1

)
hkep∥ ≤ Ck

− 1
2

F

(
1 + V̂k

)5
V̂k (10.4.25)

provided γ < 1
47 , which is sufficient for the purposes of Proposition 10.0.4.

Finally, regarding the bound of (10.4.15), it likewise holds that∣∣∣(eitθ − 1
)

− t
(
eiθ − 1

)∣∣∣ ≤ C
∣∣∣eiθ − 1

∣∣∣2 (10.4.26)
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and so, considering simply F ′
t = t(U − 1), that e.g.

∥h− 1
2
(
etJ − 1 − F ′

t

)
hxi∥ ≤ C∥h− 1

2 (U − 1)∥HS ∥(U − 1)hxi∥ . (10.4.27)

The issue with this lies in the fact that we now have to deal with ∥h− 1
2 (U − 1)∥HS instead

of ∥h− 1
2 (U − 1)2∥HS; this can be estimated similarly, but with the result

∥h− 1
2 (U − 1)∥HS ≤ C

(
1 +

〈
v, h−1v

〉)2 〈
v, h− 3

2v
〉
. (10.4.28)

Formally - i.e. if one replaces the Riemann sums with integrals - it is true that
〈
vk, h

− 3
2

k vk

〉
∼〈

vk, h
− 5

4
k vk

〉2
with respect to kF , and so there should not be a difference. The result of ap-

pendix section B however only extends (optimally) to Riemann sums of the form ∑
p∈Lk

λβ
k,p

for β > −4
3 , and so

〈
vk, h

− 3
2

k vk

〉
it outside the range which we are able to control, even

with a cut-off in k.
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Chapter 11

Plasmon Modes of the Effective
Hamiltonian

In this final section we consider the effective operator
Heff = H ′

kin + 2
∑

k∈Z3
∗

Q1
k

(
Ẽk − hk

)
= H ′

kin + 2
∑

k∈Z3
∗

∑
p∈Lk

b∗
k

((
Ẽk − hk

)
ep

)
bk,p, (11.0.1)

where Ẽk = (h2
k + 2P

h
1
2
k

vk

) 1
2 , in detail. As we will consider Heff in isolation from the proper

Hamiltonian, we will now omit the mean-field scaling factor k−1
F - concretely this means

that vk ∈ ℓ2(Lk) is now given by

vk = sV̂k

2 (2π)3
∑

p∈Lk

ep. (11.0.2)

For this section we will fix a k ∈ BF , let ϕ ∈ ℓ2(Lk) denote the normalized eigenvector of
2Ẽk corresponding to the greatest eigenvalue ϵk, and define ΨM ∈ {NE = M} by

ΨM = b∗
k(ϕ)MψF , M ∈ N0. (11.0.3)

(For the statements of certain propositions below we will understand Ψ−1,Ψ−2 = 0.)
The main result of this section is the following bound for Ψ̂M :

Theorem 11.0.1. There exists constants c, C > 0 such that if V̂k > ck−1
F it holds for all

M ≤ Ck2
F |k| that Ψ̂M = ∥ΨM∥−1 ΨM obeys

∥(Heff −Mϵk)Ψ̂M∥ ≤ C ′
√√√√∑

l∈Z3
∗

min
{
1, kF V̂l, k3

F V̂l |l|−2
}
V̂l |l|2 M

5
2

√
kF |k|

, kF → ∞,

where ϵk denotes the greatest eigenvalue of 2Ẽk, which obeys ϵk ≥ c′s
1
2k

3
2
F |k| V̂

1
2

k and

0 ≤ ϵk − 2

√√√√2 ⟨vk, hkvk⟩ + ⟨vk, h3
kvk⟩

⟨vk, hkvk⟩
≤ C ′k

− 1
2

F |k| V̂ − 3
2

k , kF → ∞,

for constants c′, C ′ > 0. The constants c, c′, C, C ′ are independent of all quantities.



128 11. Plasmon Modes of the Effective Hamiltonian

Note that Theorem 1.1.4 is an immediate consequence of this result: For V̂k = g |k|−2,
the condition V̂k > ck−1

F becomes
|k| <

√
g

c
kF (11.0.4)

which is ensured for all k ∈ B
(
0, kδ

F

)
∩Z3

∗ for kF suffiently large provided δ ∈
(
0, 1

2

)
. That

M ≤ kε
F for ε ∈ (0, 2) similarly ensures that M ≤ Ck2

F |k| for kF sufficiently large, so the
conditions of the theorem hold, and the sum can be estimated as∑

l∈Z3
∗

min
{
1, kF V̂l, k

3
F V̂l |l|−2

}
V̂l |l|2 ≤ max {1, g}

∑
l∈Z3

∗

min
{
1, kF |l|−2 , k3

F |l|−4
}

≤ C

 ∑
l∈B(0,

√
kF )∩Z3

∗

1 + kF

∑
l∈BF \B(0,

√
kF )

|l|−2 + k3
F

∑
l∈Z3

∗\BF

|l|−4

 (11.0.5)

≤ C

((√
kF

)3
+ k2

F + k2
F

)
≤ Ck2

F .

The statement regarding ϵk follows by expanding the inner products
〈
vk, h

β
kvk

〉
and insert-

ing V̂k = g |k|−2.

11.1 Properties of the Plasmon State ΨM

Owing to the inequality (which in the exact bosonic case would be an equality)

∥ΨM∥2 = ∥b∗
k(ϕ)ΨM−1∥2 ≤ ∥(NE + 1)

1
2 ΨM−1∥2 = M ∥ΨM−1∥2 (11.1.1)

we can control the ratio ∥ΨM∥−1 ∥ΨM−1∥ well from below, but for the purposes of Theorem
11.0.1 it is an upper bound which will be needed. To that end we begin by noting the
following:

Lemma 11.1.1. For any p ∈ Bc
F , q ∈ BF , 1 ≤ σ ≤ s and M ∈ N it holds that

cp,σΨM = 1Lk
(p)Ms− 1

2 ⟨ep, ϕ⟩ cp−k,σΨM−1

c∗
q,σΨM = −1Lk

(q + k)Ms− 1
2 ⟨eq+k, ϕ⟩ c∗

q+k,σΨM−1.

As a consequence it holds for any l ∈ Z3
∗ and p ∈ Ll that

bl,pΨM = δk,lM ⟨ep, ϕ⟩ ΨM−1 + 1Lk
(p)M(M − 1)

s
3
2

σ∑
q∈Lk

δp−l,q−k ⟨ep, ϕ⟩ ⟨eq, ϕ⟩ c∗
q,σcp−k,σΨM−2.

Proof: By equation (7.1.19) we have

[cp,σ, b
∗
k(ϕ)] = 1Lk

(p)s− 1
2 ⟨ep, ϕ⟩ cp−k,σ (11.1.2)
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[
c∗

q,σ, b
∗
k(ϕ)

]
= −1Lk

(q + k)s− 1
2 ⟨eq+k, ϕ⟩ c∗

q+k,σ,

so

cp,σΨM = cp,σb
∗
k(ϕ)MψF = b∗

k(ϕ)Mcp,σψF +
M−1∑
j=0

b∗
k(ϕ)j [cp,σ, b

∗
k(ϕ)] b∗

k(ϕ)M−j−1ψF

=
M−1∑
j=0

b∗
k(ϕ)j

(
1Lk

(p)s− 1
2 ⟨ep, ϕ⟩ cp−k,σ

)
b∗

k(ϕ)M−j−1ψF (11.1.3)

= 1Lk
(p)Ms− 1

2 ⟨ep, ϕ⟩ cp−k,σb
∗
k(ϕ)M−1ψF = 1Lk

(p)Ms− 1
2 ⟨ep, ϕ⟩ cp−k,σΨM−1

and likewise for c∗
q,σΨM , q ∈ BF . The expression for bl,pΨM then follows as

bl,pΨM = 1√
s

s∑
σ=1

c∗
p−l,σcp,σΨM = M

s

s∑
σ=1

1Lk
(p) ⟨ep, ϕ⟩ c∗

p−l,σcp−k,σΨM−1

= δk,l1Lk
(p)M

s

s∑
σ=1

⟨ep, ϕ⟩ ΨM−1 − 1Lk
(p)M

s

s∑
σ=1

⟨ep, ϕ⟩ cp−k,σc
∗
p−l,σΨM−1

= δk,lM ⟨ep, ϕ⟩ ΨM−1 (11.1.4)

− 1Lk
(p)M(M − 1)

s
3
2

s∑
σ=1

1Lk
(p− l + k) ⟨ep, ϕ⟩ ⟨ep−l+k, ϕ⟩ cp−k,σc

∗
p−l+k,σΨM−2

= δk,lM ⟨ep, ϕ⟩ ΨM−1 + 1Lk
(p)M(M − 1)

s
3
2

σ∑
q∈Lk

δp−l,q−k ⟨ep, ϕ⟩ ⟨eq, ϕ⟩ c∗
q,σcp−k,σΨM−2

where we used the identity 1Lk
(p− l + k)f(p− l + k) = ∑

q∈Lk
δp−l,q−kf(q) to rewrite the

second term.
□

This implies the following bound:

Corollary 11.1.2. For any M ∈ N it holds that

∥ΨM∥2 ≥ M
(

1 − M − 1
s

∥ϕ∥2
∞

)
∥ΨM−1∥2

where ∥ϕ∥∞ = supp∈Lk
|⟨ep, ϕ⟩|.

Proof: We estimate

∥ΨM∥2 = ⟨ΨM−1, b(ϕ)ΨM⟩ = 1√
s

σ∑
p∈Lk

⟨ϕ, ep⟩
〈
ΨM−1, c

∗
p−k,σcp,σΨM

〉

= M

s

σ∑
p∈Lk

|⟨ep, ϕ⟩|2
〈
ΨM−1, c

∗
p−k,σcp−k,σΨM−1

〉
(11.1.5)

= M

s

σ∑
p∈Lk

|⟨ep, ϕ⟩|2 ∥ΨM−1∥2 − M

s

σ∑
p∈Lk

|⟨ep, ϕ⟩|2
〈
ΨM−1, cp−k,σc

∗
p−k,σΨM−1

〉
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≥ M ∥ΨM−1∥2 − M

s
∥ϕ∥2

∞ ⟨ΨM−1,NEΨM−1⟩ = M
(

1 − M − 1
s

∥ϕ∥2
∞

)
∥ΨM−1∥2

where we used that NEΨM−1 = (M − 1)ΨM−1.
□

Note that this bound actually applies to all (normalized) φ ∈ ℓ2(Lk) in the form

∥b∗
k(φ)MψF ∥2 ≥ M

(
1 − M − 1

s
∥φ∥2

∞

)
∥b∗

k(φ)M−1ψF ∥2 (11.1.6)

- this is even optimal, with equality holding for all φ which are uniformly supported on
some S ⊂ Lk in the sense that

|⟨ep, φ⟩| =

|S|−
1
2 p ∈ S

0 p ∈ Lk\S
. (11.1.7)

Although ϕ is not uniformly supported, we will see below that it is “almost completely
delocalized” as

∥ϕ∥∞ ≤ C |Lk|−
1
2 , (11.1.8)

so the corollary and the inequality ∥ΨM∥2 ≤ M ∥ΨM−1∥2 implies that

1 ≤ M ∥ΨM−1∥2

∥ΨM∥2 ≤ 1
1 − C M

s|Lk|
≤ 1 + C ′ M

|Lk|
, M ≪ |Lk| , (11.1.9)

i.e. M ∥ΨM∥−2 ∥ΨM−1∥2 ∼ 1 for all M ≪ |Lk| ∼ O(k2
F |k|).

The Action of Heff on ΨM

Having established control on the state ΨM itself we now turn to the action of Heff upon
it:

Proposition 11.1.3. For all M ∈ N it holds that

∥(Heff −Mϵk)ΨM∥ = 2M(M − 1)
s

3
2

∥EΨM−2∥

where E : HN → HN is given by

E =
σ∑

p,q∈Lk

⟨ep, ϕ⟩ ⟨eq, ϕ⟩

∑
l∈Z3

∗

δp−l,q−k1Ll
(p)b∗

l

((
Ẽl − hl

)
ep

)c∗
q,σcp−k,σ.

Proof: By the commutation relation [H ′
kin, b

∗
k(ϕ)] = 2b∗

k(hkϕ) it follows as H ′
kinψF = 0 that

H ′
kinΨM = Mb∗

k(2hkϕ)ΨM−1, (11.1.10)
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so applying Lemma 11.1.1 we find

HeffΨM = H ′
kinΨM + 2

∑
l∈Z3

∗

∑
p∈Ll

b∗
l

((
Ẽl − hl

)
ep

)
bl,pΨM

= Mb∗
k(2hkϕ)ΨM−1 + 2M

∑
l∈Z3

∗

∑
p∈Ll

δk,lb
∗
l

((
Ẽl − hl

)
ep

)
⟨ep, ϕ⟩ ΨM−1

+ 2M(M − 1)
s

3
2

∑
l∈Z3

∗

∑
p∈Lk∩Ll

σ∑
q∈Lk

δp−l,q−k ⟨ep, ϕ⟩ ⟨eq, ϕ⟩ b∗
l

((
Ẽl − hl

)
ep

)
c∗

q,σcp−k,σΨM−2

= Mb∗
k(2hkϕ)ΨM−1 +Mb∗

k

(
2
(
Ẽk − hk

)
ϕ
)
ΨM−1 (11.1.11)

+ 2M(M − 1)
s

3
2

σ∑
p,q∈Lk

⟨ep, ϕ⟩ ⟨eq, ϕ⟩

∑
l∈Z3

∗

δp−l,q−k1Ll
(p)b∗

l

((
Ẽl − hl

)
ep

)c∗
q,σcp−k,σΨM−2

= Mb∗
k

(
2Ẽkϕ

)
ΨM−1 + 2M(M − 1)

s
3
2

EΨM−2.

By our choice of ϕ the claim now follows as

Mb∗
k

(
2Ẽkϕ

)
ΨM−1 = Mϵkb

∗
k(ϕ)ΨM−1 = MϵkΨM . (11.1.12)

□
To bound ∥EΨM−2∥ we note the following generalization of Proposition 7.1.1:

Proposition 11.1.4. For any collection of vectors φk ∈ ℓ2(Lk), k ∈ Z3
∗, with ∑k∈Z3

∗
∥φk∥2 <

∞ it holds for all Ψ ∈ HN that∥∥∥∥∥∥
∑

k∈Z3
∗

bk(φk)Ψ

∥∥∥∥∥∥ ≤
√∑

k∈Z3
∗

∥φk∥2∥N
1
2

E Ψ∥,

∥∥∥∥∥∥
∑

k∈Z3
∗

b∗
k(φk)Ψ

∥∥∥∥∥∥ ≤
√∑

k∈Z3
∗

∥φk∥2∥(NE + 1)
1
2 Ψ∥.

Proof: By the triangle and Cauchy-Schwarz inequalities and the usual fermionic estimate
we can bound∥∥∥∥∥∥
∑

k∈Z3
∗

bk(φk)Ψ

∥∥∥∥∥∥ = 1√
s

∥∥∥∥∥∥
∑

k∈Z3
∗

σ∑
p∈Lk

⟨φ, ep⟩ c∗
p−k,σcp,σΨ

∥∥∥∥∥∥ = 1√
s

∥∥∥∥∥∥
σ∑

p∈Bc
F

∑
k∈Z3

∗

1Lk
(p) ⟨φ, ep⟩ c∗

p−k,σ

cp,σΨ

∥∥∥∥∥∥
≤ 1√

s

σ∑
p∈Bc

F

∥∥∥∥∥∥
∑

k∈Z3
∗

1Lk
(p) ⟨φ, ep⟩ c∗

p−k,σ

cp,σΨ

∥∥∥∥∥∥ (11.1.13)

≤ 1√
s

σ∑
p∈Bc

F

√∑
k∈Z3

∗

1Lk
(p) |⟨φ, ep⟩|2 ∥cp,σΨ∥

≤
√ ∑

p∈Bc
F

∑
k∈Z3

∗

1Lk
(p) |⟨φ, ep⟩|2

√√√√ σ∑
p∈Bc

F

∥cp,σΨ∥2 =
√∑

k∈Z3
∗

∥φk∥2∥N
1
2

E Ψ∥

for the first claim. The second follows from this, since∑
k∈Z3

∗

bk(φk)
∑

k∈Z3
∗

bk(φk)
∗

=
∑

k∈Z3
∗

bk(φk)
∗∑

k∈Z3
∗

bk(φk)
+

∑
k∈Z3

∗

∥φk∥2 +
∑

k,l∈Z3
∗

εk,l(φk;φl)
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≤

∑
k∈Z3

∗

∥φk∥2

(NE + 1) +
∑

k,l∈Z3
∗

εk,l(φk;φl) (11.1.14)

and we claim that ∑k,l∈Z3
∗
εk,l(φk;φl) ≤ 0. Indeed, as

εk,l(φk;φl) = −1
s

σ∑
p∈Lk

∑
q∈Ll

⟨φk, ep⟩ ⟨eq, φl⟩
(
δp,qcq−l,σc

∗
p−k,σ + δp−k,q−lc

∗
q,σcp,σ

)
(11.1.15)

we see that for the sum corresponding to the δp,qcq−l,σc
∗
p−k,σ terms,

∑
k,l∈Z3

∗

σ∑
p∈Lk

∑
q∈Ll

⟨φk, ep⟩ ⟨eq, φl⟩ δp,qcq−l,σc
∗
p−k,σ =

∑
k,l∈Z3

∗

σ∑
p∈Lk∩Ll

⟨φk, ep⟩ ⟨ep, φl⟩ cp−l,σc
∗
p−k,σ

=
σ∑

p∈Bc
F

∑
l∈Z3

∗

1Ll
(p) ⟨φl, ep⟩ c∗

p−l,σ

∗∑
k∈Z3

∗

1Lk
(p) ⟨φk, ep⟩ c∗

p−k,σ

 ≥ 0, (11.1.16)

and a similar observation applies to the δp−k,q−lc
∗
q,σcp,σ terms.

□
We can then bound ∥EΨM−2∥ in the following form:

Proposition 11.1.5. For all M ∈ N it holds that

∥EΨM−2∥ ≤ M
√
M − 1s 1

2 ∥ϕ∥2
∞

√∑
l∈Z3

∗

∥Ẽl − hl∥2
HS ∥ΨM−2∥ .

Proof: Write Bp,q = ∑
l∈Z3

∗
δp−l,q−k1Ll

(p)bl

((
Ẽl − hl

)
ep

)
for brevity, so that

E =
σ∑

p,q∈Lk

⟨ep, ϕ⟩ ⟨eq, ϕ⟩B∗
p,qc

∗
q,σcp−k,σ, (11.1.17)

and note that by the previous proposition, the operators B∗
p,q obey∑

p,q∈Lk

∥∥∥B∗
p,qΨM−2

∥∥∥2
≤

∑
p,q∈Lk

∑
l∈Z3

∗

δp−l,q−k1Ll
(p)

∥∥∥(Ẽl − hl

)
ep

∥∥∥2
∥(NE + 1)

1
2 ΨM−2∥2

= (M − 1)
∑
l∈Z3

∗

∑
p∈Lk∩Ll

∥∥∥(Ẽl − hl

)
ep

∥∥∥2
∥ΨM−2∥2 (11.1.18)

≤ (M − 1)
∑
l∈Z3

∗

∥Ẽl − hl∥2
HS ∥ΨM−2∥2 .

Due to the identity[
c∗

p−k,σcq,σ, c
∗
q′,τcp′−k,τ

]
= δσ,τ

p,p′δ
σ,τ
q,q′ − δσ,τ

p,p′c∗
q′,τcq,σ − δσ,τ

q,q′cp′−k,τc
∗
p−k,σ (11.1.19)

it follows by a partial normal-ordering of E∗E that

∥EΨM−2∥2 =
σ,τ∑

p,p′,q,q′∈Lk

⟨ϕ, ep⟩ ⟨ϕ, eq⟩ ⟨ep′ , ϕ⟩ ⟨eq′ , ϕ⟩
〈
ΨM−2, c

∗
p−k,σcq,σBp,qB

∗
p′,q′c∗

q′,τcp′−k,τ ΨM−2
〉
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=
σ,τ∑

p,p′,q,q′∈Lk

⟨ϕ, ep⟩ ⟨ϕ, eq⟩ ⟨ep′ , ϕ⟩ ⟨eq′ , ϕ⟩
〈
c∗

p′−k,τcq′,τB
∗
p,qΨM−2, c

∗
p−k,σcq,σB

∗
p′,q′ΨM−2

〉

−
σ∑

p,q,q′∈Lk

|⟨ep, ϕ⟩|2 ⟨ϕ, eq⟩ ⟨eq′ , ϕ⟩
〈
cq′,σB

∗
p,qΨM−2, cq,σB

∗
p,q′ΨM−2

〉
(11.1.20)

−
σ∑

p,p′,q∈Lk

|⟨eq, ϕ⟩|2 ⟨ϕ, ep⟩ ⟨ep′ , ϕ⟩
〈
c∗

p′−k,σB
∗
p,qΨM−2, c

∗
p−k,σB

∗
p′,qΨM−2

〉

+
σ∑

p,q∈Lk

|⟨ep, ϕ⟩|2 |⟨eq, ϕ⟩|2
∥∥∥B∗

p,qΨM−2

∥∥∥2

=: T1 + T2 + T3 + T4.

We bound these terms individually. For T1 we have by Cauchy-Schwarz that

|T1| ≤ ∥ϕ∥4
∞

σ,τ∑
p,p′,q,q′∈Lk

∥∥∥c∗
p′−k,τcq′,τB

∗
p,qΨM−2

∥∥∥ ∥∥∥c∗
p−k,σcq,σB

∗
p′,q′ΨM−2

∥∥∥
≤ s ∥ϕ∥4

∞

σ∑
p,p′,q,q′∈Lk

∥∥∥c∗
p−k,σcq,σB

∗
p′,q′ΨM−2

∥∥∥2
≤ s ∥ϕ∥4

∞
∑

p′,q′∈Lk

σ,τ∑
p,q∈Lk

∥∥∥c∗
p−k,σcq,τB

∗
p′,q′ΨM−2

∥∥∥2

= s ∥ϕ∥4
∞

∑
p′,q′∈Lk

∥∥∥NEB
∗
p′,q′ΨM−2

∥∥∥2
= (M − 1)2s ∥ϕ∥4

∞
∑

p′,q′∈Lk

∥∥∥B∗
p′,q′ΨM−2

∥∥∥2
(11.1.21)

≤ (M − 1)3s ∥ϕ∥4
∞
∑
l∈Z3

∗

∥Ẽl − hl∥2
HS ∥ΨM−2∥2

and similarly for T2

|T2| ≤ ∥ϕ∥4
∞

σ∑
p,q,q′∈Lk

∥∥∥cq′,σB
∗
p,qΨM−2

∥∥∥ ∥∥∥cq,σB
∗
p,q′ΨM−2

∥∥∥ ≤ ∥ϕ∥4
∞

σ∑
p,q,q′∈Lk

∥∥∥cq′,σB
∗
p,qΨM−2

∥∥∥2

≤ ∥ϕ∥4
∞

∑
p,q∈Lk

∥N
1
2

EB
∗
p,qΨM−2∥2 = ∥ϕ∥4

∞ (M − 1)
∑

p,q∈Lk

∥B∗
p,qΨM−2∥2 (11.1.22)

≤ (M − 1)2 ∥ϕ∥4
∞
∑
l∈Z3

∗

∥Ẽl − hl∥2
HS ∥ΨM−2∥2 .

T3 obeys the same bound and obviously |T4| ≤ (M − 1)s ∥ϕ∥4
∞
∑

l∈Z3
∗

∥Ẽl −hl∥2
HS ∥ΨM−2∥2.

The claim follows by combining these estimates.
□

We summarize this subsection in the following:

Proposition 11.1.6. It holds for all M ∈ N with M < ∥ϕ∥−2
∞ that Ψ̂M = ∥ΨM∥−1 ΨM

obeys

∥(Heff −Mϵk)Ψ̂M∥ ≤ 2
∥ϕ∥−2

∞ −M

√
s−2

∑
l∈Z3

∗

∥Ẽl − hl∥2
HSM

5
2 .



134 11. Plasmon Modes of the Effective Hamiltonian

Proof: By inserting the previous estimate into the statement of Proposition 11.1.3 we
obtain

∥(Heff −Mϵk)Ψ̂M∥ ≤ 2M2(M − 1)
3
2 ∥ϕ∥2

∞

√
s−2

∑
l∈Z3

∗

∥Ẽl − hl∥2
HS

∥ΨM−2∥
∥ΨM∥

, (11.1.23)

and by the lower bound of Corollary 11.1.2 it holds that

∥ΨM−2∥
∥ΨM∥

= ∥ΨM−2∥
∥ΨM−1∥

∥ΨM−1∥
∥ΨM∥

≤ 1√
M(M − 1)

1
1 −M ∥ϕ∥2

∞
(11.1.24)

for M < ∥ϕ∥−2
∞ .

□

11.2 Estimates of One-Body Quantities
To conclude Theorem 11.0.1 it only remains to control the one-body quantities ∥ϕ∥2

∞,
∥Ẽl − hl∥2

HS and ϵk. To this end we return a final time to the setting of Section 6 and
consider Ẽ : V → V given by

Ẽ =
(
h2 + 2P

h
1
2 v

) 1
2 (11.2.1)

with normalized eigenvector ϕ ∈ V (chosen such that
〈
h

1
2v, ϕ

〉
≥ 0) corresponding to the

greatest eigenvalue ϵ of 2Ẽ. Below it will be more convenient to work in terms of the
greatest eigenvalue ε of Ẽ2; the eigenvalues are simply related by ϵ = 2

√
ϵ.

The eigenvalue equation for ε is

εϕ = Ẽ2ϕ =
(
h2 + 2P

h
1
2 v

)
ϕ = h2ϕ+ 2

〈
h

1
2v, ϕ

〉
h

1
2v (11.2.2)

and assuming that ε > max1≤i≤n λ
2
i =: λ2

max this can be rearranged to

ϕ = 2
〈
h

1
2v, ϕ

〉 (
ε− h2

)−1
h

1
2v. (11.2.3)

As ϕ is by assumption normalized and
〈
h

1
2v, ϕ

〉
≥ 0, this implies that ϕ is determined with

ε as the only unknown quantity by the formula

ϕ = ∥
(
ε− h2

)−1
h

1
2v∥−1

(
ε− h2

)−1
h

1
2v. (11.2.4)

In particular, the components of ϕ with respect to the eigenvectors (xi)n
i=1 of h obey

⟨xi, ϕ⟩ = 1
∥(ε− h2)−1h

1
2v∥

√
λi

ε− λ2
i

⟨xi, v⟩ , 1 ≤ i ≤ n. (11.2.5)
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To ensure that ε > λ2
max, note that by the variational principle there holds the inequality

ε ≥

〈
h

1
2v,

(
h2 + 2P

h
1
2 v

)
h

1
2v
〉

〈
h

1
2v, h

1
2v
〉 = 2 ⟨v, hv⟩ + ⟨v, h3v⟩

⟨v, hv⟩
(11.2.6)

so ε > λ2
max is assured if 2 ⟨v, hv⟩ > λ2

max. Under this condition we then have the following
bound:
Corollary 11.2.1. Provided 2 ⟨v, hv⟩ > λ2

max it holds that

∥ϕ∥∞ ≤
2
√

⟨v, hv⟩λmax

2 ⟨v, hv⟩ − λ2
max

∥v∥∞ .

Proof: As t 7→ t(t− λ2
max)−1 is decreasing for t ∈ (λ2

max,∞), equation (11.2.5) shows that
for any 1 ≤ i ≤ n

|⟨xi, ϕ⟩| ≤ 1
1
ε
∥h 1

2v∥

√
λmax

ε− λ2
max

|⟨xi, v⟩| = ε

ε− λ2
max

√
λmax√

⟨v, hv⟩
|⟨xi, v⟩| (11.2.7)

≤ 2 ⟨v, hv⟩
2 ⟨v, hv⟩ − λ2

max

√
λmax√

⟨v, hv⟩
|⟨xi, v⟩| =

2
√

⟨v, hv⟩λmax

2 ⟨v, hv⟩ − λ2
max

|⟨xi, v⟩| .

□
Under the same assumption we can also control ε well:

Proposition 11.2.2. Provided 2 ⟨v, hv⟩ > λ2
max it holds that

2 ⟨v, hv⟩ + ⟨v, h3v⟩
⟨v, hv⟩

≤ ε ≤ 2 ⟨v, hv⟩ + ⟨v, h3v⟩
⟨v, hv⟩

+ 4 ⟨v, h3v⟩λ2
max

(2 ⟨v, hv⟩ − λ2
max)2 .

Proof: We noted the lower bound above. For the upper bound we estimate

〈
ϕ, h2ϕ

〉
=

〈
v, h3(ε− h2)−2

v
〉

〈
v, h(ε− h2)−2v

〉 ≤
(

ε

ε− λ2
max

)2 ⟨v, h3v⟩
⟨v, hv⟩

≤
(

2 ⟨v, hv⟩
2 ⟨v, hv⟩ − λ2

max

)2 ⟨v, h3v⟩
⟨v, hv⟩

= 4 ⟨v, hv⟩2

(2 ⟨v, hv⟩ − λ2
max)2

⟨v, h3v⟩
⟨v, hv⟩

= ⟨v, h3v⟩
⟨v, hv⟩

+ 4 ⟨v, hv⟩2 − (2 ⟨v, hv⟩ − λ2
max)2

(2 ⟨v, hv⟩ − λ2
max)2

⟨v, h3v⟩
⟨v, hv⟩

≤ ⟨v, h3v⟩
⟨v, hv⟩

+ 4 ⟨v, hv⟩λ2
max

(2 ⟨v, hv⟩ − λ2
max)2

⟨v, h3v⟩
⟨v, hv⟩

= ⟨v, h3v⟩
⟨v, hv⟩

+ 4 ⟨v, h3v⟩λ2
max

(2 ⟨v, hv⟩ − λ2
max)2

and see that by the eigevalue equation for ε and the Cauchy-Schwarz inequality in the form∣∣∣〈h 1
2v, ϕ

〉∣∣∣2 ≤ ⟨v, hv⟩,

ε =
〈
ϕ, h2ϕ

〉
+ 2

∣∣∣〈h 1
2v, ϕ

〉∣∣∣2 ≤ 2 ⟨v, hv⟩ + ⟨v, h3v⟩
⟨v, hv⟩

+ 4 ⟨v, h3v⟩λ2
max

(2 ⟨v, hv⟩ − λ2
max)2 . (11.2.8)

□
Lastly we bound ∥Ẽ − h∥2

HS:
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Proposition 11.2.3. It holds that

∥Ẽ − h∥2
HS ≤ min

{
2 ⟨v, hv⟩ , ∥v∥4

}
.

Proof: The first bound is easily obtained as

∥Ẽ − h∥2
HS = tr

((
Ẽ − h

)2
)

= tr
(
Ẽ2 − 2{Ẽ, h} + h2

)
= 2 tr

(
h2 + P

h
1
2 v

− h
1
2 Ẽh

1
2
)

(11.2.9)
≤ 2 tr

(
P

h
1
2 v

)
= 2 ⟨v, hv⟩

since h ≤ Ẽ implies that h2 − h
1
2 Ẽh

1
2 ≤ 0. For the second, note that Ẽ = h

1
2 e−2Kh

1
2

whence Proposition 6.1.4 affords us the elementwise estimate

∣∣∣〈xi,
(
Ẽ − h

)
xj

〉∣∣∣ =
√
λiλj

∣∣∣〈xi,
(
e−2K − 1

)
xj

〉∣∣∣ ≤
2
√
λiλj

λi + λj

⟨xi, v⟩ ⟨v, xj⟩ ≤ ⟨xi, v⟩ ⟨v, xj⟩

(11.2.10)
for 1 ≤ i, j ≤ n, so

∥Ẽ − h∥2
HS =

n∑
i,j=1

∣∣∣〈xi,
(
Ẽ − h

)
xj

〉∣∣∣2 ≤
n∑

i,j=1
|⟨xi, v⟩ ⟨v, xj⟩|2 = ∥v∥4 . (11.2.11)

□

11.3 Final Details
We now insert the particular operators hk and Pk. For the quantity 2 ⟨vk, hkvk⟩ − λ2

k,max,
we note that the inequalities defining Lk imply that

λk,p = k · p− 1
2 |k|2 = k · (p− k) + 1

2 |k|2 ≤ |k|
(
kF + 1

2 |k|
)
, p ∈ Lk, (11.3.1)

so
λ2

k,max ≤ Ck2
F |k|2 (11.3.2)

as we assumed that k ∈ BF . The quantity 2 ⟨vk, hkvk⟩ is

2 ⟨vk, hkvk⟩ = sV̂k

(2π)3
∑

p∈Lk

λk,p (11.3.3)

and for a lower bound we prove the following in appendix section B.4:

Proposition 11.3.1. For all k ∈ BF and β ∈ {0} ∪ [1,∞) it holds that∑
p∈Lk

λβ
k,p ≥ ck2+β

F |k|1+β , kF → ∞,

for a c > 0 depending only on β.
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It follows that

2 ⟨vk, hkvk⟩ − λ2
k,max ≥ c1sk

3
F |k|2

(
V̂k − c−1

1 k−1
F

)
, (11.3.4)

so if V̂k > ckF for c = 2c−1
1 , say, it holds that

2 ⟨vk, hkvk⟩ − λ2
k,max ≥ c′sk3

F |k|2 V̂k (11.3.5)

for some c′ > 0 independent of all quantities. For β ∈ [0,∞) we also have that

〈
vk, h

β
kvk

〉
= sV̂k

(2π)3
∑

p∈Lk

λβ
k,p ≤ sV̂k

(2π)3 |Lk|λβ
k,max ≤ C ′sk2+β

F |k|1+β V̂k (11.3.6)

so Corollary 11.2.1 allows us to bound ∥ϕ∥∞ as

∥ϕ∥∞ ≤
2
√

⟨vk, hkvk⟩λk,max

2 ⟨vk, hkvk⟩ − λ2
k,max

∥vk∥∞ ≤ C ′

√(
sk3

F |k|2 V̂k

)
(kF |k|)

sk3
F |k|2 V̂k

(
sV̂k

) 1
2 = C ′

kF |k|
1
2
.

(11.3.7)
Note that since |Lk| ∼ O(k2

F |k|), ϕ is indeed almost completely delocalized, and we can
estimate that

∥ϕ∥−2
∞ −M ≥ C ′k2

F |k| (11.3.8)

for all M ∈ N such that M ≤ Ck2
F |k| for some C also independent of all quantities.

Finally, by Proposition 11.2.3,

∥Ẽl − hl∥2
HS ≤ min

{
2 ⟨vl, hlvl⟩ , ∥vl∥4

}
≤ C min

{
sk3

F V̂l |l|2 , s2V̂ 2
l |Ll|2

}
≤ Cs2 min

{
k3

F V̂l |l|2 , k4
F V̂

2
l |l|2 , k6

F V̂
2

l

}
(11.3.9)

= Cs2 min
{
1, kF V̂l, k

3
F V̂l |l|−2

}
k3

F V̂l |l|2

for any l ∈ Z3
∗. Inserting these bounds into Proposition 11.1.6 yields the first claim of

Theorem 11.0.1:

Proposition 11.3.2. There exists constants c, C > 0 such that if V̂k > ck−1
F it holds for

all M ≤ Ck2
F |k| that Ψ̂M = ∥ΨM∥−1 ΨM obeys

∥(Heff −Mϵk)Ψ̂M∥ ≤ C ′
√√√√∑

l∈Z3
∗

min
{
1, kF V̂l, k3

F V̂l |l|−2
}
V̂l |l|2 M

5
2

√
kF |k|

for a constant C ′ > 0. c, C, C ′ are independent of all quantities.
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The Eigenvalue ϵk

For ϵk we have by Proposition 11.2.2 that (recalling the relation ϵ = 2
√
ε)

2

√√√√2 ⟨vk, hkvk⟩ + ⟨vk, h3
kvk⟩

⟨vk, hkvk⟩
≤ ϵk ≤ 2

√√√√√2 ⟨vk, hkvk⟩ + ⟨vk, h3
kvk⟩

⟨vk, hkvk⟩
+

4 ⟨vk, h3
kvk⟩λ2

k,max(
2 ⟨vk, hkvk⟩ − λ2

k,max

)2 .

(11.3.10)
The lower bound given in Theorem 11.0.1 is then immediate since

ϵk ≥ 2
√

2 ⟨vk, hkvk⟩ ≥ c′s
1
2k

3
2
F |k| V̂

1
2

k (11.3.11)

as above, while the inequality
√
a+ b−

√
a ≤ b

2
√

a
yields the upper bound

ϵk − 2

√√√√2 ⟨vk, hkvk⟩ + ⟨vk, h3
kvk⟩

⟨vk, hvk⟩
≤ 1√

2 ⟨vk, hkvk⟩ + ⟨vk,h3
k

vk⟩
⟨vk,hvk⟩

4 ⟨vk, h
3
kvk⟩λ2

k,max(
2 ⟨vk, hkvk⟩ − λ2

k,max

)2

≤ C
1√

sk3
F |k|2 V̂k

(
sk5

F |k|4 V̂k

)
(kF |k|)2(

sk3
F |k|2 V̂k

)2 (11.3.12)

= Ck
− 1

2
F |k| V̂ − 3

2
k .

For the form given in Theorem 1.1.4 for V̂k = g |k|−2, note that expanding the inner
products gives

ϵ ∼ 2

√√√√2 ⟨vk, hkvk⟩ + ⟨vk, h3
kvk⟩

⟨vk, hvk⟩
= 2

√√√√√√2 sV̂k

2 (2π)3
∑

p∈Lk

λk,p +
sV̂k

2 (2π)3
∑

p∈Lk
λ3

k,p

sV̂k

2 (2π)3
∑

p∈Lk
λk,p

(11.3.13)

= 2
√√√√ s

(2π)3
g

|k|2
∑

p∈Lk

λk,p +
∑

p∈Lk
λ3

k,p∑
p∈Lk

λk,p

and formally replacing the Riemann sums by integrals according to equation (B.3.28) shows
that ∑

p∈Lk

λk,p ∼ 2π
3 k3

F |k|2 ,
∑

p∈Lk

λ3
k,p ∼ 2π

5 k5
F |k|4 + π

6k
3
F |k|6 ≈ 2π

5 k5
F |k|4 , (11.3.14)

whence

ϵk ∼ 2

√√√√ s

(2π)3
g

|k|2
2π
3 k3

F |k|2 +
2π
5 k

5
F |k|4

2π
3 k

3
F |k|2

=

√√√√2g
(

1
(2π)3

4πs
3 k3

F

)
+ 12

5 k
2
F |k|2 (11.3.15)

∼
√

2gn+ 12
5 k

2
F |k|2

for n = N
(2π)3 = s|BF |

(2π)3 ∼ 1
(2π)3

4πs
3 k

3
F .



Appendix A

Some Functional Analysis Results

A.1 The Square Root of a Rank One Perturbation
Let ⟨V, ⟨·, ·⟩⟩ be an n-dimensional Hilbert space. With the notation

Pw(·) = ⟨w, ·⟩w, w ∈ V, (A.1.1)

we recall the Sherman-Morrison formula:

Lemma A.1.1. Let A : V → V be an invertible operator. Then for any w ∈ V and g ∈ C,
the operator A+gPw is invertible if and only if ⟨w,A−1w⟩ ≠ g−1, in which case the inverse
is given by

(A+ gPw)−1 = A−1 − g

1 + g ⟨w,A−1w⟩
PA−1w.

By applying this we conclude the following representation (first presented in [8]):

Proposition (6.1.2). Let A : V → V be a positive self-adjoint operator. Then for any
w ∈ V and g ∈ R such that A+ gPw > 0 it holds that

(A+ gPw)
1
2 = A

1
2 + 2g

π

∫ ∞

0

t2

1 + g
〈
w, (A+ t2)−1w

〉P(A+t2)−1wdt

and
tr
(
(A+ gPw)

1
2
)

= tr
(
A

1
2
)

+ 1
π

∫ ∞

0
log
(

1 + g
〈
w,
(
A+ t2

)−1
w
〉)
dt.

Proof: For any a > 0 there holds the integral identity
√
a = 2

π

∫ ∞

0

a

a+ t2
dt = 2

π

∫ ∞

0

(
1 − t2

a+ t2

)
dt (A.1.2)

so by the spectral theorem the same is true for a positive operator A, provided the fraction
is understood as a resolvent. As the Sherman-Morrison formula lets us write(

A+ gPw + t2
)−1

=
(
A+ t2

)−1
− g

1 + g
〈
w, (A+ t2)−1w

〉P(A+t2)−1w (A.1.3)
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for any t ≥ 0, we thus conclude that

(A+ gPw)
1
2 = 2

π

∫ ∞

0

(
1 − t2

(
A+ gPw + t2

)−1
)
dt (A.1.4)

= 2
π

∫ ∞

0

1 − t2

(A+ t2
)−1

− g

1 + g
〈
w, (A+ t2)−1w

〉P(A+t2)−1w

dt
= 2
π

∫ ∞

0

(
1 − t2

(
A+ t2

)−1
)
dt+ 2g

π

∫ ∞

0

t2

1 + g
〈
w, (A+ t2)−1w

〉P(A+t2)−1wdt

= A
1
2 + 2g

π

∫ ∞

0

t2

1 + g
〈
w, (A+ t2)−1w

〉P(A+t2)−1wdt.

The trace formula now follows by partial integration as

tr
(
(A+ gPw)

1
2 − A

1
2
)

= 2g
π

∫ ∞

0

t2

1 + g
〈
w, (A+ t2)−1w

〉∥
(
A+ t2

)−1
w∥2dt

= 1
π

∫ ∞

0
t

2gt
〈
w, (A+ t2)−2

w
〉

1 + g
〈
w, (A+ t2)−1w

〉dt (A.1.5)

= − 1
π

[
t log

(
1 + g

〈
w,
(
A+ t2

)−1
w
〉)]∞

0
+ 1
π

∫ ∞

0
log
(

1 + g
〈
w,
(
A+ t2

)−1
w
〉)
dt

= 1
π

∫ ∞

0
log
(

1 + g
〈
w,
(
A+ t2

)−1
w
〉)
dt

since
∣∣∣log

(
1 + g

〈
w, (A+ t2)−1

w
〉)∣∣∣ ≤

∣∣∣g 〈w, (A+ t2)−1
w
〉∣∣∣ ≤ Ct−2 for t → ∞.

□

A.2 A Square Root Estimation Result
Lemma (8.2.1). Let A,B,Z be given with A > 0, Z ≥ 0 and [A,Z] = 0. Then if
± [A, [A,B]] ≤ Z it holds that

±[A 1
2 , [A 1

2 , B]] ≤ 1
4A

−1Z.

Proof: Applying the identity A 1
2 = 2

π

∫∞
0

(
1 − t2(A+ t2)−1)

dt as above, we find that

[A 1
2 , B] = 2

π

∫ ∞

0

[
1 − t2

(
A+ t2

)−1
, B
]
dt = − 2

π

∫ ∞

0

[(
A+ t2

)−1
, B
]
t2dt

= 2
π

∫ ∞

0

(
A+ t2

)−1 [
A+ t2, B

] (
A+ t2

)−1
t2dt (A.2.1)

= 2
π

∫ ∞

0

(
A+ t2

)−1
[A,B]

(
A+ t2

)−1
t2dt
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where we also used the general identity [A−1, B] = −A−1 [A,B]A−1. Iterating this formula
we conclude that

[A 1
2 , [A 1

2 , B]] = 2
π

∫ ∞

0

(
A+ t2

)−1
[A, [A 1

2 , B]]
(
A+ t2

)−1
t2dt (A.2.2)

=
( 2
π

)2 ∫ ∞

0

(
A+ t2

)−1(
A+ s2

)−1
[A, [A,B]]

(
A+ s2

)−1(
A+ t2

)−1
s2t2dt

whence the asumptions imply that

±[A 1
2 , [A 1

2 , B]] ≤
( 2
π

)2 ∫ ∞

0

(
A+ t2

)−1(
A+ s2

)−1
Z
(
A+ s2

)−1(
A+ t2

)−1
s2t2dt (A.2.3)

=
( 2
π

∫ ∞

0

(
A+ t2

)−2
t2dt

)2
Z =

(1
2A

− 1
2

)2
Z = 1

4A
−1Z

as the identity
∫∞

0
t2

(a+t2)2dt = π
4a

− 1
2 , a > 0, similarly yields that

∫∞
0 (A+ t2)−2

t2dt = π
4A

− 1
2 .
□

A.3 Operators of the Form ezKAe−zK for Unbounded
A

We prove the following:

Proposition A.3.1. Let X be a Banach space, A : D(A) → X be a closed operator and let
K : X → X be a bounded operator which preserves D(A). Suppose that AK : D(A) → X
is A-bounded.

Then for every z ∈ C the operator ezK : X → X likewise preserves D(A) and
ezKAe−zK : D(A) → X is closed. If additionally X is a Hilbert space, A is self-adjoint and
K is skew-symmetric then etKAe−tK is self-adjoint for all t ∈ R.

Furthermore, for every x ∈ D(A) the mapping z 7→ ezKAe−zKx is complex differentiable
and C1 with

d

dz
ezKAe−zKx = ezK [K,A] e−zKx.

For the remainder of this section we impose the following assumptions: A : D(A) → X
is a closed operator on a Banach space X and K : X → X is a bounded operator on X,
which preserves D(A) such that AK : D(A) → X is A-bounded according to

∥AKx∥ ≤ a ∥Ax∥ + b ∥x∥ , x ∈ D(A), (A.3.1)

for some a, b ≥ 0.
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Well-Definedness of ezKAe−zK

We begin with a lemma:

Lemma A.3.2. Under the assumptions on A and K, the operator AKm : D(A) → X is
A-bounded for any m ∈ N0 with

∥AKmx∥ ≤ am ∥Ax∥ +mcm−1b ∥x∥ , x ∈ D(A),

for c = max
{
a, ∥K∥Op

}
.

Proof: The claim is clearly true for m = 0, 1 (by assumption). We prove the general claim
by induction: Suppose that case m− 1 holds. Then we obtain case m by estimating

∥AKmx∥ =
∥∥∥AK(Km−1x

)∥∥∥ ≤ a
∥∥∥AKm−1x

∥∥∥+ b
∥∥∥Km−1x

∥∥∥
≤ a

(
am−1 ∥Ax∥ + (m− 1)cm−2b ∥x∥

)
+ b

∥∥∥Km−1
∥∥∥

Op
∥x∥ (A.3.2)

≤ am ∥Ax∥ +
(
(m− 1)acm−2 + ∥K∥m−1

Op

)
b ∥x∥

≤ am ∥Ax∥ +mcm−1b ∥x∥ .

□
We can now conclude the first part of Proposition A.3.1, namely that ezK preserves

D(A) for any z ∈ C, so that ezKAe−zK : D(A) → X is well-defined. For use below we
prove the following more general statement:

Proposition A.3.3. Under the assumptions on A and K, it holds for any entire function
f(z) = ∑∞

m=0 dmz
m with dm ≥ 0, m ∈ N0, that f(zK) : X → X also preserves D(A) for

any z ∈ C, and that Af(zK) : D(A) → X is A-bounded as

∥Af(zK)x∥ ≤ f(a |z|) ∥Ax∥ + b |z| f ′(c |z|) ∥x∥ , x ∈ D(A),

for c = max
{
a, ∥K∥Op

}
.

Proof: By definition of f(zK) = ∑∞
m=0 dm(zK)m we can for any x ∈ D(A) express f(zK)x

as the limit

f(zK)x =
∞∑

m=0
dm(zK)mx = lim

k→∞

k∑
m=0

dmz
mKmx = lim

k→∞
yk (A.3.3)

where yk = ∑k
m=0 dmz

mKmx, k ∈ N.
Since K preserves D(A), so too does Km for any m ∈ N0, whence yk ∈ D(A) for every

k ∈ N. In order to prove that f(zK)x is an element of D(A) it thus suffices to prove that
the sequence

Ayk =
k∑

m=0
dmz

mAKmx, k ∈ N, (A.3.4)
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converges. As X is a Banach space this is ensured if ∑∞
m=0 ∥dmz

mAKmx∥ < ∞. By the
lemma this is indeed the case, as we may estimate

∞∑
m=0

∥dmz
mAKmx∥ =

∞∑
m=0

dm |z|m ∥AKmx∥ ≤
∞∑

m=0
dm |z|m am ∥Ax∥ +

∞∑
m=0

mdm |z|m cm−1b ∥x∥

=
∞∑

m=0
dm(a |z|)m ∥Ax∥ + b |z|

∞∑
m=0

mdm(c |z|)m−1 ∥x∥ (A.3.5)

= f(a |z|) ∥Ax∥ + b |z| f ′(c |z|) ∥x∥ .

We can then similarly conclude the A-boundedness as

∥Af(zK)x∥ = lim
n→∞

∥Ayn∥ ≤
∞∑

m=0
∥dmz

mAKmx∥ ≤ f(a |z|) ∥Ax∥ + b |z| f ′(c |z|) ∥x∥ .

(A.3.6)
□

Qualitative Properties of ezKAe−zK

Having ensured that ezKAe−zK is well-defined, we now show the second part of Proposition
A.3.1, i.e. that ezKAe−zK also inherits the properties of A:

Proposition A.3.4. Under the assumptions on A and K, the operator ezKAe−zK : D(A) →
X is closed for any z ∈ C.

Proof: Let (xk)∞
k=1 ⊂ D(A) be a sequence such that xk → x and ezKAe−zKxk → y for

some x, y ∈ X. We must show that x ∈ D(A) and y = ezKAe−zKx.
By boundedness of K, hence of e−zK , it holds that also e−zKxk → e−zKx, and similarly

Ae−zKxk = e−zK
(
ezKAe−zKx

)
→ e−zKy, (A.3.7)

so by closedness of A, e−zKx ∈ D(A) and Ae−zKx = e−zKy. Since ezK preserves D(A), it
follows that also x = ezK

(
e−zKx

)
∈ D(A), and furthermore

ezKAe−zKx = ezK
(
Ae−zKx

)
= ezK

(
e−zKy

)
= y (A.3.8)

as was to be shown.
□

If A is a self-adjoint operator on a Hilbert space, self-adjointness is also inherited (for
appropriate tK):

Proposition A.3.5. Suppose that X is a Hilbert space, that A is self-adjoint and that K
is skew-symmetric. Then under the assumptions on A and K, the operator etKAe−tK :
D(A) → X is self-adjoint for any t ∈ R.
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Proof: The assumptions clearly imply that etKAe−tK is at least symmetric. Letting
x ∈ D

((
etKAe−tK

)∗)
be arbitrary, we must thus show that x ∈ D

(
etKAe−tK

)
= D(A).

The assumption is that there exists a z ∈ X such that〈
x, etKAe−tKy

〉
= ⟨z, y⟩ , y ∈ D(A). (A.3.9)

Rearranging this, we have〈
e−tKx,A

(
e−tKy

)〉
=
〈
x, etKAe−tKy

〉
= ⟨z, y⟩ =

〈
e−tKz,

(
e−tKy

)〉
, y ∈ D(A),

(A.3.10)
which implies that e−tKx ∈ D(A∗) = D(A) by self-adjointness of A, hence x ∈ D(A) as in
the previous proposition.

□

Differentiability of z 7→ ezKAe−zKx

Finally we come to the last part of Proposition A.3.1, which is the statement regarding
the mapping z 7→ ezKAe−zKx for x ∈ D(A). We begin by observing that this is indeed
differentiable:

Proposition A.3.6. Under the assumptions on A and K, it holds for every x ∈ D(A)
that the mapping z 7→ ezKAe−zK, z ∈ C, is complex differentiable with derivative

d

dz
ezKAe−zKx = ezK [K,A] e−zKx.

Proof: The claim is that for any z0 ∈ C∥∥∥∥∥ezKAe−zKx− ez0KAe−z0Kx

z − z0
− ez0K [K,A] e−z0Kx

∥∥∥∥∥ → 0, z → z0. (A.3.11)

By the identity

ezKAe−zKx− ez0KAe−z0Kx =
(
ezK − ez0K

)
Ae−z0Kx+ ez0KA

(
e−zK − e−z0K

)
x

+
(
ezK − ez0K

)
A
(
e−zK − e−z0K

)
x (A.3.12)

= ez0K
(
e(z−z0)K − 1

)
Ae−z0Kx+ ez0KA

(
e−(z−z0)K − 1

)
e−z0Kx

+
(
ezK − ez0K

)
A
(
e−(z−z0)K − 1

)
e−z0Kx

we see that we can write the argument of ∥·∥ of the previous equation as a sum of three
terms:

ezKAe−zKx− ez0KAe−z0Kx

z − z0
− ez0K [K,A] e−z0Kx

= ez0K

(
e(z−z0)K − 1
z − z0

−K

)
Ae−z0Kx+ ez0KA

(
e−(z−z0)K − 1

z − z0
+K

)
e−z0Kx (A.3.13)
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+
(
ezK − ez0K

)
A

(
e−(z−z0)K − 1

z − z0

)
e−z0Kx.

We show that each term converges to 0 separately as z → z0. First we have∥∥∥∥∥ez0K

(
e(z−z0)K − 1
z − z0

−K

)
Ae−z0Kx

∥∥∥∥∥ ≤
∥∥∥ez0K

∥∥∥
Op

∥∥∥∥∥e(z−z0)K − 1
z − z0

−K

∥∥∥∥∥
Op

∥∥∥Ae−z0Kx
∥∥∥

(A.3.14)
which vanishes as d

dz

∣∣∣
z=0

ezK = K in operator norm by boundedness of K. For the second
we estimate using Proposition A.3.3 with f(z′) = ez′ − 1 − z′ and z′ = −(z − z0) that

∥∥∥∥∥ez0KA

(
e−(z−z0)K − 1

z − z0
+K

)
e−z0Kx

∥∥∥∥∥ ≤

∥∥∥ez0K
∥∥∥

Op

|z − z0|
∥∥∥A(e−(z−z0)K − 1 +K(z − z0)

)
e−z0Kx

∥∥∥
≤

∥∥∥ez0K
∥∥∥

Op

|z − z0|
((
ea|z−z0| − 1 − a |z − z0|

) ∥∥∥Ae−z0Kx
∥∥∥+ b |z − z0|

(
ec|z−z0| − 1

) ∥∥∥e−z0Kx
∥∥∥)

=
∥∥∥ez0K

∥∥∥
Op

((
ea|z−z0| − 1

|z − z0|
− 1

)∥∥∥Ae−z0Kx
∥∥∥+ b

(
ec|z−z0| − 1

) ∥∥∥e−z0Kx
∥∥∥) (A.3.15)

which likewise vanishes since z 7→ ez is continuous and d
dz

∣∣∣
z=0

ez = 1. Similarly, for the last
term we can apply Proposition A.3.3 with f(z′) = ez′ − 1 to bound

∥∥∥∥∥(ezK − ez0K
)
A

(
e−(z−z0)K − 1

z − z0

)
e−z0Kx

∥∥∥∥∥ ≤

∥∥∥ezK − ez0K
∥∥∥

Op

|z − z0|
∥∥∥A(e−(z−z0)K − 1

)
e−z0Kx

∥∥∥
≤

∥∥∥ezK − ez0K
∥∥∥

Op

|z − z0|
((
ea|z−z0| − 1

) ∥∥∥Ae−z0Kx
∥∥∥+ b |z − z0| ec|z−z0|

∥∥∥e−z0Kx
∥∥∥) (A.3.16)

=
∥∥∥ezK − ez0K

∥∥∥
Op

(
ea|z−z0| − 1

|z − z0|
∥∥∥Ae−z0Kx

∥∥∥+ bec|z−z0|
∥∥∥e−z0Kx

∥∥∥)

which vanishes since the term in parenthesis is uniformly bounded for z near z0 by differ-
entiability of z 7→ ez while ezK → ez0K as z → z0 by boundedness of K.

□
A similar argument now shows that the derivative is even continuous:

Proposition A.3.7. Under the assumptions on A and K, it holds for every x ∈ D(A)
that the mapping z 7→ ezKAe−zK, z ∈ C, is C1.

Proof: We must show that for any z0 ∈ C∥∥∥ezK [K,A] e−zKx− ez0K [K,A] e−z0Kx
∥∥∥ → 0, z → z0. (A.3.17)

As in the previous proposition we can write the argument of ∥·∥ as a sum of three terms:

ezK [K,A] e−zKx− ez0K [K,A] e−z0Kx = ez0K
(
e(z−z0)K − 1

)
[K,A] e−z0Kx
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+ ez0K [K,A]
(
e−(z−z0)K − 1

)
e−z0Kx (A.3.18)

+
(
ezK − ez0K

)
[K,A]

(
e−(z−z0)K − 1

)
e−z0Kx.

The first term vanishes as∥∥∥ez0K
(
e(z−z0)K − 1

)
[K,A] e−z0Kx

∥∥∥ ≤
∥∥∥ez0K

∥∥∥
Op

∥∥∥(e(z−z0)K − 1
)

[K,A] e−z0Kx
∥∥∥ (A.3.19)

and e(z−z0)K → 1 as z → z0 while [K,A] e−z0Kx is a fixed vector. For the other two terms
we note that since∥∥∥ez0K [K,A]

(
e−(z−z0)K − 1

)
e−z0Kx

∥∥∥ ≤
∥∥∥ez0K

∥∥∥
Op

∥∥∥[K,A]
(
e−(z−z0)K − 1

)
e−z0Kx

∥∥∥∥∥∥(ezK − ez0K
)

[K,A]
(
e−(z−z0)K − 1

)
e−z0Kx

∥∥∥ ≤
∥∥∥(ezK − ez0K

)∥∥∥
Op

∥∥∥[K,A]
(
e−(z−z0)K − 1

)
e−z0Kx

∥∥∥
it suffices to prove that

∥∥∥[K,A]
(
e−(z−z0)K − 1

)
e−z0Kx

∥∥∥ → 0. By boundedness of K, the
assumed A-boundedness of AK implies that [K,A] = KA−AK is also A-bounded, since

∥[K,A]x∥ ≤ ∥KAx∥ + ∥AKx∥ ≤
(
∥K∥Op + a

)
∥Ax∥ + b ∥x∥ , x ∈ D(A), (A.3.20)

so ∥∥∥[K,A]
(
e−(z−z0)K − 1

)
e−z0Kx

∥∥∥ ≤
(
∥K∥Op + a

) ∥∥∥A(e−(z−z0)K − 1
)
e−z0Kx

∥∥∥ (A.3.21)

+ b
∥∥∥(e−(z−z0)K − 1

)
e−z0Kx

∥∥∥
and again

∥∥∥(e−(z−z0)K − 1
)
e−z0Kx

∥∥∥ → 0 while
∥∥∥A(e−(z−z0)K − 1

)
e−z0Kx

∥∥∥ is seen to vanish
when z → z0 as in equation (A.3.16).

□



Appendix B

Riemann Sum Estimates

In this section we establish three results. The first is the following general bound on sums
of the form ∑

p∈Lk
λβ

k,p:

Proposition B.0.1 (6.2.6). For any k ∈ Z3
∗ and β ∈ [−1, 0] it holds that

∑
p∈Lk

λβ
k,p ≤ C

k
2+β
F |k|1+β |k| < 2kF

k3
F |k|2β |k| ≥ 2kF

, kF → ∞,

for a constant C > 0 depending only on β.

The second result is the precise asymptotic behaviour of ∑p∈Lk
λ−1

k,p for small k:

Proposition B.0.2 (9.0.1). For any γ ∈
(
0, 1

11

)
and k ∈ B(0, kγ

F ) it holds that
∑

p∈Lk

λ−1
k,p = 2πkF +O

(
log(kF )

5
3k

1
3 (2+11γ)
F

)
, kF → ∞.

Finally we prove the following lower bounds for the sums ∑p∈Lk
λβ

k,p:

Proposition B.0.3 (11.3.1). For all k ∈ BF and β ∈ {0} ∪ [1,∞) it holds that∑
p∈Lk

λβ
k,p ≥ ck2+β

F |k|1+β , kF → ∞,

for a c > 0 depending only on β.

Some General Riemann Sum Estimation Results
To prove these propositions we first note some general Riemann sum estimation results.

Let S ⊂ Rn, n ∈ N, be given, define for k ∈ Zn the translated unit cube Ck by

Ck =
[
−2−1, 2−1

]
+ k (B.0.1)

and let CS = ⋃
k∈S∩Zn Ck denote the union of the cubes centered at the lattice points

contained in S. We then note the following:
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Lemma B.0.4. Let f ∈ C(CS) be a function which is convex on Ck for all k ∈ S ∩ Zn.
Then ∑

k∈S∩Zn

f(k) ≤
∫

CS

f(p) dp.

Proof: As a convex function admits a supporting hyperplane at every interior point of its
domain, there exists for every k ∈ S ∩ Zn a c ∈ Rn such that

f(p) ≥ f(k) + c · (p− k), p ∈ Ck, (B.0.2)
and so integration yields∫

Ck

f(p) dp ≥
∫

Ck

f(k) dp+
∫

Ck

c · (p− k) dp = f(k) (B.0.3)

as
∫

Ck
c · (p− k) dp = 0 by antisymmetry. Consequently∑

k∈S∩Zn

f(k) ≤
∑

k∈S∩Zn

∫
Ck

f(p) dp =
∫

CS

f(k) dp. (B.0.4)

□
This lemma lets us replace a sum by an integral, but over an integration domain CS

which will generally be complicated. An exception is the n = 1 case which we record in
the following (generalizing also the statement to any lattice spacing l):

Corollary B.0.5. Let for a, b ∈ Z and l > 0 a convex function f ∈ C
([
la− 1

2 l, lb+ 1
2 l
])

be given. Then
b∑

m=a

f(lm)l ≤
∫ lb+ 1

2 l

la− 1
2 l
f(x) dx.

For n ̸= 1 we instead require an additional step that lets us replace CS by a simpler
integration domain. Define S+ ⊂ Rn by

S+ =
{
p ∈ Rn | inf

q∈S
|p− q| ≤

√
n

2

}
. (B.0.5)

Observe that CS ⊂ S+: Indeed, for any p ∈ CS there exists by assumption a k ∈ S ∩ Zn

such that p ∈ CS; consequently

inf
q∈S

|p− q| ≤ |p− k| ≤
√
n

2 (B.0.6)

since every point of a unit cube is a distance at most
√

n
2 from its center. The containment

CS ⊂ S+ and the lemma now easily imply the following:
Corollary B.0.6. Let f ∈ C(S+) be a positive function which is convex on Ck for all
k ∈ S ∩ Zn. Then ∑

k∈S∩Zn

f(k) ≤
∫

S+
f(p) dp.

Note that in the particular case that f is identically 1 this yields a bound on the lattice
points contained in S:

|S ∩ Zn| ≤ Vol(S+). (B.0.7)
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B.1 Simple Upper Bounds for β ∈ [−1, 0]
We now consider the sums∑p∈Lk

λβ
k,p. In this subsection we prove the β ∈ (−1, 0] statement

of Proposition B.0.1, i.e. that

∑
p∈Lk

λβ
k,p ≤ C

k
2+β
F |k|1+β |k| < 2kF

k3
F |k|2β |k| ≥ 2kF

, β ∈ (−1, 0], (B.1.1)

as well as the partial statement for β = −1 that

∑
p∈Lk

λ−1
k,p ≤ C


(
1 + |k|−1 log(kF )

)
kF |k| < 2kF

k3
F |k|−2 |k| ≥ 2kF

. (B.1.2)

The improvement of the latter estimate to ∑p∈Lk
λ−1

k,p ≤ CkF for |k| < 2kF will be handled
by more precise estimates later in the section.

Recall that the lunes Lk are given by

Lk =
{
p ∈ Z3 | |p− k| ≤ kF < |p|

}
= S ∩ Z3 (B.1.3)

where S = B(k, kF )\B(0, kF ). The relevant integrand for our Riemann sums,

p 7→ λβ
k,p =

(1
2
(
|p|2 − |p− k|2

))β

= |k|β
(
k̂· p− 1

2 |k|
)β

(B.1.4)

is convex on
{
p ∈ R3 | k̂ · p > 1

2 |k|
}

but singular when k̂ · p = 1
2 |k|. We must therefore

introduce a cut-off to the Riemann sum ∑
p∈Lk

λβ
k,p: We write Lk = L1

k ∪ L2
k for

L1
k =

{
p ∈ Lk | k̂ · p ≤ 1

2 |k| + 1 +
√

3
2

}
(B.1.5)

L2
k =

{
p ∈ Lk | k̂ · p > 1

2 |k| + 1 +
√

3
2

}
.

Then also Li
k = Si ∩ Z3, i = 1, 2, for

S1 =
{
p ∈ S | k̂ · p ≤ 1

2 |k| + 1 +
√

3
2

}
(B.1.6)

S2 =
{
p ∈ S | k̂ · p > 1

2 |k| + 1 +
√

3
2

}

so we can by Corollary B.0.6 estimate that

∑
p∈Lk

λβ
k,p =

∑
p∈L1

k

λβ
k,p +

∑
p∈L2

k

λβ
k,p ≤

sup
p∈L1

k

λβ
k,p

 ∣∣∣L1
k

∣∣∣+ ∫
S2

+

|k|β
(
k̂· p− 1

2 |k|
)β

dp (B.1.7)



150 B. Riemann Sum Estimates

≤ 2−β Vol
(
S1

+

)
+ |k|β

∫
S2

+

(
k̂· p− 1

2 |k|
)β

dp.

Here we also used the observation that

λk,p = 1
2
(
|p|2 − |p− k|2

)
≥ 1

2 (B.1.8)

for all k ∈ Z3
∗ and p ∈ Lk, as |p|2 and |p− k|2 are then non-equal integers.

To estimate Vol
(
S1

+

)
and the integral over S2

+ we will replace these by simpler sets once
more: Let S ⊂ R3 be given by

S = B

(
k, kF +

√
3

2

)
\B
(

0, kF −
√

3
2

)
(B.1.9)

and define the subsets S1,S2 ⊂ S by

S1 =
{
p ∈ S | −

√
3

2 ≤ k̂ · p− 1
2 |k| ≤ 1 +

√
3
}

(B.1.10)

S2 =
{
p ∈ S | 1 ≤ k̂ · p− 1

2 |k|
}
.

Then we have the following:

Proposition B.1.1. It holds that

S1
+ ⊂ S1 and S2

+ ⊂ S2.

Proof: We first show that S+ ⊂ S: Let p ∈ S+ =
{
p′ ∈ R3 | infq∈S |p′ − q| ≤

√
3

2

}
be

arbitrary. Then we can for any q ∈ S estimate that

|p| ≥ |q| − |p− q| > kF − |p− q| (B.1.11)
|p− k| ≤ |q − k| + |p− q| ≤ kF + |p− q|

whence taking the supremum and infimum over q ∈ S yields

|p| ≥ kF −
√

3
2 , |p− k| ≤ kF +

√
3

2 , (B.1.12)

which is to say that p ∈ S as claimed. Supposing then that p ∈ S1
+ we furthermore note

that for any q ∈ S1, Cauchy-Schwarz implies that

k̂ · p− 1
2 |k| = k̂ · q − 1

2 |k| + k̂ · (p− q) ≤ 1 +
√

3
2 + |p− q| (B.1.13)

and similarly
k̂ · p− 1

2 |k| = k̂ · q − 1
2 |k| + k̂ · (p− q) ≥ − |p− q| (B.1.14)
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so taking the supremum and infimum over q ∈ S1 again yields

−
√

3
2 ≤ k̂ · p− 1

2 |k| ≤ 1 +
√

3 (B.1.15)

i.e. p ∈ S1. That S2
+ ⊂ S2 follows similarly.

□
By this proposition it now follows from equation (B.1.7) that

∑
p∈Lk

λβ
k,p ≤ 2−β Vol

(
S1
)

+ |k|β
∫

S2

(
k̂· p− 1

2 |k|
)β

dp. (B.1.16)

To compute Vol(S1) and the integral over S2 we will integrate along the k̂-axis, so we must
now consider the behaviour of the “slices”

St = S ∩
{
p ∈ R3 | k̂ · p = t

}
. (B.1.17)

The Case |k| < 2kF

Suppose first that |k| < 2kF . Then when moving along the k̂-axis, it holds that

inf({t | St ̸= ∅}) =

−
(
kF +

√
3

2

)
+ |k| |k| ≤

√
3

1
2 |k| − |k|−1 √

3 kF |k| >
√

3
(B.1.18)

where the first case corresponds to the case that B
(
0, kF −

√
3

2

)
is entirely contained in

B
(
0, kF +

√
3

2

)
.

As the lower end of S1 is at t = 1
2 |k| −

√
3

2 , we need not consider this case, since{
k̂· p = 1

2 |k| −
√

3
2

}
will intersect both B

(
k, kF +

√
3

2

)
and B

(
0, kF −

√
3

2

)
anyway. In this

case the slice St forms an annulus, and elementary trigonometry shows that

Area(St) = π

(kF +
√

3
2

)2

− (t− |k|)2

− π

(kF −
√

3
2

)2

− t2

 (B.1.19)

= π
(
2
√

3 kF −
(
|k|2 − 2 |k| t

))
= 2π

(
|k|
(
t− 1

2 |k|
)

+
√

3 kF

)

for 1
2 |k| −

√
3

2 ≤ t ≤ kF −
√

3
2 , with t = kF −

√
3

2 corresponding to the “upper end” of
B
(
0, kF −

√
3

2

)
. Thereafter the planes intersect only B

(
k, kF +

√
3

2

)
, whence

Area(St) = π

(kF +
√

3
2

)2

− (t− |k|)2

 = π

(kF +
√

3
2

)2

− t2 + 2 |k|
(
t− 1

2 |k|
)

= 2π
(

|k|
(
t− 1

2 |k|
)

+
√

3 kF

)
+ π

(kF −
√

3
2

)2

− t2

 (B.1.20)
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≤ 2π
(

|k|
(
t− 1

2 |k|
)

+
√

3 kF

)

for kF −
√

3
2 ≤ t ≤ kF +

√
3

2 + |k|.
With this we can now prove the |k| < 2kF bounds:

Proposition B.1.2. For all k ∈ B(0, 2kF ) ∩ Z3
∗ and β ∈ [−1, 0] it holds that

∑
p∈Lk

λβ
k,p ≤ C

k
2+β
F |k|1+β β ∈ (−1, 0](
1 + |k|−1 log(kF )

)
kF β = −1

, kF → ∞,

for a constant C > 0 depending only on β.

Proof: Recall that
∑

p∈Lk

λβ
k,p ≤ 2−β Vol

(
S1
)

+ |k|β
∫

S2

(
k̂· p− 1

2 |k|
)β

dp. (B.1.21)

The volume of S1 obeys

Vol
(
S1
)

=
∫ 1

2 |k|+1+
√

3

1
2 |k|−

√
3

2

Area(St) dt ≤ 2π
∫ 1

2 |k|+1+
√

3

1
2 |k|−

√
3

2

(
|k|
(
t− 1

2 |k|
)

+
√

3 kF

)
dt (B.1.22)

= 2π
∫ 1+

√
3

−
√

3
2

(
|k| t+

√
3 kF

)
dt ≤ C(|k| + kF ) ≤ CkF , kF → ∞,

which is O
(
k2+β

F |k|1+β
)

for all β ∈ [−1, 0]. For β ∈ (−1, 0] the integral is

∫
S2

(
k̂· p− 1

2 |k|
)β

dp =
∫ kF +

√
3

2 +|k|

1
2 |k|+1

(
t− 1

2 |k|
)β

Area(St) dt

≤ 2π
∫ kF +

√
3

2 +|k|

1
2 |k|+1

(
t− 1

2 |k|
)β(

|k|
(
t− 1

2 |k|
)

+
√

3 kF

)
dt

= 2π
|k|

∫ kF +
√

3
2 + 1

2 |k|

1
t1+βdt+

√
3 kF

∫ kF +
√

3
2 + 1

2 |k|

1
tβdt

 (B.1.23)

≤ 2π
 |k|

2 + β

(
kF +

√
3

2 + 1
2 |k|

)2+β

+
√

3 kF

1 + β

(
kF +

√
3

2 + 1
2 |k|

)1+β


≤ 2π
(

1
2 + β

k2+β
F |k| +

√
3

1 + β
k2+β

F

)
≤ Ck2+β

F |k| , kF → ∞,

while the β = −1 case is

∫
S2

(
k̂· p− 1

2 |k|
)−1

dp ≤ 2π
|k|

∫ kF +
√

3
2 + 1

2 |k|

1
1 dt+

√
3 kF

∫ kF +
√

3
2 + 1

2 |k|

1
t−1dt


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≤ 2π
(

|k|
(
kF +

√
3

2 + 1
2 |k|

)
+

√
3 kF log

(
kF +

√
3

2 + 1
2 |k|

))
≤ C |k|

(
1 + |k|−1 log(kF )

)
kF . (B.1.24)

Combining the estimates yields the claim.
□

The Case |k| ≥ 2kF

Now suppose instead that |k| ≥ 2kF . In this case the lune S = B(k, kF )\B(0, kF ) degen-
erates into a ball, and so we simply have that

S+ = S = B

(
k, kF +

√
3

2

)
. (B.1.25)

Now, if 1
2 |k| ≥ kF + 1 +

√
3

2 then every p ∈ S satisfies k̂ · p − 1
2 |k| ≥ 1 and the cut-off set

S1 is unnecessary. If this is not the case then it still holds that
∑

p∈Lk

λβ
k,p ≤ 2−β Vol

(
S1
)

+ |k|β
∫

S2

(
k̂· p− 1

2 |k|
)β

dp (B.1.26)

for

S1 =
{
p ∈ S | k̂ · p− 1

2 |k| ≤ 1 +
√

3
}

(B.1.27)

S2 =
{
p ∈ S | 1 ≤ k̂ · p− 1

2 |k|
}
,

and we may easily estimate Vol(S1) as S1 is now seen to be a spherical cap of radius
kF +

√
3

2 and height
(1

2 |k| + 1 +
√

3
)

−
(

|k| − kF −
√

3
2

)
= kF − 1

2 |k| + 1 + 3
√

3
2 ≤ 1 + 3

√
3

2 (B.1.28)

whence

Vol
(
S1
)

≤ π

3

(
1 + 3

√
3

2

)(
3
(
kF +

√
3

2

)
− 1 − 3

√
3

2

)
≤ CkF (B.1.29)

which is again O
(
k2+β

F |k|1+β
)
. We thus only need to estimate the integral for the |k| ≥ 2kF

bounds:

Proposition B.1.3. For all k ∈ Z3
∗\B(0, 2kF ) and β ∈ [−1, 0] it holds that∑

p∈Lk

λβ
k,p ≤ Ck3

F |k|2β , kF → ∞,

for a constant C > 0 depending only on β.
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Proof: We again note that

Area(St) = π

(kF +
√

3
2

)2

− (t− |k|)2

, (B.1.30)

now for |k| − kF −
√

3
2 ≤ t ≤ |k| + kF +

√
3

2 . If 1
2 |k| ≤ kF + 1 +

√
3

2 we just saw that the
contribution coming from the cut-off set S1 is negligible, while the integral term is

|k|β
∫

S2

(
k̂· p− 1

2 |k|
)β

dp = |k|β
∫ kF +

√
3

2 +|k|

1
2 |k|+1

(
t− 1

2 |k|
)β

Area(St) dt (B.1.31)

≤ Ck2+β
F |k|1+β , kF → ∞,

as calculated in the previous proposition, which is O
(
k3

F |k|2β
)

since 1
2 |k| ≤ kF + 1 +

√
3

2 .
(Here we also used that for β = −1, the term |k|−1 log(kF ) can be disregarded when
|k| ≥ 2kF .)

If 1
2 |k| > kF + 1 +

√
3

2 then we simply have

∑
p∈Lk

λβ
k,p ≤ |k|β

∫
S

(
k̂ · p− 1

2 |k|
)β

dp = |k|β
∫ |k|+kF +

√
3

2

|k|−kF −
√

3
2

(
t− 1

2 |k|
)β

Area(St) dt, (B.1.32)

and noting that

(t− |k|)2 =
(
t− 1

2 |k|
)2

− |k|
(
t− 1

2 |k|
)

+ 1
4 |k|2 (B.1.33)

we can now estimate Area(St) as

Area(St) = π

(kF +
√

3
2

)2

− (t− |k|)2


= π

(kF +
√

3
2

)2

−
(
t− 1

2 |k|
)2

+ |k|
(
t− 1

2 |k|
)

− 1
4 |k|2

 (B.1.34)

= π

|k|
(
t− 1

2 |k|2
)

−

1
4 |k|2 −

(
kF +

√
3

2

)2−
(
t− 1

2 |k|
)2


≤ π |k|
(
t− 1

2 |k|
)
.

Consequently

∑
p∈Lk

λβ
k,p ≤ π |k|1+β

∫ |k|+kF +
√

3
2

|k|−kF −
√

3
2

(
t− 1

2 |k|
)1+β

dt = π |k|1+β
∫ 1

2 |k|+kF +
√

3
2

1
2 |k|−kF −

√
3

2

t1+βdt

= π

2 + β
|k|1+β

(1
2 |k| + kF +

√
3

2

)2+β

−
(

1
2 |k| − kF −

√
3

2

)2+β
 (B.1.35)



B.2 Some Lattice Concepts 155

≤ C |k|3+2β .

If additionally |k| ≤ 3 kF (say) then this is O
(
k3

F |k|2β
)
, and if not then we can nonetheless

trivially estimate

∑
p∈Lk

λβ
k,p ≤ |k|β

∫
S

(
k̂ · p− 1

2 |k|
)β

dp ≤ |k|β
(

inf
p∈S

(
k̂ · p− 1

2 |k|
))β ∫

S
1 dp

≤ |k|β
(

|k| − kF −
√

3
2 − 1

2 |k|
)β

Vol
(
B

(
0, kF +

√
3

2

))
(B.1.36)

≤ Ck3
F |k|β

(
1
2 |k| − 1

3 |k| −
√

3
2

)β

≤ Ck3
F |k|2β , kF → ∞,

for the claim.
□

B.2 Some Lattice Concepts
To improve upon our bound on ∑

p∈Lk
λ−1

k,p (and in particular to establish its asymptotic
behaviour) we will need some results regarding lattices, which we now review.

A lattice Λ in a real n-dimensional vector space V is defined to be a subset of V with
the following property: There exists a basis (vi)n

i=1 of V such that Λ equals the integral
span of (vi)n

i=1, i.e.

Λ =
{

n∑
i=1

mivi | m1, . . . ,mn ∈ Z
}
. (B.2.1)

Given a basis (vi)n
i=1, the right-hand side of this equation always defines a lattice, called

the lattice generated by (vi)n
i=1, and denoted by ⟨v1, . . . , vn⟩. Two different bases (vi)n

i=1
and (wi)n

i=1 may generate the same lattice, in which case the following is well-known:

Proposition B.2.1. Let (vi)n
i=1 and (wi)n

i=1 be bases of V . Then ⟨v1, . . . , vn⟩ = ⟨w1, . . . , wn⟩
if and only if the transition matrix (Ti,j)n

i,j=1, defined by the relation

wi =
n∑

j=1
Ti,jvj, 1 ≤ i ≤ n,

has integer entries and determinant ±1.

This result has an important consequence when V is endowed with an inner product:
Then one can define the hypervolume of the parallelepiped spanned by (vi)n

i=1 by
∣∣∣∣∣∣∣∣det


⟨e1, v1⟩ · · · ⟨en, v1⟩

... . . . ...
⟨e1, vn⟩ · · · ⟨en, vn⟩


∣∣∣∣∣∣∣∣ =

√√√√√√√det


⟨v1, v1⟩ · · · ⟨vn, v1⟩

... . . . ...
⟨v1, vn⟩ · · · ⟨vn, vn⟩

 (B.2.2)
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for any orthonormal basis (ei)n
i=1 (the expression on the right-hand side follows by or-

thonormal expansion). It is however a general fact that if two bases (vi)n
i=1 and (wi)n

i=1 are
related by a transition matrix T , then

det


⟨e1, w1⟩ · · · ⟨en, w1⟩

... . . . ...
⟨e1, wn⟩ · · · ⟨en, wn⟩

 = det(T ) det


⟨e1, v1⟩ · · · ⟨en, v1⟩

... . . . ...
⟨e1, vn⟩ · · · ⟨en, vn⟩

 (B.2.3)

whence one concludes the following:

Proposition B.2.2. Let Λ be a lattice in (V, ⟨·, ·⟩) and let (vi)n
i=1 generate Λ. Then the

quantity

d(Λ) =

∣∣∣∣∣∣∣∣det


⟨e1, v1⟩ · · · ⟨en, v1⟩

... . . . ...
⟨e1, vn⟩ · · · ⟨en, vn⟩


∣∣∣∣∣∣∣∣ =

√√√√√√√det


⟨v1, v1⟩ · · · ⟨vn, v1⟩

... . . . ...
⟨v1, vn⟩ · · · ⟨vn, vn⟩


is an invariant of Λ, independent of the choice of generators (vi)n

i=1.

The quantity d(Λ) is referred to as the covolume of Λ.
For a lattice Λ in an inner product space V , one defines the succesive minima (relative

to B(0, 1)), (λi)n
i=1, by

λi = inf
({
λ | B(0, λ) ∩ Λ contains i linearly independent vectors

})
, 1 ≤ i ≤ n. (B.2.4)

A well-known theorem due to Minkowski relates succesive minima and covolumes:

Theorem B.2.3 (Minkowski’s Second Theorem). Let Λ be a lattice in an n-dimensional
inner product space V . Then it holds that

2nd(Λ)
n!Vol

(
B(0, 1)

) ≤ λ1 · · ·λn ≤ 2nd(Λ)
Vol

(
B(0, 1)

) .
Note that although the quantity λn is such that B(0, λn) ∩ Λ contains n linearly inde-

pendent vectors, it is not ensured that these can be chosen to generate Λ. For n = 2 this
is nonetheless the case:

Proposition B.2.4. Let Λ be a lattice in a 2-dimensional inner product space V . Then
there exists vectors v1, v2 ∈ Λ which generate Λ such that

∥v1∥ ∥v2∥ ≤ 4
π
d(λ).

Proof: By definition there exists linearly independent vectors v1, v2 ∈ Λ such that ∥v1∥ ≤
λ1, ∥v2∥ ≤ λ2, and by Minkowski’s second theorem ∥v1∥ ∥v2∥ ≤ 4

π
d(λ). We argue that v1

and v2 must generate Λ.
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Suppose otherwise, i.e. let v ∈ Λ be such that v ̸= m1v1 +m2v2 for m1,m2 ∈ Z. As v1
and v2 are linearly independent and dim(V ) = 2 they span V , so we can nonetheless write
v = c1v1 + c2v2 for some c1, c2 ∈ R. By subtracting integer multiplies of v1 and v2 we may
further assume that |c1| , |c2| ≤ 1

2 .
As ⟨v1, v2⟩ < ∥v1∥ ∥v2∥ by Cauchy-Schwarz (the inequality being strict due to linear

independence) we can then estimate that

∥v∥2 = |c1|2 ∥v1∥2 + |c2|2 ∥v2∥2 + 2c1c2 ⟨v1, v2⟩ < |c1|2 ∥v1∥2 + |c2|2 ∥v2∥2 + 2 |c1| |c2| ∥v1∥ ∥v2∥

= (|c1| ∥v1∥ + |c2| ∥v2∥)2 ≤
(1

2λ2 + 1
2λ2

)2
= λ2

2, (B.2.5)

i.e. ∥v∥ < λ2. But this contradicts the minimality of λ2, so such a v can not exist.
□

The Sublattice Orthogonal to a Vector k ∈ Z3

Consider Z3 as a lattice in R3, endowed with the usual dot product. Let k = (k1, k2, k3) ∈
Z3

∗ be arbitrary, and write k̂ = |k|−1 k. We now characterize sets of the form

{p ∈ Z3 | k̂· p = t}, t ∈ R. (B.2.6)

For this we note the following well-known result on linear Diophantine equations:

Theorem B.2.5. Let (k1, k2, k3) ∈ Z3
∗ and c ∈ Z be given. Then the linear Diophantine

equation
k1m1 + k2m2 + k3m3 = c

is solvable with (m1,m2,m3) ∈ Z3 if and only if c is a multiple of gcd(k1, k2, k3).
If this is the case then there exists linearly independent vectors v1, v2 ∈ Z3, which are

independent of c, such that if (m∗
1,m

∗
2,m

∗
3) is any particular solution of the equation then

all solutions are given by{
(m1,m2,m3) ∈ Z3 | k1m1 + k2m2 + k3m3 = c

}
= (m∗

1,m
∗
2,m

∗
3)+{a1v1 + a2v2 | a1, a2 ∈ Z} .

This theorem implies the following:

Proposition B.2.6. Let k = (k1, k2, k3) ∈ Z3
∗ and define l = |k|−1 gcd(k1, k2, k3). Then

there holds the disjoint union of non-empty sets

Z3 =
⋃

m∈Z
{p ∈ Z3 | k̂· p = lm}

and {p ∈ Z3 | k̂· p = 0} is a lattice in k⊥ = {p ∈ R3 | k̂· p = 0}.
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Proof: Clearly Z3 = ⋃
t∈R{p ∈ Z3 | k̂· p = t} so we must determine for which values of t

the set {p ∈ Z3 | k̂· p = t} is non-empty. For an arbitrary p = (p1, p2, p3) ∈ Z3 the equation
k̂ · p = t is equivalent with

k1p1 + k2p2 + k3p3 = |k| t (B.2.7)

and as the left-hand side is the sum of products of integers, the right-hand side must
likewise be an integer, i.e. t = |k|−1 c for some c ∈ Z. By the theorem it must then hold
that c = gcd(k1, k2, k3) ·m for some m ∈ Z, i.e.

t = |k|−1 gcd(k1, k2, k3) ·m = lm. (B.2.8)

As p was arbitrary we see that Z3 = ⋃
m∈Z{p ∈ Z3 | k̂· p = lm} as claimed. That all

sets {p ∈ Z3 | k̂· p = lm} are non-empty likewise follows from the theorem, as does the
existence of linearly independent v1, v2 ∈ Z3 such that

{p ∈ Z3 | k̂· p = lm} = q + {a1v1 + a2v2 | a1, a2 ∈ Z} (B.2.9)

for any particular q ∈ {p ∈ Z3 | k̂· p = lm}. Taking q = 0 as a particular solution, we see
that

{p ∈ Z3 | k̂· p = 0} = {a1v1 + a2v2 | a1, a2 ∈ Z} (B.2.10)

which is precisely the statement that {p ∈ Z3 | k̂· p = 0} is a lattice (in k⊥).
□

The covolume d
(
{p ∈ Z3 | k̂· p = 0}

)
=
√

∥v1∥2 ∥v2∥2 − (v1 · v2)2 is given by the follow-
ing:

Proposition B.2.7. For any generators v1, v2 ∈ Z3 of {p ∈ Z3 | k̂· p = 0} it holds that

d
(
{p ∈ Z3 | k̂· p = 0}

)
=
√

∥v1∥2 ∥v2∥2 − (v1 · v2)2 = l−1.

Proof: Let w ∈ {p ∈ Z3 | k̂· p = l} be arbitrary. Then by linearity

{p ∈ Z3 | k̂· p = lm} = mw + {p ∈ Z3 | k̂· p = 0} (B.2.11)

for any m ∈ Z, so by the previous proposition

Z3 =
⋃

m∈Z

(
mw + {p ∈ Z3 | k̂· p = 0}

)
= {m1v1 +m2v2 +m3w | m1,m2,m3 ∈ Z} ,

(B.2.12)
i.e. (v1, v2, w) is a set of generators for Z3. Let (e1, e2) be an orthonormal basis for k⊥ so
that (e1, e2, k̂) forms an orthonormal basis for R3. Then

d
(
Z3
)

=

∣∣∣∣∣∣∣∣det


(e1 · v1) (e2 · v1) (k̂ · v1)
(e1 · v2) (e2 · v2) (k̂ · v2)
(e1 · w) (ew · w) (k̂ · w)


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣det

 (e1 · v1) (e2 · v1) 0
(e1 · v2) (e2 · v2) 0
(e1 · w) (ew · w) l


∣∣∣∣∣∣∣ (B.2.13)
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= l

∣∣∣∣∣det
(

(e1 · v1) (e2 · v1)
(e1 · v2) (e2 · v2)

)∣∣∣∣∣ = l · d
(
{p ∈ Z3 | k̂· p = 0}

)
and as it is clear that d(Z3) = 1 the result follows.

□
Finally we note that Proposition B.2.4 implies a bound on the norms of a generating

set of {p ∈ Z3 | k̂· p = 0}:

Corollary B.2.8. There exists a constant C > 0 independent of k such that {p ∈ Z3 |
k̂· p = 0} admits generators v1 and v2 obeying

∥v1∥2 + ∥v2∥2 ≤ Cl−2.

Proof: By the proposition there exists generators v1, v2 such that

∥v1∥ ∥v2∥ ≤ 4
π
d(λ) = 4

π
l−1, (B.2.14)

and as every v ∈ Z3
∗ obeys ∥v∥ ≥ 1 this implies that ∥v1∥ , ∥v2∥ ≤ 4

π
l−1. Consequently

∥v1∥2 + ∥v2∥2 ≤ 32
π2 l

−2 = Cl−2. (B.2.15)

□

B.3 Precise Estimates
Throughout this section we let k = (k1, k2, k3) ∈ B(0, 2kF ) ∩ Z3

∗ be fixed and write k̂ =
|k|−1 k for brevity.

We now decompose the lune

Lk =
{
p ∈ Z3 | |p− k| ≤ kF < |p|

}
(B.3.1)

along the {k̂· p = t} planes. Note that for any p ∈ Lk it holds that

k· p = 1
2
(
|p|2 − |p− k|2 + |k|2

)
>

1
2 |k|2 (B.3.2)

and that
k· p = k· (p− k) + |k|2 ≤ |k| (kF + |k|) (B.3.3)

so
1
2 |k| < k̂ · p ≤ kF + |k| . (B.3.4)

Let l = |k|−1 gcd(k1, k2, k3) as in Proposition B.2.6, and let m∗ be the least integer and M∗

the greatest integer such that
1
2 |k| < lm∗, lM∗ ≤ kF + |k| . (B.3.5)
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It then follows by the decomposition of Proposition B.2.6 that Lk can be expressed as the
disjoint union

Lk =
M∗⋃

m=m∗
Lm

k (B.3.6)

where the subsets Lm
k are given by

Lm
k = {p ∈ Lk | k̂ · p = lm}, m∗ ≤ m ≤ M∗. (B.3.7)

Consequently, a Riemann sum of the form ∑
p∈Lk

f(λk,p) can be written as

∑
p∈Lk

f(λk,p) =
M∗∑

m=m∗

∑
p∈Lm

k

f
(

|k|
(
k̂ · p− 1

2 |k|
))

=
M∗∑

m=m∗
f
(

|k|
(
lm− 1

2 |k|
))

|Lm
k | .

(B.3.8)
To proceed we must analyze |Lm

k |, the number of points contained in Lm
k . For this, note that

by expanding and rearranging the inequalities defining Lk, we may equivalently express it
as

Lk =
{
p ∈ Z3 | k2

F < |p|2 ≤ k2
F − |k|2 + 2k · p

}
. (B.3.9)

Letting P⊥ : R3 → k⊥ denote the orthogonal projection onto k⊥, it holds that |p|2 =
|P⊥p|2 + (k̂ · p)2, whence

Lk = {p ∈ Z3 | k2
F − (k̂ · p)2 < |P⊥p|2 ≤ k2

F − |k|2 + 2k · p− (k̂ · p)2} (B.3.10)
= {p ∈ Z3 | k2

F − (k̂ · p)2 < |P⊥p|2 ≤ k2
F − (k̂· p− |k|)2}

so the sets Lm
k = Lk ∩ {p ∈ Z3 | k̂ · p = lm} can be written as

Lm
k =

{
p ∈ Z3 | k̂· p = lm, k2

F − (lm)2 < |P⊥p|2 ≤ k2
F − (lm− |k|)2

}
(B.3.11)

=
{
p ∈ Z3 | k̂· p = lm, (Rm

1 )2 < |P⊥p|2 ≤ (Rm
2 )2

}
where the real numbers Rm

1 and Rm
2 are given by

Rm
1 =

√
k2

F − (lm)2, Rm
2 =

√
k2

F − (lm− |k|)2, m∗ ≤ m ≤ M∗. (B.3.12)

Let v1, v2 ∈ Z3 generate {p ∈ Z3 | k̂ · p = 0}. For a fixed m, let q ∈ {p ∈ Z3 | k̂ · p = lm} be
arbitrary. Then Proposition B.2.6 asserts that p ∈ Z3 is an element of {p ∈ Z3 | k̂ ·p = lm}
if and only if it can be written as

p = a1v1 + a2v2 + q, a1, a2 ∈ Z. (B.3.13)

As v1 and v2 span k⊥ it must hold that P⊥q = b1v1 + b2v2 for some b1, b2 ∈ R, whence we
see that P⊥p is of the form

P⊥p = a1v1 + a2v2 + P⊥q = (a1 + b1)v1 + (a2 + b2)v2, (B.3.14)
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and so we can express |Lm
k | as

|Lm
k | =

∣∣∣{(a1, a2) ∈ Z2 | (Rm
1 )2 < (a1 + b1)2 ∥v1∥2 + (a2 + b2)2 ∥v2∥2 (B.3.15)

+2(a1 + b1)(a2 + b2)(v1 · v2) ≤ (Rm
2 )2

}∣∣∣
=
∣∣∣{(x, y) ∈

(
R2 + (b1, b2)

)
| (Rm

1 )2 < ∥v1∥2 x2 + ∥v2∥2 y2 + 2(v1 · v2)xy ≤ (Rm
2 )2

}
∩ Z2

∣∣∣
=
∣∣∣(Em

2 \Em
1 + (b1, b2)) ∩ Z2

∣∣∣
where the sets Em

1 and Em
2 are given by

Em
i =

{
(x, y) ∈ R2 | ∥v1∥2 x2 + ∥v2∥2 y2 + 2(v1 · v2)xy ≤ (Rm

i )2
}
, i = 1, 2. (B.3.16)

Lattice Point Estimation
The sets Em

i are seen to be (closed interiors of) ellipses, and analyzing |Lm
k | amounts to

estimating the lattice points enclosed by these. To do this we will apply the following
general result:

Theorem B.3.1 ([18]). Let K ⊂ R2 be a compact, strictly convex set with C2 boundary
and let ∂K have minimal and maximal radii of curvature 0 < r1 ≤ r2. If r2 ≥ 1 then∣∣∣∣∣∣K ∩ Z2

∣∣∣− Area(K)
∣∣∣ ≤ C

r2

r1
r

2
3
2 log

(
1 + 2

√
2r

1
2
2

) 2
3

for a constant C > 0 independent of all quantities.

This result follows from the techniques of Chapter 8 of [18], but is not explicitly stated
in this fashion. Giving a proof of this result is out of the scope of this thesis, but a detailed
derivation is available upon request.

In our present case we note that this implies that for any ellipse E ⊂ R2, it holds that∣∣∣∣∣∣E ∩ Z2
∣∣∣− Area(E)

∣∣∣ ≤ C

(
1 + r2

r1
r

2
3
2 log

(
1 + 2

√
2r

1
2
2

) 2
3
)
, (B.3.17)

the r2 ≤ 1 case being accounted for by the constant term. It follows that |Lm
k | obeys

|Lm
k | = Area(Em

2 \Em
1 ) +O

(
1 + r2

r1
r

2
3
2 log

(
1 + 2

√
2r

1
2
2

) 2
3

+ r′
2
r′

1
(r′

2)
2
3 log

(
1 + 2

√
2(r′

2)
1
2

) 2
3
)

(B.3.18)
where r1, r

′
1 and r2, r

′
2 are the minimal and maximal radii of curvature of Em

1 and Em
2 ,

respectively.
We thus need to obtain some information on the geometry of the ellipses Em

i . Consulting
a reference on conic sections, one finds that the semi axes ai ≥ bi > 0 of Em

i , as defined by
equation (B.3.16), are given by

ai =
√

2Rm
i

(
∥v1∥2 + ∥v2∥2 −

√(
∥v1∥2 − ∥v2∥2

)2
+ 4(v1 · v2)2

)− 1
2

(B.3.19)
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bi =
√

2Rm
i

(
∥v1∥2 + ∥v2∥2 +

√(
∥v1∥2 − ∥v2∥2

)2
+ 4(v1 · v2)2

)− 1
2

.

We can then describe the geometry of the ellipses in terms of k and m:

Proposition B.3.2. It holds that

Area(Em
2 \Em

1 ) =

2π |k|
(
lm− 1

2 |k|
)
l lm∗ ≤ lm ≤ kF

π
(
k2

F − (lm− |k|)2
)
l kF < lm ≤ lM∗

and the minimal and maximal radii of curvature 0 < r1 ≤ r2 of either of Em
1 , Em

2 can be
assumed to obey the estimates

r2

r1
≤ Cl−3, r2 ≤ Cl−1kF ,

for a constant C > 0 independent of all quantities.

Proof: The area enclosed by an ellipse with semi-axes a and b is πab, so for lm∗ ≤ lm ≤ kF ,
when ∅ ≠ Em

1 ⊂ Em
2 ,

Area(Em
2 \Em

1 ) =
2π
(
(Rm

2 )2 − (Rm
1 )2

)
√(

∥v1∥2 + ∥v2∥2
)2

−
((

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2
)

=
2π
(
k2

F − (lm− |k|)2 −
(
k2

F − (lm)2
))

√
4 ∥v1∥2 ∥v2∥2 − 4(v1 · v2)2

(B.3.20)

= 2π(|k| (2lm− |k|))
2l−1 = 2π |k|

(
lm− 1

2 |k|
)
l,

where we used that
√

∥v1∥2 ∥v2∥2 − (v1 · v2)2 = l−1 by Proposition B.2.7, while for kF <
lm ≤ lM∗, when Em

1 = ∅,

Area(Em
2 \Em

1 ) = Area(Em
2 ) = 2π(Rm

2 )2

2l−1 = π
(
k2

F − (lm− |k|)2
)
l. (B.3.21)

For the radii of curvature we note that for an ellipse with semi axes a ≥ b > 0 these are
given by r1 = a−1b2 and r2 = b−1a2, respectively, so for either of Em

i we can estimate that

r2

r1
=
(
ai

bi

)3
=

∥v1∥2 + ∥v2∥2 +
√(

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2

∥v1∥2 + ∥v2∥2 −
√(

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2


3
2

=


(

∥v1∥2 + ∥v2∥2 +
√(

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2
)2

∥v1∥2 + ∥v2∥2 −
((

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2
)



3
2

(B.3.22)
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=


1
4

(
∥v1∥2 + ∥v2∥2 +

√(
∥v1∥2 + ∥v2∥2

)2
− 4

(
∥v1∥2 ∥v2∥2 − (v1 · v2)2

))2

∥v1∥2 ∥v2∥2 − (v1 · v2)2



3
2

≤
(
l2

4
(
2
(
∥v1∥2 + ∥v2∥2

))2
) 3

2

=
(
∥v1∥2 + ∥v2∥2

)3
l3

and that

r2 = a2
i

bi

=
√

2Rm
i

√
∥v1∥2 + ∥v2∥2 +

√(
∥v1∥2 − ∥v2∥2

)2
+ 4(v1 · v2)2

∥v1∥2 + ∥v2∥2 −
√(

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2

=
√

2Rm
i

(
∥v1∥2 + ∥v2∥2 +

√(
∥v1∥2 − ∥v2∥2

)2
+ 4(v1 · v2)2

) 3
2

∥v1∥2 + ∥v2∥2 −
((

∥v1∥2 − ∥v2∥2
)2

+ 4(v1 · v2)2
) (B.3.23)

≤
√

2Rm
i

(
2
(
∥v1∥2 + ∥v2∥2

)) 3
2

4l−2 =
(
∥v1∥2 + ∥v2∥2

) 3
2 l2Rm

i .

Corollary B.2.8 asserts that v1 and v2 can be chosen to obey ∥v1∥2 + ∥v2∥2 ≤ Cl−2, in
which case these estimates become

r2

r1
≤
(
Cl−2

)3
l3 ≤ Cl−3, r2 ≤

(
Cl−2

) 3
2 l2Rm

i ≤ Cl−1kF , (B.3.24)

as claimed (using also that Rm
i ≤ kF for all m∗ ≤ m ≤ M∗).

□
Noting that l obeys

l−1 = |k|
gcd(k1, k2, k3)

≤ |k| (B.3.25)

we can by equation (B.3.18) and the proposition estimate that

||Lm
k | − Area(Em

2 \Em
1 )| ≤ C

1 + l−3
(
l−1kF

) 2
3 log

(
1 +

(
l−1kF

) 1
2
) 2

3


≤ C

(
1 + |k|3+ 2

3 k
2
3
F log

(
1 +

√
|k| kF

) 2
3
)

(B.3.26)

≤ C |k|3+ 2
3 log(kF )

2
3k

2
3
F , kF → ∞,

for a constant C > 0 independent of all quantities, which is to say

|Lm
k | =

2π |k|
(
lm− 1

2 |k|
)
l lm∗ ≤ lm ≤ kF

π
(
k2

F − (lm− |k|)2
)
l kF < lm ≤ lM∗ +O

(
|k|3+ 2

3 log(kF )
2
3k

2
3
F

)
. (B.3.27)
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The Summation Formula
From equation (B.3.8) we can now conclude a general summation formula:

Proposition B.3.3. For all k = (k1, k2, k3) ∈ Z3
∗ with |k| < 2kF and f : (0,∞) → R it

holds that

∑
p∈Lk

f(λk,p) = 2π |k|
M∑

m=m∗
f
(

|k|
(
lm− 1

2 |k|
))(

lm− 1
2 |k|

)
l

+ π
M∗∑

m=M+1
f
(

|k|
(
lm− 1

2 |k|
))(

k2
F − (lm− |k|)2

)
l

+O

(
|k|3+ 2

3 log(kF )
2
3k

2
3
F

M∗∑
m=m∗

∣∣∣∣f(|k|
(
lm− 1

2 |k|
))∣∣∣∣

)

as kF → ∞, where l = |k|−1 gcd(k1, k2, k3) and m∗ is the least integer and M , M∗ the
greatest integers for which

1
2 |k| < lm∗, lM ≤ kF , lM∗ ≤ kF + |k| .

Note that the two first terms are exactly what one would expect from the continuum
case, since∫

B(k,kF )\B(0,kF )
f
(
k · p− 1

2 |k|2
)
dp = 2π |k|

∫ kF

1
2 |k|

f
(

|k|
(
t− 1

2 |k|
))(

t− 1
2 |k|

)
dt (B.3.28)

+ π
∫ kF +|k|

kF

f
(

|k|
(
t− 1

2 |k|
))(

k2
F − (t− |k|)2

)
dt.

The summation formula thus allows us to convert the 3-dimensional Riemann sum∑
p∈Lk

f(λk,p)
into the 1-dimensional Riemann sums corresponding to the integrals above, up to an ad-
ditional error term.

We can then finally conclude the precise estimate of Proposition B.0.2:

Proposition B.3.4. For all k ∈ B(0, 2kF ) it holds that∣∣∣∣∣∣
∑

p∈Lk

λ−1
k,p − 2πkF

∣∣∣∣∣∣ ≤ C |k|3+ 2
3 log(kF )

5
3k

2
3
F , kF → ∞,

for a constant C > 0 independent of all quantities.

Proof: By the summation formula we have that

∑
p∈Lk

λ−1
k,p = 2π |k|

M∑
m=m∗

lm− 1
2 |k|

|k|
(
lm− 1

2 |k|
) l + π

M∗∑
m=M+1

k2
F − (lm− |k|)2

|k|
(
lm− 1

2 |k|
) l (B.3.29)



B.3 Precise Estimates 165

+O

(
|k|2+ 2

3 log(kF )
2
3k

2
3
F

M∗∑
m=m∗

1
lm− 1

2 |k|

)
.

The first sum is what contributes the term 2πkF , as we can estimate∣∣∣∣∣∣2π |k|
M∑

m=m∗

lm− 1
2 |k|

|k|
(
lm− 1

2 |k|
) l − 2πkF

∣∣∣∣∣∣ = 2π
∣∣∣∣∣

M∑
m=m∗

l − kF

∣∣∣∣∣ = 2π |(lM − lm∗ + l) − kF |

≤ 2π(l(m∗ − 1) + |lM − kF | + 2l) (B.3.30)

≤ 2π
(1

2 |k| + 3
)

≤ C |k|

which is O
(

|k|3+ 2
3 log(kF )

5
3k

2
3
F

)
as kF → ∞ (above we also used that l ≤ 1). Noting that

k2
F − (lm− |k|)2 = k2

F − (lm)2 + 2 |k|
(
lm− 1

2 |k|
)

≤ 2 |k|
(
lm− 1

2 |k|
)

(B.3.31)

for m ≥ M + 1, we can similarly estimate the second sum as

0 ≤ π
M∗∑

m=M+1

k2
F − (lm− |k|)2

|k|
(
lm− 1

2 |k|
) l = 2π

M∗∑
m=M+1

l = 2π(lM∗ − lM + l) (B.3.32)

= 2π(lM∗ − l(M + 1) + 2l) ≤ 2π(kF + |k| − kF + 2) ≤ C |k| .

For the main error term we first note that lm∗ − 1
2 |k| ≥ 1

2 |k|−1, as the definition of m∗

implies that
2 gcd(k1, k2, k3)m∗ > |k|2 (B.3.33)

so as both sides are integers

2 gcd(k1, k2, k3)m∗ ≥ |k|2 + 1 ⇔ lm∗ ≥ 1
2 |k| + 1

2 |k|−1 . (B.3.34)

We can thus apply Corollary B.0.5 to estimate
M∗∑

m=m∗

1
lm− 1

2 |k|
= 1
lm∗ − 1

2 |k|
+ l−1

M∗∑
m=m∗+1

1
lm− 1

2 |k|
l ≤ 2 |k| + l−1

∫ lM∗+ 1
2 l

lm∗+ 1
2 l

1
x− 1

2 |k|
dx

≤ C |k|
(

1 + log
(
lM∗ + 1

2 l − 1
2 |k|

lm∗ + 1
2 l − 1

2 |k|

))
(B.3.35)

≤ C |k|
(

1 + log
(
kF + |k| + 1

2 l − 1
2 |k|

1
2 l

))
≤ C |k| (1 + log(|k| kF )) ≤ C |k| log(kF ), kF → ∞,

where we also used that l−1 ≤ |k|. In all the last error term thus obeys

|k|2+ 2
3 log(kF )

2
3k

2
3
F

M∗∑
m=m∗

1
lm− 1

2 |k|
≤ C |k|3+ 2

3 log(kF )
5
3k

2
3
F (B.3.36)
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and the claim follows by combining the estimates.
□

Note that the condition |k| ≤ kγ
F , γ ∈

(
0, 1

11

)
, of the statement of Proposition B.0.2

arises to ensure that the error term is always o(kF ). Although we must require this condi-
tion to control the precise asymptotics, we can however still conclude the bound∑

p∈Lk

λ−1
k,p ≤ CkF , |k| < 2kF , (B.3.37)

of Proposition B.0.1, since it at least shows that ∑p∈Lk
λ−1

k,p is O(kF ) for |k| < k
1

20
F (say),

and we previously established the bound∑
p∈Lk

λ−1
k,p ≤ C

(
1 + |k|−1 log(kF )

)
kF , |k| < 2kF , (B.3.38)

of which the right-hand side is also O(kF ) if |k| ≥ k
1

20
F , so either way the claimed estimate

holds.

B.4 Lower Bounds for β ∈ {0} ∪ [1,∞)
For the lower bound of Proposition B.0.3 we must similarly divide our analysis into a
“small k” and a “large k” part. The result of Proposition B.3.3 is sufficiently precise that
we can obtain the small k estimate almost immediately by the following lower bound for
1-dimensional Riemann sums of convex functions:

Lemma B.4.1. Let for a, b ∈ Z and l > 0 a convex function f ∈ C([la, lb]) be given. Then
b∑

m=a

f(lm)l ≥
∫ lb

la
f(x) dx+ l

2(f(la) + f(lb)).

Proof: Convexity implies that for every m ∈ {a, a+ 1, . . . , b− 1},

f(x) ≤
(
1 −

(
l−1x−m

))
f(lm) +

(
l−1x−m

)
f(l(m+ 1)), x ∈ [lm, l(m+ 1)] , (B.4.1)

so∫ l(m+1)

lm
f(x) dx ≤

(∫ l(m+1)

lm

(
1 −

(
l−1x−m

))
dx

)
f(lm) +

(∫ l(m+1)

lm

(
l−1x−m

)
dx

)
f(l(m+ 1))

= f(lm)l
∫ 1

0
(1 − x) dx+ f(l(m+ 1))l

∫ 1

0
x dx (B.4.2)

= 1
2(f(lm)l + f(l(m+ 1))l)

whence
b∑

m=a

f(lm)l = l

2(f(la) + f(lb)) +
b−1∑
m=a

1
2(f(lm)l + f(l(m+ 1))l) (B.4.3)
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≥ l

2(f(la) + f(lb)) +
∫ lb

la
f(x) dx.

□
By applying this we obtain the following:

Proposition B.4.2. For all k ∈ B(0, 2kF ) and β ∈ {0} ∪ [1,∞) it holds that∑
p∈Lk

λβ
k,p ≥ c

((
1 − 1

2k
−1
F |k|

)2+β

− C |k|3+ 2
3 log(kF )

2
3k

− 1
3

F

)
k2+β

F |k|1+β , kF → ∞,

for constants c, C > 0 depending only on β.
Proof: By Proposition B.3.3 it holds that∑

p∈Lk

λβ
k,p ≥ 2π |k|1+β

M∑
m=m∗

(
lm− 1

2 |k|
)1+β

l − C |k|β+3+ 2
3 log(kF )

2
3k

2
3
F

M∗∑
m=m∗

(
lm− 1

2 |k|
)β

(B.4.4)
where we discarded the second sum as every term of this is non-negative. By the previous
lemma we can bound

M∑
m=m∗

(
lm− 1

2 |k|
)1+β

l ≥
∫ lM

lm∗

(
x− 1

2 |k|
)1+β

dx+ l

2

((
lM − 1

2 |k|
)1+β

+
(
lm∗ − 1

2 |k|
)1+β

)

≥ 1
2 + β

((
lM − 1

2 |k|
)2+β

−
(
lm∗ − 1

2 |k|
)2+β

)
(B.4.5)

≥ 1
2 + β

((
kF − 1

2 |k| − l
)2+β

− l2+β

)
≥ c

(
1 − 1

2k
−1
F |k|

)2+β

k2+β
F

as kF → ∞, where we used that l ≤ 1 and that by the definition of m∗ and M ,

l(m∗ − 1) ≤ 1
2 |k| , kF < l(M + 1). (B.4.6)

Meanwhile, Corollary B.0.5 lets us bound the sum of the error term as
M∗∑

m=m∗

(
lm− 1

2 |k|
)β

≤ l−1
∫ lM∗+ 1

2 l

lm∗− 1
2 l

(
x− 1

2 |k|
)β

dx

= l−1

1 + β

((
lM∗ − 1

2 |k|
)1+β

−
(
lm∗ − 1

2 |k|
)1+β

)
(B.4.7)

≤ |k|
1 + β

(
kF + 1

2 |k|
)1+β

≤ C |k| k1+β
F , kF → ∞,

and combining the estimates yields the claim.
□

As was the case for our precise bound on ∑p∈Lk
λ−1

k,p, this implies that∑
p∈Lk

λβ
k,p ≥ ck2+β

F |k|1+β , kF → ∞, (B.4.8)

uniformly for |k| ≤ kγ
F , γ ∈

(
0, 1

11

)
, but to extend this to all k ∈ BF we must also establish

some simpler bounds for larger k.
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Large k Estimates
We begin by observing that

∑
p∈Lk

λβ
k,p ≥ |k|β

∫⋃
q∈Lk

Cq

max


(
k̂ · p− 1

2 |k| −
√

3
2

)β

, 0

 dp (B.4.9)

where we recall that Cq = [−2−1, 2−1] + q. Indeed, for any p ∈ Cq it holds that

λk,q = 1
2
(
|q|2 − |q − k|2

)
= |k|

(
k̂ · q − 1

2 |k|
)

(B.4.10)

= |k|
(
k̂ · p− 1

2 |k| − k̂ · (p− q)
)

≥ |k|
(
k̂ · p− 1

2 |k| −
√

3
2

)

by Cauchy-Schwarz, as p ∈ Cq implies that |p− q| ≤
√

3
2 as also used earlier. We then note

the following inclusion:

Proposition B.4.3. For any ϵ > 0 it holds that

Sϵ = B

(
k, kF −

√
3

2 − ϵ

)
\B
(

0, kF +
√

3
2 + ϵ

)
⊂

⋃
q∈Lk

Cq.

Proof: We first show that S− ⊂ ⋃
q∈Lk

Cq where S− is given by

S− =

p ∈ R3 | inf
q∈R3\(B(k,kF )\B(0,kF ))

|p− q| >
√

3
2

 . (B.4.11)

Indeed, for any p ∈ R3 we have that Cp ∩ Z3 ̸= ∅, so if additionally p ∈ S− then it holds
for q′ ∈ Cp ∩ Z3 that

inf
q∈R3\(B(k,kF )\B(0,kF ))

|q′ − q| ≥ inf
q∈R3\(B(k,kF )\B(0,kF ))

|p− q| − |q′ − p| > 0 (B.4.12)

hence q′ ∈ Z3 ∩
(
B(k, kF )\B(0, kF )

)
= Lk. As q′ ∈ Cp ⇔ p ∈ Cq′ by symmetry of the cube,

this shows that p ∈ ⋃
q∈Lk

Cq.
Now it holds that Sϵ ⊂ S−, as p ∈ Sϵ implies that if q ∈ R3\

(
B(k, kF )\B(0, kF )

)
=(

R3\B(k, kF )
)

∪B(0, kF ) then at least one of the inequalities

|p− q| ≥ ||p− k| − |q − k|| = |q − k| − |p− k| > kF − kF +
√

3
2 + ϵ =

√
3

2 + ϵ (B.4.13)

|p− q| ≥ ||p| − |q|| = |p| − |q| > kF +
√

3
2 + ϵ− kF =

√
3

2 + ϵ
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are valid, according to whether q ∈ R3\B(k, kF ) or q ∈ B(0, kF ), hence

inf
q∈R3\(B(k,kF )\B(0,kF ))

|p− q| ≥
√

3
2 + ϵ >

√
3

2 (B.4.14)

i.e. p ∈ S− ⊂ ⋃
q∈Lk

Cq.
□

From equation (B.4.9) we can now obtain

∑
p∈Lk

λβ
k,p ≥ lim sup

ϵ→0+
|k|β

∫
Sϵ

max


(
k̂ · p− 1

2 |k| −
√

3
2

)β

, 0

 dp (B.4.15)

= |k|β
∫

S

(
k̂ · p− 1

2 |k| −
√

3
2

)β

dp

for S = B
(
k, kF −

√
3

2

)
\B
(
0, kF +

√
3

2

)
, where we also used that k̂ ·p ≥ 1

2 |k|+
√

3
2 for p ∈ S.

Note that S = ∅ unless |k| >
√

3.
Similar to what we did for the simple upper bounds, we consider the slices St = S ∩{

k̂ · p = t
}
: The area of St is

Area(St) = π

(kF −
√

3
2

)2

− (t− |k|)
− π

(kF +
√

3
2

)2

− t2

 (B.4.16)

= 2π
(

|k|
(
t− 1

2 |k|
)

−
√

3kF

)

for 1
2 |k| +

√
3 |k|−1 kF ≤ t ≤ kF +

√
3

2 ; the area for t ≥ kF +
√

3
2 is unnecessary since the

integrand under consideration is non-negative and we are looking for a lower bound. We
can then estimate as follows:

Proposition B.4.4. For all k ∈ B(0, 2kF )\B
(
0,

√
3
)

and β ∈ {0} ∪ [1,∞) it holds that

∑
p∈Lk

λβ
k,p ≥ c

((
1 − 1

2k
−1
F |k|

)2+β

− C

(
|k|−1

(
1 − 1

2k
−1
F |k|

)1+β

+ |k|−(2+β)
))

k2+β
F |k|1+β

as kF → ∞ for constants c, C > 0 depending only on β.

Proof: By the considerations above

∑
p∈Lk

λβ
k,p ≥ 2π |k|β

∫ kF +
√

3
2

1
2 |k|+

√
3|k|−1kF

(
t− 1

2 |k| −
√

3
2

)β(
|k|
(
t− 1

2 |k|
)

−
√

3kF

)
dt

≥ 2π |k|β
(

|k|
∫ kF − 1

2 |k|
√

3|k|−1kF −
√

3
2

t1+βdt−
√

3kF

∫ kF − 1
2 |k|

√
3|k|−1kF −

√
3

2

tβdt

)
(B.4.17)
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≥ 2π |k|β
(

|k|
2 + β

((
kF − 1

2 |k|
)2+β

−
(√

3 |k|−1 kF

)2+β
)

−
√

3kF

1 + β

(
kF − 1

2 |k|
)1+β

)

≥ c

((
1 − 1

2k
−1
F |k|

)2+β

− C

(
|k|−1

(
1 − 1

2k
−1
F |k|

)1+β

+ |k|−(2+β)
))

k2+β
F |k|1+β .

□
This implies that ∑

p∈Lk

λβ
k,p ≥ ck2+β

F |k|1+β , kF → ∞, (B.4.18)

uniformly for kγ
F < |k| < kF , γ > 0, which combined with the small k result yields

Proposition B.0.3.



Appendix C

Careful Justification of the
Transformation Formulas

In this section we give a more detailed justification of the transformation identities which
we derived in the sections 4 and 8 for the operator K. Although we proved in Section 5
that

K = 1
2
∑
l∈Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩
(
bl,pb−l,−q − b∗

−l,−qb
∗
l,p

)
(C.0.1)

defines a bounded operator whenever ∑l∈Z3
∗

∥Kl∥2
HS < ∞, and so most of the subleties

involving unbounded operators can be avoided, the fact that the operators we apply the
transformation to are themselves unbounded still raises some technical questions.

The first transformation rules we consider are those for the bosonizable terms

HB = H ′
kin +

∑
k∈Z3

∗

(
2Qk

1(Pk) +Qk
2(Pk)

)
. (C.0.2)

In this section we prove the following precise statement for these:

Proposition C.0.1. The transformation e−K preserves D(H ′
kin), eKHBe

−K : D(H ′
kin) →

HN is self-adjoint and both HB − H ′
kin and eKHBe

−K − H ′
kin extend to bounded operators

on all of HN .

In words, the transformation of the bosonizable terms does indeed make rigorous sense,
and the tranformation does not generate any “new” unboundedness, in so far as H ′

kin is
the only unbounded part of HB both before and after the transformation.

The second transformation formula we consider is the one concerning QSR. Here we
will prove the following:

Proposition C.0.2. QSRand eKQSRe
−K are well-defined in quadratic form sense on D(H ′

kin)
and eKQSRe

−K −QSR extends to a bounded operator on all of HN .

Due to a technical point we will not verify whether the transformation identity is valid
on an operator level, but it is valid in the quadratic form sense (which is all we apply in
the main text) and again the transformation does not generate any new unboundedness.
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As we are chiefly concerned with qualitative properties of operators in this section, we
will generally estimate rather roughly and not keep track of kF and s dependencies. In
this case the bound of Proposition 5.0.1 can simply be summarized as

∥K∥Op ≤ C
√∑

l∈Z3
∗

∥Kl∥2
HS (C.0.3)

for any operator of the form of equation (C.0.1), since (as also remarked in Section 5)
NE ≤ N ≤ Csk3

F ≤ C ′.

Elaboration on the Well-Definedness of K
On the same note, let us also elaborate on how this bound implies that K is well-defined
- since this is a sum of infinitely many terms, this is not immediately clear, and so the
bound of equation (C.0.3) might only constitute a formal calculation.

The reason this is not so is that Proposition 5.0.1 applies to any operator of the form
of equation (C.0.1), and so if we for R ∈ N define KR by

KR = 1
2

∑
l∈B(0,R)∩Z3

∗

∑
p,q∈Ll

⟨ep, Kleq⟩
(
bl,pb−l,−q − b∗

−l,−qb
∗
l,p

)
, (C.0.4)

i.e. let KR be a cut-off version of K, then this is a priori well-defined, as the summation is
now only over finitely many terms. The bound then certainly applies in this case to show
that

∥KR∥Op ≤ C

√√√√ ∑
l∈B(0,R)∩Z3

∗

∥Kl∥2
HS. (C.0.5)

This implies that if the limit K = limR→∞ KR exists then it obeys the claimed bound.
Existence is however automatically guaranteed by the same argument, as (KR)∞

R=1 is in
fact Cauchy: For any r, R ∈ N, the difference KR − Kr is also of the form of equation
(C.0.1), whence (assuming that r ≤ R for definiteness)

∥KR − Kr∥Op ≤ C

√√√√ ∑
l∈B(0,R)\B(0,r)∩Z3

∗

∥Kl∥2
HS ≤ C

√√√√ ∑
l∈Z3

∗\B(0,r)

∥Kl∥2
HS (C.0.6)

which implies the Cauchy property.
For our argument we considered the particular cut-off sets B(0, R)∩Z3

∗, but an argument
similar to this last one shows that the limit exists for, and is independent of, any particular
exhaustion of Z3

∗, so K is indeed unambigously defined.

C.1 Transformation of Quadratic Operators
We begin by considering the transformation law for quadratic operators. This is greatly
simplified by the fact that these are in fact bounded - not only are

Q1
k(A) =

∑
p,q∈Lk

⟨ep, Aeq⟩ b∗
k,pbk,q (C.1.1)
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Q2
k(B) =

∑
p,q∈Lk

⟨ep, Beq⟩
(
bk,pb−k,−q + b∗

−k,−qb
∗
k,p

)

bounded for any k ∈ Z3
∗ and A,B : ℓ2(Lk) → ℓ2(Lk) simply by virtue of being sums of

finitely many terms of bounded operators, the infinite sums∑k∈Z3
∗
Qk

1(Ak) and∑k∈Z3
∗
Qk

2(Bk)
also define bounded operators, as we claim the following holds:

Proposition C.1.1. For any collections of symmetric operators (Ak), (Bk) and Ψ ∈ HN

it holds that ∣∣∣∣∣∣
∑

k∈Z3
∗

〈
Ψ, Qk

1(Ak)Ψ
〉∣∣∣∣∣∣ ≤

√
3
√∑

k∈Z3
∗

∥Ak∥2
HS ⟨Ψ,NEΨ⟩

∣∣∣∣∣∣
∑

k∈Z3
∗

〈
Ψ, Qk

2(Bk)Ψ
〉∣∣∣∣∣∣ ≤ 2

√
5
√∑

k∈Z3
∗

∥Bk∥2
HS ⟨Ψ, (NE + 1)Ψ⟩ .

Qualitatively this implies that∥∥∥∥∥∥
∑

k∈Z3
∗

Qk
1(Ak)

∥∥∥∥∥∥
Op

≤ C
√∑

k∈Z3
∗

∥Ak∥2
HS,

∥∥∥∥∥∥
∑

k∈Z3
∗

Qk
2(Bk)

∥∥∥∥∥∥
Op

≤ C
√∑

k∈Z3
∗

∥Bk∥2
HS. (C.1.2)

(Here we also use the assumed symmetry of (Ak) and (Bk), though this isn’t necessary.)
The same argument we just illustrated with K thus implies that these sums are well-

defined bounded operators provided the right-hand sides are finite.
Before we turn to the transformation law, let us prove this proposition. First we note

that we have effectively already proven the Qk
2 bound, since we can write

Qk
2(B) =

∑
p,q∈Lk

⟨ep, Beq⟩
(
bk,pb−k,−q + b∗

−k,−qb
∗
k,p

)
= 2 Re

(
Q̃k

2(B)
)

(C.1.3)

for
Q̃k

2(B) =
∑

p,q∈Lk

⟨ep, Beq⟩ bk,pb−k,−q, (C.1.4)

and ∑
k∈Z3

∗
Q̃k

2(Bk) is (up to a factor of 2) of the same form as K̃ in Proposition 5.1.3,
whence∣∣∣∣∣∣

∑
k∈Z3

∗

〈
Ψ, Qk

2(Bk)Ψ
〉∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
∑

k∈Z3
∗

〈
Ψ, Q̃k

2(Bk)Ψ
〉∣∣∣∣∣∣ ≤ 2

√
5
√∑

k∈Z3
∗

∥Bk∥2
HS ⟨Ψ, (NE + 1)Ψ⟩ .

(C.1.5)
The Qk

1 bound follows similarly to how we obtained Proposition 5.1.3 (although simpler,
as there is less computation necessary): Writing

∑
k∈Z3

∗

Qk
1(Ak) =

∑
k∈Z3

∗

∑
p,q∈Lk

⟨ep, Akeq⟩ b∗
k,pbk,q = 1√

s

∑
k∈Z3

∗

σ∑
p,q∈Lk

⟨ep, Akeq⟩ b∗
k,pc

∗
q−k,σcq,σ (C.1.6)
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= 1√
s

σ∑
q∈Bc

F

∑
k∈Z3

∗

∑
p∈Lk

1Lk
(q) ⟨ep, Akeq⟩ b∗

k,pc
∗
q−k,σ

cq,σ

we can bound

∑
k∈Z3

∗

〈
Ψ, Qk

1(Ak)Ψ
〉

= 1√
s

σ∑
q∈Bc

F

〈∑
k∈Z3

∗

∑
p∈Lk

1Lk
(q) ⟨Akeq, ep⟩ cq−k,σbk,p

Ψ, cq,σΨ
〉

(C.1.7)

≤ 1√
s

√√√√√ σ∑
q∈Bc

F

∥∥∥∥∥∥
∑

k∈Z3
∗

∑
p∈Lk

1Lk
(q) ⟨Akeq, ep⟩ cq−k,σbk,pΨ

∥∥∥∥∥∥
2√√√√ σ∑

q∈Bc
F

∥cq,σΨ∥2

= 1√
s

√√√√√ σ∑
q∈Bc

F

∥∥∥∥∥∥
∑

k∈Z3
∗

∑
p∈Lk

1Lk
(q) ⟨Akeq, ep⟩ cq−k,σbk,pΨ

∥∥∥∥∥∥
2√

⟨Ψ,NEΨ⟩

and note that
∑

k∈Z3
∗

∑
p∈Lk

1Lk
(q) ⟨Akeq, ep⟩ cq−k,σbk,p = 1√

s

∑
k∈Z3

∗

τ∑
p∈Lk

1Lk
(q) ⟨Akeq, ep⟩ cq−k,σc

∗
p−k,τcp,τ

= 1√
s

τ∑
p′∈Bc

F

∑
q′,r′∈BF

∑
k∈Z3

∗

∑
p∈Lk

δp,p′δp−k,q′δq−k,r′1Lk
(q) ⟨Akeq, ep⟩

cr′,σc
∗
q′,τcp′,τ (C.1.8)

so that it suffices to consider expressions of the form

1√
s

τ∑
p∈Bc

F

∑
q,r∈BF

Ap,q,rcr,σc
∗
q,τcp,τ . (C.1.9)

We calculate the following commutator:

Lemma C.1.2. For any p, p′ ∈ Bc
F , q, q′, r′, r′ ∈ BF and 1 ≤ σ, τ, τ ′ ≤ s it holds that{(

cr,σc
∗
q,τcp,τ

)∗
, cr′,σc

∗
q′,τ ′cp′,τ ′

}
= δτ,τ ′

p,p′ cr′,σc
∗
q′,τ ′cq,τc

∗
r,σ + δτ,τ ′

q,q′ cr′,σcp′,τ ′c∗
p,τc

∗
r,σ

+ δr,r′c∗
p,τcq,τc

∗
q′,τ ′cp′,τ ′ − δτ,τ

p,p′δ
τ,τ ′

q,q′ cr′,σc
∗
r,σ.

Proof: Repeatedly applying the CAR we find(
cr,σc

∗
q,τcp,τ

)∗
cr′,σc

∗
q′,τ ′cp′,τ ′ = c∗

p,τcq,τc
∗
r,σcr′,σc

∗
q′,τ ′cp′,τ ′

= −c∗
p,τcq,τcr′,σc

∗
r,σc

∗
q′,τ ′cp′,τ ′ + δr,r′c∗

p,τcq,τc
∗
q′,τ ′cp′,τ ′

= −cr′,σc
∗
p,τcq,τc

∗
q′,τ ′cp′,τ ′c∗

r,σ + δr,r′c∗
p,τcq,τc

∗
q′,τ ′cp′,τ ′ (C.1.10)

= cr′,σc
∗
p,τc

∗
q′,τ ′cq,τcp′,τ ′c∗

r,σ − δτ,τ ′

q,q′ cr′,σc
∗
p,τcp′,τ ′c∗

r,σ + δr,r′c∗
p,τcq,τc

∗
q′,τ ′cp′,τ ′

= cr′,σc
∗
q′,τ ′c∗

p,τcp′,τ ′cq,τc
∗
r,σ + δτ,τ ′

q,q′ cr′,σcp′,τ ′c∗
p,τc

∗
r,σ + δr,r′c∗

p,τcq,τc
∗
q′,τ ′cp′,τ ′ − δτ,τ ′

p,p′ δ
τ,τ ′

q,q′ cr′,σc
∗
r,σ

= −cr′,σc
∗
q′,τ ′cp′,τ ′c∗

p,τcq,τc
∗
r,σ + δτ,τ ′

p,p′ cr′,σc
∗
q′,τ ′cq,τc

∗
r,σ + δτ,τ ′

q,q′ cr′,σcp′,τ ′c∗
p,τc

∗
r,σ + δr,r′c∗

p,τcq,τc
∗
q′,τ ′cp′,τ ′
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− δτ,τ
p,p′δ

τ,τ ′

q,q′ cr′,σc
∗
r,σ.

□
The bound on ∑τ

p∈Bc
F

∑
q,r∈BF

Ap,q,rcr,σc
∗
q,τcp,τ now follows:

Proposition C.1.3. Let Ap,q,r ∈ C for p ∈ Bc
F and q, r ∈ BF with ∑p∈BF

∑
q,r∈BF

|Ap,q,r|2 <
∞ be given. Then for any Ψ ∈ HN

1
s

s∑
σ=1

∥∥∥∥∥∥
τ∑

p∈Bc
F

∑
q,r∈BF

Ap,q,rcr,σc
∗
q,τcp,τ Ψ

∥∥∥∥∥∥
2

≤ 3s
∑

p∈Bc
F

∑
q,r∈BF

|Ap,q,r|2 ⟨Ψ,NEΨ⟩ .

Proof: Arguing as in Proposition 5.1.2 and applying the lemma, we estimate

1
s

s∑
σ=1

∥∥∥∥∥∥
τ∑

p∈Bc
F

∑
q,r∈BF

Ap,q,rcr,σc
∗
q,τcp,τ Ψ

∥∥∥∥∥∥
2

≤ 1
s

σ,τ,τ ′∑
p,p′∈Bc

F

∑
q,q′,r,r′∈BF

Ap,q,rAp′,q′,r′

〈
Ψ,
{(
cr,σc

∗
q,τcp,τ

)∗
, cr′,σc

∗
q′,τ ′cp′,τ ′

}
Ψ
〉

= 1
s

σ,τ∑
p∈Bc

F

∥∥∥∥∥∥
∑

q,r∈BF

Ap,q,rcq,τc
∗
r,σΨ

∥∥∥∥∥∥
2

+ 1
s

σ,τ∑
q∈BF

∥∥∥∥∥∥
∑

p∈Bc
F

∑
r∈BF

Ap,q,rc
∗
p,τc

∗
r,σΨ

∥∥∥∥∥∥
2

+ 1
s

σ∑
r∈BF

∥∥∥∥∥∥
τ ′∑

p′∈Bc
F

∑
q′∈BF

Ap′,q′,rc
∗
q′,τ ′cp′,τ ′Ψ

∥∥∥∥∥∥
2

− 1
s

σ,τ∑
p∈Bc

F

∑
q∈BF

∥∥∥∥∥∥
∑

r∈BF

Ap,q,rc
∗
r,σΨ

∥∥∥∥∥∥
2

(C.1.11)

≤ 1
s

σ,τ∑
p∈Bc

F

 ∑
r∈BF

√ ∑
q∈BF

|Ap,q,r|2
∥∥∥c∗

r,σΨ
∥∥∥
2

+ 1
s

σ,τ∑
q∈BF

 ∑
r∈BF

√ ∑
p∈Bc

F

|Ap,q,r|2
∥∥∥c∗

r,σΨ
∥∥∥
2

+ 1
s

σ∑
r∈BF

 τ ′∑
p′∈Bc

F

√ ∑
q′∈BF

|Ap′,q′,r|2 ∥cp′,τ ′Ψ∥

2

≤ (2 + s) ⟨Ψ,NEΨ⟩ ≤ 3s ⟨Ψ,NEΨ⟩ .

□
Applying this to equation (C.1.8) we conclude the desired bound:∑

k∈Z3
∗

〈
Ψ, Qk

1(Ak)Ψ
〉

≤ 1√
s

√√√√√3s
∑

q∈Bc
F

∑
p′∈Bc

F

∑
q′,r′∈BF

∣∣∣∣∣∣
∑

k∈Z3
∗

∑
p∈Lk

δp,p′δp−k,q′δq−k,r′1Lk
(q) ⟨Akeq, ep⟩

∣∣∣∣∣∣
2

⟨Ψ,NEΨ⟩

=

√√√√√3
∑

q∈Bc
F

∑
p′∈Bc

F

∑
q′∈BF

∑
k∈Z3

∗

∣∣∣∣∣∣
∑

p∈Lk

δp,p′δp−k,q′1Lk
(q) ⟨Akeq, ep⟩

∣∣∣∣∣∣
2

⟨Ψ,NEΨ⟩ (C.1.12)



176 C. Careful Justification of the Transformation Formulas

=
√

3
∑

q∈Bc
F

∑
p′∈Bc

F

∑
k∈Z3

∗

∑
p∈Lk

|δp,p′1Lk
(q) ⟨Akeq, ep⟩|2 ⟨Ψ,NEΨ⟩

=
√

3
∑

k∈Z3
∗

∑
p,q∈Lk

|⟨ep, Akeq⟩|2 ⟨Ψ,NEΨ⟩ =
√

3
√∑

k∈Z3
∗

∥Ak∥2
HS ⟨Ψ,NEΨ⟩ .

Justification of the Transformation
We can now justify the transformation. First note that the expression we consider,∑

k∈Z3
∗

(
2Qk

1(Pk) +Qk
2(Pk)

)
, (C.1.13)

defines a bounded operator as

√∑
k∈Z3

∗

∥Pk∥2
HS =

√∑
k∈Z3

∗

∥vk∥4 =

√√√√√∑
k∈Z3

∗

(
sV̂kk

−1
F

2 (2π)3 |Lk|
)2

≤ C
√∑

k∈Z3
∗

V̂ 2
k < ∞, (C.1.14)

where we simply estimate that |Lk| ≤ Ck3
F .

Now we note that the transformation rules of Proposition 4.3.1, i.e.

eK
(
2Qk

1(Tk) + 2Q−k
1 (T−k)

)
e−K = tr

(
T 1

k (1) − Tk

)
+ 2Qk

1

(
T 1

k (1)
)

+Qk
2

(
T 2

k (1)
)

(C.1.15)

+
∫ 1

0
e(1−t)K

(
εk

({
Kk, T

2
k (t)

})
+ 2 Re

(
E1

k

(
T 1

k (t)
))

+ 2 Re
(
E2

k

(
T 2

k (t)
)))

e−(1−t)Kdt+ (k → −k)

and

eK
(
Qk

2(Tk) +Q−k
2 (T−k)

)
e−K = tr

(
T 2

k (1)
)

+ 2Qk
1

(
T 2

k (1)
)

+Qk
2

(
T 1

k (1)
)

(C.1.16)

+
∫ 1

0
e(1−t)K

(
εk

({
Kk, T

1
k (t)

})
+ 2 Re

(
E1

k

(
T 2

k (t)
))

+ 2 Re
(
E2

k

(
T 1

k (t)
)))

e−(1−t)Kdt+ (k → −k)

for

T 1
k (t) = 1

2
(
etKkTke

tKk + e−tKkTke
−tKk

)
(C.1.17)

T 2
k (t) = 1

2
(
etKkTke

tKk − e−tKkTke
−tKk

)
do actually hold without further justification by boundedness1, so it is the summation over
k ∈ Z3

∗ that must be justified. Again we consider a cut-off: The above implies that for any
R ∈ N (taking the Qk

1 case for definiteness)

eK

2
∑

k∈B(0,R)∩Z3
∗

Qk
1(Tk)

e−K

1Strictly speaking, as the E1
k(A) and E2

k(B) operators are also defined as infinite sums (due to the sum
over l in their definition), one should also justify that these are bounded operators. This can be done by
considering limits of cut-offs in l and the kind of estimation we perform in Section 7 - we omit the details.
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=
∑

k∈B(0,R)∩Z3
∗

tr
(
T 1

k (1) − Tk

)
+ 2

∑
k∈B(0,R)∩Z3

∗

Qk
1

(
T 1

k (1)
)

+
∑

k∈B(0,R)∩Z3
∗

Qk
2

(
T 2

k (1)
)

(C.1.18)

+
∑

k∈B(0,R)∩Z3
∗

∫ 1

0
e(1−t)K

(
εk

({
Kk, T

2
k (t)

})
+ 2 Re

(
E1

k

(
T 1

k (t)
))

+ 2 Re
(
E2

k

(
T 2

k (t)
)))

e−(1−t)Kdt

and we must argue that the limit R → ∞ is well-defined. By Proposition C.1.1 and the
estimates of Section 7 this is assured if (for j = 1, 2)

∑
k∈Z3

∗

∣∣∣tr(T 1
k (1) − Tk

)∣∣∣ , ∑
k∈Z3

∗

∥T j
k (1)∥2

HS < ∞ (C.1.19)

and∑
k∈Z3

∗

sup
p∈Lk

∣∣∣〈ep,
{
Kk, T

j
k (t)

}
ep

〉∣∣∣ , ∑
k∈Z3

∗

∑
p∈Lk

max
q∈Lk

∣∣∣〈ep, T
j
k (t)eq

〉∣∣∣2 , ∑
k∈Z3

∗

∥T j
k (t)h− 1

2
k ∥2

HS < ∞.

(C.1.20)
In our particular case Tk = Pk and P 1

k (t), P 2
k (t) can be written as

P 1
k (t) = Pk + 1

2P
+
k (t) + 1

2P
−
k (t), P 2

k (t) = 1
2P

+
k (t) − 1

2P
−
k (t), (C.1.21)

for
P±

k = e±tKkPke
±tKk − Pk. (C.1.22)

Arguing as in Proposition 6.2.1 (which really concerns P+
k (t)) one can see that∣∣∣〈ep, P

±
k (t)eq

〉∣∣∣ ≤ CV̂ 2
k (C.1.23)

independently of t, and naturally |⟨ep, Pkeq⟩| ≤ CV̂k which implies finiteness of the sums
above.

In conclusion:

Proposition C.1.4. The expression ∑
k∈Z3

∗

(
2Qk

1(Pk) +Qk
2(Pk)

)
defines a bounded opera-

tor on HN and it holds that

eK

∑
k∈Z3

∗

(
2Qk

1(Pk) +Qk
2(Pk)

)e−K

=
∑

k∈Z3
∗

tr
(
P 1

k (1) + P 2
k (1) − Pk

)
+
∑

k∈Z3
∗

(
2Qk

1

(
P 1

k (1) + P 2
k (1)

)
+Qk

2

(
P 1

k (1) + P 2
k (1)

))

+
∑

k∈Z3
∗

∫ 1

0
e(1−t)K

(
εk

({
Kk, P

1
k (t) + P 2

k (t)
})

+ E1
k

(
P 1

k (t) + P 2
k (t)

)
+ E2

k

(
P 1

k (t) + P 2
k (t)

))
e−(1−t)Kdt

with the right-hand side likewise defining a bounded operator.
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C.2 Transformation of H ′
kin

We now come to H ′
kin. As this is a proper unbounded operator we must exercise more care

in working with this than we did with the quadratic operators.
To work with H ′

kin we will apply the following general result, which we prove in appendix
section A.3:

Proposition (A.3.1). Let X be a Banach space, A : D(A) → X be a closed operator and let
K : X → X be a bounded operator which preserves D(A). Suppose that AK : D(A) → X
is A-bounded.

Then for every z ∈ C the operator ezK : X → X likewise preserves D(A) and
ezKAe−zK : D(A) → X is closed. If additionally X is a Hilbert space, A is self-adjoint and
K is skew-symmetric then etKAe−tK is self-adjoint for all t ∈ R.

Furthermore, for every x ∈ D(A) the mapping z 7→ ezKAe−zKx is complex differentiable
and C1 with

d

dz
ezKAe−zKx = ezK [K,A] e−zKx.

To apply the result we must show that K preserves D(H ′
kin) and that H ′

kinK is H ′
kin-

bounded. To do this we will work with the cut-off operators KR, and obtain the corre-
sponding results for K by the following lemma:

Lemma C.2.1. Let X be a Banach space, A : D(A) → X be a closed operator and
(Bk)∞

k=1 ⊂ B(X) a collection of bounded operators such that Bk → B ∈ B(X) (in norm).
Suppose that all Bk preserve D(A) and that the commutators [Bk, A] : D(A) → X

converge pointwise to some C : D(A) → X.
Then B also preserves D(A) and [B,A] = C.

Proof: Let x ∈ D(A) be arbitrary. Then Bkx → Bx by assumption, and likewise

ABkx = BkAx− [Bk, A]x → BAx− Cx. (C.2.1)

It follows by closedness of A that Bx ∈ D(A), i.e. that B preserves D(A), and that

ABx = BAx− Cx (C.2.2)

i.e. [B,A] = C.
□

We consider the operators KR. For this we require another general result:

Lemma C.2.2. Let A : D(A) → X be a closed operator with core C and let K : X → X
be a bounded operator which maps C into D(A). Suppose that AK|C : C → X is A|C-
bounded. Then K preserves D(A) and AK : D(A) → X is A-bounded (with the same
relative bounds).
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Proof: Let x ∈ D(A) be arbitrary. As C is a core for A, there exists a sequence (xk)∞
k=1 ⊂ C

such that
xk → x and Axk → Ax, k → ∞. (C.2.3)

Since K is bounded, Kxk → Kx, and as AK|C is A|C-bounded, the fact that (Axk)∞
k=1

converges implies that (AKxk)∞
k=1 also converges. By closedness of A it then follows that

Kx ∈ D(A) and AKxk → AKx. The first statement shows that K indeed preserves
D(A), while the second implies that AK : D(A) → X is A-bounded, since if ∥AKx′∥ ≤
a ∥Ax′∥ + b ∥x′∥ for x′ ∈ C then also

∥AKx∥ = lim
k→∞

∥AKxk∥ ≤ lim sup
k→∞

(a ∥Axk∥ + b ∥xk∥) = a ∥Ax∥ + b ∥x∥ (C.2.4)

for x ∈ D(A).
□

We can now prove that [KR, H
′
kin] behaves as expected:

Proposition C.2.3. For any R ∈ N it holds that KR preserves D(H ′
kin) and

[KR, H
′
kin] =

∑
k∈B(0,R)∩Z3

∗

Qk
2({Kk, hk})

∣∣∣∣∣∣∣
D(H′

kin)
.

Proof: First we note that KR maps ∧N
alg H

2(T3;Cs), which is a core for H ′
kin, into D(H ′

kin):
The operator bk,p can be written as

bk,p = 1√
s

s∑
σ=1

c∗
p−k,σcp,σ = 1√

s

s∑
σ=1

∑
p′,q′∈Z3

δp′,p−kδq′,pc
∗
p′,σcq′,σ

= 1√
s

s∑
σ=1

τ,τ ′∑
p′,q′∈Z3

⟨up′,τ , up−k,σ⟩ ⟨up,σ, uq′,τ ′⟩ c∗
p′,τcq′,τ ′ (C.2.5)

= 1√
s

s∑
σ=1

τ,τ ′∑
p′,q′∈Z3

〈
up,τ , P

(σ)
p−k,puq′,τ ′

〉
c∗

p′,τcq′,τ ′ = 1√
s

s∑
σ=1

dΓ
(
P

(σ)
p−k,p

)

where P (σ)
p−k,p = |up−k,σ⟩ ⟨up,σ|. Now, dΓ

(
P

(σ)
p−k,p

)
preserves ∧N

alg H
2(T3;Cs) for any k, p ∈ Z3

and 1 ≤ σ ≤ s, as P (σ)
p−k,p simply takes an inner product and projects onto up,σ ∈ H2(T3;Cs),

so bk,p likewise preserves ∧N
alg H

2(T3;Cs). The same argument applies to b∗
k,p, so as a finite

sum of products of operators which preserve ∧N
alg H

2(T3;Cs), KR also preserves this, hence
certainly maps it into D(H ′

kin) = D(Hkin) = ∧N H2(T3;Cs).
Having established that H ′

kinKR is well-defined on ∧N
alg H

2(T3;Cs), we note that the
calculation we performed in Proposition 4.2.4 shows that

[KR, H
′
kin] =

∑
k∈B(0,R)∩Z3

∗

Qk
2({Kk, hk}), (C.2.6)
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at least on this domain. It follows that H ′
kinKR is H ′

kin-bounded here, since for any Ψ ∈∧N
alg H

2(T3;Cs)

∥H ′
kinKRΨ∥ ≤ ∥KRH

′
kinΨ∥ + ∥[KR, H

′
kin] Ψ∥ ≤ ∥KR∥Op ∥H ′

kinΨ∥ + ∥[KR, H
′
kin]∥Op ∥Ψ∥ .

(C.2.7)
Lemma C.2.2 now implies that KR in fact preserves all of D(H ′

kin) and the commutator
identity continues to hold.

□
We can now extend this to K proper:

Proposition C.2.4. K preserves D(H ′
kin), the commutator

[K, H ′
kin] =

∑
k∈Z3

∗

Qk
2({Kk, hk})

∣∣∣∣∣∣
D(H′

kin)

extends to a bounded operator on all of HN , and H ′
kinK is H ′

kin-bounded.

Proof: By Lemma C.2.1 it only remains to be shown that limR→∞
∑

k∈B(0,R)∩Z3
∗
Qk

2({Kk, hk})
exists on D(H ′

kin). In fact this exists everywhere, since Proposition C.1.1 says that this is
ensured if ∑k∈Z3

∗
∥{Kk, hk}∥2

HS < ∞, and by the one-body operator estimates of Section 6,

∥{Kk, hk}∥2
HS =

∑
p,q∈Lk

|⟨ep, {Kk, hk} eq⟩|2 =
∑

p,q∈Lk

|(λk,p + λk,q) ⟨ep, Kkeq⟩|2

≤
∑

p,q∈Lk

∣∣∣∣∣(λk,p + λk,q)
⟨ep, vk⟩ ⟨vk, eq⟩
λk,p + λk,q

∣∣∣∣∣
2

=
∑

p∈Lk

|⟨ep, vk⟩|2
2

(C.2.8)

=
∑

p∈Lk

sV̂kk
−1
F

2 (2π)3

2

≤ C
(
V̂k |Lk|

)2
≤ C ′V̂ 2

k , k ∈ Z3
∗.

□
Proposition A.3.1 now gives us the following:

Corollary C.2.5. The operator etKH ′
kine

−tK : D(H ′
kin) → HN is a well-defined, self-adjoint

operator for all t ∈ R, and for any Ψ ∈ D(H ′
kin) it holds that

d

dt
etKH ′

kine
−tKΨ = etK [K, H ′

kin] e−tKΨ =
∑

k∈Z3
∗

etKQk
2({Kk, hk})e−tKΨ

and this is continuous in t.

We now have all the necessary prerequisites to carefully implement Proposition 4.3.2:

Proposition C.2.6. The statement of Proposition 4.3.2 holds pointwise on D(H ′
kin) and

eKH ′
kine

−K −H ′
kin extends continuously to all of HN .
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Proof: For any R ∈ N, ∑k∈B(0,R)∩Z3
∗
Qk

1(hk) defines a bounded operator. Given Ψ ∈
D(H ′

kin) we can then conclude by the corollary that

d

dt
etK

H ′
kin − 2

∑
k∈B(0,R)∩Z3

∗

Qk
1(hk)

e−tKΨ

= etK

∑
k∈Z3

∗

Qk
2({Kk, hk}) −

∑
k∈B(0,R)∩Z3

∗

[
K, Qk

1(hk)
]e−tKΨ (C.2.9)

= etK

 ∑
k∈Z3

∗\B(0,R)

Qk
2({Kk, hk}) −

∑
k∈B(0,R)∩Z3

∗

2 Re
(
E1

k (hk)
)e−tKΨ,

which upon rearrangement reads

d

dt
etKH ′

kine
−tKΨ = d

dt
etK

2
∑

k∈B(0,R)∩Z3
∗

Qk
1(hk)

e−tKΨ (C.2.10)

+ etK

 ∑
k∈Z3

∗\B(0,R)

Qk
2({Kk, hk}) −

∑
k∈B(0,R)∩Z3

∗

2 Re
(
E1

k (hk)
)e−tKΨ.

As the corollary also ensures that this is continuous in t, hence Riemann integrable, the
fundamental theorem of calculus together with equation (C.1.18) shows that

eKH ′
kine

−KΨ

= H ′
kinΨ + eK

2
∑

k∈B(0,R)∩Z3
∗

Qk
1(hk)

e−KΨ − 2
∑

k∈B(0,R)∩Z3
∗

Qk
1(hk)Ψ

+
∫ 1

0
etK

 ∑
k∈Z3

∗\B(0,R)

Qk
2({Kk, hk}) −

∑
k∈B(0,R)∩Z3

∗

2 Re
(
E1

k (hk)
)e−tKΨdt (C.2.11)

=
∑

k∈B(0,R)\Z3
∗

tr
(
h1

k(1) − hk

)
Ψ +H ′

kinΨ +
∑

k∈B(0,R)\Z3
∗

(
2Qk

1

(
h1

k(1) − hk

)
+Qk

2

(
h2

k(1)
))

Ψ

+
∑

k∈B(0,R)\Z3
∗

∫ 1

0
e(1−t)K

(
εk

({
Kk, h

2
k(t)

})
+ 2 Re

(
E1

k

(
h1

k(t) − hk

))
+ 2 Re

(
E2

k

(
h2

k(t)
)))

e−(1−t)KΨdt

+
∑

k∈Z3
∗\B(0,R)

∫ 1

0
etKQk

2({Kk, hk})e−tKΨdt.

The formula of Proposition 4.3.2 now follows provided we can take R → ∞. As in the
previous subsection, this is possible if various sums involving the one-body operators h1

k(t)
and h2

k(t) are finite - but with respect to the notation in Section 6,

h1
k(t) − hk = Ahk

(t), h2
k(t) = Bhk

(t) − tPvk
, (C.2.12)
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and the bounds derived in that section for these operators yield the desired estimates. The
same bounds also imply the boundedness of eKH ′

kine
−K −H ′

kin by the same argument.
□

C.3 Transformation of QSR

For the short-range quartic terms

QSR = k−1
F

2 (2π)3
∑

k∈Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

c∗
p+k,σc

∗
q,τcq+k,τcp,σ (C.3.1)

we will switch our argument around and rather than cutting-off K, cut-off QSR instead,
and so consider for R ∈ N the bounded operators

Q(R)
SR = k−1

F

2 (2π)3
∑

k∈B(0,R)∩Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

cp+k,σcq,τcq+k,τcp,σ. (C.3.2)

Now, we would like to say that QSRΨ = limR→∞ Q(R)
SR Ψ for any Ψ ∈ D(H ′

kin), but here
arises a technical point: How is QSRΨ defined? We obtained QSR by manipulating the
second-quantized form of HN , but a priori the action of this representation need only
be defined for elements of ∧N

alg H
2(T3;Cs), with the general action captured by extension

arguments. Manipulating such forms can therefore be a delicate issue (had we not included
the additional quadratic terms in our definition of Q, for instance, this would not be a well-
defined operator, as an unavoidable infinity then appears for unbounded V ).

We must therefore clarify what we mean by QSR. We note the following:

Proposition C.3.1. Let ∑k∈Z3
∗
V̂ 2

k < ∞. Then for any Ψ ∈ D(H ′
kin) = D(Hkin) it holds

that ∣∣∣〈Ψ,Q(R)
SR Ψ

〉∣∣∣ ≤ C
(
∥Ψ∥2 + ∥HkinΨ∥2

)
for a C > 0 independent of R.

Proof: By Cauchy-Schwarz and the triangle inequality in the form |k| = |p+ k − p| ≤
|p+ k| + |p| we can estimate

∣∣∣〈Ψ,Q(R)
SR Ψ

〉∣∣∣ ≤ k−1
F

2 (2π)3
∑

k∈B(0,R)∩Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

∥cq,τcp+k,σΨ∥ ∥cq+k,τcp,σΨ∥ (C.3.3)

≤ C
∑

k∈B(0,R)∩Z3
∗

V̂k

σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

|p| + |p+ k|
|k|

|q| + |q + k|
|k|

∥cq,τcp+k,σΨ∥ ∥cq+k,τcp,σΨ∥

≤ C
∑

k∈B(0,R)∩Z3
∗

V̂k

|k|2
σ,τ∑

p,q∈Bc
F ∩(Bc

F −k)
(|p| |q| + |p| |q + k|) ∥cq,τcp+k,σΨ∥ ∥cq+k,τcp,σΨ∥
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where we apply the symmetry of the summations to reduce the consideration of

(|p| + |p+ k|)(|q| + |q + k|) (C.3.4)

to the two terms |p| |q| and |p| |q + k|. For the first kind of terms we bound as
σ,τ∑

p,q∈Bc
F ∩(Bc

F −k)
|p| |q| ∥cq,τcp+k,σΨ∥ ∥cq+k,τcp,σΨ∥

≤

√√√√√ σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

|p|2 ∥cq+k,τcp,σΨ∥2

√√√√√ σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

|q|2 ∥cq,τcp+k,σΨ∥2 (C.3.5)

≤
σ∑

p∈Bc
F ∩(Bc

F −k)
|p|2 ∥N

1
2

E cp,σΨ∥2 ≤ C
σ∑

p∈Bc
F ∩(Bc

F −k)
|p|2 ∥cp,σΨ∥2

≤ C∥H
1
2
kinΨ∥2 ≤ C

(
∥Ψ∥2 + ∥HkinΨ∥2

)
.

For the second, observe that in the same manner one can show that ∑s
σ=1 ∥N

1
2

E cp,σΨ∥2 ≤∑s
σ=1 ∥cp,σN

1
2

E Ψ∥2, as noted in equation (7.1.18), it follows that
s∑

σ=1
∥H

1
2
kincp,σΨ∥2 ≤

s∑
σ=1

∥cp,σH
1
2
kinΨ∥2. (C.3.6)

We may then estimate
σ,τ∑

p,q∈Bc
F ∩(Bc

F −k)
|p| |q + k| ∥cq,τcp+k,σΨ∥ ∥cq+k,τcp,σΨ∥

≤

√√√√√ σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

|p|2 |q + k|2 ∥cq+k,τcp,σΨ∥2

√√√√√ σ,τ∑
p,q∈Bc

F ∩(Bc
F −k)

∥cq,τcp+k,σΨ∥2 (C.3.7)

≤

√√√√√ σ∑
p∈Bc

F ∩(Bc
F −k)

|p|2 ∥H
1
2
kincp,σΨ∥ ∥NEΨ∥ ≤ C ∥Ψ∥ ∥HkinΨ∥ ≤ C

(
∥Ψ∥2 + ∥HkinΨ∥2

)
,

so in all

|⟨Ψ,QSRΨ⟩| ≤ C

 ∑
k∈B(0,R)∩Z3

∗

V̂k

|k|2

(∥Ψ∥2 + ∥HkinΨ∥2
)

(C.3.8)

≤ C
√∑

k∈Z3
∗

V̂ 2
k

√∑
k∈Z3

∗

|k|−4
(
∥Ψ∥2 + ∥HkinΨ∥2

)
≤ C

(
∥Ψ∥2 + ∥HkinΨ∥2

)
.

□
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By the proposition (or rather, its argument) it follows as we have used repeatedly
throughout this section that for any Ψ ∈ D(H ′

kin), the sequence
(〈

Ψ,Q(R)
SR Ψ

〉)∞

R=1
is

Cauchy, hence converges, and so we can define QSR in quadratic form sense on all of
D(H ′

kin) by this limiting procedure2.
Having clarified QSR, the transformation formula now follows by the calculations of the

main text: For any R ∈ N we have

eKQ(R)
SR e

−K = Q(R)
SR +

∫ 1

0
etK
(
2 Re

(
G(R)

))
etKdt (C.3.9)

where G(R) is given by

G(R) = s− 1
2k−1

F

(2π)3
∑

k∈B(0,R)∩Z3
∗

∑
l∈Z3

∗
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1Ll
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+ s−1k−1
F
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1Ll
(p)1Ll
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∗
−q+l,τc−q+k,τcp−k,σ.

The same estimates used in Proposition 8.1.4 now apply to show G(R) → G in norm as
R → ∞, so for any Ψ ∈ D(H ′

kin)〈
Ψ, eKQSRe

−KΨ
〉

= lim
R→∞

〈
Ψ, eKQ(R)

SR e
−KΨ

〉
= lim

R→∞

(〈
Ψ,Q(R)

SR Ψ
〉

+
∫ 1

0

〈
Ψ, etK

(
2 Re

(
G(R)

))
etKΨ

〉
dt
)

(C.3.10)

= ⟨Ψ,QSRΨ⟩ +
∫ 1

0

〈
Ψ, etK(2 Re(G))etKΨ

〉
dt

which is the claim.

2The cubic terms C arguably warrant a similar justification, but this can be handled by the same kind
of arguments we have just used, so we omit this.
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