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ABSTRACT

ABSTRACT

Increasingly frequent extreme weather and climate events, such as droughts or floods,
represent one of the greatest global risks of the future. They have already led to acute
food insecurity and water shortages. While droughts occur more frequently and also
expand in area, strong inter-annual fluctuations in precipitation and more frequent
extreme precipitation can occur. Africa is severely affected by the impacts of climate
change, both on its environment and population. Examples range from lower agricultural
yields, livestock health to malnutrition among the most vulnerable population. In this
regard, rural households are more vulnerable and thus more affected by the impacts of
climate change. They are heavily dependent on natural resources such as water and land.
Most rural African communities depend on yields from rain-fed agriculture, while
agriculture is one of Africa's most important economic sectors, accounting for more than
half of the continent's gross domestic product. Not only have negative impacts of climate
change already been identified in the past, but they are equally projected into the future.
Communities in arid and semi-arid areas in sub-Saharan Africa are particularly
vulnerable, where lower yields reflect one of the main causes of food shortages and
malnutrition. Similarly, transhumance with its seasonally migrating pastoralists is directly
affected by the increasing climatic variability. Herders with their livestock are dependent
on natural resources such as water and pasture and thus highly vulnerable to droughts. A
correlation between droughts and livestock deaths has been noted in the past. Armed
conflicts between local smallholder farmers and pastoralists over natural resources, which
are further exacerbated by drought-induced water scarcity, represent an already
increasing risk.

These climate change related risks and their impacts highlight the need for large-scale
monitoring of the environmental aspects in support of local communities. In this regard,
remote sensing with its recent technological advances, mainly through high-resolution
data with shorter revisit cycles of satellites and global data availability, plays a crucial
role.

This thesis investigates how Earth Observation can be used to assess risks to food
security, health, and livelihoods from different perspectives. Droughts, surface water
availability, and analyses of transhumance and smallholder farmers are discussed. In my
first paper, a spatially transferable drought model to detect regional drought conditions
for rangelands and croplands is presented, reflecting local drought probability,
vulnerability, and risk. Water is one of the most important natural resources for
agriculture and transhumance, so reliable monitoring and detection of water surfaces is

crucial. Another study therefore compared different surface water detection algorithms to

il
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provide an assessment of their performances and to identify the most promising methods,
including their limitations and advantages. In the third paper of my thesis, a monitoring
system for the environmental suitability of transhumance is presented. A conceptual
framework was created to support prevention and mitigation of conflicts between
pastoralists and local farmers and to better plan and manage transhumance. In addition, a
remote sensing-based crop yield model at the field level was developed as presented in
my last paper. The high-resolution crop yield estimates show variability within and
between individual fields and are based on a unique three-year training dataset. The study
provides important results for public health studies and adaptation options.

Overall, this work has developed, tested and demonstrated satellite-based monitoring
systems that support livelihoods, through analyzing aspects of food security among local
populations and environmental resources in Africa. It highlights potential decision
support tools for policy makers and it demonstrates how satellite data can be linked and

effectively being used for multiple applications in the future.
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ZUSAMMENFASSUNG

Die in ihrer Haufigkeit steigenden extremen Wetter- und Klimaereignisse wie Diirren
oder Uberflutungen stellen global eines der groften Risiken der Zukunft dar. Sie fiihrten
bereits zu akuter Erndhrungsunsicherheit und Wasserknappheit. Wéhrend Diirren
héufiger auftreten werden und sich auch flichenmiBig ausdehnen, treten starke
zwischenjédhrliche Schwankungen des Niederschlags und haufigere Extremniederschlige
auf. GroBe Teile Afrikas sind dabei besonders von den Auswirkungen des Klimawandels
auf seine Umwelt und Bevdlkerung betroffen. Beispiele fithren von geringeren Ertragen
in der Landwirtschaft, {iber die Gesundheit der Nutztiere zu Untererndhrung in der
Bevolkerung. Dabei sind ldndliche Haushalte anfilliger und somit stirker von den
Auswirkungen des Klimawandels betroffen. Sie sind stark abhéngig von natiirlichen
Ressourcen wie Wasser und Land und in hohem Malle von Ertrigen des Regenfeldbaus
abhédngig. Landwirtschaft ist einer der wichtigsten wirtschaftlichen Sektoren Afrikas und
stellt mehr als die Hélfte des mittleren Bruttoinlandproduktes des Kontinents dar. Dabei
wurden nicht nur bereits in der Vergangenheit negative Auswirkungen des Klimawandels
festgestellt, sondern sie werden auch gleichermallen in die Zukunft prognostiziert. Dabei
sind speziell Bevolkerungsgruppen in ariden und semiariden Gebieten in Sub-Sahara
Afrika betroffen, wo niedrigere Ertrdge einen der Hauptgriinde fiir Nahrungsknappheit
und Untererndhrung darstellen. Gleichermallen ist die Transhumanz mit den saisonal
migrierenden Hirten direkt von den Auswirkungen des Klimawandels betroffen, da sie
hochgradig abhidngig von natiirlichen Ressourcen wie Wasser und Weideland sind. In der
Vergangenheit wurde bereits eine Korrelation zwischen Diirren und Tiersterblichkeit
festgestellt. Ein weiteres Risiko stellen bewaffnete Konflikte zwischen lokalen
Kleinbauern und wandernden Pastoralisten dar, die um natiirliche Ressourcen
konkurrieren, was durch die von Diirren verursachte Wasserknappheit weiter verstirkt
wird.

Die durch den Klimawandel verursachten Risiken und deren Auswirkungen auf die
Lebensgrundlagen der Bevdlkerung im lidndlichen Afrika machen deutlich, dass ein
groBflichiges Monitoring umweltrelevanter Aspekte nétig ist. Dabei stellt die
Fernerkundung zusammen mit ihren jiingsten technologischen Fortschritten ein wichtiges
Instrument dar. Hoch aufgeldste Daten in hoher zeitlicher Frequenz und deren globale
Verfiigbarkeit spielen dabei eine entscheidende Rolle.

In dieser Arbeit sollen die betrachten Risiken in Bezug auf Nahrungssicherung,
Gesundheit und Lebensgrundlagen mittels Methoden der Erdbeobachtung betrachtet
werden. Dabei stehen Diirren, die Verfligbarkeit von Oberflichenwasser und Analysen

der Transhumanz sowie die landwirtschaftlichen Ertrige von Kleinbauern im Fokus. In
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meiner ersten Publikation, wird ein rdumlich iibertragbares Diirremodell zur Erkennung
von regionalen Diirren vorgestellt, dass die oOrtliche Diirrewahrscheinlichkeit, -
vulnerabilitét und das Diirrerisiko wiedergibt. Wasser ist eine der wichtigsten natiirlichen
Ressourcen fiir die Landwirtschaft und Transhumanz, weshalb ein zuverlédssiges
Monitoring und Erkennen von Wasserflichen von entscheidender Bedeutung ist. Daher
wurden in einer weiteren Studie verschiedene Algorithmen zur Erkennung von
Oberflichenwasser verglichen, um einen Uberblick iiber deren Aussagekraft zu erhalten.
Die dritte Publikation stellt ein Monitoringsystem der umweltbedingten Eignung fiir
Transhumanz vor, welches ein Tool sowohl zur Unterstiitzung der Konfliktvorbeugung
und -minderung als auch zur Planung und zum Management von Transhumanz darstellen
kann. In der letzten hier vorgestellten Studie wurden Ernteertragsmodelle der
Hauptfruchtarten fiir kleinste landwirtschaftliche Flichen entwickelt. Die
hochaufgeldsten Ernteertragsabschéitzungen zeigen die teilschlagspezifische Variabilitit
sowie die Variabilitdt der Ertrdge zwischen verschiedenen Feldern, wobei die Modelle
auf einem einzigartigen dreijdhrigen Trainingsdatensatz basieren. Die Studie liefert
wichtige Ergebnisse fiir Studien der Erndhrungssicherung, der Gesundheit und zu
Anpassungsmdglichkeiten.

Insgesamt konnten in dieser Arbeit satellitenbasierte Monitoringsysteme entwicklet,
getestet und demonstriert werden, die die Lebensgrundlagen der lokalen Bevolkerung
verbessern konnen, da sie Aspekte der Erndhrungssicherung und der natiirlichen
Ressourcen in Afrika beleuchten. Die Arbeit stellt neue Moglichkeiten potentieller
Entscheidungshilfen fiir politische Entscheidungstriger vor und diskutiert wie
Satellitendaten in  Zukunft verknlipft werden wund effektiv fiir mehrere

Anwendungsbereiche genutzt werden konnen.
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1. Introduction

1. Climate change and its effects on livelihoods in Africa

Climate change and its far-reaching consequences represent one of the most significant
current and future problems for the Earth. Emerging changes in climate patterns and
increased frequency of extreme weather events are just two future projections of the
effects (IPCC, 2013). These increasing weather and climate extreme events have already
been observed and have led to acute food insecurity and reduced water security (IPCC,
2022; Myers et al., 2017). Africa represents one of the places with the largest impact of
climate change on locations and communities. Changes in ecosystem structures,
especially terrestrial ecosystems and freshwater, have already taken place. They resulted
in water scarcity, reductions in crop production and livestock health, increased
malnutrition, and damage to key economic sectors, which has additionally worsened due
to floods and drought (IPCC, 2022). Drought areas in East Africa will likely increase
according to simulations based on Representative Concentration Pathways (RCPs). Area
growths of 16 %, 36 %, and 54 % (RCPs 2.6, 4.5, and 8,5 respectively) are predicted
towards the end of the 21 century, while areas with extreme drought are set to increase
more rapidly than severe and moderate droughts (Haile et al., 2020). West Africa is
similarly exposed to climate change through strong inter-annual precipitation variability,
an increased frequency of rainfall extremes, and prolonged droughts (Salack et al., 2016;
Sultan et al., 2019). Climate change projections show a continuing warming trend with
increasing aridity and frequent occurrences of extreme heat events (Serdeczny et al.,
2017). Heat-related child mortality has already doubled in 2009 in comparison to a
scenario without climate change (Chapman et al., 2022). According to the
Intergovernmental Panel on Climate Change (IPCC) (2022), mid- to long-term risks
(2041 - 2100) include increasing pressure on food production and access as well as food
security risks resulting in more severe malnutrition in Sub-Saharan Africa (SSA) with
2°C or higher global warming levels (Grolleaud, 2020; IPCC, 2022; Myers et al., 2017).
Additional future risks for Africa are freshwater loss, loss of livelihoods due to reduced
food production from crops and livestock, reduced economic output and growth, and an
increased risk to water security due to drought and heat (IPCC, 2022).

While facing all these risks, Africa and especially West-, Central-, and East Africa are
the hotspots most vulnerable to climate change (IPCC, 2014, 2022). A study in South
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Africa furthermore showed that rural households are more susceptible to climate change
than urban households (Leocadia Zhou et al., 2022). While poverty has been identified as
the greatest limit to adaption, rural areas are more vulnerable in contrast to urban areas in
all three vulnerability aspects: exposure, sensitivity, and adaptive capacity. People living
in rural environments rely more heavily on climate-sensitive resources, as agriculture for
example (crops and livestock combined) needs natural resources like land and water
(Leocadia Zhou et al., 2022). Rainfed agriculture, which is dominant in West Africa, is
therefore highly vulnerable to Climate Change (Carr et al., 2022).

Agriculture, in general, is one of the most important economic sectors in Africa as it adds
up to 55% of Africa’s Gross Domestic Product (GDP) (AGRA, 2017). It is the base for
food security and livelihood as 85 % of the population relies on rain-fed agriculture (Shah
et al., 2008). The IPCC states with a high level of confidence, that the overall effect of
climate change on yields of the major cereal crops in the African region is very likely to
be negative, with a strong regional variation (Niang et al., 2014). Edame et al. (2011) also
stated that agriculture is a vulnerable sector, that is exposed to the impacts of climate
change and climate variability. Seasonal changes in precipitation and temperature in
addition to their varying severity will negatively impact crop production and food security
also due to the overreliance on rainfed agriculture (Kogo et al., 2021). Especially
vulnerable are communities in arid and semi-arid areas (Kogo et al., 2021). Carr et al.
(2022) revealed that yields declined by 6 % (median) for all major staple crops they
analyzed due to climate change in all considered scenarios. Lower crop yields are also a
prominent driver of food insecurity and child malnutrition, especially among rural
smallholder farmers in SSA (FAO et al., 2019; Grolleaud, 2020; Myers et al., 2017).
Common adaption strategies like optimized planting dates or cultivars, however, could
increase yields that are affected by climate change by 13 % (Carr et al., 2022). Carr et al.
(2022) also state that a combination of fertilizers and adopted cropping practices is needed
to enhance future crop production. Kogo et al. (2021) support this statement by saying
that crop production and food security systems need more adaptation as future projections
show a high population growth and urbanization rate. Together with higher climate
variability this will lead to the altering of cropping patterns and yield.

Pastoral systems are also highly affected by climate change. The pastoral systems of the
drylands in the Sahel, for example, are highly dependent on natural resources including

pasture, fodder, forest products, and water, all of which are directly affected by climate
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variability (Djoudi et al., 2013). Livestock is also vulnerable to drought, particularly
where it depends on local biomass production (Masike & Ulrich, 2018). Thornten et al.
(2009) already found a strong correlation between drought and animal death in the past.

Adding to these climate risks, conflicts over natural resources arose between farmers and
herders and have increased over the past two decades (Ayana et al., 2016). Especially
conflicts due to drought and water tensions have become widespread in the Sahel (Ayana
et al., 2016; Puig Cepero et al., 2021). These conflicts represent an additional health risk

to all the climate change-related risks above.

2. Droughts and water availability
Droughts are affecting livelihoods in Africa in many different ways - from a lack of
drinking water to damaged crops and food insecurity. In the following, some definitions

of droughts are provided and their aspects are described in more detail.

2.1. Definition of droughts

A missing accurate and universally accepted drought definition led to confusion and
disagreement in drought research in the past (Dracup et al., 1980). Even in recent years,
there was no single definition of drought. Mishra and Singh (2010) define droughts as
natural hazards that create problems for activities, groups, and environmental sectors
through water deficits over an extended period of time. Sheffield and Wood (2007), on
the other hand, describe a drought as a continuous period in which soil moisture remains
below the twentieth percentile on a monthly scale. Heim (2002) states that droughts are
viewed by the remote sensing community as a period of abnormally low precipitation that
alters vegetation conditions. Defining the beginning and end of droughts is additionally
problematic because the effects of droughts often accumulate slowly over a considerable
period of time (Tannehill, 1949). In the process, economic, social, and natural impacts
occur, which is why droughts can be characterized by economic, social, and
environmental bifurcation (Owrangi et al., 2011). In general, drought can be described as
a recurrent climatic process that affects all climatic regions of the world (Sivakumar et
al., 2011; Wilhite, 2000a) and is the consequence of a natural reduction in precipitation
over an extended period of time. In this context, the severity of droughts can be influenced

by the interaction with other climate factors (Sivakumar et al., 2011).
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Despite the difficulty of defining droughts universally, they can be divided into four broad
categories. In 1997, the American Meteorological Society (Heim, 2002) divided them
into meteorological, agricultural, hydrological, and socio-economic droughts. These four
types have become established in drought science (FAO & NDMC, 2008; Wilhite et al.,
2007). Here, meteorological drought is defined as a negative rainfall deviation, relative
to the normal or expected value, over an extended period of time (Sivakumar et al., 2011).
Agricultural droughts are characterized by prolonged deficits in soil moisture leading to
crop losses (Mishra & Singh, 2010; Sivakumar et al., 2011). Deficits in surface and
subsurface water supply are expressed by the term "hydrologic drought" (Sivakumar et
al., 2011). All these types of droughts have an impact on society and the economy, so
they are referred to as social and economic droughts.

For a better understanding of droughts, three essential elements are differentiated —
intensity, duration, and spatial extent (Sivakumar et al., 2011). Drought intensity is
defined by the degree of rainfall deficit and/or the severity of its impact as well as by the
deviation of climatic indices (e.g., Standardized Precipitation Index (SPI)) from normal.
In determining drought impacts, intensity is closely related to duration. Droughts usually
take two to three months to develop. However, they can also last for several months and
years, such as in arid regions where successive years of drought are not uncommon.
Prolonged droughts over several seasons or years produce more drastic effects due to
greater depletion of surface and subsurface water supplies. In addition, the longer duration
affects a greater number of users. For vulnerable arid and semi-arid ecosystems,
frequently recurring and prolonged droughts are a particularly critical problem, as they
result in both natural and managed systems having no opportunity to recover. In general,
droughts naturally are regional events that affect millions of square kilometers. Due to
their long duration, the drought's epicenter, the location of maximum severity, shifts from

season to season and year to year (Sivakumar et al., 2011).

2.2. Drought as a natural hazard

According to the IPCC (2013), the frequency and severity of droughts are expected to
increase due to global warming. In recent decades, this trend has already been noted
(Hulme & Kelly, 1993) as the effects of weather extremes worsened due to population
growth, environmental degradation, industrial development, and fragmented government

authority over water and resource management, which is for example reflected in large
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annual vegetation losses (Wilhite, 2000b). Because of the socially, economically, and
environmentally relevant aspects (Owrangi et al., 2011) with enormous potential damage
to the economy, society, and environment, the monitoring of droughts is very important
(Gulécsi & Kovacs, 2015; J. Wu et al., 2012; Lei Zhou et al., 2013; Zhuo et al., 2016).
For example, the occurrence of droughts correlates with wildfires in the western United
States (Westerling et al., 2006), Canada (Flannigan & Harrington, 1988), and
southeastern Australia (Bradstock et al., 2009). The interplay of severe, prolonged
droughts and elevated temperatures has also had a tremendous impact on terrestrial
ecosystems over the past several decades (Kaptué et al., 2015; Overpeck & Udall, 2010;
Zhao & Running, 2010). Thus, successive drought years also affect forests (Anderegg et
al., 2015; McDowell & Allen, 2015). Recent mega-droughts, as in 2005 and 2010 in the
Amazon Basin (Gatti et al., 2014; Saleska et al., 2007), substantially reduced forest
productivity and ecosystem services. This has already been demonstrated in Europe (Ciais
et al., 2005), Africa (Liming Zhou et al., 2014), Australia (van Dijk et al., 2013), and East
Asia (Saigusa et al., 2010). For humans, agriculture represents the most vulnerable sector
affected by droughts (Di Wu et al., 2015). Recent large-scale droughts in Europe, Asia,
Africa, and throughout the Americas resulted in large crop and monetary losses
(Hazaymeh & Hassan, 2016). According to the IPCC (Bates & Kundzewicz, 2008), rice,
corn, and wheat production in Asia have already declined in the past. Between 1980 and
2003, droughts in the U.S. caused 144 billion USD in monetary damages, which is about
41% of the estimated total cost of weather/climate-related disasters. 3.6 billion CAD were
lost by Canada in agricultural production due to drought between 2001 and 2002
(Hazaymeh & Hassan, 2016). However, the consequences of droughts amount not only
to monetary damages but also to humanitarian damages as drinking water and food
shortages can occur. Between 1981 and 2010, 253 million people in Africa were affected
by drought, of which half a million died as a result (Rojas et al., 2011). These figures
make it clear that droughts, like other natural hazards, can have enormous damage to the
environment, economy, and society (J. Wu et al., 2012).

Because of their drastic consequences, the designation of droughts as natural hazards is
obvious. Natural hazards are associated with geophysical processes - an integral part of
the environment - that have the potential for damage or loss in the presence of a vulnerable
society, while posing an unexpected threat to humans or their property (Bobrowsky,

2013). Geophysical natural hazards are preceded by geological, geomorphological,
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climatic, or meteorological reasons (Bobrowsky, 2013). Thus, a drought is a geophysical
natural hazard because of its meteorological origin. Furthermore, there are four reasons
why droughts are different from other natural hazards and why early warning systems in
the form of accurate, reliable temporal estimates of their severity and impacts, as well as
so-called drought preparedness plans, are of enormous importance (Sivakumar et al.,
2011).

One of these reasons is that drought impacts accumulate slowly over a considerable period
of time and can persist for years after the natural disaster has ended. In addition, the
beginning and end are difficult to determine. Third, there is no precise and universally
accepted drought definition. The fourth reason is that impacts are described over a larger
geographic area than, for example, floods, hurricanes, and most other natural hazards

making quantification of impacts much more difficult (Sivakumar et al., 2011).

2.3. Drought risk and drought vulnerability

Drought risk represents the interaction of the exposure of the geographic region and the
vulnerability of society (Sivakumar et al., 2011). Exposure varies regionally, so there is
almost no opportunity for action to reduce or prevent recurrence, frequency, or
occurrence. Therefore, climatic understanding of droughts and their frequency, severity,
and duration is necessary, as these aspects vary spatially. Further, identifying the regions
most likely to experience drought is critical (Sivakumar et al., 2011).

Vulnerability is reflected in the interaction of social factors, such as population growth
and the shift of society from humid to arid and rural to urban areas. Population growth
increases pressure on natural resources and people are pushed to settle in regions more
vulnerable to drought. Urbanization has a similar effect, putting pressure on water
resources and contributing to the conflict between agricultural and urban water use.
Progressive technologization though can reduce vulnerability. On the other hand, there
are natural factors, such as environmental degradation (e.g., desertification), which
positively and negatively affect drought vulnerability (Sivakumar et al., 2011).

Studies on drought vulnerability have already been conducted in the past. Dabanli (2018),
for example, includes population density and the proportion of artificially irrigated fields
for his vulnerability analysis. However, the latter data are not available with sufficient
accuracy and over large areas. In contrast, Naumann et al. (2014) considered the

economic factor of GDP per capita as an indirect indicator of well-being and attested to
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a correlation with drought vulnerability. Other factors such as pasture animal density were
also sometimes included in vulnerability analyses (Carrdo et al., 2016). Climate change
and increased greenhouse gas concentrations could also increase the occurrence and
severity of meteorological droughts in some regions (IPCC, 2007). Thus, drought
vulnerability is highly dynamic and ideally needs to be evaluated periodically.
Furthermore, it is influenced by many variables, which makes it difficult to quantify and
evaluate vulnerability uniformly across different regions. Because of this dynamic
occurrence, current and spatially explicit data, such as remote sensing imagery, are

needed.

3. Transhumance

Droughts severely affect transhumance, which has established itself as one of the most
important lifeforms in several regions of the world, including the Sahel region in Africa.
Pastoralists need grazing land as forage for their animals and have to tackle several risks
to maintain their livelihoods. In the following, transhumance, its economic value, and its

risks in the Sahel are described in more detail.

3.1. Definition and economic value in the Sahel region

Different descriptions of transhumance can be found in the literature. Oteros-Rozas et al.
(2014) described transhumance partly as a farming practice shaping cultural landscapes,
but also as an adaptive strategy, that overcomes the growing challenges of environmental
change due to mobility. Brottem (2014) states, that transhumance consists of regular
patterns of herd movements along persistent corridors between key pastoral sites. Jones
(2005) mentioned that transhumance separates from pastoral nomadism in several ways.
Transhumance, therefore, is not only based on mobile livestock herding, that adjusts to
environmental conditions, but parts of the groups also have permanent village residents
with arable agriculture. Here, several definitions from the IOM (International
Organization for Migration) (Leonhardt, 2017) help to draw boundaries between several
terms, that are often used as synonyms. Following, pastoralism generally describes an
economic system based on livestock production with different degrees of mobilities and
therefore includes nomadism, transhumance, and semi-transhumance. Furthermore,

transhumance features a seasonal movement of herds and a return to a fixed origin with
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a permanent place of residence, in contrast to nomadism. The migration schedule is
dependent on the onset of the wet and dry seasons, while routes and destination pastures
are generally well-known. Semi-transhumance on the other hand has one family
responsible for agriculture, while the other part practices seasonal migration.
Transhumance can furthermore be divided into long transhumance, where herders travel
several hundred kilometers, and short transhumance, which is only limited to a small local
area. Cross-border transhumance then describes seasonal movements, during which
national borders are being crossed in search of natural resources like water and pasture
(ECOWAS, 1998). Transhumance also displays the importance of livestock mobility
across various spatio-temporal scales, as it is flexible in response to ecological variability.
This reduces the vulnerability to climatic change and also the likelihood of overgrazing
(Brottem et al., 2014; Fernandez-Gimenez & Le Febre, 2006). Movement patterns
generally consist of north-south movements in the Sahel zone (Figure 1), while
movements north take place during the rainy season (April — October) (Brottem et al.,
2014). The movement starts at the beginning of the green-up period and the beginning of

senescence (Brottem et al., 2014).

—— National transhumance i Caravan @ Border crossing point
- Cross-border transhumance = Marketing itineraries Pastoral zone
> Wet season Lake
» Dry season Sources: FAQ-CIRAD, Atlas of trends in pastoral systems in the Sahel 2012; OECD/SWAC 2009

Figure 1: Transhumance and nomadism in Sahelian countries (OECD/SWAC, 2014).

Rates of movement also differ between the two movement times. While herders move

faster at the end of the rainy season due to the good nutritional status of the livestock,
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movements at the end of the dry season are much slower (Diallo, 1978). Another reason
for that is, that the annual grasses further north provide higher nutritional content
(Penning de Vries & Djitéye, 1982). Routes or corridors of transhumance are generally
well known by the herders as they often have fixed reliable resting points each year.
Verified information about locations and the legal status of the corridors and resting
points though is mainly not available. Resting points describe key locations along the
transhumant corridors between origin and destination areas and are often located along
water sources (Brottem et al., 2014). The transhumant movement generally follows the
same trajectories each year with a highly varying length of stay at the origin and
destination areas as well as at resting points (Brottem et al., 2014).

Transhumance has a high economic value in the Sahelian countries of the ECOWAS
(Economic Community for West African States) region. Livestock production is
estimated at around 40 % of the GDP and can reach up to 50 % with animal traction,
manure, and the transformation of animal products like butter or leather (Leonhardt,
2017). 38 % of West Africa consists of unfavorable land for agriculture (OECD/SWAC,
2014), where livestock production is the only way of using these arid zones. Livestock
production not only employs millions of people but is also an important source of food
and income, especially in fragile ecological zones like the Sahel. Rural inhabitants here
are especially vulnerable to food insecurity, where livestock makes up about half of their
capital. Large parts of the cattle, camels, goats, and sheep are held in transhumant
production systems in the Sahel zone. Transhumance is well adapted to ecological and
economic realities in West Africa and holds 70-90 % of the Sahel’s cattle, 30-49 % of its
sheep and goats, and produces around 65 % of cattle meat and 70 % of milk (Leonhardt,
2017).

3.2. Transhumance at risk

Despite their economic value, transhumant pastoralists also face several risks and
challenges. These consist of population growth, climate change, expansion of agricultural
areas, and the privatization of formerly shared resources (Leonhardt, 2017). This includes
policies, that are favoring agriculture. In Mali for example big pastures have been
converted to rice fields (Benjaminsen & Ba, 2009). The neglect and lack of governance
in rural areas also contribute to the competition for natural resources. Conflicts and

violence arising from that competition, lead to a negative perception of pastoralists and
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reinforces marginalization. Transhumance is therefore often seen as a security issue
instead of a development issue. Back in time, substance farmers and pastoralists
complemented each other in how agroecological systems were used. Increasing
competition for natural resources (Ikhuoso et al., 2020), increases in herd sizes, cropland
expansion, poor governance, and extreme weather events have exacerbated these conflicts
(Inter-resaux, 2017; Tour¢ et al., 2012). All this leads to a contrary, where rights to secure
fixed territories and social boundaries are needed to protect pastoralists and their pasture,
and on the other side the spatio-temporal variability of resources for livestock (Marty,
1993; Painter et al., 1994). Ferandez-Gimenez (2002) describes this as the “paradox of
pastoral land tenure”. Accompanied is a confusion of policymakers and incoherent policy
frameworks, that limited the progress in improving pastoral management and the
securement of rights to key resources (Fernandez-Gimenez & Le Febre, 2006; Turner et
al., 2011). The complexity arose from a highly variable and low predictable spatio-
temporal distribution of pastoral resources. A step in the right direction was the ECOWAS
Protocol on Transhumance in 1998 and the supporting regulation in 2003, where
ECOWAS Member states recognized cross-border pastoralist transhumance as a valuable
economic activity. Regional regulatory frameworks for cross-border transhumance were
set in place to provide free movement of persons, services, and goods (Leonhardt, 2017).
Agricultural expansion nevertheless is a pressing challenge for transhumances as it leads
to restricted movements and a reduced number of paths, as well as paths under conditions
of heavy cultivation pressure (Brottem et al., 2014). Brottem (2014) described the
extension of the cropland area as the most vulnerable aspect for transhumance and not
climate change. The extension of cultivated areas leads to blocks, where movements
between areas with water and pastures are not possible anymore and therefore result in
lower viability for transhumance. Drought-related farmer-herder conflicts and water
tensions with both fighting for the same natural resources are widespread in the Sahel and
East Africa (Benjaminsen et al., 2009; Cabot, 2017). The fight for limited resources was
also the main reason for recent conflicts in Nigeria (Ikhuoso et al., 2020). While conflicts
have increased over the past two decades (Ayana et al., 2016), it became apparent that
environmental factors act in tandem with many socioeconomic and political factors to
trigger conflicts (Detges, 2016; Scheffran et al., 2019; Shettima & Tar, 2008). The

understanding of the drivers of transhumance patterns as well as possible sources and

10



l. Infroduction

locations of conflicts is limited due to the lack of information on spatio-temporal

migratory movements, grazing locations, or resting points (Motta et al., 2018).

4. Small-scale and subsistence farming

Transhumance is not the only form of agriculture that faces the previously described risks.
Small-scale and subsistence farmers represent another form of livelihood in rural Africa
and are at least equally important as transhumant herders. Therefore, this chapter focuses
on smallholder farmers and outlines their economic value along with the risks they are

facing.

4.1. Definition and the economic value of smallholder farmers in Sub-Saharan Africa

Small-scale farmers belong to the group of smallholders that also contain pastoralists,
forest keepers, and fishers (FAO, 2012). Smallholders in general are managing small
areas of less than one hectare up to ten hectares and are focused on the stability of the
farm household. Mainly family labor is used for production and a part of the produce is
for family consumption (FAO, 2012). Subsistence and small-scale farming are sometimes
interchangeably used (e.g.,Michael Aliber et al., 2005; Moeletsi et al., 2013). Small-scale
farmers grow subsistence crops on small plots of land plus one or more cash crops while
relying almost exclusively on family labor (Lidzhegu & Kabanda, 2022). Smallholder
farmers also vary in activities they are engaged in, assets and resources available to them
(e.g., land area or water), land tenure (e.g., rental or share-cropping arrangements), the
control of the natural resources used, the scale of production, the share of family labor
utilized, the degree of market integration and the distance of the holding farms from their
family residence (Maass Wolfenson, 2013). So, despite being grouped under the same
definition, there can be huge differences between individual smallholder farmers.
Smallholder farmers in SSA also face some barriers as low nutrient inputs, insufficient
control of weeds, pests, and diseases, and inadequate labor puts them into a category of
low input systems (Sheahan & Barrett, 2017). The agricultural sector in Africa and
especially in SSA is underdeveloped with an over-reliance on primary agriculture. Within
that, the minimal use of external farm inputs, significant pre- and post-harvest food crop
losses, minimal value addition, and product differentiation play a huge role (Assefa et al.,

2020; Tilman et al., 2011; van Ittersum et al., 2016).

11



l. Infroduction

Figure 2: Smallholder farmers in Ghana (FAO, 2021).

Nevertheless, agriculture plays an important role in the economy and food security in
Africa. In SSA agriculture employs 51.6 % of the population and generates 20 % of the
GDP in 2016 (The Global Economy, 2019). Recent estimates found 33 million farms in
SSA (IFC, 2013) with a contribution of up to 90 % of agricultural production in the same
countries of SSA (Wiggins, 2009). Nearly 80 % of the farmland in SSA is managed by
smallholder farmers with an average size of agricultural holdings below 3 ha which
together produce up to 80 % of the total food supply in SSA (FAO, 2012). Still, the
consumption of self-produced food crops represents only 20 % of the food needed for
SSA smallholder households (Frelat et al., 2016). Despite actions to achieve the “Zero-
Hunger” Sustainable Development Goal (SDG) by 2030, food security in SSA 1is still far
away (FAO et al., 2020). In recent years, yields of staple crops such as maize, wheat, or
sorghum have decreased across Africa, widening food security gaps and leaving open

challenges besides other risks for small-scale farmers (Ketiem et al., 2017).

4.2. Risks for small-scale and subsistence farming

This food security risk is additionally amplified in the future by the projected population
growth. 1.02 billion people lived in SSA in 2017 and 2.17 billion inhabitants are projected
for 2050 (United Nations, 2017). This population expansion will lead to an increased food
demand (Kim etal., 2021). Subsistence farmers are also one of the most vulnerable groups
to climate variability. It is difficult for them to cope with climate-related hazards as they
have no capital for adaptive strategies (Thompson et al., 2007). Especially vulnerable are

households relying on rain-fed agriculture (Thorlakson & Neufeldt, 2012). The worsening
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food situation though is only partly related to climate change as poor and weakening
market situations also play a role (Abdul Mumin & Abdulai, 2022). Prohibitive
transaction costs by underdeveloped market systems and infrastructure as well as market
failures, inadequate access to finance and technologies hinder the efficiency of food
market systems and lead to limited potential of agricultural marketing (Abdulai &
Birachi, 2009; Abdul-Rahaman & Abdulai, 2020; Fafchamps, 1992). An additional risk
to smallholder farmers is the loss of land as a decline in land/labor ratios shows (Jayne et
al., 2010). The amount of arable land under cultivation has only risen marginally while
the population of households in agriculture tripled between 1960 and 2000 (Jayne et al.,
2010). The bottom quartile of small-scale farmers in Ethiopia and Rwanda for example
control less than 0.02 to 0.03 ha of land (Jayne et al., 2003). Another example is Malawi,
where 70 % of smallholders possess less than one ha of land (Chirwa, 2006), which shows
the risk of landlessness (Jayne et al., 2010). Rural communities heavily depend on access
to land and natural resources while agricultural land on communal lands is one of the
major land uses that supports the livelihood of millions of people (Shackleton, 2020).
While facing adverse conditions like inadequate access to production resources
(Mpandeli & Maponya, 2014) or poor access to markets (Loeper et al., 2016), the most
alarming challenge in South Africa for rural communities is the access to and ownership
of arable land (Loeper et al., 2016; Mpandeli & Maponya, 2014; Shackleton, 2020). In
South Africa, 87% of agricultural land is used by commercial farms leaving only 13% for
small-scale subsistence farmers (M. Aliber & Hart, 2009). Ineffective land use
management that is less protective of smallholder farmers in rural areas led to a decline
in land under agricultural fallow from 26% to 8% with a 69% decline in extent in South
Africa as many areas were converted to built-up land (Lidzhegu & Kabanda, 2022).
Besides the economic viability and the contribution to a diversified landscape and culture,
small-scale farming faces additional risks. The competitive pressure from globalization
and the integration into common economic communities only leaves two choices: either
to be purely self-subsistent or to grow into larger units, that can compete with large
industrialized farms (FAO, 2012). Another problem and risk for future food security is
the stagnant food crop productivity in SSA in contrast to the risen productivity in the rest
of the world since 1960 (Jayne et al., 2010). For example, while global maize production
has increased with increasing yields, maize production in most countries of SSA only

increased with increasing areas (Cairns et al., 2021). This expansion-based production

13



l. Infroduction

growth though is not sustainable in the long run (Cairns et al., 2021) pointing to the need

for adaptation strategies.

5. Remote Sensing

Remote sensing, through its large spatial coverage and high revisiting frequency, allows
us to analyze various processes on the Earth surface in a spatiotemporal way. Before
providing an overview of the status of current remote sensing applications for droughts,
transhumance, or agriculture, the principles of remote sensing together with its different

sensors to monitor environmental factors are described in the following.

5.1. Introduction to remote sensing: History, definition, and basics

The term “remote sensing” was first used between 1960 and 1970 (Campbell & Wynne,
2011). Over time, there were many different definitions surrounding one central concept
— the gathering of information at a distance. The closest definition for this thesis explains
remote sensing as “the practice of deriving information about the earth’s land and water
surfaces using images acquired from an overhead perspective, using electromagnetic
radiation in one or more regions of the electromagnetic spectrum, reflected or emitted
from the Earth’s surface” (Campbell & Wynne, 2011). Regarding this thesis, the
definition needs to be a bit broader as meteorology for example is not included, but is a
factor in this work primarily in the form of rainfall. Satellite remote sensing designed for
the observation of land surfaces started in 1972 with the launch of Landsat 1 providing
systematic and repetitive observations for the first time. Rapid advances in technologies
like hyperspectral remote sensing in the 1980s, the first satellite systems designed to
collect data of the entire earth in the 1990s, and public remote sensing, which was made
available through the advances of the internet in the first decade of the 21* century lead
to today's standards of long time series archives of satellite data with varying spatial and
temporal resolutions dependent on the applications (Campbell & Wynne, 2011). Remote
sensing itself represents a process that starts with physical objects on the earth’s surface
(e.g., buildings or vegetation). Subsequently, sensor data is collected by viewing the
objects with instruments and recording electromagnetic radiation, that is either emitted or
reflected. To use these types of sensor data, analyses and interpretation are necessary to

convert this data to information that can be used to address practical problems (e.g.,
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identifying burned areas). Finally, the extracted information can be used in combination
with other data for specific applications like land use planning or drought monitoring
(Campbell & Wynne, 2011). Remote sensing additionally consists of several key
concepts — the spectral differentiation where different features on the earth reflect or emit
different energy, the radiometric differentiation where differences in brightness of the
objects are measured, the spatial differentiation which is limited to the smallest area that
can be separately recorded by a sensor (minimal units: pixels), and the temporal
dimension where constant repetition of observations over years allow change detections

(Campbell & Wynne, 2011).
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Figure 3: The electromagnetic spectrum, including wavelength, energy, and a detailed excerpt of the visible
subdivision (Verhoeven, 2017).

All these concepts rely on the basis that all objects on the earth’s surface emit or reflect
electromagnetic radiation. The emitted and/or reflected radiation can be measured by
sensors and different characteristics of features such as vegetation, structures, soils, rock,
or water bodies can then be identified. Each electromagnetic wave consists of one electric
(vertical) and one magnetic (horizontal) field, which are orthogonal to each other and the
direction of the wave propagation (Lo, 1987). Each wave has several properties, which
include the wavelength (A) representing the distance of separation between adjacent wave
peaks, the frequency (f) describing the number of wave peaks passing a fixed point in a
given period of time, the amplitude as the height of each peak, and the phase, which shows
the extent to which peaks of one waveform align with those of another (Campbell &

Wynne, 2011; Lo, 1987). As the speed of electromagnetic energy is constant, the
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frequency and wavelength are related inversely proportional and the characteristics of
electromagnetic radiation can be described through either one of them (Campbell &
Wynne, 2011; Lillesand & Kiefer, 1994). The most common way to categorize waves
uses their wavelength location in the electromagnetic spectrum (Figure 3) (Lillesand &
Kiefer, 1994). The electromagnetic spectrum consists of several subdivisions including
gamma rays, X-rays, ultraviolet radiation (UV), visible light (VIS), infrared radiation
(IR), microwave radiation, and radio waves (Figure 3) (Campbell & Wynne, 2011).
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Figure 4: Spectral characteristics of atmospheric transmittance and common remote sensing systems
(Lillesand et al., 2015).

While the radiation travels through the atmosphere, its energy is altered in intensity and
wavelength by particles and gases (Campbell & Wynne, 2011). Interactions in the
atmosphere include scattering, which describes an unpredictable diffusion of radiation by
particles in the atmosphere, and absorption which is an effective loss of energy to
atmospheric constituents (Lillesand & Kiefer, 1994). While the effect of scattering on
sensor data can be reduced through atmospheric correction, the effect of absorption
cannot be corrected and leaves so-called “atmospheric windows” where remote sensing
systems can receive transmissive energy (Figure 4) (Lillesand & Kiefer, 1994). Therefore,
remote sensing systems operate on several wavelengths to gather information about
features on the earth’s surface. These features can be differentiated by their spectral
signature, which represents the spectral response of a feature over a range of wavelengths.

The spectral responses of objects on the earth’s surface in different wavelengths can be
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observed through several satellite-based remote sensing systems. In the field of remote
sensing, active and passive systems are distinguished based on the same physical
principles as explained above. Different passive and active remote sensing systems as
well as their physics and exemplary application fields, which are related to the topic of

this thesis, are described in the following two sections.

5.2. Passive sensors (optical) and remote sensing of environmental factors

Passive sensors are based on the principle of measuring radiation, which is reflected or
emitted by objects, and depend on external energy sources. The main external energy
source is the sun, but also thermal energy emitted by fires can be measured
(Schowengerdt, 2007). Passive sensors measure radiation in the visible, near-infrared
(NIR), mid-infrared (MIR), and thermal infrared (TIR) parts of the electromagnetic
spectrum ranging from 0.4 — 14 um (Figure 3) (Schowengerdt, 2007). Objects on earth
react differently to incoming radiation, as they reflect, emit, absorb or transmit the energy.
Reflection is defined by the change of the radiation’s direction without emitting or
absorbing energy and is divided into diffuse and specular (direct) reflectance. Absorption
describes the intake of energy by an object, emission in this context is defined through
outgoing secondary heat radiation. Energy can also transit through the object without
changing, which is called transmission (Borengasser et al., 2008). These properties vary
for features on the earth’s surface and are dependent on the material, shape, and size as
well as their physical and chemical characteristics (e.g. moisture content) while the most
important properties are color, structure, and surface condition. Features on the earth’s
surface have unique properties and can therefore be identified through their spectral
signature, as described in the previous section (Campbell & Wynne, 2011). Passive
sensors in this work were mainly used for vegetation monitoring. Vegetation monitoring
is also based on the spectral signature principle, where mostly healthy and dry vegetation,
as well as soil, are differentiated.

In the optical wavelength region, vegetation absorbs much of the solar radiation for
photosynthesis through pigments in the leaf tissue - particularly chlorophyll a and b,
carotenoids, and anthocyanins (Chang et al., 2017). Plant greenness is influenced by the
fact that healthy vegetation is greener and absorbs more incident visible light, such as that
of the red and blue spectrums, and reflects a significant amount of near-infrared energy

as well as a small reflectance peak for the green part of the visible spectrum (Figure 5).
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Less vital and sparse vegetation, on the other hand, reflects more visible light without a
green reflectance peak and less near-infrared (NIR) energy (Hazaymeh & Hassan, 2016).
To evaluate vegetation and soil status, the wavelength range 0.4-2.5 pm (Red Spectrum,
NIR, Shortwave Infrared (SWIR)) is most used due to the clear response from vegetation

greenness and vegetation moisture (Hazaymeh & Hassan, 2016).
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Figure 5: Spectral signatures of green vegetation, dry vegetation, and soil across the spectra measured by
passive sensors (Maisongrande et al., 2007).

For moisture, the NIR is less sensitive than the SWIR, which has a significant absorption
peak for vegetation water content (Zhang et al., 2013). In general, surface reflectance
increases with higher levels of water deficits, especially in the spectrum of the SWIR
(Hazaymeh & Hassan, 2016).

Vegetation monitoring is mostly done by exploiting the described properties of vegetation
throughout their spectral signatures. An example is given in Figure 6, where a false color
composite is shown. Here, green vegetation appears green as it shows high reflectance
values in the NIR (Figure 5), which are displayed as the green band of image. Differences
can also be seen between agricultural areas (light green to yellow) with partly dryer
vegetation and forests (darker green). Healthy, green vegetation, therefore, can be clearly
distinguished from other land cover types like for example bare soil, which is represented

by purple and white to rosa coloring depending on the soil type (e.g., built up land (pink)
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or sandy soil (light rosa)) as well as sparse vegetation cover or the moisture content. By
calculating vegetation indices like the NDVI or the NDRE (Normalized Difference Red
Edge Index) as well as water indices, e.g., the NDWI (Normalized Difference Water
Index) (Gao, 1996; Lambert et al., 2017) vegetation monitoring takes advantage of the
spectral signatures. Water indices that use the NIR and SWIR regions of the
electromagnetic spectrum are more suitable for the evolution of drought for example than

indices that use the visible and near-infrared wavelength spectrum. This is because water

0 05 1 2 A
e Kilometers

Figure 6: Exemplary false color Sentinel-2 image in Burkina Faso during the crop growing season
(06.09.2021). Color representation: Red: SWIR, Green: NIR, Blue: Red. The black square in the inset

represents the location of the image in Burkina Faso. Background: ESRI Basemaps.

indices are more sensitive to changes in drought conditions than vegetation indices

(Chang et al., 2017; Gulacsi & Kovacs, 2015). Vegetation health for crop yield models is
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also often based on water indices together with vegetation indices (Groten, 1993; Lambert
et al., 2017). Optical remote sensing indices can be divided into different groups for
drought monitoring. There are indices describing soil drought and those describing
vegetation drought (Hazaymeh & Hassan, 2016). In this context, for example, soil
drought indices have uncertainties about vegetation areas because vegetation reacts
consistently to short-term drought conditions in leaves and roots, which leads to delayed
identification of drought and uncertainties in results (Farooq et al., 2009). Similarly,
vegetation indices have uncertainties over areas of sparse vegetation. Another way of
vegetation monitoring is called spectral unmixing analysis (SMA) (Roberts et al., 2003;
Yebra et al., 2013). In contrast to indices, it does not only use specific bands recorded by
remote sensing sensors but all vegetation-related bands throughout the measured
spectrum. Spectral mixture analyses are suitable to assess the fractional green
photosynthetic vegetation versus per pixel non-photosynthetic vegetation, and bare
substrate (soil) abundances from satellite data (Asner et al., 2005; Franke et al., 2018;
Roberts et al., 1993).

Examples of passive remote sensing systems, that are used in this work are the Moderate
Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2. MODIS provides
different products about surface reflectance or the albedo on a spatial resolution of 500m
since the year 2000, while also delivering global coverage (Schaaf & Wang, 2015;
Vermote et al., 2015). Sentinel-2 also operates on a global level but has a much finer
resolution of 10 — 20m, which makes it extremely important for yield estimations for

small fields of rural smallholder farmers (ESA, 2022; Karst et al., 2020).

5.3. Active systems (radar) and remote sensing of environmental factors

Active remote sensing systems actively emit electromagnetic energy and measure the part
of this energy that is reflected and backscattered by objects. Therefore, the sensors are
independent of other energy sources like the sun and can also operate at night. Examples
are radar and LiDAR (light detection and ranging). As only radar satellites were used in
this thesis, only this methodology will be elaborated on in more detail.

Radar originates from radio detection and ranging (Lillesand & Kiefer, 1994) and
transmits short bursts or pulses of microwave energy (Figure 3). Sensors record the

strength and origin of echoes or reflections of objects. Spaceborne instruments only use
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Synthetic Aperture Radar (SAR) as real aperture systems would have an insufficient

resolution (Lillesand & Kiefer, 1994). SAR instruments transmit microwave pulses at a
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Figure 7: Exemplary preprocessed Sentinel-1 image in the border area of Chad, Cameroon and Nigeria
during the wet season (19.09.2022). The black square in the inset represents the location of the image.
Background: ESRI Basemaps.

given frequency and measure the backscattered energy in form of magnitude and phase
(Campbell & Wynne, 2011). These relatively long wavelengths (1 mm — 1 m) (Figure 3)
can penetrate clouds making SAR instruments weather-independent in contrast to optical
platforms (Richards, 2009). Radar systems primarily measure the time it takes for the
transmitted microwave pulses to return to the sensor. By doing so, the distance of the
target can be calculated (Richards, 2009). The side-looking angles of the instruments and

the terrain geometry result negative in phenomenons including radar shadows,
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foreshortening, and the layover effect (Lillesand & Kiefer, 1994). As relief, e.g.,
mountains can slope perpendicular towards the sensor, the backside of the mountain
cannot be reached by the transmitted microwave pulses resulting in zero energy
measured. This is called radar shadow. Foreshortening exists when the size of the sloped
surface is compressed on the recorded image and layer effects occur when the signal of
the top of a vertical feature reaches the sensor before the signal of the base of the feature.
Both of them are severe (layover) or less severe (foreshortening) relief displacements in
the resulting image (Lillesand & Kiefer, 1994). Figure 7 shows a preprocessed Sentinel-
1 SAR image where one of these phenomena can be clearly seen. Terrain effects have
been reduced during preprocessing with a terrain correction, but radar shadows cannot be
removed as they represent no data areas. This is shown by the black areas on the backside

(left) of the elevated features in lower right corner of the image.
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Figure 8: Schematic overview of the different scattering mechanisms surface scattering, volume scattering,
and double-bounce, arrows simulate directions of energy (Berninger, 2020)

The transmitted electromagnetic waves have a geometrical orientation of the oscillations,
that are specified by their polarization (Campbell & Wynne, 2011). The energy is
transmitted in simple linear polarization either horizontal (H) or vertical (V). Both
polarizations can be received in different channels as scattering by the objects on the
earth’s surface can change the polarization (Cloude, 2010). Therefore, four different
combinations are possible — HH, VV, HV, and VH, where the first letter stands for the
transmitted polarization and the second letter for the received polarization. HH and VV
are called like- or co-polarized while HV and VH are called cross-polarized (Campbell &
Wynne, 2011). Horizontally polarized waves are more sensitive to horizontally oriented

features and vertically polarized waves to vertically oriented features while cross-
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polarized waves are more influenced by volume scattering and co-polarization is strongly
affected by surface properties like moisture (Le Toan et al., 1992). These different
polarizations allow the differentiation of land cover types and properties (Campbell &
Wynne, 2011). As radar systems emit energy in varying frequencies and wavelengths,
their differentiation is based on bands. Sentinel-1 for example operates with the C-Band
with a wavelength between 5.2 and 7.1 cm (European Space Agency, 2022). Bands and
wavelength differ in the penetration depth of the signal into soil or vegetation, as in dry
conditions the penetration depth increases with increasing wavelength (Campbell &
Wynne, 2011). The sensor measured energy is scattered by objects, which means the
redirection of energy (Campbell & Wynne, 2011) and is dependent on different properties
like roughness or moisture. Different kinds of scattering are distinguished. Surface
scattering represents the backscatter without interaction with other objects and depends
on the roughness of the surface (Richards, 2009), volume scattering consists of numerous
scattering elements in 3D bodies like trees (Campbell & Wynne, 2011), and double-
bounce describes scattering resulting from two relatively smooth surfaces perpendicular
to each other (Figure 8) (Richards, 2009).

In this context, smooth water surfaces are specular reflectors, that return no signals to the
antenna, whereas rough water results in signal returns of varying strengths due to waves
(Lillesand & Kiefer, 1994). On the basis of water as an almost specular reflector, surface
water classifications can be done for example with radar data as for example in Steinbach
et al. (2021). Surface water classifications in this work also followed this principle. This
is also demonstrated in Figure 7, where large black areas and streamlines represent rivers

and reservoirs.

5.4. Applications and remote sensing-based modeling

By using these different sensors and monitoring techniques, remote sensing can be used
in various applications together with other datasets. In the following section, applications
of remote sensing for drought monitoring, yield modeling, and the support of

transhumance are described in more detail.

5.4.1. Droughts
Satellite data have been used for drought detection and monitoring since the 1980s

(Kogan, 1997). The advantages of remote sensing-based drought indices are the large
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spatial coverage and the almost continuous data availability. In contrast, difficulties and
challenges arise with small areas, data gaps, consistent historical datasets, integration of
recent satellite missions, and the development of a standard for a validation scheme
(Hazaymeh & Hassan, 2016). The usability of data depends on its availability, cost,
quality, pre-processing, and post-processing requirements (Hazaymeh & Hassan, 2016).
Nevertheless, remote sensing is the most effective way to detect and analyze the impacts
of droughts on ecosystems (Zhang et al., 2013).

Droughts are usually triggered by a precipitation deficit in combination with increased
solar radiation and a temperature rise (Zhang et al., 2013). Using remote sensing to map
this phenomenon is based on the fact that droughts affect the biophysical and chemical
properties of soils and plants, such as soil moisture, organic matter content, vegetation
biomass, chlorophyll content, canopy cover, and soil temperature (Anjum et al., 2011).
Droughts can alter the spectral or thermal responses of ecosystems, from which indicators
of their occurrence can be derived (Hazaymeh & Hassan, 2016). Remotely sensed drought
indices depend primarily on the characteristics of energy reflected or emitted from the
Earth's surface (Hazaymeh & Hassan, 2016). They are based on individual spectral
signatures of the ground surface and tree canopy characteristics (Hazaymeh & Hassan,
2016). These signatures vary with changes in vegetation. For example, photosynthetic
barriers are the result of declines in evapotranspiration and stomatal closure, leading to a
reduction in absorbed photosynthetically active radiation (APAR). This is a defensive
response of plants, leading to slower growth under stress - triggered, for example, by
water deficits. Droughts also reduce enzyme activity in plants, which can cause damage
to biomolecules and chlorophyll (H. G. Jones & Corlett, 1992; Reddy et al., 2004). This
causes the leaves to dry out, fall off, and the plant dies (Zhang et al., 2013). Plant death
and growth are mainly controlled by the three environmental factors of temperature,
water, and sunlight, all of which are interrelated (Zhang et al., 2013). The temperature
increase can be measured in the thermal wavelength range of the measurement
instruments on the satellites (Zhang et al., 2013). In the optical wavelength region, the
green of the plants can be inferred (Chang et al., 2017), and in the infrared region, the
water content of the leaves can be inferred (Zhang et al., 2013).

The primary goal of drought research is to reduce the negative impacts of drought through
improvements in water management, drought management, and agricultural practices (Di

Wu et al., 2015). For proper drought strategies, temporal information on the onset,
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severity, and duration is very important (Di Wu et al., 2015). Moreover, a comprehensive
understanding of the causes and consequences of historical and current droughts is
essential for food production and crop planning/management (Hazaymeh & Hassan,
2016). Studies aimed at better drought management exist, for example, by Bachmair et
al. (2017), who modeled probabilities of drought impacts from drought reports. More
consistent methods are presented by Diermanse et al. (2018) and Towler and Lazarus
(2016), who conduct general drought risk analyses at regional and local scales based on
meteorological and hydrological data. Going into more detail, Rojas et al. (2011) use the
Vegetation Health Index (VHI) to calculate drought probabilities of agricultural land
during the growing season in Africa. Even more specific are Wu and Wilhite (2004), who
model drought risks for individual crops. Regional droughts were observed for example
by Shen et al. (2019) who used multi-source remote sensing data with MODIS NDVI and
EVI (Enhanced Vegetation Index) as well as TRMM (Tropical Rainfall Measuring
Mission) data. Their deep learning model for drought showed good applicability in
monitoring regional droughts. Monteleone et al. (2020) on the other hand successfully
developed a new composite index for agricultural drought (PPVI (Probabilistic
Precipitation Vegetation Index) in Haiti by combining the SPI and the VHI. By only using
globally available remote sensing data sets their methods could also be transferred to and
applied in other areas. Also, global drought models are available, but mostly on a lower
resolution and therefore they often lack precise regional information. Examples are the
Global Drought Observatory (Vogt et al., 2018) and Climate Engine data (Huntington et
al., 2017).

5.4.2. Remote sensing for transhumance

In contrast to droughts, remote sensing related to transhumance is not as established. Most
studies and analyses have been conducted based on fieldwork, like interviews or
participatory mapping studies. Nevertheless, there has been some research in this field.
Butt et al. (2011) for example used MODIS (Moderate Resolution Imaging
Spectroradiometer) NDVI data with 1km resolution for vegetation analysis, to detect
green-up and senescence times at the beginning and end of the rainy season at a higher
resolution than before. Although green-up and senescence are very important for
transhumant mobility, the detection of yearly varying times was not as beneficial as

assumed, because the difference between green-up at the dry season homes and the wet
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season destinations further north was only marginal (Butt et al., 2011). Therefore, they
conclude that more spatially defined information about particular locations of vegetation
green-up or the lack of senescence would be of use. Brottem et al. (2014) also used 1km
MODIS NDVI data to analyze the spatiotemporal variability of forage availability which
is important as green-up and senescence determine the timing of transhumance
movements. They used NDVI data as a proxy for green forest and looked for inter-annual
variability, seasonal changes in the connectivity of forage patches, and key locations with
consistently early green-up or late senescence of the vegetation (Brottem et al., 2014). By
doing so, they found information about specific locations of quality fodder and water at
higher resolutions together with place names recognizable to local people. They also
highlight the necessity of protecting sites with early green-up or late senescence from
competing land use. Ellision et al. (2021) analyzed Landsat data from 1986 to 2017 for
changes in land cover and found that rangeland transformations had negative impacts on
transhumant herds’ mobility and forage availability. Consequently, the rangeland stability
and consent between agricultural and pastoral land users is a tipping point (Ellison et al.,
2021). They further state that informed policies, land use planning, and compromises
among all stakeholders will be needed in the future. Therefore, research was not only
conducted on movements based on vegetation, but also on the connections between
farmer-herder conflicts and climate change. McGuirk and Nunn (2020) conducted their
research based on the assumption that droughts can disrupt the cooperative relationship
between pastoralists and farmers, where arable land is used for crop farming during the
wet season and animal grazing in the dry season. During droughts, pastoralists would
migrate to agricultural land before the dry season, which causes conflicts (McGuirk &
Nunn, 2020). Therefore, they analyzed a time series from 1989 to 2018 by connecting
ethnographic information on traditional locations of pastoralists and sedentary
agriculturalists, with rainfall data and satellite-based data on the vegetation status. Their
results showed conflicts in neighboring areas of the pastoralists’ territories that were
affected by drought and revealed that conflicts are concentrated in agricultural areas due
to the rainfalls’ impact on plant biomass growth. This mechanism explains a sizable
proportion of conflicts in Africa (McGuirk & Nunn, 2020). Ayana et al. (2016)
demonstrate that environmental stressors are only partly predictive of conflicts. They
analyzed NDVI and rainfall time series data together with conflict location data. Efforts

to directly support pastoralists were also made in the past. The French Agricultural
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Research Centre for International Development (CIRAD) therefore developed the
“systéme d’information sur le pastoralisme au Sahel” (SIPSA) in 2012. Within this
system satellite data was used to derive a set of biophysical indicators relating to
rangeland productivity, the state of the vegetation, and the extent of surface water and
burned areas (Tour¢ et al., 2012). Furthermore, Mertz et al. (2016) stated that improved
information on weather and natural resources as a support for transhumance would help
to reduce the level of conflicts if communicated together with multiple options for herd
movements. The modeling of movement paths or movement options concerning
transhumance is still a largely unexplored field. An example can be seen in D’ Abramo et
al. (2021). They used GPS locations of the pastoralists’ winter and summer camps in
Argentina and connected these data with terrain indices derived from a Digital Elevation
Model (DEM), environmental parameters like vegetation status from 30m Landsat data,
and river networks. They conducted a Least Cost Path (LCP) analysis on cost surfaces
based on Ensemble Distribution Modelling (EDM) and found a good concordance with
some ethnographic routes. The appropriate locations of the ethnographic routes though
could not be predicted. Nevertheless, they conclude that modeling can contribute to a
deeper understanding of transhumance and that human mobility is not only driven by
environmental factors. Cultural and social factors (e.g., fences or paved roads) or specific
herd characteristics, like size and composition, also play a role (D’Abramo et al., 2021).
Modeling in general, however, allows for the identification of critical areas for seasonal
mobility, which is the basis for maintaining traditional practices and developing
information-based policies to regulate sustainable environmental management strategies
(D’Abramo et al., 2021).

Concluding this chapter, it is evident that more research needs to be done, especially in
the Sahel zone. Not only is satellite data helpful to monitor environmental conditions, but
also to determine alternate grazing locations, and can serve as a basis for modeling
transhumant routes. Even though exact routes cannot be predicted, modeled routes with
the right input parameters can be helpful for policymakers to support transhumance itself

and to minimize conflicts.

5.4.3. Remote sensing-bases yield estimations at different scales
While remote sensing for transhumance and pastoralists is not as widespread as in the

drought context, remote sensing for agricultural purposes is already widely used. Past
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examples include numerous studies in Europe or the US for example, as Bolton and Friedl
(2013) did crop predictions on county-level based MODIS data. This section though
focuses on remote sensing applications in Africa, where timely monitoring of cropland is
important to ensure food security and to make agricultural activities more sustainable
(Huang et al., 2019). Several challenges for remote sensing come into play in Africa.
Smallholder fields are often characterized by high spatial and temporal heterogeneities,
which are enhanced by intercropping and the presence of trees within plots (Bégué et al.,
2020). Unfavorable weather conditions for optical remote sensing in the rainy season
represent an additional challenge as for example a revisit time period of 1 — 3 days in
August would be needed to get 8-day image composites with clear sky conditions of 70%
of agricultural land in SSA (Bégué et al., 2020). The paucity of ground databases also
causes problems as ground data are critical for developing and assessing the accuracy of
remote sensing-based indicators and methods (Bégué et al., 2020). Ground data though
has some limitations as they come with labor-intensive surveys and are not easily
scalable. For that reason, high-resolution earth observation data is needed for crop
production estimates in heterogeneous smallholder farming systems (Lambert et al.,
2018). Despite recent advances in remote sensing and crop modeling for assessing
agricultural conditions, reliably and cheaply assessing production losses is still
challenging in complex landscapes and also points out the need for the improved
collection and accessibility of reliable ground-reference data on crop types and
production (Benami et al., 2021). Major uncertainties in large-scale crop modeling also
arise from the lack of information on the spatiotemporal variability of crop sowing dates,
which can be reduced through remote sensing (Rezaei et al., 2021). Rezaei et al. (2021)
did multiple simulations of maize yields for four provinces in South Africa with
previously defined scenarios of sowing dates from 2001 to 2016 and found differences of
48% of the mean yield in the long-term at the province level. Therefore, they conclude
that remote sensing could help to gain a better representation of sowing dates. Samasse
et al. (2018) additionally state that accurate estimates of cultivated areas and crop yield
are critical to further the understanding of agricultural production and food security,
especially for semi-arid regions like the Sahel, where agriculture is mainly rainfed.
Accurate estimations of agricultural areas could also outline abandoned cropland. Olsen
et al. (2021) for example found that conflicts in South Sudan led to a reduction of 16% in

cultivated cropland and that the abandoned croplands could have supported food for
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around 25% of the population in the southern states of South Sudan. This shows that it is
also important to identify land where agricultural production can be practiced to support
food security. Studies on yield estimations have also been conducted by Leroux et al.
(2019), who forecasted yields by two months with a combination of remote sensing, crop
modeling, and machine learning. They also found that more research on the spatial
variability of yields is needed to strengthen agricultural monitoring systems. Petersen
(2018) used MODIS data to predict yields at the country level in Africa based on NDVI,
EVI, and NDWI anomalies for vegetation health. The predictions were done for each of
the countries’ main crops while finding errors of less than 2% for 20% of the predictions
and errors of less than 5% for 40% of the predictions. To support food security on the
household level in rural areas though, high-resolution satellite data is needed. Therefore,
Lambert et al. (2018) used Sentinel-2 and ground data to estimate individual crop
production at farm-to-community scales. Through Sen2-Agri (Sentinel-2 for Agriculture)
estimates of the LAI (Leaf Area Index), they got correlations between 0.48 and 0.8 with
an uncertainty of 0.3% of the total production for the main crops in Mali. Karst et al.
(2020) went further by producing yield predictions at the field level for smallholder
farmers. They used Sentinel-2 data together with ground observations to build a linear
regression model based on different vegetation indices for crop yield estimations. While
only having one year of training data, they state that yield predictions of smallholder
fields provide crucial information for food security and health-related issues like

malnutrition.
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6. Objectives and structure of the thesis

The climate change-related risks on livelihoods in Africa make it evident, that large-scale
monitoring measures are needed to help local and especially rural communities in
adapting to climate change and to improve health and livelihood outlooks.

Therefore, the overarching aims of this thesis, are:

o the development of satellite-based approaches to support livelihoods, food
security, and studies on natural resources

e the demonstration of satellite-based monitoring as precursors decision support
tools for policymakers,

e the support of prevention measures regarding health risks, conflicts, and food
insecurity in Africa through remote sensing-based evidence, and

e providing an outlook on how satellite data and derivative products can be used

efficiently in multiple domains.

This thesis is divided into four chapters based on stand-alone publications, which are
surrounded by a general introduction including theory and background that provides
detailed information on the different topics, as well as a synthesis including a discussion
of the four studies in the context of the overarching aims of this thesis together with an
outlook over future research.

The first study (Chapter I) describes a regional transferable drought modeling framework
based on satellite data and national yield statistics. After being trained in a ‘data-rich’
area, the modeling framework was transferred to southern Africa to provide monthly
drought monitoring measures on a regional scale.

In Chapter II, environmental suitability maps for transhumance were developed through
remote sensing data, survey data, and other geospatial data sources. Theoretical optimal
movement paths of pastoralists along the highest environmental suitability scores were
additionally modeled. By combining the suitability maps and modeled movement paths
with other data sets, for example on conflicts, a potential decision support and planning
tool is presented to support conflict prevention in the Sahel.

Chapter III consists of an intercomparison of remote sensing-based algorithms to detect

surface water. It provides a systematic evaluation of different existing algorithms and
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points out the pros and cons of different sensors and models for surface water detection
and monitoring.

The last study (Chapter IV) describes a high-resolution, satellite-based modeling
approach for yield estimates at the smallholder field level. By using for the first time an
in-situ dataset of three years of field measurements, this study examines if it is possible
to make the time- and cost-consuming field measurements obsolete. Therefore, models
based on one year of training data are compared to the general crop yield model based on
three years of training data.

The results of the studies support the conceptualization of monitoring systems, prevention
measures, and decision support tools, that are essential to maintain livelihoods in Africa,
which face several health risks, food insecurity, and conflicts. The analyses are partly
nested in research units like the DFG research unit “Climate Change and Health in Sub-
Saharan Africa” and partly depend on close cooperations with institutions such as the

International Organization for Migration.

31



32



II. Spatially transferable modeling framework for regional
drought assessment in Southern Africa (Chapter )

I1. Spatially transferable modeling framework for regional

drought assessment in Southern Africa (Chapter I)

Schwarz, M., Landmann, T., Cornish, N., Wetzel, K.-F., Siebert, S., Franke, J. (2020) A
Spatially Transferable Drought Hazard and Drought Risk Modeling Approach Based on
Remote Sensing Data. Remote Sensing, 12(2), 237. DOI:
https://doi.org/10.3390/rs12020237
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Abstract: Drought adversely affects vegetation conditions and agricultural production and
consequently the food security and livelihood situation of the often most vulnerable communities.
In spite of recent advances in modeling drought risk and impact, coherent and explicit information
on drought hazard, vulnerability and risk is still lacking over wider areas. In this study, a spatially
explicit drought hazard, vulnerability, and risk modeling framework was investigated for agricultural
land, grassland and shrubland areas. The developed drought hazard model operates on a higher
spatial resolution than most available drought models while also being scalable to other regions.
Initially, a logistic regression model was developed to predict drought hazard for rangelands and
croplands in the USA. The drought hazard model was cross-verified for the USA using the United
States Drought Monitor (USDM). The comparison of the model with the USDM showed a good
spatiotemporal agreement, using visual interpretation. Subsequently, the explicit and accurate USA
model was transferred and calibrated for South Africa and Zimbabwe, where drought vulnerability
and drought risk were assessed in combination with drought hazard. The drought hazard model
used time series crop yields data from the Food and Agriculture Organization Corporate Statistical
Database (FAOSTAT) and biophysical predictors from satellite remote sensing (SPL, NDVI, NDII, LST,
albedo). A McFadden’s Pseudo R? value of 0.17 for the South African model indicated a good model
fit. The plausibility of the drought hazard model results in southern Africa was evaluated by using
regional climate patterns, published drought reports and a visual comparison to a global drought
risk model and food security classification data. Drought risk and vulnerability were assessed for
southern Africa and could also be spatially explicit mapped showing, for example, lower drought
vulnerability and risk over irrigated areas. The innovative aspect of the presented drought hazard
model is that it can be applied to other countries at a global scale, since it only uses globally available
data sets and therefore can be easily modified to account for country-specific characteristics. At the
same time, it can capture regional drought conditions through a higher resolution than other existing
global drought hazard models. This model addressed the gap between global drought models, that
cannot spatially and temporally explicitly capture regional drought effects, and sub-regional drought
models that may be spatially explicit but not spatially transferable. Since we used globally available
and spatially consistent data sets (both as predictors and response variables), the approach of this
study can potentially be used globally to enhance existing modelling routines, drought intervention
strategies and preparedness measures.

Remote Sens. 2020, 12, 237; doi:10.3390/rs12020237 www.mdpi.com/journal/remotesensing
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1. Introduction

Drought is a recurring, extreme, climatic event [1,2] that is generally defined as an extended period
with abnormal low rainfall relative to the statistical multi-year average. Furthermore, droughts can be
categorized into meteorological, hydrological, agricultural and socioeconomic droughts. This study
focuses on agricultural droughts that appear when rainfall deficits lead to impacts on crops that cause
yield losses [3]. According to the Intergovernmental Panel on Climate Change (IPCC), drought is set to
increase globally in both frequency and severity due to climate change [4]. Drought frequency and
severity increased notably in the previous decades [5], while drought risk is amplified by numerous
factors such as population growth, environmental degradation, industrial development and fragmented
governance in water and resource management [6]. Monitoring drought hazard and impact is highly
critical due to the widespread effects of drought on various sectors of the agro-ecological system [7],
the potential for enormous damage to the economy, society, and the environment [8-11]. For humans,
agriculture is the most vulnerable sector impacted by drought [12].

Spatially explicit drought monitoring can ensure drought preparedness and help to provide
preventive measures in particular vulnerable areas. Remote sensing has the ability to measure
biophysical vegetation properties over larger areas, making it an effective way to assess the impact
of drought on terrestrial ecosystems [13]. For more than 30 years, remote sensing technology allows
to cover a large spatial footprint with near-continuous data availability [14], and benefits analyses of
agricultural droughts [15]. In previous studies, multiple earth observation approaches for agricultural
droughts have been developed. For example, a high-resolution soil moisture index (HDMSI) was
correlated with rainfall data and crop yields over the Korean peninsula and showed good results
for monitoring meteorological and agricultural droughts [16]. A Drought Severity Index (DSI) was
computed for China to analyze drought trends and correlations with crop yields in the past, which
allows monitoring agricultural droughts in space and time [17]. Bayissa et al. [18] created a combined
Drought Indicator for Ethiopia (CDI-E) and correlated it with rainfall and crop yield data. The CDI-E
showed good correlation results with the rainfall data, but the correlation with crop yield data showed
to be highly area-dependent. Zhang et al. [19] analyzed droughts from multiple perspectives from 1981
to 2013 in India and established a relationship between droughts and crop yield anomalies. While this
is a comprehensive multi-perspective approach, the analysis was conducted for a determined period
of time and to our knowledge, has not been developed for near-real time monitoring. Furthermore,
only wheat was used as a crop type for crop type anomalies, while we focus on total country yield that
inherently accounts for multiple crop type. Sur et al. [20] developed the agricultural dry condition
index (ADCI) based on MODIS satellite data in South Korea by combining weighted indices on soil
moisture, vegetation health and land surface temperature. The results showed a good correlation with
crop yield data from potatoes and soybeans, which showed that the ADCI is capable of monitoring
droughts in East Asia. Qu et al. [21] also used MODIS satellite data to derive indicators on vegetation
health over the Horn of Africa (HOA) and monitored extreme droughts by analyzing trends of rainfall
and vegetation health data. Additionally, the Vegetation Health Index (VHI) showed a high correlation
with rainfall data over the 2015-2016 drought, but was not compared to agricultural yield data. Other
research analyzed drought hazard by using remote sensing derived indicators on vegetation health
(NDVI, NDII) [22], rainfall anomalies (SPI), LST [23,24] and albedo [2,25]. We followed these research
approaches, but additionally combined these explicit (pixel-based) drought occurrence measures with
globally available yields and socioeconomic data to better capture drought hazard, vulnerability and
risk. Moreover, these previous studies have either not been tested in other geographic areas or did not
show a robust correlation with crop yields over the whole study area, which limits a wider application
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of these approaches. In contrast to these regional analyses, some global drought models are available
at lower spatial resolution which are often lacking precise regional information like for example the
Global Drought Observatory [26] or Climate Engine data [27].

Producing spatially explicit information on drought hazard, vulnerability and risk has thus
multiple challenges. Whereas global models do not allow for characterization of regional drought
events due to low spatial resolution, regional models are often not transferable to other countries
or regions.

In the present study, a satellite-based drought hazard model for agricultural and rangeland
at a spatial resolution of 0.01° using independent socioeconomic time series data as reference data
was developed. Additionally, a simplified drought risk indicator was calculated through combining
drought hazard and vulnerability. Pertaining to drought hazard modeling, this study exploits the
unprecedented potential of a longer observation period to statistically identify individual or several
drought years for robust model parametrization and model drought hazard, given the availability of
nearly 18 years of biophysical time-series from MODIS currently (2001-2019). We aimed to produce
a drought modeling framework reflecting regional conditions while also potentially being globally
transferable since the model only bases on globally available data for parametrization and modeling.
With this model we addressed the gap between global models, that work with a low spatial resolution
and cannot capture regional droughts, and local and regional drought models that either do not use
globally available consistent data or have not been tested in other geographical regions. Our drought
model works on a moderate spatial resolution that can capture regional droughts and is potentially
spatial transferable due to the use of globally available data (i.e., the FAO crop stats yields data).
In order to test the transferability of the hazard modeling framework, it was applied in three countries
and cross-evaluated with other reference data such as the United States Drought Monitor (USDM) in
the USA, a global drought model, food security classification data as well as published drought reports.

2. Materials and Methods

The overall approach entailed to first develop the drought hazard model for the Missouri Basin in
the USA using a statistical logistic regression model based on time series data of remote sensing-based
predictors. The results were then evaluated through a comparison with the USDM. Subsequently,
the model was transferred and applied to Zimbabwe and South Africa where the model results were
verified with reports in newspapers and regional climate patterns. The developed model for southern
Africa was additionally compared to the Global Drought Observatory (GDO) and to food security
classification data from the Famine Early Warning Systems Network (FEWS NET) and subsequently
discussed. This will show how our model benefits compared to global drought models and why it is
spatially transferable. Lastly, drought vulnerability was assessed for South Africa and Zimbabwe based
on data on population and livestock density, the gross domestic product (GDP) and farming systems
(rain fed or irrigated). Drought hazard and drought vulnerability were then combined to determine
drought risk for Zimbabwe and South Africa, respectively (more in Section 2.3). In creating a spatial
modelling framework that uses socio-ecological data relevant to risk and vulnerability (i.e., yields)
as well as spatially explicit yet wide-areas’ remote sensing predictors, drought effects and impacts of
droughts can be explicitly and feasible predicted.

2.1. Study Area

The study areas encompassed cropland and rangeland areas within dry and mild temperate
agro-meteorological biomes in the United States of America (USA), South Africa and Zimbabwe [28].
The American site was limited to the Missouri Basin, an area with widespread cropland and rangeland.
In comparison to other agricultural areas in the USA such as the ‘Corn Belt’, the Missouri Basin is
a less examined area regarding droughts. The Missouri Basin was also chosen as being a data-rich
study site with an established drought monitoring system (the U.S. Drought Monitor), which ensured
that the model could be developed and evaluated with good quality reference data. South Africa
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represents a country with widespread, diverse agriculture (commercial and subsistence) and data
availability on vulnerability at scales finer than administrative boundaries. Zimbabwe, on the other
hand, can be considered a data-poor country with only limited data available on administrative scales
and widespread small scale and subsistence farming.

2.2. Geo-Data

Existing land use data for the USA and southern Africa (National Land Cover Database (NLDC)
for the USA, Climate Change Initiative Landcover—S2 prototype land cover of Africa (CCI)) was
aggregated to mask out irrelevant land use and land cover classes (Table 1). Only agricultural
land, grass- and bushland were considered in the analysis. To identify historical drought years
and non-drought years, crop yield data from the Food and Agriculture Organization of the United
Nations [29] was used. Within the three study areas, the FAO yield data for the crop types maize, green
maize, soybeans, wheat, and sorghum was analyzed. Subsequently, MODIS and CHIRPS (Climate
Hazards Group InfraRed Precipitation with Station data) data were used to produce predictors for
the logistic regression modelling drought probabilities. In order to assess drought vulnerability and
drought risk as a combination of drought probability and vulnerability, gridded data for population
density (product: Gridded Population of the World v4 (GPWv4)), the gross domestic product (GDP)
(product: GDP_PPP_30arcsec_v2), farming systems (irrigated or non-irrigated) and livestock density
was furthermore used as predictors for both the drought risk and drought vulnerability. Each of these
products was resampled to a harmonized spatial resolution of 0.01° before including it in the analysis.
The loss of information through resampling is considered neglectable, since drought is a regional or
larger-scale phenomenon and drought information is needed for the whole region but not for single
agricultural fields.

Table 1. Summary of the data used in this study.

Data Product Spatial Resolution Period Spatial Coverage Data Source

Land use classification

Land use NLCD 30m 2011 USA [30]
Land use CCI 20m 2016 Africa [31]
Definition of drought periods
Crop yield FAOSTAT National statistics ~ 2001-2016 Global [29]
Predictors for logistic regression model
Precipitation CHIRPS 0.05° 1981-2018 50°5-50°N [32]
Surface reflectance MOD09A1 500 m 2000-today Global [33]
LST MOD11A2 1km 2000-today Global [34]
Albedo MOD43A3 500 m 2000-today Global [35]
Data for drought vulnerability and drought risk analysis
Population density GPWv4 30 arc-sec 2015 Global [36]
Gross domestic product ~ GDP_PPP_30arcsec_v2 30 arc-sec 2015 Global [37]
Farming systems Farming Systems 30m 2017 Zimbabwe [38]
Livestock density - ~0.08° 2010 Global [39]

2.3. Methodology

The input data for the drought hazard analysis (bold box), including land use data, SPI,
and MODIS-derived index anomalies, were processed to obtain standardized anomalies as input
variables for the logistic regression model (Figure 1). Subsequently, the drought and non-drought
years were extracted and used as training data for the hazard model. During the model optimization
autocorrelation and multicollinearity was tested as well as the relevance of each individual predictor
variable. Relationships between the predictor variables and their importance for the model outcome
can change regionally and therefore have to be assessed. After model optimization, the input predictors
for the modeling were determined and pixel-level drought hazard probabilities were predicted.
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The drought hazard analysis was first carried out in the Missouri Basin. After being evaluated by a
comparison with the USDM, the model was transferred to southern Africa. Subsequently, a drought
vulnerability index was generated by combining relevant indicators, which was then used together
with the drought probability to assess drought risk (dashed box) in southern Africa. The individual
steps are described in detail below.

Drought Hazard Analysis
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Figure 1. Workflow of the drought hazard, vulnerability and risk analysis.
2.3.1. Drought Hazard Analysis
(1) Processing and Calculation of the Model Predictors

The precipitation data was used to produce the Standardized Precipitation Index (SPI), with the
methodology from Mckee et al. [40]. The study at hand used the three-monthly SPI. For each month,
rainfall data from the present month and the two previous months was accumulated from 1981 to 2017
before the SPI was calculated.

The MODIS data was processed differently for each product. The 8-day composites of the
MODO09A1 product were corrected with the quality state flags to remove cloudy pixels. Subsequently,
the Normalized Difference Vegetation Index (NDVI) [41] and the Normalized Difference Infrared Index
(NDII) [22] were produced from the cloud masked MODIS bands between 2001 and 2017 at its original
spatial resolution of 500 m. The indices were processed by calculating their monthly maxima and
thus further reducing cloud influence [42]. The 8-day composites of the MOD11A2 product, on the
other hand, were not corrected for clouds since the land surface temperature (LST) was only produced
for cloud-free pixels [43]. Monthly maxima were also calculated for the LST. The 16-day composite
MOD43A3 albedo product was selected on the 15th of each month and was assumed to be the monthly
mean. From the MODIS albedo product, the mean of all three albedo bands (visual, near infrared,
short wave infrared) was calculated and used as an input variable in this study.

In addition, index anomalies were produced to develop a normalized and spatially invariant
measure that reduces the influence of spatially varying vegetation and land cover types. This was done
for all MODIS-based indices used as model predictors (NDVI, NDII, LST, mean albedo). The anomalies
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were calculated as the deviation of the long-term mean standardized with the standard deviation
(“z-score”) [22]:
(lexy - “kr)

kay = T' 1)
X

Z)xy represents the anomaly value for kernel k during the time span x, which was 2001-2017 in
this study, for a given month y. DI}, stands for the drought index value for kernel k during the time
span x in month y and ay, und oy represent the mean and standard deviation of kernel k over the time
span x. The index anomalies were then used as predictors for the logistic regression model.

(2) Identification of Drought Periods

After the vegetation and rainfall index anomalies were derived, they were masked with the
aggregated land use classification (Figure 1). Subsequently, drought and non-drought periods were
determined within the growing periods of the main crops maize, green maize, sorghum, soybean,
and wheat. For the USA, the growing season was assumed to last from May to September and for
southern Africa from November to March. Drought periods were identified as drought seasons or
drought years, using a segmented regression of the FAO’s annual yield data [29]. Long term shifts in the
total yield are possible for example due to advances in technologization, widespread use of fertilizers
or the implementation of irrigation. To consider these shifts in the modeling framework, the regression
divided the time series into several segments and assigned a stable regression relationship to each
segment [44]. Considering a standardized linear regression model

yi=xfi+u (i=1, ..., n), 2

where y; represents the estimate of the linear relationship of the response to x; that includes the yield

observations sorted by time i after applying ordinary least squares to the linear regression model.

Bi represents the linear parameter estimates and u; the constant. Assuming that there are m breakpoints,
this model changes to

yf:x;*ﬁf+lli(i:ij,1+1, e, ij, =1, ..., m+l), 3)

where j represents the segment index. Zeileis et al. [44] developed an algorithm in “R”, a software
environment for statistical computing, to automatically determine these breakpoints, which was used
in this study. It was assumed that a segment would last a minimum of four years. This limits the total
number of breakpoints for each crop type in each study area to three, given the assessed time period
spans 2001 to 2017. Muggeo [45] transcribed the segmented regression model as a function in R that
could be applied to the data using the breakpoints defined from the breakpoint analysis. In each study
area, the residuals of the model for each crop type were subsequently determined individually and
then accumulated. The five crops used in this study stand as representatives for the total agricultural
yield in the three study areas. The standard deviation was calculated from the summed residuals in
each region. The growing periods where residuals fell below one negative standard deviation were
defined as drought years or periods. Non-drought years were periods in which the residuals exceeded
one positive standard deviation. Any growing periods with values with a standard deviation between

-1 and 1 were not considered, in order to ensure clean and distinctive training classes for the model.

As a result, the drought years identified for model parametrization were only those years where a
large-scale drought caused yield deficits and which affected the entire country during each respective
growing period. A potential effect of yield losses caused by floods, pests or diseases (other than
drought effects) in the training data was minimized by considering not only one crop type to determine
drought, but rather five crop types. Since national yearly yield statistics for five crop types were used
to identify a drought year, potential effects from small scale yield losses of non-drought causes on the
training data are minimized. The drought and non-drought periods identified between 2001 and 2010
served as training data for the logistic regression model described in the following section.
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(3) Logistic Regression Model

Binary logistic modeling has been successfully proven in numerous studies using remote sensing
variables as predictors. Such models are also known to render robust variable relevancies, when
correlation among variables is accounted for [46,47].

For the identified drought and non-drought years, monthly anomaly data from the NDVI, NDII,
LST, albedo and 3-month SPI data were extracted for the relevant land use classes in the 2001-2010
training period for all months of the growing season. 2011 to 2017 was used to test the model.
The anomalies were resampled to a spatial resolution of 0.01° and used as predictors for the logistic
regression model (Figure 1). Thus, each pixel classified as agricultural, grass or bushland was defined
as either a drought or a non-drought observation within the entire study area over the entire respective
crop growing season. A random sample of 100,000 pixels (=observations) was taken per class (drought
or non-drought) as training data.

Subsequently, the five input indices were tested for autocorrelation and multicollinearity using a
Pearson correlation matrix and the condition index. Dormann et al. [48] suggest that a threshold of
0.7 in the pairwise Pearson correlation matrix indicates variables that strongly influence the model.
For the condition index, values that exceed a value of 30 are considered critical and indicate strong
multicollinearity [48]. Only variables that exhibited no multicollinearity according to the Pearson
correlation and the condition index were included in the model as predictors. A logistic model was used
to predict a binary classification of the dependent variable y (drought or non-drought). The probability
produced by the logistic model with values between 0 and 1 were considered to be drought hazard.
The calculation of the probability values p(X), that are translated into drought hazard, are defined
using the logistic function [49]:

PO+B1X
p(X) = 1 1 POHPIX’ 4)

with a linear regression function as basis [49]:
p(X) =po+p1X (5)

After setting up the model, the z and p values of the individual predictors were analyzed. High z
values (>[+/-2|) indicate a decisive influence of the variable on the modeling results. This finding can
be confirmed with significant p values (<0.01) [49].

To evaluate the goodness of fit for the logistic regression model McFadden’s Pseudo R? was used [50]:

1
2 M
Ryp =1-7 (6)

Im represents the log-likelihood of the estimated model and Iy the log-likelihood of the zero model,
which consists of only one constant. Values greater than 0 indicate predictive qualities of the model,
while 1 reflects a perfect predictive power [50]. The values of McFadden’s Pseudo R? are generally
much lower than those of the R? of general linear regression models. Values between 0.2 and 0.4
indicate an excellent model fit for McFadden’s Pseudo R2 [51].

(4) Verification of the model results

In addition to the statistical evaluation described above, the model was also checked for plausibility.
The Missouri Basin study area in the USA was the only site, where an operational drought model
(USDM) was available. The USDM is recognized as an advanced tool for drought monitoring in
science (e.g., [12]). The data is produced by the National Drought Mitigation Center of the University
of Nebraska-Lincoln, the United States Department of Agriculture, and the National Oceanic and
Atmospheric Administration and is available on the USDM’s homepage (http://droughtmonitor.unl.
edu/Data/Datadownload/ComprehensiveStatistics.aspx). A visual comparison between the USDM
maps and those produced by the logistic regression model provided a qualitative assessment of the
model’s plausibility.
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Due to the lack of spatial drought information besides global drought models, the verification in
South Africa and Zimbabwe was based on newspaper reports and reports from aid agencies published
in the World Wide Web (e.g., BBC News) about time periods and areas affected by drought. In addition,
model results were compared against occurrence information of El Nifio events, as teleconnections of
the El Nino phenomenon are known to cause drought in southern Africa [52]. By comparing the data to
the teleconnections caused by the El Nifio and the drought reports, the model plausibility was assessed
for Zimbabwe and South Africa. Finally, the model output was also compared to the Global Drought
Observatory provided by the Joint Research Center (JRC) with the key input variables derived from
meteorological, soil moisture and vegetation greenness data for drought hazard, population data and
baseline water stress for drought exposure and social, economic and infrastructural factors like the level
of well-being of individuals for vulnerability. Additionally, we used food security classification data
from the Famine Early Warning Systems Network (FEWS NET) for Zimbabwe as a cross-verification
source for the drought hazard model.

2.3.2. Vulnerability and Risk Analysis

A simplified drought risk analysis was performed by calculating a drought risk indicator, where
risk is the product of vulnerability and hazard [53]. Drought hazard is defined as the probability of a
drought occurring, which was calculated by the logistic regression model, while the vulnerability is a
relative measure that indicates the degree to which a system is susceptible to damage from the onset of
the harmful phenomenon (e.g., drought) [54].

The factors influencing the drought vulnerability in this study were the proportion of irrigated
land, the gross domestic product per area, the population density and the density of grazing animals
(cattle, sheep, goats). Areas with a higher gross domestic product indicate a lower drought vulnerability.
Population density above 300 inhabitants per km? [55], urban areas and pixels immediately adjacent
to urban areas were excluded from the analysis since we were only looking at crop- and rangeland.
Each individual variable was normalized for each study area as follows:

Xi = Xin

Yi= @)

N Xmax = Xnin
whereby y; is the focused standardized value, x; is the observed value and x,,;;; and X,y are the minimum
and maximum of all observation values, respectively. Once the mean is calculated for these standardized
variables, the drought vulnerability index (DVI) can be calculated using the following equation:

(1-1L;) + (1 - GDP;) + PD; + GAD;
1 ;

DVI; = (8
where IL, GDP, PD and GAD represent the mean of irrigated land, gross domestic product, population
density and grazing animal density, respectively. The DVI represents the drought vulnerability and
was used as a relative, spatial comparison to identify vulnerable areas. The different input variables
for DVI can also be differently weighted if necessary. Drought risk was also just used as a relative
measure assessed by the multiplication of DVI and drought hazard. This is due to the fact, that drought
vulnerability and drought risk are highly complex and cannot be investigated in detail by including
every aspect affecting them within this study. A future combination of the drought hazard model with
other existing methods and models on drought vulnerability is possible.

3. Results
3.1. Drought Hazard Analysis in the USA, South Africa and Zimbabwe

3.1.1. Drought Hazard in the Missouri Basin (USA)

As stated, the development of the logistic modeling and the construction of the method was
first performed in the USA before they were transferred and adapted to South Africa and Zimbabwe.
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The segmented regression (see Section 2.3.1) showed that 2002 was the only drought year detected
in the USA for the training data period from 2001 to 2010, and that 2004 and 2009 were non-drought
years. The pairwise autocorrelation (Table 2) showed a critical Pearson correlation coefficient of 0.71
between the NDVI and NDII. Due to a slightly higher value in the explained variance for the highest
condition index (Table 3) the NDVI was excluded as an input variable for the model.

Table 2. Pairwise Pearson correlation of the model input variables for the model in the USA.

SPI3 NDII NDVI Albedo
NDII 0.41 - - -
NDVI 0.45 0.71 - -
Albedo =03 -0.07 -0.24 -
LST -0.56 -0.53 -0.49 0.22

Table 3. Decomposed variances of the condition index for the model in the USA (only values >0.3

are shown).
Condition Index Albedo LST NDII NDVI SPI3
1 P = = = B
1.75 - - - - -
3.15 0.49 0.57 - - -
4.23 - - - - 0.96
10.66 - - 0.93 0.94 -

The summary of the model output (Table 4) shows z-values higher than |2| for all predictors with
a confidence level of 99%, indicating that all variables have a significant influence and should be
included in the logistic regression model. Moreover, McFadden’s Pseudo R? was found to be 0.16,
which suggests a good fit.

Table 4. Summary of the logistic regression model for the USA.

Coefficient z-Value
(constant) -0.20 -35.6
Albedo 0.13 22,6
LST 0.43 66.6
NDII -0.83 -111.7
SPI3 -0.12 -17.6

2012 was identified as a drought year for the model application after the training data period
(Figure 2). The maps of the calculated probabilities for 2012 showed increasing drought intensity
while the affected area was also growing, finally covering almost the entire area of the Missouri Basin
except for the southeast and northwest parts in September. In 2016, drought probabilities decreased
over the course of the growing season. Towards the end of the crop cultivation period, high drought
probabilities can only be seen in smaller areas in the center and south of the Missouri Basin. On the
contrary, low drought probabilities, i.e., normal conditions for agricultural land, grass- and shrubland,
were spread over most of the study area. Although not identical, both the model results and the US
Drought Monitor indicate large areas affected by drought in 2012 that spatially match. Differences
between the two drought models were more pronounced in the 2016 non-drought year.
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Figure 2. Modeled drought hazard in the Missouri Basin (USA) compared to the U.S. Drought Monitor
(dotted polygons) for agricultural, grass- and shrubland in a drought (2012, left) and non-drought year
(2016, right).

3.1.2. Applicability of the Developed Hazard Model for South Africa

The analysis over South Africa identified 2007 as a drought year and the years 2002 and 2009 as
non-drought years over a time period from 2001 to 2010. The pairwise autocorrelation in South Africa
does not show any Pearson correlation values higher than 0.7 and the Condition Index is also well

below the critical value. As such, all variables were used to model drought probabilities in South Africa.

As with the model results for the USA, all predictors showed z-values greater than |2| on a significance
level of 99% (Table 5). The model for South Africa also showed a good model fit, with a McFadden’s
Pseudo R? value of 0.17.

In order to exemplarily compare the hazard model prediction for a drought and a non-drought
year for South Africa, the 2013/2014 growing period (hereinafter referred to as 2014) was chosen as the

non-drought period and 2015/2016 (hereinafter referred to as 2016) as the drought period (Figure 3).

A comparison of the individual months clearly showed that high drought probability areas were more
widespread and frequent in 2016. In the non-drought year, higher probabilities were only found in the
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center of the country in January 2014. Low to medium probability ranges were distributed over the
entire growing season. During the drought period, one can see that high drought probabilities were
prevalent over most of the country in December 2015, followed by a decrease over the subsequent
months. In February 2016, artefacts caused by errors in the MODIS cloud mask can be seen in the
center and south of South Africa.

Table 5. Summary of the logistic regression model for South Africa.

Coefficient z-Value

(constant) -0.17 -31.5
Albedo 0.25 40.0
LST 0.48 59.8

NDII -0.35 —40.2
NDVI 0.61 70.0

SPI3 -0.93 -118.1
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Figure 3. Modeled drought hazard in South Africa for agricultural, grass- and shrubland in a
non-drought year (2013/2014, left) and a drought year (2015/2016, right).
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3.1.3. Applicability of the Developed Hazard Model in Zimbabwe

In Zimbabwe, 2003, 2005 and 2008 were identified as drought years, while 2004 and 2006 were
identified as non-drought years. Neither the pairwise autocorrelation nor the Condition Index showed
critical values and all predictors had a high and significant impact on the model results according to
their z-values (Table 6). In contrast to the results for South Africa and the USA, the Pseudo R? values
obtained for Zimbabwe was 0.06, which indicates a moderate predictive quality.

Table 6. Summary of the logistic regression model in Zimbabwe.

Coefficient z-Value
(constant) —0.03 —6.3
Albedo 0.19 -35.4
LST 0.07 -10.1
NDII —-0.46 -67.4
NDVI 0.10 18.2
SPI3 —0.38 -57.3

The drought probabilities calculated for the 2013/2014 (non-drought) and 2015/2016 (drought)
growing periods in Zimbabwe reveal differing climatic conditions (Figure 4). Similar to the conditions
seen in South Africa, the latter period is a drought year while the model clearly identified 2014 as a
non-drought year. In general, drought probability in Zimbabwe was higher in 2016 than in 2014 and
the probabilities decreased over the growing periods of both years.

3.1.4. Evaluation of the Logistic Regression Model for South Africa and Zimbabwe

The advanced monitoring system of the USDM is not available in other countries like South Africa
or Zimbabwe. Therefore, both, newspaper articles and drought reports, as well as data on the past El
Nifio event in 2015/2016 were used for evaluation. The known teleconnections of El Nifio are hot and
dry conditions between December and February in the southeastern part of Africa [56]. The Oceanic
Nino Index (ONI) registered a strong El Nifio event during the 2015/2016 season [57] and its effect can
be seen in the model results of South Africa and Zimbabwe. The drought probabilities predicted by the
logistic regression model were highest during this event, as seen prominently in the North and East of
South Africa. In Zimbabwe it seems, that all areas were equally affected in the same period. A decrease
in drought probabilities was also observed at the beginning of 2016 in both countries which complies
with ONI's reported maximum at the end of 2015, followed by a steadily decreasing trend thereafter.

Newspapers also reported on the 2015/2016 drought in South Africa. According to BBC News [58]
and Al Jazeera [59], all provinces in the East of the country like Free State, KwaZulu-Natal and
Limpopo, were severely affected. These reports were consistent with the known teleconnections of
an El Nino event. The hazard model results for South Africa corroborates both the reports and the
climate patterns in these regions (Figure 3). The conditions in Free State and KwaZulu-Natal also
lasted longer than in other regions, which is consistent with the newspaper reports claiming that
these two provinces were the most affected. News24 [60] also reported extreme drought on the South
African West Coast in January 2016, along with a high fire risk. This coincides with the high drought
probabilities predicted for the end of 2015 and the beginning of 2016. Overall, the newspaper reports
on the 2015/2016 drought and the El Nifio data during the same period provide qualitative evidence
that the model results resemble true conditions on the ground.
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In Zimbabwe, BBC News [61] and ReliefWeb [62] both reported prevailing drought conditions in
the months prior to February 2016. They cited various provinces and regions that were particularly
affected, such as Hwange, Masvingo or Matabeleland South and Matabeleland North, concluding
that most of the country was affected by drought. The modeled drought probability maps predicted
herein corroborate this, showing high drought probabilities across the country over the same period.
The results of the drought hazard model for February 2016 were also compared to FEWS NET food
security classification data and drought risk data from the Global Drought Observatory (Figure 5).
The visual comparison shows high drought hazard patterns across the country going along with
middle to high food insecurity and middle to high drought risk. The visual agreement within this
cross-verification shows the plausibility of the drought hazard model.
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Figure 5. Comparison of the drought hazard model results (top) with food security classification data
from FEWS NET (http://shapefiles.fews.net.s3.amazonaws.com/HFIC/SA/southern-africa201602_CS.
png) (center) and the Global Drought Observatory (https://edo.jrc.ec.europa.eu/gdo/php/index.php?
id=2001) (bottom) for the month February in 2016.
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In the observation period from 2011 to 2017, there were only reports for one wide spread drought
event (2015-2016). Accordingly, the other years were considered as years with no widespread drought
in both countries. Overall, the model output proved to be well suited to predict drought probabilities
for agro-ecological landscapes in southern Africa.

3.1.5. Comparison between the Drought Hazard Model and the Global Drought Observatory of the
Joint Research Center (JRC)

Currently, there is no known approach that utilizes remote sensing variables to predict drought
hazard and has been validated against a state-of-the art drought monitoring system. A method to
predict drought hazard, vulnerability and risk in data scares areas like Zimbabwe is also missing.
However, the model presented does share similarities with the GDO’s Risk of Drought Impacts for
Agriculture (RDrl-Agri) product which combines drought hazard, vulnerability and exposure [26].

The comparison with the RDrI-Agri was done visually (see Figure 5 for an example) since the
difference in the spatial resolution thus not allow for a pixel by pixel analysis. Both datasets predicted
similar results for the 2013/2014 and the 2015/2016 growing seasons in South Africa and Zimbabwe.
The 2013/2014 season showed low RDrl-Agri and low modeled hazard values while the 2015/2016
season displayed high RDrl-Agri and high hazard values. For 2016 there was, however, a slight
discrepancy in drought risk and hazard intensity values that may be due to the differences in input
model variables and areas under consideration.

3.2. Drought Vulnerability and Risk Analysis in South Africa and Zimbabwe

Figure 5 shows low drought vulnerabilities along the southern coast of Africa and parts of eastern
South Africa, as well as in western Zimbabwe. The southeastern part of Zimbabwe also showed some
isolated areas with lower drought vulnerabilities over the observation period which could be due to
irrigated croplands. The most vulnerable regions were Free State and KwaZulu-Natal in South Africa
and the provinces around Masvingo like Chivi and Buhera in Zimbabwe.

A comparison of the two growing periods for South Africa and Zimbabwe showed clear differences
in drought risk. In 2013/2014, low drought risk values were visible over larger areas in South Africa
and Zimbabwe while the vulnerability was constant over the full observation period. On the contrary,
for the drought within 2015/2016, a greater drought risk could be predicted over a larger area. The most
vulnerable regions in both countries are also clearly discernable in the risk maps for both years.

4. Discussion

The model produced spatially explicit information on drought hazard, drought vulnerability and
drought risk that performed well according to the quantitative and plausibility checks.

In the comparison with the Global Drought Observatory, there were some discrepancies in the
intensity of drought risk and drought hazard which could be due to the diverging methods used. In the
RDrlI-Agri model, the risk of drought impact on agriculture is predicted while the model presented here
predicts drought hazard probabilities on agricultural and rangeland. This presented model also runs on
a spatial resolution of 0.01° which is more detailed than the RDrI-Agri model’s 1°. On the other hand,
the RDrI-Agri model offers a higher temporal resolution, producing maps every 10 days instead of
each month. The drought risk product presented here, could not be compared to the RDrl-Agri model
because our drought risk model result only considers crop growing seasons’. Due to the complexity
of drought effects and impacts, validation of drought models is difficult in general. The presented
quantitative figures of model’s McFadden’s Pseudo R?, p values, however, demonstrated the the
plausibility of the results. Hagenlochner et al. [54] stated that less than 20% of their reviewed drought
studies have conducted any form of validation or evaluation of their results. Considering that lack of
validation methods and the lack of reference data we used a variety of available information and data
to cross-verify our results. Even though this could not be done in a quantitative way, this alternative
cross-verification approach showed to be effective for model plausibility checks.
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The spatial transferability of our approach is generally possible since we are using globally
available FAO yield response data (as response variables) combined with globally available remote
sensing data as predictors. However, the method should be used with care for regions where strong
and large-scale yield anomalies are caused by factors different from drought. The logistic regression
model that was developed (trained) for the Missouri Basin, could be successfully applied to South
Africa and Zimbabwe, thus further demonstrating the transferability of the hazard modeling approach.
The application of the model should run at country level, since the FAO yield data is only available at
this spatial unit. It is also important to mention that the model itself needs to be country-specifically
calibrated and set up when being transferred but always based on the same input data. When setting
up the model, multicollinearity should also be checked and minimized during the model optimization
process. The final model equation can also contain different variable relevancies depending on the
country or region. The need for a country-specific set up becomes apparent when comparing drought
and non-drought years using the FAO stats yield data. When considering the three countries USA,
Zimbabwe and South Africa, the same crops could be used for the analysis due to their similar
agricultural use and responses to water stress in the three countries. However, this may not be the
case in other areas, such as Asia, where different reference crops should be selected that better mimic
water stress responds. Kogan [63] analyzed the relationship between vegetation health and crop
yields in different countries around the world and found, that yield modeling with the help of the
vegetation health indices differs regionally for different crops. Thus, regarding the global applicability
of our modeling framework, geographical location, climate zone and crop type differences must be
considered, specifically when selecting drought and non-drought years in the time line reference yields
data. The segmented regression, which mainly accounts for effects of technological advances on yields,
can be simply transferred to other crop yields data or other regions. Due to regional differences in
climate and plant characteristics, the herein considered variables Albedo, LST, NDII, NDVI and SP13
vary in importance in terms of their relevance to drought hazard. This results in different model
equations for every region when applying the model after a country-specific set-up. The changing
relevance of the input variables per country also relates to the autocorrelation and the z-values of the
model variables. In South Africa and Zimbabwe, for example, no critical values were found in the
pairwise autocorrelation in contrast to the USA. This is due to regional deviating plant characteristics
leading to changes in the indices and their interplay [64]. For example, the SPI3 with a z-value of
17.6 is significantly less influential for the model in the USA than it is in South Africa (118.1) and
Zimbabwe (57.3). One possible explanation is that the dependence of plants on precipitation could
be more distinct in South Africa and Zimbabwe due to, for instance, the lower spatial coverage of
irrigation croplands in these two countries [38]. This becomes clearer when looking at the importance
of the NDII in the model of the three countries. Di Wu et al. [12] stated that the NDII in its analysis is
sensitive to the detection of droughts over irrigated fields. In a country like the USA, where a large
part of the agricultural area is under irrigation [12], this index thus plays a decisive role in modeling
the probability of drought. The comparison of the z values for the NDII suggests a similar trend. In the
USA this was 111.7 and was thus significantly higher than the values of 40.2 and 67.4 in South Africa
and Zimbabwe, respectively. Concluding this section, the model showed to be spatially transferable
while also capturing regional drought relevant impacts and effects and thus providing spatially more
precise information compared to global drought models.

In contrast to existing country statistics on income, poverty or food availability, the vulnerability
analysis presented hereis simplified but spatially explicit while helping to support drought preparedness
or water resource management of more vulnerable regions or communities [26]. As apparent in
Figure 6, the administrative units at which level population, GPD and animal density data are reported
for Zimbabwe and South Africa, are clearly visible in the vulnerability analysis results. These data that
are aggregated information at administrative unit level, can cause under- or overestimation of drought
risk in some areas. For instance, in the Kruger National Park (KINP) in northeastern South Africa on
the border to Mozambique, this becomes apparent. Within the KNP, high per pixel vulnerability scores
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are predicted although the Kruger Park can be considered a ‘no vulnerability” area with regard to GDP,
population, livestock or irrigation. Moreover, if one compares South Africa and Zimbabwe, the spatial
patterns in Zimbabwe are more easily delineated than in South Africa (Figure 5). This is probably due
to the fact that spatially explicit data availability in South Africa regarding to population density, GDP
and livestock density is generally much better than in Zimbabwe.
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Figure 6. Drought hazard, vulnerability and risk for South Africa and Zimbabwe for the growing
seasons December to March 2013/14 and 2015/16. Drought hazard is only presented for crop-, grass-
and shrubland, drought vulnerability excludes urban areas and drought risk is presented for crop-,
grass- and shrubland additionally excluding urban areas.
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To support drought preparedness and interventions, the vulnerability and simplified risk modeling
framework allows for spatial comparisons between regions and can be most useful to identify drought
prone regions that are in danger of damages or economic losses [65]. Ebi & Bowen [66] noted
that the increase in drought exposure is accompanied by a decline in the Human Development
Index. This suggests the need for an approach that allows for a comparison of vulnerability and risk
between countries. A disadvantage of this analysis approach is essentially that no absolute degree
of vulnerability and risk can be determined. Other studies on regional vulnerability incorporate a
wide spectrum of variables to determine drought vulnerability and thus better reflect the absolute
drought vulnerability. Vulnerability dimensions are mentioned by Hagenlochner et al. [54] in their
review article on drought assessment. The main obstacle is the availability of global spatially explicit
data sets. Since only a few useful data sets are available for some countries in this form, water supply
and availability could not be included. In our models, the separate analysis of grazing animals offers
additional variable weighting possibilities. All input index variables can be weighted differently and
the vulnerability index can be easily extended with new data sets that may be available in the future.
This allows a better understanding of the region-specific significance of the individual factors for
agriculture and pasture management and a more appropriate calculation of drought vulnerability and
risk. In this context, it was demonstrated that the simplified analysis of vulnerability and risk can be
feasibly calculated at the country level.

5. Conclusions

This paper presented a satellite data-driven logistic regression model that can model drought
hazard for agriculture, grass- and shrubland biomes while being spatially transferable. The model
showed a good spatial agreement with the U.S. Drought Monitor when compared in the Missouri study
site in both drought and non-drought years. The subsequent evaluation in South Africa and Zimbabwe
with the help of drought reports and data on the last major El Nifio event in 2015/2016 proved the
predictive quality of the model. Considering the goodness of fit for the logistic regression model,
McFadden'’s Pseudo R? showed a good predictive quality for the USA and for South Africa, but only
a moderate predictive quality for Zimbabwe. However, not only quantitative measurements are in
need to assess the model performance, but also qualitative analyses regarding plausibility of results.
The comparison to the Global Drought Observatory developed by the JRC and to the food security
classification data provided by FEWS NET also showed a good match with the results obtained herein.

Overall, the logistic regression model shown here combines the advantage of global models with
their global applicability with the strengths of regional models that allow for assessing drought hazard
at a regional level through improved spatial resolution. This might require changing various input
variables, weights and crop types affected by drought depending on different characteristics of the area.
Although it has shown its potential for global transferability, further research on the suitability of the
model to predict drought hazard in other geographic regions needs to be done. The drought hazard
model can also be seen as a first step towards near real-time drought hazard monitoring since it is
exclusively based on near real-time satellite data and thus reflects current conditions. This study could
demonstrate a consistent way of analyzing drought hazard, risk and vulnerability within a country.
In order to advance this methodology, new global and spatially explicit time series data is needed to
support and provide a more comprehensive vulnerability analysis.
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Abstract: Increasing conflicts between farmers and pastoralists continue to be a major challenge
in the Sahel. Political and social factors are in tandem important underlying determinants for
conflicts in the region, which are amplified by the variability and scarcity of natural resources, often
as a result of climate variability and climate change. This study aimed at holistically assessing
the main environmental parameters that influence the patterns of seasonal migratory movements
(transhumance) in a transboundary area in the southern Republic of Chad and northern Central
African Republic through a broad set of Earth observation (EO) data and data from the Transhumance
Tracking Tool. A spatial model was applied to the datasets to determine the spatiotemporal dynamics
of environmental suitability that reflects suitable areas and corridors for pastoralists. A clear difference
in environmental suitability between the origin and destination areas of herders was found in the
dry season, proving the main reason for pastoralists’ movements, i.e., the search for grazing areas
and water. Potential conflict risk areas could be identified, especially along an agricultural belt,
which was proven by conflict location data. The results demonstrate the potential and innovation
of EO-derived environmental information to support the planning of transhumance corridors and
conflict prevention in the Sahel. In the future, a combination of real-time tracking of herders and
EO-derived information can eventually lead to the development of an early warning system for

conflicts along transhumance corridors in the Sahel.

Keywords: Central African Republic; Chad; Copernicus; famer; herder; migration

1. Introduction

Conflicts between farmers and semi-nomadic livestock herders (transhumance) have
increased over the past two decades [1], and continue to be a major challenge in sub-
Saharan Africa [2,3]. In particular, farmer-herder conflicts concerning drought and water
tensions have become widespread in the Sahel and eastern Africa [4,5]. Livestock farming
strongly contributes to the regional states” gross domestic product (GDP) in the Sahel, with
up to 15% of the total GDP coming from this sector. In some countries (e.g., Burkina Faso,
Mali and Niger), products originating from pastoral farming represent the third largest
export product [6]. Complex ecological, climatic, anthropogenic and underlying socio-
political factors affect agro-ecological production systems in the Sahelian countries [7]. In
particular, subsistence farmers and pastoralists, who traditionally complement one another
in how agro-ecological systems are used, are increasingly competing for the same natural
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resources, such as water and grazing land [8]. Conflicts concerning natural resources
and herd mobility have increased in both number and severity. In particular, increases
in herd sizes, cropland expansion and extreme weather events have exacerbated these
conflicts [6,7]. The complementarity between farmers and herders has also been disrupted
by mismanagement due to poor governance, misguided land tenure policies such as large-
scale conversions of dry season pastures to rice fields [9], or extending cropland areas
for subsistence farming [10]. Currently, there is limited information on spatio-temporal
migratory movements, grazing locations, overlay areas, home ranges and nomadic herding
practices adopted by pastoralists. This inevitably limits our understanding of the drivers of
transhumance patterns and possible sources and locations of conflicts and with that forced
population displacement [11].

The reasons behind farmer-herder conflicts have been analyzed from different per-
spectives, leading to a general assumption that infrastructural, socio-economic and political
factors act in tandem with environmental factors and that environmental stressors are only
partly predictive of conflict events [1,12-14]. Other studies on conflict resolution have also
been conducted, stating the need for addressing climate change-related impacts and the
root causes of risks for food security [8] or identifying policy options to address challenges
in drought-prone regions [15]. Mbih [16] recently used surveys to collect expert and indige-
nous agro-ecological knowledge to derive solutions for alternative farmer—herder conflict
management and sustainable development. Other studies focused on supporting herders
with environmental information. The French Agricultural Research Centre for International
Development (CIRAD) therefore developed the “systéme d’information sur le pastoralisme
au Sahel” (SIPSA) in 2012. On a regional level, a certain number of biophysical indicators
relating to rangeland productivity, the state of the vegetation, and the extent of surface
water and of burned areas were developed using satellite images and subsequently tested
and validated by AGRHYMET [7]. Since then, new satellite technology has evolved fast
and has not yet been exploited in the context of conflict prevention and mitigation. A par-
ticipatory mapping study with pastoralists was conducted, where the pastoralists’ rankings
of suitable grazing areas matched the vegetation assessment results of the same area [17].
This leads to the assumption that information tools for herders based on environmental
information can point out alternative grazing areas and thus could minimize conflicts.
Mertz et al. [18] stated that improved weather and natural resource information as well as
multiple options for herd movements, if communicated to herders, may reduce the level
of conflict.

The present study focuses on (1) developing a geospatial tool to improve the under-
standing and planning of transhumance migratory movements and corridors and (2) on
identifying potential risk areas for conflicts by using a wide range of Earth observation
(EO) data to derive various environmental parameters relevant for transhumance. A spatial
model was developed that compiles the EO-derived information products into environmen-
tal suitability maps for transhumance. Data from the Armed Conflict Location and Events
Data (ACLED) set and data from the Transhumance Tracking Tool (TTT) provided by the
International Organization for Migration (IOM) were analyzed together with the suitability
maps to identify potential risk areas. This study aimed at developing a new conceptual
EO framework in direct support of the conflict prevention activities of the International
Organization for Migration’s (IOM) in the Sahel.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1), with a total size of 268,193 km?, is located in the border area
between the Republic of Chad and the Central African Republic (CAR). The climate zone
and vegetation differ between the northern and southern parts. While the northern area
is located in the semiarid Sahelian zone, dominated by bare areas and sparse grassland
vegetation, the southern part is located in the humid tropical zone, dominated by denser
vegetation and tropical forests. The north-south gradient in climate and vegetation season-
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ality (stronger in the north of the study area) is the main reason for seasonal transhumance
migratory movements from north to south during the dry season.

Figure 1. Regional map of the study area (red) between Chad and the Central African Republic
(green). Source: ESRI Basemaps.

In this area (Figure 1), pastoral livestock farming, or transhumance, plays a key
economic role in food and nutritional security. In Chad, around 80% of the national herd,
which holds a total of 94 million heads of cattle, comprises the livelihood of ~40% of the
population and accounts for 30% of exports [19]. Pastoral livestock farming is closely
dependent on environmental conditions resulting in a typical north-south movement at
the onset of the dry season and vice versa at the onset of the rainy season. Over the last
few decades, these movements have stretched further south, even leading to cross-border
movements between Chad and the Central African Republic. Competitions with other
groups, especially crop farmers, add to the already existing environmental challenges for
pastoralists during their movements [7].

2.2. Data

The data analysis for this study was exemplarily performed for the year 2019. Already
existing and freely available geodata such as those from the Copernicus Land Monitor-
ing Service [20] were used as much as possible. For environmental parameters that did
not exist in the required coverage and frequency, Sentinel-1 and Sentinel-2 data from the
Copernicus programme (Copernicus Sentinel data 2019) were processed to produce the
relevant geoinformation products (Table 1). These open satellite data with high temporal
resolutions allow large-scale studies and open up new possibilities for systematic monitor-
ing. These data were used to derive dynamic environmental parameters that are important
determinants for transhumance migratory movements such as farming systems, rangeland
productivity, vegetation cover, burned areas and surface water occurrence. The input data
were complemented by geospatial data on urban settlements, spatial data for protected
areas [21] and survey data for transhumance movement patterns provided by IOM through
the Transhumance Tracking Tool (TTT) [22] and from the ACLED conflict location and
event database [23]. The ACLED conflict database contains information about the exact
reported location and date of “battle events”, transfers of military control, headquarter
establishment, violence against civilians along with riots [23].

The geospatial information products used are listed in Table 1. Accordingly, vari-
ous map layers were derived from these products as inputs to the spatial modelling of
environmental suitability for transhumance (Table 2).
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Table 1. Overview of the EO products and its data sources.
Geospatial Products Time Period Data Type/Source
Surface water occurrence 2017-2019 Sentinel-1
Farming systems Static 2019 Sentinel-2
Vegetation greenness Monthly for 2019 Sentinel-2
Vegetation cover Monthly for 2019 Sentinel-2
Burned areas Monthly for 2019 Sentinel-2
Urban areas Static for 2019 Copernicus Land Monitoring Service
Forest type Static for 2019 Copernicus Land Monitoring Service
Protected areas with access Static for 2019 World Database on Protected Areas
restrictions (WDPA)

Table 2. Input data used for the calculation of the environmental suitability maps for transhumance.
The four datasets below the line were used as “mask” areas in which a suitability of 0 was assigned.

Input Layer Name Spatial Resolution From Geospatial Product
Distance to water body 10 m Surface water occurrence
Distance to urban areas 10 m Urban areas

Monthly rangeland productivity 10 m Vegetation greenness
Monthly vegetation cover 10 m Vegetation cover
Monthly burned areas 10 m Burned areas
Forest type 30m Forest type
Agricultural fields 10 m Farming systems
Water 10 m Surface water dynamics
Urban areas 30 m Urban areas
Protected areas with access Protected areas with access
restrictions restrictions

I0OM, through its Displacement Tracking Matrix (DTM), works with the Bilital Maroobe
Network (RBM) and its branches of pastoralist organizations to map the movements of
transhumance herders along main transhumance corridors in West and Central Africa in
order to better understand the dynamics and characteristics of internal and cross-border
movements. In brief, data collection is conducted in key seasonal transhumant movements
locations (such as cattle markets and water points). This tool aims to quantify these
movements through direct observations and head counts the cattle and pastoralists. The
Transhumance Tracking Tool (TTT) is a set of data collection modalities intended to provide
the information needed for the implementation of support programs for populations
involved in transhumance. It is composed of an early warning system tool, a mapping tool
and flow counting tool that may be implemented in parallel or separately depending on
the data needs. The data used for this document were extracted from the Flow Counting
tool that quantified the movements and directions of herders and their cattle along main
transhumance corridors.

2.3. Methods
2.3.1. Generation of Earth Observation Products

(1) Surface water occurrence

Level-1 ground range detection data from Sentinel-1 in VV polarization from the
descending orbit over three years from 2017 to 2019 were used as input data. Both the
presence and variability of water are very useful parameters to identify potential watering
areas for the livestock as important points of interest for herders. Sentinel-1 satellite data
are often used in inundation mapping, because of their sensitivity to water. The data
were preprocessed into calibrated, topographically normalized backscatter images. The
preprocessed images were classified into binary water body maps by using a threshold
identified through zonal statistics over permanent water bodies and defining a 3% percentile
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as a variable threshold for each scene. From the individually classified images, a surface
water occurrence map was produced, which represents the pixel-wise number of surface
water occurrences relative to the number of valid image acquisitions in the observation
period of 2017 to 2019 in percent. The product represents a measure for the changing
spatial extent of water bodies (permanent vs. seasonal water bodies) and has a spatial
pixel resolution of 10 m. The method followed Steinbach et al. [24]. False-positive water
detection can occur especially over sparse sandy or bare areas. To remove these false
positives, an additional spectral unmixing of multispectral Sentinel-2 data from June 2019
to September 2019 was performed for the endmember’s vegetation, soil and water. This
period was used in order to cover the maximum extent of the water during the wet season.
Pixels that were not covered by water according to the spectral unmixing during the rainy
season were eliminated as false positives.

(2) Farming systems

The extent and type of cropland constitute important information in regard to tran-
shumance patterns, since areas occupied by crop production limit the space for migratory
movements of herds and also pose a potential risk for conflicts. Agricultural farming sys-
tems, i.e., irrigated and rainfed cropland, were differentiated by the use of Sentinel-2 data
from 2017 to 2019. The agricultural farming systems were mapped using the methodology
developed by Landmann et al. [25], which was modified to Sentinel-2 data. Postprocessing
was used to generalize the farming systems by eliminating very small areas (single sepa-
rated pixels) using a majority filter. For limits of this remote sensing-based classification
and the accuracy of the method, see Landmann et al. [25].

(3) Vegetation cover and condition

The spectral properties of vegetation with decreasing water content or senescence are
well-known and can be observed using remote sensing [26,27]. Spectral mixture analysis
(SMA) holds great potential for estimating biomass condition and moisture content at a
subpixel level [28,29], also representing the rangeland productivity (green vegetation cover
and abundance). In contrast to vegetation indices, spectral mixture analyses make use
of all vegetation-relevant spectral bands and are suitable to assess the fractional green
photosynthetic vegetation (GV) versus per pixel non-photosynthetic vegetation (NPV),
and bare substrate (soil) abundances from satellite data [30-32]. Sentinel-2 data were used
to derive a spectrally unmixed dataset with cover fractions for “green vegetation”, “dry
vegetation” and “bare soil”. Green vegetation abundance was used directly as an indicator
for rangeland productivity, while the bare soil fraction was subtracted from 1 to indicate
the total vegetation cover (green vegetation + dry vegetation). The product was generated
on a monthly basis from January 2019 to December 2019 to account for temporal changes
in grazing land and vegetation conditions.

(4) Burned areas

Wildfires are common in the study area, and the majority of the fires occur in the dry
season (November—March). Since recently burned areas are not suitable for herders and
their cattle, due to the unavailability of fodder, burned areas are considered in this analysis
as areas temporarily less suitable for transhumance. Burned areas were mapped for each
month using all available Sentinel-2 images in the dry season. For every month, a best
pixel composite was produced, whereby the composite for the previous month was used as
a pre-fire image and the composite of the current month was used as the post-fire image.
For each Sentinel-2 scene of the current month as well as for the monthly composites,
the normalized burn ratio (NBR) was calculated. Each NBR image was then subtracted
from the NBR of the composite of the previous month (pre-fire) to calculate the difference
normalized burn ratio (dANBR) following [33]. Every scene was classified using the two
highest burn severity levels with a threshold of <440 (scaled by 10%) according to [34]. To
generate monthly burned area composites for the dry season from November to March, all
burned areas were cumulated per month.
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2.3.2. Model Input Layers

Using the geospatial products described above, two types of input data for the environ-
mental suitability modelling were generated, i.e., binary mask layers with zero suitability
assigned (0,1) and environmental suitability layers with scaled values (between 0 and 1).

Mask layers were generated for all areas that represent non-suitable/non-accessible
areas for herders, such as inner urban areas, permanent water bodies, and cropland as well
as protected areas with access restrictions. To differentiate forests suitable for transhumance
(open forests) and forests less suitable (dense forests), all land cover classes that are related
to forests were aggregated to “closed forest” and “open forest” according to their legend
description [35].

Distance to permanent water (as derived from the surface water dynamics product)
was calculated by using the Euclidean distance. The same approach was used for the
distance to urban areas, where the class urban was extracted from the land cover data.
While urban areas are points of interest for the herders (e.g., livestock markets, veterinary
stations, health centers, wells, etc.), which is reflected through the distance to urban areas
in the model, the inner urban areas are considered as non-suitable areas for transhumance
corridors (applied through zero suitability masking as described above). While the above-
described layers were considered as static for the observation year 2019, more dynamic
environmental parameters such as the rangeland productivity, vegetation cover and burned
areas were generated on a monthly basis for 2019.

Each environmental suitability input layer was standardized to a range from 0 to 1,
where 1 indicates the highest suitability for the respective environmental variable. The
layers rangeland productivity and vegetation cover are represented in percent and were
simply divided by 100. The forest type layer was classified by assigning the value 0.2 to all
pixels covering “closed forest” and 0.7 for “open forest”, since herders prefer rather open
areas. For both distance layers, local expert knowledge from IOM was incorporated for
scaling. Thereby, a maximum distance of two walking days (50 km) was considered as a
maximum suitable distance to water bodies and to urban areas. Distances greater than
50 km were set to zero suitability values, while all distances between 0 and 50 km were
scaled to a range between 0 and 1. The monthly burned areas were marked with the value
0 (zero suitability).

2.3.3. Spatial Modelling of Environmental Suitability for Transhumance

Figure 2 shows the schematic workflow diagram of the spatial modelling procedure.
For each month in 2019, a set of static as well as dynamic environmental variables were used
to calculate the environmental suitability maps for transhumance migratory movements.
The monthly maps (TS) were calculated using an unweighted mean in the statistical
software R as follows:

TS = (D. water + D. urban + Veg. cover + Veg. green. + Forest type + BA)/ND (1)

where TS is the transhumance suitability score, D. refers to “distance to” and BA represents
the burned areas. ND is the per pixel denominator, indicating the number of valid input
parameters. Since Sentinel-2 data were used to derive vegetation cover and rangeland pro-
ductivity, persistent clouds in some months led to data gaps in these products, which have
to be considered in ND, where 6 indicates that all layers would have valid observations. In
this case, the assumption was made that all these parameters can influence the transhu-
mance movement at the same magnitude. To differentiate the magnitude of influence of the
different parameters, more detailed research would be needed, as all parameters also act in
tandem. This approach was also discussed with experts by IOM and was found the most
feasible at this stage of research. However, the model allowed us to change the weights of
the input layers, in case adjustments to specific regional conditions were required (e.g., by
incorporating local expert knowledge). The resulting TS score ranged from 0 to 1, where
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1 reflects highly suitable areas for migratory movements and 0 unsuitable areas. The TS
score was then masked by using the following equation:

TS final = TS * urban mask # water mask * cropland mask * protected areas mask. (2)
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Figure 2. Workflow diagram.

2.3.4. Combining Suitability Maps with Transhumance Tracking Tool and Conflict Data

Additional data of conflict events (ACLED) and data from the transhumance tracking
tool (TTT) were used together with the environmental suitability for transhumance maps to
interpret the results. The locations for the origin areas of herders, TTT survey locations and
destination areas of herders as indicated in the TTT data were mainly analyzed to assess
the seasonal mean environmental suitability scores at origin and destination locations
(663 data points per location). A radius of 1 km around each origin and destination location
was considered. Points with a north-south movement from origin to destination during
the dry season were used to compare the situation at origin and destination locations
monthly, in order to get a better understanding of the environmental conditions during
transhumance movement and to check the plausibility of the suitability values.

A few example points (40 per each origin and destination) were also used to calculate
least-cost paths as the theoretical optimal path through areas with the highest suitability
values. The input environmental suitability values were average suitability maps for
the two periods of movement—from the origin to the TTT survey locations and from
the TTT survey to the destination locations. The mean suitability maps were resampled
to a spatial resolution of 100 m to provide faster and easier data processing. The TTT
data were then analyzed regarding the number of people in each area per month to
determine the two movement timespans. The mean suitability for the journey from an
origin to a destination was then calculated from June to October (movement timespan
one) and from November until January (movement timespan two) for the routes from
the survey location to the destination. The environmental suitability raster layers were
converted into graphs connecting each cell centers with each other, which then become
nodes. The Moore neighborhood approach—comprising eight orthogonal and diagonal
nearest neighbors—was used. The nodes were mostly weighted with calculations using
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cost, frictions, resistance values or with probabilities of transition. These graphs represent
the ‘transition matrix’ [36]. In this analysis, the transition matrix was calculated using the
maximum suitability values between connected cells to follow the highest environmental
suitability. A geo-correction was needed to correct geometric distortions of distances,
through dividing each conductance matrix value by the distance results in the corrected
values [36]. The corrected transition matrix was then used to determine the shortest path
along the highest suitability values between the two points of origin and destination (least-
cost path) [36]. The results represent the theoretical optimum transhumance paths along
the highest environmental suitability values. Alongside these results, the ACLED conflict
data are displayed on the environmental suitability maps as additional information to
identify potential high-risk areas for conflicts. The ACLED data were filtered for farmer
and herder-related conflicts from 2011 to 2019.

3. Results

The used Earth observation products (input for the environmental suitability maps),
namely farming systems, rangeland productivity, surface water dynamics, vegetation
cover, burned areas and the Copernicus land cover, are displayed exemplarily for a small
subset of the study area in Figure 3a—e. Cropland was distinguished between rainfed
and irrigated cropland within the product framing systems (Figure 3a). This information
is important for transhumance movements, since rainfed cropland may be available as
grazing land for herders during the dry season, in contrast to irrigated cropland. Water
availability plays a crucial role for humans and animals in general, and was herein described
by surface water dynamics (Figure 3c), where low to mid-percentages indicate seasonal
water bodies mainly available in the wet season. For the environmental suitability maps,
distance to water was calculated from the surface water dynamics for all permanent or near-
permanent water bodies. Other seasonal varying factors include vegetation availability
and vegetation greenness as an indicator for rangeland productivity (Figure 3b,d). Dry
vegetation is an additional factor that was included in the analysis and is incorporated in the
vegetation cover layer. Dry and green vegetation abundance varies significantly during the
season, as shown in Figure 4a—d, where rangeland productivity (green vegetation cover and
abundance) is displayed for four months as an example. The availability of green vegetation
shifts southwards during the dry season (January and April) and northwards in the wet
season (July and October). This example demonstrates the importance of the rangeland
productivity for the monthly assessment of transhumance suitability. Additionally, burned
areas were included in the analysis with a low suitability score to represent the absence of
grazing land due to recent fire activities (Figure 3d). Burned areas were also analyzed on a
monthly basis, but only during the dry season (fire season). The Copernicus land cover
data (Figure 3e) were used as a static input product in this analysis, where urban areas
were extracted and all forest classes were aggregated to open and closed forest.
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Figure 3. Examples of the different earth observation products for December 2019 for a subset of the
study area. (a) Farming systems, (b) rangeland productivity (masked with urban areas, water, and
farming systems), (c) surface water dynamics, (d) vegetation cover and burned areas (masked with
urban areas, water, and farming systems), and (e) Copernicus land cover.
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Figure 4. Rangeland productivity displayed for four months in 2019 for the study area: (a) January
2019, (b) April 2019, (c) July 2019, (d) October 2019. Water, urban areas and farming systems are
masked out. Some no-data artefacts occur during the wet season due to persistent cloud cover.
(Sources: Derived from Copernicus Sentinel data (2019); Background: ESRI Basemaps).

Figure 5a-d demonstrates that the environmental suitability for transhumance is
mainly driven by seasonality over most parts of the study area; red colors indicate high
suitability scores, while blue colors indicate low environmental suitability for transhumance.
While the northern part of the study area is dominated by an arid to semi-arid climate with
very distinct wet and dry seasons, the southern part has a humid climatic regime. This
directly translates into continuous changes in environmental suitability for transhumance
in the northern part, with decreasing resources for the herds in the dry season, which is the
main reason for the north to south movement in this period. High suitability remains in
only a few northern parts, mainly where water availability in wetlands and along rivers
favors vegetation. In the central and southern parts, an agricultural belt extends westwards
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and eastwards through the study area, indicated by zero suitability scores. This agricultural
belt only leaves a few narrow corridors for north-south migrating pastoralists, indicating a
high-risk area for farmer-herder conflicts.

a) 2019/01

Lake Chad

b) 2019/04

‘\‘r.m‘.}' Chad

N'Djamena
.

c) 2019/07 é d) 2019110
Lake Chad gl J / Lake Chad
N'Djamena AT 2 £ NDjamena
z W " b \‘*‘}:
k7

Environmental suitability
1 0
Study area
[ stuey N

0 125 250 500 A
S kM

Figure 5. Environmental suitability for transhumance displayed for four timesteps in 2019 for the
study area: (a) January 2019, (b) April 2019, (c) July 2019, (d) October 2019. One indicates the highest
environmental suitability scores, and zero indicates a low suitability score—the layer for farming
systems was assigned the value 0 (sources: derived from Copernicus Sentinel data (2019); background:
ESRI Basemaps).

To analyze the environmental suitability in the context of transhumance-related con-
flicts, the maps were combined with the ACLED conflict data that were filtered for farmer—
herder conflicts. Since the farmer-herder conflicts suffer from poor reporting [10], many
conflicts may not be covered in the spatial analysis. Figure 6 shows an example for De-
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cember 2019 (middle of the dry season), when many conflicts occurred in the agricultural
belt and close to agricultural areas in the very northeastern part of the study area. Most
conflicts occurred in areas with high environmental suitability for transhumance, reflecting
the fact that farmers and herders are competing for the same natural resources. Protected
areas can also lead to conflicts [37], but must be differentiated regarding their relevance
for transhumance. Enclosed protected areas can be seen as “no-go” areas in this context,
while protected areas, in general, can still be accessed as grazing land by migratory herders
depending on their protection status. During the dry season, the national parks are subject
to significant pressure due to the presence of pastoralists, where strong tensions and violent
conflicts can also occur between safari operators and pastoralists [37].
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Legend
:l Study area
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Figure 6. Environmental suitability for transhumance (December 2019) with overlayed ACLED
conflict data from 2019, farming systems, urban areas, and protected areas (sources: derived from
Copernicus Sentinel data (2019); background: ESRI Basemaps).

The comparison of the environmental suitability between the 663 origin and desti-
nation locations of herders in 2019 is displayed in Figure 7, alongside longterm mean
precipitation data from 1991 to 2020. While the environmental suitability in the destination
areas was higher throughout the year, a drop in suitability scores can be seen from the end
of the wet season (October) in both the origin and destination areas (Figure 7). The higher
suitability scores during the dry season in the destination areas, with the widest difference
between March and May, lead to southward movements of pastoralists.

69



lll. Environmental suitability for transhumance and conflict
prevention (Chapter Il)

Remote Sens. 2022, 14, 1109

13 of 18

70

Mean suitability

0.7

0.65

e
=)

0.55

ot
n

o
~
¢

o
'S

o
w
G

Jan.

250

200
£
E

150 2
o
=
o
3

100 ‘g
‘0
7]
.
o

50

0

Feb.  Mar.  Apr. May  Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Month

Precipitation == Qrigin === Destination

Figure 7. Monthly mean environmental suitability for transhumance for all origin and destination
locations within a 1 km radius of the TTT data (663 observations). Only points with a north-south
movement were considered for this analysis. Data source: Precipitation data from the Climate Change
Knowledge Portal (CCKP) [38].

The results of the least-cost path analysis show theoretical optimal paths for tran-
shumant herders exemplarily displayed for December 2019 (Figure 8). Long distances
have to be covered by herders during their southward movements in order to reach their
destination areas with enough grazing land in the dry season. These theoretical paths
also highlight the need for passing through the agricultural belt to reach the destination
areas in the southern part of the study area, or even within the agricultural areas. The
dense agricultural belt only allows for narrow corridors accessible to the herders. Here,
the challenges with regard to the competition for natural resources lead to a high conflict
potential in these areas, as seen in Figure 6.
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Figure 8. Environmental suitability for December 2019 overlayed with point data from the transhu-
mance tracking tool, potential movement corridors, protected areas, farming systems and urban areas.
One represents a high and zero a low suitability score.

4. Discussion

The monthly Earth observation-based environmental suitability maps developed in
this study indicate areas favorable for transhumance as well as high-risk areas for conflicts
with local subsistence farmers. These can help to understand and potentially manage
seasonal movement patterns of pastoralists as they move southwards in the dry season
to find enough resources for their livestock. The spatial model is flexible to incorporate
additional information layers that might be of interest in some regions, such as distance
to wells (additional watering locations) or other fenced areas with access restrictions. In
addition, the weighing of the information layers can be adjusted in accordance with expert
knowledge. For example, ‘distance to water” and “distance to urban’ was set to a maximum
of two walking days through expert knowledge, since this distance is in a range that could
influence the routes of pastoralists. This assumption can be changed by manipulating the
input layer.

The environmental suitability maps for transhumance do not allow the determination
of exact migration routes and locations of herders, as there are many other social, economic
and political factors working in tandem with environmental suitability that influence
transhumance patterns and also trigger conflicts [9]. However, they may be a good tool
to be used in negotiations of transhumance routes and corridors with local, regional and
national authorities. Additional research is needed to directly link the environmental
suitability maps with the actual or specific routes and migration velocity of pastoralists. To
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achieve this, location data must be collected along the migratory routes, for example via
GPS collars attached to livestock. GPS collars have enhanced research in livestock grazing
behavior over the past 20 years while becoming more accurate and cost-effective [39], with
no long-term effects on animal activity or behavior [40]. The main limiting factors of GPS
collars remain logging frequency, the precision of travel distances and battery lifetime [41],
while still providing important information on seasonal variations in movement patterns
with seasonal water shortage and feed availability as key factors [42].

Additional research is also needed to analyze the temporal variability of environmental
suitability, since this study only focuses on 2019. Additionally, movement paths could
either change per year or season or follow traditional routes that may not be favorable
in certain years. Laying out this research over multiple years could not only provide a
better understanding of the connection between migration routes and temporally varying
environmental conditions, but also give more information about varying numbers and
locations of conflicts between farmers and herders.

The missing tracking information about the actual movement also hinders the direct
quantitative validation of the results. A comparison of the environmental suitability at
the different locations from the TTT data allowed a plausibility check of the study results.
When calculating mean suitability values for origin and destination areas (Figure 7), the
differences in the suitability scores explain the north-south movement patterns at the onset
of the dry season and thus prove the plausibility of the values. The extracted environ-
mental suitability values at origin and destination locations may have some uncertainty,
since the 663 locations were located via location names in the TTT database. In the fu-
ture, various plausibility checks could be set as part of the IOM TTT activities to detail
missing information about the exact routes used by herders. Local participatory mapping
activities conducted along the main transhumance corridors could support a more precise
identification of main routes used by herders and cattle. This could be conducted with
GPS walk-through activities to draw existing routes using GPS trackers. Similar activities
would have to be conducted along each locality of a transhumance corridor to be complete.
Focus group discussions with herders in key transit along transhumance routes could also
provide detailed maps of transhumance corridors. Finally, during the transhumance season,
regular phone checks with herders could also be an option to draw more precise maps of
transhumance routes.

While many studies focus on explaining the farmer—herder conflicts by local case
studies [9] or use field studies to provide conflict-management strategies [16], few studies
addressed spatial tools to improve the understanding of migration movements. In contrast
to research on policy options to resolve conflicts [8,15], the present study aimed at providing
a range of environmental geospatial information that can help to plan transhumance
corridors and passing times and mitigate conflicts with local farmers. However, it must be
stated that environmental factors are only partly predictive of conflicts [1]. A study by Mertz
et al. [18] showed that weather and resource information can prevent but also increase the
level of conflict. A survey of key stakeholders led to the assumption that the communication
of information must also include different options for herd movements as well as potential
conflict areas [18]. By combining environmental suitability for transhumance with up-to-
date conflict data and, e.g., agricultural areas, an early warning system could be established.
The benefits of this spatially explicit and large-scale analysis of environmental suitability
help to provide information on multiple options for migration routes.

To do so, these additional datasets—ACLED conflict data, TTT data, farming systems,
urban areas and protected areas—were considered in the present study to provide a broader
context. These data, however, come with some limitations, as the ACLED conflict data are
gained through national and international media. Besides only covering incidents that make
it to the news, ACLED still provides the largest database on conflicts in Africa [10]. Conflicts
may not be covered in the ACLED dataset due to the fact that violence against pastoralists
suffers from poor reporting [10]. Overall, the conflict data still help to understand the
spatial patterns of conflicts. Comparing the environmental suitability for transhumance
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and the ACLED conflict data for the year 2019, a relationship between high environmental
suitability, the presence of agriculture and conflicts was found. This conforms with all
of the research findings on the presence of farmer-herder conflicts in the Sahel zone [9],
showing the information gain of the spatial combination of environmental suitability for
herders and the layers for farming systems and conflict data at a high spatial resolution.

The results of the least-cost path analysis can indicate possible transhumance corridors
with enough natural resources for herders. These potential movement corridors can help to
identify areas with a lower conflict potential, but also determine corridors where limited
environmental conditions could occur that cannot hold a large number of moving livestock.

Combining all these datasets can help to provide a possible planning tool together
with local experts to not only better plan and manage transhumance, but also to plan
agricultural expansion that leaves corridors for seasonal movements, with the overall goal
to mitigate conflicts. It was found that traditional transhumance corridors have changed
in the last decade, due to changing climatic conditions [3]. With such a spatial tool as that
developed in the present study, areas that provide enough natural resources for livestock
can be identified to also improve the efficiency of livestock farming along the migratory
routes, which increases the productivity of this agricultural production system, and in turn
directly contributes to food security. Providing this information regularly to the herders
could pilot transhumance through low-risk areas with a high abundance of the main natural
resources required. Since transhumance can flexibly and quickly adapt to major seasonal
and interannual variations in resources [6], the tool can provide new options for herders to
find optimal routes as an alternative for traditional routes. This would help transhumance
to adapt to climate change and security issues. Secured and easier transhumance paths
might help herders to continue their activity, since more and more herders are choosing to
settle down.

5. Conclusions

This study presents an Earth observation data-driven monitoring system of environ-
mental conditions for transhumance, in direct support of IOM’s activities in the Sahel.
Through the combination of the suitability maps with data from the Transhumance Track-
ing Tool and conflict data from ACLED, a new concept for a spatial decision support and
future early warning system is demonstrated in direct support of farmer-herder conflict
prevention. With the apparent challenges of climate change regarding the fight for natural
resources, such a tool can support the planning and managing of transhumance by local
stakeholders. The Earth observation data that indicate the environmental suitability for
transhumance can thus not only help to mitigate conflicts, but also to increase the produc-
tivity of this important agricultural production system in the region and thus promote food
security. By using only cost-free datasets with a global coverage, this methodology can
be easily transferred to other areas. The flexibility of the spatial model also allows it to be
adopted to specific conditions in other regions. Future research is suggested to investigate
real-time tracking data of migrating herds which would further promote the development
of an early warning system for conflicts with the long-term perspective of a peaceful
coexistence between local subsistence farmers and seasonally migrating pastoralists.
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Abstract: Climate change, increasing population and changes in land use are all rapidly driving the
need to be able to better understand surface water dynamics. The targets set by the United Nations
under Sustainable Development Goal 6 in relation to freshwater ecosystems also make accurate
surface water monitoring increasingly vital. However, the last decades have seen a steady decline
in in situ hydrological monitoring and the availability of the growing volume of environmental data
from free and open satellite systems is increasingly being recognized as an essential tool for
largescale monitoring of water resources. The scientific literature holds many promising studies on
satellite-based surface-water mapping, but a systematic evaluation has been lacking. Therefore, a
round robin exercise was organized to conduct an intercomparison of 14 different satellite-based
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approaches for monitoring inland surface dynamics with Sentinel-1, Sentinel-2, and Landsat 8 im-
agery. The objective was to achieve a better understanding of the pros and cons of different sensors
and models for surface water detection and monitoring. Results indicate that, while using a single
sensor approach (applying either optical or radar satellite data) can provide comprehensive results
for very specific localities, a dual sensor approach (combining data from both optical and radar
satellites) is the most effective way to undertake largescale national and regional surface water map-
ping across bioclimatic gradients.

Keywords: surface water dynamics; SAR and optical data; data fusion; water resource management;
Sustainable Development Goal 6

1. Introduction

Water is key to sustainable development, being critical for socioeconomic develop-
ment, energy and food production, and healthy ecosystems. Today water scarcity affects
more than 40 percent of the world’s population and is projected to rise further, exacer-
bated by climate change [1]. As the global population grows, there is an increasing need
to balance the competing demands for water resources and have more efficient ways to
manage water supply. The importance of ensuring the availability and sustainable man-
agement of water for all has been increasingly addressed in the global political agenda, as
seen with the Sixth Sustainable Development Goal (SDG) of the United Nations 2030
Agenda for Sustainable Development [2] and the adoption of an International Decade
2018-2028 for Action on ‘Water for Sustainable Development’ by the UN General Assem-
bly [3]. As the demand for freshwater increases, the importance of monitoring changes in
surface waters is gaining more attention, but many countries are still lacking data to mon-
itor the extent of their inland waters and their intra- and interannual changes.

Earth Observation (EO) is an essential source of information, which can complement
national hydrometric data and services and support countries to operationally monitor
changes to their surface waters. Ever since the launch of the first Earth observation satel-
lites in the early 1970s, the mapping and monitoring of surface water has been a subject
that attracts interest from researchers and practitioners in hydrology, environmental con-
servation, and water resource management. The field has gradually evolved and been in-
centivized by the steady buildup of long-term archives of global satellite data and com-
puter resources for analyzing those data. A significant breakthrough in the adoption of
EO solutions for water=related topics has been the European Commission Joint Research
Center’s Global Surface Water Explorer [JRC-GSWE] [4] and the Global Land Analysis
and Discovery Group’s Global Surface Water Dynamics [GLAD-GSWD] [5]. Despite these
developments and the long track record of related successful case studies on surface water
mapping, there is still a lack of clear, robust, efficient, user-oriented methods and guide-
lines that allow for the use of EO data at scale and on an operational basis for surface water
mapping and monitoring.

The mapping of surface water with either optical or Synthetic Aperture Radar (SAR)
data has been reviewed in several papers (e.g., [6,7]) and with a series of more recent pa-
pers focusing on the combined use of optical and SAR data [8-11]. This development is
directly related to the Sentinel program under the European Copernicus initiative [12]
Through the Copernicus Sentinel mission, optical and SAR data in high resolution (10 m)
have become globally available free of charge and with a short latency of a few days or
less. The next leap in EO-based surface water detection will need to take full advantage of
this enhanced observation capacity, which offers unprecedented opportunities to develop
robust and cost-effective EO methods to monitor the seasonal and annual variations of
surface waters. These EO methods and associated information products can be embedded
in national processes for more evidence-based water policies and efficient reporting on
the global water agenda. This is why the European Space Agency (ESA) has launched the
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WorldWater project with a principal aim of strengthening EO capacities in countries to
better monitor their inland waterbodies (lakes, reservoirs, rivers, and estuaries) and, con-
sequently, better fulfil their commitments on water resource management and water se-
curity in the different water-related global agendas such as the 2030 Agenda on Sustaina-
ble Development [2], the 2015 Paris Agreement on climate change [13] and the Sendai
Framework for Disaster Risk Reduction [14].

The overarching goal of the WorldWater project is to develop robust and scalable EO
solutions for inland surface water monitoring, which can be exploited by a large commu-
nity of stakeholders involved in water management from local water supplies to national
water strategies, including transboundary river basin management plans and global as-
sessment of surface water changes. As part of the project goal, a round robin exercise has
been organized to conduct an intercomparison of EO algorithms for surface water detec-
tion, using the latest generation of free and open satellite data from Sentinel-1, Sentinel-2,
and Landsat 8. The round robin was open to researchers, companies, and other developers
of satellite-based algorithms for surface water detection. The precondition for participat-
ing in the round robin was a peer-reviewed algorithm for surface water detection based
on (or adaptable to) Sentinel-1, Sentinel-2, and/or Landsat 8. Non-peer reviewed algo-
rithms were accepted provided that adequate supplementary documentation and justifi-
cation could be provided. In this paper, we present the results of the WorldWater round
robin intercomparison and use them as the basis for discussing the pros and cons of dif-
ferent approaches to detect and monitor surface waters from Earth observation data. By
using various statistical tests, we evaluate the quantitative performance of the individual
algorithms and use the findings to draw some qualitative considerations about their per-
formance. The focus is not on the algorithms themselves, as they have already proved
themselves (cf. peer-reviewed or in an operational setting), but rather, on the underlying
data model, that is, whether the algorithms are relying on single sensor inputs or whether
they are using a dual sensor approach. Ideally, the best performing algorithms can pro-
vide spatially and temporally consistent timeseries of surface water extent dynamics that
meet the user requirements, not only in terms of accuracy but also in terms of transpar-
ency, cost, and transferability. The aim is to contribute to the development of a new set of
best practices for surface water monitoring, as well as identifying shortfalls and areas of
further research.

2. Materials and Methods
2.1. Test Sites and Input Data

All participants in the round robin were required to produce monthly maps of inland,
open surface waters at 10-m spatial resolution for 2 consecutive years over three test sites
(100 = 100 km) located in 3 different countries: Colombia, Mexico, and Zambia. Optionally,
participants could also submit results for an additional two test sites located in Gabon and
Greenland (cf. Figure 1). Test site locations were selected to cover various eco-and climatic
regions as well as to include major challenges for EO-based surface water mapping, in-
cluding sites influenced by topography, clouds, canopy shading, fire scars, urban areas,
and regions with permanent low backscatter (e.g., flat and impervious areas, sandy sur-
faces). The sites also included a diversity of waterbodies ranging from large waterbodies
(wind and wave effects) to smaller waterbodies of both a permanent and seasonal nature,
as well as waterbodies impacted by water constituents and shallow waters influenced by
bottom reflectance. The input datasets, made available to all participants, included all Sen-
tinel 1, Sentinel 2, and Landsat 8 images acquired over the test sites from July 2018 to June
2020. Use of ancillary datasets (such as Digital Elevation Model (DEMs) and a priori sur-
face water maps) were allowed, but under the condition they were publicly available, e.g.,
the Copernicus DEM [15] and JRC-GSWE [4].
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Figure 1. Location map of the test sites annotated with their dominant eco-region(s).

2.2. Surface Water Detection Models

The following sections provide a high-level summary of the fourteen contributions
to the round robin intercomparison. Each contribution is referred to as a model in order
to emphasis that the focus on the intercomparison was to evaluate the performance of the
underlying data models, i.e., whether the surface water detection was based on optical
data only (O), SAR data only (S), or integration of both optical and SAR data (O +S).

Model A [O + S] uses a histogram segmentation method to separate imagery from
Sentinel-1, Sentinel-2, and Landsat 8 into water and non-water classes [16,17]. Specifically,
it carries out edge detection followed by procedures to help obtain a bimodal distribution
on which Otsu’s method is carried out to automatically derive an optimal threshold. This
model was specifically designed for fast and largescale water detection to assist in flood
relief efforts. Similar methods exist that attempt to obtain local thresholds over small sec-
tions of each image [18], which can potentially yield more accurate results but at the ex-
pense of computational speed. A postprocessing step is applied on the monthly water
maps derived separately from optical and SAR imagery, where water pixels are con-
strained to areas that are hydrologically likely to contain water, with the full timeseries of
maps derived from optical imagery included as an additional constraint for the SAR-de-
rived maps. Finally, the optical and SAR-based maps are merged to produce a single wa-
ter map per month.

Model B [O + S] This surface water detection approach is based on Sentinel-2 im-
agery as the primary water detection dataset, with the all-weather capabilities of Sentinel-
1SAR imagery being used to “fill-in” cloud-obscured water surfaces. SAR data “in-filling”
was restricted to raster cells previously detected as having recorded a surface water con-
tent from longer-term data modelling results (circa 2016 and forwards) in order to mini-
mize SAR-generated commission errors in the target month. The water surface modelling
procedure is based on a set of decision-tree-generated rules that have been derived from
a comprehensive set of water and non-water feature reference points distributed across
South Africa. The reference dataset consists of +60,000 sample points that represent a wide
range of seasonal and geographical variations in both water (i.e., turbidity, depth) and
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non-water surface conditions with potentially similar spectral characteristics, such as burn
scars, terrain shadows, and dark, non-vegetated surfaces from both natural and man-
made environments. Collectively, these points ensure full representation of all spectral
characteristics required in the water detection modelling process. The monthly surface
water datasets represent the median surface water extent for that month, rather than the
average or (absolute) maximum extent, as a result of the multidate image acquisition date
compositing approach used to model water features [19,20].

Model C [O + S] uses a random forest classifier to map surface waterbodies pixel by
pixel by taking advantage of the strength of both optical and SAR data in an integrated
manner [21]. For optical data, the model relies on a maximum value of the NDWI compo-
site created using both Level-1 and L-2 Sentinel-2 data. The model depends on a minimum
radar backscatter intensity, from both VV and VH polarizations, of a composite for senti-
nel-1 SAR data. Relying composite images minimizes disturbances from clouds, turbidity,
and shadows for the optical data and speckles, lake ice, and radar shadows for the SAR
data. The model also uses DEM as a feature to remove false positives over a steeper ter-
rain. All the workflows are implemented in Google Earth Engine for ease of transferability
and reproducibility.

Model D [O + S] applied a combined histogram-thresholding and edge-detection
approach to estimate monthly surface water extent from monthly, cloud-free Sentinel-1,
Sentinel-2, and Landsat-8 scenes. Following cloud masking for optical scenes, we applied
the Edge-Otsu algorithm to create binary land and water maps for each scene [17,22]. For
a complete description and application of the Edge algorithm, see Markert et al., 2020. To
initially segment water, histogram-thresholding was performed using the Normalized
Difference Water Index (NDWI) index for optical scenes and the VV-median band for SAR
scenes within already buffered surface water polygons from Pekel et al., 2016. A second
segmentation was applied to full scenes to segment water and non-water, irrespective of
initial water polygons. The MERIT DEM [23] was then used to derive a Height Above
Nearest Drainage (HAND) model [24] and on regions less than 30 m in height relative to
the nearest drainage. Final monthly surface water products combined both optical and
SAR water maps by selecting the optical land—-water prediction when available, and oth-
erwise selecting the SAR-identified water pixel. Given that cloud-free optical images seg-
ment water with higher accuracy than SAR, this approach reduces error during less
cloudy periods.

Model E [S] is a fully automated approach that uses dynamic thresholds to classify
individual Sentinel-1 scenes. The scene-dependent thresholds to classify water are defined
through the use of existing geospatial information of permanent water areas, e.g., data
from the Global Surface Water Explorer (GSWE) [4]. The S-1 backscatter values of perma-
nent water areas are derived per scene and are then statistically analyzed by using per-
centiles to eliminate outliers and a combination of mean and standard deviation to define
the individual classification threshold. In opposite to a fixed threshold, this standardized
statistical approach allows for the definition of dynamic classification thresholds per scene
in order to account for variations in backscatter caused by various factors. The individu-
ally classified scenes are then combined to monthly surface water composites, in which
false positives (mainly radar shadows) are removed by the use of the Multi-resolution
Valley Bottom Flatness (MrVBF) index [25] derived from the Copernicus Digital Elevation
Model (DEM). The automated, computationally efficient classification approach has been
shown to capture seasonal changes in surface water accurately, but also shows some lim-
itations in non-vegetated sandy areas, in which false positives occur.

Model F [O + S] used combinations of monthly percentile composite images from
Sentinel-1 and Normalized Difference Vegetation Index (NDVI), Normalized Difference
Water Index (NDWI), Land Surface Water Index (LSWI), Normalized Difference Snow
Index (NDSI), red, NIR, and SWIR1 bands from the greenest monthly Sentinel-2 images
as covariates for the mapping of monthly surface water extent in Colombia, Mexico, Zam-
bia, and Gabon. For Greenland, covariates from Sentinel-1 were excluded and replaced by
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monthly minimum NDVI from Sentinel-2 [26]. Training datasets (water-non-water) were
generated using a stratified, random sample of points based on Global Surface Water data
[4] and visual inspections of spectra profile based on k-means clustering results. Random
forest classifier was used for classification.

Model G [S] This approach applies a novel Convolutional Neural Network (CNN)
model applied to Sentinel-1 observations to detect surface water. The JRC GSWE product
was used as training data, and several finetuning strategies were implemented to improve
accuracy of the model in places with complex landcover types. The resulting surface water
product has a 10-m spatial resolution, is not impacted by cloud coverage, and can be run
in near-real time to detect any surface water changes [27].

Model H [O] uses a thresholding method based on a combination of water indexes
(MNDWI > NDVI or MNDWI > EVI) to extract surface water extent from monthly com-
posite Sentinel-2 MSI images. Different from the conventional thresholding method, this
algorithm does not need to determine the threshold artificially. To obtain more accurate
surface water extent maps, the clouds and cloud shadows pixels, buildup pixels, and
snow/ice pixels were removed by auxiliary datasets in preprocessing, and the surface wa-
ter maps with residual non-water pixels were furtherly denoised in postprocessing. For
incomplete monthly surface water extent maps, the surface water frequency map was uti-
lized to fill the gaps caused by clouds and cloud shadows. These methods had been
proved effective and accurate in the construction of surface water extent continuous
timeseries [28].

Model I [O] uses a multidimensional clustering analysis based on reflectance values
and water indices to identify water pixels using optical scenes individually. To achieve
high-performance and low memory consumption for high resolution images, this process
is applied to a random subsample of the image’s pixels and then coupled with a Naive
Bayes classifier responsible for generalizing the results to the complete scene. The ad-
vantage of using an unsupervised approach such as clustering is that the water pixels
group is identified automatically by comparing it to other clusters (targets) in the scene.
Therefore, the algorithm doesn’t require ancillary data, pretraining, or any threshold cal-
ibration, and it is independent of the sensor and the coverage being analyzed. These ideas
make it simple to apply the model to a great variety of conditions [29]. As the original
algorithm was designed for operational use on single scenes, the monthly water surface
has been derived by combining subsequent water masks through an upvote logic that
considers as water those pixels that received at least two votes.

Model J [S] This model is based on an unsupervised k-means-clustering algorithm
and aims to extract monthly inland waterbody extents over wide areas using multitem-
poral Sentinel-1 SAR data. To account for slope-induced backscatter differences caused by
hills and mountains, due to the slanted acquisition geometry of SAR systems, the model
included a radiometric terrain correction, as this step is not applied in the standard Senti-
nel-1 preprocessing chain. Moreover, the methodology added a multitemporal speckle
noise filter which provides better results than a spatial filter applied independently to
each SAR image. Seed points for the k-means model are then retrieved by randomly sam-
pling the water layer of the ESA CCI GlobCover Land Cover map [30]. Each sample is
represented by a set of temporal features suitable for water characterization in SAR data,
such as the mean backscattering value, the maximum value, minimum value, and four
“quarter composites” obtained by averaging in time all the Sentinel-1 acquisitions availa-
ble within each quarter of a year. After the k-means clustering, applied with k = 4, the
water cluster is selected by considering a majority voting procedure within the multi-pol-
ygon water boundaries of the GlobCover map. Since it is based on SAR data, the method-
ology can be applied in every weather and lighting condition. Being an unsupervised
technique, it is quick, robust, and can be applied automatically over any region of the
World [31].

Model L [O] uses the simple yet robust band ratio Normalized Difference Vegetation
Index (NDVI) on Sentinel-2 images, screened with the cloud mask processor available in
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ESA’s SNAP software. Despite the rather simplistic nature of the NDVI band ratio algo-
rithm, results reported in other studies of this type are encouraging (e.g., [26]). Further-
more, the aim of choosing this approach was to test the application of simple and fast
algorithms for processing large amounts of images in a short time. We implemented the
processing on the Web Advanced Space Developer Interface (WASDI) to process all im-
ages without the need for downloading large data quantities on a personal computer [32].

Model M [O + S] uses an efficient and opensource supervised Random Forest classi-
fier system based on Geographic Object-Based Image Analysis (GEOBIA) [33]. It relies on
two main components, which are feature extraction based on attribute profiles and a semi-
supervised classification using a Random Forest Algorithm. The first step consists of com-
puting features based on Sentinel-2 L1C without cloud detection (MNDWI) and DEM
(SRTM or ArcticDEM for Greenland) and extraction of spatial features (object area). The
ground truths are automatically extracted from GlobalSurfaceWater data (Pekel et al.,
2016). The output from this model is maps of monthly surface water extent and a confi-
dence index. The same automatic system is applied for all 5 test areas.

Model N [O + S] is based on a combination of different image-binarization tech-
niques applied on monthly aggregated Sentinel-1, Sentinel-2, and Landsat-8 imagery. Dy-
namic, tile-based thresholding [34,35] is conducted on both SAR and optical inputs. In
addition, adaptive thresholding [36] and seeded region growing [37] on each initially de-
tected waterbody is performed on the monthly SAR imagery. Finally, fuzzy-logic classifi-
cation refinement reduces water lookalikes and misclassifications (e.g., radar shadows)
from the SAR-based water masks [38,39].

Model O [O + S] uses a multivariate logistic regression model to estimate monthly
surface water extent from the combined usages of Sentinel-1, Sentinel-2, and Landsat-8
imagery. Models that rely upon linear distributions are often simpler and generalize well
and, therefore, do not require high-quality training labels. Yet, since land—water classifi-
cation has some nonlinear exceptions, such as clouds, shadows, and snow, the approach
integrates logic-based masking to reduce the impact from problematic areas through spe-
cific thresholds or basic decision trees. The final approach has proved to be accurate whilst
at the same time maintaining computational efficiency and simplicity that facilitates anal-
ysis and understanding at scale [8].

2.3. Validation and Evaluation

These water detection models were evaluated individually and in cross-comparison
using independent reference data collected from the test sites. A fundamental premise for
sound scientific validation is to use reference data of higher quality than the product to be
validated. There are two ways to ensure higher quality in the reference data: (i) by using
a reference data source with a better resolution than the data used for production (i.e.,
verification by higher data) and/or (ii) by using a more accurate measurement or interpre-
tation than being used for production (i.e., verification by higher method). A further re-
quirement on the reference data is the ability to provide sufficient spatial and temporal
representation to accurately label each unit in the sample; i.e., the ideal reference data are:
(i) available for the entire region of interest, (ii) representative of the attribute at the date
of interest, and (iii) available at a low cost. The balance between these criteria is often
difficult to achieve and why tradeoffs and compromises may be needed when generating
the final set of reference data. In the case of the round robin validation, a two-step ap-
proach was followed: (i) sample based validation (pixel based) and labelled using the pro-
duction imagery (verification by higher method) and (ii) object extraction accuracy (area
based) and using PlanetScope data as a reference (verification by higher data). The sam-
ple-based validation has the advantage of delivering reference data, which can be directly
matched (in space and time) to the validation input, whereas the PlanetScope data offer
the advantage of better capturing and, hence, better evaluation of smaller and narrower
waterbodies/features. Still, the acquisition and interpretation of PlanetScope data is costly,
and their representation is therefore restricted in space and time. In a final step, the
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temporal consistency of the optical, SAR, and dual sensor-mapping approaches were eval-
uated by comparing the total areal water extent mapped within each test site and across
the monthly timeseries. Each validation and evaluation step is described in more detail
below.

2.3.1. Sample Based Validation

Stratified random sampling was used to generate reference points over each 100 x
100 km test site and within three strata across the land—water continuum: permanent wa-
ter, seasonal water, and non-water. The three strata were generated from the JRC-GSWE
long-term water occurrence and defined according to the following thresholds: perma-
nent water > 90%; 0% < seasonal water < 90%, and non-water = 0%. In all test sites, the
target class “water” is a rare occurrence. In the case of rare occurrences, statistical equa-
tions does not allow for proper estimation of sample sizes, but stratified random sampling
affords the option to increase the sample size in classes and/or regions that occupy a small
proportion of area to thereby help reduce the standard errors of class/region-specific ac-
curacy estimates [40]. It was our aim to ensure a minimum of 50 samples in each stratum,
while using subsequent sample size allocations to provide a proportional allocation of
samples in better accordance with the actual area of the different strata within each test
site. In addition, the expected variance within each stratum was also considered; i.e., the
transitional strata are expected to have the highest variance, and why it has a higher sam-
ple allocation. Thus, by taking area and expected variance into account, the following
sample allocations were applied for the five test sites (cf. Table 1).

Table 1. Sample size allocations for the 5 test sites used in the round robin.

Colombia Gabon Greenland Mexico Zambia
per month  total  per month  total  per month total per month  total  per month  total
Land 140 840 75 450 60 180 140 840 90 540
Transition zone 140 840 150 900 90 270 140 840 190 1140
Water 20 120 60 360 100 300 20 120 40 240
TOTAL 300 1800 285 1710 250 750 300 1800 320 1920

In total, 7.980 samples were allocated across the five test sites and six time periods
representing every second month of the year 2019 (January, March, May, July, September,
November). Each sample point was assigned to be either water or non-water by two in-
dependent and experienced interpreters using blind visual interpretations of monthly
Sentinel-1 and -2 composites. To harmonize and achieve consistent reference labelling, a
standard validation interface was used to ensure interpreters were looking at same area
and using the same reference data and the predefined set of classes. In cases where the
interpreters disagreed, a quality manager intervened to seek consensus. If consensus
could not be agreed upon, the sample was rejected. For each sample we extracted, the
respective water classifications and the final set of samples were used to derive standard
metrics for accuracy assessments, i.e., overall accuracy (OA), producer accuracy (PA), and
user accuracy (UA). For this analysis, all pixels in the individual round robin classifica-
tions not classified as water were considered to be non-water; i.e., the non-water class also
included pixels being masked (e.g., due to clouds).

2.3.2. Object Extraction Accuracy

Traditionally, stratified point sampling will, in most instances, under-sample Small
Waterbodies (SWB) simply because SWBs only represent a fraction of the total water area,
even though they may by far exceed the larger waterbodies in numbers [41]. To deal with
the issue of SWBs, we complemented the more conventional stratification, sampling, and
confusion matrix-type accuracy assessments with an evaluation of object extraction accu-
racy based on area-based accuracy metrics and the use of higher spatial resolution but
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single date (i.e., time-limited) PlanetScope data. An independent reference dataset was
created from the classification and interpretation of imagery from Planet. The acquired
data was PlanetScope Level 3B (Ortho Scene Products) in 3-m spatial resolution and with
4 spectral bands (RGB, NIR) (https://www.planet.com/products/planet-imagery/, ac-
cessed on 10 January 2022). The PlanetScope data was acquired within the coverage of
each of the test sites and for two areas of approximately 25 km2 The exact coverage was
determined by size and type of waterbodies, i.e., covering areas with small waterbodies
relative to the test site in general and representing both lakes/reservoirs and streams/riv-
ers. For each PlanetScope coverage, we applied a supervised Gradient Boosting
(lightGBM) algorithm [42] to generate water masks using the convolution layers derived
from spatial filtering of Planet imagery as the explanatory variables and manually derived
training samples for water and land (cf. non-water) as the response variable. The Gradient
Boosting typically involved a couple of iterations to optimize results, and before finaliza-
tion, all water masks were manually checked and corrected to ensure high quality. Once
analyzed, the PlanetScope data was used to evaluate the object extraction accuracy of the
water classifications derived using Sentinel data.

The accuracy evaluation of object extraction is based on object matching, and we fo-
cused on two elements related to this, namely: object matching and area-based accuracy
measures [43]. The central idea of object matching is to estimate the maximum overlap
area by computing the coincidence degree, A,,,,, between two objects.

e = E(Ac,i NnAg; N AciN ARJ)
2 Acii Agj

where A; denotes the area of the ith-evaluated object, Ag; is the area of the jth reference
object, and Ag; N Ag; represents the intersection area. For an evaluated object and candi-
date reference objects, each coincidence degree will be computed. Two objects will be
judged as being a matching pair if the area of the coincidence degree is at a maximum, i.e.,
Amax equals 1.

The maximum overlap object matching is complemented by three area-based accu-
racy measures (i.e., correctness, completeness, and quality). Correctness (A,,) is defined
as the ratio of the correctly extracted area (A.;) and the whole extracted area (Apc),
whereas completeness (A.,n,) refers to the ratio of the correctly extracted area to the ref-
erence area (Agc). The range of correctness and completeness is 0 to 1. If A, fully corre-
sponds to Apc or Agc, then the value is 1. If there is no overlap between A, and Ape or
Agc, then the value is 0; correctness and completeness interact. For instance, a large Ap¢
leads to a small correctness value, while a small Ap. resultsin alarge completeness value.
To amend this issue, the quality Ag,q is designed to provide a measure of quality by
balancing correctness and completeness.

Ac

A g=—C
T Ape + Age — Ac

The range of quality is 0 to 1. If the water extraction results are the same as the refer-
ence data, then the value is 1. If none of the extracted water area overlaps with the refer-
ence area, then the value is 0. The advantage of area-based accuracy measures compared
to the sample-based validation relates to the fact that the confusion matrix of the latter
depends on total pixel number. In contrast, the evaluation results for two cases using area-
based accuracy measures are equivalent because it relies only on the evaluation, and ref-
erence objects are independent of the total pixel number.

2.3.3. Temporal Consistency Evaluation

The purpose of temporal consistency evaluation is to identify anomalies in sequences
of surface water maps. Sudden decreases in surface water can be due not only to drought
and high reservoir release but also clouds and lack of valid observation. Flooding, on the
other hand, may cause an increase in surface water, but so could cloud shadows and
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topographic shading, as well as the impact of low-backscatter areas. More robust water
detection algorithms should be able to accurately capture actual water dynamics while
minimizing the influence of the other factors.

3. Results
3.1. Water Occurence

The five test sites used for intercomparison represent very different conditions,
which can also be inferred by looking at multiannual water occurrence maps for the re-
spective test sites (cf. Figure 2). As explained in Section 2.1, site variability is, on the one
hand, dictated by geographic location (i.e., from tropical to arctic, coastal to inland, and
lowland to high land) and, on the other hand, by surface water characteristics. The latter
is clearly illustrated in the water occurrence maps, which show the differences between
test sites in terms of size and type of waterbodies, as well as the relative distribution of
permanent and seasonal water (Figure 2). These different characteristics are important to
bear in mind when interpreting the validation results, as they will influence the perfor-
mance of the individual algorithm.

Mexico Zambia Greenland

Figure 2. Examples of surface water frequency maps over the 5 test sites and as derived by Model
N.

3.2. Sample Based Validation

In Table S1, we provide classification accuracies for the water extraction for all round
robin submissions and for each of the three mandatory sites, as well as the optional sites,
where relevant. The general performance of all models can be deemed satisfactory, with
overall accuracies above or near 90% when looking across the mandatory sites. There is
more ambiguity when looking at the performance in terms of user and producer accuracy
and at the level of the individual sites.

In Figure 3, the classification accuracies have been grouped (median value) by input
data type, i.e., algorithms using both optical and SAR vs. models based on single-sensor
inputs (SAR or optical). Figure 3 shows an overall better performance of the combined
sensor approach compared to single sensor approaches, although the results are not one-
sided when looking at the individual sites or in terms of user and producer accuracies. In
Colombia, the combined sensor approach performed best in terms of overall accuracy,
but, at the level of UA and PA, the SAR and Optical models, respectively, outperform the
combined approach. In Gabon, the SAR approach outperforms the other data models in
terms of OA, while in Colombia and Zambia, the optical approach has much higher accu-
racies for, respectively, PA and UA. In Mexico, OA and UA are almost equal between the
data models, but with a noteworthy (+4-5 percentage) drop in producer accuracy for the
optical data models compared to the SAR and dual sensor models. The observed differ-
ences in UA and PA are closely related to site-specific characteristics. For example, the
higher UA accuracies achieved in Gabon and Colombia using SAR are an indication of the
benefit SAR adds in a cloud-prone region. In contrast, SAR produces a lower UA in Zam-
bia and Mexico because of commission errors introduced by dry, sandy surfaces. In both
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Zambia and Mexico, it was also noted that sunglint in certain months caused erroneous
cloud masking for certain processors and hence contributed to lowering the PA for the
optical data model. In Mexico, the UA for SAR is, however, only marginally lower than
for the optical data model, which is impacted by bottom reflectance from shallow waters
and turbidity, which both impact the optical properties (cf. spectral signal) of water more
than the physical state and, therefore, the sensitivity of SAR backscatter (e.g., roughness).
The Zambia site is dominated by the Kafue flats, an extensive wetland ecosystem subject
to variable flooding and with a sharp contrast to the surrounding drier landscape, where
fire is a major natural factor impacting the landscape. The dynamic nature and many con-
founding factors (e.g., fires and emergent vegetation) make Zambia a particularly chal-
lenging site, and it was also where the dual sensor approach displayed it strongest poten-
tial in balancing the individual strengths and weaknesses of optical and SAR data. In
Greenland, the topography and light conditions are the main challenges. For optical data,
it means higher commission errors (cf. lower UA) due to shading effects and low sun an-
gles. The SAR model is better at dealing with these issues because it works independent
of sunlight, and by using ascending and descending SAR scenes, the part of the landscape
that can be monitored is increased. Still, the influence of low-backscatter areas (e.g., ex-
posed riverbeds and in snow dominated landscapes) means the SAR data model typically
suffers from commission errors and lower PA.

Itis important to note that, apart from site-specific characteristics, the UA and PA are
also dictated by how individual algorithms have been implemented, e.g., to what extent
the individual round robin contributions have favored the importance of commission er-
rors relative to omissions errors. The results will also depend on whether individual
scenes are classified and then aggregated to a monthly water map or whether the individ-
ual scenes are merged into a monthly composite before water classification. The full accu-
racy statistics for the individual models is provided as supplementary material (cf. Table
S1).

Colombia Mexico Zambia Gabon Greenland
BN Optical & SAR =EN SAR N Optical

Figure 3. Accuracy statistics from the WorldWater round robin test sites, individually and overall,
summarized by model input data type (OA = Overall Accuracy; UA = User Accuracy; PA =Producer
Accuracy).

3.3. Object Extraction Accuracy

The 3-m PlanetScope water classification maps used to evaluate object extraction ac-
curacy are shown in Figure 4. Like the full-size test sites, it is important to notice the
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Colombia

(Apr. 2020}

Mexico
(Feb. 2020)

Zambia
(Jan. 2020)

Gabon
(Jan./Feb. 2020

Greenland

(Aug. 2018)

variability between the sites. Individually, the PlanetScope data represent SWB regions
relative to the general water characteristics within their respective test sites, yet, there is
variability between sites with, e.g., Zambia having larger waterbodies on average than
Colombia.

Figure 4. False colour PlanetScope QuickLooks and associated water classifications for each AOI
used in the object-based validation approach (Imagery © 2022 Planet Labs Inc.).

Table S2 provides an overview of the summary statistics for object extraction accu-
racy for each of the three mandatory sites, as well as the optional sites, where relevant.
There is a large variability between the individual contributions, and yet, with similar
tendency across the sites i.e., the algorithms that integrate optical data perform better than
those relying solely on SAR (Figure 5). The lowest overall accuracy is in Colombia, and
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Colombia

this is also where the difference between the best optical approaches and the best SAR
algorithm is greatest (cf. Figure 5). Figure 5 also shows the highest object extraction accu-
racy is in Zambia, which, together with Greenland, has the largest share of waterbodies
within the test sites (cf. Figure 4). It is also noteworthy the optical data model consistently
outperforms the SAR data model in all test sites except for Gabon (Figure 5).

Amax Aqual

Mexico Zambia Gabon Greenland Colombia Mexico Zambia Gabon Greenland

BN Optical & SAR  W=W SAR ==E Optical

Figure 5. Object accuracy statistics from the WorldWater round robin PlanetScope sites, summa-
rized by country and model input data type.

The findings from the object extraction accuracy analysis indicate that using or inte-
grating optical data into the water detection algorithm is key to achieving accurate water
object definitions. How important depends on the average size of the waterbodies and the
surrounding landscape. In Colombia, where the average waterbody size/width is smaller
compared to other sites, the difference between the optical algorithms and the SAR-only
approaches are the largest. This is explained by the characteristics of the input data, with
key spectral water detection bands from Sentinel-2 available only in 10-m spatial resolu-
tion, while the true spatial resolution of Sentinel-1 is understood to be closer to 20 x 20 m,
although data from the widely used Sentinel-1 Ground Range Detected (GRD) product
are delivered with a pixel spacing of 10 x 10 m. There are also some marked differences
between the optical algorithms and the SAR only approaches in Mexico, which is likely
caused by the dry environment and a landscape dominated by large tracts of dry, sandy
surfaces, as well as the associated challenge for SAR-based water detection [44]. In con-
trast, the difference between optical and SAR is much less pronounced in Zambia and
Gabon, which is likely related to the larger average size of the waterbodies (Zambia) and
the dense tropical forest landscape causing a stark land-water contrast (Gabon).

3.4. Temporal Consistency Evaluation

The surface water area (km?) was calculated over each test site and for each month in
the 2-year observation period (cf. July 2018 to June 2020). For each test site, the surface
water areas were summarized by input data model type, i.e., optical (O), SAR (S), and the
fused date model (O + S). In Figure 6, the average surface water area was then plotted
against time with indications of variance (i.e., minimum and maximum observed water
extent within a given month) and with some key explanatory variables plotted on the
secondary axis.
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Figure 6. Monthly surface water area trajectories for the individual test sites and per sensor model.
For each test site, corresponding timeseries of the key explanatory variables are equally shown, i.e.,
the Humidity and Leaf Area Index from the ERA-5 monthly averaged reanalysis data [45], water
surface elevation from satellite altimetry [46], solar zenith angle, and cloud cover [47].

A comparison of the surface water area temporal development curves shows the var-
iance of the fused Optical-SAR-based algorithms are much less than the single sensor so-
lutions both within and between nearby months. If not directly, then at least indirectly,
this indicates the fusing algorithms to be more reliable and have less sensitivity to tempo-
rary or seasonal phenomena that can impact water detection, including dry/moist condi-
tions, topographic/canopy shading, and clouds.

In Colombia, the pure optical methods, in general, returns a higher surface water area
across the entire timeseries. This can be attributed to false positives from topographic
shading and ineffective cloud shadow masking, particularly during the humid season. In
Mexico, where clouds and topography are less of a problem, there are hardly any note-
worthy peaks/dips in the optical development curves. In Colombia and Mexico, the SAR
peaks correspond to the dry seasons when the vegetation cover is low, resulting in an
increased influence of low backscatter from dry, sandy surfaces.

In Zambia, the variance observed in both the optical and SAR data predictions is most
dominant during the 2019 dry season, which was reported as having been one of the worst
droughts in Western Zambia in almost 70 years. The exceptionally low water levels during
this period indicates that droughts and receding water lines are likely to have an impact
on water classifications. The SAR data are challenged by very dry soils, especially in the
southern parts of this site, while wildfires represent another challenge for both the optical
and SAR data model, as the burn scars can be difficult to separate from water. In optical
imagery, burn scars have low reflectance in the near infrared and visible spectrum, and
this can lead to spectral confusion with water. As fire also changes the physical and struc-
tural characteristics of the vegetated landscape, it also impacts SAR imagery. After a fire,
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the backscatter decreases strongly [48], and, as a result, the contrast between land and
water will be lessened.

In Gabon, the cloud cover percentage over the test site is, on average, 50%, signifi-
cantly impacting the optical data model, which returns estimates of water extent that
strongly correlate with the cloud cover percentage. In contrast, the SAR and fused sensor
approach return a much more consistent timeseries, with no apparent sensitivity to the
cloud cover percentage.

Finally, in the case of Greenland, the temporal evaluation shows how limited light
conditions in spring and fall (before everything freezes) hamper the optical data model.
In essence, our evaluation shows the time window to collect optical imagery is short, but
also that it can be extended by integration with SAR data. Using a fused data model in
Greenland can also help to even out issues generated by a complex topography (e.g., cast
shadows in optical imagery and foreshortening and layover effects in the SAR imagery),
as indicated in Table S1.

In Figure 6, a large part of the temporal variation is explained by the performance of
the individual contributions both between and within the three different sensor models.
The dual sensor model has the least variation and, hence, we argue that it is the more
robust in dealing with confounding factors. Figure 7 shows the average monthly surface
water area statistics for the top three-performing dual sensor models. Figure 7 illustrates
quite well the ability of the dual sensor model to provide consistent timeseries information
that captures the seasonality of surface water dynamics in each of the test sites. The strong-
est seasonality is observed in Colombia and Zambia, which are the two test sites with the
largest rainfall gradient. In contrast, Mexico and Gabon have less seasonal variation due
to very dry (Mexico) and consistently wet (Gabon) conditions. In Greenland, the season-
ality is first and foremost dictated by the temperature, i.e., thawing, and increased melt-
water starting around April/May and then frost and total freezing once we enter Novem-
ber.
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Figure 7. Interannual monthly mean surface water area dynamics and uncertainties (98% CI), as
captured by the best-performing dual sensor models (i.e., models A, N, and O).
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4. Discussion

The round robin evaluation was conducted over a diverse set of test sites that repre-
sented landscapes influenced by several of the known challenges for satellite-based sur-
face water mapping, including topography, clouds, dense and inundated vegetation, fire
scars, low-backscatter landcovers, low sun angles, as well as snow and ice. The intercom-
parison of the different round robin contributions across this diverse set of test sites sup-
ports the general hypothesis that fusing optical with SAR data produces a more robust
mapping of surface water extent dynamics across bioclimatic gradients. Yet, the findings
also show that, at individual locations, the single sensor approach can outperform the
fused sensor approach. By example SAR data are the better option in heavily clouded
regions (cf. Gabon) while optical data are better in dry regions and in capturing smaller
waterbodies. As such the round robin provides key insight to the advantage of the
strengths of optical and SAR data while also identifying how a fused sensor model can
help address their individual shortfalls. Moreover, the evaluation demonstrates that both
supervised and unsupervised learning can provide very good results, and while steps for
preprocessing and postprocessing are highly relevant to the outcome, they include many
variables that are harder to quantify in terms of their individual contributions to the sta-
tistical accuracy. Still, there are several crosscutting factors that impact optical and SAR
data in various ways, and which underpin why the dual sensor approach, on an overall
level, outperforms single sensor approaches.

Both SAR and optical data can struggle in mountainous areas, as steep slopes can
lead to shadow issues and image distortions. Orthorectification and radiometric terrain
correction using a DEM are the main direct techniques to obtain the relevant geometric
and/or signal correction. Yet, such correction can introduce errors, as globally available
DEMs have known quality issues [49], although newer DEMs provide gradual improve-
ments [50]. In complex terrain, shadows cast by mountains and hills will appear very dark
in optical imagery, which can cause a confusion between topographic shadows and water.
This means extra steps should be taken when mapping water extents to make sure the
effect of terrain shadow is minimized. While there are specific methods to deal with this
in optical imagery [51], SAR imagery can also be used, e.g., to remove water classified in
optical imagery if it is consistently mapped as land in SAR (cf. Model A). SAR imagery is
not affected by natural sunlight shadows cast by topography. However, radar sensors are
side-looking, meaning they view the Earth’s surface from the side of the satellite as it
passes by (as opposed to looking directly from above). The side-looking nature of these
radar sensors means that they can only see the side of mountains that face their sensors—
they cannot see the opposite side of mountains. This is known as radar topographic
shadow. Fortunately, radar sensors, such as Sentinel-1, have both ascending and descend-
ing orbits, which can collect imagery from east- and west-looking angles. Using ascending
and descending imagery together helps to increase the area that can be effectively moni-
tored using radar imagery; however, this does not solve all radar problems related to to-
pography. Areas in deeper canyons and fjords that have a north-south orientation will
likely always be in the radar signal shadow, leading to some unavoidable data gaps, and
in these cases, sometimes the optical data model can help.

As both SAR and optical data can struggle in mountainous areas, using one sensor to
help overcome the other is not always sufficient. Therefore, DEMs are often applied dur-
ing postprocessing to mask out regions where water formation is unlikely given the topo-
graphic conditions, e.g., due to slopes or based on hydrological terrain analysis, such as
the Height Above Nearest Drainage (HAND). A range of DEMs have been used for post-
processing, including the Shuttle Radar Topography Mission (SRTM) DEM (e.g., Model
B, M), ALOS World 3D-30 m (ModelF, ]), and Copernicus DEM (Model E, N, O). Although
the impact on accuracy is not quantified directly, the use of Copernicus DEM is recom-
mended, not only because Copernicus DEM comes out favorably in statistical evaluations
against other DEMs [50], but also because of the reference year (2010-2015), which is
newer than SRTM (i.e., 2000) and AW3D30 (2006-2011). In essence, this means the
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Copernicus DEM is more likely to capture and, hence, avoids masking out newly estab-
lished reservoirs, which have boomed dramatically in the past few decades [52].

Cloud cover is a major limiting factor affecting the usefulness of optical imagery.
However, if clouds and their associated shadows can be effectively masked out from each
image, the remaining cloud-free data in each image can be used for accurate water classi-
fication, yet the frequency of monitoring will depend on the persistency of the cloud cover.
While several algorithms are available for automated cloud masking, (e.g., MAJA, Fmask,
CFMask, Tmask, IdePix, Sen2Cor, s2cloudless) none are perfect in separating clear obser-
vations from those contaminated with clouds and cloud shadows. Too aggressive cloud
masking, and many waterbodies may be missed, while failure to adequately mask cloud
shadows will introduce many false positives. Often, making a cloud-free optical image
will require some form of image compositing and mosaicking. There are several possible
ways to do this, e.g., by using the best available pixel by cloudiness (Model O), or through
per-pixel band statistics such as mean/median band reflectances (Model N). Model F ap-
plies an NDVI Maximum Value Composite (MVC) procedure, which is effective for
providing spatially continuous cloud-free imagery [53]. The MVC has been particularly
widely adopted in vegetation studies [54], but, since the MVC emphasizes the vegetation
signal, it should be used with care for monitoring water dynamics, as seasonally flooded
vegetation may risk being masked. Furthermore, and as illustrated by one contribution, a
synthetic timeseries can also be constructed by interpolation and gap-filling using the his-
torical water frequency (cf. Model H). Finally, SAR data can also be used to fill in the
“cloud” gaps in the optical imagery. However, even if SAR imagery is not affected by
clouds, it is impacted by other issues, which can result in spurious water detection, in-
cluding speckle noise and permanent low-backscatter regions. The reduction of speckle
noise is important to improve the usefulness of SAR imagery. The main purpose of the
noise reduction technique is to remove speckle noise while still retaining the important
features in the images. Widely adopted speckle filters, such as Lee Sigma or Refined Lee,
have proved effective; however, depending on the window kernel size, they may compro-
mise the ability to map smaller water features. Therefore, attention has been drawn to
other methods, such as the Gamma Map method (Model A, E) and the use of temporal
filtering (e.g., mean, median, or minimum backscatter), as a means to better preserve spa-
tial resolution (cf. Model O, N). The further advantage of using temporal filtering is the
ability to also suppress the influence of high winds, which can cause wind-roughened
waters that, at specific times, can vanish the contrast between open water and dry surfaces
and cause Bragg scattering. With SAR data, it can also be difficult to differentiate water
from other surfaces with low backscatter, such as asphalt (parking lots, airports, roads),
flat rock, and, in some dry regions, sand surfaces. Long timeseries of backscatter measure-
ments can be used to identify such areas but at the expense of computational efficiency,
especially for large areas [55]. Another way is to integrate optical data to reduce potential
commission errors caused by permanent low-backscatter areas (cf. Models A and O).

As additional examples, the round robin intercomparisons have also shown how the
complementary use of optical and SAR data can help suppress the influence of burn scars
and, to an extent, the monitoring period in light-constrained, high-latitude regions.

Aside from the challenges discussed above, there are variables and challenges which
could not be fully evaluated. Unresolved issues still circulate around inundated vegeta-
tion and how to deal with the cryosphere. As the focus in this study was on open inland
waters, neither of these issues was investigated. However, future improvements could be
performed through the investigation of L-band SAR sensors, which penetrate vegetation
better than C-band SAR data (Sentinel-1) and have potential for mapping flooded areas
under vegetated canopies [56,57]. In large parts of the world, lake and river ice is an inte-
gral part of annual water dynamics, which is why we also recommend looking at scalable
solutions for using optical and SAR data to monitor lake and river ice evolution [58,59]
and as complementary information for open surface water dynamics.
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Urban environments represent another challenge from the perspective of both optical
and SAR data. For optical images, the main issue is building shadows, whereas SAR data
may suffer from layover effects caused by tall buildings, as well as corner reflection (cf.
double/triple bouncing). Like topography, the urban challenge is often addressed using
postprocess masking, which is sensible, especially for large-area applications, as urban
areas represent only a fraction of the overall landscape, and the waterbodies associated
with the urban environment even less so. In addition, and as new high resolution and
freely available urban footprint layers become available [60], urban masking will gradu-
ally improve and integrating them as masking layers can help simplify the water mapping
solution.

The results and above discussion point to some inherent limitations to mapping sur-
face water when relying solely on either optical or SAR-based instruments. These limita-
tions can be partly mitigated by using both sensors in a fused approach for surface water
extent mapping. However, since the fused mapping approach will likely add to complex-
ity, computational effort, transferability, and automation level of the mapping approach,
it is important to consider exact needs and objectives before the appropriation of a specific
data model.

However, if monitoring is to be conducted in a region with persistent cloud cover, or
if the focus is to monitor during the wet—cloudy season, it may be worth considering if
adding optical data will bring the necessary improvement to warrant the additional com-
plexity of an operational solution. In other regions, the status of small farm dams may be
the most critical information gap in supporting timely information on potential water
shortages. In drier regions or during dry spells, where clouds are not an issue, monitoring
should rely on optical data only to maximize the spatial resolution. However, where
clouds may be an issue, the integration of SAR data will be critical to reliably monitor the
status of small farm reservoirs and dams [22,61]. This reiterates that the best practices for
surface water monitoring are often reliant on the study domain. In other words, a case-
dependent choice of mapping approach will be needed based on certain criteria, such as
ecosystem type, seasonality, climate regime, area size, and requirements for the degree of
automation. Moreover, as EO technology becomes more widely adopted and mapping
approaches evolve, it is further recommended that cross-comparison exercises, as pre-
sented in this paper, be repeated periodically to assess advances in surface water map-

ping.

5. Conclusions

The availability of satellite missions and constellations for environmental monitoring
has continued to grow in the past decades, and combined with the advances in technical
infrastructures for big data analysis, it is now within the realm of possibility for countries
to implement satellite-based surface water monitoring systems. These systems will be vi-
tal to supporting more evidence-based planning and management of water resources and
provide an ability to efficiently report and act in response to the global water agenda. By
evaluating 14 different EO-based models for surface water detection, we show that single
sensor approaches can produce accurate and consistent water maps under ideal condi-
tions, and yet, across a range of challenging environments, the synergistic usage of optical
and SAR data delivers more accurate and consistent outputs.

The findings in this paper therefore bear some important perspectives for formulat-
ing a new best practice where optical and SAR data are used synergistically to achieve the
highest accuracy and most consistent results for monitoring surface water dynamics.
While accuracy is a critical concern for selecting a surface water detection model, there are
other important aspects, including computational efficiency, simplicity, and ease of im-
plementation, which all contribute to increase understanding, maintainability, and poten-
tial scalability. In the end, specific working routines, management objectives, and individ-
ual user preferences may all contribute to how users will choose to appropriate EO tech-
nology for surface water monitoring. At larger scales across diverse ecological gradients,
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a synergistic approach should be preferred, but at a local scale, SAR data may be preferred
for the effective and timely monitoring of water extent and potential emerging floods dur-
ing cloudy periods, and similar optical data may be preferred to monitor the status of
reservoirs and small waterbodies during drought periods and when clouds are not an
issue.

Therefore, rather than advocating for a single “best” approach, we recommend flex-
ibility and options to build and/or adapt surface water detection methods that meet indi-
vidual user needs in terms of management goals, environmental settings, and scale of
study, i.e., ensuring users have options for receiving data in multiple formats or from
multiple sources, and with the tools necessary to process these data effectively.

The round robin evaluation presented in this paper has shown that EO datasets,
methods, and tools for monitoring surface water dynamics are available and successfully
applied in various contexts around the globe. The upcoming challenge will be to make the
community aware of these tools and, via practical guidance, illustrate how to get started
using EO data and tools to support better water resource monitoring, reporting, and man-
agement.
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Abstract

Increasing frequencies of climate change-induced extreme weather like prolonged
droughts pose significant challenges for small-scale subsistence farmers in sub-Saharan
Africa, who rely on the yearly harvest by more than 80% of their nutritional needs.
However, yield estimates at the field and household level (mean field size < 2 ha), that
can be applied without continuously collected in-situ data, are still lacking. Statistical
models for region-wide food crop yield estimations based on high-resolution satellite data
at the field level may generate better insights on how to address health risks like child
undernutrition in low-resource contexts where the burden is greatest and projected to
aggravate in future climate projections. Our study developed crop-specific, satellite-based
yield models using a novel three-year data set of in-situ yield measurements as
exemplified for a rural region in Burkina Faso. The aim of the model is to reduce the need
for in-situ field data collection while still assuring accurate yield estimates at the field
level. The model employed LASSO regression and was based on monthly vegetation
index composites from Sentinel-2 and weekly accumulated Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS) rainfall data. Our yield modeling results
suggest that an increase in training data capturing a wider range of yields over three years
led to more robustness to overfitting and, therefore, better model fits. R? values ranged
from 0.62 (Maize) to 0.3 (Sorghum) for the three-year yield models, with normalize root
mean square error (nRMSE) values ranging from 12% - 16%. An additional plausibility
check confirmed the validity of our models, as we compared the magnitude of our yield
estimation with national yield statistics for Burkina Faso. We showed that the models
based on three-year in-situ data can capture parts of the inter-year variability in yields,
which enables the proposed models to be applied to future years without the need for
additional in-situ measurements. Our advances in predicting yield estimates at the field
level enable a linkage between household-level yields, socioeconomic indicators,
nutritional status of children, and the health status of the household members. A further
application is linking high-resolution yield data to farmers’ productivity losses from
increasing heat under climate change.

Keywords: food crop yield, child nutrition, health, climate change, food security, sub-

Saharan Africa
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1. Introduction

Increasing temperatures, shifting rainfall patterns, and shorter frequencies of extreme
weather events such as floods and droughts are already affecting food security (Mbow et
al. 2019) and particularly child undernutrition (Belesova et al. 2019a). According to the
United Nations Committee on World Food Security (CFS), these climate stressors act in
tandem with factors such as population growth (CFS 2009). According to the Global
Climate Risk Index 2021, five out of ten countries that suffered the most from climate
change-related extreme weather events between 2000 and 2019 are located in Africa
(Eckstein et al. 2021). In 2020, over 768 million people worldwide faced hunger, while
21% of Africa’s population was affected. In Western Africa, 18.1% of children suffered
from undernutrition in 2020, including Burkina Faso (FAO et al. 2021). The effects of
climate change on food availability are especially apparent in subsistence farming
settings, where people eat almost exclusively what they have harvested from their own
fields. The agricultural sector employs nearly 80% of the working population and
generates around 30% of the country’s GDP (The World Bank 2020; Dabat et al. 2012).

Droughts are one of the most frequent and hazardous climate change-related events. It is
the main cause of crop failure and loss of agricultural varieties, which in turn increases
the risk of undernutrition (Belesova et al. 2019a; Kogan et al. 2019). Increasingly
common causes of crop failure and low yields are sequential torrential rainfalls that flood
fields for days, thus damaging the crop plants (Licht 2022; Wang et al. 2022).

The government supports subsistence farmers in two ways: First, (i) through weather-
indexed crop insurance. Using remote sensing for quantifying each subscriber
household’s yields to determine, whether they are eligible for benefit payments can prove
useful. This is currently tested as part of an early warning and responses system by the
Burkinian government. Second (ii), farmers are supported in the diversification of
agricultural production, better partial integration of agriculture into markets, and
development of domestic and foreign markets. To support food self-sufficiency and
smallholder farmers in the development of agricultural strategies, it is essential to

constantly monitor crop yields at the household field level.

Since the majority of crop types show a correlation with vegetation indices (VI), e.g., the
normalized difference vegetation index (NDVI), multi-temporal satellite data is well

suited to estimate yields (Groten 1993; Doraiswamy et al. 2003; Bolton and Friedl 2013;
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Huang et al. 2019). Vallentin et al. (2022) showed that high-resolution satellite remote
sensing images like Sentinel-2 improve the correlation between yield and satellite data
compared to lower-resolution sensors. While most studies to date have focused on large
industrialized farming systems using simulations (Jin et al. 2017; Jain et al. 2016) or
regression models based on different VIs or the leaf area index (Lambert et al. 2018;
Meroni et al. 2013; Mkhabela et al. 2011; Schwalbert et al. 2018), there are very a few
studies on yield estimates at the household level. Jain et al. (2016) used high-resolution
SkySat data to simulate yield for smallholder wheat fields, while Lambert et al. (2017)
and Karst, Mank et al. (2020) explored Sentinel-2 data with a 10 meter (m) spatial
resolution to estimate yields at the household field level. However, due to highly variable
biotic and abiotic factors affecting crop yield, especially in the scenario of a changing
climate, studies that are based solely on data from one phenological cycle, cannot
adequately address and assess the yield variability, which is also shown in Belesova et al.
(2018). Therefore, multi-annual assessments are needed to develop yield estimating
approaches that account for a range of inter-annual yield variabilities. This would enable
yield quantification without the need for further labor-intensive and costly ground
truthing.

This study aims to develop a valid yield model for various food crops using a unique
three-year in-situ yield data set. Through satellite-based crop yield models, we want to
reduce labor-, time-, and cost-intensive data collection crop yield on the ground (Paliwal
and Jain 2020), while assuring accurate yield estimates at the household field level (mean
field size < 2 ha). The presented work is nested in a larger research unit that focuses on
aspects including food security and child undernutrition (Mank et al. 2020; Beiersmann
et al. 2012), children’s health (Belesova et al. 2017, 2018; Belesova et al. 2019b), and
heat stress (Kjellstrom et al. 2016; Sahu et al. 2013) (www.cch-africa.de).

2. Material and Methods

2.1. Study area

The study area is located in the Kossi province of the Boucle du Mouhoun Region in rural

northwestern Burkina Faso (Figure 1). One-third of the province is under health and
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nutritional surveillance of the Nouna Health and Demographic Surveillance System
(NHDSS) since 1992 (Sié et al. 2010).

The study area is characterized by a dry tropical climate of the Sudano-Sahelian type. The
rainfall pattern is characterized by two seasons, a long dry season (October to May) and
a short-wet season (June to September). The yearly amount of rainfall averages 700 mm.
More than 30% of the annual rain falls in August (213 mm).

More than 80% of households depend on small-scale subsistence farming which is rain-
fed agriculture. Nine crop types are dominant in the region: millet, sorghum, maize,
peanuts, beans, cotton, sesame, fonio, and rice, which cover more than 90% of the
cultivated area (Grace et al. 2014). The use of chemical fertilizers or insecticides and

herbicides 1s limited.
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Figure 1: Study area (Health Demographic Surveillance System (HDSS)) with the collected field

boundaries and yield measurements (vield squares) in the Kossi province.
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2.2. In-situ data and satellite data

2.2.1 Field Data

An essential component of this study was the collection of field data for the five main
food crops maize, millet, sorghum, beans, and sesame over a period of three years (2018,
2020, and 2021). Seven agricultural surveyors were trained for the sampling of field
boundaries using GPS devices and the installation, monitoring, and harvesting of yield
squares. The fields were selected with the intention of maximizing variation between
them so as to represent the full range of variability in the entire study area. Yield squares
for each field were randomly selected (Figure 2). Generally, the sampling followed a
protocol from the Agriculture Ministry (DPSAA 2011). Every field was assigned a unique
identifier, so that each field could be linked to individual households. For each type of
crop, we targeted a sample size of n > 25 yield squares per year to satisfy the robustness
of the model. In addition, woody vegetation within the studied fields was manually
mapped in GIS using Google Earth and masked out of the sampled field boundaries as
they can have negative impacts on harvest estimates based on remote sensing data
(Lambert et al. 2018). From June to December of each year, data was collected during the
rainy season until the harvest of all selected crops. The field sampling followed the
established methodology of Karst, Mank, et al. (2020) (see Karst, Mank, et al. (2020) for
further details).

Agricultural field 5x5m vyield squares Marking in the field
_ — | Randomly
Grid — selected square
for yield
measurement

Figure 2: Schematic representation of in-situ yield measurements. Each field, that was selected for in-situ
measurements, was divided into 5x5m squares using a grid. The yield square, for which the harvest was
measured, was randomly selected and then marked and protected in the field by circumferences. Picture

copyright by Isabel Mank.
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2.2.2 Processing of remote sensing data

For each crop growing season in the study years 2018, 2020, and 2021, all available
Sentinel-2 images at a 10m spatial resolution were used at Level-1C and preprocessed
including an atmospheric correction using the Sen2Cor version 2.10. Monthly maximum
NDVI composites were created for the preprocessed Sentinel-2 reflectance images, which
best represent the phenology of farming systems (Hasenbein et al. 2022). For each
monthly composite, three vegetation indices, namely the normalized difference
vegetation index (NDVI), the normalized difference red edge index (NDRE), and the
normalized difference water index (NDWI) were calculated. All of these indices have
proven their suitability for monitoring vegetation and estimating yields (Lambert et al.
2017; Gao 1996). All 10 monthly composites for each VI and year were then used as
input variables (30 variables in total) for the linear regression model, from which pixel

values at the respective sampled harvest squares were extracted (Figure 3).

2.2.3 Rainfall Data

Rainfall data helped to explain the variability of vegetation indices as there is a strong
correlation between green plant health and rainfall (Greve et al. 2011). Since the crops of
interest in this study are exclusively rainfed, rainfall and vegetation indices times series
were used to monitor crop growth. We used daily CHIRPS (Climate Hazards Group
InfraRed Precipitation with Station data) data as rainfall data for the model (Funk et al.
2015). For each of the three years 2018, 2020, and 2021, daily rainfall data for each
calendar week of the crop growing season, including all preceding weeks for that week,
were accumulated (e.g., calendar week three contains the rainfall sum of calendar weeks
one, two, and three). Each calendar week from March onwards was used as an input
variable for the model (except November and December as the months of harvest) (35
variables in total) (Figure 3). In addition, daily rainfall data from one of the five weather
stations in the Nouna HDSS (at the CRSN in Nouna) as part of the research unit on climate
change and health in sub-Saharan Africa (www.cch-africa.de) were used to analyze the

results.
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2.3. Methodology of the crop yield model

We used the LASSO (Least Absolute Shrinkage and Selection Operator) regression
instead of a stepwise multiple linear regression used in previous studies (Karst, Mank, et
al. (2020)). LASSO regression addresses two common problems in regression analyses:
(1) overfitting in terms of the number of predictors included in the model and (ii)
overestimating, how well the model explains the observed variability with the included
variables (Tibshirani 1996). It aims to find the model with the smallest prediction error
and identifies the variables and their corresponding regression coefficients for each model
by ‘shrinking’ the regression coefficients towards zero. The LASSO regression constrains
the model complexity by requiring the sum of absolute regression coefficient values to
be smaller than a preset value (lambda (1)) (Ranstam and Cook 2018). Hence, LASSO
aims to minimize the sum of squares with constraint ) |B;|< t. Statistically, it is written as:

i (yi - in,-ﬁ,) +2 i 15 (1)
=

i=1 j

for a linear regression model with yi (i =1, 2, ..., N) as the response variable and the p-
vector of regressors xj; (j = 1, 2, ..., p) with its Bj coefficients for the ith observation
(Tibshirani 1996; Chintalapudi et al. 2022).

Generally, the best lambda is determined using a k-fold cross-validation (Ranstam and
Cook 2018). The k-fold cross-validation also helps to reduce overfitting since the analysis
is not limited to using a single subset for the internal validation (Ranstam and Cook 2018).
In this study, we used a 5-fold cross-validation to have at least five field samples in each
fold. Since the data fed into each fold was selected randomly, we computed the 5-fold
cross-validation 1000 times. Each iteration yielded an optimal lambda value for the final
LASSO regression model. To determine the overall optimal lambda, we calculated an
index based on the ratio of R? and the Root Mean Square Error (RMSE), where the highest
index value identifies the model with the best fit and its corresponding lambda value. To
account for outliers, we identified the optimal model using the 95" percentile of the index.
This process was repeated for each crop type, resulting in crop-dependent yield models
(Figure 3). For each crop type, we ran a model with only one year of training data,
corresponding to each year of 2018, 2020, and 2021, and a model using all three years of

data. A single-year model was only possible if the training data had more than 25 per crop
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type per year. Finally, the three-year models were applied to all sampled field boundaries
to predict yield estimates.

We verified the goodness of fit of the different models with statistical measures and
validated the plausibility of the model results by comparing them to national yield
statistics for Burkina Faso provided by the Food and Agriculture Organization (FAO) via
their FAOSTAT database (FAO 2022).

Figure 3 provides the schematic workflow of our method.
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Figure 3: Schematic workflow diagram of the multi-annual crop yield model. Left to right: Preprocessing
of Sentinel-2 imagery, from which monthly composites of the NDVI, NDRE, and NDWI were derived. These
datasets were used as model predictors together with weekly rainfall sums for all three years 2018, 2020,
and 2021. The model was trained and validated through cross-validation with the reference data from the
S5x5m harvest squares. Finally, the model predicted yield estimates for all sampled field boundaries in the

study area.
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3. Results

3.1 Summary of the in-situ field sampling

Table 1 shows the number of in-situ measured harvest squares (411 in total) and field
boundaries (1027 in total) per crop type in the years 2018, 2020, and 2021. The most
significant and dominant food crops, namely sorghum, millet, and maize, were monitored
in all three years, while sesame and beans were observed less frequently. Also, in 2021
the number of field boundaries increased to predict yield estimates for a wide range of
fields when applying the final models. Other differences in numbers of the sample sizes
mainly occurred due to data cleaning.

Table 1: Number of sampled yield squares and field boundaries per crop type in the years 2018, 2020, and
2021.

2018 2020 2021 Total

Yield Boun- Yield Boun-  Yield Boun-
Yield plots Boundaries
plots daries plots daries plots daries

Maize 33 44 29 35 23 136 85 215
Millet 45 44 30 30 29 163 104 237
Sorghum 57 61 35 36 28 175 120 272
Beans 31 52 0 0 12 84 43 136
Sesame 0 0 30 33 29 134 59 167
Total 166 201 124 134 121 692 411 1027

3.2 Results of the weighed yields for each crop type

On the one hand, boxplots of the weighed yields showed that millet, sorghum, and sesame

had higher weighted values in 2020, whereas maize and beans had the highest yields in

109



V. Multi-annual yield model at the field level for subsistence
farming in Burkina Faso (Chapter V)

2018 (Figure 4). On the other hand, yields were overall low in 2021. For millet and maize,
there was substantial inter-annual variability in production, as reflected by the upper
quartile ranges of the boxplots. Especially in 2018, maize showed exceptionally higher
yield values. The yields of other crops such as sorghum, beans, and sesame, seem more

consistent from year to year.
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Figure 4: Boxplot analysis of the in-situ yield measurements showing the difference in yield per crop type
over the three years 2018 (18), 2020 (20), and 2021 (21). In-situ data for beans and sesame were only

available for two of the three years

3.3 Exemplary phenology of monthly NDVI values for Sorghum

Figure 5 depicts the monthly distribution of NDVI values derived from pixels lying inside
all sampled and monitored sorghum field boundaries over three years. The NDVI trend
of sorghum was chosen as an example. Figure 5 visualizes that the monthly VI composites
reflect the phenology of the crop while also displaying inter-annual differences. From
June onwards, NDVI values are increasing when the crops develop and increase in
photosynthetically active biomass, reaching peak values in September. During the dry
season (January to June), the interquartile range is very low, reflecting low variability in
the vegetation, whereas during the rainy season (July to October) this variability is

substantial, with high deviations from the mean. With the onset of ripening and
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senescence of the crops, the NDVI values rapidly decline between October and the
harvest months (November/December). In 2018, the NDVI values were generally higher

with an earlier onset than in 2020 and especially than in 2021.
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Figure 5: Exemplary yearly time series of the Normalized Difference Vegetation Index (NDVI) for sorghum
for the three years 2018, 2020, and 2021. The crop cycle during the rainy season is displayed in grey.
Sowing period: June, Period of growth: July-October, Harvesting: October-November.

3.4. Rainfall extremes and flooding in 2021

In order to interpret the lower yields in 2021, as observed in the field data (Figure 4) and
the phenology shown by the NDVI (Figure 5), rainfall data must be incorporated. While
the temporal rainfall pattern was in line with historic averages, shown by the onset of
rainfall in May, the amount of rainfall was comparably low until early August (Figure 6).
Then, about 67 % of the total yearly rain fell in a five-week window between week two
of August and week two of September. In the latter interval, the highest weekly rainfall
amounts were observed. Two extreme rainfall events at the end of August and the
beginning of September (recorded by the weather station in Nouna) caused severe

floodings (see Sentinel-2 examples in Figure 7) of fields. Additionally, the comparison
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of the rainfall pattern shows the inter-annual variability of rainfall patterns. These patterns

of inter-annual variability can also be observed in yields (Figure 4).
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Figure 6: Distribution of weekly rainfall at Nouna weather station in 2018, 2020, and 2021. Nearly 70%
of the annual rainfall occurred in a five-week from August — September in 2021 following a long period of

unusually low rainfall.
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Sentinel-2: 20/08/2021
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Figure 7: Pre-flooding Sentinel-2 image (left: end of sowing season) and post-flooding image (vight: middle
of the growing period) after two weeks of heavy rainfall (see Figure 5) with locations of yield sampling
plots (vellow dots) in a subset of the study area. Flooded areas are visible in blue. Color representation:

R: SWIR, G: NIR, B: Red.

3.5. Results of the crop-specific yield models

For each crop type, an individual model was developed with varying results in terms of
goodness of fit but also in terms of included predictors from the LASSO regression (Table
2). Maize yield models showed good R? values in general, for the yearly models (2018
and 2020) as well as for the multi-annual model. For 2021, there were not enough
reference yield plots (<25) to conduct a model. The best model for maize was the model
for 2018, while the multi-annual model was showing better results than 2020. Comparing
the results of the multi-annual models, maize showed the highest R* of 0.62, while
sesame, beans, millet, and sorghum showed R? values of 0.59, 0.54, 0.32, and 0.30,
respectively. For millet and sorghum, the yearly models performed much better than the
multi-annual models in most cases. However, overfitting is a bigger problem in the yearly
models (e.g., millet 2020 and 2021), which is indicated by a high drop-off of the adjusted
R? compared to the original R?. This shows, that the three-year models are more robust
against overfitting by taking a wider range and distribution of measured crop yields
through the inter-annual variability into account. As the normalized RMSE (nRMSE)
compares the RMSE to the range of the in-situ measurements, it is an additional indicator

to describe the model error in percent. Reasonable low nRMSE values for all crop type
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models were found (between 13% and 16% nRMSE) proving the statistical goodness of

fit together with the R? and adjusted R2.

Table 2: Results of the crop-dependent yield models for each year as well as for the multi-annual yield
model. The table includes the number of yield reference samples per crop type (N), the number of used
predictor variables, the resulting R? and adjusted R? of the model as well as the RMSE and normalized

RMSE that can be interpreted together with the range of measured yields.

Crop type Statistic parameters 2018 2020 2021 3-year model
N 32 28 23 83
No. of predictors 10 9 - 13
R? 0.78 0.52 - 0.62
S
= Adj. R? 0.68 0.28 - 0.55
=
RMSE (kg/m?) 0.056 0.033 - 0.065
Range (kg/m?) 0.456 0.256 - 0.512
nRMSE (%) 12.28 12.89 - 12.70
N 44 30 29 103
No. of predictors 9 24 21 7
R? 0.46 0.95 0.64 0.32
,é: Adj. R? 0.32 0.71 -0.44 0.27
=
RMSE (kg/m?) 0.053 0.013 0.029 0.056
Range (kg/m?) 0.328 0.224 0.260 0.344
nRMSE (%) 16.16 5.80 11.15 16.28
N 57 35 28 120
£
< No. of predictors 6 12 3 11
5
7]
R? 0.41 0.56 0.23 0.30
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Adj. R? 0.34 0.32 0.13 0.23
RMSE (kg/m?) 0.050 0.029 0.032 0.047
Range (kg/m?) 0.348 0.172 0.168 0.360
nRMSE (%) 14.37 16.86 19.05 13.06
N 31 0 12 43
No. of predictors 9 - - 10
R? 0.59 - - 0.54
g Adj. R? 0.41 - - 0.40
[=2]
RMSE (kg/m?) 0.033 - - 0.034
Range (kg/m?) 0.252 - - 0.252
nRMSE (%) 13.10 - - 13.49
N 0 28 29 57
No. of predictors - 22 13 17
R? - 0.84 0.65 0.59
%)
§ Adj. R? - 0.14 0.35 0.41
3
RMSE (kg/m?) - 0.007 0.023 0.019
Range (kg/m?) - 0.080 0.132 0.132
nRMSE (%) - 8.75 17.42 14.39

3.6. Results of the extrapolated three-year crop yield models

Figure 8 illustrates an excerpt of the results of the three-year individual crop yield models
with a 10m spatial resolution applied to predict yield estimates for all sampled field
boundaries in 2021. The final model results of the three-year models (Figure 8) display

the intra-field yield as well as the inter-year variability of crops. Additionally, differences
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in productivity (kg/m?) between the different crop types are displayed in Figure 8. For
example, it shows, that beans have the highest yield per m? (dark green), while sesame is
showing the lowest yield values per m?, which reflects the observation made in the field

(Figure 4).

.zi'. 351 kg

2819 kg

1688 kg

Legend
Yield [kg/m2] Beans [___| Sesame

wo High:015 [ | Maize [ | Sorghum

-0 I:l Millet

N
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Figure 8: Results of the extrapolation of the crop-specific three-year models to exemplary fields in the

Nouna HDSS area in the year 2021 (zoomed to three different exemplary areas). The colored outlines of
the fields indicate the crop type according to the color scheme in the legend. Red to green variations within
the fields represent the predicted yield estimates in kg/m? for each pixel, where the same range was used
for all five crop types. Numbers in kg on the side of each field show the total predicted yield for each field.
Transparent pixels are masked out from the analysis because of the presence of other woody vegetation.

Background: True color imagery, ESRI Basemaps.

3.7. Plausibility check of the model results

In a last step, an additional plausibility check was done by comparing the model results
with national yield statistics for Burkina Faso provided by the FAO through their
FAOSTAT database (FAO 2022). We used this dataset to verify the plausibility of the
model. The FAOSTAT database only contained data until 2020. We assumed consistent
conditions for 2021, given national yield statistics for the prior three years showed little
variation. Comparing the magnitude of the productivity provided by FAOSTAT to the

mean productivity estimates provided by our model, we found similar values in the
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magnitude of the numbers, underlining that our multi-annual crop yield model is
plausible.
Table 3: Yield estimates of the three-year yield model per crop type for 2021 in comparison to the national

yield in Burkina Faso in 2020 reported by the FAO. The statistics show the results of yield estimates for all
sampled field boundaries for 2021.

Modeled mean Modeled mean
C L vield Mean field size 1d (¢ha) FAOQ yield
rop type total yield per yie a
(ha) (t/ha) (2020)
field (t) (2021)
Maize 0.39 0.32 1.40 1.69
Millet 0.78 1.09 0.76 0.81
Sorghum 0.77 1.18 0.75 0.99
Beans 0.43 0.30 1.62 1.35
Sesame 0.81 1.46 0.60 0.60

4. Discussion

This study demonstrated the validity of a multi-year crop yield model in comparison to
single-year models with the aim to reduce the need for in-situ field data collection while
assuring accurate yield estimates at the household field level. It is important to mention
that the in-situ measurements are also related to uncertainties that have been reported by
Karst, Mank, et al. (2020).

Results of the model application of the three-year model for exemplary fields of the study
area in 2021 well represented the inter- and intra-variability of the fields. Comparing the
field sizes together with the productivity between the crop types led to the conclusion,
that crops with higher productivity were cultivated on smaller fields and crops with low
productivity were grown on larger fields.

Overall, the multi-year models were more robust against overfitting compared to the
single-year models as proven by the adjusted R?. Single-year models with less training
data tend to pick too many variables for the final model on some occasions compared to

the multi-year model, which led to overfitting. A good example are the models for millet,
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where the single-year models had a higher R? than the final model, but had 24 (2020) and
21 (2021) predictor variables included. Therefore, the adjusted R? values had a higher
drop-off from the original R? than in the three-year model. While the R? measures of the
three-year were comparably lower, the model still provided good measures in nRMSE
and the magnitude of the mean yield per ha compared to the national yield statistics of
the FAO, which proves the model’s plausibility. Differences between the single and
multi-year models were also the differential variation of rainfall over the different periods
of the growing period. The agricultural calendar (date of sowing, etc.) varies according
to the arrival of the first rains and we made the hypothesis of equal use of production
factors, like fertilizers, because we are dealing with small-scale subsistence farmers in
our research observatory. Concluding, the models based on a single year of training data
tend to be more accurate in predicting yields for the same year, however, the three-year
models are more robust against overfitting and can better reflect the inter-annual
variability of yields. This enables the three-year models to be applicable in future years
without the need for new in-situ measurements.

Differences occur not only between the single and multi-year models but also between
the model results of the different crop types, where some crop yield models outperform
others. Some of the crops were more affected by flooding and extreme weather events in
2021 than other crops, which could have led to lower yields in 2021 and higher
discrepancies within the training data. However, future detailed research would be needed
for a definite statement. Another major finding of this study was that more field samples
(training data) did not necessarily result in better model performance (see maize and
sorghum in Table 2).

Comparing the size of yield (t/ha) to the national figures provided by FAOSTAT, it was
determined that all models produced plausible outcomes. Furthermore, by providing yield
estimates at the field level, our model closes the gap of yield statistics not being available
at the household level. By linking the respective fields to the individual households, yield
estimations at the household level can be provided through our model. With our three-
year observation of the in-situ measurements, we are capable of also capturing inter-
annual variability. As can be seen in Belesova et al. (2019b), a three-year window
captures large parts of the variability as more than two consecutive years with stable

productivity were very rare between 1984 and 2012. This is also shown by the highly
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varying rainfall patterns from the years 2018, 2020, and 2021 (Figure 6). We, therefore,
assume, that this three-year period of training data is enough to capture the variability in
the yield estimates to be valid for future applications without the need for additional in-
situ data. To determine a fixed threshold on how many years is sufficient to capture most
of the inter-annual variability is not possible from our study, however, and would require
additional future research.

Our study demonstrates the novelty of using a three-year in-situ dataset that reduces the
need for future ground truthing. We found comparable results to our models in Lambert
et al. (2018) reporting R? regression values between 0.4 and 0.8 for cotton, maize, millet,
and sorghum in Mali for the year 2016. However, their regression results are only based
on the more homogeneous fields and the peak Leaf Area Index (LAI) as their sole
predictor. Morel et al. (2014) found similar results with an R* between 0.21 and 0.53,
albeit for sugarcane on Reunion Island but also using only one predictor, namely the
NDVI. Karst, Mank, et al. (2020) conducted a similar study in the same study area and
reported comparable results using only one year of training data (2018), the same data
was incorporated in our study. By additionally extending the training data set of in-situ
measurements to three years our study extends their findings. Overall, the multi-year
model showed, that it is possible to generate more robust models with increasing and
more balanced training data sets. More research would be welcome to prove our model
results with in-situ measurements being sampled as validation datasets in the upcoming
years. Additionally, a study on automated cropland and crop type classification using the
sampled field boundaries as reference data is underway and would help to extrapolate the
models to the whole study area. In the long term, we aim to estimate crop production by
the household from the cadaster of fields in the Nouna HDSS area.

Multiple potential benefits exist for both future HDSS interventions and research using
household field level valid and “automated” low-cost remote sensing-based food crop
yields. Some examples are given below:

(1) in the area of agricultural research including but not limited to yield effects of
changing field practices or increased inputs, irrigation — both modern, where
feasible, and traditional such as the Zai practice (Sorgho et al. 2020a; Sorgho
et al. 2020b);
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(i1))  in the field of child undernutrition from harvest failures, a large proportion
(estimated 75%) of which are driven by increasing climate variability
(Belesova et al. 2019a);

(iii)  the effect of heat on lower work productivity of farmers. Evidence from
studies indicate that increased heat reduced the work productivity of farmers
and endangered their health (e.g., Crowe et al. 2010). A study of the impact of
heat on crop yields is currently underway in Burkina Faso, based on a
preliminary study by Lang et al. (2022).

This will enable us to contribute to connecting the science of remote sensing, with the

fields of agriculture and human health and nutrition.

5. Conclusion

We developed satellite-based crop-specific models to predict yield estimates at the
household field level using a unique dataset of three-year yield measurements from rural
Burkina Faso. According to our knowledge, this is the first study to successfully develop
a model on household plot level for subsistence farming in sub-Saharan Africa to predict
yield estimates using a multi-annual training dataset, which is the first step toward a low-
cost solution for future applications in yield monitoring at the household field level. Our
results indicate, that models are more robust against overfitting when increasing the
number of years of training data and therefore including inter-annual variability. Our
model was validated by the fact that the magnitudes of the anticipated yield estimates
coincided with the magnitudes of the national yield numbers. The value of numerous
years of training data for incorporating inter-annual variations of biotic and abiotic yield-
influencing factors was demonstrated. The crop yield models based on multi-annual data
could be applied to upcoming years without the need for additional in-situ measurements
(ground truthing). This is especially important to fight food security under a changing
climate, that comes with additional challenges. To tackle health aspects like child
undernutrition on a household level, high-resolution yield estimates at the household field
level are fundamental, which allow us to predict nutritional shortages at the individual

farmer and household level.
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1. General Discussion

Climate change-related risks are threatening rural livelihoods in Africa. Decreasing crop
production, reduced livestock health or an increased malnutrition rate among children are
some of the effects that have already been observed and additionally worsened by natural
hazards such as floods and droughts (IPCC, 2022). Weather and climate extreme events
are projected to increase even further in the future (IPCC, 2013, 2022). This will lead to
growing pressure on food production (IPCC, 2022). Besides smallholder farmers,
pastoralists are also set to face food insecurity as the livestock’s vulnerability to drought
was already evident (Djoudi et al., 2013; Masike & Ulrich, 2018). Conflicts between
farmers and herders present an additional risk and have already increased over the past
years as conflicts due to drought and water tensions are widespread in the Sahel (Ayana
et al., 2016; Puig Cepero et al., 2021). The studies presented in this thesis address these
climate change-related food security and health risks from various perspectives.

The first study (Chapter I) herein presented a regional transferable drought probability
model based on remote sensing data with a spatial resolution of 1km. By doing so it
addressed the gap between global drought monitoring systems with a low spatial
resolution (e.g., Huntington et al., 2017; Vogt et al., 2018) and local drought models (e.g.,
H. Wu & Wilhite, 2004), which are not spatially transferable. Additionally, to the study
area presented in Chapter I, the modeling framework was successfully transferred and
applied in Chad, the Central African Republic (CAR), and Germany, which is not
presented here. This further proved the capability of the model to be easily transferred to
other areas and capture regional drought conditions. Other regional drought models have
also been developed. Shen et al. (2019) for example developed a deep learning model
based on remote sensing data that showed good results and applicability for
meteorological and agricultural droughts but was only tested in the Henan Province of
China. Monteleone et al. (2020) even developed a new drought index (PPVI) providing
also the advantage of being spatially transferable. The index presented in their study
however was only evaluated in Haiti. While the herein (Chapter I) presented modeling
framework has proven to be regionally transferable it is also lacking information on soil
moisture for example, which could further improve the model. Nevertheless, this regional

drought probability model can furthermore be used as an early warning alert when
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drought conditions begin to show up in different regions. Through the model results and
its time series analyses regions at risk, which face more often and severe droughts, can
be addressed to reduce their vulnerability to drought. On the other hand, areas with
historically fewer droughts can be identified and used by agriculture for example. The
presented drought vulnerability approach though comes with some limitations as the
study only used globally available data sets and therefore missed some important
information like water availability. Nevertheless, the results of this study help to monitor
droughts, which is the first step toward reducing vulnerability and drought impacts.
Water availability plays a crucial role along with drought in rural livelihoods practicing
agricultural or livestock farming. Therefore, the detection of surface water and surface
water monitoring systems are important, also to reach the Sixth Sustainable Development
Goal (SDG) (Long, 2019). Chapter III, in this context, presented a round-robin
intercomparison of different EO-based surface water detection and classification
algorithms. As many different algorithms can be found in the literature, this study helped
to find most accurate methods — such as those that combine radar and optical data.
Additionally, this study provides the information needed when searching for the right
algorithm or application as for example the implementation time or computational costs
also play a crucial role in choosing the right option. One of the presented algorithms of
this study was also used as one of the input parameters for the environmental suitability
maps for transhumance (Chapter II). Fresh water is needed for both agriculture and
transhumance. For agriculture, it is mainly used for irrigation purposes, while open water
locations represent resting points for the livestock herds during their seasonal movements.
By performing time series analyses of the monthly surface water classifications, it can be
additionally separated between temporary, seasonal, and permanent water bodies.
Therefore, the surface water locations and types of water bodies can be also used as one
of many information inputs when planning transhumance corridors to ensure food
security and to secure livelihoods of herders. These locations can be also used to equally
distribute natural water resources to minimize conflicts due to water tensions as they are
already widespread in the Sahel (Ayana et al., 2016; Puig Cepero et al., 2021).

Chapter II tries to address these conflicts by analyzing the environmental suitability for
transhumance based on high-resolution satellite data. Previous research on that topic is
scarce. One of the very few studies for example used MODIS data with a lower spatial

resolution to analyze the green-up and senescence times of forage patches (Brottem et al.,
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2014; Butt et al., 2011). A landcover change analysis that revealed increasing pressure on
transhumance was performed by Ellison et al. (2021), while McGuirk and Nunn (2020)
provided insights on the impact of droughts on conflicts. However, all these studies did
not address concepts that can directly support transhumance. Mertz et al. (2016) stated
that improved information on weather and natural resources as support for transhumance
needs to be passed together with multiple options for herd movements to effectively
minimize conflicts. Since then, this left an open research question that this study (Chapter
IT) addressed. To provide multiple options, environmental monitoring systems need to be
set in place and can be combined with the spatial modeling of transhumance routes. As
this has not been done very often in the context of transhumance, D’ Abramo et al. (2021)
provide an example as they modeled paths for pastoralists in Argentina. While their
results also had some limitations, they found the modeled paths to be beneficial in
identifying critical areas for mobility and to develop information-based policies to
regulate management strategies. While this has not been done in the Sahel outside the
presented study, Chapter II goes beyond that by providing additional spatial information
to reduce farmer-herder-related conflicts. By analyzing high-resolution Sentinel-2 and
Sentinel-1 data, several earth observation-based products like surface water availability
or rangeland productivity were derived. These products represent the basis for the
monthly environmental suitability maps for transhumance, which provide timely
information on favorable or unfavorable areas. The suitability maps can help herders to
find forage areas that provide enough fodder for the animals and therefore directly tackle
food insecurity in SSA. By adding additional information on agricultural land and its
farming systems (rainfed vs. irrigated agriculture), urban areas, or protected areas, the
transhumance suitability maps can also be used as a possible planning tool for agricultural
expansion that also considers transhumance corridors. This could reduce conflicts if space
for corridors needed by the pastoralists for their seasonal movements is granted. On top
of that, theoretical optimum movement paths along the highest environmental suitability
values were modeled. While these paths do not represent reality, as other aspects like
traditional paths also factor in (D’Abramo et al., 2021), they can be used by local
authorities for potential safe corridors with enough natural resources to improve conflict
prevention. The whole framework presented in Chapter II is also regionally transferable
to other regions in the Sahel as additional information or weights through expert

knowledge can be incorporated into the calculation of the suitability maps, depending on
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the region. In general, the findings of this study can help to tackle food insecurity by
finding forage areas through the monitoring of rangeland and can lead to a decision
support tool for conflict prevention measures. Additionally, the results could help the
herders to continue practicing livestock farming as many of them are settling down. The
analysis can furthermore be combined with drought monitoring, as drought-related
conflicts are widespread (Ayana et al., 2016), to be used as an early warning system and
to identify grazing land with less severe drought conditions.

The last study (Chapter IV) focused on smallholder farmers, that once were sharing their
land with pastoralists during the dry season and therefore complemented each other
(Ikhuoso et al., 2020). The study presents a satellite-based agricultural yield model for
the major food crops in Nouna, Burkina Faso at the field level. Previous studies have for
example modeled yield estimates with lower resolution data by MODIS at the country
level (Petersen, 2018) or also used high-resolution Sentinel-2 data but predicted yield
estimates at farm-to-community scales (Lambert et al., 2018). Yield predictions at the
field level though, provide crucial information for food security and health-related issues
like malnutrition (Karst et al., 2020). Therefore Karst et al. (2020) developed a high-
resolution agricultural yield model based on Sentinel-2 data to provide yield estimates at
the field level. While the study in this thesis follows their general methodology, it goes
beyond by utilizing a unique three-year training data set. Within the study, general yield
models for the main food crops based on three years of training data were developed and
compared to the single-year models. This comparison was used to determine whether it
is possible to generate an accurate general yield model based on multi-year training data
to lower the need for cost- and labor-intensive field data (Paliwal & Jain, 2020). The
results showed that the three-year models capture inter-year variability of yields and
therefore can be used to predict yield estimates in upcoming years. Additionally, through
incorporating a wider range of yield values over multiple years, the models were more
robust against overfitting than the single year models. Yield monitoring provides the first
step needed to implement adaptation measures for agriculture to tackle food insecurity
under a changing climate. Widespread intercropping though is still a challenge in yield
modeling as the presented model was limited to mono-cropped fields. Overall, this study
addresses food security issues through yield estimates and a possible forecast of one or
two months before harvest depending on the crop type. Yield estimates at the field level

are also important inputs for studies on prevention measures and health care as for
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example Belesova et al. (2018) analyzed annual crop yield variations in context with
nutrition and health. By providing yield estimates at a higher level (field level) such
studies can be enhanced by the work presented in this thesis. Additionally, the study
presented in Chapter IV can be combined with the regional drought model in Chapter I
and the surface water algorithm in Chapter III for the spatial analysis of the impacts of
droughts and flooding and potential yield losses. Therefore, potential food security issues
could be addressed before the harvest.

While addressing these climate change-related risks to food security, health, and the
livelihood of rural communities in Africa from different perspectives, all these studies
relate to each other in a certain way. The following section provides an overview of how
the used satellite data can be combined and used efficiently. For example, the same
satellite data (Sentinel-2) was used for the agricultural yield model and the environmental
suitability maps for transhumance (in combination with Sentinel-1). This could enable a
monitoring system for both agricultural practices, where the processed satellite data could
be used effectively in multiple ways. Additionally, the drought model could also be tested
on a local scale, based on yield predictions by the model presented in Chapter II, and
therefore could also use Sentinel-2 data on a finer scale. Food security is dependent on
vegetation health and also water availability for the planted crops and livestock, which
are both impacted by droughts. All studies could therefore be combined as drought
monitoring is important for both pastoralists and smallholder subsistence farmers. Surface
water locations represent irrigation potential and on the other hand, are used by herders
as resting points for their cattle. Floodings, their extent, and the following potential yield
losses can also be observed by the surface water detection algorithm in Chapter III. In
total, all this information can be combined to support both, smallholder farmers and
transhumant herders. The gathered information can be used as a planning tool for
agricultural expansion, the planning of corridors for the seasonal movements of
pastoralists, and the protection of rangeland to achieve a peaceful coexistence between
farmers and herders with enough land and natural resources for both communities. This
could not only reduce conflicts but also help both farming practices to adapt to climate
change and to tackle food insecurity and health risks. Furthermore, all of the presented
methods are scalable. The drought model has already been proven to be regionally
transferable beyond the presented study in Chapter I and could be applied to bigger areas.

The environmental suitability maps could also be expanded to the whole Sahel with
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regional adaptions, where future investigations of regional varying input parameters are
needed. Lastly, the agricultural yield model is also scalable to all fields in the area and

could be applied and tested in other sub-Saharan countries.

2. Future research

Despite the advances in all the topics presented, future research still needs to be done.
The drought model presented in Chapter I for example could be tested on a local scale
with high-resolution satellite data to predict drought probabilities also at the field level
for agricultural purposes. It could then be investigated if the drought and crop yield model
could be used in a combination to predict yields together with current drought conditions.
Since drought conditions are usually long-lasting, early estimates in which direction the
projected harvest of the current year trends could be made for example. The same
accounts for the suitability maps, where the drought model could be used in addition to
the environmental suitability maps as an input to an early warning system on conflicts.
The analysis of the environmental suitability maps and the modeled theoretical optimal
movement paths could also be enhanced by GPS livestock tracking data to better
understand the mobility of transhumant pastoralists. Cooperation with local people could
potentially lead to new rangeland possibilities or new corridors. Additionally, the analysis
of multiple years could show if the inter-annual variability of the environmental
suitability plays an important role in movement patterns and conflict numbers. The
framework should also be tested in other areas leading to an investigation of whether the
environmental suitability maps could be scaled to the whole Sahel zone. While the
agricultural yield model already enhanced previous studies by using a unique three-year
training data set, it should be investigated how many years of training data are needed to
capture enough inter-annual variability to make long-lasting future predictions without
the need of additional field sampling campaigns. Furthermore, an accurate land cover
classification, which also provides information on different crop types, could be used to
apply the model to all agricultural fields in the study area. This would furthermore reduce
the need for GPS sampled field boundaries. An accurate classification though would be
needed as currently, available cropland classifications overestimate cropland areas by up
to 170% (Samasse et al., 2018). The agricultural yield models could also be used to

evaluate, plan and recommend different adaptation measures. As agriculture represents a
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major source of livelihood in most rural communities in SSA, adaption to climate change
plays a major role to ensure food security (Kogo et al., 2021). Potential adaptation
measures could lead to the enhancement of the resilience of the agricultural sector, the
protection of livelihoods, and lower vulnerabilities associated with food insecurity.
Possible adaptions at the farm level range from crop management practices like
diversified crop cultivars or the staggering of planting dates to spread risk and mitigate
against food shortages, to drought-tolerant cultivars, conservation agricultural practices
like rainwater harvesting for irrigation, and soil fertility management. Diversified
livelihoods like mixed crop-livestock farming systems or off-farm employment could be
additional options (Kogo et al., 2021). Carr et al. (2022) state that a combination of
fertilizers and adopting cropping practices are needed to enhance crop production. By
combining the information on used adaptation measures with time series data of the

modeled yield estimates, effective adaptation strategies can be identified.
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