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1 Abbreviations 

ACP Acyl Carrier Protein  

AMP Adenosine Monophosphate 

ATP  Adenosine Triphosphate 

Bcl-2  B-Cell Lymphoma 2 

BAK Bcl-2 Homologous Antagonist/Killer Protein 

BAX Bcl-2-Associated X Protein 

BWA Burrows-Wheeler Aligner 

CSS  Cascading Styling Sheets 

ChIP-seq  Chromatin Immunoprecipitation Sequencing 

cDNA Complementary DNA 

Hsa21 Copy Number Variations To Chromosome 21 

CGIs CpG Islands  

dNTP Deoxynucleoside Triphosphate  

DHODH Dihydroorotate Dehydrogenase 

D-loop Displacement Loop  

DNA-seq DNA-Sequencing 

DOM  Document Object Model 

DS Down Syndrome  

DRP Dynamin-Related Protein  

ETC Electron Transport Chain  

ER Endoplasmic Reticulum  

Eci1 Enoyl-Coenzyme A Delta Isomerase 1 

ELISA Enzyme-Linked Immunosorbent Assays  

FAS Fatty Acid Synthesis  

FAD Flavin Adenine Dinucleotide 

GEO Gene Expression Omnibus  

GDC Genomic Data Commons 

GTP Guanosine Triphosphate 

HSP H-Strand Promoter  

HCC Hepatocellular Carcinoma 

HCT116 Human Colon Cancer Cell Line 

RPE1  Human Retinal Pigment Epithelial-1 
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HIF  Hypoxia-Inducible Factor 

IMM Inner Mitochondrial Membrane  

IGV Integrative Genomics Viewer 

IGV Integrative Genomics Viewer  

JSON Javascript Object Notation 

KIRP  Kidney Renal Papillary  

LSP L-Strand Promoter  

LHON Leber Hereditary Optic Neuropathy  

mtFAS Mitochondria Fatty Acid Synthesis  

MCU Mitochondrial Ca2+ Uniproter 

mtDNA Mitochondrial DNA 

MELAS Mitochondrial Encephalopathy  

MOMP  Mitochondrial Outer Membrane Permeabilization 

MRPS21 Mitochondrial Ribosomal Protein S21  

POLRMT  Mitochondrial RNA Polymerase  

Mfn Mitofusins  

MEF Mouse Embryonic Fibroblast 

NCI National Cancer Institute  

NCBI National Center For Biotechnology Information  

NHGRI National Human Genome Research Institute  

NGS Next-Generation Sequencing  

NAD Nicotinamide Adenine Dinucleotide 

NoSQL Non-Structured Query Language 

Opa1 Optic Atrophy-1  

Oat Ornithine Aminotransferase  

OMM Outer Mitochondrial Membrane 

OXPHOS Oxidative Phosphorylation  

PID Persistent Identifier 

PCA Principle Component Analysis 

PINK1 Pten-Induced Putative Kinase 1  

ROS Reactive Oxygen Species 

FADH/FADH2 Reduced Form of Flavin Adenine Dinucleotide 

NADH Reduced Form of Nicotinamide Adenine Dinucleotide 

RelA  Rel-Associated Protein 
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RT-PCR Reverse Transcription Polymerase Chain Reaction 

rRNA Ribosomal RNA 

RNA-seq RNA-Sequencing 

SVG  Scalable Vector Graphics 

SAGE Serial Analysis of Gene Expression 

STAR  Spliced Transcripts Alignment To A Reference 

SILAC Stable Isotope Labeling in Cell Culture  

SQL Structured Query Language 

SUCLG1  Succinate-Coa Ligase Subunit Alpha 

SUCLG2 Succinate-Coa Ligase Subunit Beta 

SOD-1 Superoxide Dismutase  

t-SNE T-Distributed Stochastic Neighbor Embedding  

THF Tetrahydrofolate  

TCGA The Cancer Genome Atlas 

TPM    Transcript Per Million 

TFAM Transcription Factor A  

tRNA Transfer RNA 

TIM Translocase of The Inner Mitochondrial Membrane 

TOM Translocase of The Outer Mitochondrial Membrane 

TCA Tricarboxylic Acid  

T21 Trisomy 21 

VDAC Voltage-Dependent Anion Channel 

Yap1 Yes-Associated Protein 1 
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3 Summary 

Mitochondria are subcellular organelles that play a crucial role in cellular bioenergetics and 

apoptosis, and thus are essential in maintaining normal cell function and regulating cell 

death pathways. In addition, they are also involved in the biosynthesis and balance of 

metabolite, cell signaling and anti-oxidant defense. Dysfunction of mitochondrial processes, 

potentially due to mutations of mitochondrial genes, could therefore lead to detrimental 

consequences such as severe neurodegenerative, cardiovascular and multisystemic 

metabolic disorders, and has also been implicated in many other diseases including cancer. 

 

Despite being associated with various diseases, platforms or tools that are specifically 

designed for the exploration of expression and mutation landscapes of mitochondrial genes 

did not exist. Therefore, this thesis aimed to develop a visual data mining tool exclusive for 

mitochondrial genes, that could help enhance our understanding of the role of mitochondria 

in disease pathology, by leveraging the availability of high volume of -omics data. 

 

In the first study, mitoXplorer, a web-based visual data mining platform with a set of dynamic, 

interactive and intuitive visualization tools was developed. We manually assembled and 

curated lists of genes with annotations that consist of ~1200 genes for four model species 

including human. These lists (mitochondrial interactomes) were integrated into the 

visualization tools to allow in-depth analysis of mitochondrial mutations and expression 

dynamics on public data sets hosted on mitoXplorer. The analysis of the transcriptome and 

proteome data of trisomy 21 (aneuploidy) cell lines inferred defects in mitochondria 

respiration, which was then verified experimentally, hence proving the predictive power of 

the platform, and its ability to provide testable hypotheses that could lead to the discovery 

of underlying molecular mechanisms of diseases. 

 

In the second study, we have integrated a visualization module and the human 

mitochondrial interactome as a workflow on CancerSysDB, a platform that allows user to 

perform integrated analyses across multiple data types of public cancer dataset from The 

Cancer Genome Atlas (TCGA) research network. The visual approach analysis of 

expression and clinical data of KIRP (kidney renal papillary cell carcinoma) patients 

revealed the association between the expression of two Tricarboxylic acid (TCA) cycle 

genes - Succinate-CoA ligase subunits, SUCLG1 and SUCLG2, and cancer stages. This 

proved the practicality such visual data mining tool when analyzing large -omics dataset, 

and also the importance of mitochondrial functions in cancer development and progression.  

To continue along this line, in the third study, we explored also the methylome and 

transcriptome data from both a mouse model and public cancer dataset of hepatocellular 
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carcinoma (HCC). We discovered another possible operating mechanism in this cancer 

type, where the hypermethylation in CpG islands (CGIs) leads to up-regulations of a set of 

genes, including the gene Jun, that belongs to the process Transcription in our human 

mitochondrial interactome. The enrichment of this gene set observed in the mouse model 

was also found in 56% of HCC patients from the TCGA dataset, which were characterized 

to belong to an aggressive HCC subclass, hence suggesting the clinical relevance of this 

gene set and its potential to be used as biomarkers for patient stratifications. 

 

Taken together, mitochondria have a multi-faceted role in cell function, as well as the 

pathology of various diseases. Analysis tools dedicated for the investigation of 

mitochondrial mutation and expression dynamics is thus necessary. The visual data mining 

approach adopted by mitoXplorer and CancerSysDB has been proven in this thesis to be 

a robust way for the exploration of data in the context of mitochondrial functions, that could 

help delineating molecular mechanisms in different disease conditions, through suggesting 

testable hypothesis for further experimental validation. 
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4 Introduction 

4.1 Mitochondria – more than a powerhouse 

Mitochondria are subcellular organelles that exist in many different forms, from round 

punctate to filaments generating complex networks, in cells. While they are best known for 

producing cellular energy in the form of ATP by a process called oxidative phosphorylation 

(OXPHOS) (van der Giezen & Tovar, 2005), they are also involved in many other cellular 

functions such as signaling, balance of metabolites, or anti-oxidant defense, just to name 

a few. Their many cellular roles make them one of the most important organelles with an 

immense impact on metabolism and homeostasis of most eukaryotic cells (Dyall et al., 

2004). 

 

4.1.1 Morphology of mitochondria 

Mitochondria have a double membrane system, that consists of the outer mitochondrial 

membrane (OMM) and the inner mitochondrial membrane (IMM), both composed of 

phospholipid bilayers and proteins (Alberts et al., 1994) and separated by the 

intermembrane space. The outer membrane is relatively permeable to small molecules due 

to the presence of porins, but it also regulates the movement of larger molecules and 

proteins. The translocase on the outer membrane (TOM) and the inner membrane (TIM) 

together form a complex that recognizes signal sequences and transport proteins across 

the mitochondrial membrane. The inner mitochondrial membrane is mostly impermeable 

and encloses an area referred to as mitochondrial matrix that contains essential enzymes 

for mitochondrial functions and multiple copies of the highly compacted mitochondrial DNA 

genome (mtDNA). The inner membrane also protrudes into the matrix to form multiple 

foldings called cristae, which accommodate the electron transport chain (ETC) complexes 

for oxidative phosphorylation and structurally varies from tissues to tissues (Duchen, 2004).  

 

The shapes of mitochondria also vary and they can form a complex interconnecting network 

of mitochondria called syncytium (Friedman & Nunnari, 2014). However, they can also exist 

as individual structure called puncta and rods (Anesti & Scorrano, 2006). The networks and 

copy number of mitochondria are constantly changing and are maintained by the balance 

between mitochondrial fusion and fission, biogenesis and mitophagy (Chan, 2012; Hoitzing 

et al., 2015). These processes are important in bioenergetic homeostasis and the 

maintenance of mitochondrial function. Mitochondrial fusion generates extended network 

and allows mixing of mitochondrial content and gene products, which counteracts the 

damages to mtDNA by reactive oxygen species (ROS). In case of insufficient functional 

mitochondria, the network could also be replenished from external sources (other cells or 
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intercellular space) through tunneling nanotubules (Rustom, 2004) or vesicles (Tkach & 

Théry, 2016). Together with biogenesis of mitochondria, these two processes tend to 

increase bioenergetics efficiency to meet high demands (Gomes et al., 2011; Y. J. Liu et al., 

2020). On the other hand, mitochondrial fission facilitates turnover by creating new 

daughter organelles, where the dysfunctional ones are removed by mitophagy. This 

provides a mechanism to segregate damaged mitochondria and helps to maintain a healthy 

mitochondrial population and hence the bioenergetic capacity (Twig et al., 2008; 

Westermann, 2012). 

 

 
 

4.1.2 Mitochondrial genome 

The mitochondrial genome (mtDNA) is the only source of extranuclear DNA in animals (Mita 

et al., 1990). In human, it is a circular, double-stranded DNA of 16,569 base-pair that 

encodes for 37 genes, 13 of which are core proteins of the mitochondrial respiratory 

complexes I-IV within the OXPHOS system, two ribosomal RNAs and 22 tRNAs (S. 

Anderson et al., 1981). Most of the genes are encoded on the heavy strand (H-strand), 

where as the light strand (L-strand) encodes for only 8 tRNA and a complex I subunit. The 

mtDNA is a very compact genome with no introns and very few non-coding bases between 

genes. The only major non-coding region is the displacement loop (D-loop), with a structure 

that two genomic strands are separated and displaced by a third strand of DNA. The D-

loop in mtDNA is around 1.1 kb and controls its transcription and replication (Shadel & 

Clayton, 1997). 

 
Figure 4.1 Basic structure of a mitochondrion.  

Mitochondria have an inner and outer membrane, with an intermembrane space between them. The 
inner membrane is arranged into cristae to increase surface area for the accommodation of enzymes 
such as ATP synthase for oxidative phosphorylation. The space enclosed by the inner membrane is 
known as the matrix, which consists of essential enzymes, as well as mitochondrial DNA,  ribosomes 
and calcium granules. Taken from https://commons.wikimedia.org/wiki/Mitochondrion, under the 
terms and conditions of the Creative Commons Universal (CC0) License. 

https://commons.wikimedia.org/wiki/Mitochondrion
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The mitochondrial genome exists in multiple copies within mitochondria. Highly compacted 

mtDNA-protein complexes called nucleoids anchor it to the inner mitochondrial membrane 

(Kukat & Larsson, 2013). One single cell can contain up to thousands of nucleoids, each 

with a copy of mtDNA. Apart from the copy number, the mode of transmission of mtDNA is 

also drastically different from nuclear DNA. mtDNA is inherited maternally in human, as the 

paternal mtDNA is disintegrated soon after fertilization (al Rawi et al., 2011; Sato & Sato, 

2011). As the segregation occurs rapidly from one generation to the next, a ‘bottleneck’ 

exists so that only a small amount of mtDNA is passed to the progeny and hence potentially 

eliminating defective mitochondria and mtDNA (Lieber et al., 2019; Pepling et al., 2007). 

The replication and segregation of mtDNA also occurs for only part of the nucleoids in a 

cell at a given time (Meeusen & Nunnari, 2003). Unlike the nuclear genome, the process is 

not strictly coupled to the cell cycle. 

 

The multi-copy nature of mtDNA in human also gives rise to its unique feature of 

heteroplasmy. Heteroplasmy is referred to the presence of two or more mitochondrial 

genotypes in a cell. In contrast, homoplasmy is a state where the copies of all mtDNA are 

identical. Heteroplasmy occurs in cells of most of the outbred populations. The ratio of wild-

type and mutated mitochondrial genomes usually varies in different cells and tissues. This 

 
Figure 4.2 The human mitochondrial genome.  

The mitochondrial genome human is a circular, double-stranded DNA and encodes for 37 genes, 
including 13 subunits of the mitochondrial respiratory complexes I-IV within the OXPHOS system (7 
subunits of complex I (in red), 1 subunit of complex III (in orange), 3 subnits of complex IV(in purple), 
2 subunits of complex V (in yellow)), 2 rRNAs (12S and 16S, in green), and 22 tRNAs. The outer 
circle represents the heavy strand and the inner one represents the the light strand. The diagram 
also shows the origins of replication of both the heavy (OH) and the light (OL) strands. Taken from 
(Schon et al., 2012), under the terms and conditions of the Creative Commons by Attribution (CC-
BY) License. 
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partly explains the high heterogeneity in phenotypes of mitochondrial diseases that are 

caused by mutation in mtDNA and complicates the analysis of mitochondrial genetics (N. 

Lane, 2011). 

 

4.1.3 The origin of mitochondria and the cross-talk with the nuclear 
genome 

The widely accepted theory of the origin of mitochondria is that, originally being a free living 

α-proteobacterium, they were engulfed and incorporated inside a precursor of modern 

eukaryotic cells two billion years ago (N. Lane & Martin, 2010). This theory is supported by 

evidence from phylogenetic analysis of ribosomal RNA (Gray, 1999; Sicheritz-Pontén et al., 

1998). This endosymbiotic relationship allowed the early eukaryotes to perform aerobic 

respiration, hence harvesting energy from organic matter in a more efficient manner by 

consuming oxygen, originally a toxic substance for the archaeal cells. The new ability was 

a driving force for the evolution into multicellular life. During the process of evolution, the 

majority of the genomic material of the protomitochondrion was transferred from the 

mitochondria to the nucleus of the host and subsequently lost due to redundancy 

(Gabaldón & Huynen, 2004). Studies suggested that only 22% of mitochondrial proteins in 

human are descendants from the protomitochondrial ancestor (Gabaldon, 2003). 

 

The nuclear DNA now encodes about 1200 proteins that contribute to the mitochondrial 

proteome. These proteins are required for mitochondrial functions, maintenance and 

mtDNA replication, thus for processes such as the Tricarboxylic acid (TCA) cycle, amino 

acid-, nucleic acid- and lipid biosynthesis, mitochondrial transcription, mtDNA replication or 

translation. These proteins are translated in the cytosol, and subsequently sorted and 

imported into mitochondria through the TIM/TOM complex to their target locations such as 

the outer membrane, inner membrane, intermembrane space or the mitochondrial matrix 

(Hensen et al., 2014; Mokranjac & Neupert, 2005). 

 

The proper function of mitochondria, and hence the survival of the cell, are heavily 

dependent on the communication between mitochondria and the nuclear genome. For 

example, mitochondria constantly update the cell concerning its bioenergetic status by 

sending mitochondrial stress signals whenever bioenergetic demands cannot be met due 

to OXPHOS dysfunction or defective mitochondria (Cagin & Enriquez, 2015). This is 

referred to as retrograde signaling and include signals such as ATP/AMP, NADH/NAD+, 

cytosolic Ca2+, or reduction in the mitochondrial membrane potential (A. W. E. Jones et al., 

2012) . The nucleus responds to the signals by regulating the expression of genes that 

promote mtDNA repair, mitochondrial transcription and biogenesis to meet the energy 
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requirements of the cell. The cell might also respond by switching to a glycolytic metabolism 

to adapt to decreased energy production from mitochondria (Freije et al., 2012). 

 

4.1.4 Mitochondrial functions 

Mitochondria are often referred to as the powerhouses of the cell because of their ability to 

generate cellular energy in the form of ATP, a form that is usable by cells. In fact, they are 

also involved in many other processes that are crucial for the functioning and survival of 

cells. This is accomplished by the expression of around 1200 genes in both the 

mitochondrial and nuclear genomes that encode the mitochondrial proteome. Previous 

work attempted to compile a list of mitochondria-associated genes/proteins in different 

animals with approaches such as mass spectrometry (Gaucher et al., 2004; Taylor et al., 

2003) and computation or machine learning (C. Guda et al., 2004), grouping them 

according to their functions (Calvo et al., 2016). Mitochondrial functions cover 6 main areas: 

Bioenergetic Pathways, ROS Defense, Apoptosis, Cell Signaling, Biosynthetic 

Pathways/Homeostasis and Maintenance of Mitochondria. This section aims to discuss 

these functions according to available literature. The list of associated genes in human are 

documented at Appendix I. 

 

4.1.4.1 Bioenergetic pathways 
Glycolysis and Fructose Metabolism 

Glucose is a major source of energy for cells. It is broken down to pyruvate by the process 

of glycolysis, which is then further broken down to release energy in the form of ATP through 

the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in mitochondria. 

Glycolysis also produces a net of 2 ATP per molecule of glucose during its breakdown. 

Although the efficiency is much lower than oxidative phosphorylation (36 ATP per glucose 

molecule), the speed is much faster (Lunt & vander Heiden, 2011). 

 

Glycolysis occurs solely in the cytoplasm, yet it is part of the bioenergetic pathway and is 

closely linked to the TCA cycle. It is also affected in case of mitochondrial dysfunction. 

Therefore, genes related to glycolysis are considered to be associated to mitochondrial 

functions as well. Fructose has also been a part of human diet and often occurs with 

glucose in fruits in high concentration (Sun & Empie, 2012). Though the two sugars have 

different metabolic pathways (Mayes, 1993), fructose can also be utilized in oxidative 

phosphorylation after being converted and broken down into pyruvate. 
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Pyruvate Metabolism 

Pyruvate, being the product of Glycolysis, is taken up by mitochondria to be broken down 

through the TCA cycle. Pyruvate is transported across the mitochondrial membranes by 

transmembrane carrier proteins (Bricker et al., 2012). It is then converted to acetyl-CoA by 

pyruvate dehydrogenase complexes, an irreversible process of oxidative decarboxylation, 

before entering the TCA cycle. These complexes and their inhibitors therefore regulate 

metabolite flux through the TCA cycle and hence the homeostasis of glucose metabolism. 

 

Tricarboxylic Acid Cycle (TCA cycle) 

Tricarboxylic Acid (TCA) Cycle, also known as Krebs cycle or citric acid cycle, happens 

within the mitochondrial matrix. It releases energy from acetyl-CoA through a series of 

redox reactions. The process oxidizes acetyl-CoA into CO2 and gives rise to GTP 

(guanosine triphosphate). It also, by the transfer of high energy electrons, converts NAD+ 

and FAD into NADH and FADH respectively, which are then fed to the ETC to generate 

ATP through OXPHOS. 

 

Oxidative Phosphorylation (OXPHOS) 

The electron transport chain (ETC) is located at the inner mitochondrial membrane and 

comprises of a series of complexes encoded by both the mitochondrial and nuclear genome. 

It is the mitochondrial enzyme cascade responsible for oxidative phosphorylation 

(OXPHOS) for energy production. Through the transfer of electrons from one complex to 

the next (complex I-IV, cytochrome C and ubiquinones), protons (H+ ions) are pumped out 

of the matrix to the intermembrane space, creating an electrochemical gradient across the 

inner membrane. Energy from this gradient is then harvested to convert ADP to ATP by ATP 

synthase (complex V), where energy is stored chemically at the phosphate bond. This 

process is termed oxidative phosphorylation (OXPHOS) and provides 90% of ATP in a cell 

(Davis & Williams, 2012). 

 

The electron donors are NADH and FADH2 produced from the TCA cycle and other 

metabolic processes. They are oxidized by respective dehydrogenases and their electrons 

are passed through the ETC to oxygen and reduced to water. The ETC regulates itself by 

responding to negative feedbacks of ATP (Dagda et al., 2009). This helps maintaining the 

homeostasis of the bioenergetic status of the cell. 
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Fatty Acid Degradation and Beta-oxidation 

Fatty acid is another source of energy apart from glucose and has an important role in 

energy homeostasis. When glucose and other sources are not adequate to sustain the 

energy requirement of the body, fatty acids are released from adipose tissue. Beta-

oxidation is the major pathway for the degradation of fatty acids and takes place within the 

mitochondrial matrix. Fatty acids are activated by attaching to an acyl-CoA and carried into 

mitochondria where they are broken down through oxidation. Each beta-oxidation cycle 

release two carbon units from the fatty acid chain and gives rise to acetyl-CoA that enters 

the TCA cycle. The process at the same time reduces NAD+ and FAD into NADH and FADH 

respectively, which can be fed to the ETC for OXPHOS. 

 

4.1.4.2 ROS Defense 
Reactive oxygen species (ROS) are byproducts of OXPHOS, due to the leakage of 

electrons at complex I and III at the ETC. These electrons leads to partial reduction of 

oxygen to form free-radical superoxide. Though ROS could act as signaling molecules, 

they cause oxidative damage to the mitochondrial genome at high concentration due to the 

 
Figure 4.3 Bioenergetic pathways in mitochondria.  

Mitochondria generate cellular energy in the form of ATP via a couple of stages. It starts with 
glycolysis (Stage I), where glucose is broken down into pyruvate. This pyruvate is then taken up by 
mitochondria and converted to acetyl-CoA before being further broken down through the TCA cycle 
(Stage II). The NADH and FADH2 produced from the TCA cycle serve as electron donors and the 
ETC where an electrochemical gradient is built up across the inner membrane (Stage III). Finally 
energy from this gradient is harvested to convert ADP to the final product. Taken from (Lodish et al., 
2008), under the terms and conditions of the Creative Commons by Attribution (CC-BY) License. 



 14 

proximity of mtDNA to the ETC. This makes mtDNA susceptible to mutations and might 

contribute to disease and aging (Kujoth et al., 2005; Wallace, 2005). Lipids and proteins 

could also suffer from damages induced by ROS (Y. Chen et al., 2016; Holzerová & 

Prokisch, 2015). Mitochondria therefore have an antioxidant defense system to eliminate 

ROS. For example, superoxide dismutase decomposes superoxides into hydrogen 

peroxide, which can be further degraded into water and oxygen by peroxiredoxins. 

 

4.1.4.3 Apoptosis 
Apoptosis is a type of programmed cell death, which triggers morphological and 

biochemical changes in a cell, such as cell shrinkage, DNA cleavage, chromatin 

condensation, and cell fragmentation. It is part of the defense mechanism of multicellular 

organism to remove damaged or dangerous cells, and to regulate cell number. There are 

two main mechanisms of apoptosis: The intrinsic and the extrinsic pathway. Mitochondria 

are the central executioners of the intrinsic pathway (Kaufmann & Earnshaw, 2000). 

 

In response to cytotoxic agents like radiation, nitrogen monoxide, mercury or oxidative 

stress due to high levels of ROS (Soga et al., 2012), apoptosis is induced in mitochondria 

and pores are formed in mitochondrial membranes. This results in the disruption of 

mitochondrial transmembrane potential and hence the release of pro-apoptotic proteins. 

One of the most important factors is cytochrome C (Verhagen et al., 2000), which activates 

the caspase pathway and eventually leads to programmed cell death. 

 

The process is tightly regulated as it is unstoppable once it has begun (Böhm & Schild, 

2003). For example, the Bcl-2 family proteins can decide the fate of the cell by controlling 

the formation of pores (Cory & Adams, 2002). The improper activation of apoptosis causes 

atrophy and diseases such as ischemic strokes and neurodegenerative diseases; whereas 

the lack of apoptosis can contribute to autoimmune diseases and is linked to oncogenesis 

(Fuchs & Steller, 2011). 

 

4.1.4.4 Cell Signaling 
Mitochondrial and Calcium Signaling 

Mitochondria are heavily involved in cell signaling circuitry. They do not only respond to 

stimuli but also act as physical platforms for protein-protein signaling to take place, and 

regulate the level of signaling molecules such as calcium ions (Ca2+) and ROS. 

Mitochondria therefore serve as the effector, transducer and initiator in multiple signaling 

pathways and have been implicated in processes including hypoxic stress response, 

differentiation, growth factor signaling, immune response and apoptosis as mentioned 
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above (Antico Arciuch et al., 2012; Chandel, 2010; Finkel, 2011; Gunter et al., 2004; Kawai 

et al., 2005). 

 

Calcium ions (Ca2+) are among the most important intracellular signaling molecules. They 

can stimulate ATP production by regulating the activity of components of the TCA cycle, 

trigger cell death by necrosis or apoptosis, and have an important role in the control of 

autophagy (Brini et al., 1999; Cárdenas et al., 2010; Szalai et al., 1999; Visch et al., 2004). 

For instance, as a response to increased bioenergetic demands, Ca2+ could bind to and 

activate dehydrogenases that increase the availability of NADH and hence the supply of 

electrons to the ETC. Thus, the level of Ca2+ in cells has to be carefully regulated and its 

homeostasis is maintained by mitochondria. 

 

Mitochondria serve as buffers for Ca2+ by, for example, regulating their calcium channels to 

take in the Ca2+ released from the endoplasmic reticulum (ER), the reservoir of Ca2+; or 

releasing Ca2+ from the mitochondrial matrix (Jouaville et al., 1995; Mitchell & Moyle, 1967). 

The uptake of mitochondrial Ca2+ is through the voltage-dependent anion channels (VDACs) 

on the outer membrane and the mitochondrial Ca2+ uniproter (MCU) located at the 

impermeable inner membrane. The VDACs are able to establish a close interaction with 

the ER to ensure rapid transfer of Ca2+. The MCU then transports Ca2+ into the matrix 

across the electrochemical gradient. 

 

4.1.4.5 Biosynthetic pathways/Homeostasis 
Fatty Acid Metabolism, Biosynthesis and Elongation / Lipoic Acid Metabolism 
Fatty acids can be synthesized from substrates of the TCA cycle in a reversed manner of 

beta-oxidation. This is to maintain the homeostasis of fatty acids in cells and store the extra 

energy. Fatty acid synthesis (FAS) occurs mostly in the cytosol but also in mitochondria 

(mtFAS) through acyl carrier protein (ACP) and a number of reductases or transferases. 

During each cycle of elongation, the fatty acyl chain attached on ACP is extended by two 

carbons through a condensation reaction, followed by a few reduction and dehydration 

reactions that reduce the acyl chain to a saturated fatty acid (Brody et al., 1997; Mikolajczyk 

& Brody, 1990). The product of mtFAS is octanoate, an eight-carbon saturated fatty acid 

that could be convert to lipoic acid. Lipoic acid is an important cofactor required for catalysis 

of a number of mitochondrial 2-ketoacid dehydrogenase complexes. It is also responsible 

for the regulation and stabilization of these multienzyme complexes and therefore is critical 

for normal mitochondrial activity (Nowinski et al., 2020; Wada et al., 1997). 
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Metabolism of Lipids and Lipoproteins / Cardiolipin Biosynthesis / Bile Acid 
Synthesis 

Lipids are basic blocks of cellular and mitochondrial membranes. The control of lipid 

synthesis is therefore crucial for the integrity and function of both the cell and mitochondria, 

the latter of which are constantly reshaping by fission and fusion processes. Mitochondria 

are able to synthesize some of the lipids, such as phosphatidylglycerol, cardiolipin, and 

control their distribution (Daum & Vance, 1997; Mannella et al., 1998). Cardiolipin is an 

essential component of mitochondrial membranes and is involved in processes such as 

respiration and energy conversion. It also serves a signaling platform as it could recruit and 

interact with molecules engaged in process such as mitophagy (W. Huang et al., 2012) and 

apoptosis (Lovell et al., 2008; Sorice et al., 2004). Mitochondria are also involved in the 

metabolism of other important lipids, lipoproteins and their derivatives include cholesterol 

and bile acids. For example, cholesterol is converted to steroid precursors after being 

imported into mitochondria, to allow further processing at the endoplasmic reticulum (ER) 

(Soccio & Breslow, 2004). Bile acid is normally produced at the liver, but could also be 

synthesize by the “acidic” pathway inside mitochondria (Pandak et al., 2002). 

 

Fe-S cluster biosynthesis / Heme Biosynthesis 

Iron-sulfur (Fe-S) clusters and heme are both iron-containing cofactors that have crucial 

roles in the maintenance of mitochondria. They are components of the complexes in the 

ETC (Steffens et al., 1987; Tyler, 1992) and catalyze electron transfer during the formation 

of ATP (Beinert et al., 1997). These prosthetic groups also have diverse roles in signaling, 

metabolism and the defense system against oxidative damages (Beinert & Kiley, 1999; 

Porello et al., 1998; Ryter & Tyrrell, 2000), and are synthesized and utilized in mitochondria. 

 

Protein Stability and Degradation / Amino Acid Metabolism 

Mitochondrial proteins are under the exposure of oxidative stress due to the production of 

ROS during oxidative phosphorylation. Failure to control protein quality or remove 

misfolded protein could lead to mitochondrial dysfunction. Thus mitochondria have a 

system, consisting of proteases, that recognizes and degrades unwanted proteins (Livnat-

Levanon & Glickman, 2011; Martinelli & Rugarli, 2010). Mitochondria are also a platform 

for metabolism of amino acids, the building blocks of proteins. The TCA cycle provides as 

well as consumes amino acids; and the metabolic pathways of 17 out of 20 amino acids 

utilize mitochondrial enzymes (P. Guda et al., 2007). 
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Nucleotide Metabolism 

The balance of cellular nucleotide pool is important for genome replication and repair. 

Mitochondrial deoxynucleoside triphosphate (dNTP) pools are separated from the cytosolic 

pool because of its membrane system (L. Wang, 2016). The dNTPs are either imported 

from the cytosol or synthesized with substrates from metabolic processes within 

mitochondria (A. N. Lane & Fan, 2015). One of the biosynthetic steps for pyrimidine occurs 

in mitochondria, where dihydroorotate is converted into orotate via orotate dehydrogenase 

reaction, catalyzed by the mitochondrial protein dihydroorotate dehydrogenase (DHODH) 

(Evans & Guy, 2004). Whereas for purine, the entire synthesis process is cytoplasmic. 

However, studies showed that the glycine precursor for purine synthesis could also be 

synthesized inside mitochondria with its glycine cleavage system (Lewis et al., 2014). 

 

Nitrogen Metabolism / Urea Cycle 

Nitrogen is assimilated into the body in proteins of the human diet. The excess amino acids 

in the body are deaminated to form ammonia or ammonium ions (NH4+). Since these ions 

are toxic, they are converted to urea in the urea cycle and then secreted. Part of the process 

takes place in mitochondria where three of the urea cycle enzymes are located (Adeva et 

al., 2012). Together these enzymes convert ammonia and ornithine to citrulline, which is 

then transported to the cytoplasm to complete the urea cycle. Transporters for the 

substrates (ornithine and citrulline) that reside at the mitochondrial membrane are also 

required for the normal function of the urea cycle (Brusilow & Horwich, 2001). 

 

Metabolism of Vitamins and Co-Factors / Folate and Pterine Metabolism 
Vitamins are organic molecules that are essential for various biochemical functions within 

the human body, ranging from growth and development (Vitamin A), regulation of cell 

metabolism (B vitamins) to maintaining the immune system (Vitamin C). Mitochondria have 

a role in the metabolism of some of these vitamins as they are also crucial for mitochondrial 

functions. For example, retinoids (a class of vitamin A) is a substrate to a dehydrogenase 

located at inner mitochondrial membrane and might have a protective effect against 

oxidative stress in mitochondria (Belyaeva et al., 2008). The metabolism of folate (Pterine 

derivates, Vitamin B9) also occurs in mitochondria, where its reduced form tetrahydrofolate 

(THF) serves as single carbon unit, which is important for the maintenance of redox and 

regulation of methylation status (Desai et al., 2016). Co-factors, like vitamins, are crucial 

for both cell and mitochondrial functions as they are involved in diverse biochemical 

reactions. One of them is nicotinamide adenine dinucleotide (NAD), which is involved in the 

redox reactions at the ETC. Therefore its metabolism is carefully regulated in mitochondria 

to maintain the balance of the ratio of NAD vs NADH (the reduced form of NAD) (Tzameli, 

2012). 
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4.1.4.6 Mitochondrial maintenance 
Mitochondrial Dynamics 

The mitochondrial network is constantly reshaping through cycles of fusion and fission 

events in order to meet bioenergetic demands and control the quality of mitochondria. 

Fusion of mitochondria leads to long, networked filaments that is the predominant 

mitochondrial form in some cells; faulty or mutated mtDNA copies can on the other hand 

be isolated by fission and subsequently eliminated through mitophagy (Carelli et al., 2015). 

Mitophagy is initiated by mitochondrial dysfunction due to, for example, hypoxia through 

the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway. Fusion is achieved by 

several GTPases: the mitofusins (Mfn) and optic atrophy-1 (Opa1) that fuse the outer and 

inner membrane, respectively. Fission results from the recruitment of dynamin-related 

protein 1 (Drp1), that constricts both the outer and inner membrane, and is regulated by 

kinases responding to stress conditions and distinct cell cycle phases (Busch et al., 2014; 

Mishra & Chan, 2016). 

 

Replication and Transcription 

The mtDNA is a closed-circular genome with two strands of DNA, the heavy strand (H-

strand) and the light strand (L-strand). A proportion of the mtDNA contains a three-stranded 

structure called the displacement loop (D-loop), where a third DNA strand displaces the H-

strand. Due to its unique structure, the replication mechanism is distinct from that of its 

nuclear counterpart. A widely accepted model is that the replication starts with the leading 

H-strand and advances around two-thirds of the mtDNA before the replication fork reaches 

the replication origin of the lagging L-strand and initiates its synthesis (Clayton, 1982). 

Transcription of mtDNA is initiated at two sites located at the D-loop. The site encompassed 

by the H-strand promoter (HSP) directs the transcription of H-strand, and the other one 

encompassed by the L-strand promoter (LSP) directs the transcription of the L-strand.  The 

regulation of both replication and transcription of the mitochondrial genome is complex and 

key enzymes involved in these processes are unique to mitochondria (Taanman, 1999). 

During transcription initialization, mitochondrial transcription factor A (TFAM) recognizes 

these binding sites and induces sharp U-turn bends in mtDNA (Kukat & Larsson, 2013). 

Such conformational changes facilitate the access and binding of mitochondrial RNA 

polymerase (POLRMT) to mtDNA and allow it to orchestrate the process (Fisher & Clayton, 

1988). On the other hand, TFAM is an important factor for packaging mtRNA into compact 

nucleoid, also via the induction of U-turn bends (Alam et al., 2003), which make it less 

permissive for replication and transcription. Therefore, TFAM may also operate as an 
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epigenetic regulator over transcription and replication by controlling the number of mtDNA 

molecules available for the process (Farge & Falkenberg, 2019; Gilkerson et al., 2013). 

 

 
 

Translation 

The translation machinery of the mitochondrial genome is also different from the nuclear 

genome. Mitochondria contain their own ribosomes (mitoribosomes) with different physical 

and chemical properties. rRNAs within mitoribosome are encoded by the mtDNA (Attardi & 

Ojala, 1971; Brega & Vesco, 1971). The mitochondrial mRNAs, unlike the cytosolic ones, 

have no upstream leader sequences that help with ribosome binding, making the 

translation process distinct from that of the nuclear genome (Cantatore et al., 1987). 

Structural studies have contributed significantly to our understanding of the structure and 

function of the mitoribosomes and how they recruit mitochondrial mRNAs (Sharma et al., 

2003). 

 

Import and Sorting / Mitochondrial Carrier 

Mitochondria import 99% of their proteins from the cytoplasm to maintain their functions. 

These proteins must be correctly identified by mitochondria to be imported and delivered 

to target locations. Mito-proteins imported into the cellular matrix usually have an extension 

at the N-terminus that serves as a targeting signal, which can be recognized by the 

receptors of TOM (translocase of the outer membrane) complexes (Kutik et al., 2008). Once 

inside the intermembrane space, proteins are directed to their destinations through sorting 

 
Figure 4.4 Organization of mitochondria.  

Mitochondrial networks are highly dynamic and are constantly changing by the combined actions of 
mitochondrial division and fusion. During division, Dynamin-related protein (DRP) is recruited on the 
outside of the organelle to form a helical structure, which then constricts the membranes and 
mediates a scission. Mitochondrial fusion is achieved through interactions of several GTPases 
(mitofusins and optic atrophy-1) that fuse the outer and inner. Taken from (Friedman & Nunnari, 
2014), under the terms and conditions of the Creative Commons by Attribution (CC-BY) License. 
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pathways. The TIM (translocase of the inner membrane) complexes, for example, transfer 

proteins into the matrix (Chacinska et al., 2009). Other complexes recognize different 

mitochondrial targeting signals and direct proteins to either the intermembrane space or 

the outer membrane (Hoppins & Nargang, 2004; Paschen et al., 2003). 

 

4.1.5 Mitochondrial diseases 

Mitochondria have diverse roles in cell metabolism and homeostasis. Dysfunction of 

mitochondria thus has a huge impact on the function and survival of cells, and can lead to 

a number of pathological disorders. Mitochondrial diseases can be caused by mutations in 

mtDNA or nuclear DNA that encodes for the mitochondrial proteome, or other factors that 

disrupt mitochondrial functions. They are complex and cover almost every field of medicine 

(Ylikallio & Suomalainen, 2012), such as neurodegenerative diseases, metabolic disorders, 

obesity and cancer. 

 

4.1.5.1 Mitochondrial diseases associated with point mutations in mtDNA 
MtDNA encodes for 13 polypeptides that are components of the OXPHOS system, as well 

as 22 tRNAs and two rRNAs that are essential in the synthesis of these proteins. Mutations 

in these genes might disturb the energy harvesting process, leading to the failure of 

mitochondria to meet cellular energy demand. Thus far, over 300 pathogenic mtDNA 

mutations have been identified (Kogelnik et al., 1998). Disorders include: Leber hereditary 

optic neuropathy (LHON) (mutation in Complex I gene) (Johns et al., 1992), Leigh 

syndrome (Complex V) (Shoffner et al., 1992) and Mitochondrial encephalopathy (MELAS) 

(tRNAs) (Goto et al., 1990). 

 

As multiple copies of mtDNA exist in a single cell, heteroplasmy is often observed and the 

ratio of mutated/wild-type mtDNA varies among cell types and tissues. This complicates 

the interpretation of mitochondrial diseases and the underlying genetics (N. Lane, 

2011).Phenotypic variability also arises from this condition. The wild-type mtDNA can often 

complement the mutated ones as mutations are usually recessive. It appears that the 

mutated/wild-type ratio has to reach a certain threshold of around 50 - 60%, depending on 

the mutations and tissue type, before the phenotypes of a disease can be observed 

(Hayashi et al., 1991; Mita et al., 1990; Moraes et al., 1992; Shoubridge, 1994). 

 

4.1.5.2 Aneuploidy 
Aneuploidy is the status where there is an abnormal number of chromosomes in a cell, 

which is fatal for human embryos in most of the cases. Trisomy 21 (three copies of 

chromosome 21), which results in Down syndrome (DS), is the most common type of 
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aneuploidy that infants can survive with; however, they suffer from many pathological 

conditions, including neurological deficiencies and immune disorders. Some studies 

suggest that the symptoms of DS are associated with oxidative stress (Anneren & Epstein, 

1987; Brás et al., 1989; Brooksbank & Balazs, 1984; Busciglio & Yankner, 1995; Jovanovic 

et al., 1998). It was found that ROS levels in the neurons of DS patients increased 3- to 4-

fold (Busciglio & Yankner, 1995), leading to elevated lipid peroxidation and possibly 

neuronal death. 

 

One of the mainstream views is that the observed pathologies result from the increased 

dosage effect due to the presence of an extra chromosome 21 (Hsa21), which increases 

transcript and protein levels of the coding genes on Hsa21, and at the same time alters the 

expression of non-Hsa21 genes through actions of transcription factors or chromatin 

modifiers (Antonarakis, 2017). It has been suggested that the overexpression of 

mitochondrial genes located at chromosome 21, such as superoxide dismutase (SOD-1) is 

related to the oxidative stress in DS (Sinet, 1982), though the results from different studies 

remain controversial (Anneren & Epstein, 1987; de La Torre et al., 1996; Shapiro, 1999). It 

has also been reported that mitochondrial dysfunction is observed in DS patients, with a 

lack of certain mitochondrial enzymes (Prince et al., 1994); furthermore, morphological 

abnormalities of mitochondria have been identified in a mouse model of DS, together with 

an impaired energy metabolism (Bersu et al., 1998).   

 

4.1.5.3 Cancer 
The alteration of mitochondrial functions in cancer was first observed by Warburg 90 years 

ago (Warburg et al., 1927), namely that tumors fermented glucose to produce excess 

lactate even in the presence of oxygen (aerobic glycolysis). This phenomenon was termed 

Warburg effect in the 1970s (Racker, 1972) and was also observed in proliferating and 

developing cells, where the rate of glucose uptake and lactate production increase 

significantly. Aerobic glycolysis is a relatively inefficient, but a much faster way to generate 

ATP, compared to mitochondrial respiration (Heiden et al., 2009). This might give cells a 

selective advantage in an environment with limited resources (Pfeiffer et al., 2001), such 

as in tumor microenvironments where there are limited glucose and nutrients. The 

production and secretion of lactate also decreases the pH in the microenvironment and 

could enhance invasiveness of tumor cells (Estrella et al., 2013). It has also been proposed 

that Warburg effect is an adaptation mechanism to sustain biosynthesis under uncontrolled 

proliferation. The excess carbon from aerobic glycolysis can be diverted for the generation 

of molecules such as lipids and nucleotides (Levine & Puzio-Kuter, 2010). On the other 

hand, the altered metabolism can possibly activate stress response pathways that promote 

tumorigenesis. Changes in mitochondrial redox potential alter the generation of reactive 
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oxygen species (ROS) (Locasale & Cantley, 2011), which is involved in signaling processes 

related to cell proliferation. 

 

 
 

The change in mitochondrial metabolism in cancer seems to be caused by certain mtDNA 

and nuclear DNA mutations, especially those in key enzymes involved in the TCA cycle. 

This is observed in paragangliomas, pheochromocytomas, myomas, and gliomas (Baysal 

et al., 2000; Tomlinson et al., 2002; Yan et al., 2009). The activities of transcription factors, 

such as HIF1α , FOS or JUN  (Abate et al., 1990; Kurelac et al., 2011), can also be changed 

due to increased ROS production from altered mitochondrial metabolism, as well as 

mutations of mitochondrial enzymes such as succinate or fumarate dehydrogenases, as 

their dysfunction results in the accumulation of succinate and fumarate, which helps the 

activation of HIF (King et al., 2006). This change in activities alters gene expression and 

promotes cell proliferation. Despite the increased ROS levels, apoptosis can be limited in 

 
Figure 4.5 Cancer cell metabolism  

(a) In normal cells, the pyruvate results from the glycolysis pathway goes into the mitochondrial TCA 
cycle, which produces reduced equivalents that could be fed into the ETC for the generation of ATP. 
(b) Upon apoptotic stimuli, BAK/ BAX and mitochondrial outer membrane permeabilization (MOMP) 
are activated, followed by the release of cytochrome c and the formation of the apoptosome, which 
results in apoptotic cell death. (c) Cancer cells exhibit an altered metabolism, where the glucose 
consumption rate is much higher so that the excess carbon could be diverted for biosynthesis to 
support the growth of the cells. ATP is generated mostly through the fermentation of pyruvate instead 
of the TCA cycle. (d) Changes in gene expression in cancer cells (e.g. overexpression of anti-
apoptotic proteins or inactivation of pro-apoptotic proteins), could possibly counteract the action of 
BAX/BAK and avoid MOMP formation, hence resisting apoptosis and increasing the survival of the 
tumor. Taken from (Ribas et al., 2016), under the terms and conditions of the Creative Commons by 
Attribution (CC-BY) License. 
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cancer cells by resisting mitochondrial outer membrane permeabilization (MOMP) through 

impairing BAK/BAX oligomerization, thus increasing the survival of cancer cells (Green & 

Kroemer, 2004; Martinez-Caballero et al., 2009). 

 

4.2 Understanding human biological systems with new 
technologies 

The recent technological advancement in biology, especially in the field of molecular 

biology and genetics, allows us to have a much deeper understanding in biological systems. 

Next-generation sequencing (NGS), for example, is able to sequence genomes or 

transcriptomes in unprecedented speed with much lower costs, thus has completely 

revolutionized research in genomics and transcriptomics. This brings about new insights 

into the functions and regulation of cellular system, and the etiology or pathology of human 

diseases, including mitochondrial diseases. In this section, the technologies in different 

fields that are applied to studying and investigating biological systems will be discussed. 

 

4.2.1 Genomics and Transcriptomics 

Information of cells is stored in DNA molecules, that give cells instructions to carry out their 

activities. In eukaryotes, this includes both nuclear DNA and mitochondrial DNA (mtDNA), 

and the complete set of these DNA molecules forms the genome. The coding regions of 

DNA, or genes, are transcribed to RNA molecules, which are translated to protein. The sum 

of all RNA transcripts at a given time is referred to as the transcriptome. Studying the 

genome and transcriptome is therefore essential to understanding cell functions. 

 

The sequencing of the entire human genome for the first time using the Sanger chain 

termination sequencing method, initiated by the Human Genome Project, was finished in 

2003, took 13 years and costed 2.7 billion USD. Today with the advent of NGS methods, 

the sequencing of the genome (DNA-seq) has broken the 1000 USD barrier and takes less 

than a day. NGS platforms of different sequencing approaches, possible sequence length, 

error rate, and speed are available nowadays (reviewed in (Mardis, 2013) and (Goodwin et 

al., 2016)), with the Illumina system being one of the most popular sequencers. The Illumina 

system adopts a short-read sequencing approach, in which the DNAs or cDNAs are 

fragmented and ligated to universal adapters for amplification, and then sequenced by 

synthesis (Mardis, 2013). NGS sequencing can also be applied to quantifying 

transcriptomes (RNA-seq), in which RNAs are reverse-transcribed to cDNAs before being 

sequenced. Measuring transcriptome was mostly achieved by microarray previously. 

Though still used today, the detection of RNA with microarray has limited dynamic range 
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and is restricted by the availability of known RNA molecules that could be hybridized on 

arrays. 

 

The sequencing of genome and transcriptome is followed by bioinformatics analysis. 

Quality control is usually the first step, that serves to identify and remove low quality data 

(reads), before the reads are aligned (or mapped) to a reference genome. A number of 

mappers with different algorithms, speed, features, and accuracy under different conditions 

(such as number of mismatches) are available (reviewed in (Fonseca et al., 2012; Hatem 

et al., 2013)) and users should choose according to their needs. One of the most widely 

used aligners for (short read) DNA-seq is BWA-aligner, which has a better performance 

overall compared to others even with longer reads (Hatem et al., 2013). Mutations and 

structural variants can further be revealed by variant callers. Again, numerous callers 

serving different functions with different sensitivity levels exist (reviewed in (Roberts et al., 

2013; Q. Wang et al., 2013)). 

 

Mappers for RNA-seq data usually use a different algorithm from the ones for DNA-seq, as 

they have to account for splicing events. Among various mappers, STAR (Spliced 

Transcripts Alignment to a Reference) is a very popular tool because of its relatively high 

accuracy and speed (Dobin et al., 2013). In addition to the identification of somatic 

mutations like DNA-seq data, RNA-seq data can also be used to quantify gene expression, 

as the number of reads that align to a transcript is proportional to its abundance in cells. 

After normalization to the length of genes and then the total number of mapped reads, the 

numbers of reads for each transcript of gene are converted to TPM (Transcript per million). 

Since the sums of all TPMs in each sample from the same experiment are theoretically the 

same, this allows the direct comparison of the proportion of reads mapped to a gene in 

different samples. Statistical tests and tools have also developed to account for variability 

between biological replicates. For example, DESeq2 (Love et al., 2014) pools information 

regarding variance across different genes, in order to detect true differentially expressed 

genes (i.e. the difference in read counts is not due to random variation), even under the 

condition where there are limited samples. 

 

4.2.1.1 Mitochondrial genome and transcriptome 
The complete mitochondrial genome was first sequenced and annotated as early as 1981 

(S. Anderson et al., 1981). A slightly different approach has to be adopted for the study of 

mitochondrial genome and transcriptome due to the status of heteroplasmy and high copy 

numbers of mtDNA in cells. For example, variant calling has to be done in a conservative 

setting (i.e. high threshold for believing in calls), and separately for the plus and minus 

strand. The transcriptome also has to be analyzed separately from the nuclear 
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transcriptome with adjusted parameters, as they are sometimes discarded for having too 

many mapped reads. 

 

4.2.2 Proteomics 

Protein molecules, depending on their amino acid sequence, have diverse biochemical 

properties as well as secondary, tertiary and quaternary structures. They perform myriads 

of functions in our cells, acting as enzymes, structural and signaling molecules. Proteins 

are translated from mRNA. The study of protein, or proteomics, is usually the next step 

after genomics and transcriptomics to provide additional insights into the biological systems. 

The study of the proteome can be complicated because the proteome, unlike the genome, 

varies from cell to cell or even at different time points. Post-translational modifications such 

as phophorylation, ubiquitination and methylation add another level of complexity to the 

analysis of the entirety of proteins in a cell. 

 

Major methods to study proteins are immunoassays and mass spectrometry. Western blot 

and enzyme-linked immunosorbent assays (ELISA) detect and quantify certain proteins 

(antigens) with specific antibodies. Mass spectrometry based methods, on the other hand, 

are used in protein profiling as they quantify almost all known proteins in cells in parallel 

with high resolution (Glish & Vachet, 2003). This “bottom-up” approach is widely used for 

both protein identification and quantification, in which proteins from a sample are digested 

into smaller peptides with enzymes and analyzed in a mass spectrometer. The mass-to-

charge ratios of peptides are then determined by the spectrometer and appear as peaks 

on a mass spectrum. These peaks reflect the characteristic patterns of proteins and are 

then used for their identification. 

 

For the quantification of protein abundance, stable isotope labeling in cell culture (SILAC) 

is one popular method (X. Chen et al., 2015). In such an approach, cells are cultivated in 

two different conditions: for one, in a medium with normal amino acids; in the other condition 

with heavy isotopes labeled amino acids, which will be eventually incorporated into the cells 

as they grow. The samples from both conditions are then pooled together and undergo 

mass spectrometry. The abundance ratios of proteins between labelled and unlabeled 

proteins is then determined by the peak intensities in the mass spectrum of the two samples. 

This method allows the quantification of many peptides in cells and thus enabling high-

throughput proteomics study. 
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4.2.3 Available hubs for biological data 

There are a couple of databases or platforms that store data from high-throughput 

functional genomics experiments, such as Expression Atlas 

(https://www.ebi.ac.uk/gxa/home) (Papatheodorou et al., 2020), ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/) (Parkinson et al., 2005) and Genomic Expression 

Archive (https://www.ddbj.nig.ac.jp/gea/index-e.html) (Kodama et al., 2019). One of the 

largest databases is Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

(Edgar et al., 2002), which is a publicly available genomic database supported by the 

National Center for Biotechnology Information (NCBI). It accepts both raw and processed 

data submitted from high throughput gene expression studies, which is acquired with 

different technologies such as DNA microarrays, high throughput nucleic acid sequencing, 

RT-PCR, SAGE. Apart from gene expression data, GEO also collects data from studies on 

genome methylation, genome variation/copy number, etc. A submitted series of data comes 

with the description and methodology of the experiment, and the attributes of samples. At 

the time of writing (https://www.ncbi.nlm.nih.gov/geo/summary/?type=platforms), it is 

holding more than 4 million samples from over 146,452 series, mainly from studies on 

human (Homo sapiens) and mouse (Mus musculus). Researchers could either download 

and analyze the data files of interest, or execute queries to look for relevant data (using 

keywords such as gene name, diseases or nucleotide sequence), perform analysis (e.g. 

differential expression on curated datasets) and visualization (as a genome track) on the 

data directly on the GEO website. 

 

Disease-associated data are also available on specific platforms, such as the Genomic 

Data Commons Data Portal (https://portal.gdc.cancer.gov/) from The Cancer Genome Atlas 

(TCGA) project (Weinstein et al., 2013), which contains large-scale sequencing results 

focusing on cancer genomic datasets. TCGA is a project supervised by the National Cancer 

Institute (NCI) and National Human Genome Research Institute (NHGRI), and aims to 

profile and analyze human tumors and discover aberrations at different levels from genome, 

transcriptome, proteome to epigenome. It has generated sequencing, expression, single 

nucleotide variation, copy number variation and methylation data from 33 cancer types 

(including 10 rare cancers). The main technologies used include RNA sequencing, whole 

genome/exome sequencing, genotyping array and methylation array. Currently, more than 

84000 cases, most of them with comprehensive clinical data like tumor staging, survival, 

age and gender, and could be accessed by the research community on its repository. 

Simple analysis on the datasets, such as cohort comparison and clinical data analysis are 

also available on the TCGA portal. 

 

https://www.ebi.ac.uk/gxa/home
https://www.ddbj.nig.ac.jp/gea/index-e.html
https://portal.gdc.cancer.gov/
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4.3 Big data, big challenges 

The advancement in sequencing and profiling technologies in genomics, transcriptomics, 

and proteomics generates a huge amount of data that are still growing exponentially. The 

amount of sequencing data and the speed of its generation already qualify it as “big data”, 

which is characterized by large volume and high velocity of production (Jain, 2016) . Like 

the big data in any other fields, the volume and complexity of these data pose a true 

challenge to their analysis and interpretation. Bioinformatics tools, combined with statistical 

analyses enable us to identify mutations, differential expression of genes and proteins, 

gene regulations events, etc. On the other hand, increased computing power and recent 

development in data science, especially in the area of data storage, analysis and 

visualization, allow data to be handled more efficiently and effectively (Manyika et al., 2011).  

 

 
 

To leverage the increased computational capacity for the extraction of useful information 

from data and the facilitation of knowledge discovery, good data management is particularly 

crucial. Recently, a consortium of scientists and organizations have published the FAIR 

Guiding Principles, which data should meet the principles of Findability, Accessibility, 

Interoperability, and Reusability (Wilkinson et al., 2016). The implementation of these 

 
Figure 4.6 Workflow and essential stages of typical Big Data projects in healthcare.  

After the question or objective has been formulated, the right kind of data has to be collected through 
various sources. Different types of data require different ways of storage to achieve optimal efficiency 
for archiving and fetching. To retrieve information from collected data, various approaches or 
algorithms are available to perform data analysis, depending on the nature and structure of the data. 
Finally, to help gaining insight from the analyzed data and perform evaluation on the results, the data 
could be visualized either with visualization tools or custom visualizations developed using packages 
from popular programming languages. The flow is usually an iterative process, with a lot of back-
and-forth testing and adjustment at different stages. Taken and modified from (T. Huang et al., 2015), 
under the terms and conditions of the Creative Commons by Attribution (CC-BY) License. 
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principles within the scientific community is strongly encouraged, so that computational 

systems could easily find, access, interoperate, and reuse data with minimal human 

intervention. This could be achieved by using persistent identifiers (PIDs) on the data and 

annotate it with sufficient metadata. The PIDs should be globally unique to be readily 

identifiable and the associated data and metadata should be always accessible and 

indexed in a searchable source (Findability and Accessibility). By using a standard 

language across all the data and metadata, they could also be easily reused and integrated 

with other data (Interoperability and Reusability). 

 

4.3.1 Data storage and retrieval 

In order to be efficiently accessed or retrieved for analysis, data are usually stored in an 

organized way within databases. Two main types of database systems or models in today’s 

technology are relational database, or sometimes commonly referred as SQL database, 

that use Structured Query Language (SQL) for querying 

(https://www.iso.org/standard/63555.html); and NoSQL database (http://nosql-

database.org/) that refers to non SQL or non-relational databases. 

 

SQL databases store data in tables with definite rows and columns (structured data). Each 

entry (row) has a unique key, and tables can be connected by “relationships”. Therefore, 

relational operations, such as joining two tables based on a column (e.g. retrieving gene 

annotation from one table and gene expression from another based on gene names), can 

be easily achieved. Storing different data in different but connected tables also avoids data 

redundancy by minimizing duplicated information. Popular relational database 

management systems are MySQL, PostgreSQL (both open-source) and Oracle 

(proprietary).   

 

NoSQL databases, in contrast, store data in a schema-free version, in which the data need 

not to be in a defined structure. They could be stored as key-value pairs, free form JSON 

(JavaScript Object Notation) documents that consist of attribute-value pairs, or presented 

in graphs. This allows more flexibility as there are virtually no restrictions on the data model, 

and each entry can store different types and lengths of data. Common NoSQL databases 

include MongoDB (document-based), Redis (key-pair values) and Neo4j (graphs). 

Moreover, data storage can be split over several physical entities (storage units or 

computers), thus not restricting the size of the database. 
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4.3.1.1 SQL vs NoSQL 
The choice of the type of database depends on the data structure, the need for reliability 

and scalability, performance and many other factors. SQL is a mature and stable database 

system with a long history that has been tested extensively. NoSQL, on the other hand, is 

relatively new and gaining popularity because of its flexibility to store unstructured data. 

Therefore, it is particularly useful when storing text documents (e.g. Twitter entries) or 

relationships between nodes (Facebook users’ network). It is also highly scalable and fast 

when dealing with simply queries. 

 

However, the relaxed data schema of NoSQL means data entries do not have to be 

validated for their types or checked for duplications. NoSQL also compromises consistency 

of data for speed, and lack the property of ACID (Atomicity, Consistency, Isolation and 

Durability) as in SQL. Although SQL might be not as performant as NoSQL with simple 

queries, it is usually faster when dealing with complex queries (e.g. join operations) as it is 

well-structured. Thus, SQL database are preferred if the data has a defined structure and 

relational queries are often called, or if robustness is an important factor. 

 

4.3.2 Data analysis 

Some biological data, such as sequencing data, are unstructured but are usually processed 

with bioinformatics tools to give relatively structured data as output (e.g. rows of entries of 

gene/protein expression value, mutations location, etc) for downstream analysis. The 

analysis typically involves data cleaning (e.g. dealing with missing or corrupted values in 

microarray data), normalization (e.g. RNA-sequencing data), transformation (e.g. Log 

transformation of skewed data) and statistical test (e.g. differential expression of genes). 

These steps usually are part of the bioinformatics analysis pipeline. 

 

Two mainstream programming languages of nowadays for the purpose of data analysis are 

Python and R (Costa, 2020). Python is famous for its readability and has become one of 

the fastest growing language in recent years (https://www.python.org/). R has a strong 

focus on statistical and graphical techniques and is widely used among statisticians 

(https://www.r-project.org/). Both languages are popular in the community because of the 

availability of libraries or packages that can process sequencing data (e.g. Bioconductor 

packages in R; Biopython in Python), manipulate data (Pandas in Python) and perform 

statistical analysis (e.g. SciPy in Python). 

 

Learning from the data to make predictions or recognize patterns is part of the data analysis 

as well, and this is how machine learning algorithms come into play. There are two broad 
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categories of machine learning, depending on the tasks: Supervised learning and 

unsupervised learning. Supervised learning algorithms try to learn a function that could 

map an input to an output. A set of labelled data, consisting of both the input and the output 

has to be fed to the learning algorithm for training, so that it can make predictions for new, 

unlabeled data. The output can be either a discrete (classification) or a continuous value 

(regression). For example, cancer patients can be classified into respective risk groups in 

terms of survival (output) based on their gene expression profile (input) (Y. C. Chen et al., 

2014). There are a number of supervised leaning algorithms and among the most popular 

ones are Support Vector Machines, Decision Trees, Naive Bayes and the more complex 

Neural Network. Unsupervised learning algorithms infer a function that describes the 

unlabeled input data, for instance, by grouping the samples based on their similarity. An 

example would be clustering patients into previous unknown subgroups based on their 

gene expression profiles (Angermueller et al., 2016). Common clustering algorithms are k-

means and hierarchical clustering. 

 

Learning patterns in data can help give insights and reveal meaningful information. 

However, sequencing and profiling data often have the issue of high dimensionality (i.e.  

large number of input variables), which complicate the analysis. Dimensionality reduction 

is therefore often an essential step in data analysis. It is a process to reduce the number of 

variables while retaining the maximum amount of variation within the dataset. Principle 

Component Analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are 

examples of dimensionality reduction techniques. Libraries for performing machine learning 

tasks and related functions are abundant in both Python (scikit-learn (https://scikit-

learn.org/), tensorflow (https://www.tensorflow.org/), keras (https://keras.io/)) and R 

(randomForest (https://www.stat.berkeley.edu/~breiman/RandomForests), tree 

(https://cran.r-project.org/web/packages/tree/index.html), nnet 

(http://www.stats.ox.ac.uk/pub/MASS4/)). 
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4.3.3 Data exploration and visualization 

Representing data in a visual manner is useful for the exploration and interpretation of data. 

Effective visualization gives users intuition and allows them to better understand complex 

data, especially those in more than one dimension or with correlations. This helps with 

analysis and for making conclusions. Depending on the nature of the data and the aim of 

the analysis, the type of visualization can be as simple as a scatter plot (e.g. correlation 

between the expressions of two genes) or as complex as a network of nodes (e.g. 

interactions between proteins). 

 

While a number of programs are able to create different types of charts and diagrams, some 

programming languages offer libraries that make it possible to build more customizable and 

diverse visualizations. Python, for example, has the libraries matplotlib 

(https://matplotlib.org/) and seaborn (https://seaborn.pydata.org/); whereas R comes with 

packages like ggplot2 (https://ggplot2.tidyverse.org/) and Lattice 

(https://www.rdocumentation.org/packages/lattice). Most of the libraries in these two 

languages build only static graphs, but some also create visualizations with a certain 

degree of interactivity such as highchart (https://www.highcharts.com/) and plotly 

(https://plotly.com/). 

 

 
Figure 4.7 Data Analysis and Machine learning workflow. 

(a) Data analysis and modelling can be performed once data has been collected. A typical workflow 
involves four steps: data cleaning and pre-processing, feature extraction, model fitting (training) and 
evaluation. (b) The two categories of machine learning algorithms are supervised machine learning, 
which relate input features to output label; and unsupervised machine learning, which learns the 
pattern in the data without labels. (c) High-dimensional omics data is often challenging for data 
analysis. Performing feature extractions, either manually or with the help of unsupervised models 
could help with the analysis and obtaining insights. Taken and modified from (Angermueller et al., 
2016), under the terms and conditions of the Creative Commons by Attribution (CC-BY) License. 
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4.3.3.1 D3 in Javascript 
D3.js (Data-Driven Documents) (https://d3js.org/) is one of the most powerful open-sourced 

visualization libraries in Javascript, a dominant language in web programming. Capable of 

supporting almost all the chart types, D3 is the golden standard for visualization in 

Javascript and many other libraries are based on it. It is able of generating interactive and 

dynamic visualization in web browsers, without the need of installing any software. This is 

achieved by creating an SVG (Scalable Vector Graphics) object, a scalable and resolution 

independent image, and dynamically styling it through CSS (Cascading Styling Sheets), a 

language that characterizes the styles and contents of web elements 

(https://developer.mozilla.org/en-US/docs/Web/CSS). 

 

The power of D3 lies in its ability to bind data to the DOM (Document Object Model) of a 

web document, which describes the structure the elements of the document. Given a 

dataset, either in the format of JSON (JavaScript Object Notation), or CSV (Comma-

Separated Values), D3 can create for each data point an SVG element within the DOM, 

with properties (colors, size, shape, coordinates) and behaviors associated to the value of 

that data point. End-users can interact with the visualization (selection by mouse click, 

filtering by keyboard entries) that gives dynamic response as D3 modifies the style of SVGs 

(each representing a data node) in parallel. 

 

D3 is superior to other libraries in Javascript or even other languages in terms of interactivity 

and customizability (https://github.com/d3/d3/wiki), as its API, together with Javascript, 

enable creators to have control over low-level details of the visualization and be very 

specific about the properties and behaviors of each elements on it. However, unlike Python 

and R, Javascript does not provide many methods and libraries for data manipulation, or 

statistics and analysis, thus data have to be processed in other languages before feeding 

them to D3 for visualization. 

 

https://d3js.org/
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4.3.4 Current available tools for data analysis and visualization 

As mentioned in Section 4.2.3, some of the platforms or databases of omics data come 

with tools for the analysis and visualization of their own data. For example, on the GEO 

website, users could perform differential expression analysis on curated datasets managed 

by GEO and visualize genome tracks; On the portal where TCGA data is hosted, users 

could carry out cohort comparison and clinical data analysis on the data; Where as 

ArrayExpress provides an Bioconductor package to access the data and build data 

structures upon it for further analysis in R.  

 

There are also various other tools developed for the analysis and visualizations of data 

from the above repositories or user-prepared data. These tools can either be a web tool or 

a desktop application, and they usually visualize data in one of these three types: Heatmaps, 

genomic coordinates and networks. To name a few examples, cBio Cancer Genomics 

Portal (Cerami et al., 2012) is a web platform offers the analysis of differential expression, 

mutation frequency and copy number alterations on pre-calculated TCGA data (and other 

curated cancer datasets) and visualizations in heatmaps; UCSC Cancer Genomics 

Browser (Zhu et al., 2009) is another web tool for the quantitative analysis of TCGA data, 

but it also allows users to upload their own data for analysis. Like cBioPortal, it provides 

 
Figure 4.8 Visualizations with d3.js.  

D3.js is a Javascript library for generating interactive and dynamic visualizations in typical web 
browsers. It creates SVG (Scalable Vector Graphics) objects that could be formatted or styled 
dynamically through CSS (Cascading Styling Sheets) standards. The visualizations produced using 
D3.js are highly customizable. Both simple graphs (a) and more complex visualizations (b) could be 
generated with existing methods from the library. Taken from https://d3js.org/, under the terms and 
conditions of the Creative Commons by Attribution (CC-BY) License. 

https://d3js.org/
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views for expression data in heatmaps, and also for mutation and copy number data; 

Integrative Genomics Viewer (IGV) (Robinson et al., 2011) is a desktop application 

developed by the Broad Institute to explore genomic datasets provided by users in genomic 

coordinates visualizations. The tracks and genomic regions can be annotated with 

integrated metadata; Finally, Cytoscape (Shannon et al., 2003), also a desktop application, 

serves as a network analytics software to analyze genetic interaction and gene regulatory 

events and visualize them in networks. All these tools are very helpful for the analysis of 

high volume omics data and could facilitate the discovery of underlying biological patterns 

out of these complex data. 

 

4.3.5 Challenges in the analysis of mitochondrial genes addressed in 
this thesis 

Despite the availability of visual analytics platforms and software for omics data, tools 

dedicated for the analysis of certain context-specific gene sets, such as mitochondrial 

genes, are very limited. One of the reasons is that it is often time consuming to construct 

such a gene list that could include most, if not all, of the related functions and pathways in 

that specific context. Most of the existing lists or electronic repositories of mitochondrial 

genes are not comprehensive since they are constructed with computational approaches 

and could either be susceptible to overfitting of the training data (MitoMiner (Smith et al., 

2012)), or lack experimental confirmation (MitoPred (C. Guda et al., 2004)). MitoCarta 

(Calvo et al., 2016) is one of repositories that contains a more complete set of mitochondria-

associated genes. However it currently includes only human and mouse mitochondrial 

genes. Another challenge is to assign proper functional annotations to the genes to facilitate 

further analysis, which is also a tedious task that requires a lot of literature review and 

hence human involvement. 

 

Equally challenging is the development of the appropriate analysis and visualization tools. 

They should be intuitive enough for users to understand readily what the purpose of the 

visual analytics tool is, how to use the tool and what the result means. While most of above-

mentioned tools could achieve these, they are usually not dynamic and interactive enough 

for users to explore further according to their own needs, and the types of visualizations 

are relatively limited. The usability of the tool is also important, as complex requirements 

often deter researchers from using it. For example, visualizations of some tools require 

high-end computer graphics to display (Caleydo (Streit et al., 2009)), and some requires 

users to possess certain programming knowledge (Arrayexpress (Parkinson et al., 2005)). 

Therefore an ideal tool should have minimum pre-requisites on the specifications of users’ 

machines or users’ programming knowledge to operate it, and be as user-friendly as 

possible.  
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5 Objectives 

In light of the need for a visual analytics tool specific for a genes with mitochondrial 

functions, this thesis aims mainly to develop a data mining and visualization tool dedicated 

for the exploration and analysis of expression and mutation landscapes of mitochondrial 

genes. A critical component of such platform, which is currently lacking, is a comprehensive 

list of mitochondrial genes with annotations, that could be integrated into the analysis and 

visualization tools. Therefore, we first addressed this issue by assembling and manually 

curating lists of genes with annotated mitochondrial processes, which we referred to as 

mitochondrial interactome, for human and a few other model organisms. To ensure its 

completeness and accuracy, we started with a few published mitochondrial proteomic data 

and supplemented with all non-coding mitochondrial genes and potentially missing genes 

from different sources, including inventories that provide pathway or ortholog information. 

Then we performed manual cleaning to remove false-positives by, for example, searching 

the literature for the localization of gene products. As for the annotations, we referred to 

multiple established databases and decided on a set of controlled vocabulary to group the 

mitochondrial genes. 

 

The next point to address is the development of the analysis and visualization tools. To 

tackle with the problem of a general lack of interactivity in other analytics platforms, we 

have developed a number of user-friendly, dynamic and interactive visualization tools that 

are modular and could be incorporated into different platforms. We have also built a 

platform, mitoXplorer, to host public dataset and visualization tools that have been 

integrated with the interactome, in order for users to freely explore both public or uploaded 

data. To allow the platform to be widely available and accessible, we decided to build it as 

a web application, so that it is agnostic to operating systems and does not require any 

installation or programming knowledge on the users’ side. 

 

The final objective is to prove robustness and the predictive power of such visual data 

mining tools. We analyzed the transcriptome and proteome data of trisomy 21 cell line to 

demonstrate the ability of the tools to explore expression dynamics of mitochondrial genes.  

We also validated with experiments the observations from the analysis, to show how 

testable hypothesis could be generated that lead to discovery about mechanisms of 

mitochondrial defects in trisomy 21 patients. Next, we analyzed the expression and clinical 

data of cancer patients from public cancer dataset (TCGA), namely kidney renal papillary 

cell carcinoma, to show how visual data mining tools could also help generating hypothesis 

on the role mitochondrial functions in terms of cancer development and progression. 
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6 Results 

6.1 mitoXplorer, a visual data mining platform to systematically 
analyze and visualize mitochondrial expression dynamics and 
mutations 

Mitochondria are important organelles that have diverse roles apart from energy production, 

such as ROS defense, cell homeostasis, and the control of signaling pathways. Impaired 

mitochondrial functions can lead to various diseases and metabolic disorders, and the field 

has attracted increased attention. However, tools or platforms specific for the analysis of 

omics data of genes with mitochondrial functions did not exist previously, despite the 

availability of public data from high throughput gene expression studies. Therefore, in this 

study we developed a web-based visual data mining platform – mitoXplorer, for the in-depth 

analysis and visualization of the expression and mutation landscape of mitochondrial genes. 

 

mitoXplorer provides a set of dynamic, interactive and intuitive visualizations, that allows 

users to explore and interact with the analysed data. We have also integrated manually 

curated mitochondrial interactomes that consist of  ∼1200 genes grouped in 38 

mitochondrial processes for four organisms (Human, Mouse, Fruit Fly and Budding Yeast), 

with accurate and updated annotations. Together with the visualization tools, mitoXplorer 

serves as user-friendly platform for the mining of mitochondrial expression dynamics and 

mutations across various public or user-owned datasets.  

 

To demonstrate the predictive power of mitoXplorer, transcriptome and proteome data from 

cell lines with trisomy 21 was analysed and investigated in detail. We found that, in one of 

the trisomy 21 cell lines (RPE1 T21), there were significant differences in the regulation of 

transcriptome and proteome in the some of the mitochondrial processes. Notably the 

dysregulation of several mitochondrial ribosome proteins related to Translation, which 

potentially causes the down-regulation of OXPHOS genes along the entire respiratory 

chain that could result in defects in oxidative phosphorylation. The prediction of 

mitochondrial respiration failure in such cell line has then be confirmed experimentally. This 

showed the robustness of mitoXplorer as a visual data mining platform, which could help 

discover underlying molecular mechanisms and patterns for the generation of hypotheses 

for experimental validation. 
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ABSTRACT

Mitochondria participate in metabolism and signal-
ing. They adapt to the requirements of various cell
types. Publicly available expression data permit to
study expression dynamics of genes with mitochon-
drial function (mito-genes) in various cell types, con-
ditions and organisms. Yet, we lack an easy way of
extracting these data for mito-genes. Here, we intro-
duce the visual data mining platform mitoXplorer,
which integrates expression and mutation data of
mito-genes with a manually curated mitochondrial
interactome containing ∼1200 genes grouped in 38
mitochondrial processes. User-friendly analysis and
visualization tools allow to mine mitochondrial ex-
pression dynamics and mutations across various
datasets from four model species including human.
To test the predictive power of mitoXplorer, we quan-
tify mito-gene expression dynamics in trisomy 21
cells, as mitochondrial defects are frequent in tri-
somy 21. We uncover remarkable differences in the
regulation of the mitochondrial transcriptome and
proteome in one of the trisomy 21 cell lines, caused
by dysregulation of the mitochondrial ribosome and
resulting in severe defects in oxidative phosphory-
lation. With the newly developed Fiji plugin mito-
Morph, we identify mild changes in mitochondrial
morphology in trisomy 21. Taken together, mitoX-
plorer (http://mitoxplorer.ibdm.univ-mrs.fr) is a user-
friendly, web-based and freely accessible software,

aiding experimental scientists to quantify mitochon-
drial expression dynamics.

INTRODUCTION

Enormous amounts of transcriptomic data are publicly
available for exploration. This richness of data gives us the
unique opportunity to explore the behavior of individual
genes or groups of genes within a vast variety of different
cell types, developmental or disease conditions or in differ-
ent species. By integrating these data in a sophisticated way,
we may be capable to discover new dependencies between
genes or processes.

Speci!c databases are available for mining and exploring
disease-associated data, such as The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) (1), or the Interna-
tional Cancer Consortium Data Portal (ICGC, https://dcc.
icgc.org/) (2). Especially cancer data portals allow users to
perform deeper exploration of expression changes of indi-
vidual genes or gene groups in different tumor types ((1–
3); for a review on available cancer data portals, see (4)).
Expression Atlas (https://www.ebi.ac.uk/gxa/home) on the
other hand provides pre-processed data from a large variety
of different studies in numerous species (5). Indeed, the ma-
jority of transcriptomic datasets are not related to cancer
and are stored in public repositories such as Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
(6), DDBJ Omics Archive (https://www.ddbj.nig.ac.jp/gea/
index-e.html) (7), or ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) (8). Currently, it is not straightforward to in-
tegrate data from these repositories without at least basic
programming knowledge.
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Next to extracting reliable information from -omics
datasets, it is equally important to support interactive data
visualization. This is a key element for a user-guided ex-
ploration and interpretation of complex data, facilitating
the generation of biologically relevant hypotheses––a pro-
cess referred to as visual data mining (VDM, reviewed e.g.
in (9)). Therefore, essentially all online data portals provide
graphical tools for data exploration.

What is fundamentally lacking is a user-centric, web-
based and interactive platform for data integration of a set
of selected genes or proteins sharing the same cellular func-
tion(s). The bene!ts of such a tool are evident: !rst, it would
give us the possibility to explore the expression dynamics
and the presence of mutations in this set of selected genes
across many different conditions, tissues and species. Sec-
ond, by integrating data using enrichment techniques, for
instance with epigenetic data or by network analysis using
the cellular interactome(s), it would allow us to identify the
mechanisms that regulate the expression dynamics of the
selected gene set.

One interesting set of genes are mitochondria-associated
genes (mito-genes): in other words all genes, whose encoded
proteins localize to mitochondria and ful!ll their cellular
function within this organelle. Mito-genes are well-suited
for such a systematic analysis, because we have a relatively
complete knowledge of their identity and can categorize
them according to their mitochondrial functions (10). This
a priori knowledge can help us in mining and exploring the
expression dynamics of mito-genes and functions in various
conditions and species.

Mitochondria are essential organelles in eukaryotic cells
that are required for producing cellular energy in form of
ATP and for numerous other metabolic and signaling func-
tions (10). Attributable to their central cellular role, mito-
chondrial dysfunctions were found to be associated with a
number of human diseases such as obesity, diabetes, neu-
rodegenerative diseases and cancer (11–15). However, mi-
tochondria are not uniform organelles. Their structural and
metabolic diversity, both of which in"uence each other, has
been well described in literature (16–20). This mitochon-
drial heterogeneity in different tissues is re"ected in their
molecular composition (21). The total number of proteins
that contribute to mitochondrial functions and localize to
mitochondria is currently not precisely known and might
differ between tissues and species (22,23). Yet, based on
proteomic data from several organisms, it is likely that mi-
tochondria contain >1000 proteins (23–30). Mitochondria
have their own genome, whose size in animals is between
11 and 28 kb (31). Most metazoan mitochondria encode 13
essential proteins of the respiratory chain required for ox-
idative phosphorylation (OXPHOS), all rRNAs of the small
and large mitochondrial ribosomal subunits, as well as most
mitochondrial tRNAs (32). All other proteins found in mi-
tochondria (mito-proteins) are encoded by genes in the nu-
cleus; the protein products of these nuclear-encoded mito-
chondrial genes (NEMGs) are transported to and imported
into mitochondria.

Based on data from mitochondrial proteomic studies or
genome-scale prediction of mito-proteins, several electronic
repositories of the mitochondrial interactome have been
created (24,33–36), though they often lack a proper func-

tional assignments of mito-proteins. Moreover, proteomic
studies describing the mitochondrial proteome can suffer
from a high false-positive rate (23), whereas computational
prediction or machine learning in most cases lack experi-
mental con!rmation (37). As a consequence, none of the
published mitochondrial interactomes available to date can
be taken without further manual curation. Moreover, these
lists are not integrated with any available data analysis tool
to explore mitochondrial expression dynamics under vary-
ing conditions or in different tissues or species.

In this study, we present mitoXplorer, a web-based,
highly interactive visual data mining (VDM) platform de-
signed to speci!cally mine the dynamics of a manually cu-
rated gene set with mitochondrial functions in transcrip-
tome, proteome, as well as mutation-based data. To achieve
this, mitoXplorer integrates -omics data with our hand-
curated mitochondrial interactomes for currently four dif-
ferent model species. With mitoXplorer, we can explore the
expression dynamics, as well as mutations of mito-genes and
their associated mitochondrial processes (mito-processes)
across a large variety of different -omics datasets without
the need of programming knowledge. MitoXplorer pro-
vides users with dynamic and interactive !gures, which in-
stantly display information on mitochondrial gene func-
tions and protein-protein interactions. Users can analyze
publicly available data stored in our mitoXlorer database
or upload their own data for integration with our hand-
curated mitochondrial interactome. In order to demon-
strate the analytical and predictive power of mitoXplorer
and to experimentally verify mitoXplorer predictions, we
generated transcriptome and proteome data from aneu-
ploid cell lines, carrying trisomy 21 (T21), the most common
chromosome abnormality in humans which is also known
to cause substantial mitochondrial dysfunctions (38). We
used mitoXplorer to analyze and integrate our data with
publicly available trisomy 21 data. MitoXplorer enabled us
to predict respiratory failure in one of our T21 cell lines,
which we experimentally con!rmed, thus demonstrating the
predictive power of mitoXplorer.

MATERIALS AND METHODS

Implementation of mitoXplorer

Web interface of mitoXplorer (front-end). The web inter-
face of mitoXplorer at the front-end allows users to access,
interact and visualize data from its database, including the
interactome and expression/mutation data. The interactive
elements and visualizations on mitoXplorer are all built
with Javascript, a dynamic programming language that en-
ables interactivity on webpages by manipulating elements
through DOM (Document Object Model). DOM is a rep-
resentation of document, such as HTML, in a tree struc-
ture, with each element as a node or an object. Through
Javascript and its libraries, visualizations in mitoXplorer
can react to users’ action and dynamically change the prop-
erties (size, color, coordinates) of web elements and display
interactivity. All the visualization components in mitoX-
plorer described below are modular by design and can be
deployed individually or incorporated into web platforms
easily.



Nucleic Acids Research, 2020, Vol. 48, No. 2 607

Mitochondrial Interactome (D3––data binding and selec-
tion). The visualization of the interactome is created with
the implementation of a Javascript library, D3 (d3.js) (39).
D3 (data-driven documents) is capable of binding data, usu-
ally in JSON (Javascript-oriented notation) format, to the
elements of the DOM so that their properties are entirely
based on given data. In the Interactome View, D3 creates
an SVG (Scalable Vector Graphic) element for each gene
within the DOM in the form of a bubble, with sizes and col-
ors dependent on the associated log2 fold change (log2FC)
values. The coordinates of bubbles are also calculated ac-
cording to the data (e.g. the largest one being at the cen-
ter) so that the layout of the whole interactome is visually
appealing. Upon hovering over any bubble (gene), D3 se-
lects the element and passes additional data bound to that
element to the corresponding web element (sidebar) for dis-
play.

Comparative plot (D3––transition and sorting). The com-
parative plot combines three interdependent visualizations
(scatterplot, bar chart and heatmap) built upon D3. Apart
from data-binding and selection, these visualizations ex-
ploit the functionality of D3 for transition and sorting
through its API. In the scatterplot, genes are displayed as
nodes, whose colors and positions again depend on the data
(log2FC). When another mito-process is selected at the bar
chart, D3 updates the data bound to the node and the prop-
erties of the nodes are changed. The transition (changes
in color and position) is smooth and gives users the im-
pression that the visualization is truly dynamic and inter-
active. D3 can manipulate not only the elements, but also
the data bound to the elements. Upon clicking the dataset
or gene names on the heatmap, the data can be sorted ac-
cordingly and an index is assigned to each element (tile on
the heatmap) to indicate its position.

Hierarchical clustering (mpld3––visualization in Python im-
plemented in D3). The heatmap displaying the results of
hierarchical clustering is built with mpld3, a Python library
that exports graphics made with Python’s Matplotlib-based
libraries to JSON objects that can be displayed on web
browsers. Mpld3 bene!ts from D3’s data-binding property
and allows users to create a plugin that interacts with the
data on the visualization. The advantage of using mpld3
is that analyses and visualizations made in Python can be
directly translated to JSON and deployed in Javascript on
webpages without re-programming. In the case of hierar-
chical clustering, since libraries for both clustering analysis
and visualization of results in a heatmap with a dendrogram
are available in Python (described below), it is exported to
JSON with mpld3 and a Javascript tooltip plugin that al-
lows users to select data or display information with D3.

Principal component analysis (three.js––3D visualization).
The visualization of the result of Principal Component
Analysis (PCA) is 3-dimensional, with each dimension rep-
resenting one of the !rst three principal components (PCs).
This is achieved through the implementation of three.js, a
Javascript library that enables animated 3D graphics to be
created and displayed in a web browser. It starts with build-
ing a ‘scene’, or a canvas, on which 3D objects will be cre-

ated. Then a ‘camera’ is set up that controls the view of
objects on the scene from the users’ perspective, such as
the !eld of view (width, height, depth) and its ratio; and
a ‘renderer’ that renders the scene at short time intervals so
objects are displayed as animated objects (either they are
animated by themselves or moved around on the scene by
users). Objects of different texture, geometry and color can
now be added to and rendered on the scene. Finally, the
scene with objects is attached to the DOM of a webpage
to become visible. In the PCA visualization, each dataset
is represented and rendered as a small sphere, with coordi-
nates (x, y, z) depending on the values of its !rst three PCs,
and colors on the grouping of that dataset. When users drag
around on the canvas or zoom in or out, all objects are re-
rendered in such a way that the scene appears to be a 3-
dimensional space.

MitoXplorer database (back-end). A MySQL database
hosted at the back-end of mitoXplorer contains the interac-
tomes of mito-genes, including the mito-process, gene on-
tology and the interactions between gene products; and the
expression and mutation data from public databases. Each
entry of the expression and mutation data has a foreign link
to the interactome and !le directory (dataset table). This en-
sures that the expression and mutation data will be updated
together with the interactome, or when a dataset is updated
or deleted. Users can upload their own differential expres-
sion and/or mutation data, which will be processed and in-
tegrated with the interactome by extracting mito-genes, and
stored in the mitoXplorer database for up to 7 days.

Data analysis and communication between front- and back-
end. A Python application serves as a bridge between the
front- and back-end of mitoXplorer. Upon the users’ request
to access the database or perform analysis at the web in-
terface, an AJAX-asynchronous call directed to the Python
application is made, so the request can be performed in the
background and the webpage is updated without reloading.
The Python application then processes the request by con-
necting to the MySQL database and analyzes the data re-
trieved from it. The application also handles the user up-
loads (e.g. data cleaning) before saving it to the MySQL
database. The main libraries used by the Python applica-
tion for analysis include: (i) Scikit-learn: a machine learn-
ing library that provides tools for PCA, to perform dimen-
sionality reduction on the expression of all mito-genes and
of each mito-process. The !rst three principal components
are extracted for each dataset. (ii) SciPy: a mathematical li-
brary that provides modules for hierarchical clustering, to
calculate 2D distance matrices between genes and between
datasets based on expression values, for each mito-process.
(iii) Seaborn: a statistical visualization library built on top
of SciPy to create heatmaps from the results. All the results
are produced in JSON format, which are then sent via the
HTTP protocol back to the front-end and visualized with
Javascript.

The usage of mitoXplorer does not require installation
or programming knowledge. Documentation and tutori-
als are available online and on GitLab (https://gitlab.com/
habermannlab/mitox). MitoXplorer is also available for
download and installation on a local server, if users wish to
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build their own gene list and apply the interactive features
and database of mitoXplorer, which stores the available ex-
pression and mutation data for all genes. Setup instructions
are also available on the mitoXplorer GitLab repository,
as is a docker version of mitoxplorer (https://gitlab.com/
habermannlab/mitox, branch docker-version).

Processing of public transcriptomic and proteomic data.
Proteomic and transcriptomic data from Kühl (40), as well
as Liu (41), Letourneau (42), Sullivan (43) and Spletter (44)
were uploaded as provided by the authors.

Public NGS datasets downloaded from GEO which did
not already contain differential expression data in the form
of log2FC and P-value were analyzed according to avail-
able pre-analyzed data: datasets with available raw read
counts were analyzed using DESeq2 (version 3.9, (45)).
These included data from Chowdhury (46) and Garipler
(47). Datasets for which only the normalized read counts
were available, the log2FC was calculated for each sample,
using the corresponding wild-type samples as control (or
the mean of normal samples if there were no paired sam-
ples) following best-practice guidelines. We applied this to
data from TCGA (1), downloaded from the NCI GDC
Data Portal (https://portal.gdc.cancer.gov/)), from Fleis-
cher (48) and from Huang (49). Finally, microarray time-
course data of yeast meisosis (GEO accession: GSE75257)
were analyzed with GEO2R (50).

Metadata of the datasets (e.g. cell types, analysis pipeline
and genome version used for mapping) were also down-
loaded and stored in the mitoXplorer database. The links
to the experiments for each dataset are available at the
DATABASE summary page of mitoXplorer.

Transcriptomics and proteomics of aneuploid cell lines. The
proteome analysis of the trisomic cell lines was previously
described (51,52).

The raw reads from RNA-sequencing were processed to
remove low quality reads and adapter sequences (using
TrimGalore v0.4.5 (https://www.bioinformatics.babraham.
ac.uk/projects/trim galore/), which uses Cutadapt (53))
and FastQC (Andrew, S. (2010) FastQC: a quality con-
trol tool for high throughput sequence data. http://
www.bioinformatics.babraham.ac.uk/projects/fastqc)), and
aligned to the human reference genome (version hg19) with
TopHat2 (v2.0.11) (54). Cuffdiff from the Cuf"inks package
(v2.2.1) (55) was used with standard parameters to calculate
the expression difference between two samples (aneuploid
versus diploid) of multiple replicates and test the statisti-
cal signi!cance. Transcriptome and proteome information
are available in public repositories: NGS data have been de-
posited in NCBI’s Gene Expression Omnibus and are ac-
cessible through GEO series accession number GSE102855
and GSE131249.

Cell culture and treatment. The human cell line RPE-1
hTERT (referred to as RPE) was a kind gift by Stephen
Taylor (University of Manchester, UK). Human HCT116
cells (referred to as HCT) were obtained from ATCC
(No. CCL-247). Trisomic cell lines were generated by
microcell-mediated chromosome transfer as described pre-
viously (51). The A9 donor mouse cell lines were pur-

chased from the Health Science Research Resources Bank
(HSRRB), Osaka 590-0535, Japan. All cell lines were main-
tained at 37◦C with 5% CO2 atmosphere in Dulbecco´s
modi!ed Eagle’s medium (DMEM) containing 10% fetal
bovine serum (FBS), 100 U penicillin and 100 U strepto-
mycin.

MitoTracker staining and imaging. Mitochondria were
stained in 96-well plates. The cells were incubated for 30 min
at 37◦C with 100 nM MitoTracker deep Red FM (M22426,
Invitrogen®) dye prior to !xation. Cells were !xed with 3%
PFA in DMEM for 5 min at room temperature. After wash-
ing twice with 1xPBST, plates were stored with 1× PBS con-
taining 0.01% sodium azide. Plates were stored at 4◦C in
the dark. Imaging was carried out on an inverted Zeiss Ob-
server.Z1 microscope with a spinning disc and 473, 561 and
660 nm argon laser lines. Imaging devices were controlled,
and images were captured, stored and processed with the
SlideBook Software in Fiji (56). The images were captured
automatically on multiple focal planes (step size: 700 nm)
with a 40× magni!cation air objective.

Metabolic pro!ling of wild-type and T21 cell lines. RPE
and HCT cells and their T21 derivatives were seeded at 25
000 or 36 000 cells/well respectively, on XF96 cell plates
(Seahorse Bioscience, Agilent Technologies), 30 h before
being assayed. Optimization of reagents as well as CCCP
and digitonin titrations were performed as described by the
manufacturer’s protocols (Seahorse Bioscience). The exper-
iments were performed using the mitochondrial and gly-
colytic stress test assay protocol as suggested by the man-
ufacturer (Seahorse Bioscience, Agilent Technologies). By
employing the Seahorse Bioscience XF Extracellular Flux
Analyzer, the rate of cellular oxidative phosphorylation
(oxygen consumption rate (OCR)) and glycolysis (cellular
proton production rate (PPR)) were measured simultane-
ously.

For OCR measurement, DMEM media was supple-
mented with 25 mM glucose, 1 mM pyruvate and 2 mM
glutamine. Basal rate was recorded and additions for the
mito stress test were as follows: 1.5 !M oligomycin, CCCP,
2 !M rotenone + 4 !M antimycin A. For PPR measure-
ment, DMEM media was supplemented with 2 mM glu-
tamine. Basal rate was recorded and additions for the gly-
colysis stress test were as follows: 10 mM glucose, 1.5 !M
oligomycin and 100 mM 2-deoxyglucose.

For intact cells, the CCCP concentrations were 7 and 1.5
!M for RPE1 and HCT116 cells, respectively. The assays
of intact cells were performed in 96-well plates with at least
10 replicates per cell line. For the permeabilized RPE1 cell
lines, the CCCP and digitonin concentrations were 10 and
40 !M, respectively. For OCR measurement, Mannitol–
sucrose buffer (MAS) was prepared according to Seahorse
Biosciences. For permeabilization, digitionin was added to
MAS buffer together with the respective respiratory sub-
strates: 10 mM pyruvate/2 mM malate, 10 mM succinate/2
!M rotenone or 0.5 mM TMPD/2 mM ascorbate/2 !M
antimycin A. Basal respiration was recorded, as were addi-
tions of 4 mM ADP, 1.5 !M oligomycin, CCCP and 2 !M
rotenone ± 4 !M antimycin A or 20 mM Na-azide. The as-



Nucleic Acids Research, 2020, Vol. 48, No. 2 609

says in permeabilized cells were performed in poly-D-lysine-
coated 96-well plates with at least !ve replicates per cell line.

Normalization was performed with the CyQuant cell pro-
liferation assay kit (Life Technologies) in the same plate
used for the assay of intact cells; and in a parallel plate for
the permeabilized cells. Data analysis was done according
to (57).

The mitoMorph plugin for morphological characterization of
mitochondria by image analysis. Classi!cation and mea-
surement of mitochondria were performed using the soft-
ware ImageJ (58), complemented with all the default plug-
ins provided by Fiji (56) and with the additional plugin Fea-
tureJ. A set of functions were developed to assist the user in
the preparation and analysis of the data, either in interactive
or batch processing mode.

Using this toolset, after all the cells of interest were man-
ually outlined in each image, the mitochondria were seg-
mented and characterized. For each processing step, the al-
gorithms used are reported as described in ImageJ, and their
parameters are speci!ed in physical units.

The images were pre-processed by !rst suppressing the
background signal (rolling ball background subtraction,
kernel radius: 2.5 !m) and then enhancing the mitochon-
dria signal (Laplacian of Gaussian, smoothing scale: 1 !m,
followed by contrast limited adaptive histogram equaliza-
tion, CLAHE, kernel size: 2.5 !m). Mitochondria candi-
dates were obtained by segmentation, using Yen threshold-
ing algorithm (59), and subjected to classi!cation based on
a set of determined features.

Objects that were too small were excluded from the anal-
ysis, and the remaining ones were assigned to one of four
categories: !lamentous networked (!laments), puncta, rods
and swollen (60). Objects that were quasi-round, compact
in intensity, and larger than the puncta were classi!ed as
swollen. All objects with an intermediate phenotype be-
tween fragmented puncta and network of !laments were
classi!ed as rods.

Classi!cation was performed by sequentially verifying
different selection criteria, one set for each class, based
on the following measured features: area (A), aspect ratio
(AR), circularity (C), solidity (S), minimum Feret diame-
ter (here indicated as minimum linear extension, MLE) and
longest shortest-path (here indicated as extension, E). While
all the other measures are directly derived from the segmen-
tation, the extension is measured as the longest shortest-
path between any two end points in the skeleton derived
from the segmentation. The selection criteria are evaluated
sequentially as reported in Supplementary Table S1.

We would like to note that analysis of mitochondrial mor-
phology on projected images is limited, as mitochondrial
structures might not be resolved properly.

Image analysis using mitoMorph and data processing. Im-
age processing and analysis was done in Fiji. Image stacks
were Z-projected, cells were manually selected and the re-
sulting images were saved for further batch processing using
mitoMorph. Resulting network statistics of mitochondrial
features for each individual cell were used for further pro-
cessing (Supplementary Table S1). All statistical processing
and data visualization of mitoMorph results was done using

RStudio (v1.1.423, R-version: 3.6.1). Data were averaged
over both clones of the two T21 cell lines.

RESULTS

The outline of the mitoXplorer web-platform is illustrated
in Figure 1: at the back-end, manually curated mitochon-
drial interactomes from human, mouse, Drosophila and
budding yeast, as well as expression and mutation data from
these four species are stored in a MySQL database (details
on the implementation of the back-end are available in Ma-
terials and Methods, as well as Supplementary Figure S1).

The user interacts with the mitoXplorer web-platform via
the front-end, which offers different visualization and anal-
ysis methods. Users can either browse stored public data or
upload their own data.

The mitochondrial interactomes

The main component of mitoXplorer is the mitochondrial
interactome. Its accurate annotation and completeness are
essential for performing a meaningful mitoXplorer-based
analysis. To establish mitochondrial interactomes, we have
assembled and manually curated lists of genes with anno-
tated mitochondrial processes (mito-processes). Currently,
the interactomes of four organisms are available on mi-
toXplorer: Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit "y) and Saccharomyces cere-
visiae (budding yeast). We started from published mito-
chondrial proteomic data (27,61) for the selected species
and manually cleaned the data, as well as supplemented
missing mito-genes in the following way: we removed obvi-
ous false-positives from the datasets; these included mainly
proteins for which there is compelling evidence in litera-
ture that they are not localized to mitochondria. Next, we
supplemented likely missing genes from the proteomic data
using information from Mitocarta (24), KEGG (62) infor-
mation of genes associated with mitochondrial pathways,
as well as orthologs across species from the four proteomic
datasets. To establish whether a protein in question is pri-
marily localized to mitochondria or not, we relied on several
sources: (i) evidence from the literature on a speci!c gene;
(ii) information from the respective gene entry at NCBI
(63), Flybase (64) or the Saccharomyces genome database
(SGD) (65); (iii) information from the GeneCards database
(66); (iv) information from UniProt (67). We supplemented
the lists with all non-coding genes present in the mitochon-
drial genomes, namely all mitochondrial rRNAs, as well as
tRNAs. After manual curation, we obtained 1229 human,
1222 mouse, 1139 Drosophila and 988 budding yeast mito-
genes. We grouped the genes in mito-processes using con-
trolled vocabulary. In addition to purely mitochondrial pro-
cesses, we added cytosolic processes coupled to mitochon-
drial functions, including Glycolysis, the Pentose phosphate
pathway, Apoptosis or the regulation of transcription of
nuclear-encoded mitochondrial genes (Transcription (nu-
clear)). This resulted in a total of 38 mito-processes (Ta-
ble 1). We selected the correct mito-process for each gene
primarily using information from the same sources men-
tioned before (NCBI gene entry, Flybase, SGD, GeneCards,
UniProt, KEGG). According to our current annotation,
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Figure 1. Setup of the mitoXplorer web-based visual data mining platform. A manually curated, annotated mitochondrial interactome represents the
central part of the mitoXplorer software, for which we have assembled 1229 mito-genes in human, 1222 mito-genes in mouse, 1139 mito-genes in fruit "y
and 988 mito-genes in budding yeast in 38 mitochondrial processes (mito-processes). We have connected gene products using protein-protein interactions
from STRING (69). Publicly available expression and mutation data from repositories such as TCGA or GEO are provided for data integration, analysis
and visualization and are stored together with species interactomes in a MySQL database. Users can provide their own data, which are temporarily
stored and only accessible to the user. A set of Python-based scripts at the back-end of the platform handle data formatting, integration and analysis
(Supplementary Figure S1). The user interacts with mitoXplorer via several visual interfaces to analyze, integrate and visualize his private, as well as public
data. Four interactive visualization interfaces are offered: (i) the Interactome View allows at-a-glance visualization of the entire mitochondrial interactome
of a single dataset (see Figure 2); (ii) comparative plots, consisting of a scatterplot and a sortable heatmap allows comparison of up to six datasets, whereby
a single mito-process is analyzed at a time (see Figure 3); (iii) hierarchical clustering allows comparison of a large number of datasets which are clustered
according to their expression values. Hierarchical clustering plots are zoom-able and interactive (see Figure 4); (iv) principal component analysis displays
PCA-analyzed datasets in 3D, providing !ltering and grouping functions. There is in principle no limit to the number of datasets that can be analyzed
using PCA (see Figure 5).
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one gene is part of only a single mito-process. We acknowl-
edge that this annotation strategy has limitations, as a mito-
gene can be part of more than one mito-process: as an
example, in KEGG, the human gene GPI is part of the
pathways Glycolysis, as well as Pentose phosphate path-
way. In GeneCards, GPI is primarily associated with Gly-
colysis, thus we assigned it to the mito-process Glycolysis.
For other genes, the existing annotations were less clear and
we had to decide on the primary process a gene should be-
long to. For some mito-processes, we solved this by intro-
ducing the ontologically higher ranked term: for instance,
mito-genes involved in fatty acid (FA) metabolic pathways
can be associated with either the biosynthesis or degrada-
tion of FAs, or both: genes implicated in both processes
were allocated to the term that would rank higher, namely
Fatty acid metabolism. Genes involved in the transport of
molecules across the mitochondrial membrane were divided
into three groups: those involved in import & sorting of
all mito-proteins that are encoded in the nuclear genome
and translated in the cytosol into mitochondria; those that
are part of the mitochondrial carrier family (68); and !-
nally those transmembrane proteins that are involved in mi-
tochondrial transmembrane transport and cannot be as-
sociated with either of the other two groups. Finally, to
complete the mitochondrial interactome and reveal poten-
tial interactions between mito-processes, we added protein-
protein interaction information from STRING (69) for all
mito-genes.

Since we cannot guarantee that our current annotation is
either complete or exempt from mis-annotations, and with
the goal of nucleating a community-based effort to further
complete and improve the annotation of the mitoXplorer
mito-interactomes, we provide a ‘FEEDBACK’ page. Users
can submit comments and suggestions on genes and their
annotations using this page, suggest new genes and new
mito-processes or provide any other feedback.

Mito-genes of human, mouse, Drosophila and budding
yeast annotated with mito-processes are available in Sup-
plementary Table S2A–D. The mito-interactomes can also
be downloaded from the INTERACTOME page of mitoX-
plorer. These manually curated and annotated interactomes
enable a meaningful analysis and visualization of mitochon-
drial expression dynamics of mito-genes and mito-processes
by comparing differential expression of two or more condi-
tions in mitoXplorer.

The mitoXplorer expression and mutation database

To foster the analysis of mitochondrial expression dynamics
and mutations, mitoXplorer hosts expression and mutation
data from public repositories in a MySQL database.

Expression data encompass analyzed data of differen-
tially expressed genes from RNA-seq studies and are avail-
able in the form of log2 fold change (log2FC) and P-value.
One differential dataset thus includes two experimental con-
ditions with all replicates. Mutation data include analyzed
data of identi!ed SNPs of one sample against a publicly
available reference genome or transcriptome.

Pre-analyzed public data are taken as provided by the
authors of the respective study: information on software
and genome version used for read mapping, as well as soft-

ware and settings used for differential expression analysis
can generally be found at the GEO-link of the respective
project listed on the DATABASE page. We have ensured
that only high-quality data with replicates, as well as a prop-
erly described analysis strategy are available in the mitoX-
plorer database. If only raw read counts were available, we
analyzed the data using state-of-the-art software (DESeq2
(45), for details see Methods). Finally, whenever only nor-
malized read counts were available, which is typical for large
population-based studies, we calculated log2FC according
to (70). It should be noted that due to the heterogeneity of
the available formats of the provided data, the algorithms
and their settings, as well as the genome version used for
read mapping might differ for available projects in mitoX-
plorer.

The largest public resource imported into mitoXplorer
covers publicly available expression data of human can-
cers from The Cancer Genome Atlas (TCGA) (1). We have
included all paired samples. This resulted in a total of
523 differential datasets from six different cancer types:
kidney cancer (KIRK), breast cancer (BRCA), liver can-
cer (LIHC), thyroid cancer (THCA), lung cancer (LUAD)
and prostate cancer (PRAD). Changes in mitochondrial
metabolism have been described in many cancer types
(for a review, see (71)). As mitoXplorer is thus far the
only resource that allows a focused analysis of mito-genes
across different cancer types or patient groups, this resource
should be especially useful to shed light on the expression
dynamics of mito-genes in cancer and to classify the mito-
chondrial metabolic pro!les of tumor types and sub-types.
Users can moreover integrate proprietary data with differ-
ential expression data from different tumor types and sub-
types.

We also uploaded expression data from cultivated !brob-
lasts of healthy human donors ranging from 1 to 94 years of
age (48) (GEO accession: GSE113957). Since decline in mi-
tochondrial quality and activity are well-known contribu-
tors to age-related conditions and diseases (72), this dataset
should help uncover the contribution of altered mito-gene
expression dynamics to the ageing process.

We made available several datasets from mouse knock-
out studies: we uploaded differential transcriptomic and
proteomic data of !ve different mouse conditional heart
knock-out strains of genes involved in mitochondrial
replication, transcription and translation (40) (Lrpprc,
Mterf4, Tfam, Polrmt, Twnk (Twinkle), (GEO accession:
GSE96518)). These data are especially helpful in unravel-
ing the transcriptional and post-transcriptional effects on
mito-genes upon disruption of gene expression at different
levels in mitochondria.

Furthermore, we added data from a mouse model of a
known mitochondria-associated condition, the Barth syn-
drome. Barth syndrome patients develop severe cardiomy-
opathy (73). This syndrome is caused by mutations in or
loss of the TAZ gene coding for the protein Tafazzin which
is involved in cardiolipin biosynthesis (74). Failure of en-
zyme activity of Tafazzin leads to altered mitochondrial
membrane composition, structure and metabolism (74,75).
We provide differential expression data of Taz knock-out
mouse embryonic !broblasts (MEFs) compared to wild-
type in normoxic and hypoxic conditions generated by



612 Nucleic Acids Research, 2020, Vol. 48, No. 2

Table 1. Mito-processes and number of associated mito-genes in human, mouse, Drosophila and budding yeast

Mito-process Human Mouse Drosophila Budding yeast

Amino acid metabolism 81 79 67 44
Apoptosis 56 55 43 6
Bile acid synthesis 2 2 7 0
Calcium signaling & transport 23 23 12 4
Cardiolipin biosynthesis 6 6 5 5
Fatty acid biosynthesis & elongation 22 22 15 13
Fatty acid degradation & beta-oxidation 30 31 26 9
Fatty acid metabolism 15 13 20 8
Fe-S cluster biosynthesis 25 26 19 23
Folate & pterin metabolism 13 13 9 13
Fructose metabolism 7 7 3 14
Glycolysis 38 37 35 33
Heme biosynthesis 9 9 9 5
Import & sorting 51 51 61 55
Lipoic acid metabolism 3 3 4 3
Metabolism of lipids & lipoproteins 34 36 17 14
Metabolism of vitamins & co-factors 17 18 19 9
Mitochondrial carrier 46 45 46 23
Mitochondrial dynamics 61 59 48 39
Mitochondrial signaling 18 18 10 11
Mitophagy 21 21 13 11
Nitrogen metabolism 9 9 16 7
Nucleotide metabolism 15 15 12 23
Oxidative phosphorylation 167 164 173 115
Oxidative phosphorylation (MT) 13 13 13 9
Pentose phosphate pathway 7 7 6 14
Protein stability & degradation 27 27 20 25
Pyruvate metabolism 26 25 24 12
Replication & transcription 51 52 32 50
ROS defense 34 34 30 24
Transcription (nuclear) 24 24 25 6
Translation 185 184 192 210
Translation (MT) 24 24 24 37
Transmembrane transport 20 20 21 24
Tricarboxylic acid cycle 21 22 29 26
Ubiquinone biosynthesis 9 9 9 12
Unknown 12 12 20 46
UPRmt 7 7 4 6

Chowdhury et al. (46) (GSE accession: GSE119775); these
data should help reveal the effect of Tafazzin loss of func-
tion during hypoxia.

To extend mitoXplorer to other model organisms, we
added data from D. melanogaster, namely expression data
from 185 wild-derived, inbred strains (males and females)
from the Drosophila Genetics Reference Panel (DGRP2)
(49): this set of lines stems from an out-crossed population
in Raleigh, North Carolina. These wild-derived "y strains
display a substantial quantitative genetic variation in gene
expression. The availability of these data on mitoXplorer al-
lows a focused analysis of mito-genes to elucidate whether
mitochondrial expression dynamics is equally impacted in
these strains.

Moreover, we have uploaded data from a recently pub-
lished systematic study of "ight muscle development in
D. melanogaster (44) (GEO accession: GSE107247). This
enables the analysis of mitochondrial expression dynam-
ics during the development and differentiation of a tis-
sue that is highly dependent on an ef!cient mitochon-
drial metabolism and especially ATP production for proper
functioning.

Regarding budding yeast, we imported data from a time-
course expression pro!ling experiment of meiosis of a syn-
chronized cell culture (Hanlon SE, Lieb JD (unpublished),

GEO accession: GSE75257), allowing users to mine the ex-
pression dynamics of mito-genes over 12h of sporulation.
This project is the only microarray-based dataset we have
uploaded on mitoXplorer.

Finally, we uploaded data from Protein Phosphates 2A
(PP2A) yeast deletion strains; these strains show a dimin-
ished response of nuclear gene expression associated with
mtDNA damage compared to wild-type (47) (GEO acces-
sion: GSE52242). This dataset should help shed light on the
role of the conserved protein phosphatase PP2A in protect-
ing cells from mtDNA damage.

To verify mitoXplorer predictions experimentally, we use
data from human trisomy 21: we provide data from human
trisomy 21 patients (GEO accession numbers: GSE55426;
GSE79842; (42,43)), from trisomy 21 studies in mouse
(GSE5542 (42), GSE79842 (43)), as well as differential
datasets generated in the course of this study from human
trisomic cell lines (11 datasets) which have been partially
published elsewhere (51,52) (GEO accessions: GSE39768;
GSE47830; GSE102855). These transcriptomic, as well as
proteomic datasets should help understand the role of mi-
tochondria and the mitochondrial metabolism in trisomy
21.

All available data can be viewed and accessed from the
mitoXplorer DATABASE web-page.
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User-provided expression and/or mutation data

Researchers can upload and explore their own data in
mitoXplorer, given that they originate from one of the
species contained in the mitoXplorer platform. Data must
be pre-analyzed. Differential expression data must contain
the dataset ID (describing the experimental condition), the
gene name and the log2FC. Optional values include the
P-value, as well as the averaged read counts (or intensi-
ties) of the replicates of the compared conditions. Muta-
tion data must contain the dataset ID, gene name, the chro-
mosome, the position, as well as reference and alternative
allele. Optional values include the effect, as well as the
consequence of the mutation. Users have the option to ei-
ther generate their own data according to the format de-
scribed on our website. We recommend to follow the best-
practice-guidelines available for analyzing transcriptomic
or proteomic data prior to uploading data to mitoXplorer
(see for instance (76,77) for differential expression analy-
sis or (78) for variant calling). Alternatively, users may use
the RNA-seq pipeline for differential expression analysis
and mutation calling that we provide at https://gitlab.com/
habermannlab/mitox rnaseq pipeline/.

The entire list of genes from a study should be uploaded
to the platform for several reasons: !rst, a restriction to only
differentially expressed or mutated genes will suppress links
between proteins in the interactome; second, an integration
of user data with publicly provided data is dif!cult with in-
complete datasets; third, mitoXplorer will automatically se-
lect the mito-genes from the user data. Uploaded data will
be checked for correct formatting and integrated with the
interactome of the chosen species. User data are only visi-
ble to the owner and are stored in the mitoXplorer MySQL
database for 7 days. Users can integrate their own data with
available public data on mitoXplorer to perform various
analyses and visualizations as described below (Figure 1).

Analysis and visualization tools in mitoXplorer

The mitoXplorer web-platform provides a set of powerful,
easy-to-read and highly interactive visualization tools to an-
alyze and visualize public, as well as user-provided data by
VDM (Figure 1): an Interactome View to analyze the over-
all expression and mutation dynamics of all mito-processes
of a single dataset containing differentially expressed genes
between two conditions and potential mutations in mito-
genes; the Comparative Plot, consisting of an interactive
scatterplot, as well as an interactive heatmap for compar-
ing up to six datasets; the Hierarchical Clustering, as well as
the Principal Component Analysis for comparative analysis
of many datasets.

INTERACTOME VIEW

The Interactome View can be used to get an at-a-glance view
of the overall expression dynamics of all mito-processes of
a single dataset of differentially expressed mito-genes and
potential mutations (Figure 2A). It allows users to identify
the most prominently changed mito-processes or -genes in a
dataset. The genes are grouped according to mito-processes
and displayed in the process they are assigned to. The Inter-

actome View is highly dynamic and can be adjusted by users
to their needs.

When the Interactome View is launched, each mito-
process is primarily shown as a grey circle with elements
colored in grey, blue and/or red, indicating up- or down-
regulated genes within the process, respectively (Figure 2A).
Thus, mito-processes with the most up- or down-regulated
genes can be quickly identi!ed.

When clicking on a process name, its circle opens up to
display all its member genes as bubbles. The size of the bub-
ble relates to the strength of the differential regulation while
the color indicates up- (blue) or down- (red) regulation of
the gene (Figure 2B). If information about mutations is in-
cluded in the dataset, this is indicated by a thicker, black
border of the gene bubble.

Hovering over a gene will display the gene name, its func-
tion, its mito-process, the log2FC and the P-value of the
differential expression analysis, as well as potential muta-
tions in the information panel (Figure 2C). If a gene phys-
ically interacts with other mito-genes, hovering over it or
over the process circle will in addition display these connec-
tions (Figure 2C). Thus, the user is immediately informed
about the location and connectivity of the protein of in-
terest within the mitochondrial interactome. Users can also
search for speci!c genes using the ‘FIND A GENE’ box at
the top of the page.

The Interactome View can be launched by clicking on the
‘eye’ symbol next to dataset names from the ANALYSIS
page of mitoXplorer, after having chosen the organism, the
project and the dataset. Alternatively, users can access sin-
gle datasets from the DATABASE page of the platform, by
clicking on the eye symbol of a listed dataset after having
chosen a species, as well as a project. A new page will be
opened for the Interactome View, which allows opening and
comparing multiple datasets at the same time. This is espe-
cially useful for comparing the overall expression change of
mito-processes of multiple datasets.

COMPARATIVE PLOT

The Comparative Plot visualization combines several in-
teractive graphs to analyze one mito-process, allowing the
comparison of up to six datasets. It includes a scatterplot
with a dynamic y-axis, as well as an interactive heatmap
at the bottom of the page. The mito-process to be visual-
ized can be selected in the process panel (Figure 3A). Red
and blue coloring of the dots and the heatmap indicates the
directionality of differential expression (blue: upregulated;
red: down-regulated); bright blue, larger gene bubbles in the
scatterplot indicate mutations, if available from the dataset.
This Comparative Plot offers an overview of the expression
dynamics of all members of one mito-process for up to six
individual datasets and thus can be helpful in identifying
co-regulated genes e.g. in time-course data, patients or mul-
tiple mutant datasets.

Hovering over a gene bubble, or over a tile in the heatmap
will again display the respective associated information of
the gene in the information panel (gene name, function,
mito-process, log2FC, P-value, potential mutations) (Figure
3B). The heatmap can be sorted according to the dataset,
as well as the differential expression values within one
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Figure 2. Interactome View of the mitoXplorer platform. (A) Overview of all mito-processes of one dataset. A process can either be shown as one circle
with colored segments according to the number of dysregulated genes, or upon clicking on the process, by showing all individual genes being part of this
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to RPE1 with Trisomy 21 (RPE T21).
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Figure 3. Comparative Plot of the mitoXplorer platform. (A) The Comparative Plot display is composed of a scatterplot, sortable heatmap and a bar chart
for the selection of mito-processes. The scatterplot shows the log2 fold change (y-axis) and the datasets (x-axis). Each bubble represents one gene, whereby
red bubbles indicate down-regulated, and blue ones upregulated genes. The process to be shown can be selected by clicking on the process name in the
bar chart next to the scatterplot, the chosen process being indicated on its top. In this case, TCA cycle was chosen. The heatmap at the bottom shows the
individual genes and the datasets, whereby the genes are colored according to their log2 fold change (indicated at the bottom of the plot). (B) Hovering
over a gene bubble (or a gene tile in the heatmap) will display available information (in case of "y: gene name, mitochondrial process, gene description,
chromosomal location, gene symbol, as well as log2 fold change, P-value and observed mutations). (C) The heatmap is sortable by log2 fold change (as
indicated by the pointer in C), as well as by dataset. Clicking on one of the datasets will sort the heatmap according to the log2 fold change of all genes
in this dataset, as is illustrated here. Clicking on one of the genes will sort the heatmap according to its log2 fold changes across different datasets. The
time-series study of developing "ight muscle (44) was used to demonstrate the functionality of this visualization method.
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dataset (Figure 3C). The Comparative Plot is especially use-
ful for performing a detailed, comparative, mito-process
based analysis of differential expression dynamics between
different datasets.

We applied this analysis method to visualize differential
expression data from a time-series study of "ight muscle de-
velopment during pupal stages in Drosophila (44) (Figure
3). While enrichment analysis has revealed a general pos-
itive enrichment of processes like Tricarboxylic acid cycle
(TCA Cycle) in the course of "ight muscle development,
mitoXplorer identi!es 12 genes of TCA cycle that are co-
regulated. This group of genes is strongly upregulated be-
tween 0 and 16 h after puparium formation (APF), when
myoblasts divide and fuse to myotubes. The same group of
genes is consecutively down-regulated in two phases at time-
points 30–48 h and 72–90 h APF, when myotubes differen-
tiate to mature muscle !bers. This is surprising as in ma-
ture muscle !bers the TCA cycle should be important for
proper functioning. Their strong induction between the !rst
two time-points could be responsible for downregulation at
later stages.

THE HEATMAP: HIERARCHICAL CLUSTERING

Hierarchical Clustering visualization allows the analysis of
up to 100 datasets, analyzing one process at a time. This cre-
ates a heatmap with mito-genes, as well as -datasets, which
are clustered according to the log2FC using hierarchical
clustering (Figure 4 a). The results are displayed as a clus-
tered heatmap, with a dendrogram indicating the distance
between datasets or between genes.

Hovering over a gene will display its associated informa-
tion, as well as dataset information in the information panel
(Figure 4B). The user can furthermore zoom into parts
of the heatmap to get a more detailed view of the data.
The heatmap is particularly useful for discovering groups of
similarly regulated mito-genes or datasets within one mito-
process.

We applied this visualization tool to display transcrip-
tome and proteome data from a recent, systematic study of
mouse conditional knock-out strains for !ve genes involved
in mitochondrial replication (Twinkle (Twnk)), mtDNA
maintenance (Tfam), mito-transcription (Polrmt), mito-
mRNA maturation (Lrpprc) and mito-translation (mTerf4)
(40). Interestingly, the expression dynamics of the mito-
chondrial transcriptomes and proteomes in heart tissue did
not cluster together for the mutants, suggesting strong post-
transcriptional effects or protein stability changes of mito-
proteins upon the loss of any of these genes. In accordance
with this, the expression of some mito-genes in the process
Pyruvate metabolism that is shown here differs on transcrip-
tome and proteome level. This demonstrates the usefulness
of hierarchical clustering and the heatmap display in iden-
tifying the correlation or divergence between genes as well
as datasets.

PRINCIPAL COMPONENT ANALYSIS

A larger number of datasets can be compared using Prin-
cipal Component Analysis (PCA), either for an individual
mito-process, or considering all mito-genes together (Fig-
ure 5A). In PCA, the expression value (e.g. log2FC) of each

gene is considered as one dimension, and each dataset repre-
sents one data point. In the resulting 3D PCA plot, the three
axes represent the !rst three principal components and each
bubble represents one dataset. The PCA is again interactive.
Mito-processes can be selected via a drop-down menu on
the top of the page. The plot can be turned and moved in
3D and has a zooming function.

Hovering over a bubble will give the information asso-
ciated with an individual dataset in the information panel,
including the values of the !rst three principal components
(Figure 5B). The information differs for each project cho-
sen.

Individual datasets can be selected and colored via the
dataset panel next to the plot (Figure 5C). For instance with
data from TCGA the !lter and coloring can be used to high-
light or to limit the plot to data from different tumors, dif-
ferent tumor stages or according to any other additional in-
formation provided. The PCA is especially useful for an-
alyzing a large number of datasets and displaying speci!c
trends in sub-groups.

We used the PCA plot to visualize data from the TCGA
for four cancer types stored in mitoXplorer in Figure 5A,
whereby the colors of the bubbles represent the different tu-
mor types. The plot clearly highlights the variance of the
different tumor types. In particular, kidney and liver cancer
are highly distinct with respect to the !rst three components
of all mito-genes (Figure 5A).

GROUPS function

In order to allow a more detailed, gene-centered analysis of
correlated datasets, we added the possibility to select and
group datasets in the Heatmap and the PCA views. Groups
of datasets can be compared against each other with the
Comparative Plot, whereby the log2FC is averaged over the
data within a group. This functionality is useful, for instance
when different groups of donors with similar expression
patterns should be compared to each other.

We demonstrate the usability of the GROUPS function
in Supplementary Figure S2, where we analyzed the aver-
aged expression patterns of ageing human !broblasts from
healthy donors from 1 to 94 years of age (48). A !rst analysis
using the PCA plot revealed that individuals which are older
than 80 years were separated from the rest of the donors
(Supplementary Figure S2A).

We next applied the GROUPS function to analyze dif-
ferent age groups using the mitoXplorer Comparative Plot.
We chose to group individuals based on age, whereby we
generated six age groups from age 40 to 100 years. As the
age group 80–90 years showed two distinct clusters, we split
this group in individuals that cluster with younger donors
(g1), and those that cluster with the age group over 90 (g2).
Our analysis using mitoXplorer GROUPS helped reveal a
strong downregulation of a substantial number of mito-
genes in nearly all mito-processes starting from the age of
85 (Supplementary Figure S2B), suggesting a general mito-
chondrial decline in old age.

Taken together, mitoXplorer provides a versatile, inter-
active and integrative set of tools to visualize and analyze
the expression dynamics as well as mutations of mito-genes
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Figure S2).
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and mito-processes, facilitating a detailed understanding of
observed changes at a molecular level.

Analyzing transcriptomes of mitochondria-associated health
conditions using mitoXplorer

To demonstrate the analytical and predictive power of mi-
toXplorer, we explored available transcriptome data from
health conditions associated with mitochondrial functions.
We !rst performed mitoXplorer analysis of data from a
mouse model of Barth syndrome (46), a mitochondrial dis-
order caused by mutations of the Taz gene which encodes
the protein Tafazzin. Second, to show that we could verify
mitoXplorer predictions experimentally, we analyzed our
set of trisomy 21 data using mitoXplorer (51,52).

Analyzing the effects of Tafazzin loss of function in normoxic
and hypoxic conditions using mitoXplorer

The Taz gene which encodes the cardiolipin acyl transferase
Tafazzin is required for the remodeling of cardiolipin, an
essential lipid component of the mitochondrial inner mem-
brane (79). Loss of Tafazzin function leads to an abnor-
mal fatty acid composition and a decrease in cardiolipin
levels, resulting in abnormal mitochondrial morphology
and dynamics, decreased stability of respiratory supercom-
plexes and increased oxidative stress (see (80) and references
therein). Loss of Tafazzin function is also the primary cause
of Barth syndrome (73), a rare, recessive, X-linked disorder
that is characterized by cardiomyopathy, skeletal myopathy,
growth retardation and neutropenia (81). Cardiolipin has
been implicated in many mitochondrial processes, including
mitochondrial protein import, mitochondrial carrier func-
tion, mitochondrial morphology and dynamics, respiratory
chain function and metabolism (see (82) and references
therein). Chowdhury et al. (46) subjected Tafazzin-mutant
mouse embryonic !broblasts (MEFs) to hypoxic stress to
unravel the mechanism of impaired hypoxia-response in this
cellular model of Barth syndrome. They observed that in hy-
poxia, a reduction of ROS levels in Tafazzin-de!cient cells
prohibited the induction of the NF-"B pathway, resulting
in reduced Hif1# expression levels and subsequently the in-
ability to respond to hypoxia.

Using the mitoXplorer Interactome View, we !rst could
show that loss of Tafazzin function leads to a substan-
tial perturbation of mito-gene expression in normoxic con-
ditions (Supplementary Figure S3A), among which are
the mito-processes Mitochondrial dynamics and Mitochon-
drial carrier (Figure 6A, B). In hypoxia, the expression pro-
!le of Tafazzin-de!cient MEFs showed markedly different
expression dynamics from wild-type cells (Supplementary
Figure S3B).

In agreement with the !ndings from Chowdhury et al.,
using mitoXplorer we found Hif1# down-regulated in Taz-
de!cient cells under normoxic and hypoxic conditions,
while it was induced in hypoxia in wild-type cells (Figure
6C). Using Harmonizome (83), we also found a number of
predicted and veri!ed Hif1# target genes, some of which
were de-regulated under hypoxic conditions in the Tafazzin-
de!cient cells (marked by an asterisk in Figure 6A–D). Next
to Hif1# we found Yap1 de-regulated with the same expres-
sion dynamics. Yap1 is part of the Hippo signaling pathway

and was shown to be stimulated in hypoxia (84), where it
binds to and stabilizes Hif1#. As shown in Figure 6C, Yap1
was down-regulated upon loss of Tafazzin function in nor-
moxic and hypoxic conditions, while it was upregulated in
hypoxia in wild-type cells.

mitoXplorer analysis also revealed the failure of induc-
ing RelA in hypoxia in Tafazzin-de!cient cells. This tran-
scription factor is a member of the Nf-"B family and was
shown to be induced and activated early in hypoxia to mod-
ulate NF-"B target gene expression. The NF-"B depen-
dent response to hypoxia was equally impaired upon loss
of Tafazzin function.

Chowdhury and colleagues proposed that reduced ROS
levels in response to hypoxia prevent proper NF-"B acti-
vation in Tafazzin-de!cient cells. We thus investigated the
expression dynamics of mito-genes in ROS defense using
mitoXplorer and found that the Mitochondrial Methionine
Sulfoxide Reductase B2 (MsrB2) was strongly induced in
Tafazzin-de!cient MEFs (log2FC of 6.67 in normoxic and
5.13 in hypoxic conditions, respectively), whereas MsrB2
levels remained constant in wild-type cells in hypoxia (Fig-
ure 6D). MsrB2 reduces methionine (R)-sulfoxide to me-
thionine and thus decreases reactive oxygen species in the
cell due to its quenching properties; thus, its overexpression
protects cells from oxidative stress (85). Its strong induc-
tion could be responsible for reduced ROS levels observed
in Tafazzin-de!cient cells.

In conclusion, using mitoXplorer we could not only iden-
tify previously described mito-processes affected by loss of
Taffazin in normoxic conditions and con!rm expression
changes of Hif1# in Tafazzin-de!cient cells in hypoxia. The
expression pro!les revealed by mitoXplorer analysis fur-
thermore suggest that loss of Yap1 contributes to the ob-
served phenotype by de-stabilizing Hif1#. Moreover, our
analysis using mitoXplorer indicates that massive induction
of the MsrB2 gene could be responsible for reduced ROS
levels in Tafazzin-de!cient cells in hypoxia, leading to a fail-
ure of induction of the NF-"B pathway and the transcrip-
tion factor RelA.

Analyzing cell lines carrying trisomy 21 using the mitoX-
plorer platform

We next wanted to experimentally verify predictions made
with mitoXplorer. To this end, we analyzed the tran-
scriptome and proteome of a set of aneuploid cell lines
carrying an extra copy of chromosome 21 (trisomy 21,
T21). Mitochondrial dysfunction has been repeatedly found
in T21 patients, whereby mostly oxidative stress, as well
as––potentially resulting––mitochondrial respiratory de!-
ciency have been shown to contribute to some of the ob-
served clinical features (see for instance (86–99)). Tran-
scriptome studies of different T21 tissues using microarrays
(100–110) and more recently RNA sequencing (42,43,111)
and proteomics (41,112–115) have revealed a complex pic-
ture of gene expression changes, with a marked dissimilarity
in differential expression of mito-genes on mRNA and pro-
tein levels, indicating a potential post-transcriptional reg-
ulatory effect of some mito-genes in T21 (41). Yet, mito-
gene and protein expression data in different tissues or un-
der varying conditions in T21 remain sparse and a coherent
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Figure 6. Mito-gene expression dynamics of Tafazzin-de!cient mouse embryonic !broblasts in normoxic and hypoxic conditions. The mito-processes
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hypothesis of the underlying mechanisms leading to the mi-
tochondrial de!ciencies in T21 patients is still missing.

We used trisomy 21 cell lines derived from either the eu-
ploid human colon cancer cell line HCT116 or from the
retinal pigmented epithelial cell line RPE1, to which an ex-
tra copy of chromosome 21 was added (51). We used two
RPE1-derived and two HCT116-derived clones trisomic for
chromosome 21 (Supplementary Table S3 a), which were
validated by "uorescent in situ hybridization and by whole
genome sequencing. We used transcriptomic data of the
original euploid RPE1 line and its two trisomic deriva-
tives (RPE T21 clone 1 and 2 (c1, c2) (51)), as well as
for HCT116, and its trisomic derivatives (HCT T21 (c1,
c3)). We included proteomic data for RPE1 and one of
its T21 derivatives (RPE T21 c1). We performed bioinfor-
matic analysis to determine differential expression of the
above conditions (Supplementary Table S3B–E, for details
on bioinformatic data analysis see Materials and Methods)
and uploaded the differential expression data of the tran-
scriptome and proteome on the mitoXplorer platform for
further in-depth, mitochondrial analysis.

Differences between trisomy 21 cell lines

MitoXplorer analysis of data comparing HCT116- and
RPE1-derived T21 cell lines using the Interactome View
revealed that T21 induced strong effects with respect to
the overall expression changes in mito-genes (Figure 7).
HCT T21 showed a subtle, but consistent up-regulation of
mito-genes (Figure 7A). In contrast, RPE T21 cells showed
a strong downregulation of a few genes involved in sev-
eral mito-processes, such as Fatty acid metabolism, Gly-
colysis or Mitochondrial dynamics (Figure 7B). Remark-
ably, quantitative proteome data from RPE T21 c1 cells
suggested that all mitochondria-encoded genes involved
in OXPHOS, as well as the majority of nuclear-encoded
OXPHOS-genes are down-regulated (Figure 7C). In con-
clusion, mitoXplorer analysis facilitated the !nding of sig-
ni!cant differences in mito-gene expression between the dif-
ferent cell lines. Importantly in RPE T21 cells, proteome
data showed a remarkable difference to transcriptome data.

mitoXplorer analysis suggests mitochondrial ribosomal as-
sembly defects in RPE T21 cell lines

To investigate the differences further, we next performed a
more detailed analysis of expression changes in these T21
cell lines using Comparative Plots in mitoXplorer. Tran-
scriptome and proteome data from RPE T21, but not from
HCT T21 cell lines revealed that several subunits of the
small mitochondrial ribosome (mitoribosome) were signif-
icantly down-regulated on either RNA or protein level,
or both (Figure 8A). MRPS21 was strongly reduced on
RNA- and protein-level. The genes MRPS33, MRPS14
and MRPS15 were largely normal on RNA level, while
their protein levels decreased more than 2-fold (log2FC:
MRPS33: -2.147; MRPS14: −1.827; MRPS15: −1.057).
Mitoribosomal subunits are encoded in the nuclear genome
and their protein products are imported into the mitochon-
dria, where they assemble with mitochondrial ribosomal
RNAs to form the large and small subunits of the mitoribo-
some. The mitoribosome is responsible for translating the

13 mt-mRNAs encoded in the mitochondrial genome, all
of which code for key subunits of the respiratory chain re-
quired for OXPHOS (116,117). In accordance with a dis-
rupted mitochondrial translation machinery, all quanti!-
able mitochondria-encoded OXPHOS proteins (Complex
I: MT-ND1 and MT-ND5; Complex IV: MT-CO2) were
severely diminished on protein-, but not on RNA-level in
RPE1 T21 cells (Figure 8B).

Interestingly, 36 of the quanti!able OXPHOS pro-
teins encoded in the nuclear genome were also found
to be down-regulated at the proteome, but not at tran-
scriptome level in RPE T21 cells (Figure 8C). These in-
clude subunits of the NADH dehydrogenase (complex I),
ubiquinol−cytochrome c reductase (complex III) and cy-
tochrome c oxidase (complex IV). It is important to note
that there is no general downregulation of mitochondrial
proteins in these cells and only a few, speci!c proteins are
strongly down-regulated (Figure 7C). Together, these data
demonstrate the power of mitoXplorer to help identify the
cause of important changes in mito-gene expression, here
the downregulation of mitoribosomal subunits at the tran-
scription level and the resulting consequences, in this case
the downregulation of the majority of OXPHOS proteins.

RPE T21 cells are defective in oxidative phosphorylation

The massive downregulation of OXPHOS proteins in
RPE T21 cells suggests that these cells should suffer from
a severe OXPHOS de!ciency. To test this hypothesis exper-
imentally, we analyzed cellular respiration and glycolysis in
T21 cell lines using a Seahorse XF96 analyzer to quantify
oxygen consumption rate (OCR) as an indicator of mito-
chondrial respiration (Figure 9A−D, F), as well as the pro-
ton production rate (PPR) as an indicator of glycolysis (Fig-
ure 9E, G). In intact RPE T21 cells, we indeed observed
dramatically reduced levels of cellular respiration in com-
parison to the diploid control (Figure 9A).

As a complex I de!ciency has been reported in trisomy
21 patients (95), we next asked whether RPE T21 cells se-
lectively suffer from a complex I de!ciency, or whether the
entire respiratory chain is affected, as suggested by our pro-
teomic data. We used permeabilized cells to test each indi-
vidual complex with the Seahorse analyzer, supplementing
with pyruvate/malate, succinate and TMPD/ascorbate for
assessing complex I, II or IV functionality, respectively. As
expected from our proteomic analysis, RPE T21 cells dis-
played a severe de!ciency of the entire respiratory chain
(Figure 9B−D). The glycolytic rate of RPE T21 cells in
the presence of glucose was similar to the diploid control
cells. Inhibition of ATP-production was not able to stimu-
late the cells to a higher glycolytic rate (Figure 9E), which
agrees with the already low OXPHOS levels observed in
these cells. HCT T21 cells, on the other hand, displayed
normal respiration, as well as glycolysis (Figure 9F, G). This
suggests that the respiratory chain, as well as the mitochon-
drial translational machinery is not generally affected in all
T21 cells. Taken together, mitoXplorer helped uncover OX-
PHOS de!ciencies in RPE T21 cells, which we veri!ed ex-
perimentally, demonstrating the power of an in-depth anal-
ysis of mitochondrial expression dynamics to identify the
potential molecular cause of the observed phenotype.
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Figure 7. Interactome View of the transcriptome and proteome of cell lines carrying trisomy 21. Trisomy 21 samples were compared against their wild-
type counterpart. Transcriptomic analysis of (A) HCT116 T21 (trisomy 21 against wild-type, c3) and (B) RPE21 T21 (trisomic against wild-type, c1);
(C) proteomic analysis of RPE T21 cells (trisomy 21 against wild-type, c1). Transcriptome changes are different between the two trisomy 21 cell lines
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in the process Oxidative phosphorylation.
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Figure 9. Mitochondrial respiration and glycolysis is strongly affected in RPE T21 cells and not affected in HCT T21 cells. (A) Respiration in intact
RPE T21 cells is greatly decreased compared to wild-type. (B–D) Permeabilized RPE T21 cells supplemented for substrates of complex I, II and IV as
indicated in the header of each plot, showed equally dysfunctional OXPHOS, suggesting a general break-down of the respiratory chain. (E) RPE T21
cells do not have any spare glycolytic reserve. Respiration (F), as well as glycolysis (G) is virtually unchanged in HCT T21 cells compared to their wild-
type counterparts. Bright red: RPE T21 clone 1; light red: RPE T21 clone 2; dark red: RPE wild-type; dark blue: HCT wild-type; light blue: HCT T21
clone 1. Measurements of cellular respiration in intact and permeabilized cells, as well as glycolytic potential were done using the Seahorse Bioscience XF
Extracellular Flux Analyzer (Seahorse Biosciences). The experiments were performed using the mitochondrial and glycolytic stress test assay protocol as
suggested by the manufacturer; the rate of cellular oxidative phosphorylation (oxygen consumption rate (OCR)) and glycolysis (cellular proton production
rate (PPR)) were measured simultaneously.
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Quanti!cation of mitochondrial network morphology using
mitoMorph

We further wanted to investigate, if T21 and the defective
OXPHOS had a consequence on mitochondrial morphol-
ogy and the mitochondrial network structure was changed
in T21 cell lines. To quantify mitochondrial morphology in
RPE T21 cells, we stained mitochondria using the Mito-
Tracker Deep Red FM dye. In order to quantify the char-
acteristics of mitochondrial morphology, we developed a
new Fiji plugin for quanti!cation of mitochondrial net-
work features, which we called mitoMorph. MitoMorph is
based on the scripts provided by Leonard et al. (60) for
quantifying mitochondrial network features such as !la-
ments (corresponding to !lamentous networked structures
longer than 11 !m), rods (corresponding to !lamentous
networked structures shorter than 11 !m), puncta (corre-
sponding to round structures below a radius of 0.6 !m) and
swollen (corresponding to round structures above a radius
of 0.6 !m) mitochondrial structures (see Methods for im-
plementation details). MitoMorph reports the percentages
of !laments, rods, puncta and swollen for each individual
cell, as well as for all selected cells in a batch analysis (Fig-
ure 10A, B). Moreover, it provides the lengths and areas
of !laments and rods. Figure 10C−F shows the distribu-
tion of mitochondrial network features for the two wild-
type and T21 cell lines. MitoMorph analysis revealed that
in both backgrounds, T21 cells had fewer mitochondrial !l-
aments than their wild-type counterparts, but instead pos-
sessed a slightly higher number of rods, which was signi!-
cant in HCT T21 cells. Both T21 cell lines had signi!cantly
more swollen structures than their wild-type counterparts.
Length and area distribution of !laments and rods were not
signi!cantly different between the wild-type and the trisomy
21 cells (Supplementary Figure S4A−D). We looked at ex-
pression dynamics of mito-genes associated with the pro-
cess Mitochondrial dynamics using mitoXplorer. The only
gene that is consistently, though only mildly down-regulated
in both RPE T21 clones is GDAP1 (Supplementary Figure
S5). GDAP1 was shown to regulate the mitochondrial net-
work by promoting mitochondrial !ssion (118). Its down-
regulation could be contributing to or be a consequence of
the observed phenotype. In conclusion, mitochondrial mor-
phology based on light-microscopy is mildly affected in tri-
somy 21.

Data integration with publicly available trisomy 21 datasets

After discovering this differential OXPHOS defect in our
RPE T21 cell lines, we were interested in the overlap of
the mito-transcriptome and -proteome of RPE T21 cells
with data from trisomy 21 patients. We used proteomic and
transcriptomic data from a monozygotic twin study discor-
dant for chromosome 21 (41,42). In agreement with our
RPE T21 data, systematic proteome and proteostasis pro-
!ling of !broblasts from monozygotic twins discordant for
T21 revealed a signi!cant, although milder downregulation
of the mitochondrial proteome, including proteins involved
in OXPHOS, which is not apparent from transcriptomic
analysis of the same cells (see Supplementary Figure S6A,
B).

We next looked at proteomic data of !broblasts from 11
unrelated individuals with trisomy 21 (41) (Supplementary
Figure S6C−E). Virtually all T21 patients showed reduc-
tion in at least a few mitochondrial- and nuclear-encoded
subunits of the respiratory chain (Supplementary Figure
S6D, E). However, we could not con!rm the strong reduc-
tion of the MRPS21 protein in all individuals. The only
measurable mitoribosome subunit that was consistently,
though in some cases only mildly, down-regulated was
MRPL19 (Supplementary Figure S6C). Taken together,
though the precise molecular mechanisms remain elusive,
our analysis of these datasets with mitoXplorer nevertheless
suggests a post-transcriptional effect leading to reduced ex-
pression levels of proteins involved in OXPHOS in trisomy
21.

DISCUSSION

The web-based mitoXplorer platform for mito-centric data
exploration

MitoXplorer is a practical web tool with an intuitive inter-
face for users who wish to gain insight from -omics data in
mitochondrial functions. It is the !rst tool that takes ad-
vantage of the breadth of -omics data available to date to
explore expression variability of mito-genes and -processes.
It does so by integrating a hand-curated, annotated mito-
chondrial interactome with -omics data available in public
databases or provided by the user.

MitoXplorer has been conceived and implemented as a
visual data mining (VDM) platform: by iteratively inter-
acting, visualizing and by allowing manipulation of the
graphical display of data, the user can effectively discover
complex data to extract knowledge and gain deeper under-
standing of the data. MitoXplorer provides a set of particu-
larly interactive and "exible visualization tools, with a !ne-
grained, function- as well as gene-based resolution of the
data. Clustering, as well as PCA-analysis help in addition to
mine a larger number of -omics data effectively by grouping
datasets with similar expression patterns.

VDM-based knowledge discovery is offered by a large
number of resources and platforms. However, to the best
of our knowledge, no currently available tool allows to ex-
plore expression variation of a speci!c subset of genes in
a large number of -omics datasets. It permits users to ex-
ploit publicly available transcriptome, proteome or muta-
tion data to study the variation and thus, the adaptability of
a de!ned gene set in different conditions or species. While
mitoXplorer offers the exploration of mito-genes, we have
designed the platform in such a way that users interested
in a different gene group can download a local version of
mitoXplorer and upload their own interactome, which may
contain any gene group of interest. Thus, mitoXplorer can
be "exibly adjusted to any user-de!ned gene set.

Identi!cation of putative causes of ROS-downregulation in
Tafazzin-de!cient cells using mitoXplorer

We have analyzed data from a mouse model of Barth syn-
drome to demonstrate that mitoXplorer can help identify
de-regulated pathways in mitochondria-associated diseases.
Barth syndrome results from a dis-balance of cardiolipin
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species due to the loss-of-function of the Tafazzin pro-
tein and displays defects in many mitochondrial processes.
Chowdhury et al. have speci!cally tested the response to
hypoxia of Tafazzin-de!cient cells. They have identi!ed re-
duced ROS levels in Tafazzin-de!cient MEFs that lead to a
failure to induce the NF-"B transcription factor RelA and
!nally, the transcription factor Hif1#. Using the more com-
prehensive and manually curated mito-interactome of mi-
toXplorer, we could not only con!rm the failure of induc-
tion of RelA and Hif1#. We furthermore propose that failed
induction of the Hippo pathway protein Yap1 which stabi-
lizes Hif1# could contribute to the observed phenotype. Fi-
nally, using mitoXplorer we identi!ed MrsB2 as the puta-
tive cause of lowered ROS levels in Tafazzin-de!cient cells,
as this enzyme has ROS-quenching activities, normally pro-
tecting cells from oxidative damage.

Cell type-speci!c de-regulation of mito-genes in trisomy 21

We experimentally veri!ed mitoXplorer predictions by ex-
pression pro!ling of mito-genes in T21 cell lines. Mito-genes
were strongly deregulated in both trisomic cell types tested,
the non-cancerous retinal pigment epithelial cell line RPE1
and the cancer cell line HCT116. Yet, the changes in ex-
pression were quite different in the two cell lines. It is not
unexpected that mito-genes are differentially expressed in
different cell types, re"ecting the divergent cellular energy-
and metabolic demands (20). Gene expression is moreover
tightly regulated in a cell-type speci!c manner by regulat-
ing transcription, translation and the epigenetic state of the
cell. Thus, also divergent and cell-type speci!c expression
changes of mito-genes upon introduction of an extra chro-
mosome is not surprising.

mitoXplorer assisted in revealing divergent de-regulation of
mitochondrial transcriptome and proteome in trisomy 21

We found a remarkable difference between transcriptome
and proteome levels of mito-genes in RPE T21 cells. In par-
ticular the OXPHOS proteins were strongly down-regulated
at protein, but not mRNA level. This can be explained by es-
sential components of the respiratory chain being encoded
in the mitochondrial genome and thus requiring a func-
tioning mitochondrial replication system, as well as intact
mitochondrial transcription and translation. Thus, there is
as strong post-transcriptional regulation of the mitochon-
drial proteome. In case of the RPE T21 cell line, the disin-
tegration of the mitoribosome and thus a failure of mito-
chondrial translation is likely causative for the downregu-
lation of OXPHOS components on protein-level, possibly
by proteolysis, as the essential mitochondrial subunits are
not produced and thus complexes cannot assemble. This
conclusion is further supported by the fact that we could
not observe a signi!cant difference in mitochondrial tran-
script levels, with some mt-mRNAs even being upregulated;
thus, mtDNA -maintenance, -replication as well as mito-
transcription seem to be unaffected.

MitoXplorer analysis of previously published data of
the mito-proteome of !broblasts isolated from monozy-
gotic twins discordant for T21, as well as 11 unrelated in-
dividuals with trisomy 21 (41) con!rmed a similar post-
transcriptional effect as we found in our T21 model cell

lines. Taken together, our data uncovered a signi!cant post-
transcriptional regulation of the mitochondrial process OX-
PHOS in our model system of trisomy 21 that could bring
new insight into the mechanisms of mitochondrial defects
in trisomy 21 patients.

mitoXplorer helped identify mitochondrial ribosomal protein
S21 (MRPS21) as potentially causative for OXPHOS failure

The most notable difference in RPE T21 cells compared
to wild-type is the >10-fold downregulation of mitochon-
drial ribosomal protein S21 (MRPS21) on transcript level,
as well as the downregulation of Mrps21 protein and other
proteins of the small and––to a lesser extend––large mi-
toribosome subunits. Thus, our data suggest that the in-
tegrity of the mitoribosome is compromised, leading to its
disintegration and subsequently, the downregulation of mi-
tochondrial proteins of the respiratory chain. Mrps21 is a
late-assembly component and lies at the outer rim of the
body (or bottom) of the small subunit (SSU) of the mitori-
bosome. Nevertheless, it interacts with a number of other
proteins of the SSU and also directly contacts bases of the
12S rRNA (119,120). Thus, its absence could destabilize the
SSU of the mitoribosome. The two most down-regulated
proteins are Mrps33 and Mrps14, both of which directly in-
teract with each other and several other proteins in the SSU
and are localized to the head of the SSU. Furthermore, to-
gether with another down-regulated component, Mrps15,
they are proteins that are incorporated late in the mitori-
bosome assembly process (120). This raises the possibility
that late-assembly proteins disintegrate more readily from
the mitoribosome, leading to their enhanced degradation
and thus ribosome malfunction.

Based on promoter analysis using MotifMap (121), po-
tential binding motifs of two transcription factors located
on chromosome 21, GABPA and ETS2, can be found in
the promoter region of the MRPS21 gene. Gabp#, which
is also known as nuclear respiratory factor 2, has already
been implicated in mitochondrial biogenesis by regulating
Tfb1m expression (122): its depletion in mouse embryonic
!broblasts showed reduced mitochondrial mass, ATP pro-
duction, oxygen consumption and mito-protein synthesis,
but had no effect on mitochondrial morphology, membrane
potential or apoptosis. Direct or indirect regulation of mi-
toribosomal proteins could be another regulatory function
of this transcription factor. GABPA is not affected on tran-
scriptome level, but is down-regulated on protein-level in
RPE T21 cells. ETS2 on the other hand has so far not been
implicated in mitochondrial biogenesis or functional regu-
lation.

We see consistent downregulation of proteins involved
in OXPHOS in other trisomy 21 proteomic datasets and
OXPHOS defects have been reported in trisomy 21 before.
MRPS21 seems deregulated only in a few T21 individuals.
Thus, the causes of OXPHOS de!ciencies seem to depend
on genomic background or on the cell type studied. Trisomy
21 patients develop different degrees of severity of symp-
toms and it is likely that the genomic variability of chromo-
some 21 contributes to the varying phenotypes (123,124).
In conclusion, while defects in OXPHOS seem a common
phenotype in trisomy 21, their severity as well as the un-
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derlying mechanisms might differ depending on the cellular
model or the genomic background.

Limitations and future developments of mitoXplorer

The proper assembly and annotation of the mito-
interactomes turned out to be a demanding task. While
proteomic studies of mitochondria are available for differ-
ent model species and humans, the data cannot be taken
without manual intervention due to signi!cant numbers
of false-positives and false-negatives. A manual curation
of the data is therefore mandatory. Though we carefully
curated the mito-interactomes used in mitoXplorer, we do
not claim that they are complete or free of false-positives.

We decided to assign one mito-gene with one mito-
process only, as it was the most straightforward solution
to implement. Furthermore, assigning multiple processes to
one gene would arti!cially increase the mitochondrial inter-
actome, making the analysis also more dif!cult. Neverthe-
less, the current annotation might not represent all exper-
imentally validated biological functions of a mito-gene. In
future releases, we will therefore consider allowing two or
more processes for one mito-gene at least in a limited num-
ber of cases, whenever there is strong experimental evidence
that a protein or protein complex is contributing to two or
more mito-processes. We hope that the scienti!c commu-
nity working on mitochondria will help us further clean,
complete and correctly annotate our mito-interactomes by
using the FEEDBACK page.

The current version of mitoXplorer does not provide
mito-process enrichment analysis. Our reasoning behind
this decision was to allow users to mine their data in an
unbiased and detailed way, considering all mito-processes
rather than only focusing on enriched ones. In future re-
leases, we will consider adding information on mito-process
enrichment of a dataset to guide users in their analysis, for
example by visually highlighting enriched processes in the
Interactome View.

MitoXplorer has been optimized for mining expression
data and currently it is not meaningful to analyze mito-gene
mutations alone. We realize that this is a limitation when
considering large, population-wide studies. We will there-
fore consider implementing a visual data mining interface
that is speci!cally tailored for analyzing mito-gene muta-
tions alone in future versions of the software.

MitoXplorer expects users to provide data for which dif-
ferential expression analysis or mutation calling has already
been performed, as mitoXplorer was conceived as a visual
data mining platform. There are already many tools and
pipelines available to perform differential expression anal-
ysis and mutation calling, yet too few tools that allow in-
depth data mining, such as mitoXplorer. To make prior
data analysis as easy as possible for users, we provide a
pipeline for differential expression analysis and mutant call-
ing, which is available in our git-repository (https://gitlab.
com/habermannlab/mitox rnaseq pipeline/). Nevertheless,
we recognize that the potential heterogeneity of analyzed
data from different studies has limitations, especially con-
cerning comparative analysis between different projects.

MitoXplorer is integrating, clustering and visualizing nu-
merical data resulting from expression studies (transcrip-

tome, proteome), as well as mutation data. Thus, it is cur-
rently limited to analyzing mito-genes without offering the
ability to explore their embedding in a broader, cellular con-
text and thus to learn about potential regulatory mecha-
nisms of observed expression changes of mito-genes. There-
fore, in the next release of mitoXplorer, we plan to fully em-
bed mito-genes within the cellular gene regulatory, as well
as signaling network by adding information from epigenetic
studies (ChIP-seq, methylation data), as well as from the
cellular interactome. We will provide the tools to perform
enrichment analysis of observed transcription factors bind-
ing in the promoter regions of co-regulated mito-genes. We
will embed a method to analyze promoter regions of mito-
genes, as we have shown here for MRPS21, or to identify
targets of transcription factors as here demonstrated for
Hif1#. Furthermore, we will make available network anal-
ysis methods such as viPEr (125) to explore the cellular
network regulating mito-genes. Other analysis methods we
plan to provide include correlation analysis, as well as cross-
species data mining. Depending on user requests, we could
also add the mitochondrial interactomes of other species.
As mitoXplorer stores the mitochondrial interactomes and
the associated -omics data in a MySQL database, all tech-
nical requirements for extending the functionalities of mi-
toXplorer are already implemented.

CONCLUSIONS

mitoXplorer is a powerful, web-based visual data min-
ing platform that allows users to in-depth analyze and vi-
sualize mutations and expression dynamics of mito-genes
and mito-processes by integrating a manually curated mi-
tochondrial interactome with -omics data in various tissues
and conditions of four model species, including human. We
used transcriptome and proteome data from cell lines with
trisomy 21 to demonstrate the value of mitoXplorer in ana-
lyzing in detail the expression dynamics of mito-genes and -
processes. We have used mitoXplorer to integrate these data
with publicly available datasets of patients with trisomy 21.
Using mitoXplorer for data mining, we predicted failure of
mitochondrial respiration in one of the trisomy 21 cell lines,
which we veri!ed experimentally. Our results demonstrate
the power of a visual data mining platform such as mitoX-
plorer to explore expression dynamics of a speci!ed mito-
gene set in a detailed and focused manner, leading to dis-
covery of underlying molecular mechanisms and providing
testable hypotheses for further experimental studies.

DATA AVAILABILITY

The mitoXplorer web-server is freely available at
http://mitoxplorer.ibdm.univ-mrs.fr/. The source code
of mitoXplorer is available at https://gitlab.com/
habermannlab/mitox. The pipeline for differential ex-
pression analysis and mutation calling of RNA-seq
data is available at https://gitlab.com/habermannlab/
mitox rnaseq pipeline. MitoMorph is freely available at
https://github.com/giocard/mitoMorph. RNA-seq data
published with this study are available via the Gene Ex-
pression Omnibus (GEO) database (accession number:
GSE131249).
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Gebert,M. et al. (2017) De!nition of a high-con!dence
mitochondrial proteome at quantitative scale. Cell Rep., 19,
2836–2852.

62. Kanehisa,M., Furumichi,M., Tanabe,M., Sato,Y. and
Morishima,K. (2017) KEGG: new perspectives on genomes,
pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361.

63. NCBI Resource Coordinators (2018) Database resources of the
national center for biotechnology information. Nucleic Acids Res.,
46, D8–D13.

64. Thurmond,J., Goodman,J.L., Strelets,V.B., Attrill,H.,
Gramates,L.S., Marygold,S.J., Matthews,B.B., Millburn,G.,
Antonazzo,G., Trovisco,V. et al. (2019) FlyBase 2.0: the next
generation. Nucleic Acids Res., 47, D759–D765.

65. Cherry,J.M., Hong,E.L., Amundsen,C., Balakrishnan,R.,
Binkley,G., Chan,E.T., Christie,K.R., Costanzo,M.C., Dwight,S.S.,
Engel,S.R. et al. (2012) Saccharomyces Genome Database: the
genomics resource of budding yeast. Nucleic Acids Res., 40,
D700–D705.

66. Stelzer,G., Rosen,N., Plaschkes,I., Zimmerman,S., Twik,M.,
Fishilevich,S., Stein,T.I., Nudel,R., Lieder,I., Mazor,Y. et al. (2016)
The GeneCards suite: from gene data mining to disease genome
sequence analyses. Curr. Protoc. Bioinformatics, 54, 1.30.1–1.30.33.

67. Consortium,The UniProt (2017) UniProt: the universal protein
knowledgebase. Nucleic Acids Res., 45, D158–D169.

68. Kuan,J. and Saier,M.H. (1993) The mitochondrial carrier family of
transport proteins: structural, functional, and evolutionary
relationships. Crit. Rev. Biochem. Mol. Biol., 28, 209–233.

69. Szklarczyk,D., Morris,J.H., Cook,H., Kuhn,M., Wyder,S.,
Simonovic,M., Santos,A., Doncheva,N.T., Roth,A., Bork,P. et al.
(2017) The STRING database in 2017: quality-controlled
protein-protein association networks, made broadly accessible.
Nucleic Acids Res., 45, D362–D368.



Nucleic Acids Research, 2020, Vol. 48, No. 2 631

70. Quackenbush,J. (2002) Microarray data normalization and
transformation. Nat. Genet., 32, 496–501.

71. DeBerardinis,R.J. and Chandel,N.S. (2016) Fundamentals of cancer
metabolism. Sci. Adv., 2, e1600200.

72. Bratic,I. and Trifunovic,A. (2010) Mitochondrial energy metabolism
and ageing. Biochim. Biophys. Acta, 1797, 961–967.

73. Bione,S., D’Adamo,P., Maestrini,E., Gedeon,A.K., Bolhuis,P.A.
and Toniolo,D. (1996) A novel X-linked gene, G4.5. is responsible
for Barth syndrome. Nat. Genet., 12, 385–389.

74. Ikon,N. and Ryan,R.O. (2017) Barth syndrome: connecting
cardiolipin to cardiomyopathy. Lipids, 52, 99–108.

75. Ikon,N. and Ryan,R.O. (2017) Cardiolipin and mitochondrial cristae
organization. Biochim. Biophys. Acta Biomembr., 1859, 1156–1163.

76. Conesa,A., Madrigal,P., Tarazona,S., Gomez-Cabrero,D.,
Cervera,A., McPherson,A., Szcześniak,M.W., Gaffney,D.J.,
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Supplementary Figures 1 – 7, Supplementary Figures Legends 

Supplementary Figure S1 

 
 
 
Supplementary Figure S1: programmatic skeleton of the mitoXplorer web-platform. In the back-
end, a MySQL database stores the mito-interactomes, as well as expression and mutation data that are 
publicly available. User-uploaded data are stored temporarily and only available to the user. A set of 
python-scripts connect to the MySQL database for data retrieval of both, mito-interactomes and 
expression and mutation data. The mitomodel script connects to the MySQL database directly for the 
visualization of the Interactome View. A set of scripts perform comparative analysis, for generating 
Comparative Plots, Heatmap and PCA visualization. In the front-end, a set of javascripts handle the 
visualizations of the plots: the ‘interactome’ and ‘database’ scripts handle the data presentation of the 
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mito-interactome and the available public data for the web-site; mitomodel visualizes the Interactome 
View and the scripts in the compare box are responsible for visualizing Comparative Plot, Heatmap and 
PCA. The CSS layer handles the css-styles of the page and finally, the HTML/PHP layer creates the 
actual interface for the user.  
 

  



 3 

Supplementary Figure S2 
 

 
 
Supplementary Figure S2: Human fibroblasts from healthy donors between ages 1 and 94 reveal 
strong down-regulation of mito-genes in different processes at ages above 85. To demonstrate 
the GROUP function of mitoXplorer, we use data from human fibroblasts from different age groups (1).  
A number of mitochondrial processes have been implicated in ageing and ageing-related diseases, 
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though the precise contribution of mitochondria to ageing is so far not clear (2) . However there seems 
to be an increase in mtDNA mutations and resulting impaired respiratory chain functions during ageing 
(3). We wanted to investigate whether the expression dynamics of mito-genes changes in the ageing 
tissue. To this end, we uploaded data from ageing human dermal fibroblasts from a study of Fleischer 
et al. (1). The authors chose this tissue because of its ease of availability. Moreover, the cells in the 
dermal layer are not prone to environmentally-induced mtDNA mutations and thus lifestyle-induced mito-
gene expression changes (4). The dataset is composed of single replicates of 133 healthy donors from 
age 1 to 94. We calculated log2FC from RPKM values provided by the authors and uploaded the data 
to mitoXplorer. (a) We first performed a PCA analysis of mito-gene expression over all age groups. To 
our surprise, the mito-gene expression profiles seemed very robust up to the age of 80. Between 80 
and 90 years of age, half the age group, as well as all individuals from age group 90-100 showed a very 
distinct expression profiles of many mito-genes and in most mito-processes. In fact, only few mito-
processes were not affected. This was the case for all individuals older than 85 years except for one 
male of 88 years, who grouped with younger individuals. (b) In order to explore the nature of the de-
regulation at high age, we generated groups using the mitoXplorer GROUP function. We focused on 
individuals between age 40 and 100. We merged age group 40-50 and 50-60 and split age group 80-90 
in one group g1 with mito-gene expression dynamics consistent with younger individuals, as well as g2 
with mito-gene expression profiles similar to those found in individuals above 90 years of age. Not 
unexpectedly we found that a number of mito-genes were generally down-regulated.  
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Supplementary Figure S3 

 

 

Supplementary Figure S3: Interactome Views of Tafazzin-deficient cells, as well as wild-type 
cells in normoxic and hypoxic conditions. (a) Tafazzin-deficient cells compared to wild-type cells. 
The expression dynamics from virtually all mito-processes is changed, with strongest perturbation in 
Amino acid metabolism, TCA cycle, Glycolysis, Fatty acid degradation & beta-oxidation, Mitochondrial 
carrier as well as Protein stability & degradation. (b) Taz-deficient cells compared to wild-type in hypoxic 
conditions. Changes in expression dynamics compared to normoxic conditions can for instance be 
observed in Mitochondrial dynamics, Transcription (nuclear), or UPRmt. (c) Differential expression 
dynamics of wild-type cells in normoxic and hypoxic conditions. In response to hypoxia, OXPHOS genes 
are down-regulated, while genes required for Glycolysis are induced. (d) Tafazzin-deficient cells in 
hypoxia are compared to wild-type cells in normoxic conditions. Strong changes can be observed for 
instance in ROS defense, Ca2+ Signaling & transport or UPRmt.  
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Supplementary Figure S4 
 

 
 
Supplementary Figure S4: Length and area distribution of filaments and rods in wild-type and 
T21 derived RPE1 and HCT116 cells. (a) Stacked bar-plots of filament length distribution of RPE1 
wild-type (labeled RPE_wt), RPE1 21/3 (labeled RPE_T21), HCT116 wild-type (labeled HCT_wt) and 
HCT116 21/3 (labeled HCT_T21) cells. Overall, shorter filaments are more frequent in HCT116 than in 
RPE1 cells. In T21, filaments tend to be slightly shorter. (b) Stacked bar-plots of filament area 
distribution of RPE_wt, RPE_T21, HCT_wt wild-type and HCT_T21 cells. Overall, less area is occupied 
by filaments in HCT116 than in RPE1 cells. In HCT_T21 cells, a notably smaller area is assigned to 
filaments, while in RPE_T21 cells, this change is much less pronounced. (c) Stacked bar-plots of rod 
length distribution of RPE_wt, RPE_T21, HCT_wt and HCT_T21 cells. Overall, in the range between 4 
and 10 microns, more rods are found in RPE1 cells. Between wild-type and T21 cells, no real length 
difference is observable. (d) Stacked bar-plots of rod area distribution of RPE_wt, RPE_T21, HCT_wt 
and HCT_T21 cells. Overall, there is a tendency of slightly larger rod areas in HCT116 cells. In HCT116 
cells, rods seem to occupy slightly smaller areas when carrying the extra copy of chromosome 21. Data 
were averaged over the two clones of RPE_T21 and HCT_T21, respectively.  
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Supplementary Figure S5 
 

 
 
Supplementary Figure S5: The mito-gene GDAP1 is consistently down-regulated in RPE_T21 
clones. Shown is the heatmap of the Comparative Analysis page of mitoXplorer. Both clones of the 
RPE21_T21 cells show significant down-regulation of the GDAP1 gene; clones 1 and 3 of HCT_T21 
cells also show slight, though statistically non-significant reduction of this gene (RPE_T21 c1: log2FC = 
-1.103; RPE_T21 c2: log2FC = -1.604; HCT_T21 c1: -0.238; HCT_T21 c3: -0.059).  
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Supplementary Figure S6 
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Supplementary Figure S6: mitoXplorer analysis of the mito-processes ‘Translation’, ‘Oxidative 
Phosphorylation’ and ‘Oxidative Phosphorylation (mt)’ of monozygotic twins discordant for T21 
and 11 unrelated trisomy 21 patients. (a) The mRNA of mitoribosome small subunit component 
MRPS21 is strongly down-regulated in RPE_T21 cells. In monozygotic twins discordant for T21, other 
subunits of the small and large mitoribosome are down-regulated (T21_MZ fibroblasts: 
T21_Letour_MZ_fib, T21_Liu_MZ). Mitoribosome proteins are more mildly affected in T21_MZ 
fibroblasts. (b) Oxidative phosphorylation components encoded in the nucleus are downregulated on 
protein level in both, RPE_T21, as well as T21_MZ fibroblasts, whereby deregulation is milder in 
T21_MZ. In both conditions, the Oxidative phosphorylation transcriptome is mostly unaffected. (c - e) 
Mito-protein expression dynamics from fibroblasts of unrelated trisomy 21 patients in the mito-processes 
‘Translation’ (c), ‘Oxidative phosphorylation’ (d) and ‘Oxidative phosphorylation (mt)’ (e). Protein levels 
of mitochondrial- and nuclear-encoded subunits of the respiratory chain is very heterogeneous between 
unrelated individuals with trisomy 21; yet, in most trisomy 21 patients several mitochondrial-, as well as 
nuclear-encoded subunits of the respiratory chain are down-regulated on protein level. A similar 
heterogeneity can be observed for protein expression levels involved in translation of mitochondrial 
proteins (c). At least a few proteins involved in ‘Translation’ are down-regulated in each individual with 
trisomy 21. The only consistently, though sometimes only mildly reduced protein in this mito-process is 
mitoribosomal protein MRPL19 (highlighted in red), while MRPS21 shows variable expression patterns 
in unrelated trisomy 21 patients. Protein expression data are taken from Liu et al. (5). The log2FC of 
individual trisomy 21 patients versus the average of 11 unrelated healthy individuals was calculated 
using the log2 of the SWATH-MS intensities provided by the authors.   
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Supplementary Figure S7 
 

 
 
 
Supplementary Figure S7: Mitochondrial network of wild-type and T21 cells. MitoTracker stainings 
(a-d) of RPE_wt (a) and RPE_T21 (b), as well as HCT_wt (c) and HCT_T21 (d). (a, b) The mitochondrial 
network is largely intact in RPE_T21 cells, with only slightly lower percentage filaments and an increased 
number of swollen mitochondria. (c, d) In HCT116 cells, the mitochondrial network is overall less 
abundant, with more rod-like and fragmented mitochondria (puncta). With trisomy 21, cells show an 
even more pronounced presence of rods at the cost of longer filaments, as well as more puncta and 
swollen mitochondria. The scale bar is 50 µm. Mitochondria were stained with MitoTracker deep Red 
FM from Invitrogen. Staining was done in 96-well plates. The cells were incubated for 30 min at 30°C 
with 100 nM MitoTracker dye prior to fixation. Cells were fixed with 3% PFA in DMEM for 5 min at room 
temperature. After washing with 1xPBS, 1xPBS with 0.01% sodium azide was added. Plates were stored 
at 4°C in the dark. Imaging was carried out on an inverted Zeiss Observer.Z1 microscope with a spinning 
disc and 473 nm, 561 nm and 660 nm argon laser lines. The images were captured automatically on 
multiple focal planes (step size 700 nm) with a 40x magnification air objective. Image stacks were Z-
projected using Fiji for further analysis.  
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6.2 Integrative analysis and machine learning on cancer 
genomics data using the Cancer Systems Biology Database 
(CancerSysDB) 

 
Having diverse roles in cellular functions such as bioenergetic pathways, ROS defense and 

programmed cell death, mitochondria functions and metabolism has long been implicated 

in different steps of oncogenesis like malignant transformation and tumor progression. In 

this study, we have integrated a workflow specific for the analysis of mitochondrial genes 

into Cancer Systems Biology Database (CancerSysDB) that hosts public cancer dataset.  

 

CancerSysDB is a platform that allows user to make customized queries and perform 

integrated analyses across multiple data types (transcription data, mutation data, clinical 

data, etc) and cancer cohorts from The Cancer Genome Atlas (TCGA) research network. 

This saves users from dealing with the diverse file formats and structures of data obtained 

through the Genomic Data Commons (GDC) Data Portal, and makes big data analytics 

these datasets readily accessible to them.  

 

We have developed a workflow that integrates a manually curated human mitochondrial 

interactome and displayed analyzed data on an interactive dashboard as a visual data 

mining tool. It allows the exploration of differential expression of genes of various 

mitochondrial function, as well as correlation analysis with clinical features. With this 

workflow, we discovered a remarkable difference in the expression of Tricarboxylic acid 

(TCA) cycle genes, Succinate-CoA ligase subunits SUCLG1 and SUCLG2, in KIRP (kidney 

renal papillary cell carcinoma) patients of later stages. Succinate-CoA ligase is an essential 

enzyme in the production of ATP. This observation proposed that SUCLG1, together with 

SUCLG2 as suggested in a previous study, could be a promising indicator for later stage 

clear cell renal carcinomas. It also demonstrated how such a visual data mining tool could 

provide insights to the role mitochondrial functions in the development and progression of 

cancer.  
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Abstract

Background: Recent cancer genome studies on many human cancer types have relied on multiple molecular high-
throughput technologies. Given the vast amount of data that has been generated, there are surprisingly few
databases which facilitate access to these data and make them available for flexible analysis queries in the broad
research community. If used in their entirety and provided at a high structural level, these data can be directed into
constantly increasing databases which bear an enormous potential to serve as a basis for machine learning
technologies with the goal to support research and healthcare with predictions of clinically relevant traits.

Results: We have developed the Cancer Systems Biology Database (CancerSysDB), a resource for highly flexible
queries and analysis of cancer-related data across multiple data types and multiple studies. The CancerSysDB can be
adopted by any center for the organization of their locally acquired data and its integration with publicly available
data from multiple studies. A publicly available main instance of the CancerSysDB can be used to obtain highly
flexible queries across multiple data types as shown by highly relevant use cases. In addition, we demonstrate how
the CancerSysDB can be used for predictive cancer classification based on whole-exome data from 9091 patients in
The Cancer Genome Atlas (TCGA) research network.

Conclusions: Our database bears the potential to be used for large-scale integrative queries and predictive
analytics of clinically relevant traits.

Background
Large-scale cancer genome studies based on Next-
Generation Sequencing (NGS) technology have enabled
extensive research on tumorigenesis and treatment ratio-
nales [14]. The amount of data that has been generated
and made available contrasts its limited accessibility to
the research community. There is an increasing demand
for customized queries to the data in a way that is ac-
cessible to scientists and physicians without any know-
ledge in bioinformatics. Genomic data from studies in
The Cancer Genome Atlas (TCGA) research network
obtained through the Genomic Data Commons (GDC)
Data Portal (https://portal.gdc.cancer.gov) are available
for multiple molecular layers and are provided in
formats processed through appropriate software packages

for the analysis of the raw data for every data type. The size
of these processed data is orders of magnitude smaller than
the raw data, in particular for whole-genome sequencing
experiments, but provided in a diverse range of file formats
in which the data are variably well structured. Thus, it is
particularly challenging to transform these file-based data
into a structure which allows a technically reasonable way
to integrate data obtained by multiple technologies with
manually curated data recorded in a clinical context. This
underlines the need for highly flexible database structures
which are suitable to model data from TCGA studies, but
are generic enough to also combine TCGA data with locally
acquired data obtained in a clinical context.
We present here the newly developed Cancer Systems

Biology Database (CancerSysDB) portal which allows
integrated analyses across multiple data types and across
multiple cancer cohorts from The Cancer Genome Atlas
(TCGA) research network, but also from locally ac-
quired data in a clinical context. With its current
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workflows, our system allows fast integrative analysis of
whole-exome (WXS) and transcriptome (RNA-Seq)
sequencing data. By making use of standardized JSON-
based meta data formats, the CancerSysDB can be
integrated into existing analysis workflows. The Cancer-
SysDB enables highly structured organization of data
from multi-OMICS technologies and makes them ac-
cessible for big data analytics on the entirety of all data
ever processed on a particular site. Conceptually, this
includes the prediction of clinically relevant parameters
such as therapeutic response from existing pharmacoge-
nomic data in the CancerSysDB.

Methods
Implementation
The CancerSysDB was written in Groovy on the
Grails framework based on the JVM stack which bun-
dles state-of-the-art web frameworks behind a simple
interface. The CancerSysDB is a web application
which needs a database instance and an application
server and can run Linux shell scripts and other exe-
cutables from a command line. The data source is
behind a hibernate facade keeping the system inde-
pendent from the database implementation used and
the optimization in the background. The delivered
versions are based on a docker file to automatically
build an environment and run the database applica-
tion for personal use. A demo instance can be used
to make personalized queries to the database using
publicly available TCGA data. The source code of the
CancerSysDB is available on GitHub (https://github.
com/RRZK/CancerSysDB).
The system can be configured to run in two different

modes. The public mode can be used to query publicly
available data without any login. The publicly available
main instance of the CancerSysDB available on http://
cancersys.uni-koeln.de is running in public mode and
provides access to data on 11,410 patients from the Can-
cer Genome Atlas (TCGA) research network. This
instance includes data on somatic mutations (based on

WXS data), differential gene expression (based on com-
parative RNA-Seq analysis between tumors and tissue-
derived normals), somatic copy number alterations
(based on Affymetrix SNP 6.0 microarrays) as well as all
clinically derived annotations of the TCGA patient data.
These data types provide a powerful basis for arbitrary
queries defined by the user. All TCGA data types pro-
vided through the CancerSysDB are open access data
and can be obtained from the TCGA data portal without
exclusive access. Users have to adhere to the TCGA data
access policies that apply to these open access data
(https://gdc.cancer.gov/access-data/data-access-policies).
On the other hand, the private mode requires a login for
any interaction. This mode is strongly recommended if
you are working with restricted data. The University of
Cologne is operating a private mode instance of the
CancerSysDB for the organization of genomic data from
in-house studies. It is used in combination with the
recently published cancer genomics data processing
workflow system QuickNGS Cancer [1] which extends
our NGS bioinformatics suite QuickNGS [15] and allows
highly scalable and standardized analysis of cancer NGS
data with minimum hands-on analysis time. Various fea-
tures of the CancerSysDB are compared to those of
other cancer genome data integration tools in Table 1.

Data model and queries
The maintainer of a CancerSysDB instance can describe
the connection between data and the main structure of
the application in JSON files to bring the context struc-
ture of data into the database. The database consists of
four main data types:

! Structural data manages the patients and samples,
! Molecular data is derived from cancer genome

analysis,
! Clinical data is associated to the clinical course of a

patient’s disease,
! Genomic annotation provides information on genes

and meta data about these genes.

Table 1 Comparison of various features of the CancerSysDB with those of other cancer genomics data integration tools

CancerSysDB TCGAbiolinks RTCGA cBio portal

GUI Web framework based
on Groovy/Grails

Based on Shiny None Web framework based
on Spring Java

Query schema Hibernate R scripting R scripting SQL

Data upload Parametrized CSV
file upload

Direct access to
GDC through API

Data packages available
on Bioconductor

CSV files plus meta file

Query definition JSON-based Combination of
R commands

Combination of R commands REST-based API

Portability Native Docker implementation Hosted on Bioconductor Hosted on Bioconductor Hosted on GitHub

Programming skills
required

No Yes Yes No
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The data model and principles how to develop data-
base queries is further described on GitHub at https://
github.com/RRZK/CancerSysDB/tree/master/web-app/
data/Workflows . Data can be uploaded through the API
or manually with the web front end. The API enables
automated uploads from processing infrastructures like
high performance computing (HPC) environments. A
collection of Python scripts for upload automation is
delivered with the database. We are using these scripts
to link the analysis workflows on the QuickNGS Cancer
pipeline to the CancerSysDB. The internal design of the
web application empowers the maintainer to easily extend
the data model, extend the import behavior and integrate
custom data structures.
The maintainer of an instance of the CancerSysDB is

provided with a fully controllable environment for the
development of custom workflows. A custom workflow
can be described in a JSON file and extended with ana-
lysis scripts and static data in a zip file which can be

dynamically uploaded into the database (documentation
available on the GitHub). The actual data is retrieved
using queries written in the Hibernate Query Language
(HQL) and the results of the queries are saved as CSV
files in order to increase reproducibility on a dynamically
updated database. Subsequent computations can rely on
arbitrary executables in a Linux environment. The con-
tainer architecture provides the encapsulation for the
workflows. To control the command line based execu-
tion, packages and libraries can be installed on creation
of the docker container or wrapped directly into the files
to be executed by the workflow.

Data preparation
All TCGA data were obtained as level 3 data from the
Legacy Archive of The Cancer Genome Atlas (TCGA)
data portal. Data on somatic mutations were based on
whole-exome sequencing with MAF files obtained from
the Firehose pipeline of the Genome Data Analysis

Fig. 1 Analysis results for workflows splitting multiple TCGA cohorts into TP53-mutant and non-mutant patients: a Overall survival is significantly different
between TP53-mutant (red curve) and non-mutant patients (black curve) with a more favorable for non-mutant patients (gain in median survival: 2066 days,
p < 0.0001, n = 9444). b The distribution of the mutations types in lung adenocarcinoma is strongly shifted towards an increase of G > T transversions in
TP53 mutant compared to non-mutant patients (p = 0.0006, n = 584). c Genomic stability is quantified in terms of the overall size of somatic copy number
alterations (sCNA) compared between tumor and normal. sCNA are considered as genomic amplifications above a level of 3 and as genomic deletions
below a level of 1 for the signal ratio between tumor and paired normal sample. The difference between TP53 mutant and non-mutant patients is highly
significant in glioblastoma multiforme (p = 0.0132, n = 379)
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Center (GDAC) at the Broad Institute. Data on somatic
copy number alterations were based on the SNP 6.0
microarray platform (Affymetrix Inc., CA, USA) given as
genomic segments of equal copy number derived from
the Circular Binary Segmentation (CBS) algorithm [8].
For gene expression analysis, raw RNA-Seq read counts
were re-processed and compared between tumor tissues
and tissue-derived normal samples using version 1.21.1
of the DESeq2 algorithm and its implementation as an R
package [6]. These tissue-derived normal controls are
available from only a minority of the patients in TCGA,
but we consider them more suitable for a comparative
tumor/normal analysis than the blood-derived normals
existing for most patients. The currently existing work-
flows were implemented using version 3.3.3 of the func-
tional statistics language R (http://www.r-project.org).
The random forest workflow was implemented with the
R package ‘randomForest’, version 4.6–12.

Results and discussion
In order to demonstrate how the CancerSysDB can help to
obtain analysis results of immediate relevance for research
projects or clinical prognosis, we showcase the analytical
power by three example queries, by one machine learning
workflow on the CancerSysDB and by an interactive work-
flow of visualizing mitochondrial pathways. The results of
these showcases can be reproduced using the query and
analysis source code provided in Additional file 1.

TP53-dependent analysis of overall survival, genome
stability, and mutation types
The tumor suppressor gene TP53 is the most frequently
deleted and mutated gene across all tumor types [3]. In
the TCGA cancer cohorts, its mutation rate is highly
variable and ranges up to > 75% in some cancer types
[16]. The CancerSysDB enables comparative genomic
analyses of patients with and without mutations in
TP53 by employing three different query workflows
which we operate across > 11,000 patients from 33
TCGA studies.

! Overall survival depending on mutation status:
Across all TCGA cohorts, patients with a mutation
in TP53 show an unfavorable prognosis regarding
overall survival compared to TP53 wild type patients
(p < 0.0001, n = 9444; Fig. 1a; Table 2a).

! Transversions and transitions depending on
mutation status: The somatic mutational landscape
of patients with lung adenocarcinoma exhibits a
significant shift towards G > T transversions when
compared between patients with and without
mutations in TP53 (p = 0.0006, n = 584; Fig. 1b;
Table 2b). G > T transversions have been shown to
be induced by oxidative stress in lung cancers of
tobacco smokers [12]. Their enrichment in patients
with mutated TP53 is likely caused by the impaired
induction of apoptosis upon these exogenic
damages.

Table 2 Results of TP53-dependent analysis of genomic and clinical characteristics
(a)

Patients Events 5-year survival
rate [%]

Median survival 95% CI

TP53 mutant 3772 1237 47.4 1670 [1526; 1818]

TP53 non-mutant 5672 1128 66.9 3736 [3262; 4267]

(b)

Patients CNAs [Mb]

TP53 mutant 133 74.5

TP53 non-mutant 246 50.5

(c)

TP53 ATM

VarType All Mutant
[%] (n = 320)

Non-mutant
[%] (n = 265)

p-value Mutant
[%] (n = 49)

Non-mutant
[%] (n = 536)

p-value

A > C or T > G 3.5 3.3 3.6 < 0.0001 3.9 3.4 0.2160

A > G or T > C 9.9 9.2 10.7 < 0.0001 9.6 9.9 0.7695

A > T or T > A 8.1 8.4 7.8 0.0005 8.6 8.1 0.4584

C > G or G > C 13.6 13.9 13.1 < 0.0001 13.2 13.6 0.3790

C > T or G > A 32.7 30.0 36.0 < 0.0001 28.6 33.0 0.5121

G > T or C > A 32.3 35.2 28.8 0.0001 36.0 32.0 0.4940
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! Genomic complexity depending on mutation status:
Among the patients with glioblastoma multiforme,
those with TP53 mutations are characterized by, on
average, stronger genomic instability than the TP53
wild type patients (p = 0.0132, n = 379; Fig. 1c; Table
2c). This general loss of genomic stability in TP53-
mutated patients can be attributed to the role of
TP53 as a mediator of apoptosis in response to som-
atically acquired DNA damage of cancer cells and
has been described in previous studies [7].

Technically, the workflows start with database queries
for the TCGA barcodes of the patients with and without
TP53 mutations. Subsequent queries obtain the overall

survival of all patients, the overall size of genomic copy
number aberrations in glioblastoma multiforme, and a
list of all mutations in the cohort of patients with lung
adenocarcinoma. These query results are stored as CSV
files on the CancerSysDB server and are processed
through workflow analysis scripts to restructure, analyze
and visualize the data. The scripts for this TP53-
dependent analysis of TCGA data were written in the
functional statistics language R.

Prediction of cancer types with random forests
In order to demonstrate the potential of our database
for predictive analytics of clinically relevant traits, we
have evaluated a workflow for the classification of a yet

Table 3 Classes of carcinomas used for random forest prediction of cancer types
Class name TCGA cohorts Sample size

Total Training set Test set

Adrenal gland Adrenocortical carcinoma (ACC) 271 179 92

Pheochromocytoma and paraganglioma (PCPG)

Bladder Urothelial carcinoma (BLCA) 411 272 139

Brain Lower grade glioma (LGG) 515 340 175

Breast Breast invasive carcinoma (BRCA) 1077 711 366

Gastrointestinal Esophageal carcinoma (ESCA) 1237 817 420

Stomach adenocarcinoma (STAD)

Colon adenocarcinoma (COAD)

Rectum adenocarcinoma (READ)

Cholangiocarcinoma (CHOL)

Head & Neck Head and neck squamous cell carcinoma (HNSC) 590 390 200

Uveal melanoma (UVM)

Hematologic Acute myeloid leukemia (LAML) 321 212 109

Diffuse large B-cell lymphoma (DLBC)

Thymoma (THYM)

Kidney Kidney Chromophobe (KICH) 738 488 250

Renal clear cell carcinoma (KIRC)

Renal papillary cell carcinoma (KIRP)

Liver Hepatocellular carcinoma (LIHC) 321 212 109

Ovary Ovarian serous cystadenocatcinoma (OV) 437 289 148

Pancreas Pancreatic adenocarcinoma (PAAD) 184 122 62

Prostate Prostate adenocarcinoma (PRAD) 498 329 169

Skin Cutaneous melanoma (SKCM) 104 69 35

Testis Testicular germ cell tumors (TGCT) 150 99 51

Thoracic Lung adenocarcinoma (LUAD) 1143 755 388

Lung squamous cell carcinoma (LUSC)

Mesothelioma (MESO)

Thyroid Thyroid carcinoma (THCA) 496 327 169

Uterus Uterine carcinosarcoma (UCS) 598 395 203

Uterine corpus endometrial carcinoma (UCEC)
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uncharacterized sample into one of the cancer types
available in the CancerSysDB. This workflow can be ap-
plied, for instance, to predict the primary site of a tumor
from a metastatic tissue specimen of unknown origin.
The workflow is basically composed of two steps:

! In the training phase, a random forest consisting of
1000 trees is trained on all data available in the
CancerSysDB. The workflow is composed of an
HQL query with subsequent submission of the
query results to a high-performance compute clus-
ter. In order to control for the relatively strong im-
balance in the class sizes, the workflow was
implemented using a stratified sampling approach in
the random forest training procedure. The random
forest is then trained in 100 parallel processes with
10 trees in each process. Subsequently, the forest is
loaded back into the CancerSysDB. The entire pro-
cedure must be repeated any time new data is being
uploaded into the CancerSysDB. Random forests
were chosen because of their good adaption to (bin-
ary) mutation data and their convenience in
parallelization.

! In the prediction phase, a list of mutations of a
yet unclassified sample can be uploaded into the

CancerSysDB and is classified according to the
random forest obtained in the training phase. As
usual, the classification is determined by a
majority vote between the 1000 classification trees
in the forest.

In the current workflow on the public instance, the
training phase was carried out on data from 9091 pa-
tients in the CancerSysDB. To demonstrate that the pre-
dictions produced in this workflow are of sufficient
accuracy to make them practically applicable, we split
the 9091 patients in a training set of 6006 patients (66.
6% in each cohort) and evaluated the predictions in a
test set comprising 3085 patients (33.3% in each cohort;
Table 3). Out of these 3085 patients in the test set, 1521
(49.3%) were assigned to the correct class (Fig. 2),
whereas a random guess of the class would have
produced a correct class assignment in only 182 cases
(5.9%). Further evaluations of the workflow performance
show that the success rate of the predictions does not
increase with the number of trees nor the number of
variables evaluated at each split, but strongly depends on
the number of training samples (Additional file 2: Figure
S1). In particular, Additional file 2: Figure S1c suggests
that the accuracy could potentially be improved given a

Fig. 2 Results of a cross validation of the random forest prediction of cancer types in the CancerSysDB. The predictions are based on a random
forest learned on the training set comprising 6006 patients from 30 TCGA studies (Table 2). Displayed are the predictions of the classes in the
3085 patients in the training set. The accuracy strongly varies across the particular subclasses, but sums up to a total of 1521 correctly classified
patients (49.3%)
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Fig. 3 (See legend on next page.)
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constantly growing amount of data in the CancerSysDB.
However, we assume that the accuracy could be most
stronly improved when including additional data types
such as gene expression to the predictive algorithms.

Analyzing TCA-cycle genes in kidney renal papillary cell
carcinoma (KIRP)
We have implemented one interactive workflow, which
allows users to perform an in-depth analysis of specific
groups of genes or pathways. For the public instance of
the CancerSysDB, we have chosen a set of mitochon-
drial functions. The interactive workflow consists of a
bee swarm scatter plot displaying the differential ex-
pression (log2-fold change) of all genes in a selected
pathway, as well as an interactive dashboard, where
users can select the desired features for data display on
the bee swarm scatter plot (see Additional file 3: Figure
S2). Pathways to be shown can be selected on the right-
hand side of the scatter plot. Features that can be
chosen include the stage of the tumor, gender of the pa-
tients, as well as vital status. Differential expression is
averaged over all individuals associated with a specific
feature. If one feature is selected (e.g. stage of tumor)
and the user hovers over any other fields of the dash-
boards, the data presented in the scatter plot are fil-
tered accordingly. Hovering over one of the stages will
give information on gender and vital status of all
subjects within this stage (see for instance Additional
file 3: Figure S2b, where hovering over Stage IV returns
the information on gender (4 males) and vital status (3
alive, 1 dead) of all subjects of this tumor stage). Hover-
ing over one of the other dashboards will change the
data for averaging accordingly. For instance, when
hovering over FEMALE, data are averaged over 10 pa-
tients in two stages (Stage I and Stage III), with 2

individuals with the vital status Dead and 8 ones with
vital status Alive.
We have used this workflow to observe the dynamics

of the TCA pathway in KIRP (kidney renal papillary cell
carcinoma) patients during tumor progression. We ob-
served a strong down-regulation of the Succinate-CoA
ligase subunits SUCLG1 and SUCLG2 in Stage IV KIRP
patients (Fig. 3 and Table 4), which is independent of
the vital status of the patients. We have not observed
this specific down-regulation of both Succinate-CoA lig-
ase subunits for any stage-specific cohort of any other
tumor type imported from TCGA. An equally strong
down-regulation of both subunits could only be ob-
served for two sarcoma patients where no staging is
done (SARC cohort in TCGA, data not shown).
Succinate-CoA ligase (SUCL) catalyses the conversion

of succinyl-CoA and ADP or GDP to succinate and ATP
or GTP. Substrate specificity is determined by the beta-
subunit of the complex, which is either SUCLA2 (ATP)
or SUGLG2 (GTP), while the alpha-subunit (SUCGL1)
does not differ for either substrate [4]. SUCLG2 is pre-
dominately expressed in anabolic tissues such as liver or
kidney [4, 5]; for these tissues, GTP is more important,
as it is involved in processes such as gluconeogenesis or
protein synthesis. Mutations of SUCLG1 lead to loss of
SUCLG1 protein expression and subsequently to deple-
tion of mtDNA; clinically, affected individuals suffer
from severe acidosis and lactic aciduria [9]. Expression
changes of SUCLG1 and 2 mRNA [2, 13], as well as
protein [11, 17] were also identified in several studies as
potential markers for kidney cancers. More notably,
down-regulation of SUCLG2 protein levels are
furthermore indicative for late stages in clear cell renal
carcinomas [10].

Conclusions
The CancerSysDB enables highly flexible analyses of
cancer data across multiple OMICS data types and clin-
ical data. We have demonstrated that the system can be
used for cross-data type queries with clinically relevant
information on prognosis, genome stability and muta-
tion types of patients with and without mutations in the
tumor suppressor TP53. In addition, we have given an
example how machine learning technology on only one
single data type (somatic mutations) can be used to
achieve confident predictions of clinically relevant traits.
Finally, we have provided an example how our system

(See figure on previous page.)
Fig. 3 In-depth analysis of the dynamics of the TCA pathway in KIRP cancer patients. Interactive view bee-swarm scatter plot on the Tricarboxylic
acid cycle (TCA) pathway from KIRP cancer patients is shown. The log2-fold changes are averaged for patients according to tumor grade
(Stage I-IV). The dashboard gives the number of patients per grade and allows for further filtering according to gender or vital status (see
also Additional file 2: Figure S1). a The SUCLG1 gene is selected (pink bubble in bee-swarm scatter plot). b The SUCLG2 gene is selected.
Both genes show a strong, averaged down-regulation in Stage IV KIRP cancer patients (see Table 4 for averaged log2-fold changes)

Table 4 Averaged log2-fold changes of SUCLG1 and SUCLG2
mRNAs in different tumor stages of KIRP cancer patients

Stage #
Patients

Female/
Male

Alive/
Dead

SUCLG1 SUCLG2

log2 FC p-value log2 FC p-value

I 15 5 / 10 13 / 2 −0.473 0.132 −0.338 0.307

II 1 0 / 1 1 / 0 −1.163 0.082 0.137 0.431

III 11 5 / 6 8 / 3 −0.835 0.018 −0.760 0.028

IV 4 0 / 4 3 / 1 −1.975 0.066 −1.664 0.054
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can be used as a platform for interactive analysis of dif-
ferent OMICS data types. The information provided by
the TCGA data currently used in the public instance of
the CancerSysDB is still very limited compare to the
amount of data that can be expected in the near future
when genomic analyses in a clinical context are becom-
ing more and more a routine analysis. The CancerSysDB
offers an appropriate framework to employ machine
learning algorithms on much larger data volumes to pre-
dict, for instance, the overall survival of a patient and
the response to a particular therapy given a patient’s mo-
lecular background.

Additional files

Additional file 1: The source code of the database queries and
workflow scripts for the three use cases reported in the paper. The results
can be reproduced using the query results and analysis scripts provided.
File query1.csv contains the barcodes of all samples for which mutation
data do exist. File query2.csv contains the barcodes of all samples which
carry a mutation in the gene of interest. Finally, query3.csv contains the
survival data (according to Fig. 1a), a list of all mutations of patients in
the cohort of interest (according to Fig. 1b), or a list of all genomic
segments with aberrant copy number in the cohort of interest (according
to Fig. 1c). There are small discrepancies between the number of patients
with mutation data and the number of patients with survival data (Fig.
1a) and copy number data (Fig. 1c). (ZIP 4981 kb)

Additional file 2: Figure S1 Overall success rate of the prediction of
tumor types by random forests depending on (a) the number of samples
per stratum in the random forest, (b) the number of variables picked
randomly for each tree in the forest and (c) the number of trees learned
in the forest. Importantly, the accuracy is increasing monotonically with
the number of samples, indicating that the overall strategy is suitable, in
particular, for a database with continuously growing amounts of data. In
contrast, the success rate does not so much depend on the parameters
chosen for the training phase of the random forest. (PNG 34 kb)

Additional file 3: Figure S2 Interactive workflow of mitochondrial
pathways. Shown is the Tricarboxylic acid cycle (TCA) pathway for KIRP
cancer patients. The central view of this workflow is a bee-swarm scatter-
plot, which contains the averaged log2-fold changes of patient groups
according to either tumor stage, gender or vital status. Each dot is repre-
sents the averaged log2-fold change of one gene that has been assigned
to the chosen function. Functions can be selected on the right-hand side
of the scatter plot. The dashboard below the scatter plot can be used to
change the averaging according to a different feature ((a), which shows
averaging according to stage), to display information on the composition
of the selected feature ((b), which informs the user that all individuals of
stage II, which was hovered over in this case, are male and that one indi-
vidual is dead, while three of the patients are alive); or to further select
individual patients and thus modify the averaging shown in the scatter
plot ((c), where only female patients were chosen for stage-dependent
averaging; as female patient data are only available for two stages (I and
III), the scatter plot is changed accordingly). (PNG 679 kb)
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Figure S1 Overall success rate of the prediction of tumor types by random forests 

depending on (a) the number of samples per stratum in the random forest, (b) the number 

of variables picked randomly for each tree in the forest and (c) the number of trees learned 

in the forest. Importantly, the accuracy is increasing monotonically with the number of 

samples, indicating that the overall strategy is suitable, in particular, for a database with 

continuously growing amounts of data. In contrast, the success rate does not so much 

depend on the parameters chosen for the training phase of the random forest.  
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Figure S2 Interactive workflow of mitochondrial pathways. Shown is the Tricarboxylic acid 

cycle (TCA) pathway for KIRP cancer patients. The central view of this workflow is a bee-

swarm scatterplot, which contains the averaged log2-fold changes of patient groups 

according to either tumor stage, gender or vital status. Each dot is represents the averaged 

log2-fold change of one gene that has been assigned to the chosen function. Functions 

can be selected on the right-hand side of the scatter plot. The dashboard below the scatter 

plot can be used to change the averaging according to a different feature ((a), which shows 

averaging according to stage), to display information on the composition of the selected 

feature ((b), which informs the user that all individuals of stage II, which was hovered over 

in this case, are male and that one individual is dead, while three of the patients are alive); 

or to further select individual patients and thus modify the averaging shown in the scatter 

plot ((c), where only female patients were chosen for stage-dependent averaging; as 

female patient data are only available for two stages (I and III), the scatter plot is changed 

accordingly). 
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6.3 Hypermethylation of gene body CpG islands predicts high 
dosage of functional oncogenes in liver cancer 

The altered metabolism in cancer is closely related to aberrant gene expression, which 

depends on both genetic and epigenetic information (Esteller, 2011). DNA methylation is 

one of the essential epigenetic mechanisms that determines the accessibility of genetic loci 

to transcriptional machinery and hence levels of gene expression. Therefore, any 

alterations could lead to significant changes in gene expression landscape, like the down-

regulation of tumor suppressor genes observed in cancer cells as a result of 

hypermethylation in CpG islands (CGIs) at the promoter regions (P. A. Jones & Baylin, 

2007). Changes in DNA methylation could be caused by mutations in epigenetic modifiers 

(Baylin & Jones, 2011) and have been observed in patients of certain cancer types 

(Spencer et al., 2017); Although it could also occur in the absence of specific mutations, 

and can be controlled or modulated by signaling pathways or molecules as shown in 

previous researches (Forloni et al., 2016; Spangle et al., 2016). Genes identified in these 

studies with functional relevance in cancer could potentially be used as biomarkers for 

cancer prognosis.  

 

The current study combines the analysis of methylome and transcriptome in a clinically 

relevant hepatocellular carcinoma (HCC) mouse model, in order to study the epigenetic 

mechanism that influences transcription and gene expression through DNA methylation. A 

group of genes were found to have focal hypermethylation in CGIs, accompanied with lower 

expression (H+E-), which is the conventional mechanism in cancer to downregulate tumor 

suppressor through promoter hypermethylation. This group includes the mitochondrial 

genes Ornithine aminotransferase (Oat) and Enoyl-Coenzyme A delta isomerase 1 (Eci1), 

that are involved in Amino Acid Metabolism and Fatty Acid Degradation & Beta-oxidation 

respectively. 

 

Surprisingly, another set of genes were found to be hypermethylated in CGIs and 

overexpressed (H+E+) at the same time in the mouse model. This includes the 

mitochondrial gene Jun, that belongs to the process Transcription and is considered as an 

oncogene. Further analysis of the TCGA dataset showed that enrichment of this gene set 

characterizes 56% of the HCC patients, who belong to an aggressive HCC subclass. 

Collectively, the data suggested that this set of oncogenes could be of clinical relevance 

and used as biomarkers for patient stratifications; and that their up-regulations 

characterized by hypermethylation of CGIs could be a potent operating mechanism in 

cancer. 
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Epigenetic modifications such as aberrant DNA methylation reshape the gene expression

repertoire in cancer. Here, we used a clinically relevant hepatocellular carcinoma (HCC)

mouse model (Alb-R26Met) to explore the impact of DNA methylation on transcriptional

switches associated with tumorigenesis. We identified a striking enrichment in genes

simultaneously hypermethylated in CpG islands (CGIs) and overexpressed. These hyper-

methylated CGIs are located either in the 5′-UTR or in the gene body region. Remarkably,

such CGI hypermethylation accompanied by gene upregulation also occurs in 56% of HCC

patients, which belong to the “HCC proliferative-progenitor” subclass. Most of the genes

upregulated and with hypermethylated CGIs in the Alb-R26Met HCC model undergo the same

change in a large proportion of HCC patients. Among reprogrammed genes, several are

well-known oncogenes. For others not previously linked to cancer, we demonstrate here their

action together as an “oncogene module”. Thus, hypermethylation of gene body CGIs is

predictive of elevated oncogene levels in cancer, offering a novel stratification strategy and

perspectives to normalise cancer gene dosages.
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Appropriate timing and dosage of gene expression in
healthy cells is ensured by complex processes integrating
genetic and epigenetic information. Alterations of these

mechanisms are frequent in cancer and underline functional
changes in genes acting as oncogenes or tumour suppressors1–3.
The use of high-throughput sequencing has contributed con-
siderably to our understanding on how epigenetic modifications
switch genomic regions from an inaccessible closed conformation
to an open state–and vice-versa–contributing to changes in the
transcriptome landscape4–6. DNA methylation is an essential
epigenetic mechanism influencing gene expression levels in cells
and alterations lead to dramatic changes in malignant cells. The
cancer landscape is generally characterised by a diffuse DNA
hypomethylation and by focal hypermethylation in CpG-rich
regions known as CpG islands (CGIs)1,7. CGI hypermethylation
at promoters represses transcription of genes acting as tumour
suppressors, a well-known mechanism operating in cancer8.
However, DNA methylation at intergenic regions and gene bodies
is gaining relevance for its impact on gene expression9,10. Aber-
rant DNA methylation of large clusters of transcriptional
enhancers, known as super-enhancers, leads to dramatic tran-
scriptional changes of gene sets in cancer11. A large fraction of
DNA methylation is also observed in gene body CGIs, with an
apparent intriguing positive correlation between methylation and
gene expression12,13. Such contradiction on DNA methylation
effects in promoter versus gene body CGIs remains poorly
understood.

The relevance of epigenetics in tumorigenesis has been further
emphasised through recent large-scale screen analyses focused on
cancer patients carrying either histone mutations or alterations in
genes regulating DNA methylation–histone modifications2.
Results from these studies highlighted how such mutations dra-
matically modify the epigenetic and gene expression landscapes.
For example, aberrant DNA methylation has been recently
reported in acute myeloid leukaemia patients with DNMT3A
mutations14. Abnormal recruitment of PRC2 complex and DNA
methylation occurs in paediatric glioblastoma with Histone H3
mutant variants15. Gene expression changes caused by histone
H3K36 mutation is associated with sarcomagenesis16. Never-
theless, the epigenetic reshape occurs also in the absence of
specific mutations in chromatin modulators17. It is the case of
classical oncogenes and tumour suppressors, which can trigger
profound chromatin alterations with consequences on gene
expression18,19. For example, an oncogenic splice variant of EGFR
leads to genome-wide activation of putative enhancers in glio-
blastoma20. Oncogenic EGFR leads to DNA methylation-
mediated transcriptional silencing of tumour suppressors in
lung cancer and glioblastoma21. Deregulated Ras signalling
reshapes the enhancer landscape leading to aberrant oncogene
expression22. PI3K/Akt pathway activation induces promoter-
associated gene activation in breast cancer23. Overall, such screen
approaches have also contributed to identify new genes, whose
functional relevance in cancer was previously unknown and/or
which deregulations can be used as cancer biomarkers for prog-
nosis/patient stratification.

We recently reported a cancer mouse model in which slight
increases in wild-type Met receptor tyrosine kinase (RTK) levels
in the liver are sufficient for spontaneous tumours in mice (Alb-
R26Met). These genetic studies conceptually illustrate how the
shift from physiological to pathological conditions results from
perturbations in subtle signalling dosage. Through gene expres-
sion analysis, the Alb-R26Met mice were shown to model a HCC
patient subgroup corresponding to the so-called “proliferative-
progenitor” subclass24, demonstrating the clinical relevance of
this genetic system. The uniqueness of this genetic system was
also illustrated by its usefulness to identify new synthetic lethal

interactions as potential therapies for HCC subgroups24. Here, we
employed the Alb-R26Met cancer model for integrative genome-
wide studies combining methylome and transcriptome outcomes
and compared them with those from HCC patients. Results show
an enrichment in genes overexpressed and with hypermethylated
CGI, with expression levels positively correlating with the CGI
distance to the ATG. Whereas most of the upregulated genes are
well-known oncogenes, the implication of others in cell tumori-
genic properties is demonstrated here through functional studies.
Enrichment of genes both overexpressed and with hypermethy-
lated CGIs characterises the “proliferative-progenitor” HCC
patient subset, which is modelled by the Alb-R26Met genetic
system. Collectively, these results show that an epigenetic
reprogramming process ensuring increased dosage of an “onco-
genic module” involving multiple genes operates in
tumorigenesis.

Results
Alb-R26Met tumours recapitulate DNA methylation changes of
HCC patient subgroups. We recently showed how the Alb-
R26Met genetic system is a unique tool to model: (a) the
tumorigenic program, (b) the “proliferative-progenitor” HCC
patient subgroup and (c) functionality of signalling alteration for
drug discovery24. For its use to study the contribution of epige-
netic modifications linked to cancer, we reasoned that it was first
necessary to determine whether the Alb-R26Met tumorigenesis
occurs in a stable genomic context or is associated with chro-
mosomal deletions/duplications. Comparative genomic hybridi-
sation analyses on DNA inputs from 16 Alb-R26Met tumours and
8 control livers excluded chromosomal instability (Supplementary
Fig. 1). These findings therefore reinforce the appropriateness of
the Alb-R26Met cancer model as a relevant genetic system to study
the epigenetic reprogramming associated with cancer, which we
addressed by bioinformatically integrating data from methylome
and transcriptome screens (Fig. 1a).

DNA methylation changes were scored by performing Methyl-
MiniSeq EpiQuest sequencing on 10 Alb-R26Met tumours
(previously histologically identified as HCC24) and 3 control
livers (Supplementary Fig. 2A). Mean methylation levels were
modestly, yet significantly, different across all measured CpGs (P-
value= 2.4E−03; Fig. 1b), being able to group tumours and
controls into two distinct clusters (Fig. 1c). A remarkable
predominance of global hypomethylation was observed in
tumours compared with livers (Fig. 1b, Supplementary Fig. 2B).
Accordingly, we observed an enrichment in hypomethylated
CpGs located outside CGIs (P-value= 3E−04; Fig. 1b, Supple-
mentary Fig. 2C). In contrast, a significant enrichment of
hypermethylation at CpGs located within CGIs characterised
Alb-R26Met tumours compared with control livers (P-value=
3.9E−03; Fig. 1b, d, Supplementary Fig. 2D). These traits of CpG
methylation changes, according to the CpG location with respect
to CGIs, are consistent with those largely reported in the
literature1. Focusing on differentially methylated CpGs located at
annotated CGIs, we identified 513 CGIs with a β-value
methylation difference of ±0.2 and a false discovery rate (FDR)
<0.05 (Fig. 1d, Supplementary Fig. 2D, Supplementary Data 1).
These CGIs were homogeneously distributed amongst all 19
autosomal and 1 sex chromosome mouse pairs (Supplementary
Fig. 2E). Among CGIs with differentially methylated CpGs, 82%
were hypermethylated in Alb-R26Met HCC compared to controls
(Fig. 1d).

To explore the relevance of these methylation changes in the
context of human HCC disease, we used genome-wide DNA
methylation data from a cohort of 41 HCC patients, for which
data are available for both: (a) methylation and expression; (b)
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tumour and adjacent liver as control (from The Cancer Genomic
Atlas; TCGA25). For comparisons between mouse and human
data, we first mapped the 513 identified mouse CGIs (mm9) to
the corresponding CGIs in human (hg19), using the UCSC
toolbox. 501 out of 513 CGIs were successfully matched between
the two genomes. For 416 CGIs, human methylome data were
available in TCGA dataset (Supplementary Fig. 3A; Supplemen-
tary Data 2). We extracted the methylation β-value for the CpGs
within these human CGIs and calculated the mean methylation
difference for each CpG and for each of the 41 HCC patients.
While the majority of these CpGs showed a methylation
difference below 0.2, a proportion of CGIs (24%) were
differentially methylated (FDR < 0.05) with a hypermethylation
enrichment score similar to the Alb-R26Met HCC (91%; Fig. 1e,
Supplementary Fig. 3B). As the analysed cohort includes patients
with widely diverse aetiologies and characteristics, we next
analysed the 416 CGIs in the individual patients. Intriguingly,
hierarchical clustering analysis segregated these HCC patients
into three distinct subgroups, with one subgroup composed of
seven patients reaching 43–56% overlap with the Alb-R26Met list
(subgroup-3; Fig. 1f, Supplementary Fig. 3C). The relevance of the
Alb-R26Met methylation changes in the context of human HCC
was further assessed in a second distinct cohort of 234 human
samples (224 HCC patients and 10 control individuals26). 27% of
CGIs differentially methylated in Alb-R26Met HCC are also
altered in human HCCs, again with an enrichment in
hypermethylation (93%; Fig. 1g, Supplementary Fig. 4A). More-
over, these methylation changes distinguished controls from HCC
patients, which further segregate into three subgroups. HCC
subgroup-3 reaches about 50% CGI overlap with the Alb-R26Met

list (Fig. 1h, Supplementary Fig. 4B).
Next, we asked whether there would be any correlation

between MET alterations with the three human HCC subgroups
identified by the Alb-R26Met methylome screening. Concerning
the HCC patient cohort from TCGA, we were able to perform
correlative studies as RNA-seq and mutation data are available. In
particular, we analysed MET mutations and MET expression
levels for each patient belonging to the 3 different HCC
subgroups. All HCC patients carry the wild-type form of MET,
which is in agreement with rare mutations of MET in HCC.
Concerning expression levels, MET is overexpressed in 86% (6/7)
of HCC patients belonging to subgroup-3 (which best overlaps
with CGI methylation changes in Alb-R26Met), in 32% (6/19) to
HCC subgroup-2, and only in 13% (2/15) to HCC subgroup-1
(Fig. 1f; patients with MET overexpression are highlighted with a
red dot; Supplementary Fig. 3C–F). For the HCC patient cohort
from GSE56588, expression data (array) are only available for
some patients and without information about mutations. There-
fore, correlative studies were not possible with this HCC cohort.
Together, these findings show that liver cancer modelled by the
Alb-R26Met genetic system is characterised by methylation
changes of specific CGIs, with a predominant hypermethylation
profile. A high proportion of these alterations are also found in
HCC patient subgroups. Furthermore, there is a striking
correlation between differentially methylated CGIs and MET
overexpression in the HCC patient subgroup modelled by the
Alb-R26Met genetic setting.

Enrichment in CGI hypermethylation is necessary for Alb-
R26Met tumorigenesis. The overall enrichment in CGI hyper-
methylation in the Alb-R26Met genetic system prompted us to
determine its relevance for cell tumorigenic properties. We
designed different demethylating experimental conditions using
low doses of Decitabine (0.3 µM; Fig. 2a), according to previously
reported protocols12. We used three different Alb-R26Met HCC

cell lines, established from individual Alb-R26Met tumours24.
Decitabine treatment does not affect cell viability of Alb-R26Met

HCC cells, as well as of MLP-29 cells, a mouse liver progenitor
cell line that is not tumorigenic as illustrated by its inability to
form colonies in anchorage-independent growth assays (Fig. 2b).
Instead, Decitabine treatment interferes with Alb-R26Met cell
tumorigenic properties, irrespective of the HCC cell line used, as
exemplified by: (a) reduced colony numbers when cells are grown
in an anchorage-independent manner (Fig. 2c); (b) reduced
number and size of foci when cells are grown in an anchorage-
dependent manner (Fig. 2d); (c) reduced tumour spheres when
cells are grown in self-renewal conditions (Fig. 2e). The effect of
global demethylation on cell tumorigenicity was further analysed
in vivo by performing xenografts in nude mice. The tumour
volume was significantly reduced in mice either injected with
Decitabine pre-treated Alb-R26Met HCC cells or when Decitabine
pulses were administered to mice injected with untreated Alb-
R26Met HCC cells (Fig. 2f–left). Decitabine doses used in vivo
were not toxic, as revealed by no significant changes on the mouse
weight during the treatment (Fig. 2f–right). Together, these
results indicate that the overall enrichment in CGI hypermethy-
lation is functionally relevant for tumorigenesis modelled by the
Alb-R26Met genetic system.

CGI hypermethylation correlates with gene upregulation in
Alb-R26Met HCC. Alterations in DNA methylation are known to
impact gene expression. We analysed the expression levels of the
431 genes with differentially methylated CGIs in Alb-R26Met

tumours using high-coverage RNA-seq data (4 Alb-R26Met

tumours and 4 control livers). Studies highlighted 93 genes dif-
ferentially expressed (log2FC > 1, FDR < 0.05; Supplementary
Data 3). According to the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) database, several cancer-related pathways were
significantly enriched, such as MAPK signalling, viral carcino-
genesis, pathways in cancer, TGF-β signalling, cell cycle, renal cell
carcinoma (Fig. 3a, Supplementary Fig. 5), strengthening the
significance of genes differentially methylated and expressed in
the Alb-R26Met cancer model. Remarkably, the top-ranked MAPK
pathway is coherent with its essential functionality for Alb-R26Met

tumorigenicity, as previously reported24. Among genes differen-
tially methylated and expressed, 36 genes showed the expected
inverse correlation between methylation and expression where 20
genes are hypomethylated and overexpressed, and 16 genes are
hypermethylation and downregulated (Fig. 3b, Supplementary
Data 3). Unexpectedly, 55 genes (59%) were found hyper-
methylated and overexpressed (Fig. 3b). Thus, tumorigenesis
modelled by the Alb-R26Met mice is characterised by a set of genes
with changes in CGI methylation accompanied by a reprogram-
ing of transcript levels.

The intriguing enrichment in hypermethylated and over-
expressed genes drove us to analyse the position of the
hypermethylated CGIs with respect to the ATG. Interestingly,
the CGI of overexpressed genes is either close to the ATG or in
the gene body region, in contrast to the CGI position of
downregulated genes exclusively located around the ATG
(Supplementary Fig. 6). Concerning the 55 genes hypermethy-
lated and overexpressed, they can be subdivided into two groups.
Group-I includes 31 genes, for which the CGIs are located
between −50% and 30% relative to the ATG (predominantly into
the 5′-UTR). Group-II includes 24 genes, whose CGIs are located
much further from the ATG (from 30% of the gene body relative
to the ATG to the transcription termination site), corresponding
to gene body regions (Fig. 3c, Supplementary Fig. S6). Next, we
analysed whether the CGI location influences gene expression.
Intriguingly, the extent of overexpression is significantly higher
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Fig. 3 Alb-R26Met tumours are characterised by an enrichment in genes overexpressed and with hypermethylated CGIs. a Histogram reporting the KEGG
pathway enrichment analysis for genes with changes in CGI methylation and expression in Alb-R26Met tumours, ordered according to the −Log10 P-value.
b Left: Methylation differences versus expression for all genes with CGIs hypermethylated (H+) or hypomethylated (H−) in Alb-R26Met tumours.
Expression values are relative to controls. Dots correspond to single differentially methylated CpG and the corresponding gene expression (genes which
expression is significantly below or above Log2FC ± 1 are indicated in red). Right: Graph reporting the percentage of downregulated (E−) and upregulated (E
+) genes among those with a hypomethylated (H−) or hypermethylated (H+) CGI. Note the enrichment of genes overexpressed and with hypermethylated
CGIs (indicated by an arrow), on which subsequent studies were focused. c For the 55 genes overexpressed and with hypermethylated CGI in Alb-R26Met

tumours, 3D density plot shows their distribution according to relative position to the ATG (as percentage), gene expression level (as Log2FC) and CGI
methylation (as β-value difference). Note that genes segregate into two groups, according to their relative position to the ATG. d Graph reporting the
individual expression level (as Log2FC; from RNA-seq data) of hypermethylated and overexpressed genes found in Alb-R26Met tumours compare to
controls. Note that the relative position of the hypermethylated CGI to the ATG well segregate the two groups (indicated with a red arrow). e Box plot
illustrating the global expression levels of genes in Group-I and Group-II. f Graph reporting individual expression levels (as Log2FC; by RT-qPCR) of genes
belonging to the two groups in Alb-R26Met tumours (n= 8) relative to control livers (n= 6). Red lines report the median Log2FC in expression. Note that
genes are distributed according to the location of the hypermethylated CGI relative to the ATG. g Box plot showing the global Log2FC in expression
(according to data in F) of genes in Group-I and Group-II. In e and g, the median is reported by a line and bars extend to the minimum/maximum values.
Significance is indicated on the top. *P < 0.05, **P < 0.01, ***P < 0.001
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for Group-II than Group-I (median log2FC= 2.15 ± versus
median log2FC= 3.38 ± 0.4; Fig. 3d, e). Importantly, the promo-
ter CGI methylation status of genes belonging to Group-II was
similar in Alb-R26Met tumours and control livers, thus excluding
that changes in promoter methylation could influence gene
expression levels (Supplementary Data 4). We corroborated these
results through RT-qPCR analysis of a subset of genes belonging
to both groups in Alb-R26Met tumours (n= 8) relative to control
livers (n= 6). Results showed consistent upregulation of all genes
(Fig. 3f), with significant higher expression levels for those within
Group-II (Fig. 3g). Together, these results highlight a set of
overexpressed genes with hypermethylated CGIs in Alb-R26Met

tumours and identify a correlation between the location of
hypermethylated CGIs and transcription status, where CGIs
located further from the ATG showing predominantly increased
transcription.

Next, we analysed whether Decitabine treatment would affect
in vivo the expression levels of genes found hypermethylated and
overexpressed in the Alb-R26Met tumours. Focusing on a set of
genes, we examined both their expression levels and the
methylation levels of their corresponding CGIs in dissected
tumours from Alb-R26Met mice either untreated or treated with
Decitabine. RT-qPCR results showed that Decitabine treatment
significantly decreases the expression levels of 7/8 analysed genes
(Fig. 4). Bisulfite sequencing studies revealed decreased methyla-
tion levels of most CpGs within the gene body CGIs (Fig. 4,
Supplementary Data 5). Thus, CGI hypermethylation of genes
belonging to Group-I and Group-II ensures their increased
expression levels in Alb-R26Met tumours as demethylating
treatment leads to a reduction of both CGI methylation content
and transcription.

A CGI hypermethylation and gene overexpression signature
defines a HCC patient subset. Next, we explored the relationship
between changes in CGI methylation and gene expression in the
above cohort of 41 HCC patients. Because of expected epigenomic
heterogeneity between human samples, we reasoned it relevant to
perform analyses in individual patients. We integrated tran-
scriptome and methylome data to extract the expression levels of
genes with differentially methylated CGIs (Fig. 5a), then classified
patients according to the highest percentage of genes: (a) over-
expressed with hypermethylated CpGs (H+E+); (b) overexpressed
with hypomethylated CpGs (H-E+); (c) underexpressed with
hypermethylated CpGs (H+E−); (d) underexpressed with hypo-
methylated CpGs (H−E−). Intriguingly, 23/41 patients (56%)
showed an enrichment of genes overexpressed and with hyper-
methylated CpGs (H+E+ patient-subset; Fig. 5a, Supplementary
Data 6), similar to the Alb-R26Met model (Fig. 3b). Analysis of
MET levels in HCC patients revealed that the mean MET levels in
the H+E+ subset is 0,77 ± 0,16 (9/23; 39% patients with MET
levels ≥ 1), whereas in the “NO H+E+” subset is 0,2 ± 0,24 (5/18;
27% patients with MET levels ≥ 1; Supplementary Data 6). Inter-
estingly, all 7 patients belonging to the HCC subgroup-3
(in Fig. 1f) are characterised by more than 37% of genes both
hypermethylated and overexpressed, and 5/7 patients belong to
the H+E+ subset (these 7 patients are highlighted with a
red square and red % in Fig. 5a). Next, we asked whether the
H+E+ patient subset could be also identified according to global
gene expression or methylation features. Unsupervised cluster
analysis of either global methylome or transcriptome data did not
lead to the same patient clustering (Supplementary Fig. 7), thus
strengthening the usefulness of combining methylation-expression
features to identify specific HCC patient subsets.

The remarkable correlation between data obtained in the Alb-
R26Met HCC model and analysed patient samples prompted us to

perform integrative studies using another HCC model, for which
methylation and expression data are available: the hepatitis-B
virus-X mice (HBxtg; GSE4805227). We first identified all CpGs
differentially methylated in HBxtg HCC model, then correlated
them with gene expression levels. We identified 115 genes both
differentially methylated and differentially expressed (a very
similar number to the 97 genes found in the Alb-R26Met genetic
setting). Nevertheless, we found a different distribution compared
to that of the Alb-R26Met HCC, with an enrichment in genes both
hypomethylated and downregulated (Supplementary Fig. 8).
Next, we performed correlative analyses with the 41 HCC
patients (reported in Fig. 5a): amongst the 18 “NO H+E+” subset,
8 patients (20%) share the same enrichment of hypomethylated
and downregulated genes modelled by the HBxtg mice. Unex-
pectedly, only 1/8 of these patients is reported positive for HBV.
Thus, an epigenetic rewiring of gene sets through hypomethyla-
tion and downregulation occurs in a fraction of HCC patients,
who do not appear to be characterised by the HBV-associated
risk. Collectively, these findings indicate a rather intriguing
specificity in how genes are epigenetically reprogrammed in HCC
patients: an enrichment in hypermethylated and upregulated
genes (for those corresponding to the Alb-R26Met model) versus
an enrichment in hypomethylated and downregulated genes (for
those corresponding to the HBxtg model).

For the several genes found overexpressed and with hyper-
methylated CGIs in the H+E+ patient subset, such as WT1,
DLK1, TP73, EEF1A2, IGF1R, DKK1, SPOCK1, ITPKA, HOXA3,
NOX4, FZD10, VASH2, GATA2, SOX8, their upregulation in
HCC samples is coherent with their reported function as
oncogenes in cancer. Concerning the H+E+ patient subset, based
on clinical data from TCGA, no association was found with a
specific risk factor, such as HBV/HCV infection, high-alcohol
intake or non-alcoholic fatty liver disease (NAFLD) (Supplemen-
tary Fig. 9). Instead, the H+E+ patient subset is distinguished by
specific HCC molecular markers28. In particular, analysis of
available RNA-seq data revealed a significant upregulation of
alpha-FETOPROTEIN (AFP; a HCC marker when expressed in
adult livers), JAG1, NOTCH3, NOTCH4, SOX9, VIM (progenitor
markers) and CD24 (a HCC prognosis marker; Fig. 5b).
Importantly, these markers are also upregulated in Alb-R26Met

HCC (Fig. 5c), as we recently reported24. Together, these results
show that an enrichment in genes characterised by “CGI
hypermethylation and overexpression” occurs in HCC patients
belonging to the so-called “proliferative-progenitor” subclass28.
Moreover, these HCC patients share common features with the
Alb-R26Met liver cancer model: the epigenetic H+E+ signature
and the “proliferative-progenitor” cell feature.

Overexpressed genes with hypermethylated CGIs in 5’-UTR or
gene body regions act as oncogenes. The intriguing overlap
between the Alb-R26Met model and the H+E+ patient subset
prompted us to explore the relevance in cancer of the 55 genes
found in Alb-R26Met tumours both overexpressed and with
hypermethylated CGIs either in the 5′-UTR or in the gene body
region. For this analysis, transcriptome data from HCC patients
were available for 51/55 genes (Supplementary Data 7).
Remarkably, most genes are overexpressed in a large proportion
of HCC patients (Fig. 6a, Supplementary Data 8), with a sig-
nificant higher number in the H+E+ patient subset compared
with the other (Fig. 6b). These genes include PRRX1 (28 patients
out of 41), CLDN7 (20), DBN1 (25), PCDH17 (30), PTK7 (21),
ADAMTSL5 (21), ARHGAP21 (30), NFKB2 (23), CDKN2B (30),
RELB (22), DUSP8 (24), SSBP4 (20), IRX3 (27), NEURL1B (19).
Differences in the expression of these 51 genes permitted segre-
gating the H+E+ patient subset from the other (Fig. 6c).
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Furthermore, for each HCC patient we analysed the methylation
levels of the CGIs corresponding to the 55 genes. We took into
account that the number of CGIs for each gene varies between
genes (Supplementary Data 7). 53/55 genes successfully lifted-
over from mouse to human, and both methylation and expression
data are available for 51 genes. These analyses revealed that 42/51
(82%) genes are both hypermethylated and overexpressed in at
least 1 patient, and that 40/41 (97,5%) patients have at least 1
gene both hypermethylated and overexpressed (Fig. 6d, e, Sup-
plementary Fig. 10, Supplementary Data 9). Additionally, there is
a significant higher number of genes both hypermethylated and

overexpressed in the H+E+ patient subset compared to the “NO
H+E+” subset (H+E+ versus “NO H+E+”: P-value < 0.001;
Supplementary Fig. 10).

Curiously, in the Alb-R26Met cancer model Cdkn2a, rather
considered as a tumour suppressor, is overexpressed and
hypermethylated in its gene body CGI, whereas no methylation
changes were observed in its promoter CGI (Supplementary Data
4). We examined whether this phenomenon would also occur in
HCC patients by analysing CDKN2A methylation and expression
in HCC patients from TCGA and GSE56588 cohorts (for which
methylation and expression data are available: 205/224 patients).
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Fig. 4 Decitabine treatment decreases the expression and the CGI methylation levels of genes hypermethylated and overexpressed in Alb-R26Met tumours.
Expression and CGI methylation levels of a set of genes found hypermethylated and overexpressed in the Alb-R26Met tumours were analysed in dissected
tumours from Alb-R26Met mice either untreated (red) or treated with Decitabine (green). For each indicated gene, graphs report the methylation levels of
CpGs within the CGI of interest (left) and the expression levels of genes (right) in tumours from Alb-R26Met mice either untreated (red) or treated with
Decitabine (green), compared to control livers (blue). Note that demethylating treatment significantly decreased transcription levels. Concerning the Scn8a
gene, the methylation levels of its gene body CGI was reduced in Decitabine treated tumours compared to untreated tumours. This was accompanied by a
trend in downregulation of its expression levels, although not significant. It is possible that for Scn8a, the demethylation extent caused by the dose of
Decitabine used is suboptimal to significantly influence its expression levels. Alternatively, a more complex mechanism could be involved in the regulation
of Scn8a expression. Significance is indicated on the top. Not significant (ns): P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001
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Mouse Cdkn2a has two CGIs: one in the promoter and another in
the gene body. Instead, human CDKN2A has 5 CGIs: one in the
promoter and four in the gene body. Data are available only for
the CGI in the promoter and for one of the four CGIs located in
gene body. Notably, in both cohorts we found an enrichment of
patients with an overexpression of CDKN2A (39/41 and 166/204,
in the respective cohorts), which is associated to a

hypermethylation of the gene body CGI (21/39 and 163/166, in
the respective cohorts). In contrast, not methylation changes have
been detected in the promoter CGI for both HCC cohorts
(Supplementary Fig. 11).

Analysing pathway enrichments in KEGG pathways of genes
overexpressed with hypermethylated CGIs, we identified a
significant enrichment of several cancer-related pathways, such
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Fig. 5 A HCC patient subset, which is characterised by an enrichment of genes overexpressed and with hypermethylated CGIs, belongs to the HCC
“proliferative-progenitor” subclass. a The 41 HCC patients are classified according to the highest percentage of genes over- versus underexpressed and
with hyper- versus hypomethylated CGIs. In orange (left), patients with an enrichment of genes overexpressed and with CGI hypermethylation (H+E+

patient subset). Patients are organised according to the absolute number of hypermethylated CGIs. The percentage of genes overexpressed and
hypermethylated is reported on the top. In green (right), all other patients are reported (NO H+E+ patient subset). Note that this patient subset is
characterised by an enrichment in downregulated genes. Patients are organised according to an enrichment of genes with CGI hypomethylation (top) and
hypermethylation (bottom). Concerning the 7 patients of the HCC subgroup 3 identified in Fig. 1f (corresponding to the best overlap patients), 5 of them
belong to the H+E+ subset. Notably, all of these 7 patients are characterised by more than 37% of genes both hypermethylated and overexpressed
(highlighted in panel with a red square and a red percentage of genes overexpressed with hypermethylated CGI). The X-axis reports methylation
differences, whereas the Y-axis reports expression as Log2FC. b Transcript levels (from RNA-seq data) of the indicated genes in H+E+ patient subset (in
orange) versus the others (in green). Note significant high transcript levels of AFP, JAG1, NOTCH3, NOTCH4, SOX9, VIM and CD24 in the H+E+ patient
subset. c Transcript levels by RT-qPCR for the same genes shown in b analysed in Alb-R26Met tumours versus control livers, displaying the same profile of
gene upregulation as in the H+E+ patient subset. Data have been reported in ref.24. Significance is indicated on the top. *P < 0.05, ***P < 0.001
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as MAPK signalling, viral carcinogenesis, pathways in cancer, cell
cycle (Fig. 6f, Supplementary Fig. 12). Consistently, some of these
genes are well-known oncogenes, such as GRB10, MAP3K6, JUN
(which belong to MAPK pathway), NFKB2, RELB (which belong
to NFkB and MAPK pathways), MET, PTK7 (Supplementary

Data 10). The presence of poorly characterised genes among well-
established oncogenes prompted us to explore their functional
relevance in cell tumorigenic properties. Focusing on Scn8a,
Actn1, Srd5a, NFkB2 and Neurl1b, we used shRNA-mediated
targeting to lower their expression levels in Alb-R26Met HCC cells
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(Fig. 7a, Supplementary Fig. 13). Stable clones were used to assess
cell tumorigenic properties in vitro and in vivo. These genes were
selected because: (1) of their overexpression in HCC patients
(SCN8A in 41%, ACTN1 in 22%, SRD5A2 in 5%, NFkB2 in 56%,
NEURL1B in 46%); (2) of their action as oncogenes in cancer cells
(and particularly in HCC) has been less explored in previous
studies (with the exception of NFkB2 and SRD5A). Down-
regulation of either Scn8a, Actn1, Srd5a, NFkB2 or Neurl1b
interferes with the capability of cells to form: (a) colonies in
anchorage-independent assays (Fig. 7b); (b) foci in anchorage-
dependent assays, as revealed by a significant smaller foci size
even if numbers were similar (Fig. 7c); (c) tumour spheres when
cells were grown in self-renewal conditions (Fig. 7d); (d) tumours
in nude mice xenografts (Fig. 7e). Collectively, these data show
that most of the 55 genes identified in the Alb-R26Met cancer
model are also overexpressed and with hypermethylated CGIs in
a large proportion of HCC patients, with a set of them acting
together as an “oncogenic module”.

Discussion
The increasing knowledge on how epigenetic modifications such
as DNA methylation influence patterns of gene expression in
cancer holds great promises for understanding biological pro-
cesses, as well as for their use in prognosis, patient stratifications
and therapeutic intervention3,29. This is well exemplified by
reports showing correlations between changes in CGI methyla-
tion and a remarkable resetting of transcriptional networks in
cancer. In the present study, we employed a clinically relevant
cancer mouse model in which tumorigenesis is triggered by a
slight perturbation in signalling dosages rather than drastic
genetic modifications, to examine the DNA methylation land-
scape associated with tumorigenic acquisition. We reasoned that
such a genetic tool offers a unique way to model DNA methy-
lation changes occurring in human cancerogenesis in the absence
of drastic alterations of epigenetic modulators. Our genome-wide
strategy highlighted key correlations between site-specific DNA
methylation changes and transcriptional dosages of the corre-
sponding genes. The type of changes found for some genes belong
to the well-known mechanism of downregulation of tumour
suppressors through promoter DNA hypermethylation, which
was the case of Oat and Igfbp5 that can act as tumour suppressors
in certain cellular contexts. Quite unexpectedly, however, there is
an enrichment of genes both overexpressed and with hyper-
methylated CGIs. Several of them are well-known oncogenes,
such as Grb10, Map3k6, Jun, RelB, Met, Ptk7, as well as NF-KB2,
Srd5a2, which have been functionally validated in this study
together with others poorly investigated so far: Scn8a, Actn1,
Neurl1b. Results from our functional assays in Alb-R26Met HCC
cells demonstrate how downregulating each individual oncogene
reduces, but not abolishes, cell tumorigenic properties. These
results conceptually illustrate that, although each oncogene con-
tributes to the tumorigenic properties of cancer cells, they operate
in a cooperative manner as an “oncogenic module” for ensuring
robustness of the tumorigenic program.

Our integrative studies using human HCC databases demon-
strate that enrichment in genes both overexpressed and with
hypermethylated CGIs also characterises 56% of the HCC
patients, which we named as the “H+E+ patient subset”. For
several genes, upregulation in expression levels is coherent with
them being bona fide oncogenes. For example, it is the case of
WT1, DLK1, TP73, EEF1A2, IGF1R, DKK1, SPOCK1, ITPKA,
HOXA3, NOX4, FZD10, VASH2, GATA2, SOX8. Thus, our
genetic studies together with a revisited analysis of human cancer
databases reveal that raising dosages of oncogene sets char-
acterised by hypermethylated CGIs is a robust mechanism

operating in cancer. The existence of such events in human
pathology supports the clinical relevance of these findings.
Remarkably, the H+E+ patient subset belongs to the “HCC
proliferative-progenitor” subclass, thus attributing an additional
feature to this aggressive HCC subtype. For clinical imple-
mentation, integrative methylome and transcriptome analyses on
additional HCC cohorts will demonstrate the robustness of H+E+
patient subset classification. These findings also raise the question
as to whether the H+E+ patient subset could be most sensitive to
therapies based on demethylation agents30.

Our expression analyses revealed that H+E+ genes can be
segregated into two groups, according to their relative position to
the ATG, with overall significant higher expression levels
observed the further the CGI is located from the ATG (Group-II).
Whereas for Group-I the relative position of the hypermethylated
CGIs falls predominantly with the 5′-UTR, their location in
Group-II is in the gene body. The positive correlation between
gene body hypermethylation and expression is coherent with
previous studies based on in vitro modulation of the methylation
content in cancer cell lines12. Additionally, single-base resolution
DNA methylation profiling combined with transcriptome analy-
sis correlated changes in gene expression levels with the CpG
methylation content in gene body31–34. The significance of gene
body DNA methylation on transcriptional regulation is
strengthened by studies exploring correlations with chromatin
modifications. It has been reported that in the gene body: (a)
H3K4me3 association to alternative promoters depends on their
CpG methylation content, impacting alternative transcript pro-
ducts35; (b) H3K36me3 associates with methylated DNA in gene
body and permits transcription36; (c) CTCF binding is lost in
hypermethylated CGI, influencing splicing, in addition to the
well-known action of CTCF in maintenance of chromatin
architecture through generation of chromatin barriers37,38; (d)
H3K27me3 and H3K9me3, known as repressive histone marks,
are not associated with methylated DNA39. Future studies inte-
grating methylome, transcriptome and ChIP-seq with several
chromatin marks like those mentioned above will contribute to
uncover the underlying mechanisms of action of oncogene
upregulation through gene body methylation. Taking into
account the variety of chromatin factors found associated in gene
body, it is likely that different sets of genes are modulated by
different mechanisms of action.

For translating these findings into therapies, an intriguing
question is whether and to what extent the epigenetic repro-
gramming of a set of genes acting as an “oncogene module” still
leaves space for tumour vulnerability. Our functional studies
show that targeting each individual oncogene reduces, but not
abolishes, tumorigenicity, indicating that each oncogene provides
a net contribution to the whole tumorigenic properties of cancer
cells. Such context may be particularly relevant for tumours that
are not predominantly “addicted” to genetic mutation(s)40, such
as HCC. This likely explains the partial response of HCC patients
even with most promising drugs targeting one or at least a
restricted number of targets (e.g., Sorafenib). Such scenario
contrasts with exceptional cases of effectiveness, due to the
stringent addiction of cancer cells to a given oncogene, such as
BCR-ABL in chronic myeloid leukaemia, ERBB2 in breast cancer,
ERBB1 in non-small cell lung cancer, B-RAF in metastatic mel-
anoma. To identify vulnerability, an approach could be to extract
enriched pathways that are deregulated from the whole list of
epigenetically reprogramed genes. In the case of tumorigenesis
modelled by the Alb-R26Met mice, the MAPK signalling cascade is
on the top of the list of enriched pathways (with 11 genes dif-
ferentially methylated in tumour versus control livers). Through a
phosphokinome-based educated guess drug screen, we recently
reported that tumorigenesis modelled by the Alb-R26Met genetic
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Fig. 7 Downregulation of overexpressed genes with hypermethylated gene body CGI in Alb-R26Met HCC cells interferes with their tumorigenic properties
both in vitro and in vivo. a Western blots showing SCN8A, ACTN1, SRD5A2, NFkB2 and NEURL1B protein levels in stable clones established after
transfection of Alb-R26Met HCC14 cells with plasmids carrying a shRNA sequence targeting the corresponding gene. Protein levels were compared to
control cells (ctr). ACTIN was used as a loading control in all western blots. The asterisk indicates nonspecific bands detected using anti-SRD5A2
antibodies. b–e Biological assays to assess functional properties of Alb-R26Met HCC14 cells carrying a shRNA sequence targeting candidate genes. Effects
were compared to HCC14 cells either untransfected or transfected with a control shRNA (shCtrl). b Graph reporting the number of colonies formed in
anchorage-independent growth assays using 2 different shRNA targeting sequences for each candidate gene. Note a decrease in colony number formation
of cells with downregulated candidate genes compared with control cells. c Graphs reporting the number (left) and the size (right) of colonies formed in
anchorage-dependent growth assays. Whereas no significant changes in colony numbers were detected, note a significant decrease in colony size when
the candidate gene is downregulated. d Graph reporting number of spheres formed in tumour sphere assays. Note that downregulation of candidate genes
significantly reduces sphere number formation. e Graph reporting the tumour volume of mice injected either with Alb-R26Met HCC14 control cells or with
Alb-R26Met HCC14 cells carrying a shRNA sequence targeting candidate genes. Note that downregulation of candidate genes significantly interferes with
the in vivo tumorigenic properties of Alb-R26Met HCC14 cells. Significant differences between groups are indicated on the top. *P < 0.05, **P < 0.01, ***P <
0.001 (nd: no determined)
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system is vulnerable to Ras pathway targeting, provided that its
inhibition occurs concomitantly while destabilising the stress
support mitochondrial pathway24. It is therefore tempting to
speculate that a proportion of tumours, particularly those with
epigenetic reprogramming rather than those with drastic genomic
instability, still maintains vulnerability to synthetic lethal inter-
actions. Alternatively, the use of epigenetic modulating agents to
reprogram a set of genes in cancer cells, ideally used at minimal
doses to limit side effects3,29, could reinforce the action of pro-
mising targeted therapies that, when used alone, have been
unsatisfactory in clinical trials, as reported for chronic myeloid
leukaemia41. We show here that Decitabine treatment reduces the
methylation levels of gene body CGIs and the expression levels of
the corresponding genes. Such event correlates with reduced
tumorigenic properties of Alb-R26Met HCC cells. Nevertheless,
cells for 10 days in culture after 48 h with Decitabine recover their
tumorigenic properties (Supplementary Fig. 14), illustrating how
reduced tumorigenicity by transient demethylation treatment is
reversible, likely by resetting increased levels of oncogenes. This
would be coherent with previous studies showing the capability of
cancer cells to restore acquired epigenetic modifications12. Col-
lectively, these findings support the possibility of achieving
effective response in cancer combining epigenetic modulating
agents with targeted treatments.

In conclusion, by exploring epigenetic changes associated with
tumorigenesis in a clinically relevant mouse model, we discovered
that for oncogene sets, characterised by hypermethylated CGIs
either in their 5′-UTR or in the gene body, their expression levels
are raised in cancer. The use of a mouse model in which
tumorigenesis is not caused by drastic genetic manipulations
strengthens the advantage of disrupting multiple oncogenes
through an epigenetic reprogramming. Delineating the relation-
ship between aberrant DNA methylation and expression of
oncogenes/tumour suppressors will likely contribute to identify
biomarkers for patient stratifications, functional pathways oper-
ating in cancer and strategies for an epigenetic restoration of
deregulated genes in combination with molecular therapies.

Methods
Mice. Ethics Statement: All procedures involving the use of animals were per-
formed in accordance with the European Community Council Directive of 22
September 2010 on the protection of animals used for experimental purposes
(2010/63/UE). The experimental protocols were carried out in compliance with
institutional Ethical Committee guidelines for animal research (comité d’éthique
pour l’expérimentation animale—Comité d’éthique de Marseille; agreement
number D13-055-21 by the Direction départementale des services vétérinaires—
Préfecture des Bouches du Rhône).

Alb-R26Met mice: R26stopMet and Alb-R26Met mice have been described
previously42,43. Briefly, R26stopMet mice (international nomenclature Gt(ROSA)
26Sortm1(Actb-Met)Fmai) carrying a conditional mouse–human chimeric Met
transgene in the Rosa26 locus were crossed with Albumin-Cre mice (B6.Cg-Tg(Alb-
cre)21Mgn/J) obtained from the Jackson Laboratory. All mice were maintained on a
50% mixed 129/SV and C57BL6 background. Mice were genotyped via PCR
analysis of genomic DNA as reported in previous studies42,43. Mice were housed
under pathogen-free conditions.

Mice drug treatment: For in vivo demethylation experiments to asses
methylation levels of selected CGIs, as well as expression levels of the
corresponding genes, Alb-R26Met mice were treated with intraperitoneal injections
of 2.5 mg/kg of Decitabine, twice per week (for a total of three injections).

DNA/RNA-related experiments. Genomic DNA isolation: Genomic DNA from
Alb-R26Met tumours and control livers was prepared using the ZR Genomic DNA
Tissue Miniprep (Zymo Research Company), according to the manufacturer’s
instructions.

Total RNA extraction: Total RNA from frozen tissues and cultured cells was
isolated using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s
instructions. DNase (Qiagen) treatment was included to avoid possible genomic
DNA contamination. Regarding frozen samples, 20 mg of tissue were first
homogenised in the specific lysis buffer by 6300 r.p.m. 2 × 30 s using Precellys 24
(Bertin technologies), then the RNeasy Mini Kit (Qiagen) was used.

cDNA and quantitative RT-PCR analysis: cDNA was synthesised using a
Reverse Transcription Kit (Bio-Rad). PCR reactions were performed using 2X
SYBR Green qPCR SuperMix-UDG with Rox (ThermoFisher Scientific) and
specific primers (1 µM; qPCR primer sequences are listed in Supplementary Data
S11). Expression levels were quantified using the comparative Ct method (2−ΔΔCT

method) with the house-keeping gene Hprt as a control for internal normalisation,
and results are expressed as RQ= 2−ΔΔCT.

High-throughput sequencing. Comparative Genomic Hybridisation analysis:
Genomic DNA form dissected Alb-R26Met tumours (n= 16) and control livers
(n= 8) was analysed by the “Plateforme Biopuces et Sequencage IGBMC” (Illkirch,
France) using an Agilent Oligonucleotide Array-Based CGH for Genomic DNA
Analysis (CGH microarray 4 × 180 K).

Genome-wide DNA methylation analysis: Methyl-MiniSeq EpiQuest genome-
wide sequencing was perform using genomic DNA from dissected Alb-R26Met

tumours (n= 10) and control livers (n= 3) to analyse the DNA methylation profile
by the Zymo Research Corporation (Irvine, CA, USA).

Library construction. Libraries were prepared from 200–500 ng of genomic
DNA digested with 60 units of TaqαI and 30 units of MspI (NEB) sequentially,
then extracted with Zymo Research DNA Clean and Concentrator™-5 kit (Cat#:
D4003). Fragments were ligated to pre-annealed adapters containing 5′-methyl-
cytosine instead of cytosine according to Illumina’s specified guidelines (www.
illumina.com). Adaptor-ligated fragments of 150–250 bp and 250–350 bp in size
were recovered from a 2.5% NuSieve 1:1 agarose gel (Zymoclean™ Gel DNA
Recovery Kit, Zymo Research Cat#: D4001). The fragments were then bisulfite-
treated using the EZ DNA Methylation-Lightning™ Kit (Zymo Research, Cat#:
D5020). Preparative-scale PCR was performed and the resulting products were
purified (DNA Clean and Concentrator™–Zymo Research, Cat#D4005) for
sequencing on an Illumina HiSeq.

Alignments and data analysis. Sequence reads from bisulfite-treated EpiQuest
libraries were identified using standard Illumina base-calling software and then
analysed using a Zymo Research proprietary analysis pipeline, which is written in
Python and used Bismark (http://www.bioinformatics.babraham.ac.uk/projects/
bismark/) to perform the alignment. Index files were constructed using the
Bismark-genome-preparation command and the entire reference genome. The
non-directional parameter was applied while running Bismark. All other
parameters were set to default. Filled-in nucleotides were trimmed off when doing
methylation calling. The methylation level of each sampled cytosine was estimated
as the number of reads reporting a C, divided by the total number of reads
reporting a C or T (β-value).

Overall sequencing results (for 13 samples) are: (a) mean total read: 30 million
read pairs, (b) mean mapping efficiency: 40%, (c) mean unique CpGs: 4.1 millions,
(d) mean average CpG coverage: 16×, (e) mean bisulfite conversion rate: 98%. Data
accessibility: Methylome datasets generated from this study are deposited with the
Gene Expression Omnibus (accession GSE90093).

Identification of differentially methylated CpGs. A total of 1.085.757 unique
single CpG sites, present in all samples, were analysed. β-value ranged from 0 (not
methylated) to 1 (fully methylated). To identify differentially methylated CpGs, the
methylation difference per CpG was calculated as the mean β-value of tumours
minus the mean β-value of controls. Those with a methylation difference > 0.2 were
filtered to retain the ones with a FDR < 0.05 (Student’s two-sided T-test and
Benjamini–Hochberg False Discovery Rate for P-value correction). A CpG is
classified as “hypomethylated” when the methylation difference is <−0.2 and as
“hypermethylated” when the methylation difference is >0.2. A global analysis was
first carried out with all measured CpGs, then dividing the CpGs according to their
location within or outside a CGI (CpG Island bedfile downloaded from UCSC).
According to the Methyl-MiniSeq EpiQuest coverage, the CGI coverage by CpGs
was 87.5%. Studies were focused on CGI regions. The overlap with CGI and the
annotated gene was performed using the CGI track from the UCSC genome
browser, and Refseq gene annotations based on the NCBI37/mm9 mouse reference.
We discarded “ubiquitous CpGs” located in more than one annotated gene, and we
extended the gene/CGI annotation to the gene’s promoter region to −1.5 kb
upstream the TSS.

Targeted Bisulfite Sequencing: Genomic DNA from Alb-R26Met tumours
dissected from mice treated with Decitabine (2.5 mg/kg; twice per week, for a total
of three treatments; n= 4) and without treatment (n= 2) was used to asses CpG
methylation levels in selected regions within the candidate CGIs through bisulfite
sequencing by the Zymo Research Corporation (Irvine, CA, USA).

Assay Design, Sample Preparation and Multiplex Targeted Amplification. After
assessment of DNA concentration and quality, DNA samples were bisulfite
converted using the EZ DNA Methylation-LightningTM Kit (ref Cat#D5030)
according to the manufacturer’s instructions. Primers were designed with
Rosefinch, Zymo Research’s proprietary sodium bisulfite converted DNA-specific
primer design tool (primer sequences are listed in Supplementary Data 5).
Multiplex amplification of all samples using the specific primer pairs and the
Fluidigm Access ArrayTM System was performed according to the manufacturer’s
instructions. The resulting amplicons were pooled for harvesting and subsequent
barcoding according to the Fluidigm instrument’s guidelines. After barcoding,
samples were purified (ZR-96 DNA Clean and Concentrator™ –ZR, Cat#D4023),
then prepared for parallel sequencing using a MiSeq V2 300 bp Reagent Kit and
paired-end sequencing protocol, according to the manufacturer’s guidelines.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05550-5 ARTICLE

NATURE COMMUNICATIONS | (2018)9:3164 | DOI: 10.1038/s41467-018-05550-5 | www.nature.com/naturecommunications 13

http://www.illumina.com
http://www.illumina.com
http://www.bioinformatics.babraham.ac.uk/projects/bismark/
http://www.bioinformatics.babraham.ac.uk/projects/bismark/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Targeted Sequence Alignments and Data Analysis. Sequence reads were
identified using standard Illumina base-calling software and then analysed using a
Zymo Research proprietary analysis pipeline, which is written in Python. Sequence
reads were aligned back to the reference genome using Bismark (http://www.
bioinformatics.babraham.ac.uk/projects/bismark/), an aligner optimised for
bisulfite sequence data and methylation calling44. Paired-end alignment was used
as default thus requiring both read 1 and read 2 be aligned within a certain
distance, otherwise both read 1 and read 2 were discarded. Index files were
constructed using the bismark_genome_preparation command and the entire
reference genome. The non-directional parameter was applied while running
Bismark. All other parameters were set to default. The methylation level of each
sampled cytosine was estimated as the number of reads reporting a C, divided by
the total number of reads reporting a C or T.

Transcriptome analysis by RNA-seq: Total RNA from dissected Alb-R26Met

tumours (n= 4) and control livers (n= 4) was processed for transcriptome
analysis. RNA quality was controlled using the Agilent RNA 6000 Pico Kit and
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California) according
to the manufacturer’s recommendations. Total RNA (1 µg per sample) was used for
library preparation using the TruSeq RNA Sample Preparation Kit (Illumina) by
GATC Biotech (Mulhouse; NGSelect service). Sequencing was performed on a
HiSeq 2500 (Illumina; 2 × 50 bp paired end) and base calling performed using RTA
(Illumina). Quality control of raw reads was done using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped to the
reference genome mm9 with STAR aligner45 using default parameters; differential
expression was calculated using the Cufflinks package46.

Cell culture-related experiments. Cell lines: Alb-R26Met HCC cell lines (HCC3,
HCC13 and HCC14) were established, characterised and cultured as previously
described24; cells were regularly tested by PCR-based assay to confirm their
maintenance in free Mycoplasma culture condition.

shRNA-mediated downregulation of candidate genes: The functional relevance
of candidate oncogenes was determined using shRNA targeting sequences (Sigma;
shRNA sequences are reported in Supplementary Data 12). In particular, plasmids
carrying the shRNA sequence were transfected in cells using Lipofectamine 2000
reagent, according to the manufacturer’ instructions (ThermoFisher Scientific).
After 1 week of puromycin selection, pools of resistant clones were used to verify
downregulation of gene expression levels (by RT-qPCR and western blots) and to
perform biological assays.

Cell drug treatment: For the demethylation experiments, cells were exposed to
0.3 µM of Decitabine (5-Aza-2’-deoxycytidine; Selleckchem) for 48 h. After
treatment, cells were used for cell viability, anchorage-dependent growth assay,
anchorage-independent growth assay, tumour sphere formation assay and
xenograft studies. For experiments shown in Supplementary Fig. 14, after 48 h of
Decitabine treatment, cells were cultured for 10 days with complete media before
performing the experiments.

Survival assay: Cells were seeded in a 150‐µl volume per well in 96 well plates
(10,000 cells/well) in 10% serum for 24 h, then Decitabine treatment was applied at
0.3 µM in the corresponding wells. After 48 h, cell viability was assessed in a Cell
Titer Glo Luminescent Assay (Promega) and luminescent signals were measured
with a luminometer microplate reader (Berthold). Data are expressed as means ±
SEM of three independent experiments performed in triplicate.

Anchorage-dependent growth assay (focus formation assay): To measure
anchorage-dependent growth, 300 cells were seeded in 10 ml complete media in a
10 cm dish. After 7 days, foci were stained with a 0.2% crystal violet solution
(2% methanol). The total number of foci and individual foci size were quantified
using ImageJ program. Data are expressed as means ± SEM of three independent
experiments performed in triplicate.

Anchorage-independent growth assay (soft agar assay): Assays were performed
as previously described47–49. Briefly, cells were cultured in 12-well plates containing
two layers of agar. Cells (6 × 103) were resuspended in 0.5% agar diluted in
complete medium and poured onto a 1% layer of agar (diluted in medium). Fresh
medium was added to the top layer every 3 days. After 2 weeks, colonies were
stained with MTT, pictures were taken using a dissecting microscope, and colonies
were counted using ImageJ software. Numbers are expressed as means ± SEM of
three independent experiments performed in triplicate.

Tumour sphere forming assay: Cells were cultured at a density of 2 × 104/
35 mm dishes in a stem cell-permissive media. In particular, cells were cultured for
one week in DMEM/F12 medium supplemented with 1% N-2 Supplement, 2%
B27, 50 mg/ml of Penicillin-Streptomycin, glutamine (Gibco), 0.01% Bovine Serum
Albumin (BSA), 5 mg/ml of insulin (Sigma) and growth factors including 10 ng/ml
of basic fibroblast growth factor (bFGF), 20 ng/ml of epidermal growth factor
(EGF) and 10 ng/ml of hepatocyte growth factor (HGF; Peprotech). After one
week, pictures of the whole dish were taken using a dissecting microscope, and
spheres were counted using ImageJ software. Numbers are expressed as means ±
SEM of three independent experiments performed in triplicate.

In vivo tumorigenesis assays (xenografts in nude mice): For in vivo
demethylation studies, xenografts were performed using Alb-R26Met HCC cells
either untreated or pre-treated for 48 h with Decitabine (0.3 µM). Cells (5 × 106)
were then resuspended in a 1:1 Matrigel:PBS solution (Corning BV) and inoculated
subcutaneously into the flank-leg region of nude mice (S/SOPF SWISS NU/NU;
Charles River). After 5 days of cell inoculation, mice were treated with

intraperitoneal injections of vehicle or Decitabine (2.5 mg/kg) twice per week for
3 weeks. Mice were then sacrificed and tumour volume was measured as length ×
width × height. For assessment of in vivo tumorigenic capacity of candidate genes,
xenografts were performed using Alb-R26Met HCC cells (1 × 106) either un-
transfected, transfected with shControl, or with a shRNA sequence targeting the
candidate gene. Tumour volume was followed every week. After 6 weeks mice were
sacrificed and tumour volume after dissection was determined as length ×width ×
height.

Western blots: Protein extracts from HCC cells were prepared and western blot
analysis was performed as previously described43,48,49. For SCN8A detection,
protein lysates were run on a 5% SDS gel and transferred overnight at 300 mA in
the presence of 0.1% SDS. The acquisition of ECL signal was performed using the
MyECL imager system (ThermoFisher Scientific)(Supplementary Fig. 15).

Antibodies: Antibodies used were: anti-SCN8A (Abcam, #ab65166; 1:500), anti
ACTN-1 (Cell Signalling, #6487; 1:3000), anti-SRD5A2 (ThermoFisher Scientific,
#PA5-25465; 1:1000), anti-NFkB2 (Cell Signalling; #4882; 1:1500), anti-NEURL1B
(Abcam, #ab156988; 1:3000), anti-ACTIN (Sigma, A3853; 1:5000), anti-rabbit IgG-
peroxidase or anti-mouse IgG-peroxidase (Jackson; 1:4000).

Computational analyses. Unsupervised hierarchical clustering analysis: Clustering
statistics was determined by using the methylation values of all CGIs for each
sample. We applied the Principal Component Analysis and the Agglomerative
Distance Tree using the “linkage” function with unweighted average euclidean
distance for calculating the similarity matrix of samples and the “dendrogram”, as
well as “phylotree” function to plot the hierarchical and distant trees (both are from
Matlab Statistical Toolbox). For studies reported in Supplementary Fig. 7, clus-
tering analysis of both methylome and expression data was performed using the
function “hclust” on an Euclidean distance matrix of samples, which was computed
with the function “dist”. “hclust” then returned a tree-like structured object that
could be plotted as dendrogram by “plot” (R, version 3.3.1).

Identification of human CGIs corresponding to the mouse CGIs of interest: To
compare methylome outcomes identified in the Alb-R26Met genetic system with
those available for human studies, genomic coordinates were converted from mm9
to GRCh37/hg19 by using the “Lift-Over” tool available from UCSC (https://
genome-euro.ucsc.edu/cgi-bin/hgLiftOver). This allowed us to successfully map
501 out of 513 CGIs from mouse to human regions (Supplementary Data 2).
Among them, we only kept 501 unique human regions by discarding duplicate lift-
overs. We also discarded 14 human regions not overlapping with any human CGI.
We then check into TCGA patient datasets the presence of methylation data for
those CGIs. We focused the analysis on the patient having both tumour and
control samples (adjacent liver) methylation data, and we discarded the CGIs
having no entry into any of the TCGA patient dataset. Finally, the total CGIs used
for comparative analyses between mouse and human is 416.

Analysis of public available DNA methylome data: The human methylome data
is available through firebrowse (www.firebrowse.org) by the BROAD Institute and
is based upon data generated by the TCGA Research Network: http://
cancergenome.nih.gov/. The publicly available methylome data (Level 3 data) of
HCC patients from TCGA is generated with the platform Illumina Infinium
Human DNA Methylation 450 and contains beta values for 485778 CpGs. Patients
with both tumour and control samples were extracted and calculation of
methylation difference per CpG was applied (β-values of tumour–β-values of
control). Student’s T-test was used to compare between tumour and normal
samples, and the P-values were corrected with Benjamini–Hochberg False
Discovery Rate (FDR). As our methylome screen focused on CGIs, we revisited the
human data (from TCGA and from GSE56588) to generate a list of all CpGs within
CGIs with the corresponding methylation β-values. By applying the same
methylation difference and FDR thresholds used for Alb-R26Met methylome data,
we extracted a list of differentially methylated CpGs from the human HCC dataset.

Methylome overlap between Alb-R26Met outcomes and human data: A
methylation overlap between Alb-R26Met and human HCC was considered only
when a given CGI was differentially methylated in both species. To define the
methylation status of a given CGI, the CpG with an absolute maximum
methylation difference among all patient samples was chosen as a representative
probe (with P-value threshold and fold change cut-off defined above). This CpG
was analysed in all HCC patients. An overlap score (in percentage) was determined
by calculating the number of human CGIs differentially methylated versus the total
number of lifted-over CGIs subset.

Analysis of public available RNA-seq data: The human RNA-seq data from
TCGA was available through firebrowse. The data is generated with the platform
Illumina HiSeq 2000 Sequencing System and uses MapSplice50 to do the alignment
and RSEM51 to perform the quantitation. The scaled estimate from RSEM output
was used as this value could be multiplied by 106 to obtain a measure in terms of
transcripts per million (TPM), which is preferred over RPKM52 or FPKM53 as it is
independent of the mean transcript length and therefore more comparable across
samples51. The TPM is calculated for each gene and the calculation of Log2 Fold
Change (Log2(tumour sample)−Log2(control sample)) was applied to each patient
with available data from both tumour and control samples.

Calculation of the relative position to the ATG: For calculating the position of
CpGs, we used the longest transcript for each gene. The gene length was reported
with values ranging from −100% and +100% (transcription end site: TES), with
the ATG at position 0. The relative position for each CpG was then reported
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relative to its distance to the ATG. A positive relative position corresponds to a
genomic region located downstream the ATG, whereas a negative relative position
stands for a genomic region located upstream the ATG.

Analysis of public available data from a mouse HCC model carrying the viral
hepatitis B virus X expression: Using available methylome and expression data
based on a HCC model induced by the viral hepatitis B virus X (HBxtg;
GSE4805227), we performed the same analysis done for the Alb-R26Met model
(Fig. 3b). For each CpG, the methylation difference between HBxtg tumour and
control sample was calculated as the difference of the RPKM. For those CpGs
found differentially methylated, the expression of the corresponding gene was then
calculated as the difference of the RPKM sum within the TSS and TSE.

Pathway enrichment analysis: For these analyses (shown in Supplementary
Figs. 5, 9), identified genes were used as an input for KEGG pathway enrichment
analysis with the REST API tool (http://rest.kegg.jp). Pathways were further ranked
by −log10 P-value after applying the hypergeometric probability density function
(Matlab function “hygepdf” from Statistical Toolbox).

Statistical analysis: All data were analysed using GraphPad Prism software
(version 7.01) and Matlab Statistical Toolbox (version R2015b). Results are
expressed as the median (indicated by a line) or as the mean ± standard error of the
mean (SEM), according to sample distributions. Statistically significant differences
were estimated by applying unpaired Student t-tests to data showing normal
distributions, and Mann–Whitney tests in all other situations. Moreover, one-way-
ANOVA was used to determine differences between the means of independent
groups (in vivo xenograft experiments in Figs. 2h and 7d), and Fisher’s exact test
for categorical variables (risk factors in Supplementary Fig. 9). All statistical tests
were two-sided. Statistical significance was defined as not significant (ns): P > 0.05;
*P < 0.05; **P < 0.01; ***P < 0.001. Significance is indicated in figures

Data availability. Raw and processed data of bisulfite sequencing have been
deposited to the Gene Expression Omnibus (GEO) [GEO: GSE90093]. The authors
declare that all data supporting the findings of this study are available within the
article and its Supplementary Information files, or from the authors upon rea-
sonable request.
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Supplementary Figure 1. Tumorigenesis modelled by the AlbͲR26Met mice is characterized by a stable

chromosome context. (A) Schematic representation of the experimental setting used to analyse genomic DNA

from AlbͲR26Met HCC (n=16) and control livers (n=8) through Comparative Genomic Hybridization (CGH)

Microarray. (B) Overall picture of the CGH results in the 19 autosomal and the 2 sex chromosome pairs of the

analysed AlbͲR26Met tumours. Note that tumours develop in a stable chromosome context; only 2 regions in

chromosome 4 and chromosome 17 showed some variations in a proportion of analysed tumours.
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Supplementary Figure 2. Focal CGI hypermethylation and widespread CpG hypomethylation in AlbͲR26Met

tumours. (A) Schematic representation of experimental settings employed for the methylome screen. Genomic

DNA from AlbͲR26Met HCC (n=10) and controls (n=3) was used to examine the DNA methylation status of a CGIͲ

enriched fraction and raw data were used for bioinformatics processing. (B and C) Volcano plot reporting

methylation differences with significance (expressed as ͲLog10 FDR) for all measured CpGs (B) and CpGs located

outside CGIs (C) in AlbͲR26Met tumours versus control (left). Significant differences (methylation difference>0.2 and

FDR<0.05) are shown in red. Graph reporting the percentage (and numbers) of hypomethylated versus

hypermethylated CpGs (right). (D) Table reporting the number and percentage of CpGs, the corresponding CGIs

and genes, differentially methylated, specifying the ones hypermethylated versus those hypomethylated. (E)

Chromosomic distribution of the 1153 CpGs differentially methylated in AlbͲR26Met tumours compared to control

livers.
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Supplementary Figure 3. Comparison of methylome outcomes of AlbͲR26Met tumours with those of the TCGA

cohort (41 HCC patients). (A) Schematic representation of the mouseͲhuman CGI liftͲover performed to extract the

human CGIs corresponding to the 513 mouse CGIs differentially methylated in AlbͲR26Met tumours. 501 CGIs were

successfully mapped in human, and methylome data were available for 416 CGIs. (B) Table reporting the number and

percentage of CpGs, the corresponding CGIs and genes, differentially methylated, specifying the ones

hypermethylated versus those hypomethylated. Data refer to those reported in Figure 1E. (C) Hierarchical clustering

of HCC patients based on the 416 CGIs differentially methylated in AlbͲR26Met tumours. Data refer to those reported

in Figure 1F, specifying the patient ID, the percentage overlap, and theMET expression levels. (D) Graph showing the

percentage of patients with MET overexpression in the three HCC subgroups reported in Figure 1F. Note that MET is

overexpressed in 86% (6/7) of HCC patients belonging to the HCC subgroup 3 (the subgroup that best overlap with

CGI methylation changes in AlbͲR26Met), 32% (6/19) to the HCC subgroup 2, and only 13% (2/15) to the HCC subgroup

1. (E) Graph reporting MET expression levels in the three HCC subgroups reported in Figure 1F. (F) For the 41 HCC

patients, correlation between MET expression levels and percentage of overlap with the CGIs found differentially

methylated in the AlbͲR26Metgenetic setting.
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Supplementary Figure 4. Comparison of methylome outcomes of AlbͲR26Met tumours with those of a cohort of
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number and percentage of CpGs, the corresponding CGIs and genes, differentially methylated, specifying the

ones hypermethylated versus those hypomethylated. Data refer to those reported in Figure 1G. (B) Hierarchical
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those reported in Figure 1H.



Pathway enrichment analysis: genes differentially methylated and 
differentially expressed in Alb-R26Met tumours

Pathway p value
MAPK signaling pathway - Homo sapiens (human) 0.00015777
HTLV-I infection - Homo sapiens (human) 0.00016107
Axon guidance - Homo sapiens (human)  0.0002355
Nicotine addiction - Homo sapiens (human) 0.00028279
Viral carcinogenesis - Homo sapiens (human) 0.00043804
Pathways in cancer - Homo sapiens (human)  0.0014551
Neuroactive ligand-receptor interaction - Homo sapiens (human)  0.0017757
TGF-beta signaling pathway - Homo sapiens (human)  0.0023777
GABAergic synapse - Homo sapiens (human)  0.0027043
Morphine addiction - Homo sapiens (human)   0.002966
Cell cycle - Homo sapiens (human)  0.0068301
Osteoclast differentiation - Homo sapiens (human)   0.007425
Type II diabetes mellitus - Homo sapiens (human)  0.0092091
Tight junction - Homo sapiens (human)   0.015343
Renal cell carcinoma - Homo sapiens (human)   0.017431
Calcium signaling pathway - Homo sapiens (human)   0.018154
Epithelial cell signaling in Helicobacter pylori infection - Homo sapiens (human)    0.01891
Melanoma - Homo sapiens (human)   0.019414
Adherens junction - Homo sapiens (human)   0.020952
cAMP signaling pathway - Homo sapiens (human)   0.022263
Focal adhesion - Homo sapiens (human)   0.022533
Epstein-Barr virus infection - Homo sapiens (human)   0.023628
Rap1 signaling pathway - Homo sapiens (human)   0.025603
Protein digestion and absorption - Homo sapiens (human)   0.031017
NF-kappa B signaling pathway - Homo sapiens (human)   0.034037
Endocrine resistance - Homo sapiens (human)   0.034652
Amoebiasis - Homo sapiens (human)   0.034652
Estrogen signaling pathway - Homo sapiens (human)   0.035891
Chagas disease (American trypanosomiasis) - Homo sapiens (human)   0.038408
Leukocyte transendothelial migration - Homo sapiens (human)   0.044908
Cholinergic synapse - Homo sapiens (human)   0.044908
Cytokine-cytokine receptor interaction - Homo sapiens (human)   0.045221
Serotonergic synapse - Homo sapiens (human)   0.045573

Supplementary Figure 5. KEGG pathway enrichment analysis for genes with changes in CGI methylation and

expression in AlbͲR26Met tumours, ranked according to their pͲvalue. Data reported in Figure 3A are in pink.
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A

Supplementary Figure 7. Hierarchical clustering analysis of the TCGA cohort (41 HCC patients) based on either

global DNA methylome (A) or transcriptome (B) outcomes. In orange: H+E+ patient subset. In green: “NO H+E+”

patient subset.
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Supplementary Figure 8. Mouse HBxtg tumours are characterized by an enrichment in genes downregulated

and with hypomethylated CGIs. Left: Methylation differences versus expression for all genes with CGIs

hypermethylated (H+) or hypomethylated (HͲ) in HBxgt tumours. Expression values are relative to controls. Dots

correspond to single differentially methylated CpG and the corresponding gene expression (genes which

expression is significantly below or above Log2 fold change (FC) ±1 are indicated in red). Right: Graph reporting

the percentage of downregulated (EͲ) and upregulated (E+) genes among those with a hypomethylated (HͲ) or

hypermethylated (H+) CGI. Note the enrichment of genes downregulated and with hypomethylated CGIs in HBxgt

tumours (indicated by an arrow), in contrast to the enrichment of gene overexpressed and with hypermethylated

CGIs in AlbͲR26Met tumours.



Patients Alcohol NAFLD HepatitisB HepatitisC Hemochromatosis TOTAL
TCGAͲBCͲA10Q 0 0 0 0 0 0
TCGAͲDDͲA1EH 0 0 1 0 0 1
TCGAͲDDͲA1EC 0 0 0 0 0 0
TCGAͲDDͲA113 0 0 0 0 0 0
TCGAͲDDͲA11A 0 0 0 0 0 0
TCGAͲDDͲA39W 0 0 0 0 0 0
TCGAͲBCͲA216 0 0 0 0 0 0
TCGAͲEPͲA26S 1 0 0 0 0 1
TCGAͲDDͲA11C 0 0 0 0 0 0
TCGAͲBCͲA10T 0 0 0 0 0 0
TCGAͲDDͲA118 0 0 0 0 0 0
TCGAͲDDͲA39X 0 0 0 0 0 0
TCGAͲDDͲA1EI 0 0 1 0 0 1
TCGAͲBCͲA10R 0 0 0 0 0 0
TCGAͲBCͲA10W 0 0 1 0 0 1
TCGAͲBCͲA10U 1 0 0 0 0 1
TCGAͲDDͲA39V 0 0 0 0 0 0
TCGAͲBDͲA3EP 0 0 0 0 0 0
TCGAͲDDͲA1EG 1 1 0 0 0 2
TCGAͲDDͲA114 0 0 0 1 0 1
TCGAͲDDͲA116 0 0 1 0 0 1
TCGAͲBCͲA110 1 0 0 0 0 1
TCGAͲBCͲA10X 0 0 0 0 0 0
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TCGAͲBDͲA2L6 1 0 0 0 0 1
TCGAͲBCͲA10Z 0 0 0 0 0 0
TCGAͲBCͲA10Y 1 0 0 0 0 1
TCGAͲFVͲA2QR 0 0 0 0 0 0
TCGAͲDDͲA1EJ 0 0 0 0 0 0
TCGAͲDDͲA1EL 0 0 1 0 0 1
TCGAͲDDͲA11D 0 1 0 0 0 1
TCGAͲDDͲA3A1 0 0 0 0 0 0
TCGAͲDDͲA1EE 0 0 0 1 0 1
TCGAͲEPͲA12J 0 0 0 1 0 1
TCGAͲFVͲA23B 0 0 0 1 0 1
TCGAͲDDͲA11B 0 1 0 0 0 1
TCGAͲDDͲA3A3 0 0 0 0 0 0
TCGAͲDDͲA1EB 0 0 0 0 0 0
TCGAͲDDͲA3A2 0 0 0 0 0 0
TCGAͲDDͲA39Z 1 0 0 0 0 1
TCGAͲDDͲA119 0 0 1 0 0 1
TCGAͲESͲA2HT 0 0 0 1 0 1
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Fisher’s exact test 
p-value=0,2146

Supplementary Figure 9. H+E+ patients are not characterised by any specific risk factors, while show a trend of

better prognosis. Table reporting risk factors associated to individual HCC patients. The presence of a risk factor is

indicated as 1, whereas the absence by 0. No significant differences were found between H+E+ versus “NO H+E+”

patient subsets.



H+E+ patient subset NO H+E+ patient subset
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1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0
1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0
1 1 0 0 1 0 1 0 0 0
1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0
1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1
0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0
1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0
1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0

0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0

1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0
1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NO H++E+
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Supplementary Figure 10. Among the 55 genes identified in AlbͲR26Met tumours, a significant higher number of

them is both hypermethylated and overexpressed in the H+E+ patient subset compared to the “NO H+E+”

subset. HeatͲmap showed in Figure 6D in which the number of genes both hypermethylated and overexpressed

per patient (median) is reported for each subgroup. Significance is indicated on the bottom. ***: P<0.001.
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Supplementary Figure 11. The CDKN2A gene is overexpressed and with hypermethylated gene body CGI in the

majority of HCC patients. Top: graphs reporting the expression levels of CDKN2A in HCC patients from the TCGA

(A) and GSE56588 (B) cohorts. Bottom: schemes reporting a black line when the CDKN2A promoter or gene body

CGI is hypermethylated (methylation difference >0.2) in HCC patients from the TCGA (A) and GSE56588 (B) cohorts.

Notably, in both cohorts the majority of HCC patients carry an overexpression of CDKN2A (39/41 and 166/204, in

the respective cohorts), which is associated with a hypermethylation of the gene body CGI (21/39 and 163/166, in

the respective cohorts). In contrast, not methylation changes are detected in the promoter CGI for both HCC

cohorts.



Pathway enrichment analysis: overexpressed genes with 
hypermethylated CGI in Alb-R26Met tumours

Pathway p value
MAPK signaling pathway - Homo sapiens (human) 8.2428e-06
Viral carcinogenesis - Homo sapiens (human) 3.7666e-05
HTLV-I infection - Homo sapiens (human)   0.000116
Pathways in cancer - Homo sapiens (human) 0.00080777
Cell cycle - Homo sapiens (human)  0.0016141
Osteoclast differentiation - Homo sapiens (human)   0.001764
Nicotine addiction - Homo sapiens (human)  0.0025759
Tight junction - Homo sapiens (human)  0.0038538
Axon guidance - Homo sapiens (human)  0.0041683
cAMP signaling pathway - Homo sapiens (human)  0.0058036
Focal adhesion - Homo sapiens (human)  0.0058818
Epstein-Barr virus infection - Homo sapiens (human)  0.0062006
Renal cell carcinoma - Homo sapiens (human)  0.0065617
Epithelial cell signaling in Helicobacter pylori infection - Homo sapiens (human)  0.0071469
Melanoma - Homo sapiens (human)  0.0073467
Adherens junction - Homo sapiens (human)  0.0079605
TGF-beta signaling pathway - Homo sapiens (human)   0.010621
GABAergic synapse - Homo sapiens (human)   0.011577
Morphine addiction - Homo sapiens (human)   0.012317
NF-kappa B signaling pathway - Homo sapiens (human)   0.013332
Endocrine resistance - Homo sapiens (human)    0.01359
Estrogen signaling pathway - Homo sapiens (human)   0.014114
Leukocyte transendothelial migration - Homo sapiens (human)   0.017989
Cholinergic synapse - Homo sapiens (human)   0.017989
Wnt signaling pathway - Homo sapiens (human)   0.027757
Breast cancer - Homo sapiens (human)   0.028096
Maturity onset diabetes of the young - Homo sapiens (human)   0.047146

Supplementary Figure 12. KEGG pathway enrichment analysis for overexpressed genes with hypermethylated

CGI in AlbͲR26Met tumours, ranked according to their pͲvalue. Data reported in Figure 6F are in blue.
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Supplementary Figure 13. Expression levels of Scn8a, Actn1, Srd5a, NFkB2, and Neurl1b in AlbͲR26Met HCC cells

transfected with two different shRNA targeting sequences versus controls. After molecular validation, cells

were used for in vitro studies reported in Figure 7.
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Supplementary Figure 14. Global CGI hypermethylation is functionally relevant for AlbͲR26Met tumorigenesis.

(A) Scheme reporting demethylating treatment (Decitabine; 0.3ʅM) used for in vitro experiments with AlbͲR26Met

HCC cells. Cells were preͲtreated (48 h) with Decitabine, then cultured for 10 days without any treatment before

using them for experiments. (B, C) AnchorageͲindependent (B) and anchorageͲdepend (C) growth assays using 2

different AlbͲR26Met HCC cell lines (HCC13 and 14) showing effects of demethylating treatments described in A.

Note that HCC cells recover their tumorigenic properties when experiments are performed with cell cultured 10

days after Decitabine preͲtreatment. Significant differences between groups are indicated on the top. Not

significant (ns).



Supplementary Figure 15. Full blots of gels in which the acquisition of ECL signal performed using the MyECL

imager system (without negative conversion) was merged with a picture of the membranes. The corresponding

molecular weights, visible on the membranes, are indicated. These results are reported in Figure 7A.
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7 Discussion 

Mitochondria and their functions have first been studied mostly in the context of energy 

production (Davis & Williams, 2012). In recent years, there is a growing interest in the 

extensive roles of mitochondria in other fields such as signaling pathway control, balance 

of metabolites, and anti-oxidant defense. The dysfunction of mitochondrial processes and 

pathways is also implicated in cancer and various diseases such as neurodegenerative, 

cardiovascular and metabolic disorders. While mitochondrial physiology and pathology 

have attracted increased attention, platforms or tools that are exclusive for the exploration 

of expression and mutation landscapes of mitochondrial genes were previously non-

existent. To this end, a data mining and visualization platform specific for mitochondrial 

genes has been developed as the central objective of this thesis to allow interested users 

to study variations in mitochondrial genes and processes under different conditions with 

publicly available or their own -omics data. 

 

7.1 Visual Data Mining as a tool for the exploration of -omics 
data 

The recent advancement of sequencing technologies brings about high volume of -omics 

data. There are currently a lot of tools and pipelines that perform analysis on such data 

from quality check, mapping to differential expression analysis and mutation calling 

(Roumpeka et al., 2017), but most of them return results as tabular data, which is not 

always easy to interpret. Visualization – the transformation of raw numeric data into 

illustration, is a robust way to help the audience understand the data and reveal underlying 

patterns. In this thesis, mitoXplorer (Section 6.1) and the mitochondrial genes workflow 

in CancerSysDB (Section 6.2) were introduced as visual data mining platforms that allow 

users to visualize and analyze -omics data regarding mutations and expressions of 

mitochondrial genes.  

 

7.1.1 Interactive visualization aids the discovery of underlying 
patterns 

Both mitoXplorer and CancerSysDB provide not only static visualization of analyzed -omics 

data, but also a set of dynamic, interactive and intuitive visualizations, which gives users 

the liberty to explore the data in their own ways. For example, in the Comparative Plot and 

Hierarchical Clustering analysis on mitoXplorer, an interactive heatmap was used to 

display Log2 fold-change (Log2FC) level of mitochondrial genes for each dataset. Unlike 

the static heatmap visualizations (or those with limited interactivity) that are available on 

many bioinformatics analytic platforms (cBioPortal (Cerami et al., 2012), UCSC (Zhu et al., 
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2009)), the interactive heatmap on mitoXplorer supports sorting on differential expression 

level by sample or by gene, which makes it easier to do comparison within the matrix. 

Although being a very popular visualization to represent -omics data due to its flexibility and 

easiness to explore patterns (cBioPortal, UCSC, Cancer Genome Workbench (Jinghui 

Zhang et al., 2007), Caleydo (Streit et al., 2009), Gitools (Perez-Llamas & Lopez-Bigas, 

2011)), heatmaps are not able to show the extra features of interested genes (e.g. the 

location of genes, mutation data) (Schroeder et al., 2013). mitoXplorer overcomes this 

problem by displaying functional annotation and additional information on the side panel 

and highlighting mutated genes on the scatter plot on another panel for the Comparative 

plot, which helps to discover relations between data and generate relevant hypotheses.  

 

The categorical scatter plot (or beeswarm plot) in the Comparative Plot of mitoXplorer and 

Interactive Workflow of CancerSysDB is another visualization for the differential expression 

of genes. Such a scatter plot is different from the ones seen in other platforms that simply 

shows the relationship between two features (e.g. expression of two genes, number of 

mutation vs fraction of altered genome, etc) (cBioPortal, Caleydo, tranSMART 

(https://transmart-app.readthedocs.io/)) as it aims to facilitate the comparison of (up to six) 

samples (first dimension) by displaying the distribution of Log2FC values (second 

dimension) with non-overlapping points. Moreover, it includes mutation data as a third 

dimension using different color and sizes. To study a larger number of samples with 

additional data (e.g. clinical data), users could make use of the Principle Component 
Analysis (PCA) function in mitoXplorer. PCA, while being very useful when working with 

high-dimensional data and being able to potentially reveal clusters within samples, is 

seldom implemented in bioinformatics visualization platforms, probably due to the 

requirement of relatively high of computational power. In mitoXplorer, only a subset of 

genes related to mitochondrial functions are included. This makes such an analysis 

possible. Also, compared to the PCA visualization on other platforms (tranSMART), the one 

on mitoXplorer has much more interactivity and allows users to filter and color samples by 

user-defined groups, or groupings by clinical data or demographic data (if available), which 

makes it a very informative visualization and could potentially help to identify previously 

unknown subgroups. 

 

Since the functional relationships between genes or proteins are difficult to be represented 

in a heatmap or scatter plot, a bubble chart is adopted as the Interactome View of 

mitoXplorer. Similar to force-directed visualizations on other platforms or tools (cBioPortal, 

Cytoscape), users could examine the expression and mutations of genes in a dataset, while 

viewing the connectivity information (usually from external sources) among them. However 

in the case of mitoXplorer, the genes, nodes and edges of the network that are visualized 
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are defined by the mitochondrial interactomes which are manually curated (as part of the 

work of this thesis) and it does not need any input from users. 

 

7.1.2 The mitochondrial interactomes 

One thing that makes mitoXplorer and CancerSysDB stand out from other bioinformatics 

analysis/visualization platforms is the manually curated mitochondrial interactomes with 

accurate and updated annotations, which are integrated into the platforms for the analysis 

of transcriptome, proteome and mutation data of a specific subset of genes. Although there 

are existing lists or electronic repositories of mitochondrial genes from different proteomic 

studies or genome-scale prediction of mito-proteins (MitoCarta (Calvo et al., 2016), 

MitoMiner (Smith et al., 2012), MitoRes (Catalano et al., 2006), MitoPred (C. Guda et al., 

2004)), none of them is sufficient to be taken directly for the purpose of in-depth analysis 

of mitochondrial interactome due to various reasons. Only MitoCarta, which has recently 

released a new version of its mitochondrial protein content for humans only, has a 

comparable complete set of mitochondria-associated genes that are grouped into 

mitochondrial processes.   

 

Studies that use computational approaches or machine learning for the construction of 

mitochondrial gene repositories are either susceptible to overfitting of the training data 

(Support Vector Machine used by MitoMiner), or requires certain assumptions (conditional 

independence for Naïve Bayes method used by Mitocarta); or simply lacks experimental 

confirmation (MitoPred). On the other hand, proteomic studies that adopted MS-based 

approaches can suffer from a high false-positive rate (Pagliarini et al., 2008). Therefore, 

the mitochondrial interactomes described in this thesis have been manually curated by 

referencing extensive literature and databases (UniProt, NCBI, Flybase, SGD, GeneCards) 

in order to be as comprehensive as possible. All interactomes have been examined 

meticulously and referenced to experimental evidence to avoid including false-positives. 

Orthologs across species are moreover included in the species-specific mito-interactomes 

to provide consistency. 

 

Most importantly, the genes are grouped in mitochondrial processes and a set of controlled 

vocabulary was used for functional annotation, which is lacking in most of the available 

repositories. Such annotation of the interactome facilitates meaningful analysis and 

visualization of mitochondrial genes expression dynamics when comparing differential 

expression of various conditions. These carefully curated interactomes make up an 

important component of mitoXplorer and CancerSysDB as mitochondrial genes-specific 

visual data mining platforms, and their integration into both platforms with rich visualizations 
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has allowed users to explore the expression and mutation landscape of mitochondrial 

genes under different conditions, which, to the best of my knowledge, has not been 

achieved in any other available tool so far. 

 

Finally, mitoXplorer and CancerSysDB are implemented as web platforms, which do not 

require installation nor depend on certain operating system like stand-alone software or 

software packages (Caleydo, tranSMART, Cytoscape, IGV, bigPint (Rutter & Cook, 2020), 

Igloo-plot (Kuntal et al., 2014)). They also come with user-friendly interfaces, and do not 

assume users to possess any programming knowledge. Users can choose to either use 

the publicly available data or upload their own data for analysis, and can easily download 

and share their results. Whereas some other web platforms only allow users to analyze 

pre-calculated data within their own database and do not accept user-provided dataset 

(Navigator (Brown et al., 2009)). In the first two sections of Results, it is demonstrated how 

such kind of visual data mining tools could help identify mitochondrial genes or proteins in 

deregulated pathways that might potentially lead to different pathogenic conditions. 

 

7.2 Dynamics of mitochondrial genes expression in 
mitochondria-associated disease and aneuploidy conditions 

In order to demonstrate the analytical and predictive power of mitoXplorer (Section 6.1) as 

a visual data mining tool, the transcriptome data from several conditions associated with 

mitochondrial functions were explored. The data from a mouse model of Barth syndrome, 

an X-linked mitochondria-associated disease characterized by cardiomyopathy, was first 

analyzed on mitoXplorer. Next, a set of trisomy 21 data was studied with the analytical and 

visualization tools on mitoXplorer. These predictions were then verified experimentally by 

our collaborators. 

 

7.2.1 Intuitive visualization with functional annotations helps to reveal 
impaired pathways in mitochondrial diseases 

Barth syndrome results from a disturbed metabolism of cardiolipin due to mutations of the 

Taz gene, which causes mitochondrial defects as cardiolipin is a phospholipid that 

composes the inner membrane of mitochondria (Bione et al., 1996). It has been shown in 

a previous study (Chowdhury et al., 2018) that Tafazzin-deficient mouse embryonic 

fibroblasts (MEFs) displayed reduced ROS level under hypoxia condition, which impaired 

the activation of NF-κB pathway and hence decreased the Hif-1α expression. Using the 

heatmap visualization that is integrated with the manually curated mito-interactome on 

mitoXplorer, it could be confirmed that the induction of RelA (transcription factor of NF-κB) 

and Hif-1α was indeed diminished. Moreover, it was observed that Yap1 (yes-associated 
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protein 1), a transcription factor that also belongs to the same mito-process “Transcription” 

as RelA and Hif-1α, was also down-regulated, which has lead to the speculation that the 

impaired induction of the Hippo pathway protein Yap1 could contribute to the phenotype 

observed in Tafazzin-deficient MEFs by destabilizing Hif-1α. 

 

Due to the unique feature of the heatmap visualization on mitoXplorer that it groups and  

displays a set of selected mitochondrial genes of the same mito-process, the association 

between Yap1, RelA and Hif-1α in the role of NF-κB activation could be readily revealed 

from the visualization. Whereas on other platforms, either all genes are displayed in the 

same heatmap (cBioPortal), which does not provide any information on functional 

classifications; or the genes to be visualized have to be provided by users as a list (UCSC), 

which relies on users’ prior knowledge on the gene of interests.  

 

The sorting function further facilitates the identification of closely associated genes in terms 

of expression profile, as it allows users to quickly recognize genes (of the same function) 

with similar expression levels under different conditions. Although such a function is also 

available in the heatmap of some other platform (GiTools), the sorted heatmap would not 

be able to give any meaningful insights when the displayed genes are not organized in 

proper groupings.   

 

7.2.2 Deregulation of mitochondrial transcriptome and proteome in 
trisomy 21 conditions identified by mitoXplorer 

As discussed in Section 4.1.5.2 (Aneuploidy), mitochondrial dysfunction has been 

observed in patients with trisomy 21 (T21) condition, where oxidative stress could 

potentially cause some of the clinical features of Down Syndrome (Jovanovic et al., 1998). 

Transcriptome and proteomics studies of T21 tissues found that, while there is a genome-

wide transcriptional change including mitochondrial genes located on Hsa21 or other 

chromosomes (Letourneau et al., 2014; Sinet, 1982), the protein levels of those 

deregulated genes do not necessarily correlate with their mRNA levels (Lockstone et al., 

2007), which suggests a post-transcriptional regulatory effect of mitochondrial genes 

(Yansheng Liu et al., 2017). However, comprehensive studies on the transcriptome and 

proteome of mitochondrial genes under T21 conditions are limited and the underlying 

mechanism of mitochondrial dysfunction in DS patients remains elusive. 

 

In light of that, the differential expression data of the transcriptome and proteome of two 

trisomy 21 cell lines (HCT116 and RPE1) was uploaded to mitoXplorer for a thorough 

mitochondrial analysis. The Interactome View provides a general overview of differential 

expression of mitochondrial genes in individual samples. In contrast to heatmaps that are 
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adopted by most analytic platforms to visualize gene expression where genes are 

represented using rectangles of same sizes, the interactome view renders a bubble chart, 

where each circle represents a gene and its size and color reflect the extend and 

significance of differential expression, respectively. Together with the grouping of genes 

(circles) according to their functional annotations of the curated mitochondrial interactome, 

it was observed that while there was a strong deregulation in both cell lines, the patterns 

were significantly different. The differences in gene expression profiles of the two cell lines 

was not unanticipated as the energy and metabolic demands often depend on the cell type 

(Woods, 2017). The Interactome View’s algorithm to position the gene groups also allows 

users to quickly recognize the most disrupted mitochondrial function (the bigger and more 

center-positioned the gene group, the more disrupted that function is). This is not easily 

achievable in conventional heatmaps as it is much more difficult to comprehend the 

addictive values of colors of certain rectangles than the total size of a group of circles. In 

the Interactome View of the proteome data from RPE1 T21 cell lines, the majority of 

OXPHOS genes were down-regulated and stood out from the rest of mitochondrial 

functions and dominated the View; whereas in the Interactome View of the transcriptome 

data, the same stark contrast in size and color of OXPHOS gene group could not be seen, 

but a strong down-regulation of genes involved in other mito-processes was observed 

instead. The comparison between the Interactome View of transcriptome and proteome 

data from RPE1 T21 cell lines hence revealed a large discrepancy in its expression at 

mRNA and protein levels. 

 

7.2.3 mitoXplorer assisted in unraveling the potential cause for 
OXPHOS deficiency in RPE1 T21 cells  

Further analysis with the Comparative Plot also showed a considerable difference in the 

transcriptome and proteome data from RPE1 T21 regarding OXPHOS genes. The 

Comparative Plot in mitoXplorer allows side-by-side comparison of differential expression 

data of different -omics data, and highlighted the fact that the majority of OXPHOS genes 

were down-regulated at protein, but not mRNA level. The formation of intact respiratory 

chain components that are encoded in the mitochondrial genome rely strongly on 

mitochondrial replication, transcription and translation. Since the mitochondrial transcript 

levels were not significantly different in T21 tissues, mtDNA-maintenance, -replication as 

well as mito-transcription appeared to be unaffected. However the comparative plot of 

genes belonging to the mitochondrial process Translation showed down-regulation of 

several mitochondrial ribosomal protein, implying a defective mitochondrial translation 

process that potentially causes the failure in the assembly of respiratory complexes due to 

missing mitochondrial subunits. This explains the extensive down-regulation of OXPHOS 
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proteins and implies a severe OXPHOS deficiency along the entire respiratory chain, which 

has been confirmed experimentally.  

 

Mitochondrial ribosomal protein S21 (MRPS21) was among other mitochondrial ribosomal 

protein the most drastically down-regulated (>10-fold) at transcript level as seen from the 

comparative plot. Mrps21 is encoded by the nuclear genome and is a late-assembly 

component of mitoribosome small subunit (SSU) and could interact with other proteins of 

the SSU. Together with the down-regulation of other mitoribosome components (Mrps33, 

Mrps14 and Mrps15), this suggested that the mitochondrial translation process could be 

impaired due to ribosome malfunction as the late-assembly proteins break down and leads 

to mitoribosome degradation. Altogether, the findings made with mitoXplorer on post-

transcriptional regulation in the trisomy 21 model system brought about new understanding 

in the mechanisms of mitochondrial defects in trisomy 21 patients. 

 

7.3 Implications of mitochondria dysfunction in cancer 

Being involved in various critical cellular pathways or functions like bioenergetic pathways, 

ROS defense and programmed cell death, mitochondrial metabolism has gradually been 

recognized to be influencing different steps of oncogenesis such as malignant 

transformation and tumor progression  (Porporato et al., 2018; Vyas et al., 2016; Wallace, 

2012). There are currently plenty of tools for the analysis of public cancer dataset (e.g. 

TCGA) and/or the visualization of pre-analyzed datasets (Section 4.3.4). However, rarely 

do they offer solutions for the specific analysis of mitochondrial genes in these datasets.  

 

7.3.1 Expression of TCA-cycle genes as a potential indicator for late 
stage kidney renal papillary cell carcinoma (KIRP) 

CancerSysDB (Section 6.2) is a platform that enables users to make customized queries 

and perform analyzes across multiple data types (somatic mutation, differential gene 

expression, clinical data) and cancer cohort from TCGA dataset. It also includes an 

interactive workflow that has integrated with the manually curated human mitochondrial 

interactome. The result is a dashboard that display expression and clinical data with 

interactive visualizations, which allows not only the in-depth analysis of differential 

expression of genes of various mitochondrial function, but also correlation analysis with 

clinical features, and could potentially provide new insights to the role mitochondrial 

metabolism in the development of cancer.  

 

With this interactive workflow, an interesting dynamics of Tricarboxylic acid (TCA) cycle in 

KIRP (kidney renal papillary cell carcinoma) patients during tumor progression was 
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observed. In later stages of KIRP, a significant number of TCA cycle related genes were 

down-regulated, especially the Succinate-CoA ligase subunits SUCLG1 and SUCLG2. 

There have been accumulating evidences that TCA cycle plays a key role in cancer 

metabolism (Sajnani et al., 2017), that certain tumor suppressors and oncogenes regulate 

the expression of fuel transporters and/or activity of enzymes of TCA cycle in cancer cells 

in order to control both the uptake and breakdown of fuel sources (N. M. Anderson et al., 

2018; J. Q. Chen & Russo, 2012). Succinate-CoA ligase (SUCL) is an enzyme that 

catalyzes the conversion of succinyl-CoA to succinate and coupling of phosphate and 

nucleoside diphosphate molecule to give ATP or GTP. Expression changes of SUCLG1 and 

2 at mRNA and protein level have been identified in various studies of kidney cancer 

(Hakimi et al., 2016; Sanders & Diehl, 2015). The observation of stage-specific down-

regulation of both SUCL subunits with CancerSysDB further proposes that SUCLG1, along 

with SUCLG2 as suggested in a previous study, could be a potential indicator for late stages 

in clear cell renal carcinomas (Perroud et al., 2009). 

 

7.3.2 Epigenetics modifications and its effect on expression of  
mitochondrial genes in a mouse liver cancer model 

Apart from TCA cycle, many other mitochondrial functions or processes have also been 

shown to be involved in oncogenesis or cancer development, or plays an important role in 

cancer metabolism (Wallace, 2012). The altered metabolism in cancer cells could be a 

result of expression changes in related genes, which is influenced by both genetic and 

epigenetic information (Esteller, 2011). In Section 6.3, a clinically relevant hepatocellular 

carcinoma (HCC) mouse model was used to study the epigenetic mechanism that 

influences transcription and gene expression through DNA methylation. Focal 

hypermethylation in CpG islands (CGIs), accompanied with lower expression (H+E-), was 

found in some genes, which is a well-known mechanism in cancer to downregulate tumor 

suppressor through promoter hypermethylation. H+E- genes found in the model include 

Ornithine aminotransferase (Oat) and Enoyl-Coenzyme A delta isomerase 1 (Eci1), which 

belong to the mitochondrial processes Amino Acid Metabolism and Fatty Acid Degradation 

& Beta-oxidation respectively. 

 

Ornithine aminotransferase (OAT) is a mitochondrial matrix enzyme that located mainly in 

liver, brain and kidney, which catalyzes the reaction to convert ornithine into glutamate 

semi-aldehyde by transferring the delta-amino group  (Ginguay et al., 2017). It has an 

inverse relationship with ornithine levels (Ventura et al., 2009) and OAT deficiency results 

in elevated levels of ornithine in blood. Ornithine is a precursor of polyamine (Pegg, 2009), 

which is involved in cell growth, proliferation, and apoptosis, and its abnormal accumulation 

is associated with various diseases including cancer (He et al., 2017). However, some other 
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literatures suggested an inverse relationship between ornithine level and breast cancer risk 

(Jiayi Zhang et al., 2020), and OAT could promote proliferation and invasion of non-small 

cell lung cancer (Yanfeng Liu et al., 2019). The role of ornithine metabolism and OAT in 

tumorigenesis and tumor progression thus remains unclear and is probably dependent on 

the cancer type. 

 

Remarkably, there is a group of genes, including the mitochondrial gene Jun, which were 

found to be both hyper-methylated and overexpressed (H+E+) in the mouse model. Jun 

encodes for the transcription factor c-Jun and is considered as an oncogene as c-Jun could 

promote cell proliferation by changing gene expression (Martinez-Caballero et al., 2009). 

The analysis of the TCGA dataset showed that enrichment of this set of genes 

characterizes 56% of the HCC patients, who belong to an aggressive HCC subclass. These 

data suggested that a certain set of oncogenes with up-regulated expression characterized 

by hypermethylation of CGIs could be a useful as biomarkers for patient stratifications; and 

that the altered expressions of certain sets of genes, including a few mitochondrial genes, 

due to epigenetic modifications could help reveal the biological processes that possibly 

contribute to the disease condition. 

 

7.4 Limitations and future work 

The mitochondrial interactomes with proper gene annotations is central to the analysis and 

visualization made on the visual data mining platforms mentioned in this thesis. I am aware 

of the possibility of having false-positives or missing genes despite extensive human 

curation. Continuous revision of the interactomes is important to keep the platforms 

updated so that they could stay useful to the scientific community. A Feedback section is 

therefore available on mitoXplorer to collect comments from users who are experienced in 

the field of mitochondrial research, which might help with further cleaning and completing 

the annotations and the interactomes. Currently, each gene is also intentionally assigned 

to only one mitochondrial process to simplify the analysis, which might not represent all 

biological functions of a gene. However, in cases where strong experimental evidence that 

a protein or protein complex is involved in multiple process, the assignment of the 

corresponding gene to more than one process should be considered in the future. 

 

At the moment, mitoXplorer allows the analysis and integration of only expression 

(transcriptomic and proteomic) and mutation (genomic) data. However, it is evident that the 

regulatory mechanisms of mitochondrial genes also operate beyond these levels as seen 

from previous discussion. It is therefore important to further integrate different types of -

omics data, such as epigenomics data (e.g. ChIP-seq data from epigenetics studies), for a 
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comprehensive analysis of cross -omics data of mitochondrial genes. On the other hand, 

clinical data such as disease stages and survival data could be incorporated to help users 

gain further insights into the role of mitochondrial genes in the progression of certain 

diseases. 

 

With more -omics data at different levels in possible future releases, it is sensible to 

introduce more knowledge-driven analysis into the platform, such as enrichment analysis, 

which could be helpful for gaining insights into biological mechanisms. The current 

mitochondrial interactomes could provide a priori gene sets that are grouped by their 

involvement in the same mitochondrial pathways for enrichment analysis. Apart from 

manual curation, such gene sets could possibly be further expanded by combining prior 

biological knowledge with the application of statistical methods. For example, metabolic 

pathways have been predicted using a Bayesian probabilistic graphical model with the 

constraints of known gene-gene interactions by sampling co-expressed genes from gene 

clusters derived from gene expression data (Qi et al., 2014).  

 

The data-driven analysis methods on mitoXplorer (e.g. Hierarchical Clustering and 

Principal Component Analysis (PCA)) are useful to reveal patterns and identify groups. 

Nevertheless, every approach has its own limitations. For example, PCA could sometimes 

be highly affected by outliers; t-SNE, another dimensionality reduction algorithms, could 

handle outliers and capture non-linear relationship between features, yet it is non-

deterministic and computationally complex. Depending on the objective, one approach 

could be more favorable then the other. More options should therefore be available to users 

to suit their analysis. And to further enhance user experience, additional visualizations (e.g. 

violin plots, box plots, network and pathways graphs) for analysis using current or potential 

new approaches, and features for customization such as providing more color schemes, 

adjusting font size, resolution, etc. could also be considered, so that users could download 

publication-ready graphs after data mining and exploration.  

 

Finally, given the practicality of mitoXplorer, it should be considered to extend the usage to 

more organisms or even other gene sets by compiling more “interactomes”, either manually 

or with the combination of statistical and computation methods mentioned above, in order 

to benefit a broader scientific community. 

 

7.5 Conclusions  

The work presented in this thesis has proven that visual data mining tools could be a robust 

instrument to explore and analyze the mutation and expression dynamics of a defined gene 
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set. mitoXplorer and CancerSysDB have been developed as web platforms to provide data 

mining and visualization service specifically for mitochondrial genes, by integrating 

manually curated annotations of different species with a set of dynamic, interactive and 

intuitive visualizations for the analysis of -omics data. This allows the exploration and 

mining of data in the context of mitochondrial functions, using intuitive visualizations that 

could often help discovering hidden patterns. The analysis of transcription and expression 

data of aneuploidy cells and cancer patients, as well as the experimental verification of the 

observation made by mitoXplorer on the phenotypes of trisomy cell lines, have 

demonstrated how these tools could help to discover underlying molecular mechanisms in 

different disease conditions through suggesting testable hypothesis for further experimental 

validation. 
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11 Appendix 

11.1 Appendix I - List of mitochondria-associated genes in 
Human 

Gene ID Gene Name Mitochondrial Process Chromosome 
AADAT aminoadipate aminotransferase Amino Acid Metabolism 4 
AARS2 alanyl-tRNA synthetase 2, mitochondrial Translation 6 
AASS aminoadipate-semialdehyde synthase Amino Acid Metabolism 7 
ABAT 4-aminobutyrate aminotransferase Amino Acid Metabolism 16 
ABCB10 ATP binding cassette subfamily B member 10 Transmembrane Transport 1 

ABCB6 
ATP binding cassette subfamily B member 6 
(Langereis blood group) Transmembrane Transport 2 

ABCB7 ATP binding cassette subfamily B member 7 Transmembrane Transport X 
ABCB8 ATP binding cassette subfamily B member 8 Transmembrane Transport 7 
ABCD1 ATP binding cassette subfamily D member 1 Metabolism of Lipids & Lipoproteins X 
ABCD3 ATP binding cassette subfamily D member 3 Transmembrane Transport 1 
ABCE1 ATP binding cassette subfamily E member 1 Transmembrane Transport 4 
ABCF2 ATP binding cassette subfamily F member 2 Transmembrane Transport 7 
ABHD10 abhydrolase domain containing 10 Amino Acid Metabolism 3 
ABHD11 abhydrolase domain containing 11 Amino Acid Metabolism 7 
ABHD16A abhydrolase domain containing 16A Amino Acid Metabolism 6 
ACAA2 acetyl-CoA acyltransferase 2 Fatty Acid Degradation & Beta-oxidation 18 
ACACA acetyl-CoA carboxylase alpha Metabolism of Lipids & Lipoproteins 17 
ACACB acetyl-CoA carboxylase beta Fatty Acid Degradation & Beta-oxidation 12 
ACAD10 acyl-CoA dehydrogenase family member 10 Fatty Acid Degradation & Beta-oxidation 12 
ACAD11 acyl-CoA dehydrogenase family member 11 Fatty Acid Degradation & Beta-oxidation 3 
ACAD8 acyl-CoA dehydrogenase family member 8 Fatty Acid Degradation & Beta-oxidation 11 
ACAD9 acyl-CoA dehydrogenase family member 9 Fatty Acid Degradation & Beta-oxidation 3 
ACADL acyl-CoA dehydrogenase long chain Fatty Acid Degradation & Beta-oxidation 2 
ACADM acyl-CoA dehydrogenase medium chain Fatty Acid Degradation & Beta-oxidation 1 
ACADS acyl-CoA dehydrogenase short chain Fatty Acid Degradation & Beta-oxidation 12 

ACADSB 
acyl-CoA dehydrogenase short/branched 
chain Fatty Acid Degradation & Beta-oxidation 10 

ACADVL acyl-CoA dehydrogenase very long chain Fatty Acid Degradation & Beta-oxidation 17 
ACAT1 acetyl-CoA acetyltransferase 1 Amino Acid Metabolism 11 
ACAT2 acetyl-CoA acetyltransferase 2 Fatty Acid Degradation & Beta-oxidation 6 
ACO1 aconitase 1 Tricarboxylic Acid Cycle 9 
ACO2 aconitase 2 Tricarboxylic Acid Cycle 22 
ACOT2 acyl-CoA thioesterase 2 Fatty Acid Biosynthesis & Elongation 14 
ACOT7 acyl-CoA thioesterase 7 Fatty Acid Biosynthesis & Elongation 1 
ACOT9 acyl-CoA thioesterase 9 Fatty Acid Metabolism X 
ACP6 acid phosphatase 6, lysophosphatidic Metabolism of Lipids & Lipoproteins 1 

ACSBG2 
acyl-CoA synthetase bubblegum family 
member 2 Fatty Acid Degradation & Beta-oxidation 19 

ACSF2 acyl-CoA synthetase family member 2 Fatty Acid Metabolism 17 
ACSF3 acyl-CoA synthetase family member 3 Fatty Acid Metabolism 16 

ACSL1 
acyl-CoA synthetase long chain family 
member 1 Fatty Acid Biosynthesis & Elongation 4 

ACSL3 
acyl-CoA synthetase long chain family 
member 3 Fatty Acid Degradation & Beta-oxidation 2 

ACSL4 
acyl-CoA synthetase long chain family 
member 4 Fatty Acid Degradation & Beta-oxidation X 

ACSL5 
acyl-CoA synthetase long chain family 
member 5 Fatty Acid Biosynthesis & Elongation 10 

ACSL6 
acyl-CoA synthetase long chain family 
member 6 Fatty Acid Biosynthesis & Elongation 5 

ACSM1 
acyl-CoA synthetase medium chain family 
member 1 Fatty Acid Biosynthesis & Elongation 16 

ACSM2A 
acyl-CoA synthetase medium chain family 
member 2A Fatty Acid Biosynthesis & Elongation 16 
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ACSM2B 
acyl-CoA synthetase medium chain family 
member 2B Fatty Acid Biosynthesis & Elongation 16 

ACSM3 
acyl-CoA synthetase medium chain family 
member 3 Fatty Acid Biosynthesis & Elongation 16 

ACSM4 
acyl-CoA synthetase medium chain family 
member 4 Fatty Acid Biosynthesis & Elongation 12 

ACSM5 
acyl-CoA synthetase medium chain family 
member 5 Fatty Acid Biosynthesis & Elongation 16 

ACSM6 
acyl-CoA synthetase medium chain family 
member 6 Fatty Acid Metabolism 10 

ACSS1 
acyl-CoA synthetase short chain family 
member 1 Pyruvate Metabolism 20 

ACSS2 
acyl-CoA synthetase short chain family 
member 2 Pyruvate Metabolism 20 

ACSS3 
acyl-CoA synthetase short chain family 
member 3 Metabolism of Lipids & Lipoproteins 12 

ACTR2 actin related protein 2 Mitochondrial Dynamics 2 
ADCK1 aarF domain containing kinase 1 Oxidative Phosphorylation 14 
ADHFE1 alcohol dehydrogenase iron containing 1 Pyruvate Metabolism 8 
ADO 2-aminoethanethiol dioxygenase Amino Acid Metabolism 10 
AFG1L AFG1 like ATPase Protein Stability & Degradation 6 
AFG3L2 AFG3 like matrix AAA peptidase subunit 2 Mitochondrial Dynamics 18 
AGK acylglycerol kinase Fatty Acid Metabolism 7 
AGMAT agmatinase Amino Acid Metabolism 1 

AGPAT5 
1-acylglycerol-3-phosphate O-acyltransferase 
5 Metabolism of Lipids & Lipoproteins 8 

AGTPBP1 ATP/GTP binding protein 1 Mitochondrial Dynamics 9 

AGXT 
alanine--glyoxylate and serine--pyruvate 
aminotransferase Amino Acid Metabolism 2 

AGXT2 alanine--glyoxylate aminotransferase 2 Amino Acid Metabolism 5 

AIFM1 
apoptosis inducing factor mitochondria 
associated 1 Apoptosis X 

AIFM2 
apoptosis inducing factor mitochondria 
associated 2 Apoptosis 10 

AIFM3 
apoptosis inducing factor mitochondria 
associated 3 Apoptosis 22 

AK2 adenylate kinase 2 Nucleotide Metabolism 1 
AK3 adenylate kinase 3 Nucleotide Metabolism 9 
AK4 adenylate kinase 4 Nucleotide Metabolism 1 
AKAP1 A-kinase anchoring protein 1 Mitochondrial Signaling 17 
AKAP10 A-kinase anchoring protein 10 Mitochondrial Signaling 17 
AKR1B1 aldo-keto reductase family 1 member B Fructose Metabolism 7 
AKR1B10 aldo-keto reductase family 1 member B10 Metabolism of Vitamins & Co-Factors 7 
AKR1B15 aldo-keto reductase family 1 member B15 Metabolism of Lipids & Lipoproteins 7 
AKT1 AKT serine/threonine kinase 1 Mitochondrial Signaling 14 
ALAS1 5'-aminolevulinate synthase 1 Heme Biosynthesis 3 
ALAS2 5'-aminolevulinate synthase 2 Heme Biosynthesis X 

ALDH18A1 
aldehyde dehydrogenase 18 family member 
A1 Amino Acid Metabolism 10 

ALDH1A1 
aldehyde dehydrogenase 1 family member 
A1 Fructose Metabolism 9 

ALDH1B1 
aldehyde dehydrogenase 1 family member 
B1 Fatty Acid Degradation & Beta-oxidation 9 

ALDH1L1 
aldehyde dehydrogenase 1 family member 
L1 Folate & Pterin Metabolism 3 

ALDH1L2 
aldehyde dehydrogenase 1 family member 
L2 Folate & Pterin Metabolism 12 

ALDH2 aldehyde dehydrogenase 2 family member Fatty Acid Degradation & Beta-oxidation 12 

ALDH3A2 
aldehyde dehydrogenase 3 family member 
A2 Fatty Acid Degradation & Beta-oxidation 17 

ALDH4A1 
aldehyde dehydrogenase 4 family member 
A1 Amino Acid Metabolism 1 

ALDH5A1 
aldehyde dehydrogenase 5 family member 
A1 Amino Acid Metabolism 6 

ALDH6A1 
aldehyde dehydrogenase 6 family member 
A1 Amino Acid Metabolism 14 

ALDH7A1 
aldehyde dehydrogenase 7 family member 
A1 Pyruvate Metabolism 5 

ALDOA aldolase, fructose-bisphosphate A Glycolysis 16 
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ALDOB aldolase, fructose-bisphosphate B Fructose Metabolism 9 
ALDOC aldolase, fructose-bisphosphate C Glycolysis 17 
ALKBH1 alkB homolog 1, histone H2A dioxygenase Replication & Transcription 14 
ALKBH7 alkB homolog 7 Apoptosis 19 
AMACR alpha-methylacyl-CoA racemase Bile Acid Synthesis 5 
AMBRA1 autophagy and beclin 1 regulator 1  Mitophagy 11 
AMT aminomethyltransferase Amino Acid Metabolism 3 

ANP32A 
acidic nuclear phosphoprotein 32 family 
member A Apoptosis 15 

APAF1 apoptotic peptidase activating factor 1 Apoptosis 12 

APEX1 
apurinic/apyrimidinic endodeoxyribonuclease 
1 Replication & Transcription 14 

APEX2 
apurinic/apyrimidinic endodeoxyribonuclease 
2 Replication & Transcription X 

APOO apolipoprotein O Mitochondrial Dynamics X 
APOOL apolipoprotein O like Mitochondrial Dynamics X 
APOPT1 apoptogenic 1, mitochondrial Apoptosis 14 
ARG1 arginase 1 Nitrogen Metabolism 6 
ARG2 arginase 2 Nitrogen Metabolism 14 
ARMC10 armadillo repeat containing 10 Apoptosis 7 

ARNT 
aryl hydrocarbon receptor nuclear 
translocator Transcription (nuclear) 1 

ARPC3 actin related protein 2/3 complex subunit 3 Mitochondrial Dynamics 12 
ARPC5 actin related protein 2/3 complex subunit 5 Mitochondrial Dynamics 1 

ARPC5L 
actin related protein 2/3 complex subunit 5 
like Mitochondrial Dynamics 9 

ASAH2 N-acylsphingosine amidohydrolase 2 Metabolism of Lipids & Lipoproteins 10 
ASAH2B N-acylsphingosine amidohydrolase 2B Metabolism of Lipids & Lipoproteins 10 
ASL argininosuccinate lyase Nitrogen Metabolism 7 
ASS1 argininosuccinate synthase 1 Amino Acid Metabolism 9 
ATAD1 ATPase family AAA domain containing 1 Protein Stability & Degradation 10 
ATAD3A ATPase family AAA domain containing 3A Mitochondrial Dynamics 1 
ATAD3B ATPase family AAA domain containing 3B Mitochondrial Dynamics 1 
ATF4 activating transcription factor 4  Transcription (nuclear) 22 
ATF5 activating transcription factor 5 UPRmt 19 
ATG5 autophagy related 5  Mitophagy 6 
ATG9B autophagy related 9B  Mitophagy 7 

ATIC 

5-aminoimidazole-4-carboxamide 
ribonucleotide formyltransferase/IMP 
cyclohydrolase Nucleotide Metabolism 2 

ATP23 
ATP23 metallopeptidase and ATP synthase 
assembly factor homolog Protein Stability & Degradation 12 

ATP5F1A ATP synthase F1 subunit alpha Oxidative Phosphorylation 18 
ATP5F1B ATP synthase F1 subunit beta Oxidative Phosphorylation 12 
ATP5F1C ATP synthase F1 subunit gamma Oxidative Phosphorylation 10 
ATP5F1D ATP synthase F1 subunit delta Oxidative Phosphorylation 19 
ATP5F1E ATP synthase F1 subunit epsilon Oxidative Phosphorylation 20 
ATP5IF1 ATP synthase inhibitory factor subunit 1 Oxidative Phosphorylation 1 
ATP5MC1 ATP synthase membrane subunit c locus 1 Oxidative Phosphorylation 17 
ATP5MC2 ATP synthase membrane subunit c locus 2 Oxidative Phosphorylation 12 
ATP5MC3 ATP synthase membrane subunit c locus 3 Oxidative Phosphorylation 2 
ATP5MD ATP synthase membrane subunit DAPIT Oxidative Phosphorylation 10 
ATP5ME ATP synthase membrane subunit e Oxidative Phosphorylation 4 
ATP5MF ATP synthase membrane subunit f Oxidative Phosphorylation 7 
ATP5MG ATP synthase membrane subunit g Oxidative Phosphorylation 11 
ATP5MGL ATP synthase membrane subunit g like Oxidative Phosphorylation 22 
ATP5MPL ATP synthase membrane subunit 6.8PL Oxidative Phosphorylation 14 

ATP5PB 
ATP synthase peripheral stalk-membrane 
subunit b Oxidative Phosphorylation 1 

ATP5PD ATP synthase peripheral stalk subunit d Oxidative Phosphorylation 17 
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ATP5PF ATP synthase peripheral stalk subunit F6 Oxidative Phosphorylation 21 
ATP5PO ATP synthase peripheral stalk subunit OSCP Oxidative Phosphorylation 21 
ATP6V1E1 ATPase H+ transporting V1 subunit E1 Oxidative Phosphorylation 22 

ATPAF1 
ATP synthase mitochondrial F1 complex 
assembly factor 1 Oxidative Phosphorylation 1 

ATPAF2 
ATP synthase mitochondrial F1 complex 
assembly factor 2 Oxidative Phosphorylation 17 

AUH 
AU RNA binding methylglutaconyl-CoA 
hydratase Amino Acid Metabolism 9 

AURKAIP1 aurora kinase A interacting protein 1 Translation 1 
BAD BCL2 associated agonist of cell death Apoptosis 11 
BAK1 BCL2 antagonist/killer 1 Apoptosis 6 
BAX BCL2 associated X, apoptosis regulator Apoptosis 19 
BBC3 BCL2 binding component 3 Apoptosis 19 
BCAT1 branched chain amino acid transaminase 1 Amino Acid Metabolism 12 
BCAT2 branched chain amino acid transaminase 2 Amino Acid Metabolism 19 

BCKDHA 
branched chain keto acid dehydrogenase E1, 
alpha polypeptide Amino Acid Metabolism 19 

BCKDHB 
branched chain keto acid dehydrogenase E1 
subunit beta Amino Acid Metabolism 6 

BCKDK 
branched chain ketoacid dehydrogenase 
kinase Amino Acid Metabolism 16 

BCL2 BCL2 apoptosis regulator Apoptosis 18 
BCL2L1 BCL2 like 1 Apoptosis 20 
BCL2L11 BCL2 like 11 Apoptosis 2 
BCL2L13 BCL2 like 13 Apoptosis 22 
BCL2L2 BCL2 like 2 Apoptosis 14 

BCS1L 
BCS1 homolog, ubiquinol-cytochrome c 
reductase complex chaperone Oxidative Phosphorylation 2 

BDH1 3-hydroxybutyrate dehydrogenase 1 Fatty Acid Metabolism 3 
BECN1 beclin 1 Mitophagy 17 
BECN2 beclin 2  Mitophagy 1 
BID BH3 interacting domain death agonist Apoptosis 22 
BIK BCL2 interacting killer Apoptosis 22 
BIRC8 baculoviral IAP repeat containing 8 Apoptosis 19 
BNIP1 BCL2 interacting protein 1 Apoptosis 5 
BNIP3 BCL2 interacting protein 3 Apoptosis 10 
BNIP3L BCL2 interacting protein 3 like Apoptosis 8 
BOK BCL2 family apoptosis regulator BOK Apoptosis 2 
BOLA1 bolA family member 1 Fe-S Cluster Biosynthesis 1 
BOLA3 bolA family member 3 Fe-S Cluster Biosynthesis 2 
BPHL biphenyl hydrolase like Translation 6 
C12orf10 chromosome 12 open reading frame 10 Unknown 12 
C12orf65 chromosome 12 open reading frame 65 Translation 12 
C15orf48 chromosome 15 open reading frame 48 Oxidative Phosphorylation 15 
C16orf91 chromosome 16 open reading frame 91 Unknown 16 
C5orf63 chromosome 5 open reading frame 63 Unknown 5 
C8orf82 chromosome 8 open reading frame 82 Unknown 8 
CA5A carbonic anhydrase 5A Nitrogen Metabolism 16 
CA5B carbonic anhydrase 5B Nitrogen Metabolism X 
CALCOCO2 calcium binding and coiled-coil domain 2  Mitophagy 17 
CARS2 cysteinyl-tRNA synthetase 2, mitochondrial Translation 13 
CASP2 caspase 2 Apoptosis 7 
CASP3 caspase 3 Apoptosis 4 
CASP7 caspase 7 Apoptosis 10 
CASP8 caspase 8 Apoptosis 2 
CASP9 caspase 9 Apoptosis 1 
CAT catalase ROS Defense 11 
CBR4 carbonyl reductase 4 Fatty Acid Biosynthesis & Elongation 4 
CCDC58 coiled-coil domain containing 58 Translation 3 
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CCDC90B coiled-coil domain containing 90B Calcium Signaling & Transport 11 
CDK5RAP1 CDK5 regulatory subunit associated protein 1 Replication & Transcription 20 
CDS1 CDP-diacylglycerol synthase 1 Cardiolipin Biosynthesis 4 
CDS2 CDP-diacylglycerol synthase 2 Metabolism of Lipids & Lipoproteins 20 

CHCHD1 
coiled-coil-helix-coiled-coil-helix domain 
containing 1 Translation 10 

CHCHD10 
coiled-coil-helix-coiled-coil-helix domain 
containing 10 Mitochondrial Dynamics 22 

CHCHD2 
coiled-coil-helix-coiled-coil-helix domain 
containing 2 Mitochondrial Signaling 7 

CHCHD3 
coiled-coil-helix-coiled-coil-helix domain 
containing 3 Mitochondrial Dynamics 7 

CHCHD4 
coiled-coil-helix-coiled-coil-helix domain 
containing 4 Import & Sorting 3 

CHCHD5 
coiled-coil-helix-coiled-coil-helix domain 
containing 5 Import & Sorting 2 

CHCHD6 
coiled-coil-helix-coiled-coil-helix domain 
containing 6 Mitochondrial Dynamics 3 

CHCHD7 
coiled-coil-helix-coiled-coil-helix domain 
containing 7 Unknown 8 

CHDH choline dehydrogenase Amino Acid Metabolism 3 
CIAO1 cytosolic iron-sulfur assembly component 1 Fe-S Cluster Biosynthesis 2 
CIAO2A cytosolic iron-sulfur assembly component 2A Fe-S Cluster Biosynthesis 15 
CIAO2B cytosolic iron-sulfur assembly component 2B Fe-S Cluster Biosynthesis 16 
CIAPIN1 cytokine induced apoptosis inhibitor 1 Fe-S Cluster Biosynthesis 16 
CISD1 CDGSH iron sulfur domain 1 Oxidative Phosphorylation 10 
CISD2 CDGSH iron sulfur domain 2 Oxidative Phosphorylation 4 
CISD3 CDGSH iron sulfur domain 3 Oxidative Phosphorylation 17 

CITED2 
Cbp/p300 interacting transactivator with 
Glu/Asp rich carboxy-terminal domain 2  Mitophagy 6 

CKMT1A creatine kinase, mitochondrial 1A Amino Acid Metabolism 15 
CKMT1B creatine kinase, mitochondrial 1B Amino Acid Metabolism 15 
CKMT2 creatine kinase, mitochondrial 2 Amino Acid Metabolism 5 
CLIC4 chloride intracellular channel 4 Apoptosis 1 

CLPB 
ClpB homolog, mitochondrial AAA ATPase 
chaperonin Protein Stability & Degradation 11 

CLPP 
caseinolytic mitochondrial matrix peptidase 
proteolytic subunit Protein Stability & Degradation 19 

CLPX 
caseinolytic mitochondrial matrix peptidase 
chaperone subunit Protein Stability & Degradation 15 

CLYBL citrate lyase beta like Metabolism of Vitamins & Co-Factors 13 
CMC1 C-X9-C motif containing 1 Oxidative Phosphorylation 3 
CMC2 C-X9-C motif containing 2 Import & Sorting 16 
CMC4 C-X9-C motif containing 4 Import & Sorting X 
CMPK2 cytidine/uridine monophosphate kinase 2 Replication & Transcription 2 

COA1 
cytochrome c oxidase assembly factor 1 
homolog Oxidative Phosphorylation 7 

COA3 cytochrome c oxidase assembly factor 3 Oxidative Phosphorylation 17 

COA4 
cytochrome c oxidase assembly factor 4 
homolog Oxidative Phosphorylation 11 

COA5 cytochrome c oxidase assembly factor 5 Oxidative Phosphorylation 2 
COA6 cytochrome c oxidase assembly factor 6 Oxidative Phosphorylation 1 

COA7 
cytochrome c oxidase assembly factor 7 
(putative) Oxidative Phosphorylation 1 

COASY Coenzyme A synthase Metabolism of Vitamins & Co-Factors 17 
COQ10A coenzyme Q10A Oxidative Phosphorylation 12 
COQ10B coenzyme Q10B Oxidative Phosphorylation 2 
COQ2 coenzyme Q2, polyprenyltransferase Ubiquinone Biosynthesis 4 
COQ3 coenzyme Q3, methyltransferase Ubiquinone Biosynthesis 6 
COQ4 coenzyme Q4 Ubiquinone Biosynthesis 9 
COQ5 coenzyme Q5, methyltransferase Ubiquinone Biosynthesis 12 
COQ6 coenzyme Q6, monooxygenase Ubiquinone Biosynthesis 14 
COQ7 coenzyme Q7, hydroxylase Ubiquinone Biosynthesis 16 
COQ8A coenzyme Q8A Oxidative Phosphorylation 1 
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COQ8B coenzyme Q8B Oxidative Phosphorylation 19 
COQ9 coenzyme Q9 Ubiquinone Biosynthesis 16 

COX10 
cytochrome c oxidase assembly factor heme 
A:farnesyltransferase COX10 Oxidative Phosphorylation 17 

COX11 
cytochrome c oxidase copper chaperone 
COX11 Oxidative Phosphorylation 17 

COX14 
cytochrome c oxidase assembly factor 
COX14 Oxidative Phosphorylation 12 

COX15 
cytochrome c oxidase assembly homolog 
COX15 Oxidative Phosphorylation 10 

COX16 
cytochrome c oxidase assembly factor 
COX16 Oxidative Phosphorylation 14 

COX17 
cytochrome c oxidase copper chaperone 
COX17 Oxidative Phosphorylation 3 

COX18 
cytochrome c oxidase assembly factor 
COX18 Oxidative Phosphorylation 4 

COX19 
cytochrome c oxidase assembly factor 
COX19 Oxidative Phosphorylation 7 

COX20 
cytochrome c oxidase assembly factor 
COX20 Oxidative Phosphorylation 1 

COX4I1 cytochrome c oxidase subunit 4I1 Oxidative Phosphorylation 16 
COX4I2 cytochrome c oxidase subunit 4I2 Oxidative Phosphorylation 20 
COX5A cytochrome c oxidase subunit 5A Oxidative Phosphorylation 15 
COX5B cytochrome c oxidase subunit 5B Oxidative Phosphorylation 2 
COX6A1 cytochrome c oxidase subunit 6A1 Oxidative Phosphorylation 12 
COX6A2 cytochrome c oxidase subunit 6A2 Oxidative Phosphorylation 16 
COX6B1 cytochrome c oxidase subunit 6B1 Oxidative Phosphorylation 19 
COX6B2 cytochrome c oxidase subunit 6B2 Oxidative Phosphorylation 19 
COX6C cytochrome c oxidase subunit 6C Oxidative Phosphorylation 8 
COX7A1 cytochrome c oxidase subunit 7A1 Oxidative Phosphorylation 19 
COX7A2 cytochrome c oxidase subunit 7A2 Oxidative Phosphorylation 6 
COX7A2L cytochrome c oxidase subunit 7A2 like Oxidative Phosphorylation 2 
COX7B cytochrome c oxidase subunit 7B Oxidative Phosphorylation X 
COX7B2 cytochrome c oxidase subunit 7B2 Oxidative Phosphorylation 4 
COX7C cytochrome c oxidase subunit 7C Oxidative Phosphorylation 5 
COX8A cytochrome c oxidase subunit 8A Oxidative Phosphorylation 11 

COX8BP 
cytochrome c oxidase subunit 8B, 
pseudogene Oxidative Phosphorylation 11 

COX8C cytochrome c oxidase subunit 8C Oxidative Phosphorylation 14 
CPOX coproporphyrinogen oxidase Heme Biosynthesis 3 
CPS1 carbamoyl-phosphate synthase 1 Nitrogen Metabolism 2 
CPT1A carnitine palmitoyltransferase 1A Fatty Acid Degradation & Beta-oxidation 11 
CPT1B carnitine palmitoyltransferase 1B Fatty Acid Degradation & Beta-oxidation 22 
CPT1C carnitine palmitoyltransferase 1C Fatty Acid Degradation & Beta-oxidation 19 
CPT2 carnitine palmitoyltransferase 2 Fatty Acid Degradation & Beta-oxidation 1 
CRAT carnitine O-acetyltransferase Fatty Acid Degradation & Beta-oxidation 9 
CREB1 cAMP responsive element binding protein 1 Transcription (nuclear) 2 
CRLS1 cardiolipin synthase 1 Cardiolipin Biosynthesis 20 
CS citrate synthase Tricarboxylic Acid Cycle 12 
CSNK2A1 casein kinase 2 alpha 1  Apoptosis 20 
CTSB cathepsin B Apoptosis 8 
CYB5A cytochrome b5 type A Metabolism of Vitamins & Co-Factors 18 
CYB5B cytochrome b5 type B Metabolism of Vitamins & Co-Factors 16 
CYB5R1 cytochrome b5 reductase 1 Metabolism of Lipids & Lipoproteins 1 
CYB5R2 cytochrome b5 reductase 2 Metabolism of Lipids & Lipoproteins 11 
CYB5R3 cytochrome b5 reductase 3 Metabolism of Lipids & Lipoproteins 22 
CYC1 cytochrome c1 Oxidative Phosphorylation 8 
CYCS cytochrome c, somatic Oxidative Phosphorylation 7 

CYP11A1 
cytochrome P450 family 11 subfamily A 
member 1 Metabolism of Lipids & Lipoproteins 15 

CYP11B1 
cytochrome P450 family 11 subfamily B 
member 1 Metabolism of Lipids & Lipoproteins 8 
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CYP11B2 
cytochrome P450 family 11 subfamily B 
member 2 Metabolism of Lipids & Lipoproteins 8 

CYP24A1 
cytochrome P450 family 24 subfamily A 
member 1 Metabolism of Vitamins & Co-Factors 20 

CYP27A1 
cytochrome P450 family 27 subfamily A 
member 1 Metabolism of Lipids & Lipoproteins 2 

CYP27B1 
cytochrome P450 family 27 subfamily B 
member 1 Metabolism of Vitamins & Co-Factors 12 

D2HGDH D-2-hydroxyglutarate dehydrogenase Oxidative Phosphorylation 2 
DAP3 death associated protein 3 Translation 1 
DARS2 aspartyl-tRNA synthetase 2, mitochondrial Translation 1 

DBT 
dihydrolipoamide branched chain 
transacylase E2 Amino Acid Metabolism 1 

DDAH1 dimethylarginine dimethylaminohydrolase 1 Nitrogen Metabolism 1 
DDIT3 DNA damage inducible transcript 3 UPRmt 12 
DDX28 DEAD-box helicase 28 Translation 16 
DECR1 2,4-dienoyl-CoA reductase 1 Fatty Acid Degradation & Beta-oxidation 8 
DELE1 DAP3 binding cell death enhancer 1 Apoptosis 5 
DGLUCY D-glutamate cyclase Amino Acid Metabolism 14 
DGUOK deoxyguanosine kinase Replication & Transcription 2 
DHFR  dihydrofolate reductase Folate & Pterin Metabolism 5 
DHFR2 dihydrofolate reductase 2 Folate & Pterin Metabolism 3 
DHODH dihydroorotate dehydrogenase (quinone) Nucleotide Metabolism 16 
DHRS2 dehydrogenase/reductase 2 Metabolism of Vitamins & Co-Factors 14 
DHRS4 dehydrogenase/reductase 4 Metabolism of Vitamins & Co-Factors 14 

DHTKD1 
dehydrogenase E1 and transketolase domain 
containing 1 Amino Acid Metabolism 10 

DHX29 DExH-box helicase 29 Replication & Transcription 5 
DHX30 DExH-box helicase 30 Replication & Transcription 3 
DIABLO diablo IAP-binding mitochondrial protein Apoptosis 12 
DLAT dihydrolipoamide S-acetyltransferase Pyruvate Metabolism 11 
DLD dihydrolipoamide dehydrogenase Tricarboxylic Acid Cycle 7 
DLST dihydrolipoamide S-succinyltransferase Tricarboxylic Acid Cycle 14 
DMAC1 distal membrane arm assembly complex 1 Oxidative Phosphorylation 9 
DMAC2 distal membrane arm assembly complex 2 Oxidative Phosphorylation 19 

DMAC2L 
distal membrane arm assembly complex 2 
like Oxidative Phosphorylation 14 

DMGDH dimethylglycine dehydrogenase Metabolism of Lipids & Lipoproteins 5 
DNA2 DNA replication helicase/nuclease 2 Replication & Transcription 10 

DNAJA1 
DnaJ heat shock protein family (Hsp40) 
member A1 Protein Stability & Degradation 12 

DNAJA3 
DnaJ heat shock protein family (Hsp40) 
member A3 Protein Stability & Degradation 16 

DNAJC11 
DnaJ heat shock protein family (Hsp40) 
member C11 Protein Stability & Degradation 1 

DNAJC15 
DnaJ heat shock protein family (Hsp40) 
member C15 Import & Sorting 13 

DNAJC19 
DnaJ heat shock protein family (Hsp40) 
member C19 Import & Sorting 3 

DNAJC30 
DnaJ heat shock protein family (Hsp40) 
member C30 Protein Stability & Degradation 7 

DNAJC4 
DnaJ heat shock protein family (Hsp40) 
member C4 Protein Stability & Degradation 11 

DNLZ DNL-type zinc finger Import & Sorting 9 
DNM1L dynamin 1 like Mitochondrial Dynamics 12 
DONSON downstream neighbor of SON Oxidative Phosphorylation 21 
DTYMK deoxythymidylate kinase Nucleotide Metabolism 2 
DUT deoxyuridine triphosphatase Nucleotide Metabolism 15 
DYNLL1 dynein light chain LC8-type 1 Apoptosis 12 
E2F1 E2F transcription factor 1  Transcription (nuclear) 20 
EARS2 glutamyl-tRNA synthetase 2, mitochondrial Translation 16 
ECH1 enoyl-CoA hydratase 1 Fatty Acid Biosynthesis & Elongation 19 
ECHDC1 ethylmalonyl-CoA decarboxylase 1 Fatty Acid Biosynthesis & Elongation 6 
ECHDC2 enoyl-CoA hydratase domain containing 2 Fatty Acid Biosynthesis & Elongation 1 
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ECHDC3 enoyl-CoA hydratase domain containing 3 Fatty Acid Biosynthesis & Elongation 10 
ECHS1 enoyl-CoA hydratase, short chain 1 Fatty Acid Biosynthesis & Elongation 10 
ECI1 enoyl-CoA delta isomerase 1 Fatty Acid Degradation & Beta-oxidation 16 
ECI2 enoyl-CoA delta isomerase 2 Fatty Acid Degradation & Beta-oxidation 6 
ECSIT ECSIT signalling integrator Oxidative Phosphorylation 19 
EFHD1 EF-hand domain family member D1 Calcium Signaling & Transport 2 

EIF2AK3 
eukaryotic translation initiation factor 2 alpha 
kinase 3 Translation 2 

ELAC2 elaC ribonuclease Z 2 Translation 17 
ENDOG endonuclease G Replication & Transcription 9 
ENO1 enolase 1 Glycolysis 1 
ENO2 enolase 2 Glycolysis 12 
ENO3 enolase 3 Glycolysis 17 
ERAL1 Era like 12S mitochondrial rRNA chaperone 1 Translation 17 
ESRRA estrogen related receptor alpha Transcription (nuclear) 11 
ETFA electron transfer flavoprotein subunit alpha Oxidative Phosphorylation 15 
ETFB electron transfer flavoprotein subunit beta Oxidative Phosphorylation 19 
ETFDH electron transfer flavoprotein dehydrogenase Oxidative Phosphorylation 4 

ETFRF1 
electron transfer flavoprotein regulatory factor 
1 Oxidative Phosphorylation 12 

ETHE1 ETHE1 persulfide dioxygenase Amino Acid Metabolism 19 
ETNPPL ethanolamine-phosphate phospho-lyase Amino Acid Metabolism 4 
EXOG exo/endonuclease G Replication & Transcription 3 
FABP6 fatty acid binding protein 6 Metabolism of Lipids & Lipoproteins 5 

FAHD1 
fumarylacetoacetate hydrolase domain 
containing 1 Amino Acid Metabolism 16 

FAHD2A 
fumarylacetoacetate hydrolase domain 
containing 2A Amino Acid Metabolism 2 

FAHD2B 
fumarylacetoacetate hydrolase domain 
containing 2B Amino Acid Metabolism 2 

FAM162A 
family with sequence similarity 162 member 
A Apoptosis 3 

FAM210B 
family with sequence similarity 210 member 
B Transmembrane Transport 20 

FARS2 
phenylalanyl-tRNA synthetase 2, 
mitochondrial Translation 6 

FASTK Fas activated serine/threonine kinase Translation 7 
FASTKD1 FAST kinase domains 1 Translation 2 
FASTKD2 FAST kinase domains 2 Translation 2 
FASTKD3 FAST kinase domains 3 Translation 5 
FASTKD5 FAST kinase domains 5 Translation 20 
FBP1 fructose-bisphosphatase 1 Glycolysis 9 
FBP2 fructose-bisphosphatase 2 Glycolysis 9 
FBXL4 F-box and leucine rich repeat protein 4 Protein Stability & Degradation 6 
FDPS farnesyl diphosphate synthase Metabolism of Lipids & Lipoproteins 1 
FDX1 ferredoxin 1 Fe-S Cluster Biosynthesis 11 
FDX2 ferredoxin 2 Fe-S Cluster Biosynthesis 19 
FDXR ferredoxin reductase Fe-S Cluster Biosynthesis 17 
FECH ferrochelatase Heme Biosynthesis 18 
FEN1 flap structure-specific endonuclease 1 Replication & Transcription 11 
FH fumarate hydratase Tricarboxylic Acid Cycle 1 
FIS1 fission, mitochondrial 1 Mitochondrial Dynamics 7 
FKBP8 FKBP prolyl isomerase 8 Protein Stability & Degradation 19 

FMC1 
formation of mitochondrial complex V 
assembly factor 1 homolog Oxidative Phosphorylation 7 

FOXO3 forkhead box O3  Transcription (nuclear) 6 

FOXRED1 
FAD dependent oxidoreductase domain 
containing 1 Oxidative Phosphorylation 11 

FPGS folylpolyglutamate synthase Folate & Pterin Metabolism 9 
FTMT ferritin mitochondrial Heme Biosynthesis 5 
FUNDC1 FUN14 domain containing 1 Mitochondrial Dynamics X 
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FUNDC2 FUN14 domain containing 2 Mitochondrial Dynamics X 
FXN frataxin Fe-S Cluster Biosynthesis 9 
G6PC glucose-6-phosphatase catalytic subunit Glycolysis 17 
G6PD glucose-6-phosphate dehydrogenase Pentose Phosphate Pathway X 
GABARAP GABA type A receptor-associated protein  Mitophagy 17 

GABPA 
GA binding protein transcription factor 
subunit alpha Transcription (nuclear) 21 

GADD45GIP1 GADD45G interacting protein 1 Translation 19 
GAPDH glyceraldehyde-3-phosphate dehydrogenase Glycolysis 12 

GAPDHS 
glyceraldehyde-3-phosphate dehydrogenase, 
spermatogenic Glycolysis 19 

GARS1 glycyl-tRNA synthetase Translation 7 
GATB glutamyl-tRNA amidotransferase subunit B Translation 4 
GATC glutamyl-tRNA amidotransferase subunit C Translation 12 

GATD3A 
glutamine amidotransferase like class 1 
domain containing 3A Unknown 21 

GATM glycine amidinotransferase Amino Acid Metabolism 15 
GCAT glycine C-acetyltransferase Amino Acid Metabolism 22 
GCDH glutaryl-CoA dehydrogenase Fatty Acid Degradation & Beta-oxidation 19 
GCK glucokinase Glycolysis 7 
GCLC glutamate-cysteine ligase catalytic subunit ROS Defense 6 
GCLM glutamate-cysteine ligase modifier subunit ROS Defense 1 
GCSH glycine cleavage system protein H Amino Acid Metabolism 16 

GDAP1 
ganglioside induced differentiation associated 
protein 1 Mitochondrial Dynamics 8 

GFER growth factor, augmenter of liver regeneration Apoptosis 16 
GFM1 G elongation factor mitochondrial 1 Translation 3 
GFM2 G elongation factor mitochondrial 2 Translation 5 

GHITM 
growth hormone inducible transmembrane 
protein Apoptosis 10 

GK glycerol kinase Replication & Transcription X 
GK2 galactokinase 2 Replication & Transcription 15 
GLDC glycine decarboxylase Amino Acid Metabolism 9 
GLRX2 glutaredoxin 2 ROS Defense 1 
GLRX5 glutaredoxin 5 Fe-S Cluster Biosynthesis 14 
GLS glutaminase Amino Acid Metabolism 2 
GLS2 glutaminase 2 Amino Acid Metabolism 12 
GLUD1 glutamate dehydrogenase 1 Amino Acid Metabolism 10 
GLUD2 glutamate dehydrogenase 2 Amino Acid Metabolism X 
GLUL glutamate-ammonia ligase Amino Acid Metabolism 1 
GLYAT glycine-N-acyltransferase Translation 11 
GLYATL2 glycine-N-acyltransferase like 2 Fatty Acid Metabolism 11 
GLYATL3 glycine-N-acyltransferase like 3 Translation 6 
GLYCTK glycerate kinase Fructose Metabolism 3 
GOT2 glutamic-oxaloacetic transaminase 2 Amino Acid Metabolism 16 

GPAM 
glycerol-3-phosphate acyltransferase, 
mitochondrial Metabolism of Lipids & Lipoproteins 10 

GPAT2 
glycerol-3-phosphate acyltransferase 2, 
mitochondrial Metabolism of Lipids & Lipoproteins 2 

GPD1 glycerol-3-phosphate dehydrogenase 1 Oxidative Phosphorylation 12 
GPD2 glycerol-3-phosphate dehydrogenase 2 Oxidative Phosphorylation 2 
GPI glucose-6-phosphate isomerase Glycolysis 19 
GPT2 glutamic--pyruvic transaminase 2 Amino Acid Metabolism 16 
GPX1 glutathione peroxidase 1 ROS Defense 3 
GPX4 glutathione peroxidase 4 ROS Defense 19 
GRPEL1 GrpE like 1, mitochondrial Import & Sorting 4 
GRPEL2 GrpE like 2, mitochondrial Import & Sorting 5 
GSK3B glycogen synthase kinase 3 beta Mitochondrial Signaling 3 
GSR glutathione-disulfide reductase ROS Defense 8 
GSS glutathione synthetase ROS Defense 20 
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GSTA1 glutathione S-transferase alpha 1 ROS Defense 6 
GSTA2 glutathione S-transferase alpha 2 ROS Defense 6 
GSTA4 glutathione S-transferase alpha 4 ROS Defense 6 
GSTP1 glutathione S-transferase pi 1 ROS Defense 11 
GSTZ1 glutathione S-transferase zeta 1 Amino Acid Metabolism 14 
GTPBP10 GTP binding protein 10 Translation 7 
GTPBP3 GTP binding protein 3, mitochondrial Translation 19 
GUF1 GUF1 homolog, GTPase Translation 4 
HADH hydroxyacyl-CoA dehydrogenase Fatty Acid Degradation & Beta-oxidation 4 

HADHA 
hydroxyacyl-CoA dehydrogenase trifunctional 
multienzyme complex subunit alpha Fatty Acid Degradation & Beta-oxidation 2 

HADHB 
hydroxyacyl-CoA dehydrogenase trifunctional 
multienzyme complex subunit beta Fatty Acid Degradation & Beta-oxidation 2 

HAGH hydroxyacylglutathione hydrolase Pyruvate Metabolism 16 
HARS2 histidyl-tRNA synthetase 2, mitochondrial Translation 5 
HCCS holocytochrome c synthase Oxidative Phosphorylation X 

HDHD5 
haloacid dehalogenase like hydrolase domain 
containing 5 Fatty Acid Metabolism 22 

HEMK1 HemK methyltransferase family member 1 Translation 3 
HIBADH 3-hydroxyisobutyrate dehydrogenase Amino Acid Metabolism 7 
HIBCH 3-hydroxyisobutyryl-CoA hydrolase Amino Acid Metabolism 2 
HIF1A hypoxia inducible factor 1 subunit alpha  Transcription (nuclear) 14 

HIGD1A 
HIG1 hypoxia inducible domain family 
member 1A Oxidative Phosphorylation 3 

HIGD2A 
HIG1 hypoxia inducible domain family 
member 2A Oxidative Phosphorylation 5 

HINT2 histidine triad nucleotide binding protein 2 Calcium Signaling & Transport 9 
HK1 hexokinase 1 Glycolysis 10 
HK2 hexokinase 2 Glycolysis 2 
HK3 hexokinase 3 Glycolysis 5 
HKDC1 hexokinase domain containing 1 Glycolysis 10 
HMBS hydroxymethylbilane synthase Heme Biosynthesis 11 
HMGCL 3-hydroxy-3-methylglutaryl-CoA lyase Amino Acid Metabolism 1 
HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 Amino Acid Metabolism 1 
HOGA1 4-hydroxy-2-oxoglutarate aldolase 1 Pyruvate Metabolism 10 

HSCB 
HscB mitochondrial iron-sulfur cluster 
cochaperone Fe-S Cluster Biosynthesis 22 

HSD17B10 hydroxysteroid 17-beta dehydrogenase 10 Translation X 
HSD17B8 hydroxysteroid 17-beta dehydrogenase 8 Fatty Acid Biosynthesis & Elongation 6 

HSD3B1 
hydroxy-delta-5-steroid dehydrogenase, 3 
beta- and steroid delta-isomerase 1 Metabolism of Lipids & Lipoproteins 1 

HSD3B2 
hydroxy-delta-5-steroid dehydrogenase, 3 
beta- and steroid delta-isomerase 2 Metabolism of Lipids & Lipoproteins 1 

HSDL1 hydroxysteroid dehydrogenase like 1 Unknown 16 

HSPA1A 
heat shock protein family A (Hsp70) member 
1A Protein Stability & Degradation 6 

HSPA1B 
heat shock protein family A (Hsp70) member 
1B Protein Stability & Degradation 6 

HSPA9 
heat shock protein family A (Hsp70) member 
9 Import & Sorting 5 

HSPD1 
heat shock protein family D (Hsp60) member 
1 Protein Stability & Degradation 2 

HSPE1 
heat shock protein family E (Hsp10) member 
1 Import & Sorting 2 

HTRA2 HtrA serine peptidase 2 Apoptosis 2 
IARS2 isoleucyl-tRNA synthetase 2, mitochondrial Translation 1 
IBA57 iron-sulfur cluster assembly factor IBA57 Fe-S Cluster Biosynthesis 1 
IDE insulin degrading enzyme Mitochondrial Signaling 10 

IDH1 
isocitrate dehydrogenase (NADP(+)) 1, 
cytosolic Tricarboxylic Acid Cycle 2 

IDH2 
isocitrate dehydrogenase (NADP(+)) 2, 
mitochondrial Tricarboxylic Acid Cycle 15 

IDH3A isocitrate dehydrogenase 3 (NAD(+)) alpha Tricarboxylic Acid Cycle 15 
IDH3B isocitrate dehydrogenase 3 (NAD(+)) beta Tricarboxylic Acid Cycle 20 
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IDH3G isocitrate dehydrogenase 3 (NAD(+)) gamma Tricarboxylic Acid Cycle X 

IMMP1L 
inner mitochondrial membrane peptidase 
subunit 1 Import & Sorting 11 

IMMP2L 
inner mitochondrial membrane peptidase 
subunit 2 Import & Sorting 7 

IMMT inner membrane mitochondrial protein Mitochondrial Dynamics 2 
ISCA1 iron-sulfur cluster assembly 1 Fe-S Cluster Biosynthesis 9 
ISCA2 iron-sulfur cluster assembly 2 Fe-S Cluster Biosynthesis 14 
ISCU iron-sulfur cluster assembly enzyme Fe-S Cluster Biosynthesis 12 
ITPR1 inositol 1,4,5-trisphosphate receptor type 1 Calcium Signaling & Transport 3 
ITPR2 inositol 1,4,5-trisphosphate receptor type 2 Calcium Signaling & Transport 12 
ITPR3 inositol 1,4,5-trisphosphate receptor type 3 Calcium Signaling & Transport 6 
IVD isovaleryl-CoA dehydrogenase Amino Acid Metabolism 15 

JUN 
Jun proto-oncogene, AP-1 transcription factor 
subunit Transcription (nuclear) 1 

KARS lysyl-tRNA synthetase Translation 16 
KDM6B lysine demethylase 6B UPRmt 17 
KHK ketohexokinase Fructose Metabolism 2 
KIF1B kinesin family member 1B Mitochondrial Dynamics 1 
KIF1BP KIF1 binding protein Mitochondrial Dynamics 10 
KIF5B kinesin family member 5B Mitochondrial Dynamics 10 
KMO kynurenine 3-monooxygenase Amino Acid Metabolism 1 
KYAT3 kynurenine aminotransferase 3 Amino Acid Metabolism 1 
L2HGDH L-2-hydroxyglutarate dehydrogenase Pyruvate Metabolism 14 
LACTB lactamase beta Metabolism of Lipids & Lipoproteins 15 
LACTB2 lactamase beta 2 Translation 8 
LAP3 leucine aminopeptidase 3 Amino Acid Metabolism 4 
LARS2 leucyl-tRNA synthetase 2, mitochondrial Translation 3 
LCLAT1 lysocardiolipin acyltransferase 1 Cardiolipin Biosynthesis 2 
LDHA lactate dehydrogenase A Glycolysis 11 
LDHAL6B lactate dehydrogenase A like 6B Glycolysis 15 
LDHB lactate dehydrogenase B Glycolysis 12 
LDHC lactate dehydrogenase C Glycolysis 11 
LDHD lactate dehydrogenase D Pyruvate Metabolism 16 

LETM1 
leucine zipper and EF-hand containing 
transmembrane protein 1 Calcium Signaling & Transport 4 

LETM2 
leucine zipper and EF-hand containing 
transmembrane protein 2 Calcium Signaling & Transport 8 

LETMD1 LETM1 domain containing 1 Apoptosis 12 
LIAS lipoic acid synthetase Lipoic Acid Metabolism 4 
LIG1 DNA ligase 1 Replication & Transcription 19 
LIG3 DNA ligase 3 Replication & Transcription 17 
LIPT1 lipoyltransferase 1 Lipoic Acid Metabolism 2 
LIPT2 lipoyl(octanoyl) transferase 2 Lipoic Acid Metabolism 11 
LONP1 lon peptidase 1, mitochondrial Protein Stability & Degradation 19 

LRPPRC 
leucine rich pentatricopeptide repeat 
containing Translation 2 

LYPLA1 lysophospholipase 1 Fatty Acid Metabolism 8 
LYPLAL1 lysophospholipase like 1 Fatty Acid Metabolism 1 
LYRM1 LYR motif containing 1 Mitochondrial Dynamics 16 
LYRM4 LYR motif containing 4 Fe-S Cluster Biosynthesis 6 
LYRM7 LYR motif containing 7 Oxidative Phosphorylation 5 
MAIP1 matrix AAA peptidase interacting protein 1 Calcium Signaling & Transport 2 

MALSU1 
mitochondrial assembly of ribosomal large 
subunit 1 Translation 7 

MAOA monoamine oxidase A Amino Acid Metabolism X 
MAOB monoamine oxidase B Amino Acid Metabolism X 

MAP1LC3A 
microtubule associated protein 1 light chain 3 
alpha Mitochondrial Dynamics 20 

MAPK1 mitogen-activated protein kinase 1 Apoptosis 22 
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MAPK3 mitogen-activated protein kinase 3 Apoptosis 16 
MAPK8 mitogen-activated protein kinase 8  Apoptosis 10 
MARCH1 membrane associated ring-CH-type finger 1 Nucleotide Metabolism 4 
MARCH2 membrane associated ring-CH-type finger 2 Nucleotide Metabolism 19 
MARCH5 membrane associated ring-CH-type finger 5 Mitochondrial Dynamics 10 
MARS2 methionyl-tRNA synthetase 2, mitochondrial Translation 2 
MAVS mitochondrial antiviral signaling protein Mitochondrial Signaling 20 
MCAT malonyl-CoA-acyl carrier protein transacylase Fatty Acid Biosynthesis & Elongation 22 
MCCC1 methylcrotonoyl-CoA carboxylase 1 Amino Acid Metabolism 3 
MCCC2 methylcrotonoyl-CoA carboxylase 2 Amino Acid Metabolism 5 
MCEE methylmalonyl-CoA epimerase Amino Acid Metabolism 2 

MCL1 
MCL1 apoptosis regulator, BCL2 family 
member Apoptosis 1 

MCU mitochondrial calcium uniporter Calcium Signaling & Transport 10 

MCUB 
mitochondrial calcium uniporter dominant 
negative beta subunit Calcium Signaling & Transport 4 

MCUR1 mitochondrial calcium uniporter regulator 1 Calcium Signaling & Transport 6 
MDH1 malate dehydrogenase 1 Tricarboxylic Acid Cycle 2 
MDH2 malate dehydrogenase 2 Tricarboxylic Acid Cycle 7 
ME1 malic enzyme 1 Pyruvate Metabolism 6 
ME2 malic enzyme 2 Pyruvate Metabolism 18 
ME3 malic enzyme 3 Pyruvate Metabolism 11 
MECR mitochondrial trans-2-enoyl-CoA reductase Fatty Acid Biosynthesis & Elongation 1 

METAP1D 
methionyl aminopeptidase type 1D, 
mitochondrial Import & Sorting 2 

METTL17 methyltransferase like 17 Translation 14 
MFF mitochondrial fission factor Mitochondrial Dynamics 2 
MFN1 mitofusin 1 Mitochondrial Dynamics 3 
MFN2 mitofusin 2 Mitochondrial Dynamics 1 

MGARP 
mitochondria localized glutamic acid rich 
protein Mitochondrial Dynamics 4 

MGME1 
mitochondrial genome maintenance 
exonuclease 1 Replication & Transcription 20 

MGST1 microsomal glutathione S-transferase 1 ROS Defense 12 

MICOS10 
mitochondrial contact site and cristae 
organizing system subunit 10 Mitochondrial Dynamics 1 

MICOS13 
mitochondrial contact site and cristae 
organizing system subunit 13 Mitochondrial Dynamics 19 

MICU1 mitochondrial calcium uptake 1 Calcium Signaling & Transport 10 
MICU2 mitochondrial calcium uptake 2 Calcium Signaling & Transport 13 

MICU3 
mitochondrial calcium uptake family member 
3 Calcium Signaling & Transport 8 

MIEF1 mitochondrial elongation factor 1 Mitochondrial Dynamics 22 
MIEF2 mitochondrial elongation factor 2 Mitochondrial Dynamics 17 
MIPEP mitochondrial intermediate peptidase Import & Sorting 13 
MITF melanocyte inducing transcription factor  Transcription (nuclear) 3 
MLYCD malonyl-CoA decarboxylase Fatty Acid Metabolism 16 
MMAA metabolism of cobalamin associated A Metabolism of Vitamins & Co-Factors 4 
MMAB metabolism of cobalamin associated B Metabolism of Vitamins & Co-Factors 12 
MMADHC metabolism of cobalamin associated D Metabolism of Vitamins & Co-Factors 2 

MMS19 
MMS19 homolog, cytosolic iron-sulfur 
assembly component Fe-S Cluster Biosynthesis 10 

MMUT methylmalonyl-CoA mutase Amino Acid Metabolism 6 
MPC1 mitochondrial pyruvate carrier 1 Pyruvate Metabolism 6 
MPC1L mitochondrial pyruvate carrier 1 like Pyruvate Metabolism X 
MPC2 mitochondrial pyruvate carrier 2 Pyruvate Metabolism 1 
MPST mercaptopyruvate sulfurtransferase Amino Acid Metabolism 22 

MPV17 
mitochondrial inner membrane protein 
MPV17 ROS Defense 2 

MPV17L 
MPV17 mitochondrial inner membrane 
protein like ROS Defense 16 

MPV17L2 
MPV17 mitochondrial inner membrane 
protein like 2 Translation 19 
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MRM1 mitochondrial rRNA methyltransferase 1 Translation 17 
MRM2 mitochondrial rRNA methyltransferase 2 Translation 7 
MRM3 mitochondrial rRNA methyltransferase 3 Translation 17 
MRPL1 mitochondrial ribosomal protein L1 Translation 4 
MRPL10 mitochondrial ribosomal protein L10 Translation 17 
MRPL11 mitochondrial ribosomal protein L11 Translation 11 
MRPL12 mitochondrial ribosomal protein L12 Translation 17 
MRPL13 mitochondrial ribosomal protein L13 Translation 8 
MRPL14 mitochondrial ribosomal protein L14 Translation 6 
MRPL15 mitochondrial ribosomal protein L15 Translation 8 
MRPL16 mitochondrial ribosomal protein L16 Translation 11 
MRPL17 mitochondrial ribosomal protein L17 Translation 11 
MRPL18 mitochondrial ribosomal protein L18 Translation 6 
MRPL19 mitochondrial ribosomal protein L19 Translation 2 
MRPL2 mitochondrial ribosomal protein L2 Translation 6 
MRPL20 mitochondrial ribosomal protein L20 Translation 1 
MRPL21 mitochondrial ribosomal protein L21 Translation 11 
MRPL22 mitochondrial ribosomal protein L22 Translation 5 
MRPL23 mitochondrial ribosomal protein L23 Translation 11 
MRPL24 mitochondrial ribosomal protein L24 Translation 1 
MRPL27 mitochondrial ribosomal protein L27 Translation 17 
MRPL28 mitochondrial ribosomal protein L28 Translation 16 
MRPL3 mitochondrial ribosomal protein L3 Translation 3 
MRPL30 mitochondrial ribosomal protein L30 Translation 2 
MRPL32 mitochondrial ribosomal protein L32 Translation 7 
MRPL33 mitochondrial ribosomal protein L33 Translation 2 
MRPL34 mitochondrial ribosomal protein L34 Translation 19 
MRPL35 mitochondrial ribosomal protein L35 Translation 2 
MRPL36 mitochondrial ribosomal protein L36 Translation 5 
MRPL37 mitochondrial ribosomal protein L37 Translation 1 
MRPL38 mitochondrial ribosomal protein L38 Translation 17 
MRPL39 mitochondrial ribosomal protein L39 Translation 21 
MRPL4 mitochondrial ribosomal protein L4 Translation 19 
MRPL40 mitochondrial ribosomal protein L40 Translation 22 
MRPL41 mitochondrial ribosomal protein L41 Translation 9 
MRPL42 mitochondrial ribosomal protein L42 Translation 12 
MRPL43 mitochondrial ribosomal protein L43 Translation 10 
MRPL44 mitochondrial ribosomal protein L44 Translation 2 
MRPL45 mitochondrial ribosomal protein L45 Translation 17 
MRPL46 mitochondrial ribosomal protein L46 Translation 15 
MRPL47 mitochondrial ribosomal protein L47 Translation 3 
MRPL48 mitochondrial ribosomal protein L48 Translation 11 
MRPL49 mitochondrial ribosomal protein L49 Translation 11 
MRPL50 mitochondrial ribosomal protein L50 Translation 9 
MRPL51 mitochondrial ribosomal protein L51 Translation 12 
MRPL52 mitochondrial ribosomal protein L52 Translation 14 
MRPL53 mitochondrial ribosomal protein L53 Translation 2 
MRPL54 mitochondrial ribosomal protein L54 Translation 19 
MRPL55 mitochondrial ribosomal protein L55 Translation 1 
MRPL57 mitochondrial ribosomal protein L57 Translation 13 
MRPL58 mitochondrial ribosomal protein L58 Translation 17 
MRPL9 mitochondrial ribosomal protein L9 Translation 1 
MRPS10 mitochondrial ribosomal protein S10 Translation 6 
MRPS11 mitochondrial ribosomal protein S11 Translation 15 
MRPS12 mitochondrial ribosomal protein S12 Translation 19 
MRPS14 mitochondrial ribosomal protein S14 Translation 1 



 169 

MRPS15 mitochondrial ribosomal protein S15 Translation 1 
MRPS16 mitochondrial ribosomal protein S16 Translation 10 
MRPS17 mitochondrial ribosomal protein S17 Translation 7 
MRPS18A mitochondrial ribosomal protein S18A Translation 6 
MRPS18B mitochondrial ribosomal protein S18B Translation 6 
MRPS18C mitochondrial ribosomal protein S18C Translation 4 
MRPS2 mitochondrial ribosomal protein S2 Translation 9 
MRPS21 mitochondrial ribosomal protein S21 Translation 1 
MRPS22 mitochondrial ribosomal protein S22 Translation 3 
MRPS23 mitochondrial ribosomal protein S23 Translation 17 
MRPS24 mitochondrial ribosomal protein S24 Translation 7 
MRPS25 mitochondrial ribosomal protein S25 Translation 3 
MRPS26 mitochondrial ribosomal protein S26 Translation 20 
MRPS27 mitochondrial ribosomal protein S27 Translation 5 
MRPS28 mitochondrial ribosomal protein S28 Translation 8 
MRPS30 mitochondrial ribosomal protein S30 Translation 5 
MRPS31 mitochondrial ribosomal protein S31 Translation 13 
MRPS33 mitochondrial ribosomal protein S33 Translation 7 
MRPS34 mitochondrial ribosomal protein S34 Translation 16 
MRPS35 mitochondrial ribosomal protein S35 Translation 12 
MRPS36 mitochondrial ribosomal protein S36 Translation 5 
MRPS5 mitochondrial ribosomal protein S5 Translation 2 
MRPS6 mitochondrial ribosomal protein S6 Translation 21 
MRPS7 mitochondrial ribosomal protein S7 Translation 17 
MRPS9 mitochondrial ribosomal protein S9 Translation 2 
MRRF mitochondrial ribosome recycling factor Translation 9 
MRS2 magnesium transporter MRS2 Transmembrane Transport 6 
MSH5 mutS homolog 5 Replication & Transcription 6 
MSRA methionine sulfoxide reductase A ROS Defense 8 
MSRB2 methionine sulfoxide reductase B2 ROS Defense 10 
MSRB3 methionine sulfoxide reductase B3 ROS Defense 12 

MSTO1 
misato mitochondrial distribution and 
morphology regulator 1 Mitochondrial Dynamics 1 

MT-ATP6 mitochondrially encoded ATP synthase 6 Oxidative Phosphorylation (mt) MT 
MT-ATP8 mitochondrially encoded ATP synthase 8 Oxidative Phosphorylation (mt) MT 

MT-CO1 
mitochondrially encoded cytochrome c 
oxidase I Oxidative Phosphorylation (mt) MT 

MT-CO2 
mitochondrially encoded cytochrome c 
oxidase II Oxidative Phosphorylation (mt) MT 

MT-CO3 
mitochondrially encoded cytochrome c 
oxidase III Oxidative Phosphorylation (mt) MT 

MT-CYB mitochondrially encoded cytochrome b Oxidative Phosphorylation (mt) MT 

MT-ND1 
mitochondrially encoded NADH 
dehydrogenase 1 Oxidative Phosphorylation (mt) MT 

MT-ND2 
mitochondrially encoded NADH 
dehydrogenase 2 Oxidative Phosphorylation (mt) MT 

MT-ND3 
mitochondrially encoded NADH 
dehydrogenase 3 Oxidative Phosphorylation (mt) MT 

MT-ND4 
mitochondrially encoded NADH 
dehydrogenase 4 Oxidative Phosphorylation (mt) MT 

MT-ND4L 
mitochondrially encoded NADH 4L 
dehydrogenase Oxidative Phosphorylation (mt) MT 

MT-ND5 
mitochondrially encoded NADH 
dehydrogenase 5 Oxidative Phosphorylation (mt) MT 

MT-ND6 
mitochondrially encoded NADH 
dehydrogenase 6 Oxidative Phosphorylation (mt) MT 

MT-RNR1 mitochondrially encoded 12S RNA Translation (MT) MT 
MT-RNR2 mitochondrially encoded 16S RNA Translation (MT) MT 
MT-TA mitochondrially encoded tRNA alanine Translation (MT) MT 
MT-TC mitochondrially encoded tRNA cysteine Translation (MT) MT 
MT-TD mitochondrially encoded tRNA aspartic acid Translation (MT) MT 
MT-TE mitochondrially encoded tRNA glutamic acid Translation (MT) MT 
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MT-TF mitochondrially encoded tRNA phenylalanine Translation (MT) MT 
MT-TG mitochondrially encoded tRNA glycine Translation (MT) MT 
MT-TH mitochondrially encoded tRNA histidine Translation (MT) MT 
MT-TI mitochondrially encoded tRNA isoleucine Translation (MT) MT 
MT-TK mitochondrially encoded tRNA lysine Translation (MT) MT 

MT-TL1 
mitochondrially encoded tRNA leucine 1 
(UUA/G) Translation (MT) MT 

MT-TL2 
mitochondrially encoded tRNA leucine 2 
(CUN) Translation (MT) MT 

MT-TM mitochondrially encoded tRNA methionine Translation (MT) MT 
MT-TN mitochondrially encoded tRNA asparagine Translation (MT) MT 
MT-TP mitochondrially encoded tRNA proline Translation (MT) MT 
MT-TQ mitochondrially encoded tRNA glutamine Translation (MT) MT 
MT-TR mitochondrially encoded tRNA arginine Translation (MT) MT 

MT-TS1 
mitochondrially encoded tRNA serine 1 
(UCN) Translation (MT) MT 

MT-TS2 
mitochondrially encoded tRNA serine 2 
(AGU/C) Translation (MT) MT 

MT-TT mitochondrially encoded tRNA threonine Translation (MT) MT 
MT-TV mitochondrially encoded tRNA valine Translation (MT) MT 
MT-TW mitochondrially encoded tRNA tryptophan Translation (MT) MT 
MT-TY mitochondrially encoded tRNA tyrosine Translation (MT) MT 
MTCH1 mitochondrial carrier 1 Apoptosis 6 
MTCH2 mitochondrial carrier 2 Apoptosis 11 

MTERF1 
mitochondrial transcription termination factor 
1 Replication & Transcription 7 

MTERF2 
mitochondrial transcription termination factor 
2 Replication & Transcription 12 

MTERF3 
mitochondrial transcription termination factor 
3 Translation 8 

MTERF4 
mitochondrial transcription termination factor 
4 Translation 2 

MTFMT 
mitochondrial methionyl-tRNA 
formyltransferase Translation 15 

MTFP1 mitochondrial fission process 1 Mitochondrial Dynamics 22 
MTFR1 mitochondrial fission regulator 1 Mitochondrial Dynamics 8 
MTFR1L mitochondrial fission regulator 1 like Mitochondrial Dynamics 1 
MTFR2 mitochondrial fission regulator 2 Mitochondrial Dynamics 6 
MTG1 mitochondrial ribosome associated GTPase 1 Translation 10 
MTG2 mitochondrial ribosome associated GTPase 2 Translation 20 

MTHFD1 

methylenetetrahydrofolate dehydrogenase, 
cyclohydrolase and formyltetrahydrofolate 
synthetase 1 Folate & Pterin Metabolism 14 

MTHFD1L 
methylenetetrahydrofolate dehydrogenase 
(NADP+ dependent) 1 like Folate & Pterin Metabolism 6 

MTHFD2 

methylenetetrahydrofolate dehydrogenase 
(NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase Folate & Pterin Metabolism 2 

MTHFD2L 
methylenetetrahydrofolate dehydrogenase 
(NADP+ dependent) 2 like Folate & Pterin Metabolism 4 

MTHFS methenyltetrahydrofolate synthetase Folate & Pterin Metabolism 15 
MTIF2 mitochondrial translational initiation factor 2 Translation 2 
MTIF3 mitochondrial translational initiation factor 3 Translation 13 
MTO1 mitochondrial tRNA translation optimization 1 Translation 6 
MTOR mechanistic target of rapamycin kinase Mitochondrial Signaling 1 
MTPAP mitochondrial poly(A) polymerase Translation 10 
MTRES1 mitochondrial transcription rescue factor 1 Translation 6 
MTRF1 mitochondrial translation release factor 1 Translation 13 

MTRF1L 
mitochondrial translational release factor 1 
like Translation 6 

MTX1 metaxin 1 Import & Sorting 1 
MTX2 metaxin 2 Import & Sorting 2 
MTX3 metaxin 3 Import & Sorting 5 
MUL1 mitochondrial E3 ubiquitin protein ligase 1 Protein Stability & Degradation 1 
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MUTYH mutY DNA glycosylase Replication & Transcription 1 

MYC 
MYC proto-oncogene, bHLH transcription 
factor Transcription (nuclear) 8 

NADK2 NAD kinase 2, mitochondrial Amino Acid Metabolism 5 
NAGS N-acetylglutamate synthase Nitrogen Metabolism 17 
NARF nuclear prelamin A recognition factor Fe-S Cluster Biosynthesis 17 

NARS2 
asparaginyl-tRNA synthetase 2, 
mitochondrial Translation 11 

NAXD NAD(P)HX dehydratase Metabolism of Vitamins & Co-Factors 13 
NAXE NAD(P)HX epimerase Metabolism of Vitamins & Co-Factors 1 
NBR1 NBR1 autophagy cargo receptor  Mitophagy 17 
NDUFA1 NADH:ubiquinone oxidoreductase subunit A1 Oxidative Phosphorylation X 

NDUFA10 
NADH:ubiquinone oxidoreductase subunit 
A10 Oxidative Phosphorylation 2 

NDUFA11 
NADH:ubiquinone oxidoreductase subunit 
A11 Oxidative Phosphorylation 19 

NDUFA12 
NADH:ubiquinone oxidoreductase subunit 
A12 Oxidative Phosphorylation 12 

NDUFA13 
NADH:ubiquinone oxidoreductase subunit 
A13 Oxidative Phosphorylation 19 

NDUFA2 NADH:ubiquinone oxidoreductase subunit A2 Oxidative Phosphorylation 5 
NDUFA3 NADH:ubiquinone oxidoreductase subunit A3 Oxidative Phosphorylation 19 
NDUFA4 NDUFA4 mitochondrial complex associated Oxidative Phosphorylation 7 
NDUFA5 NADH:ubiquinone oxidoreductase subunit A5 Oxidative Phosphorylation 7 
NDUFA6 NADH:ubiquinone oxidoreductase subunit A6 Oxidative Phosphorylation 22 
NDUFA7 NADH:ubiquinone oxidoreductase subunit A7 Oxidative Phosphorylation 19 
NDUFA8 NADH:ubiquinone oxidoreductase subunit A8 Oxidative Phosphorylation 9 
NDUFA9 NADH:ubiquinone oxidoreductase subunit A9 Oxidative Phosphorylation 12 

NDUFAB1 
NADH:ubiquinone oxidoreductase subunit 
AB1 Oxidative Phosphorylation 16 

NDUFAF1 
NADH:ubiquinone oxidoreductase complex 
assembly factor 1 Oxidative Phosphorylation 15 

NDUFAF2 
NADH:ubiquinone oxidoreductase complex 
assembly factor 2 Oxidative Phosphorylation 5 

NDUFAF3 
NADH:ubiquinone oxidoreductase complex 
assembly factor 3 Oxidative Phosphorylation 3 

NDUFAF4 
NADH:ubiquinone oxidoreductase complex 
assembly factor 4 Oxidative Phosphorylation 6 

NDUFAF5 
NADH:ubiquinone oxidoreductase complex 
assembly factor 5 Oxidative Phosphorylation 20 

NDUFAF6 
NADH:ubiquinone oxidoreductase complex 
assembly factor 6 Oxidative Phosphorylation 8 

NDUFAF7 
NADH:ubiquinone oxidoreductase complex 
assembly factor 7 Oxidative Phosphorylation 2 

NDUFAF8 
NADH:ubiquinone oxidoreductase complex 
assembly factor 8 Oxidative Phosphorylation 17 

NDUFB1 NADH:ubiquinone oxidoreductase subunit B1 Oxidative Phosphorylation 14 

NDUFB10 
NADH:ubiquinone oxidoreductase subunit 
B10 Oxidative Phosphorylation 16 

NDUFB11 
NADH:ubiquinone oxidoreductase subunit 
B11 Oxidative Phosphorylation X 

NDUFB2 NADH:ubiquinone oxidoreductase subunit B2 Oxidative Phosphorylation 7 
NDUFB3 NADH:ubiquinone oxidoreductase subunit B3 Oxidative Phosphorylation 2 
NDUFB4 NADH:ubiquinone oxidoreductase subunit B4 Oxidative Phosphorylation 3 
NDUFB5 NADH:ubiquinone oxidoreductase subunit B5 Oxidative Phosphorylation 3 
NDUFB6 NADH:ubiquinone oxidoreductase subunit B6 Oxidative Phosphorylation 9 
NDUFB7 NADH:ubiquinone oxidoreductase subunit B7 Oxidative Phosphorylation 19 
NDUFB8 NADH:ubiquinone oxidoreductase subunit B8 Oxidative Phosphorylation 10 
NDUFB9 NADH:ubiquinone oxidoreductase subunit B9 Oxidative Phosphorylation 8 
NDUFC1 NADH:ubiquinone oxidoreductase subunit C1 Oxidative Phosphorylation 4 
NDUFC2 NADH:ubiquinone oxidoreductase subunit C2 Oxidative Phosphorylation 11 

NDUFS1 
NADH:ubiquinone oxidoreductase core 
subunit S1 Oxidative Phosphorylation 2 

NDUFS2 
NADH:ubiquinone oxidoreductase core 
subunit S2 Oxidative Phosphorylation 1 

NDUFS3 
NADH:ubiquinone oxidoreductase core 
subunit S3 Oxidative Phosphorylation 11 
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NDUFS4 NADH:ubiquinone oxidoreductase subunit S4 Oxidative Phosphorylation 5 
NDUFS5 NADH:ubiquinone oxidoreductase subunit S5 Oxidative Phosphorylation 1 
NDUFS6 NADH:ubiquinone oxidoreductase subunit S6 Oxidative Phosphorylation 5 

NDUFS7 
NADH:ubiquinone oxidoreductase core 
subunit S7 Oxidative Phosphorylation 19 

NDUFS8 
NADH:ubiquinone oxidoreductase core 
subunit S8 Oxidative Phosphorylation 11 

NDUFV1 
NADH:ubiquinone oxidoreductase core 
subunit V1 Oxidative Phosphorylation 11 

NDUFV2 
NADH:ubiquinone oxidoreductase core 
subunit V2 Oxidative Phosphorylation 18 

NDUFV3 NADH:ubiquinone oxidoreductase subunit V3 Oxidative Phosphorylation 21 
NEU4 neuraminidase 4 Metabolism of Lipids & Lipoproteins 2 
NFE2L2 nuclear factor, erythroid 2 like 2 Replication & Transcription 2 
NFS1 NFS1 cysteine desulfurase Fe-S Cluster Biosynthesis 20 
NFU1 NFU1 iron-sulfur cluster scaffold Fe-S Cluster Biosynthesis 2 
NGB neuroglobin ROS Defense 14 
NIF3L1 NGG1 interacting factor 3 like 1 Replication & Transcription 2 
NIPSNAP1 nipsnap homolog 1 Oxidative Phosphorylation 22 
NIPSNAP2 nipsnap homolog 2 Oxidative Phosphorylation 7 
NIPSNAP3A nipsnap homolog 3A Transmembrane Transport 9 
NIPSNAP3B nipsnap homolog 3B Transmembrane Transport 9 
NIT1 nitrilase 1 Amino Acid Metabolism 1 
NIT2 nitrilase family member 2 Amino Acid Metabolism 3 
NLN neurolysin Protein Stability & Degradation 5 
NLRX1 NLR family member X1 Mitochondrial Signaling 11 
NME1 NME/NM23 nucleoside diphosphate kinase 1 Nucleotide Metabolism 17 
NME4 NME/NM23 nucleoside diphosphate kinase 4 Nucleotide Metabolism 16 
NME6 NME/NM23 nucleoside diphosphate kinase 6 Nucleotide Metabolism 3 
NMNAT3 nicotinamide nucleotide adenylyltransferase 3 Metabolism of Vitamins & Co-Factors 3 
NNT nicotinamide nucleotide transhydrogenase Tricarboxylic Acid Cycle 5 
NOA1 nitric oxide associated 1 Translation 4 
NRDC nardilysin convertase Protein Stability & Degradation 1 
NRF1 nuclear respiratory factor 1 Transcription (nuclear) 7 
NSUN2 NOP2/Sun RNA methyltransferase 2 Replication & Transcription 5 
NSUN3 NOP2/Sun RNA methyltransferase 3 Translation 3 
NSUN4 NOP2/Sun RNA methyltransferase 4 Translation 1 
NT5M 5',3'-nucleotidase, mitochondrial Replication & Transcription 17 
NTHL1 nth like DNA glycosylase 1 Replication & Transcription 16 
NUBP1 nucleotide binding protein 1 Fe-S Cluster Biosynthesis 16 
NUBP2 nucleotide binding protein 2 Fe-S Cluster Biosynthesis 16 
NUBPL nucleotide binding protein like Oxidative Phosphorylation 14 
NUDT13 nudix hydrolase 13 Nucleotide Metabolism 10 
NUDT19 nudix hydrolase 19 Metabolism of Lipids & Lipoproteins 19 
NUDT2 nudix hydrolase 2 ROS Defense 9 
NUDT9 nudix hydrolase 9 Nucleotide Metabolism 4 
OAT ornithine aminotransferase Amino Acid Metabolism 10 
OGDH oxoglutarate dehydrogenase Tricarboxylic Acid Cycle 7 
OGDHL oxoglutarate dehydrogenase like Tricarboxylic Acid Cycle 10 
OGG1 8-oxoguanine DNA glycosylase ROS Defense 3 
OMA1 OMA1 zinc metallopeptidase Mitochondrial Dynamics 1 
OPA1 OPA1 mitochondrial dynamin like GTPase Mitochondrial Dynamics 3 

OPA3 
OPA3 outer mitochondrial membrane lipid 
metabolism regulator Metabolism of Lipids & Lipoproteins 19 

OPTN optineurin  Mitophagy 10 
OSGEPL1 O-sialoglycoprotein endopeptidase like 1 Translation 2 
OTC ornithine carbamoyltransferase Nitrogen Metabolism X 

OXA1L 
OXA1L mitochondrial inner membrane 
protein Oxidative Phosphorylation 14 
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OXCT1 3-oxoacid CoA-transferase 1 Amino Acid Metabolism 5 
OXCT2 3-oxoacid CoA-transferase 2 Amino Acid Metabolism 1 
OXR1 oxidation resistance 1 ROS Defense 8 
OXSM 3-oxoacyl-ACP synthase, mitochondrial Fatty Acid Biosynthesis & Elongation 3 
PACRG parkin coregulated Apoptosis 6 
PACS2 phosphofurin acidic cluster sorting protein 2 Calcium Signaling & Transport 14 

PAM16 
presequence translocase associated motor 
16 Import & Sorting 16 

PANK2 pantothenate kinase 2 Metabolism of Vitamins & Co-Factors 20 
PARK7 Parkinsonism associated deglycase ROS Defense 1 
PARL presenilin associated rhomboid like Apoptosis 3 
PARS2 prolyl-tRNA synthetase 2, mitochondrial Translation 1 
PC pyruvate carboxylase Glycolysis 11 
PCCA propionyl-CoA carboxylase subunit alpha Amino Acid Metabolism 13 
PCCB propionyl-CoA carboxylase subunit beta Fatty Acid Metabolism 3 
PCK1 phosphoenolpyruvate carboxykinase 1 Glycolysis 20 

PCK2 
phosphoenolpyruvate carboxykinase 2, 
mitochondrial Pyruvate Metabolism 14 

PDE12 phosphodiesterase 12 Translation 3 
PDF peptide deformylase, mitochondrial Amino Acid Metabolism 16 
PDHA1 pyruvate dehydrogenase E1 alpha 1 subunit Pyruvate Metabolism X 
PDHA2 pyruvate dehydrogenase E1 alpha 2 subunit Pyruvate Metabolism 4 
PDHB pyruvate dehydrogenase E1 beta subunit Pyruvate Metabolism 3 

PDHX 
pyruvate dehydrogenase complex component 
X Tricarboxylic Acid Cycle 11 

PDK1 pyruvate dehydrogenase kinase 1 Pyruvate Metabolism 2 
PDK2 pyruvate dehydrogenase kinase 2 Pyruvate Metabolism 17 
PDK3 pyruvate dehydrogenase kinase 3 Pyruvate Metabolism X 
PDK4 pyruvate dehydrogenase kinase 4 Pyruvate Metabolism 7 

PDP1 
pyruvate dehyrogenase phosphatase 
catalytic subunit 1 Pyruvate Metabolism 8 

PDP2 
pyruvate dehyrogenase phosphatase 
catalytic subunit 2 Pyruvate Metabolism 16 

PDPR 
pyruvate dehydrogenase phosphatase 
regulatory subunit Pyruvate Metabolism 16 

PDSS1 decaprenyl diphosphate synthase subunit 1 Ubiquinone Biosynthesis 10 
PDSS2 decaprenyl diphosphate synthase subunit 2 Ubiquinone Biosynthesis 6 
PET100 PET100 cytochrome c oxidase chaperone Protein Stability & Degradation 19 
PET117 PET117 cytochrome c oxidase chaperone Oxidative Phosphorylation 20 
PFKL phosphofructokinase, liver type Glycolysis 21 
PFKM phosphofructokinase, muscle Glycolysis 12 
PFKP phosphofructokinase, platelet Glycolysis 10 
PGAM1 phosphoglycerate mutase 1 Glycolysis 10 
PGAM2 phosphoglycerate mutase 2 Glycolysis 7 
PGAM4 phosphoglycerate mutase family member 4 Glycolysis X 

PGAM5 
PGAM family member 5, mitochondrial 
serine/threonine protein phosphatase  Mitophagy 12 

PGD phosphogluconate dehydrogenase Pentose Phosphate Pathway 1 
PGK1 phosphoglycerate kinase 1 Glycolysis X 
PGK2 phosphoglycerate kinase 2 Glycolysis 6 
PGLS 6-phosphogluconolactonase Pentose Phosphate Pathway 19 
PGS1 phosphatidylglycerophosphate synthase 1 Cardiolipin Biosynthesis 17 
PHB prohibitin Replication & Transcription 17 
PHB2 prohibitin 2 Mitochondrial Dynamics 12 
PHF8 PHD finger protein 8 UPRmt X 
PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase Amino Acid Metabolism 5 
PIF1 PIF1 5'-to-3' DNA helicase Replication & Transcription 15 

PIN4 
peptidylprolyl cis/trans isomerase, NIMA-
interacting 4 Translation X 

PINK1 PTEN induced kinase 1  Mitophagy 1 
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PISD phosphatidylserine decarboxylase Metabolism of Lipids & Lipoproteins 22 
PITRM1 pitrilysin metallopeptidase 1 Protein Stability & Degradation 10 

PKIA 
cAMP-dependent protein kinase inhibitor 
alpha Mitochondrial Dynamics 8 

PKLR pyruvate kinase L/R Glycolysis 1 
PKM pyruvate kinase M1/2 Glycolysis 15 
PLD6 phospholipase D family member 6 Mitochondrial Dynamics 17 

PMAIP1 
phorbol-12-myristate-13-acetate-induced 
protein 1 Apoptosis 18 

PML promyelocytic leukemia Calcium Signaling & Transport 15 

PMPCA 
peptidase, mitochondrial processing alpha 
subunit Import & Sorting 9 

PMPCB 
peptidase, mitochondrial processing beta 
subunit Import & Sorting 7 

PNKD 
PNKD metallo-beta-lactamase domain 
containing Unknown 2 

PNPLA4 
patatin like phospholipase domain containing 
4 Fatty Acid Metabolism X 

PNPLA8 
patatin like phospholipase domain containing 
8 Fatty Acid Metabolism 7 

PNPT1 polyribonucleotide nucleotidyltransferase 1 Translation 2 
POLD4 DNA polymerase delta 4, accessory subunit Replication & Transcription 11 
POLDIP2 DNA polymerase delta interacting protein 2 Replication & Transcription 17 
POLG DNA polymerase gamma, catalytic subunit Replication & Transcription 15 

POLG2 
DNA polymerase gamma 2, accessory 
subunit Replication & Transcription 17 

POLRMT RNA polymerase mitochondrial Replication & Transcription 19 
PPA2 pyrophosphatase (inorganic) 2 Translation 4 

PPARA 
peroxisome proliferator activated receptor 
alpha Transcription (nuclear) 22 

PPARG 
peroxisome proliferator activated receptor 
gamma Transcription (nuclear) 3 

PPARGC1A PPARG coactivator 1 alpha Transcription (nuclear) 4 
PPARGC1B PPARG coactivator 1 beta Transcription (nuclear) 5 
PPIF peptidylprolyl isomerase F Import & Sorting 10 

PPM1K 
protein phosphatase, Mg2+/Mn2+ dependent 
1K Amino Acid Metabolism 4 

PPOX protoporphyrinogen oxidase Heme Biosynthesis 1 
PPRC1 PPARG related coactivator 1 Transcription (nuclear) 10 
PPTC7 PTC7 protein phosphatase homolog Tricarboxylic Acid Cycle 12 
PRDX1 peroxiredoxin 1 ROS Defense 1 
PRDX3 peroxiredoxin 3 ROS Defense 10 
PRDX5 peroxiredoxin 5 ROS Defense 11 
PRELID1 PRELI domain containing 1 Apoptosis 5 
PRELID2 PRELI domain containing 2 Transmembrane Transport 5 
PRELID3A PRELI domain containing 3A Metabolism of Lipids & Lipoproteins 18 
PRELID3B PRELI domain containing 3B Metabolism of Lipids & Lipoproteins 20 

PRKACA 
protein kinase cAMP-activated catalytic 
subunit alpha Mitochondrial Signaling 19 

PRKCE protein kinase C epsilon Mitochondrial Signaling 2 
PRKN parkin RBR E3 ubiquitin protein ligase  Mitophagy 6 
PRODH proline dehydrogenase 1 Amino Acid Metabolism 22 
PRODH2 proline dehydrogenase 2 Amino Acid Metabolism 19 
PRORP protein only RNase P catalytic subunit Translation 14 
PSTK phosphoseryl-tRNA kinase Translation 10 
PTCD1 pentatricopeptide repeat domain 1 Translation 7 
PTCD2 pentatricopeptide repeat domain 2 Oxidative Phosphorylation 5 
PTCD3 pentatricopeptide repeat domain 3 Translation 2 
PTPMT1 protein tyrosine phosphatase mitochondrial 1 Cardiolipin Biosynthesis 11 
PTRH2 peptidyl-tRNA hydrolase 2 Translation 17 
PTS 6-pyruvoyltetrahydropterin synthase Folate & Pterin Metabolism 11 
PUS1 pseudouridine synthase 1 Translation 12 
PUSL1 pseudouridine synthase like 1 Translation 1 
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PYCR1 pyrroline-5-carboxylate reductase 1 Amino Acid Metabolism 17 
PYCR2 pyrroline-5-carboxylate reductase 2 Amino Acid Metabolism 1 
QARS glutaminyl-tRNA synthetase Translation 3 
QDPR quinoid dihydropteridine reductase Amino Acid Metabolism 4 

QRSL1 
glutaminyl-tRNA amidotransferase subunit 
QRSL1 Translation 6 

QTRT1 
queuine tRNA-ribosyltransferase catalytic 
subunit 1 Translation 19 

RAB7B RAB7B, member RAS oncogene family  Mitophagy 1 
RAD51 RAD51 recombinase Replication & Transcription 15 
RARS2 arginyl-tRNA synthetase 2, mitochondrial Translation 6 
RBFA ribosome binding factor A Translation 18 
RDH13 retinol dehydrogenase 13 Metabolism of Vitamins & Co-Factors 19 
RELA RELA proto-oncogene, NF-kB subunit  Transcription (nuclear) 11 
REXO2 RNA exonuclease 2 Translation 11 
RHOT1 ras homolog family member T1 Mitochondrial Dynamics 17 
RHOT2 ras homolog family member T2 Mitochondrial Dynamics 16 

RIDA 
reactive intermediate imine deaminase A 
homolog Translation 8 

RMND1 
required for meiotic nuclear division 1 
homolog Translation 6 

RMRP 
RNA component of mitochondrial RNA 
processing endoribonuclease Replication & Transcription 9 

RNASEH1 ribonuclease H1 Replication & Transcription 2 
RNASEL ribonuclease L Translation 1 
RNF185 ring finger protein 185 Protein Stability & Degradation 22 
RNF5 ring finger protein 5 Protein Stability & Degradation 6 
ROMO1 reactive oxygen species modulator 1 ROS Defense 20 
RPE ribulose-5-phosphate-3-epimerase Pentose Phosphate Pathway 2 
RPIA ribose 5-phosphate isomerase A Pentose Phosphate Pathway 2 
RPS19 ribosomal protein S19 Translation 19 
RPS6KB1 ribosomal protein S6 kinase B1 Apoptosis 17 
RPUSD3 RNA pseudouridine synthase D3 Translation 3 
RPUSD4 RNA pseudouridine synthase D4 Translation 11 
RRAS2 RAS related 2  Mitophagy 11 

RRM2B 
ribonucleotide reductase regulatory TP53 
inducible subunit M2B Replication & Transcription 8 

RSAD1 
radical S-adenosyl methionine domain 
containing 1 Unknown 17 

RTN4IP1 reticulon 4 interacting protein 1 Oxidative Phosphorylation 6 

SAMM50 
SAMM50 sorting and assembly machinery 
component Import & Sorting 22 

SARDH sarcosine dehydrogenase Metabolism of Lipids & Lipoproteins 9 
SARS2 seryl-tRNA synthetase 2, mitochondrial Translation 19 
SATB1 SATB homeobox 1 UPRmt 3 
SATB2 SATB homeobox 2  UPRmt 2 
SBDS SBDS ribosome maturation factor Translation 7 

SCO1 
SCO cytochrome c oxidase assembly protein 
1 Oxidative Phosphorylation 17 

SCO2 
SCO cytochrome c oxidase assembly protein 
2 Oxidative Phosphorylation 22 

SDHA 
succinate dehydrogenase complex 
flavoprotein subunit A Oxidative Phosphorylation 5 

SDHAF1 
succinate dehydrogenase complex assembly 
factor 1 Oxidative Phosphorylation 19 

SDHAF2 
succinate dehydrogenase complex assembly 
factor 2 Oxidative Phosphorylation 11 

SDHAF3 
succinate dehydrogenase complex assembly 
factor 3 Oxidative Phosphorylation 7 

SDHAF4 
succinate dehydrogenase complex assembly 
factor 4 Oxidative Phosphorylation 6 

SDHB 
succinate dehydrogenase complex iron sulfur 
subunit B Oxidative Phosphorylation 1 

SDHC succinate dehydrogenase complex subunit C Oxidative Phosphorylation 1 
SDHD succinate dehydrogenase complex subunit D Oxidative Phosphorylation 11 
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SERAC1 serine active site containing 1 Metabolism of Lipids & Lipoproteins 6 
SFXN1 sideroflexin 1 Transmembrane Transport 5 
SFXN2 sideroflexin 2 Transmembrane Transport 10 
SFXN3 sideroflexin 3 Transmembrane Transport 10 
SFXN4 sideroflexin 4 Transmembrane Transport 10 
SFXN5 sideroflexin 5 Transmembrane Transport 2 

SH3GLB1 
SH3 domain containing GRB2 like, endophilin 
B1 Mitochondrial Dynamics 1 

SHC1 SHC adaptor protein 1 Mitochondrial Signaling 1 
SHMT2 serine hydroxymethyltransferase 2 Folate & Pterin Metabolism 12 
SIRT1 sirtuin 1 Mitochondrial Signaling 10 
SIRT2 sirtuin 2 Mitochondrial Signaling 19 
SIRT3 sirtuin 3 Mitochondrial Signaling 11 
SIRT4 sirtuin 4 Mitochondrial Signaling 12 
SIRT5 sirtuin 5 Mitochondrial Signaling 6 
SLC16A7 solute carrier family 16 member 7 Mitochondrial Carrier 12 
SLC22A4 solute carrier family 22 member 4 Mitochondrial Carrier 5 
SLC25A1 solute carrier family 25 member 1 Mitochondrial Carrier 22 
SLC25A10 solute carrier family 25 member 10 Mitochondrial Carrier 17 
SLC25A11 solute carrier family 25 member 11 Mitochondrial Carrier 17 
SLC25A12 solute carrier family 25 member 12 Calcium Signaling & Transport 2 
SLC25A13 solute carrier family 25 member 13 Calcium Signaling & Transport 7 
SLC25A14 solute carrier family 25 member 14 Mitochondrial Carrier X 
SLC25A15 solute carrier family 25 member 15 Mitochondrial Carrier 13 
SLC25A16 solute carrier family 25 member 16 Mitochondrial Carrier 10 
SLC25A18 solute carrier family 25 member 18 Mitochondrial Carrier 22 
SLC25A19 solute carrier family 25 member 19 Mitochondrial Carrier 17 
SLC25A2 solute carrier family 25 member 2 Mitochondrial Carrier 5 
SLC25A20 solute carrier family 25 member 20 Mitochondrial Carrier 3 
SLC25A21 solute carrier family 25 member 21 Mitochondrial Carrier 14 
SLC25A22 solute carrier family 25 member 22 Mitochondrial Carrier 11 
SLC25A23 solute carrier family 25 member 23 Mitochondrial Carrier 19 
SLC25A24 solute carrier family 25 member 24 Mitochondrial Carrier 1 
SLC25A25 solute carrier family 25 member 25 Mitochondrial Carrier 9 
SLC25A26 solute carrier family 25 member 26 Mitochondrial Carrier 3 
SLC25A27 solute carrier family 25 member 27 Mitochondrial Carrier 6 
SLC25A28 solute carrier family 25 member 28 Fe-S Cluster Biosynthesis 10 
SLC25A29 solute carrier family 25 member 29 Mitochondrial Carrier 14 
SLC25A3 solute carrier family 25 member 3 Mitochondrial Carrier 12 
SLC25A30 solute carrier family 25 member 30 Mitochondrial Carrier 13 
SLC25A31 solute carrier family 25 member 31 Mitochondrial Dynamics 4 
SLC25A32 solute carrier family 25 member 32 Folate & Pterin Metabolism 8 
SLC25A33 solute carrier family 25 member 33 Mitochondrial Carrier 1 
SLC25A34 solute carrier family 25 member 34 Mitochondrial Carrier 1 
SLC25A35 solute carrier family 25 member 35 Mitochondrial Carrier 17 
SLC25A36 solute carrier family 25 member 36 Mitochondrial Carrier 3 
SLC25A37 solute carrier family 25 member 37 Fe-S Cluster Biosynthesis 8 
SLC25A38 solute carrier family 25 member 38 Mitochondrial Carrier 3 
SLC25A39 solute carrier family 25 member 39 Mitochondrial Carrier 17 
SLC25A4 solute carrier family 25 member 4 Mitochondrial Dynamics 4 
SLC25A40 solute carrier family 25 member 40 Mitochondrial Carrier 7 
SLC25A41 solute carrier family 25 member 41 Mitochondrial Carrier 19 
SLC25A42 solute carrier family 25 member 42 Mitochondrial Carrier 19 
SLC25A43 solute carrier family 25 member 43 Mitochondrial Carrier X 
SLC25A44 solute carrier family 25 member 44 Mitochondrial Carrier 1 
SLC25A45 solute carrier family 25 member 45 Mitochondrial Carrier 11 
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SLC25A46 solute carrier family 25 member 46 Mitochondrial Dynamics 5 
SLC25A47 solute carrier family 25 member 47 Mitochondrial Carrier 14 
SLC25A48 solute carrier family 25 member 48 Mitochondrial Carrier 5 
SLC25A5 solute carrier family 25 member 5 Mitochondrial Dynamics X 
SLC25A51 solute carrier family 25 member 51 Mitochondrial Carrier 9 
SLC25A52 solute carrier family 25 member 52 Mitochondrial Carrier 18 
SLC25A53 solute carrier family 25 member 53 Mitochondrial Carrier X 
SLC25A6 solute carrier family 25 member 6 Mitochondrial Dynamics X 
SLC27A1 solute carrier family 27 member 1 Mitochondrial Carrier 19 
SLC27A3 solute carrier family 27 member 3 Metabolism of Lipids & Lipoproteins 1 

SLC29A1 
solute carrier family 29 member 1 (Augustine 
blood group) Mitochondrial Carrier 6 

SLC2A1 solute carrier family 2 member 1 Glycolysis 1 
SLC2A2 solute carrier family 2 member 2 Glycolysis 3 
SLC2A3 solute carrier family 2 member 3 Glycolysis 12 
SLC2A4 solute carrier family 2 member 4 Glycolysis 17 
SLC2A5 solute carrier family 2 member 5 Glycolysis 1 
SLC3A1 solute carrier family 3 member 1 Mitochondrial Carrier 2 
SLC44A1 solute carrier family 44 member 1 Mitochondrial Carrier 9 
SLC8B1 solute carrier family 8 member B1 Calcium Signaling & Transport 12 

SLIRP 
SRA stem-loop interacting RNA binding 
protein Translation 14 

SMDT1 
single-pass membrane protein with aspartate 
rich tail 1 Calcium Signaling & Transport 22 

SOD1 superoxide dismutase 1 ROS Defense 21 
SOD2 superoxide dismutase 2 ROS Defense 6 
SORD sorbitol dehydrogenase Fructose Metabolism 15 
SP1 Sp1 transcription factor Transcription (nuclear) 12 
SPATA19 spermatogenesis associated 19 Unknown 11 

SPG7 
SPG7 matrix AAA peptidase subunit, 
paraplegin Mitochondrial Dynamics 16 

SQOR sulfide quinone oxidoreductase Amino Acid Metabolism 15 
SQSTM1 sequestosome 1 Mitochondrial Dynamics 5 
SSBP1 single stranded DNA binding protein 1 Replication & Transcription 7 
STAR steroidogenic acute regulatory protein Bile Acid Synthesis 8 

STARD7 
StAR related lipid transfer domain containing 
7 Metabolism of Lipids & Lipoproteins 2 

STOML2 stomatin like 2 Mitochondrial Dynamics 9 

SUCLA2 
succinate-CoA ligase ADP-forming beta 
subunit Tricarboxylic Acid Cycle 13 

SUCLG1 succinate-CoA ligase alpha subunit Tricarboxylic Acid Cycle 2 

SUCLG2 
succinate-CoA ligase GDP-forming beta 
subunit Tricarboxylic Acid Cycle 3 

SUGCT succinyl-CoA:glutarate-CoA transferase Amino Acid Metabolism 7 
SUOX sulfite oxidase Amino Acid Metabolism 12 
SUPV3L1 Suv3 like RNA helicase Replication & Transcription 10 

SURF1 
SURF1 cytochrome c oxidase assembly 
factor Oxidative Phosphorylation 9 

SYBU syntabulin Mitochondrial Dynamics 8 
SYNJ2BP synaptojanin 2 binding protein Mitochondrial Signaling 14 

TACO1 
translational activator of cytochrome c 
oxidase I Translation 17 

TALDO1 transaldolase 1 Pentose Phosphate Pathway 11 

TAMM41 
TAM41 mitochondrial translocator assembly 
and maintenance homolog Import & Sorting 3 

TARS2 threonyl-tRNA synthetase 2, mitochondrial Translation 1 
TAX1BP1 Tax1 binding protein 1  Mitophagy 7 

TAZ 
WW domain containing transcription regulator 
1 Cardiolipin Biosynthesis 3 

TBC1D15 TBC1 domain family member 15  Mitophagy 12 
TBK1 TANK binding kinase 1  Mitophagy 12 
TBRG4 transforming growth factor beta regulator 4 Oxidative Phosphorylation 7 
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TCAIM T cell activation inhibitor, mitochondrial Mitochondrial Dynamics 3 
TCHP trichoplein keratin filament binding Calcium Signaling & Transport 12 
TEFM transcription elongation factor, mitochondrial Replication & Transcription 17 
TERT telomerase reverse transcriptase Replication & Transcription 5 
TFAM transcription factor A, mitochondrial Replication & Transcription 10 
TFB1M transcription factor B1, mitochondrial Replication & Transcription 6 
TFB2M transcription factor B2, mitochondrial Replication & Transcription 1 

TFE3 
transcription factor binding to IGHM enhancer 
3 Transcription (nuclear) X 

TFEB transcription factor EB Transcription (nuclear) 6 
THEM4 thioesterase superfamily member 4 Fatty Acid Biosynthesis & Elongation 1 
THG1L tRNA-histidine guanylyltransferase 1 like Translation 5 

TIMM10 
translocase of inner mitochondrial membrane 
10 Import & Sorting 11 

TIMM10B 
translocase of inner mitochondrial membrane 
10B Import & Sorting 11 

TIMM13 
translocase of inner mitochondrial membrane 
13 Import & Sorting 19 

TIMM17A 
translocase of inner mitochondrial membrane 
17A Import & Sorting 1 

TIMM17B 
translocase of inner mitochondrial membrane 
17B Import & Sorting X 

TIMM21 
translocase of inner mitochondrial membrane 
21 Import & Sorting 18 

TIMM22 
translocase of inner mitochondrial membrane 
22 Import & Sorting 17 

TIMM23 
translocase of inner mitochondrial membrane 
23 Import & Sorting 10 

TIMM23B 
translocase of inner mitochondrial membrane 
23 homolog B Import & Sorting 10 

TIMM29 
translocase of inner mitochondrial membrane 
29 Import & Sorting 19 

TIMM44 
translocase of inner mitochondrial membrane 
44 Import & Sorting 19 

TIMM50 
translocase of inner mitochondrial membrane 
50 Import & Sorting 19 

TIMM8A 
translocase of inner mitochondrial membrane 
8A Import & Sorting X 

TIMM8B 
translocase of inner mitochondrial membrane 
8 homolog B Import & Sorting 11 

TIMM9 
translocase of inner mitochondrial membrane 
9 Import & Sorting 14 

TIMMDC1 
translocase of inner mitochondrial membrane 
domain containing 1 Import & Sorting 3 

TK2 thymidine kinase 1 Replication & Transcription 17 
TKFC triokinase and FMN cyclase Fructose Metabolism 11 
TKT transketolase Pentose Phosphate Pathway 3 
TLDC2 TBC/LysM-associated domain containing 2 ROS Defense 20 
TMEM11 transmembrane protein 11 Mitochondrial Dynamics 17 
TMEM126A transmembrane protein 126A Unknown 11 
TMEM126B transmembrane protein 126B Oxidative Phosphorylation 11 
TMEM143 transmembrane protein 143 Unknown 19 
TMEM173 transmembrane protein 173 Apoptosis 5 
TMEM177 transmembrane protein 177 Protein Stability & Degradation 2 
TMEM186 transmembrane protein 186 Oxidative Phosphorylation 16 
TMEM65 transmembrane protein 65 Calcium Signaling & Transport 8 
TMEM70 transmembrane protein 70 Oxidative Phosphorylation 8 
TMLHE trimethyllysine hydroxylase, epsilon Fatty Acid Metabolism X 

TOMM20 
translocase of outer mitochondrial membrane 
20 Import & Sorting 1 

TOMM20L 
translocase of outer mitochondrial membrane 
20 like Import & Sorting 14 

TOMM22 
translocase of outer mitochondrial membrane 
22 Import & Sorting 22 

TOMM34 
translocase of outer mitochondrial membrane 
34 Import & Sorting 20 

TOMM40 
translocase of outer mitochondrial membrane 
40 Import & Sorting 19 
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TOMM40L 
translocase of outer mitochondrial membrane 
40 like Import & Sorting 1 

TOMM5 
translocase of outer mitochondrial membrane 
5 Import & Sorting 9 

TOMM6 
translocase of outer mitochondrial membrane 
6 Import & Sorting 6 

TOMM7 
translocase of outer mitochondrial membrane 
7 Import & Sorting 7 

TOMM70 
translocase of outer mitochondrial membrane 
70 Import & Sorting 3 

TOP1MT DNA topoisomerase I mitochondrial Replication & Transcription 8 
TOP3A DNA topoisomerase III alpha Replication & Transcription 17 
TP53 tumor protein p53 Transcription (nuclear) 17 
TPI1 triosephosphate isomerase 1 Glycolysis 12 
TRAK1 trafficking kinesin protein 1 Mitochondrial Dynamics 3 
TRAK2 trafficking kinesin protein 2 Mitochondrial Dynamics 2 
TRAP1 TNF receptor associated protein 1 Apoptosis 16 
TRIAP1 TP53 regulated inhibitor of apoptosis 1 Apoptosis 12 
TRIT1 tRNA isopentenyltransferase 1 Translation 1 

TRMT10C 
tRNA methyltransferase 10C, mitochondrial 
RNase P subunit Translation 3 

TRMT11 tRNA methyltransferase 11 homolog Translation 6 
TRMT2B tRNA methyltransferase 2 homolog B Translation X 
TRMT5 tRNA methyltransferase 5 Translation 14 
TRMT61B tRNA methyltransferase 61B Translation 2 

TRMU 
tRNA 5-methylaminomethyl-2-thiouridylate 
methyltransferase Translation 22 

TRNT1 tRNA nucleotidyl transferase 1 Translation 3 

TRUB2 
TruB pseudouridine synthase family member 
2 Replication & Transcription 9 

TSFM Ts translation elongation factor, mitochondrial Translation 12 
TSPO translocator protein Apoptosis 22 
TST thiosulfate sulfurtransferase Amino Acid Metabolism 22 

TSTD1 
thiosulfate sulfurtransferase like domain 
containing 1 Oxidative Phosphorylation 1 

TTC19 tetratricopeptide repeat domain 19 Oxidative Phosphorylation 17 
TUFM Tu translation elongation factor, mitochondrial Translation 16 
TWNK twinkle mtDNA helicase Replication & Transcription 10 
TXN thioredoxin ROS Defense 9 
TXN2 thioredoxin 2 ROS Defense 22 
TXNRD1 thioredoxin reductase 1 ROS Defense 12 
TXNRD2 thioredoxin reductase 2 ROS Defense 22 
TYMS thymidylate synthetase Nucleotide Metabolism 18 
UBA1 ubiquitin like modifier activating enzyme 1 Protein Stability & Degradation X 
UBL5 ubiquitin like 5  UPRmt 19 
UCP1 uncoupling protein 1 Mitochondrial Carrier 4 
UCP2 uncoupling protein 2 Mitochondrial Carrier 11 
UCP3 uncoupling protein 3 Mitochondrial Carrier 11 
ULK1 unc-51 like autophagy activating kinase 1  Mitophagy 12 
UNG uracil DNA glycosylase Replication & Transcription 12 

UQCC1 
ubiquinol-cytochrome c reductase complex 
assembly factor 1 Oxidative Phosphorylation 20 

UQCC2 
ubiquinol-cytochrome c reductase complex 
assembly factor 2 Oxidative Phosphorylation 6 

UQCC3 
ubiquinol-cytochrome c reductase complex 
assembly factor 3 Oxidative Phosphorylation 11 

UQCR10 
ubiquinol-cytochrome c reductase, complex 
III subunit X Oxidative Phosphorylation 22 

UQCR11 
ubiquinol-cytochrome c reductase, complex 
III subunit XI Oxidative Phosphorylation 19 

UQCRB 
ubiquinol-cytochrome c reductase binding 
protein Oxidative Phosphorylation 8 

UQCRC1 
ubiquinol-cytochrome c reductase core 
protein 1 Oxidative Phosphorylation 3 
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UQCRC2 
ubiquinol-cytochrome c reductase core 
protein 2 Oxidative Phosphorylation 16 

UQCRFS1 
ubiquinol-cytochrome c reductase, Rieske 
iron-sulfur polypeptide 1 Oxidative Phosphorylation 19 

UQCRH 
ubiquinol-cytochrome c reductase hinge 
protein Oxidative Phosphorylation 1 

UQCRQ 
ubiquinol-cytochrome c reductase complex III 
subunit VII Oxidative Phosphorylation 5 

UROD uroporphyrinogen decarboxylase Heme Biosynthesis 1 
UROS uroporphyrinogen III synthase Heme Biosynthesis 10 
USP15 ubiquitin specific peptidase 15  Mitophagy 12 
USP30 ubiquitin specific peptidase 30 Mitochondrial Dynamics 12 
USP8 ubiquitin specific peptidase 8  Mitophagy 15 
VARS2 valyl-tRNA synthetase 2, mitochondrial Translation 6 
VDAC1 voltage dependent anion channel 1 Transmembrane Transport 5 
VDAC2 voltage dependent anion channel 2 Transmembrane Transport 10 
VDAC3 voltage dependent anion channel 3 Transmembrane Transport 8 

WARS2 
tryptophanyl tRNA synthetase 2, 
mitochondrial Translation 1 

WDR81 WD repeat domain 81 Mitochondrial Dynamics 17 
XIAP X-linked inhibitor of apoptosis Apoptosis X 
XPNPEP3 X-prolyl aminopeptidase 3 Protein Stability & Degradation 22 
YAP1 Yes associated protein 1 Transcription (nuclear) 11 
YARS2 tyrosyl-tRNA synthetase 2 Translation 12 
YME1L1 YME1 like 1 ATPase Import & Sorting 10 

YRDC 
yrdC N6-threonylcarbamoyltransferase 
domain containing Replication & Transcription 1 

YY1 YY1 transcription factor Transcription (nuclear) 14 
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