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1 Abbreviations

ACP Acyl Carrier Protein

AMP Adenosine Monophosphate

ATP Adenosine Triphosphate

Bcl-2 B-Cell Lymphoma 2

BAK Bcl-2 Homologous Antagonist/Killer Protein
BAX Bcl-2-Associated X Protein

BWA Burrows-Wheeler Aligner

CSS Cascading Styling Sheets

ChiP-seq Chromatin Immunoprecipitation Sequencing
cDNA Complementary DNA

Hsa21 Copy Number Variations To Chromosome 21
CGls CpG Islands

dNTP Deoxynucleoside Triphosphate

DHODH Dihydroorotate Dehydrogenase

D-loop Displacement Loop

DNA-seq DNA-Sequencing

DOM Document Object Model

DS Down Syndrome

DRP Dynamin-Related Protein

ETC Electron Transport Chain

ER Endoplasmic Reticulum

Eci1 Enoyl-Coenzyme A Delta Isomerase 1
ELISA Enzyme-Linked Immunosorbent Assays
FAS Fatty Acid Synthesis

FAD Flavin Adenine Dinucleotide

GEO Gene Expression Omnibus

GDC Genomic Data Commons

GTP Guanosine Triphosphate

HSP H-Strand Promoter

HCC Hepatocellular Carcinoma

HCT116 Human Colon Cancer Cell Line

RPE1 Human Retinal Pigment Epithelial-1
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HIF Hypoxia-Inducible Factor

IMM Inner Mitochondrial Membrane

IGV Integrative Genomics Viewer

IGV Integrative Genomics Viewer

JSON Javascript Object Notation

KIRP Kidney Renal Papillary

LSP L-Strand Promoter

LHON Leber Hereditary Optic Neuropathy

mtFAS Mitochondria Fatty Acid Synthesis

MCU Mitochondrial Ca2+ Uniproter

mtDNA Mitochondrial DNA

MELAS Mitochondrial Encephalopathy

MOMP Mitochondrial Outer Membrane Permeabilization
MRPS21 Mitochondrial Ribosomal Protein S21
POLRMT Mitochondrial RNA Polymerase

Mfn Mitofusins

MEF Mouse Embryonic Fibroblast

NCI National Cancer Institute

NCBI National Center For Biotechnology Information
NHGRI National Human Genome Research Institute
NGS Next-Generation Sequencing

NAD Nicotinamide Adenine Dinucleotide

NoSQL Non-Structured Query Language

Opa1 Optic Atrophy-1

Oat Ornithine Aminotransferase

OMM Outer Mitochondrial Membrane

OXPHOS Oxidative Phosphorylation

PID Persistent Identifier

PCA Principle Component Analysis

PINK1 Pten-Induced Putative Kinase 1

ROS Reactive Oxygen Species

FADH/FADH2 Reduced Form of Flavin Adenine Dinucleotide
NADH Reduced Form of Nicotinamide Adenine Dinucleotide
RelA Rel-Associated Protein
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RT-PCR
rRNA
RNA-seq
SVG
SAGE
STAR
SILAC
SQL
SUCLG1
SUCLG2
SOD-1
t-SNE
THF
TCGA
TPM
TFAM
tRNA
TIM
TOM
TCA

T21
VDAC
Yap1

Reverse Transcription Polymerase Chain Reaction
Ribosomal RNA

RNA-Sequencing

Scalable Vector Graphics

Serial Analysis of Gene Expression

Spliced Transcripts Alignment To A Reference
Stable Isotope Labeling in Cell Culture

Structured Query Language

Succinate-Coa Ligase Subunit Alpha
Succinate-Coa Ligase Subunit Beta

Superoxide Dismutase

T-Distributed Stochastic Neighbor Embedding
Tetrahydrofolate

The Cancer Genome Atlas

Transcript Per Million

Transcription Factor A

Transfer RNA

Translocase of The Inner Mitochondrial Membrane
Translocase of The Outer Mitochondrial Membrane
Tricarboxylic Acid

Trisomy 21

Voltage-Dependent Anion Channel

Yes-Associated Protein 1



2 List of Figures

Figure 4.1 Basic structure of a mitochondrion. ... 8
Figure 4.2 The human mitochondrial genome. ..............oiiiiiiiiiiiiiiiiii s 9
Figure 4.3 Bioenergetic pathways in mitochondria. .................oooiiiiiiiiiiiiiiiiis 13
Figure 4.4 Organization of mitochondria. ..o 19
Figure 4.5 Cancer cell MetaboliSM............uiiiiiiiiiiiiii e 22
Figure 4.6 Workflow and essential stages of typical Big Data projects in healthcare....... 27
Figure 4.7 Data Analysis and Machine learning WOrkflow. .................ceuuiiiiiiiiiiiiiiiiiiiiiinns 31
Figure 4.8 Visualizations With d3.]S. ......euiiiiiiiiiiiiiiiiiiiiiiii e 33



3 Summary

Mitochondria are subcellular organelles that play a crucial role in cellular bioenergetics and
apoptosis, and thus are essential in maintaining normal cell function and regulating cell
death pathways. In addition, they are also involved in the biosynthesis and balance of
metabolite, cell signaling and anti-oxidant defense. Dysfunction of mitochondrial processes,
potentially due to mutations of mitochondrial genes, could therefore lead to detrimental
consequences such as severe neurodegenerative, cardiovascular and multisystemic

metabolic disorders, and has also been implicated in many other diseases including cancer.

Despite being associated with various diseases, platforms or tools that are specifically
designed for the exploration of expression and mutation landscapes of mitochondrial genes
did not exist. Therefore, this thesis aimed to develop a visual data mining tool exclusive for
mitochondrial genes, that could help enhance our understanding of the role of mitochondria

in disease pathology, by leveraging the availability of high volume of -omics data.

In the first study, mitoXplorer, a web-based visual data mining platform with a set of dynamic,
interactive and intuitive visualization tools was developed. We manually assembled and
curated lists of genes with annotations that consist of ~1200 genes for four model species
including human. These lists (mitochondrial interactomes) were integrated into the
visualization tools to allow in-depth analysis of mitochondrial mutations and expression
dynamics on public data sets hosted on mitoXplorer. The analysis of the transcriptome and
proteome data of trisomy 21 (aneuploidy) cell lines inferred defects in mitochondria
respiration, which was then verified experimentally, hence proving the predictive power of
the platform, and its ability to provide testable hypotheses that could lead to the discovery

of underlying molecular mechanisms of diseases.

In the second study, we have integrated a visualization module and the human
mitochondrial interactome as a workflow on CancerSysDB, a platform that allows user to
perform integrated analyses across multiple data types of public cancer dataset from The
Cancer Genome Atlas (TCGA) research network. The visual approach analysis of
expression and clinical data of KIRP (kidney renal papillary cell carcinoma) patients
revealed the association between the expression of two Tricarboxylic acid (TCA) cycle
genes - Succinate-CoA ligase subunits, SUCLG1 and SUCLG2, and cancer stages. This
proved the practicality such visual data mining tool when analyzing large -omics dataset,
and also the importance of mitochondrial functions in cancer development and progression.
To continue along this line, in the third study, we explored also the methylome and

transcriptome data from both a mouse model and public cancer dataset of hepatocellular



carcinoma (HCC). We discovered another possible operating mechanism in this cancer
type, where the hypermethylation in CpG islands (CGls) leads to up-regulations of a set of
genes, including the gene Jun, that belongs to the process Transcription in our human
mitochondrial interactome. The enrichment of this gene set observed in the mouse model
was also found in 56% of HCC patients from the TCGA dataset, which were characterized
to belong to an aggressive HCC subclass, hence suggesting the clinical relevance of this

gene set and its potential to be used as biomarkers for patient stratifications.

Taken together, mitochondria have a multi-faceted role in cell function, as well as the
pathology of various diseases. Analysis tools dedicated for the investigation of
mitochondrial mutation and expression dynamics is thus necessary. The visual data mining
approach adopted by mitoXplorer and CancerSysDB has been proven in this thesis to be
a robust way for the exploration of data in the context of mitochondrial functions, that could
help delineating molecular mechanisms in different disease conditions, through suggesting

testable hypothesis for further experimental validation.



4 Introduction

4.1 Mitochondria — more than a powerhouse

Mitochondria are subcellular organelles that exist in many different forms, from round
punctate to filaments generating complex networks, in cells. While they are best known for
producing cellular energy in the form of ATP by a process called oxidative phosphorylation
(OXPHOS) (van der Giezen & Tovar, 2005), they are also involved in many other cellular
functions such as signaling, balance of metabolites, or anti-oxidant defense, just to name
a few. Their many cellular roles make them one of the most important organelles with an
immense impact on metabolism and homeostasis of most eukaryotic cells (Dyall et al.,
2004).

4.1.1 Morphology of mitochondria

Mitochondria have a double membrane system, that consists of the outer mitochondrial
membrane (OMM) and the inner mitochondrial membrane (IMM), both composed of
phospholipid bilayers and proteins (Alberts et al., 1994) and separated by the
intermembrane space. The outer membrane is relatively permeable to small molecules due
to the presence of porins, but it also regulates the movement of larger molecules and
proteins. The translocase on the outer membrane (TOM) and the inner membrane (TIM)
together form a complex that recognizes signal sequences and transport proteins across
the mitochondrial membrane. The inner mitochondrial membrane is mostly impermeable
and encloses an area referred to as mitochondrial matrix that contains essential enzymes
for mitochondrial functions and multiple copies of the highly compacted mitochondrial DNA
genome (MtDNA). The inner membrane also protrudes into the matrix to form multiple
foldings called cristae, which accommodate the electron transport chain (ETC) complexes

for oxidative phosphorylation and structurally varies from tissues to tissues (Duchen, 2004).

The shapes of mitochondria also vary and they can form a complex interconnecting network
of mitochondria called syncytium (Friedman & Nunnari, 2014). However, they can also exist
as individual structure called puncta and rods (Anesti & Scorrano, 2006). The networks and
copy number of mitochondria are constantly changing and are maintained by the balance
between mitochondrial fusion and fission, biogenesis and mitophagy (Chan, 2012; Hoitzing
et al., 2015). These processes are important in bioenergetic homeostasis and the
maintenance of mitochondrial function. Mitochondrial fusion generates extended network
and allows mixing of mitochondrial content and gene products, which counteracts the
damages to mtDNA by reactive oxygen species (ROS). In case of insufficient functional

mitochondria, the network could also be replenished from external sources (other cells or



intercellular space) through tunneling nanotubules (Rustom, 2004) or vesicles (Tkach &
Théry, 2016). Together with biogenesis of mitochondria, these two processes tend to
increase bioenergetics efficiency to meet high demands (Gomes et al., 2011; Y. J. Liu et al.,
2020). On the other hand, mitochondrial fission facilitates turnover by creating new
daughter organelles, where the dysfunctional ones are removed by mitophagy. This
provides a mechanism to segregate damaged mitochondria and helps to maintain a healthy
mitochondrial population and hence the bioenergetic capacity (Twig et al., 2008;
Westermann, 2012).

ATP synthase particles

Intermembrane space
Matrix

Ribosome Cristae

Granules

Inner membrane
Outer membrane

Deoxyribonucleic acid (DNA)

Figure 4.1 Basic structure of a mitochondrion.

Mitochondria have an inner and outer membrane, with an intermembrane space between them. The
inner membrane is arranged into cristae to increase surface area for the accommodation of enzymes
such as ATP synthase for oxidative phosphorylation. The space enclosed by the inner membrane is
known as the matrix, which consists of essential enzymes, as well as mitochondrial DNA, ribosomes
and calcium granules. Taken from https://commons.wikimedia.org/wiki/Mitochondrion, under the
terms and conditions of the Creative Commons Universal (CCO0) License.

4.1.2 Mitochondrial genome

The mitochondrial genome (MtDNA) is the only source of extranuclear DNA in animals (Mita
et al., 1990). In human, it is a circular, double-stranded DNA of 16,569 base-pair that
encodes for 37 genes, 13 of which are core proteins of the mitochondrial respiratory
complexes I-IV within the OXPHOS system, two ribosomal RNAs and 22 tRNAs (S.
Anderson et al., 1981). Most of the genes are encoded on the heavy strand (H-strand),
where as the light strand (L-strand) encodes for only 8 tRNA and a complex | subunit. The
mtDNA is a very compact genome with no introns and very few non-coding bases between
genes. The only major non-coding region is the displacement loop (D-loop), with a structure
that two genomic strands are separated and displaced by a third strand of DNA. The D-
loop in mtDNA is around 1.1 kb and controls its transcription and replication (Shadel &
Clayton, 1997).


https://commons.wikimedia.org/wiki/Mitochondrion
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Figure 4.2 The human mitochondrial genome.

The mitochondrial genome human is a circular, double-stranded DNA and encodes for 37 genes,
including 13 subunits of the mitochondrial respiratory complexes I-1V within the OXPHOS system (7
subunits of complex I (in red), 1 subunit of complex Ill (in orange), 3 subnits of complex IV(in purple),
2 subunits of complex V (in yellow)), 2 rRNAs (12S and 16S, in green), and 22 tRNAs. The outer
circle represents the heavy strand and the inner one represents the the light strand. The diagram
also shows the origins of replication of both the heavy (On) and the light (OL) strands. Taken from
(Schon et al., 2012), under the terms and conditions of the Creative Commons by Attribution (CC-
BY) License.

The mitochondrial genome exists in multiple copies within mitochondria. Highly compacted
mtDNA-protein complexes called nucleoids anchor it to the inner mitochondrial membrane
(Kukat & Larsson, 2013). One single cell can contain up to thousands of nucleoids, each
with a copy of mtDNA. Apart from the copy number, the mode of transmission of mtDNA is
also drastically different from nuclear DNA. mtDNA is inherited maternally in human, as the
paternal mtDNA is disintegrated soon after fertilization (al Rawi et al., 2011; Sato & Sato,
2011). As the segregation occurs rapidly from one generation to the next, a ‘bottleneck’
exists so that only a small amount of mtDNA is passed to the progeny and hence potentially
eliminating defective mitochondria and mtDNA (Lieber et al., 2019; Pepling et al., 2007).
The replication and segregation of mtDNA also occurs for only part of the nucleoids in a
cell at a given time (Meeusen & Nunnari, 2003). Unlike the nuclear genome, the process is

not strictly coupled to the cell cycle.

The multi-copy nature of mtDNA in human also gives rise to its unique feature of
heteroplasmy. Heteroplasmy is referred to the presence of two or more mitochondrial
genotypes in a cell. In contrast, homoplasmy is a state where the copies of all mtDNA are
identical. Heteroplasmy occurs in cells of most of the outbred populations. The ratio of wild-

type and mutated mitochondrial genomes usually varies in different cells and tissues. This



partly explains the high heterogeneity in phenotypes of mitochondrial diseases that are
caused by mutation in mtDNA and complicates the analysis of mitochondrial genetics (N.
Lane, 2011).

4.1.3 The origin of mitochondria and the cross-talk with the nuclear
genome

The widely accepted theory of the origin of mitochondria is that, originally being a free living
a-proteobacterium, they were engulfed and incorporated inside a precursor of modern
eukaryotic cells two billion years ago (N. Lane & Martin, 2010). This theory is supported by
evidence from phylogenetic analysis of ribosomal RNA (Gray, 1999; Sicheritz-Pontén et al.,
1998). This endosymbiotic relationship allowed the early eukaryotes to perform aerobic
respiration, hence harvesting energy from organic matter in a more efficient manner by
consuming oxygen, originally a toxic substance for the archaeal cells. The new ability was
a driving force for the evolution into multicellular life. During the process of evolution, the
majority of the genomic material of the protomitochondrion was transferred from the
mitochondria to the nucleus of the host and subsequently lost due to redundancy
(Gabaldén & Huynen, 2004). Studies suggested that only 22% of mitochondrial proteins in

human are descendants from the protomitochondrial ancestor (Gabaldon, 2003).

The nuclear DNA now encodes about 1200 proteins that contribute to the mitochondrial
proteome. These proteins are required for mitochondrial functions, maintenance and
mtDNA replication, thus for processes such as the Tricarboxylic acid (TCA) cycle, amino
acid-, nucleic acid- and lipid biosynthesis, mitochondrial transcription, mtDNA replication or
translation. These proteins are translated in the cytosol, and subsequently sorted and
imported into mitochondria through the TIM/TOM complex to their target locations such as
the outer membrane, inner membrane, intermembrane space or the mitochondrial matrix
(Hensen et al., 2014; Mokranjac & Neupert, 2005).

The proper function of mitochondria, and hence the survival of the cell, are heavily
dependent on the communication between mitochondria and the nuclear genome. For
example, mitochondria constantly update the cell concerning its bioenergetic status by
sending mitochondrial stress signals whenever bioenergetic demands cannot be met due
to OXPHOS dysfunction or defective mitochondria (Cagin & Enriquez, 2015). This is
referred to as retrograde signaling and include signals such as ATP/AMP, NADH/NAD+,
cytosolic Ca?*, or reduction in the mitochondrial membrane potential (A. W. E. Jones et al.,
2012) . The nucleus responds to the signals by regulating the expression of genes that

promote mtDNA repair, mitochondrial transcription and biogenesis to meet the energy
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requirements of the cell. The cell might also respond by switching to a glycolytic metabolism

to adapt to decreased energy production from mitochondria (Freije et al., 2012).

4.1.4 Mitochondrial functions

Mitochondria are often referred to as the powerhouses of the cell because of their ability to
generate cellular energy in the form of ATP, a form that is usable by cells. In fact, they are
also involved in many other processes that are crucial for the functioning and survival of
cells. This is accomplished by the expression of around 1200 genes in both the
mitochondrial and nuclear genomes that encode the mitochondrial proteome. Previous
work attempted to compile a list of mitochondria-associated genes/proteins in different
animals with approaches such as mass spectrometry (Gaucher et al., 2004; Taylor et al.,
2003) and computation or machine learning (C. Guda et al., 2004), grouping them
according to their functions (Calvo et al., 2016). Mitochondrial functions cover 6 main areas:
Bioenergetic Pathways, ROS Defense, Apoptosis, Cell Signaling, Biosynthetic
Pathways/Homeostasis and Maintenance of Mitochondria. This section aims to discuss
these functions according to available literature. The list of associated genes in human are

documented at Appendix |.

4.1.4.1 Bioenergetic pathways

Glycolysis and Fructose Metabolism

Glucose is a major source of energy for cells. It is broken down to pyruvate by the process
of glycolysis, which is then further broken down to release energy in the form of ATP through
the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in mitochondria.
Glycolysis also produces a net of 2 ATP per molecule of glucose during its breakdown.
Although the efficiency is much lower than oxidative phosphorylation (36 ATP per glucose

molecule), the speed is much faster (Lunt & vander Heiden, 2011).

Glycolysis occurs solely in the cytoplasm, yet it is part of the bioenergetic pathway and is
closely linked to the TCA cycle. It is also affected in case of mitochondrial dysfunction.
Therefore, genes related to glycolysis are considered to be associated to mitochondrial
functions as well. Fructose has also been a part of human diet and often occurs with
glucose in fruits in high concentration (Sun & Empie, 2012). Though the two sugars have
different metabolic pathways (Mayes, 1993), fructose can also be utilized in oxidative

phosphorylation after being converted and broken down into pyruvate.
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Pyruvate Metabolism

Pyruvate, being the product of Glycolysis, is taken up by mitochondria to be broken down
through the TCA cycle. Pyruvate is transported across the mitochondrial membranes by
transmembrane carrier proteins (Bricker et al., 2012). It is then converted to acetyl-CoA by
pyruvate dehydrogenase complexes, an irreversible process of oxidative decarboxylation,
before entering the TCA cycle. These complexes and their inhibitors therefore regulate

metabolite flux through the TCA cycle and hence the homeostasis of glucose metabolism.

Tricarboxylic Acid Cycle (TCA cycle)

Tricarboxylic Acid (TCA) Cycle, also known as Krebs cycle or citric acid cycle, happens
within the mitochondrial matrix. It releases energy from acetyl-CoA through a series of
redox reactions. The process oxidizes acetyl-CoA into CO2 and gives rise to GTP
(guanosine triphosphate). It also, by the transfer of high energy electrons, converts NAD+
and FAD into NADH and FADH respectively, which are then fed to the ETC to generate
ATP through OXPHOS.

Oxidative Phosphorylation (OXPHOS)

The electron transport chain (ETC) is located at the inner mitochondrial membrane and
comprises of a series of complexes encoded by both the mitochondrial and nuclear genome.
It is the mitochondrial enzyme cascade responsible for oxidative phosphorylation
(OXPHOS) for energy production. Through the transfer of electrons from one complex to
the next (complex I-1V, cytochrome C and ubiquinones), protons (H+ ions) are pumped out
of the matrix to the intermembrane space, creating an electrochemical gradient across the
inner membrane. Energy from this gradient is then harvested to convert ADP to ATP by ATP
synthase (complex V), where energy is stored chemically at the phosphate bond. This
process is termed oxidative phosphorylation (OXPHOS) and provides 90% of ATP in a cell
(Davis & Williams, 2012).

The electron donors are NADH and FADH2 produced from the TCA cycle and other
metabolic processes. They are oxidized by respective dehydrogenases and their electrons
are passed through the ETC to oxygen and reduced to water. The ETC regulates itself by
responding to negative feedbacks of ATP (Dagda et al., 2009). This helps maintaining the

homeostasis of the bioenergetic status of the cell.
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Figure 4.3 Bioenergetic pathways in mitochondria.

Mitochondria generate cellular energy in the form of ATP via a couple of stages. It starts with
glycolysis (Stage |), where glucose is broken down into pyruvate. This pyruvate is then taken up by
mitochondria and converted to acetyl-CoA before being further broken down through the TCA cycle
(Stage IlI). The NADH and FADH2 produced from the TCA cycle serve as electron donors and the
ETC where an electrochemical gradient is built up across the inner membrane (Stage Ill). Finally
energy from this gradient is harvested to convert ADP to the final product. Taken from (Lodish et al.,
2008), under the terms and conditions of the Creative Commons by Attribution (CC-BY) License.

Fatty Acid Degradation and Beta-oxidation

Fatty acid is another source of energy apart from glucose and has an important role in
energy homeostasis. When glucose and other sources are not adequate to sustain the
energy requirement of the body, fatty acids are released from adipose tissue. Beta-
oxidation is the major pathway for the degradation of fatty acids and takes place within the
mitochondrial matrix. Fatty acids are activated by attaching to an acyl-CoA and carried into
mitochondria where they are broken down through oxidation. Each beta-oxidation cycle
release two carbon units from the fatty acid chain and gives rise to acetyl-CoA that enters
the TCAcycle. The process at the same time reduces NAD+ and FAD into NADH and FADH
respectively, which can be fed to the ETC for OXPHOS.

4.1.4.2 ROS Defense

Reactive oxygen species (ROS) are byproducts of OXPHOS, due to the leakage of
electrons at complex | and lll at the ETC. These electrons leads to partial reduction of
oxygen to form free-radical superoxide. Though ROS could act as signaling molecules,

they cause oxidative damage to the mitochondrial genome at high concentration due to the
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proximity of mtDNA to the ETC. This makes mtDNA susceptible to mutations and might
contribute to disease and aging (Kujoth et al., 2005; Wallace, 2005). Lipids and proteins
could also suffer from damages induced by ROS (Y. Chen et al., 2016; Holzerova &
Prokisch, 2015). Mitochondria therefore have an antioxidant defense system to eliminate
ROS. For example, superoxide dismutase decomposes superoxides into hydrogen

peroxide, which can be further degraded into water and oxygen by peroxiredoxins.

4.1.4.3 Apoptosis

Apoptosis is a type of programmed cell death, which triggers morphological and
biochemical changes in a cell, such as cell shrinkage, DNA cleavage, chromatin
condensation, and cell fragmentation. It is part of the defense mechanism of multicellular
organism to remove damaged or dangerous cells, and to regulate cell number. There are
two main mechanisms of apoptosis: The intrinsic and the extrinsic pathway. Mitochondria

are the central executioners of the intrinsic pathway (Kaufmann & Earnshaw, 2000).

In response to cytotoxic agents like radiation, nitrogen monoxide, mercury or oxidative
stress due to high levels of ROS (Soga et al., 2012), apoptosis is induced in mitochondria
and pores are formed in mitochondrial membranes. This results in the disruption of
mitochondrial transmembrane potential and hence the release of pro-apoptotic proteins.
One of the most important factors is cytochrome C (Verhagen et al., 2000), which activates

the caspase pathway and eventually leads to programmed cell death.

The process is tightly regulated as it is unstoppable once it has begun (Béhm & Schild,
2003). For example, the Bcl-2 family proteins can decide the fate of the cell by controlling
the formation of pores (Cory & Adams, 2002). The improper activation of apoptosis causes
atrophy and diseases such as ischemic strokes and neurodegenerative diseases; whereas
the lack of apoptosis can contribute to autoimmune diseases and is linked to oncogenesis
(Fuchs & Steller, 2011).

4.1.4.4 Cell Signaling

Mitochondrial and Calcium Signaling

Mitochondria are heavily involved in cell signaling circuitry. They do not only respond to
stimuli but also act as physical platforms for protein-protein signaling to take place, and
regulate the level of signaling molecules such as calcium ions (Ca?") and ROS.
Mitochondria therefore serve as the effector, transducer and initiator in multiple signaling
pathways and have been implicated in processes including hypoxic stress response,

differentiation, growth factor signaling, immune response and apoptosis as mentioned
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above (Antico Arciuch et al., 2012; Chandel, 2010; Finkel, 2011; Gunter et al., 2004; Kawai
et al., 2005).

Calcium ions (Ca?*) are among the most important intracellular signaling molecules. They
can stimulate ATP production by regulating the activity of components of the TCA cycle,
trigger cell death by necrosis or apoptosis, and have an important role in the control of
autophagy (Brini et al., 1999; Cardenas et al., 2010; Szalai et al., 1999; Visch et al., 2004).
For instance, as a response to increased bioenergetic demands, Ca?* could bind to and
activate dehydrogenases that increase the availability of NADH and hence the supply of
electrons to the ETC. Thus, the level of Ca?* in cells has to be carefully regulated and its

homeostasis is maintained by mitochondria.

Mitochondria serve as buffers for Ca?* by, for example, regulating their calcium channels to
take in the Ca?* released from the endoplasmic reticulum (ER), the reservoir of Ca®*; or
releasing Ca?* from the mitochondrial matrix (Jouaville et al., 1995; Mitchell & Moyle, 1967).
The uptake of mitochondrial Ca?* is through the voltage-dependent anion channels (VDACs)
on the outer membrane and the mitochondrial Ca?* uniproter (MCU) located at the
impermeable inner membrane. The VDACs are able to establish a close interaction with
the ER to ensure rapid transfer of Ca?*. The MCU then transports Ca?* into the matrix

across the electrochemical gradient.

4.1.4.5 Biosynthetic pathways/Homeostasis

Fatty Acid Metabolism, Biosynthesis and Elongation / Lipoic Acid Metabolism
Fatty acids can be synthesized from substrates of the TCA cycle in a reversed manner of

beta-oxidation. This is to maintain the homeostasis of fatty acids in cells and store the extra
energy. Fatty acid synthesis (FAS) occurs mostly in the cytosol but also in mitochondria
(mtFAS) through acyl carrier protein (ACP) and a number of reductases or transferases.
During each cycle of elongation, the fatty acyl chain attached on ACP is extended by two
carbons through a condensation reaction, followed by a few reduction and dehydration
reactions that reduce the acyl chain to a saturated fatty acid (Brody et al., 1997; Mikolajczyk
& Brody, 1990). The product of mtFAS is octanoate, an eight-carbon saturated fatty acid
that could be convert to lipoic acid. Lipoic acid is an important cofactor required for catalysis
of a number of mitochondrial 2-ketoacid dehydrogenase complexes. It is also responsible
for the regulation and stabilization of these multienzyme complexes and therefore is critical

for normal mitochondrial activity (Nowinski et al., 2020; Wada et al., 1997).

15



Metabolism of Lipids and Lipoproteins / Cardiolipin Biosynthesis / Bile Acid
Synthesis

Lipids are basic blocks of cellular and mitochondrial membranes. The control of lipid
synthesis is therefore crucial for the integrity and function of both the cell and mitochondria,
the latter of which are constantly reshaping by fission and fusion processes. Mitochondria
are able to synthesize some of the lipids, such as phosphatidylglycerol, cardiolipin, and
control their distribution (Daum & Vance, 1997; Mannella et al., 1998). Cardiolipin is an
essential component of mitochondrial membranes and is involved in processes such as
respiration and energy conversion. It also serves a signaling platform as it could recruit and
interact with molecules engaged in process such as mitophagy (W. Huang et al., 2012) and
apoptosis (Lovell et al., 2008; Sorice et al., 2004). Mitochondria are also involved in the
metabolism of other important lipids, lipoproteins and their derivatives include cholesterol
and bile acids. For example, cholesterol is converted to steroid precursors after being
imported into mitochondria, to allow further processing at the endoplasmic reticulum (ER)
(Soccio & Breslow, 2004). Bile acid is normally produced at the liver, but could also be

synthesize by the “acidic” pathway inside mitochondria (Pandak et al., 2002).

Fe-S cluster biosynthesis / Heme Biosynthesis

Iron-sulfur (Fe-S) clusters and heme are both iron-containing cofactors that have crucial
roles in the maintenance of mitochondria. They are components of the complexes in the
ETC (Steffens et al., 1987; Tyler, 1992) and catalyze electron transfer during the formation
of ATP (Beinert et al., 1997). These prosthetic groups also have diverse roles in signaling,
metabolism and the defense system against oxidative damages (Beinert & Kiley, 1999;

Porello et al., 1998; Ryter & Tyrrell, 2000), and are synthesized and utilized in mitochondria.

Protein Stability and Degradation / Amino Acid Metabolism

Mitochondrial proteins are under the exposure of oxidative stress due to the production of
ROS during oxidative phosphorylation. Failure to control protein quality or remove
misfolded protein could lead to mitochondrial dysfunction. Thus mitochondria have a
system, consisting of proteases, that recognizes and degrades unwanted proteins (Livnat-
Levanon & Glickman, 2011; Martinelli & Rugarli, 2010). Mitochondria are also a platform
for metabolism of amino acids, the building blocks of proteins. The TCA cycle provides as
well as consumes amino acids; and the metabolic pathways of 17 out of 20 amino acids

utilize mitochondrial enzymes (P. Guda et al., 2007).
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Nucleotide Metabolism

The balance of cellular nucleotide pool is important for genome replication and repair.
Mitochondrial deoxynucleoside triphosphate (dNTP) pools are separated from the cytosolic
pool because of its membrane system (L. Wang, 2016). The dNTPs are either imported
from the cytosol or synthesized with substrates from metabolic processes within
mitochondria (A. N. Lane & Fan, 2015). One of the biosynthetic steps for pyrimidine occurs
in mitochondria, where dihydroorotate is converted into orotate via orotate dehydrogenase
reaction, catalyzed by the mitochondrial protein dihydroorotate dehydrogenase (DHODH)
(Evans & Guy, 2004). Whereas for purine, the entire synthesis process is cytoplasmic.
However, studies showed that the glycine precursor for purine synthesis could also be

synthesized inside mitochondria with its glycine cleavage system (Lewis et al., 2014).

Nitrogen Metabolism / Urea Cycle

Nitrogen is assimilated into the body in proteins of the human diet. The excess amino acids
in the body are deaminated to form ammonia or ammonium ions (NH**). Since these ions
are toxic, they are converted to urea in the urea cycle and then secreted. Part of the process
takes place in mitochondria where three of the urea cycle enzymes are located (Adeva et
al., 2012). Together these enzymes convert ammonia and ornithine to citrulline, which is
then transported to the cytoplasm to complete the urea cycle. Transporters for the
substrates (ornithine and citrulline) that reside at the mitochondrial membrane are also

required for the normal function of the urea cycle (Brusilow & Horwich, 2001).

Metabolism of Vitamins and Co-Factors / Folate and Pterine Metabolism

Vitamins are organic molecules that are essential for various biochemical functions within
the human body, ranging from growth and development (Vitamin A), regulation of cell
metabolism (B vitamins) to maintaining the immune system (Vitamin C). Mitochondria have
arole in the metabolism of some of these vitamins as they are also crucial for mitochondrial
functions. For example, retinoids (a class of vitamin A) is a substrate to a dehydrogenase
located at inner mitochondrial membrane and might have a protective effect against
oxidative stress in mitochondria (Belyaeva et al., 2008). The metabolism of folate (Pterine
derivates, Vitamin B9) also occurs in mitochondria, where its reduced form tetrahydrofolate
(THF) serves as single carbon unit, which is important for the maintenance of redox and
regulation of methylation status (Desai et al., 2016). Co-factors, like vitamins, are crucial
for both cell and mitochondrial functions as they are involved in diverse biochemical
reactions. One of them is nicotinamide adenine dinucleotide (NAD), which is involved in the
redox reactions at the ETC. Therefore its metabolism is carefully regulated in mitochondria
to maintain the balance of the ratio of NAD vs NADH (the reduced form of NAD) (Tzameli,
2012).
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4.1.4.6 Mitochondrial maintenance
Mitochondrial Dynamics

The mitochondrial network is constantly reshaping through cycles of fusion and fission
events in order to meet bioenergetic demands and control the quality of mitochondria.
Fusion of mitochondria leads to long, networked filaments that is the predominant
mitochondrial form in some cells; faulty or mutated mtDNA copies can on the other hand
be isolated by fission and subsequently eliminated through mitophagy (Carelli et al., 2015).
Mitophagy is initiated by mitochondrial dysfunction due to, for example, hypoxia through
the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway. Fusion is achieved by
several GTPases: the mitofusins (Mfn) and optic atrophy-1 (Opa1) that fuse the outer and
inner membrane, respectively. Fission results from the recruitment of dynamin-related
protein 1 (Drp1), that constricts both the outer and inner membrane, and is regulated by
kinases responding to stress conditions and distinct cell cycle phases (Busch et al., 2014;
Mishra & Chan, 2016).

Replication and Transcription

The mtDNA is a closed-circular genome with two strands of DNA, the heavy strand (H-
strand) and the light strand (L-strand). A proportion of the mtDNA contains a three-stranded
structure called the displacement loop (D-loop), where a third DNA strand displaces the H-
strand. Due to its unique structure, the replication mechanism is distinct from that of its
nuclear counterpart. A widely accepted model is that the replication starts with the leading
H-strand and advances around two-thirds of the mtDNA before the replication fork reaches
the replication origin of the lagging L-strand and initiates its synthesis (Clayton, 1982).
Transcription of mtDNA is initiated at two sites located at the D-loop. The site encompassed
by the H-strand promoter (HSP) directs the transcription of H-strand, and the other one
encompassed by the L-strand promoter (LSP) directs the transcription of the L-strand. The
regulation of both replication and transcription of the mitochondrial genome is complex and
key enzymes involved in these processes are unique to mitochondria (Taanman, 1999).
During transcription initialization, mitochondrial transcription factor A (TFAM) recognizes
these binding sites and induces sharp U-turn bends in mtDNA (Kukat & Larsson, 2013).
Such conformational changes facilitate the access and binding of mitochondrial RNA
polymerase (POLRMT) to mtDNA and allow it to orchestrate the process (Fisher & Clayton,
1988). On the other hand, TFAM is an important factor for packaging mtRNA into compact
nucleoid, also via the induction of U-turn bends (Alam et al., 2003), which make it less

permissive for replication and transcription. Therefore, TFAM may also operate as an
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epigenetic regulator over transcription and replication by controlling the number of mtDNA

molecules available for the process (Farge & Falkenberg, 2019; Gilkerson et al., 2013).

Division

Mitochondrion @
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Figure 4.4 Organization of mitochondria.

Mitochondrial networks are highly dynamic and are constantly changing by the combined actions of
mitochondrial division and fusion. During division, Dynamin-related protein (DRP) is recruited on the
outside of the organelle to form a helical structure, which then constricts the membranes and
mediates a scission. Mitochondrial fusion is achieved through interactions of several GTPases
(mitofusins and optic atrophy-1) that fuse the outer and inner. Taken from (Friedman & Nunnari,
2014), under the terms and conditions of the Creative Commons by Attribution (CC-BY) License.

Translation

The translation machinery of the mitochondrial genome is also different from the nuclear
genome. Mitochondria contain their own ribosomes (mitoribosomes) with different physical
and chemical properties. rRNAs within mitoribosome are encoded by the mtDNA (Attardi &
Ojala, 1971; Brega & Vesco, 1971). The mitochondrial mRNAs, unlike the cytosolic ones,
have no upstream leader sequences that help with ribosome binding, making the
translation process distinct from that of the nuclear genome (Cantatore et al., 1987).
Structural studies have contributed significantly to our understanding of the structure and
function of the mitoribosomes and how they recruit mitochondrial mMRNAs (Sharma et al.,
2003).

Import and Sorting / Mitochondrial Carrier

Mitochondria import 99% of their proteins from the cytoplasm to maintain their functions.
These proteins must be correctly identified by mitochondria to be imported and delivered
to target locations. Mito-proteins imported into the cellular matrix usually have an extension
at the N-terminus that serves as a targeting signal, which can be recognized by the
receptors of TOM (translocase of the outer membrane) complexes (Kutik et al., 2008). Once

inside the intermembrane space, proteins are directed to their destinations through sorting
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pathways. The TIM (translocase of the inner membrane) complexes, for example, transfer
proteins into the matrix (Chacinska et al., 2009). Other complexes recognize different
mitochondrial targeting signals and direct proteins to either the intermembrane space or

the outer membrane (Hoppins & Nargang, 2004; Paschen et al., 2003).

4.1.5 Mitochondrial diseases

Mitochondria have diverse roles in cell metabolism and homeostasis. Dysfunction of
mitochondria thus has a huge impact on the function and survival of cells, and can lead to
a number of pathological disorders. Mitochondrial diseases can be caused by mutations in
mtDNA or nuclear DNA that encodes for the mitochondrial proteome, or other factors that
disrupt mitochondrial functions. They are complex and cover almost every field of medicine
(Ylikallio & Suomalainen, 2012), such as neurodegenerative diseases, metabolic disorders,

obesity and cancer.

4.1.5.1 Mitochondrial diseases associated with point mutations in mtDNA

MtDNA encodes for 13 polypeptides that are components of the OXPHOS system, as well
as 22 tRNAs and two rRNAs that are essential in the synthesis of these proteins. Mutations
in these genes might disturb the energy harvesting process, leading to the failure of
mitochondria to meet cellular energy demand. Thus far, over 300 pathogenic mtDNA
mutations have been identified (Kogelnik et al., 1998). Disorders include: Leber hereditary
optic neuropathy (LHON) (mutation in Complex | gene) (Johns et al., 1992), Leigh
syndrome (Complex V) (Shoffner et al., 1992) and Mitochondrial encephalopathy (MELAS)
(tRNAs) (Goto et al., 1990).

As multiple copies of mtDNA exist in a single cell, heteroplasmy is often observed and the
ratio of mutated/wild-type mtDNA varies among cell types and tissues. This complicates
the interpretation of mitochondrial diseases and the underlying genetics (N. Lane,
2011).Phenotypic variability also arises from this condition. The wild-type mtDNA can often
complement the mutated ones as mutations are usually recessive. It appears that the
mutated/wild-type ratio has to reach a certain threshold of around 50 - 60%, depending on
the mutations and tissue type, before the phenotypes of a disease can be observed
(Hayashi et al., 1991; Mita et al., 1990; Moraes et al., 1992; Shoubridge, 1994).

4.1.5.2 Aneuploidy
Aneuploidy is the status where there is an abnormal number of chromosomes in a cell,
which is fatal for human embryos in most of the cases. Trisomy 21 (three copies of

chromosome 21), which results in Down syndrome (DS), is the most common type of
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aneuploidy that infants can survive with; however, they suffer from many pathological
conditions, including neurological deficiencies and immune disorders. Some studies
suggest that the symptoms of DS are associated with oxidative stress (Anneren & Epstein,
1987; Bras et al., 1989; Brooksbank & Balazs, 1984; Busciglio & Yankner, 1995; Jovanovic
et al., 1998). It was found that ROS levels in the neurons of DS patients increased 3- to 4-
fold (Busciglio & Yankner, 1995), leading to elevated lipid peroxidation and possibly

neuronal death.

One of the mainstream views is that the observed pathologies result from the increased
dosage effect due to the presence of an extra chromosome 21 (Hsa21), which increases
transcript and protein levels of the coding genes on Hsa21, and at the same time alters the
expression of non-Hsa21 genes through actions of transcription factors or chromatin
modifiers (Antonarakis, 2017). It has been suggested that the overexpression of
mitochondrial genes located at chromosome 21, such as superoxide dismutase (SOD-1) is
related to the oxidative stress in DS (Sinet, 1982), though the results from different studies
remain controversial (Anneren & Epstein, 1987; de La Torre et al., 1996; Shapiro, 1999). It
has also been reported that mitochondrial dysfunction is observed in DS patients, with a
lack of certain mitochondrial enzymes (Prince et al., 1994); furthermore, morphological
abnormalities of mitochondria have been identified in a mouse model of DS, together with

an impaired energy metabolism (Bersu et al., 1998).

4.1.5.3 Cancer

The alteration of mitochondrial functions in cancer was first observed by Warburg 90 years
ago (Warburg et al., 1927), namely that tumors fermented glucose to produce excess
lactate even in the presence of oxygen (aerobic glycolysis). This phenomenon was termed
Warburg effect in the 1970s (Racker, 1972) and was also observed in proliferating and
developing cells, where the rate of glucose uptake and lactate production increase
significantly. Aerobic glycolysis is a relatively inefficient, but a much faster way to generate
ATP, compared to mitochondrial respiration (Heiden et al., 2009). This might give cells a
selective advantage in an environment with limited resources (Pfeiffer et al., 2001), such
as in tumor microenvironments where there are limited glucose and nutrients. The
production and secretion of lactate also decreases the pH in the microenvironment and
could enhance invasiveness of tumor cells (Estrella et al., 2013). It has also been proposed
that Warburg effect is an adaptation mechanism to sustain biosynthesis under uncontrolled
proliferation. The excess carbon from aerobic glycolysis can be diverted for the generation
of molecules such as lipids and nucleotides (Levine & Puzio-Kuter, 2010). On the other
hand, the altered metabolism can possibly activate stress response pathways that promote

tumorigenesis. Changes in mitochondrial redox potential alter the generation of reactive
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oxygen species (ROS) (Locasale & Cantley, 2011), which is involved in signaling processes

related to cell proliferation.
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Figure 4.5 Cancer cell metabolism

(a) In normal cells, the pyruvate results from the glycolysis pathway goes into the mitochondrial TCA
cycle, which produces reduced equivalents that could be fed into the ETC for the generation of ATP.
(b) Upon apoptotic stimuli, BAK/ BAX and mitochondrial outer membrane permeabilization (MOMP)
are activated, followed by the release of cytochrome ¢ and the formation of the apoptosome, which
results in apoptotic cell death. (c) Cancer cells exhibit an altered metabolism, where the glucose
consumption rate is much higher so that the excess carbon could be diverted for biosynthesis to
support the growth of the cells. ATP is generated mostly through the fermentation of pyruvate instead
of the TCA cycle. (d) Changes in gene expression in cancer cells (e.g. overexpression of anti-
apoptotic proteins or inactivation of pro-apoptotic proteins), could possibly counteract the action of
BAX/BAK and avoid MOMP formation, hence resisting apoptosis and increasing the survival of the
tumor. Taken from (Ribas et al., 2016), under the terms and conditions of the Creative Commons by
Attribution (CC-BY) License.

The change in mitochondrial metabolism in cancer seems to be caused by certain mtDNA
and nuclear DNA mutations, especially those in key enzymes involved in the TCA cycle.
This is observed in paragangliomas, pheochromocytomas, myomas, and gliomas (Baysal
et al., 2000; Tomlinson et al., 2002; Yan et al., 2009). The activities of transcription factors,
such as HIF1a , FOS or JUN (Abate et al., 1990; Kurelac et al., 2011), can also be changed
due to increased ROS production from altered mitochondrial metabolism, as well as
mutations of mitochondrial enzymes such as succinate or fumarate dehydrogenases, as
their dysfunction results in the accumulation of succinate and fumarate, which helps the
activation of HIF (King et al., 2006). This change in activities alters gene expression and

promotes cell proliferation. Despite the increased ROS levels, apoptosis can be limited in
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cancer cells by resisting mitochondrial outer membrane permeabilization (MOMP) through
impairing BAK/BAX oligomerization, thus increasing the survival of cancer cells (Green &
Kroemer, 2004; Martinez-Caballero et al., 2009).

4.2 Understanding human biological systems with new
technologies

The recent technological advancement in biology, especially in the field of molecular
biology and genetics, allows us to have a much deeper understanding in biological systems.
Next-generation sequencing (NGS), for example, is able to sequence genomes or
transcriptomes in unprecedented speed with much lower costs, thus has completely
revolutionized research in genomics and transcriptomics. This brings about new insights
into the functions and regulation of cellular system, and the etiology or pathology of human
diseases, including mitochondrial diseases. In this section, the technologies in different

fields that are applied to studying and investigating biological systems will be discussed.

4.2.1 Genomics and Transcriptomics

Information of cells is stored in DNA molecules, that give cells instructions to carry out their
activities. In eukaryotes, this includes both nuclear DNA and mitochondrial DNA (mtDNA),
and the complete set of these DNA molecules forms the genome. The coding regions of
DNA, or genes, are transcribed to RNA molecules, which are translated to protein. The sum
of all RNA transcripts at a given time is referred to as the transcriptome. Studying the

genome and transcriptome is therefore essential to understanding cell functions.

The sequencing of the entire human genome for the first time using the Sanger chain
termination sequencing method, initiated by the Human Genome Project, was finished in
2003, took 13 years and costed 2.7 billion USD. Today with the advent of NGS methods,
the sequencing of the genome (DNA-seq) has broken the 1000 USD barrier and takes less
than a day. NGS platforms of different sequencing approaches, possible sequence length,
error rate, and speed are available nowadays (reviewed in (Mardis, 2013) and (Goodwin et
al., 2016)), with the lllumina system being one of the most popular sequencers. The lllumina
system adopts a short-read sequencing approach, in which the DNAs or cDNAs are
fragmented and ligated to universal adapters for amplification, and then sequenced by
synthesis (Mardis, 2013). NGS sequencing can also be applied to quantifying
transcriptomes (RNA-seq), in which RNAs are reverse-transcribed to cDNAs before being
sequenced. Measuring transcriptome was mostly achieved by microarray previously.

Though still used today, the detection of RNA with microarray has limited dynamic range
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and is restricted by the availability of known RNA molecules that could be hybridized on

arrays.

The sequencing of genome and transcriptome is followed by bioinformatics analysis.
Quality control is usually the first step, that serves to identify and remove low quality data
(reads), before the reads are aligned (or mapped) to a reference genome. A number of
mappers with different algorithms, speed, features, and accuracy under different conditions
(such as number of mismatches) are available (reviewed in (Fonseca et al., 2012; Hatem
et al., 2013)) and users should choose according to their needs. One of the most widely
used aligners for (short read) DNA-seq is BWA-aligner, which has a better performance
overall compared to others even with longer reads (Hatem et al., 2013). Mutations and
structural variants can further be revealed by variant callers. Again, numerous callers
serving different functions with different sensitivity levels exist (reviewed in (Roberts et al.,
2013; Q. Wang et al., 2013)).

Mappers for RNA-seq data usually use a different algorithm from the ones for DNA-seq, as
they have to account for splicing events. Among various mappers, STAR (Spliced
Transcripts Alignment to a Reference) is a very popular tool because of its relatively high
accuracy and speed (Dobin et al.,, 2013). In addition to the identification of somatic
mutations like DNA-seq data, RNA-seq data can also be used to quantify gene expression,
as the number of reads that align to a transcript is proportional to its abundance in cells.
After normalization to the length of genes and then the total number of mapped reads, the
numbers of reads for each transcript of gene are converted to TPM (Transcript per million).
Since the sums of all TPMs in each sample from the same experiment are theoretically the
same, this allows the direct comparison of the proportion of reads mapped to a gene in
different samples. Statistical tests and tools have also developed to account for variability
between biological replicates. For example, DESeq2 (Love et al., 2014) pools information
regarding variance across different genes, in order to detect true differentially expressed
genes (i.e. the difference in read counts is not due to random variation), even under the

condition where there are limited samples.

4.2.1.1 Mitochondrial genome and transcriptome

The complete mitochondrial genome was first sequenced and annotated as early as 1981
(S. Anderson et al., 1981). A slightly different approach has to be adopted for the study of
mitochondrial genome and transcriptome due to the status of heteroplasmy and high copy
numbers of mtDNA in cells. For example, variant calling has to be done in a conservative
setting (i.e. high threshold for believing in calls), and separately for the plus and minus

strand. The transcriptome also has to be analyzed separately from the nuclear
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transcriptome with adjusted parameters, as they are sometimes discarded for having too

many mapped reads.

4.2.2 Proteomics

Protein molecules, depending on their amino acid sequence, have diverse biochemical
properties as well as secondary, tertiary and quaternary structures. They perform myriads
of functions in our cells, acting as enzymes, structural and signaling molecules. Proteins
are translated from mRNA. The study of protein, or proteomics, is usually the next step
after genomics and transcriptomics to provide additional insights into the biological systems.
The study of the proteome can be complicated because the proteome, unlike the genome,
varies from cell to cell or even at different time points. Post-translational modifications such
as phophorylation, ubiquitination and methylation add another level of complexity to the

analysis of the entirety of proteins in a cell.

Major methods to study proteins are immunoassays and mass spectrometry. Western blot
and enzyme-linked immunosorbent assays (ELISA) detect and quantify certain proteins
(antigens) with specific antibodies. Mass spectrometry based methods, on the other hand,
are used in protein profiling as they quantify almost all known proteins in cells in parallel
with high resolution (Glish & Vachet, 2003). This “bottom-up” approach is widely used for
both protein identification and quantification, in which proteins from a sample are digested
into smaller peptides with enzymes and analyzed in a mass spectrometer. The mass-to-
charge ratios of peptides are then determined by the spectrometer and appear as peaks
on a mass spectrum. These peaks reflect the characteristic patterns of proteins and are

then used for their identification.

For the quantification of protein abundance, stable isotope labeling in cell culture (SILAC)
is one popular method (X. Chen et al., 2015). In such an approach, cells are cultivated in
two different conditions: for one, in a medium with normal amino acids; in the other condition
with heavy isotopes labeled amino acids, which will be eventually incorporated into the cells
as they grow. The samples from both conditions are then pooled together and undergo
mass spectrometry. The abundance ratios of proteins between labelled and unlabeled
proteins is then determined by the peak intensities in the mass spectrum of the two samples.
This method allows the quantification of many peptides in cells and thus enabling high-

throughput proteomics study.
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4.2.3 Available hubs for biological data

There are a couple of databases or platforms that store data from high-throughput
functional genomics experiments, such as Expression Atlas

(https://www.ebi.ac.uk/gxa/home) (Papatheodorou et al, 2020), ArrayExpress

(https://lwww.ebi.ac.uk/arrayexpress/) (Parkinson et al., 2005) and Genomic Expression

Archive (https://www.ddbj.nig.ac.jp/geal/index-e.html) (Kodama et al., 2019). One of the

largest databases is Gene Expression Omnibus (GEO) (https://www.ncbi.nim.nih.gov/geo/)
(Edgar et al., 2002), which is a publicly available genomic database supported by the
National Center for Biotechnology Information (NCBI). It accepts both raw and processed
data submitted from high throughput gene expression studies, which is acquired with
different technologies such as DNA microarrays, high throughput nucleic acid sequencing,
RT-PCR, SAGE. Apart from gene expression data, GEO also collects data from studies on
genome methylation, genome variation/copy number, etc. A submitted series of data comes
with the description and methodology of the experiment, and the attributes of samples. At
the time of writing (https://www.ncbi.nlm.nih.gov/geo/summary/?type=platforms), it is
holding more than 4 million samples from over 146,452 series, mainly from studies on
human (Homo sapiens) and mouse (Mus musculus). Researchers could either download
and analyze the data files of interest, or execute queries to look for relevant data (using
keywords such as gene name, diseases or nucleotide sequence), perform analysis (e.g.
differential expression on curated datasets) and visualization (as a genome track) on the
data directly on the GEO website.

Disease-associated data are also available on specific platforms, such as the Genomic

Data Commons Data Portal (https://portal.gdc.cancer.gov/) from The Cancer Genome Atlas

(TCGA) project (Weinstein et al., 2013), which contains large-scale sequencing results
focusing on cancer genomic datasets. TCGA is a project supervised by the National Cancer
Institute (NCI) and National Human Genome Research Institute (NHGRI), and aims to
profile and analyze human tumors and discover aberrations at different levels from genome,
transcriptome, proteome to epigenome. It has generated sequencing, expression, single
nucleotide variation, copy number variation and methylation data from 33 cancer types
(including 10 rare cancers). The main technologies used include RNA sequencing, whole
genome/exome sequencing, genotyping array and methylation array. Currently, more than
84000 cases, most of them with comprehensive clinical data like tumor staging, survival,
age and gender, and could be accessed by the research community on its repository.
Simple analysis on the datasets, such as cohort comparison and clinical data analysis are

also available on the TCGA portal.
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4.3 Big data, big challenges

The advancement in sequencing and profiling technologies in genomics, transcriptomics,
and proteomics generates a huge amount of data that are still growing exponentially. The
amount of sequencing data and the speed of its generation already qualify it as “big data”,
which is characterized by large volume and high velocity of production (Jain, 2016) . Like
the big data in any other fields, the volume and complexity of these data pose a true
challenge to their analysis and interpretation. Bioinformatics tools, combined with statistical
analyses enable us to identify mutations, differential expression of genes and proteins,
gene regulations events, etc. On the other hand, increased computing power and recent
development in data science, especially in the area of data storage, analysis and

visualization, allow data to be handled more efficiently and effectively (Manyika et al., 2011).
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Figure 4.6 Workflow and essential stages of typical Big Data projects in healthcare.

After the question or objective has been formulated, the right kind of data has to be collected through
various sources. Different types of data require different ways of storage to achieve optimal efficiency
for archiving and fetching. To retrieve information from collected data, various approaches or
algorithms are available to perform data analysis, depending on the nature and structure of the data.
Finally, to help gaining insight from the analyzed data and perform evaluation on the results, the data
could be visualized either with visualization tools or custom visualizations developed using packages
from popular programming languages. The flow is usually an iterative process, with a lot of back-
and-forth testing and adjustment at different stages. Taken and modified from (T. Huang et al., 2015),
under the terms and conditions of the Creative Commons by Attribution (CC-BY) License.

To leverage the increased computational capacity for the extraction of useful information
from data and the facilitation of knowledge discovery, good data management is particularly
crucial. Recently, a consortium of scientists and organizations have published the FAIR
Guiding Principles, which data should meet the principles of Findability, Accessibility,

Interoperability, and Reusability (Wilkinson et al., 2016). The implementation of these
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principles within the scientific community is strongly encouraged, so that computational
systems could easily find, access, interoperate, and reuse data with minimal human
intervention. This could be achieved by using persistent identifiers (PIDs) on the data and
annotate it with sufficient metadata. The PIDs should be globally unique to be readily
identifiable and the associated data and metadata should be always accessible and
indexed in a searchable source (Findability and Accessibility). By using a standard
language across all the data and metadata, they could also be easily reused and integrated

with other data (Interoperability and Reusability).

4.3.1 Data storage and retrieval

In order to be efficiently accessed or retrieved for analysis, data are usually stored in an
organized way within databases. Two main types of database systems or models in today’s
technology are relational database, or sometimes commonly referred as SQL database,
that use Structured Query Language (SQL) for querying
(https://lwww.iso.org/standard/63555.html); and NoSQL database (http://nosql-

database.org/) that refers to non SQL or non-relational databases.

SQL databases store data in tables with definite rows and columns (structured data). Each
entry (row) has a unique key, and tables can be connected by “relationships”. Therefore,
relational operations, such as joining two tables based on a column (e.g. retrieving gene
annotation from one table and gene expression from another based on gene names), can
be easily achieved. Storing different data in different but connected tables also avoids data
redundancy by minimizing duplicated information. Popular relational database
management systems are MySQL, PostgreSQL (both open-source) and Oracle

(proprietary).

NoSQL databases, in contrast, store data in a schema-free version, in which the data need
not to be in a defined structure. They could be stored as key-value pairs, free form JSON
(JavaScript Object Notation) documents that consist of attribute-value pairs, or presented
in graphs. This allows more flexibility as there are virtually no restrictions on the data model,
and each entry can store different types and lengths of data. Common NoSQL databases
include MongoDB (document-based), Redis (key-pair values) and Neo4j (graphs).
Moreover, data storage can be split over several physical entities (storage units or

computers), thus not restricting the size of the database.
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4.3.1.1 SQL vs NoSQL

The choice of the type of database depends on the data structure, the need for reliability
and scalability, performance and many other factors. SQL is a mature and stable database
system with a long history that has been tested extensively. NoSQL, on the other hand, is
relatively new and gaining popularity because of its flexibility to store unstructured data.
Therefore, it is particularly useful when storing text documents (e.g. Twitter entries) or
relationships between nodes (Facebook users’ network). It is also highly scalable and fast

when dealing with simply queries.

However, the relaxed data schema of NoSQL means data entries do not have to be
validated for their types or checked for duplications. NoSQL also compromises consistency
of data for speed, and lack the property of ACID (Atomicity, Consistency, Isolation and
Durability) as in SQL. Although SQL might be not as performant as NoSQL with simple
queries, it is usually faster when dealing with complex queries (e.g. join operations) as it is
well-structured. Thus, SQL database are preferred if the data has a defined structure and

relational queries are often called, or if robustness is an important factor.

4.3.2 Data analysis

Some biological data, such as sequencing data, are unstructured but are usually processed
with bioinformatics tools to give relatively structured data as output (e.g. rows of entries of
gene/protein expression value, mutations location, etc) for downstream analysis. The
analysis typically involves data cleaning (e.g. dealing with missing or corrupted values in
microarray data), normalization (e.g. RNA-sequencing data), transformation (e.g. Log
transformation of skewed data) and statistical test (e.g. differential expression of genes).

These steps usually are part of the bioinformatics analysis pipeline.

Two mainstream programming languages of nowadays for the purpose of data analysis are
Python and R (Costa, 2020). Python is famous for its readability and has become one of
the fastest growing language in recent years (https://www.python.org/). R has a strong
focus on statistical and graphical techniques and is widely used among statisticians
(https://www.r-project.org/). Both languages are popular in the community because of the
availability of libraries or packages that can process sequencing data (e.g. Bioconductor
packages in R; Biopython in Python), manipulate data (Pandas in Python) and perform
statistical analysis (e.g. SciPy in Python).

Learning from the data to make predictions or recognize patterns is part of the data analysis

as well, and this is how machine learning algorithms come into play. There are two broad
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categories of machine learning, depending on the tasks: Supervised learning and
unsupervised learning. Supervised learning algorithms try to learn a function that could
map an input to an output. A set of labelled data, consisting of both the input and the output
has to be fed to the learning algorithm for training, so that it can make predictions for new,
unlabeled data. The output can be either a discrete (classification) or a continuous value
(regression). For example, cancer patients can be classified into respective risk groups in
terms of survival (output) based on their gene expression profile (input) (Y. C. Chen et al.,
2014). There are a number of supervised leaning algorithms and among the most popular
ones are Support Vector Machines, Decision Trees, Naive Bayes and the more complex
Neural Network. Unsupervised learning algorithms infer a function that describes the
unlabeled input data, for instance, by grouping the samples based on their similarity. An
example would be clustering patients into previous unknown subgroups based on their
gene expression profiles (Angermueller et al., 2016). Common clustering algorithms are k-

means and hierarchical clustering.

Learning patterns in data can help give insights and reveal meaningful information.
However, sequencing and profiling data often have the issue of high dimensionality (i.e.
large number of input variables), which complicate the analysis. Dimensionality reduction
is therefore often an essential step in data analysis. It is a process to reduce the number of
variables while retaining the maximum amount of variation within the dataset. Principle
Component Analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are
examples of dimensionality reduction techniques. Libraries for performing machine learning
tasks and related functions are abundant in both Python (scikit-learn (https://scikit-
learn.org/), tensorflow (https://www.tensorflow.org/), keras (https://keras.io/)) and R
(randomForest (https://www.stat.berkeley.edu/~breiman/RandomForests), tree
(https://cran.r-project.org/web/packages/tree/index.html), nnet
(http://www.stats.ox.ac.uk/pub/MASS4/)).
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Figure 4.7 Data Analysis and Machine learning workflow.

(a) Data analysis and modelling can be performed once data has been collected. A typical workflow
involves four steps: data cleaning and pre-processing, feature extraction, model fitting (training) and
evaluation. (b) The two categories of machine learning algorithms are supervised machine learning,
which relate input features to output label; and unsupervised machine learning, which learns the
pattern in the data without labels. (c) High-dimensional omics data is often challenging for data
analysis. Performing feature extractions, either manually or with the help of unsupervised models
could help with the analysis and obtaining insights. Taken and modified from (Angermueller et al.,
2016), under the terms and conditions of the Creative Commons by Attribution (CC-BY) License.

4.3.3 Data exploration and visualization

Representing data in a visual manner is useful for the exploration and interpretation of data.
Effective visualization gives users intuition and allows them to better understand complex
data, especially those in more than one dimension or with correlations. This helps with
analysis and for making conclusions. Depending on the nature of the data and the aim of
the analysis, the type of visualization can be as simple as a scatter plot (e.g. correlation
between the expressions of two genes) or as complex as a network of nodes (e.g.

interactions between proteins).

While a number of programs are able to create different types of charts and diagrams, some
programming languages offer libraries that make it possible to build more customizable and
diverse visualizations. Python, for example, has the Ilibraries matplotlib
(https://matplotlib.org/) and seaborn (https://seaborn.pydata.org/); whereas R comes with
packages like ggplot2 (https://ggplot2.tidyverse.org/) and Lattice
(https://lwww.rdocumentation.org/packages/lattice). Most of the libraries in these two
languages build only static graphs, but some also create visualizations with a certain
degree of interactivity such as highchart (https://www.highcharts.com/) and plotly
(https://plotly.com/).
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4.3.3.1 D3 in Javascript

D3.js (Data-Driven Documents) (https://d3js.org/) is one of the most powerful open-sourced

visualization libraries in Javascript, a dominant language in web programming. Capable of
supporting almost all the chart types, D3 is the golden standard for visualization in
Javascript and many other libraries are based on it. It is able of generating interactive and
dynamic visualization in web browsers, without the need of installing any software. This is
achieved by creating an SVG (Scalable Vector Graphics) object, a scalable and resolution
independent image, and dynamically styling it through CSS (Cascading Styling Sheets), a
language that characterizes the styles and contents of web elements
(https://developer.mozilla.org/en-US/docs/Web/CSS).

The power of D3 lies in its ability to bind data to the DOM (Document Object Model) of a
web document, which describes the structure the elements of the document. Given a
dataset, either in the format of JSON (JavaScript Object Notation), or CSV (Comma-
Separated Values), D3 can create for each data point an SVG element within the DOM,
with properties (colors, size, shape, coordinates) and behaviors associated to the value of
that data point. End-users can interact with the visualization (selection by mouse click,
filtering by keyboard entries) that gives dynamic response as D3 modifies the style of SVGs

(each representing a data node) in parallel.

D3 is superior to other libraries in Javascript or even other languages in terms of interactivity
and customizability (https://github.com/d3/d3/wiki), as its API, together with Javascript,
enable creators to have control over low-level details of the visualization and be very
specific about the properties and behaviors of each elements on it. However, unlike Python
and R, Javascript does not provide many methods and libraries for data manipulation, or
statistics and analysis, thus data have to be processed in other languages before feeding

them to D3 for visualization.
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D3.js is a Javascript library for generating interactive and dynamic visualizations in typical web
browsers. It creates SVG (Scalable Vector Graphics) objects that could be formatted or styled
dynamically through CSS (Cascading Styling Sheets) standards. The visualizations produced using
D3.js are highly customizable. Both simple graphs (a) and more complex visualizations (b) could be
generated with existing methods from the library. Taken from https://d3js.org/, under the terms and
conditions of the Creative Commons by Attribution (CC-BY) License.
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Figure 4.8 Visualizations with d3.js.

4.3.4 Current available tools for data analysis and visualization

As mentioned in Section 4.2.3, some of the platforms or databases of omics data come
with tools for the analysis and visualization of their own data. For example, on the GEO
website, users could perform differential expression analysis on curated datasets managed
by GEO and visualize genome tracks; On the portal where TCGA data is hosted, users
could carry out cohort comparison and clinical data analysis on the data; Where as
ArrayExpress provides an Bioconductor package to access the data and build data

structures upon it for further analysis in R.

There are also various other tools developed for the analysis and visualizations of data
from the above repositories or user-prepared data. These tools can either be a web tool or
a desktop application, and they usually visualize data in one of these three types: Heatmaps,
genomic coordinates and networks. To name a few examples, cBio Cancer Genomics
Portal (Cerami et al., 2012) is a web platform offers the analysis of differential expression,
mutation frequency and copy number alterations on pre-calculated TCGA data (and other
curated cancer datasets) and visualizations in heatmaps; UCSC Cancer Genomics
Browser (Zhu et al., 2009) is another web tool for the quantitative analysis of TCGA data,

but it also allows users to upload their own data for analysis. Like cBioPortal, it provides

33


https://d3js.org/

views for expression data in heatmaps, and also for mutation and copy number data;
Integrative Genomics Viewer (IGV) (Robinson et al., 2011) is a desktop application
developed by the Broad Institute to explore genomic datasets provided by users in genomic
coordinates visualizations. The tracks and genomic regions can be annotated with
integrated metadata; Finally, Cytoscape (Shannon et al., 2003), also a desktop application,
serves as a network analytics software to analyze genetic interaction and gene regulatory
events and visualize them in networks. All these tools are very helpful for the analysis of
high volume omics data and could facilitate the discovery of underlying biological patterns

out of these complex data.

4.3.5 Challenges in the analysis of mitochondrial genes addressed in
this thesis

Despite the availability of visual analytics platforms and software for omics data, tools
dedicated for the analysis of certain context-specific gene sets, such as mitochondrial
genes, are very limited. One of the reasons is that it is often time consuming to construct
such a gene list that could include most, if not all, of the related functions and pathways in
that specific context. Most of the existing lists or electronic repositories of mitochondrial
genes are not comprehensive since they are constructed with computational approaches
and could either be susceptible to overfitting of the training data (MitoMiner (Smith et al.,
2012)), or lack experimental confirmation (MitoPred (C. Guda et al., 2004)). MitoCarta
(Calvo et al., 2016) is one of repositories that contains a more complete set of mitochondria-
associated genes. However it currently includes only human and mouse mitochondrial
genes. Another challenge is to assign proper functional annotations to the genes to facilitate
further analysis, which is also a tedious task that requires a lot of literature review and

hence human involvement.

Equally challenging is the development of the appropriate analysis and visualization tools.
They should be intuitive enough for users to understand readily what the purpose of the
visual analytics tool is, how to use the tool and what the result means. While most of above-
mentioned tools could achieve these, they are usually not dynamic and interactive enough
for users to explore further according to their own needs, and the types of visualizations
are relatively limited. The usability of the tool is also important, as complex requirements
often deter researchers from using it. For example, visualizations of some tools require
high-end computer graphics to display (Caleydo (Streit et al., 2009)), and some requires
users to possess certain programming knowledge (Arrayexpress (Parkinson et al., 2005)).
Therefore an ideal tool should have minimum pre-requisites on the specifications of users’
machines or users’ programming knowledge to operate it, and be as user-friendly as

possible.
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5 Objectives

In light of the need for a visual analytics tool specific for a genes with mitochondrial
functions, this thesis aims mainly to develop a data mining and visualization tool dedicated
for the exploration and analysis of expression and mutation landscapes of mitochondrial
genes. A critical component of such platform, which is currently lacking, is a comprehensive
list of mitochondrial genes with annotations, that could be integrated into the analysis and
visualization tools. Therefore, we first addressed this issue by assembling and manually
curating lists of genes with annotated mitochondrial processes, which we referred to as
mitochondrial interactome, for human and a few other model organisms. To ensure its
completeness and accuracy, we started with a few published mitochondrial proteomic data
and supplemented with all non-coding mitochondrial genes and potentially missing genes
from different sources, including inventories that provide pathway or ortholog information.
Then we performed manual cleaning to remove false-positives by, for example, searching
the literature for the localization of gene products. As for the annotations, we referred to
multiple established databases and decided on a set of controlled vocabulary to group the

mitochondrial genes.

The next point to address is the development of the analysis and visualization tools. To
tackle with the problem of a general lack of interactivity in other analytics platforms, we
have developed a number of user-friendly, dynamic and interactive visualization tools that
are modular and could be incorporated into different platforms. We have also built a
platform, mitoXplorer, to host public dataset and visualization tools that have been
integrated with the interactome, in order for users to freely explore both public or uploaded
data. To allow the platform to be widely available and accessible, we decided to build it as
a web application, so that it is agnostic to operating systems and does not require any

installation or programming knowledge on the users’ side.

The final objective is to prove robustness and the predictive power of such visual data
mining tools. We analyzed the transcriptome and proteome data of trisomy 21 cell line to
demonstrate the ability of the tools to explore expression dynamics of mitochondrial genes.
We also validated with experiments the observations from the analysis, to show how
testable hypothesis could be generated that lead to discovery about mechanisms of
mitochondrial defects in trisomy 21 patients. Next, we analyzed the expression and clinical
data of cancer patients from public cancer dataset (TCGA), namely kidney renal papillary
cell carcinoma, to show how visual data mining tools could also help generating hypothesis

on the role mitochondrial functions in terms of cancer development and progression.
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6 Results

6.1 mitoXplorer, a visual data mining platform to systematically
analyze and visualize mitochondrial expression dynamics and
mutations

Mitochondria are important organelles that have diverse roles apart from energy production,
such as ROS defense, cell homeostasis, and the control of signaling pathways. Impaired
mitochondrial functions can lead to various diseases and metabolic disorders, and the field
has attracted increased attention. However, tools or platforms specific for the analysis of
omics data of genes with mitochondrial functions did not exist previously, despite the
availability of public data from high throughput gene expression studies. Therefore, in this
study we developed a web-based visual data mining platform — mitoXplorer, for the in-depth

analysis and visualization of the expression and mutation landscape of mitochondrial genes.

mitoXplorer provides a set of dynamic, interactive and intuitive visualizations, that allows
users to explore and interact with the analysed data. We have also integrated manually
curated mitochondrial interactomes that consist of ~1200 genes grouped in 38
mitochondrial processes for four organisms (Human, Mouse, Fruit Fly and Budding Yeast),
with accurate and updated annotations. Together with the visualization tools, mitoXplorer
serves as user-friendly platform for the mining of mitochondrial expression dynamics and

mutations across various public or user-owned datasets.

To demonstrate the predictive power of mitoXplorer, transcriptome and proteome data from
cell lines with trisomy 21 was analysed and investigated in detail. We found that, in one of
the trisomy 21 cell lines (RPE1 T21), there were significant differences in the regulation of
transcriptome and proteome in the some of the mitochondrial processes. Notably the
dysregulation of several mitochondrial ribosome proteins related to Translation, which
potentially causes the down-regulation of OXPHOS genes along the entire respiratory
chain that could result in defects in oxidative phosphorylation. The prediction of
mitochondrial respiration failure in such cell line has then be confirmed experimentally. This
showed the robustness of mitoXplorer as a visual data mining platform, which could help
discover underlying molecular mechanisms and patterns for the generation of hypotheses

for experimental validation.
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ABSTRACT

Mitochondria participate in metabolism and signal-
ing. They adapt to the requirements of various cell
types. Publicly available expression data permit to
study expression dynamics of genes with mitochon-
drial function (mito-genes) in various cell types, con-
ditions and organisms. Yet, we lack an easy way of
extracting these data for mito-genes. Here, we intro-
duce the visual data mining platform mitoXplorer,
which integrates expression and mutation data of
mito-genes with a manually curated mitochondrial
interactome containing ~1200 genes grouped in 38
mitochondrial processes. User-friendly analysis and
visualization tools allow to mine mitochondrial ex-
pression dynamics and mutations across various
datasets from four model species including human.
To test the predictive power of mitoXplorer, we quan-
tify mito-gene expression dynamics in trisomy 21
cells, as mitochondrial defects are frequent in tri-
somy 21. We uncover remarkable differences in the
regulation of the mitochondrial transcriptome and
proteome in one of the trisomy 21 cell lines, caused
by dysregulation of the mitochondrial ribosome and
resulting in severe defects in oxidative phosphory-
lation. With the newly developed Fiji plugin mito-
Morph, we identify mild changes in mitochondrial
morphology in trisomy 21. Taken together, mitoX-
plorer (http://mitoxplorer.ibdm.univ-mrs.fr) is a user-
friendly, web-based and freely accessible software,

aiding experimental scientists to quantify mitochon-
drial expression dynamics.

INTRODUCTION

Enormous amounts of transcriptomic data are publicly
available for exploration. This richness of data gives us the
unique opportunity to explore the behavior of individual
genes or groups of genes within a vast variety of different
cell types, developmental or disease conditions or in differ-
ent species. By integrating these data in a sophisticated way,
we may be capable to discover new dependencies between
genes or processes.

Specific databases are available for mining and exploring
disease-associated data, such as The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) (1), or the Interna-
tional Cancer Consortium Data Portal (ICGC, https://dcc.
icgc.org/) (2). Especially cancer data portals allow users to
perform deeper exploration of expression changes of indi-
vidual genes or gene groups in different tumor types ((1—
3); for a review on available cancer data portals, see (4)).
Expression Atlas (https://www.ebi.ac.uk/gxa/home) on the
other hand provides pre-processed data from a large variety
of different studies in numerous species (5). Indeed, the ma-
jority of transcriptomic datasets are not related to cancer
and are stored in public repositories such as Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
(6), DDBJ Omics Archive (https://www.ddbj.nig.ac.jp/gea/
index-e.html) (7), or ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) (8). Currently, it is not straightforward to in-
tegrate data from these repositories without at least basic
programming knowledge.
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Next to extracting reliable information from -omics
datasets, it is equally important to support interactive data
visualization. This is a key element for a user-guided ex-
ploration and interpretation of complex data, facilitating
the generation of biologically relevant hypotheses—a pro-
cess referred to as visual data mining (VDM, reviewed e.g.
in (9)). Therefore, essentially all online data portals provide
graphical tools for data exploration.

What is fundamentally lacking is a user-centric, web-
based and interactive platform for data integration of a set
of selected genes or proteins sharing the same cellular func-
tion(s). The benefits of such a tool are evident: first, it would
give us the possibility to explore the expression dynamics
and the presence of mutations in this set of selected genes
across many different conditions, tissues and species. Sec-
ond, by integrating data using enrichment techniques, for
instance with epigenetic data or by network analysis using
the cellular interactome(s), it would allow us to identify the
mechanisms that regulate the expression dynamics of the
selected gene set.

One interesting set of genes are mitochondria-associated
genes (mito-genes): in other words all genes, whose encoded
proteins localize to mitochondria and fulfill their cellular
function within this organelle. Mito-genes are well-suited
for such a systematic analysis, because we have a relatively
complete knowledge of their identity and can categorize
them according to their mitochondrial functions (10). This
a priori knowledge can help us in mining and exploring the
expression dynamics of mito-genes and functions in various
conditions and species.

Mitochondria are essential organelles in eukaryotic cells
that are required for producing cellular energy in form of
ATP and for numerous other metabolic and signaling func-
tions (10). Attributable to their central cellular role, mito-
chondrial dysfunctions were found to be associated with a
number of human diseases such as obesity, diabetes, neu-
rodegenerative diseases and cancer (11-15). However, mi-
tochondria are not uniform organelles. Their structural and
metabolic diversity, both of which influence each other, has
been well described in literature (16-20). This mitochon-
drial heterogeneity in different tissues is reflected in their
molecular composition (21). The total number of proteins
that contribute to mitochondrial functions and localize to
mitochondria is currently not precisely known and might
differ between tissues and species (22,23). Yet, based on
proteomic data from several organisms, it is likely that mi-
tochondria contain >1000 proteins (23-30). Mitochondria
have their own genome, whose size in animals is between
11 and 28 kb (31). Most metazoan mitochondria encode 13
essential proteins of the respiratory chain required for ox-
idative phosphorylation (OXPHOS), all TRNAs of the small
and large mitochondrial ribosomal subunits, as well as most
mitochondrial tRNAs (32). All other proteins found in mi-
tochondria (mito-proteins) are encoded by genes in the nu-
cleus; the protein products of these nuclear-encoded mito-
chondrial genes (NEMGs) are transported to and imported
into mitochondria.

Based on data from mitochondrial proteomic studies or
genome-scale prediction of mito-proteins, several electronic
repositories of the mitochondrial interactome have been
created (24,33-36), though they often lack a proper func-

tional assignments of mito-proteins. Moreover, proteomic
studies describing the mitochondrial proteome can suffer
from a high false-positive rate (23), whereas computational
prediction or machine learning in most cases lack experi-
mental confirmation (37). As a consequence, none of the
published mitochondrial interactomes available to date can
be taken without further manual curation. Moreover, these
lists are not integrated with any available data analysis tool
to explore mitochondrial expression dynamics under vary-
ing conditions or in different tissues or species.

In this study, we present mitoXplorer, a web-based,
highly interactive visual data mining (VDM) platform de-
signed to specifically mine the dynamics of a manually cu-
rated gene set with mitochondrial functions in transcrip-
tome, proteome, as well as mutation-based data. To achieve
this, mitoXplorer integrates -omics data with our hand-
curated mitochondrial interactomes for currently four dif-
ferent model species. With mitoXplorer, we can explore the
expression dynamics, as well as mutations of mito-genes and
their associated mitochondrial processes (mito-processes)
across a large variety of different -omics datasets without
the need of programming knowledge. MitoXplorer pro-
vides users with dynamic and interactive figures, which in-
stantly display information on mitochondrial gene func-
tions and protein-protein interactions. Users can analyze
publicly available data stored in our mitoXlorer database
or upload their own data for integration with our hand-
curated mitochondrial interactome. In order to demon-
strate the analytical and predictive power of mitoXplorer
and to experimentally verify mitoXplorer predictions, we
generated transcriptome and proteome data from aneu-
ploid cell lines, carrying trisomy 21 (T21), the most common
chromosome abnormality in humans which is also known
to cause substantial mitochondrial dysfunctions (38). We
used mitoXplorer to analyze and integrate our data with
publicly available trisomy 21 data. MitoXplorer enabled us
to predict respiratory failure in one of our T21 cell lines,
which we experimentally confirmed, thus demonstrating the
predictive power of mitoXplorer.

MATERIALS AND METHODS
Implementation of mitoXplorer

Web interface of mitoXplorer (front-end). The web inter-
face of mitoXplorer at the front-end allows users to access,
interact and visualize data from its database, including the
interactome and expression/mutation data. The interactive
elements and visualizations on mitoXplorer are all built
with Javascript, a dynamic programming language that en-
ables interactivity on webpages by manipulating elements
through DOM (Document Object Model). DOM is a rep-
resentation of document, such as HTML, in a tree struc-
ture, with each element as a node or an object. Through
Javascript and its libraries, visualizations in mitoXplorer
can react to users’ action and dynamically change the prop-
erties (size, color, coordinates) of web elements and display
interactivity. All the visualization components in mitoX-
plorer described below are modular by design and can be
deployed individually or incorporated into web platforms
easily.



Mitochondrial Interactome (D3—data binding and selec-
tion). The visualization of the interactome is created with
the implementation of a Javascript library, D3 (d3.js) (39).
D3 (data-driven documents) is capable of binding data, usu-
ally in JSON (Javascript-oriented notation) format, to the
elements of the DOM so that their properties are entirely
based on given data. In the Interactome View, D3 creates
an SVG (Scalable Vector Graphic) element for each gene
within the DOM in the form of a bubble, with sizes and col-
ors dependent on the associated log2 fold change (10g2FC)
values. The coordinates of bubbles are also calculated ac-
cording to the data (e.g. the largest one being at the cen-
ter) so that the layout of the whole interactome is visually
appealing. Upon hovering over any bubble (gene), D3 se-
lects the element and passes additional data bound to that
element to the corresponding web element (sidebar) for dis-

play.

Comparative plot (D3—transition and sorting). The com-
parative plot combines three interdependent visualizations
(scatterplot, bar chart and heatmap) built upon D3. Apart
from data-binding and selection, these visualizations ex-
ploit the functionality of D3 for transition and sorting
through its API. In the scatterplot, genes are displayed as
nodes, whose colors and positions again depend on the data
(log2FC). When another mito-process is selected at the bar
chart, D3 updates the data bound to the node and the prop-
erties of the nodes are changed. The transition (changes
in color and position) is smooth and gives users the im-
pression that the visualization is truly dynamic and inter-
active. D3 can manipulate not only the elements, but also
the data bound to the elements. Upon clicking the dataset
or gene names on the heatmap, the data can be sorted ac-
cordingly and an index is assigned to each element (tile on
the heatmap) to indicate its position.

Hierarchical clustering (mpld3—visualization in Python im-
plemented in D3). The heatmap displaying the results of
hierarchical clustering is built with mpld3, a Python library
that exports graphics made with Python’s Matplotlib-based
libraries to JSON objects that can be displayed on web
browsers. Mpld3 benefits from D3’s data-binding property
and allows users to create a plugin that interacts with the
data on the visualization. The advantage of using mpld3
is that analyses and visualizations made in Python can be
directly translated to JSON and deployed in Javascript on
webpages without re-programming. In the case of hierar-
chical clustering, since libraries for both clustering analysis
and visualization of results in a heatmap with a dendrogram
are available in Python (described below), it is exported to
JSON with mpld3 and a Javascript tooltip plugin that al-
lows users to select data or display information with D3.

Principal component analysis (three.js—3D visualization).
The visualization of the result of Principal Component
Analysis (PCA) is 3-dimensional, with each dimension rep-
resenting one of the first three principal components (PCs).
This is achieved through the implementation of three.js, a
Javascript library that enables animated 3D graphics to be
created and displayed in a web browser. It starts with build-
ing a ‘scene’, or a canvas, on which 3D objects will be cre-
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ated. Then a ‘camera’ is set up that controls the view of
objects on the scene from the users’ perspective, such as
the field of view (width, height, depth) and its ratio; and
a ‘renderer’ that renders the scene at short time intervals so
objects are displayed as animated objects (either they are
animated by themselves or moved around on the scene by
users). Objects of different texture, geometry and color can
now be added to and rendered on the scene. Finally, the
scene with objects is attached to the DOM of a webpage
to become visible. In the PCA visualization, each dataset
is represented and rendered as a small sphere, with coordi-
nates (x, y, z) depending on the values of its first three PCs,
and colors on the grouping of that dataset. When users drag
around on the canvas or zoom in or out, all objects are re-
rendered in such a way that the scene appears to be a 3-
dimensional space.

MitoXplorer database (back-end). A MySQL database
hosted at the back-end of mitoXplorer contains the interac-
tomes of mito-genes, including the mito-process, gene on-
tology and the interactions between gene products; and the
expression and mutation data from public databases. Each
entry of the expression and mutation data has a foreign link
to the interactome and file directory (dataset table). This en-
sures that the expression and mutation data will be updated
together with the interactome, or when a dataset is updated
or deleted. Users can upload their own differential expres-
sion and/or mutation data, which will be processed and in-
tegrated with the interactome by extracting mito-genes, and
stored in the mitoXplorer database for up to 7 days.

Data analysis and communication between front- and back-
end. A Python application serves as a bridge between the
front- and back-end of mitoXplorer. Upon the users’ request
to access the database or perform analysis at the web in-
terface, an AJAX-asynchronous call directed to the Python
application is made, so the request can be performed in the
background and the webpage is updated without reloading.
The Python application then processes the request by con-
necting to the MySQL database and analyzes the data re-
trieved from it. The application also handles the user up-
loads (e.g. data cleaning) before saving it to the MySQL
database. The main libraries used by the Python applica-
tion for analysis include: (i) Scikit-learn: a machine learn-
ing library that provides tools for PCA, to perform dimen-
sionality reduction on the expression of all mito-genes and
of each mito-process. The first three principal components
are extracted for each dataset. (ii) SciPy: a mathematical li-
brary that provides modules for hierarchical clustering, to
calculate 2D distance matrices between genes and between
datasets based on expression values, for each mito-process.
(iii) Seaborn: a statistical visualization library built on top
of SciPy to create heatmaps from the results. All the results
are produced in JSON format, which are then sent via the
HTTP protocol back to the front-end and visualized with
Javascript.

The usage of mitoXplorer does not require installation
or programming knowledge. Documentation and tutori-
als are available online and on GitLab (https://gitlab.com/
habermannlab/mitox). MitoXplorer is also available for
download and installation on a local server, if users wish to
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build their own gene list and apply the interactive features
and database of mitoXplorer, which stores the available ex-
pression and mutation data for all genes. Setup instructions
are also available on the mitoXplorer GitLab repository,
as is a docker version of mitoxplorer (https://gitlab.com/
habermannlab/mitox, branch docker-version).

Processing of public transcriptomic and proteomic data.
Proteomic and transcriptomic data from Kiihl (40), as well
as Liu (41), Letourneau (42), Sullivan (43) and Spletter (44)
were uploaded as provided by the authors.

Public NGS datasets downloaded from GEO which did
not already contain differential expression data in the form
of 10g2FC and P-value were analyzed according to avail-
able pre-analyzed data: datasets with available raw read
counts were analyzed using DESeq2 (version 3.9, (45)).
These included data from Chowdhury (46) and Garipler
(47). Datasets for which only the normalized read counts
were available, the log, FC was calculated for each sample,
using the corresponding wild-type samples as control (or
the mean of normal samples if there were no paired sam-
ples) following best-practice guidelines. We applied this to
data from TCGA (1), downloaded from the NCI GDC
Data Portal (https://portal.gdc.cancer.gov/)), from Fleis-
cher (48) and from Huang (49). Finally, microarray time-
course data of yeast meisosis (GEO accession: GSE75257)
were analyzed with GEO2R (50).

Metadata of the datasets (e.g. cell types, analysis pipeline
and genome version used for mapping) were also down-
loaded and stored in the mitoXplorer database. The links
to the experiments for each dataset are available at the
DATABASE summary page of mitoXplorer.

Transcriptomics and proteomics of aneuploid cell lines. The
proteome analysis of the trisomic cell lines was previously
described (51,52).

The raw reads from RNA-sequencing were processed to
remove low quality reads and adapter sequences (using
TrimGalore v0.4.5 (https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/), which uses Cutadapt (53))
and FastQC (Andrew, S. (2010) FastQC: a quality con-
trol tool for high throughput sequence data. http://
www.bioinformatics.babraham.ac.uk/projects/fastqc)), and
aligned to the human reference genome (version hg19) with
TopHat2 (v2.0.11) (54). Cuffdiff from the Cufflinks package
(v2.2.1) (55) was used with standard parameters to calculate
the expression difference between two samples (aneuploid
versus diploid) of multiple replicates and test the statisti-
cal significance. Transcriptome and proteome information
are available in public repositories: NGS data have been de-
posited in NCBI’s Gene Expression Omnibus and are ac-
cessible through GEO series accession number GSE102855
and GSE131249.

Cell culture and treatment. The human cell line RPE-1
hTERT (referred to as RPE) was a kind gift by Stephen
Taylor (University of Manchester, UK). Human HCT116
cells (referred to as HCT) were obtained from ATCC
(No. CCL-247). Trisomic cell lines were generated by
microcell-mediated chromosome transfer as described pre-
viously (51). The A9 donor mouse cell lines were pur-

chased from the Health Science Research Resources Bank
(HSRRB), Osaka 590-0535, Japan. All cell lines were main-
tained at 37°C with 5% CO, atmosphere in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal
bovine serum (FBS), 100 U penicillin and 100 U strepto-
mycin.

MitoTracker staining and imaging. Mitochondria were
stained in 96-well plates. The cells were incubated for 30 min
at 37°C with 100 nM MitoTracker deep Red FM (M22426,
Invitrogen@®)) dye prior to fixation. Cells were fixed with 3%
PFA in DMEM for 5 min at room temperature. After wash-
ing twice with 1XxPBST, plates were stored with 1 x PBS con-
taining 0.01% sodium azide. Plates were stored at 4°C in
the dark. Imaging was carried out on an inverted Zeiss Ob-
server.Z1 microscope with a spinning disc and 473, 561 and
660 nm argon laser lines. Imaging devices were controlled,
and images were captured, stored and processed with the
SlideBook Software in Fiji (56). The images were captured
automatically on multiple focal planes (step size: 700 nm)
with a 40 x magnification air objective.

Metabolic profiling of wild-type and T21 cell lines. RPE
and HCT cells and their T21 derivatives were seeded at 25
000 or 36 000 cells/well respectively, on XF96 cell plates
(Seahorse Bioscience, Agilent Technologies), 30 h before
being assayed. Optimization of reagents as well as CCCP
and digitonin titrations were performed as described by the
manufacturer’s protocols (Seahorse Bioscience). The exper-
iments were performed using the mitochondrial and gly-
colytic stress test assay protocol as suggested by the man-
ufacturer (Seahorse Bioscience, Agilent Technologies). By
employing the Seahorse Bioscience XF Extracellular Flux
Analyzer, the rate of cellular oxidative phosphorylation
(oxygen consumption rate (OCR)) and glycolysis (cellular
proton production rate (PPR)) were measured simultane-
ously.

For OCR measurement, DMEM media was supple-
mented with 25 mM glucose, | mM pyruvate and 2 mM
glutamine. Basal rate was recorded and additions for the
mito stress test were as follows: 1.5 wM oligomycin, CCCP,
2 wM rotenone + 4 pM antimycin A. For PPR measure-
ment, DMEM media was supplemented with 2 mM glu-
tamine. Basal rate was recorded and additions for the gly-
colysis stress test were as follows: 10 mM glucose, 1.5 pM
oligomycin and 100 mM 2-deoxyglucose.

For intact cells, the CCCP concentrations were 7 and 1.5
pM for RPE1 and HCT116 cells, respectively. The assays
of intact cells were performed in 96-well plates with at least
10 replicates per cell line. For the permeabilized RPE1 cell
lines, the CCCP and digitonin concentrations were 10 and
40 pM, respectively. For OCR measurement, Mannitol—
sucrose buffer (MAS) was prepared according to Seahorse
Biosciences. For permeabilization, digitionin was added to
MAS buffer together with the respective respiratory sub-
strates: 10 mM pyruvate/2 mM malate, 10 mM succinate/2
wM rotenone or 0.5 mM TMPD/2 mM ascorbate/2 pM
antimycin A. Basal respiration was recorded, as were addi-
tions of 4 mM ADP, 1.5 uM oligomycin, CCCP and 2 pM
rotenone + 4 pM antimycin A or 20 mM Na-azide. The as-



says in permeabilized cells were performed in poly-D-lysine-
coated 96-well plates with at least five replicates per cell line.

Normalization was performed with the CyQuant cell pro-
liferation assay kit (Life Technologies) in the same plate
used for the assay of intact cells; and in a parallel plate for
the permeabilized cells. Data analysis was done according
to (57).

The mito Morph plugin for morphological characterization of
mitochondria by image analysis. Classification and mea-
surement of mitochondria were performed using the soft-
ware ImagelJ (58), complemented with all the default plug-
ins provided by Fiji (56) and with the additional plugin Fea-
turel. A set of functions were developed to assist the user in
the preparation and analysis of the data, either in interactive
or batch processing mode.

Using this toolset, after all the cells of interest were man-
ually outlined in each image, the mitochondria were seg-
mented and characterized. For each processing step, the al-
gorithms used are reported as described in Imagel, and their
parameters are specified in physical units.

The images were pre-processed by first suppressing the
background signal (rolling ball background subtraction,
kernel radius: 2.5 wm) and then enhancing the mitochon-
dria signal (Laplacian of Gaussian, smoothing scale: 1 pm,
followed by contrast limited adaptive histogram equaliza-
tion, CLAHE, kernel size: 2.5 pm). Mitochondria candi-
dates were obtained by segmentation, using Yen threshold-
ing algorithm (59), and subjected to classification based on
a set of determined features.

Objects that were too small were excluded from the anal-
ysis, and the remaining ones were assigned to one of four
categories: filamentous networked (filaments), puncta, rods
and swollen (60). Objects that were quasi-round, compact
in intensity, and larger than the puncta were classified as
swollen. All objects with an intermediate phenotype be-
tween fragmented puncta and network of filaments were
classified as rods.

Classification was performed by sequentially verifying
different selection criteria, one set for each class, based
on the following measured features: area (A), aspect ratio
(AR), circularity (C), solidity (S), minimum Feret diame-
ter (here indicated as minimum linear extension, MLE) and
longest shortest-path (here indicated as extension, E). While
all the other measures are directly derived from the segmen-
tation, the extension is measured as the longest shortest-
path between any two end points in the skeleton derived
from the segmentation. The selection criteria are evaluated
sequentially as reported in Supplementary Table S1.

We would like to note that analysis of mitochondrial mor-
phology on projected images is limited, as mitochondrial
structures might not be resolved properly.

Image analysis using mito Morph and data processing. Im-
age processing and analysis was done in Fiji. Image stacks
were Z-projected, cells were manually selected and the re-
sulting images were saved for further batch processing using
mitoMorph. Resulting network statistics of mitochondrial
features for each individual cell were used for further pro-
cessing (Supplementary Table S1). All statistical processing
and data visualization of mitoMorph results was done using
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RStudio (v1.1.423, R-version: 3.6.1). Data were averaged
over both clones of the two T21 cell lines.

RESULTS

The outline of the mitoXplorer web-platform is illustrated
in Figure 1: at the back-end, manually curated mitochon-
drial interactomes from human, mouse, Drosophila and
budding yeast, as well as expression and mutation data from
these four species are stored in a MySQL database (details
on the implementation of the back-end are available in Ma-
terials and Methods, as well as Supplementary Figure S1).

The user interacts with the mitoXplorer web-platform via
the front-end, which offers different visualization and anal-
ysis methods. Users can either browse stored public data or
upload their own data.

The mitochondrial interactomes

The main component of mitoXplorer is the mitochondrial
interactome. Its accurate annotation and completeness are
essential for performing a meaningful mitoXplorer-based
analysis. To establish mitochondrial interactomes, we have
assembled and manually curated lists of genes with anno-
tated mitochondrial processes (mito-processes). Currently,
the interactomes of four organisms are available on mi-
toXplorer: Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces cere-
visiae (budding yeast). We started from published mito-
chondrial proteomic data (27,61) for the selected species
and manually cleaned the data, as well as supplemented
missing mito-genes in the following way: we removed obvi-
ous false-positives from the datasets; these included mainly
proteins for which there is compelling evidence in litera-
ture that they are not localized to mitochondria. Next, we
supplemented likely missing genes from the proteomic data
using information from Mitocarta (24), KEGG (62) infor-
mation of genes associated with mitochondrial pathways,
as well as orthologs across species from the four proteomic
datasets. To establish whether a protein in question is pri-
marily localized to mitochondria or not, we relied on several
sources: (1) evidence from the literature on a specific gene;
(i1) information from the respective gene entry at NCBI
(63), Flybase (64) or the Saccharomyces genome database
(SGD) (65); (iii) information from the GeneCards database
(66); (iv) information from UniProt (67). We supplemented
the lists with all non-coding genes present in the mitochon-
drial genomes, namely all mitochondrial rRNAs, as well as
tRNAs. After manual curation, we obtained 1229 human,
1222 mouse, 1139 Drosophila and 988 budding yeast mito-
genes. We grouped the genes in mito-processes using con-
trolled vocabulary. In addition to purely mitochondrial pro-
cesses, we added cytosolic processes coupled to mitochon-
drial functions, including Glycolysis, the Pentose phosphate
pathway, Apoptosis or the regulation of transcription of
nuclear-encoded mitochondrial genes (Transcription (nu-
clear)). This resulted in a total of 38 mito-processes (Ta-
ble 1). We selected the correct mito-process for each gene
primarily using information from the same sources men-
tioned before (NCBI gene entry, Flybase, SGD, GeneCards,
UniProt, KEGG). According to our current annotation,
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Figure 1. Setup of the mitoXplorer web-based visual data mining platform. A manually curated, annotated mitochondrial interactome represents the
central part of the mitoXplorer software, for which we have assembled 1229 mito-genes in human, 1222 mito-genes in mouse, 1139 mito-genes in fruit fly
and 988 mito-genes in budding yeast in 38 mitochondrial processes (mito-processes). We have connected gene products using protein-protein interactions
from STRING (69). Publicly available expression and mutation data from repositories such as TCGA or GEO are provided for data integration, analysis
and visualization and are stored together with species interactomes in a MySQL database. Users can provide their own data, which are temporarily
stored and only accessible to the user. A set of Python-based scripts at the back-end of the platform handle data formatting, integration and analysis
(Supplementary Figure S1). The user interacts with mitoXplorer via several visual interfaces to analyze, integrate and visualize his private, as well as public
data. Four interactive visualization interfaces are offered: (i) the Interactome View allows at-a-glance visualization of the entire mitochondrial interactome
of a single dataset (see Figure 2); (ii) comparative plots, consisting of a scatterplot and a sortable heatmap allows comparison of up to six datasets, whereby
a single mito-process is analyzed at a time (see Figure 3); (iii) hierarchical clustering allows comparison of a large number of datasets which are clustered
according to their expression values. Hierarchical clustering plots are zoom-able and interactive (see Figure 4); (iv) principal component analysis displays
PCA-analyzed datasets in 3D, providing filtering and grouping functions. There is in principle no limit to the number of datasets that can be analyzed
using PCA (see Figure 5).



one gene is part of only a single mito-process. We acknowl-
edge that this annotation strategy has limitations, as a mito-
gene can be part of more than one mito-process: as an
example, in KEGG, the human gene GPI is part of the
pathways Glycolysis, as well as Pentose phosphate path-
way. In GeneCards, GPI is primarily associated with Gly-
colysis, thus we assigned it to the mito-process Glycolysis.
For other genes, the existing annotations were less clear and
we had to decide on the primary process a gene should be-
long to. For some mito-processes, we solved this by intro-
ducing the ontologically higher ranked term: for instance,
mito-genes involved in fatty acid (FA) metabolic pathways
can be associated with either the biosynthesis or degrada-
tion of FAs, or both: genes implicated in both processes
were allocated to the term that would rank higher, namely
Fatty acid metabolism. Genes involved in the transport of
molecules across the mitochondrial membrane were divided
into three groups: those involved in import & sorting of
all mito-proteins that are encoded in the nuclear genome
and translated in the cytosol into mitochondria; those that
are part of the mitochondrial carrier family (68); and fi-
nally those transmembrane proteins that are involved in mi-
tochondrial transmembrane transport and cannot be as-
sociated with either of the other two groups. Finally, to
complete the mitochondrial interactome and reveal poten-
tial interactions between mito-processes, we added protein-
protein interaction information from STRING (69) for all
mito-genes.

Since we cannot guarantee that our current annotation is
either complete or exempt from mis-annotations, and with
the goal of nucleating a community-based effort to further
complete and improve the annotation of the mitoXplorer
mito-interactomes, we provide a ‘FEEDBACK’ page. Users
can submit comments and suggestions on genes and their
annotations using this page, suggest new genes and new
mito-processes or provide any other feedback.

Mito-genes of human, mouse, Drosophila and budding
yeast annotated with mito-processes are available in Sup-
plementary Table S2A-D. The mito-interactomes can also
be downloaded from the INTERACTOME page of mitoX-
plorer. These manually curated and annotated interactomes
enable a meaningful analysis and visualization of mitochon-
drial expression dynamics of mito-genes and mito-processes
by comparing differential expression of two or more condi-
tions in mitoXplorer.

The mitoXplorer expression and mutation database

To foster the analysis of mitochondrial expression dynamics
and mutations, mitoXplorer hosts expression and mutation
data from public repositories in a MySQL database.

Expression data encompass analyzed data of differen-
tially expressed genes from RNA-seq studies and are avail-
able in the form of log, fold change (1og2FC) and P-value.
One differential dataset thus includes two experimental con-
ditions with all replicates. Mutation data include analyzed
data of identified SNPs of one sample against a publicly
available reference genome or transcriptome.

Pre-analyzed public data are taken as provided by the
authors of the respective study: information on software
and genome version used for read mapping, as well as soft-
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ware and settings used for differential expression analysis
can generally be found at the GEO-link of the respective
project listed on the DATABASE page. We have ensured
that only high-quality data with replicates, as well as a prop-
erly described analysis strategy are available in the mitoX-
plorer database. If only raw read counts were available, we
analyzed the data using state-of-the-art software (DESeq2
(45), for details see Methods). Finally, whenever only nor-
malized read counts were available, which is typical for large
population-based studies, we calculated 1og2FC according
to (70). It should be noted that due to the heterogeneity of
the available formats of the provided data, the algorithms
and their settings, as well as the genome version used for
read mapping might differ for available projects in mitoX-
plorer.

The largest public resource imported into mitoXplorer
covers publicly available expression data of human can-
cers from The Cancer Genome Atlas (TCGA) (1). We have
included all paired samples. This resulted in a total of
523 differential datasets from six different cancer types:
kidney cancer (KIRK), breast cancer (BRCA), liver can-
cer (LIHC), thyroid cancer (THCA), lung cancer (LUAD)
and prostate cancer (PRAD). Changes in mitochondrial
metabolism have been described in many cancer types
(for a review, see (71)). As mitoXplorer is thus far the
only resource that allows a focused analysis of mito-genes
across different cancer types or patient groups, this resource
should be especially useful to shed light on the expression
dynamics of mito-genes in cancer and to classify the mito-
chondrial metabolic profiles of tumor types and sub-types.
Users can moreover integrate proprietary data with differ-
ential expression data from different tumor types and sub-
types.

We also uploaded expression data from cultivated fibrob-
lasts of healthy human donors ranging from 1 to 94 years of
age (48) (GEO accession: GSE113957). Since decline in mi-
tochondrial quality and activity are well-known contribu-
tors to age-related conditions and diseases (72), this dataset
should help uncover the contribution of altered mito-gene
expression dynamics to the ageing process.

We made available several datasets from mouse knock-
out studies: we uploaded differential transcriptomic and
proteomic data of five different mouse conditional heart
knock-out strains of genes involved in mitochondrial
replication, transcription and translation (40) (Lrppre,
Mterf4, Tfam, Polrmt, Twnk (Twinkle), (GEO accession:
GSE96518)). These data are especially helpful in unravel-
ing the transcriptional and post-transcriptional effects on
mito-genes upon disruption of gene expression at different
levels in mitochondria.

Furthermore, we added data from a mouse model of a
known mitochondria-associated condition, the Barth syn-
drome. Barth syndrome patients develop severe cardiomy-
opathy (73). This syndrome is caused by mutations in or
loss of the TAZ gene coding for the protein Tafazzin which
is involved in cardiolipin biosynthesis (74). Failure of en-
zyme activity of Tafazzin leads to altered mitochondrial
membrane composition, structure and metabolism (74,75).
We provide differential expression data of Taz knock-out
mouse embryonic fibroblasts (MEFs) compared to wild-
type in normoxic and hypoxic conditions generated by



612 Nucleic Acids Research, 2020, Vol. 48, No. 2

Table 1. Mito-processes and number of associated mito-genes in human, mouse, Drosophila and budding yeast

Mito-process Human Mouse Drosophila Budding yeast
Amino acid metabolism 81 79 67 44
Apoptosis 56 55 43 6
Bile acid synthesis 2 2 7 0
Calcium signaling & transport 23 23 12 4
Cardiolipin biosynthesis 6 6 5 5
Fatty acid biosynthesis & elongation 22 22 15 13
Fatty acid degradation & beta-oxidation 30 31 26 9
Fatty acid metabolism 15 13 20 8
Fe-S cluster biosynthesis 25 26 19 23
Folate & pterin metabolism 13 13 9 13
Fructose metabolism 7 7 3 14
Glycolysis 38 37 35 33
Heme biosynthesis 9 9 9 5
Import & sorting 51 51 61 55
Lipoic acid metabolism 3 3 4 3
Metabolism of lipids & lipoproteins 34 36 17 14
Metabolism of vitamins & co-factors 17 18 19 9
Mitochondrial carrier 46 45 46 23
Mitochondrial dynamics 61 59 48 39
Mitochondrial signaling 18 18 10 11
Mitophagy 21 21 13 11
Nitrogen metabolism 9 9 16 7
Nucleotide metabolism 15 15 12 23
Oxidative phosphorylation 167 164 173 115
Oxidative phosphorylation (MT) 13 13 13 9
Pentose phosphate pathway 7 7 6 14
Protein stability & degradation 27 27 20 25
Pyruvate metabolism 26 25 24 12
Replication & transcription 51 52 32 50
ROS defense 34 34 30 24
Transcription (nuclear) 24 24 25 6
Translation 185 184 192 210
Translation (MT) 24 24 24 37
Transmembrane transport 20 20 21 24
Tricarboxylic acid cycle 21 22 29 26
Ubiquinone biosynthesis 9 9 9 12
Unknown 12 12 20 46
UPRmt 7 7 4 6

Chowdhury et al. (46) (GSE accession: GSE119775); these
data should help reveal the effect of Tafazzin loss of func-
tion during hypoxia.

To extend mitoXplorer to other model organisms, we
added data from D. melanogaster, namely expression data
from 185 wild-derived, inbred strains (males and females)
from the Drosophila Genetics Reference Panel (DGRP2)
(49): this set of lines stems from an out-crossed population
in Raleigh, North Carolina. These wild-derived fly strains
display a substantial quantitative genetic variation in gene
expression. The availability of these data on mitoXplorer al-
lows a focused analysis of mito-genes to elucidate whether
mitochondrial expression dynamics is equally impacted in
these strains.

Moreover, we have uploaded data from a recently pub-
lished systematic study of flight muscle development in
D. melanogaster (44) (GEO accession: GSE107247). This
enables the analysis of mitochondrial expression dynam-
ics during the development and differentiation of a tis-
sue that is highly dependent on an efficient mitochon-
drial metabolism and especially ATP production for proper
functioning.

Regarding budding yeast, we imported data from a time-
course expression profiling experiment of meiosis of a syn-
chronized cell culture (Hanlon SE, Lieb JD (unpublished),

GEO accession: GSE75257), allowing users to mine the ex-
pression dynamics of mito-genes over 12h of sporulation.
This project is the only microarray-based dataset we have
uploaded on mitoXplorer.

Finally, we uploaded data from Protein Phosphates 2A
(PP2A) yeast deletion strains; these strains show a dimin-
ished response of nuclear gene expression associated with
mtDNA damage compared to wild-type (47) (GEO acces-
sion: GSE52242). This dataset should help shed light on the
role of the conserved protein phosphatase PP2A in protect-
ing cells from mtDNA damage.

To verify mitoXplorer predictions experimentally, we use
data from human trisomy 21: we provide data from human
trisomy 21 patients (GEO accession numbers: GSE55426;
GSE79842; (42,43)), from trisomy 21 studies in mouse
(GSE5542 (42), GSE79842 (43)), as well as differential
datasets generated in the course of this study from human
trisomic cell lines (11 datasets) which have been partially
published elsewhere (51,52) (GEO accessions: GSE39768;
GSE47830; GSE102855). These transcriptomic, as well as
proteomic datasets should help understand the role of mi-
tochondria and the mitochondrial metabolism in trisomy
21.

All available data can be viewed and accessed from the
mitoXplorer DATABASE web-page.



User-provided expression and/or mutation data

Researchers can upload and explore their own data in
mitoXplorer, given that they originate from one of the
species contained in the mitoXplorer platform. Data must
be pre-analyzed. Differential expression data must contain
the dataset ID (describing the experimental condition), the
gene name and the log2FC. Optional values include the
P-value, as well as the averaged read counts (or intensi-
ties) of the replicates of the compared conditions. Muta-
tion data must contain the dataset ID, gene name, the chro-
mosome, the position, as well as reference and alternative
allele. Optional values include the effect, as well as the
consequence of the mutation. Users have the option to ei-
ther generate their own data according to the format de-
scribed on our website. We recommend to follow the best-
practice-guidelines available for analyzing transcriptomic
or proteomic data prior to uploading data to mitoXplorer
(see for instance (76,77) for differential expression analy-
sis or (78) for variant calling). Alternatively, users may use
the RNA-seq pipeline for differential expression analysis
and mutation calling that we provide at https://gitlab.com/
habermannlab/mitox_rnaseq_pipeline/.

The entire list of genes from a study should be uploaded
to the platform for several reasons: first, a restriction to only
differentially expressed or mutated genes will suppress links
between proteins in the interactome; second, an integration
of user data with publicly provided data is difficult with in-
complete datasets; third, mitoXplorer will automatically se-
lect the mito-genes from the user data. Uploaded data will
be checked for correct formatting and integrated with the
interactome of the chosen species. User data are only visi-
ble to the owner and are stored in the mitoXplorer MySQL
database for 7 days. Users can integrate their own data with
available public data on mitoXplorer to perform various
analyses and visualizations as described below (Figure 1).

Analysis and visualization tools in mitoXplorer

The mitoXplorer web-platform provides a set of powerful,
easy-to-read and highly interactive visualization tools to an-
alyze and visualize public, as well as user-provided data by
VDM (Figure 1): an Interactome View to analyze the over-
all expression and mutation dynamics of all mito-processes
of a single dataset containing differentially expressed genes
between two conditions and potential mutations in mito-
genes; the Comparative Plot, consisting of an interactive
scatterplot, as well as an interactive heatmap for compar-
ing up to six datasets; the Hierarchical Clustering, as well as
the Principal Component Analysis for comparative analysis
of many datasets.

INTERACTOME VIEW

The Interactome View can be used to get an at-a-glance view
of the overall expression dynamics of all mito-processes of
a single dataset of differentially expressed mito-genes and
potential mutations (Figure 2A). It allows users to identify
the most prominently changed mito-processes or -genes in a
dataset. The genes are grouped according to mito-processes
and displayed in the process they are assigned to. The Inter-
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actome View is highly dynamic and can be adjusted by users
to their needs.

When the Interactome View is launched, each mito-
process is primarily shown as a grey circle with elements
colored in grey, blue and/or red, indicating up- or down-
regulated genes within the process, respectively (Figure 2A).
Thus, mito-processes with the most up- or down-regulated
genes can be quickly identified.

When clicking on a process name, its circle opens up to
display all its member genes as bubbles. The size of the bub-
ble relates to the strength of the differential regulation while
the color indicates up- (blue) or down- (red) regulation of
the gene (Figure 2B). If information about mutations is in-
cluded in the dataset, this is indicated by a thicker, black
border of the gene bubble.

Hovering over a gene will display the gene name, its func-
tion, its mito-process, the 1og2FC and the P-value of the
differential expression analysis, as well as potential muta-
tions in the information panel (Figure 2C). If a gene phys-
ically interacts with other mito-genes, hovering over it or
over the process circle will in addition display these connec-
tions (Figure 2C). Thus, the user is immediately informed
about the location and connectivity of the protein of in-
terest within the mitochondrial interactome. Users can also
search for specific genes using the ‘FIND A GENE’ box at
the top of the page.

The Interactome View can be launched by clicking on the
‘eye’ symbol next to dataset names from the ANALYSIS
page of mitoXplorer, after having chosen the organism, the
project and the dataset. Alternatively, users can access sin-
gle datasets from the DATABASE page of the platform, by
clicking on the eye symbol of a listed dataset after having
chosen a species, as well as a project. A new page will be
opened for the Interactome View, which allows opening and
comparing multiple datasets at the same time. This is espe-
cially useful for comparing the overall expression change of
mito-processes of multiple datasets.

COMPARATIVE PLOT

The Comparative Plot visualization combines several in-
teractive graphs to analyze one mito-process, allowing the
comparison of up to six datasets. It includes a scatterplot
with a dynamic y-axis, as well as an interactive heatmap
at the bottom of the page. The mito-process to be visual-
ized can be selected in the process panel (Figure 3A). Red
and blue coloring of the dots and the heatmap indicates the
directionality of differential expression (blue: upregulated;
red: down-regulated); bright blue, larger gene bubbles in the
scatterplot indicate mutations, if available from the dataset.
This Comparative Plot offers an overview of the expression
dynamics of all members of one mito-process for up to six
individual datasets and thus can be helpful in identifying
co-regulated genes e.g. in time-course data, patients or mul-
tiple mutant datasets.

Hovering over a gene bubble, or over a tile in the heatmap
will again display the respective associated information of
the gene in the information panel (gene name, function,
mito-process, logo FC, P-value, potential mutations) (Figure
3B). The heatmap can be sorted according to the dataset,
as well as the differential expression values within one
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dataset (Figure 3C). The Comparative Plot is especially use-
ful for performing a detailed, comparative, mito-process
based analysis of differential expression dynamics between
different datasets.

We applied this analysis method to visualize differential
expression data from a time-series study of flight muscle de-
velopment during pupal stages in Drosophila (44) (Figure
3). While enrichment analysis has revealed a general pos-
itive enrichment of processes like Tricarboxylic acid cycle
(TCA Cycle) in the course of flight muscle development,
mitoXplorer identifies 12 genes of TCA cycle that are co-
regulated. This group of genes is strongly upregulated be-
tween 0 and 16 h after puparium formation (APF), when
myoblasts divide and fuse to myotubes. The same group of
genes is consecutively down-regulated in two phases at time-
points 30-48 h and 72-90 h APF, when myotubes differen-
tiate to mature muscle fibers. This is surprising as in ma-
ture muscle fibers the TCA cycle should be important for
proper functioning. Their strong induction between the first
two time-points could be responsible for downregulation at
later stages.

THE HEATMAP: HIERARCHICAL CLUSTERING

Hierarchical Clustering visualization allows the analysis of
up to 100 datasets, analyzing one process at a time. This cre-
ates a heatmap with mito-genes, as well as -datasets, which
are clustered according to the log, FC using hierarchical
clustering (Figure 4 a). The results are displayed as a clus-
tered heatmap, with a dendrogram indicating the distance
between datasets or between genes.

Hovering over a gene will display its associated informa-
tion, as well as dataset information in the information panel
(Figure 4B). The user can furthermore zoom into parts
of the heatmap to get a more detailed view of the data.
The heatmap is particularly useful for discovering groups of
similarly regulated mito-genes or datasets within one mito-
process.

We applied this visualization tool to display transcrip-
tome and proteome data from a recent, systematic study of
mouse conditional knock-out strains for five genes involved
in mitochondrial replication (Twinkle (Twnk)), mtDNA
maintenance (7fam), mito-transcription (Polrmt), mito-
mRNA maturation (Lrpprc) and mito-translation (mTerf4)
(40). Interestingly, the expression dynamics of the mito-
chondrial transcriptomes and proteomes in heart tissue did
not cluster together for the mutants, suggesting strong post-
transcriptional effects or protein stability changes of mito-
proteins upon the loss of any of these genes. In accordance
with this, the expression of some mito-genes in the process
Pyruvate metabolism that is shown here differs on transcrip-
tome and proteome level. This demonstrates the usefulness
of hierarchical clustering and the heatmap display in iden-
tifying the correlation or divergence between genes as well
as datasets.

PRINCIPAL COMPONENT ANALYSIS

A larger number of datasets can be compared using Prin-
cipal Component Analysis (PCA), either for an individual
mito-process, or considering all mito-genes together (Fig-
ure 5A). In PCA, the expression value (e.g. log, FC) of each

gene is considered as one dimension, and each dataset repre-
sents one data point. In the resulting 3D PCA plot, the three
axes represent the first three principal components and each
bubble represents one dataset. The PCA is again interactive.
Mito-processes can be selected via a drop-down menu on
the top of the page. The plot can be turned and moved in
3D and has a zooming function.

Hovering over a bubble will give the information asso-
ciated with an individual dataset in the information panel,
including the values of the first three principal components
(Figure 5B). The information differs for each project cho-
sen.

Individual datasets can be selected and colored via the
dataset panel next to the plot (Figure 5C). For instance with
data from TCGA the filter and coloring can be used to high-
light or to limit the plot to data from different tumors, dif-
ferent tumor stages or according to any other additional in-
formation provided. The PCA is especially useful for an-
alyzing a large number of datasets and displaying specific
trends in sub-groups.

We used the PCA plot to visualize data from the TCGA
for four cancer types stored in mitoXplorer in Figure 5A,
whereby the colors of the bubbles represent the different tu-
mor types. The plot clearly highlights the variance of the
different tumor types. In particular, kidney and liver cancer
are highly distinct with respect to the first three components
of all mito-genes (Figure 5A).

GROUPS function

In order to allow a more detailed, gene-centered analysis of
correlated datasets, we added the possibility to select and
group datasets in the Heatmap and the PCA views. Groups
of datasets can be compared against each other with the
Comparative Plot, whereby the log, FC is averaged over the
data within a group. This functionality is useful, for instance
when different groups of donors with similar expression
patterns should be compared to each other.

We demonstrate the usability of the GROUPS function
in Supplementary Figure S2, where we analyzed the aver-
aged expression patterns of ageing human fibroblasts from
healthy donors from 1 to 94 years of age (48). A first analysis
using the PCA plot revealed that individuals which are older
than 80 years were separated from the rest of the donors
(Supplementary Figure S2A).

We next applied the GROUPS function to analyze dif-
ferent age groups using the mitoXplorer Comparative Plot.
We chose to group individuals based on age, whereby we
generated six age groups from age 40 to 100 years. As the
age group 80-90 years showed two distinct clusters, we split
this group in individuals that cluster with younger donors
(gl), and those that cluster with the age group over 90 (g2).
Our analysis using mitoXplorer GROUPS helped reveal a
strong downregulation of a substantial number of mito-
genes in nearly all mito-processes starting from the age of
85 (Supplementary Figure S2B), suggesting a general mito-
chondrial decline in old age.

Taken together, mitoXplorer provides a versatile, inter-
active and integrative set of tools to visualize and analyze
the expression dynamics as well as mutations of mito-genes
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heatmap by grouping. To do this, first a group name has to be defined; second, the datasets belonging to this group have to be selected by clicking on one

of the gene boxes of the dataset. This process can be repeated and the resulting groups can then be analyzed using Comparative Plots (see Supplementary
Figure S2).
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Figure 5. Principal component analysis and PCA plot of the mitoXplorer platform. (A) PCA analysis and plot of transcriptome data of The Cancer
Genome Atlas (TCGA) database (1), showing four different cancer types: breast cancer (BRCA), kidney cancer (KIRK), liver cancer (LIHC) and lung
cancer (LUAD). Each bubble represents one dataset, in this case, one cancer patient. At the right side at the top of the plot, the mito-process to be shown
can be selected. In this case, ‘All Processes’ were selected, containing data from all mito-genes. At the right side next to the plot, different colors, as well as
filters can be chosen. In this case, the Cancer Type was chosen for coloring, showing the four different cancer types in four different colors. (B) Hovering
over a bubble will display associated information on the dataset, including the dataset name, and in case of the TCGA, information on the cancer type,
the stage, the gender, the vital status, as well as skin color. In addition, the three PC components are shown. (C) Selecting color schemes on the right-hand
side will change the coloring of the bubbles. In this case, only lung cancer is shown, and coloring is done according to Stage, Gender, Vital, and Skin color.
This panel can also be used for selecting specific datasets. For instance, clicking on one of the stages will only display the chosen stage and omit datasets
from other stages. As in the heatmap, datasets can be selected from the PCA for grouping. To do this, first a group name has to be defined; second, the
datasets belonging to this group have to be selected by clicking on one of the dataset bubbles. This process can be repeated and the resulting groups can
then be analyzed using Comparative Plots (see Supplementary Figure S2).



and mito-processes, facilitating a detailed understanding of
observed changes at a molecular level.

Analyzing transcriptomes of mitochondria-associated health
conditions using mitoXplorer

To demonstrate the analytical and predictive power of mi-
toXplorer, we explored available transcriptome data from
health conditions associated with mitochondrial functions.
We first performed mitoXplorer analysis of data from a
mouse model of Barth syndrome (46), a mitochondrial dis-
order caused by mutations of the Taz gene which encodes
the protein Tafazzin. Second, to show that we could verify
mitoXplorer predictions experimentally, we analyzed our
set of trisomy 21 data using mitoXplorer (51,52).

Analyzing the effects of Tafazzin loss of function in normoxic
and hypoxic conditions using mitoXplorer

The Taz gene which encodes the cardiolipin acyl transferase
Tafazzin is required for the remodeling of cardiolipin, an
essential lipid component of the mitochondrial inner mem-
brane (79). Loss of Tafazzin function leads to an abnor-
mal fatty acid composition and a decrease in cardiolipin
levels, resulting in abnormal mitochondrial morphology
and dynamics, decreased stability of respiratory supercom-
plexes and increased oxidative stress (see (80) and references
therein). Loss of Tafazzin function is also the primary cause
of Barth syndrome (73), a rare, recessive, X-linked disorder
that is characterized by cardiomyopathy, skeletal myopathy,
growth retardation and neutropenia (81). Cardiolipin has
been implicated in many mitochondrial processes, including
mitochondrial protein import, mitochondrial carrier func-
tion, mitochondrial morphology and dynamics, respiratory
chain function and metabolism (see (82) and references
therein). Chowdhury et al. (46) subjected Tafazzin-mutant
mouse embryonic fibroblasts (MEFs) to hypoxic stress to
unravel the mechanism of impaired hypoxia-response in this
cellular model of Barth syndrome. They observed that in hy-
poxia, a reduction of ROS levels in Tafazzin-deficient cells
prohibited the induction of the NF-kB pathway, resulting
in reduced Hifla expression levels and subsequently the in-
ability to respond to hypoxia.

Using the mitoXplorer Interactome View, we first could
show that loss of Tafazzin function leads to a substan-
tial perturbation of mito-gene expression in normoxic con-
ditions (Supplementary Figure S3A), among which are
the mito-processes Mitochondrial dynamics and Mitochon-
drial carrier (Figure 6A, B). In hypoxia, the expression pro-
file of Tafazzin-deficient MEFs showed markedly different
expression dynamics from wild-type cells (Supplementary
Figure S3B).

In agreement with the findings from Chowdhury et al.,
using mitoXplorer we found Hifla down-regulated in Taz-
deficient cells under normoxic and hypoxic conditions,
while it was induced in hypoxia in wild-type cells (Figure
6C). Using Harmonizome (83), we also found a number of
predicted and verified Hifla target genes, some of which
were de-regulated under hypoxic conditions in the Tafazzin-
deficient cells (marked by an asterisk in Figure 6A-D). Next
to Hifla we found Yapl de-regulated with the same expres-
sion dynamics. Yapl is part of the Hippo signaling pathway
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and was shown to be stimulated in hypoxia (84), where it
binds to and stabilizes Hifla. As shown in Figure 6C, Yapl
was down-regulated upon loss of Tafazzin function in nor-
moxic and hypoxic conditions, while it was upregulated in
hypoxia in wild-type cells.

mitoXplorer analysis also revealed the failure of induc-
ing RelA in hypoxia in Tafazzin-deficient cells. This tran-
scription factor is a member of the Nf-kB family and was
shown to be induced and activated early in hypoxia to mod-
ulate NF-kB target gene expression. The NF-«kB depen-
dent response to hypoxia was equally impaired upon loss
of Tafazzin function.

Chowdhury and colleagues proposed that reduced ROS
levels in response to hypoxia prevent proper NF-«kB acti-
vation in Tafazzin-deficient cells. We thus investigated the
expression dynamics of mito-genes in ROS defense using
mitoXplorer and found that the Mitochondrial Methionine
Sulfoxide Reductase B2 (MsrB2) was strongly induced in
Tafazzin-deficient MEFs (log, FC of 6.67 in normoxic and
5.13 in hypoxic conditions, respectively), whereas MsrB2
levels remained constant in wild-type cells in hypoxia (Fig-
ure 6D). MsrB2 reduces methionine (R)-sulfoxide to me-
thionine and thus decreases reactive oxygen species in the
cell due to its quenching properties; thus, its overexpression
protects cells from oxidative stress (85). Its strong induc-
tion could be responsible for reduced ROS levels observed
in Tafazzin-deficient cells.

In conclusion, using mitoXplorer we could not only iden-
tify previously described mito-processes affected by loss of
Taffazin in normoxic conditions and confirm expression
changes of Hifla in Tafazzin-deficient cells in hypoxia. The
expression profiles revealed by mitoXplorer analysis fur-
thermore suggest that loss of Yapl contributes to the ob-
served phenotype by de-stabilizing Hifla. Moreover, our
analysis using mitoXplorer indicates that massive induction
of the MsrB2 gene could be responsible for reduced ROS
levels in Tafazzin-deficient cells in hypoxia, leading to a fail-
ure of induction of the NF-kB pathway and the transcrip-
tion factor RelA.

Analyzing cell lines carrying trisomy 21 using the mitoX-
plorer platform

We next wanted to experimentally verify predictions made
with mitoXplorer. To this end, we analyzed the tran-
scriptome and proteome of a set of aneuploid cell lines
carrying an extra copy of chromosome 21 (trisomy 21,
T21). Mitochondrial dysfunction has been repeatedly found
in T21 patients, whereby mostly oxidative stress, as well
as—potentially resulting—mitochondrial respiratory defi-
ciency have been shown to contribute to some of the ob-
served clinical features (see for instance (86-99)). Tran-
scriptome studies of different T21 tissues using microarrays
(100-110) and more recently RNA sequencing (42,43,111)
and proteomics (41,112-115) have revealed a complex pic-
ture of gene expression changes, with a marked dissimilarity
in differential expression of mito-genes on mRNA and pro-
tein levels, indicating a potential post-transcriptional reg-
ulatory effect of some mito-genes in T21 (41). Yet, mito-
gene and protein expression data in different tissues or un-
der varying conditions in T21 remain sparse and a coherent
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Figure 6. Mito-gene expression dynamics of Tafazzin-deficient mouse embryonic fibroblasts in normoxic and hypoxic conditions. The mito-processes
Mitochondrial dynamics (mito-Dynamics), Mitochondrial carrier (mito-Carrier), Transcription (nuclear) and ROS defense are shown. (A) Among the
genes involved in mito-Dynamics, the predicted Hifla target Mgarp is strongly down-regulated in Tafazzin-deficient cells and fails to be induced in hypoxia.
Mgarp is required for movement of mitochondria along microtubules during hypoxia (126). (B) The mitochondrial carriers Ucp3, a predicted Hifla target,
as well as Slc25a45 are differentially regulated in Tafazzin-deficient cells in hypoxia. (C) The transcription factors Hifla, Yapl (Hippo pathway) and Rela
(NF-kB pathway)—all highlighted in red—are differentially regulated in Tafazzin knock-out cells in hypoxia compared to wild-type: they are induced in
hypoxia and are down-regulated in Tafazzin-mutant cells in normoxic, as well as hypoxic conditions. Mitf and Ppara show opposite expression behavior,
being induced in Tafazzin-deficient cells and down-regulated in hypoxia in wild-type cells. (D) The ROS defense gene MsrB2 (marked in red) is strongly
induced in Tafazzin-deficient cells, while it remains constant in hypoxia in wild-type conditions. MsrB2 has ROS quenching properties.



hypothesis of the underlying mechanisms leading to the mi-
tochondrial deficiencies in T21 patients is still missing.

We used trisomy 21 cell lines derived from either the eu-
ploid human colon cancer cell line HCT116 or from the
retinal pigmented epithelial cell line RPEI, to which an ex-
tra copy of chromosome 21 was added (51). We used two
RPEI1-derived and two HCT116-derived clones trisomic for
chromosome 21 (Supplementary Table S3 a), which were
validated by fluorescent in situ hybridization and by whole
genome sequencing. We used transcriptomic data of the
original euploid RPE1 line and its two trisomic deriva-
tives (RPE_T21 clone 1 and 2 (cl, ¢2) (51)), as well as
for HCT116, and its trisomic derivatives (HCT_T21 (cl,
c3)). We included proteomic data for RPE1 and one of
its T21 derivatives (RPE_T21 c1). We performed bioinfor-
matic analysis to determine differential expression of the
above conditions (Supplementary Table S3B-E, for details
on bioinformatic data analysis see Materials and Methods)
and uploaded the differential expression data of the tran-
scriptome and proteome on the mitoXplorer platform for
further in-depth, mitochondrial analysis.

Differences between trisomy 21 cell lines

MitoXplorer analysis of data comparing HCT116- and
RPEl-derived T21 cell lines using the Interactome View
revealed that T21 induced strong effects with respect to
the overall expression changes in mito-genes (Figure 7).
HCT_T21 showed a subtle, but consistent up-regulation of
mito-genes (Figure 7A). In contrast, RPE_T21 cells showed
a strong downregulation of a few genes involved in sev-
eral mito-processes, such as Fatty acid metabolism, Gly-
colysis or Mitochondrial dynamics (Figure 7B). Remark-
ably, quantitative proteome data from RPE_T21 cl cells
suggested that all mitochondria-encoded genes involved
in OXPHOS, as well as the majority of nuclear-encoded
OXPHOS-genes are down-regulated (Figure 7C). In con-
clusion, mitoXplorer analysis facilitated the finding of sig-
nificant differences in mito-gene expression between the dif-
ferent cell lines. Importantly in RPE_T21 cells, proteome
data showed a remarkable difference to transcriptome data.

mitoXplorer analysis suggests mitochondrial ribosomal as-
sembly defects in RPE_T21 cell lines

To investigate the differences further, we next performed a
more detailed analysis of expression changes in these T21
cell lines using Comparative Plots in mitoXplorer. Tran-
scriptome and proteome data from RPE_T21, but not from
HCT_T21 cell lines revealed that several subunits of the
small mitochondrial ribosome (mitoribosome) were signif-
icantly down-regulated on ecither RNA or protein level,
or both (Figure 8A). MRPS21 was strongly reduced on
RNA- and protein-level. The genes MRPS33, MRPS14
and MRPSI15 were largely normal on RNA level, while
their protein levels decreased more than 2-fold (log2FC:
MRPS33: -2.147; MRPS14: —1.827; MRPS15: —1.057).
Mitoribosomal subunits are encoded in the nuclear genome
and their protein products are imported into the mitochon-
dria, where they assemble with mitochondrial ribosomal
RNAs to form the large and small subunits of the mitoribo-
some. The mitoribosome is responsible for translating the
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13 mt-mRNAs encoded in the mitochondrial genome, all
of which code for key subunits of the respiratory chain re-
quired for OXPHOS (116,117). In accordance with a dis-
rupted mitochondrial translation machinery, all quantifi-
able mitochondria-encoded OXPHOS proteins (Complex
I: MT-NDI1 and MT-NDS5; Complex IV: MT-CO2) were
severely diminished on protein-, but not on RNA-level in
RPE1_T21 cells (Figure 8B).

Interestingly, 36 of the quantifiable OXPHOS pro-
teins encoded in the nuclear genome were also found
to be down-regulated at the proteome, but not at tran-
scriptome level in RPE_T21 cells (Figure 8C). These in-
clude subunits of the NADH dehydrogenase (complex I),
ubiquinol—cytochrome ¢ reductase (complex III) and cy-
tochrome ¢ oxidase (complex IV). It is important to note
that there is no general downregulation of mitochondrial
proteins in these cells and only a few, specific proteins are
strongly down-regulated (Figure 7C). Together, these data
demonstrate the power of mitoXplorer to help identify the
cause of important changes in mito-gene expression, here
the downregulation of mitoribosomal subunits at the tran-
scription level and the resulting consequences, in this case
the downregulation of the majority of OXPHOS proteins.

RPE_T21 cells are defective in oxidative phosphorylation

The massive downregulation of OXPHOS proteins in
RPE_T21 cells suggests that these cells should suffer from
a severe OXPHOS deficiency. To test this hypothesis exper-
imentally, we analyzed cellular respiration and glycolysis in
T21 cell lines using a Seahorse XF96 analyzer to quantify
oxygen consumption rate (OCR) as an indicator of mito-
chondrial respiration (Figure 9A—D, F), as well as the pro-
ton production rate (PPR) as an indicator of glycolysis (Fig-
ure 9E, G). In intact RPE_T21 cells, we indeed observed
dramatically reduced levels of cellular respiration in com-
parison to the diploid control (Figure 9A).

As a complex I deficiency has been reported in trisomy
21 patients (95), we next asked whether RPE_T21 cells se-
lectively suffer from a complex I deficiency, or whether the
entire respiratory chain is affected, as suggested by our pro-
teomic data. We used permeabilized cells to test each indi-
vidual complex with the Seahorse analyzer, supplementing
with pyruvate/malate, succinate and TMPD/ascorbate for
assessing complex I, IT or IV functionality, respectively. As
expected from our proteomic analysis, RPE_T21 cells dis-
played a severe deficiency of the entire respiratory chain
(Figure 9B—D). The glycolytic rate of RPE_T21 cells in
the presence of glucose was similar to the diploid control
cells. Inhibition of ATP-production was not able to stimu-
late the cells to a higher glycolytic rate (Figure 9E), which
agrees with the already low OXPHOS levels observed in
these cells. HCT_T21 cells, on the other hand, displayed
normal respiration, as well as glycolysis (Figure 9F, G). This
suggests that the respiratory chain, as well as the mitochon-
drial translational machinery is not generally affected in all
T21 cells. Taken together, mitoXplorer helped uncover OX-
PHOS deficiencies in RPE_T21 cells, which we verified ex-
perimentally, demonstrating the power of an in-depth anal-
ysis of mitochondrial expression dynamics to identify the
potential molecular cause of the observed phenotype.
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Figure 9. Mitochondrial respiration and glycolysis is strongly affected in RPE_T21 cells and not affected in HCT_T21 cells. (A) Respiration in intact
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Quantification of mitochondrial network morphology using
mitoMorph

We further wanted to investigate, if T21 and the defective
OXPHOS had a consequence on mitochondrial morphol-
ogy and the mitochondrial network structure was changed
in T21 cell lines. To quantify mitochondrial morphology in
RPE_T21 cells, we stained mitochondria using the Mito-
Tracker Deep Red FM dye. In order to quantify the char-
acteristics of mitochondrial morphology, we developed a
new Fiji plugin for quantification of mitochondrial net-
work features, which we called mitoMorph. MitoMorph is
based on the scripts provided by Leonard et al. (60) for
quantifying mitochondrial network features such as fila-
ments (corresponding to filamentous networked structures
longer than 11 pwm), rods (corresponding to filamentous
networked structures shorter than 11 wm), puncta (corre-
sponding to round structures below a radius of 0.6 wm) and
swollen (corresponding to round structures above a radius
of 0.6 pm) mitochondrial structures (see Methods for im-
plementation details). MitoMorph reports the percentages
of filaments, rods, puncta and swollen for each individual
cell, as well as for all selected cells in a batch analysis (Fig-
ure 10A, B). Moreover, it provides the lengths and areas
of filaments and rods. Figure 10C—F shows the distribu-
tion of mitochondrial network features for the two wild-
type and T21 cell lines. MitoMorph analysis revealed that
in both backgrounds, T21 cells had fewer mitochondrial fil-
aments than their wild-type counterparts, but instead pos-
sessed a slightly higher number of rods, which was signifi-
cant in HCT_T21 cells. Both T21 cell lines had significantly
more swollen structures than their wild-type counterparts.
Length and area distribution of filaments and rods were not
significantly different between the wild-type and the trisomy
21 cells (Supplementary Figure S4A—D). We looked at ex-
pression dynamics of mito-genes associated with the pro-
cess Mitochondrial dynamics using mitoXplorer. The only
gene that is consistently, though only mildly down-regulated
in both RPE_T21 clones is GDAP1 (Supplementary Figure
S5). GDAP1 was shown to regulate the mitochondrial net-
work by promoting mitochondrial fission (118). Its down-
regulation could be contributing to or be a consequence of
the observed phenotype. In conclusion, mitochondrial mor-
phology based on light-microscopy is mildly affected in tri-
somy 21.

Data integration with publicly available trisomy 21 datasets

After discovering this differential OXPHOS defect in our
RPE_T21 cell lines, we were interested in the overlap of
the mito-transcriptome and -proteome of RPE_T21 cells
with data from trisomy 21 patients. We used proteomic and
transcriptomic data from a monozygotic twin study discor-
dant for chromosome 21 (41,42). In agreement with our
RPE_T21 data, systematic proteome and proteostasis pro-
filing of fibroblasts from monozygotic twins discordant for
T21 revealed a significant, although milder downregulation
of the mitochondrial proteome, including proteins involved
in OXPHOS, which is not apparent from transcriptomic
analysis of the same cells (see Supplementary Figure S6A,
B).
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We next looked at proteomic data of fibroblasts from 11
unrelated individuals with trisomy 21 (41) (Supplementary
Figure S6C—E). Virtually all T21 patients showed reduc-
tion in at least a few mitochondrial- and nuclear-encoded
subunits of the respiratory chain (Supplementary Figure
S6D, E). However, we could not confirm the strong reduc-
tion of the MRPS21 protein in all individuals. The only
measurable mitoribosome subunit that was consistently,
though in some cases only mildly, down-regulated was
MRPLI19 (Supplementary Figure S6C). Taken together,
though the precise molecular mechanisms remain elusive,
our analysis of these datasets with mitoXplorer nevertheless
suggests a post-transcriptional effect leading to reduced ex-
pression levels of proteins involved in OXPHOS in trisomy
21.

DISCUSSION

The web-based mitoXplorer platform for mito-centric data
exploration

MitoXplorer is a practical web tool with an intuitive inter-
face for users who wish to gain insight from -omics data in
mitochondrial functions. It is the first tool that takes ad-
vantage of the breadth of -omics data available to date to
explore expression variability of mito-genes and -processes.
It does so by integrating a hand-curated, annotated mito-
chondrial interactome with -omics data available in public
databases or provided by the user.

MitoXplorer has been conceived and implemented as a
visual data mining (VDM) platform: by iteratively inter-
acting, visualizing and by allowing manipulation of the
graphical display of data, the user can effectively discover
complex data to extract knowledge and gain deeper under-
standing of the data. MitoXplorer provides a set of particu-
larly interactive and flexible visualization tools, with a fine-
grained, function- as well as gene-based resolution of the
data. Clustering, as well as PCA-analysis help in addition to
mine a larger number of -omics data effectively by grouping
datasets with similar expression patterns.

VDM-based knowledge discovery is offered by a large
number of resources and platforms. However, to the best
of our knowledge, no currently available tool allows to ex-
plore expression variation of a specific subset of genes in
a large number of -omics datasets. It permits users to ex-
ploit publicly available transcriptome, proteome or muta-
tion data to study the variation and thus, the adaptability of
a defined gene set in different conditions or species. While
mitoXplorer offers the exploration of mito-genes, we have
designed the platform in such a way that users interested
in a different gene group can download a local version of
mitoXplorer and upload their own interactome, which may
contain any gene group of interest. Thus, mitoXplorer can
be flexibly adjusted to any user-defined gene set.

Identification of putative causes of ROS-downregulation in
Tafazzin-deficient cells using mitoXplorer

We have analyzed data from a mouse model of Barth syn-
drome to demonstrate that mitoXplorer can help identify
de-regulated pathways in mitochondria-associated diseases.
Barth syndrome results from a dis-balance of cardiolipin
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species due to the loss-of-function of the Tafazzin pro-
tein and displays defects in many mitochondrial processes.
Chowdhury et al. have specifically tested the response to
hypoxia of Tafazzin-deficient cells. They have identified re-
duced ROS levels in Tafazzin-deficient MEFs that lead to a
failure to induce the NF-«kB transcription factor RelA and
finally, the transcription factor Hifla. Using the more com-
prehensive and manually curated mito-interactome of mi-
toXplorer, we could not only confirm the failure of induc-
tion of RelA and Hifla. We furthermore propose that failed
induction of the Hippo pathway protein Yapl which stabi-
lizes Hif la could contribute to the observed phenotype. Fi-
nally, using mitoXplorer we identified MrsB2 as the puta-
tive cause of lowered ROS levels in Tafazzin-deficient cells,
as this enzyme has ROS-quenching activities, normally pro-
tecting cells from oxidative damage.

Cell type-specific de-regulation of mito-genes in trisomy 21

We experimentally verified mitoXplorer predictions by ex-
pression profiling of mito-genes in T21 cell lines. Mito-genes
were strongly deregulated in both trisomic cell types tested,
the non-cancerous retinal pigment epithelial cell line RPEI
and the cancer cell line HCT116. Yet, the changes in ex-
pression were quite different in the two cell lines. It is not
unexpected that mito-genes are differentially expressed in
different cell types, reflecting the divergent cellular energy-
and metabolic demands (20). Gene expression is moreover
tightly regulated in a cell-type specific manner by regulat-
ing transcription, translation and the epigenetic state of the
cell. Thus, also divergent and cell-type specific expression
changes of mito-genes upon introduction of an extra chro-
mosome is not surprising.

mitoXplorer assisted in revealing divergent de-regulation of
mitochondrial transcriptome and proteome in trisomy 21

We found a remarkable difference between transcriptome
and proteome levels of mito-genes in RPE_T21 cells. In par-
ticular the OXPHOS proteins were strongly down-regulated
at protein, but not mRNA level. This can be explained by es-
sential components of the respiratory chain being encoded
in the mitochondrial genome and thus requiring a func-
tioning mitochondrial replication system, as well as intact
mitochondrial transcription and translation. Thus, there is
as strong post-transcriptional regulation of the mitochon-
drial proteome. In case of the RPE_T21 cell line, the disin-
tegration of the mitoribosome and thus a failure of mito-
chondrial translation is likely causative for the downregu-
lation of OXPHOS components on protein-level, possibly
by proteolysis, as the essential mitochondrial subunits are
not produced and thus complexes cannot assemble. This
conclusion is further supported by the fact that we could
not observe a significant difference in mitochondrial tran-
script levels, with some mt-mRNAs even being upregulated;
thus, mtDNA -maintenance, -replication as well as mito-
transcription seem to be unaffected.

MitoXplorer analysis of previously published data of
the mito-proteome of fibroblasts isolated from monozy-
gotic twins discordant for T21, as well as 11 unrelated in-
dividuals with trisomy 21 (41) confirmed a similar post-
transcriptional effect as we found in our T21 model cell
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lines. Taken together, our data uncovered a significant post-
transcriptional regulation of the mitochondrial process OX-
PHOS in our model system of trisomy 21 that could bring
new insight into the mechanisms of mitochondrial defects
in trisomy 21 patients.

mitoXplorer helped identify mitochondrial ribosomal protein
S21 (MRPS21) as potentially causative for OXPHOS failure

The most notable difference in RPE_T21 cells compared
to wild-type is the >10-fold downregulation of mitochon-
drial ribosomal protein S21 (MRPS21) on transcript level,
as well as the downregulation of Mrps21 protein and other
proteins of the small and—to a lesser extend—large mi-
toribosome subunits. Thus, our data suggest that the in-
tegrity of the mitoribosome is compromised, leading to its
disintegration and subsequently, the downregulation of mi-
tochondrial proteins of the respiratory chain. Mrps21 is a
late-assembly component and lies at the outer rim of the
body (or bottom) of the small subunit (SSU) of the mitori-
bosome. Nevertheless, it interacts with a number of other
proteins of the SSU and also directly contacts bases of the
12S rRNA (119,120). Thus, its absence could destabilize the
SSU of the mitoribosome. The two most down-regulated
proteins are Mrps33 and Mrps14, both of which directly in-
teract with each other and several other proteins in the SSU
and are localized to the head of the SSU. Furthermore, to-
gether with another down-regulated component, Mrps15,
they are proteins that are incorporated late in the mitori-
bosome assembly process (120). This raises the possibility
that late-assembly proteins disintegrate more readily from
the mitoribosome, leading to their enhanced degradation
and thus ribosome malfunction.

Based on promoter analysis using MotifMap (121), po-
tential binding motifs of two transcription factors located
on chromosome 21, GABPA and ETS2, can be found in
the promoter region of the MRPS21 gene. Gabpa, which
is also known as nuclear respiratory factor 2, has already
been implicated in mitochondrial biogenesis by regulating
Tfblm expression (122): its depletion in mouse embryonic
fibroblasts showed reduced mitochondrial mass, ATP pro-
duction, oxygen consumption and mito-protein synthesis,
but had no effect on mitochondrial morphology, membrane
potential or apoptosis. Direct or indirect regulation of mi-
toribosomal proteins could be another regulatory function
of this transcription factor. GABPA is not affected on tran-
scriptome level, but is down-regulated on protein-level in
RPE_T21 cells. ETS2 on the other hand has so far not been
implicated in mitochondrial biogenesis or functional regu-
lation.

We see consistent downregulation of proteins involved
in OXPHOS in other trisomy 21 proteomic datasets and
OXPHOS defects have been reported in trisomy 21 before.
MRPS21 seems deregulated only in a few T21 individuals.
Thus, the causes of OXPHOS deficiencies seem to depend
on genomic background or on the cell type studied. Trisomy
21 patients develop different degrees of severity of symp-
toms and it is likely that the genomic variability of chromo-
some 21 contributes to the varying phenotypes (123,124).
In conclusion, while defects in OXPHOS seem a common
phenotype in trisomy 21, their severity as well as the un-
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derlying mechanisms might differ depending on the cellular
model or the genomic background.

Limitations and future developments of mitoXplorer

The proper assembly and annotation of the mito-
interactomes turned out to be a demanding task. While
proteomic studies of mitochondria are available for differ-
ent model species and humans, the data cannot be taken
without manual intervention due to significant numbers
of false-positives and false-negatives. A manual curation
of the data is therefore mandatory. Though we carefully
curated the mito-interactomes used in mitoXplorer, we do
not claim that they are complete or free of false-positives.

We decided to assign one mito-gene with one mito-
process only, as it was the most straightforward solution
to implement. Furthermore, assigning multiple processes to
one gene would artificially increase the mitochondrial inter-
actome, making the analysis also more difficult. Neverthe-
less, the current annotation might not represent all exper-
imentally validated biological functions of a mito-gene. In
future releases, we will therefore consider allowing two or
more processes for one mito-gene at least in a limited num-
ber of cases, whenever there is strong experimental evidence
that a protein or protein complex is contributing to two or
more mito-processes. We hope that the scientific commu-
nity working on mitochondria will help us further clean,
complete and correctly annotate our mito-interactomes by
using the FEEDBACK page.

The current version of mitoXplorer does not provide
mito-process enrichment analysis. Our reasoning behind
this decision was to allow users to mine their data in an
unbiased and detailed way, considering all mito-processes
rather than only focusing on enriched ones. In future re-
leases, we will consider adding information on mito-process
enrichment of a dataset to guide users in their analysis, for
example by visually highlighting enriched processes in the
Interactome View.

MitoXplorer has been optimized for mining expression
data and currently it is not meaningful to analyze mito-gene
mutations alone. We realize that this is a limitation when
considering large, population-wide studies. We will there-
fore consider implementing a visual data mining interface
that is specifically tailored for analyzing mito-gene muta-
tions alone in future versions of the software.

MitoXplorer expects users to provide data for which dif-
ferential expression analysis or mutation calling has already
been performed, as mitoXplorer was conceived as a visual
data mining platform. There are already many tools and
pipelines available to perform differential expression anal-
ysis and mutation calling, yet too few tools that allow in-
depth data mining, such as mitoXplorer. To make prior
data analysis as easy as possible for users, we provide a
pipeline for differential expression analysis and mutant call-
ing, which is available in our git-repository (https://gitlab.
com/habermannlab/mitox_rnaseq_pipeline/). Nevertheless,
we recognize that the potential heterogeneity of analyzed
data from different studies has limitations, especially con-
cerning comparative analysis between different projects.

MitoXplorer is integrating, clustering and visualizing nu-
merical data resulting from expression studies (transcrip-

tome, proteome), as well as mutation data. Thus, it is cur-
rently limited to analyzing mito-genes without offering the
ability to explore their embedding in a broader, cellular con-
text and thus to learn about potential regulatory mecha-
nisms of observed expression changes of mito-genes. There-
fore, in the next release of mitoXplorer, we plan to fully em-
bed mito-genes within the cellular gene regulatory, as well
as signaling network by adding information from epigenetic
studies (ChIP-seq, methylation data), as well as from the
cellular interactome. We will provide the tools to perform
enrichment analysis of observed transcription factors bind-
ing in the promoter regions of co-regulated mito-genes. We
will embed a method to analyze promoter regions of mito-
genes, as we have shown here for MRPS21, or to identify
targets of transcription factors as here demonstrated for
Hifla. Furthermore, we will make available network anal-
ysis methods such as viPEr (125) to explore the cellular
network regulating mito-genes. Other analysis methods we
plan to provide include correlation analysis, as well as cross-
species data mining. Depending on user requests, we could
also add the mitochondrial interactomes of other species.
As mitoXplorer stores the mitochondrial interactomes and
the associated -omics data in a MySQL database, all tech-
nical requirements for extending the functionalities of mi-
toXplorer are already implemented.

CONCLUSIONS

mitoXplorer is a powerful, web-based visual data min-
ing platform that allows users to in-depth analyze and vi-
sualize mutations and expression dynamics of mito-genes
and mito-processes by integrating a manually curated mi-
tochondrial interactome with -omics data in various tissues
and conditions of four model species, including human. We
used transcriptome and proteome data from cell lines with
trisomy 21 to demonstrate the value of mitoXplorer in ana-
lyzing in detail the expression dynamics of mito-genes and -
processes. We have used mitoXplorer to integrate these data
with publicly available datasets of patients with trisomy 21.
Using mitoXplorer for data mining, we predicted failure of
mitochondrial respiration in one of the trisomy 21 cell lines,
which we verified experimentally. Our results demonstrate
the power of a visual data mining platform such as mitoX-
plorer to explore expression dynamics of a specified mito-
gene set in a detailed and focused manner, leading to dis-
covery of underlying molecular mechanisms and providing
testable hypotheses for further experimental studies.

DATA AVAILABILITY

The mitoXplorer web-server is freely available at
http://mitoxplorer.ibdm.univ-mrs.fr/. The source code
of mitoXplorer is available at https://gitlab.com/
habermannlab/mitox. The pipeline for differential ex-
pression analysis and mutation calling of RNA-seq
data is available at https://gitlab.com/habermannlab/
mitox_rnaseq_pipeline. MitoMorph is freely available at
https://github.com/giocard/mitoMorph. RNA-seq data
published with this study are available via the Gene Ex-
pression Omnibus (GEO) database (accession number:
GSE131249).
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Supplementary Figure S1: programmatic skeleton of the mitoXplorer web-platform. In the back-
end, a MySQL database stores the mito-interactomes, as well as expression and mutation data that are
publicly available. User-uploaded data are stored temporarily and only available to the user. A set of
python-scripts connect to the MySQL database for data retrieval of both, mito-interactomes and
expression and mutation data. The mitomodel script connects to the MySQL database directly for the
visualization of the Interactome View. A set of scripts perform comparative analysis, for generating
Comparative Plots, Heatmap and PCA visualization. In the front-end, a set of javascripts handle the
visualizations of the plots: the ‘interactome’ and ‘database’ scripts handle the data presentation of the
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mito-interactome and the available public data for the web-site; mitomodel visualizes the Interactome
View and the scripts in the compare box are responsible for visualizing Comparative Plot, Heatmap and
PCA. The CSS layer handles the css-styles of the page and finally, the HTML/PHP layer creates the
actual interface for the user.
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Supplementary Figure S2: Human fibroblasts from healthy donors between ages 1 and 94 reveal
strong down-regulation of mito-genes in different processes at ages above 85. To demonstrate
the GROUP function of mitoXplorer, we use data from human fibroblasts from different age groups (1).
A number of mitochondrial processes have been implicated in ageing and ageing-related diseases,
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though the precise contribution of mitochondria to ageing is so far not clear (2) . However there seems
to be an increase in mtDNA mutations and resulting impaired respiratory chain functions during ageing
(3). We wanted to investigate whether the expression dynamics of mito-genes changes in the ageing
tissue. To this end, we uploaded data from ageing human dermal fibroblasts from a study of Fleischer
et al. (1). The authors chose this tissue because of its ease of availability. Moreover, the cells in the
dermal layer are not prone to environmentally-induced mtDNA mutations and thus lifestyle-induced mito-
gene expression changes (4). The dataset is composed of single replicates of 133 healthy donors from
age 1 to 94. We calculated log2FC from RPKM values provided by the authors and uploaded the data
to mitoXplorer. (a) We first performed a PCA analysis of mito-gene expression over all age groups. To
our surprise, the mito-gene expression profiles seemed very robust up to the age of 80. Between 80
and 90 years of age, half the age group, as well as all individuals from age group 90-100 showed a very
distinct expression profiles of many mito-genes and in most mito-processes. In fact, only few mito-
processes were not affected. This was the case for all individuals older than 85 years except for one
male of 88 years, who grouped with younger individuals. (b) In order to explore the nature of the de-
regulation at high age, we generated groups using the mitoXplorer GROUP function. We focused on
individuals between age 40 and 100. We merged age group 40-50 and 50-60 and split age group 80-90
in one group g1 with mito-gene expression dynamics consistent with younger individuals, as well as g2
with mito-gene expression profiles similar to those found in individuals above 90 years of age. Not
unexpectedly we found that a number of mito-genes were generally down-regulated.
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Supplementary Figure S3: Interactome Views of Tafazzin-deficient cells, as well as wild-type
cells in normoxic and hypoxic conditions. (a) Tafazzin-deficient cells compared to wild-type cells.
The expression dynamics from virtually all mito-processes is changed, with strongest perturbation in
Amino acid metabolism, TCA cycle, Glycolysis, Fatty acid degradation & beta-oxidation, Mitochondrial
carrier as well as Protein stability & degradation. (b) Taz-deficient cells compared to wild-type in hypoxic
conditions. Changes in expression dynamics compared to normoxic conditions can for instance be
observed in Mitochondrial dynamics, Transcription (nuclear), or UPRmt. (c) Differential expression
dynamics of wild-type cells in normoxic and hypoxic conditions. In response to hypoxia, OXPHOS genes
are down-regulated, while genes required for Glycolysis are induced. (d) Tafazzin-deficient cells in
hypoxia are compared to wild-type cells in normoxic conditions. Strong changes can be observed for
instance in ROS defense, Ca?* Signaling & transport or UPRmt.



Supplementary Figure S4
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Supplementary Figure S4: Length and area distribution of filaments and rods in wild-type and
T21 derived RPE1 and HCT116 cells. (a) Stacked bar-plots of filament length distribution of RPE1
wild-type (labeled RPE_wt), RPE1 21/3 (labeled RPE_T21), HCT116 wild-type (labeled HCT_wt) and
HCT116 21/3 (labeled HCT_T21) cells. Overall, shorter filaments are more frequent in HCT116 than in
RPE1 cells. In T21, filaments tend to be slightly shorter. (b) Stacked bar-plots of filament area
distribution of RPE_wt, RPE_T21, HCT_wt wild-type and HCT_T21 cells. Overall, less area is occupied
by filaments in HCT116 than in RPE1 cells. In HCT_T21 cells, a notably smaller area is assigned to
filaments, while in RPE_T21 cells, this change is much less pronounced. (c) Stacked bar-plots of rod
length distribution of RPE_wt, RPE_T21, HCT_wt and HCT_T21 cells. Overall, in the range between 4
and 10 microns, more rods are found in RPE1 cells. Between wild-type and T21 cells, no real length
difference is observable. (d) Stacked bar-plots of rod area distribution of RPE_wt, RPE_T21, HCT_wt
and HCT_T21 cells. Overall, there is a tendency of slightly larger rod areas in HCT116 cells. InHCT116
cells, rods seem to occupy slightly smaller areas when carrying the extra copy of chromosome 21. Data
were averaged over the two clones of RPE_T21 and HCT_T21, respectively.
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Supplementary Figure S5: The mito-gene GDAP1 is consistently down-regulated in RPE_T21
clones. Shown is the heatmap of the Comparative Analysis page of mitoXplorer. Both clones of the
RPE21_T21 cells show significant down-regulation of the GDAP1 gene; clones 1 and 3 of HCT_T21
cells also show slight, though statistically non-significant reduction of this gene (RPE_T21 c1: log2FC =
-1.103; RPE_T21 c2: log2FC = -1.604; HCT_T21 c1: -0.238; HCT_T21 c3: -0.059).
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Supplementary Figure S6: mitoXplorer analysis of the mito-processes ‘Translation’, ‘Oxidative
Phosphorylation’ and ‘Oxidative Phosphorylation (mt)’ of monozygotic twins discordant for T21
and 11 unrelated trisomy 21 patients. (a) The mRNA of mitoribosome small subunit component
MRPS21 is strongly down-regulated in RPE_T21 cells. In monozygotic twins discordant for T21, other
subunits of the small and large mitoribosome are down-regulated (T21_MZ fibroblasts:
T21_Letour_MZ_fib, T21_Liu_MZ). Mitoribosome proteins are more mildly affected in T21_MZ
fibroblasts. (b) Oxidative phosphorylation components encoded in the nucleus are downregulated on
protein level in both, RPE_T21, as well as T21_MZ fibroblasts, whereby deregulation is milder in
T21_MZ. In both conditions, the Oxidative phosphorylation transcriptome is mostly unaffected. (c - e)
Mito-protein expression dynamics from fibroblasts of unrelated trisomy 21 patients in the mito-processes
‘Translation’ (c), ‘Oxidative phosphorylation’ (d) and ‘Oxidative phosphorylation (mt) (e). Protein levels
of mitochondrial- and nuclear-encoded subunits of the respiratory chain is very heterogeneous between
unrelated individuals with trisomy 21; yet, in most trisomy 21 patients several mitochondrial-, as well as
nuclear-encoded subunits of the respiratory chain are down-regulated on protein level. A similar
heterogeneity can be observed for protein expression levels involved in translation of mitochondrial
proteins (c). At least a few proteins involved in ‘Translation’ are down-regulated in each individual with
trisomy 21. The only consistently, though sometimes only mildly reduced protein in this mito-process is
mitoribosomal protein MRPL19 (highlighted in red), while MRPS21 shows variable expression patterns
in unrelated trisomy 21 patients. Protein expression data are taken from Liu et al. (5). The log2FC of
individual trisomy 21 patients versus the average of 11 unrelated healthy individuals was calculated
using the log2 of the SWATH-MS intensities provided by the authors.
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Supplementary Figure S7
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Supplementary Figure S7: Mitochondrial network of wild-type and T21 cells. MitoTracker stainings
(a-d) of RPE_wt (a) and RPE_T21 (b), as well as HCT_wt (c) and HCT_T21 (d). (a, b) The mitochondrial
network is largely intact in RPE_T21 cells, with only slightly lower percentage filaments and an increased
number of swollen mitochondria. (¢, d) In HCT116 cells, the mitochondrial network is overall less
abundant, with more rod-like and fragmented mitochondria (puncta). With trisomy 21, cells show an
even more pronounced presence of rods at the cost of longer filaments, as well as more puncta and
swollen mitochondria. The scale bar is 50 um. Mitochondria were stained with MitoTracker deep Red
FM from Invitrogen. Staining was done in 96-well plates. The cells were incubated for 30 min at 30°C
with 100 nM MitoTracker dye prior to fixation. Cells were fixed with 3% PFA in DMEM for 5 min at room
temperature. After washing with 1xPBS, 1xPBS with 0.01% sodium azide was added. Plates were stored
at 4°C in the dark. Imaging was carried out on an inverted Zeiss Observer.Z1 microscope with a spinning
disc and 473 nm, 561 nm and 660 nm argon laser lines. The images were captured automatically on
multiple focal planes (step size 700 nm) with a 40x magnification air objective. Image stacks were Z-
projected using Fiji for further analysis.
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6.2 Integrative analysis and machine learning on cancer
genomics data using the Cancer Systems Biology Database
(CancerSysDB)

Having diverse roles in cellular functions such as bioenergetic pathways, ROS defense and
programmed cell death, mitochondria functions and metabolism has long been implicated
in different steps of oncogenesis like malignant transformation and tumor progression. In
this study, we have integrated a workflow specific for the analysis of mitochondrial genes

into Cancer Systems Biology Database (CancerSysDB) that hosts public cancer dataset.

CancerSysDB is a platform that allows user to make customized queries and perform
integrated analyses across multiple data types (transcription data, mutation data, clinical
data, etc) and cancer cohorts from The Cancer Genome Atlas (TCGA) research network.
This saves users from dealing with the diverse file formats and structures of data obtained
through the Genomic Data Commons (GDC) Data Portal, and makes big data analytics

these datasets readily accessible to them.

We have developed a workflow that integrates a manually curated human mitochondrial
interactome and displayed analyzed data on an interactive dashboard as a visual data
mining tool. It allows the exploration of differential expression of genes of various
mitochondrial function, as well as correlation analysis with clinical features. With this
workflow, we discovered a remarkable difference in the expression of Tricarboxylic acid
(TCA) cycle genes, Succinate-CoA ligase subunits SUCLG1 and SUCLG2, in KIRP (kidney
renal papillary cell carcinoma) patients of later stages. Succinate-CoA ligase is an essential
enzyme in the production of ATP. This observation proposed that SUCLG1, together with
SUCLG2 as suggested in a previous study, could be a promising indicator for later stage
clear cell renal carcinomas. It also demonstrated how such a visual data mining tool could
provide insights to the role mitochondrial functions in the development and progression of

cancer.
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Abstract

Background: Recent cancer genome studies on many human cancer types have relied on multiple molecular high-
throughput technologies. Given the vast amount of data that has been generated, there are surprisingly few
databases which facilitate access to these data and make them available for flexible analysis queries in the broad
research community. If used in their entirety and provided at a high structural level, these data can be directed into
constantly increasing databases which bear an enormous potential to serve as a basis for machine learning
technologies with the goal to support research and healthcare with predictions of clinically relevant traits.

Results: We have developed the Cancer Systems Biology Database (CancerSysDB), a resource for highly flexible

queries and analysis of cancer-related data across multiple data types and multiple studies. The CancerSysDB can be
adopted by any center for the organization of their locally acquired data and its integration with publicly available
data from multiple studies. A publicly available main instance of the CancerSysDB can be used to obtain highly
flexible queries across multiple data types as shown by highly relevant use cases. In addition, we demonstrate how
the CancerSysDB can be used for predictive cancer classification based on whole-exome data from 9091 patients in

The Cancer Genome Atlas (TCGA) research network.

analytics of clinically relevant traits.

Conclusions: Our database bears the potential to be used for large-scale integrative queries and predictive

Background

Large-scale cancer genome studies based on Next-
Generation Sequencing (NGS) technology have enabled
extensive research on tumorigenesis and treatment ratio-
nales [14]. The amount of data that has been generated
and made available contrasts its limited accessibility to
the research community. There is an increasing demand
for customized queries to the data in a way that is ac-
cessible to scientists and physicians without any know-
ledge in bioinformatics. Genomic data from studies in
The Cancer Genome Atlas (TCGA) research network
obtained through the Genomic Data Commons (GDC)
Data Portal (https://portal.gdc.cancer.gov) are available
for multiple molecular layers and are provided in
formats processed through appropriate software packages
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for the analysis of the raw data for every data type. The size
of these processed data is orders of magnitude smaller than
the raw data, in particular for whole-genome sequencing
experiments, but provided in a diverse range of file formats
in which the data are variably well structured. Thus, it is
particularly challenging to transform these file-based data
into a structure which allows a technically reasonable way
to integrate data obtained by multiple technologies with
manually curated data recorded in a clinical context. This
underlines the need for highly flexible database structures
which are suitable to model data from TCGA studies, but
are generic enough to also combine TCGA data with locally
acquired data obtained in a clinical context.

We present here the newly developed Cancer Systems
Biology Database (CancerSysDB) portal which allows
integrated analyses across multiple data types and across
multiple cancer cohorts from The Cancer Genome Atlas
(TCGA) research network, but also from locally ac-
quired data in a clinical context. With its current

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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workflows, our system allows fast integrative analysis of
whole-exome (WXS) and transcriptome (RNA-Seq)
sequencing data. By making use of standardized JSON-
based meta data formats, the CancerSysDB can be
integrated into existing analysis workflows. The Cancer-
SysDB enables highly structured organization of data
from multi-OMICS technologies and makes them ac-
cessible for big data analytics on the entirety of all data
ever processed on a particular site. Conceptually, this
includes the prediction of clinically relevant parameters
such as therapeutic response from existing pharmacoge-
nomic data in the CancerSysDB.

Methods

Implementation

The CancerSysDB was written in Groovy on the
Grails framework based on the JVM stack which bun-
dles state-of-the-art web frameworks behind a simple
interface. The CancerSysDB is a web application
which needs a database instance and an application
server and can run Linux shell scripts and other exe-
cutables from a command line. The data source is
behind a hibernate facade keeping the system inde-
pendent from the database implementation used and
the optimization in the background. The delivered
versions are based on a docker file to automatically
build an environment and run the database applica-
tion for personal use. A demo instance can be used
to make personalized queries to the database using
publicly available TCGA data. The source code of the
CancerSysDB is available on GitHub (https://github.
com/RRZK/CancerSysDB).

The system can be configured to run in two different
modes. The public mode can be used to query publicly
available data without any login. The publicly available
main instance of the CancerSysDB available on http://
cancersys.uni-koeln.de is running in public mode and
provides access to data on 11,410 patients from the Can-
cer Genome Atlas (TCGA) research network. This
instance includes data on somatic mutations (based on
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WXS data), differential gene expression (based on com-
parative RNA-Seq analysis between tumors and tissue-
derived normals), somatic copy number alterations
(based on Affymetrix SNP 6.0 microarrays) as well as all
clinically derived annotations of the TCGA patient data.
These data types provide a powerful basis for arbitrary
queries defined by the user. All TCGA data types pro-
vided through the CancerSysDB are open access data
and can be obtained from the TCGA data portal without
exclusive access. Users have to adhere to the TCGA data
access policies that apply to these open access data
(https://gdc.cancer.gov/access-data/data-access-policies).
On the other hand, the private mode requires a login for
any interaction. This mode is strongly recommended if
you are working with restricted data. The University of
Cologne is operating a private mode instance of the
CancerSysDB for the organization of genomic data from
in-house studies. It is used in combination with the
recently published cancer genomics data processing
workflow system QuickNGS Cancer [1] which extends
our NGS bioinformatics suite QuickNGS [15] and allows
highly scalable and standardized analysis of cancer NGS
data with minimum hands-on analysis time. Various fea-
tures of the CancerSysDB are compared to those of
other cancer genome data integration tools in Table 1.

Data model and queries

The maintainer of a CancerSysDB instance can describe
the connection between data and the main structure of
the application in JSON files to bring the context struc-
ture of data into the database. The database consists of
four main data types:

o Structural data manages the patients and samples,

o Molecular data is derived from cancer genome
analysis,

o Clinical data is associated to the clinical course of a
patient’s disease,

o Genomic annotation provides information on genes
and meta data about these genes.

Table 1 Comparison of various features of the CancerSysDB with those of other cancer genomics data integration tools

CancerSysDB TCGAbiolinks RTCGA cBio portal

GUI Web framework based Based on Shiny None Web framework based
on Groovy/Grails on Spring Java

Query schema Hibernate R scripting R scripting SQL

Data upload Parametrized CSV Direct access to
file upload GDC through API
Query definition JSON-based Combination of

R commands

Portability Native Docker implementation

Programming skills No Yes
required

Hosted on Bioconductor

Data packages available
on Bioconductor

CSV files plus meta file
Combination of R commands REST-based API

Hosted on Bioconductor Hosted on GitHub
Yes No
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The data model and principles how to develop data-
base queries is further described on GitHub at https://
github.com/RRZK/CancerSysDB/tree/master/web-app/
data/Workflows . Data can be uploaded through the API
or manually with the web front end. The API enables
automated uploads from processing infrastructures like
high performance computing (HPC) environments. A
collection of Python scripts for upload automation is
delivered with the database. We are using these scripts
to link the analysis workflows on the QuickNGS Cancer
pipeline to the CancerSysDB. The internal design of the
web application empowers the maintainer to easily extend
the data model, extend the import behavior and integrate
custom data structures.

The maintainer of an instance of the CancerSysDB is
provided with a fully controllable environment for the
development of custom workflows. A custom workflow
can be described in a JSON file and extended with ana-
lysis scripts and static data in a zip file which can be
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dynamically uploaded into the database (documentation
available on the GitHub). The actual data is retrieved
using queries written in the Hibernate Query Language
(HQL) and the results of the queries are saved as CSV
files in order to increase reproducibility on a dynamically
updated database. Subsequent computations can rely on
arbitrary executables in a Linux environment. The con-
tainer architecture provides the encapsulation for the
workflows. To control the command line based execu-
tion, packages and libraries can be installed on creation
of the docker container or wrapped directly into the files
to be executed by the workflow.

Data preparation

All TCGA data were obtained as level 3 data from the
Legacy Archive of The Cancer Genome Atlas (TCGA)
data portal. Data on somatic mutations were based on
whole-exome sequencing with MAF files obtained from
the Firehose pipeline of the Genome Data Analysis

Survival by mutation status (n=9444)
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Fig. 1 Analysis results for workflows splitting multiple TCGA cohorts into TP53-mutant and non-mutant patients: a Overall survival is significantly different
between TP53-mutant (red curve) and non-mutant patients (black curve) with a more favorable for non-mutant patients (gain in median survival: 2066 days,
p < 00001, n =9444). b The distribution of the mutations types in lung adenocarcinoma is strongly shifted towards an increase of G > T transversions in
TP53 mutant compared to non-mutant patients (p = 0.0006, n = 584). ¢ Genomic stability is quantified in terms of the overall size of somatic copy number
alterations (SCNA) compared between tumor and normal. SCNA are considered as genomic amplifications above a level of 3 and as genomic deletions
below a level of 1 for the signal ratio between tumor and paired normal sample. The difference between TP53 mutant and non-mutant patients is highly
significant in glioblastoma multiforme (p =0.0132, n =379)
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Center (GDAC) at the Broad Institute. Data on somatic
copy number alterations were based on the SNP 6.0
microarray platform (Affymetrix Inc., CA, USA) given as
genomic segments of equal copy number derived from
the Circular Binary Segmentation (CBS) algorithm [8].
For gene expression analysis, raw RNA-Seq read counts
were re-processed and compared between tumor tissues
and tissue-derived normal samples using version 1.21.1
of the DESeq2 algorithm and its implementation as an R
package [6]. These tissue-derived normal controls are
available from only a minority of the patients in TCGA,
but we consider them more suitable for a comparative
tumor/normal analysis than the blood-derived normals
existing for most patients. The currently existing work-
flows were implemented using version 3.3.3 of the func-
tional statistics language R (http://www.r-project.org).
The random forest workflow was implemented with the
R package ‘randomForest, version 4.6—12.

Results and discussion

In order to demonstrate how the CancerSysDB can help to
obtain analysis results of immediate relevance for research
projects or clinical prognosis, we showcase the analytical
power by three example queries, by one machine learning
workflow on the CancerSysDB and by an interactive work-
flow of visualizing mitochondrial pathways. The results of
these showcases can be reproduced using the query and
analysis source code provided in Additional file 1.
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TP53-dependent analysis of overall survival, genome
stability, and mutation types

The tumor suppressor gene TP53 is the most frequently
deleted and mutated gene across all tumor types [3]. In
the TCGA cancer cohorts, its mutation rate is highly
variable and ranges up to >75% in some cancer types
[16]. The CancerSysDB enables comparative genomic
analyses of patients with and without mutations in
TP53 by employing three different query workflows
which we operate across >11,000 patients from 33
TCGA studies.

o Overall survival depending on mutation status:
Across all TCGA cohorts, patients with a mutation
in TP53 show an unfavorable prognosis regarding
overall survival compared to TP53 wild type patients
(p < 0.0001, n = 9444; Fig. 1a; Table 2a).

o Transversions and transitions depending on
mutation status: The somatic mutational landscape
of patients with lung adenocarcinoma exhibits a
significant shift towards G > T transversions when
compared between patients with and without
mutations in TP53 (p = 0.0006, n = 584; Fig. 1b;
Table 2b). G > T transversions have been shown to
be induced by oxidative stress in lung cancers of
tobacco smokers [12]. Their enrichment in patients
with mutated TP53 is likely caused by the impaired
induction of apoptosis upon these exogenic
damages.

Table 2 Results of TP53-dependent analysis of genomic and clinical characteristics

(@)

Patients Events 5-year survival
rate (%]

TP53 mutant 3772 1237 474
TP53 non-mutant 5672 1128 66.9
(b)

Patients
TP53 mutant 133
TP53 non-mutant 246
©

TP53
VarType All Mutant Non-mutant

[%] (n=320) [%] (n=265)
A>CorT>G 35 33 3.6
A>GorT>C 99 9.2 10.7
A>TorT>A 8.1 84 7.8
C>GorG>C 136 139 131
C>TorG>A 327 300 36.0
G>TorC>A 323 352 288

Median survival 95% Cl
1670 [1526; 1818]
3736 [3262; 4267]
CNAs [Mb]
74.5
50.5
ATM
p-value Mutant Non-mutant p-value
[%] (n=49) [%] (n=536)
< 0.0001 39 34 0.2160
< 0.0001 9.6 9.9 0.7695
0.0005 86 8.1 04584
< 0.0001 13.2 13.6 0.3790
< 0.0001 286 330 0.5121
0.0001 36.0 320 04940
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e Genomic complexity depending on mutation status:
Among the patients with glioblastoma multiforme,
those with TP53 mutations are characterized by, on
average, stronger genomic instability than the TP53
wild type patients (p = 0.0132, n = 379; Fig. 1¢c; Table
2¢). This general loss of genomic stability in TP53-
mutated patients can be attributed to the role of
TP53 as a mediator of apoptosis in response to som-
atically acquired DNA damage of cancer cells and
has been described in previous studies [7].

Technically, the workflows start with database queries
for the TCGA barcodes of the patients with and without
TP53 mutations. Subsequent queries obtain the overall
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survival of all patients, the overall size of genomic copy
number aberrations in glioblastoma multiforme, and a
list of all mutations in the cohort of patients with lung
adenocarcinoma. These query results are stored as CSV
files on the CancerSysDB server and are processed
through workflow analysis scripts to restructure, analyze
and visualize the data. The scripts for this TP53-
dependent analysis of TCGA data were written in the
functional statistics language R.

Prediction of cancer types with random forests

In order to demonstrate the potential of our database
for predictive analytics of clinically relevant traits, we
have evaluated a workflow for the classification of a yet

Table 3 Classes of carcinomas used for random forest prediction of cancer types

Class name TCGA cohorts Sample size
Total Training set Test set
Adrenal gland Adrenocortical carcinoma (ACC) 271 179 92
Pheochromocytoma and paraganglioma (PCPG)
Bladder Urothelial carcinoma (BLCA) 411 272 139
Brain Lower grade glioma (LGG) 515 340 175
Breast Breast invasive carcinoma (BRCA) 1077 71 366
Gastrointestinal Esophageal carcinoma (ESCA) 1237 817 420
Stomach adenocarcinoma (STAD)
Colon adenocarcinoma (COAD)
Rectum adenocarcinoma (READ)
Cholangiocarcinoma (CHOL)
Head & Neck Head and neck squamous cell carcinoma (HNSC) 590 390 200
Uveal melanoma (UVM)
Hematologic Acute myeloid leukemia (LAML) 321 212 109
Diffuse large B-cell lymphoma (DLBC)
Thymoma (THYM)
Kidney Kidney Chromophobe (KICH) 738 488 250
Renal clear cell carcinoma (KIRC)
Renal papillary cell carcinoma (KIRP)
Liver Hepatocellular carcinoma (LIHC) 321 212 109
Ovary Ovarian serous cystadenocatcinoma (OV) 437 289 148
Pancreas Pancreatic adenocarcinoma (PAAD) 184 122 62
Prostate Prostate adenocarcinoma (PRAD) 498 329 169
Skin Cutaneous melanoma (SKCM) 104 69 35
Testis Testicular germ cell tumors (TGCT) 150 99 51
Thoracic Lung adenocarcinoma (LUAD) 1143 755 388
Lung squamous cell carcinoma (LUSC)
Mesothelioma (MESO)
Thyroid Thyroid carcinoma (THCA) 496 327 169
Uterus Uterine carcinosarcoma (UCS) 598 395 203

Uterine corpus endometrial carcinoma (UCEC)
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uncharacterized sample into one of the cancer types
available in the CancerSysDB. This workflow can be ap-
plied, for instance, to predict the primary site of a tumor
from a metastatic tissue specimen of unknown origin.
The workflow is basically composed of two steps:

e In the training phase, a random forest consisting of
1000 trees is trained on all data available in the
CancerSysDB. The workflow is composed of an
HQL query with subsequent submission of the
query results to a high-performance compute clus-
ter. In order to control for the relatively strong im-
balance in the class sizes, the workflow was
implemented using a stratified sampling approach in
the random forest training procedure. The random
forest is then trained in 100 parallel processes with
10 trees in each process. Subsequently, the forest is
loaded back into the CancerSysDB. The entire pro-
cedure must be repeated any time new data is being
uploaded into the CancerSysDB. Random forests
were chosen because of their good adaption to (bin-
ary) mutation data and their convenience in
parallelization.

e In the prediction phase, a list of mutations of a
yet unclassified sample can be uploaded into the
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CancerSysDB and is classified according to the
random forest obtained in the training phase. As
usual, the classification is determined by a
majority vote between the 1000 classification trees
in the forest.

In the current workflow on the public instance, the
training phase was carried out on data from 9091 pa-
tients in the CancerSysDB. To demonstrate that the pre-
dictions produced in this workflow are of sufficient
accuracy to make them practically applicable, we split
the 9091 patients in a training set of 6006 patients (66.
6% in each cohort) and evaluated the predictions in a
test set comprising 3085 patients (33.3% in each cohort;
Table 3). Out of these 3085 patients in the test set, 1521
(49.3%) were assigned to the correct class (Fig. 2),
whereas a random guess of the class would have
produced a correct class assignment in only 182 cases
(5.9%). Further evaluations of the workflow performance
show that the success rate of the predictions does not
increase with the number of trees nor the number of
variables evaluated at each split, but strongly depends on
the number of training samples (Additional file 2: Figure
S1). In particular, Additional file 2: Figure Slc suggests
that the accuracy could potentially be improved given a

Uterus 42 0 3251 0 0 05 0 0 25 0 49 05 3 25 05 }55.7
Thyroid 161 0 0 0 0 0 0 06 0O 0 0O 0 0 06 0 . 0
Thoracic /8 1 95 1534 1 08 15 1 1.8 3.6 44 1.8 5246982 0.3
Testis 4216 0 2 39 0 0 0 0 O O 0O O 0.0 78 0
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Pancreas /0 0 0 0 0 16 0 0 O 0.1.6 0 16 0 16 O
Ovary {34 0717681 2 07 2 07 07@ 0 3407 2 07 1.4 07
Liver <10.1 0 1.8 83 1.8 3.7 7.3 55381246 0 37 0 156 1.8 3.7 0.9
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Fig. 2 Results of a cross validation of the random forest prediction of cancer types in the CancerSysDB. The predictions are based on a random
forest learned on the training set comprising 6006 patients from 30 TCGA studies (Table 2). Displayed are the predictions of the classes in the
3085 patients in the training set. The accuracy strongly varies across the particular subclasses, but sums up to a total of 1521 correctly classified
patients (49.3%) )
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(See figure on previous page.)

Fig. 3 In-depth analysis of the dynamics of the TCA pathway in KIRP cancer patients. Interactive view bee-swarm scatter plot on the Tricarboxylic
acid cycle (TCA) pathway from KIRP cancer patients is shown. The log2-fold changes are averaged for patients according to tumor grade
(Stage I-IV). The dashboard gives the number of patients per grade and allows for further filtering according to gender or vital status (see
also Additional file 2: Figure S1). a The SUCLG1 gene is selected (pink bubble in bee-swarm scatter plot). b The SUCLG2 gene is selected.
Both genes show a strong, averaged down-regulation in Stage IV KIRP cancer patients (see Table 4 for averaged log2-fold changes)

constantly growing amount of data in the CancerSysDB.
However, we assume that the accuracy could be most
stronly improved when including additional data types
such as gene expression to the predictive algorithms.

Analyzing TCA-cycle genes in kidney renal papillary cell
carcinoma (KIRP)

We have implemented one interactive workflow, which
allows users to perform an in-depth analysis of specific
groups of genes or pathways. For the public instance of
the CancerSysDB, we have chosen a set of mitochon-
drial functions. The interactive workflow consists of a
bee swarm scatter plot displaying the differential ex-
pression (log2-fold change) of all genes in a selected
pathway, as well as an interactive dashboard, where
users can select the desired features for data display on
the bee swarm scatter plot (see Additional file 3: Figure
S2). Pathways to be shown can be selected on the right-
hand side of the scatter plot. Features that can be
chosen include the stage of the tumor, gender of the pa-
tients, as well as vital status. Differential expression is
averaged over all individuals associated with a specific
feature. If one feature is selected (e.g. stage of tumor)
and the user hovers over any other fields of the dash-
boards, the data presented in the scatter plot are fil-
tered accordingly. Hovering over one of the stages will
give information on gender and vital status of all
subjects within this stage (see for instance Additional
file 3: Figure S2b, where hovering over Stage IV returns
the information on gender (4 males) and vital status (3
alive, 1 dead) of all subjects of this tumor stage). Hover-
ing over one of the other dashboards will change the
data for averaging accordingly. For instance, when
hovering over FEMALE, data are averaged over 10 pa-
tients in two stages (Stage I and Stage III), with 2

Table 4 Averaged log2-fold changes of SUCLG1 and SUCLG2
mRNAs in different tumor stages of KIRP cancer patients

Stage # Female/ Alive/ SUCLGI SUCLG2

Patients  Male Dead log2 FC p-value log2 FC p-value
I 15 5/10 13/2 0473 0132 -0338 0307
Il 1 0/1 1/0 -=1.163 0082 0.137 0431
Il 1 5/6 8/3 0835 0018 -0.760 0.028
\% 4 0/4 3/1 -1975 0066 -1664 0054

individuals with the vital status Dead and 8 ones with
vital status Alive.

We have used this workflow to observe the dynamics
of the TCA pathway in KIRP (kidney renal papillary cell
carcinoma) patients during tumor progression. We ob-
served a strong down-regulation of the Succinate-CoA
ligase subunits SUCLG1 and SUCLG2 in Stage IV KIRP
patients (Fig. 3 and Table 4), which is independent of
the vital status of the patients. We have not observed
this specific down-regulation of both Succinate-CoA lig-
ase subunits for any stage-specific cohort of any other
tumor type imported from TCGA. An equally strong
down-regulation of both subunits could only be ob-
served for two sarcoma patients where no staging is
done (SARC cohort in TCGA, data not shown).

Succinate-CoA ligase (SUCL) catalyses the conversion
of succinyl-CoA and ADP or GDP to succinate and ATP
or GTP. Substrate specificity is determined by the beta-
subunit of the complex, which is either SUCLA2 (ATP)
or SUGLG2 (GTP), while the alpha-subunit (SUCGL1)
does not differ for either substrate [4]. SUCLG2 is pre-
dominately expressed in anabolic tissues such as liver or
kidney [4, 5]; for these tissues, GTP is more important,
as it is involved in processes such as gluconeogenesis or
protein synthesis. Mutations of SUCLGLI lead to loss of
SUCLG]1 protein expression and subsequently to deple-
tion of mtDNA; clinically, affected individuals suffer
from severe acidosis and lactic aciduria [9]. Expression
changes of SUCLG1 and 2 mRNA [2, 13], as well as
protein [11, 17] were also identified in several studies as
potential markers for kidney cancers. More notably,
down-regulation of SUCLG2 protein levels are
furthermore indicative for late stages in clear cell renal
carcinomas [10].

Conclusions

The CancerSysDB enables highly flexible analyses of
cancer data across multiple OMICS data types and clin-
ical data. We have demonstrated that the system can be
used for cross-data type queries with clinically relevant
information on prognosis, genome stability and muta-
tion types of patients with and without mutations in the
tumor suppressor TP53. In addition, we have given an
example how machine learning technology on only one
single data type (somatic mutations) can be used to
achieve confident predictions of clinically relevant traits.
Finally, we have provided an example how our system
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can be used as a platform for interactive analysis of dif-
ferent OMICS data types. The information provided by
the TCGA data currently used in the public instance of
the CancerSysDB is still very limited compare to the
amount of data that can be expected in the near future
when genomic analyses in a clinical context are becom-
ing more and more a routine analysis. The CancerSysDB
offers an appropriate framework to employ machine
learning algorithms on much larger data volumes to pre-
dict, for instance, the overall survival of a patient and
the response to a particular therapy given a patient’s mo-
lecular background.

Additional files

Additional file 1: The source code of the database queries and
workflow scripts for the three use cases reported in the paper. The results
can be reproduced using the query results and analysis scripts provided.
File query1.csv contains the barcodes of all samples for which mutation
data do exist. File query2.csv contains the barcodes of all samples which
carry a mutation in the gene of interest. Finally, query3.csv contains the
survival data (according to Fig. 1a), a list of all mutations of patients in
the cohort of interest (according to Fig. 1b), or a list of all genomic
segments with aberrant copy number in the cohort of interest (according
to Fig. 1c). There are small discrepancies between the number of patients
with mutation data and the number of patients with survival data (Fig.
1a) and copy number data (Fig. 1c). (ZIP 4981 kb)

Additional file 2: Figure S1 Overall success rate of the prediction of
tumor types by random forests depending on (a) the number of samples
per stratum in the random forest, (b) the number of variables picked
randomly for each tree in the forest and (c) the number of trees learned
in the forest. Importantly, the accuracy is increasing monotonically with
the number of samples, indicating that the overall strategy is suitable, in
particular, for a database with continuously growing amounts of data. In
contrast, the success rate does not so much depend on the parameters
chosen for the training phase of the random forest. (PNG 34 kb)

Additional file 3: Figure S2 Interactive workflow of mitochondrial
pathways. Shown is the Tricarboxylic acid cycle (TCA) pathway for KIRP
cancer patients. The central view of this workflow is a bee-swarm scatter-
plot, which contains the averaged log2-fold changes of patient groups
according to either tumor stage, gender or vital status. Each dot is repre-
sents the averaged log2-fold change of one gene that has been assigned
to the chosen function. Functions can be selected on the right-hand side
of the scatter plot. The dashboard below the scatter plot can be used to
change the averaging according to a different feature ((a), which shows
averaging according to stage), to display information on the composition
of the selected feature ((b), which informs the user that all individuals of
stage Il, which was hovered over in this case, are male and that one indi-
vidual is dead, while three of the patients are alive); or to further select
individual patients and thus modify the averaging shown in the scatter
plot ((c), where only female patients were chosen for stage-dependent
averaging; as female patient data are only available for two stages (I and
Ill), the scatter plot is changed accordingly). (PNG 679 kb)
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Figure S2 Interactive workflow of mitochondrial pathways. Shown is the Tricarboxylic acid
cycle (TCA) pathway for KIRP cancer patients. The central view of this workflow is a bee-
swarm scatterplot, which contains the averaged log2-fold changes of patient groups
according to either tumor stage, gender or vital status. Each dot is represents the averaged
log2-fold change of one gene that has been assigned to the chosen function. Functions
can be selected on the right-hand side of the scatter plot. The dashboard below the scatter
plot can be used to change the averaging according to a different feature ((a), which shows
averaging according to stage), to display information on the composition of the selected
feature ((b), which informs the user that all individuals of stage Il, which was hovered over
in this case, are male and that one individual is dead, while three of the patients are alive);
or to further select individual patients and thus modify the averaging shown in the scatter
plot ((c), where only female patients were chosen for stage-dependent averaging; as
female patient data are only available for two stages (I and lll), the scatter plot is changed

accordingly).

89



6.3 Hypermethylation of gene body CpG islands predicts high
dosage of functional oncogenes in liver cancer

The altered metabolism in cancer is closely related to aberrant gene expression, which
depends on both genetic and epigenetic information (Esteller, 2011). DNA methylation is
one of the essential epigenetic mechanisms that determines the accessibility of genetic loci
to transcriptional machinery and hence levels of gene expression. Therefore, any
alterations could lead to significant changes in gene expression landscape, like the down-
regulation of tumor suppressor genes observed in cancer cells as a result of
hypermethylation in CpG islands (CGls) at the promoter regions (P. A. Jones & Baylin,
2007). Changes in DNA methylation could be caused by mutations in epigenetic modifiers
(Baylin & Jones, 2011) and have been observed in patients of certain cancer types
(Spencer et al., 2017); Although it could also occur in the absence of specific mutations,
and can be controlled or modulated by signaling pathways or molecules as shown in
previous researches (Forloni et al., 2016; Spangle et al., 2016). Genes identified in these
studies with functional relevance in cancer could potentially be used as biomarkers for

cancer prognosis.

The current study combines the analysis of methylome and transcriptome in a clinically
relevant hepatocellular carcinoma (HCC) mouse model, in order to study the epigenetic
mechanism that influences transcription and gene expression through DNA methylation. A
group of genes were found to have focal hypermethylation in CGls, accompanied with lower
expression (H+E-), which is the conventional mechanism in cancer to downregulate tumor
suppressor through promoter hypermethylation. This group includes the mitochondrial
genes Ornithine aminotransferase (Oat) and Enoyl-Coenzyme A delta isomerase 1 (Eci1),
that are involved in Amino Acid Metabolism and Fatty Acid Degradation & Beta-oxidation

respectively.

Surprisingly, another set of genes were found to be hypermethylated in CGls and
overexpressed (H+E+) at the same time in the mouse model. This includes the
mitochondrial gene Jun, that belongs to the process Transcription and is considered as an
oncogene. Further analysis of the TCGA dataset showed that enrichment of this gene set
characterizes 56% of the HCC patients, who belong to an aggressive HCC subclass.
Collectively, the data suggested that this set of oncogenes could be of clinical relevance
and used as biomarkers for patient stratifications; and that their up-regulations
characterized by hypermethylation of CGls could be a potent operating mechanism in

cancer.
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Epigenetic modifications such as aberrant DNA methylation reshape the gene expression
repertoire in cancer. Here, we used a clinically relevant hepatocellular carcinoma (HCC)
mouse model (Alb-R26Met) to explore the impact of DNA methylation on transcriptional
switches associated with tumorigenesis. We identified a striking enrichment in genes
simultaneously hypermethylated in CpG islands (CGls) and overexpressed. These hyper-
methylated CGls are located either in the 5-UTR or in the gene body region. Remarkably,
such CGI hypermethylation accompanied by gene upregulation also occurs in 56% of HCC
patients, which belong to the “HCC proliferative-progenitor” subclass. Most of the genes
upregulated and with hypermethylated CGls in the Alb-R26Met HCC model undergo the same
change in a large proportion of HCC patients. Among reprogrammed genes, several are
well-known oncogenes. For others not previously linked to cancer, we demonstrate here their
action together as an "oncogene module”. Thus, hypermethylation of gene body CGls is
predictive of elevated oncogene levels in cancer, offering a novel stratification strategy and
perspectives to normalise cancer gene dosages.
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ppropriate timing and dosage of gene expression in

healthy cells is ensured by complex processes integrating

genetic and epigenetic information. Alterations of these
mechanisms are frequent in cancer and underline functional
changes in genes acting as oncogenes or tumour suppressors' 3.
The use of high-throughput sequencing has contributed con-
siderably to our understanding on how epigenetic modifications
switch genomic regions from an inaccessible closed conformation
to an open state-and vice-versa—contributing to changes in the
transcriptome landscape*®. DNA methylation is an essential
epigenetic mechanism influencing gene expression levels in cells
and alterations lead to dramatic changes in malignant cells. The
cancer landscape is generally characterised by a diffuse DNA
hypomethylation and by focal hypermethylation in CpG-rich
regions known as CpG islands (CGIs)"”. CGI hypermethylation
at promoters represses transcription of genes acting as tumour
suppressors, a well-known mechanism operating in cancer®.
However, DNA methylation at intergenic regions and gene bodies
is gaining relevance for its impact on gene expression®!0, Aber-
rant DNA methylation of large clusters of transcriptional
enhancers, known as super-enhancers, leads to dramatic tran-
scriptional changes of gene sets in cancer!l. A large fraction of
DNA methylation is also observed in gene body CGIs, with an
apparent intriguing positive correlation between methylation and
gene expression!>13, Such contradiction on DNA methylation
effects in promoter versus gene body CGIs remains poorly
understood.

The relevance of epigenetics in tumorigenesis has been further
emphasised through recent large-scale screen analyses focused on
cancer patients carrying either histone mutations or alterations in
genes regulating DNA methylation-histone modifications?.
Results from these studies highlighted how such mutations dra-
matically modify the epigenetic and gene expression landscapes.
For example, aberrant DNA methylation has been recently
reported in acute myeloid leukaemia patients with DNMT3A
mutations!. Abnormal recruitment of PRC2 complex and DNA
methylation occurs in paediatric glioblastoma with Histone H3
mutant variants!®. Gene expression changes caused by histone
H3K36 mutation is associated with sarcomagenesis!®. Never-
theless, the epigenetic reshape occurs also in the absence of
specific mutations in chromatin modulators!”. It is the case of
classical oncogenes and tumour suppressors, which can trigger
profound chromatin alterations with consequences on gene
expression'®1%, For example, an oncogenic splice variant of EGFR
leads to §enome-wide activation of putative enhancers in glio-
blastoma®’. Oncogenic EGFR leads to DNA methylation-
mediated transcriptional silencing of tumour suppressors in
lung cancer and glioblastoma?!. Deregulated Ras signalling
reshapes the enhancer landscape leading to aberrant oncogene
expression?2. PI3K/Akt pathway activation induces promoter-
associated gene activation in breast cancer?3. Overall, such screen
approaches have also contributed to identify new genes, whose
functional relevance in cancer was previously unknown and/or
which deregulations can be used as cancer biomarkers for prog-
nosis/patient stratification.

We recently reported a cancer mouse model in which slight
increases in wild-type Met receptor tyrosine kinase (RTK) levels
in the liver are sufficient for spontaneous tumours in mice (Alb-
R26Me!). These genetic studies conceptually illustrate how the
shift from physiological to pathological conditions results from
perturbations in subtle signalling dosage. Through gene expres-
sion analysis, the Alb-R26M¢" mice were shown to model a HCC
patient subgroup corresponding to the so-called “proliferative-
progenitor” subclass?4, demonstrating the clinical relevance of
this genetic system. The uniqueness of this genetic system was
also illustrated by its usefulness to identify new synthetic lethal

interactions as potential therapies for HCC subgroups®4. Here, we
employed the Alb-R26M¢! cancer model for integrative genome-
wide studies combining methylome and transcriptome outcomes
and compared them with those from HCC patients. Results show
an enrichment in genes overexpressed and with hypermethylated
CGI, with expression levels positively correlating with the CGI
distance to the ATG. Whereas most of the upregulated genes are
well-known oncogenes, the implication of others in cell tumori-
genic properties is demonstrated here through functional studies.
Enrichment of genes both overexpressed and with hypermethy-
lated CGIs characterises the “proliferative-progenitor” HCC
patient subset, which is modelled by the Alb-R26Met genetic
system. Collectively, these results show that an epigenetic
reprogramming process ensuring increased dosage of an “onco-
genic module” involving multiple genes operates in
tumorigenesis.

Results

Alb-R26M¢t tumours recapitulate DNA methylation changes of
HCC patient subgroups. We recently showed how the Alb-
R26Met genetic system is a unique tool to model: (a) the
tumorigenic program, (b) the “proliferative-progenitor” HCC
patient subgroup and (c) functionality of signalling alteration for
drug discovery?“. For its use to study the contribution of epige-
netic modifications linked to cancer, we reasoned that it was first
necessary to determine whether the Alb-R26M€ tumorigenesis
occurs in a stable genomic context or is associated with chro-
mosomal deletions/duplications. Comparative genomic hybridi-
sation analyses on DNA inputs from 16 Alb-R26M¢! tumours and
8 control livers excluded chromosomal instability (Supplementary
Fig. 1). These findings therefore reinforce the appropriateness of
the Alb-R26M¢! cancer model as a relevant genetic system to study
the epigenetic reprogramming associated with cancer, which we
addressed by bioinformatically integrating data from methylome
and transcriptome screens (Fig. 1a).

DNA methylation changes were scored by performing Methyl-
MiniSeq EpiQuest sequencing on 10 Alb-R26M¢* tumours
(previously histologically identified as HCC?#) and 3 control
livers (Supplementary Fig. 2A). Mean methylation levels were
modestly, yet significantly, different across all measured CpGs (P-
value = 2.4E—03; Fig. 1b), being able to group tumours and
controls into two distinct clusters (Fig. 1c). A remarkable
predominance of global hypomethylation was observed in
tumours compared with livers (Fig. 1b, Supplementary Fig. 2B).
Accordingly, we observed an enrichment in hypomethylated
CpGs located outside CGIs (P-value = 3E—04; Fig. 1b, Supple-
mentary Fig. 2C). In contrast, a significant enrichment of
hypermethylation at CpGs located within CGIs characterised
Alb-R26Me! tumours compared with control livers (P-value =
3.9E—03; Fig. 1b, d, Supplementary Fig. 2D). These traits of CpG
methylation changes, according to the CpG location with respect
to CGIs, are consistent with those largely reported in the
literature!. Focusing on differentially methylated CpGs located at
annotated CGIs, we identified 513 CGIs with a [-value
methylation difference of +0.2 and a false discovery rate (FDR)
<0.05 (Fig. 1d, Supplementary Fig. 2D, Supplementary Data 1).
These CGIs were homogeneously distributed amongst all 19
autosomal and 1 sex chromosome mouse pairs (Supplementary
Fig. 2E). Among CGIs with differentially methylated CpGs, 82%
were hypermethylated in Alb-R26M¢* HCC compared to controls
(Fig. 1d).

To explore the relevance of these methylation changes in the
context of human HCC disease, we used genome-wide DNA
methylation data from a cohort of 41 HCC patients, for which
data are available for both: (a) methylation and expression; (b)
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Fig. 1 Methylome studies identify an enrichment of CGI hypermethylation in Alb-R26Met tumours, also present in a subset of HCC patients. a Schematic
representation of the overall strategy employed. DNA methylation and gene expression levels were analysed in Alb-R26Met tumours and control livers.
Outcomes were compared with HCC human database. b Mean methylation levels in controls and Alb-R26Met tumours, focusing on all CpGs, CpGs outside
CGls and CpGs in CGls. ¢ Unrooted distance tree using the overall DNA methylation content subdivides Alb-R26Met tumours and controls in two distinct
clusters. d Volcano plot reporting methylation differences with significance (expressed as —Logio FDR) for CpGs in CGls in Alb-R26Met tumours versus
control (left). Significant differences (methylation difference > 0.2 and FDR < 0.05) are shown in red. Graph reporting the percentage (and numbers) of
hypomethylated versus hypermethylated CGls (right). e Volcano plot reporting the mean methylation differences with significance (expressed as —Logo
FDR) in HCC patients from TCGA (left) for differentially methylated CGls identified in Alb-R26Met tumours. Similar methylation levels in HCC patients and
controls are reported in black, whereas changes (>0.2) are reported in red. On the right, the graph reports the percentage (and numbers) of
hypomethylated versus hypermethylated CGls. f Unrooted distance tree of the 41 TCGA HCC patients showing patient segregation in three distinct
subgroups, according to the 416 CGls found differentially methylated in Alb-R26Met tumours. Red dots highlight patients in which MET is overexpressed
(log,FC >1). Patients are reported in different colours according to the percentage of overlap (the scale in percentage is shown on the left). Note the
striking correlation between differentially methylated CGls and MET overexpression in the HCC patient subgroup 3. g, h Volcano plot (g) and unrooted
distance tree (h) from studies using a second cohort of 224 HCC patients and 10 controls (GSE56588 dataset)
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tumour and adjacent liver as control (from The Cancer Genomic
Atlas; TCGA??). For comparisons between mouse and human
data, we first mapped the 513 identified mouse CGIs (mm9) to
the corresponding CGIs in human (hgl9), using the UCSC
toolbox. 501 out of 513 CGIs were successfully matched between
the two genomes. For 416 CGIs, human methylome data were
available in TCGA dataset (Supplementary Fig. 3A; Supplemen-
tary Data 2). We extracted the methylation p-value for the CpGs
within these human CGIs and calculated the mean methylation
difference for each CpG and for each of the 41 HCC patients.
While the majority of these CpGs showed a methylation
difference below 0.2, a proportion of CGIs (24%) were
differentially methylated (FDR <0.05) with a hypermethylation
enrichment score similar to the Alb-R26Met HCC (91%; Fig. le,
Supplementary Fig. 3B). As the analysed cohort includes patients
with widely diverse aetiologies and characteristics, we next
analysed the 416 CGIs in the individual patients. Intriguingly,
hierarchical clustering analysis segregated these HCC patients
into three distinct subgroups, with one subgroup composed of
seven patients reaching 43-56% overlap with the Alb-R26M¢! list
(subgroup-3; Fig. 1f, Supplementary Fig. 3C). The relevance of the
Alb-R26Met methylation changes in the context of human HCC
was further assessed in a second distinct cohort of 234 human
samples (224 HCC patients and 10 control individuals2®). 27% of
CGls differentially methylated in Alb-R26M¢* HCC are also
altered in human HCCs, again with an enrichment in
hypermethylation (93%; Fig. 1g, Supplementary Fig. 4A). More-
over, these methylation changes distinguished controls from HCC
patients, which further segregate into three subgroups. HCC
subgroup-3 reaches about 50% CGI overlap with the Alb-R26Met
list (Fig. 1h, Supplementary Fig. 4B).

Next, we asked whether there would be any correlation
between MET alterations with the three human HCC subgroups
identified by the Alb-R26M¢! methylome screening. Concerning
the HCC patient cohort from TCGA, we were able to perform
correlative studies as RNA-seq and mutation data are available. In
particular, we analysed MET mutations and MET expression
levels for each patient belonging to the 3 different HCC
subgroups. All HCC patients carry the wild-type form of MET,
which is in agreement with rare mutations of MET in HCC.
Concerning expression levels, MET is overexpressed in 86% (6/7)
of HCC patients belonging to subgroup-3 (which best overlaps
with CGI methylation changes in Alb-R26Met), in 32% (6/19) to
HCC subgroup-2, and only in 13% (2/15) to HCC subgroup-1
(Fig. 1f; patients with MET overexpression are highlighted with a
red dot; Supplementary Fig. 3C-F). For the HCC patient cohort
from GSE56588, expression data (array) are only available for
some patients and without information about mutations. There-
fore, correlative studies were not possible with this HCC cohort.
Together, these findings show that liver cancer modelled by the
Alb-R26Met  genetic system is characterised by methylation
changes of specific CGIs, with a predominant hypermethylation
profile. A high proportion of these alterations are also found in
HCC patient subgroups. Furthermore, there is a striking
correlation between differentially methylated CGIs and MET
overexpression in the HCC patient subgroup modelled by the
Alb-R26Met genetic setting.

Enrichment in CGI hypermethylation is necessary for Alb-
R26M¢t tumorigenesis. The overall enrichment in CGI hyper-
methylation in the Alb-R26M¢! genetic system prompted us to
determine its relevance for cell tumorigenic properties. We
designed different demethylating experimental conditions using
low doses of Decitabine (0.3 uM; Fig. 2a), according to previously
reported protocols'2. We used three different Alb-R26Met HCC

cell lines, established from individual Alb-R26M¢* tumours*%.
Decitabine treatment does not affect cell viability of Alb-R26Met
HCC cells, as well as of MLP-29 cells, a mouse liver progenitor
cell line that is not tumorigenic as illustrated by its inability to
form colonies in anchorage-independent growth assays (Fig. 2b).
Instead, Decitabine treatment interferes with Alb-R26Met cell
tumorigenic properties, irrespective of the HCC cell line used, as
exemplified by: (a) reduced colony numbers when cells are grown
in an anchorage-independent manner (Fig. 2c); (b) reduced
number and size of foci when cells are grown in an anchorage-
dependent manner (Fig. 2d); (c) reduced tumour spheres when
cells are grown in self-renewal conditions (Fig. 2e). The effect of
global demethylation on cell tumorigenicity was further analysed
in vivo by performing xenografts in nude mice. The tumour
volume was significantly reduced in mice either injected with
Decitabine pre-treated Alb-R26Me* HCC cells or when Decitabine
pulses were administered to mice injected with untreated Alb-
R26Met HCC cells (Fig. 2f-left). Decitabine doses used in vivo
were not toxic, as revealed by no significant changes on the mouse
weight during the treatment (Fig. 2f-right). Together, these
results indicate that the overall enrichment in CGI hypermethy-
lation is functionally relevant for tumorigenesis modelled by the
Alb-R26Met genetic system.

CGI hypermethylation correlates with gene upregulation in
Alb-R26Met HCC. Alterations in DNA methylation are known to
impact gene expression. We analysed the expression levels of the
431 genes with differentially methylated CGIs in Alb-R26Met
tumours using high-coverage RNA-seq data (4 Alb-R26Met
tumours and 4 control livers). Studies highlighted 93 genes dif-
ferentially expressed (log,FC>1, FDR<0.05 Supplementary
Data 3). According to the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) database, several cancer-related pathways were
significantly enriched, such as MAPK signalling, viral carcino-
genesis, pathways in cancer, TGF- signalling, cell cycle, renal cell
carcinoma (Fig. 3a, Supplementary Fig. 5), strengthening the
significance of genes differentially methylated and expressed in
the Alb-R26Me¢! cancer model. Remarkably, the top-ranked MAPK
pathway is coherent with its essential functionality for Alb-R26Met
tumorigenicity, as previously reported?4. Among genes differen-
tially methylated and expressed, 36 genes showed the expected
inverse correlation between methylation and expression where 20
genes are hypomethylated and overexpressed, and 16 genes are
hypermethylation and downregulated (Fig. 3b, Supplementary
Data 3). Unexpectedly, 55 genes (59%) were found hyper-
methylated and overexpressed (Fig. 3b). Thus, tumorigenesis
modelled by the Alb-R26Me! mice is characterised by a set of genes
with changes in CGI methylation accompanied by a reprogram-
ing of transcript levels.

The intriguing enrichment in hypermethylated and over-
expressed genes drove us to analyse the position of the
hypermethylated CGIs with respect to the ATG. Interestingly,
the CGI of overexpressed genes is either close to the ATG or in
the gene body region, in contrast to the CGI position of
downregulated genes exclusively located around the ATG
(Supplementary Fig. 6). Concerning the 55 genes hypermethy-
lated and overexpressed, they can be subdivided into two groups.
Group-I includes 31 genes, for which the CGIs are located
between —50% and 30% relative to the ATG (predominantly into
the 5-UTR). Group-II includes 24 genes, whose CGIs are located
much further from the ATG (from 30% of the gene body relative
to the ATG to the transcription termination site), corresponding
to gene body regions (Fig. 3¢, Supplementary Fig. S6). Next, we
analysed whether the CGI location influences gene expression.
Intriguingly, the extent of overexpression is significantly higher

4 | (2018)9:3164 | DOI: 10.1038/s41467-018-05550-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-05550-5 ARTICLE

a

T

Cell viability
No treatment ns

o O e e e e e
Decitabine pre-treatment

s O e s e
Decitabine pre-treatment + pulses

OO OOOmOOOE OOy

ns

Cell number (%)

No treatment

OO OOOOOOOoOoOoooacacrg
Decitabine1 pulse

OO OO oo oo Oocraacrg
Decitabine 3 pulses

OO0 OOOOOOOOoOoacrac3arg

£ No treat
o
%3 |48 h treat

c Anchorage-independent growth
kil K,k K *k * * %k
;\2? 120 **:** i ok g 120 ok * *k
3 3
5 80 5 80
8 S
S [s]
5 40 5 40
Qo Qo
- [] : ]
> z
= 0 — -— i -— =y -— =y 0 “c'“‘ Q (%] ‘ES' [0 (%] ‘tg [0 (%]
g 888 ¢ 888 & 2828 ¢ 2 g g 2 8 g £ &
2 o638 g &2 g o8’ s * a s 2 g2
Z aoa+ Z aa+ Z a4+
HCC3 HCC13 HCC14 HCC3 HCC13 HCC14
Alb-R26Met HCC cells Alb-R26Met HCC cells

Anchorage-dependent growth

5 120 800}, 800 120 2 o 8007 «xx 800
Y g < 5
2 . £ 600 % 600 8 £ 600 % 600{ ***
% E 0% o < E 80 ; o Q
8 N 400 400 % S N 400 400
B > e ¥ u >
5 40 5 2 40 g
o <5 200 200 g % 200 200
£ o [S o 8
= 0= 5 8 00— 0 —— zZ 0 S w 8 04— -0 =
g8 88 g E g % 88 £ 38 § 8 5 8
= = =8 = = = = = 3 by S s 5 s S
S @ S @ & & 2o 2 o o & o &
Z o Z a zZ i zZ & = z
HCC13 HCC14 HCC13 HCC14 HCC13 HCC14 HCC13 HCC14
Alb-R26Met HCC cells Alb-R26Met HCC cells Alb-R26Met HCC cells Alb-R26Met HCC cells
e Sphere formation f Xenograft
*k
- 1209 _xxx 2000 5 2 ns.
o~ ) 2
e £ S °
3 E 1500 2 1
3 80 P &
< 1S © o
£ 2 1000 £ 04 9 %
— o S °
oS > S
g 40 ‘g S
€ £ 500 2 -1 o °
=] =] >
= 0 a 0 § 2
g g 4 g %‘: 4 No treat Pre-treat Pulses B No treat Pre-treat Pulses
£ 5 £ = = 2 (n=10) (n=10) (n=5) (n=5) (n=5) (n=5)
o o a o o a T — P
Z a Z a Alb-R26MetHCC13 Mice injected with
HCC13 HCC14 xenografts Alb-R26MetHCC13
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for Group-II than Group-I (median log,FC=2.15 * versus
median log,FC = 3.38 + 0.4; Fig. 3d, e). Importantly, the promo-
ter CGI methylation status of genes belonging to Group-II was
similar in Alb-R26M¢! tumours and control livers, thus excluding
that changes in promoter methylation could influence gene
expression levels (Supplementary Data 4). We corroborated these
results through RT-qPCR analysis of a subset of genes belonging
to both groups in Alb-R26Met tumours (n = 8) relative to control
livers (n = 6). Results showed consistent upregulation of all genes
(Fig. 3f), with significant higher expression levels for those within
Group-II (Fig. 3g). Together, these results highlight a set of
overexpressed genes with hypermethylated CGls in Alb-R26Met
tumours and identify a correlation between the location of
hypermethylated CGIs and transcription status, where CGIs
located further from the ATG showing predominantly increased
transcription.

Next, we analysed whether Decitabine treatment would affect
in vivo the expression levels ogwgenes found hypermethylated and
overexpressed in the Alb-R26M¢! tumours. Focusing on a set of
genes, we examined both their expression levels and the
methylation levels of their corresponding CGIs in dissected
tumours from Alb-R26Me* mice either untreated or treated with
Decitabine. RT-qPCR results showed that Decitabine treatment
significantly decreases the expression levels of 7/8 analysed genes
(Fig. 4). Bisulfite sequencing studies revealed decreased methyla-
tion levels of most CpGs within the gene body CGIs (Fig. 4,
Supplementary Data 5). Thus, CGI hypermethylation of genes
belonging to Group-I and Group-II ensures their increased
expression levels in AIb-R26M¢* tumours as demethylating
treatment leads to a reduction of both CGI methylation content
and transcription.

A CGI hypermethylation and gene overexpression signature
defines a HCC patient subset. Next, we explored the relationship
between changes in CGI methylation and gene expression in the
above cohort of 41 HCC patients. Because of expected epigenomic
heterogeneity between human samples, we reasoned it relevant to
perform analyses in individual patients. We integrated tran-
scriptome and methylome data to extract the expression levels of
genes with differentially methylated CGIs (Fig. 5a), then classified
patients according to the highest percentage of genes: (a) over-
expressed with hypermethylated CpGs (HTE™T); (b) overexpressed
with hypomethylated CpGs (H'E™"); (c) underexpressed with
hypermethylated CpGs (HYE™); (d) underexpressed with hypo-
methylated CpGs (HE™). Intriguingly, 23/41 patients (56%)
showed an enrichment of genes overexpressed and with hyper-
methylated CpGs (HYE™T patient-subset; Fig. 5a, Supplementary
Data 6), similar to the Alb-R26M¢! model (Fig. 3b). Analysis of
MET levels in HCC patients revealed that the mean MET levels in
the HTET subset is 0,77 0,16 (9/23; 39% patients with MET
levels > 1), whereas in the “NO HTE*1” subset is 0,2 + 0,24 (5/18;
27% patients with MET levels > 1; Supplementary Data 6). Inter-
estingly, all 7 patients belonging to the HCC subgroup-3
(in Fig. 1f) are characterised by more than 37% of genes both
hypermethylated and overexpressed, and 5/7 patients belong to
the HTE' subset (these 7 patients are highlighted with a
red square and red % in Fig. 5a). Next, we asked whether the
HTET patient subset could be also identified according to global
gene expression or methylation features. Unsupervised cluster
analysis of either global methylome or transcriptome data did not
lead to the same patient clustering (Supplementary Fig. 7), thus
strengthening the usefulness of combining methylation-expression
features to identify specific HCC patient subsets.

The remarkable correlation between data obtained in the Alb-
R26Met HCC model and analysed patient samples prompted us to

perform integrative studies using another HCC model, for which
methylation and expression data are available: the hepatitis-B
virus-X mice (HBx'8; GSE48052%7). We first identified all CpGs
differentially methylated in HBx® HCC model, then correlated
them with gene expression levels. We identified 115 genes both
differentially methylated and differentially expressed (a very
similar number to the 97 genes found in the Alb-R26M¢! genetic
setting). Nevertheless, we found a different distribution compared
to that of the Alb-R26M¢* HCC, with an enrichment in genes both
hypomethylated and downregulated (Supplementary Fig. 8).
Next, we performed correlative analyses with the 41 HCC
patients (reported in Fig. 5a): amongst the 18 “NO HTE™” subset,
8 patients (20%) share the same enrichment of hypomethylated
and downregulated genes modelled by the HBx"€ mice. Unex-
pectedly, only 1/8 of these patients is reported positive for HBV.
Thus, an epigenetic rewiring of gene sets through hypomethyla-
tion and downregulation occurs in a fraction of HCC patients,
who do not appear to be characterised by the HBV-associated
risk. Collectively, these findings indicate a rather intriguing
specificity in how genes are epigenetically reprogrammed in HCC
patients: an enrichment in hypermethylated and upregulated
genes (for those corresponding to the Alb-R26M¢t model) versus
an enrichment in hypomethylated and downregulated genes (for
those corresponding to the HBx'8 model).

For the several genes found overexpressed and with hyper-
methylated CGIs in the HTET patient subset, such as WTI,
DLK1, TP73, EEF1A2, IGFIR, DKKI, SPOCKI, ITPKA, HOXA3,
NOX4, FZDI10, VASH2, GATA2, SOX8, their upregulation in
HCC samples is coherent with their reported function as
oncogenes in cancer. Concerning the HYE™ patient subset, based
on clinical data from TCGA, no association was found with a
specific risk factor, such as HBV/HCV infection, high-alcohol
intake or non-alcoholic fatty liver disease (NAFLD) (Supplemen-
tary Fig. 9). Instead, the HTE™ patient subset is distinguished by
specific HCC molecular markers?. In particular, analysis of
available RNA-seq data revealed a significant upregulation of
alpha-FETOPROTEIN (AFP; a HCC marker when expressed in
adult livers), JAGI, NOTCH3, NOTCH4, SOX9, VIM (progenitor
markers) and CD24 (a HCC prognosis marker; Fig. 5b).
Importantly, these markers are also upregulated in Alb-R26Met
HCC (Fig. 5¢), as we recently reported®4. Together, these results
show that an enrichment in genes characterised by “CGI
hypermethylation and overexpression” occurs in HCC patients
belonging to the so-called “proliferative-progenitor” subclass®S.
Moreover, these HCC patients share common features with the
Alb-R26Met liver cancer model: the epigenetic HTET signature
and the “proliferative-progenitor” cell feature.

Overexpressed genes with hypermethylated CGIs in 5>-UTR or
gene body regions act as oncogenes. The intriguing overlap
between the Alb-R26Met model and the HTE' patient subset
prompted us to explore the relevance in cancer of the 55 genes
found in Alb-R26M¢ tumours both overexpressed and with
hypermethylated CGIs either in the 5'-UTR or in the gene body
region. For this analysis, transcriptome data from HCC patients
were available for 51/55 genes (Supplementary Data 7).
Remarkably, most genes are overexpressed in a large proportion
of HCC patients (Fig. 6a, Supplementary Data 8), with a sig-
nificant higher number in the HYET patient subset compared
with the other (Fig. 6b). These genes include PRRX1I (28 patients
out of 41), CLDN7 (20), DBN1 (25), PCDHI17 (30), PTK7 (21),
ADAMTSL5 (21), ARHGAP21 (30), NFKB2 (23), CDKN2B (30),
RELB (22), DUSPS8 (24), SSBP4 (20), IRX3 (27), NEURLIB (19).
Differences in the expression of these 51 genes permitted segre-
gating the HYET patient subset from the other (Fig. 6c).

| (2018)9:3164 | DOI: 10.1038/541467-018-05550-5 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-05550-5

| C2cd4c | | Actn-1
1.0 1 300 L = 1.0 1 1 i *
& WW*‘ " = ’\_,_,——'4\' b
=1 4 P~ S a 10
gl [ 1S [
& 06 W =t & s
s 2 100 5 051 2
£ 04 . : :
z 02 Il Tumours I_% 0{ wokmw " B W Tumours L% 5 ngm 44;;(
< 02 . b o A
2 M Decit Tumours 2 B Decit Tumours B -
0.0 - -100 . . 0.0 - 0 . ’ .
chr10:79075026-79075237 | Livers _ Tumours _ Decit chr12:81269316-81269618 | Livers Tumours Decit
0060600600000804 Tumours ¢ ¢ ¢ & Tumours
| Amn | | Cacnalb
| i 4 *kk
1o [l Tumours 1500 o > 107 % -
2 o8 W Decit Tumours 5 S 08 g %0 .
| g 1000 " g™ N € oono
S 061 = < 061 S 100 +
S =
2 04 @ 500 S o4 & 100
§ 041 g § 041 e o
% 0.2 /'1 / " 53 0 oo st -E 02 [l Tumours u% 50 ol b
-1 w o Y.eq
= w M = [l Decit Tumours 0 PN ) o _ANAE,
0.0 -500 0.0 ;
chr12:112512304-112514119 Livers  Tumours  Decit chr2:24534503-24535045 | Livers Tumours Decit
W Tumours 0006600000640 Tumours
| Srd5a2 | | Cdkn2b
104 15 1.0 120 ekl
% . * kK m
5 081 .\I/H\ g 5 08 ._._;\-\Q// 5 s
: ST o ; g
< 0.6 c < 06 T
5 \ 2 5 g
£ 041 \ g . 3 0.4 9 40
z 02 [l Tumours g z M Tumours o
[} .24 . w [] A - o ‘-$I*
2 M Decit Tumours E 2 DecitTumours I 01 eems
0.0 - ai . - = 0.0 = ; B
chr17:74396795-74397262 | Livers Tumours _ Dacit [ chr4:88952930-88953158 | Livers Tumours  Decit
0600000600604006 Tumours IR Tumours
| Ltbp3 | | Scn8a |
1.0 5 250 xk e 107 ee po so ocoooeose 200
o ~ 200 = B H\/r\fvvm 150 n
3 5 3 08 g S
= g s 100 o '—|
> o B T
3 = 150 2= 06 s 50
(= As
< 051 2 100 s 2 i
S 05 7] S @ 20
= 3 50 5 04 8
E W Tumours \ u% z 02 [ Tumours g 10 . TEE_‘
= . o .. w R
2 W Decit Tumours 01 eovvee e 2 B Decit Tumours 0
0.0 - -50 . . . 0.0 ; . .
chr19:5745505-5746004 | Livers _ Tumours _ Decit | chr15:100814188-100814463 | Livers Tumours  Decit
I PYYYYYYYYYS Tumours 0000000600040040 Tumours

Fig. 4 Decitabine treatment decreases the expression and the CGl methylation levels of genes hypermethylated and overexpressed in Alb-R26Met tumours.
Expression and CGIl methylation levels of a set of genes found hypermethylated and overexpressed in the Alb-R26Met tumours were analysed in dissected
tumours from Alb-R26Met mice either untreated (red) or treated with Decitabine (green). For each indicated gene, graphs report the methylation levels of
CpGs within the CGI of interest (left) and the expression levels of genes (right) in tumours from Alb-R26Met mice either untreated (red) or treated with
Decitabine (green), compared to control livers (blue). Note that demethylating treatment significantly decreased transcription levels. Concerning the Scn8a
gene, the methylation levels of its gene body CGl was reduced in Decitabine treated tumours compared to untreated tumours. This was accompanied by a
trend in downregulation of its expression levels, although not significant. It is possible that for Scn8a, the demethylation extent caused by the dose of
Decitabine used is suboptimal to significantly influence its expression levels. Alternatively, a more complex mechanism could be involved in the regulation
of Scn8a expression. Significance is indicated on the top. Not significant (ns): P > 0.05, *P<0.05, **P<0.01, ***P<0.001

Furthermore, for each HCC patient we analysed the methylation
levels of the CGIs corresponding to the 55 genes. We took into
account that the number of CGIs for each gene varies between
genes (Supplementary Data 7). 53/55 genes successfully lifted-
over from mouse to human, and both methylation and expression
data are available for 51 genes. These analyses revealed that 42/51
(82%) genes are both hypermethylated and overexpressed in at
least 1 patient, and that 40/41 (97,5%) patients have at least 1
gene both hypermethylated and overexpressed (Fig. 6d, e, Sup-
plementary Fig. 10, Supplementary Data 9). Additionally, there is
a significant higher number of genes both hypermethylated and

overexpressed in the HYET patient subset compared to the “NO
HTET” subset (HTEt versus “NO HTET”: P-value <0.001;
Supplementary Fig. 10).

Curiously, in the Alb-R26Met cancer model Cdkn2a, rather
considered as a tumour suppressor, is overexpressed and
hypermethylated in its gene body CGI, whereas no methylation
changes were observed in its promoter CGI (Supplementary Data
4). We examined whether this phenomenon would also occur in
HCC patients by analysing CDKN2A methylation and expression
in HCC patients from TCGA and GSE56588 cohorts (for which
methylation and expression data are available: 205/224 patients).
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Fig. 5 A HCC patient subset, which is characterised by an enrichment of genes overexpressed and with hypermethylated CGls, belongs to the HCC
“proliferative-progenitor” subclass. a The 41 HCC patients are classified according to the highest percentage of genes over- versus underexpressed and
with hyper- versus hypomethylated CGls. In orange (left), patients with an enrichment of genes overexpressed and with CGI hypermethylation (HTET
patient subset). Patients are organised according to the absolute number of hypermethylated CGls. The percentage of genes overexpressed and
hypermethylated is reported on the top. In green (right), all other patients are reported (NO HTE* patient subset). Note that this patient subset is
characterised by an enrichment in downregulated genes. Patients are organised according to an enrichment of genes with CGIl hypomethylation (top) and
hypermethylation (bottom). Concerning the 7 patients of the HCC subgroup 3 identified in Fig. 1f (corresponding to the best overlap patients), 5 of them
belong to the HTE* subset. Notably, all of these 7 patients are characterised by more than 37% of genes both hypermethylated and overexpressed
(highlighted in panel with a red square and a red percentage of genes overexpressed with hypermethylated CGI). The X-axis reports methylation
differences, whereas the Y-axis reports expression as Log,FC. b Transcript levels (from RNA-seq data) of the indicated genes in HTE* patient subset (in
orange) versus the others (in green). Note significant high transcript levels of AFP, JAGI, NOTCH3, NOTCH4, SOX9, VIM and CD24 in the HTET patient
subset. ¢ Transcript levels by RT-gPCR for the same genes shown in b analysed in Alb-R26Met tumours versus control livers, displaying the same profile of
gene upregulation as in the HYE™' patient subset. Data have been reported in ref.24. Significance is indicated on the top. *P < 0.05, ***P < 0.001

Mouse Cdkn2a has two CGIs: one in the promoter and another in
the gene body. Instead, human CDKN2A has 5 CGIs: one in the
promoter and four in the gene body. Data are available only for
the CGI in the promoter and for one of the four CGIs located in
gene body. Notably, in both cohorts we found an enrichment of
patients with an overexpression of CDKN2A (39/41 and 166/204,
in the respective cohorts), which is associated to a

hypermethylation of the gene body CGI (21/39 and 163/166, in
the respective cohorts). In contrast, not methylation changes have
been detected in the promoter CGI for both HCC cohorts
(Supplementary Fig. 11).

Analysing pathway enrichments in KEGG pathways of genes
overexpressed with hypermethylated CGIs, we identified a
significant enrichment of several cancer-related pathways, such
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Fig. 6 The 55 genes identified in Alb-R26Met tumours are also upregulated in the HTE™ patient subset, and a large proportion of them is characterised by
hypermethylated CGls. a Heat-map reporting expression levels of genes found overexpressed and with hypermethylated CGls in Alb-R26Met tumours
versus control livers (rows; subdivided in Group | and Il and organised according to the relative position to the ATG) in individual HCC patients (columns;
organised as in Fig. 5a). Red: upregulated genes; green: downregulated genes. Black: not differentially expressed. White: data not available. The scale is
shown on the right (expressed as Log, FC). The HTET patient subset is highlighted in orange (left), whereas all other patients in green (right). b In the
graph, each dot corresponds to a given gene (the total 51 genes are reported). Their position corresponds to the percentage of patients in which the gene is
overexpressed. In orange (left), for the HTE™ patient subset. In green (right), for all other patients. € Unrooted distance tree of HCC patients based on the
51 genes identified in the Alb-R26Met tumours. In orange: HTE™ patient subset. In green: all other patients. d Heat-map highlighting with a yellow square
genes overexpressed and with hypermethylated CGl in the corresponding HCC patient. The heat-map is organised as in panel A. Black square: genes not
simultaneously overexpressed and with hypermethylated CGl in the corresponding HCC patient. Grey: data not available. e Tables reporting the numbers
with percentages of genes overexpressed and with hypermethylated CGl in at least 1, 5, 10 or 20 HCC patients (left), as well as numbers with percentages
of patients with at least 1, 5, 10 or 20 genes overexpressed and with hypermethylated CGI out of the 55 genes identified in the Alb-R26Met model (right).
f Histogram reporting the KEGG pathway enrichment analysis for the 55 genes identified in Alb-R26Met tumours, ordered according to the —Log;oP-value.
Significance is indicated on the top. ***P < 0.001

as MAPK signalling, viral carcinogenesis, pathways in cancer, cell ~Data 10). The presence of poorly characterised genes among well-
cycle (Fig. 6f, Supplementary Fig. 12). Consistently, some of these established oncogenes prompted us to explore their functional
genes are well-known oncogenes, such as GRB10, MAP3K6, JUN relevance in cell tumorigenic properties. Focusing on Scn8a,
(which belong to MAPK pathway), NFKB2, RELB (which belong  Actnl, Srd5a, NFkB2 and Neurllb, we used shRNA-mediated
to NFkB and MAPK pathways), MET, PTK7 (Supplementary targeting to lower their expression levels in Alb-R26M¢* HCC cells
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(Fig. 7a, Supplementary Fig. 13). Stable clones were used to assess
cell tumorigenic properties in vitro and in vivo. These genes were
selected because: (1) of their overexpression in HCC patients
(SCN8A in 41%, ACTNLI in 22%, SRD5A2 in 5%, NFkB2 in 56%,
NEURLIB in 46%); (2) of their action as oncogenes in cancer cells
(and particularly in HCC) has been less explored in previous
studies (with the exception of NFkB2 and SRD5A). Down-
regulation of either Scn8a, Actnl, Srd5a, NFkB2 or Neurllb
interferes with the capability of cells to form: (a) colonies in
anchorage-independent assays (Fig. 7b); (b) foci in anchorage-
dependent assays, as revealed by a significant smaller foci size
even if numbers were similar (Fig. 7¢); (c) tumour spheres when
cells were grown in self-renewal conditions (Fig. 7d); (d) tumours
in nude mice xenografts (Fig. 7e). Collectively, these data show
that most of the 55 genes identified in the Alb-R26M¢! cancer
model are also overexpressed and with hypermethylated CGIs in
a large proportion of HCC patients, with a set of them acting
together as an “oncogenic module”.

Discussion

The increasing knowledge on how epigenetic modifications such
as DNA methylation influence patterns of gene expression in
cancer holds great promises for understanding biological pro-
cesses, as well as for their use in prognosis, patient stratifications
and therapeutic intervention®2°. This is well exemplified by
reports showing correlations between changes in CGI methyla-
tion and a remarkable resetting of transcriptional networks in
cancer. In the present study, we employed a clinically relevant
cancer mouse model in which tumorigenesis is triggered by a
slight perturbation in signalling dosages rather than drastic
genetic modifications, to examine the DNA methylation land-
scape associated with tumorigenic acquisition. We reasoned that
such a genetic tool offers a unique way to model DNA methy-
lation changes occurring in human cancerogenesis in the absence
of drastic alterations of epigenetic modulators. Our genome-wide
strategy highlighted key correlations between site-specific DNA
methylation changes and transcriptional dosages of the corre-
sponding genes. The type of changes found for some genes belong
to the well-known mechanism of downregulation of tumour
suppressors through promoter DNA hypermethylation, which
was the case of Oat and Igfbp5 that can act as tumour suppressors
in certain cellular contexts. Quite unexpectedly, however, there is
an enrichment of genes both overexpressed and with hyper-
methylated CGIs. Several of them are well-known oncogenes,
such as Grb10, Map3k6, Jun, RelB, Met, Ptk7, as well as NF-KB2,
Srd5a2, which have been functionally validated in this study
together with others poorly investigated so far: Scn8a, Actnl,
Neurllb. Results from our functional assays in Alb-R26Met HCC
cells demonstrate how downregulating each individual oncogene
reduces, but not abolishes, cell tumorigenic properties. These
results conceptually illustrate that, although each oncogene con-
tributes to the tumorigenic properties of cancer cells, they operate
in a cooperative manner as an “oncogenic module” for ensuring
robustness of the tumorigenic program.

Our integrative studies using human HCC databases demon-
strate that enrichment in genes both overexpressed and with
hypermethylated CGIs also characterises 56% of the HCC
patients, which we named as the “HTE™ patient subset”. For
several genes, upregulation in expression levels is coherent with
them being bona fide oncogenes. For example, it is the case of
WTI, DLK1, TP73, EEF1A2, IGFIR, DKKI, SPOCKI, ITPKA,
HOXA3, NOX4, FZD10, VASH2, GATA2, SOX8. Thus, our
genetic studies together with a revisited analysis of human cancer
databases reveal that raising dosages of oncogene sets char-
acterised by hypermethylated CGIs is a robust mechanism

operating in cancer. The existence of such events in human
pathology supports the clinical relevance of these findings.
Remarkably, the HTET patient subset belongs to the “HCC
proliferative-progenitor” subclass, thus attributing an additional
feature to this aggressive HCC subtype. For clinical imple-
mentation, integrative methylome and transcriptome analyses on
additional HCC cohorts will demonstrate the robustness of HTE™
patient subset classification. These findings also raise the question
as to whether the HYE™T patient subset could be most sensitive to
therapies based on demethylation agents3C.

Our expression analyses revealed that HYET genes can be
segregated into two groups, according to their relative position to
the ATG, with overall significant higher expression levels
observed the further the CGI is located from the ATG (Group-II).
Whereas for Group-I the relative position of the hypermethylated
CGIs falls predominantly with the 5’-UTR, their location in
Group-II is in the gene body. The positive correlation between
gene body hypermethylation and expression is coherent with
previous studies based on in vitro modulation of the methylation
content in cancer cell lines!2. Additionally, single-base resolution
DNA methylation profiling combined with transcriptome analy-
sis correlated changes in gene expression levels with the CpG
methylation content in gene body>!~3%. The significance of gene
body DNA methylation on transcriptional regulation is
strengthened by studies exploring correlations with chromatin
modifications. It has been reported that in the gene body: (a)
H3K4me3 association to alternative promoters depends on their
CpG methylation content, impacting alternative transcript pro-
ducts®; (b) H3K36me3 associates with methylated DNA in gene
body and permits transcription3®; (c) CTCF binding is lost in
hypermethylated CGI, influencing splicing, in addition to the
well-known action of CTCF in maintenance of chromatin
architecture through generation of chromatin barriers3”>38; (d)
H3K27me3 and H3K9me3, known as repressive histone marks,
are not associated with methylated DNA3°. Future studies inte-
grating methylome, transcriptome and ChIP-seq with several
chromatin marks like those mentioned above will contribute to
uncover the underlying mechanisms of action of oncogene
upregulation through gene body methylation. Taking into
account the variety of chromatin factors found associated in gene
body, it is likely that different sets of genes are modulated by
different mechanisms of action.

For translating these findings into therapies, an intriguing
question is whether and to what extent the epigenetic repro-
gramming of a set of genes acting as an “oncogene module” still
leaves space for tumour vulnerability. Our functional studies
show that targeting each individual oncogene reduces, but not
abolishes, tumorigenicity, indicating that each oncogene provides
a net contribution to the whole tumorigenic properties of cancer
cells. Such context may be particularly relevant for tumours that
are not predominantly “addicted” to genetic mutation(s)4?, such
as HCC. This likely explains the partial response of HCC patients
even with most promising drugs targeting one or at least a
restricted number of targets (e.g., Sorafenib). Such scenario
contrasts with exceptional cases of effectiveness, due to the
stringent addiction of cancer cells to a given oncogene, such as
BCR-ABL in chronic myeloid leukaemia, ERBB2 in breast cancer,
ERBBI in non-small cell lung cancer, B-RAF in metastatic mel-
anoma. To identify vulnerability, an approach could be to extract
enriched pathways that are deregulated from the whole list of
epigenetically reprogramed genes. In the case of tumorigenesis
modelled by the Alb-R26M¢* mice, the MAPK signalling cascade is
on the top of the list of enriched pathways (with 11 genes dif-
ferentially methylated in tumour versus control livers). Through a
phosphokinome-based educated guess drug screen, we recently
reported that tumorigenesis modelled by the Alb-R26Me! genetic
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Fig. 7 Downregulation of overexpressed genes with hypermethylated gene body CGl in Alb-R26Met HCC cells interferes with their tumorigenic properties
both in vitro and in vivo. a Western blots showing SCN8A, ACTN1, SRD5A2, NFkB2 and NEURL1B protein levels in stable clones established after
transfection of Alb-R26Met HCC14 cells with plasmids carrying a shRNA sequence targeting the corresponding gene. Protein levels were compared to
control cells (ctr). ACTIN was used as a loading control in all western blots. The asterisk indicates nonspecific bands detected using anti-SRD5A2
antibodies. b-e Biological assays to assess functional properties of Alb-R26Met HCC14 cells carrying a shRNA sequence targeting candidate genes. Effects
were compared to HCC14 cells either untransfected or transfected with a control shRNA (shCtrl). b Graph reporting the number of colonies formed in
anchorage-independent growth assays using 2 different shRNA targeting sequences for each candidate gene. Note a decrease in colony number formation
of cells with downregulated candidate genes compared with control cells. € Graphs reporting the number (left) and the size (right) of colonies formed in
anchorage-dependent growth assays. Whereas no significant changes in colony numbers were detected, note a significant decrease in colony size when
the candidate gene is downregulated. d Graph reporting number of spheres formed in tumour sphere assays. Note that downregulation of candidate genes
significantly reduces sphere number formation. e Graph reporting the tumour volume of mice injected either with Alb-R26Met HCC14 control cells or with
Alb-R26Met HCC14 cells carrying a shRNA sequence targeting candidate genes. Note that downregulation of candidate genes significantly interferes with

the in vivo tumorigenic properties of Alb-R26Met HCC14 cells. Significant differences between groups are indicated on the top. *P < 0.05, **P < 0.01, ***P <
0.001 (nd: no determined)
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system is vulnerable to Ras pathway targeting, provided that its
inhibition occurs concomitantly while destabilising the stress
support mitochondrial pathway?4. It is therefore tempting to
speculate that a proportion of tumours, particularly those with
epigenetic reprogramming rather than those with drastic genomic
instability, still maintains vulnerability to synthetic lethal inter-
actions. Alternatively, the use of epigenetic modulating agents to
reprogram a set of genes in cancer cells, ideally used at minimal
doses to limit side effects®2°, could reinforce the action of pro-
mising targeted therapies that, when used alone, have been
unsatisfactory in clinical trials, as reported for chronic myeloid
leukaemia®!. We show here that Decitabine treatment reduces the
methylation levels of gene body CGIs and the expression levels of
the corresponding genes. Such event correlates with reduced
tumorigenic properties of Alb-R26M¢* HCC cells. Nevertheless,
cells for 10 days in culture after 48 h with Decitabine recover their
tumorigenic properties (Supplementary Fig. 14), illustrating how
reduced tumorigenicity by transient demethylation treatment is
reversible, likely by resetting increased levels of oncogenes. This
would be coherent with previous studies showing the capability of
cancer cells to restore acquired epigenetic modifications!'2. Col-
lectively, these findings support the possibility of achieving
effective response in cancer combining epigenetic modulating
agents with targeted treatments.

In conclusion, by exploring epigenetic changes associated with
tumorigenesis in a clinically relevant mouse model, we discovered
that for oncogene sets, characterised by hypermethylated CGIs
either in their 5'-UTR or in the gene body, their expression levels
are raised in cancer. The use of a mouse model in which
tumorigenesis is not caused by drastic genetic manipulations
strengthens the advantage of disrupting multiple oncogenes
through an epigenetic reprogramming. Delineating the relation-
ship between aberrant DNA methylation and expression of
oncogenes/tumour suppressors will likely contribute to identify
biomarkers for patient stratifications, functional pathways oper-
ating in cancer and strategies for an epigenetic restoration of
deregulated genes in combination with molecular therapies.

Methods

Mice. Ethics Statement: All procedures involving the use of animals were per-
formed in accordance with the European Community Council Directive of 22
September 2010 on the protection of animals used for experimental purposes
(2010/63/UE). The experimental protocols were carried out in compliance with
institutional Ethical Committee guidelines for animal research (comité d’éthique
pour I'expérimentation animale—Comité d’éthique de Marseille; agreement
number D13-055-21 by the Direction départementale des services vétérinaires—
Préfecture des Bouches du Rhone).

Alb-R26M¢t mice: R26%1PMet and Alb-R26Me! mice have been described
previously*243, Briefly, R265/PMet mice (international nomenclature Gt(ROSA)
268ortm1(Actb-Met)Fmai) carrying a conditional mouse-human chimeric Met
transgene in the Rosa26 locus were crossed with Albumin-Cre mice (B6.Cg-Tg(Alb-
cre)21Mgn/J) obtained from the Jackson Laboratory. All mice were maintained on a
50% mixed 129/SV and C57BL6 background. Mice were genotyped via PCR
analysis of genomic DNA as reported in previous studies*>*3. Mice were housed
under pathogen-free conditions.

Mice drug treatment: For in vivo demethylation experiments to asses
methylation levels of selected CGIs, as well as expression levels of the
corresponding genes, Alb-R26M¢! mice were treated with intraperitoneal injections
of 2.5 mg/kg of Decitabine, twice per week (for a total of three injections).

DNA/RNA-related experiments. Genomic DNA isolation: Genomic DNA from
Alb-R26Met tumours and control livers was prepared using the ZR Genomic DNA
Tissue Miniprep (Zymo Research Company), according to the manufacturer’s
instructions.

Total RNA extraction: Total RNA from frozen tissues and cultured cells was
isolated using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s
instructions. DNase (Qiagen) treatment was included to avoid possible genomic
DNA contamination. Regarding frozen samples, 20 mg of tissue were first
homogenised in the specific lysis buffer by 6300 r.p.m. 2 x 30 s using Precellys 24
(Bertin technologies), then the RNeasy Mini Kit (Qiagen) was used.

cDNA and quantitative RT-PCR analysis: cDNA was synthesised using a
Reverse Transcription Kit (Bio-Rad). PCR reactions were performed using 2X
SYBR Green qPCR SuperMix-UDG with Rox (ThermoFisher Scientific) and
specific primers (1 uM; qPCR primer sequences are listed in Supplementary Data
S11). Expression levels were quantified using the comparative Ct method (2-4ACT
method) with the house-keeping gene Hprt as a control for internal normalisation,
and results are expressed as RQ = 2~AACT,

High-throughput sequencing. Comparative Genomic Hybridisation analysis:
Genomic DNA form dissected Alb-R26M¢! tumours (n = 16) and control livers
(n = 8) was analysed by the “Plateforme Biopuces et Sequencage IGBMC” (Illkirch,
France) using an Agilent Oligonucleotide Array-Based CGH for Genomic DNA
Analysis (CGH microarray 4 x 180 K).

Genome-wide DNA methylation analysis: Methyl-MiniSeq EpiQuest genome-
wide sequencing was perform using genomic DNA from dissected Alb-R26Met
tumours (n = 10) and control livers (n = 3) to analyse the DNA methylation profile
by the Zymo Research Corporation (Irvine, CA, USA).

Library construction. Libraries were prepared from 200-500 ng of genomic
DNA digested with 60 units of Taqal and 30 units of MspI (NEB) sequentially,
then extracted with Zymo Research DNA Clean and Concentrator™-5 kit (Cat#:
D4003). Fragments were ligated to pre-annealed adapters containing 5'-methyl-
cytosine instead of cytosine according to Illumina’s specified guidelines (www.
illumina.com). Adaptor-ligated fragments of 150-250 bp and 250-350 bp in size
were recovered from a 2.5% NuSieve 1:1 agarose gel (Zymoclean™ Gel DNA
Recovery Kit, Zymo Research Cat#: D4001). The fragments were then bisulfite-
treated using the EZ DNA Methylation-Lightning™ Kit (Zymo Research, Cat#:
D5020). Preparative-scale PCR was performed and the resulting products were
purified (DNA Clean and Concentrator”-Zymo Research, Cat#D4005) for
sequencing on an Illumina HiSeq.

Alignments and data analysis. Sequence reads from bisulfite-treated EpiQuest
libraries were identified using standard Illumina base-calling software and then
analysed using a Zymo Research proprietary analysis pipeline, which is written in
Python and used Bismark (http://www.bioinformatics.babraham.ac.uk/projects/
bismark/) to perform the alignment. Index files were constructed using the
Bismark-genome-preparation command and the entire reference genome. The
non-directional parameter was applied while running Bismark. All other
parameters were set to default. Filled-in nucleotides were trimmed off when doing
methylation calling. The methylation level of each sampled cytosine was estimated
as the number of reads reporting a C, divided by the total number of reads
reporting a C or T (B-value).

Overall sequencing results (for 13 samples) are: (a) mean total read: 30 million
read pairs, (b) mean mapping efficiency: 40%, (c) mean unique CpGs: 4.1 millions,
(d) mean average CpG coverage: 16x, (e) mean bisulfite conversion rate: 98%. Data
accessibility: Methylome datasets generated from this study are deposited with the
Gene Expression Omnibus (accession GSE90093).

Identification of differentially methylated CpGs. A total of 1.085.757 unique
single CpG sites, present in all samples, were analysed. -value ranged from 0 (not
methylated) to 1 (fully methylated). To identify differentially methylated CpGs, the
methylation difference per CpG was calculated as the mean B-value of tumours
minus the mean B-value of controls. Those with a methylation difference > 0.2 were
filtered to retain the ones with a FDR < 0.05 (Student’s two-sided T-test and
Benjamini-Hochberg False Discovery Rate for P-value correction). A CpG is
classified as “hypomethylated” when the methylation difference is <—0.2 and as
“hypermethylated” when the methylation difference is >0.2. A global analysis was
first carried out with all measured CpGs, then dividing the CpGs according to their
location within or outside a CGI (CpG Island bedfile downloaded from UCSC).
According to the Methyl-MiniSeq EpiQuest coverage, the CGI coverage by CpGs
was 87.5%. Studies were focused on CGI regions. The overlap with CGI and the
annotated gene was performed using the CGI track from the UCSC genome
browser, and Refseq gene annotations based on the NCBI37/mm9 mouse reference.
We discarded “ubiquitous CpGs” located in more than one annotated gene, and we
extended the gene/CGI annotation to the gene’s promoter region to —1.5kb
upstream the TSS.

Targeted Bisulfite Sequencing: Genomic DNA from Alb-R26M¢! tumours
dissected from mice treated with Decitabine (2.5 mg/kg; twice per week, for a total
of three treatments; n =4) and without treatment (n = 2) was used to asses CpG
methylation levels in selected regions within the candidate CGIs through bisulfite
sequencing by the Zymo Research Corporation (Irvine, CA, USA).

Assay Design, Sample Preparation and Multiplex Targeted Amplification. After
assessment of DNA concentration and quality, DNA samples were bisulfite
converted using the EZ DNA Methylation-LightningTM Kit (ref Cat#D5030)
according to the manufacturer’s instructions. Primers were designed with
Rosefinch, Zymo Research’s proprietary sodium bisulfite converted DNA-specific
primer design tool (primer sequences are listed in Supplementary Data 5).
Multiplex amplification of all samples using the specific primer pairs and the
Fluidigm Access ArrayTM System was performed according to the manufacturer’s
instructions. The resulting amplicons were pooled for harvesting and subsequent
barcoding according to the Fluidigm instrument’s guidelines. After barcoding,
samples were purified (ZR-96 DNA Clean and Concentrator™ -ZR, Cat#D4023),
then prepared for parallel sequencing using a MiSeq V2 300 bp Reagent Kit and
paired-end sequencing protocol, according to the manufacturer’s guidelines.
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Targeted Sequence Alignments and Data Analysis. Sequence reads were
identified using standard Illumina base-calling software and then analysed using a
Zymo Research proprietary analysis pipeline, which is written in Python. Sequence
reads were aligned back to the reference genome using Bismark (http://www.
bioinformatics.babraham.ac.uk/projects/bismark/), an aligner optimised for
bisulfite sequence data and methylation calling*. Paired-end alignment was used
as default thus requiring both read 1 and read 2 be aligned within a certain
distance, otherwise both read 1 and read 2 were discarded. Index files were
constructed using the bismark_genome_preparation command and the entire
reference genome. The non-directional parameter was applied while running
Bismark. All other parameters were set to default. The methylation level of each
sampled cytosine was estimated as the number of reads reporting a C, divided by
the total number of reads reporting a C or T.

Transcriptome analysis by RNA-seq: Total RNA from dissected Alb-R26Met
tumours (n =4) and control livers (n = 4) was processed for transcriptome
analysis. RNA quality was controlled using the Agilent RNA 6000 Pico Kit and
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California) according
to the manufacturer’s recommendations. Total RNA (1 ug per sample) was used for
library preparation using the TruSeq RNA Sample Preparation Kit (Illumina) by
GATC Biotech (Mulhouse; NGSelect service). Sequencing was performed on a
HiSeq 2500 (Illumina; 2 x 50 bp paired end) and base calling performed using RTA
(Mumina). Quality control of raw reads was done using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped to the
reference genome mm9 with STAR aligner?” using default parameters; differential
expression was calculated using the Cufflinks package®.

Cell culture-related experiments. Cell lines: Alb-R26Me* HCC cell lines (HCC3,
HCC13 and HCC14) were established, characterised and cultured as previously
described?%; cells were regularly tested by PCR-based assay to confirm their
maintenance in free Mycoplasma culture condition.

shRNA-mediated downregulation of candidate genes: The functional relevance
of candidate oncogenes was determined using shRNA targeting sequences (Sigma;
shRNA sequences are reported in Supplementary Data 12). In particular, plasmids
carrying the shRNA sequence were transfected in cells using Lipofectamine 2000
reagent, according to the manufacturer’ instructions (ThermoFisher Scientific).
After 1 week of puromycin selection, pools of resistant clones were used to verify
downregulation of gene expression levels (by RT-qPCR and western blots) and to
perform biological assays.

Cell drug treatment: For the demethylation experiments, cells were exposed to
0.3 uM of Decitabine (5-Aza-2’-deoxycytidine; Selleckchem) for 48 h. After
treatment, cells were used for cell viability, anchorage-dependent growth assay,
anchorage-independent growth assay, tumour sphere formation assay and
xenograft studies. For experiments shown in Supplementary Fig. 14, after 48 h of
Decitabine treatment, cells were cultured for 10 days with complete media before
performing the experiments.

Survival assay: Cells were seeded in a 150-pl volume per well in 96 well plates
(10,000 cells/well) in 10% serum for 24 h, then Decitabine treatment was applied at
0.3 uM in the corresponding wells. After 48 h, cell viability was assessed in a Cell
Titer Glo Luminescent Assay (Promega) and luminescent signals were measured
with a luminometer microplate reader (Berthold). Data are expressed as means +
SEM of three independent experiments performed in triplicate.

Anchorage-dependent growth assay (focus formation assay): To measure
anchorage-dependent growth, 300 cells were seeded in 10 ml complete media in a
10 cm dish. After 7 days, foci were stained with a 0.2% crystal violet solution
(2% methanol). The total number of foci and individual foci size were quantified
using Image] program. Data are expressed as means + SEM of three independent
experiments performed in triplicate.

Anchorage-independent growth assay (soft agar assay): Assays were performed
as previously described*”~4°. Briefly, cells were cultured in 12-well plates containing
two layers of agar. Cells (6 x 103) were resuspended in 0.5% agar diluted in
complete medium and poured onto a 1% layer of agar (diluted in medium). Fresh
medium was added to the top layer every 3 days. After 2 weeks, colonies were
stained with MT'T, pictures were taken using a dissecting microscope, and colonies
were counted using ImageJ software. Numbers are expressed as means + SEM of
three independent experiments performed in triplicate.

Tumour sphere forming assay: Cells were cultured at a density of 2 x 104/

35 mm dishes in a stem cell-permissive media. In particular, cells were cultured for
one week in DMEM/F12 medium supplemented with 1% N-2 Supplement, 2%
B27, 50 mg/ml of Penicillin-Streptomycin, glutamine (Gibco), 0.01% Bovine Serum
Albumin (BSA), 5 mg/ml of insulin (Sigma) and growth factors including 10 ng/ml
of basic fibroblast growth factor (bFGF), 20 ng/ml of epidermal growth factor
(EGF) and 10 ng/ml of hepatocyte growth factor (HGF; Peprotech). After one
week, pictures of the whole dish were taken using a dissecting microscope, and
spheres were counted using ImageJ software. Numbers are expressed as means +
SEM of three independent experiments performed in triplicate.

In vivo tumorigenesis assays (xenografts in nude mice): For in vivo
demethylation studies, xenografts were performed using Alb-R26M¢t HCC cells
either untreated or pre-treated for 48 h with Decitabine (0.3 uM). Cells (5 x 10%)
were then resuspended in a 1:1 Matrigel:PBS solution (Corning BV) and inoculated
subcutaneously into the flank-leg region of nude mice (S/SOPF SWISS NU/NU;
Charles River). After 5 days of cell inoculation, mice were treated with

intraperitoneal injections of vehicle or Decitabine (2.5 mg/kg) twice per week for
3 weeks. Mice were then sacrificed and tumour volume was measured as length x
width x height. For assessment of in vivo tumorigenic capacity of candidate genes,
xenografts were performed using Alb-R26Met HCC cells (1 x 10°) either un-
transfected, transfected with shControl, or with a shRNA sequence targeting the
candidate gene. Tumour volume was followed every week. After 6 weeks mice were
sacrificed and tumour volume after dissection was determined as length x width x
height.

Western blots: Protein extracts from HCC cells were prepared and western blot
analysis was performed as previously described*3#84%, For SCN8A detection,
protein lysates were run on a 5% SDS gel and transferred overnight at 300 mA in
the presence of 0.1% SDS. The acquisition of ECL signal was performed using the
MyECL imager system (ThermoFisher Scientific)(Supplementary Fig. 15).

Antibodies: Antibodies used were: anti-SCN8A (Abcam, #ab65166; 1:500), anti
ACTN-1 (Cell Signalling, #6487; 1:3000), anti-SRD5A2 (ThermoFisher Scientific,
#PA5-25465; 1:1000), anti-NFkB2 (Cell Signalling; #4882; 1:1500), anti-NEURL1B
(Abcam, #ab156988; 1:3000), anti-ACTIN (Sigma, A3853; 1:5000), anti-rabbit IgG-
peroxidase or anti-mouse IgG-peroxidase (Jackson; 1:4000).

Computational analyses. Unsupervised hierarchical clustering analysis: Clustering
statistics was determined by using the methylation values of all CGIs for each
sample. We applied the Principal Component Analysis and the Agglomerative
Distance Tree using the “linkage” function with unweighted average euclidean
distance for calculating the similarity matrix of samples and the “dendrogram”, as
well as “phylotree” function to plot the hierarchical and distant trees (both are from
Matlab Statistical Toolbox). For studies reported in Supplementary Fig. 7, clus-
tering analysis of both methylome and expression data was performed using the
function “hclust” on an Euclidean distance matrix of samples, which was computed
with the function “dist”. “hclust” then returned a tree-like structured object that
could be plotted as dendrogram by “plot” (R, version 3.3.1).

Identification of human CGlIs corresponding to the mouse CGIs of interest: To
compare methylome outcomes identified in the Alb-R26M¢! genetic system with
those available for human studies, genomic coordinates were converted from mm9
to GRCh37/hg19 by using the “Lift-Over” tool available from UCSC (https://
genome-euro.ucsc.edu/cgi-bin/hgLiftOver). This allowed us to successfully map
501 out of 513 CGIs from mouse to human regions (Supplementary Data 2).
Among them, we only kept 501 unique human regions by discarding duplicate lift-
overs. We also discarded 14 human regions not overlapping with any human CGI.
We then check into TCGA patient datasets the presence of methylation data for
those CGIs. We focused the analysis on the patient having both tumour and
control samples (adjacent liver) methylation data, and we discarded the CGIs
having no entry into any of the TCGA patient dataset. Finally, the total CGIs used
for comparative analyses between mouse and human is 416.

Analysis of public available DNA methylome data: The human methylome data
is available through firebrowse (www.firebrowse.org) by the BROAD Institute and
is based upon data generated by the TCGA Research Network: http://
cancergenome.nih.gov/. The publicly available methylome data (Level 3 data) of
HCC patients from TCGA is generated with the platform Illumina Infinium
Human DNA Methylation 450 and contains beta values for 485778 CpGs. Patients
with both tumour and control samples were extracted and calculation of
methylation difference per CpG was applied (B-values of tumour—p-values of
control). Student’s T-test was used to compare between tumour and normal
samples, and the P-values were corrected with Benjamini-Hochberg False
Discovery Rate (FDR). As our methylome screen focused on CGls, we revisited the
human data (from TCGA and from GSE56588) to generate a list of all CpGs within
CGIs with the corresponding methylation B-values. By applying the same
methylation difference and FDR thresholds used for Alb-R26M¢! methylome data,
we extracted a list of differentially methylated CpGs from the human HCC dataset.

Methylome overlap between Alb-R26M¢! outcomes and human data: A
methylation overlap between Alb-R26M¢* and human HCC was considered only
when a given CGI was differentially methylated in both species. To define the
methylation status of a given CGI, the CpG with an absolute maximum
methylation difference among all patient samples was chosen as a representative
probe (with P-value threshold and fold change cut-off defined above). This CpG
was analysed in all HCC patients. An overlap score (in percentage) was determined
by calculating the number of human CGIs differentially methylated versus the total
number of lifted-over CGIs subset.

Analysis of public available RNA-seq data: The human RNA-seq data from
TCGA was available through firebrowse. The data is generated with the platform
Illumina HiSeq 2000 Sequencing System and uses MapSplice®” to do the alignment
and RSEM®! to perform the quantitation. The scaled estimate from RSEM output
was used as this value could be multiplied by 10° to obtain a measure in terms of
transcripts per million (TPM), which is preferred over RPKM>2 or FPKM?3 as it is
independent of the mean transcript length and therefore more comparable across
samples®!. The TPM is calculated for each gene and the calculation of Log, Fold
Change (Log,(tumour sample)—Log,(control sample)) was applied to each patient
with available data from both tumour and control samples.

Calculation of the relative position to the ATG: For calculating the position of
CpGs, we used the longest transcript for each gene. The gene length was reported
with values ranging from —100% and 4100% (transcription end site: TES), with
the ATG at position 0. The relative position for each CpG was then reported
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relative to its distance to the ATG. A positive relative position corresponds to a
genomic region located downstream the ATG, whereas a negative relative position
stands for a genomic region located upstream the ATG.

Analysis of public available data from a mouse HCC model carrying the viral
hepatitis B virus X expression: Using available methylome and expression data
based on a HCC model induced by the viral hepatitis B virus X (HBx'8;
GSE48052%7), we performed the same analysis done for the Alb-R26M¢! model
(Fig. 3b). For each CpG, the methylation difference between HBx*€ tumour and
control sample was calculated as the difference of the RPKM. For those CpGs
found differentially methylated, the expression of the corresponding gene was then
calculated as the difference of the RPKM sum within the TSS and TSE.

Pathway enrichment analysis: For these analyses (shown in Supplementary
Figs. 5, 9), identified genes were used as an input for KEGG pathway enrichment
analysis with the REST API tool (http://rest.kegg.jp). Pathways were further ranked
by —log;o P-value after applying the hypergeometric probability density function
(Matlab function “hygepdf” from Statistical Toolbox).

Statistical analysis: All data were analysed using GraphPad Prism software
(version 7.01) and Matlab Statistical Toolbox (version R2015b). Results are
expressed as the median (indicated by a line) or as the mean + standard error of the
mean (SEM), according to sample distributions. Statistically significant differences
were estimated by applying unpaired Student ¢-tests to data showing normal
distributions, and Mann-Whitney tests in all other situations. Moreover, one-way-
ANOVA was used to determine differences between the means of independent
groups (in vivo xenograft experiments in Figs. 2h and 7d), and Fisher’s exact test
for categorical variables (risk factors in Supplementary Fig. 9). All statistical tests
were two-sided. Statistical significance was defined as not significant (ns): P > 0.05;
*P <0.05; **P<0.01; ***P<0.001. Significance is indicated in figures

Data availability. Raw and processed data of bisulfite sequencing have been
deposited to the Gene Expression Omnibus (GEO) [GEO: GSE90093]. The authors
declare that all data supporting the findings of this study are available within the
article and its Supplementary Information files, or from the authors upon rea-
sonable request.
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Supplementary Figure 2. Focal CGl hypermethylation and widespread CpG hypomethylation in Alb-R26Met
tumours. (A) Schematic representation of experimental settings employed for the methylome screen. Genomic
DNA from Alb-R26M¢t HCC (n=10) and controls (n=3) was used to examine the DNA methylation status of a CGI-
enriched fraction and raw data were used for bioinformatics processing. (B and C) Volcano plot reporting
methylation differences with significance (expressed as -Log,, FDR) for all measured CpGs (B) and CpGs located
outside CGls (C) in Alb-R26Met tumours versus control (left). Significant differences (methylation difference>0.2 and
FDR<0.05) are shown in red. Graph reporting the percentage (and numbers) of hypomethylated versus
hypermethylated CpGs (right). (D) Table reporting the number and percentage of CpGs, the corresponding CGls
and genes, differentially methylated, specifying the ones hypermethylated versus those hypomethylated. (E)
Chromosomic distribution of the 1153 CpGs differentially methylated in Alb-R26Met tumours compared to control

livers.
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Supplementary Figure 3. Comparison of methylome outcomes of Alb-R26M¢t tumours with those of the TCGA
cohort (41 HCC patients). (A) Schematic representation of the mouse-human CGI lift-over performed to extract the
human CGls corresponding to the 513 mouse CGls differentially methylated in Alb-R26™¢t tumours. 501 CGls were
successfully mapped in human, and methylome data were available for 416 CGls. (B) Table reporting the number and
percentage of CpGs, the corresponding CGls and genes, differentially methylated, specifying the ones
hypermethylated versus those hypomethylated. Data refer to those reported in Figure 1E. (C) Hierarchical clustering
of HCC patients based on the 416 CGls differentially methylated in Alb-R26M¢t tumours. Data refer to those reported
in Figure 1F, specifying the patient ID, the percentage overlap, and the MET expression levels. (D) Graph showing the
percentage of patients with MET overexpression in the three HCC subgroups reported in Figure 1F. Note that MET is
overexpressed in 86% (6/7) of HCC patients belonging to the HCC subgroup 3 (the subgroup that best overlap with
CGI methylation changes in Alb-R26M¢t), 32% (6/19) to the HCC subgroup 2, and only 13% (2/15) to the HCC subgroup
1. (E) Graph reporting MET expression levels in the three HCC subgroups reported in Figure 1F. (F) For the 41 HCC
patients, correlation between MET expression levels and percentage of overlap with the CGls found differentially

methylated in the Alb-R26M¢tgenetic setting.
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Supplementary Figure 4. Comparison of methylome outcomes of Alb-R26M¢t tumours with those of a cohort of
234 human samples (from GSE56588; 224 HCC patients and 10 control individuals). (A) Table reporting the
number and percentage of CpGs, the corresponding CGls and genes, differentially methylated, specifying the
ones hypermethylated versus those hypomethylated. Data refer to those reported in Figure 1G. (B) Hierarchical

clustering of HCC patients based on the 416 CGls differentially methylated in Alb-R26M¢t tumours. Data refer to
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those reported in Figure 1H.



Pathway enrichment analysis: genes differentially methylated and
differentially expressed in Alb-R26Met tumours

Pathway p value
MAPK signaling pathway - Homo sapiens (human) 0.00015777
HTLV-I infection - Homo sapiens (human) 0.00016107
Axon guidance - Homo sapiens (human) 0.0002355
Nicotine addiction - Homo sapiens (human) 0.00028279
Viral carcinogenesis - Homo sapiens (human) 0.00043804
Pathways in cancer - Homo sapiens (human) 0.0014551
Neuroactive ligand-receptor interaction - Homo sapiens (human) 0.0017757
TGF-beta signaling pathway - Homo sapiens (human) 0.0023777
GABAergic synapse - Homo sapiens (human) 0.0027043
Morphine addiction - Homo sapiens (human) 0.002966
Cell cycle - Homo sapiens (human) 0.0068301
Osteoclast differentiation - Homo sapiens (human) 0.007425
Type Il diabetes mellitus - Homo sapiens (human) 0.0092091
Tight junction - Homo sapiens (human) 0.015343
Renal cell carcinoma - Homo sapiens (human) 0.017431
Calcium signaling pathway - Homo sapiens (human) 0.018154
Epithelial cell signaling in Helicobacter pylori infection - Homo sapiens (human) 0.01891
Melanoma - Homo sapiens (human) 0.019414
Adherens junction - Homo sapiens (human) 0.020952
cAMP signaling pathway - Homo sapiens (human) 0.022263
Focal adhesion - Homo sapiens (human) 0.022533
Epstein-Barr virus infection - Homo sapiens (human) 0.023628
Rap1 signaling pathway - Homo sapiens (human) 0.025603
Protein digestion and absorption - Homo sapiens (human) 0.031017
NF-kappa B signaling pathway - Homo sapiens (human) 0.034037
Endocrine resistance - Homo sapiens (human) 0.034652
Amoebiasis - Homo sapiens (human) 0.034652
Estrogen signaling pathway - Homo sapiens (human) 0.035891
Chagas disease (American trypanosomiasis) - Homo sapiens (human) 0.038408
Leukocyte transendothelial migration - Homo sapiens (human) 0.044908
Cholinergic synapse - Homo sapiens (human) 0.044908
Cytokine-cytokine receptor interaction - Homo sapiens (human) 0.045221
Serotonergic synapse - Homo sapiens (human) 0.045573

Supplementary Figure 5. KEGG pathway enrichment analysis for genes with changes in CGlI methylation and

expression in Alb-R26M¢t tumours, ranked according to their p-value. Data reported in Figure 3A are in pink.
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Supplementary Figure 6. 3D density plots showing the distribution of genes according to their relative position
to the ATG (as percentage), gene expression level (as Log, FC), and CGI methylation difference (as B-value).
Genes: overexpressed with hypomethylated CGl (A); overexpressed with hypermethylated CGlI (B);
downregulated with hypomethylated CGI (C); downregulated with hypermethylated CGI (D).
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Supplementary Figure 7. Hierarchical clustering analysis of the TCGA cohort (41 HCC patients) based on either

global DNA methylome (A) or transcriptome (B) outcomes. In orange: H*E* patient subset. In green: “NO H*E*”

patient subset.
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Supplementary Figure 8. Mouse HBx" tumours are characterized by an enrichment in genes downregulated
and with hypomethylated CGls. Left: Methylation differences versus expression for all genes with CGls
hypermethylated (H*) or hypomethylated (H-) in HBx9t tumours. Expression values are relative to controls. Dots
correspond to single differentially methylated CpG and the corresponding gene expression (genes which
expression is significantly below or above Log, fold change (FC) £1 are indicated in red). Right: Graph reporting
the percentage of downregulated (E7) and upregulated (E*) genes among those with a hypomethylated (H") or
hypermethylated (H*) CGI. Note the enrichment of genes downregulated and with hypomethylated CGls in HBx9!
tumours (indicated by an arrow), in contrast to the enrichment of gene overexpressed and with hypermethylated

CGls in Alb-R26Met tumours.



Patients Alcohol NAFLD HepatitisB | HepatitisC | Hemochromatosis TOTAL
TCGA-BC-A10Q 0 0 0 0
TCGA-DD-A1EH
TCGA-DD-A1EC
TCGA-DD-A113
TCGA-DD-A11A
TCGA-DD-A39W
TCGA-BC-A216
TCGA-EP-A26S
TCGA-DD-A11C
TCGA-BC-A10T
TCGA-DD-A118
TCGA-DD-A39X
TCGA-DD-A1EI
TCGA-BC-A10R
TCGA-BC-A10W
TCGA-BC-A10U
TCGA-DD-A39V
TCGA-BD-A3EP
TCGA-DD-A1EG
TCGA-DD-A114
TCGA-DD-A116
TCGA-BC-A110
TCGA-BC-A10X
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Supplementary Figure 9. H*E* patients are not characterised by any specific risk factors, while show a trend of
better prognosis. Table reporting risk factors associated to individual HCC patients. The presence of a risk factor is
indicated as 1, whereas the absence by 0. No significant differences were found between H*E* versus “NO H*E*”

patient subsets.
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Supplementary Figure 10. Among the 55 genes identified in Alb-R26M¢t tumours, a significant higher number of
them is both hypermethylated and overexpressed in the H*E* patient subset compared to the “NO H*E*”
subset. Heat-map showed in Figure 6D in which the number of genes both hypermethylated and overexpressed

per patient (median) is reported for each subgroup. Significance is indicated on the bottom. ***: P<0.001.
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Supplementary Figure 11. The CDKN2A gene is overexpressed and with hypermethylated gene body CGI in the
majority of HCC patients. Top: graphs reporting the expression levels of CDKN2A in HCC patients from the TCGA
(A) and GSE56588 (B) cohorts. Bottom: schemes reporting a black line when the CDKN2A promoter or gene body
CGl is hypermethylated (methylation difference >0.2) in HCC patients from the TCGA (A) and GSE56588 (B) cohorts.
Notably, in both cohorts the majority of HCC patients carry an overexpression of CDKN2A (39/41 and 166/204, in
the respective cohorts), which is associated with a hypermethylation of the gene body CGI (21/39 and 163/166, in
the respective cohorts). In contrast, not methylation changes are detected in the promoter CGI for both HCC

cohorts.



Pathway enrichment analysis: overexpressed genes with
hypermethylated CGI in Alb-R26Met tumours

Pathway p value
MAPK signaling pathway - Homo sapiens (human) 8.2428e-06
Viral carcinogenesis - Homo sapiens (human) 3.7666e-05
HTLV-Il infection - Homo sapiens (human) 0.000116
Pathways in cancer - Homo sapiens (human) 0.00080777
Cell cycle - Homo sapiens (human) 0.0016141
Osteoclast differentiation - Homo sapiens (human) 0.001764
Nicotine addiction - Homo sapiens (human) 0.0025759
Tight junction - Homo sapiens (human) 0.0038538
Axon guidance - Homo sapiens (human) 0.0041683
cAMP signaling pathway - Homo sapiens (human) 0.0058036
Focal adhesion - Homo sapiens (human) 0.0058818
Epstein-Barr virus infection - Homo sapiens (human) 0.0062006
Renal cell carcinoma - Homo sapiens (human) 0.0065617
Epithelial cell signaling in Helicobacter pylori infection - Homo sapiens (human) 0.0071469
Melanoma - Homo sapiens (human) 0.0073467
Adherens junction - Homo sapiens (human) 0.0079605
TGF-beta signaling pathway - Homo sapiens (human) 0.010621
GABAergic synapse - Homo sapiens (human) 0.011577
Morphine addiction - Homo sapiens (human) 0.012317
NF-kappa B signaling pathway - Homo sapiens (human) 0.013332
Endocrine resistance - Homo sapiens (human) 0.01359
Estrogen signaling pathway - Homo sapiens (human) 0.014114
Leukocyte transendothelial migration - Homo sapiens (human) 0.017989
Cholinergic synapse - Homo sapiens (human) 0.017989
Wnt signaling pathway - Homo sapiens (human) 0.027757
Breast cancer - Homo sapiens (human) 0.028096
Maturity onset diabetes of the young - Homo sapiens (human) 0.047146

Supplementary Figure 12. KEGG pathway enrichment analysis for overexpressed genes with hypermethylated

CGl in Alb-R26M¢t tumours, ranked according to their p-value. Data reported in Figure 6F are in blue.
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Supplementary Figure 13. Expression levels of Scn8a, Actn1, Srd5a, NFkB2, and Neurl1b in Alb-R26M¢t HCC cells
transfected with two different shRNA targeting sequences versus controls. After molecular validation, cells

were used for in vitro studies reported in Figure 7.
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Supplementary Figure 14. Global CGI hypermethylation is functionally relevant for Alb-R26M¢t tumorigenesis.
(A) Scheme reporting demethylating treatment (Decitabine; 0.3uM) used for in vitro experiments with Alb-R26Met
HCC cells. Cells were pre-treated (48 h) with Decitabine, then cultured for 10 days without any treatment before
using them for experiments. (B, C) Anchorage-independent (B) and anchorage-depend (C) growth assays using 2
different Alb-R26Met HCC cell lines (HCC13 and 14) showing effects of demethylating treatments described in A.
Note that HCC cells recover their tumorigenic properties when experiments are performed with cell cultured 10
days after Decitabine pre-treatment. Significant differences between groups are indicated on the top. Not

significant (ns).
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Supplementary Figure 15. Full blots of gels in which the acquisition of ECL signal performed using the MyECL
imager system (without negative conversion) was merged with a picture of the membranes. The corresponding

molecular weights, visible on the membranes, are indicated. These results are reported in Figure 7A.



7 Discussion

Mitochondria and their functions have first been studied mostly in the context of energy
production (Davis & Williams, 2012). In recent years, there is a growing interest in the
extensive roles of mitochondria in other fields such as signaling pathway control, balance
of metabolites, and anti-oxidant defense. The dysfunction of mitochondrial processes and
pathways is also implicated in cancer and various diseases such as neurodegenerative,
cardiovascular and metabolic disorders. While mitochondrial physiology and pathology
have attracted increased attention, platforms or tools that are exclusive for the exploration
of expression and mutation landscapes of mitochondrial genes were previously non-
existent. To this end, a data mining and visualization platform specific for mitochondrial
genes has been developed as the central objective of this thesis to allow interested users
to study variations in mitochondrial genes and processes under different conditions with

publicly available or their own -omics data.

7.1 Visual Data Mining as a tool for the exploration of -omics
data

The recent advancement of sequencing technologies brings about high volume of -omics
data. There are currently a lot of tools and pipelines that perform analysis on such data
from quality check, mapping to differential expression analysis and mutation calling
(Roumpeka et al., 2017), but most of them return results as tabular data, which is not
always easy to interpret. Visualization — the transformation of raw numeric data into
illustration, is a robust way to help the audience understand the data and reveal underlying
patterns. In this thesis, mitoXplorer (Section 6.1) and the mitochondrial genes workflow
in CancerSysDB (Section 6.2) were introduced as visual data mining platforms that allow
users to visualize and analyze -omics data regarding mutations and expressions of

mitochondrial genes.

7.1.1 Interactive visualization aids the discovery of underlying
patterns

Both mitoXplorer and CancerSysDB provide not only static visualization of analyzed -omics
data, but also a set of dynamic, interactive and intuitive visualizations, which gives users
the liberty to explore the data in their own ways. For example, in the Comparative Plot and
Hierarchical Clustering analysis on mitoXplorer, an interactive heatmap was used to
display Log. fold-change (Log2FC) level of mitochondrial genes for each dataset. Unlike
the static heatmap visualizations (or those with limited interactivity) that are available on

many bioinformatics analytic platforms (cBioPortal (Cerami et al., 2012), UCSC (Zhu et al.,
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2009)), the interactive heatmap on mitoXplorer supports sorting on differential expression
level by sample or by gene, which makes it easier to do comparison within the matrix.
Although being a very popular visualization to represent -omics data due to its flexibility and
easiness to explore patterns (cBioPortal, UCSC, Cancer Genome Workbench (Jinghui
Zhang et al., 2007), Caleydo (Streit et al., 2009), Gitools (Perez-Llamas & Lopez-Bigas,
2011)), heatmaps are not able to show the extra features of interested genes (e.g. the
location of genes, mutation data) (Schroeder et al., 2013). mitoXplorer overcomes this
problem by displaying functional annotation and additional information on the side panel
and highlighting mutated genes on the scatter plot on another panel for the Comparative

plot, which helps to discover relations between data and generate relevant hypotheses.

The categorical scatter plot (or beeswarm plot) in the Comparative Plot of mitoXplorer and
Interactive Workflow of CancerSysDB is another visualization for the differential expression
of genes. Such a scatter plot is different from the ones seen in other platforms that simply
shows the relationship between two features (e.g. expression of two genes, number of
mutation vs fraction of altered genome, etc) (cBioPortal, Caleydo, tranSMART
(https:/transmart-app.readthedocs.io/)) as it aims to facilitate the comparison of (up to six)
samples (first dimension) by displaying the distribution of Log2FC values (second
dimension) with non-overlapping points. Moreover, it includes mutation data as a third
dimension using different color and sizes. To study a larger number of samples with
additional data (e.g. clinical data), users could make use of the Principle Component
Analysis (PCA) function in mitoXplorer. PCA, while being very useful when working with
high-dimensional data and being able to potentially reveal clusters within samples, is
seldom implemented in bioinformatics visualization platforms, probably due to the
requirement of relatively high of computational power. In mitoXplorer, only a subset of
genes related to mitochondrial functions are included. This makes such an analysis
possible. Also, compared to the PCA visualization on other platforms (tranSMART), the one
on mitoXplorer has much more interactivity and allows users to filter and color samples by
user-defined groups, or groupings by clinical data or demographic data (if available), which
makes it a very informative visualization and could potentially help to identify previously

unknown subgroups.

Since the functional relationships between genes or proteins are difficult to be represented
in a heatmap or scatter plot, a bubble chart is adopted as the Interactome View of
mitoXplorer. Similar to force-directed visualizations on other platforms or tools (cBioPortal,
Cytoscape), users could examine the expression and mutations of genes in a dataset, while
viewing the connectivity information (usually from external sources) among them. However

in the case of mitoXplorer, the genes, nodes and edges of the network that are visualized
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are defined by the mitochondrial interactomes which are manually curated (as part of the

work of this thesis) and it does not need any input from users.

7.1.2 The mitochondrial interactomes

One thing that makes mitoXplorer and CancerSysDB stand out from other bioinformatics
analysis/visualization platforms is the manually curated mitochondrial interactomes with
accurate and updated annotations, which are integrated into the platforms for the analysis
of transcriptome, proteome and mutation data of a specific subset of genes. Although there
are existing lists or electronic repositories of mitochondrial genes from different proteomic
studies or genome-scale prediction of mito-proteins (MitoCarta (Calvo et al., 2016),
MitoMiner (Smith et al., 2012), MitoRes (Catalano et al., 2006), MitoPred (C. Guda et al.,
2004)), none of them is sufficient to be taken directly for the purpose of in-depth analysis
of mitochondrial interactome due to various reasons. Only MitoCarta, which has recently
released a new version of its mitochondrial protein content for humans only, has a
comparable complete set of mitochondria-associated genes that are grouped into

mitochondrial processes.

Studies that use computational approaches or machine learning for the construction of
mitochondrial gene repositories are either susceptible to overfitting of the training data
(Support Vector Machine used by MitoMiner), or requires certain assumptions (conditional
independence for Naive Bayes method used by Mitocarta); or simply lacks experimental
confirmation (MitoPred). On the other hand, proteomic studies that adopted MS-based
approaches can suffer from a high false-positive rate (Pagliarini et al., 2008). Therefore,
the mitochondrial interactomes described in this thesis have been manually curated by
referencing extensive literature and databases (UniProt, NCBI, Flybase, SGD, GeneCards)
in order to be as comprehensive as possible. All interactomes have been examined
meticulously and referenced to experimental evidence to avoid including false-positives.
Orthologs across species are moreover included in the species-specific mito-interactomes

to provide consistency.

Most importantly, the genes are grouped in mitochondrial processes and a set of controlled
vocabulary was used for functional annotation, which is lacking in most of the available
repositories. Such annotation of the interactome facilitates meaningful analysis and
visualization of mitochondrial genes expression dynamics when comparing differential
expression of various conditions. These carefully curated interactomes make up an
important component of mitoXplorer and CancerSysDB as mitochondrial genes-specific

visual data mining platforms, and their integration into both platforms with rich visualizations
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has allowed users to explore the expression and mutation landscape of mitochondrial
genes under different conditions, which, to the best of my knowledge, has not been

achieved in any other available tool so far.

Finally, mitoXplorer and CancerSysDB are implemented as web platforms, which do not
require installation nor depend on certain operating system like stand-alone software or
software packages (Caleydo, tranSMART, Cytoscape, IGV, bigPint (Rutter & Cook, 2020),
Igloo-plot (Kuntal et al., 2014)). They also come with user-friendly interfaces, and do not
assume users to possess any programming knowledge. Users can choose to either use
the publicly available data or upload their own data for analysis, and can easily download
and share their results. Whereas some other web platforms only allow users to analyze
pre-calculated data within their own database and do not accept user-provided dataset
(Navigator (Brown et al., 2009)). In the first two sections of Results, it is demonstrated how
such kind of visual data mining tools could help identify mitochondrial genes or proteins in

deregulated pathways that might potentially lead to different pathogenic conditions.

7.2 Dynamics of mitochondrial genes expression in
mitochondria-associated disease and aneuploidy conditions

In order to demonstrate the analytical and predictive power of mitoXplorer (Section 6.1) as
a visual data mining tool, the transcriptome data from several conditions associated with
mitochondrial functions were explored. The data from a mouse model of Barth syndrome,
an X-linked mitochondria-associated disease characterized by cardiomyopathy, was first
analyzed on mitoXplorer. Next, a set of trisomy 21 data was studied with the analytical and
visualization tools on mitoXplorer. These predictions were then verified experimentally by

our collaborators.

7.2.1 Intuitive visualization with functional annotations helps to reveal
impaired pathways in mitochondrial diseases

Barth syndrome results from a disturbed metabolism of cardiolipin due to mutations of the
Taz gene, which causes mitochondrial defects as cardiolipin is a phospholipid that
composes the inner membrane of mitochondria (Bione et al., 1996). It has been shown in
a previous study (Chowdhury et al., 2018) that Tafazzin-deficient mouse embryonic
fibroblasts (MEFs) displayed reduced ROS level under hypoxia condition, which impaired
the activation of NF-kB pathway and hence decreased the Hif-1a expression. Using the
heatmap visualization that is integrated with the manually curated mito-interactome on
mitoXplorer, it could be confirmed that the induction of RelA (transcription factor of NF-kB)

and Hif-1a was indeed diminished. Moreover, it was observed that Yap1 (yes-associated
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protein 1), a transcription factor that also belongs to the same mito-process “Transcription”
as RelA and Hif-1a, was also down-regulated, which has lead to the speculation that the
impaired induction of the Hippo pathway protein Yap1 could contribute to the phenotype

observed in Tafazzin-deficient MEFs by destabilizing Hif-1a.

Due to the unique feature of the heatmap visualization on mitoXplorer that it groups and
displays a set of selected mitochondrial genes of the same mito-process, the association
between Yap1, RelA and Hif-1a in the role of NF-kB activation could be readily revealed
from the visualization. Whereas on other platforms, either all genes are displayed in the
same heatmap (cBioPortal), which does not provide any information on functional
classifications; or the genes to be visualized have to be provided by users as a list (UCSC),

which relies on users’ prior knowledge on the gene of interests.

The sorting function further facilitates the identification of closely associated genes in terms
of expression profile, as it allows users to quickly recognize genes (of the same function)
with similar expression levels under different conditions. Although such a function is also
available in the heatmap of some other platform (GiTools), the sorted heatmap would not
be able to give any meaningful insights when the displayed genes are not organized in

proper groupings.

7.2.2 Deregulation of mitochondrial transcriptome and proteome in
trisomy 21 conditions identified by mitoXplorer

As discussed in Section 4.1.5.2 (Aneuploidy), mitochondrial dysfunction has been
observed in patients with trisomy 21 (T21) condition, where oxidative stress could
potentially cause some of the clinical features of Down Syndrome (Jovanovic et al., 1998).
Transcriptome and proteomics studies of T21 tissues found that, while there is a genome-
wide transcriptional change including mitochondrial genes located on Hsa21 or other
chromosomes (Letourneau et al.,, 2014; Sinet, 1982), the protein levels of those
deregulated genes do not necessarily correlate with their mRNA levels (Lockstone et al.,
2007), which suggests a post-transcriptional regulatory effect of mitochondrial genes
(Yansheng Liu et al., 2017). However, comprehensive studies on the transcriptome and
proteome of mitochondrial genes under T21 conditions are limited and the underlying

mechanism of mitochondrial dysfunction in DS patients remains elusive.

In light of that, the differential expression data of the transcriptome and proteome of two
trisomy 21 cell lines (HCT116 and RPE1) was uploaded to mitoXplorer for a thorough
mitochondrial analysis. The Interactome View provides a general overview of differential

expression of mitochondrial genes in individual samples. In contrast to heatmaps that are
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adopted by most analytic platforms to visualize gene expression where genes are
represented using rectangles of same sizes, the interactome view renders a bubble chart,
where each circle represents a gene and its size and color reflect the extend and
significance of differential expression, respectively. Together with the grouping of genes
(circles) according to their functional annotations of the curated mitochondrial interactome,
it was observed that while there was a strong deregulation in both cell lines, the patterns
were significantly different. The differences in gene expression profiles of the two cell lines
was not unanticipated as the energy and metabolic demands often depend on the cell type
(Woods, 2017). The Interactome View’s algorithm to position the gene groups also allows
users to quickly recognize the most disrupted mitochondrial function (the bigger and more
center-positioned the gene group, the more disrupted that function is). This is not easily
achievable in conventional heatmaps as it is much more difficult to comprehend the
addictive values of colors of certain rectangles than the total size of a group of circles. In
the Interactome View of the proteome data from RPE1 T21 cell lines, the majority of
OXPHOS genes were down-regulated and stood out from the rest of mitochondrial
functions and dominated the View; whereas in the Interactome View of the transcriptome
data, the same stark contrast in size and color of OXPHOS gene group could not be seen,
but a strong down-regulation of genes involved in other mito-processes was observed
instead. The comparison between the Interactome View of transcriptome and proteome
data from RPE1 T21 cell lines hence revealed a large discrepancy in its expression at

MRNA and protein levels.

7.2.3 mitoXplorer assisted in unraveling the potential cause for
OXPHOS deficiency in RPE1 T21 cells

Further analysis with the Comparative Plot also showed a considerable difference in the
transcriptome and proteome data from RPE1 T21 regarding OXPHOS genes. The
Comparative Plot in mitoXplorer allows side-by-side comparison of differential expression
data of different -omics data, and highlighted the fact that the majority of OXPHOS genes
were down-regulated at protein, but not mRNA level. The formation of intact respiratory
chain components that are encoded in the mitochondrial genome rely strongly on
mitochondrial replication, transcription and translation. Since the mitochondrial transcript
levels were not significantly different in T21 tissues, mtDNA-maintenance, -replication as
well as mito-transcription appeared to be unaffected. However the comparative plot of
genes belonging to the mitochondrial process Translation showed down-regulation of
several mitochondrial ribosomal protein, implying a defective mitochondrial translation
process that potentially causes the failure in the assembly of respiratory complexes due to

missing mitochondrial subunits. This explains the extensive down-regulation of OXPHOS
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proteins and implies a severe OXPHOS deficiency along the entire respiratory chain, which

has been confirmed experimentally.

Mitochondrial ribosomal protein S21 (MRPS21) was among other mitochondrial ribosomal
protein the most drastically down-regulated (>10-fold) at transcript level as seen from the
comparative plot. Mrps21 is encoded by the nuclear genome and is a late-assembly
component of mitoribosome small subunit (SSU) and could interact with other proteins of
the SSU. Together with the down-regulation of other mitoribosome components (Mrps33,
Mrps14 and Mrps15), this suggested that the mitochondrial translation process could be
impaired due to ribosome malfunction as the late-assembly proteins break down and leads
to mitoribosome degradation. Altogether, the findings made with mitoXplorer on post-
transcriptional regulation in the trisomy 21 model system brought about new understanding

in the mechanisms of mitochondrial defects in trisomy 21 patients.

7.3 Implications of mitochondria dysfunction in cancer

Being involved in various critical cellular pathways or functions like bioenergetic pathways,
ROS defense and programmed cell death, mitochondrial metabolism has gradually been
recognized to be influencing different steps of oncogenesis such as malignant
transformation and tumor progression (Porporato et al., 2018; Vyas et al., 2016; Wallace,
2012). There are currently plenty of tools for the analysis of public cancer dataset (e.g.
TCGA) and/or the visualization of pre-analyzed datasets (Section 4.3.4). However, rarely

do they offer solutions for the specific analysis of mitochondrial genes in these datasets.

7.3.1 Expression of TCA-cycle genes as a potential indicator for late
stage kidney renal papillary cell carcinoma (KIRP)

CancerSysDB (Section 6.2) is a platform that enables users to make customized queries
and perform analyzes across multiple data types (somatic mutation, differential gene
expression, clinical data) and cancer cohort from TCGA dataset. It also includes an
interactive workflow that has integrated with the manually curated human mitochondrial
interactome. The result is a dashboard that display expression and clinical data with
interactive visualizations, which allows not only the in-depth analysis of differential
expression of genes of various mitochondrial function, but also correlation analysis with
clinical features, and could potentially provide new insights to the role mitochondrial

metabolism in the development of cancer.

With this interactive workflow, an interesting dynamics of Tricarboxylic acid (TCA) cycle in

KIRP (kidney renal papillary cell carcinoma) patients during tumor progression was
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observed. In later stages of KIRP, a significant number of TCA cycle related genes were
down-regulated, especially the Succinate-CoA ligase subunits SUCLG1 and SUCLG2.
There have been accumulating evidences that TCA cycle plays a key role in cancer
metabolism (Sajnani et al., 2017), that certain tumor suppressors and oncogenes regulate
the expression of fuel transporters and/or activity of enzymes of TCA cycle in cancer cells
in order to control both the uptake and breakdown of fuel sources (N. M. Anderson et al.,
2018; J. Q. Chen & Russo, 2012). Succinate-CoA ligase (SUCL) is an enzyme that
catalyzes the conversion of succinyl-CoA to succinate and coupling of phosphate and
nucleoside diphosphate molecule to give ATP or GTP. Expression changes of SUCLG1 and
2 at mRNA and protein level have been identified in various studies of kidney cancer
(Hakimi et al., 2016; Sanders & Diehl, 2015). The observation of stage-specific down-
regulation of both SUCL subunits with CancerSysDB further proposes that SUCLG1, along
with SUCLG2 as suggested in a previous study, could be a potential indicator for late stages

in clear cell renal carcinomas (Perroud et al., 2009).

7.3.2 Epigenetics modifications and its effect on expression of
mitochondrial genes in a mouse liver cancer model

Apart from TCA cycle, many other mitochondrial functions or processes have also been
shown to be involved in oncogenesis or cancer development, or plays an important role in
cancer metabolism (Wallace, 2012). The altered metabolism in cancer cells could be a
result of expression changes in related genes, which is influenced by both genetic and
epigenetic information (Esteller, 2011). In Section 6.3, a clinically relevant hepatocellular
carcinoma (HCC) mouse model was used to study the epigenetic mechanism that
influences transcription and gene expression through DNA methylation. Focal
hypermethylation in CpG islands (CGls), accompanied with lower expression (H+E-), was
found in some genes, which is a well-known mechanism in cancer to downregulate tumor
suppressor through promoter hypermethylation. H+E- genes found in the model include
Ornithine aminotransferase (Oat) and Enoyl-Coenzyme A delta isomerase 1 (Eci1), which
belong to the mitochondrial processes Amino Acid Metabolism and Fatty Acid Degradation

& Beta-oxidation respectively.

Ornithine aminotransferase (OAT) is a mitochondrial matrix enzyme that located mainly in
liver, brain and kidney, which catalyzes the reaction to convert ornithine into glutamate
semi-aldehyde by transferring the delta-amino group (Ginguay et al., 2017). It has an
inverse relationship with ornithine levels (Ventura et al., 2009) and OAT deficiency results
in elevated levels of ornithine in blood. Ornithine is a precursor of polyamine (Pegg, 2009),
which is involved in cell growth, proliferation, and apoptosis, and its abnormal accumulation

is associated with various diseases including cancer (He et al., 2017). However, some other
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literatures suggested an inverse relationship between ornithine level and breast cancer risk
(Jiayi Zhang et al., 2020), and OAT could promote proliferation and invasion of non-small
cell lung cancer (Yanfeng Liu et al., 2019). The role of ornithine metabolism and OAT in
tumorigenesis and tumor progression thus remains unclear and is probably dependent on

the cancer type.

Remarkably, there is a group of genes, including the mitochondrial gene Jun, which were
found to be both hyper-methylated and overexpressed (H+E+) in the mouse model. Jun
encodes for the transcription factor c-Jun and is considered as an oncogene as c-Jun could
promote cell proliferation by changing gene expression (Martinez-Caballero et al., 2009).
The analysis of the TCGA dataset showed that enrichment of this set of genes
characterizes 56% of the HCC patients, who belong to an aggressive HCC subclass. These
data suggested that a certain set of oncogenes with up-regulated expression characterized
by hypermethylation of CGls could be a useful as biomarkers for patient stratifications; and
that the altered expressions of certain sets of genes, including a few mitochondrial genes,
due to epigenetic modifications could help reveal the biological processes that possibly

contribute to the disease condition.

7.4 Limitations and future work

The mitochondrial interactomes with proper gene annotations is central to the analysis and
visualization made on the visual data mining platforms mentioned in this thesis. | am aware
of the possibility of having false-positives or missing genes despite extensive human
curation. Continuous revision of the interactomes is important to keep the platforms
updated so that they could stay useful to the scientific community. A Feedback section is
therefore available on mitoXplorer to collect comments from users who are experienced in
the field of mitochondrial research, which might help with further cleaning and completing
the annotations and the interactomes. Currently, each gene is also intentionally assigned
to only one mitochondrial process to simplify the analysis, which might not represent all
biological functions of a gene. However, in cases where strong experimental evidence that
a protein or protein complex is involved in multiple process, the assignment of the

corresponding gene to more than one process should be considered in the future.

At the moment, mitoXplorer allows the analysis and integration of only expression
(transcriptomic and proteomic) and mutation (genomic) data. However, it is evident that the
regulatory mechanisms of mitochondrial genes also operate beyond these levels as seen
from previous discussion. It is therefore important to further integrate different types of -

omics data, such as epigenomics data (e.g. ChlP-seq data from epigenetics studies), for a
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comprehensive analysis of cross -omics data of mitochondrial genes. On the other hand,
clinical data such as disease stages and survival data could be incorporated to help users
gain further insights into the role of mitochondrial genes in the progression of certain

diseases.

With more -omics data at different levels in possible future releases, it is sensible to
introduce more knowledge-driven analysis into the platform, such as enrichment analysis,
which could be helpful for gaining insights into biological mechanisms. The current
mitochondrial interactomes could provide a priori gene sets that are grouped by their
involvement in the same mitochondrial pathways for enrichment analysis. Apart from
manual curation, such gene sets could possibly be further expanded by combining prior
biological knowledge with the application of statistical methods. For example, metabolic
pathways have been predicted using a Bayesian probabilistic graphical model with the
constraints of known gene-gene interactions by sampling co-expressed genes from gene

clusters derived from gene expression data (Qi et al., 2014).

The data-driven analysis methods on mitoXplorer (e.g. Hierarchical Clustering and
Principal Component Analysis (PCA)) are useful to reveal patterns and identify groups.
Nevertheless, every approach has its own limitations. For example, PCA could sometimes
be highly affected by outliers; t-SNE, another dimensionality reduction algorithms, could
handle outliers and capture non-linear relationship between features, yet it is non-
deterministic and computationally complex. Depending on the objective, one approach
could be more favorable then the other. More options should therefore be available to users
to suit their analysis. And to further enhance user experience, additional visualizations (e.g.
violin plots, box plots, network and pathways graphs) for analysis using current or potential
new approaches, and features for customization such as providing more color schemes,
adjusting font size, resolution, etc. could also be considered, so that users could download

publication-ready graphs after data mining and exploration.

Finally, given the practicality of mitoXplorer, it should be considered to extend the usage to
more organisms or even other gene sets by compiling more “interactomes”, either manually
or with the combination of statistical and computation methods mentioned above, in order

to benefit a broader scientific community.

7.5 Conclusions

The work presented in this thesis has proven that visual data mining tools could be a robust

instrument to explore and analyze the mutation and expression dynamics of a defined gene
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set. mitoXplorer and CancerSysDB have been developed as web platforms to provide data
mining and visualization service specifically for mitochondrial genes, by integrating
manually curated annotations of different species with a set of dynamic, interactive and
intuitive visualizations for the analysis of -omics data. This allows the exploration and
mining of data in the context of mitochondrial functions, using intuitive visualizations that
could often help discovering hidden patterns. The analysis of transcription and expression
data of aneuploidy cells and cancer patients, as well as the experimental verification of the
observation made by mitoXplorer on the phenotypes of trisomy cell lines, have
demonstrated how these tools could help to discover underlying molecular mechanisms in
different disease conditions through suggesting testable hypothesis for further experimental

validation.
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11 Appendix

11.1 Appendix | - List of mitochondria-associated genes in

Human

Gene ID
AADAT
AARS2
AASS
ABAT
ABCB10

ABCB6
ABCB7
ABCB8
ABCD1
ABCD3
ABCE1
ABCF2
ABHD10
ABHD11
ABHD16A
ACAA2
ACACA
ACACB
ACAD10
ACAD11
ACADS8
ACAD9
ACADL
ACADM
ACADS

ACADSB
ACADVL
ACAT1
ACAT2
ACO1
ACO2
ACOT2
ACOT7
ACOT9
ACP6

ACSBG2
ACSF2
ACSF3

ACSL1

ACSL3
ACSL4
ACSL5
ACSL6
ACSM1

ACSM2A

Gene Name

aminoadipate aminotransferase
alanyl-tRNA synthetase 2, mitochondrial
aminoadipate-semialdehyde synthase
4-aminobutyrate aminotransferase

ATP binding cassette subfamily B member 10
ATP binding cassette subfamily B member 6
(Langereis blood group)

ATP binding cassette subfamily B member 7
ATP binding cassette subfamily B member 8
ATP binding cassette subfamily D member 1
ATP binding cassette subfamily D member 3
ATP binding cassette subfamily E member 1
ATP binding cassette subfamily F member 2
abhydrolase domain containing 10
abhydrolase domain containing 11
abhydrolase domain containing 16A
acetyl-CoA acyltransferase 2

acetyl-CoA carboxylase alpha

acetyl-CoA carboxylase beta

acyl-CoA dehydrogenase family member 10
acyl-CoA dehydrogenase family member 11
acyl-CoA dehydrogenase family member 8
acyl-CoA dehydrogenase family member 9
acyl-CoA dehydrogenase long chain
acyl-CoA dehydrogenase medium chain

acyl-CoA dehydrogenase short chain
acyl-CoA dehydrogenase short/branched
chain

acyl-CoA dehydrogenase very long chain
acetyl-CoA acetyltransferase 1
acetyl-CoA acetyltransferase 2
aconitase 1

aconitase 2

acyl-CoA thioesterase 2

acyl-CoA thioesterase 7

acyl-CoA thioesterase 9

acid phosphatase 6, lysophosphatidic
acyl-CoA synthetase bubblegum family
member 2

acyl-CoA synthetase family member 2

acyl-CoA synthetase family member 3
acyl-CoA synthetase long chain family
member 1

acyl-CoA synthetase long chain family
member 3

acyl-CoA synthetase long chain family
member 4

acyl-CoA synthetase long chain family
member 5

acyl-CoA synthetase long chain family
member 6

acyl-CoA synthetase medium chain family
member 1

acyl-CoA synthetase medium chain family
member 2A
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Mitochondrial Process
Amino Acid Metabolism
Translation

Amino Acid Metabolism
Amino Acid Metabolism
Transmembrane Transport

Transmembrane Transport
Transmembrane Transport
Transmembrane Transport

Metabolism of Lipids & Lipoproteins
Transmembrane Transport
Transmembrane Transport
Transmembrane Transport

Amino Acid Metabolism

Amino Acid Metabolism

Amino Acid Metabolism

Fatty Acid Degradation & Beta-oxidation
Metabolism of Lipids & Lipoproteins
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation

Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Amino Acid Metabolism

Fatty Acid Degradation & Beta-oxidation
Tricarboxylic Acid Cycle

Tricarboxylic Acid Cycle

Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Metabolism

Metabolism of Lipids & Lipoproteins

Fatty Acid Degradation & Beta-oxidation
Fatty Acid Metabolism
Fatty Acid Metabolism

Fatty Acid Biosynthesis & Elongation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation

Fatty Acid Biosynthesis & Elongation

Chromosome

N w N A 2 X NX N

A A a o
N N

12

12

10
17
11

22
14

19
17
16

10

16

16



ACSM2B

ACSM3

ACSM4

ACSM5

ACSM6

ACSS1

ACSS2

ACSS3
ACTR2
ADCKA1
ADHFE1
ADO
AFG1L
AFG3L2
AGK
AGMAT

AGPATS5
AGTPBP1

AGXT
AGXT2

AIFM1

AIFM2

AIFM3
AK2

AK3

AK4
AKAP1
AKAP10
AKR1B1
AKR1B10
AKR1B15
AKT1
ALAS1
ALAS2

ALDH18A1

ALDH1A1

ALDH1B1

ALDH1L1

ALDH1L2
ALDH2

ALDH3A2

ALDH4A1

ALDH5A1

ALDHG6A1

ALDH7A1
ALDOA

acyl-CoA synthetase medium chain family
member 2B

acyl-CoA synthetase medium chain family
member 3

acyl-CoA synthetase medium chain family
member 4

acyl-CoA synthetase medium chain family
member 5

acyl-CoA synthetase medium chain family
member 6

acyl-CoA synthetase short chain family
member 1

acyl-CoA synthetase short chain family
member 2

acyl-CoA synthetase short chain family
member 3

actin related protein 2

aarF domain containing kinase 1

alcohol dehydrogenase iron containing 1
2-aminoethanethiol dioxygenase

AFG1 like ATPase

AFG3 like matrix AAA peptidase subunit 2
acylglycerol kinase

agmatinase

1-acylglycerol-3-phosphate O-acyltransferase

ATP/GTP binding protein 1
alanine--glyoxylate and serine--pyruvate
aminotransferase

alanine--glyoxylate aminotransferase 2
apoptosis inducing factor mitochondria
associated 1
apoptosis inducing factor mitochondria
associated 2
apoptosis inducing factor mitochondria
associated 3

adenylate kinase 2

adenylate kinase 3

adenylate kinase 4

A-kinase anchoring protein 1

A-kinase anchoring protein 10

aldo-keto reductase family 1 member B
aldo-keto reductase family 1 member B10
aldo-keto reductase family 1 member B15
AKT serine/threonine kinase 1
5'-aminolevulinate synthase 1

5'-aminolevulinate synthase 2

aldehyde dehydrogenase 18 family member
gjﬁehyde dehydrogenase 1 family member
Qljjehyde dehydrogenase 1 family member
Sljjehyde dehydrogenase 1 family member
%Eﬁehyde dehydrogenase 1 family member

aldehyde dehydrogenase 2 family member
aldehyde dehydrogenase 3 family member
Qlﬁehyde dehydrogenase 4 family member
gjﬁehyde dehydrogenase 5 family member
:Ijjehyde dehydrogenase 6 family member
%I;jehyde dehydrogenase 7 family member

aldolase, fructose-bisphosphate A
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Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Metabolism

Pyruvate Metabolism

Pyruvate Metabolism

Metabolism of Lipids & Lipoproteins
Mitochondrial Dynamics

Oxidative Phosphorylation
Pyruvate Metabolism

Amino Acid Metabolism

Protein Stability & Degradation
Mitochondrial Dynamics

Fatty Acid Metabolism

Amino Acid Metabolism

Metabolism of Lipids & Lipoproteins
Mitochondrial Dynamics

Amino Acid Metabolism
Amino Acid Metabolism

Apoptosis
Apoptosis

Apoptosis

Nucleotide Metabolism

Nucleotide Metabolism

Nucleotide Metabolism
Mitochondrial Signaling
Mitochondrial Signaling

Fructose Metabolism

Metabolism of Vitamins & Co-Factors
Metabolism of Lipids & Lipoproteins
Mitochondrial Signaling

Heme Biosynthesis

Heme Biosynthesis

Amino Acid Metabolism

Fructose Metabolism

Fatty Acid Degradation & Beta-oxidation

Folate & Pterin Metabolism

Folate & Pterin Metabolism

Fatty Acid Degradation & Beta-oxidation

Fatty Acid Degradation & Beta-oxidation

Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism

Pyruvate Metabolism
Glycolysis

16

16

12

16

10

20

20

12

14

10

18

10

22
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ALDOB
ALDOC
ALKBH1
ALKBH7
AMACR
AMBRA1
AMT

ANP32A
APAF1

APEX1

APEX2
APOO
APOOL
APOPT1
ARG1
ARG2
ARMC10

ARNT
ARPC3
ARPC5

ARPC5L
ASAH2
ASAH2B
ASL
ASS1
ATAD1
ATAD3A
ATAD3B
ATF4
ATF5
ATGS
ATG9B

ATIC

ATP23
ATPSF1A
ATPS5F1B
ATPSF1C
ATP5F1D
ATP5F1E
ATP5IF1
ATPSMCA1
ATP5MC2
ATP5MC3
ATP5MD
ATP5ME
ATP5MF
ATPSMG
ATPSMGL
ATPSMPL

ATPS5PB
ATPSPD

aldolase, fructose-bisphosphate B
aldolase, fructose-bisphosphate C

alkB homolog 1, histone H2A dioxygenase
alkB homolog 7

alpha-methylacyl-CoA racemase
autophagy and beclin 1 regulator 1

aminomethyltransferase
acidic nuclear phosphoprotein 32 family
member A

apoptotic peptidase activating factor 1
apurinic/apyrimidinic endodeoxyribonuclease

apurinic/apyrimidinic endodeoxyribonuclease
2

apolipoprotein O
apolipoprotein O like
apoptogenic 1, mitochondrial
arginase 1

arginase 2

armadillo repeat containing 10
aryl hydrocarbon receptor nuclear
translocator

actin related protein 2/3 complex subunit 3
actin related protein 2/3 complex subunit 5
actin related protein 2/3 complex subunit 5
like

N-acylsphingosine amidohydrolase 2
N-acylsphingosine amidohydrolase 2B
argininosuccinate lyase

argininosuccinate synthase 1

ATPase family AAA domain containing 1
ATPase family AAA domain containing 3A
ATPase family AAA domain containing 3B
activating transcription factor 4

activating transcription factor 5

autophagy related 5

autophagy related 9B
5-aminoimidazole-4-carboxamide
ribonucleotide formyltransferase/IMP
cyclohydrolase

ATP23 metallopeptidase and ATP synthase
assembly factor homolog

ATP synthase F1 subunit alpha

ATP synthase F1 subunit beta

ATP synthase F1 subunit gamma

ATP synthase F1 subunit delta

ATP synthase F1 subunit epsilon

ATP synthase inhibitory factor subunit 1
ATP synthase membrane subunit ¢ locus 1
ATP synthase membrane subunit ¢ locus 2
ATP synthase membrane subunit ¢ locus 3
ATP synthase membrane subunit DAPIT
ATP synthase membrane subunit e

ATP synthase membrane subunit f

ATP synthase membrane subunit g

ATP synthase membrane subunit g like

ATP synthase membrane subunit 6.8PL
ATP synthase peripheral stalk-membrane
subunit b

ATP synthase peripheral stalk subunit d
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Fructose Metabolism
Glycolysis

Replication & Transcription
Apoptosis

Bile Acid Synthesis
Mitophagy

Amino Acid Metabolism

Apoptosis
Apoptosis

Replication & Transcription

Replication & Transcription
Mitochondrial Dynamics
Mitochondrial Dynamics
Apoptosis

Nitrogen Metabolism
Nitrogen Metabolism
Apoptosis

Transcription (nuclear)
Mitochondrial Dynamics
Mitochondrial Dynamics

Mitochondrial Dynamics

Metabolism of Lipids & Lipoproteins
Metabolism of Lipids & Lipoproteins

Nitrogen Metabolism
Amino Acid Metabolism

Protein Stability & Degradation

Mitochondrial Dynamics
Mitochondrial Dynamics
Transcription (nuclear)
UPRmt

Mitophagy

Mitophagy

Nucleotide Metabolism

Protein Stability & Degradation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation

17
14
19

11

15
12

14

10
10

12
18
12
10
19
20

17
12

10

11

22
14



ATP5PF
ATP5PO
ATPEV1E1

ATPAF1

ATPAF2

AUH
AURKAIP1
BAD

BAK1

BAX
BBC3
BCAT1
BCAT2

BCKDHA

BCKDHB

BCKDK
BCL2
BCL2L1
BCL2L11
BCL2L13
BCL2L2

BCS1L
BDH1
BECNT1
BECN2
BID

BIK
BIRC8
BNIP1
BNIP3
BNIP3L
BOK
BOLA1
BOLA3
BPHL
C120rf10
C120rf65
C150rf48
C160rf91
C5orf63
C8orf82
CA5A
CAS5B
CALCOCO2
CARS2
CASP2
CASP3
CASP7
CASP8
CASP9
CAT
CBR4
CCDC58

ATP synthase peripheral stalk subunit F6

ATP synthase peripheral stalk subunit OSCP

ATPase H+ transporting V1 subunit E1
ATP synthase mitochondrial F1 complex
assembly factor 1

ATP synthase mitochondrial F1 complex
assembly factor 2

AU RNA binding methylglutaconyl-CoA
hydratase

aurora kinase A interacting protein 1

BCL2 associated agonist of cell death
BCL2 antagonist/killer 1

BCL2 associated X, apoptosis regulator
BCL2 binding component 3

branched chain amino acid transaminase 1
branched chain amino acid transaminase 2

branched chain keto acid dehydrogenase E1,

alpha polypeptide

branched chain keto acid dehydrogenase E1
subunit beta

branched chain ketoacid dehydrogenase
kinase

BCL2 apoptosis regulator
BCL2 like 1

BCL2 like 11

BCL2 like 13

BCL2 like 2
BCS1 homolog, ubiquinol-cytochrome ¢
reductase complex chaperone

3-hydroxybutyrate dehydrogenase 1
beclin 1

beclin 2

BH3 interacting domain death agonist
BCL2 interacting killer

baculoviral IAP repeat containing 8
BCL2 interacting protein 1

BCL2 interacting protein 3

BCL2 interacting protein 3 like

BCL2 family apoptosis regulator BOK
bolA family member 1

bolA family member 3

biphenyl hydrolase like

chromosome 12 open reading frame 10
chromosome 12 open reading frame 65
chromosome 15 open reading frame 48
chromosome 16 open reading frame 91
chromosome 5 open reading frame 63
chromosome 8 open reading frame 82
carbonic anhydrase 5A

carbonic anhydrase 5B

calcium binding and coiled-coil domain 2
cysteinyl-tRNA synthetase 2, mitochondrial
caspase 2

caspase 3

caspase 7

caspase 8

caspase 9

catalase

carbonyl reductase 4

coiled-coil domain containing 58
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Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation

Amino Acid Metabolism
Translation

Apoptosis

Apoptosis

Apoptosis

Apoptosis

Amino Acid Metabolism
Amino Acid Metabolism

Amino Acid Metabolism
Amino Acid Metabolism

Amino Acid Metabolism
Apoptosis
Apoptosis
Apoptosis
Apoptosis
Apoptosis

Oxidative Phosphorylation
Fatty Acid Metabolism
Mitophagy

Mitophagy

Apoptosis

Apoptosis

Apoptosis

Apoptosis

Apoptosis

Apoptosis

Apoptosis

Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Translation

Unknown

Translation

Oxidative Phosphorylation
Unknown

Unknown

Unknown

Nitrogen Metabolism
Nitrogen Metabolism
Mitophagy

Translation

Apoptosis

Apoptosis

Apoptosis

Apoptosis

Apoptosis

ROS Defense

Fatty Acid Biosynthesis & Elongation
Translation

21
21
22

17

11

19
19
12
19

19

16
18
20

22
14



CCDC90B
CDK5RAP1
CDSH1
CDS2

CHCHD1
CHCHD10
CHCHD2
CHCHD3
CHCHD4
CHCHD5
CHCHD6

CHCHD7
CHDH
CIAO1
CIAO2A
CIAO2B
CIAPIN1
CISD1
CISD2
CISD3

CITED2
CKMT1A
CKMT1B
CKMT2
CLIC4

CLPB
CLPP

CLPX
CLYBL
CMC1
CMC2
CMC4
CMPK2

COA1
COA3

COA4
COA5
COAG

COA7
COASY
COQ10A
coQ10B
CcOoQ2
CcOoQ3
COQ4
COQ5
COQ6
coQ7
COQ8A

coiled-coil domain containing 90B
CDKS5 regulatory subunit associated protein 1
CDP-diacylglycerol synthase 1

CDP-diacylglycerol synthase 2
coiled-coil-helix-coiled-coil-helix domain
containing 1
coiled-coil-helix-coiled-coil-helix domain
containing 10
coiled-coil-helix-coiled-coil-helix domain
containing 2
coiled-coil-helix-coiled-coil-helix domain
containing 3
coiled-coil-helix-coiled-coil-helix domain
containing 4
coiled-coil-helix-coiled-coil-helix domain
containing 5
coiled-coil-helix-coiled-coil-helix domain
containing 6
coiled-coil-helix-coiled-coil-helix domain
containing 7

choline dehydrogenase

cytosolic iron-sulfur assembly component 1
cytosolic iron-sulfur assembly component 2A
cytosolic iron-sulfur assembly component 2B
cytokine induced apoptosis inhibitor 1
CDGSH iron sulfur domain 1

CDGSH iron sulfur domain 2

CDGSH iron sulfur domain 3
Cbp/p300 interacting transactivator with
Glu/Asp rich carboxy-terminal domain 2

creatine kinase, mitochondrial 1A
creatine kinase, mitochondrial 1B
creatine kinase, mitochondrial 2

chloride intracellular channel 4

ClpB homolog, mitochondrial AAA ATPase
chaperonin

caseinolytic mitochondrial matrix peptidase
proteolytic subunit

caseinolytic mitochondrial matrix peptidase
chaperone subunit

citrate lyase beta like

C-X9-C motif containing 1
C-X9-C motif containing 2
C-X9-C motif containing 4

cytidine/uridine monophosphate kinase 2
cytochrome ¢ oxidase assembly factor 1
homolog

cytochrome ¢ oxidase assembly factor 3
cytochrome ¢ oxidase assembly factor 4
homolog

cytochrome ¢ oxidase assembly factor 5

cytochrome ¢ oxidase assembly factor 6
cytochrome ¢ oxidase assembly factor 7
(putative)

Coenzyme A synthase

coenzyme Q10A

coenzyme Q10B

coenzyme Q2, polyprenyltransferase
coenzyme Q3, methyltransferase
coenzyme Q4

coenzyme Q5, methyltransferase
coenzyme Q6, monooxygenase
coenzyme Q7, hydroxylase
coenzyme Q8A
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Calcium Signaling & Transport
Replication & Transcription
Cardiolipin Biosynthesis
Metabolism of Lipids & Lipoproteins

Translation
Mitochondrial Dynamics
Mitochondrial Signaling
Mitochondrial Dynamics
Import & Sorting

Import & Sorting
Mitochondrial Dynamics

Unknown

Amino Acid Metabolism
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Mitophagy
Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism
Apoptosis

Protein Stability & Degradation
Protein Stability & Degradation

Protein Stability & Degradation
Metabolism of Vitamins & Co-Factors
Oxidative Phosphorylation

Import & Sorting

Import & Sorting

Replication & Transcription

Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Metabolism of Vitamins & Co-Factors
Oxidative Phosphorylation
Oxidative Phosphorylation
Ubiquinone Biosynthesis
Ubiquinone Biosynthesis
Ubiquinone Biosynthesis
Ubiquinone Biosynthesis
Ubiquinone Biosynthesis
Ubiquinone Biosynthesis
Oxidative Phosphorylation

11
20

20

10

22

15
16
16
10

17

15
15

11

19

15
13

16

17
12

12
14
16



coQ8B
COQ9

COX10
COX11
COX14
COX15
COX16
COX17
COX18
COX19

COX20
COX4l1
COX412
COX5A
COX5B
COX6A1
COX6A2
COX6B1
COX6B2
COX6C
COX7A1
COXT7A2
COX7A2L
COX7B
COX7B2
COX7C
COX8A

COX8BP
COX8C
CPOX
CPS1
CPT1A
CPT1B
CPT1C
CPT2
CRAT
CREB1
CRLS1
CSs
CSNK2A1
CTSB
CYB5A
CYB5B
CYB5R1
CYB5R2
CYB5R3
CYC1
CYCS

CYP11A1

CYP11B1

coenzyme Q8B
coenzyme Q9

cytochrome ¢ oxidase assembly factor heme

A:farnesyltransferase COX10
cytochrome c oxidase copper chaperone
COX11

cytochrome ¢ oxidase assembly factor
COX14

cytochrome ¢ oxidase assembly homolog
COX15

cytochrome c oxidase assembly factor
COX16

cytochrome ¢ oxidase copper chaperone
COox17

cytochrome ¢ oxidase assembly factor
COX18

cytochrome c oxidase assembly factor
COX19

cytochrome ¢ oxidase assembly factor
COX20

cytochrome ¢ oxidase subunit 411
cytochrome ¢ oxidase subunit 412
cytochrome ¢ oxidase subunit 5A
cytochrome ¢ oxidase subunit 5B
cytochrome ¢ oxidase subunit 6A1
cytochrome ¢ oxidase subunit 6A2
cytochrome ¢ oxidase subunit 6B1
cytochrome ¢ oxidase subunit 6B2
cytochrome ¢ oxidase subunit 6C
cytochrome ¢ oxidase subunit 7A1
cytochrome ¢ oxidase subunit 7A2
cytochrome ¢ oxidase subunit 7A2 like
cytochrome ¢ oxidase subunit 7B
cytochrome ¢ oxidase subunit 7B2
cytochrome ¢ oxidase subunit 7C

cytochrome ¢ oxidase subunit 8A
cytochrome c oxidase subunit 8B,
pseudogene

cytochrome ¢ oxidase subunit 8C
coproporphyrinogen oxidase
carbamoyl-phosphate synthase 1
carnitine palmitoyltransferase 1A
carnitine palmitoyltransferase 1B
carnitine palmitoyltransferase 1C
carnitine palmitoyltransferase 2
carnitine O-acetyltransferase
cAMP responsive element binding protein 1
cardiolipin synthase 1

citrate synthase

casein kinase 2 alpha 1
cathepsin B

cytochrome b5 type A
cytochrome b5 type B
cytochrome b5 reductase 1
cytochrome b5 reductase 2
cytochrome b5 reductase 3
cytochrome c1

cytochrome ¢, somatic

cytochrome P450 family 11 subfamily A
member 1

cytochrome P450 family 11 subfamily B
member 1
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Oxidative Phosphorylation
Ubiquinone Biosynthesis

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation

Oxidative Phosphorylation

Heme Biosynthesis

Nitrogen Metabolism

Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation
Transcription (nuclear)

Cardiolipin Biosynthesis

Tricarboxylic Acid Cycle

Apoptosis

Apoptosis

Metabolism of Vitamins & Co-Factors
Metabolism of Vitamins & Co-Factors
Metabolism of Lipids & Lipoproteins
Metabolism of Lipids & Lipoproteins
Metabolism of Lipids & Lipoproteins
Oxidative Phosphorylation

Oxidative Phosphorylation

Metabolism of Lipids & Lipoproteins

Metabolism of Lipids & Lipoproteins

19
16

17

17

12

10

14

20
12
20

18
16

11
22

15



CYP11B2

CYP24A1

CYP27A1

CYP27B1
D2HGDH
DAP3
DARS2

DBT
DDAH1
DDIT3
DDX28
DECR1
DELE1
DGLUCY
DGUOK
DHFR
DHFR2
DHODH
DHRS2
DHRS4

DHTKD1
DHX29
DHX30
DIABLO
DLAT
DLD
DLST
DMAC1
DMAC2

DMAC2L
DMGDH
DNA2

DNAJA1

DNAJA3

DNAJC11

DNAJC15

DNAJC19

DNAJC30

DNAJC4
DNLZ
DNM1L
DONSON
DTYMK
DUT
DYNLL1
E2F1
EARS2
ECH1
ECHDC1
ECHDC2

cytochrome P450 family 11 subfamily B
member 2
cytochrome P450 family 24 subfamily A
member 1
cytochrome P450 family 27 subfamily A
member 1
cytochrome P450 family 27 subfamily B
member 1

D-2-hydroxyglutarate dehydrogenase
death associated protein 3

aspartyl-tRNA synthetase 2, mitochondrial
dihydrolipoamide branched chain
transacylase E2

dimethylarginine dimethylaminohydrolase 1
DNA damage inducible transcript 3
DEAD-box helicase 28

2,4-dienoyl-CoA reductase 1

DAP3 binding cell death enhancer 1
D-glutamate cyclase

deoxyguanosine kinase

dihydrofolate reductase

dihydrofolate reductase 2

dihydroorotate dehydrogenase (quinone)
dehydrogenase/reductase 2
dehydrogenase/reductase 4

dehydrogenase E1 and transketolase domain

containing 1

DExH-box helicase 29

DExH-box helicase 30

diablo IAP-binding mitochondrial protein
dihydrolipoamide S-acetyltransferase
dihydrolipoamide dehydrogenase
dihydrolipoamide S-succinyltransferase
distal membrane arm assembly complex 1

distal membrane arm assembly complex 2
distal membrane arm assembly complex 2
like

dimethylglycine dehydrogenase

DNA replication helicase/nuclease 2
DnaJ heat shock protein family (Hsp40)
member A1

DnaJ heat shock protein family (Hsp40)
member A3

DnaJ heat shock protein family (Hsp40)
member C11

DnaJ heat shock protein family (Hsp40)
member C15

DnaJ heat shock protein family (Hsp40)
member C19

DnaJ heat shock protein family (Hsp40)
member C30

DnaJ heat shock protein family (Hsp40)
member C4

DNL-type zinc finger

dynamin 1 like

downstream neighbor of SON
deoxythymidylate kinase

deoxyuridine triphosphatase

dynein light chain LC8-type 1

E2F transcription factor 1

glutamyl-tRNA synthetase 2, mitochondrial
enoyl-CoA hydratase 1

ethylmalonyl-CoA decarboxylase 1
enoyl-CoA hydratase domain containing 2
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Metabolism of Lipids & Lipoproteins
Metabolism of Vitamins & Co-Factors
Metabolism of Lipids & Lipoproteins

Metabolism of Vitamins & Co-Factors
Oxidative Phosphorylation
Translation

Translation

Amino Acid Metabolism

Nitrogen Metabolism

UPRmt

Translation

Fatty Acid Degradation & Beta-oxidation
Apoptosis

Amino Acid Metabolism

Replication & Transcription

Folate & Pterin Metabolism

Folate & Pterin Metabolism
Nucleotide Metabolism

Metabolism of Vitamins & Co-Factors
Metabolism of Vitamins & Co-Factors

Amino Acid Metabolism
Replication & Transcription
Replication & Transcription
Apoptosis

Pyruvate Metabolism
Tricarboxylic Acid Cycle
Tricarboxylic Acid Cycle
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Metabolism of Lipids & Lipoproteins
Replication & Transcription

Protein Stability & Degradation
Protein Stability & Degradation
Protein Stability & Degradation
Import & Sorting
Import & Sorting
Protein Stability & Degradation

Protein Stability & Degradation
Import & Sorting

Mitochondrial Dynamics

Oxidative Phosphorylation
Nucleotide Metabolism

Nucleotide Metabolism

Apoptosis

Transcription (nuclear)

Translation

Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation
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12
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14

12
11
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14
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13

11

12
21

15
12
20
16
19



ECHDC3
ECHS1
ECI1
ECI2
ECSIT
EFHD1

EIF2AK3
ELAC2
ENDOG
ENO1
ENO2
ENO3
ERAL1
ESRRA
ETFA
ETFB
ETFDH

ETFRF1
ETHE1
ETNPPL
EXOG
FABP6

FAHD1

FAHD2A

FAHD2B

FAM162A

FAM210B

FARS2
FASTK
FASTKD1
FASTKD2
FASTKD3
FASTKD5
FBP1
FBP2
FBXL4
FDPS
FDX1
FDX2
FDXR
FECH
FEN1

FH

FIS1
FKBP8

FMC1
FOXO03

FOXRED1
FPGS
FTMT
FUNDCA1

enoyl-CoA hydratase domain containing 3
enoyl-CoA hydratase, short chain 1
enoyl-CoA delta isomerase 1

enoyl-CoA delta isomerase 2

ECSIT signalling integrator

EF-hand domain family member D1
eukaryotic translation initiation factor 2 alpha
kinase 3

elaC ribonuclease Z 2

endonuclease G

enolase 1

enolase 2

enolase 3

Era like 12S mitochondrial rRNA chaperone 1
estrogen related receptor alpha

electron transfer flavoprotein subunit alpha
electron transfer flavoprotein subunit beta

electron transfer flavoprotein dehydrogenase
electron transfer flavoprotein regulatory factor
1

ETHE1 persulfide dioxygenase
ethanolamine-phosphate phospho-lyase
exo/endonuclease G

fatty acid binding protein 6
fumarylacetoacetate hydrolase domain
containing 1

fumarylacetoacetate hydrolase domain
containing 2A

fumarylacetoacetate hydrolase domain
containing 2B

family with sequence similarity 162 member

family with sequence similarity 210 member
phenylalanyl-tRNA synthetase 2,
mitochondrial

Fas activated serine/threonine kinase
FAST kinase domains 1

FAST kinase domains 2

FAST kinase domains 3

FAST kinase domains 5
fructose-bisphosphatase 1
fructose-bisphosphatase 2

F-box and leucine rich repeat protein 4
farnesyl diphosphate synthase
ferredoxin 1

ferredoxin 2

ferredoxin reductase

ferrochelatase

flap structure-specific endonuclease 1
fumarate hydratase

fission, mitochondrial 1

FKBP prolyl isomerase 8
formation of mitochondrial complex V
assembly factor 1 homolog

forkhead box O3
FAD dependent oxidoreductase domain
containing 1

folylpolyglutamate synthase
ferritin mitochondrial
FUN14 domain containing 1
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Fatty Acid Biosynthesis & Elongation
Fatty Acid Biosynthesis & Elongation

Fatty Acid Degradation & Beta-oxidation
Fatty Acid Degradation & Beta-oxidation

Oxidative Phosphorylation
Calcium Signaling & Transport

Translation

Translation

Replication & Transcription
Glycolysis

Glycolysis

Glycolysis

Translation

Transcription (nuclear)
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation

Amino Acid Metabolism

Amino Acid Metabolism

Replication & Transcription
Metabolism of Lipids & Lipoproteins

Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism
Apoptosis
Transmembrane Transport

Translation

Translation

Translation

Translation

Translation

Translation

Glycolysis

Glycolysis

Protein Stability & Degradation
Metabolism of Lipids & Lipoproteins
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Heme Biosynthesis
Replication & Transcription
Tricarboxylic Acid Cycle
Mitochondrial Dynamics
Protein Stability & Degradation

Oxidative Phosphorylation
Transcription (nuclear)

Oxidative Phosphorylation
Folate & Pterin Metabolism
Heme Biosynthesis
Mitochondrial Dynamics

10
10
16

11
19
17
18
11

19
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FUNDC2
FXN
G6PC
G6PD
GABARAP

GABPA
GADDA45GIP1
GAPDH

GAPDHS
GARS1
GATB
GATC

GATD3A
GATM
GCAT
GCDH
GCK
GCLC
GCLM
GCSH

GDAP1
GFER
GFM1
GFM2

GHITM
GK

GK2
GLDC
GLRX2
GLRX5
GLS
GLS2
GLUD1
GLUD2
GLUL
GLYAT
GLYATL2
GLYATL3
GLYCTK
GOT2

GPAM

GPAT2
GPD1
GPD2
GPI
GPT2
GPX1
GPX4
GRPEL1
GRPEL2
GSK3B
GSR
GSS

FUN14 domain containing 2

frataxin

glucose-6-phosphatase catalytic subunit
glucose-6-phosphate dehydrogenase

GABA type A receptor-associated protein
GA binding protein transcription factor
subunit alpha

GADD45G interacting protein 1

glyceraldehyde-3-phosphate dehydrogenase
glyceraldehyde-3-phosphate dehydrogenase,
spermatogenic

glycyl-tRNA synthetase
glutamyl-tRNA amidotransferase subunit B

glutamyl-tRNA amidotransferase subunit C
glutamine amidotransferase like class 1
domain containing 3A

glycine amidinotransferase

glycine C-acetyltransferase

glutaryl-CoA dehydrogenase

glucokinase

glutamate-cysteine ligase catalytic subunit
glutamate-cysteine ligase modifier subunit

glycine cleavage system protein H
ganglioside induced differentiation associated
protein 1

growth factor, augmenter of liver regeneration
G elongation factor mitochondrial 1

G elongation factor mitochondrial 2
growth hormone inducible transmembrane
protein

glycerol kinase

galactokinase 2

glycine decarboxylase
glutaredoxin 2

glutaredoxin 5

glutaminase

glutaminase 2

glutamate dehydrogenase 1
glutamate dehydrogenase 2
glutamate-ammonia ligase
glycine-N-acyltransferase
glycine-N-acyltransferase like 2
glycine-N-acyltransferase like 3
glycerate kinase

glutamic-oxaloacetic transaminase 2
glycerol-3-phosphate acyltransferase,
mitochondrial

glycerol-3-phosphate acyltransferase 2,
mitochondrial

glycerol-3-phosphate dehydrogenase 1
glycerol-3-phosphate dehydrogenase 2
glucose-6-phosphate isomerase
glutamic--pyruvic transaminase 2
glutathione peroxidase 1

glutathione peroxidase 4

GrpE like 1, mitochondrial

GrpE like 2, mitochondrial

glycogen synthase kinase 3 beta
glutathione-disulfide reductase
glutathione synthetase
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Mitochondrial Dynamics
Fe-S Cluster Biosynthesis
Glycolysis

Pentose Phosphate Pathway
Mitophagy

Transcription (nuclear)
Translation
Glycolysis

Glycolysis

Translation
Translation
Translation

Unknown

Amino Acid Metabolism

Amino Acid Metabolism

Fatty Acid Degradation & Beta-oxidation
Glycolysis

ROS Defense

ROS Defense

Amino Acid Metabolism

Mitochondrial Dynamics
Apoptosis

Translation

Translation

Apoptosis

Replication & Transcription
Replication & Transcription
Amino Acid Metabolism
ROS Defense

Fe-S Cluster Biosynthesis
Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism
Translation

Fatty Acid Metabolism
Translation

Fructose Metabolism
Amino Acid Metabolism

Metabolism of Lipids & Lipoproteins

Metabolism of Lipids & Lipoproteins
Oxidative Phosphorylation
Oxidative Phosphorylation
Glycolysis

Amino Acid Metabolism
ROS Defense

ROS Defense

Import & Sorting

Import & Sorting
Mitochondrial Signaling
ROS Defense

ROS Defense

17

17

21
19
12

12

21
15
22
19

12

19
16

19

20



GSTA1 glutathione S-transferase alpha 1 ROS Defense

GSTA2 glutathione S-transferase alpha 2 ROS Defense

GSTA4 glutathione S-transferase alpha 4 ROS Defense

GSTP1 glutathione S-transferase pi 1 ROS Defense

GSTZ1 glutathione S-transferase zeta 1 Amino Acid Metabolism

GTPBP10 GTP binding protein 10 Translation

GTPBP3 GTP binding protein 3, mitochondrial Translation

GUF1 GUF1 homolog, GTPase Translation

HADH hydroxyacyl-CoA dehydrogenase Fatty Acid Degradation & Beta-oxidation
hydroxyacyl-CoA dehydrogenase trifunctional

HADHA multienzyme complex subunit alpha Fatty Acid Degradation & Beta-oxidation
hydroxyacyl-CoA dehydrogenase trifunctional

HADHB multienzyme complex subunit beta Fatty Acid Degradation & Beta-oxidation

HAGH hydroxyacylglutathione hydrolase Pyruvate Metabolism

HARS2 histidyl-tRNA synthetase 2, mitochondrial Translation

HCCS holocytochrome ¢ synthase Oxidative Phosphorylation
haloacid dehalogenase like hydrolase domain

HDHD5 containing 5 Fatty Acid Metabolism

HEMK1 HemK methyltransferase family member 1 Translation

HIBADH 3-hydroxyisobutyrate dehydrogenase Amino Acid Metabolism

HIBCH 3-hydroxyisobutyryl-CoA hydrolase Amino Acid Metabolism

HIF1A hypoxia inducible factor 1 subunit alpha Transcription (nuclear)
HIG1 hypoxia inducible domain family

HIGD1A member 1A Oxidative Phosphorylation
HIG1 hypoxia inducible domain family

HIGD2A member 2A Oxidative Phosphorylation

HINT2 histidine triad nucleotide binding protein 2 Calcium Signaling & Transport

HK1 hexokinase 1 Glycolysis

HK2 hexokinase 2 Glycolysis

HK3 hexokinase 3 Glycolysis

HKDCA1 hexokinase domain containing 1 Glycolysis

HMBS hydroxymethylbilane synthase Heme Biosynthesis

HMGCL 3-hydroxy-3-methylglutaryl-CoA lyase Amino Acid Metabolism

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 Amino Acid Metabolism

HOGA1 4-hydroxy-2-oxoglutarate aldolase 1 Pyruvate Metabolism
HscB mitochondrial iron-sulfur cluster

HSCB cochaperone Fe-S Cluster Biosynthesis

HSD17B10 hydroxysteroid 17-beta dehydrogenase 10 Translation

HSD17B8 hydroxysteroid 17-beta dehydrogenase 8 Fatty Acid Biosynthesis & Elongation
hydroxy-delta-5-steroid dehydrogenase, 3

HSD3B1 beta- and steroid delta-isomerase 1 Metabolism of Lipids & Lipoproteins
hydroxy-delta-5-steroid dehydrogenase, 3

HSD3B2 beta- and steroid delta-isomerase 2 Metabolism of Lipids & Lipoproteins

HSDL1 hydroxysteroid dehydrogenase like 1 Unknown
heat shock protein family A (Hsp70) member

HSPA1A 1A Protein Stability & Degradation
heat shock protein family A (Hsp70) member

HSPA1B 1B Protein Stability & Degradation
heat shock protein family A (Hsp70) member

HSPA9 9 Import & Sorting
heat shock protein family D (Hsp60) member

HSPD1 1 Protein Stability & Degradation
heat shock protein family E (Hsp10) member

HSPE1 1 Import & Sorting

HTRA2 HtrA serine peptidase 2 Apoptosis

IARS2 isoleucyl-tRNA synthetase 2, mitochondrial Translation

IBA57 iron-sulfur cluster assembly factor IBA57 Fe-S Cluster Biosynthesis

IDE insulin degrading enzyme Mitochondrial Signaling
isocitrate dehydrogenase (NADP(+)) 1,

IDH1 cytosolic Tricarboxylic Acid Cycle
isocitrate dehydrogenase (NADP(+)) 2,

IDH2 mitochondrial Tricarboxylic Acid Cycle

IDH3A isocitrate dehydrogenase 3 (NAD(+)) alpha Tricarboxylic Acid Cycle

IDH3B isocitrate dehydrogenase 3 (NAD(+)) beta Tricarboxylic Acid Cycle
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IDH3G

IMMP1L

IMMP2L
IMMT
ISCA1
ISCA2
ISCU
ITPR1
ITPR2
ITPR3
IVD

JUN
KARS
KDM6B
KHK
KIF1B
KIF1BP
KIF5B
KMO
KYAT3
L2HGDH
LACTB
LACTB2
LAP3
LARS2
LCLAT1
LDHA
LDHALGB
LDHB
LDHC
LDHD

LETM1

LETM2
LETMD1
LIAS
LIG1
LIG3
LIPT1
LIPT2
LONP1

LRPPRC
LYPLA1
LYPLAL1
LYRM1
LYRM4
LYRM7
MAIP1

MALSU1
MAOA
MAOB

MAP1LC3A
MAPKA1

isocitrate dehydrogenase 3 (NAD(+)) gamma
inner mitochondrial membrane peptidase
subunit 1

inner mitochondrial membrane peptidase
subunit 2

inner membrane mitochondrial protein
iron-sulfur cluster assembly 1

iron-sulfur cluster assembly 2

iron-sulfur cluster assembly enzyme
inositol 1,4,5-trisphosphate receptor type 1
inositol 1,4,5-trisphosphate receptor type 2
inositol 1,4,5-trisphosphate receptor type 3

isovaleryl-CoA dehydrogenase
Jun proto-oncogene, AP-1 transcription factor
subunit

lysyl-tRNA synthetase

lysine demethylase 6B
ketohexokinase

kinesin family member 1B

KIF1 binding protein

kinesin family member 5B
kynurenine 3-monooxygenase
kynurenine aminotransferase 3
L-2-hydroxyglutarate dehydrogenase
lactamase beta

lactamase beta 2

leucine aminopeptidase 3
leucyl-tRNA synthetase 2, mitochondrial
lysocardiolipin acyltransferase 1
lactate dehydrogenase A

lactate dehydrogenase A like 6B
lactate dehydrogenase B

lactate dehydrogenase C

lactate dehydrogenase D
leucine zipper and EF-hand containing
transmembrane protein 1
leucine zipper and EF-hand containing
transmembrane protein 2

LETM1 domain containing 1
lipoic acid synthetase

DNA ligase 1

DNA ligase 3
lipoyltransferase 1
lipoyl(octanoyl) transferase 2

lon peptidase 1, mitochondrial
leucine rich pentatricopeptide repeat
containing

lysophospholipase 1
lysophospholipase like 1
LYR motif containing 1
LYR motif containing 4
LYR motif containing 7

matrix AAA peptidase interacting protein 1
mitochondrial assembly of ribosomal large
subunit 1

monoamine oxidase A

monoamine oxidase B
microtubule associated protein 1 light chain 3
alpha

mitogen-activated protein kinase 1

166

Tricarboxylic Acid Cycle
Import & Sorting

Import & Sorting

Mitochondrial Dynamics

Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Calcium Signaling & Transport
Calcium Signaling & Transport
Calcium Signaling & Transport
Amino Acid Metabolism

Transcription (nuclear)
Translation

UPRmt

Fructose Metabolism
Mitochondrial Dynamics
Mitochondrial Dynamics
Mitochondrial Dynamics
Amino Acid Metabolism
Amino Acid Metabolism
Pyruvate Metabolism

Metabolism of Lipids & Lipoproteins

Translation

Amino Acid Metabolism
Translation

Cardiolipin Biosynthesis
Glycolysis

Glycolysis

Glycolysis

Glycolysis

Pyruvate Metabolism

Calcium Signaling & Transport

Calcium Signaling & Transport
Apoptosis

Lipoic Acid Metabolism
Replication & Transcription
Replication & Transcription
Lipoic Acid Metabolism

Lipoic Acid Metabolism
Protein Stability & Degradation

Translation

Fatty Acid Metabolism

Fatty Acid Metabolism
Mitochondrial Dynamics

Fe-S Cluster Biosynthesis
Oxidative Phosphorylation
Calcium Signaling & Transport

Translation
Amino Acid Metabolism
Amino Acid Metabolism

Mitochondrial Dynamics
Apoptosis
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14
12

12

15

16
17

10
10

14
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12
11
16

12
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11
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MAPK3
MAPK8
MARCH1
MARCH2
MARCH5
MARS2
MAVS
MCAT
MCCC1
MCCC2
MCEE

MCL1
MCU

McuB
MCURH1
MDH1
MDH2
ME1
ME2
ME3
MECR

METAP1D
METTL17
MFF
MFN1
MFN2

MGARP

MGME1
MGST1

MICOS10

MICOS13
MICU1
MICU2

MICU3
MIEF1
MIEF2
MIPEP
MITF
MLYCD
MMAA
MMAB
MMADHC

MMS19
MMUT
MPC1
MPC1L
MPC2
MPST

MPV17

MPV17L

MPV17L2

mitogen-activated protein kinase 3
mitogen-activated protein kinase 8
membrane associated ring-CH-type finger 1
membrane associated ring-CH-type finger 2
membrane associated ring-CH-type finger 5
methionyl-tRNA synthetase 2, mitochondrial
mitochondrial antiviral signaling protein

malonyl-CoA-acyl carrier protein transacylase

methylcrotonoyl-CoA carboxylase 1
methylcrotonoyl-CoA carboxylase 2

methylmalonyl-CoA epimerase
MCL1 apoptosis regulator, BCL2 family
member

mitochondrial calcium uniporter
mitochondrial calcium uniporter dominant
negative beta subunit

mitochondrial calcium uniporter regulator 1
malate dehydrogenase 1

malate dehydrogenase 2

malic enzyme 1

malic enzyme 2

malic enzyme 3

mitochondrial trans-2-enoyl-CoA reductase
methionyl aminopeptidase type 1D,
mitochondrial

methyltransferase like 17
mitochondrial fission factor
mitofusin 1

mitofusin 2

mitochondria localized glutamic acid rich
protein

mitochondrial genome maintenance
exonuclease 1

microsomal glutathione S-transferase 1
mitochondrial contact site and cristae
organizing system subunit 10
mitochondrial contact site and cristae
organizing system subunit 13

mitochondrial calcium uptake 1

mitochondrial calcium uptake 2
mitochondrial calcium uptake family member
3

mitochondrial elongation factor 1
mitochondrial elongation factor 2
mitochondrial intermediate peptidase
melanocyte inducing transcription factor
malonyl-CoA decarboxylase
metabolism of cobalamin associated A
metabolism of cobalamin associated B

metabolism of cobalamin associated D
MMS 19 homolog, cytosolic iron-sulfur
assembly component

methylmalonyl-CoA mutase
mitochondrial pyruvate carrier 1
mitochondrial pyruvate carrier 1 like
mitochondrial pyruvate carrier 2

mercaptopyruvate sulfurtransferase
mitochondrial inner membrane protein
MPV17

MPV17 mitochondrial inner membrane
protein like

MPV17 mitochondrial inner membrane
protein like 2
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Apoptosis

Apoptosis

Nucleotide Metabolism
Nucleotide Metabolism
Mitochondrial Dynamics
Translation
Mitochondrial Signaling
Fatty Acid Biosynthesis & Elongation
Amino Acid Metabolism
Amino Acid Metabolism
Amino Acid Metabolism

Apoptosis
Calcium Signaling & Transport

Calcium Signaling & Transport
Calcium Signaling & Transport
Tricarboxylic Acid Cycle
Tricarboxylic Acid Cycle

Pyruvate Metabolism

Pyruvate Metabolism

Pyruvate Metabolism

Fatty Acid Biosynthesis & Elongation

Import & Sorting
Translation
Mitochondrial Dynamics
Mitochondrial Dynamics
Mitochondrial Dynamics

Mitochondrial Dynamics

Replication & Transcription
ROS Defense

Mitochondrial Dynamics

Mitochondrial Dynamics
Calcium Signaling & Transport
Calcium Signaling & Transport

Calcium Signaling & Transport
Mitochondrial Dynamics
Mitochondrial Dynamics

Import & Sorting

Transcription (nuclear)

Fatty Acid Metabolism

Metabolism of Vitamins & Co-Factors
Metabolism of Vitamins & Co-Factors
Metabolism of Vitamins & Co-Factors

Fe-S Cluster Biosynthesis
Amino Acid Metabolism
Pyruvate Metabolism
Pyruvate Metabolism
Pyruvate Metabolism
Amino Acid Metabolism

ROS Defense
ROS Defense

Translation

16
10

19
10
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MRM1
MRM2
MRM3
MRPLA1
MRPL10
MRPL11
MRPL12
MRPL13
MRPL14
MRPL15
MRPL16
MRPL17
MRPL18
MRPL19
MRPL2
MRPL20
MRPL21
MRPL22
MRPL23
MRPL24
MRPL27
MRPL28
MRPL3
MRPL30
MRPL32
MRPL33
MRPL34
MRPL35
MRPL36
MRPL37
MRPL38
MRPL39
MRPL4
MRPL40
MRPL41
MRPL42
MRPL43
MRPL44
MRPL45
MRPL46
MRPL47
MRPL48
MRPL49
MRPL50
MRPL51
MRPL52
MRPL53
MRPL54
MRPL55
MRPL57
MRPL58
MRPL9
MRPS10
MRPS11
MRPS12
MRPS14

mitochondrial rRNA methyltransferase 1
mitochondrial rRNA methyltransferase 2
mitochondrial rRNA methyltransferase 3

mitochondrial ribosomal protein L1

mitochondrial ribosomal protein L10
mitochondrial ribosomal protein L11
mitochondrial ribosomal protein L12
mitochondrial ribosomal protein L13
mitochondrial ribosomal protein L14
mitochondrial ribosomal protein L15
mitochondrial ribosomal protein L16
mitochondrial ribosomal protein L17
mitochondrial ribosomal protein L18
mitochondrial ribosomal protein L19
mitochondrial ribosomal protein L2

mitochondrial ribosomal protein L20
mitochondrial ribosomal protein L21
mitochondrial ribosomal protein L22
mitochondrial ribosomal protein L23
mitochondrial ribosomal protein L24
mitochondrial ribosomal protein L27
mitochondrial ribosomal protein L28
mitochondrial ribosomal protein L3

mitochondrial ribosomal protein L30
mitochondrial ribosomal protein L32
mitochondrial ribosomal protein L33
mitochondrial ribosomal protein L34
mitochondrial ribosomal protein L35
mitochondrial ribosomal protein L36
mitochondrial ribosomal protein L37
mitochondrial ribosomal protein L38
mitochondrial ribosomal protein L39
mitochondrial ribosomal protein L4

mitochondrial ribosomal protein L40
mitochondrial ribosomal protein L41
mitochondrial ribosomal protein L42
mitochondrial ribosomal protein L43
mitochondrial ribosomal protein L44
mitochondrial ribosomal protein L45
mitochondrial ribosomal protein L46
mitochondrial ribosomal protein L47
mitochondrial ribosomal protein L48
mitochondrial ribosomal protein L49
mitochondrial ribosomal protein L50
mitochondrial ribosomal protein L51
mitochondrial ribosomal protein L52
mitochondrial ribosomal protein L53
mitochondrial ribosomal protein L54
mitochondrial ribosomal protein L55
mitochondrial ribosomal protein L57
mitochondrial ribosomal protein L58
mitochondrial ribosomal protein L9

mitochondrial ribosomal protein S10
mitochondrial ribosomal protein S11
mitochondrial ribosomal protein S12
mitochondrial ribosomal protein S14
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Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation

17

17

17

11
17

11
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MRPS15
MRPS16
MRPS17
MRPS18A
MRPS18B
MRPS18C
MRPS2
MRPS21
MRPS22
MRPS23
MRPS24
MRPS25
MRPS26
MRPS27
MRPS28
MRPS30
MRPS31
MRPS33
MRPS34
MRPS35
MRPS36
MRPS5
MRPS6
MRPS7
MRPS9
MRRF
MRS2
MSH5
MSRA
MSRB2
MSRB3

MSTO1
MT-ATP6
MT-ATP8

MT-CO1

MT-CO2

MT-CO3
MT-CYB

MT-ND1

MT-ND2

MT-ND3

MT-ND4

MT-NDA4L

MT-ND5

MT-ND6
MT-RNR1
MT-RNR2
MT-TA
MT-TC
MT-TD
MT-TE

mitochondrial ribosomal protein S15
mitochondrial ribosomal protein S16
mitochondrial ribosomal protein S17
mitochondrial ribosomal protein S18A
mitochondrial ribosomal protein S18B
mitochondrial ribosomal protein S18C
mitochondrial ribosomal protein S2
mitochondrial ribosomal protein S21
mitochondrial ribosomal protein S22
mitochondrial ribosomal protein S23
mitochondrial ribosomal protein S24
mitochondrial ribosomal protein S25
mitochondrial ribosomal protein S26
mitochondrial ribosomal protein S27
mitochondrial ribosomal protein S28
mitochondrial ribosomal protein S30
mitochondrial ribosomal protein S31
mitochondrial ribosomal protein S33
mitochondrial ribosomal protein S34
mitochondrial ribosomal protein S35
mitochondrial ribosomal protein S36
mitochondrial ribosomal protein S5
mitochondrial ribosomal protein S6
mitochondrial ribosomal protein S7
mitochondrial ribosomal protein S9
mitochondrial ribosome recycling factor
magnesium transporter MRS2

mutS homolog 5

methionine sulfoxide reductase A
methionine sulfoxide reductase B2

methionine sulfoxide reductase B3
misato mitochondrial distribution and
morphology regulator 1

mitochondrially encoded ATP synthase 6

mitochondrially encoded ATP synthase 8

mitochondrially encoded cytochrome ¢
oxidase |

mitochondrially encoded cytochrome ¢
oxidase Il

mitochondrially encoded cytochrome ¢
oxidase lll

mitochondrially encoded cytochrome b
mitochondrially encoded NADH
dehydrogenase 1

mitochondrially encoded NADH
dehydrogenase 2

mitochondrially encoded NADH
dehydrogenase 3

mitochondrially encoded NADH
dehydrogenase 4

mitochondrially encoded NADH 4L
dehydrogenase

mitochondrially encoded NADH
dehydrogenase 5

mitochondrially encoded NADH
dehydrogenase 6

mitochondrially encoded 12S RNA
mitochondrially encoded 16S RNA
mitochondrially encoded tRNA alanine
mitochondrially encoded tRNA cysteine

mitochondrially encoded tRNA aspartic acid

mitochondrially encoded tRNA glutamic acid
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Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Translation
Transmembrane Transport
Replication & Transcription
ROS Defense
ROS Defense
ROS Defense

Mitochondrial Dynamics
Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)

Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)

Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)

Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)
Oxidative Phosphorylation (mt)

Oxidative Phosphorylation (mt)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
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MT-TF
MT-TG
MT-TH
MT-TI

MT-TK

MT-TL1

MT-TL2
MT-TM
MT-TN
MT-TP
MT-TQ
MT-TR

MT-TS1

MT-TS2
MT-TT
MT-TV
MT-TW
MT-TY
MTCH1
MTCH2

MTERF1
MTERF2
MTERF3
MTERF4

MTEMT
MTFP1
MTFR1
MTFR1L
MTFR2
MTG1
MTG2

MTHFD1

MTHFD1L

MTHFD2

MTHFD2L
MTHFS
MTIF2
MTIF3
MTO1
MTOR
MTPAP
MTRES1
MTRF1

MTRF1L
MTX1
MTX2
MTX3
MUL1

mitochondrially encoded tRNA phenylalanine
mitochondrially encoded tRNA glycine
mitochondrially encoded tRNA histidine
mitochondrially encoded tRNA isoleucine

mitochondrially encoded tRNA lysine
mitochondrially encoded tRNA leucine 1
(UUA/G)

mitochondrially encoded tRNA leucine 2
(CUN)

mitochondrially encoded tRNA methionine
mitochondrially encoded tRNA asparagine
mitochondrially encoded tRNA proline
mitochondrially encoded tRNA glutamine

mitochondrially encoded tRNA arginine
mitochondrially encoded tRNA serine 1
(UCN)

mitochondrially encoded tRNA serine 2
(AGU/C)

mitochondrially encoded tRNA threonine
mitochondrially encoded tRNA valine
mitochondrially encoded tRNA tryptophan
mitochondrially encoded tRNA tyrosine
mitochondrial carrier 1

mitochondrial carrier 2

mitochondrial transcription termination factor
1

mitochondrial transcription termination factor
2

mitochondrial transcription termination factor
3

mitochondrial transcription termination factor
4

mitochondrial methionyl-tRNA
formyltransferase

mitochondrial fission process 1

mitochondrial fission regulator 1
mitochondrial fission regulator 1 like
mitochondrial fission regulator 2
mitochondrial ribosome associated GTPase 1

mitochondrial ribosome associated GTPase 2
methylenetetrahydrofolate dehydrogenase,
cyclohydrolase and formyltetrahydrofolate
synthetase 1

methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 1 like
methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 2,
methenyltetrahydrofolate cyclohydrolase
methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 2 like

methenyltetrahydrofolate synthetase
mitochondrial translational initiation factor 2
mitochondrial translational initiation factor 3
mitochondrial tRNA translation optimization 1
mechanistic target of rapamycin kinase
mitochondrial poly(A) polymerase
mitochondrial transcription rescue factor 1

mitochondrial translation release factor 1
mitochondrial translational release factor 1
like

metaxin 1
metaxin 2
metaxin 3
mitochondrial E3 ubiquitin protein ligase 1
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Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)

Translation (MT)

Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)

Translation (MT)

Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Translation (MT)
Apoptosis

Apoptosis

Replication & Transcription
Replication & Transcription
Translation
Translation

Translation
Mitochondrial Dynamics
Mitochondrial Dynamics
Mitochondrial Dynamics
Mitochondrial Dynamics
Translation
Translation

Folate & Pterin Metabolism

Folate & Pterin Metabolism

Folate & Pterin Metabolism

Folate & Pterin Metabolism
Folate & Pterin Metabolism
Translation

Translation

Translation

Mitochondrial Signaling
Translation

Translation

Translation

Translation

Import & Sorting

Import & Sorting

Import & Sorting

Protein Stability & Degradation

MT
MT
MT
MT
MT

MT

MT
MT
MT
MT
MT
MT

MT

MT
MT
MT
MT
MT

11

12

15
22

20

14

- N =2 O



MUTYH

MYC
NADK2
NAGS
NARF

NARS2
NAXD
NAXE
NBR1
NDUFA1

NDUFA10

NDUFA11

NDUFA12

NDUFA13
NDUFA2
NDUFA3
NDUFA4
NDUFA5
NDUFAG6
NDUFA7
NDUFA8
NDUFA9

NDUFAB1

NDUFAF1

NDUFAF2

NDUFAF3

NDUFAF4

NDUFAF5

NDUFAF6

NDUFAF7

NDUFAF8
NDUFB1

NDUFB10

NDUFB11
NDUFB2
NDUFB3
NDUFB4
NDUFB5
NDUFB6
NDUFB7
NDUFB8
NDUFB9
NDUFCA1
NDUFC2

NDUFS1

NDUFS2

NDUFS3

mutY DNA glycosylase
MY C proto-oncogene, bHLH transcription
factor

NAD kinase 2, mitochondrial
N-acetylglutamate synthase

nuclear prelamin A recognition factor
asparaginyl-tRNA synthetase 2,
mitochondrial

NAD(P)HX dehydratase
NAD(P)HX epimerase
NBR1 autophagy cargo receptor

NADH:ubiquinone oxidoreductase subunit A1
NADH:ubiquinone oxidoreductase subunit
QL(I)DH:ubiquinone oxidoreductase subunit
Q1A1DH:ubiquinone oxidoreductase subunit
ﬁf}:E)H:ubiquinone oxidoreductase subunit

NADH:ubiquinone oxidoreductase subunit A2
NADH:ubiquinone oxidoreductase subunit A3
NDUFA4 mitochondrial complex associated

NADH:ubiquinone oxidoreductase subunit A5
NADH:ubiquinone oxidoreductase subunit A6
NADH:ubiquinone oxidoreductase subunit A7
NADH:ubiquinone oxidoreductase subunit A8

NADH:ubiquinone oxidoreductase subunit A9
NADH:ubiquinone oxidoreductase subunit
AB1

NADH:ubiquinone oxidoreductase complex
assembly factor 1

NADH:ubiquinone oxidoreductase complex
assembly factor 2

NADH:ubiquinone oxidoreductase complex
assembly factor 3

NADH:ubiquinone oxidoreductase complex
assembly factor 4

NADH:ubiquinone oxidoreductase complex
assembly factor 5

NADH:ubiquinone oxidoreductase complex
assembly factor 6

NADH:ubiquinone oxidoreductase complex
assembly factor 7

NADH:ubiquinone oxidoreductase complex
assembly factor 8

NADH:ubiquinone oxidoreductase subunit B1
NADH:ubiquinone oxidoreductase subunit
B10

NADH:ubiquinone oxidoreductase subunit
B11

NADH:ubiquinone oxidoreductase subunit B2
NADH:ubiquinone oxidoreductase subunit B3
NADH:ubiquinone oxidoreductase subunit B4
NADH:ubiquinone oxidoreductase subunit B5
NADH:ubiquinone oxidoreductase subunit B6
NADH:ubiquinone oxidoreductase subunit B7
NADH:ubiquinone oxidoreductase subunit B8
NADH:ubiquinone oxidoreductase subunit B9
NADH:ubiquinone oxidoreductase subunit C1

NADH:ubiquinone oxidoreductase subunit C2
NADH:ubiquinone oxidoreductase core
subunit S1

NADH:ubiquinone oxidoreductase core
subunit S2

NADH:ubiquinone oxidoreductase core
subunit S3
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Replication & Transcription

Transcription (nuclear)
Amino Acid Metabolism
Nitrogen Metabolism
Fe-S Cluster Biosynthesis

Translation

Metabolism of Vitamins & Co-Factors
Metabolism of Vitamins & Co-Factors

Mitophagy
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
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NDUFS4
NDUFS5
NDUFS6

NDUFS7

NDUFS8

NDUFV1

NDUFV2
NDUFV3
NEU4
NFE2L2
NFS1
NFU1
NGB
NIF3L1
NIPSNAP1
NIPSNAP2
NIPSNAP3A
NIPSNAP3B
NIT1
NIT2
NLN
NLRX1
NME1
NME4
NME6
NMNAT3
NNT
NOA1
NRDC
NRF1
NSUN2
NSUN3
NSUN4
NT5M
NTHLA1
NUBP1
NUBP2
NUBPL
NUDT13
NUDT19
NUDT2
NUDT9
OAT
OGDH
OGDHL
0GG1
OMA1
OPA1

OPA3
OPTN
OSGEPL1
oTC

OXA1L

NADH:ubiquinone oxidoreductase subunit S4
NADH:ubiquinone oxidoreductase subunit S5

NADH:ubiquinone oxidoreductase subunit S6
NADH:ubiquinone oxidoreductase core
subunit S7

NADH:ubiquinone oxidoreductase core
subunit S8

NADH:ubiquinone oxidoreductase core
subunit V1

NADH:ubiquinone oxidoreductase core
subunit V2

NADH:ubiquinone oxidoreductase subunit V3
neuraminidase 4

nuclear factor, erythroid 2 like 2

NFS1 cysteine desulfurase

NFU1 iron-sulfur cluster scaffold

neuroglobin

NGGH1 interacting factor 3 like 1

nipsnap homolog 1

nipsnap homolog 2

nipsnap homolog 3A

nipsnap homolog 3B

nitrilase 1

nitrilase family member 2

neurolysin

NLR family member X1

NME/NM23 nucleoside diphosphate kinase 1
NME/NM23 nucleoside diphosphate kinase 4
NME/NM23 nucleoside diphosphate kinase 6
nicotinamide nucleotide adenylyltransferase 3
nicotinamide nucleotide transhydrogenase
nitric oxide associated 1

nardilysin convertase

nuclear respiratory factor 1

NOP2/Sun RNA methyltransferase 2
NOP2/Sun RNA methyltransferase 3
NOP2/Sun RNA methyltransferase 4
5',3'-nuclectidase, mitochondrial

nth like DNA glycosylase 1

nucleotide binding protein 1

nucleotide binding protein 2

nucleotide binding protein like

nudix hydrolase 13

nudix hydrolase 19

nudix hydrolase 2

nudix hydrolase 9

ornithine aminotransferase

oxoglutarate dehydrogenase

oxoglutarate dehydrogenase like
8-oxoguanine DNA glycosylase

OMA1 zinc metallopeptidase

OPA1 mitochondrial dynamin like GTPase
OPAS3 outer mitochondrial membrane lipid
metabolism regulator

optineurin
O-sialoglycoprotein endopeptidase like 1

ornithine carbamoyltransferase
OXA1L mitochondrial inner membrane
protein
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Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Metabolism of Lipids & Lipoproteins
Replication & Transcription
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
ROS Defense

Replication & Transcription
Oxidative Phosphorylation
Oxidative Phosphorylation
Transmembrane Transport
Transmembrane Transport
Amino Acid Metabolism
Amino Acid Metabolism
Protein Stability & Degradation
Mitochondrial Signaling
Nucleotide Metabolism
Nucleotide Metabolism
Nucleotide Metabolism
Metabolism of Vitamins & Co-Factors
Tricarboxylic Acid Cycle
Translation

Protein Stability & Degradation
Transcription (nuclear)
Replication & Transcription
Translation

Translation

Replication & Transcription
Replication & Transcription
Fe-S Cluster Biosynthesis
Fe-S Cluster Biosynthesis
Oxidative Phosphorylation
Nucleotide Metabolism
Metabolism of Lipids & Lipoproteins
ROS Defense

Nucleotide Metabolism

Amino Acid Metabolism
Tricarboxylic Acid Cycle
Tricarboxylic Acid Cycle

ROS Defense

Mitochondrial Dynamics
Mitochondrial Dynamics

Metabolism of Lipids & Lipoproteins
Mitophagy

Translation

Nitrogen Metabolism

Oxidative Phosphorylation
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11
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OXCT1
OXCT2
OXR1
OXSM
PACRG
PACS2

PAM16
PANK2
PARK?7
PARL
PARS2
PC
PCCA
PCCB
PCK1

PCK2
PDE12
PDF
PDHA1
PDHA2
PDHB

PDHX
PDK1

PDK2
PDK3
PDK4

PDP1

PDP2

PDPR
PDSS1
PDSS2
PET100
PET117
PFKL
PFKM
PFKP
PGAM1
PGAM2
PGAM4

PGAM5
PGD
PGK1
PGK2
PGLS
PGS1
PHB
PHB2
PHF8
PHYKPL
PIF1

PIN4
PINK1

3-oxoacid CoA-transferase 1

3-oxoacid CoA-transferase 2

oxidation resistance 1

3-oxoacyl-ACP synthase, mitochondrial
parkin coregulated

phosphofurin acidic cluster sorting protein 2
presequence translocase associated motor
16

pantothenate kinase 2

Parkinsonism associated deglycase
presenilin associated rhomboid like
prolyl-tRNA synthetase 2, mitochondrial
pyruvate carboxylase

propionyl-CoA carboxylase subunit alpha
propionyl-CoA carboxylase subunit beta

phosphoenolpyruvate carboxykinase 1
phosphoenolpyruvate carboxykinase 2,
mitochondrial

phosphodiesterase 12

peptide deformylase, mitochondrial
pyruvate dehydrogenase E1 alpha 1 subunit
pyruvate dehydrogenase E1 alpha 2 subunit

pyruvate dehydrogenase E1 beta subunit
pyruvate dehydrogenase complex component
X

pyruvate dehydrogenase kinase 1
pyruvate dehydrogenase kinase 2
pyruvate dehydrogenase kinase 3

pyruvate dehydrogenase kinase 4
pyruvate dehyrogenase phosphatase
catalytic subunit 1

pyruvate dehyrogenase phosphatase
catalytic subunit 2

pyruvate dehydrogenase phosphatase
regulatory subunit

decaprenyl diphosphate synthase subunit 1
decaprenyl diphosphate synthase subunit 2
PET100 cytochrome c oxidase chaperone
PET117 cytochrome c oxidase chaperone
phosphofructokinase, liver type
phosphofructokinase, muscle
phosphofructokinase, platelet
phosphoglycerate mutase 1
phosphoglycerate mutase 2

phosphoglycerate mutase family member 4
PGAM family member 5, mitochondrial
serine/threonine protein phosphatase

phosphogluconate dehydrogenase
phosphoglycerate kinase 1
phosphoglycerate kinase 2
6-phosphogluconolactonase
phosphatidylglycerophosphate synthase 1
prohibitin

prohibitin 2

PHD finger protein 8
5-phosphohydroxy-L-lysine phospho-lyase

PIF1 5'-to-3' DNA helicase
peptidylprolyl cis/trans isomerase, NIMA-
interacting 4

PTEN induced kinase 1
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Amino Acid Metabolism

Amino Acid Metabolism

ROS Defense

Fatty Acid Biosynthesis & Elongation
Apoptosis

Calcium Signaling & Transport

Import & Sorting

Metabolism of Vitamins & Co-Factors
ROS Defense

Apoptosis

Translation

Glycolysis

Amino Acid Metabolism

Fatty Acid Metabolism

Glycolysis

Pyruvate Metabolism
Translation

Amino Acid Metabolism
Pyruvate Metabolism
Pyruvate Metabolism
Pyruvate Metabolism

Tricarboxylic Acid Cycle
Pyruvate Metabolism
Pyruvate Metabolism
Pyruvate Metabolism
Pyruvate Metabolism

Pyruvate Metabolism
Pyruvate Metabolism

Pyruvate Metabolism
Ubiquinone Biosynthesis
Ubiquinone Biosynthesis
Protein Stability & Degradation
Oxidative Phosphorylation
Glycolysis

Glycolysis

Glycolysis

Glycolysis

Glycolysis

Glycolysis

Mitophagy

Pentose Phosphate Pathway
Glycolysis

Glycolysis

Pentose Phosphate Pathway
Cardiolipin Biosynthesis
Replication & Transcription
Mitochondrial Dynamics
UPRmt

Amino Acid Metabolism
Replication & Transcription

Translation
Mitophagy
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PISD
PITRM1

PKIA
PKLR
PKM
PLD6

PMAIP1
PML

PMPCA

PMPCB

PNKD

PNPLA4

PNPLA8
PNPT1
POLD4
POLDIP2
POLG

POLG2
POLRMT
PPA2

PPARA

PPARG
PPARGC1A
PPARGC1B
PPIF

PPM1K
PPOX
PPRC1
PPTC7
PRDX1
PRDX3
PRDX5
PRELID1
PRELID2
PRELID3A
PRELID3B

PRKACA
PRKCE
PRKN
PRODH
PRODH2
PRORP
PSTK
PTCD1
PTCD2
PTCD3
PTPMT1
PTRH2
PTS
PUS1
PUSL1

phosphatidylserine decarboxylase

pitrilysin metallopeptidase 1
cAMP-dependent protein kinase inhibitor
alpha

pyruvate kinase L/R
pyruvate kinase M1/2

phospholipase D family member 6
phorbol-12-myristate-13-acetate-induced
protein 1

promyelocytic leukemia

peptidase, mitochondrial processing alpha
subunit

peptidase, mitochondrial processing beta
subunit

PNKD metallo-beta-lactamase domain
containing

patatin like phospholipase domain containing
4

patatin like phospholipase domain containing
8

polyribonucleotide nucleotidyltransferase 1
DNA polymerase delta 4, accessory subunit
DNA polymerase delta interacting protein 2

DNA polymerase gamma, catalytic subunit
DNA polymerase gamma 2, accessory
subunit

RNA polymerase mitochondrial

pyrophosphatase (inorganic) 2
peroxisome proliferator activated receptor
alpha

peroxisome proliferator activated receptor
gamma

PPARG coactivator 1 alpha
PPARG coactivator 1 beta

peptidylprolyl isomerase F
protein phosphatase, Mg2+/Mn2+ dependent
1K

protoporphyrinogen oxidase
PPARG related coactivator 1

PTC7 protein phosphatase homolog
peroxiredoxin 1

peroxiredoxin 3

peroxiredoxin 5

PRELI domain containing 1

PRELI domain containing 2

PRELI domain containing 3A

PRELI domain containing 3B
protein kinase cAMP-activated catalytic
subunit alpha

protein kinase C epsilon

parkin RBR E3 ubiquitin protein ligase
proline dehydrogenase 1

proline dehydrogenase 2

protein only RNase P catalytic subunit
phosphoseryl-tRNA kinase
pentatricopeptide repeat domain 1
pentatricopeptide repeat domain 2
pentatricopeptide repeat domain 3
protein tyrosine phosphatase mitochondrial 1
peptidyl-tRNA hydrolase 2
6-pyruvoyltetrahydropterin synthase
pseudouridine synthase 1
pseudouridine synthase like 1
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Metabolism of Lipids & Lipoproteins
Protein Stability & Degradation

Mitochondrial Dynamics
Glycolysis
Glycolysis
Mitochondrial Dynamics

Apoptosis
Calcium Signaling & Transport

Import & Sorting
Import & Sorting
Unknown

Fatty Acid Metabolism

Fatty Acid Metabolism
Translation

Replication & Transcription
Replication & Transcription
Replication & Transcription

Replication & Transcription
Replication & Transcription
Translation

Transcription (nuclear)

Transcription (nuclear)
Transcription (nuclear)
Transcription (nuclear)
Import & Sorting

Amino Acid Metabolism

Heme Biosynthesis

Transcription (nuclear)
Tricarboxylic Acid Cycle

ROS Defense

ROS Defense

ROS Defense

Apoptosis

Transmembrane Transport
Metabolism of Lipids & Lipoproteins
Metabolism of Lipids & Lipoproteins

Mitochondrial Signaling
Mitochondrial Signaling
Mitophagy

Amino Acid Metabolism
Amino Acid Metabolism
Translation

Translation

Translation

Oxidative Phosphorylation
Translation

Cardiolipin Biosynthesis
Translation

Folate & Pterin Metabolism
Translation

Translation
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PYCR1
PYCR2
QARS
QDPR

QRSL1

QTRT1
RAB7B
RAD51
RARS2
RBFA
RDH13
RELA
REXO2
RHOT1
RHOT2

RIDA
RMND1

RMRP
RNASEH1
RNASEL
RNF185
RNF5
ROMO1
RPE
RPIA
RPS19
RPS6KB1
RPUSD3
RPUSD4
RRAS2

RRM2B

RSAD1
RTN4IP1

SAMMS50
SARDH
SARS2
SATB1
SATB2
SBDS

SCO1
SCO2
SDHA
SDHAF1
SDHAF2
SDHAF3
SDHAF4

SDHB
SDHC
SDHD

pyrroline-5-carboxylate reductase 1
pyrroline-5-carboxylate reductase 2
glutaminyl-tRNA synthetase

quinoid dihydropteridine reductase
glutaminyl-tRNA amidotransferase subunit
QRSL1

queuine tRNA-ribosyltransferase catalytic
subunit 1

RAB7B, member RAS oncogene family
RAD51 recombinase

arginyl-tRNA synthetase 2, mitochondrial
ribosome binding factor A

retinol dehydrogenase 13

RELA proto-oncogene, NF-kB subunit
RNA exonuclease 2

ras homolog family member T1

ras homolog family member T2

reactive intermediate imine deaminase A
homolog

required for meiotic nuclear division 1
homolog

RNA component of mitochondrial RNA
processing endoribonuclease

ribonuclease H1

ribonuclease L

ring finger protein 185

ring finger protein 5

reactive oxygen species modulator 1
ribulose-5-phosphate-3-epimerase
ribose 5-phosphate isomerase A
ribosomal protein S19

ribosomal protein S6 kinase B1
RNA pseudouridine synthase D3
RNA pseudouridine synthase D4

RAS related 2

ribonucleotide reductase regulatory TP53
inducible subunit M2B

radical S-adenosyl methionine domain
containing 1

reticulon 4 interacting protein 1
SAMMS50 sorting and assembly machinery
component

sarcosine dehydrogenase

seryl-tRNA synthetase 2, mitochondrial
SATB homeobox 1

SATB homeobox 2

SBDS ribosome maturation factor

SCO cytochrome c oxidase assembly protein
1

SCO cytochrome c oxidase assembly protein
2

succinate dehydrogenase complex
flavoprotein subunit A

succinate dehydrogenase complex assembly
factor 1

succinate dehydrogenase complex assembly
factor 2

succinate dehydrogenase complex assembly
factor 3

succinate dehydrogenase complex assembly
factor 4

succinate dehydrogenase complex iron sulfur
subunit B

succinate dehydrogenase complex subunit C
succinate dehydrogenase complex subunit D
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Amino Acid Metabolism
Amino Acid Metabolism
Translation

Amino Acid Metabolism

Translation

Translation

Mitophagy

Replication & Transcription
Translation

Translation

Metabolism of Vitamins & Co-Factors
Transcription (nuclear)

Translation

Mitochondrial Dynamics
Mitochondrial Dynamics

Translation
Translation

Replication & Transcription
Replication & Transcription
Translation

Protein Stability & Degradation
Protein Stability & Degradation
ROS Defense

Pentose Phosphate Pathway
Pentose Phosphate Pathway
Translation

Apoptosis

Translation

Translation

Mitophagy

Replication & Transcription

Unknown
Oxidative Phosphorylation

Import & Sorting

Metabolism of Lipids & Lipoproteins
Translation

UPRmt

UPRmt

Translation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation

Oxidative Phosphorylation
Oxidative Phosphorylation
Oxidative Phosphorylation
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SERACH1
SFXN1
SFXN2
SFXN3
SFXN4
SFXN5

SH3GLB1
SHC1
SHMT2
SIRT1
SIRT2
SIRT3
SIRT4
SIRTS
SLC16A7
SLC22A4
SLC25A1
SLC25A10
SLC25A11
SLC25A12
SLC25A13
SLC25A14
SLC25A15
SLC25A16
SLC25A18
SLC25A19
SLC25A2
SLC25A20
SLC25A21
SLC25A22
SLC25A23
SLC25A24
SLC25A25
SLC25A26
SLC25A27
SLC25A28
SLC25A29
SLC25A3
SLC25A30
SLC25A31
SLC25A32
SLC25A33
SLC25A34
SLC25A35
SLC25A36
SLC25A37
SLC25A38
SLC25A39
SLC25A4
SLC25A40
SLC25A41
SLC25A42
SLC25A43
SLC25A44
SLC25A45

serine active site containing 1
sideroflexin 1
sideroflexin 2
sideroflexin 3
sideroflexin 4
sideroflexin 5

SH3 domain containing GRB2 like, endophilin

B1

SHC adaptor protein 1

serine hydroxymethyltransferase 2
sirtuin 1

sirtuin 2

sirtuin 3

sirtuin 4

sirtuin 5

solute carrier family 16 member 7
solute carrier family 22 member 4
solute carrier family 25 member 1
solute carrier family 25 member 10
solute carrier family 25 member 11
solute carrier family 25 member 12
solute carrier family 25 member 13
solute carrier family 25 member 14
solute carrier family 25 member 15
solute carrier family 25 member 16
solute carrier family 25 member 18
solute carrier family 25 member 19
solute carrier family 25 member 2
solute carrier family 25 member 20
solute carrier family 25 member 21
solute carrier family 25 member 22
solute carrier family 25 member 23
solute carrier family 25 member 24
solute carrier family 25 member 25
solute carrier family 25 member 26
solute carrier family 25 member 27
solute carrier family 25 member 28
solute carrier family 25 member 29
solute carrier family 25 member 3
solute carrier family 25 member 30
solute carrier family 25 member 31
solute carrier family 25 member 32
solute carrier family 25 member 33
solute carrier family 25 member 34
solute carrier family 25 member 35
solute carrier family 25 member 36
solute carrier family 25 member 37
solute carrier family 25 member 38
solute carrier family 25 member 39
solute carrier family 25 member 4
solute carrier family 25 member 40
solute carrier family 25 member 41
solute carrier family 25 member 42
solute carrier family 25 member 43
solute carrier family 25 member 44
solute carrier family 25 member 45
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Metabolism of Lipids & Lipoproteins
Transmembrane Transport
Transmembrane Transport
Transmembrane Transport
Transmembrane Transport
Transmembrane Transport

Mitochondrial Dynamics
Mitochondrial Signaling
Folate & Pterin Metabolism
Mitochondrial Signaling
Mitochondrial Signaling
Mitochondrial Signaling
Mitochondrial Signaling
Mitochondrial Signaling
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Calcium Signaling & Transport
Calcium Signaling & Transport
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Fe-S Cluster Biosynthesis
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Dynamics
Folate & Pterin Metabolism
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Fe-S Cluster Biosynthesis
Mitochondrial Carrier
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Mitochondrial Dynamics
Mitochondrial Carrier
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SLC25A46
SLC25A47
SLC25A48
SLC25A5
SLC25A51
SLC25A52
SLC25A53
SLC25A6
SLC27A1
SLC27A3

SLC29A1
SLC2A1
SLC2A2
SLC2A3
SLC2A4
SLC2A5
SLC3A1
SLC44A1
SLC8B1

SLIRP

SMDT1
SOD1
SOD2
SORD
SP1
SPATA19

SPG7
SQOR
SQSTM1
SSBP1
STAR

STARD7
STOML2

SUCLA2
SUCLG1

SUCLG2
SUGCT
SUOX
SUPV3L1

SURF1
SYBU
SYNJ2BP

TACO1
TALDO1

TAMM41
TARS2
TAX1BP1

TAZ
TBC1D15
TBK1
TBRG4

solute carrier family 25 member 46
solute carrier family 25 member 47
solute carrier family 25 member 48
solute carrier family 25 member 5
solute carrier family 25 member 51
solute carrier family 25 member 52
solute carrier family 25 member 53
solute carrier family 25 member 6
solute carrier family 27 member 1

solute carrier family 27 member 3
solute carrier family 29 member 1 (Augustine
blood group)

solute carrier family 2 member 1
solute carrier family 2 member 2
solute carrier family 2 member 3
solute carrier family 2 member 4
solute carrier family 2 member 5
solute carrier family 3 member 1
solute carrier family 44 member 1

solute carrier family 8 member B1

SRA stem-loop interacting RNA binding
protein

single-pass membrane protein with aspartate
rich tail 1

superoxide dismutase 1
superoxide dismutase 2
sorbitol dehydrogenase
Sp1 transcription factor

spermatogenesis associated 19
SPG7 matrix AAA peptidase subunit,
paraplegin

sulfide quinone oxidoreductase
sequestosome 1
single stranded DNA binding protein 1

steroidogenic acute regulatory protein
StAR related lipid transfer domain containing
7

stomatin like 2
succinate-CoA ligase ADP-forming beta
subunit

succinate-CoA ligase alpha subunit
succinate-CoA ligase GDP-forming beta
subunit

succinyl-CoA:glutarate-CoA transferase
sulfite oxidase

Suv3 like RNA helicase
SURF1 cytochrome c oxidase assembly
factor

syntabulin

synaptojanin 2 binding protein
translational activator of cytochrome ¢
oxidase |

transaldolase 1
TAM41 mitochondrial translocator assembly
and maintenance homolog

threonyl-tRNA synthetase 2, mitochondrial

Tax1 binding protein 1
WW domain containing transcription regulator
1

TBC1 domain family member 15
TANK binding kinase 1
transforming growth factor beta regulator 4
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Mitochondrial Dynamics
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Dynamics
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Carrier
Mitochondrial Dynamics
Mitochondrial Carrier

Metabolism of Lipids & Lipoproteins

Mitochondrial Carrier
Glycolysis

Glycolysis
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ubiquinol-cytochrome c reductase hinge
protein

ubiquinol-cytochrome c reductase complex IlI
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