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Summary

This thesis is about solving the optimal liquidation problem of foreign currencies.
Multinational companies liquidate their foreign profits in the form of foreign cur-
rency exchange (FX) to reallocate their resources within the company. Foreign
currency liquidation is exchanging a certain amount of foreign currency for domes-
tic currency at the prevailing FX rate within a liquidation period. The optimal
liquidation strategy maximizes the total revenue by determining the trading tim-
ing and volume of transactions during the liquidation period. Our goal is to use
algorithms to determine the optimal liquidation strategy of foreign currencies.

Forecasting the exchange rate during the liquidation period is essential in es-
timating the optimal liquidation strategy. The liquidation period is usually one
quarter, and existing forecasting models perform sub-optimally in predicting FX
rates for such a long period. For this reason, we design a novel forecasting model
called Regression Prediction Network (RegPred Net) that precisely forecasts long-
term FX rates and the dynamic parameters that describe their trend. We as-
sume that the logarithmic exchange rate follows a stochastic process known as
the generalized Ornstein-Uhlenbeck (OU) process, where taking logarithm keeps
the value strictly positive after exponentiation. The parameters of the generalized
OU process describe the dynamics of the exchange rate during the liquidation pe-
riod (mean level, mean-reversion rate, volatility). We refer to these parameters as
dynamic parameters. RegPred Net contains an online regression and prediction
parts. The regression part can be stacked into a multilayer network that iteratively
calibrates the dynamic parameters given the input series. The input sequence of
the network’s first layer is the logarithmic exchange rate, and the inputs of the
remaining layers are calibrated parameter sequences. After the calibration of the
regression part, the forecasting part processes the calibrated parameter sequences.
It assumes that they remain constant in the future steps of its highest layer. The
forecasting part calculates and finally forecasts the FX rate from the highest to
the lowest layer. The predicted FX rate can be generated in the form of expected
values of the trajectories simulated by Monte Carlo simulation. Finally, we use
Bayesian optimization to find the appropriate hyperparameters for the RegPred
Net that minimize the difference between the predicted and actual FX rates.

With the forecast of the exchange rate dynamics during the liquidation period,
we now consider how to estimate the optimal liquidation strategy. In recent years,
Reinforcement Learning (RL) has become the most popular algorithm for solving
sequential decision problems. These algorithms are also preferred for estimating
the optimal liquidation strategy. However, we found experimentally that the state-
of-the-art RL algorithms do not perform satisfactorily on our task. Some of these
methods use heuristic search to find the optimal solution, making the convergence
process slow and unstable. Stochastic Dynamic Programming (SDP) can compute



the optimal policy given a complete environment model (state transition probabil-
ity), but it is computationally costly. Therefore, we propose a novel RL algorithm,
called Estimated Optimal Liquidation Strategy (EOLS), to solve the above prob-
lems. EOLS analyzes the optimal strategy computed by the SDP algorithm as a
parametric equation, approximating the original solution and simplifying it. With
the dynamic parameters predicted by RegPred Net, we can model a sufficient num-
ber of exchange rate trajectories. By evaluating the expected cumulative return
on these trajectories and applying a simple grid search, we can find the optimal
parameters for EOLS to determine the optimal liquidation strategy. As a model-
based algorithm, EOLS requires a complete model of the environment, which we
assume is determined by the dynamic parameters of the generalized OU process.

So far, the RegPred Net and the EOLS algorithm form a framework for solv-
ing the optimal foreign currencies liquidation problem. We first tested the fore-
casting performance of RegPred Net on three historical exchange rate data sets
(EUR/CNY, EUR/USD and EUR/GBP) for 19-years. The results show that Reg-
Pred Net outperforms traditional forecasting models such as Autoregressive Mov-
ing Average (ARMA), Autoregressive Integrated Moving Average (ARIMA), as
well as deep learning models like Long Short-Term Memory (LSTM) and Autoen-
coder LSTM (Auto-LSTM) on 100-step daily FX rate forecasting, which reduce
the Root Mean Square Error (RMSE) by 25-30% , correlation index (Pearson’s R)
by a factor of 2-7, and Mean Directional Accuracy (MDA) by 10%. The R-square
coefficient of RegPred Net is positive, while the other algorithms are negative.

We then use the predicted dynamic parameters from RegPred Net to evaluate
the liquidation performance of EOLS. We simulated FX rate trajectories with these
parameters to train EOLS, SDP, Deep-Q Network (DQN), and Proximal Policy
Optimization (PPO) to estimate the optimal liquidation strategy. We tested these
algorithms with the same historical FX rates data set on a liquidation optimality
metric, which measures the gap between the average transaction rate captured by a
strategy and the minimum rate over the liquidation period. The results show that
EOLS outperforms DQN and PPO by 14-22%, SDP (at a discretization number
of 100) by 7.3%, and Time Weighted Average Price (TWAP) by 18.8%. It runs 44
times faster than SDP and 20 times faster than DQN and PPO. To the best of our
knowledge, RegPred Net is the first regression network that focuses on long-term
(over 100 steps) forecasting of FX rates. Meanwhile, EOLS is the first algorithm
that utilizes a closed-form solution of the SDP strategy to achieve quasi-optimal
decisions in a liquidation task. The optimal liquidation strategy framework result-
ing from these two algorithms has a simpler structure and is more interpretable
than other methods. It achieves better performance while significantly improving
computational efficiency and is more feasible for effectiveness-oriented financial
liquidation tasks.





Summary

In dieser Arbeit geht es um die Lösung des Problems der optimalen Liquidation
von Fremdwährungen. Multinationale Unternehmen liquidieren ihre ausländischen
Gewinne in Form von Devisentausch, um ihre Ressourcen innerhalb des Unternehmens
umzuschichten. Bei der Liquidation von Fremdwährungen wird innerhalb eines
Liquidationszeitraums ein bestimmter Betrag an Fremdwährungen in inländische
Währungen zum aktuellen Wechselkurs umgetauscht. Die optimale Liquidation-
sstrategie maximiert die Gesamteinnahmen, indem sie den Zeitpunkt des Handels
und das Volumen der Transaktionen während des Liquidationszeitraums bestimmt.
Unser Ziel ist es, mithilfe von Algorithmen die optimale Liquidationsstrategie für
Fremdwährungen zu bestimmen.

Die Vorhersage des Wechselkurses während des Liquidationszeitraums ist für
die Einschätzung der optimalen Liquidationsstrategie unerlässlich. Der Liqui-
dationszeitraum beträgt in der Regel ein Quartal, und die bestehenden Prog-
nosemodelle schneiden bei der Vorhersage von Devisenkursen für einen so lan-
gen Zeitraum suboptimal ab. Aus diesem Grund haben wir einen neuartigen
Prognosealgorithmus namens Regression Prediction Network (RegPred Net) en-
twickelt, der langfristige Wechselkurse und die dynamischen Parameter, die ihren
Trend beschreiben, präzise vorhersagt. Wir gehen davon aus, dass der logarith-
mische Wechselkurs einem stochastischen Prozess folgt, der als verallgemeinerter
Ornstein-Uhlenbeck (OU)-Prozess bekannt ist, bei dem die Logarithmierung den
Wert nach der Potenzierung streng positiv hält. Die Parameter des verallge-
meinerten OU-Prozesses beschreiben die Dynamik des Wechselkurses während der
Liquidationsperiode (mittleres Niveau, mittlere Umkehrrate, Volatilität). Wir
bezeichnen diese Parameter als dynamische Parameter. RegPred Net enthält
einen Online-Regressionsteil und einen Vorhersageteil. Der Regressionsteil kann
zu einer mehrschichtigen Struktur gestapelt werden, die iterativ die dynamischen
Parameter anhand der Eingangsreihen kalibriert. Die Eingangssequenz der er-
sten Schicht des Netzes ist der logarithmische Wechselkurs, und die Eingänge der
übrigen Schichten sind kalibrierte Parametersequenzen. Nachdem der Regression-
steil die Eingangsreihen kalibriert hat, verarbeitet der Prognoseteil die kalibrierten
Parametersequenzen. Er geht davon aus, dass sie in den zukünftigen Schritten
seiner obersten Schicht konstant bleiben. Der Prognoseteil berechnet und prog-
nostiziert schließlich den Devisenkurs von der höchsten bis zur niedrigsten Schicht.
Die vorhergesagte FX-Rate kann in Form von Erwartungswerten der Trajektorien
generiert werden, die unter Verwendung der dynamischen Parameter durch Monte-
Carlo-Simulation simuliert wurden. Schließlich verwenden wir die Bayes’sche Op-
timierung, um die geeigneten Hyperparameter für das RegPred-Netz zu finden, die
die Differenz zwischen den vorhergesagten und den tatsächlichen Wechselkursen
minimieren.



Mit einer Vorhersage des Wechselkurses während des Liquidationszeitraums
überlegen wir nun, wie wir die optimale Liquidationsstrategie abschätzen können.
In den letzten Jahren hat sich das Verstärkungslernen (Reinforcement Learning,
RL) zum beliebtesten Algorithmus für die Lösung von sequentiellen Entschei-
dungsproblemen entwickelt. Diese Algorithmen werden auch für die Schätzung der
optimalen Liquidationsstrategie bevorzugt. Wir haben jedoch experimentell fest-
gestellt, dass die modernsten RL-Algorithmen bei unserer Aufgabe nicht zufrieden-
stellend funktionieren. Einige dieser Methoden verwenden eine heuristische Suche,
um die optimale Lösung zu finden, was den Konvergenzprozess langsam und insta-
bil macht. Die stochastische dynamische Programmierung (SDP) kann die beste
Strategie für ein gegebenes vollständiges Umgebungsmodell berechnen, ist aber
sehr rechenaufwändig. Daher schlagen wir einen neuen RL-Algorithmus vor, der
als Estimated Optimal Liquidation Strategy (EOLS) bezeichnet wird, um das oben
genannte Problem zu lösen. EOLS analysiert die durch den SDP-Algorithmus
berechnete optimale Strategie als parametrische Gleichung, die die ursprüngliche
Lösung approximiert und vereinfacht. Mit den dynamischen Parametern, die
von RegPred Net vorhergesagt werden, können wir eine ausreichende Anzahl von
Wechselkurstrajektorien modellieren. Durch Auswertung der erwarteten kumula-
tiven Rendite auf diesen Trajektorien und Anwendung einer einfachen Gittersuche
können wir die optimalen Parameter für EOLS finden, um die optimale Liquida-
tionsstrategie zu bestimmen. Als modellbasierter Algorithmus erfordert EOLS ein
vollständiges Modell der Umgebung, von dem wir annehmen, dass es durch die
dynamischen Parameter des verallgemeinerten OU-Prozesses bestimmt wird.

Bisher bilden das RegPred Net und der EOLS-Algorithmus einen Rahmen für
die Lösung des Problems der optimalen Liquidation von Fremdwährungen. Wir
haben zunächst die Prognoseleistung von RegPred Net an drei historischen Wech-
selkursdatensätzen (EUR/CNY, EUR/USD und EUR/GBP) für 19 Jahre getestet.
Die Ergebnisse zeigen, dass RegPred Net traditionelle Prognosemodelle wie Au-
toregressive Moving Average (ARMA), Autoregressive Integrated Moving Average
(ARIMA) übertrifft, sowie Deep-Learning-Modelle wie Long Short-Term Mem-
ory (LSTM) und Autoencoder-LSTM (Auto-LSTM) bei der täglichen Devisenkur-
sprognose in 100-Schritten, die den Root Mean Square Error (RMSE) um 25-30%
, den Korrelationsindex (Pearson’s R) um einen Faktor von 2-7 und die Mean Di-
rectional Accuracy (MDA) um 10% reduzieren. Der R-Quadrat-Koeffizient von
RegPred Net ist positiv, während die anderen Algorithmen negativ sind.

Wir verwenden dann die von RegPred Net vorhergesagten dynamischen Param-
eter, um die Liquidationsleistung von EOLS zu bewerten. Wir simulierten eine aus-
reichende Anzahl von Devisenkurstrajektorien mit diesen Parametern. Mit ihnen
trainierten wir EOLS, SDP, Deep-Q Network (DQN) und Proximal Policy Opti-
mization (PPO), um die optimale Liquidationsstrategie zu ermitteln. Wir testeten



diese Algorithmen mit demselben historischen Devisenkursdatensatz anhand einer
Liquidationsoptimalitätsmetrik, die den Abstand zwischen dem von einer Strate-
gie erfassten durchschnittlichen Transaktionskurs und dem Mindestkurs über den
Liquidationszeitraum misst. Die Ergebnisse zeigen, dass EOLS DQN und PPO
um 14-22%, SDP (bei einer Diskretisierungszahl von 100) um 7, 3% und den zeit-
gewichteten Durchschnittspreis (TWAP) um 18, 8% übertrifft. Es läuft 44 mal
schneller als SDP und 20 mal schneller als DQN und PPO. Soweit wir wissen,
ist RegPred Net das erste Regressionsnetzwerk, das sich auf die langfristige (über
100 Schritte) Vorhersage von Wechselkursen konzentriert. In der Zwischenzeit ist
EOLS der erste Algorithmus, der eine geschlossene Lösung der SDP-Strategie ver-
wendet, um quasi-optimale Entscheidungen bei einer Liquidationsaufgabe zu erre-
ichen. Der aus diesen beiden Algorithmen resultierende Rahmen für eine optimale
Liquidationsstrategie hat eine einfachere Struktur und ist besser interpretierbar
als andere Methoden. Er erzielt eine bessere Leistung bei deutlich höherer Rech-
eneffizienz und ist für effektivitätsorientierte Finanzliquidationsaufgaben besser
geeignet.
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Notation

The next list describes several symbols that will be later used within the body of
the thesis. Scalars are denoted by lowercase letters (x), while boldface lowercase
letters (x) denote (column) vectors and boldface uppercase letters (X) denote
matrices.

θ Parameters of a function

δ TD residual

η(s) Average time steps spent in state s in an episode

ĉ Temporary cell state of LSTM

v̂π(·,w)/v̂w Value function estimator of weights w under policy π

E Expectation of a variable

R Real number

V Variance of a variable

T Parameter space

µ(·) Mean function

Φ Cumulative distribution function of a normal distribution

ϕ Probability density function of a normal distribution

ρπθ
(s) Discounted visitation probability of s under policy πθ

σ2(·) Covariance function

∇̂θJ(θ) Estimate of the gradient of objective function J(θ) with respect to θ

ξ A small positive value

x



Aπ(s, a) Advantage function of state s, action a

c Cell state of a LSTM

D Data pool

dπ(s) The fraction of time spent in state s under policy π

f, i, o Forget gate, input gate, output gate of LSTM

h Hidden layer or hidden state of a neural network

J(·) Objective function

Q Synonym for action value function q

S,A(s), P, R State, action, transition probability and reward spaces of a Markov
decision process

t Time index

U Weight of LSTM’s hidden state

xt A random variable at time t, e.g. the logarithm of foreign exchange rate

Xd/f (t) Foreign exchange rate of exchanging one unit of domestic currency d for
foreign currency f at time t

∗ Best result of a policy π, state value function v or action value function q

γ Discount rate

ŷ Model’s output

Ω Sample space

π Reinforcement learning policy

A,N,Σ Parameters of a generalized Ornstein-Uhlenbeck process

b Bias of neural network

d Domestic currency

f(·) Function

f foreign currency



g(·) Activation function

Gt Cumulative return obtained following time t

nt Decision variable at time t

nmin, nmax Minimum and maximum transaction amount allowed

pin, pout Input and output size of a neural network

Pr Probability

qπ(s, a) Action value function of state s and action a under policy π

Rt Amount of exchanged domestic currency at time t

s, a, p, r State, action, transition probability and reward of a Markov decision pro-
cess

T Length of time series

vt Remaining volume of foreign currency at time t

vπ(s) State value function of state s under policy π

V Total volume of liquidation

Wt Cumulative revenue obtained until time t

w Weight of neural network

y Label of a neural network’s output
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1. Introduction

1.1 Outline

Multinational companies realize their overseas profits by exchanging their incomes
in the form of foreign currencies for the domestic currency at prevailing foreign
currency exchange (FX) rates within a specific period. This is known as the for-
eign currencies liquidation task. The FX rate represents the volume of foreign
currency that one unit of domestic currency can be exchanged for. It changes un-
ceasingly over time due to various uncertainties and is quite volatile. For realizing
the cash flow redistribution in each quarter, the companies transfer their profits
from the foreign bank account to the domestic bank account by following a liqui-
dation strategy. An optimal liquidation strategy determines the time and volume
of currencies exchanged to maximize the expected cumulative revenue over the
liquidation period. Because the FX rate during the liquidation period is unknown,
it is necessary to forecast it. Therefore, the tasks concerned in this thesis are 1)
forecasting FX rates during the liquidation period and 2) estimating the optimal
liquidation strategy given the forecasted results.

The main challenge in forecasting FX rates is that it is quite difficult to forecast
them over the liquidation period, which is usually a quarter. Existing studies
have only focused on forecasting time series within one or a few steps ahead, or
forecasting time series with a cyclical pattern. We find that the forecasts obtained
using these methods deviate significantly from the true exchange rate and do not
satisfy the key information needed to estimate the optimal liquidation strategy.
Another problem arises from the sub-optimal performance of the state-of-the-art
optimal liquidation strategy estimation algorithms. In recent years, reinforcement
learning (RL) algorithms have been effective in solving optimal sequential decision
problems. Some literature using RL algorithms in combination with Deep Learning
(DL) techniques (DRL) has shown their applicability to financial trading tasks [11],
[60], [1]. Unfortunately, we found through our experiments that the state-of-the-
art DRL algorithms perform sub-optimally on our task. Moreover, its heuristic
learning process requires too much computational time to converge to sub-optimal.
In order to solve the above problems, we propose two models in contribution I and
II. They complement each other and form the framework for addressing the issue
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of optimal liquidation of foreign currencies.
Contribution I introduces a model called Regression Prediction Network (Reg-

Pred Net) that forecasts the daily FX rate over a quarter’s liquidation period as
well as the dynamic parameters describing them, where the dynamic parameters
are assumed as the coefficients of a generalized Ornstein-Uhlenbeck (OU) process
[21], and we assume the logarithm of FX rate follows this process (the exponentia-
tion of logarithm ensures that the forecasted FX rate is strictly positive). RegPred
Net is a regression network that uses online regression to recurrently calibrate the
dynamic parameters of logarithmic FX rate series. It can be stacked multiple
layers like a Artificial Neural Network (ANN) [31], with the input to each layer
being the time series calibrated from the previous layer. The dynamic parame-
ters are generated top-down by assuming that the output series of the network’s
top layer remains constant over the time that will be predicted. The forecasted
FX rate is expressed as the expected value of the trajectories simulated by the
dynamic parameters. RegPred Net uses Bayesian optimization [36] to tune its hy-
perparameters to predict the optimal results. In experimental validation, we use 3
historical FX rates of 19 years as the data set to test its performance. We exper-
imentally show that RegPred Net outperforms the traditional forecasting models
such as Autoregressive Moving Average (ARMA), Autoregressive Integrated Mov-
ing Average (ARIMA), and DL forecasting models like Long Short-Term Memory
(LSTM), Autoencoder-LSTM (Auto-LSTM) in terms of several metrics that mea-
sure the correlation and absolute error between the forecast and historical FX rate
on 100 steps FX rate forecasting. Compare to them, RegPred Net reduces the Root
Mean Square Error (RMSE) by 25-30%, improves the Pearson’s R by 2-7 times
and the Mean Directional Accuracy (MDA) by 10%. The R-square coefficient of
RegPred Net is positive, while the other algorithms are negative. To the best of
our knowledge, RegPred Net is the first model-based algorithm that can predict
FX rates over 100 time steps. Compared to black box deep learning models such
as LSTM, RegPred Net has better interpretability, simpler structure, much fewer
parameters and lower time and space complexity required to train the model. In
addition, it can predict dynamic parameters that reflect trends in exchange rates
over time, including the mean value, mean reversion rate and volatility, which pro-
vides decision makers with important information when dealing with sequential
decision-making tasks such as liquidation or financial trading.

Contribution II introduces a model called Estimated Optimal Liquidation Strat-
egy (EOLS) to estimate the optimal strategy for foreign currencies liquidation.
We derive the EOLS algorithm by analysing the closed-form optimal strategy
computed by Stochastic Dynamic Programming (SDP) [39] and simplifying it to a
general parametric equation, where SDP is a model-based RL algorithm that gives
the optimal solution to a sequential decision problem when the complete model

3



of the environment (state transfer probabilities) is known. We assume that the
logarithmic FX rate follows the generalized OU process in order to compute the
complete environment model. However, the high time complexity of SDP makes it
difficult to apply to practical tasks, in contrast the parameters in EOLS can be es-
timated by a simple grid search method, reducing the complexity considerably. In
contribution II, we assume that the FX rates for the liquidation period are known.
We only evaluate the performance of EOLS and do not involve any forecasting.
Experiments involving the estimation of optimal policies using predictions from
RegPred Net will be discussed at the end of the paper. In contribution II, a dataset
containing dynamic parameters calibrated in an offline manner from historical FX
rate series is then used to test the liquidation performance of EOLS compared
to state-of-the-art DRL models such as SDP, Deep Q-Network (DQN)[35] and
Proximal Policy Optimization (PPO) [44]. We evaluate the liquidation strate-
gies estimated by each algorithm using an metric known as liquidation optimality,
which measures the difference between the average transaction rate captured by a
strategy and the minimum rate in the liquidation period. The experimental results
show that the liquidation strategy estimated by EOLS outperforms the DQN and
PPO on the test set by 15-27% in terms of liquidation optimality, requiring on
average only 5% of their computation time. Meanwhile, SDP required 44 times as
much computation time to achieve similar performance as EOLS. To the best of
our knowledge, EOLS is the first algorithm to use the closed-form optimal solu-
tion computed by SDP to estimate a quasi-optimal strategy for a foreign currencies
liquidation task. It can be seen as a generalised approximation to the solution of
SDP, and its simple structure significantly reduces the computational cost. At the
same time, EOLS performs significantly better in liquidation task compared to
other RL algorithms that heuristically explore optimal solutions, making it more
practical in real-world liquidation applications.

At the end of this thesis, we combine RegPred Net and EOLS to form a com-
plete framework responsible for predicting the dynamics of the FX rate during
the liquidation period and estimating the corresponding optimal strategy based
on the prediction results. We evaluate the performance of the framework using
the dataset in contribution I. The results obtained are generally consistent with
those in contribution II, which indicates that our framework has solved the optimal
liquidation problem of foreign currencies.

The rest of the thesis consists of three parts, namely part I Preamble, part II
Publications and part III Conclusion. Part I formally defines the optimal liquida-
tion problem of foreign currency and introduces the background of RegPred Net
and EOLS. Sec. 1.2 and 1.3 list some literature related to FX rate forecasting
and optimal liquidation of foreign currency. Chap. 2 present the methodologi-
cal background of the proposed algorithms. Sec. 2.1 introduces the stochastic
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processes used in our methods, mathematically defines the foreign currency liqui-
dation and an RL environment of it. Sec. 2.2 briefly introduces the state-of-the-art
DL algorithms related to FX rate prediction, some of them inspired us to design
RegPred Net. The Bayesian optimization algorithm is also introduced in Sec. 2.2.
We discuss the RL techniques used for optimal liquidation in Sec. 2.3, includ-
ing the reference algorithm SDP when designing EOLS and the state-of-the-art
RL algorithm DQN and PPO, which are compared with EOLS. We summarize
contributions I and II in Chap. 3 and list the full articles in part II. We give
the experimental results of RegPred Net and EOLS as an overall framework and
conclude this thesis in part III.

1.2 FX rates forecasting

FX rate The FX rate Xd/f (t) is formally defined as the amount of foreign cur-
rency f that can be exchanged for one unit of domestic currency d at time t. For
example, suppose the daily FX rate for the EUR/USD (Euro/US dollar) at time t
is XEUR/USD(t) = 1.12, which indicates that at that time 1 Euro can be exchanged
for 1.12 dollar. The FX rate is determined on the foreign exchange market, the
world’s largest and most liquid financial trading market. It is open to various
types of traders around the world, and the trading takes place around the clock
on working days. Fluctuations in FX rates are influenced by a variety of factors at
the political and economic level, such as interest rates, inflation, monetary policy,
risky investments, government intervention, etc., making the exchange rates one
of the most complex and difficult to predict time series. We show some examples
of FX rates in Fig. 1.1. For the purposes of this thesis, we will only consider spot
foreign exchange rates, that is, the exchange rate at the current moment in time.
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Figure 1.1: The daily FX rates of EUR/CNY, EUR/USD, and EUR/GBP over
5000 days.
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With the success of DL algorithms in processing time series after 2000, more and
more research has focused on testing the performance of different DL models in
financial time series forecasting. ANN as the most basic DL algorithm was shown
in [37] to outperform linear autoregressive and random walk models in both in-
sample and out-of-sample one-step-ahead FX rates forecasting in terms of accuracy
and correlation metrics.

[47] introduces the ensemble learning algorithm Bagging [7] to FX rate fore-
casting. They show that the Bagging algorithm with the LSTM as a base learner
is more accurate in forecasting one-step foreign exchange rates (USD against EUR,
GBP, CNY and JPY) than ANN, Autoregressive Moving Average (ARMA) [32]
and other benchmark models. They also show that the predicted FX rates are
more profitable than others when simulating FX trading. LSTM is one of the
most representative DL models for dealing with sequence data. It maintains the
short-term and long-term memory to preserve features extracted from sequences.
A detailed explanation of the LSTM can be found in Sec. 2.2.2.

[9] introduced a coupled LSTM structure to forecast one-step-ahead FX rates.
They use two LSTMs to process market and macroeconomic variables separately.
The output is then fed to a new LSTM to generate FX rates. The experimental
results show that the proposed deep coupled LSTM outperforms the Autoregressive
Integrated Moving Average (ARIMA) [4], Convolutional Neural Network (CNN)
[26] and single LSTM in several statistical metrics, e.g. Diebold-Mariano (DM)
test, Pesaran-Timmermann (PT) test, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). More literature on forecasting foreign exchange rates
with different DL models can be found at [16] [37], [14], [45].

Some other studies have worked on multi-step time series forecasting [29], [61].
They focus on forecasting time series that are intrinsically periodic (e.g. wind
speed, river flow) and have a prediction horizon of less than five steps. Existing
research on long-term forecasting (100-steps or more) of complex financial time
series (e.g. foreign exchange rates) is still scarce. Some of the most advanced fore-
casting models (ARIMA, LSTM) perform unsatisfactorily and LSTNet [25], which
has been proposed in recent years, performs even worse than Autoregression (AR)
in this task. For our liquidation task, the short-term FX rates predicted by these
models contain limited information about future movements. Such forecasting re-
sults do not help to solve the optimal liquidation problem. It becomes necessary
to design an algorithm that is specifically for long-term FX rate forecasting.

The RegPred Net we propose in contribution I aims to address the above
shortcomings. It can predict the daily FX rate over 100 steps and the dynamics
of FX rate during the liquidation period in the form of OU process parameters.
These dynamic parameters are critical for the EOLS algorithm to estimate the
optimal liquidation strategy.
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1.3 Optimal liquidation of foreign currencies

Optimal liquidation Optimal trade execution is the general term for acquiring
or liquidating a certain amount of assets within a limited period while minimizing
execution costs or maximising total returns under price uncertainty. This thesis
focuses on solving one of the cases of optimal trade execution where the trading
method is liquidation (sale), and the assets are in foreign currencies. This is
known as optimal liquidation of foreign currencies. In order to reduce the risk to
cumulative returns from the uncertainty of the FX rate, decision-makers usually
prefer to sell foreign currency in tranches during the liquidation period.

[3] is an early literature that systematically defines and solves the optimal liqui-
dation problem. They assume that prices follow a simple linear model with tem-
porary and permanent market impacts. They aim to minimize the combination
of the expected value and variance of the implementation shortfall E+ λV, where
the implementation shortfall measures the difference between the initial trading
volume and the volume captured at the end of the liquidation period, and λ is
a risk aversion parameter that controls the risk preference of the decision-maker.
They provide an analytical, closed-form solution to the optimal liquidation prob-
lem. Different settings of λ will give the corresponding optimal liquidation strategy
with different risk preferences.

Nowadays, as DL and RL techniques have matured, research on solving optimal
liquidation problems has gradually shifted to these methods. These non-model-
based approaches use deep ANNs to learn features from large amounts of financial
data, which have the potential to yield better liquidation strategies compared to
traditional models. [19] proposed a RL extension of [3]. They trained a RL algo-
rithm called Q-learning (see Sec. 2.3.1) to learn the closed-form optimal solution
computed by [3]. The algorithm improves the trading performance by an average
of 10% when tested on three different stock datasets compared to the solution
in [3]. [11] presents a DRL model for solving optimal financial trading tasks.
The model uses the DL method to extract features from market data and train
RL agents to estimate optimal strategies based on these features. They test the
model’s performance on a dataset including stocks and commodity futures using
the Sharpe ratio and Profit & Loss as metrics. The results show that the proposed
DRL model outperforms the RL model that does not use DL for feature learning.
Similar works have been done in some other literatures to solve the problem with
various DRL models [60], [1], [5]. We will introduce some DRL algorithms in Sec.
2.3.2.

As stated in the previous section, the existing state-of-the-art DRL algorithms
perform sub-optimally in our liquidation task. The uncertainty of the FX rate
leads to the unstable convergence of these algorithms during the training process.
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There is still a gap between their estimated strategies and the theoretical optimal
solutions computed by SDP, and all these algorithms are computationally inef-
ficient. The application of DRL models in the area of optimal trade execution
is still in the exploratory stage, and there are obvious drawbacks that need to
be addressed: 1) poor interpretability of black-box algorithms like DL, 2) high
computational time complexity, and 3) convergence is not guaranteed. The above
reasons motivated us to design the EOLS algorithm.
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2. Methodological background

2.1 General background of optimal liquidation

In this section, we present the general background of the framework for solving
optimal liquidation. We first describe the generalised OU process and other related
stochastic processes in section Sec. 2.1.1. We formally define the task of foreign
currency liquidation and some constraints on it in Sec. 2.1.2. In Sec. 2.1.3, we
briefly explain the background of a Markov Decision Process (MDP) [20] and RL.
We also define an RL environment for the foreign currency liquidation task.

2.1.1 Stochastic processes

Since the FX rate Xd/f (t) is always positive, we denote the logarithm of Xd/f (t)
by xt and assume xt follows a generalized OU process. xt can be any real value
and the FX rate Xd/f (t) is computed by exponentiating xt.

Stochastic process A stochastic process describes phenomena or experiments
where the observed results are close to random, such as molecular motion, the
spatial distribution of radiation, and changes in financial time series. It is also
known as random function, indicating that the result x of some experiment is a
function of the time variable t, denoted by {x(t), t ∈ T}. A formal definition of a
stochastic process is given in Definition 1,

Definition 1 (stochastic process [28], p. 11). A stochastic process with parameter
space T is a family

{x(t), t ∈ T }
of random variables, defined on a sample space Ω. If T is a real line, the process
is said to have continuous time. If T is a sequence of integers, the process is said
to have discrete time, and it is called a random sequence or time series.

The sample space Ω refers to all possible outcomes of a statistical experiment. A
discrete random process is often denoted as {x(t), t = 0, 1, · · · } and single x(t)
without the brackets represents a random variable. In this thesis, we simply write
x(t) as xt.
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Discrete Wiener process The discrete Wiener process [30] is a real-valued
stochastic process with stationary and independent increments. It is often used
in applied mathematics and finance field. The one-dimensional discrete Wiener
process wt has the following properties: i) w0 = 0, ii) the increments {∆wt, t =
1, 2, · · · } are independent, where ∆wt = wt − wt−1, iii) the increment ∆wt follows
the normal distribution N (0, 1). The Wiener process is also known as Brownian
motion because it simulates Brownian movement in liquids.

Discrete Brownian motion with drift We say that the Brownian motion xt

has a drift µ when its increment has a constant mean µ ∈ R. The properties of
xt are defined by i) x0 ∈ R, ii) the increment ∆xt = xt − xt−1 = µ + σ∆wt for
any t = 1, 2, · · · . σ > 0 is a parameter known as volatility, which controls the
magnitude of noise in the process, and iii) ∆xt follows the normal distribution
N (µ, σ2). Drift µ is the tendency of the stochastic process to change over time.
For example, µ > 0 means that xt increases with t and vice versa. If the drift µ = 0
and the volatility σ = 1, then Brownian motion with drift is a Wiener process.

Ornstein–Uhlenbeck process An OU process or mean-reversion process is
a stochastic process commonly used in financial mathematics in which the ran-
dom variable xt fluctuates around a mean level over time. It is also a stationary
Gauss-Markov process that satisfies the properties of both Gaussian and Markov
processes. OU process is defined by the following properties: i) x0 ∈ R, ii) the
increment ∆xt = α(n − xt−1) + σ∆wt for any t = 1, 2, · · · , where α > 0 repre-
sents the mean reversion rate and n is the long-term mean level. The OU process
describes the dynamics of the variable xt, which returns to its mean level n over
time, with an amplitude controlled by σ and a rate of α.

Generalized Ornstein–Uhlenbeck process The OU process can be general-
ized as i) x0 ∈ R, ii) the increment ∆xt = Axt−1 +N +Σ∆wt for any t = 1, 2, · · · ,
where A, N , Σ are real-valued parameters. The generalized OU process includes
both the Brownian motion of drift and the mean-reversion process. It is equivalent
to Wiener process when A = N = 0 and Σ = 1. When A = 0, the generalized OU
process is a discrete Brownian motion with drift µ = N and volatility σ = Σ. When
A = −α, N = α ·n and Σ = σ, it is a mean-reversion process with mean-reversion
rate α, mean-reversion level n and volatility σ. The generalised OU process can
describe the short- and long-term characteristics of FX rate time series. The FX
rate can be regarded as a discrete Brownian motion with drift in the short term
and mean-reversion process in the long term. We give the examples of Wiener
process, Brownian motion, mean-reverting process and generalised OU process in
Fig. 2.1, respectively. The parameters A, N , Σ of the generalized OU process can

10



0 100 200 300 400 500
Time step

3

2

1

0

1

2

3

Sa
m

pl
in

g 
va

lu
e

Wiener process

(a) Wiener process

0 100 200 300 400 500
Time step

7.0

7.1

7.2

7.3

7.4

7.5

Sa
m

pl
in

g 
va

lu
e

X0=7.0, =0.01, =0.001
Brownian motion

(b) Brownian motion with drift

0 100 200 300 400 500
Time step

7.00
7.05
7.10
7.15
7.20
7.25
7.30
7.35

Sa
m

pl
in

g 
va

lu
e

X0=7.0, =0.02, =0.01, n=7.3

Mean-reverting

(c) Mean-reverting process

0 100 200 300 400 500
Time step

7.00

7.25

7.50

7.75

8.00

8.25

8.50

Sa
m

pl
in

g 
va

lu
e

X0=7.278, A=-0.019, N=0.038, =0.007
Generalized OU process

(d) Generalized OU process

Figure 2.1: Trajectories of a Wiener process, Brownian motion, mean-reverting
process and generalized OU process.

be calibrated from an FX rate time series offline and online. The offline calibration
method that uses ordinary least squares, the online calibration approach that uses
gradient descent [40] and exponential moving average are discussed in contribution
I.

Gaussian process We refer to the definition of a Gaussian process as follows,

Definition 2 (Gaussian process [38], p. 13). A Gaussian process is a collection of
random variables, any finite number of which have a joint Gaussian distribution.

Specifically, assume a stochastic process consists of a set of random variables
{xt1 , xt2 , · · · } indexed by time t ∈ T . It is Gaussian if and only if any set of
finite combination of variables {xt1 , · · · , xtn} follows a multivariate joint Gaussian
distribution, where n ∈ R.
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2.1.2 Foreign currency liquidation

Assume the liquidation period is t = 0, · · · , T , where T is the total length. The
foreign currency liquidation task needs to trade foreign currency f with a total
volume of V into domestic currency d in T steps. The decision variable nt denotes
the amount of foreign currency f to be exchanged between time interval (t, t+1),
where () denotes the exclusion of time t and t+ 1. Thus, the amount of domestic
currency Rt to be exchanged is calculated by,

Rt =
nt

exp(xt)
(2.1)

the remaining volume vt at time t is defined as,

vt = V −
t−1∑
j=0

nj, t = 1, · · · , T (2.2)

where v0 = V . The list [v0, · · · , vT ] is called liquidation trajectory. The liquidation
task requires that all volumes V should be traded before the last time step T of
the liquidation period, thus nT−1 = vT−1 and vT = 0. Usually when liquidating
foreign currencies, multinational companies agree with their partner banks on the
minimum and maximum transaction amounts (nmin and nmax). Thus, for time
steps t = 0, · · · , T − 1, the volume of transactions follows the constraint that ei-
ther nt = 0 or nmin ≤ nt ≤ nmax. Based on the FX rate at time t, the liquidation
strategy determines the amount of foreign currency nt that needs to be exchanged
in the time interval (t, t + 1). The model for estimating the optimal liquidation
strategy aims to maximize the expected cumulative revenue E(WT ) over the liq-
uidation period, where the cumulative revenue Wt at arbitrary time t is denoted
by,

Wt =
t−1∑
j=0

Rj (2.3)

and

E(WT ) = E
( T−1∑

j=0

Rj

)
(2.4)

Ideally, an optimal liquidation strategy would exchange all volumes V at the small-
est FX rate during the liquidation period, and similarly, a worst case strategy would
trade at the largest FX rate.

2.1.3 A reinforcement learning liquidation environment

In this section we describe how to convert the liquidation problem from Sec. 2.1.2
into an suitable environment for applying RL algorithms. First we introduce MDP
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and RL.

Markov process A Markov process [15] is a stochastic process that describes
the state transitions (changes) of a task. The process has the Markov property of
being ”memoryless”: the probability distribution of the next state is determined
only by the current state. Assume a discrete Markov process is a set of random
variables {x1, x2, · · · }, the Markov property can be expressed as,

Pr(xt+1 = s|x1 = s1, x2 = s2, · · · , xt = st) = Pr(xt+1 = s|xt = st)

where s is a state at t+ 1 and {s1, s2, · · · } are a set of states.

Markov decision process MDP is a mathematical framework that is consid-
ered to be an extension of Markov processes for modelling discrete-time decision
processes. An MDP is defined by the 4-tuple (S,A(s), P, R), where S = {s, s′, · · · }
denotes the state space including a set of states s, s′. A state s contains a set of
variables that describe the environment at a given moment. A(s) = {a, a′, · · · } is
the set of actions available to the decision maker in a given state s. a, a′ denote any
different actions in A(s). P = {p(s′|s, a), · · · } represents a set of state transition
probabilities. p(s′|s, a) = Pr(st+1 = s′|st = s, at = a) is the conditional probability
that state s transitions to s′ after choosing action a at time t. R = {r(s′|s, a), · · · }
is a set of rewards, r(s′|s, a) represents the reward obtained from the environment
at time t after performing action a in state s and then the state transitions to s′.

At each time t, the decision maker observes state s and selects action a from
the action space A(s) for execution. The state s then transitions to the next state
s′ with probability p(s′|s, a) and the decision maker receives a reward r(s′|s, a)
in return. Fig. 2.2 shows the state transition of MDP. The example state s
has three transitions after taking action a: 1) s transitions to s′ with probability
p(s′|s, a) and receives reward r(s′|s, a), 2) s transitions to s′′ with probability
p(s′′|s, a) and receives reward r(s′′|s, a), 3) s stays unchanged with probability
p(s|s, a) and obtains reward r(s|s, a). Throughout the rest of the thesis, r(s′|s, a)
will be abbreviated to r. Only some special cases will be explained accordingly.

Reinforcement learning [49] RL refers to a set of computational methods
that learn by interacting with the environment of a given task. They maximize
the cumulative rewards gained from the environment by improving the strategies
used for action selection. The environment fully describes the task and is usually
defined by an MDP. The decision maker is often referred to as the agent. Fig. 2.3
shows how the agent interacts with an MDP environment. The interaction over
time generates a sequence:

{s0, a0, r0, s1, · · · , st, at, rt, st+1, · · · }
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Figure 2.2: An illustration of state transition in MDP.

For tasks with an end condition, this sequence has a finite length and ends at the
terminal time step T . Such tasks are referred to as episodic tasks. Tasks where
the agent can interact with the environment indefinitely are referred to as non-
episodic tasks. For episodic tasks, the cumulative reward or return Gt received by
the agent after time t is defined as,

Gt := rt + rt+1 + · · ·+ rT−1 (2.5)

for non-episodic tasks, a discount rate γ is used to prevent the cumulative rewards
from becoming infinite,

Gt := rt + γrt+1 + γ2rt+2 · · · =
∞∑
k=0

γkrt+k = rt + γGt+1 (2.6)

The mapping that determines the probability of choosing action a in a given state
s is called policy, denoted as π(a|s). The expected cumulative reward that an
agent collects from state s by following policy π is referred to as the state-value
function vπ(s),

vπ(s) := Eπ[Gt|st = s]

= Eπ[rt + γGt+1|st = s]
(2.7)

where s ∈ S. We assume that all other mentions of s, s′ in this thesis belong to
state space S and that all actions a given state s belong to action space A(s).

Similarly, the action-value function qπ(s, a) is the expected return to the agent
for taking action a in state s and following policy π,

qπ(s, a) := Eπ[Gt|st = s, at = a]

= Eπ[rt + γGt+1|st = s, at = a]
(2.8)

vπ(s) in Eq. 2.7 can be expanded in Eq. 2.9 in terms of the value function vπ(s
′)
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of its possible successor state s′,

vπ(s) := Eπ[rt + γGt+1|st = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ[Gt+1|st+1 = s′]

]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
] (2.9)

where p(s′, r|s, a) is a probability that completely describes the dynamics of the
environment. It is related to the state transition probability p(s′|s, a) by,

p(s′|s, a) =
∑
r∈R

p(s′, r|s, a) (2.10)

Eq. 2.9 is known as the Bellman equation and it defines the relationship between
value functions. It decomposes the dynamic optimization problem into a collec-
tion of sub-problems and is the basis for the effectiveness of SDP and other RL
algorithms.

If the state-value function vπ(s) of policy π is greater than that of policy π′ for
all s, we say that policy π is better than π′. Thus, the optimal policy π∗ is defined
as the policy with the optimal state value function vπ∗(s) for all states:

vπ∗(s) := max
π

vπ(s)

π∗ := argmax
π

vπ(s)
(2.11)

Similarly, the optimal action-value function is calculated by

qπ∗(s, a) := max
π

qπ(s, a) (2.12)

The relationship between optimal state-value function vπ∗(s) and optimal action-
value function qπ∗(s, a) is,

vπ∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

E[rt + γvπ∗(st+1)|st = s, at = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γvπ∗(s
′)]

(2.13)

vπ∗(s) is equal to the expected return for the best action from the state s. The
last line of Eq. 2.13 is also called the Bellman optimality equation for state-value
function. The Bellman optimality equation for action-value function is,

qπ∗(s, a) = E[rt + γmax
a′

qπ∗(st+1, a
′)|st = s, at = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

qπ∗(s
′, a′)]

(2.14)

15



RL algorithms seek to find the optimal policy π∗ by i) calculating it through
Bellman optimality equation if the complete knowledge of the environmental dy-
namics (state transition probabilities) is known. Otherwise, ii) directly estimating
π∗ or the optimal value function vπ∗ or qπ∗ in a variety of ways.

Agent

Environment

action atstate st reward rt

state st+1

Figure 2.3: The interaction of agent with the MDP environment.

RL liquidation environment Foreign currencies liquidation can be modelled
as an RL environment. However, the exchange rate in a real liquidation task is
nonstationary. The real environment of a liquidation task may be a mixture of
two scenarios [10]: 1) the environmental changes are limited to a finite number of
stationary environments, and 2) the environment changes with a predictable trend.
The time-varying dynamics of FX rates are unknown. Even if they are known,
nonstationary environments are challenging for state-of-the-art RL algorithms to
learn. Therefore, we assume that the liquidation environment is stationary, i.e.
the transition probability between any states does not change over time. We set
the liquidation task as an episodic task, with each episode terminating at time T
and the discount rate γ set to 1. Finally, we model the environment as an MDP
consisting of a finite set of states, actions, and rewards. The state st, action at,
and reward rt at time t are defined as follows,

• state st = [xt, vt, t].

• action at = nt.

• reward rt = Rt, t = 0, 1, · · · , T − 1 and rT = 0

where xt is the logarithm of FX rate at time t, vt is the amount of foreign currency
remaining at time t. at is defined as the decision variable nt, which satisfies the
maximum and minimum transaction volume constraints discussed in Sec. 2.1.2.
For a given state s, the state space S and the action space A(s) are discrete. rt
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can be derived from Eq. 2.15,

rt = Wt+1 −Wt

=
t∑

j=0

Rj −
t−1∑
j=0

Rj

= Rt =
nt

exp(xt)

(2.15)

Maximizing the expected cumulative rewards E(
∑T−1

t=0 rt) is equivalent to maxi-

mizing the expected cumulative revenue E(
∑T−1

j=0 Rj). Thus the foreign currency
liquidation task can be solved by RL. The detailed derivation of state transition
probabilities will be discussed in Sec. 5.1, contribution II.

2.2 Deep learning for forecasting

In this section, we provide background on DL techniques for forecasting foreign
exchange rates. These techniques provide a reference for the design of our RegPred
Net. DL techniques are essentially parametric function approximations, which typ-
ically use large amounts of data containing inputs and corresponding labels (the
correct outputs) to train numerous parameters in an ANN to learn and approxi-
mate complex functional relationships between inputs and outputs for a given task.
For example, in a foreign exchange rate forecasting task, a DL algorithm can learn
the mapping relationship between historical FX rate and FX rate over a future
period to complete the exchange rate forecasting task. Mainstream ANNs that
deal with time series include Feedforward Neural Network (FNN) [6], also known
as Multi-layer Perceptron (MLP) [18], and Recurrent Neural Network (RNN) [41].

2.2.1 Feedforward neural network

Single-layer perceptron A single-layer perceptron is the simplest FNN, which
is a non-linear mapping between the input and output of some function f(·). A
single-layer perceptron with one neuron is shown in Fig. 2.4. It can be formulated
as Eq. 2.16,

y = g(wTx+ b) (2.16)

where y ∈ R is the output, x ∈ Rpin is the input vector of length p, w ∈ Rpin

denotes the weight vector, b ∈ R is the bias term, and g(·) represents a nonlinear
function, called an activation function. Common activation functions include Sig-
moid, Tanh, ReLu [2], Softmax and their variants. A more general single-layer
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Figure 2.4: Single-layer perceptron of one neuron.

perceptron consisting of multiple neurons is formulated as Eq. 2.17,

y = g(WTx+ b) (2.17)

where the output vector is of length pout, W is a weight matrix of size (pin, pout),
and b is a bias vector of length pout.

Multi-layer perceptron Multiple perceptrons are stacked together to form a
MLP, where the neurons between any two layers are fully connected to each other.
Layers other than input and output are called hidden layers. Fig. 2.5 shows an
MLP with one hidden layer, denoted as h(1), where the superscript (1) denotes the
index of the hidden layer. The dimension of input x and output y are denoted as
pin and pout, respectively. This network can be expressed by Eq. 2.18,

h(1) = g(1)(W(1)Tx+ b(1))

y = g(2)(W(2)Th(1) + b(2))
(2.18)

There can be any number of hidden layers in a neural network, each as a function of
the previous layer, and the number of neurons in each layer can be set arbitrarily.
The number of layers and neurons are usually chosen experimentally for a specific
task. ”Deep” in ”Deep Learning” refers to networks with many layers. The more
layers and neurons a network has, the more complex tasks it can handle. However,
due to the mechanism for updating network parameters and the characteristics of
the activation functions, too many layers can cause the network to stop learning.
Many parameters can also introduce excessive-high time and space complexity in
the training process.
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Figure 2.5: Multi-layer perceptron.

Training of feedforward neural networks The weightsW and biases b in the
FNN are trainable parameters and they can be trained to fit an objective function
f(·). Assume the parameters of FNN are θ and the true value of given input x
is y, the output of the FNN is denoted as f(x,θ) = ŷ. We define a loss function
J(ŷ,y) to calculate the error between ŷ and y. The average loss evaluated on a
given dataset reflects the predictive performance of the network, and the lower the
loss, the better the prediction. We can reduce the average loss by adjusting the
parameters in the network to make its predictions closer to the true values. In DL,
the loss function is usually a differentiable function, such as the cross-entropy used
in classification tasks and the mean-squared error used in regression tasks. Each
parameter in the network is iteratively adjusted by gradient descent and Back-
Propagation (BP) [24] algorithms, where gradient descent calculates the gradient
of the loss function with respect to the weights, BP specifies rules for passing the
gradient to the weights layer by layer. This process is known as FNN training.
After repeated training over a large number of epochs, the losses converge to some
local minimum. A trained NN can correctly predict unseen inputs x.

2.2.2 Recurrent neural network

Fully recurrent neural network RNN is a neural network for processing se-
quential inputs. In addition to processing the inputs x0,x1, · · · ,xt between layers

19



like a normal FNN, the RNN also computes the weighted non-linear transformation
of the sequence, saves the result to a hidden state and propagates it recurrently in
the time direction. Fig. 2.6 shows the structure of a fully RNN (FRNN), where
the FRNN on the left of the equal sign can be expanded into the structure on the
right. For each time step t, the output yt and the hidden state ht are expressed

h0 h1 h2 ht=ht

y0

x0

y1

x1

y2

x2

yt

xt

yt

xt . . .

Figure 2.6: An illustration of FRNN.

as follows,

h
(1)
t = g(1)(W

(1)T
hh h

(1)
t−1 +W

(1)T
hx xt + b

(1)
h )

yt = g(2)(W
(2)T
yh h

(1)
t + b(2)

y )
(2.19)

where Whh, Whx, Wyh are weight matrices whose subscripts denote the layers
they are connected. bh, by are bias vectors whose subscripts indicate the layer
to which they belong. Like FNN, FRNN can also vertically stack multiple hidden
layers to form a deep neural network.

Maintaining hidden state ht in the time direction allows RNN to mine the
temporal dynamics in the input sequence. Theoretically, FRNN can handle input
sequences of arbitrary length. However, the gradients of the loss function with
respect to Whh and Whx used for weights updating can easily be 0 (gradient
vanishing) or tend to infinity (gradient explosion). This is because calculating
the gradients requires computing the partial derivative ∂ht

∂ht−1
of hidden states over

t = 0, 1, · · · , T and multiplying them together. Each ∂ht

∂ht−1
at t is a value either

always above 1 or always in the range of [0, 1]. As a result, their successive multi-
plication can cause the gradient to disappear or explode, causing the network to
stop learning or collapse. To alleviate this problem, LSTM has been proposed as
a more widely used RNN.

Long short-term memory The hierarchy of the LSTM is the same as that of
the FRNN, the major difference between them being that the LSTM replaces the
hidden state ht in the FRNN with a more complex state with gating structure.
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Figure 2.7: An illustration of LSTM cell.

A single LSTM cell at time step t is shown in Fig. 2.7, where ct−1, ct are
cell states at step t − 1 and t, respectively. The cell state preserves the long-
term memory extracted from the input sequence. ht−1, ht are hidden states that
preserve the short-term memory. σ is the sigmoid activation. ft, it, ot are forget,
input and output gates, respectively. ĉt is the temporary cell state. These gates
are formulated as follows,

ft = σ(WT
f xt +UT

f ht−1 + bf )

it = σ(WT
i xt +UT

i ht−1 + bi)

ot = σ(WT
o xt +UT

o ht−1 + bo)

(2.20)

where the forget gate ft calculates the proportion of long-term memory stored in
ct−1 that should be deleted. The input gate it calculates the proportion of part
of the input xt that will be updated into the current cell state ct, and the output
gate ot calculates the proportion of ct that is retained in the hidden state ht. The
current cell state ct and the hidden state ht can be calculated as follows,

ĉt = tanh(WT
c xt +UT

c ht−1 + bc)

ct = ft · ct−1 + it · ĉt
ht = ot · tanh(ct)

(2.21)

The temporary cell state ĉt is the weighted sum of the input xt and the previous
hidden state ht−1, which retains some of the information in the input. Current cell
state ct is updated by summing a part of the previous cell state ct−1 filtered by the
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forget gate ft−1 and the temporary cell state ct−1 filtered by the input gate it. The
current hidden state ht is the non-linearly transformed ct filtered by the output
gate ot, which retains some of the information in ct as short-term memory. If the
information in the new input xt is not important, the value of the input gate it is
close to 0 and the value of the forget gate ft is close to 1, and vice versa. In this
way the LSTM can filter the important information from the input at each time
step to retain it. Note that the partial derivatives between the cell states ∂ct

∂ct−1

and the hidden states ∂ht

∂ht−1
in the gradient calculations are no longer restricted to

a range of values that is above 1 or just in between 0 and 1. This can prevent the
gradient from exploding or vanishing to some extent when the input sequence is
long.

2.2.3 Bayesian optimization

Bayesian optimization is a global optimization method that searches sequentially
for the optimal value x∗ ∈ Rpin that maximizes the function f(x),

x∗ = arg max
x∈Rpin

f(x) (2.22)

f(x) is usually a real-valued objective function that either has an unknown range
of inputs, an unknown structure, or an expensive evaluation cost. Due to these
characteristics, it is challenging to derive inputs that maximize f(x). Bayesian op-
timization is usually able to estimate the optimal inputs using the smallest number
of evaluations. It is often used to optimize the hyperparameters or structure of
some models in machine learning [13], [46], [23].

Bayesian optimization heuristically searches for the potentially optimal input.
It assumes that f(x) has a Gaussian prior, i.e., {f(x1), f(x2), · · · } is a Gaussian
process and any combination of them follows a multivariate normal distribution,
where {x1,x2, · · · } are the different inputs in the iterative evaluation of the al-
gorithm. At each step of evaluation, Bayesian optimization computes f(x) given
suggested input x and collects the (x, f(x)) pairs into a data pool D. The mean
µ(x) of the prior distribution and the covariance function σ2(x) are then up-
dated to form the posterior distribution p(f(x)|D1:n,x), where D1:n denotes the
observations {(x1, f(x1)), · · · , (xn, f(xn))} saved in D. With the knowledge of ob-
servations, the next possibly optimal input x′ can be determined by constructing
an acquisition function utility(x|D1:n) and solving the following sub-optimization
problem,

x′ = argmax
x

utility(x|D1:n) (2.23)

The sub-optimization problem is easier to solve compared to the original opti-
mization problem in Eq. 2.22. There are many choices of the acquisition function
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discussed in [8], the most common one is the Expected Improvement (EI). EI is
the expected value of an improvement function I:

I(x) = max
{
0, f(x)− f(x∗)

}
(2.24)

where f(x∗) denotes the maximal estimate of the objective function so far. The
expectation of the improvement E(I) can be analytically evaluated as:

E(I) =

{(
µ(x)− f(x∗)

)
Φ(Z) + σ(x)ϕ(Z), if σ(x) > 0

0, if σ(x) = 0

Z =
µ(x)− f(x∗)

σ(x)

(2.25)

where Φ and ϕ indicate the CDF and PDF of the standard normal distribution,
respectively.

After several iterations, Bayesian optimization can find the quasi-optimal input
x ≈ x∗. In contribution I, we use Bayesian optimization to search the optimal hy-
perparameters for RegPred Net. We define a negative loss function during RegPred
Net training as the objective function f(·) to be maximized, and the hyperparam-
eters as the inputs x to be optimized. We will explain Bayesian optimization in
more detail in Sec. 5.1 of contribution I, and give the specific steps for applying
it to RegPred Net in Algorithm 6 of contribution I.

2.3 Reinforcement learning for optimal liquida-

tion strategy estimation

In this section, we present the background of the RL algorithm that can be ap-
plied to solve the optimal liquidation of foreign currencies. First, the fundamental
RL methods, including SDP, Monte Carlo (MC) methods, Temporal-Difference
(TD) methods, policy gradient and Actor-Critic (AC) are discussed in Sec. 2.3.1.
These algorithms are referenced from [50]. The combination and improvement of
these methods is the basis for state-of-the-art RL algorithms. In Sec. 2.3.2, we
briefly introduce the state-of-the-art RL models used to compare with our EOLS
algorithm in contribution II.

2.3.1 Fundamental algorithms in reinforcement learning

Stochastic dynamic programming In RL, SDP [51] is a collection of algo-
rithms that computes optimal strategies for sequential decision problems using
the complete dynamics of the MDP environment. It divides the original optimiza-
tion problem into multiple subproblems through the Bellman equation (Eq. 2.9).
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The primal problem is then solved by recursively solving each subproblem. The
strategies computed by SDP can be considered theoretically optimal solutions that
existing RL algorithms can achieve. However, SDP is difficult to use in practice
because 1) the complete dynamics of the environment in most tasks are unknown,
and 2) the time complexity of the algorithm is very high. Because SDP needs to
evaluate the expected return for each possible state, the size of the state space
grows exponentially as the state variables increase.

Value iteration [51] is a representative SDP algorithm, which we list in Algo-
rithm 1. The algorithm first iteratively computes the state value function (rows

Algorithm 1 Value iteration

Input: Value function array v of size |S|, difference array δ of size |S|, a threshold
coefficient ξ ∈ R>0

Output: Optimal policy π∗
1: For each s ∈ S, initialize v(s) = 0 and δ(s) =∞
2: repeat
3: for s ∈ S do
4: vold ← v(s)
5: v(s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γv(s′)]
6: δ(s)← min(δ(s), |vold − v(s)|)
7: end for
8: until δ(s) < ξ for all s ∈ S
9: for s ∈ S do

10: π∗(s) = argmaxa
∑

s′,r p(s
′, r|s, a)[r + γv(s′)]

11: end for
12: Return π∗

1-7) for each state s and estimates the difference δ(s) between the newly computed
value function and the previously computed one. The iteration stops if for each s,
δ(s) is less than a small positive threshold factor ξ. The best action π∗(s) is then
chosen for each s according to the Bellman equation, and the optimal strategy π∗
is output.

Dynamic Programming (DP) can be seen as SDP under special conditions: 1)
its state transition is deterministic,

p(s′|s, a) = 1 for all s, s′ ∈ S, a ∈ A(s)

2) its value function is estimated by,

vπ(s)← max
a

[r(s, a) + vπ(s
′)]

where r(s, a) denotes the reward received by the agent after taking action a at
state s. Then s will transition to s′ with a probability of 1.
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Monte Carlo methods MCmethods [52] refer to a collection of algorithms that
estimate optimal value functions vπ∗ , qπ∗ and optimal policy π∗ from the experiences
sampled in the agent’s interaction with the environment. These experiences are
sequences of states, actions and rewards {s0, a0, r0, s1, · · · , st, at, rt, st+1, · · · }. MC
methods use the average return of state st in the sampled episodes to estimate the
value function vπ(st), which is unbiased but has a high variance. vπ(st) is updated
by,

vπ(st)← vπ(st) + α[Gt − vπ(st)] (2.26)

where α ∈ R>0 is a step-size coefficient that controls the update rate. Eq. 2.26
shows that the MC methods require a complete episode when updating vπ(st),
because calculating the return Gt needs all rewards following t.

MC methods still require an environmental model that can generate transitions
(s, a, r, s′) but does not need the complete knowledge of the model required by SDP.
Estimating the optimal solution utilizing sampling is also known as a heuristic
method.

A representative MC method called on-policy MC control [52] is listed in Al-
gorithm 2, where on-policy means that the policy used for sampling is the same
as the policy to be improved. On the contrary, off-policy refers to sampling and
improving using two different policies. G(s, a) in line 7 indicates the return col-
lected after the first encounter of (s, a) pair. The algorithm evaluates action-value
functions by averaging the sampled returns (lines 6-9) and estimating π∗ by ϵ-
greedy policy (lines 10-15). The ϵ-greedy policy is an action selection method (Eq.
2.27, 2.28), where ϵ is a small positive value. ϵ-greedy policy selects non-optimal
actions with probability ϵ

|A(s)| during action selection, encouraging the algorithm
to explore potentially more optimal solutions.

Temporal-Difference learning TD learning [53] refers to a collection of al-
gorithms that learn the optimal value function vπ∗ , qπ∗ and the optimal strategy
π∗ from sampled experiences in a bootstrapping way. As shown in Eq. 2.29,
bootstrapping denotes estimating the value function from the estimated return
rt + γvπ(st+1),

vπ(st)← vπ(st) + α[rt + γvπ(st+1)− vπ(st)] (2.29)

In contrast to the MC method in Eq. 2.26, which uses a complete return Gt of
the experience episode to update the value function, the TD method updates it
while sampling the experience in an online manner, which improves the sampling
efficiency. Due to bootstrapping, TD learning has a bias greater than 0, but its
variance is lower than that of the MC methods and converges faster than them.

25



Algorithm 2 On-policy MC control

Input: Arbitrary ϵ-greedy policy π
Output: Estimated optimal policy π
1: for all s ∈ S, a ∈ A(s) do
2: Initialize arbitrary action-value function q(s, a) and empty return list R(s, a)
3: end for
4: repeat
5: Generate an episode E = {s0, a0, r0, · · · sT−1, aT−1, rT−1, sT } using policy π
6: for each pair of s, a ∈ E do
7: Append return G(s, a) to list R(s, a)
8: qπ(s, a)← mean(R(s, a))
9: end for
10: for each s ∈ E do
11:

a∗ ← argmax
a

qπ(s, a) (2.27)

12: for a ∈ A(s) do
13:

π(a|s)←
{
1− ϵ+ ϵ

|A(s)| , if a = a∗

ϵ
|A(s)| , otherwise

(2.28)

14: end for
15: end for
16: until π(a|s) does not change for all s ∈ S, a ∈ A(s)
17: Return π
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Similar to MC methods, TD learning does not require a complete model of the
environment.

A representative off-policy TD method known as Q-learning [59] is shown in
Algorithm 3, where Q is a synonym of the action-value function qπ. At each step,

Algorithm 3 Q-learning (off-policy TD control)

Input: Arbitrary action-value function qπ(s, a) for all s ∈ S, a ∈ A(s), number of
evaluations N , learning rate α, positive value ϵ

Output: Estimated optimal policy π
1: repeat
2: Initialize state s
3: repeat
4: Choose a from A(s) by ϵ-greedy policy, take a and get r, s′

5: Update qπ(s, a) by

qπ(s, a)← qπ(s, a) + α[r + γmax
a′

qπ(s
′, a′)− qπ(s, a)]

6: s← s′

7: until s is the terminal state
8: until N times
9: Generate π from qπ
10: Return π

Algorithm 3 samples the experience (s, a, r, s′) by ϵ-greedy policy (line 4) and
updates the action-value function qπ(s, a) in bootstrapping way (line 5). After a
predetermined number of epochs or if the change in q value for each (s, a) pair
is less than a predetermined value, the algorithm stops and returns the optimal
policy π.

TD learning has become one of the most widely used RL algorithms due to its
combination of SDP’s bootstrapping and MC’s learning by interacting with the
environment. We will continue to introduce an important TD method called DQN
in Sec. 2.3.2.

All of these methods described above are classified as value-based methods,
i.e. finding the optimal strategy by estimating a value function. The estimated
value function can be recorded in a table of size |S| × |A|. For problems where
the state space |S| is large or where the action values are continuous, it is clearly
not feasible to record the value function in a table. To address this limitation,
it is more common to use the function v̂π(s,w) (e.g. NN) to approximate the
value function, where w denotes the weights of the function. This is known as the
function approximation [54].
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Policy gradient methods Policy gradient methods [55] refer to a collection of
algorithms that use parameterized policy π(a|s,θ) = Pr(at = a|st = s,θt = θ)
to select the optimal action a∗ by maximizing a performance measure J(θ) :=
vπ(s0), where θ are policy parameters and s0 is some particular initial state of an
experience episode {s0, a0, r0, s1, a1, r1, · · · }.

The gradient ∇θJ(θ) of J(θ) with respect to θ is calculated by,

∇θJ(θ) := ∇θvπ(s0) (2.30)

=
∑
s

( ∞∑
k=0

Pr(s0 → s, k, π)
)∑

a

∇θπ(a|s,θ)qπ(s, a) (2.31)

=
∑
s

ηπ(s)
∑
a

∇θπ(a|s,θ)qπ(s, a) (2.32)

=
(∑

s

ηπ(s)
)∑

s

ηπ(s)∑
s ηπ(s)

∑
a

∇θπ(a|s,θ)qπ(s, a) (2.33)

∝
∑
s

ηπ(s)∑
s ηπ(s)

∑
a

∇θπ(a|s,θ)qπ(s, a) (2.34)

=
∑
s

dπ(s)
∑
a

∇θπ(a|s,θ)qπ(s, a) (2.35)

where in Eq. 2.31, Pr(s0 → s, k, π) is the probability of transition from state s0 to
state s in k steps under policy π, Pr(s0 → s, k, π) can be recursively computed by,

Pr(s0 → s, k, π) =
∑
s̄

Pr(s0 → s̄, k − 1, π) Pr(s̄→ s, 1, π) (2.36)

and

Pr(s̄→ s, 1, π) =
∑
a

π(a|s̄,θ) Pr(s|s̄, a) (2.37)

Pr(s|s̄, a) is the state transition probability. For any state s, its state value function
vπ(s) is the expectation of action-value functions

∑
a π(a|s,θ)qπ(s, a) over all a ∈

A(s). In Eq. 2.32, ηπ(s) =
∑∞

k=0 Pr(s0 → s, k, π) denotes the average number
of time steps spent in state s in a single episode under policy π, and the time
spent in s if an episode starts from s (Pr(s0 → s, 0, π)) or if a preceding state s̄
transitions to s (Pr(s̄ → s, k, π)). ηπ(s) is also called the visitation probability
of s. In Eq. 2.33, ηπ(s) is normalized to be a probability distribution. In Eq.
2.34, the constant

∑
s ηπ(s) of Eq. 2.33 is omitted and the rest is proportional

to Eq. 2.33. In Eq. 2.35, ηπ(s)∑
s ηπ(s)

is written as dπ(s) for simplicity. dπ(s) is a

distribution under policy π that reflects the fraction of time spent on a state s.

28



The result in Eq. 2.35 shows that ∇θJ(θ) is proportional to the expectation of
gradient ∇θπ(a|s,θ)qπ(s, a) with respect to distribution dπ(s). This conclusion is
known as the policy gradient theorem [55].

Eq. 2.35 is an estimate ∇̂θJ(θ) of the gradient ∇θJ(θ), ∇̂θJ(θ) can be further
formulated as,

∇̂θJ(θ) =
∑
s

dπ(s)
∑
a

∇θπ(a|s,θ)qπ(s, a) (2.38)

=
∑
s

dπ(s)
∑
a

π(a|s,θ)qπ(s, a)
∇θπ(a|s,θ)
π(a|s,θ) (2.39)

= Eπ[qπ(s, a)∇θ ln π(a|s,θ)] (2.40)

where ∇θ lnπ(a|s,θ) in Eq. 2.40 is equal to ∇θπ(a|s,θ)
π(a|s,θ) in Eq. 2.39. Eq. 2.40

shows that the estimate ∇̂θJ(θ) of gradient ∇θJ(θ) is the expected value of
qπ(s, a)∇θ lnπ(a|s,θ) under policy π. In practice, based on the fact that the

expectation of the sample gradient is equal to the actual gradient, ∇̂θJ(θ) is ap-
proximated by sampling. J(θ) is maximized by updating θ over time t through
an approximate gradient ascent algorithm,

θt+1 ← θt + α∇̂θtJ(θt) (2.41)

where α is the step-size parameter.
The expression in Eq. 2.40 is the general form of ∇̂θJ(θ) in policy gradient

methods. Different policy gradient methods has different estimation of the gradient
∇θJ(θ), it can be formed by replacing qπ(s, a) in Eq. 2.40 with different terms
[43], such as the return Gt, the advantage function Aπ(s, a) := qπ(s, a)− vπ(s), or
the TD residual r + vπ(s

′)− vπ(s), etc.
Algorithm 4 shows an MC policy gradient method known as REINFORCE

[48]. It uses episodic samples to update the policy parameter θ in lines 1 - 6.
Since qπ(st, at) = E[Gt|st, at], the action-value function qπ(st, at) is replaced with
return Gt in line 4. πθ is the abbreviation of π(a|s,θ) for any s ∈ S, a ∈ A(s).

Actor-critic methods AC methods [56] refer to algorithms that use a param-
eterized policy πθ as the ”actor” to select an action and a parameterized value
function v̂w as the ”critic” to rate the selection. The AC methods combine the
advantages of value function-based and policy-based methods, reduce the vari-
ance of policy gradient and accelerate the convergence. Algorithm 5 exhibits
a basic one-step AC method [56], the algorithm uses the one-step TD residual
δ = r + γv̂(s′,w) − v̂(s,w) (see Eq. 2.29) to update the policy parameter θ and
value function parameter w (lines 6 - 7).
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Algorithm 4 REINFORCE (MC policy gradient)

Input: Parameterized policy πθ with arbitrary parameter vector θ ∈ Rpin , number of
iterations N

Output: Estimated optimal policy πθ
1: repeat
2: Generate episodic experiences s0, a0, r0, · · · , sT−1, aT−1, rT−1, sT by following

πθ
3: for t = 0, · · · , T − 1 do
4: θt+1 ← θt + αγtGt∇θt lnπ(at|st,θt)
5: end for
6: until N times
7: Return πθ

Algorithm 5 One-step AC

Input: Parameterized policy πθ with arbitrary parameter vector θ ∈ Rpin , parameter-
ized state-value v̂w with arbitrary parameter vector w ∈ Rpin , step-size parameters
αθ and αw, number of iterations N

Output: Estimated optimal policy πθ
1: repeat
2: Initialize the first state s and vector I = 1
3: repeat
4: At state s, sample a from π(·|s,θ), take action a and get r, s′

5: δ ← r + γv̂(s′,w)− v̂(s,w)
6: w← w + αwIδ∇wv̂(s,w)
7: θ ← θ + αθIδ∇θ lnπ(a|s,θ)
8: I← γI
9: s← s′

10: until s is the terminal state
11: until N times
12: Return πθ
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2.3.2 Deep reinforcement learning

DRL refers to the collection of RL algorithms that use DL techniques to model
a policy or value function. Compared to typical RL algorithms, DRL methods
have the following advantages: 1) DL accepts any form of input of any size, e.g.
CNN can process image input, and fully connected-NN or LSTM can process
sequence input. 2) DL is more robust and powerful in learning feature information
from input data. This section presents two state-of-the-art DRL methods used for
comparison with the EOLS model, namely the value-based method DQN and the
actor-critic method PPO.

Deep Q-network DQN [35] is a DL version of Q-learning, initially used in video
games to train RL agents to play at a level that exceeds or is comparable to human
players. The action-value function Q or q is represented by a nonlinear approxima-
tor (ANN), which can lead to algorithmic diverging. The reason for the divergence
is that there is a strong correlation between the sampled experiences, and a slight
change in Q-value will significantly change the policy π. DQN uses a trick called
experience replay to solve this problem. The sampled experiences are stored in a
data pool. When the parameters are updated, a random batch of experiences is
selected to compute the gradient and update the parameters in Q network. The
randomly selected experiences come from different trajectories and thus have less
correlation. We give the DQN in Algorithm 6, DQN assumes a target neural net-
work q̂θ− or q̂(·|·,θ−) is the true value for the estimated action-value function qθ
or q(·|·,θ). θ− is initialized as θ at the beginning (line 3). The algorithm samples
the experiences in MC way at each step t and saves them into a data pool D (line
8). Line 10 calculates the target y of q(a|s,θ) by bootstrapping. Line 11 com-
putes the loss (y−q(a|s,θ))2 and performs gradient descent on parameters θ. The
gradient of (y − q(a|s,θ))2 with respect to θ is computed from randomly selected
experiences from D. For every constant steps C, qθ is assigned to qθ− . This can
keep the target of qθ unchanged for C steps. In the video game task, the CNN is
used as a nonlinear approximator, while in our foreign currency liquidation task,
we use the fully connected-NN instead.

Trust region policy optimization Trust Region Policy Optimization (TRPO)
[42] is a policy gradient method that solves the instability problem during the
training of policy approximated by large-scale nonlinear ANNs. The stability is
realized by two points: 1)TRPO optimizes a surrogate objective function J(θ)
that measures the estimated advantage Â(·) over the state visitation distribution
and actions in Eq. 2.42. At each step of training, TRPO samples trajectories
under the old policy πθold learned at the current step to update the new policy πθ.
It uses importance sampling [22] to balance the distribution difference between the
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Algorithm 6 DQN

Input: Number of iterations N , length of each episode T , number of steps C to reset
the target network, replay buffer size DN

Output: Estimated optimal policy π
1: Initialize replay buffer D with size DN

2: Initialize action-value function qθ with arbitrary parameter θ
3: Initialize target action-value function q̂θ− with weights θ− = θ
4: repeat
5: Initialize s0
6: for t = 0, · · · , T − 1 do
7: For all a ∈ A(st), select action at with ϵ-greedy, take action at and obtain rt

and st+1

8: Store transition (st, at, rt, st+1) in D
9: Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

10: Set yj =

{
rj , if episode terminates at step j + 1,

rj +maxa′ q̂(a
′|sj+1,θ

−), otherwise.

11: Perform a gradient descent step on
(
yj − q(aj |sj ,θ)

)2
with respect to θ

12: Every C steps reset θ− ← θ
13: end for
14: until N times
15: Estimate and return π based on qθ
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new policy and the policy in Eq. 2.43. The surrogate objective function J(θ) is
defined as follows,

J(θ) :=
∑
s

ρπθold
(s)

∑
a

π(a|s,θ)Âπ(s, a,θold) (2.42)

=
∑
s

ρπθold
(s)

∑
a

π(a|s,θold)
π(a|s,θ)
π(a|s,θold)

Âπ(s, a,θold) (2.43)

= Es∼ρπθold
,a∼πθold

[ π(a|s,θ)
π(a|s,θold)

Âπ(s, a,θold)
]

(2.44)

where θold, θ are the parameters of current learned policy and new policy, respec-
tively. ρπθold

(s) =
∑

s̄

∑∞
k=0 γ

k−1 Pr(s0 = s̄) Pr(s̄ → s, k, πθold) is the discounted
visitation probability of s under πθold (discounted version of ηπ(s) in Eq. 2.32). s̄
represents arbitrary state in an episode. γ is the discount rate. Pr(s0 = s̄) is the
initial probability over s̄. s ∼ ρπθold

, a ∼ πθold means s follows the visitation dis-

tribution ρπθold
and a is sampled from policy πθold . Âπ(s, a,θold) is the estimate of

an advantage function. A fundamental advantage function is a difference between
the action-value function and the state-value function. It measures the improve-
ment in the expected cumulative returns obtained by the agent after selecting a
particular action a at state s compared to selecting other actions. There are many
choices for advantage functions discussed in [33] and [44]. 2) TRPO constrains the
size of policy update with KL divergence DKL(π(·|s,θold)||π(·|s,θ)) between the
old and new policies by,

Es∼ρπθold
(s)

[
DKL(π(·|s,θold)||π(·|s,θ))

]
≤ ξ (2.45)

where ξ ∈ R>0 is a constraint coefficient. Maximizing J(θ) under the trust region
constraint of Eq. 2.45 can be solved by sample-based estimation. This way pre-
vents the new policy from changing too much compared with the current policy
and is proved to have monotonically improvement during training.

Proximal policy optimization PPO [44] is an actor-critic algorithm that sim-
plifies the complex trust-region constraints in TRPO by using a clipped surrogate
objective function while retaining similar performance. The importance sampling
rate of TRPO is denoted in Eq. 2.43 as r(θ),

r(θ) =
π(a|s,θ)
π(a|s,θold)

(2.46)

PPO uses a clipped surrogate function to constrain r(θ) to an interval around 1
as a way to control the magnitude of new policy updates:

JCLIP(θ) = E[min(r(θ)Âπ(s, a,θold), clip(r(θ), 1− ϵ, 1 + ϵ)Âπ(s, a,θold))] (2.47)
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where s ∼ ρπθold
and a ∼ πθold . ϵ ∈ R>0 is a small value parameter that controls

the update size. The function clip(r(θ), 1 − ϵ, 1 + ϵ) clips r(θ) into the interval
[1− ϵ, 1 + ϵ].

For the case of sharing the same parameters θ between policy network πθ and
value function network v̂θ, J

CLIP(θ) can be revised to a more general version in
Eq. 2.48 by adding an squared-error loss (v̂π(s,θ) − vtargetπ )2 for including value
function rating and an entropy term H(π(·|s,θ)) for encouraging exploration,

JCLIP′
(θ) = E[JCLIP(θ)− c1(v̂π(s,θ)− vtargetπ (s))2 + c2H(π(·|s,θ))] (2.48)

where c1, c2 are coefficients. vtargetπ (s) can be estimated by averaging a batch of
discounted cumulative rewards over a period. H(π(·|s,θ)) is an entropy bonus
that encourages sufficient exploration in action space, i.e. the more the policy πθ

tends to be random, the higher the entropy. PPO with clipped surrogate objective
function in Eq. 2.48 is given in Algorithm 7.

At the end of this chapter, we provide an overview of RL algorithms suitable for
solving the optimal liquidation tasks in Table 2.1 and 2.2. We categorize the EOLS
and other state-of-the-art RL methods, listing their advantages and disadvantages
for a clear comparison.

Algorithm 7 PPO with clipped objective

Input: Shared parameters θold for policy and value function, clipping parameter ϵ,
number of iterations N , updating epochs K, minibatch size M , trajectory length
T

Output: Estimated optimal policy πθold
1: repeat
2: Collect set of experiences D using policy πθold , each experience has length T
3: Estimate Âπ(s0, a0,θold), · · · , Âπ(sT−1, aT−1,θold) using an advantage estima-

tion algorithm
4: Update parameters θ

θ = argmax
θ

1

|D|T
∑
τ∈D

T∑
t=0

JCLIP′
(θ)

by taking K epochs gradient ascent with minibacth of size M
5: θold ← θ
6: until N times
7: Return πθold
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Reinforcement Learning (1)

Category Method Description Advantage Disadvantage

Value-
based RL
with model

DP, SDP

These methods com-
pute the optimal
policy given a perfect
model of a MDP en-
vironment through
Bellman equation.

1) Provide the theo-
retical optimal strat-
egy for all of the other
RL algorithms.

1) Need an MDP
environment that de-
scribes the complete
probability distribu-
tions of state transi-
tions, 2) are extremely
computationally inten-
sive and usually not
applicable in practice.

EOLS

This method estimates
the quasi-optimal
strategy based on the
analytical solution
computed by SDP and
greatly simplifies it.

1) Estimate the quasi-
optimal strategy while
greatly improving
computational effi-
ciency, 2) outperforms
other heuristic RL
algorithms on optimal
liquidation task.

Need an assumption
of the environment
model.

Value-
based RL

MC

MC methods estimate
the optimal strategy
based on the averaged
return of the sampled
(s, a, r, s′) trajectories.

1) Are Model-free
methods, 2) estimate
based on averaged
returns of trajectories,
thus have no bias.

1) Are more computa-
tional intensive than
TD methods, 2) need
to estimate the value
function for each pos-
sible state, 3) have
high variance.

TD

TD methods combine
the ideas of MC and
DP to estimate the
optimal strategy di-
rectly from a partial
learning experience
(bootstrapping) with-
out the need for a
complete environment
model and the collec-
tion of the complete
trajectories.

1) Are Model-free, 2)
use bootstrapping.
Do not need to wait
until the end of the
trajectory, 3) have low
variance.

1) Have Bias > 0, 2)
need to estimate the
value function for each
possible state.

Table 2.1: An overview of RL algorithms suitable for solving optimal liquidation
tasks (1).
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Reinforcement Learning (2)

Category Method Description Advantage Disadvantage

Value- &
policy-

based RL

Function
approximation,

e.g. DQN,
Double-
DQN[34],
policy

gradient, AC,
etc.

These methods es-
timate the optimal
strategy using the
parameterized linear
or nonlinear function
to model the value
function or policy.

1) Do not need a
table to record the
value of each state or
state-action pair, can
handle tasks of contin-
uous action and state
spaces, 2) provide the
probability for action
selection if the policy
is approximated by a
function.

1) Nonlinear func-
tion approximation
normally finds the
local optimum of value
function or policy. 2)
have oscillation dur-
ing learning, a small
change in value func-
tions will lead to a
significant change in
policy estimation.

Policy-
based

methods

Policy
gradient,

e.g.
REINFORCE

These methods use
the gradient ascent
to directly optimize a
parameterized policy.
They intend to in-
crease the probability
of occurrence of high-
return trajectories and
decrease the proba-
bility of low-return
trajectories.

1) Same as 1) in func-
tion approximation,
2) can learn stochastic
policy, 3) more effec-
tive in high dimen-
sional action spaces,
4) have better conver-
gence properties than
value-based methods.

1) Only guaranteed
to converge on a local
maximum, 2) have
high variance and
slowly convergence.

AC

TRPO, PPO,
A3C[12],

DDPG [27],
SAC [17], etc.

AC methods combine
the value-based and
policy-based methods.
They use a parame-
terized policy model
(actor) to estimate
the optimal action for
a given state, and a
parameterized value
function model (critic)
to help to improve the
action selection.

1) Are off-policy
methods, have more
data efficiency and ex-
plorations, 2) converge
faster than policy
gradient, 3) converge
to local optimum is
guaranteed, 4) some
methods reduce the
variance while keeping
the bias unchanged, 5)
some methods stabi-
lize the policy update
by constraining its
size.

1) For cases with huge
state space, the esti-
mation of the policy
needs a lot of sam-
ples, 2) in practice,
stable exploration is
still a challenge, 3)
policy can still change
dramatically between
training updates, mak-
ing it challenging to
converge on a good
policy, 4) the policy
is only as good as the
value function is accu-
rate.

Table 2.2: An overview of RL algorithms suitable for solving optimal liquidation
tasks (2).
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3. Summary of the publications

In this chapter, we briefly conclude the proposed RegPred Net and EOLS algorithm
in terms of methodology and results in Sec. 3.1. Then we illustrate how these two
algorithms are combined to form an end-to-end framework for solving the optimal
liquidation problem of foreign currency.

3.1 RegPred Net and EOLS algorithm

RegPred Net For solving the foreign currency optimal liquidation problem, the
RegPred Net is used to forecast the unknown dynamics of the FX rate series over
the liquidation period. The design of RegPred Net is inspired by RNN (Sec. 2.2.2).
One of the difference between them is that RegPred Net does not have a large num-
ber of learnable parameters and is a model-based algorithm. We assume the loga-
rithm of FX rate xt, t ∈ {0, · · · , T} follows a generalized OU process (Sec. 2.1.1).
The parameters A,N,Σ of this process describe the dynamics of the logarithmic
FX rate over some period. Based on this we use an online regression method to cal-
ibrate these parameters of a given series {x0, · · · , xT}, where online indicates grad-
ually updating the parameters At, Nt,Σt with new input xt at each step t. The on-
line updating algorithm is encapsulated in a computing unit called the Regression
Cell (RegCell). RegCell recurrently processes the input series over time direction
to calibrate a sequence of parameters {[A0, N0,Σ0], [A1, N1,Σ1], · · · , [AT , NT ,ΣT ]}.
Multiple RegCells can be stacked vertically to form a Regression Network (Reg-
Net). Similar to the recurrent neural network, the calibrated parameter sequence
from the previous layer is the input for the next layer. The calibrated parameters
at layer k and time t are denoted as [A

(k)
t , N

(k)
t ,Σ

(k)
t ].

Suppose the number of total layers is K. We obtain [A
(K)
T , N

(K)
T ,Σ

(K)
T ] at

layer K and time T after calibrating the parameters from time 0-T and layer
1-K. We assume that they remain unchanged over future N steps t ∈ {T +
1, · · · , T + N}, where N is the length FX rate to be forecasted. We use a unit

called Prediction Cell (PredCell) to recover the parameters [A
(K)
t , N

(K)
t ,Σ

(K)
t ] to

[A
(1)
t , N

(1)
t ,Σ

(1)
t ] layer by layer for future N steps. The stacked PredCells over

time and vertical directions form the Prediction Network (PredNet). In the end,
PredNet outputs the forecasted dynamic parameters over t ∈ {T +1, · · · , T +N}.
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With these parameters, we can simulate the logarithm of the FX rate xt in the next
N steps and calculate its exponential to recover to the FX rate series. RegNet and
PredNet together is called the Regression-Prediction Network (RegPred Net). The
hyperparameters of RegPred Net include the initial states of dynamic parameters
and the learning rate. They determine the forecasted results of the network and
need to be chosen carefully. We use Bayesian optimization to search for suitable
hyperparameters.

We split the complete FX rate series into sub-series to form a data set. For
each sample in the data set, we divide it into training, validation and testing
sections in order. The training section is used as input for training the network,
and the validation section is used as the label to calculate the square loss. Then, we
use Bayesian optimization to heuristically tune the hyperparameters for RegPred
Net and find the set of parameters that minimizes the loss. For forecasting, the
concatenation of training and validation sections is used as input, and the testing
section is used as the label. We evaluate the difference between the forecast and
testing section with several metrics, including RMSE, Pearson’s R, R-squared
and MDA and take the average values as the final results. The results show that
RegPred Net can forecast the long-term FX rate series and its dynamic parameters.
Long-term, in our case, indicates the 100 steps’ liquidation period. It outperforms
other state-of-the-art forecasting methods, including LSTM, Auto-LSTM, ARMA
and ARIMA. Compared to DL algorithms, RegPred Net is an explainable method
designed explicitly for FX rate forecasting. The forecasted dynamic parameters
help the EOLS algorithm estimate the optimal liquidation strategy.

EOLS EOLS algorithm estimates the quasi-optimal strategy for the foreign cur-
rency liquidation task. The design of EOLS is inspired by SDP (see Sec. 2.3.1).
The solution computed by the SDP is considered to be the optimal solution under
a hypothetical environmental model in which the logarithm of the foreign exchange
rate xt follows a generalized OU process. The state transition probability in the
environmental model is p(xt+1|xt) = Pr(xt+1|xt), t ∈ [0, T − 1]. If the dynamic
parameters A,N,Σ are known, we can use them to simulate a large number of
random trajectories of xt. Each has a length T . Then estimate the maximum and
minimum values xmax, xmin over the trajectories and assume they are the upper
and lower bound of xt. We can discretize xt with an interval of xmax−xmin

Nx
, where

Nx is the discretization number of xt and it divides the range between xmin and
xmax into Nx parts. The probability p(xt+1 = x′|xt = x) of x at t transition to
x′ at t + 1 can be calculated from a cumulative normal distribution. Other state
variables such as time and remaining volume can be discretized similarly. At this
point, we obtained complete knowledge about the state transitions in the environ-
ment. SDP estimates the optimal policy by traversing all possible states s ∈ S at
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each step t. It calculates the expected cumulative reward or return obtained after
taking some possible actions a ∈ A(s) for state s and selects the one that generates
the largest return as the optimal action at s. SDP algorithm has extremely high
time complexity. The estimated strategy’s performance varies with the granular-
ity of variable discretization (e.g. the size of Nx). In general, the more dense the
granularity of the discretization, the more accurate the optimal policy estimated
by SDP is and the more computation time required. For these reasons, we found
that SDP is difficult to apply to solve our problem. This is also the case for other
RL algorithms.

EOLS is derived by analyzing the solution calculated by SDP and greatly sim-
plifying it. Suppose the state of liquidation consists of 3 variables: the loga-
rithmic FX rate x, the remaining volume v and the time t. We use the SDP
algorithm to compute the optimal strategy a∗. a∗ can be visualized by a video
sequence, where the image of each frame t = 0, · · ·T is a 3D plot of the function
ft : (x, v) 7→ a∗(x, v, t). We observe these images and analytically formulize a∗ in
form of a parameterized function a∗(x, v, t,θ), where θ are the parameters that
determine a threshold value xthres for x above which a∗(x, v, t,θ) = 0. It implies
that the agent will not sell at steps where x is larger than xthres due to a low reward
of a/ exp (x). We use a grid search method to find θ that determines a∗(x, v, t,θ).
We choose the θ that maximizes the average return by following a∗(x, v, t,θ) on
sufficient number of FX rate trajectories simulated by dynamic parameters. We
experimentally show that the EOLS algorithm greatly improves the computational
efficiency compared to SDP, DQN and PPO. The liquidation performance of the
optimal strategy estimated by EOLS outperforms DQN and PPO and is similar
to SDP when the discretization number Nx = 100.

The RegPred Net and EOLS algorithms form the complete framework for es-
timating the optimal liquidation strategy of foreign currency. We illustrate it in
Fig. 3.1.
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Figure 3.1: An illustration of optimal liquidation framework of foreign currency.
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ABSTRACT
The article is concerned with the problem of multi-step financial time series forecasting of For-
eign Exchange (FX) rates. To address this problem, we introduce a regression network termed
RegPred Net. The exchange rate to forecast is treated as a stochastic process. It is assumed
to follow a generalization of Brownian motion and the mean-reverting process referred to as
generalized Ornstein-Uhlenbeck (OU) process, with time-dependent coefficients. Using past
observed values of the input time series, these coefficients can be regressed online by the cells
of the first half of the network (Reg). The regressed coefficients depend only on - but are very
sensitive to - a small number of hyperparameters required to be set by a global optimization
procedure for which, Bayesian optimization is an adequate heuristic. Thanks to its multi-layered
architecture, the second half of the regression network (Pred) can project time-dependent values
for the OU process coefficients and generate realistic trajectories of the time series. Predictions
can be easily derived in the form of expected values estimated by averaging values obtained by
Monte Carlo simulation. The forecasting accuracy on a 100 days horizon is evaluated for sev-
eral of the most important FX rates such as EUR/USD, EUR/CNY and EUR/GBP. Our experi-
mental results show that the RegPred Net significantly outperforms ARMA, ARIMA, LSTMs,
and Autoencoder-LSTM models in terms of metrics measuring the absolute error (RMSE) and
correlation between predicted and actual values (Pearson’s R, R-squared, MDA). Compared to
black-box deep learning models such as LSTM, RegPred Net has better interpretability, simpler
structure, and fewer parameters. In addition, it can predict dynamic parameters that reflect trends
in exchange rates over time, which provides decision-makers with important information when
dealing with sequential decision-making tasks.

1. Introduction
Foreign Exchange (FX) rate time series are considered in Academia and the Finance Industry to be some of the

most challenging time series to forecast, due to their fast-changing trends, high volatilities and complex dependencies
on a large number of macro-economic factors. Nevertheless, several important applications in Market Finance (FX
trading (Donnelly, 2019), pricing and hedging of FX derivatives (Hull, 2018)) and International Corporate Finance
(Currency Risk Management) (Jacque, 2014) rely on accurate long-term forecasts or realistic simulations of FX rates.

With the rise of Deep Learning (LeCun et al., 2015), (Hochreiter and Schmidhuber, 1997) and its successes in
Computer vision and Natural Language Processing in the last years, deep neural networks have started to be introduced
in the area of Financial Time Series Forecasting, as with the works of (Guo et al., 2014), (Bao et al., 2017) and (Dingli
and Fournier, 2017). Nevertheless, we observe experimentally that when applied to FX rates famous Deep Learning
models for time series such as LSTMs (Hochreiter and Schmidhuber, 1997) do not offer particularly good performance
for multi-step forecasting. Additionally, these types of neural networks operate like “black boxes” and do not offer any
insight regarding the dynamics of the time series considered.

To address the issues of performance and explainability, we propose a novel regression network called RegPred
Net. The explainability of the model is achieved by design of the network’s architecture, whereby it is assumed that the
time series follows a stochastic (random) process whose parameters can be directly interpreted in terms of drift, mean-
reversion level, mean-reversion rate and volatility. The network’s forecasting performance is essentially the result of
i) using a sufficiently general stochastic process, referred to as generalized Ornstein-Uhlenbeck (OU) process which
encompasses Brownian motion with drift and the mean-reverting process as special cases, ii) the online regression
of the parameters of the stochastic model by Regression Cells, iii) carefully choosing the network’s hyperparameters

Linwei.Li@campus.lmu.de (L. Li); paul-amaury.matt@daimler.com (P. Matt); chris@stat.uni-muenchen.de (C. Heumann)
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Foreign exchange rate forecasting with regression network

by Bayesian optimization (Jonas, 1989), and iv) using a multi-layer network architecture to also capture the time-
dependency of the parameters of the stochastic process.

The RegPred Net is described by a number of hyperparameters playing the role of learning rates or initial regression
cell states (RegCells). The choice of the hyperparameters’ values has a huge impact on the network’s predictions and
accuracy, so instead of setting hyperparameters arbitrarily, we adopt Bayesian optimization as an efficient procedure to
set their value optimally. Bayesian optimization is a global optimization heuristic that is gaining popularity in Machine
Learning for hyperparameter-tuning.

The rest of this article is organized as follows. Section 2 is dedicated to a discussion of related work. In Section
3, we introduce the stochastic process used for modelling FX rates, viz. the generalized OU process, explain how its
parameters can be regressed in an offline-fashion and then derive an online regression procedure. Section 4 provides
a detailed description of the regression cells and architecture of the RegPred Net, as well as algorithms for simulation,
forecasting and calculation of the network’s loss function. Section 5 offers some background on Bayesian optimiza-
tion and presents the method and algorithms used for training RegPred Net. Section 6 offers a detailed experimental
validation and we finally conclude in Section 7.

2. Related work
Time series forecasting has been since decades an important area of research and development in Academia and

Industry. A particular difficulty with time series is multi-step predictions of time series that do not exhibit a clear and
stable trend or seasonality, which is typically the case with financial time series such as stock prices or currency rates.

In (Siami-Namini et al., 2018), the authors compared the performance of the ARIMA model with LSTM and
concluded that LSTM outperforms ARIMA, with more than 80% reduction of error on one-step-ahead time series
forecasting. The authors of (Gensler et al., 2016) compared Auto-LSTM with the standard LSTM on solar power data
forecasting tasks and showed that in that case, Auto-LSTM performed better than LSTM when predicting two-steps-
ahead, although the performance of bothmodels was similar. (Bao et al., 2017) proposed a novel LSTM-based structure
that stacks wavelet transformation, autoencoders, and LSTM together and this new model outperformed LSTM on a
one-step-ahead financial time series forecasting problem.

All the research works mentioned in the previous paragraph are limited to only one or two-step ahead predictions.
Unfortunately, such approaches do not benefit a whole range of real-world activities that typically relate to risk analysis
or sequential decision making. Regarding multi-steps forecasting models, (Yunpeng et al., 2017) used the LSTM to
predict different types of periodic time series and achieved better performance than the ARIMA model. (Liu et al.,
2018) also proposed a LSTM-based model that combines variational mode decomposition, singular spectrum analysis,
and extreme learning machine to make one to five-steps ahead wind speed prediction. However, five-steps ahead is
still considered a short period, and time series like wind speed have intrinsic cycles, unlike currency rates.

Instead of predicting the values of a times series, a simpler approach often followed consists in assessing either
the probability of an increase or decrease of the time series at some future point in time compared to the present, or
the probability of being higher or lower than a reference value. In (Gyamerah, 2019), the authors use an LSTM-based
model to predict whether a S&P500 stock price will increase or decrease in the next time step and conclude that the
LSTM performs better than other machine learning models such as random forest and logistic regression. In (Fischer
and Krauss, 2017), the authors seek to predict the probability that a stock outperforms its cross-sectional median at
the next time step. Their results also indicate that LSTMs outperforms other traditional machine learning models.
(Rangapuram et al., 2018) forecasts the posterior distribution of future trajectories of time series given the past. The
experiments were made on periodic electricity and traffic time series and showed that the proposed method performed
well (especially on limited data) by modelling the seasonal structure of the dataset.

The above-proposed forecasting approaches all are either limited to short term forecasts, to categorical forecasting,
or applied to periodic data. To the best of our knowledge, frameworks suitable for numerically forecasting complicated
non-stationary time series in the medium to long term (100 steps or more) are quite rare. The RegPred Net is a novel
type of Recurrent Network that was developed to meet these requirements and that unlike some other RNNs extracts
interpretable features of the predicted time series in the form of the parameters of an OU process, thereby providing
accurate information about the trend, mean-reversion level or rate and volatility of the process. Unlike neural networks
in Deep Learning that often have millions of weights to learn and store in memory, the RegPred Net is a completely
weight-free network.

Finally, (Brochu et al., 2010) provided a detailed tutorial on Bayesian optimization and discussed the pros and
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cons of this method in practice. (Lizotte, 2008) explained in his Ph.D. thesis that Bayes-optimal acquisition criteria
although being rarely studied can improve the efficiency of Bayesian optimization and indicates that using � = 0.01
as exploration parameter of acquisition function performs well in most cases. Bayesian optimization is also widely
used in Machine Learning. The authors in (Snoek et al., 2012) show that Bayesian optimization outperforms human
expert-level on parameter tuning of machine learning algorithms like SVMs, Convolutional Neural Networks, and
Latent Dirichlet Allocations. (Kandasamy et al., 2018) proposed a framework based on Bayesian optimization to
automatically select the architecture for deep neural networks and their results show that their framework outperforms
other baseline methods on several data sets.

3. Stochastic process for FX rates
3.1. Foreign exchange rates

A currency is a system of money in general use in a particular country. We refer to a given country’s currency as its
domestic currency and refer to the currencies of other countries as foreign currencies. In Finance, a foreign exchange
(FX) rate is the rate at which one currency is exchanged for another. It is also regarded as the value of one country’s
currency in relation to another currency. For example, the daily FX rate of EUR/CNY (Euro/Chinese Yuan) on Mar.
19, 2020 was 7.68, which means that 1 Euro was worth 7.68 Yuan. Fig. 1 shows the 5000 days’ daily FX rates of
EUR/CNY, EUR/USD (US Dollar) and EUR/GBP (British Pound). The horizontal and vertical axes are time and FX
rates, respectively. Since standardized currencies around the world float in value with demand, supply and consumer
confidence, their relative values change over time, as illustrated in Fig. 1.
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Figure 1: The daily FX rates of EUR/CNY, EUR/USD, and EUR/GBP over 5000 days.

3.2. Stochastic processes
Daily FX rates can be modelled by discrete stochastic processes. The word stochastic is synonym of random. A

discrete stochastic process is a system which evolves in time while undergoing random fluctuations over time. We
describe such a system by defining a family of random variables {Xt}t∈ℕ, where Xt measures at time t the aspect of
the system which is of interest.

The discrete Wiener process (Malliaris, 1990) Wt is a discrete stochastic process defined for time steps t where t
is a positive or null integer. The process is defined by the following properties: i)W0 = 0, and ii) for every t ≥ 1, the
process increment given by the difference ΔWt = Wt −Wt−1 is independently and normally distributed:

ΔWt ∼ (0, 1) (1)
Thus, the increment of the Wiener process is independent of its past values (Markov property).

Discrete Brownian motion with drift is another discrete stochastic processXt based on the Wiener process, defined
by i) X0 ∈ ℝ and ii) for every t ≥ 1, ΔXt = Xt −Xt−1 = � + �ΔWt, where the � ∈ ℝ is a parameter called drift and
� > 0 is a second parameter called volatility. The Wiener process is a special case of Brownian motion where the drift
is null (� = 0) and the volatility is one (� = 1). Here, the drift parameter is interpreted as the deterministic trend of
the process and the volatility as the amplitude of the noise or non-deterministic component in the process.

The mean reverting process, also called Ornstein-Uhlenbeck (OU) process, is defined by i) X0 ∈ ℝ and ii) ΔXt =
Xt−Xt−1 = �(n−Xt−1)+�ΔWt where � ∈ ℝ is a parameter calledmean-reversion rate, n ∈ ℝ is calledmean-reversion
First Author et al.: Linwei Li, Paul-Amaury Matt, Christian Heumann Page 3 of 28
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level and � > 0 is called volatility. This equation describes the dynamics of a variable that randomly fluctuates around
some mean level n, follows random increments with an amplitude controlled by � and tends to revert back to n at a
speed controlled by � (assuming this parameter has a strictly positive value). FX rates are often modelled as mean
reverting processes over long periods and as Brownian motion with drift over short periods. Fig. 2 illustrates some
trajectories of a Wiener process, a Brownian motion and a mean-reverting process over a period of 500 time steps.
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Figure 2: Trajectories of a Wiener process, Brownian motion and mean-reverting process.

3.3. Generalized Ornstein-Uhlenbeck process
We now generalize the OU processXt of dimension 1 (univariate process) to a multivariate processYt of dimension

d. Thus, Yt denotes here a d-dimensional vector. The process is defined by Y0 ∈ ℝd and
ΔYt = Yt − Yt−1 = A ⋅ Yt−1 + N + � ⋅ ΔWt (2)

whereA = (�i,j) is a real-valued square matrix of dimension d×d, N is a real-valued vector of dimension d, � = (�i,j)is a real-valued square matrix of dimension d×d, andΔWt = (ΔWi,t) is a d-dimensional vector where the components
ΔWi,t ∼ (0, 1) are identically and independently normally distributed.

Observe that when A = 0, N = 0, and � = Id , the generalized OU process becomes a d-dimensional Wiener
process. When A = 0, the generalized OU process becomes a d-dimensional Brownian motion with drift N and
volatility �. Finally when A = −�, N = � ⋅ n and � = �, the generalized OU process is a d-dimensional OU process
with parameters �, n and �.
3.4. Offline regression of a generalized Ornstein-Uhlenbeck process

Assume that we have observations for the values of the vector Yt for t = 1, . . . , T , and wish to estimate the pa-
rameters A,N,� of the generalized OU process. A so called “offline” method such as Ordinary Least Squares can be
used, where offline (Karp, 1992) means that the regression algorithm uses the whole data set of observations Y1∶d,1∶Tat once.

To calibrate the parameters in Eq. (2) using data Y1∶d, 1∶T , we first rewrite Eq. (2) as a linear equation of the form
yt = �xt−1 + �t, where

yt = Yt − Yt−1

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n1 a1,1 … a1,d

n2 a2,1 … a2,d

⋮ ⋮ ⋱ ⋮

nd ad,1 … ad,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xt−1 =

[
1, Y1, t−1,… ,Yd, t−1

]T

�t = � ⋅ ΔWt =
⎡⎢⎢⎣

�1,t
⋮
�d,t

⎤⎥⎥⎦
=
⎡⎢⎢⎣

∑d
k=1 �1,k ⋅ ΔWk,t

⋮∑d
k=1 �d,k ⋅ ΔWk,t

⎤⎥⎥⎦

(3)
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According to the ordinary least square method, the loss LOLS between observation y and function value of the
linear model �x is:

LOLS = 1
2

T∑
t=1

|||
|||yt − �xt−1

|||
|||
2

2
(4)

where || ⋅ ||22 is the square of matrix norm 2 distance. Since LOLS is a positive quadratic function of � which admits
a minimum, the optimal value of � can be computed by solving the quadratic problem:

)LOLS

)�
= 0 (5)

The optimal value of � is:

� =
( T∑

t=1
ytxTt−1

)( T∑
t=1
xt−1xTt−1

)−1
(6)

The parameters A and N can be retrieved from � by identification with Eq. (3):
[
N ; A

]
= � (7)

To estimate �, we first compute the covariance matrix K��,tof �t =
[
�1,t,… , �d,t

]T :

K��,t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cov(�1,t, �1,t) cov(�1,t, �2,t) … cov(�1,t, �d,t)

cov(�2,t, �1,t) cov(�2,t, �2,t) … cov(�2,t, �d,t)

⋮ ⋮ ⋱ ⋮

cov(�d,t, �1,t) cov(�d,t, �2,t) … cov(�d,t, �d,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

cov(�i,t, �j,t) = E
[(
�i,t − E(�i,t)

)(
�j,t − E(�j,t)

)]
=

d∑
k=1

�i,k ⋅ �j,k (8)

From Eq. (8) (Appx. B.1) we can see that K��,t is not related to t, so K�� can be further written as:

K�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑d
k=1(�1,k)

2 ∑d
k=1 �1,k�2,k …

∑d
k=1 �1,k�d,k

∑d
k=1 �2,k�1,k

∑d
k=1 �2,k�2,k …

∑d
k=1 �2,k�d,k

⋮ ⋮ ⋱ ⋮

∑d
k=1 �d,k�1,k

∑d
k=1 �d,k�2,k …

∑d
k=1(�d,k)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Since K�� = ��T , it is a positive definite matrix and thus can be decomposed using the Cholesky decomposition
into a product of the formMMT , whereM is a lower triangular matrix. So, we can estimate � by choosing � =M.
3.5. Online regression of a generalized Ornstein-Uhlenbeck process

The parameters A, N, � of the generalized OU process described in Eq. (2) can also be calibrated in an "online"
fashion. The word online (Karp, 1992) refers to any method that estimates the result of an algorithm without having all
input data at once, but step-by-step processes the input. In this way, at every time step t, the online algorithm updates
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the parameters from the previous time step At−1, Nt−1, �t−1 to At, Nt, �t. We replace in Eq. (2) the static parameters
A, N, � by the time-dependent parameters as follows:

ΔYt = At−1 ⋅ Yt−1 + Nt−1 + �t−1 ⋅ ΔWt (10)
The error term �t is defined as:

�t = ΔYt −
(
At−1Yt−1 + Nt−1

)
=
⎡
⎢⎢⎣

�1,t
⋮
�d,t

⎤
⎥⎥⎦

(11)

To infer the update rule for At and Nt, we define the quadratic loss Lt(At−1;Nt−1) at time t as:
Lt
(
At−1;Nt−1

)
= �Tt �t (12)

The update rules of At and Nt can be expressed as gradient descent steps:

At ← At−1 − �A
)Lt

(
At−1;Nt−1

)
)At−1

(13)

Nt ← Nt−1 − �N
)Lt

(
At−1;Nt−1

)
)Nt−1

(14)

where �A, �N and �Σ are learning rates for At, Nt and �t, respectively.The partial derivative of Lt(At−1;Nt−1) with respect to At−1 is computed as:
)Lt(At−1;Nt−1)

)At−1
= −2 ⋅ �tYTt−1 (15)

Similarly, the partial derivative of Lt(At−1;Nt−1) with respect to Nt−1 is:
)Lt(At−1;Nt−1)

)Nt−1
= −2 ⋅ �t (16)

The calculation details are given in Appx. B.2.
Substituting Eq. (15) and (16) into Eq. (13) and (14), we get the following update rules for At and Nt:
At ← At−1 + 2�A�tYTt−1 (17)

Nt ← Nt−1 + 2�N�t (18)
Similarly, we use gradient descent to get the update rule for �t. We first define the loss Lt

(
�t−1

) at time t as:

Lt
(
�t−1

)
= |||

||| �t−1�
T
t−1 − ̂cov(�t)

|||
|||
2

2
(19)

where ̂cov(�t) =
((

̂cov(�i,t, �j,t)
)), and ̂cov(�i,t, �j,t) is an online estimate at t of the covariance of �i,t and �j,t.The derivative of Lt(�t−1) over the whole matrix �t−1 is computed as (see Appx. B.2):

)Lt(�t−1)
)�t−1

= 4 ⋅
(
�t−1�Tt−1 − ̂cov(�t)

)
⋅ �t−1 (20)

Thus, �t can be updated by:
�t ← �t−1 − 4�Σ ⋅

(
�t−1�Tt−1 − ̂cov(�t)

)
⋅ �t−1 (21)
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To estimate the covariancematrix ̂cov(�t) in Eq. (21), we first estimate the expectation of �t by using an ExponentialMoving Average (EMA) with weight ':
Ê(�t) = EMA'(�t) = ' ⋅ �t + (1 − ') ⋅ EMA'(�t−1) (22)

Since the covariance matrix cov(�t) is mathematically defined as
cov(�t) = E

[(
�t − E[�t]

)(
�t − E[�t]

)T ] (23)
we can again introduce another EMA with weight � for estimating also the outer expectation operator and estimate the
covariance matrix as:

̂cov(�t) = EMA�
[(
�t − Ê(�t)

)(
�t − Ê(�t)

)T ] (24)
The online regression procedure allows to estimate the parameters At, Nt, �t of the generalized OU process given

only the following hyperparameters:
• initial values of A0, N0, �0, Ê(�0) and ̂cov(�0)

• a 5-dimensional vector of learning ratesH = [�A, �N , �Σ, ', �] composed of three learning rates �A, �N , �Σ usedin gradient descent update rules and the weights ' and � of two exponential moving averages for Ê(�t) and
̂cov(�t).

Different values for the hyperparameters lead to different estimates for the parameters At, Nt and �t, unlike the offline
regression which always lead to the same result. For instance, with high values of H, the parameters adapt very fast
to the time series but contain more noise and tend to degrade the accuracy of long term forecasts. Conversely, small
values of H lead to slowly changing stochastic parameter estimates, which is good for long term but tends to degrade
the accuracy of short term forecasts.

4. RegPred Network
This section introduces the two networks RegNet and PredNet that compose RegPred Net. We present their re-

spective recurrent cells and network architecture. RegNet and PredNet are then simply juxtaposed to form the overall
RegPred Net.
4.1. Regression Cell (RegCell) and Regression Network (RegNet)

In this subsection, we introduce a recurrent network termed RegNet for the online estimation of parameters of a
generalized OU process Yt. The basic RegNet is a single layer network using a recurrent cell called RegCell. The
RegCell at time t and layer k, which is defined in Algorithm 1 and illustrated in Fig. 3, simply encapsulates all the
update rules needed for the online regression of the parameters A, N, � as described in the previous section. Several
layers of the basic RegNet can be stacked on top of each other to form a multi-layered RegNet (see Fig. 4). In this
case, the k-th layer performs online regression of the parameters A(k), N(k), �(k) of an generalized OU process for the
multivariate input series Z(k−1)t , defined as the flattened vector of regressed parameters from the OU process in k−1-th
layer:

∀k = 1, ..., K
⎧
⎪⎨⎪⎩

ΔZ(k−1)t = A(k)t−1Z
(k−1)
t−1 + N(k)t−1 + �

(k)
t−1ΔW

(k)
t

Z(k−1)t =
[
A(k−1)t , N(k−1)t , �(k−1)t

] (25)

with Z(0)t = Yt.In a RegNet (Fig. 4), the RegCell is replicated T times along the time axis at each time step from t = 1 to T ,
which allows for an iterative regression of the coefficients of an OU process modeling the univariate input time series
Y1,⋯ , YT . These T RegCells form the first layer k = 1 of the RegNet. The outputs of layer k = 1 are the regressed
coefficientsAt,Nt, �t (1-dimensional for each) for the time steps t = 1,⋯ , T . We append and flatten these coefficients
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RegCell (k, t)
ΔZ(k−1)t ← Z(k−1)t − Z(k−1)t−1

�(k)t ← ΔZ(k−1)t −
(
A(k)t−1Z

(k−1)
t−1 + N(k)t−1

)

A(k)t ← A(k)t−1 + 2�
(k)
A �(k)t Z

(k−1)
t

T

N(k)t ← N(k)t−1 + 2�
(k)
N �(k)t

Ê(�(k)t )← '(k) ⋅ �(k)t + (1 − '(k)) ⋅ Ê(�(k)t−1)

̂cov(�(k)t )← �(k) ⋅
(
�(k)t − Ê(�(k)t )

)
⋅
(
�(k)t − Ê(�(k)t )

)T + (
1 − �(k)

)
⋅ ̂cov(�(k)t−1)

�(k)t ← �(k)t−1 − 4�
(k)
Σ ⋅

(
�(k)t−1�

(k)
t−1

T
− ̂cov(�(k)t )

)
⋅ �(k)t−1

State(k, t)

Z(k−1)t−1

State(k, t + 1)

Z(k)t ←
[
A(k)t , N(k)t , �(k)t

]

Z(k−1)t

Figure 3: The RegCell (k, t) updates the parameters A,N,� of the online regression model: ΔZ(k−1)t = A(k)t−1Z
(k−1)
t−1 + N(k)t−1 +

�(k)t−1ΔW
(k)
t . State(k, t) ∶= Z(k)t−1, Ê(�

(k)
t−1), ̂cov(�

(k)
t−1).

Algorithm 1 RegCell in layer k at time t
Input: State(k, t) ∶=

{
Z(k)t−1 ∶=

[
A(k)t−1, N

(k)
t−1, �

(k)
t−1

]
, Ê(�(k)t−1), ̂cov(�(k)t−1)

}
,

Z(k−1)t−1∶t ∶=

{[
A(k−1)t−1∶t , N

(k−1)
t−1∶t , �

(k−1)
t−1∶t

]
, if k > 1,

Yt−1∶t , elif k = 1.

Output: State(k, t + 1) ∶=
{
Z(k)t ∶=

[
A(k)t , N(k)t , �(k)t

]
, Ê(�(k)t ), ̂cov(�(k)t )

}

1: ΔZ(k−1)t ← Z(k−1)t − Z(k−1)t−1
2: �(k)t ← ΔZ(k−1)t −

(
A(k)t−1Z

(k−1)
t−1 + N(k)t−1

)

3: A(k)t ← A(k)t−1 + 2�
(k)
A �

(k)
t Z

(k−1)T
t

4: N(k)t ← N(k)t−1 + 2�
(k)
N �

(k)
t

5: Ê(�(k)t−1) ∶= EMA'(�
(k)
t−1)

6: Ê(�(k)t )← '(k) ⋅ �(k)t + (1 − '(k)) ⋅ Ê(�(k)t−1)
7: ̂cov(�(k)t−1) ∶= EMA�

(
̂cov(�(k)t−1)

)
8: ̂cov(�(k)t )← �(k) ⋅

(
�(k)t − Ê(�(k)t )

)
⋅
(
�(k)t − Ê(�(k)t )

)
+ (1 − �(k)) ⋅ ̂cov(�(k)t−1)

9: �(k)t ← �(k)t−1 − 4�
(k)
Σ ⋅

(
�(k)t−1�

(k)T
t−1 − ̂cov(�(k)t )

)
⋅ �(k)t−1

10: Z(k)t ←
[
A(k)t ,N(k)t ,�(k)t

]
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Figure 4: The structure of RegNet. State(k, t) = Z(k)t−1, Ê(�
(k)
t−1), ̂cov(�

(k)
t−1).

into a 3-dimensional vector of coefficients denoted Z(1)t =
[
A(1)t ,N

(1)
t ,�

(1)
t
]. The output of layer k = 1 at t is now a

multivariate time series Z(1)t of dimension 3.
The dynamics of Z(1)t for the time steps t = 1,⋯ , T can be analyzed in the same way as Yt . Thus, we treat Z(1)t as a

multivariate OU process and regress its coefficients in an online fashion using a second layer composed of T RegCells.
Several layers can then be stacked on top of each other as shown in Fig. 4, allowing each layer k to regress the vector
of parameters ΔZ(k)t =

[
A(k)t ,N(k)t ,�(k)t

] of an OU process ΔZ(k−1)t = A(k)t−1Z
(k−1)
t−1 + N(k)t−1 + �

(k)
t−1ΔW

(k)
t , modeling the

dynamics ΔZ(k−1)t = Z(k−1)t − Z(k−1)t−1 of the time series output Z(k−1)t by the previous layer k − 1. Since we denote
generally Z(k)t the output of a RegCell at time step t in layer k for any integer k ≥ 0, we adopt the conventionZ(0)

t = Yt.
Observe that each layer k increases the dimensionality of the vector of coefficients from dk−1 to dk = 2dk−12 + dk−1.The sequence of dimensions (dk) = 1, 3, 21, 903, 1631721,⋯ quickly diverges towards infinity, thus limiting in practice
RegNet to a maximum of 2 or 3 layers.

The motivation for using multiple layers in the RegNet is that it allows us to extract more information from the time

First Author et al.: Linwei Li, Paul-Amaury Matt, Christian Heumann Page 9 of 28



Foreign exchange rate forecasting with regression network

series Yt. Since this information is passed on to the PredNet, the resulting RegPred Net can potentially yield better
forecasts in the long run. This can be best understood perhaps by analogy with a function f defined on a time interval
[0, T ] that we would like to extrapolate to [T ,+∞]. If the function is 2 times continuously differentiable on [0, T ], we
could extrapolate it for t > T with the Taylor series expansion of order 2. The higher the order of the Taylor series, the
more accurate the extrapolation becomes. Similarly, the higher the number of layers used the RegPred Net, the better
the forecasts may get, as primarily, each layer k is modeling the k-th discrete derivative of Y with respect to t.
4.2. Prediction Cell (PredCell) in Prediction Network (PredNet)

For prediction, we need another type of cell that uses the information extracted by the RegCell, which we call
PredCell. Assume K is the number of total layers of the RegNet, T is the last time step of an input time series Y, and
at time T RegNet outputs Z1∶KT . PredNet starts making predictions of the multivariate process Z(k)t at the last layer
k = K and ends making predictions for the process at the first layer k = 0 where the process Z(0)t = Yt. In the last
layer k = K , since the process to forecast is not stochastically modeled, we assume that the outputs of the PredCell
Z(K)T is constant for any time step T + i, i > 0:

Z(K)T+i ← Z(K)T (26)
The PredCells in all other layers where k < K follow the update rule:

Z(k)t ← Z(k)t−1 + A
(k+1)
t−1 Z(k)t−1 + N

(k+1)
t−1 + �(k+1)t−1 ΔW(k)

t (27)
which simply randomly generates a new value for the process using its previous value and the equation for the increment
of an OU process.

PredCell (k, t)
Z(k)t ← Z(k)t−1 + A

(k+1)
t−1 Z(k)t−1 + N

(k+1)
t−1 + �(k+1)t−1 ΔW(k)

t

Z(k)t−1 Z(k)t

Z(k)t

Z(k+1)t−1 ∶=
[
A(k+1)t−1 , N(k+1)t−1 , �(k+1)t−1

]

Figure 5: The PredCell (k, t).

Fig. 5 illustrates the function of a PredCell in layer k at time t and Algorithm 2 shows how to implement such
a cell. In the calculation of the output Z(k)t of PredCell(k, t), the term ΔW(k)

t is a randomly generated vector of the
same dimension as Z(k)t , which we denote by dk. Each component of this vector follows an independent standard
normal distribution. It is called a random factor of Zt and can be seen as the source of randomness of the process. So
remember that ΔW(k)

t has dimension dk and its components are i.i.d. with distribution  (0, 1). Thus, the PredCells
generate random outputs. In that sense, the PredNet constitutes a generative network. This is why the PredNet can
only be used for simulation of trajectories and not directly for prediction. The diagonal arrow above the cell represents
the input Z(k+1)t−1 , which is from layer k + 1 and time t − 1. Z(k+1)t−1 contains the parameters A(k+1)t−1 , N(k+1)t−1 , �(k+1)t−1 that
are needed in Eq. (27). The left horizontal arrow indicates the input Z(k)t−1 from layer k, time t − 1. Notice here at the
initial prediction step T + 1, Z(k)t−1 is the outputs of RegCell in layer k at step T . The diagonal arrow below the cell
indicates the output Z(k)t . This will be divided into A(k)t , N(k)t , �(k)t , and be used for the PredCell of layer k − 1, time
t+ 1. Z(k)t is also transferred to the next time step for PredCell (k, t+ 1) at the right horizontal arrow. The multi-layer
PredNet is illustrated in Fig. 6.
First Author et al.: Linwei Li, Paul-Amaury Matt, Christian Heumann Page 10 of 28



Foreign exchange rate forecasting with regression network

Algorithm 2 PredCell in layer k at time t
Input: Z(k+1)t−1 , Z(k)t−1, ΔW(k)

t
Output: Z(k)t
1: if layer k is the last layer then
2: Z(k)t ← Z(k)t−13: else
4: Z(k)t ← Z(k)t−1 + A

(k+1)
t−1 Z(k)t−1 + N

(k+1)
t−1 + �(k+1)t−1 ΔW(k)

t
5: end if
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Figure 6: The structure of PredNet.

4.3. Regression-Prediction Network (RegPred Net)
We combine the RegNet in Fig. 4 and PredNet in Fig. 6 together to get the overall RegPred Network, as in Fig. 7.

The regression part of the network starts from RegCell (1, 1) at the bottom left and ends at RegCell (K, T ).
Algorithm 3 describes how aK layer(s) RegPred Net in Fig. 7 predicts the futureN steps given an input time series.

The inputs of Algorithm 3 include: Y1∶T as input time series, H(1∶K) as the learning rates of layer 1 to K , Z(1∶K)0 are
the initial input vector of layer 1 to K . We initialize State(1 ∶ K, 0) as the concatenation of H(1∶K), Z(1∶K)0 , Ê(�(1∶K)0 ),
and ̂cov(�(1∶K)0 ). Among them Ê(�(1∶K)0 ), ̂cov(�(1∶K)0 ) are set as vector and matrix of 0. The errors �(1∶K)0 are also
initialized as 0. Z(0)0∶T are always equal to Y0∶T . At the start of Algorithm 3, we generate K ×N normally distributed
random noises ΔW(0∶K−1)

T+1∶T+N , then take Y as the input series of RegNet and run RegCell described in Algorithm 1
from layer 1 to layer K and times 1 to T . After the regression, we get State(1 ∶ K, T + 1). They are the inputs for
the prediction. The predictions are calculated in the reverse order of the regression: run Algorithm 2 downwards from
layer K to 0, time T + 1 to T +N . At layer 0, we obtain a simulated trajectory Z(0)T+1∶T+N = YT+1∶T+N as output.
Like any Recurrent Neural Network, the RegPred Net can handle input series with different input lengths T and make
predictions of arbitrary lengthN .
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Figure 7: RegPred Net. State(k, t) = Z(k)t−1, Ê(�
(k)
t−1), ̂cov(�(k)t−1)
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Algorithm 3 K layer(s) RegPred Net (prediction)
Input: Input series Y with length T , number of prediction steps N , H(1∶K), Z(1∶K)0 , i.i.d. noises ΔW(0∶K−1)

T+1∶T+N (size
[K,N]) following the standard normal distribution

Output: Simulated trajectory Z(0)T+1∶T+N =
[
YT+1, ..., YT+N

]
1: Initialization: State(1 ∶ K, 0) = [

Z(1∶K)0 , Ê(�(1∶K)0 ) = 0, ̂cov(�(1∶K)0 ) = 0
], �(1∶K)0 = 0, Z(0)0∶T = Y0∶T2: for t = 1,… , T do

3: for k = 1,… , K do
4: Run Algorithm 1 with corresponding inputs to get State(1 ∶ k, t)
5: end for
6: end for
7: for t = T + 1,… , T +N do
8: for k = K,… , 0 do
9: Run Algorithm 2 with corresponding inputs to get Z(k)t
10: end for
11: end for

Algorithm 4 Calculating the loss of mean LE and the loss of variance LV using Monte Carlo simulation
Input: The number nW of simulated trajectories, input time series Y1,… ,YT ,… ,YT+N , H(1∶K), Z(1∶K)0
Output: LE, LV , ET+1∶T+N , VT+1∶T+N
1: Compute Z(1∶K)T by online regression with Algorithm 1
2: Generate nW random noises ΔW(0∶K−1)

T+1∶T+N3: for i = 1, . . . , nW do
4: Use Algorithm 2 to generate the i-th trajectory Z(0)T+1,i,… ,Z(0)T+N,i
5: end for
6: Calculate mean Et and variance Vt at every time step using the nW trajectories
7: Calculate the losses for the mean and the variance:

LE =

√√√√ 1
N

T+N∑
t=T+1

(Yt − Et)2 , LV =

√√√√ 1
N

T+N∑
t=T+1

[
(Yt − Et)2 − Vt

]2

Algorithm 4 explains how to calculate losses for the mean and variance of the trajectories using Monte Carlo
simulation. Assume we simulate nW trajectories, the loss of mean LE between the mean of samples E and the target
series YT+1∶T+N , and the loss of variance LV between the variance of samples V and the target series YT+1∶T+N can
be calculated as:

LE =

√√√√ 1
N

T+N∑
t=T+1

(
Yt − Et

)2

LV =

√√√√ 1
N

T+N∑
t=T+1

[(
Yt − Et

)2 − Vt
]2

(28)

where Yt is the value of series Y at time t. The loss of mean LE is evaluated by taking the average of the difference
between values of the target series and their corresponding statistical mean of predicted samples. Similarly, the loss of
varianceLV is computed by taking the mean of the difference between calculated variance (Yt−Et

)2 and the statistical
variance of samples Vt.We improve the basic definition of the loss in Algorithm 4 to a more statistically robust and meaningful loss by
computing an average loss over several prediction horizons, as in Algorithm 5. In Algorithm 5, Y1∶t are the first
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t values in series Y, where t = 2,⋯ , T . Use each sub-series Y1∶t+N as input, RegPred Net can predict the mean
Et+1∶t+N and the variance Vt+1∶t+N of the nextN time steps, the label for Et+1∶t+N is actually the steps t + 1 ∶ t +N
of seriesY1∶t+N . The average loss of meanLE

avg and the average loss of varianceLV
avg are then calculated by averaging

T − 1 losses computed by running Algorithm 4 with Y1∶2+N ,⋯ , Y1∶T+N as inputs.

Algorithm 5 Calculating the average loss of mean LE
avg and the average loss of variance LV

avg

Input: number nW of trajectories perMonte Carlo simulation, input time seriesY1,… ,YT ,… ,YT+N ,H(1∶K),Z(1∶K)0
Output: LE

avg , LV
avg

1: for t = 2, . . . , T do
2: Run Algorithm 4 with Y1∶t+N as input series and get loss of mean LE

t+1∶t+N and loss of variance LV
t+1∶t+N for

a regression window [1, t], and prediction window [t, t +N] estimated over nW trajectories
3: end for
4: Calculate the average loss of mean and the average loss of variance:

LE
avg =

1
T−1

∑T
t=2 L

E
t+1∶t+N , LV

avg =
1

T−1
∑T
t=2 L

V
t+1∶t+N

5. Optimization of hyperparameters in RegPred Net
As explained in Sec. 4, RegPred Net generates trajectories and ultimately forecasts which (besides randomly

generated numbers) only depend on the initial value of the parameters A(1∶K)0 , N(1∶K)0 ,�(1∶K)0 and the learning rates
H(1∶K) =

[
�(1∶K)A , �(1∶K)N , �(1∶K)Σ , '(1∶K), �(1∶K)

]. In comparison to cells in conventional RNNs, the RegCell and Pred-
Cell have no weight or parameter to learn (via backpropagation through time). Despite this apparent simplicity, we
observe in the case of FX rate time series, that the RegPred Net’s regressed parameters and as a matter of consequence
simulations and forecasts are all very sensitive to the values of the hyperparameters. The selection of the RegPred
Net’s hyperparameters is a thorny minimization problem of a loss function with many local minima for which global
optimization is required. Note that the loss function Lavg = LE

avg + L
V
avgto minimize is a) noisy, as it is calculated

by Monte Carlo simulation, and b) costly to compute. Consequently, the optimization method chosen must be able
to handle noise in the objective function f , be parsimonious in the number of evaluations of f , and ideally shall not
require the evaluation of the derivative of f . All of these reasons make Bayesian optimization an adequate method to
find optimal values of the hyperparameters.
5.1. Bayesian optimization

Bayesian optimization is a heuristic algorithm to solve a maximization problem:
x∗ = argmax

x ∈ ℝd
f (x) (29)

where f is an objective function taking its values in ℝ. Bayesian optimization is a sequential decision strategy for
the efficient global optimization of black-box functions which does not require estimation of the function’s derivative.
Bayesian optimization used in this article tomaximize the RegPredNet’s negative loss f (x) = −Lavg = −(LE

avg+L
V
avg)

where x represents the network’s hyperparameters x = [
A(1∶K)0 , N(1∶K)0 ,�(1∶K)0 ,H(1∶K)

].
Bayesian optimization sequentially improves its estimates xn of the maximizer x∗ of f . At each step n, the value

of f (xn) is calculated and collected in the set of observations1∶n =
{(
xi, f (xi)

) ||| i = 1, ..., n
}
. This data set is used

to model the posterior distribution p(f (x′)|1∶n, x′) of the unknown and random value f (x) for any arbitrary x′. In
Gaussian Process Regression, it is assumed that the joint distribution of f (X) and f (x′) is multivariate Gaussian with
mean function zero and a covariance function or kernel k ∶ ℝ ×ℝ → ℝ:

[
f (X)
f (x′)

]
∼

(
0 ,

[
K(X , X) K(X , x′)
K(x′, X) k(x′, x′)

])
(30)
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where X = {
x1, ⋯ , xn

} and K(X , X) represents the n × n covariance matrix:

K(X , X) =
⎡
⎢⎢⎣

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

⎤
⎥⎥⎦

(31)

and similarly, K(X , x′) is the n × 1 covariance matrix computed for all possible combinations between vectors in X
and x′. K(x′ , X) = K(X , x′)T , and k(x′ , x′) = 1. A commonly used kernel is the Squared Exponential (SE), which
is a function-space expression of Radial Basis Function (RBF) (A.4):

cov(f (x), f (x′)) = k(x, x′) = exp
(
− 1
2l2

||x − x′||2
)

(32)
where l is a parameter that denotes the kernel’s width. A small l makes the covariance smaller, and vice versa. Notice
that the covariance between outputs f (x) and f (x′) is described as a function of the inputs x and x′. It implies that the
covariance between variables tends to 1 if their inputs are similar and tends to 0 if their inputs are different. Another
commonly used covariance function is the Matern class (Rasmussen and Williams, 2005, Sec. 4.2.1), defined as:

kMatern(||x − x′||) = 21−�
Γ(�)

(√2�||x − x′||
l

)�K�
(√2�||x − x′||

l
) (33)

where � is a positive parameter that controls the smoothness of the function and l is a positive scale parameter. Γ(⋅)
is a gamma function (A.5) and K� is the modified Bessel function (Abramowitz, 1974, Sec. 9.6). When � → ∞, Eq.
(33) is exactly the SE covariance function described in Eq. (32). The most commonly used values for the Matern class
in Machine Learning are � = 3∕2 and � = 5∕2:

k�=3∕2(||x − x′||) =
(
1 +

√
3||x − x′||

l

)
exp

(
−
√
3||x − x′||

l

)

k�=5∕2(||x − x′||) =
(
1 +

√
5||x − x′||

l
+
√
5||x − x′||2
3l2

)
exp

(
−
√
5||x − x′||

l

) (34)

Other covariance functions can be found in (Rasmussen and Williams, 2005, Chap. 4).
Under the Gaussian Process assumption, it can be proven (Rasmussen and Williams, 2005) using Bayes’ theorem

that the posterior distribution of f (x′) follows a normal distribution with mean �n and variance �2n :
p
(
f (x′) | 1∶n, x′

)
= (

�n(x′) , �2n (x
′)
)

�n(x′) = K(x′, X)TK(X, X)−1f (X)
�2n (x

′) = k(x′, x′) −K(x′, X)TK(X, X)−1K(X, x′)
(35)

After evaluating the posterior distribution of f (x′), Bayesian optimization requires the use of an acquisition func-
tion utility(⋅) to guide the search of the maximizer x∗. A high value of the acquisition function implies a potentially
high value of the objective function. The maximizer of the acquisition function provides the next estimate xn+1:

xn+1 = argmaxx utility(x | 1∶n) (36)
Many acquisition functions have been proposed in the past. One commonly used function is the Expected Improvement
(EI) from (Mockus et al., 2014). It defines first an improvement function I :

I(x) = max
{
0, f (x) − f (x∗)

} (37)
where f (x∗) denotes the best estimate the objective function so far. The expected improvement E(I) is defined by
E
(
max{0, f (x) − f (x∗)} | 1∶n

). E(I) is then calculated by:

E(I) = ∫
I=∞

I=0
I 1√

2��(x)
exp

(
−
(
�(x) − f (x∗) − I

)2
2�2(x)

)
dI

= �(x)
[�(x) − f (x∗)

�(x)
Φ
(�(x) − f (x∗)

�(x)
)
+ �

(�(x) − f (x∗)
�(x)

)]
(38)
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Eq. (38) can be analytically evaluated as:

E(I) =

{(
�(x) − f (x∗)

)
Φ(Z) + �(x)�(Z), if �(x) > 0

0, if �(x) = 0
Z =

�(x) − f (x∗)
�(x)

(39)

where Φ and � indicate the CDF and PDF of the standard normal distribution, respectively.
Amore general acquisition function, which allows controlling the balance between the exploitation and exploration

of the optimum of f is:

E(I) =

{(
�(x) − f (x∗) − �

)
Φ(Z) + �(x)�(Z), if �(x) > 0

0, if �(x) = 0
Z =

�(x) − f (x∗) − �
�(x)

(40)

where � ⩾ 0 is a parameter encouraging exploration in regions where the variance �(x) is large. By maximizing E(I)
with �, we find the next xn+1 that can lead to a higher value of f :

xn+1 =
{
argmaxx

(
�(x) − f (x∗) − �

)
Φ(Z) + �(x)�(Z), if �(x) > 0

0, if �(x) = 0
Z =

�(x) − f (x∗) − �
�(x)

(41)

Fig. 8 shows the Bayesian optimization of the function f (x) = e−(x−2)2 + e−(x−6)2∕10 + 1∕x2 + 1 that has a
global maximum in x = 2. The blue curve indicates the target (true function f ), the red squares are the observations
(xn, f (xn)), the dashed line represents the predicted mean of f and the purple area is a 95% confidence interval for
the target. The acquisition function in the lower part of the figure suggests a new maximizer x28 (red star) at iteration
n = 27 that is very close to the global optimum.

The Bayesian optimization algorithm transforms the optimization problem described in Eq. (29) to the optimization
problem presented in Eq. (41), which is easier to solve. Manymethods can be used to optimize Eq. (41), such as Quasi-
Newton methods (Hennig and Kiefel, 2013). Quasi-Newton methods like the Broyden–Fletcher–Goldfarb–Shanno al-
gorithm (BFGS) (Nocedal and Wright, 2006) can iteratively solve unbounded optimization problems which the func-
tion is non-smooth. As can be understood from its name, Limited-memory BFGS with Bounds (L-BFGS-B) (Byrd
et al., 1995) is another commonly used variant of BFGS with limited memory and bounds. Algorithm 6 summarizes
the procedure of Bayesian optimization to maximize the objective function f with imposed bounds on x.
5.2. Layerwise training of RegPred Net with Bayesian optimization

Since the number of dimensions for the variable x that can be handled by the Bayesian optimization procedure is
practically limited to roughly 20 (Frazier, 2018, Sec. 1) and d(1) = 3, d(2) = 21 but d(3) = 903, we are constrained to
a maximum ofK = 2 layers. Also, it is difficult to train simultaneously the hyperparameters of layers k = 1 and k = 2,
as this represents a total of 24 parameters. Thus, we adopt a layerwise training strategy and tune the hyperparameters
of the RegPred Net for only one layer at a time. We first consider a single-layer network (k = 1) and use Bayesian
optimization to find the optimal hyperparameters in that layer. Then, the learned parameters of the first layer are fixed
and we add a second layer to the network (k = 2) and train only the newly added hyperparameters. We get the optimal
parameters for the second layer and stop. The layerwise training procedure is summarized in Algorithm 7.

6. Experimental validation
In this section, we evaluate the performance of RegPred Net and compare it to other time series forecasting models.

The data set used for FX rates is described in Sec. 6.1. The models compared to RegPred Net include Deep Learning
models (LSTM, Auto-LSTM) as well as traditional time series models (ARMA, ARIMA). We gather and analyze
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Figure 8: Bayesian optimization of the function f (x) = e−(x−2)2 + e−(x−6)2∕10 + 1∕x2 + 1 in the search range [−2, 10]. The
global maximum of f is x = 2 and is found after 27 iterations.

all performance results in Sec. 6.5. The RegPred Net, LSTM and Auto-LSTM were implemented in Python’s Deep
Learning Framework Tensorflow (Abadi et al., 2015) and ARMA and ARIMA were implemented using statsmodels
(Seabold and Perktold, 2010).
6.1. Data set

The data set used covers three major FX rates: EUR/CNY, EUR/USD, and EUR/GBP. The historical data for
the corresponding time series span from 2000.01.04 to 2019.01.29, amounting to 19 years of data and 4975 daily
observations per time series. The data used in the experiments are daily closing values of the FX rates provided by
Bloomberg.
6.2. Experimental setting

For each FX rate considered, the historical data are used to generate n = 95 samples in window steps of 30 days,
as illustrated in Fig. 9. Each sample contains a portion of the data over a window ofNtrain,valid +Ntest days, wherebythe first Ntrain,valid days are used for training and validating the model considered in the experiment and the last
Ntest = 100 days are used for testing the performance of the model. The first Ntrain,valid days of a sample are in turn
sub-divided intoNtrain = 1830 days for training andNvalid = 200 days for validation. Then, for any given model and
performance metric considered, the arithmetic mean of the metric is estimated on the basis of calculated values in the
n samples and serves as performance statistics for the experimental validation.
6.3. Computing Infrastructure

The computing infrastructure used in this work are one computer with Intel Core(TM) i7-6700K (4.00 GHz) CPU
and Nvidia GeForce GTX 970 (6GB) GPU.
6.4. Setting for the models compared

In this section, we explain how we set the experiments for different model comparisons.
6.4.1. RegPred Net

We set the number of layers to K = 2 and train RegPred Net layerwise according to Algorithm 7. The number of
generated trajectories for each Monte Carlo simulation is nW = 50. For optimizing the acquisition function, L-BFGS-
B is used with 5 restart times and the bounds used are those detailed in Tab. 1. We set the number of iterations for
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Algorithm 6 Bayesian optimization of f (x) with bounds on x
Input: objective function f to maximize,N as the number of iterations, bounds for each element in x for L-BFGS-B,

number of different initial guesses of L-BFGS-BNs, � as the exploration parameter of expected improvement
Output: x∗, f (x∗)
1: Initialization: Initialize  as an empty list, the maximal function value so far as f (x∗) = −∞, Ns initial inputvectors within bounds for L-BFGS-B
2: for i = 1,… , N do
3: Use L-BFGS-B withNs different initial inputs to optimize E(I) and assign the optimum to xi:

E(I) =

{(
�i−1(x) − f (x∗) − �

)
Φ(Z) + �i−1(x)�(Z), if �i−1(x) > 0

0, if �i−1(x) = 0
Z =

�i−1(x) − f (x∗) − �
�i−1(x)

4: xi = argmaxx E(I)
5: Update the mean �i(xi) and covariance �2i (xi) of the posterior distribution:

p(f (xi) | D1∶i−1, xi) = (�i(xi), �2i (xi))
�i(xi) = K(xi , X1∶i−1)TK(X1∶i−1 , X1∶i−1)−1f (X1∶i−1)
�2i (xi) = k(xi , xi) −K(xi , X1∶i−1)

TK(X1∶i−1 , X1∶i−1)−1K(X1∶i−1 , xi)
6: the kernel k used is the Matern class function with � = 5∕2 and l = 1:

k�=5∕2, l=1(x, x′) =
(
1 +

√
5||x − x′|| +

√
5||x − x′||2

32
)
exp

(
−
√
5||x − x′||

)

K(X1∶i−1 , X1∶i−1) =
⎡
⎢⎢⎣

k(x1, x1) … k(x1, xi−1)
⋮ ⋱ ⋮

k(xi−1, x1) … k(xi−1, xi−1)

⎤
⎥⎥⎦

7: Calculate f (xi) from objective function f
8: if f (xi) > f (x∗) then
9: x∗ = xi

f (x∗) = f (xi)
10: end if
11: Add (xi, f (xi)

) to observations data set 1∶i−1
12: Update the covariance matrix of the Gaussian process model by calculating:

K(X1∶i , X1∶i) =
[
K(X1∶i−1,X1∶i−1) K(X1∶i−1 , xi)
K(xi , X1∶i−1) k(xi , xi)

]

13: end for
14: Return the maximizer x∗ and maximum value f (x∗)

Algorithm 7 Layerwise training of RegPred Net with K ≤ 2 layers by Bayesian optimization
Input: number of layers K , input time series Y0∶T+N
Output: optimal hyperparameters x(1 ∶K)∗ =

{
H(1 ∶K)∗ , Z(1 ∶K)0 ∗

} for the K layers of RegPred Net
1: for k = 1,… , K do
2: Add layer k to RegPred Net with x(k) as hyperparameters
3: Use Bayesian optimization in Algorithm 6 with f = −Lavg = −(LE

avg +L
V
avg) as objective function to find the

k-th layer’s optimal parameters x(k)∗ , where the average losses LE
avg and LV

avg are computed by Algorithm 5
4: end for

Bayesian optimization to D = 200. For the exploration parameter, we use � = 0.01 for EUR/CNY and EUR/GBP
and � = 0.05 for EUR/USD. Tab. 1 shows the bounds we used in L-BFGS-B algorithm for finding the optimal
hyperparameters of RegPred Net for different samples of time series by Bayesian optimization.
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Figure 9: Sampling of the historical data used for computing performance statistics.

Table 1
Bounds in the form of [min, max] used for finding the optimal hyperpa-
rameters of RegPred Net by Bayesian optimization.

A0, N0 Σ0 �A, �N , �Σ ', �

Layer 1 [-0.3, 0.3] [0.001, 0.01] [0.001, 0.3] [0.1, 1.0]
Layer 2 [-0.1, 0.1] [-0.001, 0.001] [0.001, 0.3] [0.1, 1.0]

6.4.2. LSTM and Auto-LSTM
Two Deep Learning models are considered: the LSTM and Auto-LSTM. For the LSTM, we test the architecture of

(Gensler et al., 2016) in both single-shot (predict in once) and autoregressive way (predict stepwisely), the single-shot
way failed on predicting long-term multi-steps time series forecasting task. We performed optimization of the LSTM’s
hyperparameters by grid search, considering a number of layers ranging from 1 to 5, learning rates of 10−2, 10−3 and
10−4, LSTM cells with 32, 64 and 128 units. The LSTM with the best results is illustrated in part (a) of Fig. 10, where
each layer is described by layer type and index / layer size (units) / activation function. We connect the output of the
last time steps of the LSTM 3 with a dense layer to generate the prediction. In autoregressive mode the network only
predicts 1 step at each time and predicts Nvalid = 200 and Ntest = 100 times. We compared the sigmoid and relu
activation functions for the last dense and chose the sigmoid for its superior performance. During training, an early
stopping technique with patience equals to 50 was used.

To build an Auto-LSTM, we stacked the auto-encoder illustrated in part (b) of Fig. 10 on top of the LSTM shown
in part (a). The auto-encoder was pre-trained and used to extract features from the input time series. We then fed the
time series into the auto-encoder and used the extracted features from the middle hidden layer (part (b), bottleneck) as
inputs for the LSTM.
6.4.3. ARMA and ARIMA

Two of the most important statistical models for time series forecasting are considered: Autoregressive Moving
Average (ARMA) (Whittle, 1983) and Autoregressive Integrated Moving Average (ARIMA) (McKenzie, 1984). An
ARMA model with orders p and q as hyperparameters is denoted ARMA(p, q) and is of the following form:

Xt = c + �t +
p∑
i=1

'iXt−i +
q∑
i=1

�i�t−i (42)

where Xt is the value of time series at time t, c is a constant, �t is a noisy term whose values are assumed to be i.i.d.
and normally distributed, '1,… , 'p are p parameters for the autoregressive part (AR) and �1,… , �q are q parameters
for the moving average part (MA) of the time series. ARIMA is a generalized version of ARMA. ARIMA uses
an additional hyperparameter d that plays the role of number of differencing steps required to make the time series
stationary. The differencing computes the differences between consecutive observations. This helps stabilize the time
series and eliminate the trend. Therefore, an ARIMA is represented in the form ARIMA(p, d, q). For the choice of
(p, d, q) order for the ARIMA, we referred to (Ho et al., 2002) and also compared several values for p, d, and q.
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Figure 10: Architecture of the LSTM and Autoencoder part of the Auto-LSTM used in the experimental
validation.

6.5. Experimental results
The performance statistics are here-after presented separately for the three FX rates EUR/CNY, EUR/USD and

EUR/GBP in Sec. 6.5.1, 6.5.2, and 6.5.3, respectively. The metrics we use to evaluate the forecasting performance of
the models are the Pearson correlation coefficient (Pearson’sR), R-squared (R2), Root mean square error (RMSE) and
Mean directional accuracy (MDA). For RegPred Net, it took 5 minutes to train each single sample of each currency
type in the data set using the 2 layers infrastructure described in Section 6.3. We use a batch size of the data set size of
each currency to train LSTM and Auto-LSTM, it took in average 1000 iterations and 120 minutes to finish the training.
For ARMA and ARIMA, we search the parameters p, d, q from 0 to 20 and take the best of them for each sample,
which costs around 5 minutes.
6.5.1. Experiment results of EUR/CNY

According to the results reported in Tab. 2, RegPred Net outperforms the other four models (LSTM, Auto-LSTM,
ARMA and ARIMA) regardless of the performance metric considered. The RedPred Net’s forecasts have a correlation
(R) with the true value of the FX rate that is 2.2 times higher than the second best correlated model (LSTM). RegPred
Net has an error (RMSE) that is about 30% lower than the error of the second most accurate model (ARIMA). For
MDA the gap between the methods is within 10%. For R-squared, all methods except RegPred are negative, which
means that the long-term forecasts do not follow the trend of the actual values. Our dataset has several instances where
exchange rates fall or rise sharply in the short term due to unexpected events (e.g., financial crises, wars). None of the
models involved in the experiments incorporate mechanisms to deal with such situations and therefore can not predict
such trends. When the forecasted FX rate has the same tendency as the actual exchange rate, R square is a number in
the interval (0, 1]. In contrast, the R square will be a negative number with a large absolute value when the two trends
are opposite.

Fig. 11 illustrates the forecasts obtained with RegPred Net, LSTM and ARIMA for 3 of the 95 data samples used.
In the examples, we see the RegPred Net’s better ability to predict the time-dependent shape and level of the FX rate’s
estimated trend (plotted in red) and the possibility offered by RegPred Net to interpret and visualize the FX rate’s
volatility via the 95% confidence zone (colored in gray).
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Table 2
Comparison of forecasting performance obtained for EUR/CNY. The results are presented in form of mean ± std., the best
results are indicated in bold font.

Pearson’s R R-squared RMSE MDA

RegPred Net 0.344 ± 0.443 0.141 ± 0.862 0.225 ± 0.141 0.568 ± 0.046
LSTM 0.156 ± 0.638 −4.888 ± 6.264 0.366 ± 0.234 0.517 ± 0.080
Auto-LSTM 0.141 ± 0.691 −5.120 ± 6.330 0.410 ± 0.272 0.488 ± 0.084
ARMA 0.047 ± 0.667 −2.359 ± 2.571 0.323 ± 0.230 0.502 ± 0.048
ARIMA 0.036 ± 0.668 −2.279 ± 2.740 0.318 ± 0.225 0.460 ± 0.089
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(c) RegPred, sample 83
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(e) LSTM (Autoregressive), sample 38
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(f) LSTM (Autoregressive), sample 83
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(g) ARIMA, sample 2
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(h) ARIMA, sample 38
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Figure 11: Forecasts obtained for EUR/CNY with RegPred Net, LSTM (Single-shot) and ARIMA in 3 situations.
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6.5.2. Experiment results of EUR/USD
In our second experiment, we consider the EUR/USD: an interesting case of erratic time series characterised by

the existence of major trend reversals, unstable and often high volatility levels and the frequent occurrence of large
(positive or negative) jumps. According to the results reported in Tab. 3, RegPred Net also outperforms the other four
models (LSTM, Auto-LSTM, ARMA and ARIMA) regardless of the performance metric considered. The RedPred
Net’s forecasts have a correlation R with the true value of the FX rate that is 7 times higher than the second best
correlated model (LSTM). RegPred Net has an error (RMSE) that is about 25% lower than the error of the second most
accurate model (ARIMA). A few representative situations of the predictions of RegPred Net, LSTM and ARIMA can
be found in Fig. 12, as previously done for EUR/CNY.

Table 3
Comparison of forecasting performance obtained for EUR/USD. The results are presented in form of mean ± std., the best
results are indicated in bold font.

Pearson’s R R-squared RMSE MDA

RegPred Net 0.342 ± 0.453 0.108 ± 0.964 0.038 ± 0.021 0.544 ± 0.048
LSTM 0.043 ± 0.656 −21.983 ± 30.188 0.093 ± 0.050 0.501 ± 0.052
Auto-LSTM −0.013 ± 0.062 −27.212 ± 30.544 0.116 ± 0.083 0.344 ± 0.051
ARMA 0.051 ± 0.684 −2.695 ± 3.110 0.053 ± 0.033 0.498 ± 0.055
ARIMA −0.020 ± 0.700 −2.042 ± 1.744 0.051 ± 0.035 0.476 ± 0.095

6.5.3. Experiment results of EUR/GBP
The experimental results for EUR/GBP are shown in Tab. 4. From the table we observe results consistent with

those of EUR/CNY and EUR/USD, with a correlation to the true value of the target variable increased by a factor 4
and a reduction of error of 30%. Again, some examples of predictions are shown in Fig. 13.

Table 4
Comparison of forecasting performance obtained for EUR/GBP. The results are presented in form of mean ± std., the best
results are indicated in bold font.

Pearson’s R R-squared RMSE MDA

RegPred Net 0.434 ± 0.384 0.193 ± 0.871 0.019 ± 0.011 0.537 ± 0.052
LSTM 0.168 ± 0.680 −9.569 ± 14.620 0.035 ± 0.020 0.507 ± 0.063
Auto-LSTM −0.001 ± 0.440 −10.150 ± 16.233 0.050 ± 0.034 0.407 ± 0.071
ARMA 0.049 ± 0.644 −2.051 ± 2.575 0.027 ± 0.017 0.495 ± 0.054
ARIMA −0.111 ± 0.630 −2.106 ± 2.436 0.025 ± 0.016 0.447 ± 0.084

7. Conclusion
In this article, we proposed a novel regression network baptised RegPred Net to forecast daily FX rates in the long

term (100 days or more) in an explainable way, by exploiting the regressed and time-dependent parameters of a gen-
eralized mean-reverting or Ornstein-Uhlenbeck (OU) process. A layerwise procedure based on Bayesian optimization
was designed to efficiently train the network in this hard domain of application of Machine Learning.

Despite the strong non-stationarity of FX rates (absence of clear trends and unstable volatility levels), RegPred
Net allows to robustly derive via Monte Carlo simulation some accurate and interpretable long term forecasts. In the
experiments conducted with 3 of the most traded currencies worldwide (US dollar, Euro and Chinese Yuan) over a
history of 19 years, a RegPred Net with 2 layers significantly outperformed other Deep Learning-based models (LSTM,
Auto-LSTM) and traditional time series forecasting models (ARMA, ARIMA), reducing the forecasting error (RMSE)
by 25-30% and increasing the statistical correlation (R) between forecast and actual value of FX rate by a factor of 2
to 7. The RegPred Net’s R-squared coefficient is positive while the others are negative and its MDA is in average 10%
higher than the others.
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(c) RegPred, sample 86
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(d) LSTM sample 13
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(e) LSTM, sample 20
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(f) LSTM, sample 86
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(g) ARIMA, sample 13
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(h) ARIMA, sample 20

1400 1600 1800 2000
Time (days)

1.05

1.10

1.15

1.20

1.25

1.30

FX
 ra

te

R: -0.201,  RMSE: 0.014,  MDA: 0.556
Input
Label_Train
Label_Pred
Pred

(i) ARIMA, sample 86

Figure 12: Forecasts obtained for EUR/USD with RegPred Net, LSTM and ARIMA in 3 situations.

This Deep Learning and generative model of FX rates can in principle be used for simulating general stochastic
and non-stationary environment variables following Brownian motion or mean-reverting processes, such as is often
considered to be the case in Finance with bond or stock prices and FX rates. Such a model can thus be employed for
solving a range of risk analysis and sequential decision making problems.
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(c) RegPred, sample 87
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(d) LSTM, sample 13
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(f) LSTM, sample 87
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(g) ARIMA, sample 13

1400 1600 1800 2000
Time (days)

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

FX
 ra

te

R: -0.341,  RMSE: 0.016,  MDA: 0.485
Input
Label_Train
Label_Pred
Pred

(h) ARIMA, sample 48

1400 1600 1800 2000
Time (days)

0.70

0.75

0.80

0.85

0.90

0.95

FX
 ra

te

R: 0.380,  RMSE: 0.017,  MDA: 0.556
Input
Label_Train
Label_Pred
Pred

(i) ARIMA, sample 87

Figure 13: Forecasts obtained for EUR/GBP with RegPred Net, LSTM and ARIMA in 3 situations.

A. Mathematical Background
A.1. Matrix / Vector Differentiation

A Matrix
a Vector (column-vector)
a Scalar

)xT a
)x

= )aT x
)x

= a (43)

)aTXa
)a

= (X + XT )a (44)

First Author et al.: Linwei Li, Paul-Amaury Matt, Christian Heumann Page 24 of 28



Foreign exchange rate forecasting with regression network

)aTXb
)X

= abT (45)

)aTXT b
)X

= baT (46)

)aTXTXb
)X

= X(abT + baT ) (47)

)aTXa
)X

= )aTXT a
)X

= aaT (48)

A.2. Gaussian Distirbution
The Gaussian or normal distribution is given by the following probability density function:

f (x | �, �2) = 1√
2��2

e−
(x−�)2

2�2 (49)

where � is the mean or expectation of the distribution, � is the standard deviation and �2 the variance.
A.3. Multivariate Gaussian Distirbution

The multivariate Gaussian (normal) distribution generalizes the univariate normal distribution to higher dimen-
sions. A vector-valued random variable x ∈ ℝn is considered as multivariate normal distribution of mean � ∈ ℝn and
covariance matrix Σ ∈ Sn++ if its probability density distribution follows

p(x; �,Σ) = 1
(2�)n∕2|Σ|1∕2 exp

(
− 1
2
(x − �)TΣ−1(x − �)

)
(50)

Eq. (50) can be written as x ∼ (�,Σ). Sn++ refers to the space of symmetric positive definite n × n matrices.
A.4. Radial Basis Function

The Radial Basis Function (RBF) kernel, commonly used in kernelized learning algorithms, e.g. SVMs is defined
as:

k(x, x′) = exp( − 1
2�2

||x − x′||2) (51)

where ||x − x′||2 is the squared Euclidean distance between two feature vectors x and x′. � is a free parameter which
indicates the width of the kernel. Since the output range of RBF is in [0 , 1], which is inversely proportional to the
distance between vectors, RBF is often used as a similarity measure.
A.5. Gamma function

The Gamma function is the generalization of the factorial function to complex numbers and is defined as:

Γ(z) = ∫
∞

0
xz−1e−xdx (52)

where z is a complex number with positive real part (Re(z) > 0). The function has the follow property:
Γ(z + 1) = zΓ(z) (53)
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B. Mathematical Derivations
B.1. Simplification of the Covariance Matrix

Each element cov(�i,t, �j,t) of the d × d covariance matrix K��,t is equal to:

cov(�i,t, �j,t) = E
[(
�i,t − E(�i,t)

)(
�j,t − E(�j,t)

)]

= E
(
�i,t ⋅ �j,t

) since E(�i,t) = 0 (Eq. (3))

= E
( d∑
k=1

d∑
k′=1

�i,k ⋅ �j,k′ ⋅ ΔWk,t ⋅ ΔWk′,t

)

= E
( d∑
k=1

�i,k ⋅ �j,kΔW 2
k,t

) since E(ΔWk,t ⋅ ΔWk′,t) = 0 when k ≠ k′,
because ΔWi,t are independent and E(ΔWi,t) = 0

=
d∑
k=1

�i,k ⋅ �j,k ⋅ E
(
ΔW 2

k,t

)

=
d∑
k=1

�i,k ⋅ �j,k since ΔWk, t ∼ N (0, 1), (Sec. 3.3)

(54)

B.2. Computation of the Gradients of A,N,�
The loss Lt

(
At−1;Nt−1

) in Eq. (12) can be further computed as:

Lt
(
At−1;Nt−1

)
=
[
ΔYt −

(
At−1 ⋅ Yt−1 + Nt−1

)]T [
ΔYt −

(
At−1 ⋅ Yt−1 + Nt−1

)]

=ΔYTt ΔYt − ΔY
T
t At−1Yt−1 − ΔY

T
t Nt−1 − Y

T
t−1A

T
t−1ΔYt

+ YTt−1A
T
t−1At−1Yt−1 + Y

T
t−1A

T
t−1Nt−1 − N

T
t−1ΔYt + N

T
t−1At−1Yt−1 + N

T
t−1Nt−1

(55)

According to the matrix differentiation rules in Eq. (45), (46), (47) and the definition of �t in Eq. (11), the partial
derivative of Lt(At−1;Nt−1) with respect to At−1 is calculated as:

)Lt(At−1;Nt−1)
)At−1

= −2 ⋅ ΔYtYTt−1 + 2 ⋅ At−1Yt−1Y
T
t−1 + 2 ⋅ Nt−1Y

T
t−1

= −2 ⋅ �tYTt−1

(56)

Similarly, the partial derivative of Lt(At−1;Nt−1) with respect to Nt−1 is:
)Lt(At−1;Nt−1)

)Nt−1
= −2 ⋅ ΔYt + 2 ⋅ At−1Yt−1 + 2 ⋅ Nt−1

= −2 ⋅ �t
(57)

To calculate the derivative of the loss Lt(�t−1) (Eq. (19)) with respect to �t−1, first calculate the derivative of
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Lt(�t−1) with respect to a single coefficient �ij,t−1 of the matrix �t−1:

)Lt(�t−1)
)�ij,t−1

=
)|||
||| �t−1�Tt−1 − ̂cov(�t)

|||
|||
2

2
)�ij,t−1

=
)
∑
l,m

((
�t−1�Tt−1

)
l,m − ̂cov(�t)l,m

)2

)�ij,t−1

=
∑
l,m

)
((
�t−1�Tt−1

)
l,m − ̂cov(�t)l,m

)2

)�ij,t−1

=
∑
l,m
2 ⋅

((
�t−1�Tt−1

)
l,m − ̂cov(�t)l,m

)
⋅

⎛⎜⎜⎜⎝

)
((
�t−1�Tt−1

)
l,m − ̂cov(�t)l,m

)

)�ij,t−1

⎞⎟⎟⎟⎠
(1)

(58)

where the subscript l, m represents the position at line l and column m. (�t−1�Tt−1
)
l,m and cov(�t)l,m are:

(
�t−1�Tt−1

)
l,m =

d∑
k=1

�lk,t−1 ⋅ �mk,t−1 (59)

cov(�t)l,m = cov(�l,t, �m,t) (60)
respectively.

Substituting Eq. (59) into term (1) of Eq. (58), we get:

)
((
�t−1�Tt−1

)
l,m − ̂cov(�t)l,m

)

)�ij,t−1
=
)

d∑
k=1

�lk,t−1 ⋅ �mk,t−1

)�ij,t−1
= �(i,l) ⋅ �mj,t−1 + �(i,m) ⋅ �lj,t−1 �(a,b) = 1 when a = b, else �(a,b) = 0

(61)

Thus, Eq. (58) simplifies as:
)Lt

(
�t−1

)
)�ij,t−1

=
∑
l,m
2 ⋅

((
�t−1�Tt−1

)
l,m − ̂cov(�t)l,m

)(
�(i,l) ⋅ �mj,t−1 + �(i,m) ⋅ �lj,t−1

)

=
∑
m
2 ⋅

((
�t−1�Tt−1

)
i,m − ̂cov(�t)i,m

)
⋅ �mj,t−1

(1)

+
∑
l
2 ⋅

((
�t−1�Tt−1

)
l,i − ̂cov(�t)l,i

)
⋅ �lj,t−1

(2)

(62)

Term (1) in Eq. (62) is 2 ⋅ (�t−1�Tt−1 − ̂cov(�t)
)
line i ⋅ (�t−1)column j and term (2) is 2 ⋅ (�t−1�Tt−1 − ̂cov(�t)

)T
line i ⋅

(�t−1)column j , where
(
�t−1�Tt−1 − ̂cov(�t)

)T = �t−1�Tt−1 − ̂cov(�t). Therefore,
)Lt(�t−1)
)�ij,t−1

= 4 ⋅
((
�t−1�Tt−1 − ̂cov(�t)

)
⋅ �t−1

)
i,j

(63)

and the derivative of Lt(�t−1) with respect to the matrix �t−1 is finally
)Lt(�t−1)
)�t−1

= 4 ⋅
(
�t−1�Tt−1 − ̂cov(�t)

)
⋅ �t−1 (64)
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Abstract
In this article, we consider the case of a multinational company realizing profits in a country other than its base country.
The currencies used in the base and foreign countries are referred to as the domestic and foreign currencies respectively.
For its quarterly and yearly financial statements, the company transfers its profits from a foreign bank account to a domestic
bank account. Thus, the foreign currency liquidation task consists formally in exchanging over a period T a volume V of
cash in the foreign currency f for a maximum volume of cash in the domestic currency d . The foreign exchange (FX)
rate that prevails at time t is denoted Xd/f (t) and is defined as the worth of one unit of currency d in the currency f . We
assume in this article that the natural logarithm of the FX rate xt = logXd/f (t) follows a discrete generalized Ornstein-
Uhlenbeck (OU) process, a process which generalizes the Brownian motion and mean-reverting processes. We also assume
minimum and maximum volume constraints on each transaction. Foreign currency liquidation exposes the multinational
company to financial risks and can have a significant impact on its final revenues, since FX rates are hard to predict and often
quite volatile. We introduce a Reinforcement Learning (RL) framework for finding the liquidation strategy that maximizes
the expected total revenue in the domestic currency. Despite the huge success of Deep Reinforcement Learning (DRL) in
various domains in the recent past, existing DRL algorithms perform sub-optimally in this task and the Stochastic Dynamic
Programming (SDP) algorithm – which yields the optimal strategy in the case of discrete state and action spaces – is rather
slow. Thus, we propose here a novel algorithm that addresses both issues. Using SDP, we first determine numerically the
optimal solution in the case where the state and decision variables are discrete. We analyse the structure of the computed
solution and derive an analytical formula for the optimal trading strategy in the general continuous case. Quasi-optimal
parameters of the analytical formula can then be obtained via grid search. This method, simply referred to as ”Estimated
Optimal Liquidation Strategy” (EOLS) is validated experimentally using the Euro as domestic currency and 3 foreign
currencies, namely USD (US Dollar), CNY(Chinese Yuan) and GBP(Great British Pound). We introduce a liquidation
optimality measure based on the gap between the average transaction rate captured by a strategy and the minimum rate
over the liquidation period. The metric is used to compare the performance of EOLS to the Time Weighted Average Price
(TWAP), SDP and the DRL algorithms Deep Q-Network (DQN) and Proximal Policy Optimization (PPO). The results show
that EOLS outperforms TWAP by 54%, and DQN and PPO by 15 − 27%. EOLS runs in average 20 times faster than DQN
and PPO. It has a performance on par with SDP but runs 44 times faster. EOLS is the first algorithm that utilizes a closed-
form solution of the SDP strategy to achieve quasi-optimal decisions in a liquidation task. Compared with state-of-the-art
DRL algorithms, it exhibits a simpler structure, superior performance and significantly reduced compute time, making EOLS
better suited in practice.

Keywords Liquidation · Foreign exchange rates · Stochastic process · Reinforcement learning ·
Stochastic dynamic programming
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1 Introduction

In this article, we consider the case of a multinational
company realizing profits in a country other than its base
country. The currency in use in the base and foreign
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countries are referred to as the domestic and foreign
currencies respectively. For its quarterly and yearly financial
statements, the company transfers its profits from a foreign
bank account to a domestic bank account. Foreign Exchange
(forex or FX) is the trading of one currency for another.
For example, one can swap the U.S. Dollar for the Euro.
Foreign exchange transactions can take place on the foreign
exchange market, also known as the forex market. We call
foreign currency liquidation the task of exchanging a given
total amount of cash V expressed in a given foreign currency
f for the specified domestic currency d at the prevailing
FX rates Xd/f (t) during a specified period t = 0, 1, . . . , T
of T days. Here Xd/f (t) denotes the value of 1 unit of
currency d expressed in currency f at t . The revenue
generated by exchanging nt units of the foreign currency
at t is thus given by Rt = nt/Xd/f (t) and is expressed in
the domestic currency. At the end of the liquidation period,
the total revenue generated is WT = ∑T −1

t=0 Rt . The method
followed to determine the traded volumes nt is called
liquidation strategy and the goal is to find a liquidation
strategy that maximizes the expected total revenue E(WT )

for the company.
The FX rate is influenced by many factors in the domestic

and foreign countries, such as inflation, interest rates, public
debt, political stability, economic health, balance of trade,
current account deficit, market confidence and speculation.
In Quantitative Finance, they are thus often modeled using
stochastic processes such as drifted Brownian motion or the
mean-reverting process, also known as Ornstein-Uhlenbeck
process. Such models can be employed to simulate FX
rates trajectories and evaluate the future performance of a
liquidation strategy.

Reinforcement Learning (RL) [1] is an area of Machine
Learning concerned with how intelligent agents ought to
take actions in an environment in order to maximize the
notion of cumulative reward. RL is one of three basic
Machine Learning paradigms, alongside Supervised Learn-
ing and Unsupervised Learning and is a natural paradigm
for solving the foreign currency liquidation problem.
Recently, RL algorithms have been combined with Deep
Neural Networks (DNN) [2, 3], as for example Deep Q-
Networks (DQN) [4], Proximal Policy Optimization (PPO)
[5] and Deep Deterministic Policy Gradient (DDPG) [6].
They have been quite successful in complex sequential deci-
sion problems in the domains of Robotics and Video Games
for instance.

We observe however that these methods do not perform
optimally in our setting, where the main environment vari-
able (FX rate) is very hard to predict and can be neither
controlled nor influenced by the trading agent. Fortunately,
Dynamic Programming (DP) is not only tractable in our set-
ting, but also yields the optimal liquidation strategy if the

state and action spaces are discretized with a sufficient level
of granularity. Using Stochastic Dynamic Programming
(SDP), we first determine the optimal solution in the case
where the problem variables are discrete. Plotting the solu-
tions obtained allows then to guess the analytical form of the
optimal trading strategy in the general case of continuous
trading volumes. Near-optimal parameters of the analyti-
cal formula can finally be obtained via grid search. This
method, simply referred to as “Estimated Optimal Liqui-
dation Strategy” (EOLS) is validated experimentally using
the Euro as domestic currency and 3 foreign currencies,
namely the USD (US Dollar), CNY(Chinese Yuan) and
GBP(Great British Pound) and the performance and com-
pute time are compared to SDP, TWAP, DQN and PPO.
To evaluate the performance of a strategy, we also propose
a metric called liquidation optimality Oliq in Section 6.4,
which measures the gap between between the average trans-
action rate captured by the strategy and the minimum rate
over the liquidation period. A value of Oliq = 1 indicates
that the entire volume has been liquidated at the lowest
possible rate and that the collected revenues are maximal,
and Oliq = 0 means that the volume has been liqui-
dated at the maximum rate and the revenue generated are
thus minimal.

In summary, our contribution is a new algorithm which
1) is quasi-optimal and outperforms state-of-the-art DRL
approaches and 2) is simpler and runs faster than SDP
in the foreign currency liquidation task. The rest of this
article is organized as follows. Section 2 is dedicated to
a discussion of related work. In Section 3 we introduce
and define the generalized OU process used to model
FX rates. In Section 4, we formally define the foreign
currency liquidation problem and the corresponding RL
framework. Section 5 introduces SDP and exposes our
proposed EOLS algorithm. Section 6 offers a detailed
experimental validation and we conclude in Section 7.

2 Related work

The problem of optimal trade execution is concerned with
the optimal acquisition or liquidation of large asset posi-
tions. In doing so, it is usually beneficial to split up the
large order into a sequence of partial orders, which are
then spread over a certain time horizon, so as to reduce the
overall price impact and the trade execution costs. Optimal
liquidation has become since a few decades an important
problem in Finance Research and the Corporate Finance of
multinational firms.

One of the simplest acquisition/liquidation strategies
that exists is usually referred to as the naive strategy. It
consists in buying/selling at every time step t of the trading
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period of length T an equal portion V/T of the total
volume V to acquire/liquidate, regardless of the market
price or value. The average price thus captured is roughly
the arithmetic average of the prices over the entire period
and constitutes an important metric for benchmarking trade
execution strategies. It was introduced by [7] and is referred
to as Time Weighted Average Price (TWAP).

Bertsimas and Lo [8] consider the problem of acquiring
(rather than liquidating) an asset and seek to minimize the
expected execution cost, which is a mathematically equiv-
alent problem to the one of maximizing the expected liq-
uidation revenue. They assume that the asset price follows
a simple random walk (Brownian motion without drift) but
include also a linear impact of the traded volume on the asset
price. Using SDP they derive a closed-form solution for the
optimal acquisition strategy.

Almgren and Chriss [9] address the problem of liqui-
dating an asset and seek to minimize the mean-variance
E+λV of the execution cost, thereby including in the objec-
tive function the risk-aversion of the trading agent. They
assume that the asset price follows a Brownian motion with
drift and include linear temporary and permanent market
impact of trading in their model. Solving the mean-variance
minimization problem analytically, they obtain the closed-
form solution for the optimal liquidation strategy as well as
the “efficient frontier”, i.e. the curve formed by all optimal
mean and variance value pairs (V, E) for various levels of
the risk-aversion parameter λ.

Other works on optimal trade execution use the Limit
Order Book (LOB), which fully describes the micro-
scruture of the market at any time. The authors in [10]
extend the framework of [9] with elements from the market
micro-structure for real-time trade execution. They adopt
a RL approach and train a Q-learning agent to adapt the
analytical solution derived by [9] to the current trading
conditions of the market. The agent is thus able to improve
the trading performance by up to 10% in average on 3
stocks. Théate and Ernst [11] and [12] apply Q-learning for
the optimal liquidation on millisecond time-scale NASDAQ
market microstructure data sets. They show that Q-learning
can result in significant improvements over simple strategies
such as the “submit-and-leave” policy. Ning et al. [13,
14] and [15] also applied RL models for optimal trade
execution using the LOB as market model. Schnaubelt [16]
presents a RL application for cryptocurrency exchanges by
learning optimal limit order placement strategies. They use
the Implementation Shortfall (IS) as metric and compare
the performance of double-DQN and PPO to TWAP,
the submit-and-leave execution strategy and backwards-
induction Q-learning on high-frequency cryptocurrency
exchange data. The results show that PPO performs best and

can reduce in average by more than 36% the IS in a single
market order execution.

Other model-free RL-based approaches to trading prob-
lems require the extraction of intrinsic characteristics of
the market to learn a trading policy. For instance, [17]
embed a DL model into Direct RL for real-time financial
trading. The DL part is a deep recurrent neural network
trained for extracting informative features from the market
data on which to base the trading policy. Their approach
is tested on both stock-indices and commodity future con-
tracts. The results are evaluated in terms of Profit and
Loss (P&L) and Sharpe ratio. They show that the pro-
posed framework generally outperforms the original Direct
RL model on these trading tasks. Wu et al. [18] adopt a
similar approach to [17], but instead of using traditional
recurrent neural network for feature learning and a Direct
RL model for decision-making, they combine Gated Recur-
rent Units with DQN and Deterministic Policy Gradient
(DPG) to make stock trading decisions. With the metrics
of R score and Sharpe ratio, their models outperform the
Turtle trading strategy (purchasing a stock or contract dur-
ing a breakout and quickly selling on a retracement or
price fall) and obtain more stable returns than with Direct
RL in volatile market conditions. Finally, [19] address the
challenge of continuous action and multi-dimensional state
spaces and propose the so-called Stacked Deep Dynamic
Recurrent Reinforcement Learning (SDDRRL) architecture
to construct a real-time optimal portfolio. The approach
is tested on 10 stocks from the S&P500 and the Sharpe
ratio is used as performance measure. Their results indi-
cate that the proposed model outperforms the rolling hori-
zon Mean-Variance Optimization (MVO) model, the rolling
horizon risk parity model, and the uniform buy-and-hold
(UBAH) index.

3 Generalized Ornstein-Uhlenbeck process

In this paper, we consider times series of daily FX rates.
Concretely, the market worth at time t of one unit of the
domestic currency d expressed in units of the currency f is
denoted Xd/f (t). Since FX rates are always strictly positive,
we can take their natural logarithm. Let us then denote
xt = logXd,f (t). The series xt is now real valued, i.e.
can be either positive or negative. We choose to model the
natural logarithm of the FX rate xt by a discrete stochastic
process, i.e. a sequence of random variables {xt }t∈N where
t is a positive or null integer.

The discrete Wiener process or Brownian motion [20] is
a discrete stochastic process wt defined by the following
properties: i) w0 = 0, and ii) for every t ≥ 1, the increments
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given by the differences of the form �wt = wt − wt−1 are
independent and normally distributed �wt ∼ N (0, 1).

Discrete Brownian motion with drift is another discrete
stochastic process xt based on the Wiener process, defined
by i) x0 ∈ R and ii) for every t ≥ 1, �xt = xt − xt−1 =
μ + σ�wt , where the μ ∈ R is a parameter called drift and
σ > 0 is a second parameter called volatility. The Wiener
process is a special case of Brownian motion where the drift
is null (μ = 0) and the volatility is one (σ = 1). Here, the
drift parameter is interpreted as the deterministic trend of
the process and the volatility as the amplitude of the noise
or non-deterministic component in the process.

The mean-reverting process, also called Ornstein-Uhlen-
beck (OU) process, is defined by i) x0 ∈ R and ii) �xt =
xt − xt−1 = α(n − xt−1) + σ�wt where α ∈ R is a
parameter called mean-reversion rate, n ∈ R is called mean-
reversion level and σ > 0 is the volatility. This equation
describes the dynamics of a variable that randomly fluctu-
ates around some mean level n, follows random increments
with an amplitude controlled by σ and tends to revert back
to n at a speed controlled by α (assuming this parameter has
a strictly positive value).

FX rates are often modelled as mean reverting processes
over long periods and as Brownian motion with drift over
short periods. Figure 1 illustrates some trajectories of a
Wiener process, a Brownian motion and a mean-reverting
process over a period of 500 time steps.

The mean-reverting process and drifted Brownian motion
can thus be generalised to a process xt defined by x0 ∈ R
and the increments

�xt = A · xt−1 + N + � · �wt (1)

where A, N, � are a real-valued coefficients. Observe that
when A = 0, N = 0, and � = 1, the generalized OU
process is a Wiener process. When A = 0, the generalized
OU process is a Brownian motion with drift μ = N and
volatility σ = �. Finally whenA = −α,N = α ·n and� =
σ , the generalized OU process is an OU process with mean-
reversion rate α, mean-reversion level n and volatility σ .

The generalized OU process thus encompasses both the
Brownian motion with drift and the mean-reverting process.

4 Optimal liquidation

In this section, we formally define the foreign currency liq-
uidation problem and the corresponding RL framework.

4.1 Foreign currency liquidation

Assume we have the task of exchanging a total volume of
V units of a foreign currency f with the domestic currency
d within a period of length T : t = 0, . . . , T . We define the
decision variable nt as the amount of foreign currency to
exchange for the domestic currency immediately after t and
strictly before t + 1. The decision variable is subject to the
following transaction volume and total liquidation constraints:
for every t = 0, . . . , T −2 either nt = 0 or nmin ≤nt ≤nmax ,
and nT −1=vT −1. The FX rate Xd/f (t) denotes the value of
1 unit of currency d expressed in currency f at t . Thus, the
revenue generated by exchanging nt units of the foreign cur-
rency at t is Rt = nt/Xd/f (t) and is expressed in units of
the domestic currency. We denote the natural logarithm of
the FX rate xt = logXd/f (t) and will assume that it fol-
lows a generalised OU process with known parameters
A, N, �. We call liquidation trajectory any finite decreas-
ing sequence v0 = V, ..., vT = 0, where vt corresponds to
the remaining volume to liquidate at time t and is given by

vt = V −
t−1∑

j=0

nj , t = 1, . . . , T

The procedure that determines the sequence of traded
volumes n0, . . . , nT −1 is called liquidation strategy. The
sum of revenues generated until step t is given by

Wt =
t−1∑

j=0

Rj

Fig. 1 Trajectories of a Wiener process, Brownian motion and mean-reverting process
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and the problem is to find a liquidation strategy that maxi-
mizes the expected total revenue

E(WT ) = E
(T −1∑

t=0

Rt

)

4.2 RL environment for foreign currency liquidation

The stated liquidation problem can be naturally formulated
as a RL problem. The corresponding RL framework is for
described here-after in terms of the state s of the environment,
the set of possible actions a and the reward rt collected by
the agent after performing some action a in state s at time t .
Note that since the problem has a finite time horizon T , we
can set the discount factor for future rewards to γ = 1.

The state st = [
xt , vt , t

]
observed at time t includes

the natural logarithm of the FX rate xt , the volume vt that
remains to be liquidated and the time step t . The action at in
our problem is defined as the previously introduced decision
variable nt subject to the transaction volume and liquidation
constraints. The reward at t is rt = Wt+1 − Wt = Rt if
t ∈ {0, . . . , T − 1} and rT = 0.

In the state st , the agent executes action at = nt and the
environment returns the reward rt . Then the state makes a
transition from st = [

xt , vt , t
]
to st+1 = [

xt+1, vt+1, t +
1
]
, where xt+1 follows the dynamic described in (1) and

vt+1 = vt −nt . The coefficients A, N, � of the generalized
OU process remain unchanged over the entire liquidation
period.

5Methodology

In this section, we introduce SDP and expose our proposed
EOLS algorithm.

5.1 Stochastic dynamic programming

First, SDP requires a discrete version of the RL framework.
Since the parameters A, N, � of the OU process are
assumed to be known (by calibration from past data) and
the current value x0 is known at the beginning of the
liquidation period, we use the definition of the increment
�xt and simulate a sufficiently large number M of random
trajectories for xt over t = 0, . . . , T . The generated
trajectories allow us to estimate upper and lower bounds
xmax, xmin for xt . The variable xt and subsequently the state
space are then discretized using indices i, j, t as follows:
si,j,t = [xi, vj , t] = [xmin + i · �x, j · �v, t], where
i ∈ {0, 1, . . . , Nx}, �x = xmax−xmin

Nx
, j ∈ {0, 1, . . . , Nv},

�v = V/Nv and t ∈ {0, 1, . . . , T }.
The set of possible actions in any state si,j,t is then

A(si,j,t ) =

⎧
⎪⎨

⎪⎩

{j ′ · �v, 0 ≤ j ′ ≤ j and nmin ≤ j ′ · �v ≤ nmax, when j ′ > 0}
for t �= T

{j · �v} for t = T

(2)

The probability of transition from state si,j,t and action ai,j,t to state si′,j ′,t+1 is decomposed as follows, where we rely
on the fact that xt is not influenced by the performed action ai,j,t . I is the indicator function and is equal to 1 if the condition
given as argument is true and is equal to 0 otherwise.

P(si′,j ′,t+1 | si,j,t , ai,j,t ) = P(xi′ | xi)P (vj ′ | vj , ai,j,t )

= P(xi′ | xi)I (vj ′ = vj − ai,j,t )
(3)

The probability of transition from xi at t to xi′ at t +1 is obtained by discretizing the normal distribution N (μ, σ 2), where

μ = (A + 1) · xi + N and σ = �. Using the notation φ(ta) = ∫ ta
−∞

e
− t2

2√
2π

dt for the cumulative normal distribution, we get

P(xi′ | xi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ
√
2π

∫ xmin

−∞
e
− [x−μ]2

2σ2 dx = φ
(xmin − μ

σ

)
, if i′ = 0

1

σ
√
2π

∫ xmin+i′·�x

xmin+(i′−1)·�x

e
− [x−μ]2

2σ2 dx

= φ
(xmin + i′ · �x − μ

σ

)
− φ

(xmin + (i′ − 1) · �x − μ

σ

)

if 1 ≤ i′ ≤ Nx − 1

1

σ
√
2π

∫ +∞

xmax−�x

e
− [x−μ]2

2σ2 dx = 1 − φ
(xmax − �x − μ

σ

)

if i′ = Nx

(4)
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The detailed SDP for optimal liquidation of a volume
V of a foreign currency is given in pseudo-code as
Algorithm 1. It iterates backwards in time over t = T , T −
1, . . . , 0 and at each time step, iterates over i = 1, . . . , Nx

and j = 0, . . . , Nv to calculate the maximal expected
returns f ∗

t (si,j,t ) for each state si,j,t using the Bellman
equation. The corresponding optimal action a∗

i,j,t is the
action from the set of possible actionsA(si,j,t ) that achieves
the maximal expected reward f ∗

t (si,j,t ). At the end, the
algorithm returns the optimal strategy a∗ in the form of
a tensor that associates each tuple (i, j, t) to the optimal
transaction volume a∗

i,j,t = n∗
t (si,j,t ) to liquidate in state

si,j,t .

5.2 Structure of the optimal SDP solution

By running the SDP Algorithm 1 with some chosen total
volume V , horizon T , initial log-FX rate x0 and param-
eters A, N, � for the OU process, we obtain the optimal

liquidation strategy a∗. The optimal liquidation strategy can
then be visualized in the form of a video sequence, where
for each t = 0, . . . , T , the image displayed is a 3D plot
of the function of 2 variables ft : (x, v) �→ a∗(x, v, t).
Some examples are provided in Fig. 2, where we set V =
100, T = 100, Nx = 600, Nv = 100 and use 3 different
OU processes following respectively an uptrend, sideways
movement and downtrend, as shown in Fig. 3. These param-
eters are calibrated from historical daily EUR/USD rates.

We observe that the surfaces of the optimal strategy
shown in the plots and videos have the same structure:

• Firstly, we have a∗(x, v, T − 1) = v for all x, which
comes from the constraint that the volume must be
totally liquidated at the end of the liquidation period.

• Secondly, for any t < T −1, we observe the existence of
a threshold value xthres for x above which a∗(x, v, t) =
0. This also seems intuitive, because as x increases,
the revenue a/ex decreases and above a certain value
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2 Optimal liquidation strategy a∗(x, v, t) computed by SDP for V = 100, T = 100, Nx = 600, Nv = 100. (a) - (d), (e) - (h), (i) - (l)
correspond to 3 different OU processes following an uptrend, sideways movement and a downtrend

Fig. 3 Simulated FX rate trajectories (EUR/USD) of 3 different OU processes. For each process, we plot 100 trajectories of length T = 100. The
OU process parameters are indicated above each plot
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of x, the revenue becomes lower than what can be
expected at a later stage and thus it is better to wait for
a more favourable (lower) FX rate. But as t evolves,
less time remains for the liquidation, and we would
expect that the xthres gets higher (i.e. that the minimum
revenue for trading decreases). By plotting separately
the evolution of xthres(t) (see Fig. 4), we observe that
this is indeed the case. Interestingly, the plot seems
to suggest that xthres(t) can be approximated by a
quadratic function xthres(t) = p · t2 + q · t + c. To
ensure that xthres(t) open upwards, increases with t and
remains bounded between xmin and xmax on [0, T ], the
following conditions must be met,
⎧
⎪⎨

⎪⎩

p ≥ 0, q ≥ 0

c ≥ xmin

p · T 2 + q · T + c ≤ xmax

(5)

We use Algorithm 2 to discretize p, q and c and search
for tuples (p, q, c) that meet these conditions.

• Finally, at any given time t < T − 1 and for any
x < xthres(t), the function of one variable ft,x : v �→
a∗(x, v, t) is a piecewise linear function equal to

g(v)=

⎧
⎪⎪⎨

⎪⎪⎩

0 for v ∈ [0, nmin[
v for v ∈ [nmin, nmax]
max(nmin, v−nmin)) for v ∈]nmax, nmax + nmin]
nmax for v ∈]nmax + nmin, V ]

(6)

It is easy to verify that the function g is either null
or takes values in the interval [nmin, nmax], thereby
ensuring that the liquidation trajectory is decreasing and
that the trading volume constraints are satisfied. The
function g(v) gives in fact the maximum volume that
it is possible to liquidate with a remaining volume of
v given the constraints imposed, while avoiding that
after the trade is executed a volume that is strictly
smaller than nmin remains. Indeed, due to the volume
constraints, such a remaining volume v can only be

liquidated at T − 1, at a rate that risks to be less
favourable than the current threshold FX rate.

In conclusion, the optimal liquidation strategy a∗(x, v, t)

can be expressed as in (7), where H(x) := 1x≥0 denotes the
Heaviside function.

a∗(x, v, t) =
{

H
(
p · t2 + q · t + c − x

) · g(v), if t < T

v, if t = T

(7)

The proposed EOLS algorithm is shown in Algorithm 3.
The algorithm estimates the expected total revenue by Monte
Carlo simulation for each admissible set of coefficients
(p, q, c) for the quadratic function xthres(t) and returns the
liquidation strategy that maximizes the expectation.

6 Experimental validation

In this section, we evaluate the performance of EOLS and
compare it to SDP, TWAP, DQN and PPO. The data set
used for the FX rates is described in Section 6.1. The
experimental setting is detailed in Section 6.2 and the
hyperparameters of the algorithms are listed in Section 6.3.
We then define a performance measure in Section 6.4. We
gather and analyze all performance results in Section 6.5.

Fig. 4 Evolution of the threshold value xthres (t) for the 3 OU processes
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The EOLS, SDP, TWAP, DQN and PPO algorithms were
implemented in Python using Tensorflow [21].

6.1 Data set

The data set used covers three major FX rates: EUR/USD,
EUR/CNY and EUR/GBP. The historical data for the corre-
sponding time series span from 2000.01.04 to 2019.01.29,
amounting to 19 years of data and 4975 daily observations
per time series. The data used in the experiments are daily
closing values of the FX rates as provided by Bloomberg.
For each FX rate, we use a moving window of length 250
shifted every 100 days to calibrate A, N, � using ordi-
nary least squares regression, resulting in a total 49 sets of
parameters A, N, �. We then generate M = 2000 random
trajectories (xt )t=0,...,T of length T = 100 for each tuple of
parameters (A, N, �). In the end, we split the M series into
train and test sets of size 1000 each. The same data set will
be used to evaluate the performance of every algorithm to
ensure a fair comparison.

6.2 Experimental setting

For each tuple (A, N, �) of the data set, we determine
the minimum and maximum rates xmin and xmax over
the corresponding 1000 generated training trajectories
(xt )t=0,...,T and over the T time steps. We can then run
Algorithm 1 and1‘q derive the SDP solution. In the next
step, we run Algorithms 2 and 3 to get the EOLS solution.
Then run DQN and PPO on the same training data and
derive the corresponding solutions. The TWAP liquidation
strategy is determined directly as it does not depend on any
data.

All liquidation strategies thus obtained are then tested
on the other 1000 test trajectories generated for each tuple
(A, N, �). The cumulative reward WT on each FX rate
trajectory is computed and used to compute the liquidation
optimality Oliq , which will be defined in Section 6.4. The
performance of each liquidation algorithm for an FX rate is
measured as the average of Oliq over all test trajectories for
this FX rate.

6.3 Hyperparameters of the evaluated algorithms

For both EOLS and SDP, we set the total amount of foreign
currency to V = 100, the liquidation period to T = 100, the
maximal trading volume to nmax = 25, the minimal trading
volume constrain to nmin = 10, the number of simulated
trajectories to M = 2000 and finally the number of trading
volume steps Nv and FX rates Nx to 100.

TWAP is adapted to satisfy the trading volume con-
straints, by liquidating at equally spaced times the minimum
possible volume nmin.

For DQN, the value function estimator is a 5 layers fully
connected neural network with 64 hidden units in each
layer. The first 4 layers use the ReLU activation function
and the last layer uses a linear activation. We set the batch
size to 32 and the total number of epochs to 800 so as
to ensure convergence of the network on the training set.
We set the replay buffer size to 106 (the buffer stores the
experienced state, action, reward and next state pairs as
tuples (st , at , rt , st+1)). We use the Adam optimizer with
an initial learning rate of 0.00025. We update the value
function network every 4 time steps and clip the gradient
to [−1, 1] so as to avoid gradient explosion during the
learning phase. The target network used for generating the
label for loss calculation is updated by copying the weights
from the value function network every 10000 steps. A soft-
update with τ = 0.1 is used when updating the target
network: new weights ← τ ∗ value function network’s
weights + (1 − τ) ∗ target network’s weights. Since our
task is episodic, the discount factor in accumulative reward
calculation is set to 1. The exploration parameter in
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ε-greedy is set initially to 0.95 and reduced progressively to
0 during training.

For PPO, we set the clip parameter (prevents excessively
large policy updates) of the surrogate objective to 0.2. The
buffer size is set to 106 and the batch size used is 100.
Both the actor network and critic network are 5 layers
fully connected neural networks with 64 hidden units. The
first 4 layers use the ReLU activation function. The output
layer of actor uses a softmax activation for discrete action
selection and the one of critic is a linear activation for
value function estimation. We use the Adam optimizers with
initial learning rates of 0.0006 and 0.002 for actor network
and critic network, respectively. The entropy coefficient
for exploration control is set to 0.001, higher value causes
divergence. The maximum gradient norm for clipping is
set to 0.5. The total number of epochs is set to 800 so
as to ensure convergence and we update both networks
every epoch.

6.4 Performancemeasure

For a given liquidation strategy and FX rate trajectory,
Xmin and Xmax are the minimum and maximum values of
the trajectory, respectively. The captured logarithm of the
FX rate Xcap is simply calculated and defined as Xcap =
log(V/WT ). It is interpreted as the logarithm of the FX rate
which would yield the same total reward as WT if the whole
volume V was liquidated in one single transaction. Based

Table 2 Performance and compute time of different algorithms on 3
data sets. For SDP, Nx = Nv = T = 100. For EOLS, Npqc = 10. The
best results are shown in bold

Liquidation optimality Oliq

FX rates Algorithms Mean Std. Time[s]

EUR/USD SDP 0.654 0.212 613.4

EOLS 0.787 0.094 345.6

TWAP 0.510 0.031 0.6

DQN 0.649 0.205 6530.5

PPO 0.674 0.168 7550.0

CNY/EUR SDP 0.661 0.192 614.1

EOLS 0.792 0.089 344.8

TWAP 0.512 0.034 0.7

DQN 0.620 0.235 6530.5

PPO 0.653 0.186 7550.0

GBP/EUR SDP 0.688 0.187 615.4

EOLS 0.795 0.078 345.1

TWAP 0.514 0.029 0.6

DQN 0.679 0.196 6530.5

PPO 0.691 0.175 7550.0

on this, we define the liquidation optimality measure Oliq

as in (8),

Oliq = 1 −
[

(Xcap − Xmin)

(Xmax − Xmin)

]

(8)

Table 1 Performance and compute time of SDP and EOLS with Nx = {50, 100, 200, 400, 600} and Nv = T = 100. The coefficients A, N, �

are calibrated from historical EUR/USD rates. The best results are shown in bold

SDP1 EOLS1

Trend Coefficients2 Nx = 50 100 200 400 600 Npqc = 10

Downtrend −0.02038755/

−0.00205892/ 0.158/ 0.640/ 0.816/ 0.856/ 0.858/ 0.856/

0.0074969/ 0.078/ 0.123/ 0.117/ 0.122/ 0.128/ 0.138/

0.0301412 210.0 613.4 1960.0 6865.4 15227.3 345.6

Sideways −0.07930878/

0.01341533/ 0.586/ 0.586/ 0.586/ 0.586/ 0.812/ 0.811/

0.0038368/ 0.150/ 0.150/ 0.150/ 0.150/ 0.136/ 0.141/

0.1655992 210.0 613.4 1960.0 6865.4 15227.3 345.6

Uptrend −0.05549867/

0.02086743/ 0.929/ 0.929/ 0.929/ 0.929/ 0.929/ 0.929/

0.00464528/ 0.037/ 0.037/ 0.037/ 0.037/ 0.037/ 0.037/

0.3081463 210.0 613.4 1960.0 6865.4 15227.3 345.6

1Liquidation optimality Oliq (Mean/Std) and compute time [s]
2A/N/�/log(x0)
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Fig. 5 Liquidation strategies obtained with SDP, EOLS, TWAP, DQN and PPO for simulated FX trajectories
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Oliq measures how close the captured log-FX rate Xcap is
to Xmin. The value ranges from 0 (attained if Xcap = Xmax)
to 1 (attained if Xcap = Xmin).

6.5 Experimental results

In this section, we first show the influence of the granularity
of the log-FX rates on the performance of SDP.We then give
the performance obtained for each algorithm and FX rate in
the data set.

6.5.1 Performance of SDP and influence of the granularity

The performance of SDP increases with the level of gran-
ularity used for discretizing log-FX rates �x = (xmax −
xmin)/Nx and volumes �v = V/Nv . Table 1 illustrates
the different results obtained with SDP when Nx ∈ {50,
100, 200, 400, 600}, letting Nv fixed at 100.

In general, the larger the value of Nx , the better the
liquidation performance, but the worse the compute time
becomes (quadratic increase). As one can see, EOLS yields
also quasi-optimal results when using only Np,q,c = 10
candidate quadratic functions for the threshold xthres(t) and
runs with a much lower time complexity.

6.5.2 Experimental results

In our next experiment, we choose Nx = 100 so that the
compute time of SDP remains of the same order of magni-
tude as the one needed for EOLS. Table 2 shows the mean
and standard deviation of the liquidation performance Oliq

as well as the compute time obtained with 3 FX rates.
From the table, we observe that EOLS achieves the

highest average performance among all the algorithms
compared, although SDP could surpass EOLS if Nx was
large enough, e.g. by setting Nx = 600 or more as discussed
in Section 6.5.1. The performance of EOLS is in average
15− 20% higher than the one of SDP (for Nx = 100), 15−
27% higher than DQN and PPO and 54% higher than TWAP
algorithm. DQN and PPO offer a similar improvement (27-
34%) as SDP compared to TWAP, which indicates that these
models can exploit the dynamics of the FX rate under the
assumption of the OU stochastic process in some extent.
PPO achieves better performance than DQN due to its actor-
critic structure, although the training time needed is in
average 15% longer.

The standard deviation of the performance for SDP, DQN
and PPO is 1.7−2.6 times higher than for EOLS. The EOLS
algorithm is the second least time-consuming algorithm
after TWAP (which does not need to be trained) and its
compute time is only about 4.5 − 5.2% of DQN and PPO.
As mentioned in Section 6.5.1, it takes 44 times more time
for SDP to achieve the same performance as EOLS.

Figure 5 provides concrete examples of liquidation
trajectories for the different algorithms. For each plot, the
simulated FX trajectory is marked in blue, the liquidation
trajectory (remaining volume) is marked in green and the
captured FX rate is indicated by a red horizontal line. The
results implied in the figure are exactly the same as those in
the Table 2.

7 Conclusion

In this article, we have considered the problem of liquidating
a given volume V of a foreign currency f into a domestic
currency d over a period of length T with minimum and
maximum transaction volumes nmin, nmax and the objective
of maximizing the expected total revenue E(WT ). We
have assumed that the logarithm of the FX rate follows
a generalised OU process with known parameters. We
solved numerically the problem using SDP, analysed the
structure of the solution and derived the analytical form
for the solution. Our approach, baptised Estimated Optimal
Liquidation Strategy (EOLS) achieves experimentally a
performance that is on par with SDP and thus is quasi-
optimal, but with a 44x speed-up. EOLS outperforms by
15− 27% DQN and PPO, by 54% TWAP and runs 20 times
faster than DQN and PPO.
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3. Liquidation performance when
tested with historical FX rates

Recall that in contribution I, we evaluated the forecasting performance of RegPred
Net on historical FX rate data set. The forecasted parameters A,N,Σ can well
reflect the dynamics of FX rate. In contribution II, we evaluate the performance
of the optimal strategy estimated by EOLS by assuming that the FX rate during
the liquidation period is known while in reality, this is unknown. Therefore, we use
the liquidation framework illustrated in Fig. 3.1 to solve the liquidation problem
where the FX rate in the liquidation period is unknown and should be forecasted.
We derive some conclusive experimental results using the historical FX rate as the
data set.

3.1 Experimental setting

We use the same data set described in Sec. 6.1 of contribution I. Each sample in
the data set is part of the complete FX rate time series, it includes 3 episodes:
training, validation and testing. We follow the setting described in Sec. 6.2 of
contribution I to train the RegPred Net, the training and validation episodes are
used as input and label, respectively. The testing episode is used as the FX rate of
liquidation period. The trained RegPred Net forecasts the dynamics of the testing
episode with the concatenation of training and validation episodes as input. The
forecasted dynamics change over the liquidation period, we simply take the mean of
them as the representative dynamics of this period. We then use EOLS to estimate
the optimal liquidation strategy with the forecasted dynamics as inputs. The final
results are evaluated on the testing episode with the liquidation optimality metric
Oliq described in Sec. 6.4 of contribution II. We use the same data set to evaluate
the other algorithms involved in the comparison. The experimental setting and
hyperparameters selection are the same as described in Sec. 6.2, 6.3 of contribution
II, respectively.
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3.2 Experimental results

We list the experimental results in Table 3.1. From the table, we observe that the
results are generally consistent with the results tested using the simulated data in
Table 2 of contribution II.

EOLS still performs best compared to other algorithms in the liquidation op-
timality metric. It performs on average 7.3% better than SDP (for Nx = 100), 14-
22% better than DQN and PPO and 18.8% better than benchmark model TWAP.
However, the magnitude of EOLS outperforming TWAP here is reduced compared
to the result obtained in contribution II where EOLS outperformed TWAP by an
average of 54%. The same is true for DQN and PPO, although they still per-
form 6-8% better than TWAP. These algorithms are not substantially ahead of
the TWAP due to the bias in RegPred Net’s forecasting of the FX rate during
the liquidation period. Whether the forecast dynamics reflect the actual trend of
the exchange rate has a significant impact on estimating the optimal liquidation
strategy.

The standard deviation of EOLS’s result is 9.3% lower than SDP and 23%
lower than DQN and PPO. The time consumption of the algorithm is the same as
described in contribution II, i.e. the EOLS algorithm is still the second least time-
consuming algorithm after TWAP, where TWAP does not require any training.
When Nx = 100, EOLS runs on average 20 faster than DQN and PPO and 44
faster than SDP.

Fig. 3.1 shows the liquidation strategies estimated by all algorithms involved in
the comparison. The mean and 95% confidence interval of the FX rate forecasted
by RegPred Net are marked as a blue line and purple area, respectively.
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Liquidation optimality Oliq

FX rates Algorithms Mean Std. Time[s]

EUR/USD

SDP1 0.596 0.277 613.4
EOLS1 0.620 0.265 345.6
TWAP 0.494 0.076 0.6
DQN1 0.525 0.327 6530.5
PPO1 0.541 0.297 7550.0

EUR/CNY

SDP1 0.611 0.276 614.1
EOLS1 0.674 0.233 344.8
TWAP 0.497 0.070 0.7
DQN1 0.541 0.312 6530.5
PPO1 0.553 0.251 7550.0

EUR/GBP

SDP1 0.598 0.287 615.4
EOLS1 0.648 0.271 345.1
TWAP 0.544 0.081 0.6
DQN1 0.567 0.308 6530.5
PPO1 0.582 0.291 7550.0

1Using the dynamics forecasted by RegPred Net

Table 3.1: Performance and computation time of different algorithms on 3 data
sets of real historical FX rate series. The dynamics of FX rate are forecasted by
RegPred Net. For SDP, Nx = Nv = T = 100. For EOLS, Npqc = 10. The best
results are shown in bold.
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(b) SDP, EUR/GBP, sideways
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(c) SDP, EUR/CNY, downtrend
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(d) EOLS, EUR/USD, uptrend
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(e) EOLS, EUR/GBP, sideways
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(g) TWAP, EUR/USD, uptrend
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(h) TWAP, EUR/GBP, sideways
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(j) DQN, EUR/USD, uptrend
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(k) DQN, EUR/GBP, sideways
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(l) DQN, EUR/CNY, downtrend
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(m) PPO, EUR/USD, uptrend
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(n) PPO, EUR/GBP, sideways
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(o) PPO, EUR/CNY, downtrend

Figure 3.1: Liquidation strategies obtained by testing SDP, EOLS, TWAP, DQN
and PPO with historical FX rate trajectories. The dynamics of the FX series
are predicted by RegPred Net. The purple area indicates the 95% confidence
interval of the prediction.
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4. Conclusion and Outlook

This thesis focuses on solving the problem of optimal liquidation of foreign curren-
cies. This task requires the decision-maker to exchange a certain amount of foreign
currency for domestic currency during the liquidation period. The decision-maker
should seek the optimal liquidation strategy that maximizes the amount of the
exchanged domestic currency under exchange rate uncertainty.

The difficulties in solving the optimal liquidation problem include: 1) the for-
eign exchange rate during the liquidation period is unknown and difficult to predict,
2) this uncertainty makes the RL algorithm difficult to estimate the liquidation
strategy. To solve these problems, we have made the following attempts. To ad-
dress problem 1), we use state-of-the-art forecasting models to predict the foreign
exchange rate during the liquidation period. However, since the liquidation period
is usually long (one quarter), we found experimentally that the existing algorithms
are often inaccurate in predicting daily FX rates for such long periods. Meanwhile,
most forecasting models focus on one-step-ahead forecasting or forecasting time
series with cyclical regularity. To the best of our knowledge, models capable of
forecasting daily FX rates within a quarter are rare. For solving problem 2), we use
state-of-the-art RL algorithms to search for the optimal liquidation problem. The
RL algorithms are suitable for solving sequential decision problems. However, we
find that they perform rather sub-optimally. Their heuristic exploration approach
makes the convergence both unstable and slow. SDP can compute the theoretical
optimal solution to the sequential decision problem but requires a complete envi-
ronment model (state transition probabilities), but the dynamics of exchange rate
during the liquidation period are unknown.

Inspired by the above experimental attempts, we propose a corresponding al-
gorithm for each problem to solve it. First, we propose the RegPred Net in the
contribution I to predict the FX rate in the liquidation period and the dynamic
parameters that describe the FX rate. These parameters are from the generalized
OU process. The forecasting performance of RegPred Net is tested on three FX
rate datasets (EUR/CNY, EUR/USD and EUR/GBP). The experimental results
show that RegPred Net outperforms ARMA, ARIMA, LSTM and Auto-LSTM.
Compared to them, the RMSE of the forecasted results of RegPred Net is 25−30%
lower, the correlation coefficient R is 2-7 times higher, the MDA is 10% higher, and
R-Squared is positive while the other algorithms are negative. Then, we introduce
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in contribution II the EOLS algorithm, which estimates the optimal liquidation
strategy based on the dynamic parameters predicted by RegPred Net. We show
experimentally that the complete framework of EOLS+RegPred Net successfully
solves the optimal liquidation problem for foreign currencies. The liquidation op-
timality Oliq of the strategy estimated by our framework is 14 - 22% higher than
DQN and PPO, 7.3% higher than that of SDP (for Nx = 100), and 18.8% higher
than that of TWAP. EOLS runs on average 44 times faster than SDP and 20 times
faster than DQN and PPO.

Our proposed algorithm has the following significance. RegPred Net is the
first regression network that can predict the time series of foreign exchange rates
over 100 steps and outperforms the state-of-the-art models. Compared to other
forecasting models such as LSTM, RegPred Net is an interpretable algorithm that
models FX rates with a simple structure and does not require a complex training
process. EOLS is the first algorithm to achieve quasi-optimal strategy estimation
in liquidation tasks using a closed-form solution computed by SDP. It approxi-
mates and simplifies the computed optimal strategy by an analytical formula. A
quasi-optimal strategy can then be determined by estimating the parameters of
this formula through grid search. EOLS has a more straightforward structure and
better performance than state-of-the-art DRL algorithms. Without heuristic ex-
ploration, the algorithm’s computational time is significantly reduced. Combined
with the dynamics of the liquidation period predicted by RegPred Net, EOLS
becomes more efficient and valuable in practical liquidation tasks.

Finally, I would like to summarize the research that is relevant to the ap-
proaches in this thesis and that is worth pursuing in the future. Although our
proposed optimal liquidation framework can estimate quasi-optimal liquidation
strategies, there is still much room for improvement. The following points can be
used as a starting point for improving the framework.

• The hyperparameters of RegPred Net will increase with the number of net-
work layers. The Bayesian optimization algorithm used to search for the
best hyperparameters has constraints on the input dimension. Therefore,
the usual Bayesian optimization will not work when the RegPred network
has a large number of layers. For this problem, we 1) can try to use the
improved high-dimensional Bayesian optimization [57], [58], which will also
bring a larger amount of computation. 2) Replace the layers other than the
first layer in RegPred Net with LSTMs, which can handle high-dimensional
time series inputs. At this point, since the LSTM is a parameterized network,
we can simply adopt the existing hyperparameter initialization method and
let the parameters in the LSTM fit the inputs and outputs. In this way, using
Bayesian optimization to find the optimal hyperparameters is not necessary.

• Although RegPred Net outperforms other algorithms in predicting 100-step
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exchange rates. However, it can not predict rapid, short-term fluctuations
in exchange rates caused by emergencies such as financial crises and wars.
In this regard, we can introduce a neural network for sentimental analysis
to predict the impact of recent news on exchange rate movements. Thereby
adjusting the dynamic parameters predicted by RegPred Net or use confi-
dence coefficients to show the possibility of sharp short-term fluctuations in
the exchange rate.

• The EOLS algorithm has the potential to be used for other financial liqui-
dation tasks or even other real-world sequencial decision-making tasks. The
idea of simplifying SDP in this model deserves to be further investigated and
applied to other tasks.
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ohne unerlaubte Beihilfe angefertigt ist.

Stuttgart, January 24, 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Linwei Li)

102




	List of Tables
	List of Figures
	Notation
	I Preamble
	Introduction
	Outline
	FX rates forecasting
	Optimal liquidation of foreign currencies

	Methodological background
	General background of optimal liquidation
	Stochastic processes
	Foreign currency liquidation
	A reinforcement learning liquidation environment

	Deep learning for forecasting
	Feedforward neural network
	Recurrent neural network
	Bayesian optimization

	Reinforcement learning for optimal liquidation strategy estimation
	Fundamental algorithms in reinforcement learning
	Deep reinforcement learning


	Summary of the publications
	RegPred Net and EOLS algorithm
	Bibliography
	II Publications
	Forecasting foreign exchange rates with regression networks tuned by Bayesian optimization 
	Optimal liquidation of foreign currencies when FX rates follow a generalised Ornstein-Uhlenbeck process
	III Conclusions
	Liquidation performance when tested with historical FX rates 
	Experimental setting
	Experimental results
	Conclusion and Outlook

	Complete list of publications







