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Zusammenfassung (Summary in German)

Selbstorganisation ist ein allgegenwärtiger und fundamentaler Prozess, der allen
lebenden Systemen zugrunde liegt. In zellulären Organismen werden viele lebens-
wichtige Prozesse, wie zum Beispiel Zellteilung und Zellwachstum, räumlich und
zeitlich durch Proteine – die Bausteine des Lebens – reguliert. Um das zu erreichen,
bilden Proteine selbstorganisiert räumliche und zeitliche Muster. Im Allgemeinen
reagieren Proteinmuster auf eine Vielzahl von internen und externen Stimuli, so
wie beispielsweise Zellform oder Inhomogenitäten in der Aktivität von Protei-
nen. Aus diesem Grund erstreckt sich die Dynamik intrazellulärer Musterbildung
über mehrere räumliche und zeitliche Skalen. Meine Doktorarbeit behandelt die
zugrunde liegenden Mechanismen, die zur Entstehung von heterogenen Mustern
führen. Die Hauptthemen dieser Arbeit sind in drei Teile organisiert und werden
unten zusammengefasst.

I Musterbildung in heterogenen Systemen
Der erste Teil befasst sichmit derDynamikMasse-erhaltender Reaktions-Diffusions-
Systeme unter räumlich inhomogenen Bedingungen. In Abschnitt 1, Kapitel II
untersuchen wir die Dynamik des E. coli Min-Protein-Systems – ein paradigma-
tisches Modell für Musterbildung. Dabei betrachten wir einen Aufbau mit einer
festen räumlichen Heterogenität in einem Kontrollparameter und zeigen, dass das
zu komplexen Multiskalen-Mustern führt. Wir entwickeln eine Vergröberungsme-
thode, welche es uns zum einen ermöglicht, die Dynamik zu erklären und zum
anderen, auf die “hydrodynamischen Variablen” auf großen Längen-und Zeitska-
len zu reduzieren. In einem weiteren Projekt betrachten wir ein System, in dem
räumliche Heterogenitäten nicht von außen bestimmt werden, sondern dynamisch
aufgrund einer mechano-chemischen Rückkopplungsschleife zwischen Geometrie
und Reaktions-Diffusions-System erzeugt werden (Abschnitt 2, Kapitel II). Wir zei-
gen, dass die daraus resultierende Dynamik durch die Geometrie des Phasenraums
des Reaktions-Diffusions-Systems erklärt werden kann.

II Geometrieerkennung und biochemische Vorlagen für Musterbildung
Der zweite Teil fokussiert sich auf die Frage, wie Muster in realistischen Zellgeome-
trien durch Form und biochemische Signale kontrolliert werden. Wir untersuchen
Achsenselektion von PAR-Polaritätsmustern in C. elegans und zeigen, dass räum-
liche Variationen im Volumen-zu-Oberfläche-Verhältnis sowie eine Tendenz des
Systems, die Mustergrenzfläche zu minimieren, zu einer robusten Langachsenpo-
larisation von PAR-Proteinmustern führen (Abschnitt 1, Kapitel III). In einem
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weiteren Projekt entwickeln wir ein theoretisches Modell, das die Lokalisation des
Min-Protein-Systems in B. subtilis erklärt (Abschnitt 2, Kapitel III). Wir zeigen des
Weiteren, dass ein biochemische Vorlage –welches als Schablone für Musterbildung
dient – Min-Protein-Muster führt sowie stabilisiert.

III Krümmungsinduzierte Instabilitäten von Protein-Lipid-Grenzflächen
Im dritten Teil studieren wir die Dynamik zwischen Lipidmembranen und Prote-
inen die Krümmungen generieren können. Wir demonstrieren, dass das Motor-
protein Myosin-VI kooperativ an die Stellen von Lipidmembranen bindet, welche
eine sattelförmige Krümmung aufweisen (Abschnitt 1, Kapitel IV). Dadurch in-
duzieren die Motorproteine eine großflächige Umgestaltung der Membran. Um
die Dynamik zu verstehen, entwickeln wir ein vergröbertes geometrisches Mo-
dell und zeigen, dass die Entstehung von regulären räumlichen Strukturen durch
einen “Push-Pull”-Mechanismus erklärt werden kann: Proteinbindung destabili-
siert die Membranform auf allen Längenskalen, und dieser Deformierung wird
durch die Linienspannung der Grenzfläche entgegengewirkt. Inspiriert durch dieses
Modellsystem untersuchen wir dann in einem weiteren Projekt ein allgemeines
Modell, welches die Dynamik wachsender Protein-Lipid-Grenzflächen beschreibt
(Abschnitt 2, Kapitel IV). Ein wesentliches Merkmal des Modells ist, dass die
Bindekinetik der Proteine explizit an die Morphologie der Grenzfläche gekoppelt
ist. Wir zeigen, dass solch eine Kopplung zu turbulenter Dynamik sowie zu einer
Aufrauhung der Grenzfläche führt, was durch ein universelles Skalenverhalten
gekennzeichnet ist.



Projects and contributions

Self-organization is an ubiquitous and fundamental process that underlies all living
systems. In cellular organisms, many vital processes, such as cell division and
growth, are spatially and temporally regulated by proteins – the building blocks
of life. To achieve this, proteins self-organize and form spatiotemporal patterns.
In general, protein patterns respond to a variety of internal and external stimuli,
such as cell shape or inhomogeneities in protein activity. As a result, the dynamics
of intracellular pattern formation generally span multiple spatial and temporal
scales. This thesis addresses the underlying mechanisms that lead to the formation
of heterogeneous patterns. The main themes of this work are organized into three
parts, which are summarized below.

I Pattern formation in heterogeneous systems
with F. Brauns, A. Goychuk, J. Halatek, G. Pawlik, J. Kerssemakers, C. Dekker, and E.
Frey.
The first part deals with the general problem of mass-conserving reaction-diffusion
dynamics in spatially non-uniform systems. In section 1 of chapter II, we study
the dynamics of the E. coli Min protein system – a paradigmatic model for pattern
formation. More specifically, we consider a setup with a fixed spatial heterogeneity
in a control parameter, and show that this leads to complex multiscale pattern form-
ation. We develop a coarse-graining approach that enables us to explain and reduce
the dynamics to the “hydrodynamic variables” at large length and time scales. In
another project, we consider a system where spatial heterogeneities are not imposed
externally, but self-generated by the dynamics via a mechanochemical feedback
loop between geometry and reaction-diffusion system (section 2 of chapter II). We
show that the resulting dynamics can be explained from the phase-space geometry
of the reaction-diffusion system.

II Geometry-sensing and biochemical templates for pattern formation
with R. Geßele, H. Feddersen, J. Halatek, M. Bramkamp, and E. Frey.
The second part focuses on how patterns in realistic cell geometries are controlled
by shape and biochemical cues. We examine axis selection of PAR polarity patterns
in C. elegans, where we show that spatial variations in the bulk-surface ratio and a
tendency of the system to minimize the pattern interface yield robust long-axis
polarization of PAR protein patterns (section 1 of chapter III). In a second project,
we develop a theoretical model that explains the localization of the B. subtilis Min
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protein system (section 2 of chapter III). We show that a biochemical cue – which
acts as a template for pattern formation – guides and stabilizes Min patterns.

III Curvature-induced instabilities of protein-lipid interfaces
B. Rogez, A. B. Petrova, F. B. Zierhut, D. Saczko-Brack, M. Huergo, C. Batters, E. Frey,
and C. Veigel
In the third part, we study the coupling between lipid membranes and curvature-
generating proteins. We demonstrate that myosin-VI motor proteins cooperatively
bind to saddle-shaped regions of lipid membranes, and thereby induce large-scale
membrane remodeling (section 1 of chapter IV). To understand the dynamics, we
develop a coarse-grained geometric model and show that the emergence of regular
spatial structures can be explained by a “push-pull” mechanism: protein binding
destabilizes the membrane shape at all length scales, and this is counteracted by
line tension. Inspired by this system, we then investigate a general model for
the dynamics of growing protein-lipid interfaces (section 2 of chapter IV). A key
feature of the model is that the protein binding kinetics is explicitly coupled to
the morphology of the interface. We show that such a coupling leads to turbulent
dynamics and a roughening transition of the interface that is characterized by
universal scaling behaviour.
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I Intracellular pattern formation

1 Introduction

One of the key processes underlying the development of living organisms is self-
organization. It is a process in which the small constituents of a system spontan-
eously form large-scale spatiotemporal structures. The emergence of such large-scale
order is governed by interaction rules between the constituents, and is referred
to as pattern formation. Many phenomena in nature arise from self-organization,
such as cloud formation [1], dune fields [2], the shape of cells [3], and even we
as humans [4]. In this thesis, we address diverse aspects of self-organized protein
patterns in cellular organisms.

Proteins are the basic building blocks of life and regulate many cellular processes
that are vital for cell survival and functioning [5]. These include, for instance, cell
metabolism [6], division [7], motility [8, 9], and growth [10, 11]. Proteins reliably
coordinate these processes in space and time by forming robust spatiotemporal
patterns [5, 12–14]. For example, Min oscillations precisely regulate cytokinesis in
the rod-shaped bacteria Escherichia coli (E. coli). Here, the proteins MinD, MinC,
and MinE oscillate from pole-to-pole of the cell and thereby guide the division
machinery (ftsZ proteins) to midcell, where the time-averaged concentrations of
Min proteins are lowest [15–17]. Other representative examples include polarity
pattern of PAR proteins in the Caenorhabditis elegans (C. elegans) worm embryo,
whose function is to define the anterior and posterior of the animal [18–20], and
Rho-GTPase waves that control the activity of the cytoskeleton in starfish and
frog oocytes [21–23].

On a mechanistic level, patterns in biological systems generally emerge through
the combined effect of (nonlinear) biomolecular interactions and transport pro-
cesses (such as diffusive and advective redistribution of particles) [5, 13, 14]. The
mathematical framework for pattern formation was first established by Alan Tur-
ing more than seven decades ago. In his seminal work, he showed that the interplay
between local chemical reactions and diffusive redistribution can destabilize a
(stable) homogeneous steady state, and thus lead to the formation of spatial pat-
terns [24]. Such reaction-diffusion models have been successfully used to address
pattern formation in various systems and across different length and time scales,
ranging from intracellular protein patterns [5, 12, 13, 22, 25], to shape formation
in developmental biology [26], and vegetation patterns [27]. The traditional (diffu-
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sion driven) Turing instability outlined above has been derived on the basis of two
crucial assumptions: (i) The system is spatially and temporally uniform (or more
precisely, translationally invariant). This implies the existence of a homogeneous
steady state, around which the dynamics of spatial perturbations is linearized.
(ii) The spatial domain, on which the dynamics of chemicals is considered, is
assumed to have a static shape and therefore does not evolve over time. This
point also entails that chemical species do not interact with, e.g. , the boundaries
of the domain and consequently cannot shape their environment through direct
interactions with the geometry.

However, biological systems are intrinsically heterogeneous systems, meaning,
for instance, that they generally do not exhibit homogeneous steady states, but
rather spatially inhomogeneous base states. Alan Turing was well aware of this
fact and came to the conclusion himself that "Most of an organism, most of the time,
is developing from one pattern into another, rather than from homogeneity into a
pattern" [24]. Moreover, in the particular context of intracellular organization,
protein patterns usually do not emerge in the bulk solution (cytosol) of cells, but
rather at the cell boundary, i.e. at the cell membrane. The underlying reason for
this is that the membrane surface acts as a “catalyst” for biochemical reactions and
hence promotes nonlinear interactions between protein species, such as cooperative
membrane binding (recruitment) [5, 13, 14, 28] or mutual antagonistic interactions
through phosphorylation [29, 30]. In addition, the shape of cells is not static,
but highly dynamic and changes in response to a number of internal and external
stimuli. Shape deformations are often controlled by protein patterns either through
direct interactions with the membrane [31–35] or indirectly by regulating the cell
cortex [21–23, 36–38]. Thus, intracellular patterns generally emerge through an
intricate feedback loop between biochemistry and cell shape, and this interplay
can lead to inhomogeneities and additional phenomena which are not taken into
account in idealized models.

The overarching aim of this work is to shed light on (protein-based) pattern
formation in heterogeneous systems, where the origin of such heterogeneities can
be either intrinsic to the system (i.e. self-generated by the dynamics) or caused by
(fixed external) spatial gradients in control parameters. The main themes of this
thesis are organized into three comprehensive chapters, whichwe briefly summarize
in the following. In chapter II, we first investigate reaction-diffusion dynamics in a
heterogeneous geometry. More precisely, we show that the dynamics of the Min
protein system in a wedge-shaped geometry produces spatiotemporal patterns that
span multiple spatial and temporal scales. To deal with the complex dynamics,
we present a coarse-graining approach that enables us to reduce the multiscale
dynamics to the relevant degrees of freedom at large length and time scales (or
“hydrodynamic variables”). Then, we investigate reaction-diffusion systems on
dynamically deforming membranes. It is shown that a feedback loop between



4 Intracellular pattern formation

reaction-diffusion system and membrane shape leads to spatial inhomogeneities
of the reaction-diffusion dynamics, causing a variety of different patterns that do
not emerge in a static geometry. We show that the dynamics can be explained
by a simple criterion that links the onset of (geometry-induced) patterns to the
phase-space geometry of the reaction-diffusion system.

In chapter III we discuss how cell shape and biochemical cues affect protein
patterns. We first explain how PAR polarity patterns in C. elegans robustly select
the long-axis in ellipsoidal geometry. It is shown that axis-selection is guided by cell
geometry, due to variations of the membrane area to volume ratio, which is largest
at the cell poles. As a second example where geometry plays a decisive role in the
correct formation of protein patterns, we study bipolar gradients of the Bacillus
subtilis Min protein system. In addition to inhomogeneities in the membrane area
to volume ratio, we show that a biochemical template stabilizes the Min proteins
at the cell poles, or at midcell once a septum forms.

In chapter IV we present our work on the interplay between curvature and
biochemical dynamics of protein-lipid interfaces. First, we show how curvature-
dependent binding of the motor protein myosin-VI to lipid membranes generates
curvature and thereby remodels the membrane. We derive a coarse-grained the-
oretical model that explains the underlying mechanism and show that curvature-
sensitive binding of myosin-VI leads to pattern formation of the (growing) protein-
lipid interface. Motivated by this instructive biological example, we then develop
and study a general model of growing protein-lipid interfaces with a feedback loop
between protein binding and interface morphology. We show that morphological
coupling gives rise to inhomogeneous growth rates of the interface, and thus leads
to interesting phenomena such as large-scale pattern-forming instabilities and tur-
bulent dynamics. For the latter case, we show that the system exhibits universal
scaling that is driven solely by the deterministic dynamics (as opposed to classical
noise-driven interface growth models).

2 Guiding cues

Before we turn to the main topics of this work, we first provide a general overview
of how protein patterns are controlled by spatial heterogeneities and guiding cues
in cells. The following content is based on and uses parts of our review article [14]
(in collaboration with T. Burkart, M. Wigbers and E. Frey) published in Nature
Reviews Physics. A reprint of the article is provided in section 3.

As emphasized in the previous section, patterns rarely form out of homogeneity,
but rather emerge through explicit or implicit interactions with other components
and cell features. More specifically, intracellular protein patterns are reliably
controlled by various guiding cues, including geometric features such as cell size and
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shape, biochemicals or other (protein) patterns, as well as non-uniform mechanical
properties of the cell (comprising the cell membrane and cytoskeleton). In the
following, we briefly summarize how these guiding cues impact pattern formation.

2.1 Cell size

Size threshold. A pattern-forming instability arises when the base state becomes
unstable to small spatial perturbations, hence resulting in a band of unstable modes
modes (dispersion relation) [13, 39]. Since cells have a finite size, a pattern can
only emerge if the cell size exceeds a critical value, such that the dominant or fastest
growing mode “fits” into the system. This has been demonstrated experimentally
for PAR polarity patterns [40].

Bulk-boundary ratio. On the relevant time scale of pattern formation, the total
average protein concentration can be assumed to be constant. Protein-based pat-
terns are therefore mathematically described by mass-conserving reaction-diffusion
systems [12, 13, 28, 41]. Due to the limited number of resources available, the
membrane and cytosolic concentrations depend on the ratio of membrane surface
area to bulk volume, which are defined by the size of the cells. This means, for
instance, that the membrane concentration will be higher in cells with a larger
area to volume ratio because more space is available for cytosolic proteins to bind
to the membrane (assuming a constant total average density).

Cytosolic gradients. Mass-conservation further implies that proteins are not created
or degraded, but cycle between the cytosol and membrane due to attachment, de-
tachment, recruitment, and antagonistic reactions. Therefore, mass-conservation
requires that these biochemical processes must be balanced by cytosolic fluxes
(diffusive and advective fluxes) at the membrane. These fluxes generically result in
cytosolic protein gradients perpendicular to the membrane, where the character-
istic penetration depth typically depends on the transport processes and reactions
in the bulk. The relative value of this characteristic length scale and the cell size
is critical to the phenomenology of protein patterns, as has been demonstrated
theoretically and experimentally for the Min protein system [5, 17, 28, 42, 43].

2.2 Cell shape

Curvature sensing. Some proteins have an intrinsic shape (BAR domains) and
therefore preferentially bind to membrane regions with the same curvature [32,
44–46]. To sense curvature across large scales (much larger than the typical size of
a protein), these proteins often form oligomers through cooperative interactions
to form large structures [32, 47]. BAR proteins are also able to induce membrane
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curvature, which can give rise to a positive feedback loop between protein binding
and membrane shape [48].

Collective curvature sensing. Proteins without an intrinsic shape can indirectly
respond to cell shape by sensing spatial variations in the membrane surface to bulk
volume ratio (or bulk-surface ratio). The underlying reason for this lies in the
cytosolic gradients: if the characteristic length of cytosolic gradients is larger than
the radius of curvature of the cell (but smaller than the typical length of the cell),
then these gradients overlap at regions of negative curvature. Or in other words,
proteins accumulate in regions where the membrane surface to bulk volume is
largest, such as the poles of a bacterial cell (corresponding to Gaussian negative
curvature).

2.3 Biochemical cues

Spatially heterogeneous reaction kinetics. The (local) reaction kinetics of one protein
species can depend on the (local) concentration level of another protein. In partic-
ular, a spatially varying reaction kinetics can result in spatially non-uniform local
equilibria as well as different stability properties of these equilibria in space [49].
To put it differently, we can also say that a protein species which alters the reaction
kinetics of another protein species encodes positional information. Indeed, this
principle is common in many biological systems [26, 50–57].

Diffusiophoresis. Protein patterns can also serve as templates and cause the forma-
tion of patterns of functionless molecules (cargo particles that do not interact with
each other) through effective friction forces [58, 59]. Such friction forces are caused,
for instance, by diffusive fluxes of “carrier particles” (here protein patterns) that
collide with and transport larger cargo particles. This mechanism is also termed
phoretic transport and the basic principle is encountered in a variety of physical
systems [60–64].

2.4 Mechanochemical cues

Cytoplasmic flows. The cytoplasm of a cell can be basically viewed as an incom-
pressible fluid. Deformations of the cell membrane generate high and low pressure
regions in the cytoplasm, thereby inducing flows of the fluid. Such deformations ori-
ginate, for example, from surface contraction waves along the cell membrane [65].
Cytoplasmic flows break the symmetry in the system and thereby guide cytosolic
proteins via advective transport.
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Cortical flows. Flows can be also generated by the actomyosin complex through
frictional coupling with the surrounding cytosol. Spatial inhomogeneities of
myosin activity [25] or anisotropies in the cortical tension [66] lead to stress
gradients in the actomyosin network and consequently to the flow of components
of the actomyosin cortex (cortical flows).





3 Publication: Control of protein-based pattern formation via guiding cues 9

3 Publication: Control of protein-based pattern
formation via guiding cues

Control of protein-based pattern formation via
guiding cues

by

T. Burkart1,*, M. C. Wigbers1,*, L. Würthner1,*, and E. Frey1,2

1 Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for

NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität

München, Theresienstraße 37, D–80333 Munich, Germany,

2Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich,

Germany

*These authors contributed equally to this work.

Published in Nature Reviews Physics (2022)

doi: 10.1038/s42254-022-00461-3.

also available on bioRxiv: 10.1101/2022.02.11.480095.

bioRxiv version reprinted on pages 10–33,

under the terms of the cbCreative Commons CC BY 4.0 License.

https://doi.org/10.1038/s42254-022-00461-3
https://doi.org/10.1101/2022.02.11.480095
https://creativecommons.org/licenses/by/4.0/


Control of protein-based pattern formation via guiding cues

Tom Burkart,1, ∗ Manon C. Wigbers,1, ∗ Laeschkir Würthner,1, ∗ and Erwin Frey1, 2, †

1Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS),
Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany

2Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
(Dated: February 11, 2022)

Proteins control many vital functions in living cells, such as cell growth and cell division. Reliable
coordination of these functions requires the spatial and temporal organizaton of proteins inside cells,
which encodes information about the cell’s geometry and the cell-cycle stage. Such protein patterns
arise from protein transport and reaction kinetics, and they can be controlled by various guiding
cues within the cell. Here, we review how protein patterns are guided by cell size and shape, by
other protein patterns that act as templates, and by the mechanical properties of the cell. The
basic mechanisms of guided pattern formation are elucidated with reference to recent observations
in various biological model organisms. We posit that understanding the controlled formation of
protein patterns in cells will be an essential part of understanding information processing in living
systems.

I. INTRODUCTION

To ensure their survival, cells must tightly regulate a
wide range of cellular functions, such as cell migration,
cell growth, DNA synthesis, and cell division. For exam-
ple, in order to produce two viable daughter cells, a cell
must precisely coordinate cell growth with the duplica-
tion and segregation of DNA, and with subsequent cell
division. These cellular functions, in turn, are controlled
and coordinated by proteins. Robust timing and reliable
control of these functions requires cells to process spa-
tiotemporal information, such as information about cell
size and shape, cell cycle state, the cell’s surroundings,
and the current state of other cellular processes. Such
spatiotemporal information is encoded in protein patterns
– i.e., an inhomogeneous spatial distribution of proteins –
that regulate these cellular functions, whereby each type
of protein may perform distinct tasks.

How then are proteins spatially and temporally orga-
nized in a cell? The idea that the collective organiza-
tion of interacting chemicals (chemical reactions) in an
initially homogeneous medium can give rise to spatial
patterns dates back to Turing’s seminal work on sponta-
neous pattern formation in reaction-diffusion systems [1].
While this work has greatly advanced the understanding
of pattern formation in biological systems, many aspects
of protein patterns such as their positioning, timing, re-
liability, and controllability – which are essential for the
viability of living organisms – remain poorly understood.
Since protein patterns in cells serve a timed and targeted
functional purpose, they must form in response to cer-
tain signals and control mechanisms rather than sponta-
neously emerging from an initially homogeneous distri-
bution. Indeed, an increasing number of theoretical and
experimental studies find that protein distributions can
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respond and adapt to cell shape, size, and mechanics,
as well as to signals encoded in previously established
protein patterns [2–8].

This response is, in fact, bidirectional. Cells are not
static objects but rather an active material whose size,
shape, and mechanical properties can be altered dynami-
cally through protein interactions in response to the cell’s
environment and the current state of the cell cycle [9–
12]. These dynamic interactions between protein pat-
terns and cell architecture are the subject of a rapidly
developing field of study at the interface between cell biol-
ogy and theoretical physics that benefits from constantly
improving experimental techniques, as well as insights
from physics that allow one to model and understand
the guided organization of proteins into patterns.

In this review, we summarize recent advances in our
understanding of how protein patterns are controlled by
geometric, mechanical, and biochemical cues. The basics
of pattern formation will only be summarized briefly, as
recent reviews have provided a comprehensive introduc-
tion to this subject. The interested reader is referred
to an elementary course on the mathematical tools that
are required to study the physics of protein interactions
and pattern formation, in particular ordinary differential
equations (ODEs) and nonlinear dynamics [13]. For an
introduction to the theory of pattern-forming systems,
we direct the reader to pertinent textbooks [14, 15], and
to lecture notes for a review on quantitative modeling
of pattern formation in mass-conserving systems [16].
Other recent reviews have focused on the theory of two
specific aspects of pattern formation, namely the role of
bistability for polarity [17] and the curvature-generating
properties of proteins [18]. The relevance of protein pat-
terns for cells has also been reviewed from a more biolog-
ical perspective recently [19], in particular with respect
to midcell localization [20], and current advances in un-
derstanding pattern formation at a molecular level [21]
have been reviewed recently. We also want to highlight
three recent reviews that emphasize the importance and
role of modeling for understanding cell polarity [22, 23]
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and biological phenomena in general [24].
Here, we discuss several theoretical models that have

been developed with a view to reproducing and ac-
counting for pattern guidance, together with examples
of well-studied biological model organisms in which pat-
tern guidance has been observed to play a critical role in
cell viability. In particular, we discuss how biophysical
theory has been instrumental in clarifying the underly-
ing physical concepts of pattern guidance in living cells.
We start by giving an overview of the predominant types
of protein transport and chemical reactions that are pre-
dominately involved in the formation of patterns in cells.
We then discuss how these factors can be affected by cell
shape and size, pre-existing protein patterns, and cell
mechanics, and how these cues guide and control protein
pattern formation. We conclude with an outlook on the
future research directions in this field.

II. BASIC PRINCIPLES OF PATTERN
FORMATION

Protein patterns arise from the interplay of biochem-
ical reaction kinetics with different types of transport
mechanisms. While the amounts of locally available pro-
teins are regulated by chemical reactions, their spatial
distribution is altered by transport processes including
diffusion, active transport and fluid flow (see Fig. 1).
Some of the most important reaction and transport pro-
cesses involved are presented in the following.

A. Protein reaction networks

Protein reaction networks differ in their degree of com-
plexity, e.g., with respect to the number of different pro-
teins and their conformations, as well as the number
and type of reactions between them. Some of the most
common types relevant to protein pattern formation are
briefly discussed in the following.

Conformational state changes – The intracellular or-
ganization of proteins is largely controlled by protein
reaction networks that contain nucleoside triphosphatea

(NTP)-dependent regulatory modules. In prokaryotic
cells, P-loop (phosphate binding loop) ATPasesb such
as ParA and MinD take on this role, and give rise
to self-organized dynamic patterns at cellular interfaces
– ParA on the nucleoid and MinD on the cell mem-
brane [20, 25, 26]. Similarly, small GTPases like Cdc42

a Nucleoside tri-/diphosphate (NTP/NDP) – Nucleotide molecules
with three (two) phosphate groups typically based on guanine
(GTP), adenine (ATP) or cytosine (CTP), forming the main
carriers of chemical energy in cells.

b NTPase – Enzymes that bind to NTP and hydrolize it to NDP,
thereby releasing energy.

and RhoA play an important role in establishing cell po-
larity in eukaryotic cells [27–29]. Basically, all these pro-
teins serve as molecular switches that can cycle between
an active and inactive state based on nucleotide binding
and delayed hydrolysis, typically regulated by auxiliary
proteins [30–32] (Fig. 1a). Similarly, proteins that are not
NTPases can act as molecular switches if cycling between
active and inactive states (phosphorylationc and dephos-
phorylation) is catalyzed by separate kinases and phos-
phatases, respectively [33, 34]. These cycles have two key
features. First, they are non-equilibrium processes driven
by the supply of chemical energy, e.g. through ATP hy-
drolysis [35]. As such, they are the core element of most
protein reaction networks, enabling them to drive self-
organization processes. Secondly, the switch between ac-
tive and inactive states is associated with changes in their
affinity for targets such as the cell membrane and the
nucleoid [35, 36], as well as their specific binding affinity
for other proteins or lipids. For example, MinD can only
bind to the cell membrane in its ATP-bound, dimeric
form and is released into the cytosol as an ADP-bound
monomer upon ATP hydrolysis [37].

Binding and unbinding reactions – Many proteins can
bind to different substrates in a cell, such as membranes.
Typical residence times of proteins on membranes range
from seconds to minutes [4, 38, 39]. In several biological
model systems, the nonlinear binding kinetics of proteins
to membranes plays a key role in the formation of spa-
tiotemporal protein patterns.

One way to confer nonlinear binding kinetics is through
limitation of binding sites on the membrane, which leads
to saturated binding kinetics [40]. Another example is
cooperative reactions that amplify or attenuate the at-
tachment and detachment of other proteins to the mem-
brane [41–44] (Fig. 1a). These feedback mechanisms
were shown to be an integral part of the patterning
mechanisms in the most important model organisms:
In the MinDE system of E. coli, pole-to-pole oscilla-
tions of the Min proteins rely on recruitment of cytosolic
MinD and MinE by membrane-bound, active MinD (pos-
itive feedback) and their release into the cytosol through
MinE-induced hydrolysis and concomitant inactivation of
MinD (negative feedback) [37, 45–47]. In budding yeast
(S. cervisiae), the establishment of cell polarity via asym-
metric distribution of Cdc42 involves multiple positive
and negative feedback loops, which provide a high degree
of robustness [32, 40, 48, 49]. Finally, the PAR polarity
system in the early C. elegans embryo exploits various
antagonistic reactions that play a key role in specifying
the correct orientation of the polarity axis [34, 50–52].

Complex formation – Proteins can also form
oligomersd, in particular dimers (Fig. 1a). This can have

c Phosphorylation – Proteins can be (de-)phosphorylated by the
addition of a phosphate group, as a means of storing (releasing)
chemical energy.

d Oligomer – Complex made up of a few proteins of the same or
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FIG. 1. Reaction and transport processes involved in pattern formation: (a) Protein reactions include binding to
and detachment from the cell membrane or other intracellular structures, as well as conformational state changes due to (de-
)phosphorylation or nucleotide exchange. Cooperative and antagonistic (nonlinear) reactions between multiple proteins can
lead to assisted attachment (recruitment) or to detachment from the membrane. Multiple monomers can form oligomers with
altered transport and reaction properties. (b) Proteins can be transported by diffusion (Dc, Dm, black arrows) and advection
(vc, vm, pink) independently on surfaces – in particular cell cortex and membrane – and in the cytosol. In addition, directed
protein transport can be established by subunit addition and disassembly of polymers, resulting in treadmilling of monomers,
and by active transport along filamentous structures, mediated by energy-consuming motor proteins.

an impact on their ability to bind to cellular surfaces, as
described above for active MinD dimers. The formation
of higher-order protein aggregates leads to a change in
Péclet number (see below), which in turn alters how they
are affected by fluid flow as opposed to diffusion. Such
an effect has been suggested to play a role in the trans-
port of PAR-3 proteins in the C. elegans embryo. Here,
diffusive transport may dominate for PAR-3 monomers
(Pe < 1), whereas transport becomes dominated by flow
(Pe > 1) upon cell-cycle-dependent aggregation of PAR-3
into complexes together with two other proteins – PAR-
6 and aPKC [53]. Yet another process is the forma-
tion of higher-order oligomers, such as those observed
for membrane-bound MinD [44, 46]. Similar to the non-
linear attachment kinetics discussed above, cooperative
reactions have also been suggested to participate in pro-
tein complex formation, potentially allowing for feedback
loops [34].

Theory – Mathematically, the dynamics of well-mixed
protein reaction networks are described by sets of cou-
pled nonlinear differential equations for the concentra-

or a different type (homo- and hetero-oligomers, respectively).

tions ui(t) of each of the different protein types and con-
formations i ∈ {1, . . . , S},

∂tui(t) = fi({ui}) . (1)

In such chemical rate equations, the nonlinear reaction
terms fi (together with the reaction rates) must be in-
ferred from the underlying reaction network using the
law of mass action. An elaborate mathematical theory,
called dynamic system theory, allows one to analyze sys-
tems of coupled nonlinear ordinary differential equations
(ODEs). The basic idea of this theory, which goes back
to the pioneering work of Poincaré [54], is to characterize
the system dynamics in terms of certain geometric struc-
tures in the phase space spanned by the set of dynamical
variables ui(t) [13, 14].

Of particular interest are the asymptotic dynamics of
the system over large time scales, which are characterized
by the attractors in phase space within the framework
of dynamic system theory. These include fixed points
corresponding to reactive equilibria (see Supplementary
Information), limit cycles corresponding to nonlinear os-
cillators, and more intricate geometric objects [13, 14].
Importantly, the local properties of the fixed points (re-
active equilibria), in particular their stability, can be
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determined using ODEs linearized around these fixed
points [13, 14].

B. Protein transport

Transport mechanisms play a crucial role in the con-
trol of spatial variations in protein concentration. In the
following, we provide an overview of the most important
modes of intracellular protein transport involved in pat-
tern formation (Fig. 1b).

Diffusion – Perhaps the most basic means of protein
transport is diffusion. It is a consequence of Brownian
motion and is directed from regions of high to regions
of low protein concentration u(x, t) with a diffusive cur-
rent −D∇u(x, t) (Fick’s law). For spherical particles of
radius r, the diffusion constant is given by the Stokes-
Einstein relation D = kBT/(6πηr), where η is the viscos-
ity of the surrounding cytosol [55]; a qualitatively similar
relation holds for transmembrane proteins [56, 57]. This
implies that the diffusive transport of proteins depends
on their size and on the local properties of the surround-
ing medium.

Importantly, both the membrane and the cytoplasme

are highly heterogeneous environments crowded with
macromolecular structures that interact with proteins,
for example by temporarily binding or by taking up
space [58]. For the purpose of studying pattern for-
mation, however, one often disregards inhomogeneities
and instead assumes an effective diffusion constant that
takes into account such interactions that are not explic-
itly modeled. Hence, the diffusion constant is a meso-
scopic quantity representing the mobility of proteins in a
homogeneous, dilute fluid environment. In essence, the
complex cytoplasmic environment is reduced to an ef-
fective cytosol for many applications in protein pattern
formation, and similarly, the heterogeneous membrane is
considered as an effective (dilute) fluid [59]. This simpli-
fication is justified since the length scale of patterns is
typically larger than the length scale of heterogeneities
in the cytoplasm or on the membrane, to which we will
refer as substrates in the following. As a rough estimate,
the diffusion coefficients of membrane-bound proteins are
generically at least two orders of magnitude lower than
those of their cytosolic counterparts: While characteris-
tic values for membrane diffusion are Dm ∼ 0.01µm2/s,
one observes Dc ∼ 10µm2/s in the cytosol [60]. Al-
though the models discussed in this review suggest that
the heterogeneous character of the cellular substrates are
of minor importance for protein pattern formation, it
would be interesting to explicitly probe the robustness
of these models against more realistic substrates. For ex-

e Cytoplasm – Heterogeneous material making up most of the vol-
ume of a cell (excluding the nucleus), mainly consisting of the
cytosol and macromolecular organelles.

ample, this could be incorporated into models via time-
and space-dependent diffusion constants.

Active transport – Proteins can also be transported via
active processes driven by the chemical energy of ATP,
GTP or CTP at the molecular level. Of particular bio-
logical relevance are translational molecular motorsf [61–
63]. An important subclass of these motors is comprised
of kinesins and dyneins that bind to, and ‘walk’ on mi-
crotubulesg. In this way, cargo – such as other proteins –
can be transported along the microtubules [61, 62]. De-
pending on the type of motor and, in some cases, other
factors such as external forces [64], this form of active
transport is directed to either the plus or minus end of
the microtubules [65]. Certain classes of myosin motors
perform similar tasks by transporting cargo along actin
filaments. Such active cargo transport is known to be in-
volved in the polarization process of budding yeast. Here,
the actin filaments are anchored to the polarity site, so
that the myosin motors can deliver protein-coated vesi-
cles towards the polarity site [66, 67].

Another class of active transport processes is mediated
by the directed polymerization of cytoskeletal filaments
such as F-actin [68] and microtubules [69], which is driven
by ATP and GTP hydrolysis, respectively. For instance,
tubulin-like FtsZ filaments are particularly important ac-
tive structures in bacterial cell division. These filaments
exhibit treadmilling dynamics (see the segmented struc-
ture in Fig. 1b), as FtsZ monomers can only bind to the
plus end and detach from the minus end [70, 71]. By
consuming GTP, this treadmilling allows FtsZ filaments
to translocate directionally along the cell membrane, co-
ordinating the activity of downstream cell division pro-
cesses [72]. Similarly, treadmilling of actin filaments was
shown to play a key role in cell migration, in particular
for the extrusion of lamellipodia [73].

Both in vivo and in vitro experiments have shown how
important these active transport processes are for the
polarization of cells [74–78]. For example, during cell
growth in fission yeast microtubules are aligned along
the long axis of the cell, and direct the active transport
of the tip factors Tea1 and Tea4 towards the cell poles in
a two-fold manner [78–81]: The kinesin-like motor Tea2
mediates the transport of Tea1/Tea4 complexes along mi-
crotubules that emanate from the nucleus [82, 83]. In ad-
dition, these complexes bind to microtubule tips assisted
by Mal3, a tip-binding protein. Therefore, due to the
directed microtubule polymerization along the long cell
axis, the tip factors are transported to the cell poles [83].
At the poles, they then serve as a spatial cue for cell
growth, and therefore facilitate the elongation of the cell
along its long axis [84].

f Molecular motors – Enzymes that use energy released by NTP
hydrolysis to perform mechanical work and that are generally
associated with cytoskeletal filaments.

g Microtubules and actin filaments – Protein filaments comprised
of tubulin and actin proteins, respectively, which form an integral
part of the cytoskeleton.
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Advective transport – In the fluid environment of a cell,
proteins can also be transported by cytoplasmic [85, 86],
cortical [51], and membrane flows [87, 88], whose effect
on protein transport through friction strongly depends
– like diffusion – on the viscosity of the respective en-
vironment. An important force-generating active struc-
ture is the actin cortexh. In addition to actin filaments,
it includes cross-linker proteins and myosin motors that
cause cortical contractions which, in turn, can induce
flows [89, 90]. The cortical contractions that occur in the
C. elegans zygote are a prominent example [4, 91, 92].
Here, local depletion of the concentration of the motor
protein myosin at the cell cortex leads to a gradient of
contractile stress, such that the cell cortex flows from the
anterior to the posterior pole [93].

Cortical contractions can also lead to flows in the cy-
toplasm or membrane due to hydrodynamic coupling be-
tween membrane, cortex and cytoplasm [92]. In addition,
they can also induce cell-shape changes that lead to flows
in the cytoplasm. For example, surface contraction waves
during the maturation of starfish oocytes have recently
been shown to induce such flows [94, 95]. Similarly, shape
changes resulting from blebbing incidents coincide with
intracellular flows [96].

The Péclet number – The relative impact of diffusion
and flow on protein transport is quantified by the Péclet
number Pe = ξ·v/D, where v is the typical protein advec-
tion velocity and ξ a characteristic length scale. Large
values of the Péclet number correspond to protein trans-
port that is dominated by flow rather than diffusion.
Hence, small proteins with large diffusion constants are
less affected by flow than large proteins or protein assem-
blies. In addition, the detailed chemical interactions of
proteins with other biomolecules and cellular structures
can affect the effective diffusivity and advection veloc-
ity [97]. As for diffusive transport, the advection velocity
– and hence the Péclet number – is a mesoscopic quantity
that disregards the heterogeneous structure of the envi-
ronment. This approximation is justified since variations
in the mobility coefficients within a given substrate are
usually much smaller than the variations between differ-
ent substrates, such as the cytoplasm and the membrane.
In general, a protein that diffuses in the cytoplasm is less
affected by flows than it is when bound to the more vis-
cous membrane.

Theory – The spatiotemporal transport of, and reac-
tions between proteins are mathematically described by
nonlinear partial differential equations (PDEs) [16]. The
protein dynamics in terms of their cytosolic (volume)
concentrations c(r, t) and membrane (area) concentra-
tions m(σσσ, t) generally take the form of general transport

h Actin cortex – Thin and dynamic network that acts as a scaffold
that determines the cell’s shape and which is comprised of actin
filaments, motor proteins, and other associated proteins.

equations with flux and source terms

∂tc(r, t) = −∇ · Jc + fcyt(c) , (2)

∂tm(σσσ, t) = −∇S · Jm + fmem(m, c|S) , (3)

which represent a broad and general class of interest-
ing dynamic systems far from thermodynamic equilib-
rium. The divergence of the cytosolic and membrane
fluxes Jc/m accounts for the (mass-conserving) spatial
transport of proteins, and generally contains both diffu-
sive and advective contributions. Here ∇S denotes the
covariant derivative for the curvilinear coordinates σσσ ∈ S
on the membrane surface S. The membrane is often con-
sidered as a static object for simplicity, however models
can in general be extended to dynamic surfaces. In par-
ticular, this requires to extend the dynamics by an ex-
plicit expression for the time evolution of the membrane
geometry, S → S(t) [18, 98–102]. The source terms fcyt
and fmem result from the chemical reactions of the un-
derlying protein networks, as discussed above. Note that
membrane-bound proteins not only react with each other,
but membrane reactions also involve interactions with cy-
tosolic proteins in close proximity to the membrane (c|S).

The set of nonlinear PDEs (Eqs. (2) and (3)) is closed
by reactive boundary conditions at the membrane

Jc · n̂|S = g(m, c|S) , (4)

which ensures local mass conservation: cytosolic fluxes
normal to the membrane (n̂ denotes the outward normal
vector) must be balanced by reactive fluxes g(m, c|S) at
the membrane [16]. An additional constraint for many
models of protein pattern formation is the global con-
servation of protein mass, i.e., the assumption that no
proteins are produced or degraded on the time scale of
pattern formation. This assumption is violated on longer
time scales, where protein production and degradation
processes – in particular gene expression – need to be
taken into account [23].

C. Lateral instabilities and trigger waves

This set of general transport equations provides the
theoretical framework for studying the spatiotemporal
dynamics of protein patterns. The interested reader may
consult recent lecture notes [16] for an introduction to
their analysis. Here, to conclude our introduction to the
basic principles of pattern formation, we briefly introduce
two particularly interesting phenomena: pattern-forming
instabilities and trigger waves.

A pattern-forming instability arises when a spatially
uniform steady state becomes unstable against spatially
inhomogeneous perturbations (Fig. 2d). One exam-
ple of such a pattern-forming instability is a mass-
redistribution instability (see Supplementary Informa-
tion), which amplifies spatial variations in protein num-
ber, thus leading to a protein concentration pattern [103].
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The dynamics and length scale of these patterns on short
time scales are determined by the growth rate and wave-
length of the unstable modes, termed dispersion relation
(see Supplementary Information). The growth rate of
the unstable modes depends on the specific reaction ki-
netics and transport properties of the dynamics. The
wavelength of the fastest growing unstable mode deter-
mines the characteristic length scale of the initially grow-
ing pattern. While the initial pattern is dominated by the
dynamics of the unstable modes, the dynamics on longer
timescales may be dominated by other processes, such as
coarsening [104] and non-linear interactions of the unsta-
ble modes far away from the linear regime.

In addition, nonlinear protein reaction kinetics can give
rise to several reactive equilibria at the same total pro-
tein concentration, which is a necessary requirement for
trigger waves. This phenomenon is best exemplified by
systems that show bistability (see Supplementary Infor-
mation) [105]. In this case, the system can be at different
reactive equilibria at different regions in the cell, giving
rise to front-like protein activity patterns. Such front-like
patterns propagate with a finite velocity, whose magni-
tude and sign depend on the details of the reaction ki-
netics [94, 106]. This propagation is constrained by the
limited abundance of proteins, which can result in local-
ized wave fronts in cells [107–109]. Moreover, unstable
reactive equilibria can give rise to spatially homogeneous
oscillations and traveling spiral waves [103, 110, 111].

The spatiotemporal properties of these patterns, such
as the orientation of static patterns or the direction of
propagating wave fronts, need to be controlled tightly by
the cell. This is achieved with the aid of guiding cues. In
the following, we will discuss the most prominent types of
guiding cues observed to play a role in pattern formation
processes in cells.

III. GEOMETRIC GUIDING CUES

On the largest scales, cells are characterized by their
size and shape, which together confine protein transport
and protein reaction kinetics.

A. Cell size controls protein patterns

Experimental studies show that, in addition to reaction
and transport properties of the cell, also the cell size
affects protein patterns. Examples include the transition
from pole-to-pole oscillatory patterns to stripe patterns
of MinD in filamentous E. coli cells [112, 113], and the
observation that the PAR proteins in C. elegans fail to
polarize in small cells [8].

Bulk-boundary-ratio.– On the time scale of pattern for-
mation and dynamics, the total concentration of proteins
remains constant. As a consequence of these resource
limitations, protein concentrations on the membrane and

in the cytosol will in general depend on the ratio of mem-
brane area to cell volume. Moreover, the number and
stability of reactive equilibria, as well as pattern-forming
instabilities, are controlled by the total concentration of
proteins (see Supplementary Information), and variations
in cell size can therefore qualitatively affect protein pat-
terns. To understand the underlying idea, we assume
for simplicity that the concentrations of cytosolic pro-
teins c and membrane-bound proteins m, respectively,
are uniformly distributed. The total number of proteins
N is then given by N = S ·m+ V · c, where S and V
denote the membrane (surface) area and the cytosolic
(bulk) volume, respectively (Fig. 2a). Rewriting this
mass-conservation relation in terms of the total protein
density ρ = N/V, one obtains ρ = S/V ·m+ c. Thus,
the protein concentrations on the membrane and in the
cytosol depend on the ratio of membrane to volume S/V;
for example, for a spherical cell with radius R, one finds
ρ = 3m/R+ c.

Cytosolic protein gradients.– Because the proteins of
interest here are not permanently fixed to either the
membrane or the cytosol, but circulate between these
compartments due to various chemical processes such
as membrane detachment, attachment, and recruitment,
the cell membrane effectively acts both as a source and
sink for cytosolic proteins. These chemical reactions need
to be balanced by diffusive fluxes in the cytosol, other-
wise local mass conservation would be violated. Hence,
on these very general grounds, spatial gradients in the cy-
tosolic protein density must be assumed [16, 103]. Strik-
ingly, these gradients generally do not equilibrate over
time, but are maintained by an interplay between diffu-
sion and non-equilibrium reaction kinetics (see Supple-
mentary Information).

Indeed, a good example is the case where proteins in
the cytosol can have two different conformations, an in-
active and an active state. Only proteins in the active
state are able to bind to the membrane, and they typ-
ically undergo a conformational change to the inactive
state upon detachment from the membrane (Fig. 2b). In
the cytosol, inactive proteins can switch back to the ac-
tive state with a rate λ. This reactivation step requires
the consumption of energy and is a generic feature in NT-
Pase or phosphorylation/dephosphorylation cycles [30–
32]. Since detached proteins cannot immediately bind
to the membrane again, a protein concentration gradi-
ent may form in the cytosol [114, 115]. The penetration
depth ` of this gradient depends on the cytosolic diffusion
constant Dc and the reactivation rate λ, and is given by
` =

√
Dc/λ [2].

If the cell size is much smaller than this penetra-
tion depth, the cytosolic protein concentration is effec-
tively nearly homogeneous throughout the cell. Con-
versely, if the cell is much larger than the penetration
depth, protein gradients can be established in the cy-
tosol (Fig. 2b). The presence of such cytosolic gradients
can fundamentally affect the formation of patterns on the
membrane [103, 116, 117]. This is well exemplified in the
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(b)
Interface width

no pattern
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I-BAR
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inactive proteins
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no pattern

pattern-forming
instability

FIG. 2. Size and shape as guiding cues: (a) Schematic illustration of protein distribution in the cytosol and on the
membrane: the cell volume scales with cell size R as R3, whereas the cell surface scales as R2, implying that both membrane
and cytosolic protein concentration change with cell size. (b) Left: cytosolic gradients can emerge when proteins undergo
a ‘reacivation’ step after detaching from the membrane. Inactive proteins (red) diffuse over a characteristic length scale
` before being reactivated (purple). Right: cytosolic gradients are established when the cell size is much larger than this
characteristic length scale. (c) Cell size controls pattern formation: protein patterns cannot be established in cells smaller than
the characteristic length scale of a pattern. (d) Only certain unstable modes with a wavelength limited by the cell size L can
be realised. In a cell of size L/2, no pattern-forming instability arises. (e) Proteins including BAR domains preferentially bind
to similarly curved membranes. (f) Characteristic distribution of proteins with delayed reactivation in elongated cells. Inactive
proteins are reactivated after diffusing over a characteristic length scale `. At the cell poles, this leads to the accumulation of
inactive proteins, while they are diluted at the center of the cell. A complementary distribution of active proteins is established.

E.coli Min system, which shows standing wave patterns
in vivo, but – strikingly – produces traveling and spiral
wave patterns, among others, in reconstituted in vitro
assays with large bulk volume [41, 113, 118].

Finite size effects.– In addition, cell size can affect
pattern-forming instabilities. A pattern-forming insta-
bility arises when a spatially uniform steady state is
unstable against spatially inhomogeneous perturbations
(Fig. 2d). Due to the finite size of the cell, only particu-
lar unstable modes can grow, where the largest possible
wavelength is constrained by the lateral length of the cell.
Thus, while a reaction network can lead to a pattern-
forming instability in large cells, it may result in a stable
and spatially uniform steady state or a weak gradient in
small cells (Fig. 2c,d). Indeed, this has been observed
for the polarity pattern of PAR proteins in C. elegans
(Fig. 2c) [8]. Similarly, cell size may not only limit the
existence of a pattern, but also the type of protein pat-
tern that can be established.

B. Cell shape and curvature sensing

For a wide range of cells, from bacteria [112, 119,
120] to migrating fibroblasts [121] to unicellular eukary-
otes [122] and large zygotes [93], cell shape and local
membrane curvature serve as important guiding cues for
protein attachment to the membrane. The mechanisms
underlying such curvature detection are based on the in-
teraction of proteins with the membrane, in particular its
membrane binding affinity (curvature-sensing proteins),
and the probability that a protein will make contact with
the membrane (collective curvature sensing). Both fac-
tors can be affected by cell shape (membrane curvature).

1. Curvature-sensing proteins

One prominent set of proteins that can individually
sense membrane curvature are proteins containing a
curved BAR domaini [123–126]. These proteins pref-

i BAR domain – A curved protein domain that binds to curved
membranes, named after three proteins that contain this domain:
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erentially bind to membrane regions that have a cur-
vature comparable to that of the BAR domain itself
(Fig. 2e). For example, during persistent cell motion,
the curvature-sensitive protein BAIAP2, which contains
such a BAR domain, accumulates at curved membrane
patches at the cell front, inducing the formation of lamel-
lipodia [121]. Since BAR domains have a length of about
20 nm, the sensitivity of individual proteins to weakly
curved surfaces is limited [124, 127]. However, membrane
curvature can facilitate the oligomerization of proteins
into extended curved structures, which are capable of
sensing membrane curvature on length scales larger than
that of the individual protein [128]. Other important
examples for such joint curvature sensing are dynamin,
which forms helical collars around the thin neck during
budding in yeast [129, 130], and MreB, which assembles
into filaments that orient along the highest membrane
curvature [131, 132].

Furthermore, some proteins recognize membrane cur-
vature via defects in membrane structure. This mecha-
nism is well exemplified by proteins with so-called ALPS
motifs. ALPS motifs do not have a defined structure
in solution, but insert into lipid bilayers by folding into
an α-helixj. It has been shown that ALPS motifs bind
preferably to regions with low lipid packing density [133].
Such low-density packing can arise from membrane cur-
vature, where one sheet of the lipid bilayer is stretched
compared to a flat membrane. In experiments, ALPS
motifs were found to bind strongly to liposomes with
sufficiently strong positive curvature (R < 50 nm), and
to weakly curved liposomes with a high concentration of
conically shaped lipids [133]. Thus, curvature-dependent
binding affinity can lead to predominant accumulation of
proteins at curved membrane regions.

It has been reported that proteins that sense curva-
ture can also deform the membrane: The helical struc-
ture of dynamin oligomers induces membrane curvature
during scission of the yeast bud [129, 134, 135]. Pro-
teins with BAR domains play a curvature-sensing role
at low concentrations, but stabilize membrane curva-
ture at high protein concentrations [123, 124]. Such a
dual role can lead to a positive feedback loop, when
a slightly curved membrane leads to the accumulation
of curvature-sensitive proteins. These proteins, in turn,
deform the membrane, leading to a further increase in
the binding affinity. This has been proposed as a gen-
eral mechanochemical mechanism for protein recruit-
ment [7]. However, the formualation of a mechanistic
theory for such curvature-regulating feedback loops re-
mains an open and highly interesting challenge to this
day.

Bin, Amphiphysin, and Rvs.
j α-helix – Prevalent helical-like protein structure, which is highly

stable due to hydrogen bonds.

2. Collective curvature sensing

It has recently been shown that the distribution of pro-
teins on the membrane and in the cytosol can depend on
the cell geometry, even when the binding affinity of pro-
teins is independent of membrane curvature [2, 3, 136].
The underlying mechanism is based on the aforemen-
tioned cytosolic gradients of proteins that switch between
an inactive and an active state in the cytosol. As the re-
quired reactivation step is a non-equilibrium process that
consumes energy, these gradients are maintained by a
constant cycling of such proteins between the membrane
and the cytosol, and therefore do not equilibrate by cy-
tosolic diffusion. Since cytosolic gradients from opposing
membrane points overlap at curved regions, one gener-
ally expects accumulation of inactive proteins in regions
of high curvature (e.g., near the cell poles of elongated
cells, including the rod-shaped E. coli [2], the C. elegans
zygote [3], and Bacillus subtilis [128]) and a correspond-
ing depletion of active proteins (Fig. 2f). Moreover, the
effect of such a cytosolic gradient on the protein distribu-
tions in curved geometries depends in particular on the
characteristic length ` of the cytosolic gradient relative
to the local membrane curvature [2, 3].

While this explains where proteins are most likely to
encounter the membrane, its effect on the ensuing pro-
tein pattern depends on the protein reaction kinetics. For
proteins that exhibit a simple attachment-detachment
dynamics with the membrane, the increased encounter
probability leads directly to an increase in protein con-
centration at the poles, which is further enhanced if the
protein autocatalytically promotes its own binding [2].
In contrast, if two proteins mutually inhibit each others
binding, an increased encounter probability leads to the
formation of an interface between two protein domains
on the membrane [3].

IV. BIOCHEMICAL GUIDING CUES

For spatially homogeneous systems, several theoretical
and experimental studies have identified biochemical cir-
cuits that are able to perform logic operations [138], gen-
erate pulses [139, 140], act as noise-reduction filters [141],
or process biochemical signals in other ways [142–146].
Here the information from an input signal – typically en-
coded in the concentration of a protein – is processed and
an output signal is generated.

In general, however, protein concentrations tend to be
spatially inhomogeneous, so that a locally varying in-
put can lead to a locally varying output protein con-
centration in the cell. In this way, an input pattern
can serve as a template or biochemical guiding cue for
the formation of an output protein pattern. Such bio-
chemical guidance has been observed in many biolog-
ical processes and over widely varying scales, ranging
from tissue development [147, 148] to the positioning of
the cell-division site [41, 79, 115, 149–152]. In all these
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FIG. 3. Principles of biochemical pattern guidance: (a) Left: Characteristic bifurcation diagram for pattern-forming
systems. For reaction kinetics where the concentration of the input protein is a control parameter, a spatially varying input
protein concentration can serve as a map between space and varying reaction kinetics. Top right: an input protein concentration
gradient corresponds to a cutline through the bifurcation diagram (gray line) laid out in space, which divides the cell into regions
of distinct stability. Bottom right: for a system where the input concentration gradient connects two monostable regions via a
bistable region, the resulting front pattern (red line) is pinned to a threshold concentration value of the input concentration.
Fixed points of the protein reaction kinetics are indicated by filled (stable) and open (unstable) circles. (b) Edge detection: An
input pattern (blue) spatially alters the reaction kinetics of the output protein, resulting in a regional instability of the output
protein close to the input edge (gray filled area). This leads to a peak pattern of the output protein concentration (orange) that
marks the position of the input edge. Insets show a possible realization of this edge-sensing process, leading to a ring around
a template patch. The plots depict the concentration profiles along the black cutline. (c) Diffusiophoresis: Diffusive fluxes of
pattern-forming proteins (carrier particles, shown in orange) are established at pattern interfaces. Carrier particles transport
cargo particles (blue) via frictional interactions, resulting in a complementary pattern of cargo particles [137].

cases, the input patterns encode positional information,
as each concentration marks a specific location or region
in space [153]. In fact, there are several known instances
in which protein patterns (input) control the formation
of other patterns (output) [115, 154–157]. However, the
physical mechanisms responsible for the processing of the
positional information encoded in patterns, and the gen-
eration of a qualitatively different output pattern (e.g.,
gradient vs. step profile) are still largely unclear.

Such input/output relations are found, for example, in
the polarity mechanism of budding yeast. Here, several
so-called landmark proteins mark specific locations in the
cell, such as the previous bud site. These landmark pro-
teins (input) alter the kinetics of nucleotide exchange in
the polarity factor Cdc42 (output), and thus contribute
to the control of cell polarity in a symmetry-breaking
manner [158, 159]. Another example is provided by the
midcell localization machinery of Caulobacter crescentus.
In these elongated cells, ParB-parS (input) complexes
localized to the cell poles stimulate the ATP-dependent
dimerization of MipZ (output), which results in the for-
mation of a bipolar gradient of MipZ dimers with a min-
imum at midcell [114]. MipZ, in turn, inhibits the poly-

merization of FtsZ, which is a central component of the
cell-division machinery. Thus, the bipolar MipZ gradi-
ent also acts as an input for the control and positioning
of FtsZ (output) to midcell [160]. Such a hierarchy of
pattern control through multiple stages of protein inter-
action is a common feature of many biochemical guidance
mechanisms [94, 149, 159, 161].

In the following, we discuss some recent advances in
this area, focusing on systems in which the concentra-
tion profile of an (input) protein is able to control the
reaction kinetics of another (output) protein, such that
one or more reaction rates become spatially inhomoge-
neous. This can result in an output protein pattern that
is qualitatively different from the input pattern, which
has been termed spatial network computations [162].

A. Spatially varying reaction kinetics

Since protein reaction kinetics can depend on the con-
centration of other proteins, a spatially varying input
protein concentration can lead to locally varying reactive
equilibria of the output protein. In particular, not only
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can the protein concentration at each local reactive equi-
librium be altered; also, the number and the stability of
these equilibria can change in response to a varying input
concentration (see Supplementary Information). Heuris-
tically, this means that space itself serves as a control
parameterk for the protein reaction kinetics. Hence, the
input protein pattern encodes positional information.

The dynamics of the output protein depend crucially
on its explicit biochemical interactions with the input
proteins. For example, for a particular interaction be-
tween proteins, this can lead to bistability of the output
protein over a limited range of input concentrations, as
observed in starfish oocytes [94]. Due to the correspon-
dence between input protein concentration and space,
such a bistable parameter range maps to a region in space
where the output protein reactions are bistable, which we
refer to as regional bistability. In a similar way, a pro-
tein pattern can cause a pattern-forming instability in a
specific spatial region, which has been termed regional
instability [163, 164]. Thus, an input pattern can lead
to a qualitatively different spatial concentration profile
of the output protein, where the explicit output pattern
strongly depends on the reaction kinetics (Fig. 3a). This
fundamental property of protein interactions is likely to
represent the mechanism that underlies many of the bio-
chemically guided pattern-forming systems observed in
experiments [156–160].

B. Wave localization by protein gradients

Biochemical trigger waves, consisting of a travel-
ing front or pulse of biomolecule concentration, are a
common means of long-ranged signal transmission in
cells [105]. Prominent examples of such waves include
calcium waves [165], the propagation of mitosisl [161] and
apoptosism [166] in Xenopus eggs, actin polymerization
waves in Dictyostelium [167] and neutrophils [168], as
well as intracellular signaling [169]. A key component of
models for trigger waves, such as the FitzHugh-Nagumo
model [170], are bistable reaction kinetics (see Supple-
mentary Information). These bistable reaction kinetics,
in addition to resulting in information transmission, al-
low trigger waves to serve as a readout for positional
information encoded in other protein patterns.

To illustrate how spatially varying reactive equilibria
allow proteins to read out this positional information, we
now discuss how a protein gradient can lead to the lo-
calization of such a trigger wave, in particular a bistable

k Control parameter – A parameter that alters the qualitative dy-
namics when it is changed, also referred to as a bifurcation pa-
rameter in nonlinear dynamics.

l Mitosis – Stage of the cell cycle during which chromosomes are
segregated into the two daughter cells.

m Apoptosis – Cellular process leading to actively induced cell
death.

front, to a specific position in the cell. We first con-
sider a system with homogeneous bistable reaction ki-
netics forming a front pattern (see Supplementary Infor-
mation). This front can propagate through the system
at a speed and direction that depends on, among other
factors, the concentration of the input protein [105, 171].

In the presence of an input pattern, the reaction kinet-
ics are no longer homogeneous, so that a regional bista-
bility can emerge. Since the front only propagates in a
bistable parameter range, propagation is constrained to
this regional bistability. In particular, since the direc-
tion of propagation depends on the input concentration,
the front is pinned at a threshold input concentration
(Fig. 3a) [105]. Due to the correspondence between in-
put concentration and space, this means that the front is
localized to a specific position within the regional bista-
bility. Thus, the position of the front interface marks the
location of the input threshold concentration, allowing
the positional information encoded in the input pattern
to be read out. Such a threshold-sensing mechanism has
been proposed to play a role in the propagation of surface
contraction waves during meiosisn in starfish oocytes [94]
and during chemotaxiso in eukaryotes [172].

C. Edge-sensing and ring formation

Proteins also have been found to localize at the edges
of spatial domains that exhibit a high concentration of
other proteins or macromolecules. For example, during
cellular wound healing, the Rho-GTPase Cdc42 and an
associated GTPase regulator, Abr, accumulate locally to
form two concentric rings [173]. Experimental evidence
suggests that this structure is hierarchically organized,
with the outer Cdc42 ring being dependent on the pres-
ence of an inner Abr zone. While it is not particularly
surprising that a given spatial protein profile serves as a
template for creating another protein profile with a sim-
ilar shape, it is quite interesting that the downstream
profile assumes a qualitatively different shape, with a
peak localized right at the edge of the upstream profile
(inner Abr ring, see insets in Fig. 3b). To account for
such edge-sensing, a regional instability has been sug-
gested [97, 164]. Here, the step-like Abr profile, acting
as an input protein pattern, defines two spatial domains
with qualitatively different reaction kinetics for Cdc42,
which takes the role of the output protein. It was shown
that the outer domain may effectively act as a stimulus
that induces a lateral mass-redistribution instability in
the inner domain, which leads to a concentration peak of
the output protein at the template edge (Fig. 3b). More-
over, the formation of this output concentration ring can

n Meiosis – A type of cell division process that generates daughter
cells that contain half as many chromosomes as the parent cell.

o Chemotaxis – Directed locomotion of cells along chemical gradi-
ents.
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be controlled by both the magnitude of the input pattern
step and the total amount of output protein. Thus, edge
sensing is enabled by a regional mass-redistribution in-
stability in a downstream protein pattern, which is itself
triggered by an upstream protein pattern that acts as a
step-like template.

Beyond the specific example discussed above, there are
other biologically highly relevant processes that involve
edge sensing. As in the case of wound healing, a ring of
Rho forms around a patch of high Cdc42 concentration
prior to polar body emission in Xenopus oocytes [174].
Another biological process in which protein templates ap-
pear to play an essential role is that of macropinocytosis,
a form of endocytosisp associated with cell surface ruf-
fling. Here, actin-recruiting proteins colocalize to high-
density patches of PIP3 (a charged phospholipid) and a
Ras-GTPase, forming a ring around the edge of the PIP3
domain, which in turn leads to the assembly of a conc-
tractile actomyosin ring [175]. This whole process is in-
variably linked to the presence of PIP3 and Ras patches,
suggesting that these biomolecules serve as a biochemical
guiding cue for the actin-recruiting proteins. The specific
physical mechanisms responsible for each of these edge-
sensing processes have not yet been uncovered.

D. Tracking of moving patterns

In addition to varying in space, the input protein con-
centration can vary in time at a fixed location in the cell.
Temporal changes of the input concentration can lead
to sudden changes of the reactive equilibrium which, in
turn, results in transient dynamics of the output concen-
tration before the new reactive equilibrium is established
– a phenomenon referred to as excitability in the field
of nonlinear dynamics [14, 171]. Such transient dynam-
ics can mark the position of local changes in the input
concentration. For example, in the case of a traveling
front pattern, the input concentration changes in time at
a fixed position as the front passes by. Due to the tran-
sient output dynamics, this can lead to a traveling output
concentration peak that closely follows the moving front.
This has been observed in starfish oocytes, where a trav-
eling front pattern leads to a moving concentration peak
which, is ultimately responsible for the surface contrac-
tion waves observed during meiosis [94, 176, 177]. Similar
observations have been made in vitro for an artificial cor-
tex based on frog egg extracts [178].

E. Phoretic transport

A more intricate mechanism by which spatiotempo-
ral protein patterns could serve as cues for the develop-

p Endocytosis – Cellular process that enables the uptake of
biomolecules into the interior of the cell.

ment of subsequent protein patterns are various types
of phoretic transport processes. These are, in general,
the result of an external field gradient acting on the pro-
tein [179, 180]. Examples include concentration gradients
of carrier particles (diffusiophoresis) [137, 181], chemical
potential gradients (chemophoresis) [182, 183], electric
potential gradients (electrophoresis) [184], or tempera-
ture gradients (thermophoresis) [185], along which cargo
can be transported. Thus, cargo particles can form a pat-
tern guided by such gradients [179]. Notably, in phoretic
transport mechanisms, energy is consumed to maintain
the gradient, resulting in a flux of cargo particles. This is
substantially different from other transport mechanisms
such as active transport, where energy is consumed to
fuel molecular motors that move cargo particles.

In the field of phoretic transport, research has long
been focused on colloidal particles [179–181, 186]. Ex-
perimental evidence for phoretic transport in biological
systems related to protein organisation and pattern for-
mation has only recently been discovered [137, 182]. For
example, in-vitro experiments have shown that diffusio-
phoresis can result in the spatial organization of DNA
origami nanostructures in a concentration gradient of
MinD [137]. Here, the Min proteins self-organize into
a stationary pattern [187], resulting in diffusive fluxes at
the domain edges (c.f. Fig. 3c). These diffusive fluxes are
transferred to the DNA nanostructures via friction, lead-
ing to diffusiophoretic transport of the latter along the
Min gradients. Thus, the movement of the DNA nanos-
tructures mimics the movement of the Min proteins, re-
sulting in the formation of an anti-correlated pattern of
the DNA nanostructures. Such diffusiophretic transport
has been suggested to play an important role for the dis-
tribution of large particles in cells in general [188].

In the context of plasmid segregation, chemophoresis
has been suggested to drive the movement of plasmids on
the nucleoid [182]. Here, ParA proteins on the nucleoid
surface are thought to bind to large cargo, such as plas-
mids. Upon unbinding, ParA proteins are released from
the nucleoid, resulting in a local depletion of ParA at the
position of the cargo. The ParA concentration gradient
at the edge of this depletion zone creates a chemical po-
tential gradient for the cargo, which tends to bind more
strongly at regions of high ParA concentration. Thus, the
cargo moves along the chemical potential gradient away
from the depletion zone [182, 183]. This chemophoretic
movement is suggested to be sufficient to ensure a bal-
anced distribution of plasmids on the nucleoid [182].

V. MECHANICAL GUIDING CUES

In addition to biochemical guiding and guidance by
cell size and shape, also the mechanical properties of a
cell can affect protein pattern formation by altering the
transport and reaction kinetics of proteins.

Flows generally arise from stress gradients. In cells,
such gradients can be generated via shape deformations
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(a) (b)

FIG. 4. Principles of mechanical guidance by flow generation: Stress gradients result in flows. (a) Heterogeneous cell
deformations, as indicated by the grayscale outline, lead to pressure gradients in the cytosol, which in turn induce cytosolic
flows towards regions of low pressure. (b) Heterogeneous actomyosin activity (green gradient; actin filaments shown in red,
myosin shown as green circles), as observed in C. elegans zygotes [53], leads to polarized contractions of the actomyosin cortex
and a flow of the entire cortex towards regions of high actomyosin activity. Hydrodynamic coupling results in cytosolic flows.

(Fig. 4a). For example, recent work has demonstrated
the generation of flows in the cytoplasm due to shape de-
formations in starfish oocytes [95]. In these cells, a sur-
face contraction wave travels across the membrane from
the animal to the vegetal pole, which locally increases the
pressure in the cytosol, and results in cytoplasmic flows
along the oocyte’s animal-vegetal axisq. Similar obser-
vations have been made for Drosophila embryos, where
apical constrictions instead of surface contraction waves
lead to cytoplasmic flows [189], and in Drosophila neu-
roblasts where cortical contractions induce flows in the
cortex [190].

Next to deforming the cell shape, contractions of the
actomyosin cortex can also lead to cortical flows, either
as a consequence of spatially inhomogeneous actomyosin
activity [4] or anisotropic cortical tension [191] (Fig. 4b).
For example, cortical flows in C. elegans zygotes prior
to PAR polarization arise due to nonuniform actomyosin
activity [4]. Through hydrodynamic coupling, such flows
may also induce cytoplasmic flows [53, 92].

How are protein patterns controlled by mechanical
guiding cues? It has been suggested that a combination
of pattern guidance by cortical flows and biochemical in-
teractions may be ultimately responsible for the polar-
ization mechanism in C. elegans zygotes [4]. Prior to po-
larization, a mechanical inhomogeneity in the cell cortex,
induced by the symmetry-breaking introduction of a cen-
trosome into the zygote, causes the cell cortex to contract
asymmetrically. Here, the reduced actomyosin contractil-
ity at the posterior pole leads to anterior-directed cortical
flow. Once symmetry is broken, the cortical flows and the
associated anterior-directed cytoplasmic flows lead to a
redistribution of PAR proteins, which in turn control and
maintain the asymmetric actomyosin contractility of the

q Animal-vegetal axis – Symmetry axis in oocytes, along which
the developmental activity varies, separating the cell into two
distinct poles.

cortex, thereby giving rise to a self-regulating polariza-
tion mechanism. These observations underline the key
role of mechanical guiding cues in the process of protein
pattern formation.

VI. UPCOMING CHALLENGES

In this review, we have focused on guidance mecha-
nisms in model biological organisms that have been stud-
ied experimentally, and for which theoretical models ex-
ist. However, a much larger number of cellular processes
rely on guiding cues and whose underlying biophysical
mechanisms are still unknown. To conclude this review,
we outline some promising recent developments in the
field of protein pattern formation that build upon the
recognition of the important role of guiding cues.

A. Robustness against guiding cues

Guiding cues can vary over time, as evidenced by cell
size and shape, which change throughout the cell cycle.
Moreover, these changes can affect the process of pro-
tein pattern formation in quite different ways: Protein
patterns can either adapt to the changing guiding cues
as discussed in this review, or they can be impervious
to variations in geometric, mechanical, and biochemical
factors. Pattern-forming mechanisms that are robust to
changes in cell geometry or mechanics have recently been
identified in various systems [94, 144], but a general un-
derstanding of robustness in pattern formation is still
lacking. Future research on pattern formation mecha-
nisms in living cells will reveal whether there are more
examples where the formation of protein patterns adapts
to be robust to the effects of cell mechanics and geometry.
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B. Mechanochemical feedback loops

We discussed above how protein patterns can flexibly
adjust to changes in the physical properties of cells. How-
ever, proteins can also actively modify the mechanical
properties of the cell, resulting in a feedback loop be-
tween cell mechanics and protein patterns. Various theo-
retical studies showed that the coupling to cell mechanics
in such mechanochemical feedback loops can lead to the
formation of protein patterns [100, 192–197]. For exam-
ple, coupling of a contractility-regulating chemical agent
to an active fluid surface can result in shape deforma-
tions of axisymmetric surfaces, accompanied by polar-
ization of the chemical agent [101]. This phenomenon
shows similarities to the aforementioned self-reinforcing
polarity mechanism of C. elegans, where cortical flows are
created by asymmetric actomyosin activity [191]. In ad-
dition, a recent experimental study showed that the spa-
tiotemporal patterning of the Min protein system can in-
duce substantial shape deformations in GUVsr [198, 199].
This observation suggests a generic interplay between
reaction-diffusion dynamics and membrane mechanics.
We hypothesize that membrane properties, such as spon-
taneous curvature, may influence the kinetics of protein
binding, and vice versa [7, 98, 102]. In combination with
the hydrodynamic coupling of the cell membrane to the
cortex and the cytosol, this can lead to a mutual feed-
back between the dynamics of protein patterns and cell
shape.

A theoretical characterization of this two-way coupling
between biochemical processes and cell mechanics is a
promising avenue for future research [200]. Since such
mechanochemical models need to account for protein re-
action–diffusion dynamics as well as a dynamically vary-
ing three-dimensional cell shape, they are challenging
to study both analytically and numerically [192, 196,
201, 202]. In future research, it will be important to
further develop methods and, in particular, biologically
realistic three-dimensional models, such that they can
be compared to quantitative experimental data and con-
tribute to the interpretation of experimental results in
mechanochemical model systems.

Mechanochemical feedback loops are a special case of
a general phenomenon that can be observed in many
pattern-forming systems: may patterns in cells are not
the result of a single guiding cue, but are the products of
multiple interacting cues and processes [53, 75, 79, 203–
205]. However, it is often difficult to separate all the
processes involved in the robust formation of functional
protein patterns in living cells, as the example of C. el-
egans polarisation shows [3, 8, 53, 93]. Recognizing and
incorporating such interacting processes into the theoret-
ical analysis of pattern-forming systems will therefore be
a major task for future research on pattern formation.

r GUV – Giant unilamellar vesicle, an artificial spherical chamber
bounded by a lipid bilayer that mimics the membrane of cells.

C. Perspectives for pattern guidance

At the conceptual level, we currently face three main
challenges in the context of understanding the biophysi-
cal basis of pattern guidance. These relate to (i) progress
in the study of fundamental aspects of processes in liv-
ing systems far from thermal equilibrium, (ii) finding the
right level of simplification for a given complex biologi-
cal system, and (iii) improving both computational and
experimental tools. In the long term, meeting these chal-
lenges will be vital to advancing our knowledge of pattern
guidance, pattern formation, and information processing
in biology in general.

1. New frontiers in non-equilibrium physics

Several interesting physics questions arise from the bi-
ological model systems we have discussed in this review.
A central issue concerns how the dynamics of pattern-
forming systems are mechanistically controlled by spa-
tial and temporal gradients. These gradients lead to a
variety of fascinating phenomena including information
processing [147], templating [164], and hierarchies of dif-
ferent patterns [94]. Since these gradients can form for
different physical quantities they can influence the for-
mation of patterns in many ways. Among others, we
have discussed spatially varying reaction kinetics which
can lead to the localization of trigger waves in bistable
media. But any gradient in an intensive thermodynamic
variable, such as a chemical potential, can give rise to cor-
responding particle currents, as described by the laws of
non-equilibrium thermodynamics [206]. Transport prop-
erties are also strongly influenced by spatial variations
in kinetic coefficients such as diffusion constants. These
processes lead to additional advection currents which we
have not addressed in this review. Moreover, due to
dynamic feedback between these particle currents and
protein patterns, the gradients themselves may become
part of the dynamics rather than acting solely as exter-
nal guiding cues. This greatly expands the possibilities
for future theoretical and experimental research on this
topic.

2. Levels of biological complexity

Another crucial and actually quite general challenge
is how to deal with the different levels of complexity in
biological systems. For example, the full extents of inter-
action networks of proteins are generally unknown, and
it is often unclear whether integrating all possible in-
teraction pathways into a theoretical model is actually
necessary to explain a particular phenomenon [207, 208].
Even in cases where networks are fully characterized, the
information flow through the reaction network can be
difficult to understand. Methods to analyse such infor-
mation flows have been developed for well-mixed reaction
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systems, such as the modular response analysis [209]. For
spatially extended systems, where information is stored
and processed by patterns, such methods have yet to be
developed.

In addition, temporal regulatory mechanisms, such
as cell-cycle-induced gene regulation, are often excluded
from models of pattern forming system, even though the
relevance of such regulatory mechanisms for pattern for-
mation is not fully understood yet [140, 210]. Where
such mechanisms are in place, global mass conservation –
which is a cornerstone in many models of protein pattern
formation – does not apply anymore, opening an avenue
to additional concepts for pattern formation [104].

Avoiding the overfitting of models, and separating im-
portant components of interaction networks from irrele-
vant interactions (on the time scale of interest), are both
difficult to achieve, and this presents major difficulties
for theory and mathematical modeling. Ultimately, the-
oretical frameworks need to be developed that allow for a
systematic coarse-graining that shows how the manifold
components of a biological system can be reduced to its
core elements. Such reductionism, at least for someone
trained in physics, is the silver bullet to determining fun-
damental principles and improving our understanding.

3. Finding the right level of geometric representation

Similarly, the question of how theory should deal with
the dimensionality and geometric form of biological sys-
tems needs careful consideration. For example, reduc-
ing the dimension of a specific system, e.g., to simplified
one-dimensional models, may help to obtain an analyti-
cally more accessible representation. While such a sim-
plification can be useful for gaining insight into the un-
derlying dynamics and for guiding experiments, it may
also obscure important aspects of pattern guidance. As
pointed out in this review, certain phenomena, such as
curvature sensing, only occur in realistic geometries and
would therefore be erased in simplified one-dimensional
models [2, 3]. In essence, the complexity of biological
systems must be reduced in order to understand them
better. However, the challenge for future models is to
find the appropriate level of simplification without loss
of crucial features.

4. How to face the challenge of multiphysics problems

In addition, many experimental results indicate that
pattern formation, and pattern guidance in particular,
are the result of a tight interplay between biochemi-
cal interactions, hydrodynamics of cellular substrates,
and membrane mechanics [4, 121, 191, 211]. While nu-
merous theoretical advances have been made in each of
these areas (e.g., reaction-diffusion dynamics and non-
equilibrium physics), there is so far no unified theoretical
and computational approach that would allow a thorough

analysis of such multiphysics problems. Therefore, in or-
der to gain a deeper understanding of pattern guidance in
realistic biological systems, a comprehensive theoretical
framework that allows the study of the interplay between
these different fields of physics must be developed.

5. Improving experimental and computational methods

Another roadblock that impedes progress is the lim-
ited availability of experimental, analytical and compu-
tational tools. On the experimental side, the current
challenges, to name just a few examples, are to improve
the spatial and temporal resolution of the quantities of
interest (e.g., proteins) and to access quantitative infor-
mation such as local densities, reaction rates, transport
properties, and forces. In addition, conducting experi-
ments under well controlled conditions, where only one
or a few parameters are adjusted at a time, is often dif-
ficult owing to the associated technical demands, as well
as the inherent complexity of biological systems. Future
progress in this area would greatly enhance our ability to
make more detailed comparisons with theory.

Concerning computational approaches, the simula-
tion of multiphysics problems presents a major obsta-
cle. In particular, the numerical implementation of bulk-
boundary coupled reaction-diffusion systems in combina-
tion with hydrodynamics and deformable, time-evolving
membranes, is an important task for future research. The
primary difficulties here lie in the development of an ef-
ficient and stable numerical approach that allows one to
solve multiphysics problems in which the numerical do-
main itself is part of the solution. In the case of reaction-
diffusion dynamics on dynamic membranes without cou-
pling to a bulk volume, this can be addressed by de-
riving the time-evolution of the surface from the (nor-
mal) variation of a free energy functional that describes
the mechanical properties of the membrane [18, 98–102].
However, this does not account for dynamics in the bulk,
such as intracellular flows and bulk-boundary coupling
of protein reactions. Promising approaches that can
cope with these problems in the future are the level-set
and the phase-field methods [212, 213]. These strate-
gies allow one to segregate the computational domain
into different regions (e.g. interior and exterior of a cell),
where the interface between these regions corresponds
to a (smooth) boundary (that could represent, e.g., the
cell membrane). In this way, one can define and solve a
coupled set of partial differential equations between dif-
ferent regions, including the interface, and at the same
time allow these regions to evolve over time by solving
the level-set or phase-field equation. Most notably, the
phase-field method is being used in current research to
model cell migration [214], with applications to reaction-
diffusion systems arising only recently [215–218]. At the
same time, new methods are being developed [219]. In
the long run, it will be a challenge to not only model a
deformable domain, but also incorporate the biochemical
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and mechanical details of membranes in computational
approaches.

VII. SUMMARY

We have presented a summary of the recent progress
in understanding the biophysical mechanisms underlying
the guidance and control of protein patterns. In essence,
one distinguishes between geometric, biochemical, and
mechanical guidance cues.

First, geometric effects can control protein pattern for-
mation, with the cell size affecting the bulk-boundary
ratio and the relative penetration depth of cytosolic con-
centration gradients. In addition, pattern formation can
be limited by finite-size effects. Geometric effects im-
posed by the cell shape – such as the local membrane
curvature that controls the distribution of curvature-
sensing proteins, and the overall cell shape, which af-
fects the curvature-dependent probability that a protein
will encounter the membrane – can also serve as guid-
ing cues. Second, we reviewed how protein patterns can
guide other protein patterns via biochemical interactions.
Spatial information that is encoded in one protein pat-
tern can be interpreted through protein-protein interac-
tions, thereby transforming the spatial coordinate into
a control parameter for downstream protein reactions.
This gives rise to a wide range of different pattern guid-
ance mechanisms, including threshold localization, edge-
sensing, and phoretic transport. Third, mechanical guid-
ing cues, among which flow and stress gradients are of
particular relevance, can affect protein pattern forma-
tion. Finally, we outlined open questions and the associ-
ated experimental, theoretical, and numerical challenges
that need to be faced to improve our understanding of
guided pattern formation.

We believe that the mechanisms presented in this re-
view can be applied to a wide range of processes in which
spatial information is processed, such as cell migration,
cytokinesis, and morphogenesis. To advance our under-
standing of the physical basis and biological relevance
of pattern formation, further research on the concepts of
pattern guidance will be required, as well as more refined
methods to explain experimental observations. Taken
together, this could ultimately contribute to the char-
acterization of general biophysical principles of spatial
information processing in living cells.

SUPPLEMENTARY INFORMATION

A. Methods of analysing pattern formation

1. Reactive equilibrium

Chemical reactions convert reactants to products and
vice versa, thus resulting in fluxes. An equilibrium state

is reached if the sum of all fluxes equals zero, which de-
termines the equilibrium concentrations of constituents.
This equilibrium state is commonly referred to as a reac-
tive equilibrium, and is generally distinct from a thermo-
dynamic chemical equilibrium because fluxes can orig-
inate from non-equilibrium processes (broken detailed
balance) [220]. One example are NTPase cycles, in which
proteins detach from the membrane and must undergo a
conformational change before they can re-attach. The
reactive equilibrium in this case is given by a balance
between reactive fluxes onto and off the membrane.

Mathematically, the reaction kinetics of a well-mixed
system are expressed by ordinary differential equations
(ODEs)

∂tu(t) = f(u) , (5)

where f(u) contains the (nonlinear) interactions between
the components of u and therefore corresponds to the
sum of individual reactive fluxes. Formally, a reactive
equilibrium conforms to the steady state solution ∂tu = 0
of Eq. (5) and is termed the fixed point of the ODE sys-
tem, i.e. f(u∗) = 0 for steady state solutions u∗. In gen-
eral, the long-term dynamics are governed by attractors
of the nonlinear system, whose properties are the subject
of the field of dynamical systems theory [13].

2. Phase space analysis

To assess the qualitative dynamics of nonlinear dynam-
ics systems, one must often resort to geometric phase
space analysis (Fig. 5b). In phase space, each point cor-
responds to a specific state of the system, with the phase
space flow tracing out the time evolution of the system.
Next to the flow lines, fixed points (f(u∗) = 0) and null-
clines (fi(u) = 0) are characteristic features which reflect
the topology of phase space. In particular, this represen-
tation allows one to identify important features of the
system, such as steady states or limit cycles.

As a characteristic example, consider the phase space
diagram shown in Fig. 5b, for a two-component system
whose dynamics are given by ∂tu1 = −u1 + u21 u2 and
∂tu2 = u1 − u2. Intersections of the nullclines correspond
to fixed points, whose stability can be determined by vi-
sualizing the phase space flow. The system at hand pos-
sesses one stable fixed point and one saddle fixed point.
Given a specific initial state, the time evolution of this
state can be determined by following the flow line, which
provides qualitative information about the system’s dy-
namics.

3. Dispersion relation

In spatially extended systems, patterns typically form
when a (spatially homogeneous) steady state is unstable
against random spatial perturbations. The formal way to
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flux-balance subspace

nullcline

reactive flux diffusive flux perturbation reactive equilibria

local phase spaces

FIG. 5. Geometric analysis of nonlinear dynamics: (a) The number and stability of reactive equilibria (fixed points)
depends, in general, on the reaction kinetics f(u; a), where a is a control parameter. (b) Characteristic phase space diagram
showing the system’s fixed points, which can be derived from the nullclines (blue, orange); the separatrices (black) divide the
phase space into qualitatively distinct areas. The time evolution of a given initial state (red square) is represented by the flow
line associated with this state (red line). (c) Front propagation. Left: The reaction kinetics f(u) determine the speed v of the
wave. Right: For noisy initial conditions interpolating between the two stable plateaus u±, the reaction kinetics first lead to
a smoothening of the perturbation and then result in directed front propagation at velocity v. (d) Illustration of the mass-
redistribution instability in phase-space for the biologically relevant limit Dc � Dm. The homogeneous steady state (black
open circle) is determined from the intersection between the local phase space of the total average mass n̄ (thick blue line) and
the reactive nullcline f(m, c) = 0 (thick black line). A spatial perturbation δn around this homogeneous state causes spatial
gradients of the local total density in real space (inset top right). In phase space, the perturbation is represented by local phase
spaces (thin blue lines) that contain masses that differ from the homogeneous state, and therefore lead to reactive fluxes (red
arrows) towards the reactive equilibria (orange filled circles). This leads to a growing inhomogeneous density distribution in
real space, which is further amplified by diffusive fluxes (orange arrows). Note that, since cytosolic diffusion is much faster than
membrane diffusion Dc � Dm, diffusive fluxes must point along the vertical direction. The steady state density distribution
in real space is represented by the flux-balance subspace in phase space (thick gray line) [163]. The constant η0 determines the
vertical position of the flux-balance subspace in phase space and can be interpreted as the (spatial) average cytosolic density.

probe for instabilities is to perform a linear stability anal-
ysis: One first expands spatial perturbations in normal
modes and then linearizes the dynamics around a spa-
tially homogeneous steady state u∗. From the linearized
system, one can determine the dispersion relation σ(qn),
which relates the growth rate σ of perturbations to their
respective mode number qn. A typical dispersion relation
is shown in Fig. 2d. Positive values of the growth rate in-
dicate that spatial perturbations are amplified and grow
exponentially. Since the critical mode qc with the high-
est growth rate is expected to dominate near onset, this
unstable mode sets the characteristic wavelength of the
initial pattern. However, in general, the dispersion re-
lation only informs about the characteristic length scale
of the pattern in the vicinity of the homogeneous steady
state [1]; the dominant length scale of the final pattern
can be quite different.

B. Nonlinear feedback in protein pattern formation

1. Bistability and propagation of bistable fronts

Feedback loops are ubiquitous in biological systems
and essential for many cellular processes [105, 110, 142].
For instance, the calcium waves that follow fertilization
of an egg are the result of a positive feedback loop in
which cytosolic calcium promotes the flow of additional
calcium into the cytoplasm [105]. In general, feedback
loops lead to nonlinear dynamics that exhibit multiple
(linearly stable) reactive equilibria [221]. A common case
is bistability, where the dynamics ∂tu = f(u) has three
reactive equilibria, two of which are (linearly) stable (u±)
and one of which is (linearly) unstable (u0). Consider a
spatially extended bistable system with spatially uniform
reaction kinetics f(u), described by the reaction-diffusion
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equation

∂tu(x, t) = D∂2xu(x, t) + f(u(x, t)) . (6)

In such a system, a front-like profile, where an inter-
face connects two plateaus at the two linearly stable
fixed points u− and u+ (Fig. 5c), will propagate [106]:
one plateau invades the other with a constant velocity
v ∼ −

∫ u+

u−
du f(u). These fronts will come to a halt only

for a certain choice of parameters, namely when the areas
enclosed by f(u) in the intervals [u−, u0] and [u0, u+] are
equal [16].

2. Mass-redistribution instability

A general design feature of biochemical networks un-
derlying protein self-assembly is that their dynamics (ap-
proximately) preserve the mass of each protein species;
i.e., on the time scale of pattern formation, both protein
production and protein degradation can be neglected.
Some key features of the patterning dynamics can al-
ready be seen with a two-component, mass-conserving
system consisting of a cytosolic (c) and a membrane (m)
species in one spatial dimension [16, 163]:

∂tm(x, t) = Dm∂
2
xm+ f(m, c), (7a)

∂tc(x, t) = Dc∂
2
xc− f(m, c). (7b)

It is instructive to consider the system’s dynamics in
(m, c) phase space. The reactive nullcline (f(m, c) = 0)
typically shows a N-shape. Since the reaction kinetics are
mass-conserving, reactive flows tend to remain within the
corresponding local phase spaces (n(x, t) = m+ c), and
point towards the reactive equilibria determined by the
intersection points of these local phase spaces with the
reactive nullcline [163]. Now consider a homogeneous
steady state n̄ in phase space that intersects the null-
cline in a region of negative slope. Spatial perturba-
tions δn around the homogeneous steady state lead to
a shift of the local reactive equilibria. Due to the result-
ing reactive currents, an upward shift δn in total density
leads to a decrease in cytosolic density and vice versa
(Fig. 5d). This gives rise to cytosolic concentration gra-
dients, which in turn lead to diffusive fluxes, creating a
positive feedback loop. Eventually, a steady-state pat-
tern is reached when the diffusion currents at the mem-
brane and in the cytosol balance out. In phase space,
the steady state is represented by a flux-balance subspace
given by c̃(x) +Dm/Dc m̃(x) = η0, where η0 is a con-
stant. In summary, this pattern formation mechanism in-
volves an intricate coupling between mass-redistribution
and local reaction kinetics [16, 163].
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[24] Wolfram Möbius and Liedewij Laan. Physical and
Mathematical Modeling in Experimental Papers. Cell,
163(7):1577–1583, 2015.

[25] Gert Bange and Irmgard Sinning. SIMIBI twins in pro-
tein targeting and localization. Nature Structural &
Molecular Biology, 20(7):776–780, 2013.

[26] Anthony G. Vecchiarelli, Kiyoshi Mizuuchi, and Bar-
bara E. Funnell. Surfing biological surfaces: exploit-
ing the nucleoid for partition and transport in bacteria.
Molecular Microbiology, 86(3):513–523, 2012.

[27] Sandra Iden and John G. Collard. Crosstalk between
small GTPases and polarity proteins in cell polarization.
Nature Reviews Molecular Cell Biology, 9(11):846–859,
2008.

[28] Sandrine Etienne-Manneville. Cdc42 - the centre of po-
larity. Journal of Cell Science, 117(8):1291–1300, 2004.

[29] Pilar Perez and Sergio A Rincón. Rho GTPases: regu-
lation of cell polarity and growth in yeasts. Biochemical
Journal, 426(3):243–253, 2010.

[30] G M Bokoch, B P Bohl, and T H Chuang. Guanine nu-
cleotide exchange regulates membrane translocation of
Rac/Rho GTP-binding proteins. Journal of Biological
Chemistry, 269(50):31674–31679, 1994.

[31] Jeffrey A. Ubersax and James E. Ferrell Jr. Mecha-
nisms of specificity in protein phosphorylation. Nature
Reviews Molecular Cell Biology, 8(7):530–541, 2007.

[32] Javier E. Irazoqui, Amy S. Gladfelter, and Daniel J.
Lew. Scaffold-mediated symmetry breaking by Cdc42p.
Nature Cell Biology, 5(12):1062–1070, 2003.

[33] Chun-Chen Kuo, Natasha S. Savage, Hsin Chen, Chi-
Fang Wu, Trevin R. Zyla, and Daniel J. Lew. Inhibitory
GEF Phosphorylation Provides Negative Feedback in

the Yeast Polarity Circuit. Current Biology, 24(7):753–
759, 2014.

[34] Carsten Hoege and Anthony A Hyman. Principles
of PAR polarity in Caenorhabditis elegans embryos.
Nature Reviews Molecular Cell Biology, 14(5):315–322,
2013.

[35] Bruce Alberts, Alexander D Johnson, Julian Lewis,
David Morgan, Martin Raff, Keith Roberts, and Peter
Walter. Molecular Biology of the Cell. Garland Science,
New York, 4 edition, 2002.

[36] Manuel Osorio-Valeriano, Florian Altegoer, Wieland
Steinchen, Svenja Urban, Ying Liu, Gert Bange, and
Martin Thanbichler. ParB-type DNA Segregation Pro-
teins Are CTP-Dependent Molecular Switches. Cell,
179(7):1512–1524.e15, 2019.

[37] Laura L. Lackner, David M. Raskin, and Piet A. J. de
Boer. ATP-Dependent Interactions between Escherichia
coli Min Proteins and the Phospholipid Membrane In
Vitro. Journal of Bacteriology, 185(3):735–749, 2003.

[38] Nathan W. Goehring, Carsten Hoege, Stephan W. Grill,
and Anthony A. Hyman. PAR proteins diffuse freely
across the anterior–posterior boundary in polarized C.
elegans embryos. Journal of Cell Biology, 193(3):583–
594, 2011.

[39] François B Robin, William M McFadden, Baixue Yao,
and Edwin M Munro. Single-molecule analysis of cell
surface dynamics in Caenorhabditis elegans embryos.
Nature Methods, 11(6):677–682, 2014.

[40] Andrew B Goryachev and Marcin Leda. Many roads
to symmetry breaking: molecular mechanisms and the-
oretical models of yeast cell polarity. Molecular Biology
of the Cell, 28(3):370–380, 2017.

[41] Beatrice Ramm, Tamara Heermann, and Petra Schwille.
The E. coli MinCDE system in the regulation of protein
patterns and gradients. Cellular and Molecular Life Sci-
ences, 76(21):4245–4273, 2019.

[42] J. Halatek, F. Brauns, and E. Frey. Self-organization
principles of intracellular pattern formation. Philosoph-
ical Transactions of the Royal Society B: Biological Sci-
ences, 373(1747):20170107, 2018.

[43] Andrew B. Goryachev and Marcin Leda. Cell Polar-
ity: Spot-On Cdc42 Polarization Achieved on Demand.
Current Biology, 27(16):R810–R812, 2017.

[44] Tamara Heermann, Frederik Steiert, Beatrice Ramm,
Nikolas Hundt, and Petra Schwille. Mass-sensitive
particle tracking to elucidate the membrane-associated
MinDE reaction cycle. Nature Methods, 18(10):1239–
1246, 2021.

[45] Zonglin Hu and Joe Lutkenhaus. Topological Regu-
lation of Cell Division in E. coli Spatiotemporal Os-
cillation of MinD Requires Stimulation of Its ATPase
by MinE and Phospholipid. Molecular Cell, 7(6):1337–
1343, 2001.

[46] Atsushi Miyagi, Beatrice Ramm, Petra Schwille, and Si-
mon Scheuring. High-Speed Atomic Force Microscopy
Reveals the Inner Workings of the MinDE Protein Os-
cillator. Nano Letters, 18(1):288–296, 2018.

[47] Jacob Halatek and Erwin Frey. Highly Canalized MinD
Transfer and MinE Sequestration Explain the Origin
of Robust MinCDE-Protein Dynamics. Cell Reports,
1(6):741–752, 2012.

[48] Audrey S. Howell, Meng Jin, Chi-Fang Wu, Trevin R.
Zyla, Timothy C. Elston, and Daniel J. Lew. Negative
Feedback Enhances Robustness in the Yeast Polarity

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480095doi: bioRxiv preprint 



19

Establishment Circuit. Cell, 149(2):322–333, 2012.
[49] Fridtjof Brauns, Leila M. Iñigo de la Cruz, Werner K.-G.
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Volker Haucke, Frank Noé, and Oliver Daumke. Struc-
tural Insights into Dynamin-Mediated Membrane Fis-
sion. Structure, 20(10):1621–1628, 2012.

[130] R Shlomovitz, N S Gov, and A Roux. Membrane-
mediated interactions and the dynamics of dynamin
oligomers on membrane tubes. New Journal of Physics,
13(6):065008, 2011.

[131] Saman Hussain, Carl N Wivagg, Piotr Szwedziak, Fe-
lix Wong, Kaitlin Schaefer, Thierry Izoré, Lars D Ren-
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active surfaces. Physical Review E, 96(3):032404, 2017.

[203] Athanasius F. M. Marée, Verônica A. Grieneisen, and
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God made the bulk; the surface was invented by the devil.
— Wolfgang Pauli

II Pattern formation in heterogeneous systems

1 Multiscale patterns

In this section we show how one can deal with spatiotemporal patterns that span
multiple length and time scales. The following content is based on and uses parts
of our submitted paper [67]. We provide a reprint of the paper in section 1.7.

1.1 Background

Although commonly assumed in theoretical approaches, biological systems are
generally not uniform but rather inhomogeneous systems. This naturally implies
that patterns do not emerge from homogeneity, but rather transition from one
pattern to another over time and across different spatial regions, as Turing pointed
out in his seminal paper [24]. One intriguing example of multiscale patterns in an
intracellular context are the surface contraction waves in the starfish oocyte [21],
which form in hierarchies of protein patterns that span multiple scales [22]. The
question that then arises is: how should one deal with such complex multiscale
systems?

The general procedure is to use systematic coarse-graining techniques that
allow to reduce the dynamics to the relevant degrees of freedom at the length
and time scales of interest. The best established and most widely used technique
is the renormalization group theory (RG), which has considerably advanced the
understanding of critical phenomena in equilibrium [68] and non-equilibrium [69]
statistical physics. The basic idea is to iteratively integrate out degrees of freedom
at small length scales, resulting in modified coupling parameters at large length
scales. This way, flow equations can be derived for the model parameters as the
system is viewed at larger and larger scales, and the fixed points of these flow
equations remarkably expose the macroscopic state of the system. Unfortunately,
one shortcoming of the RGmethod that impedes its application for pattern-forming
systems is that it is restricted to narrow regions in parameter space (critical points).
Another crucial drawback is that information about the small scale features, that
have been integrated out, are lost and cannot be reconstructed from the dynamics
at large scales. However, for pattern-forming systems, we are mainly interested in
the patterns at small scales, as they regulate intracellular processes and therefore
have important functions. Thus, what one requires is a general method that
allows to reduce the complicated multiscale dynamics to simplified “hydrodynamic
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variables” at large scales, from which one desires to reconstruct the small-scale
features (patterns) of the system.

The amplitude equation formalism is one such approach that allows, in principle,
to reconstruct patterns from a reduced dynamics at large scales. One way to derive
amplitude equations is to perform a multiple scale analysis to separate the slow and
fast variables in the dynamics [39, 70]. In the context of reaction-diffusion systems,
for instance, this entails to write the solution c (x, t ) in terms of the dominant
unstable mode q∗ at onset (the mode corresponding to the largest growth rate σ∗

in the dispersion relation) in the form:

c (x, t ) = c̃q∗A(x, y, t )e iq∗x+iω∗t + c .c . , (II.1)

where c̃q∗ denotes the eigenvector and ω∗ the imaginary part of the growth rate
that corresponds to the unstable mode (obtained from a linear stability analysis),
A(x, y, t ) is a complex valued (slowly varying) amplitude, and c .c . refers to the
complex conjugate. In essence, Eq. (II.1) describes the evolution of an initially
homogeneous solution near onset in terms of a fast spatial modulation (plane
wave, given by the exponential or Fourier mode) and the slowly varying amplitude
A(x, y, t ), which one may interpret as an envelope. Applying the aforementioned
multiple scale analysis, one can reduce the dynamics and derive a single evolution
equation (to leading order) for the amplitude that describes the (weakly) nonlinear
behaviour of the system at large scales. For oscillatory systems, the amplitude
equation typically takes the following form, also known as the complex Ginzburg-
Landau equation (CGLE) [71]:

∂

∂t
A(x, y, t ) = A + (1 + iα)ΔA − (1 + i β) |A|2A . (II.2)

Interestingly, the form of Eq. (II.2) is universal and does not depend on model
details, but it reflects the underlying symmetries of the system. This permits to
derive amplitude equations phenomenologically by exploiting the symmetries of
the system [39, 71]. For example, it is straightforward to verify that Eq. (II.2) is
invariant under translation, i.e. the mapping A → Ae iφ. Amplitude equations
have been also studied for systems that exhibit conservation laws, including non-
oscillatory [72, 73], and oscillatory [74, 75] systems. In such systems, it is required
to derive an additional equation for the large-scale dynamics of the conserved field,
which is coupled to the amplitude equation and therefore complicates the analysis.

To sum up, the amplitude equation formalism is a powerful method that enables
one to reduce the dynamics of complicated pattern-forming systems to its essential
“hydrodynamic variables” at large scales. From the spatiotemporal solution of the
amplitude equation, one can in principle reconstruct the patterns at small scales via
Eq. (II.1). However, there are also some serious limitations of this approach that
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hinder its applicability. In general, and as can be inferred from Eq. (II.1), amplitude
equations describe the (weakly) nonlinear behaviour of the (linearly unstable)
homogeneous state close to a supercritical bifurcation point. The requirement of
a supercritical bifurcation (including weakly subcritical systems) is an important
one, since it would otherwise not be possible to expand the amplitude equation
to leading order. In other words, this approach generally cannot be applied to
subcritical systems that exhibit large amplitude patterns at onset, such as the Min
protein system [28] or mass-conserving reaction-diffusion systems in general [41].
Another point is that the formalism requires to analytically determine (orthogonal)
eigenfunctions of the operators that fulfil all boundary conditions. In complex
geometries, and in particular for bulk-surface coupled system, this is in general
not possible. Moreover, as outlined in the introduction of the thesis (section 1 of
chapter I), heterogeneous systems often do not exhibit homogeneous steady states,
but rather spatially non-uniform base states due to, e.g., spatial gradients in model
parameters.

To overcome these restrictions, we follow here a different strategy and propose a
new approach that enables us to characterize multiscale patterns in mass-conserving
systems. The basic idea is to first partition the domain into distinct regions
and to calculate instantaneous spatial averages of the total masses in each region.
The coarse-grained spatial averages of the masses can then be used to calculate
instantaneous regional dispersion relations, which ultimately inform about patterns
in each region. Besides the conceptual simplicity of this method as compared to
amplitude equation, it does not dependent on global orthogonal eigenfunctions
of the considered geometry, because here we partition the geometry into simpler
subdomains for which the regional eigenfunctions can be determined.

We demonstrate this approach in the context of multiscale patterns of the
Min protein system in a three-dimensional wedge-shaped geometry. The specific
geometry that we chose here induces a (fixed) spatial heterogeneity in the bulk
height, which is an important control parameter for pattern formation [28, 76]. We
show numerically that the Min dynamics produces a variety of complex patterns
along the membrane and that these patterns transition to other patterns over time.
Our theoretical findings are confirmed experimentally by reconstituting the Min
system in a wedge-shaped microfluidic chamber. Applying the local equilibria
theory for mass-conserving systems [41], we then derive mass-redistribution equa-
tions for the diffusively redistributed total protein masses, and show that these
masses are the relevant degrees of freedom at large length and time scales. Based
on an empirically obtained correlation between regional dispersion relations and
established patterns in the highly nonlinear regime [28], we then show that one
can reconstruct and even predict the dynamics from the reduced equations at large
scales (mass-redistribution dynamics).
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1.2 Min protein dynamics in a wedge-shaped geometry

Our starting point is the dynamics of the Min skeleton model [77] in a wedge-
shaped setup, where the bottom surface represents the membrane (Fig. II.1a, top).
On a mathematical level, the type of equations that we study here are bulk-surface
coupled mass-conserving reaction-diffusion systems [67]. The dynamics of the
cytosolic or bulk species c (x, t ) is given by a diffusion equation with linear source
and degradation terms that account for conformational changes of MinD in the
bulk:

∂

∂t
c (x, t ) = Dc∇2c + Λc . (II.3)

The dynamics of membrane components m (x, y, t ) is constrained to the bottom
surface S of the wedge and contains nonlinear membrane reactions r which account
for attachment, detachment, and recruitment processes of proteins:

∂

∂t
m (x, y, t ) = Dm∇2

Sm + r (c |z=0,m) . (II.4)

The bulk and membrane dynamics are coupled through reactive boundary con-
ditions that describe a balance of the attachment and detachment processes by
diffusive bulk fluxes:

−Dc
∂

∂z
c |z=0 = f (c |z=0,m) . (II.5)

Since proteins cycle between the bulk and membrane, the total average masses
n̄D,E of MinD and MinE are conserved by the dynamics:

n̄D = ⟨md +mde⟩S
|S |
|V | + ⟨cD ⟩V , (II.6a)

n̄E = ⟨mde⟩S
|S |
|V | + ⟨cE⟩V , (II.6b)

where |S |/|V | denotes the membrane area to bulk volume ratio.
In a rectangular geometry (where the bottom edge represents the membrane),

careful analysis has shown that the Min system produces a range of different pat-
terns, such as chemical turbulence, standing waves, and traveling waves, depending
on the bulk height and the total average densities in the system [28]. Here, the
(fixed) linear gradient in the bulk height H (x) in the wedge-shape geometry in-
troduces a spatial heterogeneity that leads to a complex phenomenology where
different patterns form along the membrane (Fig. II.1a, bottom), and these patterns
transition from one to another over time [67].
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Figure II.1 Multiscale Min protein patterns in a wedge-shaped geometry and illustration
of the coarse-graining procedure. a) Protein patterns (bottom) in a wedge-shaped geometry
(top), where the bottom surface represents the membrane. One observes a variety of
coexisting patterns along the membrane, and these patterns transition to one another over
time [67]. b) The system is coarse-grained by slicing the wedge geometry into regions of
constant bulk height (rectangular geometry, see bottom figure). In each of these slices,
we determine the coarse-grained total masses ⟨ñD,E⟩y (x, t ) by averaging over the length of
the slice. The slice-averaged total masses then serve as input for the regional dispersion
relation in each slice, from which we predict the regional patterns by extracting the
commensurability of modes (top). The figure is adopted from ref. [67].

1.3 Coarse-graining: Dynamic regional dispersion relations

To characterize the dynamics that play out on multiple scales, we first coarse-grain
the system by partitioning the geometry into regions of constant bulk height
(slices through the wedge, see Fig II.1b, bottom). In each of these slices, we
calculate instantaneous average total densities ⟨ñD,E⟩y (x, t ) of MinD and MinE.
Since slices represent rectangular geometries, the orthogonal eigenfunctions of
the diffusion operator and hence the dispersion relation can be determined with
standard techniques [13, 28, 43, 78]. Thus, we obtain the regional dispersion relation
for each slice:

σ
(
q ;H (x), ⟨ñD,E⟩y (x, t )

)
, (II.7)

where q denotes the mode number of spatial perturbations. Note that Eq. (II.7)
takes the spatially non-uniform bulk height as well as the dynamic slice-averaged
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densities as input parameters. We therefore find that the regional dispersion relation
is space and time dependent σ (q ; x, t ).

1.4 Reconstructing patterns: Commensurability criterion

The question that remains is whether we can reconstruct information about the
patterns solely from the dispersion relation? In general, the dispersion relation only
informs about the onset of lateral instabilities and the wavelength of the unstable
mode near onset, but not the exact pattern type deep in the nonlinear regime. How-
ever, for the Min system, recent work has identified a strong correlation between
the dispersion relation and fully established patterns in the nonlinear regime [28].
In short, a commensurability criterion between the largest unstable mode qmax and
the fastest growing mode q∗ in the dispersion relation has been found: (i) For
qmax/q∗ < 2 it has been shown that the system produces spatiotemporal chaos.
(ii) In the vicinity of the commensurability criterion where qmax/q∗ ≳ 2, the
system transitions to ordered standing wave patterns, and (iii) for qmax/q∗ > 2 one
finds travelling wave patterns. This (empirically) obtained criterion together with
the regional dispersion relation Eq. II.7 enables us to reconstruct the patterns in
the system by extracting the slice-averaged densities from the numerical data. We
find that this approach works remarkably well (see Fig. II.1b, top for a snapshot,
more details are provided in our reprinted paper in chapter 1.6). Since the regional
dispersion relation, as well as the commensurability criterion derived from it,
depend on the slice-averaged densities ⟨ñD,E⟩y (x, t ), we conclude that the total
masses are the relevant “hydrodynamic variables” at large length and time scales.



1 Multiscale patterns 41

1.5 Reduced dynamics

This suggests that one can predict the entire dynamics independently of numerical
simulations if one can establish an evolution equation for the total masses. We can
derive such a reduced description of the dynamics by noting that the total masses
between the slices are redistributed by diffusion due to concentration gradients.
Moreover, since membrane diffusion is much slower compared to diffusion in the
cytosol [5, 12, 14], we may neglect the former. In addition, applying the local
equilibria theory for mass-conserving systems [28, 41], we can slave the cytosolic
densities to their respective local equilibria

⟨ci⟩y,z (x, t ) → c∗i
(
H (x), ⟨nD⟩y,z (x, t ), ⟨nE⟩y,z (x, t )

)
. (II.8)

These approximations allow to derive a closed evolution equation for the mass-
redistribution dynamics of MinD and MinE:

∂

∂t
⟨ni⟩y,z (x, t ) ≈ Dc

∂2

∂x2
c∗i (x, t ) +

Dc

H (x)
∂

∂x
H (x) ∂

∂x
c∗i (x, t ) , (II.9)

where i ∈ {D, E}. The solution of Eq. II.9 serves as input for the regional dispersion
relation Eq. II.7 from which one can reconstruct patterns. Thus, given the initial
condition ⟨ni⟩y,z (x, 0) for the reduced dynamics, we can numerically propagate
Eq. II.9 in time and thereby predict the entire multiscale dynamics. The results we
obtain from solving the reduced dynamics agrees very well with the reconstruction
obtained from the full numerical data (see section 1.7 for details).

1.6 Key points and outlook

In this section, we summarize the key findings of this research project. We also
discuss generalization of our analysis beyond the Min system, and how one could
include additional physics to the model.

• We proposed a new coarse-graining method for multiscale pattern-forming
systems that is based on space and time dependent regional dispersion re-
lations. The method is conceptually and technically simple to apply as it
is effectively based on a linear theory. Importantly, and in contrast to tra-
ditional methods like amplitude equations, the approach is not restricted
by the complexity of the geometry considered, since one can partition the
full geometry into smaller convenient regions, for which the orthogonal
eigenfunctions of the operators can be determined.

• One may view regional dispersion relations as a generalization of classical
dispersion relations, which are by definition uniform and thus independent
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of space and time. The space and time dependency of regional dispersion
relations reflect the multiscale characteristics of the system. Using an em-
pirically obtained commensurability criterion, we have shown that one can
reconstruct the patterns in the system by extracting the densities from the
full numerical simulation. Furthermore, we identified the redistribution of
the total masses as the hydrodynamic variables that drive the dynamics at
large length and time scales.

• On the basis of local equilibria theory for mass-conserving reaction-diffusion
systems, we derived a reduced description for the hydrodynamics variables
(redistributed total masses). From the reduced dynamics, one can reconstruct
and even predict the entire dynamics from the initial conditions. Notably, the
reconstruction from the reduced dynamics is by several orders of magnitude
(minutes) faster than numerically solving the full dynamics (weeks).

• One striking feature of the system is that the total masses play a dual role:
They are dynamic control variables (due to diffusive mass-redistribution)
and at the same time control parameters [13, 28, 41] (which determine the
local equilibria).

We assumed that the spatial heterogeneity (gradient in the bulk-boundary ratio)
is static and hence does not change over time. One interesting extension of our
model would be therefore to assume a dynamic bulk height H (x, t ). This can be
realized in two ways: In the simplest case, one may assume that the bulk height
is externally driven on a time scale much slower than the typical time of pattern
formation (adiabatic deformations). A particularly interesting choice would be to
let the (linear) bulk height gradient oscillate according to the following periodic
function:

H (x, t ) = H0 + H1

2
+ cos

(
2π t
T

)
H1 − H0

L

(
x − L

2

)
, (II.10)

where H0 denotes the smallest and H1 the largest bulk height, respectively. The
definition Eq. II.10 corresponds to a wedge geometry with lateral length L and
where the bulk slope oscillates and changes its sign on a large time scale T . In the
adiabatic limit, one can predict the dynamics from the solution of Eq. II.9 (and
the replacement H (x) → H (x, t )). We expect that the system does not reach a
steady state in this case, but rather undergoes an intricate oscillatory dynamics in
which multiscale patterns swap from one side of the wedge to the other.

Instead of controlling the bulk-surface ratio externally, another more natural
and realistic scenario would be to couple the pattern-forming dynamics to the
shape of the geometry. Thus, in this case, the bulk height parameter becomes part
of the solution, and one needs to derive a separate equation that describes its time
evolution. The general question of how one can describe reaction-diffusion systems
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on deforming membranes and how membrane shape affects protein patterns is
addressed in section 2.

We classified patterns in our analysis by the empirically obtained commensur-
ability condition. Our approach can be generalized beyond the Min system by
applying machine learning methods. This can be achieved as follows: First, one
needs to collect a number of training data by numerically solving the full dynamics
for smaller system sizes and times. The set of small-scale simulations can then be
used to train, for instance, physics-informed neural networks (PINNs), from which
one can then infer a mapping between control parameters (total masses) and the
small-scale patterns. PINNs are very fast deep neural networks that take as input
information about the underlying physical laws [79–81]. The major advantage of
PINNs is that it reduces the solution space (since the physical laws are known)
and therefore shortens the training time considerably.
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Abstract

Self-organized pattern formation is vital for many biological processes. Reaction-
diffusion models have advanced our understanding of how biological systems develop
spatial structures, starting from homogeneity. However, biological processes inherently
involve multiple spatial and temporal scales and transition from one pattern to another
over time, rather than progressing from homogeneity to a pattern. To deal with such
multiscale systems, coarse-graining methods are needed that allow the dynamics to be
reduced to the relevant degrees of freedom at large scales, but without losing informa-
tion about the patterns at the small scales. Here, we present a semi-phenomenological
approach which exploits mass-conservation in pattern formation, and enables to recon-
struct information about patterns from the large-scale dynamics. The basic idea is to
partition the domain into distinct regions (coarse-grain) and determine instantaneous
dispersion relations in each region, which ultimately inform about local pattern-forming
instabilities. We illustrate our approach by studying the Min system, a paradigmatic
model for protein pattern formation. By performing simulations, we first show that the
Min system produces multiscale patterns in a spatially heterogeneous geometry. This
prediction is confirmed experimentally by in vitro reconstitution of the Min system. Us-
ing a recently developed theoretical framework for mass-conserving reaction-diffusion
systems, we show that the spatiotemporal evolution of the total protein densities on
large-scales reliably predicts the pattern-forming dynamics. Our approach provides an
alternative and versatile theoretical framework for complex systems where analytical
coarse-graining methods are not applicable, and can in principle be applied to a wide
range of systems with an underlying conservation law.
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Introduction

Pattern formation is fundamental for the spatiotemporal organization of biological pro-
cesses, such as cell division, chemotaxis, and morphogenesis. More than half a century
ago, Turing showed theoretically how local interactions (chemical reactions) and diffusion
of chemical species can lead to spontaneous spatial patterns [1]. Such reaction–diffusion sys-
tems have been successfully used to explain pattern formation phenomena in nature that
arise self-organized from a stable homogeneous steady state [2–5]. The analysis proposed
by Turing allows to predict the emergence of patterns with a characteristic length scale as
long as the entire dynamics remains in the vicinity of the homogeneous steady state [6].
The validity of Turing’s approach has been also tested experimentally for coupled chemical
oscillators, and was found to reliably predict the experimental observations, provided that
the model parameters are spatially and temporally uniform [7]. Pattern-forming systems,
however, are generally heterogeneous and therefore far from homogeneity, and involve mul-
tiple spatial and temporal scales. An intriguing example of biological pattern formation
is morphogenesis, in which the spatiotemporal patterns of morphogens dictate the future
shape of an organism that is orders of magnitude larger than its constituents [4]. On a
smaller scale, protein concentration patterns in cells are essential for the spatiotemporal
control of cellular processes such as cell division and motility [5, 8, 9]. Protein patterns
can exhibit fascinating multiscale characteristics [10] and form in hierarchies of patterns on
several scales that affect one another [11].

Such complex multiscale biological processes involve many degrees of freedom at multiple
scales, rendering it difficult to analyze them and gain insight into the underlying principles.
To make progress on this issue, one needs to use systematic coarse-graining schemes that
allow the dynamics to be reduced to the essential degrees of freedom at the relevant time and
length scales. For instance, a well-known and powerful method is the renormalization group
theory [12]. Unfortunately, this method is restricted to the vicinity of critical points. The
Mori-Zwanzig formalism [13] is another important approach which allows to decompose the
dynamics of a system into ‘fast’ and ‘slow’ variables by means of projection operators. One
arrives at a closed set of equations for the slow variables, while the fast variables are treated
as noise. One property that these methods have in common is that the scales that have
been integrated out or eliminated are not resolved, and cannot be recovered from the coarse-
grained level of description. This is most apparent in the Mori-Zwanzig formalism, where
the eliminated degrees of freedom appear effectively as noise terms on the resolved scales.
For pattern-forming systems, one is however interested in the patterns on the unresolved
scales1 as they usually have a specific function in biological systems. This raises the question
of whether it is possible to reconstruct information about the unresolved scales from the
dynamics at the resolved scales? Indeed, amplitude equations describe the long-wavelength
amplitude modulations of an underlying short-wavelength base pattern and therefore resolve
both the small and the large scales. Unfortunately, however, they are limited to the vicinity

1We adapt the term unresolved scales from the computational fluid dynamics literature to refer to the
(small) scales that have been integrated out in the coarse-grained description.
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of the supercritical onset of pattern formation [6] (including weakly subcritical cases) and
only feasible in simple geometries where the orthonormal basis functions of the diffusion
operator can be found in closed analytical form. Hence, to fill these gaps, one relies on new
concepts to deal with multiscale systems.

Here, we propose a semi-phenomenological approach to overcome these mathematical
limitations in the concrete context of mass–conserving reaction–diffusion (MCRD) systems.
Recently, a new theoretical framework for MCRD systems has been introduced [14, 15] that
allows one to characterize their dynamics in the highly nonlinear regime. The basic idea is to
consider reaction–diffusion system as decomposed into a set of reactive compartments which
are spatially coupled by diffusion. For an isolated compartment, one can determine the
steady state (local equilibrium) and its stability properties which both depend on the total
densities within that compartment. Since diffusion causes the lateral redistribution of these
total densities, these local equilibria will change over time. This concept of moving local
equilibria enables one to study the physical mechanisms underlying pattern formation and
characterize the dynamics far away from the homogeneous steady state. The fact that one
is able to characterize the dynamics far from homogeneity suggests that the local equilibria
theory may be a promising approach to study heterogeneous systems. We therefore asked
whether the ideas from local equilibria theory would be applicable to investigate multiscale
patterns?

To pursue this question, we use the Min protein system of E. coli which has emerged
as a paradigmatic model system for the study of pattern formation in cell biology [16–20].
Its dynamics is driven by two proteins, MinD and MinE, which cycle between cytosolic and
membrane–bound states and interact nonlinearly on the membrane (Fig. 1A). In E. coli,
these proteins oscillate from cell pole to cell pole and thereby position the cell division
machinery to midcell [16, 17]. Studying the Min dynamics in various reconstituted systems
has led to the discovery of a rich set of patterns including traveling waves and spirals [18],
chaotic patterns [10, 21–23], “homogeneous pulsing” [24–26], as well as quasi-stationary
labyrinths, spots, and mesh-like patterns [10, 27]. Theoretical analysis of mathematical
models has lead to the key insight — and experimentally confirmed prediction — that the
average total densities of MinD and MinE and the bulk height are key control parameters
for pattern formation in the reconstituted Min system [5, 28]. The rich set of patterns,
experimental accessibility in vitro and theoretical understanding make the Min-system an
ideal candidate to investigate the role of spatial heterogeneity on pattern formation.

Since varying the bulk height affects the local equilibrium state and is a key control
parameter for pattern formation [5, 28], we study the Min dynamics in a wedge–shaped
geometry with a membrane placed on the bottom surface (Fig. 1B). While there are many
distinct ways to introduce large–scale spatial heterogeneities into the system, e.g. by in-
troducing space-dependent kinetic rates, we chose to use a wedge geometry because it is
relatively easy to implement experimentally. In numerical simulations, we find that the
system exhibits a striking range of transient patterns, that coexist in different spatial re-
gions along the membrane (Movie S1 and Fig. 1C). As time progresses, patterns in different
regions change and transition to other patterns.
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To characterize these complex dynamics that play out on multiple spatial and temporal
scales, we generalize the concept of dispersion relations (obtained from a linear stability
analysis) by applying it to sections of the domain, which we term regional dispersion rela-
tions. Combining this approach with the local equilibria theory [8, 14, 15], we show that
one can reconstruct the type and characteristics of patterns on small scales from the lo-
cal protein mass densities, which we identify as the essential degrees of freedom on large
spatial and temporal scales, i.e. the “hydrodynamic variables” of the system. The key
to this reconstruction are correlations between the regional pattern characteristics and in-
stantaneous, regional dispersion relations, calculated from the instantaneous regional mass
densities. Over time, these masses change due to diffusive redistribution, resulting in qual-
itatively different regional dispersion relations that indicate the local pattern type in the
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Fig. 1. (A) Schematic illustration of the Min-protein reaction network. (B) Wedge-
geometry with a membrane surface at the bottom plane (z = 0) and bulk height H(x)
increasing linearly along the x direction. (C ) Snapshot of the membrane-density of MinD,
obtained by numerically simulating the Min dynamics Eqs. 1–3 in the geometry shown
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outline) and traveling waves (TW) along the membrane and at different bulk heights; see
Movie S1.
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system. This reconstruction of small-scale features (on unresolved scales), together with a
coarse-grained description for the mass-redistribution dynamics on large scales allows us to
understand and predict the long–term temporal evolution of the system. A major advan-
tage of our approach is that it is based on a linear theory and therefore conceptually and
technically simple to apply.

A key prediction from our numerical simulations and theoretical analysis is that different
pattern types form at different positions along the wedge shaped geometry. To test this
prediction experimentally, we performed experiments with a reconstituted Min system in
wedge-shaped microfluidic cells. In agreement with the theoretical prediction, we find a
range of transient patterns coexisting in different spatial regions along the membrane.

Results

The Min protein system in wedge geometry

Mathematically, the Min-protein dynamics is described by bulk-surface coupled reaction–
diffusion equations, which describe the concentrations of cytosolic proteins MinD-ATP,
MinD-ADP, and MinE, c = (cDD, cDT, cE), in the bulk volume V, and the concentrations of
membrane-bound MinD and MinDE complexes, m = (md,mde), on the surface S. For the
wedge geometry, in spatial coordinates x = (x, y, z), we place the membrane surface (with
lateral dimensions L×L) in the x−y plane at z = 0 and let the bulk height vary as a linear
ramp from H0 to H1 along the x-direction (see Fig. 1B).

The dynamics of bulk components c(x, t) is governed by the equation

∂tc(x, t) = Dc∇2c + Λc, (1)

where Dc denotes the bulk diffusion constant and the matrix Λ = diag(−λ, λ, 0) describes
nucleotide exchange of MinD in the bulk. The dynamics of membrane components m(x, y, t)
is constrained to the membrane surface and takes the form:

∂tm(x, y, t) = Dm∇2
Sm + r(c|z=0,m), (2)

where Dm is the membrane diffusion constant and ∇2
S = ∂2

x + ∂2
y is the surface Laplacian.

The membrane reactions r, which comprise attachment, detachment, and recruitment pro-
cesses of Min proteins, are specified in the Materials and Methods section.

The dynamics in the bulk and on the surface are coupled by reactive boundary condi-
tions,

−Dc∂zc|z=0 = f(c|z=0,m), (3)

that describe the bulk fluxes induced by attachment and detachment of proteins at the
membrane (see Materials and Methods). At the remaining boundaries, no-flux boundary
conditions are imposed such that the system is closed. Together, the above dynamics
conserve the average mass densities of MinD and MinE:

n̄D |V| = 〈md +mde〉S |S|+ 〈cD 〉V |V| , (4a)

n̄E |V| = 〈mde〉S |S|+ 〈cE〉V |V| , (4b)
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where cD = cDD + cDT is the total cytosolic MinD concentration; 〈·〉S and 〈·〉V denote the
mean on the surface and in the bulk respectively; |S| and |V| are the total surface area and
bulk volume (see Materials and Methods).

Using finite element (FEM) simulations we investigated the spatiotemporal dynamics
of the Min system in wedge geometry. Our simulations show a broad range of different
patterns — including traveling waves, standing waves and chaotic patterns — coexisting
in different spatial regions of the membrane (see Movie S1 and Fig. 1C). Interestingly, the
regions where these patterns are found change over time as the patterns transition from
one type to another. For long simulation times, we observe that patterns transition to
standing waves, such that the entire domain is covered by a single pattern type in the final
steady state. The pattern in steady state depends on the specific choice of parameters, and
therefore can be altered by changing the model parameters (Fig. S1 and Movie S2).

Experimental implementation

We tested our theoretical prediction on this multi-scale dynamics in an experimental system
consisting of a wedge-shaped microfluidic flow chamber (Fig. 2A). The bottom and top
surface of the wedge were covered with a supported lipid bilayer consisting of DOPG:DOPC
(30:70 %) which mimics the natural membrane composition of E. coli [29]. The length of
the wedge was typically about 8− 14 mm and the width about 3− 4 mm. The bulk height
range was approximately 2−50 µm (Fig. 2B). Min proteins were distributed in the chamber
by rapid injection of a solution containing 1 µM MinD and 1 µM MinE (including 10 %
fluorescently labelled MinD and MinE proteins for visualization), together with 5 mM ATP
and an ATP-regeneration system [28].

Figure 2C shows a snapshot of Min protein patterns along the bottom surface of the
wedge geometry 30 minutes after injection. The experiments exhibit the same essential hall-
marks of multiscale Min protein patterns that we observed in our numerical simulations. In
particular, consistent with our simulations, we observe a sequence of distinct spatiotemporal
patterns coexisting in different spatial regions of the membrane (Fig. 2C and Movie S3):
At regions of low bulk height (approximately between 2 − 10 µm), one typically observes
chaotic patterns and standing waves, whereas traveling wave patterns emerge at regions of
large bulk height (> 10 µm). Furthermore, as in the simulation, we observe a sharp bound-
ary between regions that contain traveling wave patterns and regions that contain rather
chaotic and standing wave patterns, and this boundary establishes quickly within a few
minutes (Fig. S2 and Movie S4). Overall, the observations provide a striking verification of
the height-dependent patterns predicted in the simulations.

There are also some differences between the patterns in the experiment and in our
numerical simulations. First, while we observed occasional transitions from one pattern into
another in our experiments (Fig. S3 and Movie S5), these transitions occurred frequently
and were more pronounced in the simulations. This is explained by the lateral length
of the experimental setup, that is about an order of magnitude larger as compared to
the simulation setup, which is the main reason why we observe more frequent transitions
between different patterns in the simulations, as will become clear later. Second, in contrast
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to the simulations, we noticed some homogeneous oscillations in the experiments, which
are characterized by large (homogeneous) density patches on the membrane (typically few
hundred micrometers in size) that oscillate with time (Figs. S3– S4 and Movies S5– S7). We
attribute this difference to the following: Due to the fabrication method of the microfluidic
flow chamber, both the bottom and top surface of the wedge were covered with a supported
lipid bilayer. In recent work, it has been shown that membrane-to-membrane crosstalk
(i.e., between top and bottom surface) is responsible for the emergence of homogeneous
oscillations [28]. In our simulations, however, we assume that Min proteins can only bind
to the bottom membrane, which explains why we do not observe homogeneous oscillations.

Taken together, we have a system that exhibits a fascinatingly rich transient dynamics
and involves patterns and transitions between them on multiple spatial and temporal scales.
We are therefore left with the key question: Can we explain the cause why different patterns
form in different spatial regions and how they transition from one to another over time?
Moreover, is it possible to identify and reduce the system to its essential degrees of freedom?
A standard way to address these questions mathematically would be to perform a multiscale
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analysis and to derive amplitude equations that describe the large-scale spatiotemporal
evolution of the pattern amplitudes [6]. This would greatly simplify the problem as it allows
to obtain a quantitative relationship between the small-scale patterns and the large-scale
dynamics (slowly varying pattern amplitudes), thus ultimately enabling one to reconstruct
the patterns from the reduced dynamics at large length and time scales [30–33]. Carrying out
this analysis requires determining the set of orthogonal eigenmodes for the diffusion operator
that satisfy the boundary conditions. In a one-dimensional domain, these eigenmodes are
simply Fourier modes. Unfortunately, in the wedge geometry with bulk-surface coupling, the
eigenmodes can not be found analytically, thus precluding the use of the amplitude equation
framework. Moreover, amplitude equations are restricted to the vicinity of supercritical
and weakly subcritical bifurcations [6, 34]. The Min patterns we observe here, however,
are generically subcritical [15] and exhibit large amplitudes [14, 28]. We therefore aim to
develop a new approach that overcomes these restrictions.

Instantaneous, regional dispersion relations predict patterns

The analysis of pattern-forming systems usually starts with calculating the homogeneous
steady state (HSS) solutions and performing a linear stability analysis around these states.
This yields a dispersion relation that informs about the growth rate σ(q) of small spatial
perturbations with a certain wavenumber q. However, the dispersion relation is generally
only informative in the vicinity of the homogeneous steady state [1, 6], and thus unreliable
for large amplitude patterns. Moreover, the spatial variation of parameters even precludes
the existence of a global HSS, so that a global dispersion relation can no longer be deter-
mined. To overcome these limitations, we adopt a semi-phenomenological approach where
we generalize the concept of dispersion relations.

Let us consider the wedge as dissected into a collection of two-dimensional slices along
the direction of constant bulk height. Each slice corresponds to a rectangular geometry
with a bulk height that depends on the position of the slice in the wedge (see Fig. 3A,B).
Next, for each slice and at each point in time, we calculate instantaneous total densities of
MinD and MinE, averaged over the slice length 〈ñD,E〉y(t, x) (Materials and Methods). The
average total densities, together with the local bulk height H(x), then serve as parameters
for the regional dispersion relation in each slice

σ (q;H(x), 〈ñD,E〉y(t, x)) , (5)

which is straightforward to determine because the slice represents a rectangular geome-
try [14, 23, 28] (see Fig. 3A,B and Supplementary Information). While the bulk height
H(x) varies linearly in space, the average total densities 〈ñD,E〉y(t, x) are dynamic quan-
tities and depend on the slice position x as well as on time t, since the diffusive coupling
between the slices redistributes mass. It follows that the regional dispersion relation de-
pends on the spatial position and is dynamic: σ(q;x, t). This generalizes classical dispersion
relations, which are by definition independent of space and time.

How does this spatially and temporally varying dispersion relation inform about the sys-
tem’s dynamics? As in uniform systems that exhibit homogeneous steady states, it serves
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as a criterion for the onset of pattern formation and for estimating the characteristic wave-
length of the initial pattern that is formed. While these insights are generally limited to
the linear regime [1, 6], recent theoretical findings for the Min system in a two-dimensional
rectangular geometry (representing a slice geometry) have shown that the dispersion re-
lation reliably predicts the pattern type in the fully nonlinear regime [5]. In particular,
it was shown that depending on the total densities of Min proteins, n̄D and n̄E, and the
bulk height H, the system exhibits a variety of different patterns on the membrane, such
as chaos, standing waves, and traveling waves [14, 28]. Moreover, a careful analysis of nu-
merical simulations has interestingly revealed a strong one-to-one correlation between the
dispersion relation and the fully developed patterns in the highly nonlinear regime [14]: A
commensurability criterion between the unstable mode with the shortest wavelength qmax

and the fastest growing mode q∗ has been found that determines the pattern type (Fig. 3C–
E). In short, it has been shown that qmax/q

∗ < 2 coincides with the regime of chemical
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data. From these slice-averaged total densities, we can then calculate the corresponding
local homogeneous steady state and its dispersion relation. (C ) Dispersion relation with
fastest growing mode q∗ and right edge of the band of unstable modes qmax indicated. The
ratio qmax/q

∗ has been empirically found to correlate with the type of the fully developed
pattern, with a sharp transition from chaotic patterns for qmax/q

∗ < 2 to ordered patterns
for qmax/q

∗ > 2. Close to the transition, standing waves are found, while travelling waves
form for larger ratios qmax/q

∗ [14]. (D) Mode ratio qmax/q
∗ as a function of the slice

position x for a given instance in time. The background shading indicates the type of
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turbulence (spatiotemporal chaos), whereas for qmax/q
∗ > 2 the system exhibits ordered

patterns (standing/traveling waves). Standing wave patterns are found close to the com-
mensurability transition qmax/q

∗ & 2, while traveling waves are found further away from the
threshold. In the following, we use this observed one-to-one correspondence between the
dispersion relation and the fully developed patterns to reconstruct the small scale pattern
types from coarse grained densities.

To that end, we extracted the average total densities in each slice as a function of time
from the numerical simulation. Based on these densities we then calculated the instanta-
neous regional dispersion relation in each slice and extracted the ratio qmax/q

∗ as a function
of slice position x and time t (Fig. 3C–E). The resulting pattern-type prediction is shown
in the space-time plot (kymograph) in Fig. 4A. Figure 4B shows the ratio qmax/q

∗ as a
function of slice position x for a set of representative times (cf. Fig. 3D). The pattern-type
prediction Fig. 4A is then obtained from these ratios via the mapping shown in Fig. 3D,E.

We find that this prediction correlates well with the patterns observed in the full numer-
ical simulation (Fig. 4C,D and Movie S8). In particular, the temporally changing position
xcrit(t), marking regions where qmax/q

∗ = 2 (indicated by the green arrows and dashed lines
in Fig. 4B and C), agrees with the position along the wedge where traveling wave patterns
transition to chaotic patterns. In the vicinity of xcrit(t) we observe a band of standing waves
as expected from the “commensurability criterion” [14]. Since the ratio qmax/q

∗ and with it
xcrit(t) are entirely determined by the slice-averaged masses 〈ñD,E〉y(x, t), we conclude that
these masses are the essential degrees of freedom of the system at large scales.

Notably, we find that there are slight differences between the predictions and the actual
patterns for large times (see Fig. 4A–C). The reason for these deviations lies in the model
parameters, which were chosen such that the entire domain is near the critical mode ratio
qmax/q

∗ = 2 for large times. This renders the dynamics, and the prediction from the regional
dispersion relation highly sensitive to slight variations of the regional total masses. Hence,
the fact that our method is still able to qualitatively predict the dynamics in this case
underscores the robustness of our approach. In the Supplemental Information, we provide
additional results where the parameters were chosen such that the mode ratio is deep in
the traveling wave regime (qmax/q

∗ > 2) for late times. In this case, we obtain an excellent
agreement between our predictions and the patterns observed in the numerical simulations
(see Fig. S1).

Next, we ask whether one can find an approximate coarse-grained dynamics for these
redistributed masses. Such a description would enable us to predict the time evolution of
the redistributed masses independently from the full numerical simulations. One can then
use the commensurability criterion to predict the pattern types that will form in different
spatial regions as a function of the redistributed masses. In the next section we will show
how one can find such a description.

Large-scale dynamics is driven by redistribution of mass

In general, mass redistribution between different spatial regions of the wedge is caused
by diffusive fluxes due to concentration gradients. Similar as in the previous section, we
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consider here the redistribution of mass between slices along the wedge (Fig. 3B). Since
membrane diffusion is by two orders of magnitude slower than bulk diffusion it may be ne-
glected, such that redistribution of protein mass between slices is governed by bulk diffusion
alone (Materials and Methods)

∂t〈ni〉y,z(x, t) ≈ Dc〈∂2
xci〉y,z +Dc

∂xH(x)
H(x) 〈∂xci〉y,z, (6)

for i = D,E. Here, the second term accounts for the spatial variation of the bulk height, and
thus the different volumes of neighboring slices between which the diffusive flux Dc〈∂xci〉y,z
redistributes mass. This can be seen by rewriting Eq. (6) in the form of a continuity equation

∂t
[
H(x) · 〈ni〉y,z(x, t)

]
≈ −∂x

[
H(x) · Jdiff

i

]
(7)
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Fig. 4. (A) Kymograph showing the pattern-type prediction from the commensurability
criterion (cf. Fig. 3D). The green line shows xcrit(t) where qmax/q

∗ = 2, indicating the
transition from chaotic to ordered patterns. Green arrows mark the position xcrit(t)
for the times indicated by dashed white lines. (B) Plots of the mode ratio qmax/q

∗,
determined from the local dispersion relation, as a function of spatial position x for
several representative times (dashed white lines in (A)). In the second to last row, the
entire domain is near the critical ratio qmax/q

∗ = 2, predicting the global emergence of
standing waves (see last row). (C ) Snapshots of the membrane patterns (MinD density,
cf. Fig. 1) from the full numerical simulation. The green dashed line indicates xcrit(t).
Note the standing wave patterns found near xcrit(t). Their fronts are aligned along the
bulk height gradient such that the sequence of wavenodes lies on lines of constant bulk
height. (D) Machine-learning based pattern classification using ilastik [35] (see Materials
and Methods).
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with the diffusive fluxes given by Jdiff
i := −Dc〈∂xci〉y,z. Since the area of slices increases

along the positive x − direction, the diffusive fluxes Jdiff
i on the right-hand side of Eq. (7)

are rescaled by the bulk height H(x). These equations seem to be simple, but unfortunately
they are not closed, since the slice-averaged cytosolic densities 〈ci〉y,z(x, t) appear on the
right hand side.

We are interested in the dynamics of 〈ni〉y,z on timescales much longer than typical
oscillation periods of the patterns. Therefore, following the intuition gained from previous
works on MCRD systems [15, 36], we assume that one can approximate the slice-averaged
cytosol concentrations by the homogeneous steady-state concentration in each slice

〈ci〉y,z(x, t) ≈ c∗i (x, t) := c∗i
(
H(x), 〈nD〉y,z, 〈nE〉y,z

)
. (8)

This assumes that the spatial average over many wavelengths in y-direction is well ap-
proximated by the instantaneous homogeneous steady state in a slice. These steady state
concentrations only depend on the slices bulk height H(x) and the slice-averaged total den-
sities 〈ni〉y,z(x, t). Thus, the above approximation yields a closed set of equations for the
mass-densities

∂t〈ni〉y,z(x, t) ≈ Dc∂
2
xc
∗
i (x, t) +Dc

∂xH(x)
H(x) ∂xc

∗
i (x, t). (9)

We will call this the reduced dynamics in the following. Since the homogeneous steady
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Fig. 5. (A,B) Kymographs showing the total-density ratio of MinE to MinD (E:D ratio)
from the full numerical simulation (A) and from local-equilibria based reduced dynamics
(B). (C ) Kymograph showing the pattern-type prediction using the commensurability
criterion based on the total densities from the reduced dynamics. Note the excellent
qualitative agreement to the pattern-type prediction based on total densities from the full
numerical simulation in Fig. 4A.
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states may also undergo a saddle-node bifurcation, characterized by the emergence of three
steady states (two stable, one unstable), this may lead to discontinuities in c∗i . To regularize
the dynamics, ci is not set identical to c∗i but relaxes towards it on a fast timescale (see SI
for details).

Given the initial densities 〈ni〉y,z(x, 0), one can numerically solve the reduced dynamics
Eq. (9) to predict the entire time evolution of the slice-averaged masses and hence the dis-
persion relation at each point along the x−direction. Figure 5C shows the regional pattern
types predicted from the reduced dynamics. We find good qualitative agreement for the dis-
tribution and transition of patterns as observed in the numerical simulations (cf. Fig. 4A).
The main difference to the full numerical simulations is a slight quantitative deviation in
the timescale, where the dynamics predicted by Eq. (9) is slightly slower compared to the
full numerical simulation. We also note that the reduced dynamics predicts a larger region
of no instabilities as compared to the numerical simulations (cf. Figs. 4A and 5C). This is
because the chaotic regime is rather narrow and close to the regime for which the dispersion
relation predicts no instability (cf. Figs. 3D and 4B). In addition, since the patterns emerge
from a subcritical bifurcation [14] (a generic property of mass-conserving systems [15]), large
amplitude patterns can be excited and maintained even below the instability threshold.

Figure 5A,B compare the time evolution of the slice-averaged total densities from the
full numerical simulation and the solution obtained from the reduced dynamics. The colors
in the kymographs indicate the total density ratio of MinE and MinD (short, E:D ratio),
which is a key control parameter in the Min-protein dynamics [14].

Discussion

Multiscale patterns in biological systems often emerge from hierarchical systems, which are
organized in a modular fashion. Each level of the hierarchy instructs dynamics on the next
level which operates on a smaller spatial scale. For instance, along developmental trajecto-
ries of many organisms, upstream patterns such as maternal gradients instruct downstream
gene-expression patterns on increasingly smaller scales [11, 37]. Importantly, on each level
of the hierarchy, there is a clean separation between (spatially varying) control parameters
and dynamical variables.

In contrast, in the system we have studied here, there is no such separation as the
globally conserved total densities play a dual role: they are both dynamical variables and
act as control parameters [14, 15]. Building on this key feature has allowed us to explain and
predict the intriguingly complex patterns found in large-scale numerical simulations. The
values of the total densities of MinD and MinE locally control the pattern type: we showed
that a “regional dispersion relation” calculated from the regional average densities reliably
predicts the pattern type. At the same time, concentration gradients in the bulk drive mass
redistribution of MinD and MinE. Therefore, the total densities are hydrodynamic variables
on large scales which control pattern formation on small scales. This separation of scales
enabled us to derive a reduced dynamics for the total densities on large spatial and temporal
scales which predicts the long-term dynamics of the system.

13



Notably, the dual role of total densities as dynamic variables and control parameters
also plays out at the small scale of the patterns themselves [14, 15]. Here, instantaneous
local total densities control local equilibria and their stability, which serve as proxies for the
local dynamics. The local dynamics cause gradients, which drive diffusive redistribution of
the total densities—in turn causing changes in the local dynamics. In the Min system, this
point of view has led to a detailed understanding of the emergence of chaos near onset and of
the transition to standing and traveling waves [14]. From a general perspective, the concept
of local equilibria controlled by total local densities is at the core of a number of recent
theoretical advances in the field of mass-conserving, pattern-forming systems [8, 15, 36, 38].

In addition to the dynamically changing total densities, the bulk height is also a (fixed)
heterogeneous control parameter in our system. The bulk height (or more generally volume-
to-surface ratio) is an important control parameter for bulk-surface coupled pattern-forming
systems [14, 28]. Here, the bulk height gradient of the wedge serves to induce spatiotemporal
heterogeneities in the total densities. Alternatively, one could induce heterogeneities in the
total densities via spatial gradients of the kinetic rates or by imposing a heterogeneous
initial condition in the total densities. However, these alternatives are difficult to realize
experimentally in a reproducible and controlled manner, which is the main reason why
we chose the wedge setup in this work. In a third scenario, large-scale gradients in the
densities may also emerge spontaneously and be maintained in the absence of “external”
heterogeneities.

An example for this third scenario is the Aranson–Tsimring model for pattern formation
in vibrated granular media [39] (see Materials and Methods for details). In the following,
we briefly discuss this model to put our approach into a broader context. In particular, this
model has been extensively studied using amplitude equations allowing us to connect this
mathematical approach to the regional dispersion relations introduced here. The Aranson–
Tsimring model considers a system with a complex order parameter ψ (describing the surface
modulation of a vibrated granular layer) which is coupled to a conservation law for the grain
density ρ (see Eq. (24) in Materials and Methods). Near the onset of pattern formation, this
coupling gives rise to localized patterns that have been studied using amplitude equations
[30, 32, 33]. Figure 6 and Movie S9 illustrate how these patterns can be understood in
terms of regional dispersion relations. For high densities, there are no unstable modes and
no patterns form. Below a critical density ρc, a band of unstable modes appears, giving
rise to patterns through a supercritical bifurcation. Indeed, localized patterns appear only
where the average regional density is below ρc (see Fig. 6B). This demonstrates the idea of
regional dispersion relations in a nutshell. Moreover, it shows that this approach gives rise
to qualitatively similar insights as the technically much more involved amplitude equation
formalism. The conceptual and technical simplicity of regional dispersion relations make
this approach readily applicable. The caveat is that this approach lacks the mathematical
rigor of the amplitude equation formalism and requires numerical solutions of the dynamics
as a basis.

Since conservation laws are ubiquitous in many physical systems, we believe that our
approach can be generalized to a broad class of multiscale pattern-forming systems. For
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instance, mass conservation is inherent to particle–based active matter systems. The local
particle density controls emergent orientational order, i.e. local symmetry breaking [40–42].
In turn, orientational order controls mass redistribution due to the particles’ self-propulsion.
Thus, the particle density again plays a dual role as a control parameter and a dynamic
variable [42–44]. The dynamic interplay of mass redistribution and orientational order
has been shown to give rise to coexistence of different macroscopic order (polar flocks,
nematic lanes) and the interconversion between them [42], not unlike the coexistence and
interconversion of different patterns we found for the reaction–diffusion system studied in
this work. One way to induce spatial heterogeneities in these systems is to introduce a
gradient of signaling chemicals (chemoattractants) that affect the local velocity of active
particles. This would dynamically lead to redistribution of the particle densities on large
scales. Since the particle densities, in turn, are themselves control parameters locally, non-
trivial multiscale dynamics may emerge in such a setup. Exploring the effects of such
gradients in active matter systems could be therefore an exciting task for future research.

On a broader perspective, our work shows how a linear analysis on small scales, combined
with a reduced description for non-linear large scale dynamics (mass redistribution) can be
employed to study complex multiscale phenomena. We believe that our approach can be
generalized and applied to other multiscale systems with an underlying conservation law,
such as transport processes in porous media, combustion, and cell migration, to name a few
examples.
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Materials and Methods

Mathematical model

We adopt the Min “skeleton model” introduced in Refs. [5, 45, 46] which is known to qual-
itatively reproduce Min patterns in vivo and in vitro [5, 28, 46]. The governing equations
are given in the main text, Eqs. [1]–[3]. The membrane reactions are

r =
[
ron

D − ron
E , ron

E − roff
DE

]>
, (10)

with

ron
D = (kD + kdDmd)cDT , (11a)

ron
E = kdEmdcE , (11b)

roff
DE = kdemde . (11c)

The reaction terms account for MinD attachment and self-recruitment to the membrane,
MinE recruitment by MinD, and dissociation of MinDE complexes with subsequent de-
tachment of both proteins into the cytosol, respectively. Coupling between cytosol and
membrane is established by reactive boundary conditions at the membrane [cf. Eq. (3)].
The boundary fluxes are given by

f =
[
roff

DE,−ron
D , roff

DE − ron
E

]>
, (12)

which follows from mass conservation. For analytical caclulations we adapt the following
change of variables as it is more convenient: We describe the bulk dynamics of MinD in
terms of the variables cD = cDD + cDT and cDD, i.e. in this case one defines the bulk
concentration vector c = (cD, cDD, cE). The membrane reaction in Eq. (11a) is then slightly
modified by substituting cDT = cD − cDD, and the boundary fluxes are given by

f =
[
−ron

D , roff
DE, r

off
DE − ron

E

]>
. (13)

The model parameters used in this study are summarized in Table 1.
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Table 1. Min model parameters

Parameter Symbol Value

Bulk diffusion Dc 60 µm2 s−1

Membrane diffusion Dm 0.013 µm2 s−1

Average total MinD density n̄D 665 µm−3

Aveage total MinE density n̄E 410 µm−3

Attachment rate kD 0.065 µm s−1

MinD recruitment rate kdD 0.098 µm3 s−1

MinE recruitment rate kdE 0.126 µm3 s−1

MinDE dissociation rate kde 0.34 s−1

Nucleotide exchange λ 6 s−1

Numerical simulations

To investigate the dynamics of the system, we performed 3D finite element (FEM) simu-
lations using the commercially available software COMSOL Multiphysics v5.6. Numerical
simulations were performed for a wedge geometry with lateral length L = 500 µm and bulk
height H(x) linearly increasing from H0 = 5 µm to H1 = 50 µm. The simulation was ini-
tialized with the Min proteins uniformly distributed in the bulk and a small random spatial
perturbation around this uniform state.

Homogeneous steady state and dispersion relation

The homogeneous steady state concentrations, (c∗|z=0(H, n̄D, n̄E), m∗(H, n̄D, n̄E)) are ob-
tained from the stationary solutions of Eqs. [1]–[3] together with the mass conservation
condition Eq. (4): 




r(c∗|z=0,m
∗) = 0,

f
(
c∗|z=0,m

∗) = Φ,

c∗D|z=0 + (m∗d +m∗de)/H = n̄D,

c∗E|z=0 +m∗de/H = n̄E,

(14)

where Φ denotes the steady state fluxes at the membrane, given by:

Φ = [0, φ, 0]> , (15a)

φ :=
√
Dcλ tanh

(√
λ/DcH

)
c∗DD|z=0. (15b)

A concise derivation of these equations and how they can be solved is provided in the
Supplementary Information. For a thorough presentation of the linear stability analysis of
the Min system in a 2D rectangular geometry we refer to the Supplementary Informations
of Refs. [14] and [28].
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Operators for spatial averaging

The operators used throughout this study to calculate mean values of densities on the
membrane and in the cytosol are defined as follows:

〈m〉S := |S|−1

∫

S
dxdym, (16a)

〈c〉V := |V|−1

∫

S
dxdy

∫ H(x)

0
dz c, (16b)

〈·〉y :=
1

L

∫ L

0
dy (·), (16c)

〈·〉y,z :=
1

H(x)

∫ H(x)

0
dz 〈·〉y, (16d)

where the membrane surface area and the bulk volume for the wedge geometry are explicitly
given by |S| = L2 and |V| = L2 (H0 +H1)/2.

Instantaneous total densities at the membrane

Since only cytosolic proteins in close proximity to the membrane participate in the nonlinear
dynamics at the membrane, we define instantaneous total densities at the membrane:

ñD(x, y, t) :=
1

H(x)
(md +mde) + cD|z=0 , (17a)

ñE(x, y, t) :=
1

H(x)
mde + cE|z=0 . (17b)

We further averaged these densities along the y–direction to obtain the the slice-averaged
total densities 〈ñD,E〉y(x, t). Note that the length of a slice is much larger than the typi-
cal pattern wavelength, which also permits to approximate the slice-averaged mass at the
membrane by the vertically averaged mass: 〈ñi〉y(x, t) ≈ 〈ni〉y,z(x, t) (see Ref. [14]). This
is because the local deviations ñi − 〈ni〉z largely cancel when averaging over the pattern
wavelength.

Mass redistribution dynamics

Here, we provide more details on the derivation of the mass redistribution dynamics Eq. (7).
For specificity, we present the calculation for MinD. The calculation for MinE works along
the same lines. Our starting point is the slice averaged total MinD density:

〈nD〉y,z(x, t) :=
1

H(x)

〈
md +mde +

∫ H(x)

0
dz cD

〉

y

. (18)
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The time evolution of this quantity then follows from Eq. (1) and Eq. (2):

H(x) ∂t〈nD〉y,z(x, t) = Dm∂
2
x〈md +mde〉y

+Dc∂z〈cD〉y
∣∣
z=H(x)

+

∫ H(x)

0
dz Dc∂

2
x〈cD〉y, (19)

where we used the reactive boundary condition Eq. (3) to rewrite the integral:

∫ H(x)

0
dz Dc∂

2
zcD = Dc∂zcD

∣∣
z=H(x)

−Dc∂zcD

∣∣
z=0

= Dc∂zcD

∣∣
z=H(x)

+ roff
DE − ron

D . (20)

Note that due to mass-conservation the reaction terms at the membrane cancel.
Since the system is closed, the boundary condition at the inclined top surface of the

wedge reads n · ∇cD|z=H(x) = 0, where n ∝ (−∂xH, 0, 1) is the outward normal vector at
the top surface. Writing out the boundary condition explicitly, we find that:

∂zcD|z=H(x) = (∂xH) ∂xcD|z=H(x). (21)

To proceed, we substitute the relation above into Eq. (19) and slightly rewrite the resulting
equation by applying the chain rule:

H(x) ∂t〈nD〉y,z(x, t) = Dm∂
2
x〈md +mde〉y + ∂x

∫ H(x)

0
dz Dc∂x〈cD〉y

︸ ︷︷ ︸
=: −H(x)JD(x)

. (22)

Here, the first term describes diffusion of the averaged membrane concentrations. The
integral on the right describes diffusion of the averaged cytosolic densities, where we defined
the diffusive flux JD = −Dc〈∂xcD〉y,z. The factor H(x) in the cytosolic diffusion term
accounts for the increasing area of the slice along the positive x–direction.

Since protein diffusion on the membrane is much smaller than cytosolic diffusion Dm �
Dc [47, 48], one can neglect membrane diffusion to arrive at the result shown in the main
text (Eq. (7)). For completeness, note that Eq. (22) (without membrane diffusion) can be
recast as

∂t〈nD〉y,z(x, t) ≈
1

H(x)
∂x

∫ H(x)

0
dz Dc∂x〈cD〉y,

= Dc∂x〈∂xcD〉y,z +Dc
∂xH(x)

H(x)
〈∂xcD〉y,z, (23)

which is the form given in Eq. (6) in the main text.
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Machine-learning based pattern classification

We used the pixel classifier provided by the software ilastik [35]. The classifier was trained
based on a few representative snapshots, by manually marking areas where the pattern type
(no pattern, chaos, standing wave, or traveling wave) is easily identified by visual inspection.
The trained classifier then yields probabilities for each pattern type at each pixel. The
classifier was applied to snapshots in 20 s intervals. This data was then downsampled and
averaged over slices to yield an x–t space time map of pattern probabilities. To render the
kymograph in Fig. 4D each pixel was colored based on the most probable pattern.

Aranson–Tsimring model

As a second example we briefly discuss a phenomenological model for pattern formation in
vibrated granular media introduced in [39]. This model, which we call Aranson–Tsimring
model in the following, couples a Ginzburg–Landau-type equation [34] for the complex order
parameter ψ to a conservation law for the density ρ:

∂tψ = γψ̄ − (1− iω)ψ + (1 + ib)∇2ψ − |ψ|2ψ − ρψ, (24a)

∂tρ = β∇2ρ+ α∇ · (ρ∇|ψ|2), (24b)

where ψ̄ denotes the complex conjugate of ψ. The coupling is such that increasing the
density ρ suppresses the instability in Eq. (24a) while gradients in the amplitude |ψ| drive
mass redistribution away from high amplitude regions (second term in Eq. (24b)). This
feedback loop amplifies heterogeneities in the density and gives rise to localized patterns.
These patterns have been studied in detail using amplitude equations in [32, 33]. Moreover,
in Ref. [30] it was shown that the system Eq. (24) appears as the amplitude equation for
a mass-conserving version of the classical Swift–Hohenberg–Turing equation [6, 49]. The
reason for this is that the conserved density appears as a second hydrodynamic variable in
addition to the pattern amplitude.

A linear stability analysis shows that the system Eq. (24) has a short wavelength instabil-
ity when bω−1−ρ0 > 0 and γ > γc = (ω+b(1+ρ0))/

√
1 + b2, where ρ0 denotes the average

density. Following Ref. [33], we set parameters b = 1, ω = 2.5, α = 1.3, β = 0.3, ρ0 = 0.3.
Localized patterns are found near the instability threshold, so we set γ = 1.001γc for the
simulation shown in Fig. 6 and Movie S9.

Preparation of the wedge flow cell

The microfluidic wedge chambers were prepared using two rectangular cover slips (bottom
one of dimensions 22/50 mm, and top one of dimensions 5/30 mm). Close to one of the short
edges of a top glass a tiny inlet hole was drilled using a sandblaster. Cover slips were cleaned
in 1 M KOH for 1 h followed by a methanol bath for 10 min in a sonicator bath. Surfaces
of the cover slips were activated with oxygen plasma for 20 s, using oxygen plasma PREEN
I (Plasmatic System, Inc.) with a O2 flow rate of 1 SCFH. Furthermore, a small PDMS
slab with a 0.3 mm hole was attached on to the top glass slide, such that it matches the

20



hole in the PDMS glass slide and a metal connector was inserted in the hole for connecting
the syringe pump. Tilt of the top glass slide was achieved by placing a piece of aluminum
foil between the top and bottom slide at the end, with the largest height between top and
bottom at the side of the inlet. At the opposite side with the smallest distance between top
and bottom slide, 2 µm polystyrene beads that were deposited on the bottom slide provided
an outlet and prevent a collapse of the top and bottom slides (see Fig. 2). The lateral sides
of the microchamber were sealed with a two-component epoxy resin leaving the short edge
at the low height-side open for liquid flow (Fig. S4). The microfluidic cell was then filled
with a solution of small unilamellar vesicles (SUVs) through an injection tube at the inlet
of the PDMS slab and incubated for 30 min at 30 ◦C–yielding full lipid membrane coverage
of the bottom and top slides. SUVs were prepared as described in Ref. [28]. Subsequently,
the flow cell was thoroughly washed with a buffer to remove excess SUVs and Min protein
experiments were started.

Observation of Min patterns

We purified the Min proteins based on the method proposed in Ref. [50]. Injection of Min
proteins into the flow cells was performed through a syringe pump containing a solution
of 0.8 M MinD, 0.2 mM MinD-Cy3, 0.8 mM MinE, 0.2 mM MinE-Cy5, 5 mM ATP, 4 mM
phosphoenolpyruvate, 0.01 mg/ml pyruvate kinase, 25 mM Tris-HCl (pH 7.5), 150 mM KCl
and 5 mM MgCl2. To ensure that all of the buffer solution in the microdevice is replaced
by the protein solution, we chose a volume of the protein solution that was 50 times larger
than the volume in the microdevice. During the filling process of the microdevice, the enire
solution was rapidly injected (in 5 s) to prevent protein accumulation on the membrane.

For the generation of the fluorescence images, we used the following equipment: Olympus
IX-81 inverted microscope equipped with an Andor Revolution XD spinning disk system
with FRAPPA, illumination and detection system Andor Revolution and Yokogawa CSU
X1, EM-CCD Andor iXon X3 DU897 camera, motorized x-y stage and a z-piezo stage,
using a 20x objective (UPlansApo, NA 0.85, oil immersion). Imaging of MinD-Cy3 and
MinE-Cy5 was performed with laser spectral lines at 561 nm and 640 nm, respectively, and
we further used a 617/73 band-pass filter as well as a 690 long-pass filter. We imaged several
uniformly sized regions at intervals of 30 s or 60 s along the lateral length of the wedge
setup. To exclude membrane imperfections that may have arisen during preparation, we
also imaged the membrane using the spectral line at 491 nm and a 525/50 band-pass filter.

Image sequence processing

We processed the fluorescence images using the following software packages: Andor iQ3
v3.1, ImageJ 1.52j, and custom written Matlab 2016a scripts. For better visualization, we
additionally applied background correction and filtering of artifacts. In detail, these were
carried out as follows: For the generation of the movies, each frame was first corrected for
fluorescence bleaching (max. 20 % decay of the intensity for long movies) by normalizing to
the mean intensity of the respective frame. Then, we generated two different modifications
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of the images: First, we averaged out all transient features (i.e., patterns) in the frames to
obtain ‘static background’-images which we shall call Imstat. Second, we smoothed out
the images, determined the average of all movie frames, and normalized the corresponding
result with respect to its maximum. This way, we obtained an ‘illumination correction’
image Imillum. In the final step, each frame Immovie was corrected according to the rule
Imcorrected = (Immovie - Imstat)/Imillum. On one hand, this ensures that irregularities
in each image are suppressed, and on the other hand, the intensity amplitudes at the edges
becomes comparable with the values at the center of the image.
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Schweizer, Jonas Mücksch, Gökberk Alagöz, and Petra Schwille. Stationary patterns
in a two-protein reaction-diffusion system. ACS Synthetic Biology, 8(1):148–157, 2019.

[28] Fridtjof Brauns, Grzegorz Pawlik, Jacob Halatek, Jacob Kerssemakers, Erwin Frey,
and Cees Dekker. Bulk-surface coupling identifies the mechanistic connection between
Min-protein patterns in vivo and in vitro. Nature Communications, 12(1), 2021.

[29] Anthony G. Vecchiarelli, Min Li, Michiyo Mizuuchi, and Kiyoshi Mizuuchi. Differ-
ential affinities of MinD and MinE to anionic phospholipid influence Min patterning
dynamicsin vitro. Molecular Microbiology, 93(3):453–463, 2014.

[30] P. C. Matthews and S. M. Cox. Pattern formation with a conservation law. Nonlin-
earity, 13(4):1293–1320, 2000.

[31] S. M. Cox and P. C. Matthews. Instability and localisation of patterns due to a
conserved quantity. Physica D: Nonlinear Phenomena, 175(3-4):196–219, 2003.

[32] D. M. Winterbottom, P. C. Matthews, and S. M. Cox. Oscillatory pattern formation
with a conserved quantity. Nonlinearity, 18(3):1031–1056, 2005.

[33] D. M. Winterbottom, S. M. Cox, and P. C. Matthews. Pattern formation in a model of
a vibrated granular layer. SIAM Journal on Applied Dynamical Systems, 7(1):63–78,
2008.

[34] Igor S. Aranson and Lorenz Kramer. The world of the complex Ginzburg-Landau
equation. Reviews of Modern Physics, 74(1):99–143, 2002.

[35] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N. Straehle, Bernhard X.
Kausler, Carsten Haubold, Martin Schiegg, Janez Ales, Thorsten Beier, Markus Rudy,
Kemal Eren, Jaime I. Cervantes, Buote Xu, Fynn Beuttenmueller, Adrian Wolny,
Chong Zhang, Ullrich Koethe, Fred A. Hamprecht, and Anna Kreshuk. Ilastik: Inter-
active machine learning for (bio)image analysis. Nature Methods, 16(12):1226–1232,
2019.

[36] Fridtjof Brauns, Jacob Halatek, and Erwin Frey. Diffusive coupling of two well-mixed
compartments elucidates elementary principles of protein-based pattern formation.
Physical Review Research, 3(1), 2021.
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Linear stability analysis

As outlined in the main text, we performed a linear stability analysis to
determine the instantaneous dispersion relation in each slice of the wedge
geometry. The dispersion relation, from which we determine the commensu-
rability of unstable modes, then informs about the pattern type in the slice.
The general procedure for the linear stability analysis is as follows: First, one
determines a homogeneous steady state and linearizes the dynamics around
this steady state. The linearized system can be solved by a normal mode
expansion, which yields a relation between the growth rate of modes σ and
the mode number q. The relationship σ(q) is the dispersion relation, and
indicates whether spatial perturbations with mode number q decay to the
homogeneous steady state (σ < 0) or are amplified and growth exponentially
with time (σ > 0). In the following, we briefly explain the linear stability
analysis procedure for the Min dynamics in rectangular geometry and refer
for an in-depth analysis to Refs. [1, 2]

Homogeneous steady states at the membrane

To obtain the homogeneous steady state solution along the membrane, we
first determine the the steady state concentration profiles in the cytosol
c∗ = [c∗D, c

∗
DD, c

∗
E]>:

0 = Dc(∂
2
x + ∂2z )c∗ − βc∗, (S1)

where β = diag(0, λ, 0). These equations can be solved by a separation of
variables and yield the following solution:

c∗D(z) = c∗D|z=0 = const., (S2a)

c∗DD(z) = c∗DD|z=0
cosh ((H − z)/`)

cosh (H/`)
, (S2b)

c∗E(z) = c∗E|z=0 = const., (S2c)

where c∗|z=0 = c∗i (z = 0) (i ∈ {D,DD,E}) denote the steady state homo-
geneous cytosolic concentrations at the membrane, and ` =

√
Dc/λ defines

the characteristic length scale of cytosolic gradients into the bulk. Note
that ∂xc

∗ = 0, because we are interested in homogeneous solutions along
the membrane. Plugging these solutions into the membrane reactions and
bulk-membrane coupling (cf. Eq. [2] and [3] in the main text) one finds the
following set of equations:

f
(
c∗|z=0,m

∗) = Φ, (S3a)

r(c∗|z=0,m) = 0, (S3b)
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where

Φ =




0
Dc/` tanh (H/`) c∗DD|z=0

0


 . (S4)

Together with the mass-conservation constraint:

nD = c∗D|z=0 +
1

H
(m∗d +m∗de), (S5a)

nE = c∗E|z=0 +
1

H
m∗de, (S5b)

the solution of the nonlinear system (S3) and (S5) determines the homo-
geneous steady state solutions at the membrane. This nonlinear system of
equations can be solved numerically by root-finding algorithms such as the
Newton algorithm. Here, we used the built-in function NSolve[] in Mathe-
matica 12 to numerically determine the homogeneous steady states.

The linearized dynamics and growth rates for small spatial
perturbations

Next, we ask for the stability of the homogeneous steady state against small
spatial perturbations. To this end, we linearize the dynamics around the
homogeneous steady state and determine the time evolution of perturbations
δm(x, t) = m(x, t)−m∗ and δc(x, z, t) = c(x, z, t)− c∗|z=0:

∂tδc = Dc(∂
2
x + ∂2z )δc− βδc, (S6a)

−Dc∂zδc|z=0 = ∂uf δu, (S6b)

∂tδm = Dm∂
2
xδm + ∂urδu, (S6c)

where u = [c,m]> denotes the concentration vector and δu = [δc|z=0, δm]>

the perturbation vector at the membrane. The Jacobian matrices of the
bulk-boundary coupling and membrane reactions ∂uf ≡ ∂uf |(c∗|z=0,m∗) and
∂ur ≡ ∂ur|(c∗|z=0,m∗) are evaluated at the homogeneous steady state at the
membrane. The linearized system (S6) can be solved by a normal mode
expansion of the form:

δci(x, z, t) =
∑

q

eσqt cos (qx)Zi(z;σq, q)δĉi,q, (S7a)

δm(x, t) =
∑

q

eσqt cos (qx)δm̂q, , (S7b)
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here σq defines the growth rate of perturbations with respective mode num-
ber q. The Fourier coefficients are given by δĉq and δm̂q, respectively, and
the bulk modes Zi(z;σq, q) have a similiar form as for the homogeneous
steady states:

Zi(z;σq, q) ∼
cosh (γiq(z −H))

cosh (γiqH))
, (S8)

where the parameters γiq take different values dependent on whether the bulk
dynamics is purely diffusive or contains linear reactions (i.e. nucleotide ex-
change), therefore γDq = γEq =

√
σq/Dc + q2 and γDD

q =
√

(σq + λ)/Dc + q2,
respectively. Plugging the normal mode expansions (S7) into the linearized
bulk-boundary coupling and membrane dynamics (S6) yields an eigenvalue
problem for the growth rates σq as a function of the modes q. This tran-
scendental eigenvalue problem is given in compact form by:

(
−Dc Γ(σq, q) + fc fm

rc −(σq + q2Dm)I2 + rm

)

︸ ︷︷ ︸
=: M(σq, q)

[
δĉq
δm̂q

]
= 0 (S9)

where I2 denotes the 2x2 identity matrix, and Γ := diag
(
Γ(γDq ),Γ(γDD

q ),Γ(γEq )
)

is a coupling matrix due to bulk-coupling, where

Γ(γiq) = Dcγ
i
q tanh

(
γiqH

)
. (S10)

The growth rates σq are then determined by solving the transcendental
characteristic equation:

det (M(σq, q)) = 0. (S11)

The dispersion relation is given by the largest real solution (fastest growing
mode) of (S11). We solved (S11) numerically using the built-in function
FindRoot[] in Mathematica 12.
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Pattern prediction from local dispersion relations

Here, we provide more details on how we technically predict the patterns
in each slice from the simulation data. Specifically, we explain the steps
required to generate the kymographs in the main text (Figs. 4 and 5)

Computation of the total densities in the slices from numerical
data

To determine the slice averaged densities at each position x along the wedge
geometry, we first exported the membrane concentration profiles of MinD
and MinE from the simulation data as a grid data file. We exported the
grid file for each time step δt = 2 s, where the grid file consists of 400× 400
spatial points (400 data points in each spatial direction), which is equivalent
to a spatial discretization of δx = δy = 1.25 µm.

To obtain the slice-averaged densities, we imported the simulation data
to Mathematica 12 and averaged the total densities of MinD and MinE along
the y−direction, thereby reducing the data to a one-column grid file which
contains 400 points, corresponding to the slice-averaged densities along the
x−direction. To reduce the computational effort for the calculations of the
dispersion relations and to smooth the data, we additionally averaged the
slice densities over 4 points in space (i.e. resulting in a new step size δxavg =
4δx) and 10 steps in time (i.e. obtaining the new time step δtavg = 10δt)
using the Mathematica built-in functions Partition[] and Mean[]. This
way we reduced the number of points in the grid file to 100 spatial points
and 450 points in time, respectively.

Determination of the instantaneous dispersion relations and
commensurability condition

The total average densities in each slice (see above) are then plugged into
(S11) to determine the dispersion relation at each point in time. From the
disperion relation we determine the commensurability of unstable modes,
whose value informs about the pattern in the slices as explained in the main
text. To illustrate how the commensurability condition varies with time and
space, we generated the kymographs (Figs. 4A and 5C) in the main text,
where the commensurability condition is color coded as shown in the figure.

Since the transition in the commensurability condition from standing
wave to traveling wave patterns is not sharp, but rather occurs around the
onset for qmax/q

∗ = 2, we additionally applied a color gradient for standing
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waves (green) to make this point clear.

Regularization of the local-equilibrium approximation

In the main text, we use a local-equilibrium approximation to obtain the
reduced dynamics for the (slice-averaged) total densities. This reduced dy-
namics is well-defined as long as the local equilibria c∗i do not undergo saddle-
node bifurcations (where a stable and an unstable equilibrium annihilate). If
a saddle-node bifurcation occurs at some point in the spatial domain, c∗i (x)
will be discontinuous at this point as it jumps from one branch of equilibria
(which is annihilated) to another one. To regularize the dynamics, we intro-
duce auxiliary fields c̃i(x, t) which relax to the equilibrium concentrations
c∗i (x, t) on a fast timescale compared to the large scale mass-redistribution.
In the limit of fast relaxation, the concrete implementation of the relax-
ation dynamics is irrelevant. An intuitive choice for the relaxation dynamics
would be, for example, ∂tc̃i(x, t) = −α[c̃i(x, t) − c∗i (x, t)], where α denotes
the relaxation rate. However, this choice requires explicit computation of
the local equilibria c∗i (x, t) at each timestep which is computationally costly
and complicates the numerical implementation.

In the following, we construct an auxiliary relaxation dynamics such
that the equilibria c∗i are implicit in the relaxation dynamics and don’t
need to be computed explicitly. We start by imposing the local equilibrium
assumption on the vertical bulk profiles (cf. (S2)). Note that we do this at
each lateral position x separately. For ease of notation, we do not denote
the x-dependence explicitly below.

c̃D(z) = c̃D = const. (S12a)

c̃DD(z) = c̃DD(0)
cosh

(√
λ/Dc (H(x)− z)

)

cosh
(√

λ/DcH(x)
) , (S12b)

c̃E(z) = c̃E = const. (S12c)

The dynamics for the total densities is now defined in terms of the auxiliary
cytosolic densities (cf. Eq. [8] in the main text)

∂tñi(x, t) = Dc∂
2
xc̃i +Dc

∂xH(x)
H(x) ∂xc̃i . (S13)

To construct the auxiliary relaxation dynamics for c̃D and c̃E, we eliminate
the membrane concentration variables md, mde by using the mass conserva-
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tion constraint (cf. 4a and 4b in the main text)

m̃d = H(x) ñD −H(x) c̃D − m̃de, (S14)

m̃de = H(x) ñE −H(x) c̃E, (S15)

Next, we eliminate c̃DD(0) by imposing the boundary condition ∂z c̃DD|z=0 =
kdemde, which yields

√
λ/Dc tanh

(√
λ/DcH(x)

)
c̃DD(0) = kdem̃de. (S16)

Note that we do not enforce the boundary conditions for c̃D and c̃E. In-
stead, we will use these boundary conditions to define auxiliary relaxation
dynamics for c̃D and c̃E as follows

∂tc̃i(x, t) = Dc∂
2
xc̃i +Dc

∂xH(x)
H(x) ∂xc̃i + αf̃i

(
c̃D, c̃E

)
, (S17)

with the auxiliary reaction terms

f̃D =
1

H

(
kdem̃de − (kD + kdDm̃d)[c̃D − c̃DD(0)]

)
, (S18)

f̃E =
1

H

(
kdem̃de − kdEm̃dc̃E

)
(S19)

obtained by substituting the auxiliary variables into the boundary fluxes of
ci (see Eq. [11] in the main text). Observe that f̃i = 0 for c̃i = c∗i , i.e. the
auxiliary reactions relax towards the local steady state concentrations, as
required. The factor 1/H comes in because the auxiliary fields c̃i represent
the uniform bulk concentrations whose rate of change is obtained by dis-
tributing the boundary flux fi over the entire vertical column with height
H. The relaxation rate factor α above can be used to adjust the relaxation
rate to minimize the deviation from the local equilibria while avoiding the
emergence of too sharp gradients. We performed simulations of the auxiliary
dynamics for different values of α and found no noticeable changes in the
results, when increasing α above 1.

We have numerically implemented the system of PDEs defined by (S13)
and (S17) in Mathematica 12.3 using a finite-difference discretization (first
order central differences, 200 grid points). The resulting high-dimensional
ODEs system is integrated using Mathematica’s NDSolve function.

Average total densities control the final steady state
pattern

In the main text, we have shown that a variety of different patterns emerge
on the membrane, and that these patterns transition to other patterns over
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time. For large times, however, we found that the system approaches a stable
steady state that is characterized by standing wave patterns which emerge
on the entire membrane. The underlying reason is that for large times the
density profile in the bulk approaches a (heterogeneous) steady state dis-
tribution due to mass-redistribution (diffusive fluxes). At this steady state,
the dispersion relation becomes insensitive to the local total densities and
the bulk height, resulting in loss of heterogeneity and thus to the selection
of one pattern type on the membrane. What determines the type of this
pattern?

The final steady state profiles of the total densities depend on the average
total densities in the system, which are set by the initial condition. For the
simulation presented in the main text, we tuned these densities to achieve
qmax ≈ 2q∗ (i.e. standing waves) in the final steady state. As the density
profiles relax towards this steady state, they fluctuate (oscillate) around
this critical mode ratio which leads to the intriguing sequence of transient
patterns.

For comparison, we performed a second simulation with a lower average
MinD density n̄D = 638 µm−3, such that the qmax > 2q∗ in the final steady
state. Accordingly, the system settles in traveling wave patterns after a
considerably shorter transient (see Fig. 1 and Movie S1).
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Fig. 1. Pattern type classification and prediction for a second parame-
ter set which exhibits traveling waves in the entire domain in the steady
state reached for large times (t > 4000 s). (A) Snapshots from the full
numerical simulation (cf. Movie S1). Parameters: n̄D = 638 µm−3, all
other parameters as in Tab. 1 in the main text. (B) Computer-based
pattern classification from the full simulation using ilastik (compare to
Fig. 4D). Note that the classifier is unreliable during the initial transient
(first ∼500 s) where large scale trigger waves dominate. (C) Prediction
based on slice-averaged total densities extracted from the full numerical
simulation (analogous to Fig. 4A). (D) Prediction based on the reduced
mass-redistribution dynamics Eq. [8] (analogous to Fig. 5C).

9



Ti
m

e
[m

in
]

0

1

2

10

0

20

40

60

0 2 4 6 8
Distance [mm]

Bu
lk

he
ig

ht
[μ

m
]

A

B

Fig. 2. Establishment of coexisting patterns in different spatial regions.
(A) Measured bulk height profile versus lateral distance. (B) Spatial inten-
sity profile of MinD along the wedge at different points in time, snapshots
were taken at 0, 1, 2, and 10 minutes. White dashed line shows the
approximate boundary line, where standing wave patterns transition to
homogeneous oscillations.
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Fig. 3. Transition of homogeneous oscillations to traveling wave patterns.
(A) Measured bulk height profile versus lateral distance. Snapshots along
the wedge were taken at the time 0, 20, 40 and 80 minutes. (B) Spa-
tial intensity profile of MinD along the wedge at different points in time,
snapshots were taken at 0, 20, 40, and 80 minutes. At early times, ho-
mogenous oscillations turn into travelling waves at different regions. For
long times, regions containing rather chaotic homogenous oscillations in-
vade other regions (that contain different patterns) from low to high bulk
heights.

11



0.152°

0.076°

Fig. 4. The bulk height gradient affects patterns along the wedge. Shown
are the Min patterns in two different flow cells that had a different tilt
(angle between top and bottom membranes). In the setup with higher
tilt (top), traveling wave patterns are more abundant than homogenous
oscillations. For a smaller angle (bottom), one observes more regions
that contain homogeneous oscillations. The snapshots were both taken 20
minutes after flushing in the Min proteins (MinD channel shown).
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Movie S1. Numerical simulation of the Min dynamics in wedge geometry
for total average densities n̄D = 665 µm−3 and n̄E = 410 µm−3. Shown is
the MinD density along the membrane (bottom surface of the wedge, see
Fig. 1B). For large times, the system approaches a steady state consisting
of standing wave patterns on the entire membrane surface.

Movie S2. Numerical simulation for total average densities
n̄D = 638 µm−3, n̄E = 410 µm−3. For these parameters, traveling wave
patterns form in the entire wedge in the steady state reached for large
times (t > 4000 s). Compare Fig. 1.

Movie S3. Experimentally observed Min patterns in a wedge-shaped
microfluidic flow chamber. As in our numerical simulations, we observe
coexisting spatiotemporal patterns along the membrane (as shown in
Fig. 2C).

Movie S4. Experimentally observed establishment of a sharp boundary
between regions containing traveling wave patterns and regions containing
chaotic or standing wave patterns (as shown in Fig. 2).

Movie S5. Experiment showing emergence of homogeneous oscillations
and transitions to traveling waves (corresponds to Fig. 3).

Movie S6. Experiments with steep bulk height gradients show the
predominant emergence of traveling wave patterns (cf. Fig. 4, top).

Movie S7. Experiments with shallow bulk height gradients show more
regions with nearly homogeneous oscillations/phase waves (cf. Fig. 4,
bottom).

Movie S8. Pattern prediction from regional dispersion relations and
coarse-grained densities (as illustrated in Fig. 3 and Fig. 4).

Movie S9. Numerical simulation of the Aranson–Tsimring model showing
the order parameter amplitude |ψ| (top) and coarse grained density
(bottom). Dashed white line indicates the stability threshold determined
from regional dispersion relations. See Fig. 6 for details.
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2 Pattern formation on dynamic manifolds

In this section we present our findings on how dynamic membrane deformations
affect patterns along the membrane. The following content is based on and uses
parts of our submitted paper [82]. We provide a reprint of the paper in section 2.6.

2.1 Background

In the specific context of intracellular patterns, the shape of cells dynamically adapts
during many cellular processes such as growth, motility, and division. Such shape
deformations are controlled by the cell cortex via a number of mechanisms, such as
actin polymerization [83–85], or contractility gradients in the actomyosin complex
(cortical flows) [38, 86]. Notably, shape deformations are not exclusively driven
by cytoskeletal components. For example, proteins that contain BAR-domains
can bind to the cell membrane in a curvature-dependent fashion and directly
induce shape deformations [32, 33, 87–89]. In addition, as we will discuss in
detail in chapter IV, it has been further shown that the motorprotein myosin-VI is
capable of remodelling membranes by cooperatively binding to negatively curved
regions of phospholipids [34]. Importantly, such shape changes are in general
regulated by protein patterns, such as Rho-GTPases that control the spatiotemporal
organization of the actomyosin complex [37]. Strikingly, it was recently shown
that the reconstituted E. coli Min protein system is able to dynamically deform the
shape of lipid membranes, including giant unilamellar vesicles (GUVs) [90–92].

The examples outlined above underscore that protein patterns are generally
interlinked with cell shape, and this interplay gives rise to intricate mechanochem-
ical feedback loops between shape and biochemical dynamics that lies at the heart
of many cellular processes [93]. Many theoretical studies have been conducted to
investigate mechanochemical pattern formation in biological systems [89, 94, 95].
For instance, in Refs. [96] the authors theoretically model the actomyosin cortex
as an elastic active sheet, where the contractility is regulated by chemicals that
bind to and are transported along the cortex (cortical flows). Other works studied
computational models of classical reaction-diffusion equations on dynamic mem-
brane surfaces [97, 98], or the impact of membrane curvature on the aggregation
of transmembrane proteins [99]. In addition, recent studies theoretically invest-
igated mechanochemical coupling between curved proteins (BAR proteins) and
membrane shape [35, 100], as well as the coupled dynamics between morphogens
and tissues [101]. Due to the inherent complexity of mechanochemical pattern
formation, most of these works relied on linear stability analysis and numerical sim-
ulations, rendering it difficult to gain theoretical understanding of the underlying
principles of such systems.
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To elucidate some of the mechanisms that underlie such systems, we study
here the dynamics of a two-component mass-conserving reaction-diffusion system
(MCRD) coupled to the shape of a fluid-like one-dimensional manifold (which
represents the cell membrane). We first derive the governing equations for general
reaction-diffusion systems on time-evolving manifolds. By generalizing a recently
developed framework for MCRD systems, termed local equilibria theory [13, 28,
41], we derive a criterion that allows to link the onset of lateral instabilities to the
phase-space structure of the MCRD. Strikingly, our analytical results reveal that
shape deformations generically induce inhomogeneities in the reaction kinetics,
which may induce pattern-forming instabilities in parts of the geometry. We refer
to this effect as regional instabilities and we identify the local conformation of
the membrane as an important dynamical control parameter that drives these
instabilities. In contrast to the system studied in section 1, the inhomogeneities
here are self-generated by the dynamics. In addition, shape deformations may
also suppress the establishment of patterns or spatially shift pre-existing patterns.
Importantly, our work further shows that a mechanochemical feedback between
the two-component MCRD system and the one-dimensional manifold leads to
a variety of dynamic patterns, such as oscillations, traveling waves, and standing
waves, that do not occur on a static geometry. We identify the local membrane
conformation as an important degree of freedom in the dynamics (in addition to
the local total masses).

2.2 Reaction-diffusion equations on time-evolving manifolds

We consider a two-component mass-conserving reaction-diffusion system defined
on a dynamic, time-evolving geometry and ask for the general mathematical form
of such a system. Moreover, to keep the discussion simple and concise, we restrict
ourself to systems defined on a dynamic one-dimensional manifold. However,
many of the ideas presented below can be readily generalized to higher dimensions.

The specific reaction-diffusion model that we consider here consists of one
protein species that can cycle between a cytosolic state c and a membrane state m
via (nonlinear) attachment and detachment processes described by the reaction
function f (m, c). This reaction-diffusion system has been proposed as a conceptual
model for cell polarity[41, 102], and was extensively studied on a static straight
line in the literature [41].
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Applying tools from differential geometry, one can derive the following general
form for a two-component system on a dynamic manifold:

d
dt

m (σ, t ) + ∇s (vτm) = Dm∇2
sm + f (m, c) + κ vn m , (II.11a)

d
dt

c (σ, t ) + ∇s (vτc) = Dc∇2
s c − f (m, c) + κ vn c . (II.11b)

The curve parameter σ ∈ [0, σ0] marks thematerial points along the manifold, and
∇s ≡ d/ds denotes the arc-length derivative or surface gradient. The generalized
Laplace operator ∇2

s in curved space (Laplace-Beltrami operator) is related to the
curve parameter via the metric tensor g (σ, t ) (here scalar) or first fundamental
form, which is induced by the parametrization

∇2
s =

1
√g
∂

∂σ

(
1
√g
∂

∂σ

)
. (II.12)

The role of the advective flux on the left-hand side in Eq. (II.11) is twofold: First,
it describes dilution of particle concentrations in the co-moving frame by in-
plane flows given by ∇svτ (·), where vτ denotes the tangential flow velocity. Such
flows arise, for instance, naturally from dynamic in-plane stresses or contractility
gradients along themanifold [96, 103]. Second, it accounts for the fact that manifold
is advected relative to a reference frame, and this is described by the term vτ∇s (·).
The latter contribution strictly depends on the choice of parametrization, and can
be interpreted as a reparametrization of the one-dimensional manifold [104, 105].
The last term κvn (·) on the right-hand side in Eq. (II.11) is a purely geometric
contribution and accounts for dilution and accumulation of particle densities due to
local length contraction and dilation, where κ describes the local (mean) curvature,
and vn the normal velocity of the manifold. As we will see below, this effect plays a
significant role since it affects the local total protein density, which is an important
control parameter for MCRD systems [13, 28, 41].

2.3 Material time-derivative and rescaled density fields

The two-component MRCD system Eq. (II.11) is complemented by the time-
evolution of the Lagrangian position vector r (σ, t ), that describes the temporal
evolution of the manifold

d
dt

r (σ, t ) = vnn̂ + vττ̂ , (II.13)
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where we decomposed the position vector along a direction normal and parallel to
the manifold, given by the unit normal n̂ and tangential vector τ̂ of the manifold,
respectively. Since Eq. (II.11) is given in the Lagrangian frame, the time-derivative
d/dt corresponds to the material derivative with respect to a stationary ambient
frame, and this implies that the form of Eq. (II.11) depends explicitly on the
parametrization. However, one can also define a time-derivative Dt that follows
trajectories normal to the manifold and where the governing equations of scalar
fields and tensor fields defined on the dynamic manifold become independent of
the specific parametrization [105–107]. The definition of this operator is

Dt :=
d
dt

− vτ
d
ds
. (II.14)

Using this operator, and assuming that proteins aremainly redistributed by diffusive
fluxes, one can can rewrite Eq. (II.11) in the form:

Dtm (σ, t ) = Dm∇2
sm + f (m, c) + κ vn m , (II.15a)

Dt c (σ, t ) = Dc∇2
s c − f (m, c) + κ vn c . (II.15b)

Note that in the absence of tangential flows, the material derivative follows along
trajectories normal to the manifold, i.e. d/dt ≡ Dt in this case.

To gain insight into the underlying dynamics of the system, we aim to apply
the local equilibria theory for MCRD systems. Unfortunately, this appears to
be challenging since the total average density ⟨n⟩ is generally not conserved by
the dynamics, but the total particle N (as can be also inferred from the non-
conservative form of Eq. (II.15)). However, we can bypass this issue by rescaling
the cytosolic and membrane densities using the metric √g . Hence, to proceed, we
define new variables m̃ = m√g and c̃ = c√g and derive a time-evolution equation
for the rescaled local total mass ñ = m̃ + c̃ from Eq. (II.15):

Dt ñ(σ, t ) =
∂

∂σ

[
Dm√g

∂

∂σ

(
m̃
√g

)
+ Dc√g

∂

∂σ

(
c̃
√g

)]
. (II.16)

From the equation above, one can see that the mass-redistribution dynamics of
the rescaled local total mass ñ corresponds to a nonlinear cross-diffusion equa-
tion, which is in addition coupled to the shape of the manifold via the metric.
Importantly, we note that this equation is not closed, as it explicitly depends on
the variables m and c . Equation (II.16) further reveals how shape deformations (ef-
fectively) affect transport processes along the manifold (here diffusion): one notes
that the diffusion coefficients Dm/c of the cytosolic and membrane components
are rescaled by a factor √g . This rescaling accounts for the fact that diffusion from
one point on the manifold to another point may take longer for curved regions
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than for flat portions. Thus, the diffusion coefficients are (effectively) smaller for
curved regions than for flat regions by a factor √g .

2.4 Regional instabilities

We can use Eq. (II.16) to derive a criterion that links the onset of lateral instabilities
to the phase-space structure of the reaction-diffusion system. Following Ref. [41],
we exploit the fact that the (stable) local reactive equilibria m̃∗ and c̃∗ serve as
scaffolds for patterns, and therefore replace the cytosolic and membrane densities
by their local equilibria

(m̃ (σ, t ), c̃ (σ, t )) → (m̃∗(ñ(σ, t ), c̃ (ñ(σ, t )) . (II.17)

Applying this approximation to Eq. (II.16), we find that the base state becomes
laterally unstable if the slope of the reactive nullcline is steeper than the ratio of
the membrane and cytosolic diffusion coefficients:

∂

∂m̃
c̃∗(ñ) < −Dm

Dc
. (II.18)

Due to dynamic shape changes of the manifold, and the rescaling defined above,
the reactive nullcline f (σ, t ) = 0 becomes space and time dependent. This entails
that the instability criterion Eq. (II.18) is to be interpreted in a local sense. Thus,
the heterogeneity in the reactive nullcline may lead to regional lateral instabilities,
where the criterion above is fulfilled in parts of the geometry. Conversely, shape
deformations may also suppress or shift existing patterns due to the inhomogeneity
of the instability criterion. In particular, the instability criterion can be “propagated”
in space and time by the dynamic of the manifold, resulting in rich dynamics such
as travelling and standing wave patterns (see section 2.6).

Notably, our finding shows that the local total density as well as the local
nullcline shape are important control variables, as the slope criterion Eq. (II.18)
depends on these variables. This complements previous results on a static flat
geometry, where the nullcline shape is uniform in space and time, thus leaving
the local total density as the only relevant degree of freedom in the system [41].
Moreover, it is worth to mention that we have not specified details on how exactly
the manifold shape is coupled to the chemical dynamics. Strikingly, the instabil-
ity criterion Eq. (II.18) is quite generic and does not depend on the mechanical
details of the manifold. The only relevant geometric quantity that contributes to
Eq. (II.18) is the metric √g (which encodes the local conformation). Thus, we
conclude that, in addition to the local total mass, the metric is a relevant (dynamic)
control parameter of the dynamics.



92 Pattern formation in heterogeneous systems

2.5 Key points and outlook

Below we summarize the key findings of this project and discuss possible extensions
that could provide interesting tasks for future research.

• Mechanochemical coupling in mass-conserving reaction-diffusion systems
leads to spatial inhomogeneities in the dynamics. These inhomogeneities
are manifested in spatially and temporally non-uniform reaction kinetics,
encoded by the nullcline shape of the MCRD.

• The onset of pattern-forming instabilities can be predicted by a simple ana-
lytical criterion, which is linked to the phase-space structure of the reaction-
diffusion system. Importantly, the onset of instabilities is generic and does
not depend on the exact details of the mechanical properties of the membrane
or feedback loop between membrane shape and chemical dynamics.

• We identified the local total mass and the local conformation of themembrane
(encoded by the metric) as the relevant degrees of freedom that drive the
spatiotemporal dynamics. Strikingly, the metric plays the role of a dynamical
control parameter for pattern formation.

Since the bulk-boundary ratio is an important control for pattern formation in
MCRD systems [13, 28, 43], and interesting extension of our model would be to
allow for cytosolic gradients perpendicular to the membrane. However, incorporat-
ing bulk-boundary coupling complicates the numerical simulations tremendously.
The standard approach to solve the bulk dynamics is to first discretize both the
bulk volume and membrane, and numerically determine the solution in the bulk.
Given the bulk solution, one can advance the membrane shape and the dynamics of
membrane components from one time point to another. This procedure, however,
requires to adapt the mesh at each point in time (since the membrane shape is part
of the solution), and is therefore highly susceptible to numerical instabilities.

To circumvent this issue, and to simplify the problem, we instead propose
the following strategy: The bulk dynamics usually consists of a linear diffusion
equation plus a linear degradation/creation term (accounting, e..g., for conforma-
tional changes of proteins). Under the assumption of linearity, one can analytically
calculate the Green’s function of the bulk dynamics, which can be used to recon-
struct the bulk profile from its values at the membrane. This idea is known as the
boundary element method (BEM), and is used extensively in other areas of physics,
such as acoustics or structural mechanics [108, 109]. In essence, by using the BEM
approach, one can eliminate the bulk dynamics and map the problem onto the
membrane, hence preventing the numerical issues explained above and at the same
time produce very similar equations as we have studied here.
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One striking aspect of bulk-boundary coupling is that dynamic shape deforma-
tions of the membrane will cause spatiotemporal gradients in the bulk-boundary
ratio, which conversely feeds back to the reaction-diffusion dynamics in a non-
trivial way. We expect that this scenario leads to intricatemultiscale protein patterns
along the membrane. On a broader perspective, the idea of regional instabilities
and the slope criterion determined in this work might help to characterize the
dynamics in such systems.
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Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and
motility, which often involve dynamic changes of cell shape. These changes in cell shape may in
turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop
between cell shape and chemical dynamics. While several computational studies have examined
the resulting rich dynamics, the underlying mechanisms are not yet fully understood. To elucidate
some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-
dimensional manifold. Using concepts from differential geometry, we derive the equations governing
mass-conserving reaction–diffusion systems on time-evolving manifolds. Analyzing these equations
mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming
instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the
local membrane geometry can also (regionally) suppress pattern formation and spatially shift already
existing patterns. We explain our findings by applying and generalizing the local equilibria theory
of mass-conserving reaction–diffusion systems. This allows us to determine a simple onset criterion
for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure
of the reaction–diffusion system. The feedback loop between membrane shape deformations and
reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including
oscillations, traveling waves, and standing waves that do not occur in systems with a fixed membrane
shape. Our work reveals that the local conformation of the membrane geometry acts as an important
dynamical control parameter for pattern formation in mass-conserving reaction–diffusion systems.

I. INTRODUCTION

Many vital processes in living systems, such as cell
division, motility, nutrient uptake, and growth, involve
dynamic cell shape changes that are driven by forces pro-
duced by cytoskeletal structures and membrane-binding
proteins. Mechanisms for cytoskeleton-induced defor-
mation of the cell membrane are many, and include
the polymerization of actin filaments [1, 2], guided by
proteins that promote actin nucleation, polymerization
and branching [3], or the generation of active stresses
through myosin motor proteins in the actomyosin cor-
tex [4, 5]. Remarkably, myosin–VI motor proteins can
reshape membranes on their own by means of highly
curvature-sensitive motor-protein–lipid interactions [6].
This molecular feature is akin to proteins containing
BAR-domains that can directly induce shape deforma-
tions by binding to the cell membrane [7–11]. Cells coor-
dinate these different processes by relying on regulatory
signalling pathways and spatiotemporal protein organi-
zation involving, for example, the eukaryotic Rho fam-
ily of GTPases which controls actomyosin polymerization
and contractility [12]. In addition, spatiotemporal pro-
tein patterns arise from an interplay between localized
biochemical reactions and diffusive transport [13–16], as

∗ These authors contributed equally to this work.
† frey@lmu.de

well as possibly advective transport [17, 18]. All these
processes show that intracellular reaction–diffusion sys-
tems are quite generally able to control cell shape, as was
recently demonstrated in a minimal reconstituted setup
where the E. coli MinDE protein system induced lipid
vesicle deformations even in the absence of cytoskele-
tal proteins [19–21]. Since, conversely, cell geometry can
guide protein pattern formation [22–27], this generically
gives rise to mechanochemical feedback loops [28–31].

Such mechanochemical coupling implies an intricate
interplay between dynamic shape deformations of the
membrane, cytoskeletal dynamics, and chemical reaction
kinetics. Theoretical investigations that address this rich
topic range from computational models [32, 33] to models
that place greater emphasis on the underlying molecular
processes; for reviews see e.g. Refs. [11, 34, 35]. For exam-
ple, recent studies have addressed the impact of curved
proteins [36], phase separation of membrane-binding pro-
teins [37], actin polymerization [38], and contractility of
the actomyosin cortex [39] on membrane shape dynam-
ics, as well as the interplay between morphogen and tis-
sue dynamics [40]. While these studies have identified
complex behavior such as membrane waves or complex
three-dimensional shapes, they mostly rely on numeri-
cal simulations. Analytical methods like linear stability
analysis have been employed to analyze the effect of me-
chanical and geometrical degrees of freedom on the on-
set of pattern formation in simple reaction-diffusion sys-
tems [33, 36, 39]. However, a comprehensive theoretical
framework for studying the impact of geometric effects
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on the resulting protein patterns in the fully nonlinear
regime is currently lacking.

To further elucidate the theoretical understanding of
systems with mechanochemical coupling, we here study
a minimal model in the nonlinear regime employing an-
alytical methods. Specifically, we consider a conceptual
model of cell polarity given by a mass-conserving two-
component reaction–diffusion system [41, 42] on a one-
dimensional manifold, whose shape can evolve dynami-
cally over time. Compared to a biologically realistic cell
polarity model, the simplifications are twofold: (i) In-
stead of a complex protein reaction network for cell po-
larity [43, 44], we consider a reduced model with one
protein species that can diffuse either in the cytosol or
on the membrane. (ii) The cell membrane is considered
as a deformable one-dimensional manifold. The mem-
brane shape deformations cause inhomogeneous mem-
brane compressions or dilations, leading to (local) ac-
cumulation or dilution of particle densities. Since pro-
tein densities are important control parameters in mass-
conserving reaction–diffusion systems [26, 42, 45, 46], de-
formations of the one-dimensional manifold can qualita-
tively change the dynamics of protein pattern formation.
In turn, if the local density of proteins also drives the dy-
namics of the one-dimensional manifold, then this leads
to a feedback loop between shape changes of the manifold
and reaction–diffusion dynamics. The goal of our analy-
sis is to uncover important physical mechanisms underly-
ing this intricate coupling between pattern formation and
changes in membrane geometry—using a generic model.

We study this generic model by extending the local
equilibria theory, a recently developed framework for an-
alyzing mass-conserving reaction–diffusion systems [42,
45], to explicitly account for shape deformations of the
manifold and the resulting changes in local geometry.
In particular, we focus on two exemplary cases where
(i) the shape is deformed adiabatically by some external
agent, and (ii) the local concentration of proteins con-
trols the dynamic shape changes of the membrane, for
example by driving local outward growth through actin
polymerization [47]. In the latter case, we consider the
one-dimensional membrane as a fluid-like boundary un-
der line tension. Specifically, our model could be inter-
preted as describing the dynamics of a small cell cortex
section whose outward growth is (locally) driven by pro-
teins. Therefore, to close our set of equations, we assume
that proteins generate local forces that drive outward mo-
tion of the membrane along the direction of its normal
vector.

We begin in Section II by reviewing the local equilibria
theory in the context of a planar one-dimensional sys-
tem with fixed geometry. In Sections III A and III B, we
then apply concepts of differential geometry to describe
the dynamics of a one-dimensional manifold, which sets
the stage for coupling the manifold’s geometry to the
chemical degrees of freedom. By invoking the gauge in-
variance of the number of proteins enclosed in a given
control volume with respect to deformations of the mem-

brane geometry, we derive in Section III C how the num-
ber density of proteins responds to the shape dynamics
of the one-dimensional manifold. We then show in Sec-
tion III D how these general concepts apply to the spe-
cific case of a two-component mass-conserving reaction-
diffusion system. In Section III E, we extend the local
equilibria theory to systems that include shape deforma-
tion of the manifold and ensuing changes in their geom-
etry. To test our theoretical results, in Sections IV A–
IV C we study the response of a two-component mass-
conserving reaction–diffusion system to shape deforma-
tions that are driven by an external agent. Finally in
Sections IV D and IV E, we couple the conformational dy-
namics of the membrane to the local density of proteins,
and study how such a system self-organizes in space and
time.

II. LOCAL EQUILIBRIA THEORY

One of the main goals of this work is to find generic
principles of pattern formation through reactions and
diffusion on manifolds whose conformations change dy-
namically. To that end, we build on a recently devel-
oped framework for mass-conserving reaction–diffusion
(MCRD) systems termed local equilibria theory [42, 45,
46]. With this framework, one can characterize the dy-
namics of MCRD systems by analyzing the phase por-
trait. However, since the local equilibria theory was orig-
inally developed in the context of a fixed spatial domain,
it is not clear a priori how to apply it to a system where
the patterns emerge on a manifold whose conformation
and hence internal geometry changes over time. Inter-
estingly, through our analysis we find that the main con-
cepts of the local equilibria theory carry over to MCRD
systems on dynamic manifolds without major modifica-
tions. Before we proceed with this main subject of our
work, we first recapitulate the key points of local equi-
libria theory.

The basic idea is to think of a spatially extended sys-
tem as being decomposed into a set of compartments
that are coupled by diffusion. For an isolated compart-
ment, one can determine the homogeneous steady state
(local reactive equilibrium) and its stability, which both
depend on the total particle densities within that com-
partment. Since diffusion redistributes these total densi-
ties, the local reactive equilibria will shift and change over
time. The local reactive equilibria inside each compart-
ment then serve as a scaffold for the spatially extended
system, which allows one to study pattern formation by
performing a phase portrait analysis.

To illustrate these ideas with a concrete example, con-
sider a two-component MCRD system consisting of one
protein species which can cycle between a membrane-
bound state m and a cytosolic state c. On a static one-
dimensional domain, e.g., an arbitrary curve in space,
the dynamics is given by the following two-component
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FIG. 1. Stationary pattern of a two-component mass-conserving reaction–diffusion system in phase-space. a) Stationary spatial
profile shown for the membrane species m, consisting of two plateaus connected by an interface (mesa pattern). The interface
position is defined by the inflection point of the pattern (black filled dot). b) Phase-space representation of the pattern shown
in a). The stationary solution lies on a linear subspace (flux-balance subspace, blue line), and the slope of this line is given by
the ratio of the diffusion coefficients (cf. Eq.(4)). The plateau values are determined by reactive flows (diffusive fluxes are zero
in these regions). In phase-space, the reactive equilibria corresponding to the plateau values (orange filled dots) are given by
intersections of local phase spaces (thin gray lines) with the reactive nullcline (black line), and 〈n〉 is the average total density.
Note that due to mass-conservation, reactive flows (red arrows) are always parallel to the local phase spaces.

MCRD model:

∂tm(s, t) = Dm∂
2
sm+ f(m, c) , (1a)

∂tc(s, t) = Dc∂
2
sc− f(m, c) . (1b)

Here, s denotes the arc length while the reaction term
f (m, c) describes the local attachment and detachment
kinetics of the protein species. In Appendix A we pro-
vide the reaction kinetics that was used in this study.
However, we emphasize that the main conclusions in this
work do not depend on the specific choice of f(m, c), as
will become clear in the following sections [42, 46].

The dynamics of Eq. (1) conserves the total average
density of proteins:

〈n〉 :=
1

L

∫ L

0

ds n (s, t) , (2)

where n (s, t) = m (s, t) + c (s, t) describes the local total
protein density and L is the length of the line. Since the
reaction kinetics conserves the total density, the reactive
flow in phase space must point in the direction of local
reactive phase spaces given by n(s, t) = m(s, t) + c(s, t)
(Fig. 1). The intersections between the local reactive
phase spaces and the reactive nullcline, obtained from
the equation f(m, c) = 0, determine the local reactive
equilibria (m∗(n), c∗(n)). Hence, the values of the lo-
cal reactive equilibria and how they change depend on
the shape of the reactive nullcline and the total density
n. This further implies that for a given system (specified
by f(m, c)), the total density n plays the role of a control
parameter for the local dynamics.

The dynamics of n(s, t) is driven by diffusion, which

can be shown by adding Eqs. (1a) and (1b):

∂tn(s, t) = Dc ∂
2
s

[
c(s, t) +

Dm

Dc
m(s, t)

]

:= −∂sj(s, t) , (3)

where the diffusive density flux j(s, t) is given by a com-
bination of cytosolic and membrane density gradients
j(s, t) = −Dc∂sc(s, t)−Dm∂sm(s, t). From the dynam-
ics of the total density, see Eq. (3), one directly infers
that any stationary pattern, mstat(s) and cstat(s), must
be constrained to a linear subspace in phase space that is
(for no-flux or periodic boundary conditions) determined
by:

cstat(s) +
Dm

Dc
mstat(s) = η0 , (4)

where η0 is a constant of integration. The linear sub-
space, given by Eq. (4), is termed the flux-balance sub-
space (FBS) and states that in steady state the diffusive
fluxes in m and c must be balanced such that the net flux
is zero (see Eq. (3)).

As shown in Ref. [42], the condition for the establish-
ment of spatial density patterns is linked to the slope of
the reactive nullcline by a simple geometric criterion in
phase space: a homogeneous steady state becomes un-
stable to spatial perturbations (laterally unstable) when
the slope of the reactive nullcline snc(n) is steeper than
the slope of the FBS:

snc(n) = ∂m c∗(m)|n < −
Dm

Dc
. (5)

The underlying mechanism of this instability lies in a
coupling between mass-redistribution and reactive flows:
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regions with a high density of membrane-bound proteins
act as a sink for cytosolic particles due to (nonlinear)
attachment to the membrane, leading to depletion of cy-
tosolic particles. Conversely, regions with a low density
of membrane-bound proteins act as a source of cytoso-
lic particles due to detachment from the membrane and
hence increase the cytosolic density. Redistribution of
mass through diffusion further amplifies this effect and
leads to a feedback loop between mass-redistribution and
reaction kinetics. This instability is hence termed the
mass-redistribution instability and is generic to mass-
conserving reaction-diffusion systems.

In Ref. [42] it was furthermore shown that the condi-
tion for a lateral instability, see Eq. (5), can be general-
ized to partitions of the geometry. In short, one can dis-
sect a spatial pattern into spatially distinct regions, and
associate each region with a regional phase space. View-
ing these regions in isolation from the rest, one can repeat
the same analysis for each region separately and thus re-
construct the global pattern by determining the regional
instability from Eq. (5). For a comprehensive discus-
sion of the local equilibria theory and the two-component
MCRD model, we refer to Ref. [42].

III. REACTION–DIFFUSION DYNAMICS ON A
DEFORMING MANIFOLD

Now that we have recapitulated local equilibria theory
for pattern-forming systems on a given spatial domain,
we will extend it towards systems on dynamic manifolds.
To that end, we proceed with the following steps. We
start by providing a generic description of a manifold in
terms of curvilinear coordinates, where we restrict the
discussion to a one-dimensional system (line). For a gen-
eral review of differential geometry of surfaces, we refer
to Ref. [48]. To determine the time evolution of patterns,
we require that their dynamics is independent of the ref-
erence frame and that the dynamics of the manifold con-
serves the number of particles. By doing so, we derive
a set of governing partial differential equations that de-
scribes mass-conserving reaction–diffusion systems on a
deforming manifold in the laboratory frame. An impor-
tant aspect of the dynamics is, that virtually every defor-
mation of the manifold will inevitably change the local
density of particles on the manifold.

A. Describing a deforming geometry

We begin with the general description of a one-
dimensional time-dependent manifold (line). We pa-
rameterize the line by a time-dependent position vec-
tor r(σ, t) ∈ R2, where σ is an arbitrary curve parameter
that labels positions along the line (see Fig. 2). Given a
specific parameterization of the position vector, one can
then define further geometric features of the line. The

𝑣 𝑛
𝒏

−𝑣𝜏 𝝉̂

𝜎E + 𝑑𝜎E

material
point 𝜎L

𝑡

𝑓(𝑚, 𝑐)

𝑡 + 𝑑𝑡

𝜎E
𝒓(𝜎E

, 𝑡)

𝜕𝑡𝒓(𝜎E, 𝑡)

man
ifold

man
ifold

FIG. 2. Conceptual description of a time-evolving manifold.
The line (solid thick gray) can be parameterized either with
respect to a stationary ambient coordinate system (Eulerian
coordinates σE, blue colors) or by using material coordinates
σL (Lagrangian coordinates that label points traveling along
trajectories normal to the line (black hollow dots). As illus-
trated, the coordinates σE change over time in the material
frame, resulting in a flow σE → σE + dσE of these coordinates
that is directed along the tangential part of the velocity vec-
tor ∂tr(σE, t). We investigate a conceptual two-component
mass-conserving reaction–diffusion system on such dynamic
manifolds (schematically illustrated by the symbols in purple
and green, which represent a cytosolic species c and a mem-
brane species m, both diffusing along the line).

tangent vector of the curve is given by

τ (σ, t) = ∂σr(σ, t) . (6)

For calculations, it is convenient to consider the normal-
ized tangent vector, which is given by

τ̂ (σ, t) =
τ (σ, t)√
g(σ, t)

, where g(σ, t) = ‖τ (σ, t)‖2 (7)

refers to the metric or first fundamental form, which al-
lows one to define arc distances along the curve:

s (σ, t) =

∫ σ

0

dσ′
√
g(σ′, t) . (8)

The conformation of the curve is described by the curva-
ture κ and formally given by the definition

∂sτ̂ = κ n̂ , (9)

where n̂ is the unit normal vector on the curve. Note that
the direction of the unit normal vector n̂ and the sign of
the curvature are not uniquely defined but a matter of
convention. Here, we choose the convention that the cur-
vature is negative for a sphere (circle in two-dimensions).
This means that the line curves away from its unit nor-
mal vector in the case of negative curvature, and towards
its unit normal vector in the case of positive curvature
(see Fig. 3).



5

negative curvature positive curvature
�̂� �̂�
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FIG. 3. Convention for the sign of the curvature. If the mani-
fold (thick black line) curves away from its unit normal vector
(black arrow), then the curvature is negative (left panel). If
the geometry (thick black line) curves towards its unit nor-
mal vector (black arrow), then the curvature is positive (right
panel). The dashed line represents a flat geometry with van-
ishing curvature.

The dynamics of the curve is determined by its velocity
vector ∂tr and can, in the most general case, be decom-
posed into parts normal and tangential to the curve:

∂tr(σ, t) = vnn̂+ vτ τ̂ , (10)

where vn and vτ refer to the normal velocity and tan-
gential velocity, respectively. Note that only the normal
velocity vn affects the shape of the curve, while the shape
is invariant to deformations in the tangential direction.
In addition, the normal component of the velocity vec-
tor can generally be an arbitrarily complex function of
the position vector, curvature, and other field variables.
Hence, the exact form of the normal velocity must be de-
termined by the specific physical system being studied.
Conversely, as we will show in the next section, the tan-
gential velocity strongly depends on the concrete choice
of the curve parameterization and on the frame of refer-
ence.

B. Frame of reference

Up to this point, we have not specified the exact frame
of reference for the parameterization of the geometry. In
the following, by analogy with continuum mechanics, we
distinguish between two different frames of reference, the
Lagrangian frame and the Eulerian frame. In the La-
grangian frame, we exploit the fact that tangential mo-
tion, i.e., sliding of the curve along its own contour, does
not change the shape of a line. Therefore, we specify the
curve parameter σL to label material points with van-
ishing tangential velocity along the line. These material
points then move with the line along the normal direction
n̂ (Fig. 2). To further emphasize the special properties
of the Lagrangian or co-moving frame, we define the ma-
terial derivative Dt. If any quantity, such as the position
vector or some density field on the one-dimensional man-
ifold, is parameterized by material coordinates σL, then
the material derivative is identical to the (local) partial

time derivative [49, 50]

Dt := ∂t|r(σL,t)
. (11)

This further implies that the material coordinates σL are
time-invariant in the Lagrangian frame of reference, as
they should be.

In the Eulerian frame, one defines a curve parameter
σE that labels points on the curve which do not move
with the material coordinates, i.e., do not flow solely
along the normal but also along the tangential direc-
tion of the moving line. The parameterization in this
case is given with respect to an ambient coordinate sys-
tem (laboratory frame) (Fig. 2) and therefore specifies
a fixed coordinate for the position of the line over time
(for fixed σE). Note, however, that while the material
coordinates σL do not change in the Lagrangian frame,
they do become time-dependent in the Eulerian frame
σL = σL(σE, t) (see Fig. 2). This is analogous to fluid
mechanics, where the coordinates of a fluid parcel in the
material frame are fixed over time, while the fluid parcel
moves at a certain velocity as seen by an observer in the
laboratory frame.

Now, for a consistent physical description that is inde-
pendent of the exact definition of the laboratory frame
(i.e., parameterization in the Eulerian frame), the total
time derivative of an arbitrary physical quantity in the
laboratory frame must match the time derivative in the
Lagrangian frame (i.e., using the operator Dt). To un-
derstand this, we apply the material derivative Dt to the
position vector field r(σE(σL, t), t) parameterized by Eu-
lerian coordinates σE:

Dtr(σL, t) =
d

dt
r(σE(σL, t), t) ,

= ∂tr(σE, t) + ∂σE
r(σE, t) ∂tσE(σL, t) ,

= ∂tr(σE, t) + τ̂
√
g ∂tσE(σL, t) , (12)

where ∂tσE(σL, t) denotes an ambient coordinate flow as
seen by an observer in the material frame at σL (see
Fig. 2). Note that, because we have chosen the mate-
rial coordinates σL such that they label points with van-
ishing tangential velocity along the line, one finds that
Dtr(σL, t) = vnn̂; i.e., the material derivative only con-
tains a part normal to the line. The ambient coordinate
flow can be determined by a simple geometric construc-
tion (see Fig. 2):

vndt n̂− ∂tr(σE, t) dt = dσEτ . (13)

Inserting Eq. (10) into Eq. (13) one obtains
dσE/dt = −vτ/√g. With this result, one can rewrite
Eq. (12) to obtain the equivalent form:

Dtr(σL, t) = vnn̂ = ∂tr(σE, t)− vτ τ̂ . (14)

To conclude, by combining Eqs. (12) and (6), we find that
the material derivative operator in the Eulerian frame is
given by:

Dt ≡ ∂t − vτ ∂s , (15)
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where we have also used ∂σ =
√
g(σ, t) ∂s (cf. Eq. (8)).

This operator serves as a link between the laboratory
and material frames, and can be applied to any time-
dependent quantity defined on the one-dimensional man-
ifold.

C. Conformational dynamics of the line affects
density fields

If the conformation of the line changes with time, then
what is the time evolution of a density field that is de-
fined on the one-dimensional manifold? We proceed by
considering an arbitrary scalar field % representing, for
instance, the density fields of cytosolic and membrane-
bound proteins. We first define the cumulative number
of particles up to some coordinate σ along the line,

N%(σ, t) :=

∫ s(σ,t)

0

ds′ %(s′, t)

=

∫ σ

0

dσ′
√
g(σ′, t) %(σ′, t) , (16)

where for brevity of notation we have written
%(σ, t) = %(s(σ, t), t) using the same symbol for the func-
tion. For mass-conserving systems, the total number of
particles remains constant over time, irrespective of any
deformation of the line’s shape that alters its total or lo-
cal length. In contrast, the local density of particles can
change as a result of shape deformations, since density
fields are defined with respect to the local arc length,
which is in general also a time-dependent quantity; see
Eq. (8). To derive the time evolution of density fields,
it is therefore useful to first look at the time evolution
of the particle number. Consider the number of parti-
cles distributed on an infinitesimal line segment between
coordinates σ and σ + dσ,

dN%(σ, t) = dσ
√
g(σ, t) %(σ, t) , (17)

and further assume that we have chosen a parameteriza-
tion in the Lagrangian frame, i.e., we set σ ≡ σL. The
time evolution of the number of particles then follows by
applying the material derivative to Eq. (17):

Dt
[
dN%(σL, t)

]
= dσL

√
g

[Dtg
2g

%+Dt%(σL, t)

]
, (18)

Since the left-hand side of Eq. (18) can only change due
to local reactions, f%(σL, t), and particle fluxes j(σL, t)
across the boundaries of the line segment dσL, it must be
given by the transport equation:

Dt
[
dN%(σL, t)

]
= j(σL, t)− j(σL + dσL, t)

+ dσL

√
g(σL, t) f%(σL, t) . (19)

original length

dilate by normal
motion

conserve particle number
but change length

conserve length
but change particle number

reactions in- and outflux
(diffusion)

a) b)𝜅𝑣𝑛 𝜚 𝑓𝜚 −𝜕𝑠𝑗

FIG. 4. The different physical contributions to a change in
particle concentration on a deforming line. a) Mechanisms
that conserve the local number of particles on a given line
segment while changing the segment’s length. Motion along
the normal vector increases (decreases) the length of segments
with negative (positive) curvature (cf. Fig. 3), thus reducing
(increasing) the local concentration of particles. Since we here
focus on exterior motion of the line (along a direction normal
to the line), we do not consider changes in particle concentra-
tions that would arise due to parallel (interior) motion (faded
panel). However, one could also account for dilution and ac-
cumulation of particle densities due to parallel motion by in-
corporating a term % vτ into the density flux in Eq. (21). b)
Reactions and diffusion are mechanisms that change the num-
ber of particles on a segment while conserving the segment’s
length.

The temporal evolution of the metric can be determined
from the definition (7):

Dtg(σL, t) = Dt
[
∂σL

r
]2

= 2[∂σL
Dtr] · [∂σL

r]

= 2g [∂svnn̂+ vn∂sn̂] · τ̂
= −2 g κ vn , (20)

where we have used the relation ∂σL
=
√
g ∂s, see Eq. (8),

and the fact that ∂sn̂ = −κτ̂ . Combining Eqs. (18)–(20),
we obtain the governing equation for the density field in
the Lagrangian frame:

Dt%(σL, t) = −∂sj(σL, t)+f%(σL, t)+κ vn %(σL, t) . (21)

The particle flux in Eq. (21) can in general include diffu-
sive as well as advective fluxes along the one-dimensional
manifold, j(σL, t) = −D% ∂s%+ vτ %, where D% and vτ
denote the diffusion coefficient and tangential advection
velocity, respectively. Advective flows along the mem-
brane may be caused, for instance, by spatial hetero-
geneities in actomyosin contractility [39] (cortical flows)
or relaxation of in-plane elastic stresses of the membrane.
In this work, we consider systems where the particles are
transported only by diffusion and therefore disregard ad-
vective particle fluxes, in line with our choice of refer-
ence frame with a vanishing tangential velocity. The last
term in Eq. (21) is a purely geometric contribution and
accounts for local density variations due to local length
extension and contraction. The various contributions to
the local change of the particle density are summarized
in Fig. 4.

While the Lagrangian frame is convenient for our an-
alytic calculations, the choice of a specific parameteriza-
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FIG. 5. Illustration of the Monge parameterization. The
membrane (black solid line) is parameterized by its height
relative to a flat line. The endpoints of the membrane can slip
along two solid walls (grey), which are a distance L0 apart.

tion in the Eulerian frame allows us to reduce the number
of degrees of freedom in our numerical simulations. To
that end, we choose a Monge parameterization of the line
contour:

r(x, t) =

[
x

h(x, t)

]
, (22)

where the height field h(x, t) encodes the line conforma-
tions, and x ∈ [0, L0] is the curve parameter (here an
Eulerian coordinate σE ≡ x). Thus, by using a Monge
parameterization, we eliminate the time evolution of one
component of the position vector r(x, t), thus retaining
only one degree of freedom. However, since the line is now
represented by the graph h(x, t), we explicitly exclude
overhangs by using this parametrization. We further as-
sume that the two opposing endpoints of the membrane
are clamped, i.e., forced to a slope of zero, while allowing
the line to slip vertically along the boundaries (Fig. 5).
Since the line extends from x = 0 to L0, we effectively in-
troduce a length constraint, stating that the total length
of the membrane may not fall below the minimum dis-
tance L0 (Fig. 5).

One could generalize this choice to account for over-
hangs, at the expense of increased model complexity, by
introducing additional degrees of freedom that allow the
curve to freely move in space (for example described in
the Lagrangian frame), and adding physical mechanisms
such as stretching rigidity to constrain the total length
of the curve. However, taking mechanical degrees of free-
dom into account would greatly complicate the dynam-
ics, since stress propagation along lines exhibits a rather
intricate dynamics, as was shown for polymers [51–55].
Here, we disregard these additional complexities and fo-
cus on the interplay between biochemical pattern forma-
tion and the shape deformation of the line.

Finally, using the definition of the material derivative
in Eulerian coordinates, Eq. (15), the dynamics of den-
sity fields, Eq. (21), can be translated to the laboratory
frame:

∂t%(σE, t) = −∂sj(σE, t) + f%(σE, t)

+ κ vn %(σE, t) + vτ∂s%(σE, t) . (23)

This reaction-diffusion equation on a deforming line
taken together with the time evolution of the line’s shape,
Eq. (10), fully specify the dynamics of a density field on
a manifold that changes its conformation. Next, our goal
is to understand how shape deformations of a line affect
protein pattern formation.

D. Two-component MCRD system on dynamically
evolving manifolds

As we have now established the framework to study
reaction–diffusion systems on lines exhibiting conforma-
tional dynamics, we proceed with the generic description
of a two-component MCRD system on such a line in the
laboratory frame. The governing equations that describe
the dynamics of the density fields and the line conforma-
tion in Monge parameterization are then derived from
Eqs. (10), (22), and (23):

∂tm(x, t) = Dm∂
2
sm+ f + κ vnm+ vτ∂sm, (24a)

∂tc(x, t) = Dc∂
2
sc− f + κ vn c+ vτ∂sc , (24b)

∂th(x, t) =
√
g(x, t) vn , (24c)

where g(x, t) = 1 + [∂xh(x, t)]2 is the local metric and
vτ = vn∂xh(x, t) denotes the tangential velocity in the
Monge parameterization. Note that the tangential veloc-
ity follows from a geometric construction; see Eq. (13)
and Fig. 2. The second spatial derivative ∂2

s along
the curve corresponds to the (one-dimensional) Laplace-
Beltrami operator and is explicitly given by:

∂2
s ≡

1√
g
∂x

[
1√
g
∂x

]
=

1

g
∂2
x −

1

2

∂xg

g2
∂x. (25)

Unlike in the case of a fixed planar geometry, Eqs. (1a)
and (1b), the two-component mass-conserving reaction–
diffusion system on a deforming line, Eqs. (24a)
and (24b), is not given in a form where mass-conservation
is immediately apparent. This is due to the fact that the
density fields are defined with respect to the local arc
length, which is a dynamic quantity itself, as accounted
for by the geometric terms κ vnm and κ vn c in Eqs. (24a)
and (24b). Therefore, if one allows the conformation of
the line to change over time, the total average density
is not necessarily conserved by the dynamics. Instead,
the quantity that must be conserved for a system with
a mass-conserving reaction dynamics is the total particle
number

N =

∫ L(t)

0

ds (m+ c) =

∫ L0

0

dx
√
g(x, t)n(x, t) . (26)

This renders our analysis slightly more involved, since the
local equilibria theory cannot be applied to the mathe-
matical model, Eqs. (24a) and (24b), in their present
form.

To get around this problem, we consider rescaled den-
sities on the membrane m̃(x, t) :=

√
g(x, t)m(x, t) and in
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the cytosol c̃(x, t) :=
√
g(x, t) c(x, t). This mapping cor-

responds to a projection of the line densities along the
curve, m(x, t) and c(x, t), onto the parameterization axis
(in the case of a Monge representation the x-axis), so
that

N =

∫ L0

0

dx
√
g(x, t)

(
m(x, t) + c(x, t)

)

=

∫ L0

0

dx
(
m̃(x, t) + c̃(x, t)

)
=

∫ L0

0

dx ñ(x, t) .

(27)

Thus, ñ dx represents the total number of particles con-
tained within an infinitesimal compartment dx. Using
our mapping, one immediately sees that the mapped to-
tal average density 〈ñ〉 = N/L0 is conserved by the dy-
namics, thus allowing us to apply the local equilibria the-
ory. The time evolution of the rescaled variables can be
determined starting from:

∂tm̃(x, t) =
√
g ∂tm(x, t) +

1

2

∂tg(x, t)√
g(x, t)

m(x, t) , (28)

and an analogous equation for the cytosolic species c̃.
In the following, only the derivation for the membrane
species m̃ is presented, since the calculations for the cy-
tosolic species c̃ are completely analogous. The time evo-
lution of the metric ∂tg(x, t) in the Eulerian frame can
be determined similarly as shown in the previous section
for Dtg(σL, t):

∂tg(x, t) = ∂t [(∂xr) · (∂xr)] = 2 (∂x∂tr) · (∂xr),

= 2 g [∂svnn̂+ vn∂sn̂+ ∂svτ τ̂ + vτ∂sτ̂ ] · τ̂ ,
= −2 g κ vn + 2 g ∂svτ , (29)

where we used the general expression for the velocity vec-
tor Eq. (10), the definition Eq. (9), and the fact that
∂sn̂ = −κ τ̂ . Inserting Eqs. (24a) and (29) into Eq. (28),
we obtain the continuity equation:

∂tm̃(x, t) = −∂x jm̃(x, t) + f̃(x, t) , (30)

where the flux jm̃ is given by:

jm̃(x, t) = −
[
Dm√
g
∂x

(
m̃(x, t)√

g

)
+ vτ

m̃(x, t)√
g

]
, (31)

and the rescaled reaction term f̃(x, t) is defined as:

f̃(x, t) =
√
g(x, t) f(m, c)

=
√
g(x, t) f

(
m̃(x, t)√
g(x, t)

,
c̃(x, t)√
g(x, t)

)
. (32)

Hence, the mass-conserving dynamics of the rescaled den-
sity fields are given by a reaction–diffusion system in con-
servative form:

∂tm̃(x, t) = −∂x jm̃(x, t) + f̃(x, t) , (33a)

∂tc̃(x, t) = −∂x jc̃(x, t)− f̃(x, t) , (33b)

∂th(x, t) =
√
g(x, t) vn . (33c)

Note that the equations governing the dynamics of the
rescaled fields are equivalent to a reaction–diffusion sys-
tem defined on a fixed planar geometry of length L0.
The influence of shape deformations of the line on the
reaction–diffusion dynamics is fully absorbed into the
metric factor

√
g(x, t), the conservative fluxes jm̃/c̃, and

the rescaled reaction term f̃(x, t). Strikingly, the reaction
term becomes space- and time-dependent, in contrast to
the case of a fixed planar geometry [42] where the reac-
tion kinetics has the same form at each point in space
and time. We will show in the following sections that
this spatiotemporal inhomogeneity of the reaction term
can lead to regional instabilities and thus deformation-
induced protein pattern formation.

E. Lateral instability on a deforming manifold

In Sec. II we explained that the homogeneous steady
state of the two-component MCRD system (on a fixed
planar line) becomes unstable to spatial perturbations
when the slope of the reactive nullcline is steeper than the
slope of the flux-balance subspace; see Eq. (5). Here we
ask whether it is possible to obtain an instability criterion
when deformations of the line are considered.

To investigate this question, we start with the de-
scription of the two-component MCRD model in the La-
grangian frame, as this is more convenient for analytical
calculations, and again project the density fields onto the
parameterization axis (note that in this case the curve pa-
rameter is σL). The equations take the same form as for
the laboratory frame, see Eq. (33), except that there is no
tangential drift in the Lagrangian frame (cf. Eq. (31)):

Dtm̃(σL, t) = ∂σL

[
Dm√
g
∂σL

(
m̃√
g

)]
+ f̃(σL, t) , (34a)

Dtc̃(σL, t) = ∂σL

[
Dc√
g
∂σL

(
c̃√
g

)]
− f̃(σL, t) . (34b)

The dynamics of the (rescaled) local total density ñ(σL, t)
is obtained by summing Eqs. (34a) and (34b):

Dtñ = ∂σL

[
Dm√
g
∂σL

(
m̃√
g

)
+
Dc√
g
∂σL

(
c̃√
g

)]
, (35)

and resembles a nonlinear diffusion equation with cross-
diffusion terms, which here result from concentration gra-
dients and shape deformations of the line.

Now, since local reactive equilibria in mass-conserving
reaction–diffusion systems serve as scaffolds for pat-
terns [42, 45, 46], one can approximate the membrane
and cytosolic densities by their respective (stable) local
reactive equilibria

[m̃(σL, t), c̃(σL, t)]→ [m̃∗(ñ(σL, t)), c̃
∗(ñ(σL, t))] . (36)

In doing so, one finds that only the metric g and the
(rescaled) local total density ñ remain as the relevant
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FIG. 6. Shape deformations of the manifold induce spatial inhomogeneities of the reactive nullcline. a) Height profile (black
line) in Monge parametrization and the corresponding spatial profile of the metric (green line) for a given point in time. b)
Phase space geometry for the rescaled variables c̃ and m̃ at the same time point as in panel a). The differently colored lines
show the reactive nullcline f(x, t) = 0 at different positions in space (as depicted by the blue and red points in panel a)). The
black line corresponds to the reactive nullcline for a planar geometry, i.e., for regions of the height profile where

√
g ≈ 1. The

thin gray line shows the local phase space for the (conserved) rescaled total average density 〈ñ〉. The intersections of this line
with the reactive nullclines determines the local equilibria (black dots). Note that the local phase space intersects the black
nullcline in a section where the slope is negative, hence fulfilling the instability criterion (38), while the intersections with the
blue and red nullclines lie in sections where the slope is positive (laterally stable).

dynamic variables in Eq. (35). Evaluation of the spatial
derivative inside the brackets in Eq. (35) results in:

Dtñ ≈ ∂σL

[
Dm∂ñm̃

∗ +Dc∂ñc̃
∗

g
∂σL

ñ

−1

2

Dmm̃
∗ +Dcc̃

∗

g2
∂σL

g

]
. (37)

The first term inside the brackets in Eq. (37) describes
diffusive mass-redistribution of ñ, and the second term
contains higher-order nonlinear contributions to mass-
redistribution originating from geometry deformations.
To proceed, we consider several limiting cases. If g is
independent of ñ, then Eq. (37) is an equation with a
linear feedback (first term, linear order in ñ) together
with a forcing term (second term, zeroth order in ñ).
The stability of such equations is in general independent
of the zeroth-order forcing term, and only depends on the
linear-order feedback term. In contrast, if the normal ve-
locity of the curve is an arbitrary function of the local
total density ñ, then according to Eq. (20) the dynamics
of the metric is governed by Dtg(σL, t) = −2 g κ vn(ñ).
If we expand around an initially flat configuration of the
line, g = 1 and κ = 0, then gradients of the metric will
always vanish to linear order in time, so that the second
term in Eq. (37) still drops out. In the most general case,
the metric g could be an arbitrary function of the local
total density ñ. In that case, we need to assume that
deformations are weakly varying near onset of pattern
formation such that ∂σL

g � 1, which, again, implies that
instabilities are dominated by the first term in Eq. (37).
Without this approximation, no statement about insta-
bilities can be made from Eq. (37) and one would need to
perform a (weakly) nonlinear analysis instead (assuming

that the instability is supercritical) [56], which is a chal-
lenging task for our problem. Using this approximation,
we find that the stability of the system against spatial
perturbations is determined by the effective diffusion co-
efficient in the first term of Eq. (37). Since the metric g
is always positive by definition, the effective diffusion co-
efficient of ñ becomes negative (leading to anti-diffusion)
if Dm∂ñm̃

∗ +Dc∂ñc̃
∗ < 0. Hence, a homogeneous steady

state becomes unstable to spatial perturbations if:

∂ñc̃
∗

∂ñm̃∗
= ∂m̃c̃

∗(ñ) < −Dm

Dc
, (38)

which, analogously to fixed planar geometries [42], shows
that lateral instabilities occur if the slope of the reac-
tive nullcline, ∂m̃c̃

∗(ñ), is steeper than the ratio of dif-
fusion coefficients on the membrane and in the cytosol,
−Dm/Dc.

Our key finding here is that the generalized slope cri-
terion, Eq. (38), depends explicitly on the local total
densities ñ as well as the shape of the reactive nullcline
f̃(σL, t) = 0, which is in general space and time depen-
dent. This finding differs sharply from the case of a fixed
planar geometry, where the same form of a slope crite-
rion holds but with the shape of the nullcline fixed in both
space and time, therefore leaving the local total density
as the only control variable [42]. The space and time
dependency of the reactive nullcline results in inhomo-
geneities, which suggests that the lateral stability of the
system may vary between spatial regions and may also
evolve over time, depending explicitly on the time evolu-
tion of the line conformation. This is illustrated in Fig. 6,
where we show how spatial variations in the metric

√
g

(at a given point in time) induce spatial inhomogeneities
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of the nullcline shape, which results in lateral instabilities
in those segments of the line where the criterion given by
Eq. (38) is fulfilled.

IV. PATTERN FORMATION ON DEFORMING
MANIFOLDS

A. External control of manifold conformations

In the preceding sections, we established the theoret-
ical framework to study reaction–diffusion systems on
time-evolving one-dimensional manifolds. So far, the
analysis has been general, and we have not further speci-
fied exactly how the shape of the line deforms over time,
or whether and how protein dynamics can feed back onto
these deformations.

To illustrate the key points of pattern formation on
lines that can change their conformation, we analyze be-
low simple examples where we assume that the conforma-
tion of the line is controlled externally, i.e., we explicitly
specify the temporal evolution of the line shape and in-
vestigate how the reaction–diffusion dynamics responds
to these perturbations. In detail, we consider the follow-
ing scenario: we assume that the line shape is initially
flat, and initialize the reaction–diffusion system such that
the homogeneous steady state is stable against spatial
perturbations (no pattern formation). In other words,
the total density is chosen such that the slope criterion,
Eq. (38), is not fulfilled. At time t = T0, the shape of
the line is then adiabatically deformed from a straight
conformation to a cosine-shape (Fig. 7c):

h(x, t) = A(t) cos
(πx
L

)
, (39)

where the amplitude A(t) is chosen to increase linearly
from 0 to A0 during the time interval [T0, T1] (ramp func-
tion):

A(t) = A0 ×





0, t < T0
t−T0

T1−T0
, T0 ≤ t ≤ T1

1, t > T1

. (40)

The length of the time interval and the final amplitude
A0 are chosen such that the rate of line shape deforma-
tion is slow compared to the typical growth rate of unsta-
ble modes (small compared to ∼ Dcq

2, where q denotes
the mode number; see Ref. [42] for details). For clar-
ity, we omit physical units in the following and specify
typical length and time scales in an intracellular context
in Appendix D. Note that in our numerical analysis we
explicitly use a Monge parameterization to describe the
line conformations, and perturb the line shape by directly
increasing the height h(x, t) instead of imposing motion
along the normal vector of the line. This leads to a slight
change in the equations, as the tangential velocity vτ in

Eq. (31) can be omitted.1 To investigate the dynam-
ics, we performed finite-element-method (FEM) simula-
tions using the commercially available software COM-
SOL Multiphysics v5.6. The simulations show that the
homogeneous steady state becomes laterally unstable for
sufficiently large line shape deformations, and the con-
centration profile then gradually evolves into a mesa pat-
tern along the spatial domain considered (Fig. 7b,c,d and
Movie 1).

What is the mechanism underlying this lateral insta-
bility induced by the deformations that we impose on the
line shape? To answer this question, we make use of the
instability criterion for the rescaled densities, Eq. (38).
Specifically, at each point in space and time, we deter-
mine the range of the (rescaled) total densities for which
criterion (38) is fulfilled. To that end, we solve the equa-
tion ∂m̃c̃

∗(ñ) = −Dm/Dc for the rescaled total density
ñ, and thereby determine an upper threshold ñ+

lat(x, t)

and a lower threshold ñ−lat(x, t), for which the instability
criterion is fulfilled, i.e., for total densities that obey the
inequality ñ−lat < ñ < ñ+

lat. Geometrically, these thresh-
olds determine the points of the nullcline where the slope
is equal to −Dm/Dc; see inset of Fig. 7a.

In contrast to the case of a fixed planar geometry, the
existence and concentration range of a lateral instability
here generally depends on space and time, since deforma-
tions cause spatial heterogeneities of the nullcline shape;
see Eq. (32). This implies that shape deformations of the
line may induce pattern-forming instabilities in regions of
the line where the slope criterion (38) is fulfilled (regional
instabilities, see Fig. 7a).

Figure 7b shows the spatiotemporal dynamics of the
rescaled local total density ñ (blue solid line) and the
region of lateral instability (orange shaded region). For
t < T0, where the conformation of the line is flat, no pat-
tern forms since ñ lies outside the laterally unstable re-
gion. Note that the region of lateral instability is spa-
tially uniform for t < T0 since one has a flat geometry
with a metric g(x, t) = 1. As the shape of the line is
adiabatically deformed, the spatial profile of ñ and the
region of lateral instability also deform, eventually caus-
ing spatial sections of ñ to enter the laterally unstable
region. This event then induces a regional instability of
the reaction–diffusion system and therefore leads to es-
tablishment of a pattern along the one-dimensional man-
ifold considered (see Fig. 7a,b,d).

To conclude this section, we briefly summarize our key
findings. Essentially, the impact of line shape deforma-
tions is reflected in the spatially inhomogeneous nullcline

1 Consistent with our assumption of deformations along the nor-
mal direction, a tangential velocity only enters the equations if
one chooses a parametrization in the Eulerian frame (as illus-
trated in Fig. 2). Here, to keep the analysis concise, we as-
sume that the manifold is deformed along the vertical direction.
Hence, since the direction of the deformations coincides with the
coordinate system in this case, the tangential velocity vτ can be
disregarded.
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FIG. 7. Regional instability induced by line shape deformations. a) Snapshot of the rescaled local total density ñ (blue solid
line) and the region of lateral instability (orange area, the inset illustrates the definition of this area in phase space). The
snapshot further shows the onset of the regional instability as ñ enters the orange area (dashed blue line). b) Same as a), but
for a set of time points (kymograph, where the grey shading visualizes the offset of the graph in the vertical direction). A
pattern forms when ñ enters the region of instability; the red arrow indicates the onset of the instability and corresponds to
the graph shown in a). For clarity, the region of instability is only shown for selected time points. c) Time evolution of the
line shape (black solid line) and metric (green solid line) as defined in Eq. (39). d) Actual local total density n; the red arrow
indicates the onset of instability (same axes range as in b)).

shapes, which physically correspond to inhomogeneous
reactive flows due to local length expansion and contrac-
tion and the corresponding changes in local particle con-
centrations. This heterogeneity in the nullcline shape
(dictated by the conformation of the line) leads to a non-
uniform region of instability, which may induce (regional)
pattern-forming instabilities in the reaction–diffusion dy-
namics as explained above. We will in the following refer
to this as a geometry-induced instability, since changes
in the shape of the manifold lead to spatial variations
of the metric, which in turn affect the stability of the
reaction–diffusion dynamics.

B. Shape deformations act as a template for
patterns

Above, we have shown that an externally controlled
deformation of the line shape can induce lateral insta-
bilities and thus lead to pattern formation. While we
have chosen a specific way to gradually deform the ge-
ometry, the principle that we have found is general: the
high-concentration plateaus of the emerging pattern form
at characteristic locations along the line determined by
geometric features, here extrema of the height profile;
see Fig. 7c and Fig. 7d. Thus, the shape of the line
acts as a kind of template for the patterns, with the
low-concentration plateaus emerging in regions where the
height profile has maximal slope. In these regions, the
metric of the line is at its largest, thus maximizing the
local depletion of particles due to dilation in the local
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FIG. 8. The shape of the line acts as a template for patterns. a) A pattern-forming instability is triggered once the rescaled
local total density ñ (blue solid line) enters the region of instability (orange area). For clarity, the region of instability is only
shown for selected time points. The red arrow indicates the onset of pattern formation. b) Same kymograph as shown in a),
but projected onto the space–time plane with the color-coding indicating the rescaled local total density ñ. The orange hatched
area indicates the values of ñ which lie in the region of a lateral instability. Note that a pattern forms once the orange hatched
area appears (after a short lag time). c) Actual local total density n (same axes range as in a)). Note that the rescaled density
ñ (shown in a) and b)) is non-uniform before the onset of a lateral instability (due to deformations), while the actual density
initially remains nearly homogeneous and develops a spatial pattern once the system reaches the onset of instability. d) This
panel shows the line conformation (black solid line) and metric (green solid line), corresponding to Eq. (41). Comparing with
c) reveals that the high concentration regions of the pattern (plateaus) form precisely at the extrema of the height profile.

line geometry. This is a generic feature of the system, as
we will explain in the following.

To elucidate this templating effect further, we repeat
the analysis from the previous section, but this time con-
sider a higher-harmonic shape deformation (Fig. 8c):

h(x, t) = A(t) cos

(
3πx

L

)
, (41)

where the amplitude A(t) is defined by Eq. (40) and the
initial conditions are again chosen such that the homoge-
neous steady state is laterally stable. In agreement with
our previous results, a pattern-forming instability is trig-
gered as soon as the rescaled total density ñ enters the
region of lateral instability (see Fig. 8a,b,c and Movie 2).
As we have chosen a higher-harmonic shape deformation
for the line, multiple plateaus now form. As expected,
the high-density plateaus are located at the extrema of

the line height, while the low-density plateaus are located
in regions where the height profile of the line is steepest;
compare Fig. 8c and Fig. 8d.

This is effect is due to the non-uniform deformation of
the line shape. In particular, while the total length of
the height profile increases over time, the local length of
individual line segments barely changes at the extrema of
the height profile. Thus, the growth of the line’s contour
length occurs primarily in regions with a steep slope of
the height profile, where the metric is largest. In these
regions, where ∂t

√
g(x, t) > 0, the concentration of par-

ticles will be diluted. Thus, even when starting from an
initially homogeneous concentration profile, such geomet-
ric effects alone lead to a redistribution of particles and
density inhomogeneities n(x, t) along the line (Fig. 8c).
If this effect is coupled to the onset of a lateral instability,
then troughs in the density profile will further decrease,
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FIG. 9. Shape deformations shift the interface and suppress patterns. a) The total average density is chosen such, that
initially a mesa pattern forms. Due to deformations of the line shape, the interface (connecting the lower and upper plateau)
is shifted such that the plateau width decreases (see discussion in main text). For sufficiently large deformations, only a small
region of the rescaled local total density ñ (blue solid line) lies in the region of instability (orange area), which then leads to
suppression of the pattern (see also c)). b) Same kymograph as shown in a), but projected onto the space–time plane with the
color-coding indicating the rescaled local total density ñ. The orange hatched area indicates the values of ñ which lie in the
region of a lateral instability. Note that the interface is first shifted and then suppressed as the plateau width becomes too
small. c) Actual local total density n (same axes range as in a)). d) Time evolution of the line shape (black solid line) and
metric (green solid line), as defined in Eq. (42).

while hills (located at the extrema of the height profile

where
√
g(x, t) ≈ 1) will increase (Fig. 8a,b,d). In other

words, the mass-redistribution instability [42] will further
amplify geometry-induced density inhomogeneities.

C. Interface shift and pattern suppression

So far, we have investigated cases where the homoge-
neous steady state was laterally stable for a planar geom-
etry, and we induced an instability only by deforming the
line shape. We now ask how shape deformations affect
already established patterns. To address this question,
we choose the initial total density such that the homo-
geneous steady state is laterally unstable, thereby result-
ing in the formation of a mesa pattern (Fig. 9a,c and
Movie 3).

We initialize the reaction–diffusion system and its

steady-state pattern on an initially planar geometry
(straight line). Then, following the same procedure as
before, we deform the line shape adiabatically (Fig. 9d):

h(x, t) = A(t) cos
(πx
L

)
, (42)

where the amplitude A(t) is defined by Eq. (40). We
find that the deformation in the line’s shape (Fig. 9d)
gradually changes the pattern profile from a mesa to a
narrow peak pattern, until eventually the peak disap-
pears altogether (Fig. 9c). There are two major under-
lying reasons for these observations: First, for the two-
component reaction–diffusion system that we study here,
it has been shown that the interface position (which con-
nects the lower and upper plateau of a mesa pattern)
depends only on the average total density 〈n〉, as long
as the system size is larger than the typical length scale
of the pattern interface [42]. Thus, altering the aver-
age total density will shift the interface as a consequence
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FIG. 10. Illustration of actin-driven membrane deformations.
Membrane-bound and cytosolic proteins enhance the local
polymerization of actin filaments, which in turn push the
membrane outwards. These effects can most simply be mod-
elled by an isotropic cytosolic pressure that drives membrane
motion along its normal vector (see Eq. (43)).

of mass-conservation, where addition or removal of mass
leads to a respective increase or decrease of the plateau
width. Since deformations of the line shape effectively
lead to a depletion of the total average density due to an
increase in the total length of the spatial domain, this ex-
plains the shift of the pattern interface. Second, for large
enough shape deformations, only a small part of the sys-
tem lies in a region of lateral instability; see Fig. 9a and
Fig. 9b. Once the size of this region becomes compara-
ble or even smaller than the typical length scale of the
interface, pattern formation is suppressed.

D. Self-organized mechanochemical coupling

In the previous sections, we have gained basic insights
into how shape deformations affect the pattern formation
of mass-conserving reaction–diffusion systems. We now
consider a more intricate scenario where the dynamics of
the conformation of the line is explicitly coupled to the
density fields on the one-dimensional manifold. In other
words, we incorporate a feedback loop between the line
shape and the reaction–diffusion dynamics of the density
fields. In general, there are many ways to implement
such a coupling. For example, the local concentration of
proteins can drive shape deformations as well as protein
transport on and onto the manifold through local bend-
ing of the membrane [30, 37, 57], active stresses in the
form of myosin contractility [39, 58, 59] or actin polymer-
ization [47, 58].

Furthermore, there are many ways to account for the
mechanical properties of an elastic (or viscoelastic) man-
ifold. For example, consider a cell membrane; the line we
have considered so far can be seen as a one-dimensional
projection of such a membrane. The conformation of a
membrane is characterized by an elastic energy that gen-
erally contains both a bending energy term and a surface
tension term. Which of these contributions dominates

depends on the system in question [60–62]. Here, we
study a conceptually simple example where we assume
that the line can be regarded as a fluid-like substrate,
i.e., we disregard mechanical properties of the line such
as bending rigidity. To further simplify our system, we
additionally assume that the tension γ, cf. Eq. (43), is
spatially uniform. The feedback loop between the par-
ticle density and the membrane conformation is imple-
mented by assuming that shape deformations are locally
driven by the local total density of proteins. Specifically,
we consider the following form for the normal velocity
vn:

vn = µ
[
m(σE, t) + c(σE, t)

]
+γ κ(σE, t) . (43)

The parameter µ denotes the coupling strength between
the local protein density and the normal velocity of the
line. Physically, one may interpret this term as a protein-
controlled recruitment and polymerization rate of actin
filaments that drive outwards motion of the membrane
through an effective pressure [47, 58, 63] (see Fig. 10
for an illustration). The second term accounts for the
Laplace pressure caused by surface tension effects due
to the local curvature κ(σE, t). Phenomenologically, the
first term thus describes local growth of the membrane
that is proportional to the local total density of proteins,
while the second term counteracts this effect by minimiz-
ing the membrane area (which is a length in our case since
we consider a one-dimensional projection of the mem-
brane surface).

In the Monge representation of the line, and mapping
to rescaled variables m̃ and c̃ (Sec. III D), one can rewrite
Eq. (43) as:

vn = µ
1√
g

[
m̃(x, t) + c̃(x, t)

]
+ γ

1

g3/2
∂2
xh(x, t) . (44)

The time evolution of the line conformation is then ob-
tained from Eqs. (33c) and (44):

∂th(x, t) =
√
g(x, t) vn

= µ
[
m̃(x, t) + c̃(x, t)

]
+ γ

1

g
∂2
xh(x, t) . (45)

Eq. (45) for the height profile of the one-dimensional
manifold, together with Eqs. (33a) and (33b) for the
density profiles of the proteins, provide a closed set of
equations governing the self-organized dynamics of a two-
component MCRD system on a deforming manifold with
mechanochemical coupling.

In general, the dynamics of the mechanochemically
coupled system is expected to depend on the relative
time scales of line shape deformation and protein pat-
tern formation. The former is determined by the cou-
pling strength µ and the total average density 〈ñ〉, and
yields the characteristic time scale for the growth of the
line’s length, tG = L0/(µ 〈ñ〉). The latter is dominated
by cytosolic redistribution of particles and thus provides
a typical time scale of diffusion tD = L2

0/Dc. Hence, one
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may define a dimensionless number that relates the time
scales of diffusion and growth, which we call in analogy
to fluid dynamics the Péclet number

Pe := µ〈ñ〉L0/Dc . (46)

For small values of the Péclet number, Pe� 1, diffusion
is much faster than the dynamics of line shape deforma-
tions. In particular, in the limiting case of Pe→ 0, the
dynamics of shape deformations becomes infinitely slow
on the time scales of diffusive mass redistribution. This
is equivalent to abolishing mechanochemical coupling al-
together, µ → 0, where the protein patterns approach a
stationary state. We provide a systematic analysis of the
impact of this parameter on the pattern-forming dynam-
ics in Sec. IV E.

In the following, we will first explore the system’s dy-
namics through FEM simulations, and find a broad vari-
ety of dynamic patterns.

1. Oscillations

First, we performed simulations of small confined sys-
tems with reflecting boundaries. The initial total average
density was chosen such that the reaction–diffusion sys-
tem is laterally unstable and therefore generates a mesa
pattern. For the initial conformation of the line, we se-
lected a flat state with h(x, 0) = 0.

Interestingly, although the two-component reaction–
diffusion system shows only stationary patterns for a
static line shape, we here find self-organized oscillations.
These spatiotemporal patterns must therefore clearly be
due to the mechanochemical feedback between the pro-
tein pattern and the line shape (Fig. 11, Movie 4). How-
ever, the question remains as to how the mechanism driv-
ing these oscillations relates to the geometry effects dis-
cussed earlier (Secs. IV A–IV C).

From the first term in the equation for the normal ve-
locity vn, Eq. (43), we deduce that an initial pattern
formed on a flat line destabilizes this line conformation
by inducing faster growth of the height profile at the pat-
tern’s peaks than at its valleys. The resulting change in
the line shape geometrically corresponds to local length
dilations and contractions. Here, where we started from a
flat line conformation, the slope of the height profile and
thus the local contour length of the line grows fastest
at the pattern’s interfaces between two plateaus. To il-
lustrate how these changes in the line’s geometry affect
the dynamics of the protein pattern, let us for now sup-
pose that we initiate the system with a protein pattern
consisting of two plateaus (mesa pattern) and a flat con-
formation of the line (see Fig. 12). Then, the growth of
the local line length at the interface (connecting the lower
and upper plateau) will locally dilute the density of pro-
teins. As a consequence, the lower plateau will expand at
the expense of the upper plateau, pushing the interface
towards the upper plateau (see Fig. 12). Since line shape
deformations also alter the region of instability of the
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FIG. 11. Coupling the reaction–diffusion dynamics to the
shape of the line leads to self-organized spatiotemporal pat-
terns. The left panel shows a kymograph of the spatiotem-
poral dynamics of the rescaled total density ñ and illustrates
the emergence of oscillations. The orange shaded area cor-
responds to values of ñ which fulfill the instability criterion
Eq. (38). Note that, as the pattern amplitude on one bound-
ary of the domain disappears (due to deformations of the line
shape, see right panel), a regional instability is induced at the
opposite boundary. This interplay between reaction–diffusion
dynamics and line shape deformations drives the spatiotem-
poral dynamics. The middle panel shows the actual local
total density n. The right panel illustrates the patterns in
the relative height profile, defined as h(x, t)− 〈h〉, where the
average height 〈h〉 is proportional to the average total density
and time 〈h〉 ∼ 〈ñ〉 t.

reaction–diffusion system, large enough deformations will
suppress the initial pattern and trigger a regional insta-
bility at the opposite side of the geometry (see Fig. 11).
As the upper plateau grows at the opposing side, it grad-
ually restores the height profile to a flat conformation.
After the plateau pattern is fully re-established at the
opposing side and the conformation has returned to a
flat conformation, the cycle repeats. This intricate in-
terplay between the dynamics of the line shape and the
reaction–diffusion system (mechanochemical feedback) is
the key mechanism that leads to spatiotemporal oscilla-
tions.

2. Traveling waves

For spatial domains much larger than the wavelength
λc of the fastest growing mode in the dispersion rela-
tion (Appendix F), the two-component mass-conserving
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FIG. 12. Illustration of the mechanism that drives the mo-
tion of the protein pattern’s interface. The one-dimensional
manifold moves along its normal vector, with a velocity that
is proportional to the local protein density. Therefore, gradi-
ents in protein density lead to gradients in the height profile,
thus stretching the line at the location of the protein pattern’s
interface. Since local stretching of the line corresponds to lo-
cal dilution of the protein density, the interface of the protein
pattern moves.

reaction–diffusion system initially leads to the formation
of patterns consisting of multiple plateaus or peaks.2 The
wavelength of this initial pattern is well approximated by
λc. However, this initial pattern is not stable and slowly
coarsens to a single peak or interface [64–69].

Let us now again consider how the dynamics is changed
when there is a mechanochemical coupling between the
density profile emerging from the reaction–diffusion sys-
tem and the conformation of the line. As in Sec. IV D 1,
we choose a flat height profile h(x, 0) = 0 for the initial
line conformation, and a homogeneous concentration of
proteins with a slight random perturbation around this
state; however, we now impose periodic boundary condi-
tions for both, the reaction–diffusion dynamics and the
line’s shape.

In our FEM simulations, we observe that propagating
density waves and accompanying waves in the height pro-
file arise at specific points in space (“sources”) (Fig. 13,
Movie 5). Each of these sources gives rise to two waves
that travel in opposite directions and, given the peri-
odic boundary conditions, mutually annihilate at specific
points on the spatial domain considered (“sinks”). The
position of these sources and sinks depend on the ini-
tial conditions, that is, the slight perturbations of the
initially homogeneous density profiles. Furthermore, we
observe that these sources and sinks slowly migrate in
space, and eventually meet and annihilate for large times.
The steady-state pattern then consists of periodic trav-
eling wave fronts, as shown in Fig. 13. Importantly, we

2 For the specific system that we consider here, these are always
mesa patterns (see Appendix A).
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FIG. 13. Emergence of traveling wave patterns for Péclet
numbers Pe < 0.6. The left panel shows a kymograph of
the spatiotemporal dynamics of the actual local total den-
sity n, and the right panel depicts the relative height differ-
ence h(x, t)− 〈h〉. Wave fronts emerge and vanish at specific
points along the spatial domain considered. The positions
of these events depend on the initial condition, which in our
FEM simulations is a small random perturbation around the
homogeneous steady state. For long times, the system self-
organizes into periodic traveling wave fronts.

note that the system selects a typical wavelength for large
times. Hence, our results suggest that the coarsening pro-
cess is interrupted if the dynamics is explicitly coupled
to the geometry.

3. Standing waves

Depending on the relative magnitude of the charac-
teristic time scales of changes in the line shape and the
mass redistribution—the Péclet number Eq. (46)—we ob-
serve a transition from traveling wave patterns to stand-
ing wave patterns (Fig. 14 and Movie 6).

For the parameter combination used in this study (Ap-
pendix D), the transition from traveling waves to stand-
ing waves occurs at a critical value of Pec ' 0.6. This
suggests that standing wave patterns emerge if the time
scales of line shape dynamics and diffusive redistribu-
tion of proteins are comparable, whereas the emergence
of traveling wave patterns requires that diffusive redis-
tribution of proteins is the dominant (fastest) time scale.
Moreover, as for the traveling waves in Sec. IV D 2, we
find that the system selects a typical wavelength for large
times (see Fig. 14a,b). Notably, for large domains, we ob-
serve that the pattern wavelength at small times is larger
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FIG. 14. Emergence of standing wave patterns for Pe > 0.6. a) Spatiotemporal dynamics of the actual local total density n and
the relative height difference h(x, t)− 〈h〉 for system size L0 = 10. As for traveling waves, the dynamics settles on a specific
wavelength over long times. b) Same FEM simulation and parameters as shown in a), but for a larger system size L0 = 50.
The final wavelength at long times is identical to that shown in a).

than the final wavelength in steady state (see Fig. 14b).
This again indicates that coarsening in the system seems
to be interrupted.

E. Tuning the relative time scales of the
conformational dynamics and diffusive transport

In the previous sections, we found that coupling a
MCRD system on a one-dimensional manifold with defor-
mations of this manifold can lead to rich spatiotemporal
dynamics. In FEM simulations of the coupled system
we have observed oscillations or traveling waves, even
though the MCRD system on a static manifold would
typically approach a stationary steady state through
coarsening. As discussed above, such a mechanochem-
ical coupling introduces an additional time scale that
competes with the typical time that the MCRD system
requires to generate a protein pattern, see Eq. (46).

But how in detail does the dynamics of shape defor-
mations affect the formation of protein patterns through
reactions and diffusion? Here, we answer this question
by performing numerical parameter sweeps. For con-
venience, we first introduce dimensionless quantities by
rescaling spatial coordinates and time,

{x, h} → L0 × {x′, h′}, and t→ D−1
c L2

0 × t′ , (47a)

and thus also velocities, v → Dc L
−1
0 × v′. Furthermore,

we also rescale particle densities,

{ñ, c̃, Kd} → L−1
0 × {ñ′, c̃′, K ′d} , (47b)

and all control parameters:

{Dm, µ, γ} → Dc × {D, µ′, γ′} , (47c)

{kon, kfb, koff} → Dc L
−2
0 × {k′on, k

′
fb, k

′
off} . (47d)

Here, we have grouped parameters with identical units
of measurement and indicate their non-dimensionalized
counterparts by the prime symbols on the right-hand
side. The non-dimensionalized equations are shown in
Appendix C, where we have dropped the primes to sim-
plify notation. Due to the non-dimensionalization, all
variables are scaled to the system size. Here D = Dm/Dc

denotes the ratio of diffusion constants, and the Péclet
number relating the time scale of shape dynamics to
the time scale of (cytosolic) diffusion is now given by
Pe = µ′〈n′〉.

From our numerical parameter study, we find that the
system can remain in a stationary state as long as the
Péclet number is sufficiently small, below a finite criti-
cal value of Pe . 0.2. However, if we increase the Péclet
number beyond this value, then we find a discontinuous
onset of oscillations (Fig. 15). When further increasing
the Péclet number, the oscillation frequency increases.
When the line moves at a high velocity (corresponding
to large oscillation frequencies), the coupling to the man-
ifold quickly redistributes proteins and thus flattens out
protein density gradients via an effective artificial diffu-
sion. For example, regions with a high concentration of
proteins grow faster, hence reducing the local concentra-
tion of proteins by virtue of mass conservation. Thus,
above a large Péclet number of Pe & 50, we find a sup-
pression of both protein pattern formation and conse-
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FIG. 15. Features of the oscillatory dynamics of the one-
dimensional manifold in our simulations, as a function of
the Péclet number. In our FEM simulations, we monitor
the height difference, h(L, t)− h(0, t), of the one-dimensional
manifold as a function of time. We then determine the fre-
quency of the oscillations (top) and the maximal amplitude of
the oscillations (bottom). In the limit of small Péclet number,
the height profile remains static, thus leading to stationary
patterns that persist until a critical value of Pe ∼ 0.2. For
sufficiently large Péclet number, we observe an onset of oscil-
lations, whose frequency increases (approximately) linearly.
When the Péclet number exceeds a second critical value of
µ/Dc ' 50, all dynamics vanishes.

quently oscillations (Fig. 15). Interestingly, we find a
doubling of the measured oscillation frequencies at inter-
mediate Péclet numbers Pe ∼ 0.6, which for large system
sizes corresponds to the onset of standing wave patterns,
as discussed in the previous section.

To conclude, through our numerical parameter study
we have learned how the shape dynamics affects pro-
tein pattern formation on the one-dimensional manifold.
The qualitative dynamics of protein pattern formation
remains largely unaffected by the deformations as long
as the Péclet number, which relates the time scale of the
line’s deformations to the time scale of protein diffusion,
is sufficiently small. However, there are two qualitative
changes with increasing Péclet number: First, one ob-
serves a discontinuous onset of oscillatory patterns, and
second, at high Péclet numbers all patterns are gradually
extinguished.

V. DISCUSSION

We investigated the dynamics of a two-component
mass-conserving reaction–diffusion system on a dynam-
ically deforming one-dimensional manifold embedded in
two-dimensional space. To shed light on how deforma-
tions of the line influence pattern formation, we first
studied a scenario where these shape deformations are
externally controlled and occur on a time scale much

larger than that of the intrinsic dynamics of the reaction–
diffusion system (adiabatic deformations). Next, we con-
sidered a feedback loop between shape deformations and
the reaction–diffusion dynamics. To keep the analysis
simple and concise, we assumed a fluid-like substrate with
a growth rate proportional to the local total protein den-
sity. We found that shape deformations induce spatially
non-uniform pattern-forming instabilities, which we refer
to as regional instability. Moreover, our analysis shows
that the shape dynamics may also (regionally) suppress
protein patterns and spatially shift already established
protein pattern interfaces. Despite its simplicity, the
model already shows a surprisingly wide range of dy-
namic patterns, such as oscillations and traveling waves.
They emerge as a direct consequence of the interplay be-
tween shape deformations and reaction–diffusion dynam-
ics.

Based on the local equilibria theory [42], we then de-
rived a criterion that links the onset of instabilities to
the slope of the reactive nullcline in phase-space. Specif-
ically, we find that the nullcline shape becomes spatially
non-uniform because the metric of the geometry enters
the dynamics. This differs sharply from the case of a flat
static geometry [42], where the nullcline shape is uniform
in space and time. Our analysis shows that the interplay
between the dynamics of the local total density, an im-
portant control parameter for pattern formation in mass-
conserving reaction–diffusion systems [42, 45, 46], and
the metric is key to understanding the phenomenology
of the system. From a physical point of view, the un-
derlying mechanism of the observed dynamics lies in the
local dilution and enrichment of particle densities by lo-
cal length contraction and extension, respectively, which
occur concomitantly with dynamic changes in the shape
of the line.

We further showed that the existence of dynamic pat-
terns crucially depends on the characteristic time scales
of shape deformations and (cytosolic) diffusive mass re-
distribution, which we quantified by defining a (dimen-
sionless) Péclet number that describes the ratio between
these two time scales. Depending on the Péclet num-
ber, we identified two distinct asymptotic limits: (i) for
small values of the Péclet number, one finds quasi-sta-
tionary patterns as the line deforms on a time scale much
larger than the typical time scale of mass redistribution
(diffusion-dominated regime), and (ii) for large values of
the Péclet number, pattern formation is suppressed due
to an instantaneous and large deformation rate of the
line, which prevents the establishment of gradients in
the particle densities (growth-dominated regime). Be-
tween these two limiting regimes, the mechanochemical
coupling yields a rich dynamics including oscillations and
traveling wave patterns.

We found that the impact of deformations of the man-
ifold is specified by a simple criterion, Eq. (38), which
predicts the onset of regional instabilities. Strikingly,
the only geometric information that enters this criterion
is the metric of the manifold. This implies that the in-
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stability criterion is generic for mass-conserving reaction-
diffusion systems, regardless of the exact cause and the
associated mechanical forces that lead to shape defor-
mations. Here, we assumed a fluid-like manifold where
shape deformations are driven by the local concentration
of proteins. Additional mechanical properties, such as
bending stiffness, in-plane elasticity, and volume or area
constraints can be incorporated into our model by in-
cluding further terms in the normal velocity. While these
additional features do not affect the instability criterion
Eq. (38), they will introduce further nonlinearities, which
in general will lead to complex pattern-forming dynamics
and wavelength selection in the highly nonlinear regime.

Turing systems on growing domains.— Our model
shows conceptual differences when compared to classical
Turing models on homogeneously growing domains, such
as uniformly growing planar lines [70]. In such systems,
which grow uniformly in length, each length segment of
the domain grows at the same rate, so that the dynam-
ics of the metric can be eliminated by being absorbed
into the temporal change of the total length. For mass-
conserving reaction-diffusion systems, this entails that
the local total density is the only relevant degree of free-
dom in the system. The system considered here involves
a dynamic interplay between the local total density and
the metric, which leads to (self-organized) non-uniform
growth rates and thereby rich pattern-forming dynam-
ics. Classical Turing models have also been studied for
non-uniformly growing lines [71], where, for example, one
segment of the line is assumed to grow at a different rate
from that of the remaining portion, which can effectively
be described as a piecewise uniformly growing line. It was
found that this leads to asymmetric pattern formation
and peak-splitting of patterns, which can be interpreted
as regional patterns in analogy to our work. However,
the underlying mechanism leading to such regional Tur-
ing patterns is, again, substantially different from our
model. In essence, Turing patterns in such systems oc-
cur (including peak-splitting) once the local line segment
length exceeds a critical value, thus inducing (regional)
Turing instabilities or frequency-doubling of the pattern.

Notably, these classical Turing models have been
mainly studied in the quasi-stationary limit [70, 71],
where one assumes that the pattern-forming dynam-
ics unfolds on a much smaller time scale than domain
growth. While such an assumption is reasonable at larger
scales, such as in the context of morphogenesis, the time
scales of growth and pattern formation are generally not
far apart in an intracellular context. This is evidenced
by recent in vitro experiments, which show that proteins
are capable of dynamically deforming giant unilamellar
vesicles (GUVs) [19], or reshaping supported lipid bilay-
ers [6]. Therefore, here we have examined the full range
of relative time scales (diffusive mass redistribution and
shape deformations) by varying the Péclet number, and
indeed found qualitative differences in the dynamics as a
function of these time scales, such as a transition from
traveling waves to standing waves. This underscores the

relevance of the different time scales as an additional
means by which mechanochemical patterns in cells may
be controlled. For concentration-dependent growth, as
we have considered here, cells may achieve such control
by regulating the total density of proteins.

Bulk-boundary coupling.— Protein patterns in biolog-
ical systems often emerge at surfaces, such as the cell
membrane, where proteins cooperatively bind to and de-
tach from the membrane. Consequently, proteins have
to be transported from the bulk solution (cytosol) to the
cell membrane, which is achieved by diffusive and ad-
vective fluxes in cells [27]. This leads to cytosolic pro-
tein density gradients perpendicular to the membrane,
and these gradients have been shown to be crucial for
pattern formation in mass-conserving reaction–diffusion
systems [16, 26, 45, 72]. Another interesting extension
of our work would be therefore to explicitly account for
bulk-boundary coupling in the reaction–diffusion dynam-
ics. Potentially, this might yield additional interesting
geometric effects, since shape deformations would (lo-
cally) alter the bulk-boundary ratio, which is an impor-
tant control parameter for protein pattern formation [22–
24, 26, 45, 72].

Biologically realistic reaction networks.— We expect
that our analysis can be transferred to more complex
mass-conserving reaction–diffusion systems. One promi-
nent example is the Min protein system in E. coli, which
can generate a broad variety of self-organized patterns
such as traveling waves, standing waves, chaos, and
stationary patterns (for a review please refer to e.g.
Ref. [73]). Recently, it was shown that the in vitro
Min system in a heterogeneous setup (three-dimensional
wedge-shaped geometry) leads to patterns on multiple
length and time scales [26]. Importantly, these joint the-
oretical and experimental studies have shown that the
large-scale dynamics can be characterized by diffusive re-
distribution of protein mass, which is the essential degree
of freedom on large spatial and temporal scales. In the
present work, we found that spatial heterogeneities gen-
erally also occur in systems that exhibit a feedback loop
between shape deformations and reaction–diffusion dy-
namics. Then, in contrast to systems with (fixed) spa-
tially varying geometry as in the wedge setup mentioned
above or in the context of a fixed cell shape, spatial het-
erogeneities and complex geometries are generated by
the dynamics. One might therefore wonder why we do
not observe multiscale patterns here. The reason is that
the two-component system has only one stable attractor
(mesa or peak pattern) [42, 67, 69], which significantly
limits the phenomenology. One could, however, readily
apply our approach to the Min dynamics by replacing
the reaction–diffusion component in our model with the
biochemical reaction network of the Min system. Cou-
pling Min patterns to shape deformations may lead to
interesting dynamics that possibly span multiple spatial
and temporal scales, and the concept of regional instabil-
ities would enable one to characterize and explain such
multiscale patterns on dynamic manifolds.
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Moreover, this could provide a rich field of research if
one, for example, considers placing an additional lipid bi-
layer membrane at some height above a supported lipid
bilayer membrane [21]. Now, if this additional lipid bi-
layer is not supported by a solid surface but is free stand-
ing, it can be deformed by the Min proteins and thereby
dynamically affect the cytosolic volume between the two
membranes and thus the local volume-boundary ratio.
That Min proteins are indeed capable of deforming gi-
ant unilamellar vesicles was recently demonstrated ex-
perimentally [19, 21]. We hypothesize that in such a
system one could observe an intricate dynamic interplay
between multiscale protein patterns and the dynamics of
the free-standing membrane.
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Appendix A: Reaction term

We adopted a reaction term that has been proposed
as a conceptual model for cell polarization [41, 42]. The
reaction kinetics are based on autocatalytic recruitment
of membrane proteins and linear detachment:

f(m, c) =

[
kon + kfb

m2

K2
d +m2

]
c− koffm. (A1)

For the specific parameters that we chose here (see Ap-
pendix D), we obtain an N-shaped nullcline, as qualita-
tively shown in Fig. 1b. Hence, for our choice of parame-
ters, the reaction–diffusion model always produces mesa
patterns (lower and upper plateau in the density profile
which are connected by an interface, see Fig. 1a), because
the flux-balance subspace intersects the reactive nullcline
at three points [42, 67, 69] (see Fig. 1a,b).

The space- and time-dependent reaction term f̃(x, t)
for the rescaled densities m̃ and c̃ then follows from
Eq. (32) and takes the form:

f̃(x, t) =

[
kon + kfb

m̃2

K2
d g + m̃2

]
c̃− koff m̃ . (A2)

Appendix B: Time-evolution of the curvature

Instead of tracking the temporal change of the position
vector, one may also study how the curvature at each
point along the manifold evolves with time. Since the
curvature characterizes the (local) conformation of the
one-dimensional manifold, one could also reconstruct the
position vector from the solution of the curvature alone
(up to translation and rotation) [6]. Here, we present the
derivation of the evolution equation for the curvature in
the material frame Dtκ(σL, t).

To this end, we first determine the commutator of time
and arc length derivatives along the manifold:

Dt∂s = Dt
[

1√
g(σL, t)

∂σL

]

= ∂sDt + vnκ ∂s, (B1)

where, after applying the chain rule, we used Eq. (20) to
obtain the result above. To proceed, we now use Eq. (B1)
to determine the temporal evolution of the unit tangent
vector:

Dtτ̂ = Dt∂sr = ∂sDtr + vnκ ∂sr

= ∂s[vnn̂] + vnκ τ̂

= ∂svnn̂, (B2)

where we used the definition Dtr(σL, t) = vnn̂ and the
fact that ∂sn̂ = −κτ̂ . Finally, by using Eqs. (B1)
and (B2) we compute the following expression:

∂sDtτ̂ = ∂2
svnn̂+ ∂svn∂sn̂

= Dt∂sτ̂ − vnκ ∂sτ̂
= (Dtκ− vnκ2)n̂+ κDtn̂, (B3)

here, we used Eq. (9) to obtain the third line. Comparing
the first and last lines in the equation above, one finds
that

Dtκ(σL, t) = ∂2
svn + κ2 vn. (B4)

Appendix C: Non-dimensionalized equations

After non-dimensionalization, we arrive at the follow-
ing set of partial differential equations:
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∂tñ(x, t) = ∂x

[
∂xh

g
vy ñ+

D√
g
∂x

(
ñ√
g

)
+

1−D√
g
∂x

(
c̃√
g

)]
, (C1a)

∂tc̃(x, t) = ∂x

[
∂xh

g
vy c̃+

1√
g
∂x

(
c̃√
g

)]
−
[
kon + kfb

(ñ− c̃)2

K2
d g + (ñ− c̃)2

]
c̃+ koff (ñ− c̃) , (C1b)

∂th(x, t) = vy , where vy = µ̃ ñ+ γ̃
1

g
∂2
xh . (C1c)

Note that we solve here for the variables ñ and c̃, instead
of m̃ and c̃ (which are related via local mass conserva-
tion ñ = m̃+ c̃, cf. Eq. (27)). We solved these equations
numerically with FENICs, which allowed us to perform
the parameter sweeps with greater efficiency. Further-
more, using two different softwares for solving the partial
differential equations allowed us to further validate the
accuracy and reliablity of our numerical results.

Appendix D: Parameters

For convenience, we have omitted physical units
throughout the manuscript. Here, we provide the val-
ues of the model parameters, and give an estimate of
the typical length and time scales of protein patterns in
biological systems. The typical system size in an in-

TABLE I. Model parameters. If not otherwise specified, the
parameter set below were used in this study.

Parameter Symbol Value
Cytosolic diffusion Dc 0.1 µm2 s−1

Membrane diffusion Dm 0.01 µm2 s−1

Average total density 〈n〉 2.4 µm−1

Attachment rate kon 0.07 s−1

Detachment rate koff 1.0 s−1

Recruitment rate kfb 1.0 s−1

Carrying capacity Kd 1.0 µm−1

Coupling strength µ 0.05 µm2 s−1

Line tension γ 0.001 µm2 s−1

tracellular context is L0 ≈ 10 µm. The typical value for
membrane diffusion is Dm ∼ 0.01 µm2 s−1, while in the
cytosol Dc ∼ 0.1 − 10 µm2 s−1. The characteristic time
scale of pattern formation is determined by the kinetic
parameters as well as mass redistribution in the cytosol
and on the membrane (via diffusion and possibly advec-
tion), and is typically on the order of minutes in an intra-
cellular context [27]. In this work, length scales are given
in units of 1 µm, and time scales in units of koff = 1.0 s−1

(see Table I).

Appendix E: Linear stability analysis for a
one-component system in the absence of chemical

reactions

To gain further insight into how geometry deforma-
tions affect the relaxation of a single membrane-bound
particle species to a homogeneous state via diffusion, we
consider the following simplified model:

Dt%(σL, t) =
1√
g

∂

∂σL

[
D√
g

∂%

∂σL

]
+ κ vn % , (E1a)

Dtκ(σL, t) = κ2 vn +
1√
g

∂

∂σL

[
1√
g

∂vn
∂σL

]
, and (E1b)

Dtg(σL, t) = −2 g κ vn , where vn = µ% . (E1c)

We perform a linear stability analysis around a homoge-
neous steady state, % = %∗+ δ%, with a flat configuration
of the interface, κ = δκ and g = g∗ + δg. Then, up to
linear order, Eqs. (E1) further simplify to:

Dt[δ%(σL, t)] =
D

g∗
∂2
σL

[δ%] + µ%∗2 [δκ] , (E2a)

Dt[δκ(σL, t)] =
µ

g∗
∂2
σL

[δ%] . (E2b)

Note that we have here omitted the dynamics of the met-
ric g, since it decouples from the set of equations (E2)
to linear order and is therefore not relevant. Taking the
Fourier transform of the perturbations,

δ%(σL, t) =
1

2π

∫
dq δ%̂(q, t) exp(i q σL) , (E3a)

δκ(σL, t) =
1

2π

∫
dq δκ̂(q, t) exp(i q σL) (E3b)

we thus arrive at:

Dt
[
δ%̂(q, t)
δκ̂(q, t)

]
=

[
−Dq2/g∗ µ%∗2

−µq2/g∗ 0

]
·
[
δ%̂(q, t)
δκ̂(q, t)

]

:= J ·
[
δ%̂(q, t)
δκ̂(q, t)

]
, (E4)

where we have lastly defined the Jacobian J of the lin-
earized system. Note that the trace of the Jacobian is
always negative, trJ = −Dq2/g∗ < 0 while its determi-
nant is always positive, detJ = µ2q2%∗2/g∗ > 0. Thus,
the system is always stable. We find that all slow modes



22

𝑞

𝜖(𝑞)

𝑞𝑐

FIG. 16. Typical dispersion relation for the two-component
model on a dynamic one-dimensional manifold. The blue solid
line shows the real part of the growth rate ε(q), and the orange
dashed line shows the imaginary part. The fact that the imag-
inary part is non-zero indicates local oscillations that lead to
traveling wave patterns.

below a cricitcal wave number,

q2

g∗
<
q2
c

g∗
:=

(
2
µ%∗

D

)2

, (E5)

are stable spirals, while all fast modes are stable nodes.

Appendix F: Linear stability analysis for the
two-component system with mechanochemical

coupling

We can now extend the analysis in Appendix E to the
two-component system, where the Jacobian in this case
is given by:

J =



−Dmq

2/g∗ + ∂mf ∂cf µm∗(m∗ + c∗)
−∂mf −Dcq

2/g∗ − ∂cf µ c∗(m∗ + c∗)
−µq2/g∗ −µq2/g∗ 0


 , (F1)

with ∂m/cf := ∂m/cf
∣∣
[m∗,c∗]

. From (F1) we determined

the dispersion relation ε(q) which relates the growth rate
of perturbations to the mode number q (Fig. 16). While
the growth rate of the two-component model on a static
planar geometry contains only a real part in the unstable
regime [42], we find here that both the real and imagi-
nary part of the growth rate can become positive. Hence,

this suggests that the system exhibits traveling wave pat-
terns, since a non-zero imaginary part indicates local os-
cillations, as confirmed by our simulations. From (F1) we
further numerically determined the fastest growing mode
qc (which corresponds to the eigenvalue with the largest
real part, see Fig. 16), from which we obtained an esti-
mate for the initial pattern wavelength in our simulations
λc ≈ 4 µm (using the parameters provided in Table I).
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III Geometry-sensing and biochemical
templates

1 Polarity axis selection in C. elegans

In this section, we discuss how PAR polarity patterns, based on a reaction-diffusion
mechanism, are controlled by geometry. The following content is based on and
uses parts of our paper [30] published in Nature communications. We provide a
reprint of the paper in chapter 1.6.

1.1 Background

One of the most fundamental patterns by which cells spatially segregate (hierarch-
ical) processes critical to their development is cell polarity [110]. Representative
examples where cell polarity plays a decisive role includes regulation of cell divi-
sion in budding and fission yeast, driven by the GTPase Cdc42 [111–113], and
the selection of the anterior-posterior axis of the Caenorhabditis elegans zygote
(C. elegans), which is controlled by a polarization pattern of partitioning defect-
ive proteins (PAR proteins) [18, 114–116]. The polarity pattern in C. elegans is
established by anterior PARs (aPARs) and posterior PARs (pPARs), which both
diffusive in the cytosol and bind to the cell membrane. At the membrane, aPAR
and pPAR proteins form two separate domains (polarity pattern) which defines
the anterior-posterior axis of the embryo. The establishment of these domains has
been shown to be driven by antagonistic interactions between PAR proteins as
well as by interactions of PAR proteins with the cell cortex [25, 117–121]. The
mutual antagonistic interactions at the membrane cause both aPARs and pPARs to
dissociate into the cytosol through phosphorylation [20, 29].

Open questions here are how the robust establishment of PAR polarity patterns
depends, if at all, on mechanical interactions of PAR proteins with the actomyosin
cortex, or whether biochemical interactions between PAR proteins alone (reaction-
diffusion dynamics) are sufficient to explain robust polarization. The contractility
of the actomyosin network has been shown to be dependent on PAR proteins [25],
and it has been argued that the resulting cortical flows are required to guide the
establishment of long-axis polarization [120], while biochemical interactions play
a rather stabilizing role by maintaining PAR polarity after establishment [25].
However, several experimental studies have shown that PAR polarity does not
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require advective flows [122–128]. Indeed, previous studies have demonstrated
that PAR polarity can be in principle explained by a reaction-diffusion mechanism
alone [25, 116, 120, 128, 129]. The question that then remains is whether a
reaction-diffusion mechanism is sufficient for robust and correct selection of the
long-axis of the embryo, or whether advective flows are required to push the
reaction-diffusion dynamics towards the desired attractor. Previous studies for
simplified one-dimensional geometries concluded that advective flows are necessary
for reliable long-axis selection, as well as maintaining polarity [25, 116, 120].
However, these simplified models disregarded the impact of cell shape on the
reaction-diffusion dynamics, and therefore erased geometric effects that might be
relevant for axis selection and robust establishment of cell polarity [29, 30].

To shed light on the role of cell shape and geometry-sensing, we study a reaction-
diffusion model for PAR polarity in realistic three-dimensional cell geometries. In
contrast to previous studies [25, 116, 120], the model accounts for bulk-boundary
coupling between cytosolic proteins and membrane-bound proteins, as well as
delayed reattachment of cytosolic proteins due to dephosphorylation (reactivation
of cytosolic proteins). This activation-deactivation cycle of cytosolic proteins is
an important feature of the model, as it leads to cytosolic gradients perpendicular
to the membrane which renders the dynamics sensitive to cell shape [30, 130,
131]. To disentangle different geometric effects, we first study PAR polarity in a
two-dimensional elliptical geometry, and show that the reactivation-deactivation
cycle is crucial for robust long-axis selection. Similar as in Ref. [130], we relate this
effect to the (local) ratio of cytosolic volume to membrane surface (bulk-surface
ratio), which is intrinsically non-uniform in curved geometries. We then show
that polarity establishment in three-dimensional ellipsoidal geometries can be
explained by the same effect. However, we also identify an additional effect in
three-dimensional geometries. We find that long-axis polarization in ellipsoidal
geometries is even more favoured, and we explain this by the tendency of the
system to minimize the interface of the aPAR-pPAR pattern on the surface of
the ellipsoid. Overall, our results suggest that a reaction-diffusion mechanism in
realistic cell geometries is sufficient to explain robust PAR polarity in C. elegans.

1.2 PAR polarity in ellipsoidal geometry

The reaction kinetics in our model is derived from the current biological under-
standing of the PAR reaction network [114, 117, 132–136]. The dynamics of aPAR
proteins is effectively accounted for by two protein species A1 and A2, where the
former can be interpreted as a (membrane-binding) scaffold protein, which recruits
cytosolic A2 to the membrane. These processes effectively describe the forma-
tion of aPAR hetero-dimers A12 on the membrane, which then interact with and
phosphorylate membrane-bound pPARs. Similarly, we effectively describe pPAR
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proteins by a single protein species P which dephosphorylates both membrane-
bound aPAR proteins A1 and A12. Mathematically, the set of equations take the
form of bulk-boundary coupled mass-conserving reaction-diffusion systems, where
phosphorylated proteins can only rebind the membrane after dephosphorylation
with a rate λ (for details on the mathematical model please refer to the reprint in
section 1.6). We consider the reaction-diffusion dynamics in a prolate spheroid,
where the boundary of the spheroid represents the cell membrane and the enclosing
volume the cytosol, respectively.

1.3 Geometric effect: The membrane to bulk ratio

The activation-deactivation cycle (in combination with bulk-boundary coupling)
leads to cytosolic protein gradients with a characteristic (reactivation) length scale
` that is dictated by cytosolic diffusion Dcyt and the dephosphorylation rate λ [30,
130, 131]:

` =

√︃
Dcyt/λ . (III.1)

These gradients result in interesting geometric effects, which can be best understood
by considering the following cases for the reactivation length `: ( i) Let us assume
that the reactivation rate is chosen such that ` is smaller compared to the typical
length of the cell L, but larger than the typical radius of curvature R of the cell
poles, i.e. R < ` < L. In this case, detached cytosolic proteins travel a small
distance before they become reactivated and rebind to the membrane. Importantly,
proteins have a higher probability of membrane binding if they are close to the
cell poles, where the membrane surface to cytosolic volume ratio is largest [130].
Hence, this naturally leads to protein accumulation at the cell poles, as attachment
rates are effectively amplified by membrane curvature (the “hitting probability”
is higher in curved regions). This effect is quite general for bulk-surface coupled
mass-conserving reaction-diffusion systems, and entails important consequences:
In curved geometries, the base state of the system will be always non-uniform.
However, the final pattern for large times cannot be concluded from the base state
and depends explicitly on the reaction kinetics considered. For the PAR system,
one finds that aPARs initially accumulate at the cell poles (due to cooperative
binding), which leads to the formation of an interface between aPARs and pPARs
near the poles. Due to mutual antagonism, pPAR proteins are forced to bind near
midcell, which ultimately leads to the formation of short-axis polarization for large
times. (ii) For the biologically relevant case, however, where the reactivation length
is comparable with the cell size ` ≃ L, aPARs will preferentially bind the membrane
near midcell, as they diffuse larger distances after phosphorylation. Consequently,
one finds that the system selects the long-axis is in this case. (iii) In the limit where
` ≪ L or ` ≫ L, the geometric effect outlined above is lost since cytosolic densities
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approach a homogeneous concentration profile. Thus, the limit where ` ≪ L or
` ≫ L correspond to simplified one-dimensional models, where the geometric
effect is wiped out. The heuristic arguments above can be quantitatively confirmed
by a linear stability analysis (LSA), which we have performed for an ellipse, as the
orthogonal eigenfunctions (Mathieu functions [137]) of the diffusion operator can
be determined in elliptical coordinates [77]. From the LSA, one can determine
the growth rates of the first even mode and the first odd mode, corresponding to
long-axis and short-axis polarization, respectively. Consistent with the arguments
above, the analysis reveals that long-axis polarization is favoured above a sufficient
large value of the reactivation length `∗, while the short-axis is selected below this
threshold value.

1.4 Pattern interface minimization

The results that we obtained for a two-dimensional ellipse can be in principle
transferred to prolate spheroids, where the same geometric effect determines axis-
selection at onset. However, we identified another crucial physical effect that is
related to the interface length of aPAR-pPAR domains. For parameters where one
obtains short-axis polarization at early times, we observe that the pattern rotates
to long-axis polarization for long times. In other words, long-axis polarization is
even more favoured in realistic three-dimensional geometries. By quantifying the
average net cytosolic protein flux towards the membrane, we found that the system
tends to minimize this flux, which is achieved by minimizing the total length of the
protein interface (which is simply a line for three-dimensional geometries). Indeed,
for prolate spheroids the interface length is minimized for long-axis polarization,
which explains why the pattern rotates from short-axis to long-axis. Note that this
effect is absent in two-dimensional geometries, since the interface consists of just
two points in two dimensions.

To quantitatively test and confirm the idea of interface length minimization,
we consider PAR polarity in prolate and oblate spheroids that have the same
volume, but different ratios of the interface length for long-axis and short axis
polarization (perimeter ratio). For oblate spheroids, the perimeter ratio for short-
and long-axis polarity remains close to unity and is therefore less sensitive to
variations of the semi-major axis, while the perimeter ratio varies strongly with
the semi-major axis in the case of prolate spheroids. This suggests that one should
be able to stabilize short-axis polarization in oblate spheroids, because the effect
resulting from interface minimization should be weaker in oblates based on the
above considerations. We confirmed this intuition by extensive FEM parameter
sweeps in the λ − Dcyt parameter space, and indeed found a broad regime where
short-axis polarization can be stabilized (for details please see reprint in section 1.6).
Interestingly, the transition from short-axis to long-axis polarization is not sharp,
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but varies smoothly from diagonal patterns to long-axis polarization. The idea
outlined above does not exclude stable short-axis polarization in prolates, but rather
suggests that axis selection should be independent of interface length minimization
if the perimeter ratio is close to unity, which is for example the case for almost
spherical prolate spheroids. We also performed extensive FEM parameter sweeps
for nearly spherical prolate spheroids, and found a similar bifurcation diagram
as for oblate spheroids. In conclusion, the perimeter ratio provides a reasonable
estimate of which polarity axis dominates in ellipsoidal geometries.

1.5 Key points and outlook

We summarize the key findings of this research project in the following and further
discuss additional open questions as well as interesting extensions of our approach
for future research.

• We have shown that PAR polarity and axis selection can be explained by
a reaction-diffusion mechanism alone. Cytosolic gradients perpendicular
to the membrane cause collective “curvature-sensing” of proteins, and we
explained this effect by the membrane surface to cytosolic volume ratio,
which is largest at negatively curved regions (such as the cell poles). Our
results highlight the importance of bulk-boundary coupling and realistic cell
geometries, which control and stabilize long-axis polarization.

• Long-axis polarization is additionally favoured for three-dimensional ellips-
oidal geometries, as the system tries to minimize the protein interface length.
This effect can be physically, on a heuristical level, explained by the minim-
ization of the average net cytosolic protein flux towards the membrane. The
perimeter ratio of the geometry provides a reasonable estimate of which axis
dominates.

• Notably, our analysis suggests that PAR polarization can be stabilized and
controlled independently of mechanical guiding cues and cortical flows.
From our perspective, advective flows are not required at all for stable long-
axis polarization, and their exact role remains under debate. However,
mechanical guiding cues might be relevant for the correct time scale of cell
polarity, since advective flows provide additional means of timing pattern
formation.

Our analysis in ellipsoidal geometry relied on computationally extensive FEM
simulations. For future studies, it would be desirable to develop a theoretical
tool that allows to perform a linear stability analysis in realistic three-dimensional
geometries. The challenge here is to determine a set of orthogonal eigenfunctions
of the Laplace operator that satisfy all boundary conditions. Unfortunately, this
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is a complicated task in non-trivial geometries, and generally not possible. One
way to overcome this limitation is to apply perturbation theory: One starts with a
spherical geometry, for which the eigenfunctions can be determined by standard
methods (spherical harmonics), and then considers a smooth small deformation of
the sphere to an ellipsoid. The growth rates in ellipsoidal geometry are then given
by the growth rate of the sphere plus additional correction terms (to first order),
which account for the correction of the operators due to the smooth deformation.
Moreover, the approach is not restricted to ellipsoidal geometries, but can be in
principle applied to a range of different geometries, including modulated cylindrical
geometries [138].

We provided a heuristic explanation for the minimization of interface length,
but a rigorous quantitative explanation is still lacking. One interesting observation
is that the protein interface somewhat acts as a liquid-gas interface and can therefore
be viewed as a line on a curved surface under “surface tension”. It is well known that
surface tension leads to mean curvature flow that tends to minimize the interface
length [139]. Hence, to gain understanding of the interface length minimization
discovered here, it would be worthwhile to quantitatively investigate the dynamics
of the protein interface, and compare it to classical systems that are known to
behave similarly, such as pattern interfaces in the Cahn-Hilliard equation [140].
Interestingly, the Cahn-Hilliard equation evolves under the Willmore flow [141],
and therefore can be interpreted as a volume-preserving version of the mean
curvature flow.
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Abstract In the Caenorhabditis elegans zygote, PAR protein patterns, driven by mutual anatag-

onism, determine the anterior-posterior axis and facilitate the redistribution of proteins for

the first cell division. Yet, the factors that determine the selection of the polarity axis remain

unclear. We present a reaction-diffusion model in realistic cell geometry, based on biomolec-

ular reactions and accounting for the coupling between membrane and cytosolic dynamics.

We find that the kinetics of the phosphorylation-dephosphorylation cycle of PARs and the

diffusive protein fluxes from the cytosol towards the membrane are crucial for the robust se-

lection of the anterior-posterior axis for polarisation. The local ratio of membrane surface to

cytosolic volume is the main geometric cue that initiates pattern formation, while the choice

of the long-axis for polarisation is largely determined by the length of the aPAR-pPAR inter-

face, and mediated by processes that minimise the diffusive fluxes of PAR proteins between

cytosol and membrane.
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Introduction

Cell polarisation is a crucial process in development1. Well studied examples include localisation

of bud sites in Saccharomyces cerevisiae2, apico-basal asymmetry in mammalian epithelial cells3,

and the asymmetric placement of the first cell division in the Caenorhabditis elegans zygote4. A

key question in such systems is how the correct polarity axis is established and robustly maintained.

In C. elegans, the anterior-posterior axis of the embryo is determined in the fertilised egg by

a polarised distribution of PAR (partitioning defective) proteins4–6. Immediately before the estab-

lishment of polarisation begins, the future anterior PARs (aPARs) cover the cell cortex uniformly,

while posterior PARs (pPARs) are cytoplasmic7. After fertilisation, the sperm-donated centrosome

induces contraction of the actomyosin network, which leads to cortical flows that displace cortical

aPARs anteriorly, allowing cytoplasmic pPARs to bind in the posterior zone8–11; see Fig. 1A. Once

these two PAR domains have formed (during the ‘establishment phase’) and have thereby estab-

lished the anterior-posterior axis, they persist for several minutes through the ‘maintenance’ phase

until cell division5, 7.

Several independent in vivo experiments on C. elegans have demonstrated that maintenance

of PAR protein polarity is independent of an intact actomyosin network7, 11–15. Rather, it appears

that the entry of the sperm and the following contractions of the cortical actomyosin serve as

a temporal trigger for the rapid establishment of the PAR protein pattern9, 13, 16. However, ex-

perimental observations also suggest that while the rapid establishment and perfect position of

anterior-posterior PAR domains are the result of an interplay between mechanical, hydrodynamical

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 18, 2019. ; https://doi.org/10.1101/451880doi: bioRxiv preprint 



and biochemical mechanisms, polarisation is nevertheless robustly established (albeit with some

delay) when various mechanical and hydrodynamical mechanisms are eliminated.10, 11, 17–19. To

disentangle and understand these distinct mechanisms one needs to investigate the mechanism of

self-organised polarisation by the biochemical PAR protein network. Based on the fact that aPAR

and pPAR proteins mutually drive each other off the membrane by phosphorylation20, and that

this antagonism promotes formation of distinct domains on the membrane10, 21, 22, previous studies

have outlined how self-organisation of PAR proteins maintain polarisation until cell division?, 15, 16.

These studies showed that basic features of PAR protein polarisation can be explained by minimal

reaction-diffusion models. However, as these models used a simplified one-dimensional geometry

and assumed that cytosolic proteins are homogeneously distributed, the effect of cell geometry was

disregarded and the distinction between long and short axis was lost. Thus, how the long axis is

selected for polarisation and subsequently maintained, and in a broader context, which features of

a reaction-diffusion system are responsible for axis selection remain open questions.

To answer these questions we draw on previous studies of other intracellular pattern-forming

protein systems which revealed that even the typically rather fast cytosolic diffusion does not elim-

inate protein gradients in the cytosol23–26. As a consequence, protein patterns are generically sen-

sitive to cell geometry through coupling between processes in the cytosol and on the membrane.

In particular, it was predicted23, 24 that delayed reattachment to the cell membrane (e.g., due to

cytosolic nucleotide exchange) is key to geometry sensing. Indeed, recent experimental studies

support the idea that axis selection depends on the interplay between reaction kinetics and cellular

geometry25.
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These results suggest that the protein dynamics in the cytoplasm of the C. elegans embryo

may also influence the selection of the long over the short axis during polarity maintenance. In

order to investigate axis alignment, we developed a reaction-diffusion model of the PAR pro-

tein dynamics . As in previous studies9, 15, 27, a central element in our model is mutual displace-

ment of membrane-bound aPARs and pPARs by phosphorylation. However, in contrast to ear-

lier models9, 28, we do not use effective nonlinearities but strictly biomolecular reactions based on

mass-action law kinetics, e.g. by explicitly modelling the formation of PAR protein complexes.

Importantly, we also account for the delay caused by the need for reactivation of detached PAR

proteins by cytosolic dephosphorylation, thus introducing the generic feature of a biochemical

activation-deactivation cycle.

Our extended reaction-diffusion model in realistic cell geometry reveals that the dynamics of

the phosphorylation-dephosphorylation cycle of PAR proteins is crucial for long-axis polarisation.

Without this additional feature, the biochemical network of PAR proteins would not lead to robust

polarisation along the long axis but instead exhibit a strong tendency to first polarise along the short

axis, and polarisation would not re-align within a time that corresponds to a typical time before

cell division. Furthermore, the extended model enables us to characterise the roles of mutual

antagonism (phosphorylation) and overall protein numbers in robust long-axis polarisation: while

the phosphorylation rates determine how distinctively one polarisation axis is selected over the

other, relative protein numbers primarily affect the robustness of pattern formation as a whole.

Most importantly, our analysis indicates that these findings can be generalised beyond the
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specific model for the PAR system: axis selection is based on the generic dependence of intracel-

lular pattern-forming processes on the local ratio of membrane surface to cytosolic volume and

on the cell geometry via the length of the interface between the two different protein domains.

Broadly speaking, the membrane-to-bulk ratio determines the likelihood that a given protein will

reattach to the membrane quickly after detachment into the cytosol and the interface length affects

both the establishment and maintenance of long-axis polarisation.

Results

Model The aPAR set of proteins comprises PAR-3, PAR-6, and the atypical protein kinase PKC-3.

Only complexes containing PKC-3 can phosphorylate pPARs, thereby disabling their membrane-

-binding capacity21, 29. How trimeric complexes consisting of PAR-3, PAR-6 and PKC-3 actually

form is not fully understood. The evidence so far suggests that PAR-6 acts as a linker between

PKC-3 and PAR-3, which can itself bind directly to the membrane30–33. In the absence of PAR-6,

PKC-3 freely diffuses in the cytosol34, 35. In the reaction network upon which our mathematical

model is based, we simplify the formation of trimeric complexes to the formation of a complex

consisting of two effective species of aPARs: A1 and A2 (Fig. 1C). The first species, A1, models

the membrane binding function of PAR-3, thus we also refer to it as a scaffold protein. The second

species, A2, corresponds to a complex of PAR-6 and PKC-3. It is assumed to be recruited by

scaffold proteins A1 that are already bound to the membrane, thereby forming hetero-dimers A12

on the membrane . These complexes can then phosphorylate membrane-bound pPARs, which

initiates their release into the cytosol in a phosphorylated (inactive) state.

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 18, 2019. ; https://doi.org/10.1101/451880doi: bioRxiv preprint 



As with aPARs, there are different pPAR species, PAR-1 and PAR-2. While it is known

that PAR-2 binds directly to the membrane, and PAR-1 phosphorylates PAR-3, it remains un-

clear whether PAR-2 also helps to maintain anterior-posterior polarity by excluding aPAR com-

plexes from the membrane7, 20. However, PAR-2 is required for posterior binding of PAR-136 and

PAR-2 exclusion from the membrane by PKC-3 is essential for proper restriction of pPARs to the

posterior21. In view of the remaining uncertainties we refrain from distinguishing between dif-

ferent species and effectively treat the pPARs as a single species P (Fig. 1C). P phosphorylates

membrane-bound A1 and A12, which triggers their subsequent detachment as a phosphorylated

(inactive) species into the cytosol.

Our model also accounts for protein dephosphorylation reactions in the cytosol. This creates

deactivation-reactivation cycles, as proteins that were phosphorylated (deactivated) on the mem-

brane are thereby reactivated for membrane binding (Fig. 1B, C). For simplicity, the reactivation

(dephosphorylation) rate λ is assumed to be identical for cytosolic pPARs (P ) and aPARs (only

A1). The ensuing reaction-diffusion equations are given in the Method section Equations (7-18).

We approximate the natural shape of a C. elegans embryo by a prolate spheroid with semi-

-axis lengths a= 27µm and b= 15µm (see Fig. 1 D) 9. Here, a is the distance from centre to pole

through a focus along the symmetry axis, also called the semi-major axis, while b is the equatorial

radius of the spheroid, which is called the semi-minor axis. The boundary and interior of the ellipse

represent the cell membrane and cytosolic volume, respectively.
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Dephosphorylation plays a key role for axis determination For mutually antagonistic protein

interactions , protein domains are separated by an interface at which mutually induced membrane

detachment dominates9, 15, 16. For its maintenance proteins that have detached from the membrane

must be replaced, otherwise the antagonistic interaction between the proteins would deplete either

aPARs or pPARs from the membrane. As the protein interactions are mass-conserving, mainte-

nance requires that detached proteins quickly rebind, unless the cytosolic reservoir of proteins is

large enough for them to be replenished directly. This suggests that an interface can best be main-

tained locally in those membrane regions where rebinding to the membrane after detachment is

most likely.

The likelihood of rebinding depends on the availability of cytosolic proteins for binding,

which depends on the interplay between the local cell geometry and the time required for reactiva-

tion of detached proteins by dephosphorylation (Fig. 2). The ratio of available membrane surface

to cytosolic volume is highest at cell poles and lowest at mid-cell. How this local cell geometry af-

fects protein rebinding depends on the dephosphorylation time: a longer reactivation time implies

that a protein that detached in a phosphorylated state from the membrane will on average diffuse

farther away from the membrane before it can be reactivated and reattaches. The corresponding

reactivation length is estimated as

` :=
√
Dcyt/λ . (1)

To see how this diffusion length affects protein dynamics, consider a protein with a short

inactive (phosphorylated) phase, such that ` is significantly smaller than the cell length L= 2a
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(Fig. 2A). Then, proteins are likely to be dephosphorylated fast and can therefore rebind very soon

after phosphorylation-induced detachment. Since the local ratio of membrane surface to cytosolic

volume at the cell poles is larger than at mid-cell, these proteins are more likely to reencounter the

membrane in the polar zone which translates into higher polar reattachment (after reactivation),

i.e. proteins remain caged at the cell poles (Fig. 2A). Conversely, proteins that detached from the

membrane at mid-cell have more cytosolic volume available than those that detached at the poles

and, thus, are less likely to re-encounter the membrane and rebind there (Fig. 2A). This heuristic

picture suggests that for `�L domain interfaces preferentially form at the cell poles and hence

cell polarity will be established along the short-axis. If dephosphorylation requires more time, `

increases and the effect of local membrane curvature is attenuated (Fig. 2B). Ultimately, when

`>L, proteins can be considered as uniformly distributed throughout the cytosol for the next

attachment event (Fig. 2D). Therefore, reactivated proteins are more likely to attach at mid-cell,

where the accumulated density along the long-axis (or, equivalently, the ratio of cytosolic volume

to membrane area) is highest (Fig. 2C). This implies that an interface between different protein

domains will establish itself at mid-cell and cells will become polarised along the long-axis for

large enough reactivation length `.

In summary, if cell polarisation is induced by antagonistic protein interaction , we expect

long-axis polarisation to be favoured only if the delay resulting from the inactive phase is suffi-

ciently long. Moreover, our analysis suggests that relative protein numbers affect axis selection, as

the global availability of an abundant protein species attenuates the effect of cell geometry associ-

ated with the activation-deactivation cycle.

9
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In the heuristic arguments outlined above, we tacitly considered a single position along the

interface between the PAR domains. In general, however, the length of the interface may also play

an important role in determining the orientation of the axis ultimately selected, as one expects en-

ergetic costs for interface establishment and maintenance to scale with its length. In the following

we will analyse the system’s dynamics in a two-dimensional as well as in a three-dimensional cell

geometry; an analysis of a simplified rectangular geometry would actually be misleading (Supple-

mentary Note 3). Furthermore, the analysis in two and three dimensions enables us to disentangle

the effects due to the membrane-to-bulk ratio and interface length in polarisation establishment and

maintenance. Note that in a two-dimensional ellipse the interface between the domains reduces to

a point, such that all geometric effects can be solely attributed to the membrane-to-bulk ratio.

Growth rates of long versus short-axis polarisation To put the above heuristic reasoning con-

cerning the role of membrane-to-bulk ratio on a firm basis , we first performed a mathematical

analysis in two-dimensional elliptical geometry , building on previous investigations of intracellu-

lar pattern formation 23, 24.

Importantly, in the bounded geometry of a cell, broken detailed balance due to the dephos-

phorylation-phosphorylation cycle implies that a uniform well-mixed state can no longer be a

steady state of the system24. Instead, all steady states show cytosolic gradients with a density

profile that is spatially non-uniform but unpolarised24. As the reactive dynamics in the PAR

system is bistable, there are two such unpolarised states, one with aPAR and the other with pPAR

being the more abundant membrane species. In the zygote, aPARs predominate on the membrane,

10
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and we refer to this aPAR-dominant state as the unpolarised state.

To perform a linear stability analysis with respect to this unpolarised state, we use Fourier

modes specific for elliptical geometry23. These modes are classified as even and odd by their

symmetry with respect to reflections through a plane along the long axis, and correspond to pat-

terns aligned along the long and short axes, respectively (Fig. 3A). If the real parts of the growth

rates σ of all modes are negative, small spatial perturbations of the unpolarised state will decay

and it will remain stable. In contrast, a positive real part of any growth rate (σ > 0) indicates that

the unpolarised state is unstable , and initially a pattern will emerge corresponding to the mode

with the highest growth rate (Fig. 3B). Hence, linear stability analysis can identify the parameter

regime where patterns of a certain symmetry (short- vs. long-axis) form spontaneously. On very

general grounds 26, 38, we expect that bifurcations in mass-conserving reaction-diffusion systems

are subcritical and hence these pattern attractors persist over some range outside the linear unsta-

ble parameter regime (see also details on FEM simulations in the Method section), where patterns

do not form spontaneously but can be triggered by a finite perturbation – such as the fertilisation

event.

For a typical cell size and cytosolic diffusion constants in the range ofDcyt = 5− 50 µm2s−1,

linear stability analysis shows that second- and higher-order modes are negligible compared to the

first even and odd modes, σe and σo. In the parameter regime under consideration, those two growth

rates exhibit similar magnitude and at least one of them is positive. To quantify the competition

between the first even and odd modes (long- vs. short-axis), we define the relative difference in
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their growth rates,

δσ := (σe−σo)/
√
σ2

e +σ2
o ; (2)

for an illustration see Fig. 3B.

Cytosolic reactivation length is crucial for axis selection We computed δσ as a function of λ

and Dcyt. As shown in Fig. 3C, the even mode dominates (δσ > 0) for large cytosolic diffusion

constant and low reactivation rates (favouring long-axis polarisation), otherwise the odd mode

dominates. This is consistent with the above heuristic reasoning suggesting that reactivation must

be slow or cytosolic diffusion must be fast for the establishment of long-axis polarity. While

linear stability analysis can elucidate the selection of the polarisation axis during the onset of

pattern formation, it can not predict the final pattern as it neglects nonlinear effects in the diffusion-

reaction equation. To determine the final stable polarisation axis we performed finite-element

(FEM) simulations; see alslo details on FEM simulations in the Method Section. These simulations

show that there is a threshold value for the reactivation length `? = 11.4 µm above/below which

cells stably polarise along the long/short-axis (Fig. 3C). We conclude that in a two-dimensional

cell geometry the reactivation length `, which determines the spatial distribution of active proteins,

is the decisive parameter that determines both initial axis selection and its long-term maintenance.

How in full three-dimensional cell geometry this effect of the membrane-to-bulk ratio interacts

with the role of the interface length will be discussed below.
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Role of phosphorylation rates Whether there is a spatial separation between aPAR and pPAR do-

mains, is known to depend on the relative magnitude of the phosphorylation rates kAp and kPa
9, 16:

an interface between different domains exists and can be maintained only if these antagonistic

phosphorylation processes are balanced. To determine the necessary conditions for this balance,

we analysed the stability of the unpolarised state using linear stability analysis varying both phos-

phorylation rates over one order of magnitude. We fixed Dcyt = 30µm2s−1 and chose two rep-

resentative reactivation rates, λ= 0.3 s−1 and λ= 0.05 s−1, corresponding to reactivation lengths,

`= 10µm and `= 24.5µm, respectively.

Our analysis in elliptical cell geometry shows that spontaneous polarisation starting from

the unpolarised state arises only within a limited range of kPa/kAp values (cones in Fig. 4), in

accordance with previous studies using a one-dimensional model9, 28. Strikingly, however, we find

that the selection of the polarisation axis does not depend on the mutual antagonism but primarily

on the activation-deactivation cycle. The ratio of the phosphorylation rates mainly determines

the initial preference for a polarisation axis starting from an unpolarised state (Fig. 4A and B).

Specifically, we find that for λ= 0.3 s−1, the first even mode grows more slowly than the first odd

mode (δσ < 0), favouring short-axis polarisation. In contrast, for slower reactivation λ= 0.05 s−1,

the first even mode grows faster than the first odd mode (δσ > 0). These respective preferences are

most pronounced for large kPa/kAp. For the mid to low range of kPa/kAp, one finds δσ≈ 0, i.e. linear

stability analysis does not predict a clear preference for either long- or short-axis polarisation.

FEM simulations (for details on the FEM simulations see Method Section) show, however, that

– irrespective of the ratio kPa/kAp – long- and short-axis polarisation in the final steady state is
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obtained for `= 10µm and `= 24.5µm, respectively; see Supplementary Movies M2d 1 – M2d 3

and Supplementary Tables 2, 3. These simulations confirm that the reactivation length ` is the

deciding factor for axis selection in elliptical geometry.

The FEM simulations further show that outside of the parameter regime of linear instability

there exist stable polarised states, showing that the system is excitable, i.e. that patterns can be

triggered by a large enough finite perturbation ; see Supplementary Notes 1. This parameter regime

is actually quite broad (see also Supplementary Fig. 1). As a generic example for an external

stimulus, we have investigated how the PAR system reacts to initial concentration gradients on the

membrane that were aligned along the final stable polarisation axes. We find that large enough

gradients can indeed stimulate the formation of cell polarisation. It would be interesting to specify

external cues more in detail experimentally and study how they affect pattern formation. In another

work we recently showed that Turing instabilities and excitability (i.e. the ability to establish a

pattern by applying a larger perturbation to the stable uniform steady state) are mechanistically

linked in mass-conserving systems such as the PAR system 38. Hence, even in systems where

polarity is established by an external cue, identifying a Turing instability also locates regions where

external stimulation leads to stable pattern formation.

The dependence of initial growth rates on the ratio of phosphorylation rates can be attributed

to the fact that, in the unpolarised (aPAR-dominant state), the cytosolic concentration of aPARs

increases with the rate at which aPARs are phosphorylated by pPARs, i.e. with a reduction in

kPa/kAp (Fig. 4C, D). If a protein species is abundant in the cytosol, recycling of recently detached
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proteins can be compensated for by a protein of the same type in the cytosolic reservoir attaching

to the membrane. Hence, effects due to different membrane-to-bulk ratios in the initial polarisation

phase are dominant if the cytosolic pool of proteins undergoing an activation-deactivation cycle is

low, explaining why δσ depends on geometry for large values of kPa/kAp (Fig. 4C, D).

Axis selection depends on relative protein densities After learning that the abundance of cy-

tosolic proteins determines initial axis selection, we asked how changing the relative total protein

densities affects cell polarisation. For all investigations up to this point the average densities were

fixed to the order of magnitude determined experimentally by Gross et al.? (see Table 1 and see

Supplementary Note 2). A linear stability analysis revealed that density variations alter several

features: the range of ratios kPa/kAp for which an interface between different PAR domains can

be stably maintained, and the threshold value of reactivation length `? that distinguishes between

short- and long-axis polarisation. The effects were most prominent when the ratio of pPAR and

aPAR proteins that phosphorylate each other ([P ]/[A2]), and the ratio of aPAR proteins ([A1]/[A2])

was varied.

As shown in Fig. 5, increasing the ratio of the antagonistic proteins ([P ]/[A2]) mainly shifts

the regime of spontaneous cell polarisation up on the kPa/kAp axis. This upward shift is easily

explained, as the effective mutual phosphorylation rates are given by kAp[P ] and kPa[A12], respec-

tively – where [A12] is mainly limited by the availability of [A2]. Therefore, when the concentration

of pPAR proteins ([P ]) is increased relative to [A2], the per capita rate kPa has to be increased rel-

ative to kAp as well, in order to retain the balance between the mutual phosphorylation processes.

15
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Changing the ratio between the different types of aPAR proteins has two effects. First, spon-

taneous polarisation is possible for a broader range of kPa/kAp. Increasing the concentration of the

scaffold protein [A1] relative to [A2], which phosphorylates pPARs, decreases the lower bound of

kPa/kAp that allows for polarisation. This is a consequence of the increased reservoir size of A1

which implies a higher rate of attachment of cytosolic A1 to the membrane and hence a fast local

redimerisation of A2 (which lacks an inactive phase) right after the detachment of a hetero-dimer

A12. This newly formed hetero-dimer A12 is then competent to phosphorylate pPARs. Thus it is

plausible that even for low kPa/kAp one can achieve a balance of mutual antagonism, extending

the lower bound of the polarisation regime. Second, changing the ratio [A1]/[A2] also has a major

effect on the threshold value of the reactivation length `?. We find that `? increases with increasing

concentration of the scaffold protein [A1] (Fig. 5). Again, this can be understood as a reservoir

effect: globally abundant A1 promotes immediate re-dimerisation of A2 with any available A1.

Axis selection is then affected by the polar recycling of A2.

Taken together, both of these findings emphasise the importance of the activation-deactivation

cycle. A cell polarises more robustly when amounts of scaffold proteins are higher. However, at the

same time, the cytosolic reactivation length has to increase significantly in order to also robustly

maintain long-axis polarisation.

Role of interface length in three-dimensional cell geometry With the previous analysis in two-

dimensional cell geometry we have built up a basic understanding of the role of the membrane-to-

bulk ratio for the selection of the polarisation axis. In a nutshell, we concluded that sufficiently fast
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diffusion and a sufficiently long inactive phase of the antagonistic proteins ensure that long-axis

polarisation is established in a self-organised manner from homogeneous initial membrane con-

centrations. As the main parameter serving as a proxy for this effect we identified the reactivation

length `. Is this result directly transferable to a full three-dimensional cell geometry?

Since sensing of the local membrane-to-bulk ratio does not depend significantly on spatial

dimension (see also Supplementary Note 4), one would at first sight expect the same conclusions

to hold. However, there is a fundamental difference between a three- and a two-dimensional

cell geometry. While for an ellipse the interface is always point-like , for a prolate spheroid the

interface is longer for short-axis polarisation than for long-axis polarisation; in our case, we have

135µm and 94µm, respectively (Fig. 1 D). This inherent difference between a two- and a three-

-dimensional cell geometry could significantly affect the protein dynamics on the membrane and

in the cytosol. In the absence of an interface the only geometric effect is the membrane-to-bulk

ratio. Therefore, as in the two-dimensional case, we expect this ratio to be the main factor that

determines the initial formation of the protein domains and the interface between them. However,

as soon as an interface has formed, its length is likely to affect the stability of the polarisation

axis. The maintenance of the interface between protein domains is presumably energetically costly

(protein fluxes sustaining antagonistic reactions, reactivation and rebinding have to be maintained).

Therefore, since the interface is longer for short-axis than for long-axis polarisation, it is possible

that even an initially favoured alignment of polarisation with the short-axis can become unstable.

To assess the protein dynamics of the system in full cell geometry we performed extensive
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FEM simulations, restricting ourselves to parameter regimes that we identified as most relevant

from the two-dimensional geometry (see Table 4 and compare with Table 1). Starting from a

weakly perturbed unpolarised state we observe the following time evolution (Fig. 6 A,B); see the

Method section on FEM simulations for 3d system and see our Supplementary Movies 4 and 5

(M3d 1.mp4 and M3d 2.mp4). During an initial time period Tinitial a protein pattern forms that

is either aligned along the short or long cell axis or somewhere in between. While long-axis

polarisation is stable, any other polarisation is only metastable and after some persistence time

Tpers transitions into stable long-axis polarisation during Ttrans; as discussed in Supplementary Note

5 and Supplementary Figures 4-6 there are (unphysiological) cell geometries where short-axis

polarisation is stable .

We observe that, as for the two-dimensional case, initial long-axis polarisation is favoured

for large cytosolic diffusion constants Dcyt and low reactivation rates λ, while initial short-axis

polarisation is favoured for the diametrically opposed case; compare Fig. 6 D with Fig. 3 D. This

shows that the local membrane-to-bulk ratio is indeed the main factor that determines initial axis

selection . Moreover, the persistence time Tpers (Fig. 6 C) and the transition time Ttrans (Fig. 6 C,D)

both depend strongly on Dcyt but only weakly on λ. In the regime with a clear preference for

short-axis polarisation (below the dashed line in Fig. 6 D), Ttrans becomes as large as several hours;

for reference see Fig. 6 D with `?≈ 7µm; for further discussion and results on time scales see also

Supplementary Note 8 and Supplementary Figure 8.

Finally, we wanted to investigate the main factors that determine the stability of long- versus
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short-axis polarisation. As the essential novel feature of a three-dimensional cell geometry is the

length of the interface between the PAR domains, we speculated that an additional mechanism

relevant for axis polarisation is the minimisation of the interface length. To test this hypothesis, we

performed FEM simulations in different prolate and oblate geometries ; see Supplementary Notes 5

and Supplementary Figures 4 to 6 , and Supplementary Movies 6 to 8 (M3d 3 to M3d 5) . We find

that (for a given set of model parameters) the local diffusive protein fluxes from the cytosol to the

membrane at the aPAR-pPAR interface are the same for short- and long-axis polarisation. Hence,

the corresponding total fluxes scale with the length of the interface (see also Supplementary Note

6). This suggests that the mechanism responsible for long-axis stability is minimisation of protein

fluxes. As a consequence, the transition times Ttrans from short- to long-axis polarisation should

also decrease with larger cytosolic protein fluxes as the maintenance of a larger interfaces becomes

more costly. Indeed, FEM simulations show that changing the cytosolic diffusion constant leads to

an increase in the associated cytosolic fluxes (see Supplementary Note 7 and Supplementary Figs. 7

and 8), and concomitantly to a significant decrease in the transition times Ttrans (Fig. 6 C,D). Taken

together, this shows that it is the interplay between membrane-to-bulk ratio and interface length

minimisation due to flux (energy) minimisation that drives the selection of the polarisation axis

and determines stability and robustness of this selection process.

Discussion

Here, we have addressed two linked questions concerning cell polarity in C. elegans: Under what

conditions do cells polarise, and what determines the polarisation axis?
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Polarisation in C. elegans is controlled by several mechanisms and their interplay: an initial

polarisation cue of the centrosome, contraction of the actomyosin network and the PAR reaction-

diffusion system which leads to polarisation in a self-organised manner but also interacts with the

centrosome as well as with the actomyosin network. Recent research has further revealed some

redundant pathways for the reaction-diffusion system depending on other proteins such as CHIN-

1, LGL-1 and Cdc42 11, 17, 39, 40. In view of this complexity, it is constructive to disentangle all

individual building blocks, mechanical as well as kinetic, and investigate each separately in order

to properly identify the underlying mechanisms which (i) leads to polarisation and (ii) aligns it

with the long axis. With our work we could now shed light on polarisation and its alignment by

the PAR reaction-diffusion system in 2d and in 3d. We expect the insights gained to be essential

elements for a future three-dimensional model which combines the reaction-diffusion system with

mechanical effects to quantitatively understand pattern formation in the C. elegans embryo.

Previous experiments supported by mathematical models in simplified cell geometry have

indicated that balance between mutual phosphorylation of aPAR and pPAR proteins is a key mech-

anism responsible for cell polarisation 9, 15, 16, 41. Our theoretical results in realistic cell geometry

support this finding. In addition, we have shown that robustness of cell polarity to variations in

the phosphorylation rates increases if the scaffold protein PAR-3 is more abundant than PKC-3,

which phosphorylates pPARs. Hence, low scaffold abundance is incompatible with robust bio-

logical function. This agrees with experimental findings that the scaffold function of PAR-3 is at

least partially supported by other proteins (e.g. Cdc-42 33). Our results suggest that it would be

worthwhile to experimentally search for other scaffold proteins and test their functional roles in
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axis selection.

Most importantly, our theoretical analysis in realistic cell geometry reveals that the key pro-

cesses for axis selection are cytosolic, specifically the cytosolic diffusion and an inactive (phos-

phorylated) phase of PAR-3 and PAR-2 after detachment from the membrane. The reactivation

time (λ−1) implies a cytosolic reactivation length `=
√
Dcyt/λ which defines a cytosolic zone of

inactive proteins close to the membrane. Proteins with a short reactivation length remain partially

caged at the cell poles after membrane detachment, while those with a large reactivation length

are uncaged and thereby become uniformly distributed in the cytosol before rebinding. Similarly,

proteins lacking a delay, like the PAR-6 PKC-3 complex, are available for rebinding immediately

after detachment from the membrane and are thus strongly caged to the cell poles.

Our theoretical analysis in a two-dimensional elliptical geometry shows that only for a suf-

ficiently large cytosolic reactivation length ` does the long axis become the preferred polarisation

axis, at onset as well as for the steady state. For the onset of polarisation, starting from a spatially

homogeneous protein distribution, this result is fully transferable to a three-dimensional prolate

spheroid. However, in such a realistic cell geometry, the length of the aPAR-pPAR interface also

becomes important for the stability of the polarisation axis. Our simulation results suggest an (ap-

proximate) extremal principle: The dynamics tries to minimise the interface length such that for

physiologically relevant geometries the long axis is always stable. Initial metastable short-axis

polarisation is observed if the reactivation length ` is small (fast reactivation) such that proteins

exhibit caging at the polar zones. In that regime, the transition times from short-axis to long-axis
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polarisation can be of the order of several hours. In contrast, if `/L ' 0.3 this time can be as short

as 10min. This implies that without guiding cues the reaction-diffusion system requires a suffi-

ciently slow phosphorylation-dephosphorylation cycle and a sufficiently large diffusion constant

for fast and robust long-axis polarisation.

Furthermore, how slow reactivation and how fast cytosolic diffusion need to be in order to

efficiently and robustly establish and maintain long-axis polarisation depends on the ratio of PAR-

3 proteins to the PAR-6 PKC-3 complex: a larger cytosolic pool of PAR-3 attenuates the effect of

selecting the interface at midplane and at the same time strengthens the tendency of PKC-3 to put

the interface at the poles. Hence we predict that increasing the number of PAR-3 should destabilise

long-axis polarisation in favour of short-axis polarisation.

On a broader perspective, these results show that selection of a characteristic wavelength

for a pattern and selection of a polarity axis are distinct phenomena and are, in general, mediated

by different underlying mechanisms. We expect the following findings to be generic for mass-

conserved intracellular protein systems: local membrane-to-bulk ratio and the length of interfaces

between different protein domains act as geometric cues for protein pattern formation, and an

activation-deactivation as well as cytosolic protein reservoirs alter the sensitivity to cell geometry.

Identifying the biochemical steps that are most relevant for axis selection in other intracellular

pattern forming systems is an important theme for future research.
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Methods

Model First we introduce and discuss the mathematical formulation and analysis of the reaction-

-diffusion model for PAR protein dynamics. To account for a realistic cell geometry we use,

similar as in previous studies of the Min system23, a two-dimensional elliptical geometry where

the boundary of the ellipse (∂Ω) represents the membrane and the interior (Ω) represents the cy-

tosol. Attachment-detachment processes are encoded by nonlinear reactive boundary conditions as

introduced in Ref.23. Protein interactions are assumed to be bimolecular reactions that follow mass-

-action law kinetics. In the following a species identifies a mass- conserved protein type, whereas

a component indicates the subgroup of proteins in a specific state, such as e.g. ‘phosphorlyated’

(‘inactive’) or ’membrane bound’.

Cytosolic dynamics Proteins in the cytosol are all assumed to diffuse with the same diffusion

constant, Dcyt = 30µm2s−1 (see also Table 1). In addition, we consider dephosphorylation (re-

activation) of phosphorylated proteins with an activation (dephosphorylation) rate λ = 0.05/s (see

also Table 1). The cytosolic concentration of each protein type X is denoted by cX in its active

form and by cX∗ in its inactive form (if applicable). The dynamics of the bulk components are thus

given by the following set of reaction-diffusion equations:
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∂tcA1
= Dcyt∇2cA1

+ λ cA∗
1
, (3)

∂tcA∗
1

= Dcyt∇2cA∗
1
− λ cA∗

1
, (4)

∂tcA2
= Dcyt∇2cA2

, (5)

∂tcP = Dcyt∇2cP + λ cP ∗ , (6)

∂tcP ∗ = Dcyt∇2cP ∗ − λ cP ∗ , (7)

where ∇2 is the Laplacian in the two-dimensional bulk.

Membrane dynamics On the membrane all species are assumed to diffuse with the respective

diffusion constant, Da
mem = 0.28µm2s−1 and Dp

mem = 0.15µm2s−1 for aPARs and pPARs (see also

Table 1). WithmX we denote the membrane-bound concentration of proteinX . Then, the bimolec-

ular reactions discussed above (see Fig. 1) translate into the following set of reaction-diffusion

equations:

∂tmA1
= Da

mem∇2
||mA1

+ kon
a cA1

− koff
a mA1

− kAp mP mA1
− kd mA1

cA2
, (8)

∂tmA12
= Da

mem∇2
||mA12

− koff
a mA12

+ kd mA1
cA2
− kAp mP mA12

, (9)

∂tmP = Dp
mem∇2

||mP + kon
p cP − koff

p mP − kPa mA12
mP , (10)

where ∇2
|| is the Laplacian operator on the boundary ∂Ω, i.e. on the membrane.

Reactive boundary conditions The membrane dynamics and cytosolic dynamics are coupled

through reactive boundary conditions. These describe the balance between diffusive fluxes (Dcyt∇⊥
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acting on cytosolic concentration) and attachment and detachment processes between membrane

and cytosol:

Dcyt∇⊥cA1
= koff

a

(
mA1

+mA12

)
− kon

a cA1
(11)

Dcyt∇⊥cA2
=
(
kApmP + koff

a

)
mA12

− kd cA2
mA1

(12)

Dcyt∇⊥cP = koff
p mP − kon

p cP (13)

Dcyt∇⊥cA∗
1

= kAp mP

(
mA1

+mA12

)
(14)

Dcyt∇⊥cP ∗ = kPa mPmA12
(15)

where ∇⊥ is the Nabla operator perpendicular to the boundary, such that Dcyt∇⊥ is the flux

operator between cytosol and membrane.

Mass conservation On the time scale of establishment and maintenance of polarisation in C.

elegans, PAR protein production and degradation are negligible. Hence, the total number NX of

each protein species X ∈ {A1, A2, P} is conserved. It can be obtained by integrating the average

densities over the whole space or by integrating the space-dependent cytoplasmic concentrations

and membrane concentrations over Ω and ∂Ω, respectively:

NA1 =

∫

Ω

ρA1
=

∫

Ω

(
cA1

+ cA∗
1

)
+

∫

∂Ω

(
mA1

+mA12

)
, (16)

NA2 =

∫

Ω

ρA2
=

∫

Ω

cA2
+

∫

∂Ω

mA12
, (17)

NP =

∫

Ω

ρP =

∫

Ω

(
cP + cP ∗

)
+

∫

∂Ω

mP , (18)

where
∫

Ω
and

∫
∂Ω

denote integrals over the interior and the boundary of the ellipsoid, respectively.
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Linear Stability Analysis In the following we outline the main steps required to perform a linear

stability analysis (LSA) in elliptical geometry, emphasising the major differences relative to the

well known stability analysis in planar system geometries with no bulk-boundary coupling (see

e.g. a didactic derivation of linear stability analysis written by Cross and Greenside42). A detailed

derivation of LSA in elliptical geometry can be found in the Supplementary Information of Halatek

et al.23.

Reaction-diffusion equations in elliptical geometry A LSA yields the initial dynamics of a sys-

tem perturbed from any of its steady states. In the context of pattern formation in reaction-diffusion

systems this is typically a uniform steady state. The eigenfunctions of the linearised system (around

the steady state) serve as an orthogonal basis in which any perturbation can be expressed. In planar

systems these are simply Fourier modes, e.g. ∼ cos(qx) with spatial variable x and wavenum-

ber q, where q is chosen such that boundary conditions are satisfied. The LSA then yields the

temporal eigenvalues σq (growth rates) for each wavenumber that express exponential growth or

decay, and possible oscillation (if the imaginary part =[σq] 6= 0) of the respective eigenfunction

exp(σqt) cos(qx). Hence, the main objective is (i) to derive the eigenfunctions for the linearised

system in the corresponding geometry, and (ii) to calculate the associated growth rates (real parts

<[σq]), where positive growth rates signify formation of patterns with wavelength ∼ 1/q.

For reaction-diffusion systems with bulk-boundary coupling in elliptical geometry there are three

major complications with this approach.
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Due to bulk-boundary coupling, we are faced with two separate sets of reaction–diffusion equa-

tions. One set is defined in the bulk and accounts for the dynamics in the cytosol. Here reactions

are assumed to be linear (first order kinetics) and typically account for nucleotide exchange or (de-

)phosphorylation, Eq. (3) – Eq. (7). The second set is defined on the boundary and accounts for the

dynamics on the membrane (or cell cortex) including diffusion and reaction, Eq. (8) – Eq. (10).

The first complication arises as follows: Given orthogonal elliptical coordinates

x = d coshµ cos ν , (19)

y = d sinhµ sin ν , (20)

with ‘radial’ variable µ> 0, ‘angular’ variable 0≤ ν < 2π, and elliptical eccentricity d=
√
a2 − b2

(with long half-axis a and short half-axis b), the diffusion operator in the bulk Dcyt∇2 reads:

Dcyt
1

d2(sinh2 µ+ sin2 ν)
(∂2
µ + ∂2

ν) . (21)

On the boundary the diffusion operator Dmem∇2
|| acts along constant µ = µ0 = arctan(b/a) and

reads:

Dmem

(
− cos ν sin ν

d (sinh2 µ0 + sin2 ν)3/2
∂ν +

1

d2 (sinh2 µ0 + sin2 ν)
∂2
ν

)
. (22)

Due to these different diffusion operators the sets of reaction–diffusion equations in the bulk and

on the boundary do not share the same set of canonical eigenfunctions (i.e. eigenfunction obtained

from separation of variables). To overcome this problem the diffusion on the membrane can be

more conveniently expressed in arclength parametrisation s(ν):

s(ν) =

∫ ν

0

dν̃
√
b2 + (a2− b2) sin2 ν̃ . (23)
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Then, the diffusion operator Dmem∇2
|| simplifies to Dmem∂

2
s , and the eigenfunctions are obtained as

Ψmem
e,n (µ0, s (ν)) = cos

(
2πn

S
s (ν)

)
, (24)

Ψmem
o,n (µ0, s (ν)) = sin

(
2πn

S
s (ν)

)
, (25)

with the circumference of the ellipse S= 2π s. The goal is then to express these functions in terms

of the orthogonal eigenfunctions of the bulk problem — the Mathieu functions, here denoted by

Ψ(ν) and R(µ) — which are obtained as solutions of the Mathieu equations:

0 = ∂2
νΨ(ν) +

[
α− 2q · cos(2ν)

]
Ψ(ν) (26)

0 = ∂2
µR(µ)−

[
α− 2q · cosh(2µ)

]
R(µ) . (27)

Here α is a constant of separation, and

q = − (σ+λ)
d2

4Dcyt
(28)

denotes a dimensionless parameter (not to be confused with a wavenumber!). For small q, analyt-

ical approximations of the Mathieu functions can be obtained ?, ?, 23 and matched with the eigen-

functions Ψmem
e,n and Ψmem

o,n at the boundary µ = µ0.

The second complication is a consequence of the coupling between bulk and boundary processes

through the reactive boundary condition, see e.g. the model equations Eq. (11) – Eq. (15). This

coupling introduces an explicit dependence of the linearised system on the (derivative of the) radial

eigenfunctions R(µ) (see Ref.23), which, in turn, depends on the temporal eigenvalues σ in a non-

algebraic fashion. Usually, the final step in any LSA is the solution of a characteristic equation
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0 = f(σ), which is typically polynomial in σ. Due to the bulk-boundary coupling this is no longer

the case (irrespective of the geometry, see e.g. Ref.26; the characteristic equation is transcendental

and can only be solved numerically for each parameter combination 23. Therefore, it is not possible

to derive a general stability criterion analogous to that known for planar systems without bulk-

boundary coupling 42. We further note that the boundary condition introduces a coupling between

the angular eigenfunctions Ψ(ν), which, however, is small and can be neglected 23.

The final complication arrises as consequence of the cytosolic reactivation cycle. This cycle

generically precludes the existence of a uniform steady state (including states uniform along the

boundary). The origin of this symmetry adaption process has been discussed in Ref.24. Following

Ref.23 we approximate the near-uniform steady state with the eigenfunction that is constant along

the boundary, i.e. Ψmem
e,0 (µ0, s (ν)). In this case nonlinearities (which are restricted to the boundary)

do not induce mode coupling, which would otherwise complicate the LSA.

Finite Element Simulations (FEM) Linear stability analysis can only predict the onset of pat-

tern formation. In order to understand the full nonlinear protein dynamics and to determine the

steady states corresponding to given parameter sets we further performed finite element (FEM)

simulations on a triangular mesh using Comsol Multiphysics 5.1 - 5.4 (updating versions).

Setup for FEM simulations As time-dependent solver in Comsol Multiphysics we chose PAR-

DISO with a multithreaded nested dissection. The time stepping was performed with a relative

tolerance of 10−6 between time steps and solved with a multistep method (BDF). In all simulations

we used triangular meshing (setting ‘finer’) with additional refinement at the boundary, i.e. along
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the membrane. As for the linear stability analysis, if not specified otherwise, the parameters for

the FEM simulations can be found in Table 1. For the standard parameter sets given in Table 1, we

ran the simulation up to 5 · 106s. Since the system reached the steady state for most parameter sets

at the latest after 5 · 105s, we limited simulation times for large parameter sweeps at 106s.

The critical reactivation rate The 2d FEM sweep of λ versus Dcyt was initialised with a random

initial perturbation of the stationary state with high aPAR concentration on the membrane. The

initial perturbation was implemented by drawing a random number rand(x, y) from a normal dis-

tribution with zero mean and unit variance and multiplying the membrane concentration of aPARs

by (1 + 0.01 · rand(x, y)) and that of pPARs by (1− 0.01 · rand(x, y)), i.e. we perturbed the ini-

tial condition randomly by 1%. The parameter sweep was performed varying λ from 5 · 10−3 s−1

to 0.3 s−1 in steps of 5 · 10−3 s−1 and varying Dcyt from 6µm2s−1 to 40µm2s−1 with a uniform

spacing of 2µm2s−1.

We further performed two test simulations (sweeping λ and Dcyt) which were initialised

with linear gradients. These implementations were intended to uncover dependencies of the final

pattern on the initial perturbation. In the first sweep, the gradient was oriented along the long-axis,

i.e. the aPAR concentrations were multiplied by (1 + 0.1 · x/a) and the pPAR concentrations by

(1− 0.1 · x/a). In the second sweep the gradient was oriented along the short-axis, i.e. the aPAR

concentrations were multiplied by (1 + 0.1·y/b) and the pPAR concentrations by (1−0.1·y/b). We

found that the steady state polarisation was the same as with small random perturbations. Initial

linear gradients with the ‘wrong? alignment only lead to a transient polarisation along the same

axis as the initially imposed gradient but then turned to the same polarisation axis as with the
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random initial perturbation.

Furthermore, we checked the linear stability analysis sweeps on kAp and kPa in Fig. 4 using

FEM simulations. The explicit parameter sets kAp and kPa used for probing FEM simulations are

shown in Tables 2 and 3. 2d FEM simulations confirm that there λ is the decisive parameter that

determines the polarisation axis and not kAp and kPa.

In order to find `∗/L in steady state for different combinations of density ratios shown in

Fig. 5, we performed FEM sweeps of kPa (for fixed kAp = 0.4µms−1) and λ (for fixedDcyt = 30µm2s−1)

at first in broad steps (the steps for λ were initiated with 5 · 10−3 s−1 and those for kPa with

0.2µms−1). As soon as we identified a regime of parameters for `∗/L where long-axis polari-

sation turned to short-axis polarisation, we used finer steps, with the step size being chosen in

accordance with the cone size of each of the kPa/kAp versus `∗/L cones in Fig. 5.

FEM simulations for 3d system In 3d FEM simulations for all sweeps were initiated with an

initial aPAR-dominant concentration on the membrane and 1% random perturbation thereof. All

parameters are shown in Table 4. For the sweep of λ versus Dcyt resulting in the data discussed in

the main text and Fig. 6 the parameter range was set to Dcyt = 2−32µm2s−1 in steps of 2µm2s−1,

and reactivation rate λ= 0.03 − 0.3 s−1 in steps of 0.03 s−1. The full region of the formation of

any pattern can be found by using the feature that the absolute value of membrane gradients is zero

for a homogeneous distribution on the membrane and a positive number for inhomogeneous (pat-

terned) protein distributions on the membrane. To distinguish between long and short axis patterns

the FEM simulations were analysed by investigating (i) the angle of the concentration maxima
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on the membrane in ellipsoidal coordinates (which is 90◦ for perfect short axis polarisation and

0/180◦ for perfect long axis polarisation) and additionally (ii) the distance between the concen-

tration maximum of P and A1 on the membrane (which is 2·a= 54µm for long axis polarisation

and 2·b= 30µm for short axis polarisation). For a final check, the pattern dynamics was sampled

by eye to ensure that these criteria work. In order to numerically investigate the onset of long

axis polarisation - which is very sensitive to λ - a finer sweep was additionally performed with

Dcyt = 2− 32µm2s−1 in steps of 2µm2s−1, and reactivation rate λ= 0.015− 0.01 s−1 in steps of

0.005 s−1. To find the boundary for a polarity onset with long axis alignment we filtered for a short

axis and a diagonal onset.

Data availability Data supporting the findings of this manuscript are available from the corresponding

authors upon reasonable request. A reporting summary for this Article is available as a Supplementary

Information file.

Code availability Custom written codes used in this study are available from the corresponding author

upon reasonable request.
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Figure 1: Biological background and model network (A) Cell polarisation in the C. elegans

embryo during the establishment (top) and maintenance (bottom) phases; sketch adapted from

Ref.5. (B) Illustration of protein flux between cytosol and membrane. As proteins detach from

the membrane when phosphorylated, they cannot immediately rebind to the membrane. There

is therefore an intrinsic delay before dephosphorylation permits rebinding. (C) The biochemical

reaction network is comprised of two mutually antagonistic sets of proteins, aPARs and pPARs.

Dephosphorylated (active) A1 and P attach to the membrane with rates kon
a and kon

p , respectively.

Both active proteins may also detach spontaneously from the membrane with rates koff
a and koff

p ,

respectively. A1 acts as a scaffold protein: Once bound to the membrane it recruits A2 with rate

kd and forms a membrane-bound hetero-dimeric aPAR complex A12. The hetero-dimer A12 may
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itself spontaneously detach from the membrane with rate koff
a and dissociate into A2 and active A1.

Membrane-bound A1 and A12 can also be phosphorylated by P with rate kAp[P ], thereby initiating

dissociation of the aPAR complex and release of aPAR proteins into the cytosol. While reattach-

ment of the scaffold protein A1 is delayed by the requirement for dephosphorylation (reactivation),

detached A2 can be recruited to the membrane by membrane-bound A1 immediately. Similarly, P

is phosphorylated by the hetero-dimer A12 at rate kPa[A12], and is consequently released as inactive

P into the cytosol. In the same way as A1, also P must be dephosphorylated before it can bind

again to the membrane. For simplicity, we take identical dephosphorylation (reactivation) rates λ

for inactive A1 and P . The ensuing reaction-diffusion equations are provided in the Method sec-

tion and a table listing the values of the rate constants can be found in 1. (D) Sketch of the cell’s

geometry: Prolate spheroid with long axis a and short axis b, and with short- (left) and long-axis

(right) polarisation.
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Figure 2: Role of dephosphorylation in axis determination. (A, B, and D): A protein is shown

in the elliptical cell firstly at its phosphorylation and detachment site on the membrane and then

at the point of its reactivation. The reactivation length gives an average radius (gray circles) how

far from the detachment point a protein travels before reactivation. The orange circles around

the reactivated protein and the associated arrows sketch some diffusion distance corresponding to

a time interval ∆t following reactivation, i.e. during this time interval the protein can reattach

to the membrane. (A) If the reactivation length ` (radius of gray circle) is small compared to

the cell size, the local membrane surface to cytosolic volume ratio strongly affects the position

at which detached proteins reattach. Due to the reactivation occurring close to the membrane,

within some time interval ∆t following reactivation a protein that detaches from a cell pole is

more likely to reattach near that same cell pole than a protein detaching from mid-cell is to reattach

at mid-cell. Hence, dynamics that are based on membrane-cytosol cycling (such as antagonistic
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reactions that maintain an interface) are enhanced at the cell poles. (B) As the reactivation length `

approaches the length of the cell, this effect of geometry becomes weaker, and detaching proteins

become increasingly unconstrained by the position of detachment (uncaged). (C) Illustration of

the distribution of cytosolic bulk proteins along the long-axis. The elliptical cell and the cytosol

height is depicted as a function of x, where the x-axis aligns with the long axis (top). The amount

of cytosolic bulk proteins for each x varies from the poles to mid-cell as illustrated (bottom). (D)

This effect of cell geometry is completely lost if the reactivation length ` exceeds the length of the

cell. Hence, detached proteins become uniformly distributed throughout the cell before reactivation

occurs. In that case, most will re-encounter the membrane near mid-cell after reactivation, since a

delocalised protein will most likely be found in the mid-cell area.
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Figure 3:

Figure 3: Mode selection and polarity. (A) Illustration of the protein distribution on the mem-

brane and the ensuing polarity axis for the lowest-order even and odd modes. (B) Illustration of the

mode spectrum for these lowest-order modes and the gap δσ in the growth rates between the first

even and odd modes. (C) Relative difference in the growth rates of the first even and odd modes

(linear stability analysis in colour code with dashed threshold lines δσ = 0s−1, δσ = ±0.1s−1),

δσ, as a function of Dcyt and λ. For small λ and large Dcyt, δσ is clearly greater than zero (red,

long-axis polarisation), whereas for large λ and small Dcyt, δσ lies below zero (blue, short-axis

polarisation). These findings are validated using FEM simulations. FEM sweeps in Dcyt and λ

were run until the steady state was reached. These simulations yielded a straight-line interface

(black-solid line in (C)) in the λ-Dcyt parameter space which divides long- (above) from short-

axis (below) polarisation in steady state. The line corresponds to a constant threshold reactivation

length `?. All other parameters can be found in Table 1.
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Figure 4:

Figure 4: Role of phosphorylation rates in polarisation and axis selection. Linear stability

analysis shows that spontaneous polarisation is possible only within a range of ratios of the phos-

phorylation rates, kPa/kAp (cone-shaped regions): The relative difference in the growth rates of

even and odd modes (δσ) is shown in (A) for λ= 0.3 s−1, and (B) for λ= 0.05 s−1 in colour code

(indicated in the graph). Panels (C) and (D) show the corresponding cytosolic concentration of

A1 in the aPAR dominant unpolarised state (A2 has a quantitatively similar concentration gradient

to A1 within the cone, not shown), normalised with respect to the maximal concentration of A1

obtained within the respective cone. Cartoons at the bottom of the figure schematically depict the

cytosolic distribution of aPARs throughout the cell.
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Figure 5: Relative protein numbers determine robustness of cell polarity. Linear stability

analysis for a range of density ratios [P ]/[A2] and [A1]/[A2]; [A2] was kept constant. Each graph

shows the range of phosphorylation ratios (kPa/kAp) and relative reactivation lengths (`/L) where

the base state is linearly unstable, with δσ given by the same colour code as in Fig. 4A; fixed

parameters are kAp = 0.4µm s−1 and Dcyt = 30µm2s−1, and further parameters not varied can be

found in Table 1. FEM parameter sweeps of kPa and λ, with fixed parameters kAp = 0.4µm s−1

andDcyt = 30µm2s−1, for each density set show that the steady state polarisation axis also depends

strongly on the ratio [A1]/[A2]. The steady state switches from short- to long-axis polarisation at

the black line in each graph, indicating `?.
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Figure 6:

Figure 6: Cell polarisation in three dimensions. (A) Image series from FEM (Comsol) simu-

lation for Dcyt = 6µm2s−1, and reactivation rate λ= 0.21 s−1. The series illustrates the different

times which are further analysed: The time from the initial aPAR-dominated unpolarised state

to the initial short-axis polarisation, Tinitial; the time duration of persistent short-axis polarisation,

Tpers; and the time the pattern takes to turn from short- to long-axis polarisation, Ttrans. (B) The

angle Θ of the concentration maximum of membrane-bound A1 is plotted against simulation time

for different Dcyt indicated in the graph. (C) Tinitial, Tpers, Ttrans plotted as a function of Dcyt for

λ= 0.09 s−1 and λ= 0.3 s−1. (D) The magnitude of the transition time from short- to long-axis

polarisation, Ttrans, in Dcyt-λ parameter space; a cell was considered to be polarised along the short

axis if 90◦−10◦≤Θ≤ 90◦+10◦. The monochrome cyan-coloured region above the gray line cor-

responds to a parameter region where there is no short-axis polarisation, but the polarisation axis is

aligned along the diagonal or long axis from the beginning. The dashed lines demarcate parameter

regimes where the initial polarisation is aligned perfectly with the short axis (Θ = 90◦) or with the

long-axis, as indicated in the graph.
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Parameters: a[µm] b[µm] Dcyt[µm
2s−1] kon

a/p[µms
−1] koff

a/p[ s
−1] kAp[µms

−1] kPa[µms
−1]

27 15 30 0.1 0.005 0.4 1.2

Parameters: kd[µm
2s−1] Da

mem[µm
2s−1] Dp

mem[µm
2s−1] λ[ s−1] ρA1

[µm−2] ρA2
[µm−2] ρP [µm

−2]

0.034 0.28 0.15 0.3 8.0 2.5 8.0

Table 1: Parameters used to create Fig. 3-5.

Fig. 3: For the sweep using linear stability analysis in Fig. 3 C all parameters but λ and

Dcyt were chosen as shown in this Table. λ was varied between 5 · 10−3 s−1 and 0.35 s−1

with a uniform spacing of 5 · 10−3 s−1. Dcyt was varied from 6µm2s−1 to 38µm2s−1 with a

uniform spacing of 2µm2s−1. Fig. 4: For the linear stability analysis sweep in Fig. 4 A,B

all parameters but λ and kAp and kPa were chosen as above. kAp was varied between

0.02µms−1 and 0.8µms−1 and kPa was varied between 0.06µms−1 and 1.6µms−1; for both

parameters values were uniformly spaced with distance 0.02µms−1. Fig. 5: For the linear

stability analysis sweeps in Fig. 5 all parameters but the densities ρA1
, ρA2

and ρP , λ and

kAp were set as shown above. For all triples of densities ρA2
= [µm−2] while ρA1

and ρP

were varied accordingly. The simultaneous sweep of ` and kPa/kAp was obtained by vary-

ing λ and kPa for fixed Dcyt = 30µm2s−1 and kAp = 0.4µms−1.The values of ` were uniformly

spaced from 2µm to 62µm with distance 2µm. The ratio kPa/kAp was varied from 0.7 to 8.0

with uniform steps of 0.05.
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kAp kPa steady state onset

0.44 1.68 no pattern no pattern

0.46 1.62 no pattern no pattern

0.48 1.56 no pattern no pattern

0.5 1.5 short-axis polarisation short-axis

0.52 1.44 short-axis polarisation short-axis

0.54 1.38 short-axis polarisation short-axis

0.56 1.32 short-axis polarisation long-axis

0.58 1.26 short-axis polarisation long-axis

0.6 1.2 no pattern no pattern

Table 2: FEM sample sweeps of kAp, kPa with small initial perturbation (1%) for λ= 0.3s−1.

kAp kPa steady state onset

0.44 1.68 no pattern no pattern

0.46 1.62 no pattern no pattern

0.48 1.56 no pattern no pattern

0.5 1.5 long-axis polarisation long-axis

0.52 1.44 long-axis polarisation long-axis

0.54 1.38 long-axis polarisation short-axis

0.56 1.32 long-axis polarisation short-axis

0.58 1.26 long-axis polarisation short-axis

0.6 1.2 no pattern no pattern

Table 3: FEM sample sweeps of kAp, kPa with small initial perturbation (1%) for λ= 0.05s−1
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Parameters: a[µm] b[µm] Dcyt[µm
2s−1] kon

a/p[µms
−1] koff

a/p[ s
−1] kAp[µm

2s−1] kPa[µm
2s−1]

27 15 30 0.1 0.005 0.4 1.2

Parameters: kd[µm
3s−1] Da

mem[µm
2s−1] Dp

mem[µm
2s−1] λ[ s−1] ρA1

[µm−3] ρA2
[µm−3] ρP [µm

−3]

0.034 0.28 0.15 0.3 8.0 2.5 8.0

Table 4: Parameters for three-dimensional FEM simulations. For the sweeps shown in

Fig. 6 all parameters but λ and Dcyt were chosen as shown in this Table. λ was varied

between 3 ·10−2 s−1 and 0.3 s−1 with a uniform spacing of 3 ·10−2 s−1. Dcyt was varied from

2µm2s−1 to 32µm2s−1 with a uniform spacing of 2µm2s−1.
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SUPPLEMENTARY NOTES

Following the structure of the main text, Supplementary Note 1 discusses further aspects

of cell polarisation in two-dimensional elliptical geometry using finite element simulations:

excitable region in parameter space, and time evolution of the polarisation axis. Supplemen-

tary Note 2 summarises experimental information on protein numbers. In Supplementary

Note 3 we show why it is not sufficient to use a planar geometry in order to learn about the

selection of the polarisation axis. The membrane-to-bulk ratio in two-dimensional ellipti-

cal and three-dimensional ellipsoidal geometry is summarised in Supplementary Note 4. In

order to challenge the hypothesis of interface minimisation, in Supplementary Note 5 the

results on axis selection in oblate and prolate geometries are discussed. To understand the

relative role of the activation-deactivation cycle and interface minimisation an extensive set

of finite element simulations was performed and the results are discussed. Supplementary

Note 6 and 7 show that interface minimisation arises from flux minimisation. Finally, in

Supplementary Note 8 patterning time scales are provided and discussed.

Supplementary Note 1

Stimulus-induced polarisation and transient polarisation alignment. In the wild

type C. elegans embryo polarisation is established by an interplay between mechanical cues

(forces of the centrosome after male sperm entry and actomyosin contraction towards the

anterior) and the PAR reaction diffusion system. In the main text we focused on spontaneous

pattern formation facilitated by a Turing instability. Here, we investigate whether the

Turing instability is subcritical, i.e. whether patterns can be induced (stimulated) by large

perturbations outside the Turing unstable region, such as the fertilization event. To this

end, we performed FEM simulations that were initiated with linear concentration gradients

along the membrane as initial conditions. The gradient was chosen to favor selection of a

pattern aligned with the same polarisation axis as predicted by linear stability analysis.

Specifically, for λ = 1s−1 (fast reactivation) shown in Supplementary Figure 1(A) top

row, the gradient was chosen along the short axis, i.e. the aPAR concentrations were multi-

plied by (1 + y/b) and the pPAR concentrations by (1− y/b), where 2b is the length of the

short axis. For λ = 0.05s−1 (slow reactivation) shown in Supplementary Figure 1(B) top

row, the gradient was aligned along the long axis, i.e. the aPAR concentrations was multi-

plied with (1 +x/a) and the pPAR concentrations with (1−x/a), where 2a is the length of

the long axis. Indeed, in both cases we found a large parameter domain outside the regime of

spontaneous polarisation where pattern formation can be triggered by finite perturbations.

The specific sets (kAp, kPa) for which the system was tested for stimulus-induced pattern

formation are provided in the Tables 1, 2 and 3. In Supplementary Figure 1 we extrapolated

from this data to find an outer cone of the excitable region (dashed lines in the kAp-kPa

diagrams).

Furthermore, in the Turing unstable regime we tested alignment of polarisation when

the initial condition in the FEM simulation was chosen to select for the pattern orthogonal

to the polarisation axis predicted by linear stability analysis. For all sets of parameters
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Supplementary Figure 1. Testing the steady state polarity axis with initial gradients. (A,B) top

row: Investigation of excitable region. The cones show the results of a linear stability analysis in

the 2d ellipse as a function of kAp and kPa with the color code indicating the normalized difference

of the first even and odd growth rate, δσ (same color code as in Fig. 4 of the main text, i.e. even

mode grows faster: red, odd mode grows faster: blue, δσ ≈ 0s−1: gray). These Turing-unstable

regions are flanked by parameter regimes (bounded by dashed lines), where patterns can only

be induced by a large enough stimulus acting on the uniform state; we call this the excitable

region. Parameters as in Table 1 of the main text. (A,B) Middle and bottom row: Investigation

of polarisation re-alignment. The black lines indicate the interface position between aPAR and

pPAR domain. Shown are sample interface trajectories from FEM simulations for parameters at

the upper (star) and lower (hexagon) bound of the Turing-unstable regime. In contrast to the top

row of the Figure, here the FEM simulations were initialised with gradients aligned perpendicularly

to the predicted pattern orientation (gradients as above, but orthogonal to predicted polarisation

alignment, for mathematical definition see text). We find that the initial polarisation axis is aligned

with the initial gradient while the final pattern is dictated by the reactivation cycle. kAp and kPa
do not impact this qualitatively but only the transition time from one to the other polarisation

axis.

(kAp, kPa) which we tested we found that the final steady state was the same as the one

predicted by linear stability analysis (at the upper bound of (kPa, kAp) where δσ is deci-

sively above or below zero). However, a transiently lasting polarisation along the axis of

the initial gradient was observed (see Supplementary Figure 1 middle and bottom row).

In detail, for fast λ= s−1 the initial gradient is aligned with the long axis, i.e. the original



4

aPAR concentrations were multiplied with (1 +x/a) and the pPAR concentrations with

(1−x/a). Polarisation establishes along the long axis first (for both pairs of (kAp, kPa) in

Supplementary Figure 1, ”star” and ”hexagon”), and then transitions to align with the

short axis where it then finds its steady state. This turning of the polarisation axis starts

later for lower kPa/kAp ratios (compare Supplementary Figure 1, bottom row). For slow

λ= 0.05s−1 we find just the opposite behaviour: Initial short axis polarisation establishes

aligned with the gradient but then turns towards steady state long axis polarisation. The

time of turning again depends on the ratio kPa/kAp.

Supplementary Note 2

Total and relative protein numbers. For the PAR protein system in C. elegans,

many parameters have been measured including relative and total protein numbers, binding

and unbinding rates, and diffusion constants of proteins on the membrane [1–4]. However,

measurements of the PAR protein density were reported with a relatively large uncertainty;

according to the Supplementary Material in Ref. [1] with a relative error larger than 20%.

Most recent experiments report total PAR protein densities between 2 and 6 proteins per

µm3 if all proteins were evenly distributed in the cytosol (depending on the specific PAR

protein) [4]. We used the corresponding order of magnitude of total protein numbers (see

Table 1 of the main text) for our studies and further investigated relative abundances of

proteins (see the relative density variations [P ]/[A2] and [A1]/[A2] discussed in Section ”Ro-

bustness of polarisation as well as axis selection depend on the relative protein densities”)

and Fig. 5 in the main text).

Supplementary Note 3

Planar geometry: the characteristic lengthscale does not select the axis. Is it

possible to simplify the geometry of a cell in order to answer the question of axis selection for

cell polarisation? A heuristic argument in favor of a positive answer would be: Let’s simplify

to a planar geometry as illustrated in Fig 2 A, and perform a linear stability analysis. This

will yield a fastest growing mode at some characteristic wavelength. Intuitively, one may now

expect that in elliptical geometry those axis is selected which length fits this characteristic

wavelength best. Is this intuition correct?

To answer this question, we investigated the PAR model in planar geometry and compared

it with the results that we obtained in elliptical and ellipsoidal geometry (main text). The

linear stability analysis was performed in a rectangular two-dimensional geometry (x, z)

with variable width and fixed height h that matches the short half-axis b of the ellipsoidal

cell; see Supplementary Figure 2 A. The membrane is at the bottom, z= 0, where we

assume reactive boundary conditions. For symmetry reasons we assume no-flux boundary

conditions at z= b. The details of the linear stability analysis can be found in Ref. [5]. The
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Supplementary Figure 2. Linear stability analysis in planar geometry. (A) Illustration of a planar

geometry with membrane at the bottom, z= 0, and cytosol of height h= b. (B) Dispersion relations

in rectangular geometry for λ= 0.05 s−1 (left, long-axis selection in the ellipse) and λ= 1 s−1 (right,

short-axis selection in the ellipse), showing that the fastest growing mode depends sensitively

on kAp. The filled black circles highlight the length scales corresponding to long axis polarity

q=π/(2a) and short axis polarity q=π/(2b). Naively, the stability analysis in rectangular geometry

suggests that modes with large length scale (long axis polarity) are always preferred, contradicting

the correct results from the simulations and linear stability analysis in elliptical geometry.

numerical values of all parameters are unchanged (i.e. as in Table 1 in the main text), except

the attachment rates kon
a/p which we rescaled to 0.3µms−1] to recover the lateral (Turing)

instability of the unpolarised aPAR state. A parameter sweep of the phosphorylation rate

constant kAp for λ= 0.05 s−1 (long axis selection in the ellipse) and λ= 1 s−1 (short axis

selection in the ellipse) shows that the band of unstable modes and the fastest growing mode

(the mode which determines the characteristic length scale at onset) sensitively depend on

kAp but not on λ. Furthermore, we find that the fastest growing mode corresponds to a

characteristic length scale which is always longer than the short axis of the cell, 2b, and can

be tuned to fit the long axis, 2a (see also marks in the dispersion relation in Supplementary

Figure 2 B). Following the heuristic argument one would conclude that the long axis is

chosen for polarisation because it fits better into the cell. However, our results in the

main text demonstrate that axis selection in cellular geometry is determined by cytosolic

parameters such as λ and Dcyt, but effects by kAp are negligible. Hence, we conclude that

the characteristic length scale determined by linear stability in planar geometry does neither

inform about axis selection in elliptical nor ellipsoidal geometry.

We find that pattern alignment is a process which strongly depends on the distribution

of binding active proteins in the cytosol. For our model pattern alignment is not dictated

by the wavelength of a pattern but rather by the reactivation length `∗ and the topology of

the domain interfaces.
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Supplementary Figure 3. Membrane-to-bulk ratio for a two-dimensional (2d) ellipse and a three-

-dimensional (3d) prolate spheroid. (A) The overall membrane-to-bulk ratio (integrated over the

whole cell boundary) of a prolate spheroid is compared to that of an ellipse with the same minor

and major axes as a function of the aspect ratio a/b. (B) The local membrane-to-bulk ratio (as

defined in the main text of the supplement) of a prolate spheroid and an ellipse, both at the cell

poles and at midcell. The membrane-to-bulk ratio was calculated for some sample diffusion length

`D = 7.5µm.

Supplementary Note 4

Membrane-to-bulk ratio for ellipses and prolate spheroids. In the main text we

showed that the membrane-to-bulk ratio is a key factor for axis selection, especially during

the initial phase of pattern formation. How does this ratio depend on the dimensionality

of the system? Figure 3A compares the overall membrane-to-bulk ratio — the ratio of

area/circumference of the membrane to volume/area of the cytosol (‘bulk’) — for a two-

dimensional ellipse and a three-dimensional prolate spheroid (ellipsoid). One observes that

this ratio is in general larger for a prolate spheroid, and the surplus is increasing with the

aspect ratio a/b.

The local membrane-to-bulk ratio varies qualitatively in a similar fashion for the two-

and three-dimensional case: it is maximal at the poles and decreases monotonously towards

midcell where it reaches its minimum. In order to see this quantitatively we have calculated

the membrane-to-bulk ratio for a sample diffusion length (`D = 7.5µm) at the poles and at

midcell for an ellipse and a prolate spheroid; see Supplementary Figure 3B. To determine the

membrane-to-bulk ratio at the poles, we defined a sphere with the sample diffusion length

`D = 7.5µm as radius and center at the cell pole. Then we calculated the membrane region

of the ellipse (2d) or ellipsoid (3d) which lies within this sphere. This gives the membrane

part of the membrane-to-bulk ratio. The bulk part was calculated by the intersecting region

of the ellipse (2d) or ellipsoid (3d) with the sphere. Similarly, we defined the membrane

to bulk ratio at midcell with the help of a sphere with radius `D and center at the midcell

membrane. We find that quantitatively, the change in the local membrane-to-bulk ratio

from midcell to pole is more pronounced in a three-dimensional prolate spheroid than in a
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two-dimensional ellipse.

Supplementary Note 5

The role of interface length for the selection of the polarity axis. We argued

in the main text, that axis selection during cell polarisation is determined by an interplay

between two effects: The higher membrane-to-bulk ratio at the cell poles favors short-axis

selection for small enough reactivation lengths `. Otherwise, long-axis polarisation is favored.

This is confirmed by our studies for two-dimensional ellipses; see also Method Section The

critical reactivation rate to switch steady state polarity. On the other hand, we have argued in

the main text that there is a tendency of the dynamics to minimize the length of the interface

between aPAR and pPAR domains, which would always favor long-axis polarisation.

In this section we give a detailed account of FEM simulations Comsol Multiphysics 5.4 for

various three-dimensional ellipsoidal geometries including both prolate and oblate spheroids;

see Tables 4, 5. The goal is to clarify the relative role of the membrane-to-bulk ratio and

the interface length in the axis selection process.

a. Perimeter ratio for long- and short-axis polarisation in prolate and

oblate spheroid geometries. The interface length for short-axis polarisation, Lshort, and

long-axis polarisation, Llong are different for an ellipsoidal geometry. There is a difference

between prolate and oblate geometries insofar as the ratio of the interface length for long-

and short-axis polarisation, Llong/Lshort (short: perimeter ratio), differs; for an illustration

see Supplementary Figure 4.

a
b
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semi-major axis [μm]
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Supplementary Figure 4. Perimeter ratio for an oblate and a prolate spheroid. (A) Smooth

deformation of a sphere (top) to a prolate spheroid (bottom, left) or to an oblate spheroid (bottom,

right) with the same volume as the sphere. Note that for a prolate a = b < c while for an oblate

a = b > c. (B) The perimeter ratio, Llong/Lshort, as a function of the length of the semi-major axis

for an oblate (red curve) and a prolate spheroid (blue curve) with the same volume as a sphere of

radius R= 18.25µm
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We compare the perimeter ratio Llong/Lshort for three-dimensional ellipsoids of the same

volume. As our reference system we us a prolate spheroid with axes 15µm − 15µm −
27µm, i.e. a= b= 15µm (semi-minor axis) and c= 27µm (semi-major axis). This is the

same geometry that has been used to generate the results shown in the main text. The

volume of an ellipsoid is Vellipsoid = 4π
3
a2c, corresponding to a sphere of same volume with

radius R= (a2c)1/3 = 18.25µm. Note that in contrast to a prolate spheroid, for an oblate

spheroid a and c correspond to the semi-major and semi-minor axis, respectively; for an

illustration see Supplementary Figure 4A.

Figure 4B shows the perimeter ratio for prolate (blue) and oblate (red) spheroids as a

function of the semi-major axis (c for prolate and a for oblate). Due to spherical symmetry,

the perimeter ratio between long- and short-axis polarisation is equal to 1 for a sphere.

For small deviations from spherical geometry (semi-major axis comparable with the radius

of the sphere R= 18.25µm), the perimeter ratios in the prolate and oblate geometries are

nearly the same. For larger deviations, however, the perimeter ratio for a prolate geometry

becomes significantly smaller than for an oblate geometry. This difference suggests that

long-axis polarisation is more favourable for a prolate spheroid than for an oblate spheroid.

b. Axis selection for an oblate spheroid. As a representative example we ana-

lyzed pattern formation in an oblate spheroid with axes 35µm− 35µm− 13.2µm and the

same volume as a sphere with radius R= 18.25µm corresponding to a perimeter ratio of

0.72; note the smaller perimeter ratio 0.52 for a prolate spheroid with the same volume

and semi-major axis 35µm. We performed an extensive set of FEM simulations sweep-

ing both λ and Dcyt in a range between 0.01 s−1 − 0.3 s−1 (with step size 0.01 s−1) and

1.0µm2s−1 − 20µm2s−1 (with step size 1µm2s−1), respectively, and determined the steady

state solution of the reaction-diffusion model. Figure 5A shows a “phase diagram” indicat-

ing the parameter regimes where the polarisation axis is oriented along the long or short

axis or along some intermediate axis (diagonal). We find that there is indeed a parameter

regime where short-axis polarisation is stable, namely for Dcyt smaller than approximately

5µm2s−1 and independent of the value of λ. This suggests that weak cytosolic flows are

required for stable short-axis polarisation. Interestingly, there is no direct transition be-

tween stable short-axis and stable long-axis polarisation but an intermediary regime where

the stable polarisation axis is aligned at an intermediate orientation. This indicates a subtle

interplay between interface length minimisation and effects due to bulk-to-boundary ratios

in this region of the λ−Dcyt parameter space.

c. Axis selection for a prolate spheroid. We have just learned that for a large

perimeter ratio in an oblate spheroid one can find parameter regimes where short-axis

polarisation is stable. However, for the prolate spheroid with the same volume (axes

15µm − 15µm − 27µm) we only find metastable short-axis polarisation (see section three-

dimensional cell geometry and the role of interface length and Fig. 6 in the main text). We

hypothesize that this is due to the smaller perimeter ratio if compared to an oblate with the

same volume (see Supplementary Figure 4).

It is, however, not clear whether short-axis polarisation is always metastable in any prolate

spheroids. If the perimeter ratio is indeed an important factor, it should be possible to find
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Supplementary Figure 5. Axis selection for oblate and prolate spheroids. Stable polarisation axis

in steady state as obtained from FEM simulations for an oblate (A) and a prolate spheroid (B)

in the λ−Dcyt parameter space. For an oblate spheroid (A), we find that short-axis polarisation

is stable for small values of Dcyt (shaded cyan region) quite independent of the value for λ, while

long-axis polarisation is stable for sufficiently large Dcyt and small λ (shaded red region), similar to

our findings for two-dimensional ellipses (Fig. 3 in the main text). The transition from stable short-

axis polarisation to long-axis polarisation is not abrupt but there is an intermediary region where

the pattern aligns along the diagonal (shaded grey region). For a prolate spheroid (B), we find

similar results but for different parameter regimes. Long-axis polarisation is stable for sufficiently

large Dcyt (shaded red region), and the regime with diagonal polarisation is less pronounced. (C)

Typical steady state patterns as obtained from the corresponding parameter combinations in (A)

and (B) (red, grey, and cyan shaded area) shown for an oblate spheroid.

stable short-axis polarisation for a prolate spheroid that has a perimeter ratio comparable

with an oblate spheroid (as is the case for prolate spheroids that are almost spherical, cf.

Supplementary Figure 4B). To test this, we performed an extensive set of FEM simulations

for a prolate spheroid with axes 16.6µm − 16.6µm − 22µm, corresponding to a perimeter

ratio of 0.86; note that an oblate with the same volume and semi-major axis 22µm gives a

perimeter ratio of 0.88. We used parameter for λ and Dcyt ranging between 0.01s−1−1.0s−1

(with step size 0.01s−1) and 0.4µm2s−1 − 3µm2s−1 (with step size 0.2µm2s−1). Similar to

the oblate case we indeed find that short-axis polarisation can be stabilized for a small

parameter region in the λ − Dcyt space and that the two regions (stable long- and short-

-axis polarisation) are connected by a regime where the pattern aligns along the diagonal

(Supplementary Figure 5B). The parameter range for such an intermediate polarisation is,
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however, significantly smaller as for the oblate case.
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Supplementary Note 6

Minimisation of the average net cytosolic protein flux onto the membrane

explains interface minimisation. To shed more light on the observed interface min-

imisation in three-dimensional ellipsoidal geometries we analysed the net cytosolic protein

fluxes onto the membrane for the different pPAR and aPAR protein species:

J
(P)
net = Dcyt∇⊥cP +Dcyt∇⊥ cP ∗ = koff

p mP − kon
p cP + kPamP mA12 , (1)

J
(A1)
net = Dcyt∇⊥cA1 +Dcyt∇⊥cA∗

1

= koff
a (mA1 +mA12)− kon

a cA1 + kApmP (mA1 +mA12) , (2)

JA2
net = Dcyt∇⊥cA2 =

(
kApmP + koff

a

)
mA12 − kdcA2mA1 , (3)

see also in the Methods Section the paragraph on reactive boundary conditions.

Strikingly, we find that all of the local net protein fluxes J
(P/A1,2)
net remain constant as the

pattern rotates from short- to long-axis polarisation; as an example the pPAR flux is shown

in Supplementary Figure 6. Hence, one expects that the averages of the absolute values of

the net membrane fluxes integrated over the whole membrane area ∂Ω

J
(P/A1,2)

=

∫

∂Ω

|J (P/A1,2)
net | dS /

∫

∂Ω

dS (4)

are expected to be larger for short-axis polarisation than for long-axis polarisation, simply

due to the larger interface perimeter. This is indeed the case: for the pPAR flux shown

in Supplementary Figure 6, we find that the average absolute net flux ratio between long-

and short-axis polarisation is J
(P)

long/J
(P)

short = 0.66. This indicates that long-axis polarisation

is maintained by a smaller total protein flux and is therefore more favourable.

A B

J
net   [µm

-2 s
-1]

(P)

Supplementary Figure 6. Illustration of protein fluxes onto the membrane. (A) A snapshot of

the net flux J
(P)
net of pPAR proteins where the system is polarised in a metastable state (short-axis

polarisation) is shown. (B) A snapshot of the net flux J
(P)
net of pPAR proteins where the system

is polarised in a long-axis polarised is shown. The net flux of pPAR proteins along the interface

has the same local magnitude for the steady state with long-axis polarisation as for the metastable

short-axis polarisation. All parameters are set as in Table 6.
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Supplementary Note 7

Cytosolic fluxes depend on the cytosolic diffusion and dictate the transition

time from short to long axis polarisation. As discussed in the main text and shown

there in Fig. 6, the transition time from short- to long-axis polarisation (for a 3d prolate

spheroid) depends on both the reactivation rate λ and the cytosolic diffusion Dcyt. How-

ever, this dependence is not simply explained by the reactivation length ` alone, since our

results show that actually the dependence on the cytosolic diffusion constant Dcyt is deci-

sively stronger than that on λ. Because the transition from short- to long-axis polarisation

(interface minimisation) is driven by protein fluxes, we investigated the cytosolic protein

flux for different cytosolic diffusion constants Dcyt.

Figure 7A shows the magnitude of the cytosolic flux of species A1 after the steady state

(long-axis polarisation) has been reached. We defined the magnitude of the cytosolic flux as

its Euclidean norm:

||JA1|| = Dcyt ||
(
∂xcA1 , ∂ycA1 , ∂zcA1

)
|| . (5)

This flux decreases with increasing distance from the membrane. Moreover, the lower the

Supplementary Figure 7. Illustration of cytosolic fluxes. (A) The magnitudes of cytosolic fluxes

of species A1 for three different cytosolic diffusion constants (indicated in the graph) are shown

for three slices through the cytosol at x= 0µm and x=±18µm. The reactivation rate was set to

λ= 0.15s−1 and all other parameters were set as given in the main text table 4. (B) The overall

cytosolic flux (absolute value of flux integrated over the full cytosolic volume) is shown as a function

of the cytosolic diffusion constant.
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cytosolic diffusion the steeper are the flux gradients, i.e. the shorter is the penetration

depth of the flux from the membrane into the cytosol; the width of the red domains (at

midcell) in Supplementary Figure 7A decreases with lowering the diffusion constant from

Dcyt = 25µm2s−1 to 5µm2s−1. We also notice that the polar cytosolic region shows high

cytosolic fluxes on the pPAR-side of the cell, i.e. where the P domain is on the membrane.

In contrast, the cytosolic flux of A1 is very low (blue in Supplementary Figure 7A) in the

polar region where A1 builds the domain on the membrane. Figure 7B shows the magnitude

of the cytosolic flux of species A1 integrated over the whole cytosol (total flux)

||JA1||tot = Dcyt

∫

Ω

||(∂xcA1 , ∂ycA1 , ∂zcA1)|| (6)

as a function of the cytosolic diffusion constant. Clearly, with increasing cytosolic diffusion

constant, the overall cytosolic flux is increasing. Together with the observation that the

transition times become shorter with increasing cytosolic diffusion constant (see Fig. 6D in

the main text) this shows that there is a correlation between faster transition times and

higher cytosolic fluxes.

Supplementary Note 8

Time scales for the formation of cell polarisation. In order to determine the time

required for the formation of long-axis polarisation, we consider an idealised situation where

this is achieved by the PAR reaction-diffusion system alone. For the cell polarisation process

in C. elegans there is experimental evidence that the localisation of the centrosome as well as

the successive actomyosin contraction play an important role in polarity establishment and

support its alignment with the long axis ( [4, 6, 7]). However, how the PAR reaction-diffusion

system acts in concert with actomyosin contraction is not understood in realistic three-

-dimensional cell geometry. Previous work uses a simplified one-dimensional cell geometry

( [1, 4, 8]). Here, we focus (as a first and important step) on the reaction-diffusion pathway

alone disregarding any effects due to the PAR interaction with the centrosome or actomyosin

contraction and ensuing cytoplasmic flows. This way one can learn how robust and fast

reaction-diffusion dynamics on its own can establish long-axis polarisation and what the

relative role of other effects like cytoplasmic flow may be. In the actual C. elegans embryo

polarisation has to be stable along the long axis for ≈ 15 min until the first cell division.

Therefore, the time of a possibly existing short- axis polarisation and the transition to the

long axis is an important observable for the real system. Hence we ask: How fast is the long

axis selected as the stable polarisation axis driven solely by a reaction-diffusion dynamics?

We find that the time scales for the selection and maintenance of different polarisation

axes depend on the reactivation rate λ and the cytosolic diffusion Dcyt both in a two-

dimensional elliptical geometry and in an three-dimensional ellipsoidal geometry (see Fig. 6

in the main text and Supplementary Figure 8). Strikingly, the transition time from short to

long axis polarisation is extremely slow in 2d compared to 3d (≈ 1000 min in 2d compared to

≈ 100 min for 3d data: compare Supplementary Figure 8 with Fig.6 in the main text). The
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transition time from any transient polarisation pattern to a steady state long-axis polari-

sation pattern may be taken as a proxy for the expected typical time scales of polarisation

re-alignment in case of an initially non-aligned cue (e.g. this happens if the centrosome does

not localise at the poles initially). Hence, we conclude that for physiological parameters in

2d these times are far too long: a wrong alignment induced by cues or flows can not be

corrected by a mechanism based on reaction and diffusion alone. In contrast, our simula-

tions in 3d show that these transition times are short in a broad region of parameter space;

compare Supplementary Figure 8 with Fig. 6 in the main text. Therefore, we conclude, that

all geometry-sensitive mechanisms of the reaction-diffusion system, as well as the activation-

-deactivation cycle and interface minimisation, play an important role for cell polarisation

in C. elegans. Antagonism (of aPARs and pPARs) and recruitment (among aPARs) enables

polarisation, fast cytosolic diffusion and the activation-deactivation cycle enable the cell to

polarise along the long axis from the beginning on, and interface minimisation always leads

to long axis polarisation in the long term. Furthermore, cytosolic diffusion, as it determines

the magnitude of fluxes, decisively influences perfect polarity establishment along the long

axis on a biologically reasonable time scale. E.g. if the centrosome was originally localised

close to mid-cell and would induce an initial polarity alignment with the long axis, fast

cytosolic diffusion would rescue such an embryo and polarisation would align with the long

axis before cell division.

In contrast to the transition time from any initial polarisation to well aligned long-axis

polarisation, the establishment time of the initial polarisation from a homogenous aPAR

dominated state on the membrane is strongly dependent on the type of initial perturba-

tions. Take Supplementary Figure1 middle and bottom row as an example in 2d, where

polarisation is quickly established with initial gradients (despite of misalignment). The

establishment time of any polarisation from a homogenous aPAR dominated state with only

a small random initial perturbation is of the order of 30 minutes in 3d and is approximately

three times slower in 2d. Therefore, with only a small random initial perturbation the

reaction-diffusion system alone does still lead to stable polarisation, but on a time scale that

is too slow for the real embryo (see Fig. 8 A for 2d and 3d times).
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Supplementary Figure 8. Times in 2d versus 3d. (A) The initial time of polarisation Tinitial

is plotted against the cytosolic diffusion for various reactivation rates in 2d as well as in 3d. (B)

Ttrans is shown in cyan color code in the Dcyt-λ parameter space. The gray line shows the line

of constant reactivation length, which divides steady state long- and short-axis polarisation `?. It

was interpolated as a linear function with zero offset.
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SUPPLEMENTARY TABLES

kAp kPa steady state onset

0.24 2.28 no pattern transient long axis pol.

0.28 2.16 long axis polarisation long axis

0.32 2.04 long axis polarisation long axis

0.36 1.92 long axis polarisation long axis

0.4 1.8 long axis polarisation long axis

0.44 1.1.68 long axis polarisation long axis

0.48 1.56 long axis polarisation long axis

0.5 1.5 long axis polarisation long axis

0.52 1.44 long axis polarisation long axis

0.54 1.38 long axis polarisation long axis

0.56 1.32 long axis polarisation long axis

0.58 1.26 long axis polarisation long axis

0.6 1.2 long axis polarisation long axis

0.64 1.08 long axis polarisation long axis

0.68 0.96 long axis polarisation long axis

0.72 0.84 no pattern transient long axis pol.

0.76 0.72 no pattern transient long axis pol.

Supplementary Table 1. Sweep of antagonistic rates to investigate the excitable region

with initial gradients for slow reactivation. FEM sample sweeps of kAp, kPa with initial

linear gradient for λ= 0.05s−1 (for more details see supplementary section A). The sweep shows

that also outside of the spontaneously polarizing region the system can be excited into stable long

axis polarisation. All other parameters were set as in the standard parameter set shown in Table

1 of the main text.
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kAp kPa steady state onset

0.2 2.4 no pattern transient short axis p.

0.24 2.28 short axis polarisation short axis

0.28 2.16 short axis polarisation short axis

0.32 2.04 short axis polarisation short axis

0.36 1.92 short axis polarisation short axis

0.4 1.8 short axis polarisation short axis

0.44 1.1.68 short axis polarisation short axis

0.48 1.56 short axis polarisation short axis

0.5 1.5 short axis polarisation short axis

0.52 1.44 short axis polarisation short axis

0.54 1.38 short axis polarisation short axis

0.56 1.32 short axis polarisation short axis

0.58 1.26 short axis polarisation short axis

0.6 1.2 short axis polarisation short axis

0.64 1.08 short axis polarisation short axis

0.68 0.96 short axis polarisation short axis

0.72 0.84 no pattern transient short axis p.

0.76 0.72 no pattern transient short axis p.

Supplementary Table 2. Sweep of antagonistic rates to investigate the excitable region

with initial gradients for fast reactivation. FEM sample sweeps of kAp, kPa with initial linear

gradient for λ= 0.3s−1 (for more details see supplementary section A). The sweep shows that also

outside of the spontaneously polarizing region the system can be excited into stable short axis

polarisation. All other parameters were set as in the standard parameter set shown in Table 1 of

the main text.
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kAp kPa steady state onset

0.2 2.4 no pattern transient short axis p.

0.24 2.28 short axis polarisation short axis

0.28 2.16 short axis polarisation short axis

0.32 2.04 short axis polarisation short axis

0.36 1.92 short axis polarisation short axis

0.4 1.8 short axis polarisation short axis

0.44 1.1.68 short axis polarisation short axis

0.48 1.56 short axis polarisation short axis

0.5 1.5 short axis polarisation short axis

0.52 1.44 short axis polarisation short axis

0.54 1.38 short axis polarisation short axis

0.56 1.32 short axis polarisation short axis

0.58 1.26 short axis polarisation short axis

0.6 1.2 short axis polarisation short axis

0.64 1.08 short axis polarisation short axis

0.68 0.96 short axis polarisation short axis

0.72 0.84 no pattern transient short axis p.

0.76 0.72 no pattern transient short axis p.

Supplementary Table 3. Sweep of antagonistic rates to investigate the excitable region

with initial gradients for fast reactivation. FEM sample sweeps of kAp, kPa with initial linear

gradient for λ= 1.s−1 (for more details see supplementary section A). The sweep shows that also

outside of the spontaneously polarizing region the system can be excited into stable short axis

polarisation. All other parameters were set as in the standard parameter set shown in Table 1 of

the main text.
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Parameter Value

a 13.2µm

b 13.2µm

c 35µm

kona/p 0.1µm · s−1

koffa/p 0.005 s−1

kAp 0.4µm2 · s−1

kPa 1.2µm2 · s−1

kd 0.15µm3 · s−1

Da
mem 0.28µm2 · s−1

Dp
mem 0.15µm2 · s−1

ρA1 10.5µm−3

ρA2 2.5µm−3

ρP 12.0µm−3

Supplementary Table 4. Parameter set for the oblate 3d FEM sweep in Fig. 5. All parameters

were fixed to the values shown above except for Dcyt and λ. The cytosolic difffusion constant Dcyt

was varied between 1.0µm2 · s−1− 20µm2 · s−1 (with step size of 1µm2 · s−1) and the reactivation

rate λ was varied between 0.01 s−1−0.3 s−1 (with step size of 0.01 s−1) to generate the result shown

in Fig 5.
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Parameter Value

a 22µm

b 22µm

c 16.6µm

kona/p 0.1µm · s−1

koffa/p 0.005 s−1

kAp 0.4µm2 · s−1

kPa 1.2µm2 · s−1

kd 0.15µm3 · s−1

Da
mem 0.28µm2 · s−1

Dp
mem 0.15µm2 · s−1

ρA1 10.5µm−3

ρA2 2.5µm−3

ρP 18.0µm−3

Supplementary Table 5. Parameter set for the prolate 3d FEM sweep in Fig. 5. All parameters

were fixed to the values shown above except for Dcyt and λ. The cytosolic difffusion constant Dcyt

was varied between 0.4µm2 ·s−1−3.0µm2 ·s−1 (with step size of 0.2µm2 ·s−1) and the reactivation

rate λ was varied between 0.01 s−1−1.0 s−1 (with step size of 0.01 s−1) to generate the result shown

in Fig 5.
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Parameter Value

a 27µm

b 15µm

c 15µm

Dcyt 10µm2s−1

λ 0.2 s−1

kona/p 0.1µm · s−1

koffa/p 0.005 s−1

kAp 0.4µm2 · s−1

kPa 1.2µm2 · s−1

kd 0.034µm3 · s−1

Da
mem 0.28µm2 · s−1

Dp
mem 0.15µm2 · s−1

ρA1 10.5µm−3

ρA2 2.5µm−3

ρP 8.0µm−3

Supplementary Table 6. Parameter set for the pPAR average net membrane flux shown in Fig. 6.
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2 Localization of Min proteins in B. subtilis

In this section, we explain how the localization of the Min protein system in the
rod-shaped bacteria Bacillus subtilis (B. subtilis) is controlled by cell shape and a
biochemical template. The following content is based on and uses parts of our
paper [131] published in mBio. We provide a reprint of the paper in section 2.6.

2.1 Background

Similar as E. coli, the rod-shaped Gram-positive bacteria B. subtilis also divides
precisely at midcell [142]. The machinery that orchestrates binary fission (once
assembled at the desired location) is the Z-ring, which consists of self-assembled
FtsZ proteins. The Z-ring is a tubulin homologue, and is actually conserved in
many different bacteria [143]. The assembly of the Z-ring is precisely guided to
midcell by the B. subtilis Min protein system, similarly as in E. coli. However, the
Min system in B. subtilis does not oscillate from pole to pole, but rather forms a
stationary bipolar gradient that decreases towards midcell [143, 144], and thereby
restricts FtsZ assembly to midplane of the cell.

The reason for the absence of oscillations is due to fact that B. subtilis lacks
MinE. Instead, the Min system consists of the proteins MinD, MinC, MinJ, and
DivIVA, where MinC (and the MinCD complex) is the primary FtsZ antagonist
and therefore inhibits its assembly [145, 146] (again, analogous as in E. coli [147,
148]). The protein DivIVA is known to cooperatively bind to negatively curved
membrane regions (such as the cell poles) [149, 150], where it then recruits MinCD
and MinJ via as yet unknown pathways. The exact mechanism by which DivIVA
targets negatively curved membrane shape is not fully understood. However, since
DivIVA can assemble into very large (micrometer-sized) oligomers [151, 152], one
possible explanation of curvature-sensing is via “molecular bridging”, as proposed
in Ref. [150]: DivIVA proteins bound to negatively shaped regions can self-stabilize
by forming wire-like structures that touch two opposite points on the (curved)
membrane.

MinD does not directly interact with DivIVA, but its localization is controlled
by the transmembrane protein MinJ, which acts as an intermediary between
MinD and DivIVA [131, 153–155]. Prior to septum formation, the Min system
localizes to the poles of the cell [131, 143, 144, 156, 157], where DivIVA seems
to act as a biochemical template (spatial cue) for the process. At the onset of
cytokinesis, the Min system surprisingly redistributes from the cell poles to the
septum, and this redistribution is, again, believed to be initiated by DivIVA, because
the local curvature at the septum is greater than at the cell poles [149, 158]. These
observations raise two important open questions: (i) What exactly is the role of
the Min system in B. subtilis? Clearly, Min proteins do not seem to just inhibit
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the division machinery at the cell poles, but they also possibly act downstream by
preventing FtsZ assembly at former sites of cytokinesis [131, 153–155]. (ii) What
is the underlying mechanism that drives Min localization and, in particular, its
redistribution from the cell poles to midcell? Theoretical approaches that address
the localization of the B. subtilis Min system are lacking, mainly because the
biochemical reaction network of the Min system remains largely elusive. To the
best of our knowledge, there exists only one theoretical work that addresses this
question [159]. This work explained Min localization by a reaction-diffusion
mechanism and laid an important foundation for the theoretical investigation of
protein localization in B. subtilis. However, after further experimental studies were
conducted, some of the model assumptions turned out to be invalid. Moreover,
the Min dynamics was investigated by a simplified one-dimensional model, which
certainly erases important geometric effects as we have shown in section 1, especially
since DivIVA senses cell shape and accumulates at negatively curved regions.

We therefore developed a minimal theoretical model that addresses Min dy-
namics in B. subtilis in realistic three-dimensional cell geometries (spherocylinder).
The model consists of a reaction-diffusion system with spatially inhomogeneous
reaction kinetics: motivated by the experimental observations outlined above, we
assume that DivIVA acts as a biochemical spatial template for MinD membrane
binding. The impact of DivIVA-MinJ complexes on MinD is implicitly accounted
for in the model by assuming spatially non-uniform attachment and detachment
rates of MinD. Specifically, we assume that MinD binding is enhanced in the pres-
ence of DivIVA-MinJ (enhanced recruitment rate) and that DivIVA-MinJ stabilize
membrane-bound MinD (reduced detachment rate). Our model correctly repro-
duces the experimental observations, and shows that Min localization corresponds
to a stationary steady state (non-uniform base state of the reaction-diffusion model).
We show that the redistribution of MinD from the cell poles to midcell is guided by
the same geometric effect as discussed in the previous section for the PAR system.
Our results highlight the importance of realistic cell geometries, and further show
that the Min dynamics in B. subtilis is governed by a highly dynamic process.

2.2 Reaction-diffusion model with non-uniform rates

Similar as for the dynamics in E. coli, we assume that MinD diffuses in the cytosol
and on the membrane with diffusion coefficients DD and Dd, respectively. Cytoso-
lic MinD can only bind to the membrane in its active MinD-ATP state cDT , and
detachment from the membrane is facilitated by hydrolysis with basal rate k̃H (in
the absence of DivIVA). After detachment, MinD is in an inactive MinD-ADP
state cDD and can only rebind the membrane after nucleotide exchange with rate
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λ. The reaction-diffusion system therefore reads:

∂

∂t
cDD = Dc∇2cDD − λcDD , (III.2)

∂

∂t
cDT = Dc∇2cDT + λcDD (III.3)

∂

∂t
md = Dm∇2

Smd +
(
kD + k̃dD md

)
cDT − k̃H md . (III.4)

(III.5)

Here, md denotes membrane-bound MinD-ATP proteins, and the parameters
kD and kdD describe attachment and the basal rate of MinD recruitment to the
membrane, respectively. The operator ∇2

S is the surface diffusion operator (Laplace-
Beltrami operator). These equations are complemented by reactive boundary
conditions (flux conditions) at the membrane surface:

DD∇n̂cDD = k̃H md , (III.6)

DD∇n̂cDT = −
(
kD + k̃dD md

)
cDT , (III.7)

(III.8)

where n̂ denotes the (outward) unit normal vector of the membrane surface.
The impact of DivIVA-MinJ complexes on the MinD kinetics is implicitly

accounted for by employing spatially non-uniform attachment and detachment
rates, i.e. we assume that kdD(r ) and kH(r ), where r denotes a position vector
that marks each point in the spherocylinder.

2.3 Polar localization

Before septum formation, DivIVA accumulates at the cell poles, and we may
therefore assume that the rates are exclusively altered at those regions of the cell,
while assuming uniform rates elsewhere. Hence, k̃dD is enhanced by a factor α,
and we assume that k̃H is reduced by a factor β (since DivIVA-MinJ stabilizes
MinD proteins on the membrane), i.e. we set kdD = αk̃dD and kH = k̃H/β at
the spherical caps of the geometry. For specificity, we set here α = 4 and β = 3,
but our results are not sensitive to the exact values of these parameters (as long as
they are larger than one). Consistent with experimental observations [131], our
numerical simulations (FEM simulations) show that MinD localizes to the cell
poles. It is important to note here that the stationary bipolar gradient corresponds
to a non-uniform base state, for which the spatially heterogeneous parameters are
the cause.
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2.4 Redistribution to the septum

Next, we test whether our model correctly reproduces the redistribution of Min
proteins to midcell, once DivIVA looses its affinity to the cell poles (which is the
case once a septum forms). We first consider the case where the rates are spatially
uniform, i.e. we set α = 1 and β = 1. Intuitively, one would expect that MinD
is uniformly distributed on the membrane in this case. However, our numerical
simulations show that the MinD concentration profile is non-uniform with a
broad maxima at midcell. The underlying reason for this counter-intuitive result
is the geometric effect outlined in section 1.2: MinD-ATP is depleted at the cell
poles, since the membrane surface to cytosolic volume ratio is largest at the poles.
Hence, MinD-ADP is (on average) reactivated near midcell, where it can rebind
the membrane. Note that this effect alone explains the redistribution of MinD to
midcell once DivIVA looses its affinity to the poles.

To additionally reproduce the sharp peak of MinD at the septum (i.e. account-
ing for the accumulation of DivIVA at the septum), we may now, again, employ
non-uniform kinetic rates. Thus, we define a small region at midcell, and set α = 4
and β = 3 at that region. Consistent with experimental findings, our numerical
simulations show that MinD sharply accumulates at the septum of the bacteria.

2.5 Key points and outlook

In the following, we summarize the key findings of this research project and provide
a brief outlook.

• We developed a minimal reaction-diffusion model in realistic cell geometry
that correctly explains the localization of Min proteins in B. subtilis. The
key assumption of our model is that the MinD reaction kinetics is spatially
heterogeneous, which is biochemically attributed to the actions of DivIVA
that serves as a biochemical template for MinD and MinJ binding.

• We have shown that the non-uniform reaction rates of MinD explain its
localization to the cell poles and to the septum. Importantly, the redistribu-
tion of MinD from the cell poles towards midcell can be solely explained
by a geometric effect: once DivIVA loses its affinity to the poles (when a
septum forms), MinD-ATP will be depleted from the poles and flows towards
midplane of the cell.

• Beside the key assumption of spatially non-uniform reaction rates, our results
highlight the importance of realistic cell geometries. The redistribution of
MinD from the cell poles to the septum cannot be correctly reproduced
in simplified one-dimensional models. In such models, one would need to
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artificially alter kinetic rates to account for the impact of geometry on the
reaction-diffusion dynamics.

The theoretical model contains the assumption that MinD can spontaneously
detach from the membrane through hydrolysis. While it is well established that
MinE stimulates hydrolysis of MinD in E. coli, the biochemical origin of this
(hypothetical) reaction is not known in B. subtilis. However, we have two guesses:
One possibility is that MinJ induces MinD hydrolysis, since MinJ has been shown
to directly interact with MinD [131, 153, 155]. Since MinD is an ATPase [160, 161],
yet another hypothesis is that MinD does not rely on other proteins to stimulate its
hydrolysis, but might be well able to induce self-hydrolysis just by interacting with
phospholipids. The exact mechanism driving the dissociation of MinD from the
membrane is an important component for theoretical modeling and is thus required
for a thorough understanding of the Min dynamics in B. subtilis. Identification of
these biochemical pathways requires thorough experimental investigations in the
future.
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Dynamics of the Bacillus subtilisMin System
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ABSTRACT Division site selection is a vital process to ensure generation of viable
offspring. In many rod-shaped bacteria, a dynamic protein system, termed the Min
system, acts as a central regulator of division site placement. The Min system is best
studied in Escherichia coli, where it shows a remarkable oscillation from pole to pole
with a time-averaged density minimum at midcell. Several components of the
Min system are conserved in the Gram-positive model organism Bacillus subtilis.
However, in B. subtilis, it is commonly believed that the system forms a stationary
bipolar gradient from the cell poles to midcell. Here, we show that the Min system
of B. subtilis localizes dynamically to active sites of division, often organized in clus-
ters. We provide physical modeling using measured diffusion constants that describe
the observed enrichment of the Min system at the septum. Mathematical modeling
suggests that the observed localization pattern of Min proteins corresponds to a
dynamic equilibrium state. Our data provide evidence for the importance of ongoing
septation for the Min dynamics, consistent with a major role of the Min system in
controlling active division sites but not cell pole areas.

IMPORTANCE The molecular mechanisms that help to place the division septum in
bacteria is of fundamental importance to ensure cell proliferation and maintenance
of cell shape and size. The Min protein system, found in many rod-shaped bacteria,
is thought to play a major role in division site selection. It was assumed that there
are strong differences in the functioning and in the dynamics of the Min system in
E. coli and B. subtilis. Most previous attempts to address Min protein dynamics in B.
subtilis have been hampered by the use of overexpression constructs. Here, func-
tional fusions to Min proteins have been constructed by allelic exchange and state-
of-the-art imaging techniques allowed to unravel an unexpected fast dynamic
behavior of the B. subtilis Min system. Our data show that the molecular mechanisms
leading to Min protein dynamics are not fundamentally different in E. coli and B.
subtilis.

KEYWORDS B. subtilis, Min system, cell division, FRAP, PALM, super resolution
microscopy, protein patterns, reaction diffusion equations

The spatiotemporal regulation of cell division in bacteria is an essential mechanism
ensuring correct partitioning of DNA to produce viable daughter cells upon divi-

sion. The best-studied model organisms in this aspect are the rod-shaped Gram-posi-
tive and Gram-negative bacteria Bacillus subtilis and Escherichia coli, respectively. Both
species divide precisely at the geometric middle via binary fission. The earliest
observed event in this process is the formation of the Z-ring, a ring-like structure con-
sisting of polymerized FtsZ proteins, a highly conserved homologue of eukaryotic
tubulin (1–5). Once assembled, FtsZ acts as a dynamic scaffold and recruits a diverse
set of proteins forming the divisome, a complex that mediates cytokinesis (6–8).
Recently, treadmilling of FtsZ filaments was shown to drive circumferential
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peptidoglycan (PG) synthesis (9–11). However, it is still not fully understood how FtsZ
finds the precise midplane of the cell. In E. coli and B. subtilis, the nucleoid occlusion
(NO) and the Min system, two negative FtsZ regulators, have been shown to confine its
action spatially to the center of the cell. Noc in B. subtilis and SlmA in E. coli bind to
DNA and inhibit FtsZ polymerization across the nucleoid (12–16).

The Min system in E. coli consists of the three proteins MinC, MinD, and MinE (17,
18) and has been studied extensively both experimentally (19–31) and theoretically
(31–37). MinC is the inhibitor of Z-ring formation, inhibiting the bundling of FtsZ fila-
ments (24, 38–41). MinC is localized through MinD, a protein that belongs to the
WACA (Walker A cytomotive ATPase) family (42, 43). Upon binding ATP, MinD dimer-
izes and associates with the membrane through a conserved C-terminal membrane tar-
geting sequence (MTS) (3, 44, 45). MinC and MinD have been described to form large
ATP-dependent alternating polymers that assemble cooperatively and locally inhibit
FtsZ bundling (46, 47). In the absence of MinCD, cells frequently produce the name-
giving anucleate minicells (48, 49). The E. coli MinCD complexes are disassembled and
detached from the membrane by MinE, a protein that forms a ring-like density profile
at the rim of MinD assemblies (50, 51) and binds to the membrane via an amphipathic
helix serving as MTS (52, 53). MinE triggers ATPase activity of MinD, leading to mem-
brane detachment of MinCD (29). Cytosolic MinD rebinds ATP and binds the mem-
brane again, thereby leading to a remarkably robust oscillation of the Min system in E.
coli (27, 29, 54, 55). Min protein dynamics are a paradigmatic example of cellular self-
organization (56). Due to the simplicity of the system, it has been subject to several
molecular modeling studies and in vitro reconstructions (28–37).

The Min system in B. subtilis lacks MinE as the essential factor that is responsible for
Min oscillation in E. coli, and therefore the Min proteins do not oscillate in B. subtilis.
Even though the original publications only vaguely suggest this (57, 58), the B. subtilis
Min proteins are often described to form a stationary bipolar gradient decreasing to-
ward midcell (3, 8), therefore restricting assembly of a functional FtsZ ring to the mid-
plane of the cell. The spatial cue for a gradient in B. subtilis is provided by DivIVA (59,
60). DivIVA targets and localizes to negatively curved membrane regions (61). MinJ
acts as a molecular bridge between MinD and DivIVA (62, 63). MinJ contains six pre-
dicted transmembrane helices and a PDZ domain, which often participate in protein-
protein interactions (64). Due to the polar targeting of DivIVA, MinCDJ should form a
stationary polar gradient decreasing toward midcell, restricting FtsZ polymerization
spatially (57, 58). However, several studies suggest that the B. subtilis Min system may
rather act downstream of FtsZ ring formation by preventing reinitiation of division at
former sites of cytokinesis (62, 63, 65), including some of the very early work (58).

We have recently analyzed DivIVA dynamics in B. subtilis and found that Min proteins
redistribute from the cell poles to midcell as soon as a septum is formed (66), which
prompted us to reanalyze Min protein dynamics in this organism. To this end, we generated
a set of new fusions to DivIVA, MinD and MinJ. To avoid overexpression artifacts that would
corrupt protein dynamics studies, we generated strains where the native gene copies were
replaced by functional fluorescent fusions. These allelic replacements were used to deter-
mine precise molecule counts per cell. Using fluorescent recovery after photobleaching
(FRAP), we determined the protein dynamics of the individual Min proteins. We then calcu-
lated protein diffusion coefficients that were further used for modeling and simulations of
the observed Min dynamics. We finally analyzed the nanoscale spatial distribution of the
Min proteins in B. subtilis by single-molecule localization microscopy (SMLM). Our data are
consistent with a dynamic turnover of MinD between membrane and cytosol. Moreover,
our SMLM data support a model in which the Min complex is in a dynamic steady state that
is able to relocalize from the cell pole to the septum facilitated by a geometric cue, namely,
the invagination of the membrane at the septum. Based on our experimental data, we pro-
pose a minimal theoretical model for the Min dynamics in B. subtilis in realistic three-dimen-
sional (3D) cell geometry. The model is based on a reaction-diffusion system for MinD and
incorporates the effects of DivIVA and MinJ implicitly through space-dependent recruitment
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and detachment processes. Our computational analysis of the mathematical model reprodu-
ces qualitative features of the Min dynamics in B. subtilis and shows that localization of MinD
to the poles or septum corresponds to a dynamic equilibrium state. Furthermore, our model
suggests that a geometric effect alone could explain septum localization of MinD once
DivIVA is recruited to the growing septum, therefore highlighting the importance of geome-
try effects that cannot be captured in a simplified one-dimensional (1D) model.

RESULTS
Construction of fluorescent fusions with native expression level. Even though

the Min system in B. subtilis has been extensively investigated before, most studies
were conducted using strains that overexpress fluorescent fusions from ectopic loca-
tions upon artificial induction (57, 58), leading to nonnative expression levels that can
alter the native behavior of fine-tuned systems like the Min system. Additionally, even
small populations of a protein from overexpression make it difficult to identify a
dynamic fraction through diffraction-limited microscopy (67). Hence, we aimed to
recharacterize the dynamics of the Min components in B. subtilis by using strains that
avoid or minimize overexpression artifacts and, hence, created a set of allelic replace-
ments (see Fig. S1a in the supplemental material).

Dysfunctionality or deletion of Min components in B. subtilis manifests in an easily
observable phenotype of increased cell length and DNA-free minicells (Table 1). This
allows rapid evaluation of the functionality of fluorescent fusions in the constructed
strains by comparing cell length and number of minicells between mutant and wild-
type strains (Table 1).

Here, we generated functional fusions to MinD (Dendra2 [68]) and MinJ (monomeric
superfolder GFP [msfGFP] [69] and mNeonGreen [70]), as judged by cell length, number of
minicells, and subcellular protein localization (Fig. S1b; Table 1). Dendra2-MinD displayed a
phenotype comparable to that of the wild type. Unfortunately, Dendra2-MinD could not be
used for FRAP studies, because excitation at 488nm leads to a significant green-to-red con-
version during the course of the experiment. When all proteins were converted from green
to red prior to the FRAP experiment with UV light (405nm), the red fluorescent signal was
poor and bleaching of most proteins occurred during the first image acquisitions, prohibit-
ing reliable quantification. Upon converting protein locally at one of the poles or a septum
with a short laser pulse at 405nm and subsequent imaging in the red channel, very fast dif-
fusion of converted Dendra2-MinD throughout the cell could be observed (data not shown).
However, the signal was too dim to be quantified satisfactorily.

Therefore, another strain expressing msfGFP fused to MinD was created. This fusion
protein was at least partially functional according to cell length and number of

TABLE 1 Phenotypic characterization of relevant strainsa

Strain Description of strain
Mean growth rate
constant (m)± SD

Mean cell length
(mm)± SD %Minicells

168 Wild type 0.536 0.004 3.116 0.77 0.3
3309 DminCD 0.456 0.021 7.646 2.70 45.8
RD021 DminJ 0.516 0.049 6.656 2.02 13.8
4041 DdivIVA 0.466 0.020 8.136 3.40 29.6
BHF011 Dendra2-MinD 0.496 0.004 2.676 0.61 0.9
BHF017 msfGFP-MinD 0.556 0.004 4.226 1.04 9.1
JB38 MinJ-Dendra2 0.516 0.006 3.446 1.06 0
BHF007 MinJ-msfGFP 0.576 0.013 3.386 0.76 0.3
JB40 MinJ-mNeonGreen 0.576 0.002 3.166 0.67 0
JB36 DivIVA-Dendra2 0.506 0.007 4.336 0.92 8.0
1803 DivIVA-GFP 0.456 0.021 3.316 0.73 1.1
BHF028 DivIVA-mNeonGreen 0.546 0.029 5.426 1.35 5.3
JB37 DivIVA-PAmCherry 0.516 0.019 4.356 1.11 3.3
aFor determination of the growth rate constant,m , the optical density at 600 nm of exponentially growing cells
was measured. Cell length and the percentage of minicells were determined microscopically using Fiji, with
n$ 200. Strains were grown in independent triplicates, with differences reflected in the standard deviation (SD).
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minicells (Fig. S1b; Table 1). When msfGFP-minD was transformed in a genetic back-
ground of a DminJ or DdivIVA mutant, the fluorescent signal was, as expected, distrib-
uted in the cytosol, sometimes forming small foci. MinJ-msfGFP also lost its polar and
septal localization upon deletion of divIVA, as reported previously (62). These strains
were not used for further analysis of protein dynamics, because without protein inter-
action, a merely diffusive behavior will dominate and no further insight into Min pro-
tein dynamics and interaction will be gained. We also aimed at constructing mem-
brane-binding mutants in which the MTS of MinD was altered. However, we were not
able to create viable strains with allelic replacement of the native minD gene.

When DivIVA fluorescent fusions were constructed, several different fluorophores
(FPs) were successfully fused to DivIVA, namely, mCherry2, mNeonGreen, Dendra2,
PAmCherry, mGeosM, and Dronpa (68, 70–74), with linkers of between 2 and 15 amino
acids. Unfortunately, all of them showed a mild or strong phenotype, some even
severe protein mislocalization, hinting toward limited functionality of these DivIVA
fusion proteins (75; and data not shown). Since this did not meet the set standards for
this study, we turned toward strain 1803 (76), carrying a divIVA-GFP copy with its native
promoter in the ectopic amyE locus. While DivIVA-green fluorescent protein (GFP) has
been shown to not fully complement a DdivIVA strain (76, 77), it still localizes correctly
and can be used for studies of DivIVA dynamics (66, 77). Additionally, we performed
FRAP on DivIVA-mNeonGreen, which shows only a mild phenotype (Table 1), in wild-
type and Min knockout backgrounds to be able to compare it with the effect of the
extra copy of DivIVA in strain 1803 (Fig. S2).

All fluorescent fusions were analyzed via SDS-PAGE with subsequent visualization
through in-gel fluorescence or Western blotting (Fig. S3). We used in-gel fluorescence
to obtain estimations about the number of molecules of the Min proteins during mid-
exponential phase. We calculated protein numbers relative to the total amount of
MinD that was quantified under the same growth conditions using mass spectrometry
described previously (78) (Table 2; Fig. S4). MinD proteins are highly abundant (3,544
proteins per cell), while DivIVA numbers are less than 50% of that (1,690 proteins per
cell). MinJ has only 16% of MinD abundancy (576 proteins per cell).

TheMin system in B. subtilis is in a dynamic steady state. Strains expressing func-
tional Min fusions were then used for microscopic analysis of protein dynamics using
fluorescent recovery after photobleaching (FRAP) experiments. All three components
of the Min system showed relatively fast diffusion in FRAP (Fig. 1 and 2; Table 3). A
strain expressing msfGFP-MinD (BHF017) was used for FRAP analysis of MinD dynamics.
We observed a fast fluorescence recovery (time when fluorescence recovery reaches
half of total recovery [T1/2] = 7.55 s), indicating rapid exchange of MinD molecules
around the division septum, similar to what was previously reported for MinC (67).
Bleaching of MinD at a septum was very efficient (Fig. 1a, upper panel), and the
exchange of MinD molecules at the bleached spot appeared to include proteins local-
ized distant from the bleached septum as well as in the vicinity, since the fluorescent
signal in the cell decreased evenly over the whole cell length during recovery.
Furthermore, around 79% of the msfGFP-MinD population appeared to be mobile
(Fig. 1; Table 3). Next, we investigated MinJ-msfGFP fluorescence recovery, which was
considerably slower than that of msfGFP-MinD but still indicating protein diffusion

TABLE 2 Relative quantification of Min proteins fused to Dendra2a

Protein Relative amount (%) Total no. of copies/cell
MinD 1006 2.51 3,5446 89
MinJ 16.256 4.36 5766 25
DivIVA 47.706 3.51 1,6906 59
aRelative amounts of protein were determined via in-gel fluorescence of biological triplicates of cell lysates (see
Fig. S4 in the supplemental material). Absolute protein quantities were determined relative to MinD, which was
quantified in another publication (75) under similar conditions. Values are shown with standard deviations (SD).
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(T1/2 = 62.4 s). MinJ contains six predicted transmembrane helices, and therefore, a
slower recovery was expected. Again, most of the MinJ-msfGFP protein pool appeared
to participate in the fluorescence recovery (77%). When we measured DivIVA-GFP and
DivIVA-mNeonGreen dynamics at septal localizations using FRAP, we observed similar
mobilities (DivIVA GFP T1/2 = 128 s; DivIVA-mNeonGreen T1/2 = 60.3 s). Since the DivIVA-
GFP-expressing strain has an extra copy of divIVA, it seems logical that the recovery
time roughly doubles compared to the DivIVA-mNeonGreen-expressing strain with
only one copy of the gene. DivIVA has previously been reported as static (77); however,

FIG 1 FRAP experiments in growing B. subtilis cells reveal Min protein dynamics. (a) Representative microscopy
images of msfGFP-MinD (BHF017), MinJ-msfGFP (BHF007), and DivIVA-GFP (1803) before bleaching of the indicated
spot with a 488-nm laser pulse, directly after bleaching, and after recovery of fluorescence. Scale bars, 2mm. (b)
Representation of the normalized fluorescence recovery in the green channel over time. T1/2 = time when fluorescence
recovery reaches half height of total recovery; the shown value corresponds to the displayed cell, indicated on the
graph with a dashed square. The red line represents measured values of the displayed cell, and the black line
represents the fitted values. Values were obtained as described in Materials and Methods (equations 1 to 3).

FIG 2 B. subtilis Min proteins form dynamic complexes. Shown are median half-time recovery values,
indicated by the black bar inside each box. Each box represents a different strain; see also Table 3 for
mean values. Every dot represents a single FRAP experiment (n$ 8).

Min System Dynamics in Bacillus ®

March/April 2021 Volume 12 Issue 2 e00296-21 mbio.asm.org 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 1

3 
M

ay
 2

02
2 

by
 6

2.
21

6.
20

7.
17

8.



those FRAP experiments were carried out using overexpression strains and a much
shorter time frame than here. Earlier observations from our own lab using a merodi-
ploid strain have already suggested that DivIVA is dynamic (66). Roughly two-thirds of
DivIVA molecules were participating in dynamics. Since DivIVA is cytosolic while MinJ
is a membrane protein, it was surprising that both proteins presented similar fluores-
cence recovery speeds. To test if the comparatively slow recovery of DivIVA can be
explained only by its ability to oligomerize, we made use of a previously described oli-
gomerization mutant, DivIVAD34 (79). Despite still being able to dimerize and bind the
plasma membrane, this mutant is unable to form larger DivIVA multimers (79), and a
corresponding strain expressing DivIVAD34-mNeonGreen was constructed (BHF067).
Fluorescent imaging of this strain revealed a loss in polar and septal stabilization and
localization of DivIVA (Fig. S2a to c). Instead, DivIVAD34-mNeonGreen was observed
inhomogeneously distributed in the cytosol, with no apparent tendency for membrane
binding (Fig. S2c). In FRAP experiments, recovery of DivIVAD34-mNeonGreen was
almost instantaneous (Fig. S2a). It is, however, difficult to measure diffusion coefficients
of freely diffusing proteins accurately by FRAP in bacteria, because of the small cellular
volume (80). The observed result confirmed the prediction that DivIVA mobility is
affected mainly by its ability to oligomerize, which not only stabilizes the protein but
also affects its ability to sense negative curvature (79).

Interaction of Min proteins influences their dynamics. To obtain a better under-
standing of the interactions between Min proteins and to find an explanation for the
observed dynamics, we performed FRAP experiments in various genetic knockout
backgrounds of Min genes. The Min system is hierarchically assembled, with DivIVA
recruiting MinJ, which then recruits MinD (62). In agreement with that, we saw a loss of
polar and septal msfGFP-MinD localization (BHF025 and BHF026) when we knocked
out minJ or divIVA, which we show in a DminJ background (BHF069) in Fig. S5, where
minC was also knocked out to achieve comparable cell length distributions. Instead,
loss of DivIVA or MinJ leads to a dispersed MinD localization with a weak enrichment
of MinD around the cell center and a depletion at the cell poles in short cells (Fig. S5).
Loss of polar and septal localization was also observed for MinJ-msfGFP upon knocking
out divIVA (BHF032), further corroborating that DivIVA/MinJ complexes are required for
controlled MinD localization. Therefore, we did not include these strains in the FRAP
analysis. When minCD was knocked out in a strain expressing MinJ-msfGFP, the half-
time recovery in FRAP dropped from 62 s to 30 s (Fig. 2; Table 3; Fig. S6). This behavior
is in line with a direct interaction between the two proteins. We cannot exclude that
the phenotype itself impacts the dynamic behavior of MinJ, since cells are elongated
and often redivide after successful cytokinesis (65). When minCD was knocked out in a
DivIVA-GFP-expressing strain (BHF040), however, we could not see any significant dif-
ference in fluorescence recovery. Since there is no direct interaction, DivIVA dynamics
do not seem to be affected by MinCD directly or indirectly, which includes the effects

TABLE 3 Results of FRAP analysis for Min proteins in different genetic backgrounds

Protein and genetic
background Fluorophore

Diffusion coefficient
(mm2 · 1023 · s21)

Half-time
recovery (s)

Mobile
fraction

MinD in wild type msfGFP 57.86 10.1 7.556 1.31 0.79
MinJ in wild type msfGFP 7.196 2.27 62.46 19.7 0.77
MinJ in DminCDmutant msfGFP 14.56 9.54 30.26 19.9 0.75
DivIVA in wild type GFP 3.396 0.82 1286 30.9 0.65
DivIVA in DminCDmutant GFP 3.746 1.36 1166 42.4 0.68
DivIVA in DminJmutant GFP 8.576 4.43 50.96 26.4 0.49
DivIVA in DminCDJmutant GFP 4.986 2.93 87.76 51.6 0.61
DivIVA in wild type mNeonGreen 7.236 1.99 60.36 16.6 0.64
DivIVA in DminCDmutant mNeonGreen 6.886 2.76 63.46 25.4 0.67
DivIVA in DminJmutant mNeonGreen 18.06 3.22 24.46 4.33 0.39
DivIVA in DminCDJmutant mNeonGreen 9.476 4.26 46.16 20.7 0.66
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of the phenotype of elongated cells. In contrast to that, knocking out minJ sped up re-
covery of DivIVA-GFP (BHF041) significantly, with a recovery time less than half of the
wild type, which was also true for DivIVA-mNeonGreen (BHF027) (Table 3; Fig. S6). This
result is consistent with a direct interaction. Interestingly, there was also an impact on
the mobile fraction, which decreased from around two-thirds to roughly 40% to 50%
in both strains. Thus, dynamics are modulated by complex formation reflecting the
expected protein hierarchy. MinD recruitment to midcell is fully dependent on DivIVA/
MinJ. Since these proteins are relocating only to late stages of septum development, e.
g., after a cross wall has started to form, we argue that this geometric change in the
cell is important to redistribute MinD from the poles to midcell and establish a new
dynamic steady state at the septum/new pole. This localization of MinD at midcell is
lost if either DivIVA or MinJ is deleted, or MinD ATPase activity is abolished, as it can be
observed in the G12V and K16A ATPase mutants of MinD (81). Thus, maintenance of a
steady gradient requires ATPase activity and is therefore similar to the E. coli system.
Therefore, we aimed to support this hypothesis by mathematical modeling to further
understand the observed dynamics.

Theoretical model for MinD dynamics in B. subtilis. Previous theoretical analyses
of the Min system in B. subtilis using quantitative mathematical models are sparse. To
our knowledge, there is actually only a single theoretical study that has investigated a
mechanism for the polar localization of proteins (82). In this work, the coupled dynam-
ics of DivIVA and MinD are modeled by a reaction-diffusion system in one spatial
dimension. Both MinD and DivIVA are considered to diffuse on the membrane and in
the cytosol and cycle between these two compartments by attachment and detach-
ment processes. Membrane-bound MinD is assumed to be stabilized through DivIVA,
and hence its role is quite different from that of MinE, which destabilizes membrane-
bound MinD. Moreover, it was argued that DivIVA requires the presence of MinD for
membrane binding (82), specifically, that DivIVA binds to and then stabilizes the edges
of MinD clusters. Note that this assumption is no longer valid, as more recent studies
have shown that DivIVA can directly bind the membrane. Since the model was studied
in one spatial dimension, the author accounted for geometric effects only implicitly by
reducing the MinD attachment rate near the cell poles. The importance of ATP binding
and hydrolysis on MinD activity has been discussed but was disregarded in the model,
as explicit coupling between cytosol and membrane (bulk-boundary coupling) was not
considered. In summary, the model was a first and important theoretical analysis dis-
secting the relative roles of MinD and DivIVA as well as their interplay in shaping pro-
tein localization in B. subtilis.

Here, on the basis of previous theoretical studies of intracellular protein dynamics
(32, 34, 36, 83), we propose a minimal reaction-diffusion system to model Min localiza-
tion in B. subtilis. Building on the idea of geometry sensing put forward previously (83),
our model provides a possible mechanism for how proteins sense cell geometry. This
mathematical analysis shows that Min polarization and localization are established
through a highly dynamic process driven by the ATPase activity of MinD. This implies
that Min protein gradients are maintained by genuine nonequilibrium processes and
not by thermodynamic binding (chemical equilibrium) of Min proteins to a DivIVA tem-
plate at the cell poles (3, 8).

We study protein dynamics in realistic three-dimensional (3D) cellular geometry,
where proteins cycle between cytosol and membrane, and MinD diffuses with diffusion
constants DD ¼ 16 mm2 = s and Dd ¼ 0:06 mm2 = s in the cytosol and on the mem-
brane, respectively. We consider fully resolved dynamics of MinD (including its ATPase
cycle). The biochemical reaction scheme, illustrated in Fig. 3a and b, is based on the fol-
lowing molecular processes: (i) attachment to and detachment from the membrane with
rates kD ¼ 0:068 mm=s and ~kH ¼ 0:1 s21 respectively; (ii) a nonlinear recruitment
process of cytosolic MinD by membrane-bound MinD with rate ~kdD ¼ 0:04 mm2=s;
(iii) after detachment from the membrane, MinD is in an ADP-bound state and can
rebind to the membrane only after nucleotide exchange, which occurs at rate
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l ¼ 6 s21. The protein numbers and membrane diffusion of MinD were extracted
from our measurements (Tables 2 and 3; see Table S1 in the supplemental material),
and the values for the kinetic parameters (rate constants) were estimated from previ-
ous work on protein pattern formation (32, 34, 36, 83).

Since the above reaction scheme contains only the attachment and detachment
kinetics of MinD, one would intuitively expect that the steady-state MinD membrane
density distribution is spatially uniform. Interestingly, from finite element simulations
(see Materials and Methods), we find that the steady-state density distribution of mem-
brane-bound MinD is not homogeneous but is nonuniform along the whole cell body
and with a weak maximum at midcell (Fig. 3c, right figure), comparable to our observa-
tions in vivo (Fig. S5). The reason for this unexpected spatial localization of MinD is a
purely geometric effect suggested previously (83). For a better understanding of our
following arguments, let us briefly summarize the core results of this study. Due to the
curvature at the poles, the effective “hitting frequency” (attachment rate) of active
MinD-ATP becomes larger in these regions, which initially leads to an accumulation of
MinD-ATP at the poles. However, upon detachment, MinD is in an inactive MinD-ADP
state and first needs to exchange its nucleotide in order to rebind to the membrane.
Hence, during this time, one can define a characteristic length scale of l ¼ ffiffiffiffiffiffiffiffiffiffiffi

DD=l
p

(see
Materials and Methods), during which inactive proteins travel in the cytosol until they
become able to rebind to the membrane. For our parameter choice, we have
l � 1:6 mm, which corresponds roughly to half the typical size of a B. subtilis cell
(Table S1; and see Materials and Methods). Therefore, due to the curved cell geometry,
MinD-ATP is depleted at the poles, resulting in an accumulation of MinD-ATP near mid-
cell. To test this prediction, a strain expressing msfGFP-MinD in a minJ background was
created (BHF069). Furthermore, we knocked out minC in this strain to partially account
for the shifted cell length distribution of a minJ background. As predicted through the
model, we found a clear maximum of msfGFP-MinD at midcell, when cells did not yet

FIG 3 Model and simulation of the Min system in B. subtilis. (a) The geometry sensing protein DivIVA (green) preferentially localizes to regions of highest
negative curvature and stabilizes MinJ (purple) to these regions. Membrane-bound DivIVA acts as a template for MinD recruitment of cytosolic MinD-ATP
(orange) facilitated through MinJ. MinD-ATP binds to the membrane with a rate, kD , and recruits cytosolic MinD-ATP with a (space-dependent) recruitment
rate, kdD , to the membrane. Membrane-bound MinD is stabilized by MinJ-DivIVA complexes, which is reflected in a space-dependent detachment rate, kdet.
After detachment, MinD is in a hydrolyzed state, MinD-ADP, and can rebind to the membrane only after nucleotide exchange with a rate l . (b) MinD binds
to flat membrane regions as well and recruits MinD-ATP from the cytosol. Binding to flat regions is, however, less favored, due to the lower concentration
of MinJ-DivIVA complexes. (c) Simulation of the reaction-diffusion model in a 3D rod-shaped cell; shown is the membrane-bound MinD density distribution.
As the initial condition, we take the steady-state distribution of the scenario where DivIVA is localized at the poles (left figure). At simulation start, we
assume that MinD is losing its affinity to the poles by making the recruitment and detachment rate uniform on the entire cell membrane (this is, for
example, the case at the onset of septum formation). From left to right, the time evolution of membrane-bound MinD is shown, where the far-right side
shows the final steady-state density distribution. We find that polar localization of MinD becomes unstable and that the proteins preferentially localize at
the cell center. (d) To test whether MinD can be localized at midplane through MinJ-DivIVA complexes after septum formation, we took the same initial
condition as described for panel c and enhanced recruitment and decreased detachment near midcell. We find that MinD can sharply localize at the
septum.
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start to form a septum (Fig. S5), indicated by their size (,5mm). Longer cells (.5mm)
often start to divide at midcell, thereby creating a membrane curvature that affects dis-
tribution of msfGFP-MinD. In these cells, the concentration is highest in the center of
both cell halfs (Fig. S5). This finding also highlights the importance of realistic 3D simu-
lations, as geometric sensing would be absent in simplified 1D systems.

As already outlined in the previous sections, experimental studies have shown that
DivIVA binds preferentially to regions of high negative membrane curvature and that MinJ
localization is dependent on the presence of DivIVA (61, 62). MinD does not interact with
DivIVA directly but through MinJ, which is known to act as an intermediary between
DivIVA and MinD (62). Furthermore, our experiments suggest that DivIVA-MinJ complexes
act as a spatial template for MinD binding. This suggests that the effective role of DivIVA
and MinJ on MinD binding can be summarized in spatially varying values of the MinD
recruitment and detachment rate, where the recruitment rate is larger in the presence of
DivIVA-MinJ complexes (cell poles and septum) and smaller in the remaining part of the
cell. Similarly, the detachment rate is lower in the presence of DivIVA-MinJ complexes (cell
poles and septum) and higher otherwise. Intuitively, one would then expect that MinD
localizes to those regions where the recruitment and detachment rate are altered, as this
would effectively result in a higher binding rate of MinD.

To put this idea into test, we first incorporated space-dependent recruitment and
detachment rates of MinD at membrane areas with a negative curvature; for details,
see Materials and Methods (Fig. S7). Under the above conditions, MinD accumulates at
both cell poles in a dynamic equilibrium state, with proteins constantly cycling
between cytosol and membrane (Fig. 3c, left figure). In contrast, in the absence of pref-
erential attachment at the cell poles facilitated by DivIVA-MinJ complexes (i.e., by
employing uniform rates), polar localization of MinD becomes unstable and the pro-
teins become preferentially localized in the cell center (again in a dynamic equilibrium
state). The underlying reason is the geometric effect as explained above. To appreciate
this result, note that this effect alone could explain the redistribution of MinD from the
cell poles to midcell at the onset of cytokinesis (initiated by the redistribution of
DivIVA to the septum, which would have a higher curvature than the cell poles).

Next, we tested whether MinD can be localized at midplane in the presence of
DivIVA-MinJ complexes once a septum has formed there. Indeed, emulating the pres-
ence of these complexes by an enhanced recruitment and detachment rate localized
at the septum, our simulations show that MinD becomes sharply localized at midplane
following the transfer of DivIVA-MinJ complexes from the poles to the septum
(Fig. 3d). The width of the MinD distribution at midcell is determined by the interplay
between membrane diffusion and localized recruitment of MinD at the septum (see
Materials and Methods).

Single-molecule resolution of the Min system reveals cluster formation. Next,
we wanted to test these theoretical predictions concerning a dynamic steady state of
MinD proteins experimentally, using single-molecule resolution microscopy. In contrast
to a stationary bipolar gradient of Min proteins from the cell poles, as described before
(3, 8, 57, 58) based on a simple thermodynamic binding of Min proteins to a DivIVA/
MinJ template, we expect a dynamic relocalization of Min proteins from the cell pole
to the septum. This dynamic steady state would reveal Min components along the
entire membrane, including the lateral sites at any time. To achieve the highest possible
resolution, we used photoactivated light microscopy (PALM). Accordingly, strains express-
ing Dendra2-MinD (BHF011), MinJ-mNeonGreen (JB40), and DivIVA-PAmCherry (JB37)
were utilized. While Dendra2 and PAmCherry are photoswitchable or photactivatable FPs
that can be converted from green to red or activated with UV light, respectively, and are
hence well suited for PALM (68), mNeonGreen can be used for PALM because of its innate
capability to photoswitch (70). However, mNeonGreen presents some challenges in com-
parison to classical photoactivatable FPs, as it cannot be prebleached and therefore
requires more postprocessing to reach satisfying artifact-free molecule localizations (75).
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Nevertheless, all three strains could be successfully imaged in fixed cells with average pre-
cisions of 25 to 30nm (Fig. 4) using appropriate filter settings (see Table 7).

Importantly, we observed that all Min proteins not only localized to the cell poles but
also as clusters along the membrane and with some apparent cytoplasmic localizations.
These protein accumulations were mainly seen along the membrane for MinJ (Fig. 4, mid-
dle panels), while a fraction of MinD and DivIVA could be observed in the cytosol (Fig. 4,
left and right panels). The high abundance of these protein accumulations indicates that
recruitment of MinD and DivIVA by existing clusters progresses at higher rates than indi-
vidual membrane binding, which is also reflected in the proposed mathematical model.
Double rings of MinJ and DivIVA have been reported previously in 3D structured illumina-
tion microscopy (77), which could be observed in late divisional cells in PALM as well
(Fig. 4, middle and bottom panels). The active enrichment at the young cell pole is consist-
ent with the theoretical model described above and with a role of the Min system in regu-
lation of cell division rather than protection of cell poles from aberrant cell division (65).

To get a deeper insight into the structure and distribution of the imaged proteins and to
confirm clustering, a single-molecule point-based cluster analysis was performed for MinD
and DivIVA (Fig. 5; Fig. S8). Unfortunately, MinJ-mNeonGreen imaging did not produce a suf-
ficient number of events to be analyzed robustly (Fig. S8a), as MinJ expression levels are low
in comparison and only a small fraction of mNeonGreen molecules blink reliably (75).

In total, we recorded 151,887 events in 48 cells for Dendra2-MinD, while 52,377
events of DivIVA-PAmCherry were recorded in 37 cells. When clusters with at least 10
molecules per cluster were identified, 55.61% (84,470) of all Dendra2-MinD events
were organized in clusters, while 52.27% (27,379) of events of DivIVA-PAmCherry could
be assigned to clusters. Thus, the average prevalence of clusters per cell was higher for
MinD (24 clusters per cell) than for DivIVA (15 clusters per cell) (Fig. 5c). The size of
these clusters varied greatly (Fig. 5d): an average number of 72 MinD proteins per clus-
ter was determined, while the average number of DivIVA proteins per cluster was 47.
However, we also observed some very large clusters with up to 1,390 MinD proteins
and 1,198 DivIVA proteins, respectively. Analysis of the relative position of all clusters
per cell revealed a high tendency for clusters to form around poles and septa (Fig. 5e),
where around two-thirds of DivIVA clusters (66%) and more than half of MinD clusters

FIG 4 PALM imaging of strains expressing Dendra2-MinD, MinJ-mNeonGreen, and DivIVA-PAmCherry. Representative PALM images of Dendra2-MinD
(BHF011), MinJ-mNeonGreen (JB40), and DivIVA-PAmCherry (JB37) expressing cells at different divisional states are shown. Upon formation of a division
site, DivIVA, MinJ, and MinD partially relocalize from the poles to the division septum, where they reside after successful cytokinesis. Samples were fixed
prior to imaging; every image represents a different cell. Scale bar, 500 nm.
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(59%) were observed, while the rest was found along the lateral membrane or in the
cytosol. This correlates well with the idea that most of MinD is recruited to negative
membrane curvature (poles and septum) by DivIVA via MinJ. MinD also binds to flat
membrane areas, where it recruits more MinD from the cytosol. This is less favored due
to the lower concentration of MinJ-DivIVA complexes, which is reflected in our

FIG 5 PALM imaging and representative cluster analysis of Dendra2-MinD and DivIVA-PAmCherry. (a) Representative PALM image of
Dendra2-MinD (BHF011) in a cell in a late division state. Scale bar, 500 nm. (b) Cluster analysis of the same PALM data as shown in panel a
with three highlighted regions (i, ii, and iii). Cluster analysis was performed in R using the OPTICS algorithm from the DBSCAN package.
Every point indicates a single event and thus a Dendra2-MinD/DivIVA-PAmCherry protein, and precision is indicated by color and size of the
circle. (c) Box plot of the number of clusters of Dendra2-MinD and DivIVA-PAmCherry per cell (MinD, ncells = 48; DivIVA, ncells = 37). (d) Box
plot of the number of proteins per cluster; no jitter is shown due to the high sample number (Dendra2-MinD, nclusters = 1,171; DivIVA-
PAmCherry, nclusters = 586). (e) Box plot of fraction of clusters localized at poles and septa per cell (MinD, ncells = 48; DivIVA, ncells = 37).
Outliers in box plots are indicated by a red outline.
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simulations and data. Our data also reveal that MinD and DivIVA seem to accumulate,
and cytosolic proteins therefore have a higher tendency to bind to existing clusters
than to free membrane surfaces. We did not observe a large proportion of MinD
dimers and also no homogeneous binding of MinD or DivIVA to the membrane.

DISCUSSION

The Min reaction network has been extensively studied in various organisms (8, 84).
In E. coli, it was found to be a highly dynamic and self-organizing system capable of
pole-to-pole oscillation, a prime example for intracellular protein pattern formation
(36). The two core components in this network, MinE and MinD, cycle between mem-
brane and cytosol and are sufficient to induce robust protein patterns both in vivo and
in vitro (19, 20, 29, 85, 86). Therefore, it has been puzzling that the Min system in B. sub-
tilis was described to form a rather stationary bipolar gradient from poles to midcell,
although MinC and MinD are well conserved. The differences are mainly accredited to
the absence of MinE, which stimulates ATP hydrolysis and thus membrane detachment
of MinD. Instead, the curvature-sensing DivIVA was found to recruit MinCDJ to the neg-
atively curved poles. However, MinC has been shown to dynamically relocalize to mid-
cell prior to division in fluorescence microscopy (67), and the same study highlights
open questions in the current Min model for B. subtilis, pointing out that earlier studies
were conducted using strains that artificially overexpress Min network components,
thereby possibly masking dynamic populations.

In this study, we analyzed protein dynamics of the B. subtilis Min system based on
experiments conducted with native expression levels of fluorescently labeled Min com-
ponents. First, we found all components to be highly dynamic. MinD had the shortest
recovery time of the three investigated proteins, while MinJ and DivIVA both had con-
siderably slower recovery times than MinD but in a similar range when compared to
each other (Table 3). Similar tendencies were detected when mobile and immobile
fractions were compared, where MinD had the highest mobile fraction, with almost
80% of the protein taking part in the recovery. With diffusion coefficients between
0.057 mm2/s and 0.0034 mm2/s, the three proteins were found in an expected range for
membrane (-associating) proteins in bacteria (87). Considering the nature of DivIVA,
which binds to the membrane and stabilizes itself at negative curvature, and MinJ as
an integral membrane protein, it is not surprising that the cytosolic MinD is around 10-
fold faster in recovery. This observation leads to the speculation of a relatively fast
exchange of membrane-bound MinD proteins at the division septum, considering rela-
tively high total protein quantities (Table 2) in combination with a large mobile fraction
and fast recovery when bleaching these sites. DivIVA total protein numbers were found
to be around half of MinD, while MinJ was by far the least abundant Min component.
These findings correlate with the corresponding fluorescence intensity and appearance
when imaging the respective Min proteins tagged with the same fluorophore during
mid-exponential growth (for examples, see Fig. S1 in the supplemental material).

Moreover, knocking out single or multiple components had an impact on the dy-
namics of the respective upstream recruiting factor, validating interactions between
MinD and MinJ and between MinJ and DivIVA, respectively, that were observed in
genetic studies previously (62, 63). Based on this interaction network and the respec-
tive protein behaviors in combination with the knowledge gained from the E. coli Min
system, a mathematical model was designed.

We propose a minimal reaction-diffusion model that correctly reproduces qualita-
tive features of MinD localization in B. subtilis. We extracted the parameters for the
model from our measurements (protein numbers and diffusion coefficients) (Tables 2
and 3) and from previous work on intracellular protein pattern formation (32, 34, 36,
83). The basic assumption of the model is that DivIVA acts as a spatial template for
MinJ and MinD, which we accounted for implicitly through a space-dependent recruit-
ment and detachment rate for MinD. From the computational analysis of the model (fi-
nite element method [FEM] simulations), we found that localization of MinD to the
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poles or the division site corresponds to a dynamic equilibrium state of the reaction-
diffusion equation. Further, our results show that a geometric effect alone is sufficient
to guide MinD to the division site, therefore highlighting the importance of realistic 3D
models.

Our model can be straightforwardly extended to include the explicit dynamics of
DivIVA and MinJ. As the exact reaction network of the Min system in B. subtilis remains
elusive, a theoretical model could help in identifying the essential components of Min
dynamics. By following the same approach as for the E. coli Min system, reconstitution
of the Min system in vitro would also help to dissect the complexity of the system and
to make the comparison between experiments and theory even more feasible. We
believe that our theoretical approach may serve as a basis for future studies addressing
protein dynamics in B. subtilis.

We note that the observed dynamics are not compatible with a division site selec-
tion system, because ongoing division is needed for correct localization and dynamics
of the Min system in B. subtilis. This is in line with data obtained by Elizabeth Harrýs lab
showing that deletion of Min proteins does not abolish midcell positioning of the Z-
ring in B. subtilis (88) and our own data describing reduced disassembly of Z-rings in
the absence of the Min system (65). The model we propose includes a yet unknown
protein or mechanism that stimulates MinD-ATP hydrolysis. The uniform hydrolysis
rate kH in our model was predicted to be similar to that of the closely related MinD in
E. coli, which is stimulated by MinE (25, 29). The responsible protein or mechanism has
yet to be elucidated, but the presence of cytosolic and membrane-bound MinD frac-
tions and their respective dynamics as well as the well-conserved ATPase domain
argue very convincingly for its existence.

Additionally, we investigated the Min components with single-molecule resolution,
revealing a strong tendency for cluster formation, and these clusters are also found at
the lateral sides of the cell membrane. The lateral Min assemblies have not been
resolved by conventional light microscopy images, and hence the idea of an exclusive
polar Min assembly was manifested. Clusters of MinD and DivIVA are indeed frequently
observed close to poles and midcell. In accordance with the mathematical model, we
hence hypothesize that a fraction of MinD will diffuse away from these primary binding
sites after recruitment. Most of this fraction will quickly unbind the membrane due to
the lack of stabilization and will be recruited again by DivIVA-MinJ to either pole or
septum clusters. Proteins that are part of a cluster will show less exchange or dynamic
behavior, further decreasing toward the center, as is typically observed in protein clus-
ters (89). This mechanism could tightly regulate spatiotemporal localization of MinCD
and, likewise, aid in transitioning from polar localization to septal localization rapidly
upon septum formation, as DivIVA and MinJ would transition to the septum first. Since
the current view on the task of the Min system in B. subtilis proposes a role down-
stream of cell division, all components need to be concentrated at the septum in time
to inhibit a second round of division by promoting the disassembly of the division ap-
paratus (65).

This study provides a model of the Min protein dynamics in B. subtilis that makes
testable predictions. It emerges that the Min systems in B. subtilis and E. coli are not so
fundamentally different as initially thought. Future research will therefore address the
unsolved question of how MinD ATPase activity is triggered in B. subtilis. Furthermore,
the influence of membrane binding of DivIVA and MinD requires a closer look to gain
quantitative data for a refined mathematical model.

MATERIALS ANDMETHODS
Bacterial strains, plasmids, and oligonucleotides. The oligonucleotides, plasmids, and strains used in

this study are listed in Tables 4 to 6, respectively. E. coli NEB Turbo was used to amplify and maintain plasmids.
Strain construction: Golden Gate assembly. Fragments for Golden Gate assembly were amplified

from B. subtilis 168 (trpC2) genomic DNA or template plasmids via PCR with the respective primers con-
taining directional overhangs (Table 4). The vector pUC18mut was also amplified via PCR to introduce
BsaI restriction sites and allow subsequent digestion of circular PCR template with DpnI, which cuts only
methylated DNA. Plasmid construction was verified via individual control digestion and DNA
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sequencing. Correct plasmids were transformed into B. subtilis 168 with the respective genetic back-
ground (Table 6) and selected for the introduced resistance (Table 5). Resistant candidates were con-
firmed by PCR and microscopy.

pHF01 (pUC18mut-minDup-aad9-Dendra2-minD) was created by a Golden Gate assembly of 5 frag-
ments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers HF0037 and HF0038 and 168 genomic DNA (containing the region
upstream of minD); (iii) PCR with primers HF0040 and HF0041 and JB40 genomic DNA (containing the
spectinomycin adenyltransferase gene aad9); (iv) PCR with primers HF0042 and HF0043 and pDendra2-
N plasmid DNA (containing the Dendra2 gene); (v) PCR with primers HF0044 and HF0045 and 168
genomic DNA (containing the N-terminal region of minD).

pHF02 (pUC18mut-minDup-aad9-msfGFP-minD) was created by a Golden Gate assembly of 5 frag-
ments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers HF0037 and HF0038 and 168 genomic DNA (containing the region
upstream of minD); (iii) PCR with primers HF0040 and HF0041 and JB40 genomic DNA (containing the
spectinomycin adenyltransferase gene aad9); (iv) PCR with primers HF0065 and HF0066 and pHJS105
(containing the msfGFP gene); (v) PCR with primers HF0044 and HF0045 and 168 genomic DNA (contain-
ing the N-terminal region of minD).

pHF03 (pUC18mut-minJ-msfGFP-aad9-minJdown) was created by a Golden Gate assembly of 5 frag-
ments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers G40 and G41 and 168 genomic DNA (containing the C-terminal region
of minJ); (iii) PCR with primers HF0029 and HF0030 and pHJS105 (containing the msfGFP gene); (iv) PCR
with primers G36 and G37 and JB40 genomic DNA (containing the spectinomycin adenyltransferase
gene aad9); (v) PCR with primers G42 and G43 and 168 genomic DNA (containing the region down-
stream of minJ).

pHF04 (pUC18mut-minJ-mNG-aad9-minJdown) was created by a Golden Gate assembly of 5 frag-
ments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers G40 and G41 and 168 genomic DNA (containing the C-terminal region

TABLE 4 Oligonucleotides used in this study

Oligonucleotide name Sequence (59 to 39)
bsarem1 TTTGGTCTCAGGTTCTCGCGGTATCATTGCAGC
bsarem2 TTTGGTCTCAAACCACGCTCACCGGCTCCAG
HF0061 GTCGGTCTCAACTAGAATTCGTAATCATGGTCATAGCTG
HF0062 CTCGGTCTCATCGGAAGCTTGGCACTGGC
HF0037 TATGGTCTCCCCGAGTTCATTCTATTGACAGTGAAGTC
HF0038 CTAGGTCTCTCTCCTTCACATTCCTCCCTCAAG
HF0040 AATGGTCTCTGGAGGGGTGAAAGGATGTACTTA
HF0041 TTTGGTCTCGCGAATAATTGAGAGAAGTTTCTATAG
HF0042 GGAGGTCTCTTTCGATGAACACCCCGGGAATTAAC
HF0043 CACGGTCTCCCATTCCACACCTGGCTGGGCAGG
HF0044 ACGGGTCTCAAATGGGTTGGGTGAGGCTATCGTAATAAC
HF0045 CGGGGTCTCTTAGTCAATATTTTCCTCTTGCTCCAGC
HF0065 GGAGGTCTCTTTCGATGGGTACCCTGCAGATG
HF0066 CACGGTCTCCCATTTTTGTAGAGCTCATCCATGC
G40 CTAGGTCTCTCCGATGTCGGATTTGGACA
G41 TATGGTCTCCCTCCTGATCCCGAAGCGAC
HF0029 AATGGTCTCTGGAGGGATGGGTACCCTGCAGATG
HF0030 TTTGGTCTCGCGAATTTGTAGAGCTCATCCATGC
G20 AATGGTCTCTGGAGGGATGAACACCCCGGGAATTAAC
G21 TTTGGTCTCGCGAATTACCACACCTGGCT
G36 GGAGGTCTCTTTCGGGGTGAAAGGATGTACTTA
G37 CACGGTCTCCCATTTAATTGAGAGAAGTT
G42 ACGGGTCTCAAATGGGAAGGCAGCCCGGCACCGCAGG
G43 CGGGGTCTCTTAGTCCATGATGGCTGGTG
HF0077 AATGGTCTCTGGAGGGATGGTGAGCAAGGGCG
HF0078 TTTGGTCTCGCGAATTACTTGTACAGCTCGTCCATG
G32 ACGGGTCTCAAATGGGATTCTCTGATTATCT
G33 CGGGGTCTCTTAGTATCGGGAAATCTGTT
G34 CTAGGTCTCTCCGAGAATTCCTAGCCCAAGTCAG
G35 TATGGTCTCCCTCCTTCCTTTTCCTCAAA
HF0206 TATGGTCTCCCCGAGTTAACCGTGACGTGC
HF0207 CTAGGTCTCTCTCCAATATTCACCTCAACAACATAC
HF0203 AATGGTCTCTGGAGTACCGTTCGTATAGCATAC
HF0204 TTTGGTCTCGCGAATCTACCGTTCGTATAATG
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of minJ); (iii) PCR with primers HF0077 and HF0078 and pNCS-mNeonGreen DNA (containing the
mNeonGreen gene); (iv) PCR with primers G36 and G37 and JB40 genomic DNA (containing the spectino-
mycin adenyltransferase gene aad9); (v) PCR with primers G42 and G43 and 168 genomic DNA (contain-
ing the region downstream of minJ).

pHF05 (pUC18mut-divIVA-mNG-aad9-divIVAdown) was created by a Golden Gate assembly of 5 frag-
ments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear

TABLE 6 Strains used in this study

Strain Relevant features or genotype Reference or source
B. subtilis
168 trpC2 Laboratory collection
3309 minCD::aph3-A3 Wu and Errington, 2004 (12)
RD021 minJ::tet Bramkamp et al., 2008 (62)
4041 divIVA::tet Bramkamp et al., 2008 (62)
SB075 minCD::erm minJ::tet Laboratory collection
BHF011 minD::aad9-Dendra2-minD This study, pHF01!168
BHF017 minD::aad9-msfGFP-minD This study, pHF02!168
BHF025 minD::aad9-msfGFP-minD minJ::tet This study, pHF02!RD021
BHF026 minD::aad9-msfGFP-minD divIVA::tet This study, pHF02!4041
JB038 minJ::minJ-Dendra2-aad9 This study, pHF06!168
BHF007 minJ::minJ-msfGFP-aad9 This study, pHF03!168
BHF015 minJ::minJ-msfGFP-aad9 minCD::aph3-A3 This study, pHF03!3309
BHF032 minJ::minJ-msfGFP-aad9 divIVA::tet This study, pHF03!4041
JB40 minJ::minJ-mNeonGreen-aad9 This study, pHF04!168
JB36 divIVA::divIVA-Dendra2-aad9 This study, pHF07!168
BHF028 divIVA::divIVA-mNeonGreen-aad9 This study, pHF05!168
BHF036 divIVA::divIVA-mNeonGreen-aad9 minCD::aph3-A3 This study, pHF05!3309
BHF027 divIVA::divIVA-mNeonGreen-aad9 minJ::tet This study, pHF05!RD021
BHF037 divIVA::divIVA-mNeonGreen-aad9 minCD::erm minJ::tet This study, pHF05!SB075
1803 divIVA::divIVA-GFP-cat Thomaides et al., 2001 (76)
BHF040 divIVA::divIVA-GFP-cat minCD::aph3-A3 This study, 1803!3309
BHF041 divIVA::divIVA-GFP-cat minJ::tet This study, 1803!RD021
BHF042 divIVA::divIVA-GFP-cat minCD::erm minJ::tet This study, 1803!SB075
BHF067 divIVA::divIVAD34-mNG-aad9 This study, pHF08!168
BHF069 minD::aad9-msfGFP-minD minC::aph3-A3 minJ::tet This study, pHF09!BHF025
JB37 divIVA::divIVA-PAmCherry-aad9 Stockmar et al., 2018 (75)

E. coli
NEB Turbo F9 proA1B1 lacIq DlacZM15/fhuA2 D(lac-proAB) glnV galK16

galE15 R(zgb-210::Tn10)Tets endA1 thi-1 D(hsdS-mcrB)5
New England Biolabs

TABLE 5 Plasmids used in this study

Plasmid Characteristics
Reference or
source

pUC18 lacZa, pMB1 ori, bla (Apr) 99
pUC18mut pUC18 with mutated BsaI site in bla Laboratory

collection
pDendra2-N pUC ori, SV40 ori, PCMVIE, aph3-A3 Evrogen
pNCS-mNeonGreen pUC ori, SV40 ori, bla (Apr) Allele

Biotechnology
pUC57-DivIVAd34-
mNG

pUC57-BsaI-free, bla (Apr), divIVAD34-mNeonGreen Synthesized by
Biocat

pHJS105 amyE integration vector containing Pxyl-msfGFP-MCS,
spc bla

100

pHF01 pUC18mut-minDup-aad9-Dendra2-minD This study
pHF02 pUC18mut-minDup-aad9-msfGFP-minD This study
pHF03 pUC18mut-minJ-msfGFP-aad9-minJdown This study
pHF04 pUC18mut-minJ-mNG-aad9-minJdown This study
pHF05 pUC18mut-divIVA-mNG-aad9-divIVAdown This study
pHF06 pUC18mut-minJ-Dendra2-aad9-minJdown This study
pHF07 pUC18mut-divIVA-Dendra2-aad9-divIVAdown This study
pHF08 pUC18mut-divIVAD34-mNG-aad9-divIVAdown This study
pHF09 pUC18mut-minCup-aph3-A3—aad9 This study
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pUC18mut); (ii) PCR with primers G34 and G35 and 168 genomic DNA (containing the C-terminal region
of divIVA); (iii) PCR with primers HF0077 and HF0078 and pNCS-mNeonGreen DNA (containing the
mNeonGreen gene); (iv) PCR with primers G36 and G37 and JB40 genomic DNA (containing the spectino-
mycin adenyltransferase gene aad9); (v) PCR with primers G32 and G33 and 168 genomic DNA (contain-
ing the region downstream of divIVA).

pHF06 (pUC18mut-minJ-Dendra2-aad9-minJdown) was created by a Golden Gate assembly of 5 frag-
ments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers G40 and G41 and 168 genomic DNA (containing the C-terminal region
of minJ); (iii) PCR with primers G20 and G21 and pDendra2-N plasmid DNA (containing the Dendra2
gene); (iv) PCR with primers G36 and G37 and JB40 genomic DNA (containing the spectinomycin adenyl-
transferase gene aad9); (v) PCR with primers G42 and G43 and 168 genomic DNA (containing the region
downstream of minJ).

pHF07 (pUC18mut-divIVA-Dendra2-aad9-divIVAdown) was created by a Golden Gate assembly of 5
fragments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers G34 and G35 and 168 genomic DNA (containing the C-terminal region
of divIVA); (iii) PCR with primers G20 and G21 and pDendra2-N plasmid DNA (containing the Dendra2
gene); (iv) PCR with primers G36 and G37 and JB40 genomic DNA (containing the spectinomycin adenyl-
transferase gene aad9); (v) PCR with primers G32 and G33 and 168 genomic DNA (containing the region
downstream of divIVA).

pHF08 (pUC18mut-divIVAD34-mNG-aad9-divIVAdown) was created by a Golden Gate assembly of 4
fragments: (i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear
pUC18mut); (ii) PCR with primers G34 and HF0078 and pUC57-DivIVAd34-mNG plasmid DNA (containing
divIVAD34-mNeonGreen); (iii) PCR with primers G36 and G37 and JB40 genomic DNA (containing the
spectinomycin adenyltransferase gene aad9); (iv) PCR with primers G32 and G33 and 168 genomic DNA
(containing the region downstream of divIVA).

pHF09 (pUC18mut-minCup-aph3-A3-aad9) was created by a Golden Gate assembly of 4 fragments:
(i) PCR with primers HF0061 and HF0062 with pUC18mut as the template (yielding a linear pUC18mut;
(ii) PCR with primers HF0206 and HF0207 and 168 genomic DNA (containing the region upstream of
minC); (iii) PCR with primers HF0203 and HF0204 and 3309 genomic DNA (containing the aminoglyco-
side-39-phosphotransferase gene aph3-A3, conferring resistance to kanamycin); (iv) PCR with primers
G36 and G37 and JB40 genomic DNA (containing the spectinomycin adenyltransferase gene aad9).

Media and growth conditions. B. subtilis was grown on nutrient agar plates using commercial nutri-
ent broth and 1.5% (wt/vol) agar at 37°C overnight. To reduce inhibitory effects, antibiotics were used
only for transformations and when indicated, since allelic replacement is stable after integration (chlor-
amphenicol, 5mg ml21; tetracycline, 10mg ml21; kanamycin, 5mg ml21; spectinomycin, 100mg ml21;
erythromycin, 1mg ml21).

For growth curves, B. subtilis was inoculated to an optical density at 600 nm (OD600) of 0.05 from a fresh
overnight culture and grown in LB (lysogeny broth) (10 g liter21 tryptone, 10 g liter21 NaCl, and 5 g liter21

yeast extract) at 37°C with aeration in baffled shaking flasks (200 rpm) to an OD600 of 1. Subsequently, cultures
were diluted to an OD600 of 0.1 in fresh LB and measured every hour for at least 6h.

For microscopy, B. subtilis was inoculated to an OD600 of 0.05 from a fresh overnight culture and
grown in MD medium, a modified version of Spizizen minimal medium (90), at 37°C with aeration in
baffled shaking flasks (200 rpm) to an OD600 of 1. MD medium contains 10.7mg ml21 K2HPO4, 6mg ml21

KH2PO4, 1mg ml21 Na3 citrate, 20mg ml21 glucose, 20mg ml21 L-tryptophan, 20mg ml21 ferric ammo-
nium citrate, 25mg ml21 L-aspartate, and 0.36mg ml21 MgSO4 and was always supplemented with 1mg
ml21 Casamino Acids. Subsequently, cultures were diluted to an OD600 of 0.1 in fresh MD medium and
grown to an OD600 of 0.5 (exponential phase).

For epifluorescence and time-lapse imaging (e.g., FRAP), B. subtilis cells were mounted on pre-
warmed 1.5% MD agarose pads, sealed with paraffin, and incubated for 10min at 37°C before micro-
scopic analysis. When used, FM4-64 dye or Nile red was added to the agarose pad before polymerization
(1mM final concentration).

For PALM imaging, a 0.5-ml portion of B. subtilis cells was fixed by addition of formaldehyde (1.5%
[wt/vol] final concentration) and incubated for 20min at 37°C. Subsequently, cells were washed (1min,
2,300 relative centrifugal force [rcf]), resuspended in fresh MD medium supplemented with 10mM gly-
cine to stop the cross-linking reaction, and incubated for 10min at 37°C. Cells were then washed 2 more
times with MD medium containing 10mM glycine. In a final washing step, the pellet was resuspended in
50ml of MD medium with 10mM glycine to reach a higher cell density. Cells were mounted on cham-
bered coverslips (m-slide 8 well; Ibidi) containing 200ml MD medium with 10mM glycine, which were
pretreated for 30 to 60min with 0.1% poly-L-lysine and successively washed 3 times with MD medium
containing 10mM glycine. Furthermore, TetraSpeck microspheres (100 nm; ThermoFisher) were added
at a dilution that results in about 3 to 10 beads per field of view. To help sedimentation of cells and
beads and to reach a uniform attachment to the glass surface, the chambered coverslip was centrifuged
at 3,400 rcf for 10min in a bucket-swing rotor (Eppendorf).

Typhoon imaging and Western blot analysis. To confirm the presence of full-length protein
fusions and for quantitative analysis, B. subtilis strains were inoculated from an overnight culture to an
OD600 of 0.05 in the morning and grown to an OD600 of 0.5 in 10ml LB medium (MD medium for quanti-
tative studies) at 37°C. Cells were then diluted 1/10 and grown again to mid-exponential phase (OD600,
0.5). Cultures were centrifuged at 15,700 rcf for 1 min, washed once with lysis buffer (10mM Tris, pH 7.5,
150mM NaCl, 500mM EDTA, 1mM phenylmethylsulfonyl fluoride [PMSF]), and resuspended in lysis
buffer with additional 10mg/ml lysozyme (Sigma-Aldrich), 10mg/ml DNase I (Roche), and 100mg/ml
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RNase A (Roche), concentrating the sample to an OD600 of 30. After incubation at 37°C for 20 min, the
sample was briefly vortexed to crack the remaining intact cells. Thirty microliters of sample was then
mixed with 10ml of 4� SDS-PAGE loading buffer (200mM Tris-HCl [pH 6.8], 400mM dithiothreitol [DTT],
8% SDS, 0.4% bromophenol blue, and 40% glycerol). For Typhoon imaging and subsequent Western
blotting, either samples were incubated for 20min at room temperature or, for some samples meant
exclusively for Western blotting, they were incubated at 95°C for 10 min for full denaturation (indicated
in Fig. S3 in the supplemental material). Ten or 20ml of sample was then separated by SDS-PAGE in 12%
Bis-Tris gels. For visualization of green fluorescent fusions, gels were imaged in a Typhoon Trio (GE
Healthcare; photomultiplier voltage [PMT], 600 to 800; excitation, 488 nm; emission, 526 short pass filter
[SP]). For Western blotting, proteins were blotted onto 0.2-mm-pore-size polyvinylidene difluoride
(PVDF) membranes. Proteins were visualized via anti-mCherry (polyclonal), anti-mNG (monoclonal), or
anti-Dendra (polyclonal) antibodies, respectively.

To quantify Dendra2 fusions of MinD, MinJ, and DivIVA via in-gel fluorescence, three biological tripli-
cates were prepared and imaged as described above, while avoiding oversaturation. The total number
of MinD molecules was taken from a publication that utilized targeted mass spectrometry to determine
absolute protein amounts of B. subtilis at mid-exponential phase in minimal medium with glucose (78).
Relative quantification was then performed using ImageJ by measuring and comparing intensities of the
bands.

Fluorescence microscopy. For strain characterization, microscopy images were taken with a Zeiss
Axio Observer Z1 microscope equipped with a Hamamatsu OrcaR2 camera using a Plan-Apochromat
100�/1.4 oil Ph3 objective (Zeiss). Dendra2, GFP, msfGFP, and mNeonGreen fluorescence was visualized
with a 38 HE eGFP shift-free filter set (Zeiss), and FM4-64 membrane dye was visualized with a 63 HE
mCherry filter set (Zeiss). The microscope was equipped with an environmental chamber set to 37°C.
Digital images were acquired with Zen software (Zeiss).

For FRAP experiments, a Delta Vision Elite imaging system (GE Healthcare, Applied Precision)
equipped with an InsightSSI illumination unit, an X4 laser module, and a CoolSnap HQ2 charge-coupled
device (CCD) camera was used. Images were taken with a 100� oil PSF U-Plan S-Apo 1.4 numerical aper-
ture objective. A four-color standard set InsightSSI unit was used with the following: excitation wave-
lengths for DAPI (49,6-diamidino-2-phenylindole), 390/18 nm; FITC (fluorescein isothiocyanate), 475/
28 nm; TRITC (tetramethyl rhodamine isocyanate), 542/27 nm; and Cy5, 632/22 nm; single band pass
emission wavelengths for DAPI, 435/48 nm; FITC, 525/48 nm; TRITC, 597/45 nm; and Cy5, 679/34 nm; and
a suitable polychroic for DAPI/FITC/TRITC/Cy5. GFP, msfGFP, and mNeonGreen were visualized using
FITC settings and exposure times between 0.1 s (msfGFP, GFP) and 0.2 s (mNeonGreen). Bleaching was
performed using a 488-nm laser (50 mW) with 10% power and a 0.005- to 0.01-s pulse. Frequency of ac-
quisition and total amount of images were chosen according to the individual recovery times after initial
testing with various settings.

Analysis of the images was performed using ImageJ 1.51 s. The corrected total cell fluorescence
(CTCF) was calculated according to following formula: CTCF = integrated density 2 (area of selected
cell � mean fluorescence of unspecific background readings) (91). For FRAP experiments, unspecific
background was subtracted for every region of interest (ROI) (see above). The CTCF of the septa was di-
vided by the CTCF of the whole cell to account for photobleaching during acquisition. The respective
quotient of the unbleached spot was always set as 1 for normalization. Since B. subtilis keeps growing
during time-lapse experiments like FRAP, the bleached spot moves in the field of view as cells elongate.
Therefore, a macro in Fiji was created to dynamically follow and center the bleached spot through the
frames of acquisition without any bias, which resulted in more precise FRAP curves. To determine half-
time recovery and mobile/immobile fractions, the FRAP curve from the normalized recovery values was
fitted to an exponential equation:

I tð Þ ¼ Að12 e2t tÞ (1)

where I tð Þ is the normalized FRAP curve, A is the final value of the recovery, t is the fitted parameter,
and t is the time after the bleaching event. After determination of the fitted coefficients, they can be
used to determine mobile (A) and immobile (1 2 A) fractions, while the following equation was used to
determine halftime recovery (equation 2):

T1=2 ¼ ln 0:5
2t

(2)

where T1=2 is the halftime recovery and t is the fitted parameter. Diffusion coefficients were then calcu-
lated with the following formula:

D ¼ ðw2=4T1=2Þ � 0:88 (3)

according to Axelrod et al. (92), where D is the diffusion coefficient, w is the radius of the circular laser
beam, and T1=2 is the time when fluorescence recovery reaches half height of total recovery. To estimate
the bleaching spot radius, cells expressing cytosolic GFP were fixed with 1.5% (vol/vol) formaldehyde as
described above, mounted on agarose pads, bleached at laser powers of 10% to 100% in increments of
10%, and imaged right after bleaching. The radius was measured in ImageJ and averaged per triplicate
to calculate the function of bleach radius over laser power. Graphs and statistics were created in R 3.3.1
(93) utilizing the packages ggplot2 (94) and nlstools (95). For measuring cell profiles, Fiji (ImageJ) was
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used, and a segmented line of width 5 was drawn through the longitudinal axis of the cells and subse-
quently measured. Analysis and demographs were created in R.

Reaction-diffusion equations. The setup of our mathematical model is based on previous
approaches for intracellular protein dynamics (32, 34, 36, 83). Specifically, we present a minimal model
to account for DivIVA-mediated MinD localization. The model includes the following set of biochemical
reactions: (i) attachment of MinD-ATP (with volume concentration uDT ) from the bulk to the membrane
with constant rate kD ; (ii) recruitment of bulk MinD-ATP to the membrane by membrane-bound MinD
(with areal concentration ud) with rate ~kdD ; (iii) hydrolysis and detachment of membrane-bound MinD
into bulk MinD-ADP (uDD) with rate ~kH; (iv) reactivation of bulk MinD-ADP by nucleotide exchange to
MinD-ATP with rate l . The system of ensuing reaction-diffusion equations reads as follows:

@tuDD ¼ DDr2
c uDD 2luDD (4a)

@tuDT ¼ DDr2
c uDT 1luDD (4b)

@tud ¼ Ddr2
mud 1 kD 1~kdDud

� �
uDT 2~kHud (4c)

where the subscript c or m denotes that the nabla operator acts in the bulk or on the membrane, respec-
tively. These equations are coupled through nonlinear reactive boundary conditions at the membrane
surface, stating that the biochemical reactions involving both membrane-bound and bulk proteins equal
the diffusive flux onto and off the membrane:

DDrnuDDjm ¼ ~kHud (5a)

DDrnuDT jm ¼ 2ðkD1~kdDudÞuDT (5b)

Here, the subscript n denotes that we take the nabla operator acting along the outward normal vec-
tor of the boundary (membrane). The set of reaction-diffusion equations conserve the total mass of
MinD. Hence, the total particle number, ND , of MinD obeys the relation

ND ¼
ð
X

ðuDD 1 uDT Þ dV1

ð
@ X

uddS (6)

We simulated the set of reaction-diffusion equations in a spherocylindrical geometry in three-dimen-
sional space (3D) using the finite-element software COMSOL v5.4a; for an illustration of the geometry
used, see Fig. S7. The length (L) and height (h) were set to typical values known for B. subtilis
cells, L ¼ 2:8 mm and h ¼ 0:85 mm, respectively. The mean total density of MinD was set to
MinD½ � ¼ 2; 450 mm23 for all simulations (Table S1). We assume that in addition to MinD self-recruit-
ment, MinJ recruits MinD-ATP from the bulk to the membrane and that membrane-bound MinD is stabi-
lized by DivIVA-MinJ complexes on the membrane. We model the interaction of MinD with MinJ and
DivIVA implicitly through space-dependent recruitment and detachment rates. To this end, we assume
that the recruitment rate is amplified by a factor a and that the detachment rate is reduced by a factor
b at regions of high negative curvature (such as the poles or the septum). This assumption is motivated
by experiments which suggest that MinD localization is dependent on MinJ and that DivIVA acts as a
scaffold that stabilizes MinJ and MinD (see Discussion). We therefore set the recruitment and detach-
ment rates to kdD ¼ a~kdD and kH ¼ ~kH=b at regions of high negative curvature (Fig. S7), where a

and b denote dimensionless amplification and reduction prefactors, respectively. The parameters ~kdD
and ~kH denote the uniform recruitment and detachment rates that one would obtain if interactions
between MinD and DivIVA-MinJ complexes were neglected, i.e., if a ¼ b ¼ 1 (see below).

Simulation of the model: polar localization. In a cell with no preexisting division apparatus, the
Min system localizes at the poles of the bacteria (see Discussion). We model this case by setting a ¼ 4
and b ¼ 3 at the polar caps and a ¼ b ¼ 1 for the remaining part of the rod-shaped geometry
(Fig. S7b). The uniform rates were set to ~kdD ¼ 0:04 mm2=s and ~kH ¼ 0:1 mm2=s as given above.
Simulations show that MinD can be pinned to the cell poles for nonuniform kinetic parameters (Fig. 3c,
left).

Depletion of MinD at the poles. Next, we tested if the polar distribution of MinD decays to a homo-
geneous protein distribution along the membrane when the rates are uniform over the whole cell body.
To this end, we used the steady-state polar distribution of MinD (as obtained above) as the initial condi-
tion for a simulation with uniform rates in the entire geometry, i.e., a ¼ 1; b ¼ 1. We found that for
uniform rates, MinD proteins preferentially localize near the cell center (Fig. 3c, left to right). The reason
for this unexpected inhomogeneous protein distribution is a purely geometric effect (see Discussion).

Localization at septum. The curvature-sensing protein DivIVA targets the division site and guides
MinJ and MinD to the septum (see Discussion). Above, we showed that MinD localizes to the cell poles if
the recruitment and detachment rate of MinD are altered at the poles due to interactions with MinJ and
DivIVA. For uniform rates, however, the MinD density distribution is spread around midcell but not
sharply localized at the septum as observed in experiments. Sharp localization of MinD at midcell
requires interaction with DivIVA and MinJ, and we therefore model this case in the same way as for polar
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localization. First, we define a narrow region with width sw ¼ 0:14 mm at midcell, which represents the
septum (Fig. S7c). We set again a ¼ 4 and b ¼ 3 at this geometric region to model the interactions of
MinD with MinJ and DivIVA implicitly through a modified recruitment and detachment rate. Simulations
of the model show that MinD localizes sharply at the septum (Fig. 3d, left to right).

Parameter dependence of the simulation results. Since we consider steady-state solutions of the
reaction-diffusion system in equations 4 and 5, our qualitative results are not sensitive against variations
of the kinetic parameters (Table S1). Changing the values of the kinetic parameters would only shift the
dynamic equilibrium state, without affecting the protein distributions qualitatively. There is only one
exception, which is the nucleotide exchange rate, l , or, more precisely, the reactivation length scale
l ¼ ffiffiffiffiffiffiffiffiffiffiffi

DD=l
p

.
Since nucleotide exchange and diffusion are the main reasons for the geometric effect discussed

above, the qualitative steady-state density distributions may depend on l. We will discuss two relevant
limits which affect the redistribution of MinD to midcell. (i) Let us assume that the reactivation of
detached MinD-ADP to MinD-ATP is instantaneous and hence l is very large. In this case, the reactiva-
tion length would be much smaller than the radius of curvature at the poles R, i.e., l\llR. A very small
value of l implies that detached proteins can rebind the membrane without delay. Therefore, in this
case, there is no geometric effect and the steady-state density distribution of MinD would be homoge-
neous. (ii) Next, let us assume that l is very small, such that the reactivation length becomes much
larger than the length of the bacteria L, i.e., l � L. This would imply that proteins detaching from the
membrane diffuse a long distance until they exchange their nucleotide and become able to rebind the
membrane again. In this case, the MinD density distribution would be also homogeneous. However, due
to the small value of l , inactive MinD-ADP proteins are abundant in the cytosol and only few MinD-ATP
proteins attach to the membrane, resulting in low membrane densities.

The geometric effect (see above) is present if the value of l lies between the radius of curvature at
the poles and the length of the bacteria, i.e., R,l,L. Therefore, our qualitative results are not sensitive
to the exact choice of l as long as the inequality above is fulfilled. For our parameters, we have
R � 0:42 mm; L ¼ 2:8 mm, and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

DD= l
p � 1:6 mm. In summary, this geometric effect is quite ro-

bust and does not require the fine-tuning of parameters. For an in-depth discussion of the geometric
effect and its dependence on various system parameters, see reference 83.

PALM and cluster analysis. Photoactivated localization microscopy (PALM) imaging was performed
with the microscope system ELYRA P.1 (Zeiss) and the accompanying Zen software. It is equipped with a
405-nm diode-laser (50 mW), a 488-nm laser (200 mW), a 561-nm laser (200 mW), and a 640-nm laser
(150 mW). Furthermore, an alpha Plan-Apochromat 100�/1.46 oil differential inference contrast (DIC)
M27 objective (Zeiss) was used, in combination with a 1.6� Optovar. The filter sets were the following: a
77 HE GFP1mRFP1Alexa 633 shift-free (EX TBP 4831 5641 642, BS TFT 5061 5821 659, EM TBP
5261 6011 688), a 49 DAPI shift-free (EX G 365, BS FT 395, EM BP 445/50), a BP 420–480/LP 750, a BP
495–550/LP 750, an LP 570, and an LP 655 filter set. Images were recorded with an Andor EMCCD camera
iXon DU 897. Samples expressing mNeonGreen were illuminated with the 488-nm laser at 7.4 mW.
Samples expressing Dendra2 or PAmCherry were illuminated with an excitation laser (561 nm, 5.3 mW)
and an activation laser (405 nm). To avoid cooccurrence of multiple events in the same spot, the power
of the activation laser was increased stepwise from 0.008 mW to 1.6 mW. MinJ-mNeonGreen was illumi-
nated in pseudo-TIRF (total internal reflection fluorescence) mode and recorded at 20Hz with 200 cam-
era gain, while Dendra2-MinD and DivIVA-PAmCherry were imaged with the same camera settings in
regular wide field. Analysis was performed in the Zen Black (Zeiss) software. Detection of single emitters
was performed with a peak mask size of 9 pixels and a minimum peak intensity-to-noise ratio of 6.0;
overlapping emitters were discarded. Localization was extrapolated via a 2D Gaussian fitting, and
images were drift corrected utilizing a fiducial-based mode with at least 3 beads in focus. Filtering was
used to minimize noise, background, and out-of-focus emitters and to exclude beads from the evalua-
tion, according to Table 7, which were different for each respective fluorophore.

Cluster analysis was performed in R 3.3.1 (93) utilizing the DBSCAN package (96, 97) including
OPTICS (98). Clusters were determined by applying the OPTICS algorithm to the respective molecule
tables generated via PALM. The minimal number of points that define a cluster (minPts) was defined as
10, reflecting apparent clusters seen in rendered PALM imaging, and a minimum distance between clus-
ter edge points (epsCl) of 20 and 30 nm for MinD and DivIVA, respectively, according to the observed
density of protein localization.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TABLE 7 Filter parameters for PALM imaging of the different strainsa

Strain or FP point spread function (PSF) at half maximum [nm] No. of photons
Dendra2-MinD 70–160 70–250
MinJ-mNeonGreen 70–160 70–300
DivIVA-PAmCherry 60–170 50–500
aFilters were chosen according to the fluorophore (FP) behavior in PALM to eliminate background and signal of
fluorescent beads from the results.
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FIG S1, TIF file, 2.5 MB.
FIG S2, TIF file, 1.1 MB.
FIG S3, TIF file, 1 MB.
FIG S4, TIF file, 2.3 MB.
FIG S5, TIF file, 0.6 MB.
FIG S6, TIF file, 2.4 MB.
FIG S7, TIF file, 0.2 MB.
FIG S8, TIF file, 1.2 MB.
TABLE S1, DOCX file, 0.02 MB.
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Supplementary Tables 
 

Tab. S1: Relative quantification of Min proteins fused to Dendra2. Relative amounts of protein were 
determined via in-gel fluorescence of biological triplicates of cell lysates (see Fig. S5). Absolute 
protein quantities were determined relative to MinD, which was quantified in another publication 
[75] in similar conditions. Values are shown with standard deviation. 

 

Protein Relative amount Total copies 
per cell 

MinD 100% ± 2.51% 3544 ± 89 

MinJ 16.25% ± 4.36% 576 ± 25 

DivIVA 47.70% ± 3.51% 1690 ± 59 

 

  



Tab. S2: Kinetic rate constants for the MinD dynamics. The membrane diffusion coefficient, MinD 
protein density, cell length and cell width are chosen in accordance with our experimental data. The 
bulk diffusion coefficient, attachment rate, hydrolysis rate and nucleotide exchange rate were 
estimated from previous approaches for intracellular protein dynamics. 

 

Parameter Symbol Value 
Bulk Diffusion 𝐷! 16	𝜇𝑚" ⋅ 𝑠#$ 
Membrane Diffusion 𝐷%  0.06	𝜇𝑚" ⋅ 𝑠#$ 
Mean total density [𝑀𝑖𝑛𝐷] 2450	𝜇𝑚#& 
Attachment rate 𝑘! 0.068	𝜇𝑚 ⋅ 𝑠#$ 
Uniform recruitment rate 𝑘5%! 0.04	𝜇" ⋅ 𝑠#$ 
Uniform hydrolysis rate 𝑘5' 0.1	𝑠#$ 
Recruitment rate amplification factor 𝛼 4 
Hydrolysis rate reduction factor 𝛽 3 
Nucleotide exchange rate 𝜆 6	𝑠#$ 
Cell length 𝐿 2.8	𝜇𝑚 
Cell width ℎ 0.85	𝜇𝑚 

 

  



Supplementary Figure legends 
 

Fig. S1: Cartoon of strain construction strategy for allelic replacement in B. subtilis. All strains in this 

study were created to express fluorophore-fusions from their native promoter to sustain native protein 

levels. Furthermore, they were tested for functionality. (a) Construction of plasmids was performed 

with golden-gate cloning, yielding a plasmid that can directly be transformed into B. subtilis. (b) After 

transformation, genes for a fluorophore and an antibiotic resistance cassette are integrated into the 

genomic locus of interest via homologous recombination 

 

Fig. S2: Microscopic images of a selection of strains used in this study. Columns from left to right: 

Phase contrast, red fluorescent channel using membrane dye (FM4-64), green fluorescent channel 

depicting the indicated fluorophore and composite of all three channels. Scale bars 2µm. 

 

Fig. S3: Representative microscopy images of FRAP analysis of DivIVA-mNeonGreen. (a) DivIVA-

mNeonGreen expressed in wild type background (BHF028). Images taken before bleaching the 

indicated spot with a 488 nm laser pulse, directly after bleaching and after recovery of fluorescence. 

Scale bars 2 µm. (b) Representation of the normalized fluorescence recovery in the green channel over 

time. T1/2 = time when fluorescence recovery reaches half height of total recovery, indicated on the 

graph with a dashed square. The red line represents measured values, black the fitted values. 

 

 Fig. S4: Western blots or in-gel fluorescence of native Min protein fusions. To control for full-length 

of fluorescent protein fusions with MinD, MinJ or DivIVA, cell lysates were either fully (96°C for 10 min, 

d) or partially (room temperature for 20 min, a, b, c and e) denatured and separated via SDS-PAGE. 

Protein bands were then visualized either directly via in-gel fluorescence (c, e) with excitation and 

emission at 488/526 nm, respectively, or colorimetrically via western-blot with the respective 



indicated antibody (a: polyclonal anti-Dendra2, b: monoclonal anti-mNeonGreen, d: polyclonal anti-

mCherry). 

 

Fig. S5: Relative quantification of native Dendra2 fusions assayed by in-gel fluorescence of SDS-PAGE 

gels. Biological triplicates indicated by top right number (1-3). Lysates of the respective strain were 

partially denatured with SDS loading dye at room temperature for 20 min, loaded in different relative 

amounts (left 1x, right 2x) and separated via SDS-PAGE. (a) Visualization via Typhoon Trio scanner, with 

excitation at 488 nm and an emission filter of 526 nm. (b) Coomassie stain of the respective image as 

loading control. Results of quantification can be found in Tab. S1. 

 

Fig. S6: Representative microscopy images of FRAP analysis of Min proteins in different knockout 

backgrounds.(a) MinJ-msfGFP expressed in ΔminCD background (BHF015), and DivIVA-GFP expressed 

in ΔminCD (BHF040), ΔminJ (BHF041) and ΔminCDJ (BHF042) backgrounds. Images taken before 

bleaching the indicated spot with a 488 nm laser pulse, directly after bleaching and after recovery of 

fluorescence. Scale bars 2 µm. (b) Representation of the normalized fluorescence recovery in the green 

channel over time. T1/2 = time when fluorescence recovery reaches half height of total recovery, 

indicated on the graph with a dashed square. The red line represents measured values, black the fitted 

values. 

 

Fig. S7: Geometry for the simulation of the model. (a) Sketch of the simulation geometry 

(spherocylinder). (b) Polar localization is achieved by setting 𝛼 = 4 and 𝛽 = 3 at the poles (green area), 

and 𝛼 = 𝛽 = 1 for the remaining part of the geometry. (c) Localization at the septum is achieved by 

setting 𝛼 = 4 and 𝛽 = 3 in a narrow region at mid cell (green) and else 𝛼 = 𝛽 = 1. 

 



Fig. S8: PALM imaging and representative cluster analysis of strain JB40 expressing MinJ-

mNeonGreen. (a) PALM image of MinJ-mNeonGreen in a cell in late division state. Scale bar 500 nm. 

(b) Cluster analysis of the same PALM data with three highlighted regions (i, ii and iii). Cluster analysis 

was performed in R using the OPTICS algorithm from the DBSCAN package. Every point indicates a 

single event and thus a MinJ-mNeonGreen protein, precision is indicated by colour and size of the 

circle. 

 

Fig. S9: PALM imaging and representative cluster analysis of strain JB37 expressing DivIVA-

PAmCherry. (a) PALM image of DivIVA-PAmCherry in a cell in late division state. Scale bar 500 nm. (b) 

Cluster analysis of the same PALM data with three highlighted regions (i, ii and iii). Cluster analysis was 

performed in R using the OPTICS algorithm from the DBSCAN package. Every point indicates a single 

event and thus a DivIVA-PAmCherry protein, precision is indicated by colour and size of the circle. 

 

Fig. S10: Visualization of longitudinal Dendra2-MinD gradients with different microscopy techniques. 

Comparison of Dendra2-MinD fluorescent signal (left) and longitudinal relative fluorescence intensity 

(right) between conventional live-cell light microscopy (a), live-cell PALM (b) and live-cell PALM with a 

rendered point-spread function of 200 nm (c), resembling conventional light microscopy resolution. 

While (b) reveals a very sharp gradient with strong peaks at poles and geometric mid-cell, (a) and (c) 

appear to have a smoother Dendra2-MinD gradient, likely due to the lower localization precision.  
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Matter tells space how to curve; space tells matter how to move.
— John Archibald Wheeler

IV Curvature-induced instabilities of
protein-lipid interfaces.

1 Membrane remodeling by motor proteins

In this section, we dive into the topic of membrane curvature generation via
motorprotein-lipid interactions. The following is based on and uses parts of our
paper [34] published in Nature Communications. We provide a reprint of the paper
in section 1.6.

1.1 Background

In section 2 of chapter II, we discussed that the cytoplasmic membrane of cells is not
a static but rather a highly dynamic object that undergoes shape changes in response
to many stimuli. Membrane adaptation is crucial for cells, since many functions
rely on dynamic reshaping of the cell membrane. Representative examples where
membrane remodeling is critical includes cell motility, cell division, and also
intracellular transport such as endocytosis [31, 32, 162].

It is widely accepted that membrane curvature is generated and controlled
by the cytoskeleton (including all its components, such as motor proteins, actin
filaments, microtubules etc.) [162–164]. The basic pathways by which cytoskeletal
components induce curvature may be categorized as follows: (i) Some proteins,
including transmembrane proteins, have a characteristic conical or inverted con-
ical shape and can thus induce curvature by direct insertion between the lipid
heads [33]. Here, curvature generation is caused by elastic tension gradients
between the inner and outer leaflets of the lipid bilayer, which results effectively in
a different spontaneous curvature of the membrane [165–168]. (ii) Other proteins
have intrinsic shapes, such as proteins with BAR domains, or so-called ALPS
motifs (amphipathic helices), which can explicitly induce curvature by binding or
insertion, respectively [33, 169]. (iii) Membrane curvature may be also generated
via scaffolding, such as the ATP-dependent clathrin-coat [33], and oligomerization
of BAR-domains on membranes [32, 33]. (iv) The actomyosin complex, as well as
microtubule polymerization, can induce curvature by directly exerting mechanical
forces to the membrane [33, 162]. Here, myosin motor proteins act as crosslinkers
between actin filaments, and therefore orchestrate these processes, provided that
energy is supplied to the system in the form of ATP. While it has been shown
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that motor proteins are in principle able to bind to lipid membranes [170–173], it
remained unclear whether interactions between motor proteins and membranes
alone can also generate curvature (i.e. without actin filaments or microtubules).
For example, the atypical motor protein myosin-VI, the only motor protein that
has been shown to walk towards the minus end of actin filaments [174, 175], is
able to directly bind to lipid membranes [171].

In this project, using a reconstituted in vitro system, we investigated the interac-
tions of the motor protein myosin-VI with supported lipid bilayers. To our surprise,
we found that myosin-VI, on its own, reshapes the membrane by generating pores
that grow over time and form regular, flower-like, spatial structures [34]. Interest-
ingly, the binding of myosin-VI to the membrane is highly curvature-dependent,
and does not require the supply of ATP. We developed a quantitative theoretical
model that explains and correctly reproduces the experimental observations. The
basic mechanism leading to pattern formation of the motorprotein-lipid interface
is based on a “push-pull” mechanism: The curvature-sensitive membrane binding
of myosin-VI acts as a destabilizing driving force, which is counteracted by line
tension of the protein-lipid interface (short wavelength cut-off), thus resulting in a
band of unstable modes.

1.2 Growing pores in supported lipid membranes

Before we dive into the theoretical details, we briefly recapitulate the phenomeno-
logy of the system. By reconstituting myosin-VI in a box-like in vitro setup, where
the bottom surface of the box is coated with a supported lipid bilayer, we observe
by fluorescence microscopy that GFP-tagged myosin-VI generates micrometer sized
holes in the lipid membrane (see Fig. IV.1a). These pores grow over time, and some-
times also fuse with other holes if they overlap during the grow process. Notably,
the circumference of the motorprotein-lipid interface is not perfectly circular but
rather appears to be rough. Using super resolution microscopy (STORM) [176],
we observe that pores are initially nearly circular, but for sufficiently long times
exhibit regular spatial structures with a characteristic wavelength (Fig. IV.1b).
In other words, the initially circular shape of the interface seems to undergo a
pattern-forming instability. Interestingly, we find that most binding events of bulk
myosin-VI to the membrane occurs at regions of the interface which exhibit a
Gaussian negative curvature [34] (outward bulges, see Fig. IV.1b).

1.3 Theoretical model with bulk-surface coupling

What drives the pattern-forming instability of the motorprotein-lipid interface?
To address this question, we develop a theoretical model that describes the grow of
the interface. We assume that the circumference of the pore can be described by



1 Membrane remodeling by motor proteins 249

GFP-myo6

DOPC /
DOPE-Cy5

Nano-
defect

Mica

a

0
Time (min)

GFP-
myo6

DOPC

GFP-myo6

60

*
*

b

Figure IV.1 Myosin-VI mediated remodeling of supported lipid bilayers. a) Using fluores-
cence microscopy, we find that myosin-VI generates holes in the membrane that grow over
time. The main solution is contains abundant myosin-VI. b) Super resolution microscopy
reveals that the pores grow and eventually form flower-like shapes, and that myosin-VI
preferentially binds to regions of the interface which exhibit a Gaussian negative curvature
(arrows). The figure is adopted from ref. [34].

a periodic, one-dimensional line Γ(t ), which should be a reasonable assumption
since the thickness of the lipid bilayer is much smaller than the typical size of
the pores. This assumption also requires to map diffusion of myosin-VI in the
three-dimensional bulk onto the bottom surface. What, then, drives the grow
of the protein-lipid interface? From a physical point of view, grow is driven by
diffusive fluxes of myosin-VI mass towards the interface, i.e. by conservation of
mass, we obtain a governing equation for the normal velocity vn of the interface
in terms of the bulk concentration c (r , t ) of myosin-VI

vn =
Dc

cI
∇n̂c |Γ(t ) . (IV.1)

Here, cI denotes the myosin-VI concentration at the interface, and Dc is the bulk
diffusion coefficient. The key point now is that the concentration of myosin-VI at
the interface must be a function the local curvature, since negatively curved regions
“create space” for more myosin proteins from the bulk to bind to the interface. This
feature can be described by a Gibbs-Thomson relation, which links the interface
concentration of myosin-VI to the local morphology

c |Γ(t ) = c0 (1 + τκ) , (IV.2)

where c0 denotes the bulk concentration at the interface, τ the line-tension coef-
ficient, and κ the local curvature. Equation (IV.2) states that the concentration



250 Curvature-induced instabilities of protein-lipid interfaces.

at the interface is shifted relative to the value c0 for flat regions. This is a general
phenomenon that underlies many physical systems, including the Laplace pressure
of fluid interfaces, temperature shift of solid-liquid interfaces [177], and the con-
centration offset of active droplets [178]. To complete the description, we assume
that myosin proteins diffuse freely in the bulk, where we view the bulk volume
as a very large reservoir (which should be a reasonable assumption as the size of
a pore is much smaller than the bulk volume). Hence, we may assume that the
bulk concentration sufficiently far away from the interface r → ∞ is given by the
constant value c (r , t ) = c∞. We therefore obtain the following set of equations
that describe the dynamics of the protein-lipid interface:

c |Γ(t ) = c0 (1 + τκ) , (IV.3a)

∂

∂t
c (r ) = Dc∇2c (r ) , (IV.3b)

vn =
Dc

cI
∇n̂c |Γ(t ) . (IV.3c)

These equations are seemingly simple, but they are, unfortunately, very difficult
to solve (analytically and numerically), because they link the bulk dynamics of
proteins to the morphology of the protein-lipid interface Γ(t ). The main difficulty
arises here from the fact that the boundary Γ(t ) itself is a time-dependent, unknown
variable, which must be solved together with the bulk dynamics and the Gibbs-
Thomson boundary condition at the interface.

1.4 Coarse-grained geometric model

However, we may simplify the problem by deriving a phenomenological model
that reproduces the qualitative features outlined above. As before, we parametrize
the protein-lipid interface by a position vector r (t, σ) which is related to the
normal velocity as follows:

r · n̂ = vn , (IV.4)

where n̂ describes as usual the outward normal vector of the interface. Instead of
relating vn to the bulk dynamics, we now implicitly incorporate the bulk dynamics
by assuming that the normal velocity is an arbitrary complex function of the local
shape vn = vn

(
κ,∇2

s κ, ...
)
, where ∇2

s denotes the second derivative with respect
to the arc length of the interface. Note that we assume that the lipid membrane
is uniform in its properties, which excludes dependencies on the position vector
r as well as gradients in the curvature ∇s κ, (which requires that the system is
invariant under parity transformation s → −s ). Similar as for crystal growth
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processes [177, 179–184] or combustion [185–187] (among others), we may now
perform a gradient expansion of the normal velocity to leading order

vn ≈ ϵ0 − ϵ1(κ − κ0) + ϵ2(κ − κ0)2 − ϵ3(κ − κ0)3 − α ∇2
s κ , (IV.5a)

≡ f (κ) − α ∇2
s κ . (IV.5b)

Here, the parameters ϵ i are phenomenological parameters that (effectively) describe
myosin-VI attachment and recruitment to negatively curved shapes. The (coarse-
grained) curvature-dependent binding kinetics is therefore contained in the function
f (κ), which drives the growth of the protein-lipid interface at all length scales.
The second term proportional to ∇2

s κ penalizes gradients in the curvature, and
therefore tries to stabilize the interface by smoothing out gradients – similar to
diffusion. One may therefore interpret the phenomenological parameter α as a line
tension coefficient. This can be also seen by rewriting Eq. (IV.5) as the gradient
flow of a free energy functional:

F =

ˆ
Γ

(
F (κ) + γ

2
(∇s κ)2

)
ds , (IV.6)

where the normal velocity is obtained by the first variation of this functional with
respect to curvature

vn = µ
δF
δκ
. (IV.7)

The stiffness parameter γ is related to the phenomenological parameter α through
the mobility µ, i.e. α = µγ, and the function F (κ) ∝

´
f (κ)dκ can be interpreted

as an effective curvature potential. The alternative formulation above underlines
that the phenomenological approach used here is very similar to Ginzburg-Landau
equations for equilibrium thermodynamics.

The coarse-grained model Eq. (IV.5) considerably simplifies the problem, since
it reduces the complicated set of (non-local) bulk-surface coupled equations to a
local geometric evolution law for the position vector r , which is the only unknown
degree of freedom in the system. Importantly, we can immediately identify the
mechanism that drives pattern formation: The curvature-dependent driving force
f (κ) destabilizes the interface at all length scales, and this is counteracted by line
tension ∇2

s κ, which ultimately results in a band of unstable modes – very similar
to the famous Mullins-Sekerka instability for solidification fronts [179]. We fitted
the phenomenological parameters in Eq. (IV.5) to the experimental data, and
numerically solved the equation. Our results reproduce the experimental patterns
very well, and also show that the system selects a final wavelength for long times
via a sequence of tip-splitting.



252 Curvature-induced instabilities of protein-lipid interfaces.

1.5 Key points and outlook

In the following we summarize the key findings of this research project and provide
an outlook.

• By reconstituting myosin-VI in vitro, we have shown that the motor pro-
tein myosin-VI induces micrometer sized growing holes in supported lipid
membranes. Using super resolution microscopy, we further identified that
myosin-VI reshapes membrane pores into regular spatial structures that ex-
hibit a characteristic wavelength. Importantly, we have shown that binding
of myosin-VI to the lipid membrane is highly curvature-sensitive: proteins
are recruited to regions with a Gaussian negative curvature (corresponding
to outward bulges).

• We developed a quantitative theoretical model that explains the morpholo-
gical instability. From a physical point of view, grow of pores is driven by a dif-
fusive mass flux of proteins from the bulk solution towards the motorprotein-
lipid interface. This flux is coupled to the local shape (curvature) of the pore
through a Gibbs-Thomson relation. We then developed a coarse-grained
model that effectively describes the growth dynamics of the protein-lipid
interface. The model captures the curvature-dependent grow of the interface,
and correctly reproduces the experimental observations.

• The origin of the morphological instability is reminiscent to unstable solidi-
fications fronts [177, 179], or fingering instabilities of multiphase flows in
Hele-Shaw cells [177, 188]: A driving force that destabilizes the morphology
of the interface at all length scales is counteracted by line tension, which tries
to stabilize the interface by smoothing out gradients in the curvature. Here,
we identified the curvature-dependent recruitment of myosin-VI to the lipid
membrane as the “driving force” that destabilizes the interface. This force
is counteracted by line tension of the motorprotein-lipid interface, which
then results in a band of unstable modes that leads to pattern formation of
the protein-lipid interface. Thus, the underlying mechanism driving pattern
formation is, from a physical point of view, analogous as pattern formation
in growing solidification fronts or instabilities in multiphase flows.

We have considered here the dynamics of protein-lipid interfaces on flat sup-
ported lipid bilayers. In cells, lipid membranes are rarely flat, but usually curved.
In fact, myosin-VI proteins are often found at curved membrane regions, such as
the invagination region during endocytosis [189]. An exiting extension of our
theoretical model would be therefore to study interface grow on curved lipid sur-
faces. Due to bending rigidity (which is irrelevant in flat lipid surfaces), we expect
that the out-of-plane curvature of the lipid membrane might be an important
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control parameter for wavelength selection. Besides theoretical modeling, one
may also investigate such systems experimentally. For instance, one could study
the dynamics of myosin-VI on the surface of giant unilamellar vesicles (GUVs),
or on the surface of cylindrical membrane shapes. Such shapes can be generated
experimentally by a number of techniques, such as micropipette aspiration or via
hydrodynamic shear flows [190–192].

Since NTPases are ubiquitous in cells and play an important role for protein
pattern formation, another interesting extension of our model would be to consider
an activation-reactivation cycle for myosin-VI. In general, such a cycle leads to non-
trivial geometric effects as we have shown in section 1 of chapter III. However, the
incorporation of nucleotide exchange requires to explicitly account for bulk-surface
coupling, and one therefore must solve the non-local model Eq. (IV.3a). Assuming
a time scale separation between the diffusive dynamics in the bulk and grow of the
interface, one may simplify the problem by considering an adiabatic bulk dynamics,
i.e. one can omit the time-dependency of the bulk species. This is a reasonable
assumption, because the interface grows on a much longer time scale than the
typical time scale of diffusive protein redistribution in the bulk [34, 193]. In this
case, one can analytically solve the (linear) bulk dynamics by using the Green’s
function formalism, which would ultimately allow to reduce the complexity of
the problem by mapping the bulk equations to the boundary. We expect that the
dynamics of such a non-local model will be much richer in its phenomenology, and
therefore possibly yield a variety of different interesting morphological patterns.
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Reconstitution reveals how myosin-VI self-
organises to generate a dynamic mechanism
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One enigma in biology is the generation, sensing and maintenance of membrane curvature.

Curvature-mediating proteins have been shown to induce specific membrane shapes by

direct insertion and nanoscopic scaffolding, while the cytoskeletal motors exert forces

indirectly through microtubule and actin networks. It remains unclear, whether the manifold

direct motorprotein–lipid interactions themselves constitute another fundamental route to

remodel the membrane shape. Here we show, combining super-resolution-fluorescence

microscopy and membrane-reshaping nanoparticles, that curvature-dependent lipid interac-

tions of myosin-VI on its own, remarkably remodel the membrane geometry into dynamic

spatial patterns on the nano- to micrometer scale. We propose a quantitative theoretical

model that explains this dynamic membrane sculpting mechanism. The emerging route of

motorprotein–lipid interactions reshaping membrane morphology by a mechanism of feed-

back and instability opens up hitherto unexplored avenues of membrane remodelling and

links cytoskeletal motors to early events in the sequence of membrane sculpting in eukaryotic

cell biology.
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In eukaryotes, the morphology of cells, organelles and mem-
brane domains is critically dependent on the membrane cur-
vature. Active remodelling of the membrane curvature is the

key to cellular motile processes, including endocytosis, cell
migration and polarisation in morphogenesis and
development1,2. Curvature-mediating proteins have been shown
to induce specific membrane shapes by direct insertion and
nanoscopic scaffolding3–5. Since fundamental concepts and the
biological relevance of membrane curvature were first recognised
over 40 years ago6,7, it was understood that the cytoskeleton plays
a more indirect role by generating a macroscopic scaffold to exert
forces onto the plasma membrane and intracellular membrane
systems via actin and microtubule polymerisation and motor
protein activity8. It remained unexplored, however, whether the
manifold direct interactions between lipid-binding motor pro-
teins and the target membranes themselves affect the membrane
curvature9–11, and if so, how? The lipid-binding molecular motor
myosin-VI (myo6) functions in a wide range of cellular processes
that involve not only dramatic changes in local membrane shape,
including endocytosis, polarized secretion, Golgi re-organisation
and autophagy9,12–14, but also cell migration and invasion in
numerous cancers15–17. Myo6, the only myosin class that has
been shown to move towards the minus end of actin filaments,
has been reported to bind directly to lipid membranes via its C-
terminal tail domain9. The molecular mechanisms of this pro-
tein–lipid interaction remained unclear9,18.

Using reconstituted, fluid supported lipid bilayers, super-
resolution fluorescence microscopy and membrane-reshaping
gold nano-particles, we show that myo6 on its own remarkably
remodels the membrane to form rugged, flower-shaped mem-
brane pores. We find that the curvature-dependent and coop-
erative binding kinetics of the myosin favour saddle-shaped
membrane geometries, which leads to characteristic and growing
spatial patterns. We propose a quantitative theoretical model that
describes this innovative route of protein–membrane interaction
and ensuing membrane morphology, which we call a dynamic
membrane sculpting mechanism. Our findings highlight a pre-
viously unnoticed basic feature of protein–lipid interactions that
opens up unexplored avenues for the shaping of the plasma
membrane and intracellular organelle systems in eukaryotes.

Results
Myosin-VI reshapes the protein–lipid interface. We investi-
gated the effect of fluorescently labelled myo6 in solution on the
shape of a reconstituted fluid model membrane consisting of a
phosphatidylcholine lipid bilayer, a major constituent of the
plasma and organelle membranes in animals and plants19,20, and
a well-characterised model system21 (Fig. 1a). The lipid diffusion
coefficient D ~ 1.15−1.8 μm2 s−1, determined by fluorescence
recovery after photobleaching (FRAP) in the absence and pre-
sence of myo6 (Supplementary Fig. 1a, b), confirmed the fluidity
of the solid supported and intrinsically flat 1,2-dioleoyl-sn-gly-
cero-3-phosphocholine (DOPC) bilayer22,23. Unexpectedly, we
found that the myosin-binding events to the bilayer were very
sparse but highly cooperative, consistent with the motor mole-
cules binding to a small number of spontaneously and transiently
forming nanometre-sized membrane defects or transversal
membrane pores24,25. The binding process caused the pores to
grow into rugged flower shapes, reaching several microns in
diameter after about 30 min (at 150 nM myo6 in solution). The
lipids displaced from the perimeter of the pores to accommodate
myosin binding were redeposited onto the membrane as micelles
or small vesicles (double asterisks (**) in Fig. 1a), revealing a
heretofore unknown process of motor protein–lipid interaction.
Using a quantitative analysis of the total internal reflection

fluorescence microscopy (TIRFM) data (Fig. 1b and Supple-
mentary Fig. 1c, d) and a 10:1 ratio of myo6:green fluorescent
protein (GFP)-myo6 to ensure the fluorescence signal measured
for each flower was within the linear range of the EMCCD
camera, we estimated the density of the myo6 motors at the
protein–lipid interface. By measuring the perimeter of the flowers,
their total fluorescence intensity and the fluorescence signal of
single GFP-myo6 molecules in TIRF mode, we estimated an
average distance of 〈dx〉 ~ 3.74 ± 0.64 nm (mean ± s.d.) between
neighbouring myosin molecules along the perimeter of the
growing flowers (see ‘Methods’). The value dx was independent of
the actual perimeter of the pore and indicated a dense packing,
given the physical size of the myosin molecules (diameter ~ 3–5
nm18,26). The myo6 molecules might well interact with each other
and arrange themselves in a more complex geometry than in a
monolayer. We then investigated the mechanical properties of
these ensembles of densely packed myosin and found that they
were mechanically fully functional. They translocated Alexa 488-
labelled actin filaments at 365 ± 125 nm s−1 (mean ± s.d., n= 153
filaments) at saturating ATP concentrations (Fig. 1c, actin in
yellow, 2 mM ATP, 22 oC), at least as fast as myo6 monomers and
dimeric constructs in vitro and in cells27–29. The propensity to
self-organise to generate membrane pores was also observed on
giant unilamellar DOPC vesicles (Supplementary Fig. 1e), which
confirmed that this cooperative membrane interaction of myo6
was not restricted to the flat supported bilayer but an intrinsic
property of the motor–lipid interaction.

Myosin-VI binding to a lipid bilayer is curvature sensitive. To
uncover the mechanisms underlying pore growth and the emer-
gent flower-like morphology of the motor–lipid interface, we
applied super-resolution microscopy (SRM) and localised single
GFP-myo6 molecules at ~ 25nm spatial resolution (‘Methods’).
The colour-coded time stamps in Fig. 2a, b obtained from SRM
images integrated over 1 min time periods showed the new
appearance and growth of myo6 flowers during a 60-min time
interval (150 nM myo6 in solution, 10% GFP-myo6). The peri-
meter of the flowers grew at a roughly constant rate, directly
proportional to the myo6 concentration in solution (Fig. 2c).
Combined with the constant density of myo6 along the growing
perimeter (Fig. 1b), this result indicated a mechanism with an—
on average—constant rate of myosin binding to and lipid dis-
placement from the protein–lipid interface. Strikingly, the SRM
images also exposed local hotspots of myo6 attachment (arrow
heads), which formed a quite regular spatial pattern along the
growing perimeter of the flowers in the time stamp overlay.
Inspection of the hotspots in the zoomed-in image indicated that
the freshly bound GFP-myo6 molecules (red, arrows) were
incorporated preferentially at regions where the membrane was
bulging outward, away from the centre of the flower; there the
membrane geometry is saddle-shaped (negative Gaussian curva-
ture). Superposition of all GFP-myo6 molecules, detected during
different time stamps, over the respective perimeter of the flower
(Fig. 2b) demonstrated that the hotspots indeed co-localised with
the protrusions of the perimeter (arrows heads). This showed that
the process of myosin binding was cooperative and strongly
sensitive to the membrane curvature. The curvature dependence
of the myosin binding was also reflected in the roughness of the
perimeter, so that the ratio of flower area vs perimeter deviated
slightly from a perfect circle growing over time (Fig. 2c, black
curve).

Myosin-VI favours a saddle-shaped membrane geometry. Next,
we set out to characterise the morphology of the motor–lipid
interface by SRM (Fig. 3a) using an intensity threshold to separate
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the hotspots of myosin binding from the surrounding fluores-
cence signal (Supplementary Fig. 2). The distances dz between the
hotspots were determined for different myo6 concentrations in
solution. At 10 nM myo6, the speed of flower growth was slow
enough to resolve the early stages of hotspot formation (Fig. 3b).
As for all different myo6 concentrations and speeds of flower
growth, the hotspots were almost equally spaced with an average
distance 〈dz〉 saturating at ~900 nm (Fig. 3c), we concluded that
this regular myosin pattern is likely an intrinsic feature of the
process underlying membrane reshaping by myo6 in our two-
component model system (myo6, DOPC). In particular, these
observations hinted at a feedback between myosin binding and
membrane curvature.

To address (and quantify) this possible feedback, we studied
how the shape of the initial nano-pore affected the myo6 binding.
To this end, we used gold nano-triangles30 with a side length of
60–80 nm and a height of ~8 nm (Fig. 3d, transmission electron
microscopy (TEM)), which were deposited on the mica surface
before the bilayer was applied. With their sufficiently small aspect
ratio, the nano-triangles were not covered by the bilayer
surrounding them31. FRAP studies confirmed bilayer fluidity in
their presence (Supplementary Fig. 3). The nano-triangles acted
as seeds for myosin insertion into the bilayer, as shown in the
three-colour confocal fluorescence experiment (Fig. 3d nano-
triangles T, white arrows). During the first 5 min following
addition of 10 nM myo6, the triangular binding pattern
intriguingly indicated that myo6 inserted nearly exclusively near
the tips of the gold nano-triangles (Fig. 3e). The smallest distances
of ~100 nm between the earliest myo6 hotspots (Fig. 3e) forming
a triangular shape indicated that initially the proximity between
bilayer and nano-triangle (60–80 nm side length) must have been
≤20 nm. Over ~20 min, the triangular shape and orientation of
the pattern was preserved, as the flower diameter expanded

(Fig. 3c inset), until additional myo6 hotspots emerged and the
‘memory’ of the initial pore shape was lost. The experiments
confirmed that myo6 strongly favoured the saddle-shaped
membrane geometry (negative Gaussian curvature)5 at the tips
of the triangular pore over the sides of the pore (cartoon).
Importantly, the final characteristic distance between the hotspots
was similar to the one observed in the absence of the triangles
(Fig. 3c).

A quantitative model explains the dynamic membrane sculpt-
ing. We integrated the above experimental observation to pro-
pose a quantitative theoretical model for this emerging form of
dynamic membrane sculpting. The model describes the dynamics
of the experimentally determined protein–lipid interface (Fig. 4a,
b) as the time evolution of a closed (planar) curve Γ(t) (Fig. 4c, d),
which we represent by the position vector ~x t; σð Þ ¼
x t; σð Þ; y t; σð Þð Þ (‘Methods’, Supplementary Fig. 4), where t
denotes time and σ parametrises the position along the curve Γ(t).
Our basic assumption is that the dynamics of the interface is
determined by the normal velocity Vn,

∂t~x � n̂ ¼ Vn; ð1Þ

where n̂ is the outward unit normal vector on Γ(t) (‘Methods’,
Supplementary Fig. 4). The growth velocity Vn is determined by
the interface morphology, i.e. the local interface curvature κ and
its spatial modulation: Vn ¼ f κð Þ � α∇2κ (see ‘Methods’ section
for a detailed derivation). The observed feedback between inter-
face curvature and myosin binding is accounted for by a
curvature-dependent growth rate f (κ), shown in Fig. 4e, which we
obtained by (systematically) fitting the measured time depen-
dence of the average flower radius to our theoretical description
(Fig. 2c, ‘Methods’, Supplementary Fig. 6). As in the experiments,
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the interface growth speed is enhanced at negative and reduced at
positive curvatures with respect to the average value. This theo-
retical approach for the dynamics of the protein–lipid interface is
different from force balance arguments used to describe the
dynamics of pore nucleation and growth in giant unilamellar
vesicles (GUVs) or lipid membranes32–34. The main difference
arises from the positive feedback of myo6 binding to regions of
negative curvature (recruitment), which is the major driving force
of the dynamics. Dynamics based on this feedback alone would
lead to rough protein–lipid interfaces with no emerging char-
acteristic length scale. This roughening tendency is counteracted
by molecular processes including myosin rearrangement on the
membrane and line tension of the lipid bilayer that smoothen the
interfaces similar to models for crystal growth35–38; for a more
detailed discussion and an illustration, see ‘Methods’ section and

Supplementary Fig. 5a, b. We effectively account for these pro-
cesses by a term, α∇2κ, which is acting as an effective line tension
term penalising changes in the interface curvature. This can be
seen by rewriting the growth law in ‘potential form’,

Vn ¼ μ δF
δκ ; ð2Þ

where μ denotes an interface mobility. The effective free energy
functional is given by

F ¼ R
Γ F κð Þ þ γ

2 ∂sκð Þ2� �
ds ð3Þ

with the second term penalising gradients in curvature. The
corresponding stiffness parameter γ is related to the above
phenomenological parameter α through the mobility, α= μ·γ.
The function F κð Þ / R

dκf κð Þ may be interpreted as an effective
curvature potential. Since we model line tension only effectively
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via the term �α∂2s κ, the parameter α is proportional but not equal
to a classical line tension parameter35–37. This is also evident
from the units of the parameter α (length4 time−1), which is
different from a classical line tension (energy length−1).

After validating the model parameters for the growth term
(‘Methods’, Supplementary Fig. 6, Fig. 4e) (see above), we
performed an extensive set of simulations in order to explore
whether the model can qualitatively as well as quantitatively
explain the dynamic morphology of the protein–lipid interface
observed experimentally (Fig. 4a, b). In fact, it correctly
reproduces the key qualitative features of the experimentally
determined protein–lipid interface (Fig. 4a–d, ‘Methods’, Supple-
mentary Fig. 6): flower-shaped morphology, memory effects for
triangle-shaped pores, spontaneous emergence of new hotspots,
and tip-splitting. To quantiatively match the average distance dz
between the experimentally observed hotspots of myo6 attach-
ment (Fig. 3c), we fitted the value of the effective line tension
parameter: α= 10−6 μm4 s−1 (‘Methods’). Taken together, we
conclude that the basic mechanisms included in the model,
feedback between binding kinetics of myo6, interface growth and
surface smoothing mediated by myo6 rearrangement and line
tension of the bilayer, explain the observed dynamics of the
membrane sculpting process.

Discussion
Combining experimental approaches and theoretical modelling,
our study addresses a fundamental problem of molecular cell

biology, which is to reveal mechanisms used by cells to produce
and remodel membrane shape. The sequence of events during
membrane reshaping in various cell biological contexts remains
controversial. Molecular motors are thought to get involved at the
later stages of membrane trafficking or endocytosis, while other,
specialised proteins are responsible for initial local membrane
reshaping. Our results challenge the classical view of the role of
motor proteins and introduce an innovative function of mem-
brane sculpting by direct protein–lipid interaction, indicating that
motor proteins can get involved in the initial stages of membrane
remodelling.

Using a fluid supported lipid bilayer, we found that the
molecular motor myo6 on its own remarkably remodels the
membrane into dynamic spatial patterns. The motor protein–
lipid interaction generates a heretofore unknown system of
feedback and instability, so that dynamic membrane patterns self-
organise on the nanometre to micrometre length scale. The
process starts with myo6 binding to spontaneously and tran-
siently forming membrane pores. Subsequently, these pores grow
into rugged flower shapes, reaching several microns in diameter.
We have developed a theory that quantitatively explains the
membrane sculpting process leading to the dynamic morphology
of the growing protein–lipid interface, including the spontaneous
emergence of new myo6-binding hotspots and tip splitting. The
basic idea underlying our theory is a reduction of the complex
and interlinked chemo-mechanical problem of protein (myo6)
binding kinetics and dynamics of the protein–lipid interface to an

b

e

110 nm
9 min

400–550 nm
25 min

570–760 nm
35 min

450–650 nm
50 min

190 nm
13 min

10
 n

M
 M

yo
6

100–130 nm
5 min

680–750 nm
22 min

540–980 nm
36 min

680–800 nm
50 min

240–400 nm
12 min

10
 n

M
 M

yo
6

+
 N

an
ot

ria
ng

le
s

dz
time

dz

a

dz

15
0 

nM
 M

yo
6

Time 4 min2 min 7 min 8 min 15 min

d

c

Flower diameter (×103 nm)

H
ot

sp
ot

 d
is

ta
nc

e 
〈d
z〉

 (
×

10
3 nm

)

0

1.2

0.2

0.4

0.6

0.8

1

0 62 4 851 3 7

50

50

10

10

Myo6 
(nM)

T

150
300

–
–

+
+

–
–

0

0.2

0.4

0.6

0.8

0 1
Model

Myo 6

T

L

T

dz
time

Fig. 3 Myo6 lipid binding favours a saddle-shaped membrane geometry. Representative super-resolution microscopic (SRM) images at a 150 nM and
b 10 nM myo6, integrated over 1 min; scale bar a 400 nm and b 200 nm. Distance dz marks distances between GFP-myo6 hotspots. c Distances 〈dz〉
(mean ± s.d.) from 10 to 36 measurements in the absence or presence of nano-triangles T (0.3 pM), respectively. Green line, theoretical model. Inset:
dotted lines show the side lengths of an equilateral triangular, quadrangular and hexagonal shape with increasing diameter of 0–1 µm. d Transmission
electron microscopic images of gold nano-triangles T (side length 60–80 nm, height 8 nm), scale bar 40 nm; cartoon of a lipid bilayer surrounding a T (L=
lipid, green; saddle-shaped curvature, blue); cartoon illustrates that, in contrast to a circular-shaped membrane pore, triangular-shaped pores have saddle-
shaped curvatures only at the corners of the triangular pore (blue). This is where we found the curvature-sensitive myo6 to bind (see e); gap between lipid
and nano-triangle not to scale and enlarged for clarity. Co-localisation of the TRITC-labelled T (white, arrows) and GFP-myo6 (green) on a DOPC:DOPE-
Cy5 bilayer (red), scale bar 2 µm. e SRM of a flower growing at 10 nM myo6 in the presence of 0.3 pM T; scale bar 200 nm. Source data are provided as a
Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11268-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3305 | https://doi.org/10.1038/s41467-019-11268-9 | www.nature.com/naturecommunications 5



effective description in terms of an evolving line characterised by
its local curvature and gradients in that curvature. The nonlinear
coupling between the morphology of the protein–lipid interface
and biochemical processes facilitating binding and unbinding of
proteins is encoded in a curvature-dependent growth term that is
inferred from the experimental data. In addition to being com-
putationally efficient, this theoretical approach provides innova-
tive insights: It shows that local curvature-dependent interactions
between myo6 and lipids are sufficient to remodel the membrane,
explaining the dynamic membrane sculpting. The theory also
reveals that the pattern forming process is mainly controlled by
material parameters like the effective line tension and membrane
stiffness. This suggests that length scale selection in the mem-
brane pattern depends crucially on the lipid composition and the
molecular interactions of myo6 with the lipids, which to date are
not fully understood. Moreover, our theoretical approach is quite
general and can easily be extended to include nonlocal interac-
tions and coupling to other dynamic variables, such as the myo6
bulk density. Therefore, we expect that the theoretical concepts
and methods developed here may be broadly applicable to bio-
logical processes dynamically coupling membrane morphology
and biochemical pattern formation. This may serve as a basis for
future studies addressing general pattern forming processes on
evolving geometries in biological systems.

Our results also show that membrane remodelling by myo6
does not require nucleotide as an energy source nor interactions
with actin. The tail domain of the motor was sufficient to induce

growing membrane pores, indicating that the catalytic activity of
the motor domain is not necessary for myo6 to induce the
remodelling effect on the membrane shape. Furthermore, the
time course of pore growth and the characteristic myo6binding
patterns were similar in the absence or presence of apyrase
treatment of the motor protein to remove residuals of ATP or
ADP (Supplementary Fig. 1f–h). These results are consistent with
the binding energy of the myo6–lipid interaction to be sufficient
for the remodelling of the membrane.

The densities of the motor protein obtained by self-
organisation at the protein–lipid interface was high, with an
average distance between myosin motors of only ~3.74 ± 0.64 nm,
independent of the actual perimeter of the growing protein–lipid
interface. These densities, which appear to be at the limit for
spacing if all myosin molecules in the flower are bound to the
membrane, might well indicate interaction between the lipid-
bound motors, affecting their orientation on the bilayer, so that
the mechanical output of the motor protein is optimised when
interacting with actin filaments. In fact, the native myo6 motors,
bound to the pores of the DOPC lipid bilayer, translocated actin
filaments at ~365 ± 125 nm s−1 (22 °C) at saturating ATP con-
centrations (2 mM ATP). These velocities exceed the range of
speeds previously reported for monomeric and enforced dimeric
myo6 constructs18,27,29,39. The variations in speed might be
related to the variability of motors partly back-folded and/or
contributing with a range of lever arm lengths to the gliding
velocity in these studies. The details of the molecular
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conformation of myo6 when bound at high density to the lipid
bilayer in our study, which produced these high actin-gliding
velocities, remain unclear and will be addressed in future
experiments.

Our study also revealed the unexpected result that myo6–lipid
binding does not require the presence of PIP2 lipids9. Instead, the
myo6–lipid interaction depended on the shape of the bilayer and
was highly selective for saddle-shaped membrane geometries
(Fig. 4f). The assay of triangular-shaped gold nano-particles
combined with SRM has now provided the opportunity to explore
the geometric preference of the (motor-)protein–lipid interaction
at the nanometre scale. The strong preference of myo6 for saddle-
shaped membrane geometries is consistent with its intracellular
locations at the base of microvilli, stereocilia and sites of endo-
cytosis (Fig. 4f)13.

In conclusion, our results broaden the classical view of the role
of motor proteins and introduce the function of membrane
sculpting by direct protein–lipid interaction. In addition to the
currently known distinct mechanisms that allow proteins to
sense, stabilize or generate high local membrane curvature, we
believe that we have identified a hitherto unknown mechanism of
dynamic membrane sculpting by (motor-)protein–lipid interac-
tion. Consistent with the generality of the already identified
mechanisms of membrane reshaping within eukaryotic cells, our
original assay and modelling approach might help to uncover
additional mechanisms underlying membrane shaping in the near
future and contribute towards revealing the universal role of
membrane curvature in cellular functions.

Methods
Molecular biology. Myosin-VI (myo6) from human cells (accession num-
ber XP_005248783.1, residues 1–1253) was cloned into pFastbacHtB (Invitrogen)
via EcoRI/SalI sites using primers HVIEcoRIF (GAATTCAAATGGAGGATGGA
AAGCCCG) and HVISalR (GTCGACTTATTTCAACAGGTTCTGC). Two full-
length constructs were expressed, one native full-length myo6 and a fusion full-
length myo6 with an N-terminal eGFP cloned between the BamHI site using
primers GFPBamF (GGATTCATGGTGAGCAAGGGCGAG) and GFPBamR
(GAATCCCTTGTACAGCTCGTCCATG); furthermore, a Head construct
(aa1–913) was cloned into the pFastbacHTb vector via EcoRI/SalI sites using
primers HVIEcoRIF and HVI913SalR (GTCGACTTACATGGACGAGCTGTACA
AGGGATTC), note HVIEcoRIF has a stop codon added. A Tail construct
was cloned into pET28a vector via EcoRI/SalI (aa1037–1253) using primers
HVI1037EcoRIF (GAATTCCCTGCTGTACTAGCCACC) and HVISalR (with an
N-terminal GFP cloned BamHI using primers GFPBamF and GFPBamR; Supple-
mentary Fig. 1a). The myo6 heavy chain was co-expressed with human calmodulin
and purified as described in detail in our previous work18,39. In brief, myo6 full-
length and the Head construct were expressed in a 500-ml culture of SF21 cells
(ThermoFisher Scientific B82101) and infected with a combination of baculovirus
motor protein (multiplicity of infection (MOI) 3) and calmodulin (MOI 2) and
grown at 27 °C for 72 h. Cells were pelleted and resuspended in phosphate-buffered
saline (PBS) plus protease inhibitors (Roche cOmplete EDTA free). This was then
sonicated for 3 min and spun at 70,000 × g (RCF) for 30 min at 4 °C. The super-
natant was immediately loaded onto a 5-ml HisFF column (GE Healthcare). An
AKTA programme was used with PBS and His high (50 mM Tris-HCl pH 7.5,
400 mM Imidazole, 300 mM NaCl) using 2 steps, the 5% step removed non-specific
proteins and a 50% step eluted the myo6. The peak fraction collections were
pooled, 20% glycerol added and snap frozen and stored at −80 °C. The Tail
construct was expressed in BL21 one shot (DE3) cells (Invitrogen C600003). Two
litres of cells grown in 2 × TY media at 37 °C to an OD600 of 0.6 were induced with
1 mM IPTG and grown overnight at 24 °C. Cells were pelleted at 8000 × g (RCF).
The cell pellet was resuspended in His low (50 mM Tris-HCl (pH 7.5), 40 mM
Imidazole, 300 mM NaCl) and sonicated for 5 min. This was then clarified at
70,000 × g (RCF) for 30 min and the supernatant was loaded onto the AKTA. Using
His low and His high, a 5, 10 and 50% step programme was used to elute the
protein. The 50% fraction peak was snap frozen and stored at −80 °C.

Lipid bilayer on mica. A few monolayer thick, freshly cleaved mica sheet was
deposited onto a glass coverslip using an index matching immersion oil and the
coverslip made into a 300-μl flow cell. A supported lipid bilayer was formed using
single unilamellar vesicle fusion as described40. The vesicles were made from
DOPC (Sigma Aldrich™) and 1,2-dioleoyl-sn-glycero-phosphoethanolamine-N-
Cyanine 5 (DOPE-Cy5, Avanti Polar Lipids™) at a 4000:1 ratio. In short, the
vesicles (~1.7 mgml−1 DOPC) in lipid buffer (LB; 20 mM Hepes pH 7.5 and

150 mM NaCl) were applied to the mica surface and allowed to fuse for 10 min at
room temperature (RT) by adjusting the buffer to contain (in mM): 3.3 CaCl2, 100
Tris (pH 7.5), and 50 NaCl. Unfused vesicles were removed from the bilayer by
washing with assay buffer (AB) containing (in mM): 25 Imidazole pH 7.4, 25 KCl,
4 MgCl2, and 1 EGTA. The formation of a continuous and fluid bilayer on the mica
surface was confirmed by FRAP.

Fluorescence microscopy in TIRF mode. The flowers were recorded using a
Nikon Ti-Eclipse combining TIRFM including an EMCCD (Andor iXon3) camera
and an A1 confocal module with a ×100 oil immersion objective, NA 1.49. A 10:1
ratio of myo6:GFP-myo6 was used and the 488-nm excitation laser set to 60 mW.
To determine the density of myo6 along the perimeter of the flower (Fig. 1b), the
perimeter of individual flowers, the total fluorescence intensity of individual
flowers (Itotal) and the fluorescence signal of single GFP-myo6 molecules bound to
the lipid bilayer (Isingle GFP) were measured in TIRF mode (Supplementary Fig. 1c,
d). Here the flower perimeter was determined as the closed line connecting the
pixels with maximum fluorescence intensity of a given flower (Supplementary
Fig. 1c, yellow line). This closed line was enlarged radially by 400 nm in order to
measure Itotal of the individual flower (Supplementary Fig. 1c, area within green
line). To reduce the effect of bleaching, only the first image acquired after activation
of the excitation laser was used. Isingle GFP was determined from binding events
followed by single-step photo-bleaching (Supplementary Fig. 1d, fluorescence
signal 18,917 ± 5523 (mean ± s.d., n= 288). The maximum Itotal measured for each
flower was within the linear range of the camera. Using Itotal of individual flowers,
Isingle GFP, the flower perimeter, and taking the 1:10 labelling ratio of GFP-myo6:
myo6 into account, we estimated the average distance 3.74 ± 0.64 nm (mean ± s.d.,
n= 48) between neighbouring myo6 molecules along the flower perimeter.

Fluorescence recovery after photobleaching. To test the fluidity of the bilayer, a
circular area of ~40 μm in diameter was bleached in confocal mode using a 647-nm
laser at 30 mW and FRAP was monitored using the same laser at 4 mW and an
image sampling rate of 12 images per minute. All bilayers used in this study were
tested using FRAP to ensure a full fluorescence recovery (FR) within <5 min. The
diffusion coefficient D for DOPC in the absence and presence of myosin was
estimated from the FR of a small area of ~4 μm in diameter in the centre of the
bleached area. Single exponential fitting of the FR in the absence of myosin yielded
a time constant τ consistent with D ~ 1.15−1.8 μm2 s−1 and in agreement with the
literature for a supported and fluid DOPC bilayer23,41.

Motility assay. A fluid DOPC bilayer was generated as described above. The
formation of flowers was induced by incubation with 50 nM unlabelled myo6 and
the flowers allowed to grow for 15 min. The buffer in the flow cell was replaced by
AB buffer including 50 μg ml−1 bovine serum albumin (BSA, Sigma) and incubated
for 5 min to prevent F-actin from binding to mica exposed at the membrane pores.
Finally, the solution was replaced by AB buffer including 2 mM ATP, an oxygen
scavenger system (50 mM dithiothreitol (DTT) and (in mgml−1) 0.25 glucose
oxidase, 7.5 glucose, 0.05 catalase) and ~17 nM Alexa488-phalloidin labelled F-
actin (labelled at a 1:1 molar ratio). The motility of F-actin was recorded and
analysed using TIRF microscopy as described in detail in our previous work18,42. In
brief, time-lapse microscopy was performed and the movement of the actin fila-
ments recorded at a frame rate of 0.1 Hz (for 600 s) using a ×100 TIRF microscope
objective. The gliding velocity of F-actin was calculated using the analysis software
GMimPro (www.mashanov.uk). The motility assays were all performed at 2 mM
ATP and at 22 °C.

Giant unilamellar vesicles. The GUVs are produced using electroformation as
described in detail in our previous work43. In brief, 2 mg ml−1 DOPC, 2 μg ml−1

DOPE-Cy5 and 2 μg ml−1 Biotin-DHPE, dissolved in chloroform, were applied to a
platinum wire and vesicle formation was induced in AB buffer supplemented with
100 mM sucrose to reach a total osmolarity of 200 mOsmol. The detaching vesicles
were harvested and transferred to a streptavidin-coated flow cell using AB-buffer
supplemented with 150 mM glucose to reach 250 mOsmol. Finally, the buffer was
replaced by either 50 nM GFP-myo6 or 50 nM GFP alone in AB buffer including
150 mM glucose, and the change in fluorescence inside the tethered vesicle was
monitored using confocal microscopy (Supplementary Fig. 1e). The time constant
τ= 78 ± 19 s (mean ± s.d., R2= 0.94 ± 0.04; n= 5), derived from the time course of
the fluorescence increase inside the vesicles (11.24 ± 3.35 μm diameter, mean ± s.d.,
n= 5), and the application of Fick’s law allowed us to estimate the combined radius
of the pores (~10 ± 5 nm, mean ± s.d.) introduced into the GUV vesicle membrane
by membrane binding of GFP-myo6.

Super resolution microscopy. The fluorescence images recorded on a Nikon Ti-
Eclipse in TIRF mode were analysed using a combination of the proprietary N-
STORM plugin and ImageJ. Our approach is related to the STORM/PALM tech-
niques, e.g. ref. 44 in the sense that wide-field microscopy is used and the position
of individual fluorophores is estimated by a two-dimensional (2D) Gaussian fit to
the detected fluorescence signal. In contrast to these techniques, however, which
involve individual fluorophores to be activated by a laser pulse, the fluorophores in
our study are all activated, but only those GFP-myo6 molecules that are binding to
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the membrane are detected. This approach is related to the PAINT technique45. In
brief, the algorithm automatically detected the centre position of local fluorescence
intensity maxima by fitting a 2D Gaussian. Single GFP-myo6 molecules could be
localised with a resolution of ~25 nm (full width at half maximum of the fitted
Gaussian), at distances below the diffraction limit of ~200 nm. The resulting image
consisted of a set of discs each centred according to the Gaussian fits. The SRM
image consisted of the position of all fluorophores detected within given time
intervals. The time intervals were encoded by different colours (Fig.2). A 10:1 ratio
of myo6:GFP-myo6 was used for all myo6 concentrations we applied. Images were
recorded at a frame rate of 1.6 images per second using an Andor iXon 3, EM
gain 300x.

Perimeter and area of the flowers measured using SRM. To determine the
perimeter and area of individual flowers at time point tx in SRM, we developed an
algorithm based on the Nikon N-STORM plugin to analyse the SRM images. The
detected fluorophores were fitted by a 2D Gaussian (15–20 nm radius). SRM
images of ‘filled-in’ flowers were generated by overlaying all GFP-myo6-binding
events detected from the beginning of the data acquisition until the time point tx.
The ‘filled-in’ flowers formed an enclosed area of Gaussian spots (Supplementary
Fig. 1f). The outline of this area was used to determine the perimeter of the flower
at time point tx. Gaussian spots not connected to the enclosed area were ignored.
The perimeter of the flowers in SRM was determined by connecting the centre
positions of the Gaussian spots at the outline of the enclosed area. The procedure
corresponds to low pass filtering (Gaussian spots 15–20 nm radius) and thresh-
olding (eliminating Gaussian spots not connected to the enclosed flower area). To
compensate for the delayed start of some flowers relative to others, each temporal
evolution of a given flower was timeshifted to achieve synchronisation. The sta-
tistics are plotted for different concentrations of GFP-myo6 (50, 150, 300 nM; 19,
42, 55 flowers analysed, respectively). Owing to the higher numbers of flowers
forming per field of view at higher myo6 concentrations in solution, the confluence
of flowers became the limiting factor when measuring the perimeter of the flowers
over time (Fig. 2c, 300 nM myo6).

Gold nano-triangles. Gold nanoparticles were produced in a two-step reaction as
described in detail in our previous work30,46. In brief, the reaction of HAuCl4
mixed with Na2S was followed spectroscopically to obtain triangles (equilateral
prisms) with ~60–80 nm side length and ~8 nm thickness and stopped by the
addition of an excess of Na2S. Following precipitation in 0.6 M cetyl trimethyl
ammonium chloride and purification using 3 centrifugation cycles, the nano-
triangle stock solution was centrifuged and the pellet resuspended in destilled
water. Unless stated otherwise, the particles were applied to the mica surface at
~0.3 pM concentration, which led to ~50 particles on a 80 × 80 μm2 surface. When
applied to the mica surface together with the DOPC bilayer in our experiments, the
smallest distance of ~100 nm between the earliest myo6 hotspots (Fig. 3e) indicated
that initially the proximity between bilayer and nano-triangle (60–80 nm side
length) must have been ≤10–20 nm.

In situ labelling of the gold nano-triangles using TRITC. TRITC-maleimide
(Sigma) was dissolved in dimethylsulfoxide (Sigma) to a concentration of 470 μM.
The solution was reacted with 10 mM DTT (Sigma) for 10 min at RT and diluted in
LB to obtain a 100-μM thiolated dye solution. Gold nano-triangles diluted to
0.07–1.2 pM in LB buffer were added to a flow cell and left to sediment on the mica
surface for 5 min before DOPC vesicles were added to form a bilayer as described
above. After 10 min, the bilayer was washed three times with AB buffer supple-
mented with scavenger. The solution was exchanged by 100 μM thiolated dye in AB
buffer and incubated for 10 min. Finally, the flow cell was washed ten times to
ensure that all unbound dye was removed.

Gold nano-particle effect on bilayer formation. The nano-triangles deposited on
the mica surface in the absence of (white bars) or before a lipid bilayer was formed
(grey bars) (Supplementary Fig. 3a). The number of detected triangles per field of
view scaled roughly with the concentration of triangles applied. No significant
difference was found between the number of triangles detected in the absence and
presence of a lipid bilayer, indicating that the triangles were not covered but
surrounded by the lipids. The relatively broad fluorescence intensity distribution
from the labelled triangles was consistent with multiple dye molecules binding to a
single triangle. Photobleaching of the spots was rarely observed in a single step. To
probe the proximity of the lipid bilayer to the triangles, a line scan across an area
with three detected triangles in the TRITC-channel (blue curve) was compared
with the signal of the lipid Cy5-channel (red curve) (Supplementary Fig. 3b). No
signal change within the resolution limit was found at the position of the nano-
triangles, consistent with a proximity between lipid and triangles of ≤160 nm (one
pixel). FRAP studies confirmed the fluidity of the bilayer in the presence of 0.3 pM
nano-triangles, with D ~ 1.29 ± 0.1 μm2 s−1 (mean ± s.d., n= 2, R2= 0.97 ± 0.005;
Supplementary Fig. 3c). The nano-triangles acted as seeds for the formation of
myo6-induced flowers. The number of flowers increased with the number of tri-
angles applied and reached a ten-fold increase at 0.3 pM nano-triangles (Supple-
mentary Fig. 3d).

Geometric curve evolution. As discussed earlier, the time evolution of the planar
curve Γ(t) is solely determined by the normal velocity (Eq. (1)). This mesoscale
approach is used in many other disciplines, including geometry47–49, crystal
growth35–38,50,51, combustion52–54 and fluid dynamics37,55,56. The basic idea is to
model the dynamics through a semi-phenomenological growth law, i.e. by the
dependence of the normal velocity on the position along the curve and the con-
formation of the curve. Before specifying this growth law, we need to introduce
some basic concepts from the differential geometry of planar curves57. The local
conformation of a planar curve Γ is determined by the curvature κ (σ):

n̂κ σð Þ ¼ 1ffiffiffiffiffiffi
g σð Þ

p ∂σ
~τ σð Þffiffiffiffiffiffi
g σð Þ

p
� �

ð4Þ

Here~τ ¼ ∂σ~x denotes the tangent vector to the curve Γ, and the metric is given
by g σð Þ ¼ ∂σ~x � ∂σ~x ¼ ∂σxð Þ2þ ∂σyð Þ2. The unit tangent vector is then given by
τ̂ ¼~τ=

ffiffiffiffiffiffiffiffiffi
gðσÞp

. We use the convention that κ < 0 for convex portions of Γ, i.e.
outward bulges along the front (Supplementary Fig. 4). The arc length s is defined
as the length along the curve:

s t; σð Þ ¼ R σ
0

ffiffiffiffiffiffiffiffiffiffi
g σ′ð Þp

dσ′ ¼ R σ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂σxð Þ2 þ ∂σyð Þ2

q
dσ′ ð5Þ

In the following, we use a parametrisation of the curve in terms of arc length.
We assume that the membrane is spatially uniform in its properties and hence the
normal growth velocity does not explicitly depend on the position ~x of the curve
but only on the curvature, κ, and gradients thereof, ∂sκ. Moreover, we assume that
there is no chirality, i.e. the system is invariant under the transformation s →−s.
Then the growth velocity must be of the form:

Vn ¼ Vn κ; ∂2s κ; ¼
� � ð6Þ

We perform a gradient expansion keeping terms up to third order (note that κ
has the dimension of an inverse length):

Vn ¼ ϵ0 � ϵ1 κ� κ0ð Þ þ ϵ2 κ� κ0ð Þ2 þ ϵ3 κ � κ0ð Þ3�α∂2s κ

� f κð Þ � α∂2s κ; ð7Þ
where ∈i, κ0 and α are phenomenological parameters with a sign convention

that will become clear later as we discuss the physical significance of each term; we
chose to expand with respect to κ0 for convenience as it allows us to shift the
growth curve without changing its overall shape. Note that a term proportional to
(∂sκ)2 is subleading compared to the terms contained in Eq. (7).

The first term, ∈0 > 0, describes the basal curvature-independent growth speed
due to the average rate of attachment of myo6 and the resulting displacement of
lipid molecules. From the experimental data, we know that myo6 strongly favours
saddle-shaped membrane geometry, i.e. negative curvature (κ < 0); see Fig. 3d, e.
This tendency is reflected in the combined effect of the curvature-dependent terms
(second to third term) that lead to a growth speed asymmetry favouring growth of
convex interface regions with negative curvature. Without the third-order term,
∈3(κ− κ0)3, the growth law, Vn, would have a parabolic shape implying that the
growth velocity diverges as κ→ -∞. This would lead to unphysical instabilities that
create needle-like protrusions. The third-order term corrects for this and gives the
N-shaped growth law shown in Fig. 4e where strong negative curvatures are
attenuated. Taken together, the phenomenological parameters ∈1, ∈2 and ∈3
characterise myo6 recruitment to saddle-shaped regions giving rise to the
phenomenological growth law (Fig. 4e).

Finally, the last term, �α∂2s κ, penalises changes in the interface curvature, i.e.
acts as a surface tension that smoothes the interface.

The physical motivation of this term was, to the best of our knowledge, first
discussed in ref. 58 where the author studied the development of surface grooves at
grain boundaries of polycrystalline materials. In these studies, it is assumed that
newly deposited atoms from solution bind preferentially to valleys in the surface
profile and the term α∂2s κ is hence, on a microscopic level, interpreted as surface
diffusion (Supplementary Fig. 5a). Similarly, in our system, smoothing of the
interface is mediated by myo6 rearrangement along the protein–lipid interface and
line tension of the lipid bilayer (Supplementary Fig. 5b). In ref. 37, the authors
demonstrate that a term α∂2s κ in phenomenological models of crystal growth acts as
a short wavelength cut-off, analogous to surface tension in solidification processes.
Furthermore, they show by a linear stability analysis that the dispersion relation of
the growth rate of perturbations for crystal growth, pattern formation in
multiphase fluid flow and phenomenological models equivalent to Eq. (7) share the
same form: A morphological instability is induced by a driving force, which is
counteracted by surface/line tension. In this analogy, one could interpret myo6
attachment and recruitment to saddle-shaped regions as the (chemical) driving
force (the terms proportional to ∈0, ∈1, ∈2 and ∈3 in Eq. (7)), which is counteracted
by the effective line tension term α∂2s κ.

Parameters to describe the curvature-dependent growth rate. In order to
determine the phenomenological parameters (∈0, ∈1, ∈2, ∈3 and κ0) in the
curvature-dependent growth rate, f(κ), we used the following approach: We mea-
sured the average radius, Rexp(t), of a growing flower as a function of time and
compared it to the theoretical results obtained for a growing spherical interface in
the absence of shape fluctuations, i.e. we set ∂2s κ ¼ 0 and κ=−1/R in Eq. (7) and
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solved the ordinary differential equation for the radius R:

∂tR ¼ ϵ0 þ ϵ1
1
R þ κ0
� �þ ϵ2

1
R þ κ0
� �2 � ϵ3

1
R þ κ0
� �3 ð8Þ

The initial condition, which we obtained from experimental data, was always set
to R(0)= 0.3 μm. Supplementary Fig. 6 shows the average radius Rexp obtained
from an ensemble of n= 253 growing flowers for a bulk concentration of c= 50
nM for myo6. The best fit of the data was obtained for the following parameter set:
ϵ0 ¼ 0:0171 ± 0:0005ð Þ μmmin�1, ϵ1 ¼ 0:0102 ± 0:0012ð Þ μm2 min�1,
ϵ2 ¼ 0:0010 ± 0:0001ð Þ μm3 min�1, ϵ3 ¼ 0:000403 ± 0:000051ð Þ μm4 min�1, and
κ0 ¼ 0:52 ± 0:05ð Þ μm�1.

Parameter to describe the stiffness. The stiffness parameter α, as introduced in
Eq. (7), is used as a fitting parameter such that the computational results for the
wavelength in the flower pattern (see Fig. 3c) matches with the experimental
results. We obtain

α ¼ 1:00 ± 0:25ð Þ ´ 10�6 μm4s�1 ð9Þ

Numerical implementation of the model. To numerically solve for the time
evolution of the closed planar curve, as described by Eq. (1), we chose the following
algorithm following refs. 36,37,51,55,56,59. We discretise the curve Γ by a set of points
(marker particles) and evaluate the velocity at each point. In order to prevent
numerical instability52,53, it is important to choose a parametrisation in terms of
arc length s, as it guarantees that points along the curve remain evenly distributed
as the curve expands and deforms.

In detail, we adopt the following approach to solve the equations numerically.
First, we decompose the local velocity into its component tangential and normal to
the curve,

∂t~x ¼ Vnn̂þ T τ̂; ð10Þ
where T ¼ ∂t~x � τ̂ and Vn ¼ ∂t~x � n̂ are the tangential and normal components,

respectively, with τ̂ ¼ ∂s~x the unit tangent vector and n̂ the unit normal vector to
the curve Γ. As the time evolution and hence the shape of the interface is
determined solely by the normal velocity Vn (cf. Eq. (1)), only the normal
component of the velocity ∂t~x is fixed. Hence, we can freely choose the velocity
tangential to Γ without affecting the shape of the curve. For reasons that will
become clear below, we require the following property to hold:

∂t~x t; sð Þ � ∂s~x t; sð Þjs¼0 ¼ 0 ð11Þ
Geometrically, this condition means that we demand that the point at s= 0

moves along the normal to the curve for all times.
Now consider the arc length s t; σð Þ ¼ R σ

0
ffiffiffi
g

p
dσ′ in terms of an arbitrary curve

parametrisation σ, where g ¼ ∂σ~x � ∂σ~x is the metric. Recalling that τ̂ ¼ ∂s~x, ∂s τ̂ ¼
κn̂ and ∂sn̂ ¼ �κτ̂, the time derivative of the arc length can be rewritten as

∂t s t; σð Þ ¼
Z σ

0
∂t∂σ~xð Þ � ∂σ~xffiffiffi

g
p dσ′ ¼

Z σ

0
∂σ ∂t~xð Þð Þ � τ̂dσ′¼ R σ

0 �Vnκþ ∂sTð Þds′

ð12Þ
Hence, the time evolution of the total length L (perimeter) of the curve can be

written in the form

∂tL tð Þ ¼ R L
0 �Vnκþ ∂sTð Þds ¼ � R L

0 Vnκds; ð13Þ
where for the last equality in Eq. (13) we used the periodicity of T along the

curve Γ. We now choose a parametrisation of the curve relative to the full arc
length, ρ= s/L that is time invariant: ∂t(s/L)= 0; as the curve expands (L changes),
the internal distance (ρ) between the points along the curve remains the same. In
other words, the points on Γ(t) will be evenly distributed as the interface grows.
With Eqs. (12) and (13), this condition translates into

T t; sð Þ � T t; 0ð Þ ¼ R s
0 Vnκds′� s

L

R L
0 Vnκds ð14Þ

Since the choice, Eq. (11), amounts to T(t, 0)= 0, we have

T t; sð Þ ¼ R s
0 Vnκds′� s

L

R L
0 Vnκds ð15Þ

The evolution equation for the Cartesian coordinates x and y then follow from
Eqs. (10) and (15) as

∂tx t; sð Þ ¼ Vn∂sy þ ∂sx
R s
0 Vnκds′� s

L

R L
0 Vnκds

� �
; ð16Þ

∂ty t; sð Þ ¼ �Vn∂sx þ ∂sy
Z s

0
Vnκds′�

s
L

Z L

0
Vnκds

� �
ð17Þ

To proceed, we derive an equation of motion for the angle θ between the
tangent to the curve and the positive x axis, defined as

∂sx ¼ cos θ; ð18Þ

∂sy ¼ sin θ ð19Þ

To this end, we will need the following identity

∂t∂s ¼ ∂t
1ffiffiffi
g

p ∂σ

� �
¼ 1ffiffiffi

g
p ∂t∂σ �

1
2
∂tg

g
3
2

¼ ∂s∂t � �Vnκþ ∂sTð Þ∂s; ¼ ∂s∂t � ∂t L
L ∂s;

ð20Þ
where in the first line we used that ∂tg ¼ 2g �Vnκþ ∂sTð Þ, which follows from Eq.
(12) together with the definition ∂t s ¼

R σ
0
1
2
∂t gffiffi
g

p dσ′. Using Eq. (15) for ∂sT , we arrive
at Eq. (20). Furthermore, note that by definition ∂t τ̂ ¼ ∂t∂s~x ¼ �∂tθ � n̂. Applying
Eq. (20) to ∂t∂s~x and using the fact that the curvature κ can be written in the form
κ ¼ ∂2s x∂sy � ∂sx∂

2
s y ¼ �∂sθ, we find:

∂tθ t; sð Þ ¼ �∂sVn � ∂sθ
s
L

R L
0 Vn∂sθds�

R s
0 Vn∂sθds′

� � ð21Þ
The position vector ~x can be obtained from the definition ∂s~x ¼ τ̂ by

integration:~x ¼~x t; 0ð Þ þ R s
0 τ̂ ds′. The time-dependent integration constant~xðt; 0Þ

follows from Eq. (11): ∂t~x t; 0ð Þ ¼ Vn t; 0ð Þ � n̂ðt; 0Þ, and hence
~x t; 0ð Þ ¼~x 0; 0ð Þ þ R t

0 Vn t′; 0ð Þ � n̂ t′; 0ð Þdt′. The solution of Eq. (21) can then be
used to reconstruct the position vector:

x t; sð Þ ¼ x 0; 0ð Þ þ R t
0 Vn t′; 0ð Þ sin θ t′; 0ð Þdt′þ R s

0 cos θ t; s′ð Þds′; ð22Þ

y t; sð Þ ¼ y 0; 0ð Þ � R t
0 Vn t′; 0ð Þ cos θ t′; 0ð Þdt′þ R s

0 sin θ t; s′ð Þds′ ð23Þ
Finally, using the rescaled curve parameter ρ= s/L, the set of equations read in

summary:

∂tθ t; ρð Þ ¼ � 1
L ∂ρVn � 1

L ∂ρθ ρ
R 1
0 Vn∂ρθdρ�

R ρ
0 Vn∂ρθdρ′

	 

; ð24Þ

∂tL tð Þ ¼ R 1
0 Vn∂ρθdρ; ð25Þ

x t; ρð Þ ¼ x 0; 0ð Þ þ R t
0 Vn t′; 0ð Þ sin θ t′; 0ð Þdt′þ L

R ρ
0 cos θ t; ρ′ð Þdρ′; ð26Þ

y t; ρð Þ ¼ y 0; 0ð Þ � R t
0 Vn t′; 0ð Þ cos θ t′; 0ð Þdt′þ L

R ρ
0 sin θ t; ρ′ð Þdρ′: ð27Þ

We solve the partial integro-differential equation Eq. (24) and the ordinary
differential equation Eq. (25) using the Finite-Element software COMSOL 5.3a. The
coupled system of equations is solved on a line ρ 2 0; 1½ � with boundary and initial
conditions as follows: For the θ equation, Eq. (24), we impose Dirichlet boundary
condition at the end of the interval θ t; 1ð Þ ¼ θ t; 0ð Þ þ 2π since the angle θ must
rotate by 2π when traversing the closed curve.

As the initial condition for the curve, we take a circle that is perturbed by a
finite number of Fourier modes

θ 0; ρð Þ ¼ 2πρþ δ
XN
n¼1

g nð Þ sin 2πnρþ u nð Þð Þ; ð28Þ

where δ= 0.03 is a parameter for the amplitude of perturbations. The functions
g(n) and u(n) are random numbers drawn from a Gaussian distribution with mean
zero and standard deviation of 1 and a uniform distribution on the interval [0, π],
respectively. This way we generate circular seeds with some initial random surface
roughness.

To simulate the time evolution of a triangular seed, we only need to select the
corresponding mode, hence giving θ 0; ρð Þ ¼ 2πρþ δ sin 6πρð Þ where we set δ=
0.8 in this case (see Supplementary Fig. 7a, b for an illustration). The initial
condition for the perimeter L(t) was set to L(0)= 2πR0, where R0= 0.4 μm is the
initial seed radius. The origin is located at (0, 0) and we therefore set x(0, 0)= 0 and
y(0, 0)=−R0 (Supplementary Fig. 7b). Finally, we obtain the cartesian position,~x,
using Eqs. (26) and (27) from the solutions of θ and L in COMSOL 5.3a.

Hotspot distance determined from the numerical simulation. The wavelength
(average hotspot distance) 〈dz〉 of a growing flower (Fig. 3c) was obtained as
follows: Given the numerical solutions of Eqs. (24)–(27), we calculated the average
Euclidean distance between two neighbouring outward bulges (peak-to-peak dis-
tance) along the curve at a time (Supplementary Fig. 8a). In addition, we calculated
the average flower radius R at each time step:

R tð Þ ¼ R 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x t; ρ′ð Þ2 þ y t; ρ′ð Þ2

q
dρ′: ð29Þ

The result for 〈dz〉 as a function of the average flower diameter is shown in
Supplementary Fig. 8b (blue curve). As can be inferred from this Figure, the curve
shows some irregularities but saturates (on average) at a value of 〈dz〉 around 1 μm.
The irregularities originate from two sources: (i) Tip splitting, which leads to an
abrupt decrease of 〈dz〉 as one peak splits into two peaks, which have (initially) a
smaller distance (see Supplementary Fig. 8a for an illustration). (ii) Averaging of
the peak-to-peak distance along the curve, which produces minor irregularities
between time steps.

To obtain a smooth curve and for better comparison with our experiments, we
fitted the blue curve in Supplementary Fig. 8b using a fit function with four
parameters of the form p xð Þ ¼ a 1� exp � x�b

c

� �� �þ d (Supplementary Fig. 8b,
green curve).
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The theoretical curve for 〈dz〉 appears to be shifted relative to the
experimentally obtained hotspot distance (see Fig. 3c). The reason for this lies in
the assumption of our model: The gradient expansion of the normal velocity Eq.
(7) sets the smallest length scale, which can be resolved. More precisely, regions of
too large negative curvature (or a too small initial seed) cannot grow but decay to a
point as indicated from the shape of the growth function in Fig. 4e. In the
experiments, however, we are able to measure distances between only two hotspots,
which are roughly 100 nm apart (Fig. 3a, b). This stage cannot be captured by the
model since the model is only valid around the onset of pattern formation, i.e. for
large enough seeds that exhibit a wavelength. This leads to a slight shift of the
theoretical curve for 〈dz〉.

We could, however, shift this length scale penalty in the model to smaller values
by including higher-order terms in the gradient expansion Eq. (7), but this would
also add more parameters to the model without gaining additional insight.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file. The source data underlying Figs. 1b, c, 2c and 3c and
Supplementary Figs. 1e, 3a and 6 are provided as a Source Data file.
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Supplementary Figure 1. The myo6 tail domain is responsible for membrane binding. a, Sequence and domain structure of 
human full-length myo6, myo6-head and tail constructs; IS (53-residue insert), IQ (calmodulin-binding motif) and LB (lipid-
binding site aa1084-1099) (Ref (9)). b, Myo6-Head construct did not, while the Tail construct did bind to the DOPC bilayer (50 
nM myo6 (Head/Tail), 10% GFP-myo6). FRAP experiments (DOPC:DOPE-Cy5, 4000:1) to determine the lipid diffusion coeffi-
cient D; with Myo6-Head (no binding)  τ = 57.8 s (R2 = 0.92), D ~ 1.73 µm2.s-1; Dav ~ 1.66 ± 0.22 µm2.s-1 (mean ± s.d., n = 3). 
With Myo6-Tail (binding)  τ = 66.6 s (R2 = 0.98), D ~ 1.50 µm2.s-1; Dav  ~ 1.41 ± 0.26 µm2.s-1 (mean ± s.d., n = 3). c, TIRFM of 
a myo6 induced flower-shaped membrane pore (150 nM myo6,10% GFP-myo6). Pixels with local maximum fluorescence inten-
sity were connected to form a closed line (yellow); total fluorescence intensity obtained from area within green line; scale bar 1 
µm. d, Emission signal of single GFP-myo6; mean ± s.d. 18,917 ± 5,523 (R2 = 0.88) for 288 GFP molecules photobleaching in a 
single step. e, Confocal microscopy of GUV vesicles (DOPC:DOPE-Cy5 (red), 4000:1) in the presence of 50 nM GFP-myo6 
(GFP-M6, green) or 50 nM GFP (GFP, green; control experiment). The time constant τ for fluorescence increase inside the 
vesicles in the presence of 50 nM GFP-myo6,  τ = 78 ± 19 s (mean ± s.d., n = 5, R2 = 0.94 ± 0.04; diameter of the vesicles 11.24 
± 3.35 µm). f, Determination of the perimeter of flowers in SRM; the signal is integrated fom the start of flower growth until time 
tx; the detected fluorophores are plotted as Gaussian discs (20 nm radius). The perimeter is obtained by connecting the centre of 
the peripheral Gaussian spots of the enclosed area (yellow line). Representative examples of 50 nM myo6 (10% GFP-myo6) 
induced flower growth, with and without apyrase treatment of myo6 to remove residual nucleotide bound to the myo6 catalytic 
domain. g, The perimeter growth is not affected by myo6 apyrase treatment (data without apyrase from Fig. 2c; myo6 with 
apyrase treatment (blue unfilled circles) mean ± s.d., n = 4). h, The average hostpot distance 〈dz〉 is also not affected by myo6 
apyrase treatment (data without apyrase from Fig. 3c; myo6 with apyrase treatment (blue filled circles) mean ± s.d., n = 9-19). 
Source data are provided as a Source Data file.
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Supplementary Figure 3. Effect of nano-triangles on the bilayer and on myo6-induced flowers. a, TIRFM to 
detect gold nano-triangles deposited on a mica surface, labelled using TRITC-maleimide (Sigma); scale bar 10 μm. 
Nano-triangles labelled in the absence of (white bars), or after a lipid bilayer was formed (grey bars) and detected in 
the TRITC channel. Number of triangles detected (mean ± s.d. and raw data points) in 8 -14 fields of view (FoV) in 
each condition. No significant difference was found between N of detected triangles in the presence and absence of 
the bilayer (p-value 0.01, 0.002 and 0.02 for 1.2, 0.3 and 0.07 pM triangles respectively, two-tailed t-test). Fluores-
cence intensity (a.u.) of TRITC-labelled triangles; scale bar 10 μm. Intensity maxima at 825 ± 139, 1160 ± 140 and 
1388 ± 122 (mean ± s.d.) consistent with one, two and three dye molecules respectively. Source data are provided as 
a Source Data file. b, Signal of a line scan (merged image, green box) across an area with 3 detected triangles in the 
TRITC-channel (blue curve) compared with the signal of the lipid Cy5-channel (red curve). c, FRAP studies 
(DOPC:DOPE-Cy5, 4000:1) to confirm the fluidity of the bilayer in the presence of the 1.2 pM nano-triangles 
(green, white arrows); for a bleached circle of 45 µm diameter τ = 95 s (R2 =  0.98),  corresponding to D ~ 1.39 
µm2.s-1. d, Number of flowers per FoV at different times after addition of myo6 with and without nano-triangles 
inserted into the bilayer; scale bars 2 μm. 



 
 

Supplementary Figure 4. Mathematical description of a closed planar curve. The curve 𝛤(𝑡) is 
parametrized by the Cartesian position vector 𝐱&⃗ (𝑡, 𝜎). The conformation of 𝛤(𝑡) is characterized by the 
curvature 𝜅 and we use the convention that 𝜅 is negative for convex portions of the curve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Supplementary Figure 5. Microscopic origin of the effective line tension term in the model. a, 
Surface diffusion of atoms (grey circle) along grain boundaries (dashed line) as introduced in Ref.58. 
Atoms from solution (dashed circle) bind and diffuse along the interface until they reach a valley where 
the free energy is minimized (dashed grey circle). This process leads naturally to smoothing of an irregular 
surface profile. b, Myosin6 binds to the protein-lipid interface (black solid line) and thereby increases the 
interface perimeter. The increase of the perimeter is counteracted by myosin6 rearrangement along the 
interface and line tension of the lipid. This also leads to smoothing of the surface profile analogous to 
surface growth models (a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Supplementary Figure 6. Fit of the phenomenological parameters. Average radius 〈𝑅-./〉 obtained 
for a bulk concentration 𝑐 = 50	𝑛𝑀 for myo6 from an ensemble of 𝑁 = 253 measurements of the flower 
radius (black filled symbols). The (green) solid line shows the best theoretical result obtained from solving 
Eq.8. Source Data are provided as a Source Data file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 40 60 80 100 120
0

1

2

3

4

Time (min)

A
v
e
ra
g
e
ra
d
iu
s
(�

m
)

Experiment

Model



 
 

Supplementary Figure 7. Illustration of the initial configuration for the angle 𝜽. a, Initial 
configuration of 𝜃 for an unperturbed circle (dotted line) and a triangle (solid line), respectively. b, The 
corresponding shapes in Cartesian coordinates for the initial conditions of 𝜃 as shown in panel a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Supplementary Figure 8. Determination of the average hotspot distance. a, Shown is the simulated 
flower shape at two successive time points (orange and red curve, respectively). The hotspot distance 〈𝑑𝑧〉 
is obtained from the average Euclidean distance between neighbouring outward bulges (black double 
arrow). The dotted circle represents the average diameter of the orange curve. b, Hotspot distance 〈𝑑𝑧〉 
plotted as a function of the average flower diameter. The blue curve shows the result as obtained from the 
simulation data and the green graph is a smooth fit to this curve. 
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2 Anomalous roughening of growing protein-lipid
interfaces

The joint experimental and theoretical study presented in section 1 inspired us
to theoretically investigate general interface growth models, with a special focus
on the interplay between interface morphology and biochemical dynamics. As
we will show in the following, the coupling between interface morphology and
chemical dynamics leads to turbulence, which we did not expect. Moreover, the
turbulent dynamics leads to a number of interesting consequences, including
kinetic roughening of the growing protein-lipid interface, which is produced by
the deterministic dynamics and thus independent of noise supply.

2.1 Background: The KPZ equation

The dynamics of growing interfaces is relevant for a broad range of physical sys-
tems, including epitaxial growth [194], solidification processes [177], bacterial
biofilms [195], combustion and flame propagation [196], and protein-lipid inter-
faces [34, 197–199]. As such, the theoretical understanding of interface growth
phenomena and the pursuit of underlying universal principles in such systems are
of great interest.

One of the most important theoretical considerations in this context is the
popular Kardar-Parisi-Zhang equation (KPZ equation) [200], which is a stochastic
partial differential equation that describes the growth of dynamic interfaces

∂

∂t
ℎ (x, t ) = ν∇2ℎ + λ

2
(∇ℎ)2 + η (x, t ) , (IV.8)

where the height field ℎ (x, t ) denotes the vertical position of the interface. The
KPZ equation basically describes the growth of Eden clusters [201] with diffusive
relaxation and so-called “lateral growth” (local growth along the normal direction
of the interface). These two processes are captured by the first and second term
in Eq. (IV.8), respectively (note that the KPZ equation is invariant under vertical
translations ℎ → ℎ + const). The last term in Eq. (IV.8) describes space-time
Gaussian white noise and hence obeys the usual properties

⟨η (x, t )⟩ = 0 , (IV.9a)

⟨η (x, t )η (x′, t ′)⟩ = 2Γδ (x − x′)δ (t − t ′) , (IV.9b)

where Γ is the noise amplitude and ⟨·⟩ is to be understood as the ensemble average.
Interestingly, the two deterministic terms in Eq. (IV.8) are the only relevant terms
at large scales, which has been demonstrated by the dynamic renormalization group
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(RG) theory [200, 202]. In other words, higher-order terms in Eq. (IV.8) do not
change the behaviour at large scales as they become irrelevant in the RG procedure.
As a result, the KPZ equation describes a broad class of physical systems and
actually defines a “universality class”. The KPZ universality class is characterized
by critical exponents, which can be, for example, defined via the Family–Vicsek
scaling relations [203] for the interface widthW (L, t )

W (L, t ) = Lα g
( t
Lz

)
, (IV.10)

where the width of the interface is defined as

W (L, t ) =

√︄〈
1
L

ˆ L

0

(
ℎ (x, t ) − ⟨ℎ⟩x (t )

)2 dx〉 . (IV.11)

The scaling exponent α in Eq. (IV.10) is referred to as the roughness exponent, and
can be interpreted as a measure for the roughness of the interface profile for long
times [204]. Typically, the width evolves asW (L, t ) ∼ t β for small times, where
the exponent β characterizes the transient dynamics of the roughening process
(before saturation), and is hence called the growth exponent. After a critical time τ,
the interface width saturates (on average), and this transition point depends on how
fast lateral correlations spread on the interface. This can be characterized by a third
exponent z which relates the critical time and the system size τ ∼ Lz [204]. These
exponents are not independent, but are related via the properties of the scaling
function g (t/Lz ) in Eq. (IV.10), from which one concludes that z = α/β. For
the one-dimensonal KPZ equation, the critical exponents have been determined
exactly via RG calculations, where it was found that α = 1/2, β = 1/3, and hence
z = 3/2 [69, 200, 202]. These results are consistent with the exact solution of the
one-dimensional KPZ equation obtained from random matrix theory, where it
was shown that the statistics follows the Tracy-Widom distribution [205–207]. The
roughening transition predicted by the KPZ equation, as well as the Tracy-Widom
statistics, has also been confirmed by very impressive experimental studies with
nematic liquid crystals [208, 209].

The KPZ equation is characterized by a constant growth velocity along the
normal direction (given by the parameter λ in the second term of Eq. (IV.8)).
However, the velocity of growing interfaces is generally not constant, but may
depend on a number of variables. For example, the growth velocity of solidifica-
tion fronts depends on how well the solid is able to radiate latent heat, which is
most efficient for negatively curved regions [177, 181, 183]. The same principle
remarkably holds for the growth of bacterial colonies [210, 211]. These examples
illustrate that the normal growth velocity is generally inhomogeneous along the
interface and that it depends on geometric features as well as other field variables,
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such as nutrient concentration distribution for bacterial populations, or temperat-
ure gradients in the case of solidification processes. One may therefore wonder
whether such inhomogeneities are relevant at large scales, or whether they can
be “integrated out” and are therefore irrelevant for the large scale dynamics of
the system. There are a growing number of studies examining the KPZ equation
coupled to other field variables. For example, it has been shown that the equations
describing active growth of interfaces (where local growth is stimulated by active
agents) take a similar form as the KPZ equation, but with inhomogeneous growth
velocities dictated by an additional field describing the density profile of agents
along the interface [212]. The dynamics of such a system does not fall into the
KPZ universality class and leads to additional phenomenology, such as traveling
wave patterns or microphase separation [212]. In general, no unique universality
class can be assigned to systems with inhomogeneous growth rates, but they may
exhibit different large scale behaviour depending on control parameters [213].

The motorprotein-lipid interface introduced in section 1 is an ideal model sys-
tem for investigating non-uniformly growing interfaces, since it combines geomet-
ric features (curvature-dependent growth) and biochemistry (chemical dynamics
of proteins along the interface). In this section, we will derive a generic model that
describes the dynamics of a protein system on a dynamic membrane, similar as the
system discussed in section 2 of chapter II. We assume that the normal velocity of
the interface depends on the local protein density, and that the binding kinetics of
proteins to the membrane strictly depends on the morphology of the interface. To
gain some intuition, and to see to what extent such systems deviate from the KPZ
dynamics, we will first consider minimal models and then successively increase
the model complexity. We show that inhomogeneous growth and morphological
coupling results in non-trivial dynamics, including large-scale mode selection and
the emergence of turbulence. In the latter case, we show that the chaotic dynamics
drives kinetic roughening of the protein-lipid interface. The roughening trans-
ition does not fall into the KPZ universality class, and is, in contrast to stochastic
interface growth models, solely driven by the deterministic dynamics of the system.

2.2 General interface growth model

Following the approach presented in section 2 of chapter II, the dynamics of an
arbitrary reaction-diffusion equation (for the protein density ϱ) on a dynamic
one-dimensional manifold take the following form in local coordinates σ:

∂

∂t
ϱ(σ, t ) = D∇2

s ϱ + f (ϱ, κ) + vn κ ϱ + vτ ∇s ϱ , (IV.12a)

∂

∂t
r (σ, t ) · n̂ = vn (ϱ, κ) . (IV.12b)
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Using the Monge gauge r =
(
x, ℎ (x, t )

)T , we can rewrite the equation for the
position vector in a more convenient form:

∂

∂t
ϱ(σ, t ) = D∇2

s ϱ + f (ϱ, κ) + vn κ ϱ + vτ ∇s ϱ , (IV.13a)

∂

∂t
ℎ (x, t ) = vn

√g , (IV.13b)

where √g =
√︁
1 + (∂ℎ/∂x)2 denotes the metric. Note that we assume here that the

reaction kinetics f (ϱ, κ), as well as the normal velocity vn (ϱ, κ), may be explicitly
dependent on the local protein density and the interface morphology via the
curvature κ. The reaction term includes curvature-sensitive binding kinetics, and
inhomogeneous growth is accounted for by the dependency of the normal velocity
vn on the local protein density (see Fig. IV.2 for an illustration). Consistent with
the fact that the KPZ equation assumes a constant growth velocity along the
normal direction, note that the dynamics of the height field ℎ (x, t ) in Eq. (IV.13b)
reduces (to leading order) to the KPZ equation if we choose the particular form
vn = λ + µκ, where it is straightforward to show that the second term proportional
to curvature translates to the surface tension term in Eq. (IV.8).

Figure IV.2 Schematic illustration of the interface growth model for protein-lipid inter-
faces. Proteins (green symbols) can bind to and detach from the lipid membrane (orange
symbols). Membrane-bound proteins locally induce growth along the normal direction
of the membrane (gray arrows). The binding kinetics is curvature-sensitive and therefore
depends on the local morphology of the membrane, preferring membrane binding to
negatively curved regions (illustrated by different sizes of the purple and red arrows).
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2.3 Minimal conceptual model without lateral growth

To understand how inhomogeneities affect the interface growth dynamics, we start
with investigating a very simple model. The model that we consider here can be
interpreted as an extension of the Edwards–Wilkinson model (EW) [214], where we
replace the constant growth rate in the EW model by an inhomogeneous growth
rate that is dictated by a separate (density) field ϕ. The governing equations can be
derived from the general expression Eq. (IV.13b) and by assuming weakly varying
variations of the interface (∂ℎ/∂x)2 ≪ 1:

∂

∂t
ϕ(x, t ) = D

∂2

∂x2
ϕ − ϑϕ +

√
Γη (x, t ) , (IV.14a)

∂

∂t
ℎ (x, t ) = ν ∂

2

∂x2
ℎ + µϕ . (IV.14b)

The density field is a simple (fluctuating) diffusion equation with a linear degrad-
ation term (second term). This field locally stimulates growth of the interface
via the term νϕ, where the parameter ν is the coupling strength. Note that we
assume here that the dynamics of the density field is not affected by fluctuations
of the interface, which is a crucial simplification of the problem as we will see
later. The detachment rate ϑ is a control parameter and can be interpreted as a
“reduced temperature”. Depending on this parameter, one may draw two interest-
ing consequences: First, for ϑ > 0 the dynamics reduces to the EW model, since
correlations in ϕ decay exponentially in this case, such that the coupling term µϕ
effectively acts as a white noise term in the equation for the height field. Therefore,
the scaling exponents in this case are α = 1/2, β = 1/4, and z = 2. However,
the dynamics at the “critical temperature” ϑ = 0 is not immediately clear, and
can be best investigated by analytically solving the linear set of equations using
Fourier modes. We start with the solution of the density field, since it can be
solved independently of ℎ (x, t ). We define the Fourier series

ϕ(x, t ) = 1
L

∞∑︁
n=−∞

ϕ̂ne−iqnx , (IV.15)

where ϕ̂n denotes the Fourier components of ϕ. The dynamics for the Fourier
components are then given by Langevin equations

∂

∂t
ϕ̂(t ) = −Dq2n ϕ̂n +

√
Γη̂n (t ) , (IV.16)
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where the correlation function of Fourier components of the noise term η̂n obeys
the usual relationship 〈

η̂n (t )η̂m (t ′)
〉
= 2Lδn,−mδ (t − t ′) . (IV.17)

The solution in Fourier space is therefore

ϕ̂(t ) = ϕ̂n,0e−Dq2n t +
√
Γ

ˆ t

0
e−Dq2n (t−t ′) η̂n (t ′) dt ′ , (IV.18)

where the homogenous solution (first term) can be disregarded for sufficiently long
times. Using the general solution, we then determine the correlation function of
Fourier components〈

ϕ̂n (t )ϕ̂m (t ′)
〉
= 2ΓLδn,−m

e−Dq2n |t−t ′ | − e−Dq2n t−Dq2m t ′

D (q2n + q2m)
. (IV.19)

From the above solution, it is clear that correlations are no longer delta-peaked
in time (as is the case for white noise), but rather decay mode-dependent over a
characteristic time scale ξ = 1/Dq2n, which indicates that large-scale modes decay
much slower than modes with small wavelengths. In other words, the dynamics of
the density field effectively alters the white noise statistics and generates correlated
(colored) noise.

This altered noise statistics feeds back to the dynamics of the height field via
the coupling term µϕ, and therefore causes interesting effects. To investigate
the dynamics of the interface ℎ (x, t ), we proceed analogously as before and first
determine the correlation function between Fourier modes〈

ℎ̂n (t ) ℎ̂m (t ′)
〉
= 2µ2ΓLδn,−m

ˆ t ′

0

e−µq2n |t−t ′′ | − e−Dq2n |t−t ′′ |

(D − µ)q2n

× e−µq2m |t ′−t ′′ | − e−Dq2m |t ′−t ′′ |

(D − µ)q2m
dt ′′ , (IV.20)

where we assume that D ≠ µ. Using the correlation function above, and trans-
forming back to real space, we obtain a closed expression for the mean square
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displacement of the interface profile:〈
ℎ (x, t )2

〉
=

1
L

∑︁
n

∑︁
m

e−i (qn+qm )x
〈
ℎ̂n (t ) ℎ̂m (t )

〉
=

2µ2Γ
L(D − µ)

∑︁
n

1 − e−2µq2n t

2µq6n
− 2

1 − e−(µ+D)q2n t

(µ + D)q6n
+ 1 − e−2Dq2n t

2Dq6n
, (IV.21)

and then consider the saturation of the mean square displacement for t− > ∞

⟨ℎ2⟩ = 2µ2Γ
(D − µ)

((µ + D)2 + 4µD)L5

24945µD (µ + D)
:= cons t × L5 , (IV.22)

where we used the fact that qn = 2πn/L (periodic boundaries) and the result

∞∑︁
n=1

1
n6 =

π6

945
. (IV.23)

We therefore find that the width scales as ∼ L5/2. In contrast to the case where
ϑ > 0, this result clearly does not indicate a roughening transition (since α > 1),
but rather shows that the interface is correlated over very large distances. One
also sees from Eq. (IV.21) that the system selects the largest mode in the system
(which is the first mode), while all other modes with short wavelengths decay
rapidly ∼ 1/q6n. Hence, the dynamics of the density field induces large-scale mode
selection of the interface width, leading to a pattern of the interface.

2.4 Minimal conceptual model with lateral growth

A natural extension of the previous minimal model is to include the KPZ nonlinear-
ity in the height field and thus accounting for growth along the normal direction
(again, under the assumption that (∂ℎ/∂x)2 ≪ 1)

∂

∂t
ℎ (x, t ) = µ ∂

2

∂x2
ℎ + µϕ + µϕ

2

(
∂ℎ
∂x

)2
. (IV.24)

Unfortunately, one cannot determine an analytical solution in this case, since
modes do not decouple, i.e. the system cannot be “diagonalized”. This becomes
evident by transforming the equations using Fourier modes

∂

∂t
ℎ̂n (t ) = −µq2n ℎ̂n + µϕ̂n −

µ

2

∑︁
m

∑︁
l

ϕ̂n−l−m ℎ̂m ℎ̂l qmql . (IV.25)
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However, we can numerically solve these equations. As before, we find that small
wavelength modes decay rapidly ∼ 1/q6n, while large-scale modes dominate the
dynamics. Thus, for ϑ = 0, the system, again, does not undergo a roughening
transition, but the interface rather forms a “pattern” by selecting the largest mode.
For ϑ > 0, one recovers – due to identical reasons as before – the KPZ equation.

2.5 Interface growth with morphological coupling

We now turn to a more realistic model for growing protein-lipid interfaces and
assume that the morphology of the interface influences the chemical dynamics
along the interface. We start with Eq. (IV.13b) and define the reaction function

f (ϱ, κ) := γ0 − γ1ϱκ − ϑϱ, (IV.26)

and the normal velocity
vn (ϱ, κ) := µϱ + ν κ . (IV.27)

The reaction function is chosen such that proteins preferentially bind to negatively
curved regions (accounted for by the term proportional to curvature κ, see also
Fig. IV.2). As before, we assume that proteins locally stimulate growth, and
further assume that this is counteracted by surface tension (second term in the
normal velocity proportional to curvature). Supposing once again that the interface
dynamics is weakly varying in space (∂ℎ/∂x)2 ≪ 1, we obtain the following set of
equations

∂

∂t
ϱ(x, t ) = D

∂2

∂x2
ϱ + γ0 − γ1ϱ

∂2

∂x2
ℎ − ϑϱ + µϱ2 ∂

2

∂x2
ℎ + µϱ ∂

∂x
ℎ
∂

∂x
ϱ , (IV.28a)

∂

∂t
ℎ (x, t ) = ν ∂

2

∂x2
ℎ + µϱ + µϱ

2

(
∂

∂x
ℎ
)2
, (IV.28b)

and we see that the interface growth law corresponds to the (deterministic) KPZ
equation with inhomogeneous growth dictated by the protein density field ϱ. In
contrast to the simplified models considered before, any changes in the interface
shape will feed back to the protein dynamics, and this interplay can lead to a com-
plex phenomenology as we will see. We can reduce the number of free parameters
by non-dimensionalization of the equations above.
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To this end, we define dimensionless parameters ϑ̃ := ϑγ1/γ0µ, ν̃ := ν/D, and
µ̃ := γ31/γ0µD , and rewrite the equations in terms of these parameters

∂

∂t
ϱ(x, t ) = ∂

2

∂x2
ϱ + 1 − ϱ ∂

2

∂x2
ℎ − ϑ̃ϱ + ϱ2 ∂

2

∂x2
ℎ + ϱ ∂

∂x
ℎ
∂

∂x
ϱ , (IV.29a)

∂

∂t
ℎ (x, t ) = ν̃ ∂

2

∂x2
ℎ + µ̃ϱ + ϱ

2

(
∂

∂x
ℎ
)2
. (IV.29b)

A more convenient form of Eq. (IV.29) can be obtained by recasting the system
into “conservative form”. This can be done by rewriting Eq. (IV.29) in terms of
the “velocity” u := ∂ℎ/∂x , which yields

∂

∂t
ϱ(x, t ) = ∂

2

∂x2
ϱ + 1 − ϑ̃ϱ + ϱ(ϱ − 1) ∂

∂x
u + ϱu ∂

∂x
ϱ , (IV.30a)

∂

∂t
u (x, t ) = ∂

∂x

[
ν̃
∂

∂x
u + µ̃ϱ + ϱ

2

2

]
. (IV.30b)

Equation (IV.30) is equivalent to the Burgers equation [215] with a conservative
(and inhomogeneous) driving force given by µ̃ϱ.
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Figure IV.3 Space-time plots (kymographs), obtained by numerically solving Eq. (IV.30).
a) Shown is the interface fluctuation in the co-moving frame ℎ (x, t ) − ⟨ℎ⟩x , where the
amplitude is color coded according to the color bar shown on the very right (brighter
colors indicate larger amplitude values). b) Simulation result for identical parameters as
in a), but for a smaller system size L = 100, where one clearly observes the cascade of
tip-splitting that drives the chaotic dynamics.
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By numerically solving the governing equations, we find that the system pro-
duces chaotic dynamics for sufficiently large system sizes (Fig. IV.3). One character-
istic feature of this turbulent dynamics is a never-ending sequence of tip-splitting:
regions of negative curvature growth and expand laterally, eventually splitting into
two new peaks, and this process then begins a new. Heuristically, tip-splitting
is caused by curvature-sensitive binding of proteins, since regions with negative
curvature growth faster because proteins accumulate in those portions of the inter-
face. The phenomena of lateral growth and tip-splitting is actually very similar to
the Mullins-Sekerka instability of solidification fronts [179]. Moreover, the dynam-
ics we observe here is quite reminiscent to the well-known Kuramoto-Sivashinsky
equation [216, 217], which is a paradigmatic and simple model for turbulence that
produces a very similar phenomenology.

2.6 Finite-time Lyapunov exponents

Chaotic systems can be investigated by determining their respective spectrum of
Lyapunov exponents, which basically characterize whether two (initially) nearby
trajectories in phase-space approach each other or diverge as time progresses. In
the former case, the Lyapunov exponent λi (of the i − th direction) is negative,
whereas in the latter it is positive, hence indicating the onset of chaotic dynamics.
Generally, one positive Lyapunov exponent is sufficient to drive the system into
chaos.

Moreover, Lyapunov exponents also inform about how the phase-space volume
of the attractor evolves over time [218, 219]. For Hamiltonian systems, for example,
the sum of Lyapunov exponents must be exactly zero due to Liouville’s theorem.
For dissipative systems, on the other hand, one usually finds mixed positive and
negative Lyapunov exponents, such that the sum over all exponents can become
negative, thus implying that the dimension of the attractor collapses to a (finite)
subspace in phase-space.

For an N − dimensional ODE system of the form

d
dt

𝚽(t ) = F (𝚽(t )) , (IV.31)

the Lyapunov exponents are formally defined as

λi = lim
t→∞

1
t
ln

(
∥ δ𝚽i (t ) ∥
∥ δ𝚽i (0) ∥

)
, (IV.32)

and the existence of such a limit has been indeed mathematically proven [220]. In
numerical simulations, however, the definition above is of course evaluated for
a finite time period T , where it is important to make sure that this time range



2 Anomalous roughening of growing protein-lipid interfaces 287

is fine-tuned in a way such that one approximately recovers the true value. The
time-evolution of perturbations δ𝚽(t ) are obtained by linearizing Eq. (IV.31)
around the trajectories 𝚽(t ):

d
dt
δ𝚽(t ) = J [𝚽(t )]δ𝚽(t ) , (IV.33)

where J [𝚽(t )] denotes the Jacobian evaluated at 𝚽(t ), i.e. J [𝚽(t )] = dF /d𝚽
��
𝚽.

Therefore, to determine the Lyapunov exponents, one needs to solve the fully
nonlinear system Eq. (IV.31) and the linearized system Eq. (IV.33) simultaneously.

Lyapunov exponents can be also determined for partial differential equations.
This can be done by discretizing all spatial operators, e.g, by a finite-difference
approximation. By doing so, the resulting equations can be written as an ODE
system of the form shown in Eq. (IV.31), where the main difference is that partial
differential equations are infinite-dimensional systems. This then implies that
there are in general infinitely many Lyapunov exponents for PDEs. However, the
attractor of PDE systems is often restricted to a finite-dimensional subspace that is
characterized by a finite number of positive Lyapunov exponents.

To numerically determine the Lyapunov exponents for the interface growth
model Eq. (IV.30), we first perturb the solutions ϱ→ ϱ+δ ϱ(x, t ), u → u+δu (x, t )
and then linearize the equations, which read in semi-discrete form (note that δ ϱ
and δu are now N − dimensional vectors):

∂

∂t
δ ϱ(x, t ) = ∂

2

∂x2
δ ϱ + 1 − ϑ̃δ ϱ + 2ϱ

∂

∂x
uδ ϱ − ∂

∂x
uδ ϱ + ϱ(ϱ − 1) ∂

∂x
δu

+ u
∂

∂x
ϱδ ϱ + uϱ

∂

∂x
δ ϱ + ϱ ∂

∂x
ϱδu , (IV.34a)

∂

∂t
δu (x, t ) = ν̃ ∂

2

∂x2
δu + µ̃ ∂

∂x
δ ϱ + 1

2
u2
∂

∂x
δ ϱ + ∂

∂x
ϱuδu + u

∂

∂x
uδ ϱ

+ ϱ ∂
∂x

uδu + ϱu ∂
∂x
δu . (IV.34b)

As outlined above, we can now determine the Lyapunov spectrum by solving
Eqs. (IV.30) and (IV.34) simultaneously. However, there is one serious issue with
the numerics here that we must resolve first. Unfortunately, the numerical estim-
ation of the Lyapunov spectrum via Eq. (IV.32) is not possible. The reason for
this is that, after a finite time, all directions in phase-space will eventually align
with the dominant direction associated with the largest Lyapunov exponent, and
thereby render the problem ill-conditioned (because the initial orthogonal basis in
phase-space collapses as the vectors become linearly dependent, see Fig. IV.4a for
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an illustration). To resolve this issue, we split the time interval T into n pieces of
size Δt , and perform a Gram-Schmidt orthonormalization after each interval Δt in
order to reforce orthogonality of the phase-space basis (Fig. IV.4b). By doing so,
the following approximation of Eq. (IV.32) should give us a reliable result of the
Lyapunov exponent if n is chosen large enough:

λi =
1

nΔt

k=n∑︁
k=0

ln
(
∥ δ𝚽(k)

i (t ) ∥
)
. (IV.35)

a b

Figure IV.4 Illustration of why the naive numerical approach to determine the Lyapunov
exponents via Eq. (IV.32) does not work. a) Suppose the initial condition of the system
are chosen uniformly in a unit sphere in phase-space, spanned by an initially orthonormal
basis. The unit sphere will be deformed by the flow in phase-space, as directions associ-
ated with positive Lyapunov exponents will stretch the volume and directions associated
with negative Lyapunov exponents will squeeze the volume, respectively. Notably, the
initially orthonormal basis vectors will eventually align with the fastest growing direction
associated with the largest positive Lyapunov exponents. b) To prevent this, we perform
an orientation-preserving Gram-Schmidt procedure after a small time interval Δt , which
produces again an orthonormal basis. This procedure is repeated n times up to an end
time T .

The typical form of the Lyapunov spectrum of our model is shown in Fig. IV.5a.
Consistent with our numerical simulations of the full system, we find that the
system exhibits positive Lyapunov exponents, and this result underscores that
the dynamics is indeed chaotic. Interestingly, even though the PDE system is
infinite-dimensional, we only find a small number of positive Lyapunov exponents,
while most Lyapunov exponents are negative (see Fig. IV.5a). This suggests that
the attractor in phase-space is constrained to a finite-dimensional subspace. Fur-
thermore, by evaluating the sum of all Lyapunov exponents we find that

∑
i λi < 0

(Fig. IV.5b), implying that the system is dissipative. This is actually to be expected,
because curvature-dependent growth destabilizes the system on all length scales,
while line tension “dissipates” short wavelength perturbations by trying to keep



2 Anomalous roughening of growing protein-lipid interfaces 289

6045

-1

1

2

15 300

-2

15 30 45 60

-10

-5

5

10

6045

-5

5

10

15 300

-10

𝑖

a b
∑

𝑖
𝜆𝑖𝜆𝑖

𝑖

Figure IV.5 Lyapunov spectrum of the interface growth model with morphological
coupling. a) Typical shape of the Lyapunov spectrum, determined numerically from
Eq. (IV.35). The Lyapunov exponents are ordered from largest to smallest value. b) The
sum of all Lyapunov exponents becomes eventually negative, indicating that the system is
dissipative.

the interface flat, very similar to the energy cascade that underlies turbulent fluid
flow [221].

2.7 Dimension of the chaotic attractor

What is the interpretation of the threshold value where
∑

i λi ≈ 0 (see Fig. IV.5b)?
Intuitively, one may interpret this point as a volume in phase-space (in which the
attractor is embedded) that remains invariant by the dynamics, i.e. the volume
does not expand or shrink. In addition, one generally expects that this point is not
fixed, but should be dependent on parameters, such as the system size, because
increasing the total length would result in more and more degrees of freedom
(modes) entering the nonlinear dynamics.

Strikingly, it has been suggested that the value where
∑

i λi ≈ 0 may be used
to approximate the fractal dimension of the attractor [222, 223]. Extrapolating
between the integer j for which

∑ j
i=1 λi ≥ 0 and j + 1 where

∑ j+1
i=1 λi < 0, Kaplan

and Yorke [222] conjectured that the dimension of the attractor DKY can be
obtained from the formula

DKY = j +
∑ j

i=1 λi

| λ j+1 |
. (IV.36)

We used Eq. (IV.36) to approximate the dimension of the attractor as a function of
system size L, the result is shown in Fig. IV.6. Interestingly, we find that the chaotic
attractor is extensive, i.e. its fractal dimension increases proportionally to the
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Figure IV.6 Kaplan-Yorke dimension of the interface growth model as a function of system
size L. The dimension of the attractor scales linearly with the system size, which indicates
that the system produces extensive chaos (except for small system sizes, where finite-size
effects are present). The red line represents a linear fit to the numerically determined values
(blue points).

system size DKY ∼ L (for sufficiently large systems, where finite-size effects can be
ruled out). Extensive chaos is common in many chaotic systems, such as Rayleigh-
Bénard convection [224, 225], or the Kuramoto-Sivashinsky equation [226]. This
result suggests that, even though the PDE system consists of infinitely many degrees
of freedom, only a finite number of degrees of freedom are excited and actually
participate in the chaotic dynamics.

2.8 Kinetic roughening

As we have explained in the beginning of this section, interface growth models
usually exhibit a scaling law that characterizes the dynamics at large scales. The
fact that the chaotic attractor here is extensive, suggests that the deterministic
system may indeed exhibit a similar scaling relation, even though the system is
not stochastic. However, for large enough system sizes, spatiotemporal chaos may
indeed mimic noise in the system [227]. Strikingly, such an effect was shown
for the (1D) Kuramoto-Sivashinsky equation, which actually falls into the KPZ
universality class for sufficiently large system sizes and times. This has been
shown via different techniques, such as via coarse-graining methods [228, 229], RG
calculations [230], and also numerical simulations [231].

To test whether our interface growth model undergoes kinetic roughening,
we performed extensive numerical simulations for a large range of system sizes,
long times, and various parameter combinations. Intuitively, we expect that the
system behaves identical to the KPZ equation if we choose a parameter range where
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the system is laterally stable, i.e. no chaotic patterns form (Fig. IV.7). In other
words, if we add white noise to the dynamics of the density field in a parameter
regime where no pattern forms, then we expect that the system falls into the KPZ
universality class. To verify this, we performed stochastic simulations for a range

4.0

2.4

0.8
𝜒0.0 0.1 0.2

𝜖

turbulence

laterally stable

Figure IV.7 Bifurcation diagram of the deterministic model. The parameter space is
spanned by the effective parameters ϵ = ν̃ + µ̃ and χ = ν̃/µ̃. The system is laterally
stable in the grey filled regime (stable homogeneous steady state), and unstable in the
blue filled regime (spatiotemporal chaos). Finite-size scaling is performed for two different
configurations: first, we prepare the system in a region where no lateral instabilities
occur (orange dot), and then repeat the analysis in a regime where the system produces
spatiotemporal chaos (black dot).

of system sizes and measured the interface widthW (L, t ) (finite-size scaling). The
result is shown in Fig. IV.8, and we find, as expected, that the system falls into the
KPZ universality class. As shown in Fig. IV.8a,b, we numerically obtain the KPZ
scaling exponents α = 1/2, β = 1/3, and z = 3/2.

Next, we asked whether deterministic chaos alone leads to dynamic scaling,
and if so, does it again belong to the KPZ universality class? To answer these
questions, we again performed large-scale numerical simulations for various system
sizes (Fig. IV.9a,b). Interestingly, we find that system shows dynamic scaling for
sufficiently long times, i.e. once the system enters the highly nonlinear regime.
Note that scaling in this case is purely driven by spatiotemporal chaos, so no extra
noise terms were added to the model. The dynamic scaling is characterized by
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Figure IV.8 Finite-size scaling shows that the system falls into the KPZ universality class
in absence of spatiotemporal chaos. a) Time-evolution of the interface widthW (L, t ) for
various system sizes L. For small times, the width increases proportionally to t β , with
the KPZ scaling exponent β = 1/3 (dashed line is a guide to the eye). b) The saturation
value of the width for long times depends on the system size L, and scales as Lα, where we
obtain again the KPZ exponent α = 1/2. c) Rescaling the width by Lα and time by Lz ,
where z = α/β, one obtains the scaling function Eq. (IV.10). In this case, all data collapse
into one universal curve.

scaling exponents α ≈ 0.38, β ≈ 0.15, and z ≈ 2.5. This clearly shows that the
system does not fall into the KPZ universality class.

Overall, we have shown that a feedback loop between protein binding kinetics
and local morphology leads to non-trivial (deterministic) chaotic dynamics of the
membrane shape. The chaotic attractor mimics noise and drives dynamic scaling
of the protein-lipid interface. Beside thermal fluctuations, these results suggest that
the roughness of membranes may be also driven by an intricate interplay between
biochemical dynamics and membrane morphology.
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Figure IV.9 Finite-size scaling of the deterministic system in the chaotic regime. a) For
sufficiently long times (after the dynamics leaves the linearly unstable regime), the chaotic
attractor drives dynamic scaling, where the interface width scales as ∼ t β with scaling
exponent β ≈ 0.15. b) The saturation width scales as ∼ Lα with roughness exponent
α ≈ 0.38.

2.9 Key points and outlook

In the following, we summarize the key findings of this research project and provide
an outlook.

• We developed interface growth models that account for inhomogeneous
growth rates along the normal direction of the interface. Such inhomogeneit-
ies occur naturally in biological systems, since the shape of cell membranes,
for example, is usually controlled by proteins and other cytoskeletal com-
ponents in a density dependent way.

• In simple (noisy) minimal models with linear coupling between membrane-
bound proteins and the protein-lipid interface, we have shown analytically
that non-uniform growth rates induce large-scale membrane deformations.
We explained our findings via altered noise statistics that are induced by
the protein dynamics on the membrane and which favour modes with long
wavelengths. These long-wavelength modes are then further amplified by
fluctuations of the protein-lipid interface, while short-wavelength modes are
strongly suppressed due to surface tension.

• Inspired by previous experimental findings [34], we investigated an interface
growth model in which proteins bind to the cell membrane in a strongly
curvature-dependent manner. Moreover, we assumed that lateral growth of
the protein-lipid interface is locally stimulated proportional to the protein
density. We have shown that such a feedback loop results in spatiotemporal
chaos. The existence of chaos was further supported by determining the
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Lyapunov spectrum of the system. By determining the fractal dimension,
we have further shown that the system exhibits extensive chaos (fractal
dimension scales linearly with the system size). These results then led us to
investigate dynamic scaling, where we found that the (deterministic) chaotic
attractor mimics noise on large scales and thereby causes universal scaling of
the interface width. We have shown that the system does not fall into the
KPZ universality class.

The roughening transition in the interface growth model with morphological
coupling was shown by performing extensive numerical simulations. However, one
could also investigate scale-invariance by performing a systematic renormalization
group analysis. Such an analysis would shedmore light on the underlying principles,
and would further reveal which of the terms in the model Eq. (IV.29) are relevant
on large-scales, thus eventually allowing to substantially simplify the model.

We assumed here that proteins locally bind to and stimulate growth of the
membrane. However, as discussed in chapters II and III, proteins usually diffuse in
the cytosolic volume and only interact with the cell boundary via attachment and
detachment processes (once they are close to the membrane). Hence, an interesting
extension of our model would be to include non-localities by explicitly accounting
for bulk-surface coupling. Since the local bulk to surface ratio is an important
control parameter (see chapters II and III), such non-local effects can lead to a
plethora of additional interesting patterns.

Our model can be also extended to higher dimensions, and may also be ap-
plied to circular or spherical growth. Furthermore, one may include additional
membrane properties, such as bending stiffness, by adding additional terms to the
normal velocity vn. The pattern-forming dynamics, as well as dynamic scaling, can
be very different in higher dimensions due to a number of reasons. In higher di-
mensions, one obtains additional degrees of freedom that might play an important
role, such as the Gaussian curvature (which is erased in one-dimensional models).
These additional features might possibly alter how correlations propagate through
the system and consequently may affect both patterns and scaling exponents.
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