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1 Introductory Summary  
 

1.1 Hematopoiesis 
 
The cells of the immune system, as well as all other cellular components of the human 

blood, are derived from hematopoietic stem cells (HSCs) (Fig.1)1-4. HSCs are capable 

of asymmetric cell division, which means they are able to self-renew and thereby 

maintain their number while also differentiating into a cascade of progenitor cell stages 

to replenish the entire blood system2, 5-7. With every differentiation step, progenitor cells 

continuously lose their multilineage potential and become lineage-restricted 

progenitors with limited capacity to divide8. HSCs produce to two distinct types of 

progenitor cells. On the one side, there is the common lymphoid progenitor, from which 

lymphoid cell lines like B cells, T cells, and Natural Killer (NK) cells evolve. On the 

other side, there is the common myeloid progenitor cell, from which myeloid cell lines 

like monocytes, erythrocytes, and mast cells evolve5, 9, 10. Differentiation arrest and 

uncontrolled proliferation lead to subsequent failure of the healthy blood-building 

system and to various blood cell diseases like leukemia. 

 

Figure 1: Schematic presentation of the hematopoietic system (Adapted Zhang et al., 20192, 

created with BioRender.com) 
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1.2 Leukemia 
 

Leukemia is the common name for a variety of malignant hematologic disorders, which 

are defined by disrupted differentiation and uncontrolled proliferation of primitive or 

atypical cells in the blood and bone marrow11, 12. While the exact cause of leukemia, 

as in many other cancers, is unknown, there is evidence that the accumulation of 

multiple driver mutations disrupts the regulation of cell differentiation and death12-15.  

The genetic lesions lead to a maturation arrest that enables leukemic cells to 

continuously proliferate, and prevent the apoptosis seen in normal blood cells16. Risk 

factors underlying these alterations can be both acquired and inherited. These include 

other hematologic disorders, genetic disorders like Down syndrome, as well as prior 

DNA-damaging therapies with topoisomerase II-inhibitors, alkylating agents, or 

radiation therapy for a previous malignant disorder12, 17. 

Depending on the rate of disease progression and the predominant type of blood cell 

affected, leukemias are classified into four major subtypes: acute myeloid leukemia 

(AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and 

chronic lymphocytic leukemia (CLL)11, 18.  

Acute leukemias are characterized by a rapid clonal expansion and accumulation of 

abnormal, immature, and non-functional blood cells which prevent the maturation of 

healthy blood cells. The fast progression of this disease requires immediate treatment. 

AML is caused by uncontrolled proliferation and impaired differentiation of myeloid 

progenitor cells19-21. With a prevalence of 4.3 newly diagnosed cases per 100.000 

people per year, AML is the most common form of acute leukemias in adults22. The 

incidence of AML increases with age leading to a median age of 68 years at 

diagnosis22. Clinical manifestations of AML include accumulation of malignant, partially 

differentiated myeloid cells within the bone marrow (BM), peripheral blood (PB), and 

infrequently in other organs17. Therefore, morphologic assessment of bone marrow 

aspirates and blood smears are used as diagnostic procedures to classify AML. The 

diagnosis of AML is made by the presence of ≥ 20% leukemic blasts in the PB or BM, 

or regardless of the blast count, in the presence of unique genetic abnormalities like 

chromosomal translocations in the bone marrow cells12, 17, 21, 23. AML can be classified 

according to different systems. The World Health Organization (WHO) classification 

categorizes AML according to morphologic, cytogenetic, and genetic properties. The 

European LeukemiaNet (ELN) risk stratification system incorporates cytogenetic 

abnormalities and genetic mutations to provide prognostic information for patients, 
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which are divided into three risk groups to predict relapse-free and overall survival24-

26.  

The standard treatment paradigm for patients with AML consists of intensive induction 

chemotherapy, also known as the “7+3” regimen17, 21, 27, 28. Induction chemotherapy 

leads to complete remission (CR) in 40-50% of patients ≥ 60 years of age and 60-80% 

of younger patients17, 29-32. However, the risk of relapse caused by the persistence of 

chemo resistant-leukemic cells remains high. The aim of post-remission consolidation 

therapies is to eliminate these cells33. Post-remission treatment consists of additional 

chemotherapy for patients with a favorable genetic risk profile or allogeneic stem cell 

transplantation for patients with a non-favorable genetic risk profile17, 28, 34, 35. The 

current five-year relative survival rate of patients with AML is 29.5%22. However, 

progress in the understanding of the pathophysiology of this disease has occurred 

rapidly over the past years, leading to the approval of various new agents for different 

indications in AML. These agents include several targeted therapies like venetoclax, 

FLT3 or IDH inhibitors, TP53 modulators, and others revolutionized the treatment of 

patients with AML23, 31, 36-39. Combinatorial treatments of previously mentioned 

therapeutic strategies are currently under investigation in several clinical trials and may 

improve treatment options even further40.  

Chronic leukemias are characterized by a slow but excessive accumulation of partially 

mature, abnormal blood cells crowding out healthy cells in the BM41. CLL is caused by 

clonal proliferation of typically CD5+ B cells and their accumulation in PB, BM, lymph 

nodes, and spleen42-45. With a prevalence of 4.9 newly diagnosed cases per 100.000 

people a year, CLL is the most frequent chronic leukemia among adults. The incidence 

of CLL increases with age leading to a median age of 65 to 70 years at diagnosis46, 47. 

As symptoms due to marrow infiltration are rare in this slowly developing hematologic 

disorder, most CLLs are detected during routine blood tests48, 49. The diagnosis of CLL 

is made by the presence of ≥ 5000 B cells per µL of PB and the immunophenotypic 

assessment of the blood cells for co-expression of CD5, CD19, CD20, and CD2342, 48, 

50. Patients with CLL undergo clinical risk stratification according to the staging systems 

developed by Rai and Binet49, 51-55, the former being more frequently used in the US 

and the latter mainly used in Europe. Furthermore, the mutational status of TP53 and 

IGHV provide prognostic information to predict the aggressiveness of disease and 

survival54, 56-60. When it comes to the treatment of CLL, newly diagnosed patients that 

present with asymptomatic and early-stage disease should be monitored until disease 
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progression. Patients with symptoms or advanced disease require treatment61, 62. 

Monotherapy with alkylating agents like Chlorambucil was the therapeutic “gold 

standard” for several decades42, 61, 63. Nowadays it is mainly used as an affordable 

option to achieve palliation in unfit or elderly patients61. Current first-line treatment 

regimens consist of the monoclonal therapeutic antibodies rituximab or obinutuzumab 

as part of either chemotherapy or targeted therapy with ibrutinib or venetoclax61, 64-67. 

The current five-year relative survival rate of patients diagnosed with CLL is 87.2%46. 

 

1.3 Targeted Immunotherapy 
 

Treatment of leukemia depends on several factors, like the patient’s age and fitness, 

leukemia subtype including genetics, clinical presentation, and progression of the 

disease. Unfortunately, with current treatment regimens, many patients still relapse 

due to the persistence of chemo-refractory leukemia-initiating cells. Therefore, the 

need for novel therapeutic approaches remains high. In 1891, William B. Coley first 

came up with the idea to deploy the patient’s immune system to target tumor cells 

dates. He observed that the injection of a combination of inactivated Streptococcus 

pyogenes and Serratia marcescens, also referred to as Coley’s toxin, can stimulate an 

immune response against tumors68, 69. However, due to the tumor cells’ capability to 

escape recognition by the immune system, immunotherapies achieved only limited 

clinical efficacy, wherefore surgery, chemo- and radiotherapy were adopted as 

standard treatment regimens over decades70, 71. As the understanding of the key 

mediators of the immune system evolved also novel therapeutic strategies for the 

treatment of leukemia evolved. Immunotherapeutic strategies to treat leukemia include 

various approaches, ranging from strategies to stimulate effector immune cells to boost 

the patient’s own immune system to strategies counteracting immunosuppressive 

mechanisms. These strategies encompass immunomodulators and adoptive cell 

therapy (ACT)72.  

 

1.3.1 Immunomodulation (Kinase inhibition) 
 

Tyrosine kinases (TKs) are a family of molecules transferring phosphate groups from 

ATP to tyrosine residues in downstream proteins leading to the activation of 

intracellular signaling cascades73, 74. TKs regulate a variety of intracellular functions 

like cell growth, proliferation, differentiation, and apoptosis73-76. Mutation, deregulation, 
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or overexpression of these TKs plays a major role in oncogenesis and has been 

reported in several hematologic malignancies73, 74, 77-79.  

Therefore, targeting of TKs involved in these signaling cascades has emerged as a 

promising treatment strategy. Tyrosine kinase inhibitors (TKI) are targeted oral 

medications used to disrupt signal transduction pathways of kinase proteins 

contributing to oncogenesis and tumor growth78-80.  

The first FDA-approved TKI for oncology, imatinib, is used to treat Philadelphia-

chromosome-positive CML80, 81. Since the approval, the interest in TKIs as a cancer 

treatment has grown. As of now, over 50 TKIs have been FDA-approved, several of 

them as a medication for hematologic diseases82, 83. All TKIs basically share the same 

mode of action. They specifically inhibit tyrosine phosphorylation of various oncogenic 

proteins by competitive blockade of the kinases’  ATP-binding site, thereby regulating 

aberrant downstream signaling cascades involved in cancer proliferation, invasion, 

and angiogenesis84.  

Overexpression or constitutive activation of multiple TKs and downstream effectors are 

nowadays known to be key players in the pathogenesis of AML38, 85, 86. A promising 

target for TK inhibition in AML is the FMS-like tyrosine kinase 3 (FLT3) gene87. About 

30% of all AML patients present with mutations in this gene. They can be distinguished 

into FLT3- tyrosine kinase point mutations (FLT3-TKD) or FLT3 internal tandem 

duplication mutations (FLT3-ITD)88-90. Both mutations cause uncontrolled signaling 

through different pathways and thereby render the survival of the malignant cells 

dependent on FLT3-signaling pathways91-95. Hence, blocking FLT3 kinase activity is a 

promising treatment strategy for AML.  

Overexpression or constitutive activation of B-cell receptors (BCRs), several TKs, and 

downstream mediators also play a major role in the pathogenesis of B-cell 

malignancies like CLL (Fig. 2)64, 96-99. Deregulation of these pathways leads to 

apoptosis resistance and thereby to prolonged survival of malignant cells. Idelalisib is 

an immensely specific small-molecule inhibitor of the phosphoinositide-3 kinase 

catalytic subunit delta (PI3K∂). PI3K∂ activation leads to phosphorylation of the 

serine/threonine kinases AKT and its downstream effector mTOR and thereby is an 

important regulator of malignant B-cell proliferation and enhanced survival100-103. 

Idelalisib competitively blocks the ATP-binding site of the catalytic domain of PI3K. As 

a result, downstream signaling cascades including BCR and C-X-C chemokine 

receptors type 4 and 5 signaling are abrogated. This in turn leads to reduced trafficking, 
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homing capacity, and apoptosis of malignant cells104, 105. In 2014, Idelalisib, in 

combination with Rituximab, received approval for the first-line treatment of CLL 

patients with the 17p deletion or TP53 mutation and in the relapsed/refractory (r/r) CLL 

setting105-107. Furthermore, Idelalisib was approved for patients with r/r follicular B-cell 

non-Hodgkin lymphoma or r/r small lymphocytic lymphoma with at least two preceding 

lines of therapy107, 108.  

 

 

Figure 2: Simplified illustration of signaling networks downstream of CD19 and BCR. (Adapted from 

Skanland et al., 2020109, created with BioRender.com) 

 

1.3.2 T-cell based immunotherapy 
 

1.3.2.1 Allogeneic stem cell transplantation 
 
The most potent T-cell based treatment strategy for malignant diseases like chronic 

and acute leukemias is allogeneic stem cell transplantation (allo-SCT). To date, it is 

the best anti-leukemic option for patients with AML with intermediate or high-risk 

genetic markers and the only curative treatment option for (r/r) AML patients33, 110, 111. 

This treatment regimen consists of intensive conditioning chemotherapy in 

combination with or without whole-body irradiation112, 113. The goal of this 

preconditioning therapy is to reduce the leukemic burden and to weaken the patient’s 

own immune system to allow engraftment of donor hematopoietic cells. The 
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transplanted hematopoietic stem cells replace the stem cells in the bone marrow and 

reconstitute normal hematopoiesis112. Furthermore, donor alloreactive T cells eliminate 

residual leukemic cells in a process called graft-versus-leukemia (GvL) effect34, 114-116. 

However, donor alloimmune responses can also affect healthy tissue. This is known 

as graft-versus-host-disease (GvHD). Balancing the GvL against the GvHD risk, 

without reducing the efficiency of the GvL effect and possible treatment failures has 

been a major hurdle of this strategy117, 118. Furthermore, age, comorbidities, toxicity, 

and availability of a suitable donor translate into a minority of AML patients that 

undergo transplantation26, 119. 

 

Another strategy, which reduces the risks of alloreactive side effects is to use the 

patients’ own T cells to fight cancer cells (Fig. 3). 

 

 

Figure 3: Illustration of different ACT approaches for cancer treatment, including tumor-infiltrating 

lymphocytes or genetically modified TCR- or CAR-T cells. (Adapted from Zah et al, 2017120, created 

with BioRender.com) 

 

1.3.2.2 Adoptive T-cell transfer  
 

Adoptive T-cell transfer involves the isolation, expansion, and re-infusion of autologous 

or allogeneic T cells121. Therefore, sufficient proliferation, persistence, and survival 

must be achieved in order to ensure efficient anti-tumoral effector functions122, 123. 

Three different modalities of ACT have developed from the idea to utilize the patient’s 

own immune system to fight cancer cells. These modalities differ in the source of the 

T cells, as well as the need to genetically engineer the harvested T cells122. For the 
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first approach, T cells are directly isolated out of the tumor tissue. This approach is 

also known as tumor-infiltrating lymphocyte (TIL) therapy124. For TIL therapy, the 

harvested T cells need to be selected for specificity, expanded, activated, and 

ultimately reinfused into the patient123. The advantage of this approach is that it is 

independent of genetic engineering. However, there are several prerequisites for 

successful TIL therapy, like the existence of a tumor-reactive T-cell population in the 

tumor as well as accessibility for biopsy to be able to isolate a sufficient amount of 

these T cells125. To overcome these limitations, T-cell receptor (TCR) engineered T 

cells and chimeric antigen receptor (CAR) T cells were developed126. Both of these 

approaches rely on T-cell isolation from the PB by apheresis, followed by genetic 

engineering to render T cells specific for a suitable tumor-associated antigen (TAA)124.  

The major difference between these approaches is restriction by TCR-major 

histocompatibility complex (MHC) interaction127. TCR therapy utilizes the natural 

mechanism of T-cell activation and therefore relies on the recognition of tumor-specific 

epitopes presented by the MHC complexes on the tumor cell surface124. CAR T cells 

in contrast can target virtually any surface molecule presented by a tumor cell and are 

MHC-independent127. This is achieved by the architecture of the CAR. The composition 

of the CAR has evolved over the past couple of years (Fig. 4)128-130. First-generation 

CARs consisted of a target binding single-chain variable fragment (scFv) linked to a 

cytoplasmic signaling domain containing the CD3  chain of the TCR131, 132. These two 

segments are chained together by a spacer and the transmembrane domain. However, 

these CAR T cells were not capable of mounting persistent anti-tumor responses due 

to their limited signaling capability133, 134. To improve activation, persistence, and 

successful expansion of the genetically modified cells, a costimulatory signaling 

domain, mostly consisting of CD28 or 4-1BB, was added to the original structure135, 

136. These second-generation constructs represent the foundation for the currently 

clinically approved CAR T-cell therapies. However, there are various combinations in 

pre-clinical clinical settings, for example, third-generation CAR T cells contain two 

costimulatory domains, and fourth-generation CAR T cells, also referred to as 

TRUCKs, even include transgenes for cytokine secretion or additional costimulatory 

ligands137, 138.   
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Figure 4: A) The general structure, depicting the major components of CARs. B) Overview of 

different CAR generations. CM = Costimulatory Molecule (Adapted from Stock et al, 2019129, 

created with BioRender.com) 

 

1.4 Aim 
 
It is well known that T cells play a key role in the immune system and the fight against 

cancer. Therefore, T-cell-based immunotherapies became a major focus of cancer 

research over the past years and have revolutionized the field of oncology. 

T-cell function impacts the efficacy of these promising treatment approaches. Within 

these projects, we aimed to develop strategies to improve T-cell-based immunotherapy 

in leukemia. We therefore investigated cellular immune modulation through small 

inhibitors and studied a modular CAR T platform in the context of leukemia. In the first 

part of this thesis, we wanted to understand how interfering with one of the most 

commonly activated signaling cascades in CLL will modulate the phenotype and 

function of healthy immune cells, especially T and NK cells. In the second part, we 

tried to improve CAR T cell therapy for patients with AML. Therefore, an adjustable 

and controllable adoptive T-cell therapy platform, which provides the benefit of a higher 

safety profile and eventually allows a personalized choice of the target antigen, was 

developed and extensively tested.  
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Perspectively, we believe that immunotherapy will only be successful by combinatorial 

approaches and that the combination of T-cell modulation with synthetic immune 

modulation will be needed to successfully improve the clinical outcome of patients with 

leukemia. The gained insights might serve as a rationale for further combinatorial 

strategies for patients with leukemia. 
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1.5 Summary of publications 
 

1.5.1 Publication I: The PI3K∂-Selective Inhibitor Idelalisib Induces T- and NK-
Cell Dysfunction Independently of B-Cell Malignancy-Associated 
Immunosuppression139 

 
In this publication, we examined how idelalisib treatment might contribute to the 

elevated rate of opportunistic infections seen in CLL patients. We therefore looked into 

the impact of idelalisib on different cell types in both healthy donors (HD) and patients 

with CLL. Analysis of CFSE dilution showed no impact of idelalisib on the proliferative 

capacity of T cells. Subset composition of T cells was also not affected. Expression 

analysis revealed that coculture with idelalisib led to a significant downregulation of 

various inhibitory checkpoint molecules on the surface of T cells and Tregs. To assess 

whether these downregulations are indicative of impaired function, T-cell mediated 

tumor cell lysis and cytokine secretion were evaluated in cocultures with idelalisib. 

Cultivation of T cells with idelalisib led to a significantly reduced specific lysis of tumor 

targets. This was accompanied by decreased secretion levels of perforin and 

granzyme B, as well as IL-10, TNF, and IFN.  

To see if other types of immune cells are impacted as well, we analyzed the effect of 

PI3K∂ blockade on NK cells. Coculture with idelalisib reduced the proliferative capacity 

of NK cells, especially affecting the cytotoxic NK-cell compartment. Moreover, 

blockade of PI3K∂ impaired two different apoptotic pathways used by NK cells. 

Perforin/granzyme B-mediated, as well as Fas-FasL-mediated tumor cell lysis were 

significantly reduced upon coculture with idelalisib.  

Further studies on the effect of idelalisib on other types of innate immune cells showed 

that PI3K∂ blockade does not alter the phagocytic capacity of monocytes. Also, 

Seahorse analysis of the oxidative burst upon activation of neutrophils revealed no 

effect of PI3K∂ blockade.  

After in vitro evaluation of idelalisib, ex vivo studies were performed. T cells harvested 

from 15 primary CLL samples were analyzed in proliferation and cytotoxicity 

experiments. Coculture with idelalisib had no effect on the proliferation of these T cells. 

However, idelalisib significantly impaired the cytotoxic capacity of these T cells towards 

tumor cells. Furthermore, the degranulation of granzyme B, as well as the expression 

level of PD-1, were significantly reduced upon culture with idelalisib. This was 

accompanied by a significant decrease in the secretion of IL-10, IL-4, IL-6, and IFN. 
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I contributed to this manuscript by collecting data for patient characterization and 

performing the experiments which led to the key findings of this publication. More 

precisely, I cultivated all cell lines that were used and collected the healthy donor 

PBMCs used for the experiments. Furthermore, I conducted the in vitro proliferation 

assays, the cytometric bead arrays, T-cell cytotoxicity assays, NK-cell cytotoxicity 

assays, phagocytosis assays, as well as the neutrophil activation assays. Also, I 

performed the experiments on T-cell function of cells derived from CLL patients. In 

addition, I interpreted the data, designed the figures, and wrote the manuscript. 

(Figures 1,2,3,4,5 and 6; Supplementary Figures S1 and S2). 

 
 

1.5.2 Publication II: “A modular and controllable T cell therapy platform for 
acute myeloid leukemia”140 

 
In this study, published by Benmebarek et al in Leukemia 2021, a flexible and 

controllable platform for adoptive T-cell therapy of AML evolved. This approach 

combines T cells, transduced to express synthetic agonistic receptors (SAR), with 

tandem scFv (taFv) adapter molecules. The SAR contains an inert extracellular domain 

(EGFRvIII) as an antigen-binding domain linked to the signaling domains CD28 and 

CD3 inside the cell. The SAR ectodomain is absent on naturally existing T cells and 

therefore requires a specifically engineered adapter molecule for activation. 

Furthermore, the lack of natural ligands confers reduced toxicity and, if needed, SAR 

T cell function can be abrogated by the administration of FDA-approved drugs like 

cetuximab. To further improve safety, previously used bispecific antibodies were 

replaced with taFv constructs with a shorter half-life. These confer two specificities, 

one targeting AML and the other one targeting EGFRvIII on the SAR-transduced T cell. 

Two tumor target antigens were tested in this study, namely CD33 and CD123. 

In a first step, binding studies to assess the dissociation dynamics of both constructs 

were performed. Analysis was performed via flow cytometry. Both constructs were 

designed with the same backbone with a low affinity for T cells and a high affinity for 

the tumor target antigen. The in vitro experiments showed that only SAR T cells that 

were in contact with both, the tumor target and the adapter taFv construct were 

activated and produced IFN. Furthermore, an increase in T-cell proliferation, as well 

as upregulation of PD-1 was measured in these SAR T-cell cultures. In contrast, 
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control T cells cultured with target cells and taFv constructs did not show any signs of 

activation.  

Next, we tested SAR T- cell function in in vitro cytotoxicity assays. SAR T cells were 

incubated with different leukemic cell lines and 1µg/mL of adapter taFv molecule. Only 

SAR T cells, but not control T cells mediated efficient tumor-cell lysis. To gain more 

insight into the way SAR T cells function, we evaluated and characterized synapse 

formation via fluorescence microscopy. Significantly more conjugates were formed in 

the SAR T-cell cultures compared to control T-cell cultures. Strong F-actin, CD11a-

LF1, and Granzyme B accumulation, indicated functionality of the immune synapse. 

We could also show the efficiency and functionality of the safety switch used in this 

platform. In absence of taFv redosing, the molecule was cleared from the circulation. 

In contrast, repeated redosing maintained SAR activity. An advantage of the short half-

life of the adapter molecules is the modularity and flexibility of this platform. We again 

demonstrated the modularity of this system as the same T cells could be redirected 

towards tumor cells by sequentially targeting multiple AML-associated antigens. 

In the next step, we wanted to validate SAR T-cell function in ex vivo experiments. We 

performed long-term coculture assays with HD T cells transduced to express the SAR 

and primary AML blasts. SAR T cells in combination with the CD33-taFv molecule 

mediated specific AML cell lysis over time. We could further validate our findings in an 

autologous setting. Patient-derived SAR T cells cocultured with both taFv adapter 

molecules specifically targeted their own AML blasts. This was accompanied by 

increased expression levels of PD-1, TIM-3, and CD69 on the SAR T cells. In addition, 

the SAR-taFv combination also demonstrated cytolytic activity towards CD34+CD38- 

leukemic stem cells.  

As a last step, the in vitro and ex vivo findings were validated in in vivo mouse studies. 

Two different NSG mouse models were established. The models mainly differed in the 

AML cell line that was engrafted into the mice. The mice in both models were treated 

with the genetically engineered T cells in combination with the CD33-taFv molecule. 

This treatment led to major responses. Complete remission was achieved in two out 

of seven mice in the MV4-11 model and one out of five mice in the THP-1 model. 

Overall survival significantly improved in both models when compared to the group that 

received SAR T cells plus a CD19-taFv control construct. The modularity of this 

platform was also tested and validated in vivo.  
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I contributed to this manuscript by collecting information for patient characterization, 

including cytogenetic and molecular data. Furthermore, I was involved in the 

performance of long-term culture assays with patient-derived AML blasts. I set up 

allogeneic cocultures, performed flow cytometric analysis, and helped with the 

interpretation of the data generated from these experiments. Moreover, I was involved 

in the autologous cocultures by isolation the T cells for the generation of SAR-T cells 

and setting up cocultures of transduced cells and patient-derived AML blasts. I also 

performed the flow cytometric analysis of these experiments, harvested supernatant 

for ELISA quantification, and helped with the interpretation of the data generated from 

these experiments. (Figure 4 A, B, C, and D; Supplementary Fig. 3E). 
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