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1 Introductory Summary

1.1 Hematopoiesis

The cells of the immune system, as well as all other cellular components of the human
blood, are derived from hematopoietic stem cells (HSCs) (Fig.1)*. HSCs are capable
of asymmetric cell division, which means they are able to self-renew and thereby
maintain their number while also differentiating into a cascade of progenitor cell stages
to replenish the entire blood system? >7. With every differentiation step, progenitor cells
continuously lose their multilineage potential and become lineage-restricted
progenitors with limited capacity to divide®. HSCs produce to two distinct types of
progenitor cells. On the one side, there is the common lymphoid progenitor, from which
lymphoid cell lines like B cells, T cells, and Natural Killer (NK) cells evolve. On the
other side, there is the common myeloid progenitor cell, from which myeloid cell lines
like monocytes, erythrocytes, and mast cells evolve® ° 10, Differentiation arrest and
uncontrolled proliferation lead to subsequent failure of the healthy blood-building
system and to various blood cell diseases like leukemia.
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Figure 1. Schematic presentation of the hematopoietic system (Adapted Zhang et al., 20192,
created with BioRender.com)




1.2 Leukemia

Leukemia is the common name for a variety of malignant hematologic disorders, which
are defined by disrupted differentiation and uncontrolled proliferation of primitive or
atypical cells in the blood and bone marrow!! 12, While the exact cause of leukemia,
as in many other cancers, is unknown, there is evidence that the accumulation of
multiple driver mutations disrupts the regulation of cell differentiation and death!215,
The genetic lesions lead to a maturation arrest that enables leukemic cells to
continuously proliferate, and prevent the apoptosis seen in normal blood cells®. Risk
factors underlying these alterations can be both acquired and inherited. These include
other hematologic disorders, genetic disorders like Down syndrome, as well as prior
DNA-damaging therapies with topoisomerase ll-inhibitors, alkylating agents, or
radiation therapy for a previous malignant disorder? 7.

Depending on the rate of disease progression and the predominant type of blood cell
affected, leukemias are classified into four major subtypes: acute myeloid leukemia
(AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and
chronic lymphocytic leukemia (CLL)* 18,

Acute leukemias are characterized by a rapid clonal expansion and accumulation of
abnormal, immature, and non-functional blood cells which prevent the maturation of
healthy blood cells. The fast progression of this disease requires immediate treatment.
AML is caused by uncontrolled proliferation and impaired differentiation of myeloid
progenitor cells®?1. With a prevalence of 4.3 newly diagnosed cases per 100.000
people per year, AML is the most common form of acute leukemias in adults??. The
incidence of AML increases with age leading to a median age of 68 years at
diagnosis??. Clinical manifestations of AML include accumulation of malignant, partially
differentiated myeloid cells within the bone marrow (BM), peripheral blood (PB), and
infrequently in other organs!’. Therefore, morphologic assessment of bone marrow
aspirates and blood smears are used as diagnostic procedures to classify AML. The
diagnosis of AML is made by the presence of = 20% leukemic blasts in the PB or BM,
or regardless of the blast count, in the presence of unique genetic abnormalities like
chromosomal translocations in the bone marrow cells'? 7. 21,23, AML can be classified
according to different systems. The World Health Organization (WHO) classification
categorizes AML according to morphologic, cytogenetic, and genetic properties. The
European LeukemiaNet (ELN) risk stratification system incorporates cytogenetic
abnormalities and genetic mutations to provide prognostic information for patients,
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which are divided into three risk groups to predict relapse-free and overall survival®*
26_

The standard treatment paradigm for patients with AML consists of intensive induction
chemotherapy, also known as the “7+3” regimen'’: 21. 27. 28 Induction chemotherapy
leads to complete remission (CR) in 40-50% of patients = 60 years of age and 60-80%
of younger patients'”> 2232, However, the risk of relapse caused by the persistence of
chemo resistant-leukemic cells remains high. The aim of post-remission consolidation
therapies is to eliminate these cells®3. Post-remission treatment consists of additional
chemotherapy for patients with a favorable genetic risk profile or allogeneic stem cell
transplantation for patients with a non-favorable genetic risk profilel”: 28 34 35 The
current five-year relative survival rate of patients with AML is 29.5%2%2. However,
progress in the understanding of the pathophysiology of this disease has occurred
rapidly over the past years, leading to the approval of various new agents for different
indications in AML. These agents include several targeted therapies like venetoclax,
FLT3 or IDH inhibitors, TP53 modulators, and others revolutionized the treatment of
patients with AML?23 31 36-3%  Combinatorial treatments of previously mentioned
therapeutic strategies are currently under investigation in several clinical trials and may
improve treatment options even further.

Chronic leukemias are characterized by a slow but excessive accumulation of partially
mature, abnormal blood cells crowding out healthy cells in the BM#L. CLL is caused by
clonal proliferation of typically CD5+ B cells and their accumulation in PB, BM, lymph
nodes, and spleen*?45, With a prevalence of 4.9 newly diagnosed cases per 100.000
people a year, CLL is the most frequent chronic leukemia among adults. The incidence
of CLL increases with age leading to a median age of 65 to 70 years at diagnosis*® 4’
As symptoms due to marrow infiltration are rare in this slowly developing hematologic
disorder, most CLLs are detected during routine blood tests*® 4°. The diagnosis of CLL
is made by the presence of = 5000 B cells per uL of PB and the immunophenotypic
assessment of the blood cells for co-expression of CD5, CD19, CD20, and CD234% 48
50, patients with CLL undergo clinical risk stratification according to the staging systems
developed by Rai and Binet*® 5155 the former being more frequently used in the US
and the latter mainly used in Europe. Furthermore, the mutational status of TP53 and
IGHV provide prognostic information to predict the aggressiveness of disease and
survival®* 56-60_ When it comes to the treatment of CLL, newly diagnosed patients that

present with asymptomatic and early-stage disease should be monitored until disease



progression. Patients with symptoms or advanced disease require treatment®l 62,
Monotherapy with alkylating agents like Chlorambucil was the therapeutic “gold
standard” for several decades*? 1. 83, Nowadays it is mainly used as an affordable
option to achieve palliation in unfit or elderly patients®l. Current first-line treatment
regimens consist of the monoclonal therapeutic antibodies rituximab or obinutuzumab
as part of either chemotherapy or targeted therapy with ibrutinib or venetoclax®®: 6467,
The current five-year relative survival rate of patients diagnosed with CLL is 87.2%4.

1.3 Targeted Immunotherapy

Treatment of leukemia depends on several factors, like the patient’s age and fitness,
leukemia subtype including genetics, clinical presentation, and progression of the
disease. Unfortunately, with current treatment regimens, many patients still relapse
due to the persistence of chemo-refractory leukemia-initiating cells. Therefore, the
need for novel therapeutic approaches remains high. In 1891, William B. Coley first
came up with the idea to deploy the patient's immune system to target tumor cells
dates. He observed that the injection of a combination of inactivated Streptococcus
pyogenes and Serratia marcescens, also referred to as Coley’s toxin, can stimulate an
immune response against tumors®® 62, However, due to the tumor cells’ capability to
escape recognition by the immune system, immunotherapies achieved only limited
clinical efficacy, wherefore surgery, chemo- and radiotherapy were adopted as
standard treatment regimens over decades’® 7'. As the understanding of the key
mediators of the immune system evolved also novel therapeutic strategies for the
treatment of leukemia evolved. Immunotherapeutic strategies to treat leukemia include
various approaches, ranging from strategies to stimulate effector immune cells to boost
the patient’'s own immune system to strategies counteracting immunosuppressive
mechanisms. These strategies encompass immunomodulators and adoptive cell
therapy (ACT)"2.

1.3.1 Immunomodulation (Kinase inhibition)

Tyrosine kinases (TKs) are a family of molecules transferring phosphate groups from
ATP to tyrosine residues in downstream proteins leading to the activation of
intracellular signaling cascades’® 74. TKs regulate a variety of intracellular functions
like cell growth, proliferation, differentiation, and apoptosis’37¢. Mutation, deregulation,
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or overexpression of these TKs plays a major role in oncogenesis and has been
reported in several hematologic malignancies’ 74 7779,

Therefore, targeting of TKs involved in these signaling cascades has emerged as a
promising treatment strategy. Tyrosine kinase inhibitors (TKI) are targeted oral
medications used to disrupt signal transduction pathways of kinase proteins
contributing to oncogenesis and tumor growth?”8-80,

The first FDA-approved TKI for oncology, imatinib, is used to treat Philadelphia-
chromosome-positive CML8 81 Since the approval, the interest in TKls as a cancer
treatment has grown. As of now, over 50 TKIs have been FDA-approved, several of
them as a medication for hematologic diseases®? 8. All TKIs basically share the same
mode of action. They specifically inhibit tyrosine phosphorylation of various oncogenic
proteins by competitive blockade of the kinases’ ATP-binding site, thereby regulating
aberrant downstream signaling cascades involved in cancer proliferation, invasion,
and angiogenesis®*.

Overexpression or constitutive activation of multiple TKs and downstream effectors are
nowadays known to be key players in the pathogenesis of AML38 8 8 A promising
target for TK inhibition in AML is the FMS-like tyrosine kinase 3 (FLT3) gene®’. About
30% of all AML patients present with mutations in this gene. They can be distinguished
into FLT3- tyrosine kinase point mutations (FLT3-TKD) or FLT3 internal tandem
duplication mutations (FLT3-ITD)88°, Both mutations cause uncontrolled signaling
through different pathways and thereby render the survival of the malignant cells
dependent on FLT3-signaling pathways®%>. Hence, blocking FLT3 kinase activity is a
promising treatment strategy for AML.

Overexpression or constitutive activation of B-cell receptors (BCRs), several TKs, and
downstream mediators also play a major role in the pathogenesis of B-cell
malignancies like CLL (Fig. 2)% 99  Deregulation of these pathways leads to
apoptosis resistance and thereby to prolonged survival of malignant cells. Idelalisib is
an immensely specific small-molecule inhibitor of the phosphoinositide-3 kinase
catalytic subunit delta (PI3Kd). PI3Kd activation leads to phosphorylation of the
serine/threonine kinases AKT and its downstream effector mTOR and thereby is an
important regulator of malignant B-cell proliferation and enhanced survivall0-103,
Idelalisib competitively blocks the ATP-binding site of the catalytic domain of PI3K. As
a result, downstream signaling cascades including BCR and C-X-C chemokine

receptors type 4 and 5 signaling are abrogated. This in turn leads to reduced trafficking,



homing capacity, and apoptosis of malignant cells'®* 105 |n 2014, Idelalisib, in
combination with Rituximab, received approval for the first-line treatment of CLL
patients with the 17p deletion or TP53 mutation and in the relapsed/refractory (r/r) CLL
setting'®>-197, Furthermore, Idelalisib was approved for patients with r/r follicular B-cell
non-Hodgkin lymphoma or r/r small lymphocytic lymphoma with at least two preceding

lines of therapy©7: 108,
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Figure 2: Simplified illustration of signaling networks downstream of CD19 and BCR. (Adapted from

Skanland et al., 20201, created with BioRender.com)

1.3.2 T-cell based immunotherapy

1.3.2.1 Allogeneic stem cell transplantation

The most potent T-cell based treatment strategy for malignant diseases like chronic
and acute leukemias is allogeneic stem cell transplantation (allo-SCT). To date, it is
the best anti-leukemic option for patients with AML with intermediate or high-risk
genetic markers and the only curative treatment option for (r/r) AML patients33 110, 111,
This treatment regimen consists of intensive conditioning chemotherapy in
combination with or without whole-body irradiation''? 13, The goal of this
preconditioning therapy is to reduce the leukemic burden and to weaken the patient’s

own immune system to allow engraftment of donor hematopoietic cells. The
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transplanted hematopoietic stem cells replace the stem cells in the bone marrow and
reconstitute normal hematopoiesis'*?. Furthermore, donor alloreactive T cells eliminate
residual leukemic cells in a process called graft-versus-leukemia (GvL) effect34 114-116,
However, donor alloimmune responses can also affect healthy tissue. This is known
as graft-versus-host-disease (GvHD). Balancing the GvL against the GvHD risk,
without reducing the efficiency of the GvL effect and possible treatment failures has
been a major hurdle of this strategy!!’- 18, Furthermore, age, comorbidities, toxicity,
and availability of a suitable donor translate into a minority of AML patients that

undergo transplantation?®: 119,

Another strategy, which reduces the risks of alloreactive side effects is to use the

patients’ own T cells to fight cancer cells (Fig. 3).
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Figure 3: lllustration of different ACT approaches for cancer treatment, including tumor-infiltrating
lymphocytes or genetically modified TCR- or CAR-T cells. (Adapted from Zah et al, 2017*?°, created
with BioRender.com)

1.3.2.2 Adoptive T-cell transfer

Adoptive T-cell transfer involves the isolation, expansion, and re-infusion of autologous
or allogeneic T cells?t, Therefore, sufficient proliferation, persistence, and survival
must be achieved in order to ensure efficient anti-tumoral effector functions'?2 123,
Three different modalities of ACT have developed from the idea to utilize the patient’s
own immune system to fight cancer cells. These modalities differ in the source of the

T cells, as well as the need to genetically engineer the harvested T cells'??. For the



first approach, T cells are directly isolated out of the tumor tissue. This approach is
also known as tumor-infiltrating lymphocyte (TIL) therapy'?*. For TIL therapy, the
harvested T cells need to be selected for specificity, expanded, activated, and
ultimately reinfused into the patient!?3. The advantage of this approach is that it is
independent of genetic engineering. However, there are several prerequisites for
successful TIL therapy, like the existence of a tumor-reactive T-cell population in the
tumor as well as accessibility for biopsy to be able to isolate a sufficient amount of
these T cells'?®. To overcome these limitations, T-cell receptor (TCR) engineered T
cells and chimeric antigen receptor (CAR) T cells were developed?®. Both of these
approaches rely on T-cell isolation from the PB by apheresis, followed by genetic
engineering to render T cells specific for a suitable tumor-associated antigen (TAA)?4.
The major difference between these approaches is restriction by TCR-major
histocompatibility complex (MHC) interaction?’. TCR therapy utilizes the natural
mechanism of T-cell activation and therefore relies on the recognition of tumor-specific
epitopes presented by the MHC complexes on the tumor cell surface'?*. CAR T cells
in contrast can target virtually any surface molecule presented by a tumor cell and are
MHC-independent!?’. This is achieved by the architecture of the CAR. The composition
of the CAR has evolved over the past couple of years (Fig. 4)*2-130, First-generation
CARs consisted of a target binding single-chain variable fragment (scFv) linked to a
cytoplasmic signaling domain containing the CD3(] chain of the TCR*3% 132, These two
segments are chained together by a spacer and the transmembrane domain. However,
these CAR T cells were not capable of mounting persistent anti-tumor responses due
to their limited signaling capability!33 134, To improve activation, persistence, and
successful expansion of the genetically modified cells, a costimulatory signaling
domain, mostly consisting of CD28 or 4-1BB, was added to the original structure!3>
136 These second-generation constructs represent the foundation for the currently
clinically approved CAR T-cell therapies. However, there are various combinations in
pre-clinical clinical settings, for example, third-generation CAR T cells contain two
costimulatory domains, and fourth-generation CAR T cells, also referred to as
TRUCKS, even include transgenes for cytokine secretion or additional costimulatory

ligands'37: 138,
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Figure 4. A) The general structure, depicting the major components of CARs. B) Overview of
different CAR generations. CM = Costimulatory Molecule (Adapted from Stock et al, 2019%2°,
created with BioRender.com)

1.4 Aim

It is well known that T cells play a key role in the immune system and the fight against
cancer. Therefore, T-cell-based immunotherapies became a major focus of cancer
research over the past years and have revolutionized the field of oncology.

T-cell function impacts the efficacy of these promising treatment approaches. Within
these projects, we aimed to develop strategies to improve T-cell-based immunotherapy
in leukemia. We therefore investigated cellular immune modulation through small
inhibitors and studied a modular CAR T platform in the context of leukemia. In the first
part of this thesis, we wanted to understand how interfering with one of the most
commonly activated signaling cascades in CLL will modulate the phenotype and
function of healthy immune cells, especially T and NK cells. In the second part, we
tried to improve CAR T cell therapy for patients with AML. Therefore, an adjustable
and controllable adoptive T-cell therapy platform, which provides the benefit of a higher
safety profile and eventually allows a personalized choice of the target antigen, was

developed and extensively tested.



Perspectively, we believe that immunotherapy will only be successful by combinatorial
approaches and that the combination of T-cell modulation with synthetic immune
modulation will be needed to successfully improve the clinical outcome of patients with
leukemia. The gained insights might serve as a rationale for further combinatorial

strategies for patients with leukemia.
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1.5 Summary of publications

1.5.1 Publication I: The PI3Ko-Selective Inhibitor Idelalisib Induces T- and NK-
Cell Dysfunction Independently of B-Cell Malignhancy-Associated
Immunosuppressiont3?

In this publication, we examined how idelalisib treatment might contribute to the

elevated rate of opportunistic infections seen in CLL patients. We therefore looked into

the impact of idelalisib on different cell types in both healthy donors (HD) and patients
with CLL. Analysis of CFSE dilution showed no impact of idelalisib on the proliferative
capacity of T cells. Subset composition of T cells was also not affected. Expression
analysis revealed that coculture with idelalisib led to a significant downregulation of
various inhibitory checkpoint molecules on the surface of T cells and Tregs. To assess
whether these downregulations are indicative of impaired function, T-cell mediated
tumor cell lysis and cytokine secretion were evaluated in cocultures with idelalisib.

Cultivation of T cells with idelalisib led to a significantly reduced specific lysis of tumor

targets. This was accompanied by decreased secretion levels of perforin and

granzyme B, as well as IL-10, TNF, and IFNy.

To see if other types of immune cells are impacted as well, we analyzed the effect of

P13Ka blockade on NK cells. Coculture with idelalisib reduced the proliferative capacity

of NK cells, especially affecting the cytotoxic NK-cell compartment. Moreover,

blockade of PI3Kg impaired two different apoptotic pathways used by NK cells.

Perforin/granzyme B-mediated, as well as Fas-FasL-mediated tumor cell lysis were

significantly reduced upon coculture with idelalisib.

Further studies on the effect of idelalisib on other types of innate immune cells showed

that PI3Kd blockade does not alter the phagocytic capacity of monocytes. Also,

Seahorse analysis of the oxidative burst upon activation of neutrophils revealed no

effect of PI3Kd blockade.

After in vitro evaluation of idelalisib, ex vivo studies were performed. T cells harvested

from 15 primary CLL samples were analyzed in proliferation and cytotoxicity

experiments. Coculture with idelalisib had no effect on the proliferation of these T cells.

However, idelalisib significantly impaired the cytotoxic capacity of these T cells towards

tumor cells. Furthermore, the degranulation of granzyme B, as well as the expression

level of PD-1, were significantly reduced upon culture with idelalisib. This was

accompanied by a significant decrease in the secretion of IL-10, IL-4, IL-6, and IFNy.
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| contributed to this manuscript by collecting data for patient characterization and
performing the experiments which led to the key findings of this publication. More
precisely, | cultivated all cell lines that were used and collected the healthy donor
PBMCs used for the experiments. Furthermore, | conducted the in vitro proliferation
assays, the cytometric bead arrays, T-cell cytotoxicity assays, NK-cell cytotoxicity
assays, phagocytosis assays, as well as the neutrophil activation assays. Also, |
performed the experiments on T-cell function of cells derived from CLL patients. In
addition, | interpreted the data, designed the figures, and wrote the manuscript.
(Figures 1,2,3,4,5 and 6; Supplementary Figures S1 and S2).

1.5.2 Publication II: “A modular and controllable T cell therapy platform for
acute myeloid leukemia”14°

In this study, published by Benmebarek et al in Leukemia 2021, a flexible and
controllable platform for adoptive T-cell therapy of AML evolved. This approach
combines T cells, transduced to express synthetic agonistic receptors (SAR), with
tandem scFv (taFv) adapter molecules. The SAR contains an inert extracellular domain
(EGFRuvVIII) as an antigen-binding domain linked to the signaling domains CD28 and
CD3( inside the cell. The SAR ectodomain is absent on naturally existing T cells and
therefore requires a specifically engineered adapter molecule for activation.
Furthermore, the lack of natural ligands confers reduced toxicity and, if needed, SAR
T cell function can be abrogated by the administration of FDA-approved drugs like
cetuximab. To further improve safety, previously used bispecific antibodies were
replaced with taFv constructs with a shorter half-life. These confer two specificities,
one targeting AML and the other one targeting EGFRVIII on the SAR-transduced T cell.
Two tumor target antigens were tested in this study, namely CD33 and CD123.

In a first step, binding studies to assess the dissociation dynamics of both constructs
were performed. Analysis was performed via flow cytometry. Both constructs were
designed with the same backbone with a low affinity for T cells and a high affinity for
the tumor target antigen. The in vitro experiments showed that only SAR T cells that
were in contact with both, the tumor target and the adapter taFv construct were
activated and produced IFNy. Furthermore, an increase in T-cell proliferation, as well

as upregulation of PD-1 was measured in these SAR T-cell cultures. In contrast,
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control T cells cultured with target cells and taFv constructs did not show any signs of
activation.

Next, we tested SAR T- cell function in in vitro cytotoxicity assays. SAR T cells were
incubated with different leukemic cell lines and 1ug/mL of adapter taFv molecule. Only
SAR T cells, but not control T cells mediated efficient tumor-cell lysis. To gain more
insight into the way SAR T cells function, we evaluated and characterized synapse
formation via fluorescence microscopy. Significantly more conjugates were formed in
the SAR T-cell cultures compared to control T-cell cultures. Strong F-actin, CD11a-
LF1, and Granzyme B accumulation, indicated functionality of the immune synapse.
We could also show the efficiency and functionality of the safety switch used in this
platform. In absence of taFv redosing, the molecule was cleared from the circulation.
In contrast, repeated redosing maintained SAR activity. An advantage of the short half-
life of the adapter molecules is the modularity and flexibility of this platform. We again
demonstrated the modularity of this system as the same T cells could be redirected
towards tumor cells by sequentially targeting multiple AML-associated antigens.

In the next step, we wanted to validate SAR T-cell function in ex vivo experiments. We
performed long-term coculture assays with HD T cells transduced to express the SAR
and primary AML blasts. SAR T cells in combination with the CD33-taFv molecule
mediated specific AML cell lysis over time. We could further validate our findings in an
autologous setting. Patient-derived SAR T cells cocultured with both taFv adapter
molecules specifically targeted their own AML blasts. This was accompanied by
increased expression levels of PD-1, TIM-3, and CD69 on the SAR T cells. In addition,
the SAR-taFv combination also demonstrated cytolytic activity towards CD34*CD38"
leukemic stem cells.

As a last step, the in vitro and ex vivo findings were validated in in vivo mouse studies.
Two different NSG mouse models were established. The models mainly differed in the
AML cell line that was engrafted into the mice. The mice in both models were treated
with the genetically engineered T cells in combination with the CD33-taFv molecule.
This treatment led to major responses. Complete remission was achieved in two out
of seven mice in the MV4-11 model and one out of five mice in the THP-1 model.
Overall survival significantly improved in both models when compared to the group that
received SAR T cells plus a CD19-taFv control construct. The modularity of this

platform was also tested and validated in vivo.
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B-cell receptors, multiple receptor tyrosine kinases, and downstream effectors are
constitutively active in chronic lymphocytic leukemia (CLL) B cells. Activation of these
pathways results in resistance to apoptosis and enhanced survival of the leukemic cells.
|delalisib is a highly selective inhibitor of the PISK p1104d isoform and is approved for
the treatment of CLL in patients with relapsed/refractory disease or in those harboring
17p deletions or tp53 mutations. Despite the initial excitement centered around high
response rates in clinical trials of idelalisib, its therapeutic success has been hindered by
the incidence of severe opportunistic infections. To examine the potential contribution of
idelalisib to the increased risk of infection, we investigated the effects of idelalisib on the
immune cell compartments of healthy donors (HDs) and CLL patients. PI3Ka blockade
by idelalisib reduced the expression levels of inhibitory checkpoint molecules in T cells
isolated from both HDs and CLL patients. In addition, the presence of idelalisib in cultures
significantly decreased T-cell-mediated cytotoxicity and granzyme B secretion, as well as
cytokine secretion levels in both cohorts. Furthermore, idelalisib reduced the proliferation
and cytotoxicity of HD NK cells. Collectively, our data demonstrate that both human T and
NK cells are highly sensitive to PI3Ka inhibition. Idelalisib interfered with the functions of T
and NK cell cells from both HDs and CLL patients. Therefore, idelalisib might contribute
to an increased risk of infections regardless of the underlying B-cell malignancy.

Keywords: cancer immunotherapy, chronic lymphocytic

cells, PI3K i

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is characterized by impairment of the immune system
and is therefore associated with an increased susceptibility to opportunistic infections (1-5).
Several factors contribute to this increased risk profile: CLL cells compromise the development
of healthy B cells, cause immunosuppression due to their close proximity to effector cells,
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modulate T-cell function, and cause immunoglobulin deficiency
(6-9). Therefore, immunotherapeutic approaches are indicated
and first-line treatments consist of rituximab or obinutuzumab
as part of either chemoimmunotherapy or targeted therapy with
ibrutinib and venetoclax (10). The latter target B-cell receptor
(BCR) signaling and downstream receptor tyrosine kinases,
which play a key role in the pathogenesis of CLL (11-17).

Idelalisib is a potent small-molecule inhibitor of
phosphoinositide 3-kinases (18, 19). PI3K is one of the
most commonly activated kinases in the BCR signaling cascade
(20-23). Class I PI3Ks are comprised of a regulatory subunit
and one of four catalytic subunits (p110 o, B, y, and 9)(24-27).
These isoforms differ in tissue expression: PI3Ka and PI3Kp are
ubiquitously expressed, whereas PI3Ky and PI3Kd are highly
enriched in the hematopoietic compartment (19, 21, 25, 28—
30). Mechanistically, PI3Kd activates the serine/threonine
kinases AKT and mammalian target of rapamycin (mTOR),
which leads to proliferation, differentiation, and enhanced
survival of the cancer cells (19, 24, 25, 31-33). Idelalisib
binds to the ATP-binding pocket of the catalytic subunit of
PI3K, thereby specifically abrogating downstream PI3K3/AKT
signaling and inducing apoptosis of malignant cells (34, 35).
Idelalisib, has been evaluated in conjunction with rituximab in
a randomized, double-blind, phase III study in patients with
CLL (ClinicalTrials.gov Identifier: NCT01539512). Due to high
response rates of 81%, idelalisib was approved by the US Food
and Drug Administration for the first-line treatment of CLL
patients with the 17p deletion or TP53 mutation, and also in the
relapsed or refractory (r/r) setting (35, 36).

However, after the initial excitement, three clinical trials
involving idelalisib reported a high rate of adverse events,
including severe diarrhea, liver toxicity, pneumonitis, severe
colitis, and serious infections (37-42) (ClinicalTrials.gov
Identifiers: NCT01539512, NCT01732913, NCT01569295).
Although a high rate of opportunistic infections in CLL patients
is well-documented (43-45), idelalisib treatment not only
increased the incidence but also added other immune-related
adverse events (46). In a randomized phase III trial in r/r CLL,
patients were treated with Rituximab plus Idelalisib (IDELA/R-
to-IDELA) vs. Rituximab monotherapy (placebo/R). The group
with IDELA/R-to-IDELA had a higher incidence of infection or
infestation: 53.6 vs. 23.1%, with lower respiratory tract infection
in 23.6 vs. 11.1% (47). Opportunistic infections were a common
cause with 5 vs. 1 patient presenting with pneumocystis jirovecii
pneumonia, 2 vs. 0 patient presenting with cytomegaly virus
infection and 22 patients with fungal infection in the IDELA/R-
to-IDELA group. Confirmatory data were reported from
another phase III trial comparing ofatumumab with and without
Idelalisib in pretreated CLL patients with serious infections

Abbreviations: PI3Kd, Phosphoinositide 3-kinase delta; PB, Peripheral blood;
PBMC, Peripheral blood mononuclear cell; CLL, Chronic lymphocytic leukemia;
HD, Healthy donor; NK cell, Natural killer cells; AKT, Protein kinase B, or
PKB; mTOR, mammalian target of rapamycin; CTLA-4, Cytotoxic T-lymphocyte-
associated protein 4; PD-1, Programmed cell death protein 1; LAG-3, Lymphocyte
activation gene 3; IL-2, Interleukin 2; IL-10, Interleukin 10; TNF, Tumor necrosis
factor; IFN-y, Interferon-y; FasL, Fas ligand; MFI, Median fluorescence intensity;
SEM, Standard error of mean.

being more common in the ofatumumab plus idelalisib group:
pneumonia was reported in 23 vs. 8 patients, sepsis in 11 vs.
1 patient, and pneumocystis jirovecii pneumonia in 8 vs. 1
patient (48). This resulted in 22-treatment-related deaths in the
ofatumumab plus Idelalisib vs. only 6-treatment-related deaths
in the ofatumumab group.

These observations suggest for an additive negative impact of
idelalisib on immune effector cells. Although many studies have
focused on the influence of idelalisib on CLL cells, less is known
about the impact of PI3Kd blockade on healthy immune cells.

In this study, we investigated the immunomodulatory
influence of idelalisib on the adaptive cellular immune
compartment. To start dissecting the effect of idelalisib on
cellular immune responses independently of its impact on CLL
cells, we isolated T and natural killer (NK) cells from healthy
donor (HD) peripheral blood (PB). We analyzed changes in the
proliferative behavior, cytokine secretion, and cytotoxic capacity
of cocultures in the presence of idelalisib. In a second step,
we sought to replicate these findings with samples from CLL
patients. Our data suggest that idelalisib interferes with T- and
NK-cell function, thereby adding to the already increased rate of
opportunistic infections in CLL patients.

MATERIALS AND METHODS

Idelalisib and Key Reagents

Idelalisib was provided by Gilead Sciences. A 10mM stock
solution of idelalisib was prepared in dimethyl sulfoxide (DMSO;
Serva, 20385.01) and stored at —20°C. The used concentrations
of 0.05, 0.5, and 1 uM were chosen to mimic the peak plasma
concentrations observed in patients after 150 mg twice daily
administration of idelalisib (49). Sources of all key reagents are
listed in Supplementary Table 1.

Patients

PB samples from HDs and patients with CLL were collected with
written consent in accordance with the Declaration of Helsinki
and approval by the Institutional Review Board of the Ludwig-
Maximilian University of Munich. Patient characteristics are
summarized in Table 1. The patients had a median age of 64.5
years with a percentage of female patients of 46.7%.

Cell Lines

Cell lines were obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ, Braunschweig,
Germany) and were authenticated by their short tandem repeat
profile. All cell lines were tested monthly for Mycoplasma
contamination with the MycoAlert Mycoplasma Detection Kit
(Lonza, LT07-705) according to the manufacturer’s instructions.
Cells were passaged twice a week and cultured in RPMI 1640
medium (PAN Biotech, P04-16500) media supplemented with
10% fetal calf serum (Thermo Fisher Scientific, 10270106), 1%
HEPES (Carl Roth, HN78.1) and 1% penicillin-streptomycin-
glutamine (PSG) (Thermo Fisher Scientific, 10378016) at 37°C
in a 5% CO, atmosphere. Cells were used within 2 months
of thawing.
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TABLE 1 | Patient characteristics.
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Source of Primary Cells
HDs had a median age of 28.4 years with a percentage of females
of 48.3%. To overcome the age discrepancy, we extended the trial
on an elderly HD cohort (n = 4, Supplementary Figure 2). The
median age of this cohort was 62 years with a percentage of 50%
females. PB mononuclear cells (PBMCs) from HD were isolated
by density gradient centrifugation (using Biochrom separating
solution, L6115) from PB and either cryopreserved at <-80°C in
cell culture medium (described above) containing 10% DMSO,
or directly used for experiments. T cells were negatively isolated
from frozen HD PBMCs with the human Pan T Cell Isolation
Kit (Miltenyi Biotec, 130-096-535) and cultured in cell culture
medium. NK cells were either isolated negatively with the human
NK Cell Isolation Kit (Miltenyi Biotec, 130-092-657) or with
the EasySep Human CD56 Positive Selection Kit II (Stemcell
Technologies, 17815) from fresh HD PBMCs and cultured in NK
MACS Medium (Miltenyi Biotec, 130-114-429) supplemented
with 5% human serum (Sigma-Aldrich, H6914). Monocytes were
positively isolated from fresh HD PBMCs with human CD14
Microbeads (Miltenyi Biotec, 130-050-201). Neutrophils were
negatively isolated from fresh HD PB with the EasySep Direct
Human Neutrophil Isolation Kit (Stemcell Technologies, 19666).
HD-derived immune cells were cultured with 0.05, 0.5,
or 1pM idelalisib or with the DMSO concentration that
matches the DMSO concentration of the drug-treated cultures as
vehicle controls.

Flow Cytometry

All measurements were conducted on a CytoFLEX flow
cytometer (Beckman Coulter) and analyzed using FlowJo
software (BD Biosciences, version 10; RRID: SCR_008520).
All antibodies used in the following experiments are listed in
Supplementary Table 1. Median fluorescence intensity (MFI)
was determined, and the MFI ratio (MFI sample/MFI isotype
control) was calculated (Supplementary Figure 1).

In vitro Cell Proliferation Assay

HD T cells were stained using the CellTrace CFSE Proliferation
Kit (Thermo Fisher Scientific, C34554) according to the
manufacturer’s instructions. For stimulation, CD3/CD28
Dynabeads (Thermo Fisher Scientific, 11131D) at a bead-to-cell
ratio of 1:2 and 30 U/mL interleukin-2 (IL-2; R&D Systems,
202-IL-010/CF) were added to the culture for 5 days. T cell
subsets were discriminated by the expression of the chemokine
receptor CCR7 in combination with the naive cell marker
CD45Ra (Supplementary Figure 2). NK cells were stimulated
by addition of 500 U/mL IL-2 for 10 days. Fold change was
calculated as: “Viable NK cell count day 10”/“Viable NK cell
count day 0.”

Cytometric Bead Array

HD T cells were stimulated as described above. After 3 days, the
secretion of interferon-y (IFN-y), tumor necrosis factor (ITNF),
IL-2 and interleukin 10 (IL-10) was measured by analyzing the
cell culture supernatant in a Th1/Th2 cytometric bead array (BD
Biosciences, 551809) (50, 51). The assay was performed according
to the manufacturer’s instructions using flow cytometry.

T-Cell Cytotoxicity Assay

The cytotoxic capacity of T cells was assessed in two different
assays. In the first assay, HD T cells were activated as described
above. After 3 days the secretion of the cytolytic molecules
perforin and granzyme B was analyzed by multiparameter flow
cytometry. In the second assay, the T-cell recruiting antibody-
mediated lysis of the target cell line HL-60 at an effector— to-
target ratio (E:T) of 1:3 was measured. Either an anti-CD33
bispecific T-cell-recruiting antibody (5 ng/mL) (52), recognizing
CD3 on T cells and CD33 on target cells, or no antibody was
added to the coculture. After 72 h, target and T cell counts were
analyzed by flow cytometry. Lysis was calculated according to the
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formula %lysis = 100 - [#target cells (with antibody)]/[#target
cells (without antibody)]*100.

NK-Cell Cytotoxicity Assay

The cytotoxic capacity of NK cells was assessed in two
different assays. In the first assay, the cell line K562 was
stained with calcein AM (Thermo Fisher Scientific, C3100MP)
according to the manufacturer’s instructions. Freshly isolated
HD NK cells were cocultured with the stained K562 cells at
an E:T ratio of 10:1 in presence of idelalisib or DMSO. After
4h, the fluorescence intensity of the co-culture supernatant
was measured on a microplate reader (excitation: 485nm;
emission: 535 nm). Lysis was calculated according to the formula
[(Frest) - (Fsponlaneous)/(Fmaximum) - (Fspontaneous)] x 100, where
Fspontaneous Tepresents the fluorescence intensity of calcein
released from target cells in medium alone, and Fraximum is the
fluorescence intensity of calcein released from target cells lysed
in medium containing 2% Triton X-100 (Sigma-Aldrich, X100-
5ML), each measured in at least three replicate wells. In the
second assay, freshly isolated HD NK cells were cocultured with
K562 or Jurkat cells at an E:T ratio of 5:1 for 20h in presence
of idelalisib or DMSO. After 20h, specific lysis was analyzed
by multiparameter flow cytometry (Beckman Coulter CytoFLEX
S flow cytometer). The percentage of lysis was determined
as the target cell count of idelalisib-treated relative to the
control cultures.

Phagocytosis Assay

Monocyte function was assessed by measuring phagocytosis of
pHrodo Green E.coli BioParticles (Thermo Fisher Scientific,
P35366). Freshly isolated monocytes were incubated with the
pHrodo particles for 2h, then phagocytosis was analyzed by
flow cytometry.

Neutrophil Activation Assay

Neutrophil function was analyzed over 4h in a standard
Seahorse XF neutrophil activation assay according to the
manufacturer’s instructions.

Statistics

Statistical analyses were performed using GraphPad Prism
Software Version 8.4.2. As statistical test to compare the two
treatment groups Wilcoxon matched signed-rank test was used.
P-values and the number of replicates performed to derive the
data are indicated in the figure legends.

RESULTS

Inhibition of the PI3Kd by ldelalisib
Reduces the Expression Levels of
Inhibitory Checkpoint Molecules in CD3* T
Cells and Treg Cells

As PI3Kd was previously shown to be important for T-
cell signaling, we evaluated the effect of PI3Kd blockade on
T-cell proliferation. We found that proliferation of CD4"
and CD8" T cells (Figure1A) and the respective subsets
(Figures 1B,C) was not affected by idelalisib. Next, we analyzed

the expression levels of several inhibitory checkpoint molecules
in T cells and Tregs after stimulation for 72 or 120h in the
presence of idelalisib. The expression of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), lymphocyte activation gene
3 (LAG-3), and programmed cell death protein 1 (PD-1)
was significantly downregulated in idelalisib-treated T cells
and Tregs in comparison to the DMSO vehicle control cells
(Figures 1D-G). Our results demonstrate that proliferation of
T cells is not solely dependent on signaling through PI3Kd
and thus is not susceptible to inhibition of PI3Kd by idelalisib.
Furthermore, our data demonstrate that blockade of PI3Kd
signaling reduced expression of inhibitory checkpoint molecules
in T cells and Tregs.

Inhibition of PI3KJ by Idelalisib Leads to

Decreased T-Cell-Mediated Cytotoxicity

Against Target Tumor Cells and Reduced
Secretion of IL-10, TNF, and IFN-y

To test whether the downregulation of inhibitory checkpoint
molecules in T cells also mirrors reduced T-cell effector function,
we analyzed the effect of PI3K9 blockade on T-cell cytotoxicity
and cytokine secretion. The cytotoxicity of T cells against target
HL—60 cells was significantly reduced in a coculture in the
presence of idelalisib (Figure 2A). To further investigate if this
reduction in the cytolytic capacity was due to a decrease in
secretion of cytolytic molecules, T cells were analyzed for perforin
and granzyme B secretion after 72 h stimulation in the presence
of idelalisib. There was a significantly lower degranulation of
perforin and granzyme B in the cultures containing idelalisib
(Figure 2B). Next, we evaluated the effect of PI3Kd blockade
on the secretion of different cytokines after stimulation for 72 h.
Secretion levels of IL-10, TNE and IFN-y were significantly
reduced in the presence of idelalisib. In contrast, secretion of IL-2
was slightly increased (Figure 2C). Taken together, these results
demonstrate that blockade of PI3Kd signaling with idelalisib has
a negative impact on the effector functions of T cells, such as
cytotoxicity and cytokine secretion.

Inhibition of PI3KJ by Idelalisib Reduces
NK-Cell Proliferation and the Percentage

of Cytotoxic NK Cells

As we found that inhibition of PI3Kd significantly impairs
important functions of the T-cell compartment, we sought
to evaluate if similar effects can be seen in NK cells, the
cytotoxic lymphocytes of the innate immune system. The
addition of idelalisib to IL-2 stimulated NK cells led to a
decreased NK-cell expansion in comparison to the DMSO-
treated control (Figure 3A). Furthermore, idelalisib affected
the proliferation of the cytotoxic NK-cell population over
the 10-day period. As the percentage of dead cells in both
conditions is not significantly different, this observation is
most likely due to a reduced proliferation instead of increased
apoptosis in the idelalisib treated condition (media %dead
cells 1M idelalisib vs. corresponding DMSO control: 24.3
vs. 25.5, n = 12, data not shown). The cytokine producing
CD56"8"CD16"8 compartment showed no differences between
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FIGURE 1 | flow cytometry dot plots and histograms. (B,C) Bar charts depicting the development of CD4* and CD8* T-cell subsets: naive, central memory (CM),
effector memory (EM), and terminally differentiated effector memory cells re-expressing CD45RA (ERMA) after 6 days of coculture, with different concentrations of
idelalisib or DMSO as vehicle control. (D-G) Bar graphs of MFI ratios showing the expression levels of checkpoint molecules CTLA-4, LAG-3, and PD-1in CD4+ T
cells, CD8* T cells, CD4* Tregs and CD8* Tregs after stimulation for 3 or 5 days with IL-2 and CD3/CD28 activation beads. Error bars represent mean + SEM; *p <

0.05, **p =< 0.005, **p < 0.0005; n = 6-12 HDs.
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FIGURE 2 | Inhibition of PI3Ka by idelalisib leads to decreased T-cell-mediated cytotoxicity against target tumor cells and reduced secretion of IL-10, TNF, and IFNy.
(A) Cytolytic capacity of CD3* T cells in coculture with target HL-60 cell line and various concentrations of idelalisib after 72 h. (B) Bar charts and representative
overlaid flow cytometric histograms depicting expression levels of perforin and granzyme B in CD8T cells after bead mediated activation for 72 h in the presence of
different concentrations of idelalisio or DMSO. (C) Bar charts representing the levels of IL-2, IL-10, TNF, and IFNy in the supernatant of the coculture after 72 h. Error

bars represent mean + SEM; *p < 0.05, **p < 0.005, ***p < 0.0005, n = 12 HDs.
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cultures (Figure 3B). However, the proliferative capacity of the
cytotoxic CD569™mCD16*118M subset was reduced upon PI3Kd
blockade (Figure 3C).

Inhibition of PISKd by Idelalisib Decreases
NK-Cell Cytotoxicity

To evaluate if this reduction translates into impaired cytotoxicity,
we analyzed the cytolytic capacity of NK cells toward target cells

in presence of idelalisib. NK cells are capable of killing target cells
via two different apoptotic pathways, either through perforin-
and granzyme- mediated lysis or through death receptor ligation
with, for example, the Fas ligand (FasL). To investigate if idelalisib
interferes with both apoptotic pathways, we separately cocultured
two target cell lines with HD NK cells. The cytotoxicity of NK
cells toward target K562 cells, which are lacking the MHC class I
antigen and are thus killed via granzyme B-mediated lysis, was
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significantly reduced (Figure 4A). Lysis of target Jurkat cells,
which are killed in a Fas-FasL-dependent manner, was also
significantly decreased in the presence of idelalisib (Figure 4B).
Together our data show that PI3K9 signaling is important for NK
cell-mediated lysis of cancer cells in vitro and that blockade by
idelalisib significantly reduces the cytolytic capability of NK cells.

Inhibition of PI3Ka by Idelalisib Alters
Neither the Phagocytic Capacity of
Monocytes Nor the Activation of
Neutrophils

To further investigate the impact of idelalisib on other innate
immune cells, we studied the effect of PI3Kd blockade on
the phagocytic capacity of monocytes and neutrophil activation
in two independent short-term assays. No differences in the
phagocytosis rates of monocytes were detected (Figure 5A).
Neutrophil activation was measured via the generation of reactive
oxygen species, termed an “oxidative burst” in a Seahorse

XF neutrophil activation assay. Neutrophils in the idelalisib-
treated group did not show a significant difference in oxygen
consumption rates in comparison to the vehicle-treated group
(Figure 5B). These data indicate that PI3Kd blockade does not
have a direct impact on monocyte phagocytic capacity and
neutrophil activation in these short-term assessments.

Inhibition of PISKd by Idelalisib Has a
Negative Impact on Effector Functions of T
Cells Derived From CLL Patients at the

Time of Initial Diagnosis

Next, we analyzed if the previously described effects of PI3Kd
inhibition could also be seen if CLL patient cells were treated
in culture with idelalisib. To this end, we isolated T cells
from cryopreserved PBMCs of CLL patients at time of initial
diagnosis. Again, patient samples treated with the vehicle
DMSO served as controls. PI3Kd blockade by idelalisib did
not alter the proliferative capacity of T cells isolated from CLL
PBMCs (Figure 6A). The cytotoxicity of CLL T cells against
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FIGURE 5 | Inhibition of PI3Ka by idelalisib alters neither monocyte nor neutrophil function. (A) Compiled data showing the phagocytic capacity of monocytes after 4 h
in the presence of different concentrations of idelalisib or DMSO as vehicle control; n = 12 HDs. (B) Representative kinetic trace of the oxygen consumption rate
(OCR) and compiled bar chart depicting the oxidative burst of neutrophils as areas under the curve (AUC) in a Seahorse XF neutrophil activation assay; n = 8 HDs.

target HL-60 cells was significantly reduced in a coculture
treated with idelalisib (Figure 6B). This could be further
verified by a significant decrease in granzyme B secretion in a
culture containing the inhibitor (Figure 6C). Furthermore, PD-
1 expression was significantly decreased in the idelalisib-treated
T-cell group (Figure 6D). Next, we evaluated the effect of PI3Kd
blockade on the secretion of different cytokines after coculture
for 72h with the target HL-60 cell line. Cytometric bead array
analysis of CLL T cells revealed significantly reduced secretion
levels of IL-10, IL-4, IL-6, and IFN-y (Figure 6E). Taken together,
these results demonstrate that blockade of PI3K9 signaling with
idelalisib has a negative impact on the effector functions of CLL
T cells, such as cytotoxicity and cytokine secretion. However,
differences in age are possible cofounding variables.

DISCUSSION

PI3Kd inhibition by idelalisib has proven to be highly effective in
the treatment of r/r CLL patients. However, this clinical success
is somewhat diminished by the increased rate of opportunistic
infections in these patients (37-42). The factors contributing to
this observation are incompletely understood.

In the present study, we evaluated the effect of PI3Kd
blockade by idelalisib on the non-malignant human immune
cell compartment of healthy individuals. First, we analyzed the
effects of idelalisib on T cells and Tregs. PI3Kd blockade by
idelalisib did not have an impact on the proliferative capacity
of HD T cells. However, we observed a significant decrease in
the expression levels of the inhibitory checkpoint molecules PD-
1, CTLA-4, and LAG-3 in both T cells and Tregs in cultures
containing idelalisib. Our findings are supported by previous
studies, which described PI3K9 as the main transducer of PI3K
signaling in human T cells (25, 53) and Tregs (54). Next, we
evaluated if these findings correlated to impaired T-cell function.
We demonstrated that secretion of IL-10, TNE and IFNy by
idelalisib-treated HD T cells was significantly reduced. This is

consistent with previous studies that looked at the impact of
other PI3Kd-blocking agents on cytokine secretion of T cells
in mice (25, 53, 55). Furthermore, we observed that PI3Kd
blockade significantly decreased the cytolytic capacity of HD T
cells. This manifested through a significantly reduced secretion
of the cytolytic molecules perforin and granzyme B, as well as
a significant decrease in antibody-mediated target cell killing.
Together, our data show that idelalisib severely impairs the
functions of T cells and Tregs isolated from HDs. Combined with
the findings of a previous study by Chellappa and colleagues (56),
our data support the hypothesis that idelalisib leads to T and
NK cell dysfunction. Therefore, our in vitro observations might
reflect the increased rate of opportunistic infections in treated
CLL patients. Idelalisib exposure led to a significant decrease in
the expression of PD-1, which is often described as a marker for
T-cell activation. This might be an indicator for reduced T-cell
activity and in turn a dampened immune response, which might
be a factor behind the increased rates of infections measured in
idelalisib-treated CLL patients.

Emerging data from clinical trials suggests that the improved
T-cell-mediated antitumor response and the impressive clinical
outcome in CLL might be due to reduced Treg numbers and
their reduced suppressive function in idelalisib-treated patients
(57, 58). Conversely, inhibiting the suppressive activity of Tregs
can also lead to severe adverse autoimmune effects (56, 59).

As a next step, we wanted to evaluate the effect of
idelalisib on NK cells, the cytotoxic lymphocytes of the innate
immune system. Previous studies in mice with defective PI3Kd
have suggested that PI3K plays a critical role in NK-cell
effector function (60, 61). Furthermore, Zebedin and colleagues
demonstrated that selective inhibition of PI3Kd in mice leads
to impaired degranulation and target cell killing by NK cells
(62). Therefore, we wanted to evaluate whether PI3Kd blockade
also has a negative impact on the human NK-cell compartment.
In our study, we observed that idelalisib reduced NK-cell
proliferation. Moreover, PI3Kd inhibition led to a decrease in
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FIGURE 6 | Inhibition of PI3Kd by idelalisib impairs cytotoxicity and cytokine secretion of T cells isolated from CLL patient samples. (A) Compiled data showing the
percentage of proliferated CD2* T cells in the presence or absence of idelalisib (7 = 15). (B) Cytolytic capacity of CD3™ T cells in coculture with target HL—60 cell line
and idelalisib after 72 h. (C,D) Bar charts depicting expression levels of granzyme B and PD-1 in T cells after 72 h coculture with HL-60 cells in the presence of
idelalisib or DMSO (n = 6). (E) Bar charts representing the levels of IL-2, IL-10, IL-4, IL-6, TNF, and IFNy in the supernatant of the coculture after 72 h in the presence
or absence of idelalisib (n = 15). Error bars represent mean + SEM; *p < 0.05, **p < 0.005.
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the percentage of cytotoxic NK cells, which also translated into
reduced target cell killing by NK cells. We show that two different
apoptosis pathways are affected. Idelalisib impaired cell death
through secretion of cytolytic molecules, as well as cell death
via the Fas-FasL pathway. NK cells are an important part of the
innate immune system and play a key role in the defense against
infections. Taken together, our data demonstrate a decrease NK-
cell proliferation and cytolytic activity by idelalisib and that this
might contribute to the increased frequency of infectious events
observed in clinical trials.

CLL has been associated with profound defects in T-cell
function and synapse formation (63-66). These T-cell defects are
thought to result in failure of antitumor immunity and increased
susceptibility to infections (67, 68). In view of our findings on
healthy T cells, PI3Kd inhibition might have an even more
pronounced effect on the immune response of CLL patients,
contributing to an elevated risk of severe side effects such as
opportunistic infections. To confirm the clinical relevance of our
findings and that these effects might indeed contribute to the
increased rate of infections during idelalisib therapy, we isolated
T cells from cryopreserved PBMCs collected from CLL patients
at the time of initial diagnosis. As expected, the proliferative
capacity of these T cells was lower compared to healthy T cells.
Idelalisib had only a minor impact on the proliferation on T cells
from CLL patient. However, we observed a significant decrease in
the cytolytic capacity of CLL T cells treated with idelalisib. This
was supported by our finding of a significantly reduced level of
secreted granzyme B. Consistent with our data from HDs, PD-1
expression in T cells was significantly decreased in the presence
of idelalisib, most likely as a result of reduced T-cell activation.

In line with these findings, we also observed a significantly
reduced secretion of IL-10, IL-4, IL-6, and IFN-y; secretion of IL-
2 and TNF also appeared to be affected, albeit to a lesser extent.
As proinflammatory cytokines are mainly secreted by Tregs,
the decrease in IL-10 secretion might indicate impaired Treg
suppressive function, which could also contribute to a higher risk
of autoimmune diseases. Furthermore, reduced TNF and IFNy
secretion serves as an indicator of less activated, less functional,
or even exhausted T cells.

Our data demonstrates that both human T and NK cells
are highly sensitive to PI3Kd inhibition. Idelalisib interfered
with the functions of T and NK cells from both HDs and CLL
patients. In summary our in vitro data suggest that idelalisib-
induced impairment of T and NK-cell function contributes to
an increased rate of infections regardless of the underlying B-
cell malignancy.
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Abstract

Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant
cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in
principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell
transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both
sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we
developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform
combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment
(scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by
the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv
constructs resulted in selective killing of CD33" and CD123" AML cell lines, as well as of patient-derived AML blasts.
Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models.
Together these results warrant further translation of this novel platform for AML treatment.

Keypoints

e Modular platform enabling controlled targeting of AML by SAR-transduced T cells in combination with tandem scFv
constructs.

o Efficient lysis of primary AML blasts in vitro and strong antitumoral effects and T cell persistence in xenograft models.

Introduction

These authors contributed equally: Mohamed-Reda Benmebarek,
Bruno L. Cadilha With high relapse rates and few targeted therapeutic
options, there is a need develop novel solutions for the
treatment of acute myeloid leukemia (AML). While stan-

dard therapy (induction chemo- and consolidation therapy)
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does offer a curative first-line therapy to those eligible [1],
leukemic stem cells (LSCs) drive disease relapse in the
majority of responders [2]. In spite of significant advances,
including allogeneic stem cell transplantation and a growing
molecular tailoring of treatment toward driver pathways
such as FLT3 [3], the prognosis of relapsed or refractory
AML remains poor.

Immunotherapy that promotes the killing of tumor cells
by cytotoxic T lymphocytes has entered clinical routine for
hematological malignancies in recent years [4-6]. In acute
lymphocytic leukemia (ALL), bispecific antibodies utilized
for the recruitment of cytotoxic T cells to CD19" leukemic
cells have been shown to be an effective approach, and are
now part of the standard-of-care [7]. Similarly, anti-CD19
chimeric antigen receptor (CAR) T cell therapy has been
approved in ALL and diffuse large B cell lymphoma based
on unprecedented response rates [8—10]. The cornerstone of
these treatments is a broadly expressed target antigen on
tumor cells that is harnessed to redirect T cells toward the
cancer or leukemic cell [11]. In the case of B cell neoplasia,
the target antigens, CD19 or CD20, are restricted to the B
cell lineage, and the potentially adverse side effect of B cell
depletion has been manageable [11, 12]. In contrast, myeloid
lineage antigens are much less suited as target structures, as
the absence of myeloid cells or of major myeloid lineages is
associated with a high morbidity and mortality rate [13].
Thus, there is a need to render AML targeting by T cells
either modular or conditional to prevent excessive and life-
threatening toxicities whilst enabling clinical activity.

CD33 is an antigen expressed in more than 99% of AML
cases, therefore offering a targeted therapeutic modality with
the potential to induce remission [14, 15]. CD33 is expres-
sed by all early myeloid progenitors (CD34" CD33™), thus
LSCs that acquired one or more of their transforming events
following commitment to the myeloid compartment are
targetable [16]. Moreover, CD33 has been shown to be
expressed on the majority of CD34" CD38 LSCs of AML
patient blasts [17, 18]. Along these lines, CD33-targeting
should also be able to eradicate chemo-resistant LSCs.
However, antigen negative escape variants cause disease
relapse in many targeted therapies, emphasizing the need for
sequential or even multiple targeting [19].

The pan-T cell-CD33-targeting bispecific T cell engager
(BiTE) AMG330 recently showed encouraging results in a
phase I trial [14]. In addition, several AML-specific CAR
T cells are currently in clinical trials (NCT03971799;
NCT04010877; NCT04156256). However, none of these
strategies targeted truly AML-specific antigens but rather
antigens either only expressed on subsets of AML cells or
co-expressed by normal myeloid progenitors [20, 21].
Although potentially effective, all aforementioned T cell
strategies are, once deployed, non-reversible and would
therefore benefit from a capability to control T cell activity.

SPRINGER NATURE

An alternative approach is to transduce T cells with a
synthetic agonistic receptor (SAR) composed of an inert
extracellular domain (EGFRVIII -referred to as E3) acting as a
unique antigen receptor fused to intracellular T cell-activating
domains that can be specifically activated by an engineered
BiAb [22]. Because SARs have no known natural ligands,
this reduces the likelihood of unforeseeable toxicity. Trig-
gering of SAR by the BiAb is dependent on it binding its
second specificity, i.e., a selected tumor-associated antigen on
the tumor cell. This binding allows for BiAb molecules to
aggregate, enabling crosslinking of the SAR. This activates
the T cells and directs T cell-mediated lysis [22]. This tumor-
killing activity is limited by the supply and half-life of the
BiAb. Notably, SAR T cells, unlike CAR T cells, can be
removed from the circulation if needed, by using FDA-
approved monoclonal antibodies, without having to rely on
the addition of a suicide gene [22]. With these favorable
properties, SAR T cells developed to target AML could
overcome the hurdles of toxicities and escape variants.

To enable better control over T cell activity for AML and
ALL indications, we reasoned that we could replace the
BiAb (IgG) with tandem scFv (taFv) constructs as these
would be more controllable and safer due to their shorter
half-life [23, 24]. Here, to test this, we developed novel taFv
constructs made up of two scFvs linked by a (G4S), linker.
These constructs have dual specificities: one to target AML
(via binding CD33 or CD123), and the other to target the
SAR-expressing T cell (via binding E3 — which is the inert
extracellular domain of the T cell-activating SAR).

We could show that T cells expressing the SAR construct
can, in a reversible manner, be selectively activated in the
presence of AML cells (CD33" or CD123") and the taFv
molecule. We demonstrate that, unlike a conventional BiTE
(anti-CD33-anti-CD3), which activates pan-T cells, our E3-
specific constructs activate only SAR-transduced T cells —
giving additional control over effector cell modifications,
phenotype and dosage. Importantly, we highlight sub-
stantial activity of the platform in primary AML-blast cul-
tures and in different AML-xenograft models, underpinning
the translational potential of the approach.

Methods
Animal experimentation

4-week-old female NSG mice (NOD.Cg-Prkdcscid
I2rgtm1WjI/SzJ) were purchased from Charles River
(Sulzfeld, Germany). MV4-11-LUC-GFP and THP-1-LUC-
GFP xenograft models were established by intravenously
injecting 2 x10° or 10° cells, respectively into the tail vein.
taFv molecules were delivered intraperitoneally as indi-
cated. 107 T cells were given intravenously as indicated. All

28



A modular and controllable T cell therapy platform for acute myeloid leukemia 2245

animal experiments were approved by the local regulatory
agency (Regierung von Oberbayern). Prior to treatment
mice were randomized according to tumor burden. End-
points were registered by an observer blinded to the treat-
ment groups as previously defined [25]. More than 15%
weight loss after experiment start or a decrease in general
health condition (decreased mobility, general weakness,
hunched posture or ungroomed hair) are defined as humane
surrogate endpoints for survival and are later referred to as
survival of mice. In vivo imaging approach outlined in
supplementary methods.

Binding studies

Apparent dissociation constants (Kp) were measured by
calibrated flow cytometry on a Guava easyCyte 6HT
instrument (Merck Millipore, Burlington, MA, USA) with
3.0 to 3.4 um Rainbow Calibration particles (BioLegend,
San Diego, CA, USA) as calibration control [26]. After
normalization, data points were fitted to a one-site specific
binding model. Expression and purification of molecules is
outlined in supplementary methods.

Cell lines

PL-21, THP-1, MOLM-13, MV4-11, E.G7-OVA, and SEM
cell lines were purchased from ATCC (USA). The E.G7-
OVA cell line was modified to express full-length human
EGFRVIII (Uniprot Entry P00533 AA 1-29, 298-646),
resulting in E.G7-EGFRVIII cells. Luciferase-eGFP (LUC-
GFP) overexpressing cell lines PL-21-LUC-GFP, THP-1-
LUC-GFP and MV4-11-LUC-GFP were generated according
to previously described protocols [22]. Antigen quantification
of cell lines are summarized in Supplementary Table 1A.
293Vec-Galv and 293Vec-RD114 were a kind gift of Manuel
Caruso, Québec, Canada and have been previously described
[27]. All human cell lines were short tandem repeat profiled in
house to verify their origin. Cells were used for a time period
no longer than two months.

Cytotoxicity assays

T cells were incubated with tumor cell lines and taFvs at
indicated effector-to-target ratios and concentrations. Fol-
lowing a 24 h coculture, the BioGlo Assay (Promega, USA)
system was used according to the manufacturer’s protocol.

Confocal microscopy

Blinded confocal imaging and conjugate quantification were
carried out following the selection of 10 representative areas
of each slide. Cells in or out of conjugate within each area
were quantified and a ratio thereof subsequently determined.

For each conjugate, the position of the microtubule organizing
center (MTOC) was observed, and its polarization to the
immune synapse, or lack thereof, was noted. The ratio of
polarized to nonpolarized MTOCs was used to determine the
ratio of functional synapses out of all conjugates formed.

Flow cytometry

Flow cytometry was carried out according to previously
published protocols [28]. For cell number quantification
CountBright® absolute counting beads (Life Technologies)
were added. Samples were analyzed with flow cytometers
from BD, Canto II and Fortessa (BD Bioscience, Germany)
and a Beckman Coulter CytoFLEX for the long-term cultures.
Surface antigen density of cell lines and constructs was eval-
uated with QIFIKIT (Agilent Dako, Santa Clara, CA, USA).
Flow cytometry data were analyzed with FlowJo
V10.3 software or GuavaSoft, version 3.1.1 (Merck Milli-
pore). Staining approach outlined in supplementary methods.

Generation of T cell activating fusion constructs and
T cell transduction

SAR construct generation was previously described [22].
SAR-transduced T cells will be referred to as SAR T cells.
An anti-CD33-CD28-CD3( (anti-CD33 CAR) was gener-
ated with the same humanized scFv against CD33 used for
the taFv construct [29]. Transduction and expansion of
primary human T cells was carried out following a pre-
viously described protocol [25]. Virus production methods
outlined in supplementary methods.

Interferon-y release assays

Human T cell stimulation assays were set up at indicated
concentrations and effector-to-target ratios. IFN-y was
quantified by ELISA (BD Bioscience).

Long-term coculture assays

AML blasts were cultivated for 3 days before coculture.
Allogeneic healthy donor T cells were incubated with
patient-derived AML blasts at indicated effector-to-target
ratios and concentrations. Untransduced T cells were used to
control for allogeneic effect. Patient blasts were otherwise
cultured according to the previously described protocol [30].

Patient and healthy donor material

After written informed consent in accordance with the
Declaration of Helsinki and approval by the Institutional
Review Board of the Ludwig-Maximilians-Universitit

(Munich, Germany), peripheral blood (PB) or bone marrow
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(BM) samples were collected from healthy donors and AML
patients. At initial diagnosis or relapse, samples were analyzed
at the Laboratory for Leukemia Diagnostics of the Klinikum
der Universitdt Miinchen as previously described [31, 32].
Patient characteristics are summarized in Supplementary
Table 2A, B.

Statistical analysis

Statistical evaluation was performed using GraphPad
Prism software V8.3.1 (San Diego, CA, USA). Differ-
ences between experimental conditions were analysed as
described in figure P values < 0.05 were considered to
be significant. Data are shown as mean values SEM of
a minimum of three biological replicates or independent
experiments, as indicated. For in vitro experimentation
with healthy donor or patient samples, no statistical
methods were used to predetermine sample size. These
were chosen based on prior experience with this experi-
mental design and patient sample availability. For in vivo
experimentation sample sizes were used in accordance
with prior experience with the models used.

Results

Tandem scFv-mediated effects on SAR T cell
activation, proliferation and differentiation

Based on our previous results, we hypothesized that
the SAR platform could be developed specifically for
AML targeting and treatment [22]. We began by recom-
binantly generating bispecific anti-E3-anti-CD33 and
anti-E3-anti-CD123 taFv molecules. We envisioned that
these E3-targeting molecules could efficiently and
selectively redirect SAR-expressing T cells to AML
blasts (Fig. 1A).

The E3 SAR could be retrovirally transduced into
human T cells from healthy donors with high efficiencies
(Fig. 1B and Supplementary Table 1B). The novel anti-
E3-anti-CD33 molecule was designed to have a high
affinity for the target cells (CD33 Kp = 19.5nM), and a
lower affinity for the T cells (E3 Kp = 235.8 nM) so that
aggregates could form more easily on the target cells. The
binding properties and apparent dissociation constants of
the anti-E3—anti-CD33 molecule to both its targets were
analyzed by flow cytometry (Supplementary Fig. 1A and
2A). Similarly, the anti-E3-anti-CD123 molecule was
designed using the same backbone as the CD33-targeting
one and served as an additional AML-specific targeting
taFv molecule to demonstrate the modularity of the plat-
form (CD123 Kp =32 nM) (Supplementary Fig. 1A and
2A). We additionally generated an anti-E3-anti-CD19

SPRINGER NATURE

molecule to serve as a non-AML-targeting control con-
struct (CD19 Kp =4.9 nM) (Supplementary Fig. 1A and
2A). The anti-CD3-anti-CD33 control has been pre-
viously characterized [33]. Purified proteins were ana-
lyzed by SDS-PAGE and analytical size exclusion
chromatography and protein stability was assessed by
fluorescence-based thermal shift assay (Supplementary
Fig. 1B to E).

In vitro, taFv-mediated T cell activation is strictly
dependent on antibody aggregation on the target cell and
their presentation to the T cell in a polyvalent form [34]. To
assess this conditional T cell activation upon targeting of
the SAR molecule, we incubated SAR T cells with the anti-
E3-anti-CD33 construct in the absence or presence of three
CD33-expressing  AML cell-lines, PL-21, THP-1, and
MV4-11, with untransduced (unt) T cells serving as a
control. Only SAR T cells in the presence of the taFv
construct as well as the target antigen were shown to pro-
duce IFN-y, whereas unt T cells were not stimulated, even
in the presence of both taFv and target molecules (Fig. 1C).
The anti-E3-anti-CD123 taFv was similarly evaluated,
demonstrating both comparable and conditional T cell
activation (Fig. 1C, D).

Congruently, SAR T cell activation following cocul-
ture with target AML cells resulted in enhanced pro-
liferation of both CD4" and CD8" SAR T cells when
compared to other T cell and taFv controls (Fig. 1E).
We further observed upregulation of the T cell activation
marker PD-1 specifically for SAR T cells compared to
the control T cells following coculture with target AML
cells and taFv (Fig. 1F). Following activation in culture,
SAR T cells were also observed to have a mixture of
effector and effector memory phenotypes, similar to the
control T cells (Supplementary Fig. 2B)

SAR T cells form functional immunological synapses
to mediate efficient tumor-cell lysis

CD33-expressing tumor cells were effectively targeted
and lysed by anti-E3-anti-CD33 and anti-E3-anti-
CD123-activated SAR T cells, but not unt T cells
(Fig. 2A and Supplementary Fig. 2C). To dissect the-
mode of action of SAR T cells in these settings, we
analyzed the interface between both cell types. Cell
conjugates and synapses formed between the T cells
and tumor cells were labeled and quantified. SAR T
cell conjugates occurred significantly more frequently
than unt T cell-target cell conjugates (Fig. 2B). To probe
the nature of the immunological synapse (IS), we asses-
sed F-actin and CDI11a-LFA-1 accumulation. Strong
accumulation of F-actin is indicative of a functional
immune synapse, which was observed to span the entire
area of the synapse (Fig. 2C). A moderate accumulation
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<« Fig. 1 SART cells can be bound and triggered by tandem scFvs to

induce T cell activation and proliferation. A Schematic overview of
the SAR construct as well as the modular composition of anti-E3-anti-
CD33 and anti-E3-anti-CD123 molecules and CD33 and CD123 tar-
get structures. B Transduction efficiency flow cytometry plot and SAR
expression data in T cells from healthy donors. C SAR and unt T cells
were cocultured with THP-1, PL-21, or MV4-11 tumor cells and anti-
E3-anti-CD33 molecule, with hIFN-y readout 48 h after coculture.
D SAR and unt T cells were cocultured with THP-1 or MV4-11 tumor
cells and anti-E3-anti-CD123 molecule, with hIFN-y readout 48 h
after coculture. E The proliferation rate of the T cells was determined
by flow cytometry analysis with surface staining for CD3, CD4, CD8,
and EGFR after coculture. F SAR and UT T cells were cocultured with
MV4-11 tumor cells at a 10:1 E:T ratio. Anti-E3—anti-CD33 taFv was
added at a concentration of 1 pg/ml. Readouts were carried out at 0, 24,
and 48 h time-points. PD-1 expression of SAR and UT CD4" and CD8
T T cells over time (0, 24, and 48 h) is shown. Statistical analysis was
performed with unpaired two-tailed Student’s ¢ test. Experiments in
subfigures (B-F) show mean values + SEM and are representative of
three independent experiments.

was observed at the IS, however a dispersed signal could
also be seen (Fig. 2C). SAR T cells also showed gran-
zyme B accumulation and degranulation at the IS,
demonstrating formation of a mature and functional IS
(Fig. 2C).

Modular, selective and reversible activation of SAR
T cells and their applied safety switches

Due to the antigen heterogeneity in AML, and because of
toxicities associated with the targeting of myeloid lineage
antigens, cell therapy approaches need to be modular and
controllable [35, 36]. To show selectivity advantages of the
SAR platform over BiTE, SAR T cells were serially titrated
in a peripheral blood mononuclear cell (PBMC) mix, then
cocultured with target cells and either a pan-T cell-targeting
molecule (anti-CD3-anti-CD33) or a SAR-specific one
(anti-E3—-anti-CD33). The selective activation of SAR
T cells was evident when the SAR-PBMC mix was
cocultured with an anti-E3-anti-CD33 molecule, as IFN-y
levels decreased with lower concentrations of SAR T cells
in the mix (Fig. 3A). This titrated T cell activation effect
was lost when the anti-CD3-anti-CD33 molecule was
employed at equivalent total cell numbers. Furthermore, the
anti-E3-anti-CD33 construct did not mediate any T cell
activation when incubated with a pure PBMC mix devoid of
SAR T cells, whereas the anti-CD3-anti-CD33 molecule
was non-selective in activating CD3" T cells in the PBMC
mix, as expected (Fig. 3A).

An intrinsic safety switch of the SAR platform is that the
activity of SAR T cells is strictly dependent on the presence
of the taFv construct. Contrary to CAR T cells, the activity
of which is irreversible in the presence of the target antigen,
SAR T cell activity should quickly dissipate with clearance
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of the taFv. Indeed, we found that, following cocultures
with MV4-11 tumor cells, SAR T cell activity was rever-
sible over time in the absence of taFv redosing, unlike
human anti-CD33 CAR T cells. Importantly, repeated
dosing of the taFv molecule could maintain SAR activity at
comparable levels to that of the CAR (Fig. 3B). This data
indicates that engineering the half-life of the taFv molecule
would enable control over SAR activity.

The relatively short half-life of the taFv molecule should
also enable modularity of the platform, i.e., the sequential
targeting of multiple antigen types that would allow for more
refined patient-specific tailoring of the treatment. Modularity
was demonstrated when the same SAR T cells were redirected
toward AML cells expressing multiple targets. SAR T cells
were cocultured with CD33" CD123" THP-1 cells. Through
the addition, exchange or depletion of anti-E3-anti-CD33 or
anti-E3-anti-CD123-targeting molecules we could show
modularity by sequentially redirecting SAR T cells toward
different AML targets (Fig. 3C and Supplementary Fig. 3A).

Overall, this approach has the potential to target a mul-
titude of AML-associated antigens with a level of flexibility
and controllability that is superior to that of CAR T cells.
These advantages together with the aforementioned safety
facets make this platform a promising modality for the
targeting of myeloid lineage antigens.

SAR-taFv combination can mediate specific
cytotoxicity against patient-derived AML blasts and
leukemic stem cells

To further translate the potential of our approach, we assessed
SAR T cell activity against patient-derived AML blasts. A
long-term coculture assay system was utilized to evaluate SAR
T cell-mediated cytotoxicity over time. AML blasts were
specifically targeted by SAR T cells in the presence of the
anti-E3-anti-CD33 molecule, whereas control T cell and taFv
combinations were not (Fig. 4A, B and Supplementary
Fig. 3B, C). We applied a similar setup to test the efficacy of
the approach in an autologous AML patient setting. We could
successfully isolate, culture and transduce patient-derived
T cells with the SAR (Supplementary Fig. 3D). Their capacity
to target their own blasts in the presence of either anti-E3-anti-
CD33 or anti-E3-anti-CD123 taFvs was demonstrated, with
similar effects to what was already shown in the allogeneic
setting (Fig. 4C). SAR T cell activity was also assessed by
expression of the markers PD-1, TIM-3, and CD69 after
3 days of coculture. In the presence of the taFv and AML
blasts, SAR T cells upregulated PD-1, TIM-3, and CD69
(Fig. 4D and Supplementary Fig. 3E). In addition, we could
show that the SAR—taFv combination could also effectively
target CD34" CD38" LSC (Fig. 4E, F). The data obtained
supports the clinical application of the platform as it shows the
efficacy of the approach in targeting patient blasts and LSCs.
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Fig. 2 SAR T cells selectively form functional immunological
synapses to mediate efficient tumor cell lysis. A SAR and unt T cells
were cocultured with THP-1, PL-21, or MV4-11 tumor cells with anti-
E3-anti-CD33. Following coculture, the BioGlo Luciferase assay was
used to calculate the percentage of cells lysed—values shown were
normalized to the AML only control condition which was taken as 0 %
lysis. B SAR or unt T cells were cocultured with THP-1 tumor cells in
a V-well plate before transfer to a poly-L-lysine-coated slide. Cells
were allowed to adhere for 30 min before fixation and permeabiliza-
tion. The percentage of T cells conjugated with tumor cells was
quantified, as well as the percentage of those conjugates with a
polarized MTOC. C Double Immunofluorescence labeling was carried
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30 min cocultures with aE3-aCD33
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out to characterize the polarization of the MTOC, Granzyme B, LFA-1
and F-actin at the SAR T cell IS. For statistical analysis the unpaired
two-tailed Student’s # test was used. Experiments in subfigures (A and
B) show mean values + SEM and are representative of at least three
independent experiments. Subfigure (D) is representative of three
independent experiments. Leica TCS SP5 confocal system with a HCX
PL APO CS 63x/1.4 oil objective was used for image acquisition on
Leica application suite v2.7.3.9723. Tumor cells were GFP positive.
Fluorochromes used: MTOC (AF594) Granzyme B (AF647); F-actin
(AF647); LFA-1 (AF647); Lck (AF647). For z-axis image recon-
struction (stacking) confocal sections were taken 0.2 um apart.
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Fig. 3 Modular, selective and reversible activation of SAR T cells
and their applied safety switches. A SAR T cells were serially
titrated (1:40, 1:60, 1:80, 0:100) in a PBMC mix. Cells were then
cocultured with MV4-11 tumor cells (E:T 10:1), with either a pan-T
cell (anti-CD3-anti-CD33, 1 ug/ml) or a SAR-specific molecule (anti-
E3-anti-CD33, 1pug/ml). B MV4-11 tumor cells were repeatedly
cocultured with SAR T cells with or without redosage of the constructs
(1 pg/ml). Anti-CD33 CAR T cells were used as a control and
cocultured with tumor cells following the same procedure (no taFv
was added) (E:T 10:1). C A modularity stress test was carried out
using anti-E3—-anti-CD33 and anti-E3—anti-CD123 molecules (1 pg/

Treatment with the SAR-taFv combination can
efficiently eradicate leukemia and enhance survival
in vivo

To probe the in vivo function of the SAR-taFv combination,
we took advantage of xenograft models of leukemia by
engrafting two different AML cell-lines, THP-1-LUC-GFP
and MV4-11-LUC-GFP, into NSG mice (Fig. 5A, D). In the
MV4-11 model, mice treated with the SAR T cell and anti-
E3-anti-CD33 taFv combination experienced major responses
to the therapy, with improved tumor control in all treated
mice, and a complete response observed in two out of seven
mice, which was not seen under any of the negative control
conditions. A direct comparison against aCD33-CAR-treated
mice was also carried out in this model. While a strong
antitumoral response could also be observed in the CAR-
treated group, the mice developed severe toxicity (appeared to
be non-disease related, likely graft-versus-host disease) and
were subsequently taken out of the experiment (Fig. 5B, C).
In the THP-1 model, a strong antitumoral response was also
observed with the SAR T cell and taFv combination, with one
out of five mice clearing the disease (Fig. SE, F).
Moreover, overall survival was significantly improved in
the SAR with anti-E3—anti-CD33 treatment group compared
to SAR with anti-E3-anti-CD19 (i.e., non-AML targeting)
treatment group in both MV4-11 (p =0.009) and THP-1
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O SART cells,aE3-aCD33 (1 pg/miwithout redosage)
W SART cells, aE3-aCD33 (1 pg/miredosage every 24 hours)

Time of coculture of SART cells with THP-1 tumor cells in a 10:1 ratio
W AtOh aE3-aCD33 and at 24h aE3-aCD33

B AtOhaE3-aCD33 and at 24h aE3-aCD123

B AtOh aE3-aCD33 and at 24h not redosed

[ AtOh not dosed and at 24h aE3-aCD33

0O Atohand 24h not dosed

T cells were transferred to new tumor cells and dosed with
1 ug/ml taFv as indicated after 24 hours.

ml). SAR or unt T cells were cocultured with THP-1 tumor cells (E:T
10:1). Readouts were carried out at 24 or 48 h. At assay start, cocul-
tures received either anti-E3-anti-CD33 molecules, anti-E3—anti-
CD123 molecules, or no molecules. At 24 h, cocultures were either
redosed with the same taFv, redosed with the other taFv against a
different target, dosed for the first time with either molecule, or not
redosed after initial dosing. At each time point, supernatants were
collected and subjected to a hIFN-y ELISA readout. For statistical
analysis, the unpaired two-tailed Student’s  test was used. Experi-
ments show mean values+SEM and are representative of three
independent experiments.

(p =0.010) models (Fig. 5B, F). Ex vivo phenotyping of
SAR T cells at the experimental endpoint (70 days post
transfer) revealed prolonged persistence in the treated mice
of the THP-1 model. These SAR" T cells predominantly
possessed an effector memory phenotype. CD25 and
CD69 staining revealed a higher expression in CD4" and
CD8™ subsets in the BM compared to the spleen, which
correlated with observed tumor burden. PD-1 staining
revealed very high expression levels in both the BM and
spleen (Supplementary Fig. 4A-D). Together these data
indicate that the SAR platform can mediate substantial
therapeutic activity in relevant AML xenograft models.

To demonstrate the modularity of the SAR-taFv combi-
nation in vivo, we treated THP-1-bearing mice with SAR
T cells plus an anti-E3-anti-CD33 or anti-E3-anti-CD123
taFv. We found that mice continuously treated with either
taFv showed comparable anti-tumoral efficacy to mice where
taFv treatment was switched after four doses, indicative that
the targeting moiety can indeed be changed without T cell
reinfusion over the course of treatment. In contrast, in mice
where taFv treatment was ceased after four doses, the disease
quickly progressed, reaching comparable levels to that of
mice that received no taFv treatment (Supplementary Fig. 5A,
B). This demonstrates the reversibility of T cell activation
induced by the taFv modules, which ceases with
module decay.
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are crucial effector cells in the context of AML therapy
[37, 38]. Importantly, there is strong preclinical and
clinical evidence showing that T cell-based treatment is an
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<« Fig. 4 SAR-taFv combination can activate SAR T cells to mediate

specific cytotoxicity against patient AML blasts and LSCs.
A Patient-derived AML blasts targeted by SAR T cells (E:T 1:1) and
an anti-E3-anti-CD33 taFv (1 ug/ml), or with controls (SAR T cells
and patient blasts, unt T cells with anti-E3-anti-CD33 and patient
blasts, unt T cells and patient blasts). In a long-term coculture assay
set-up, flow cytometry-based readouts were taken after 3, 7, and
10 days. Cells were stained for CD2 and CD33, to differentiate the
T cells and AML blasts respectively. B The percentage lysis of patient-
derived AML blasts (n=11) by SAR T cells and taFv was calculated
as aratio and compared to unt cells and AML blasts. C Patient-derived
AML blasts targeted by autologous SAR T cells (E:T 1:1) and either
an anti-E3-anti-CD33 taFv (1 pg/ml) or an anti-E3-anti-CD123 taFv
(1 pug/ml), or with controls (SAR T cells and patient blasts, unt T cells
with either taFv and patient blasts, unt T cells and patient blasts). In a
coculture assay set-up, flow cytometry-based readouts were taken after
3 days. Cells were stained for CD2 and CD33, to differentiate the
T cells and AML blasts respectively. D Following coculture (at day 3),
T cells were also stained for CD69, PD-1 and TIM-3. E Short-term
coculture (18 h) assays were set-up between 5 x 10° patient blasts and
SAR T cells (E:T 1:1) and an anti-E3—anti-CD33 (1 pg/ml) or an anti-
E3-anti-CD123 (1 pg/ml) molecule, or with controls (SAR T cells
only, anti-E3-anti-CD33 and anti-E3-anti-CD123 molecules only,
patient blasts only, unt T cells with anti-E3-anti-CD33 and anti-
E3-anti-CD123 molecules, unt T cells with AML blasts). To show
efficiency of LSC killing, blasts were stained for CD45, CD34, and
CD38, and lysis of the CD347CD38™ LSC population was quantified
as a ratio over unt T cells with patient blasts as a control condition.
F Representative flow cytometry plots from coculture experiment
described in subfigure (E). For statistical analysis, the paired two-
tailed Student’s 7 test was used. Experiments show mean values +
SEM. Experiments in subfigures (A, B, and D) are representative of six
independent long term coculture (LTC) experiments, with multiple
patients used per LTC. Experiments in subfigure (C) are representative
of two independent coculture experiments, with two to three patients
used per coculture. Experiments in subfigure E are representative of
four independent short term coculture experiments. Patient information
for each experiment is listed in supplementary Table 2. CD33 and
CD123 patient expression data is depicted in supplementary Fig. 4.

effective means of targeting and eliminating AML, includ-
ing LSCs [39].

Our studies demonstrate that SAR T cells can be redir-
ected by a SAR-specific taFv construct toward the aber-
rantly expressed AML antigens CD33 and CD123. We
could show that SAR T cells are able to specifically
recognize multiple targets on several AML cell lines,
demonstrating in vitro and in vivo efficacy. We also showed
induction of a functional synapse (MTOC polarization, F-
actin area), whereas Lck and LFA-1 organization patterns
were comparable to those reported for the IS of CAR T cells
[40]. This targeted specificity and cytolytic capacity was
furthermore demonstrated by the successful targeting of
patient-derived AML blasts and LSCs. The potent anti-
leukemic activity observed with the SAR platform, in
in vivo models and against patient-derived AML blasts, is
comparable to those observed in the preclinical testing of
AML-targeting BiTEs and CARs [30, 41, 42].

Despite its similarly broad expression on myeloid pro-
genitors and some normal B cell and activated T cell
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populations, CD33 remains a valuable antigen for the tar-
geting of AML due to its overexpression on blasts in all
AML [43, 44]. Low CD33 antigen density in subsets of
patient blasts remains a caveat of targeting this antigen [17].
To tackle this, we designed the taFv molecule with a
comparably higher CD33 binding affinity, resulting in better
targeting of blasts with low CD33 surface expression. A
higher affinity for the tumor antigen also means a taFv
matrix can be formed on the surface of the AML cells, upon
which SAR T cells, with their lower affinity to the taFv, can
mediate serial tumor cell killing more efficiently [33, 45].
This design also minimizes antibody trapping in T cell-
containing tissues, such as the spleen or lymph nodes,
reducing the potential for off-target toxicity [46, 47].

To date, anti-AML CAR T cells have shown limited
efficacy in the clinic [48, 49], with on-target off-tumor
toxicity being especially problematic in the context of tar-
geting CD33 [50, 51]. To overcome these challenges,
highly modular and controllable approaches, as well as
those that can make normal hematopoiesis resistant to tar-
geted therapy are needed. One such approach could gen-
erate hematopoietic systems unaffected by CD33-targeted
therapy [52, 53]. Our SAR platform repurposed for AML,
remains, as previously described, highly modular and con-
trollable [22]. Through the direct comparison of a pan-T cell
targeting molecule with a SAR-specific one, we could
substantiate the claim that nonengineered T cells are not
affected by the platform. This level of controllability means
the SAR platform distinguishes between two T cell popu-
lations in the patient (engineered and nonengineered),
which can be carefully selected and tailored. Once the T cell
arm of the therapy is adoptively transferred, the redirection
and subsequent activation of SAR T cells is completely
dependent on the taFv. Clearance of the taFv, in the event of
toxicity or on-target-off-tumor activity, would reverse SAR
T cell activity. Further or sequential targeting of the AML
through the redirection of pre-existing SAR T cells could
then be achieved through the introduction of a new taFv
with a different AML specificity. In the event of target
downregulation as an escape mechanism following treat-
ment (the most prevalent resistance mechanism observed
following blinatumomab treatment in ALL patients), plat-
form modularity would again be advantageous. Further-
more, an additional safety layer is ensured by the unique
expression of EGFRVIII on SAR T cells (otherwise only
expressed on pathologic tissues, such as gliomas), thus
depletion with cetuximab as another safety switch is pos-
sible if required [22]. Taken together, the SAR platform
aligns the advantages of antibody therapy (controllable
dosing and reversibility) with that of adoptive T cell therapy
(potent anti-tumoral effectors).

Many approaches have emerged attempting to make
CAR T cells more modular and controllable. These
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include but are not restricted to the SUPRA CAR (with
tunable availability and affinity) [54], CAR T cells using
the synNotch receptor (that can induce transcription of
CAR expression to target a second antigen) [55], bispe-
cific CARs (can target two tumor antigens inter-
changeably) [56] and suicide CAR T cells (such as those
using the inducible caspase 9 system, whereby small

Luminescence

6000 10000

molecules can activate apoptosis independent of CAR
activation) [57]. The SUPRA CAR has the potential to
improve the broader applicability and modularity of CAR
T cells. The published data however does not show dur-
able in vivo efficacy, while the controllability data (in
sparing cells with lower antigen expression) is
suboptimal.
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<« Fig. 5 Treatment with the SAR-taFv combination can efficiently

eradicati kemia and survival in vive. A Schematic
overview of the experimental setup for (B and C). NSG mice were
inoculated i. v. with 2x 10° MV4-11-LUC-GFP tumor cells. Mice
were treated with a single i. v. injection of T cells. Antibody treatment
was given by several i. p. injections of the anti-E3-anti-CD33 mole-
cule (2.8 pg/injection) or a control anti-E3—anti-CD19 molecule (2.8
pg/injection), as indicated by the arrows in the figure. Treatment
groups were as follows: SAR T cells and anti-E3-anti-CD33 (n=7),
SAR T cells and anti-E3-anti-CD19 (n = 6), SAR T cells only (n =5),
anti-E3-anti-CD33 only (n=6), PBS (n=6), and anti-CD33 CAR
T cells (n=5). B Percentage survival readout. ¥ indicates sacrifice of
mice suffering from CAR-related toxicity. C In vivo imaging data
displaying luminescent signal in counts for all experimental groups
from treatment day onwards (Days 0, 7, 14, 17, 21, 28, and 42).
D Schematic overview of the experimental setup for (E and F). NSG
mice were inoculated i. v. with 10° THP-1-LUC-GFP tumor cells.
Mice were treated with a single i. v. injection of T cells with or without
the anti-E3-anti-CD33 molecule (2.8 ug /injection) or a control anti-
E3-anti-CD19 molecule (2.8 ug /injection). Treatment groups were as
follows: SAR T cells and anti-E3-anti-CD33 (n = 5), SAR T cells and
anti-E3-anti-CD19 (n=35), SAR T cells only (n=5), anti-E3-anti-
CD33 only (n=35), and PBS (n =5). F Percentage survival readout.
G In vivo imaging data displaying luminescent signal in all experi-
mental groups from treatment day onwards (Days 0, 24, 28, 38, 45, 52).
For statistical analysis of survival data, the log-rank test was applied. All
in vivo experiments were carried out twice. One representative experi-
ment is shown per xenograft model.

1 h

Furthermore, its applicability and tailoring toward spe-
cific disease settings, such as AML, is yet to be shown [54].
Bispecific CAR T cells are already in clinical testing (anti-
CLL-1-anti-CD33; NCT03795779), though given the
interpatient LSC diversity, it is unlikely that any two-
antigen combination would suffice in eradicating disease
across patient cohorts. By comparison, our platform gives
more freedom in tailoring a patient-specific combination
therapy. As mentioned, the AML setting stands to benefit
from improved target selectivity. Application of the syn-
Notch CAR system could improve safety and reduce
myeloid toxicity [55]. Despite this, the system still lacks
modularity, an important feature for improved targeting of
heterogeneous leukemic stem cell populations in AML. A
big challenge in the CAR system is autonomous signaling
[58]. This is in contrast to the SAR-taFv platform which
provides a functionally inert molecule only triggered by the
addition of a specific taFv but not by any other known
molecule in the body.

Furthermore, many of the modular CAR approaches
(such as switchable CAR T cells) rely on the introduction of
a neoepitope for selective targeting [59], which comes with
immunogenicity issues driving either anti-drug immune
responses and dampening activity or potentially triggering
toxicities or all of it. SAR T cells and their triggering taFv
are fully human or humanizable proteins which markedly
reduces immunogenicity risks. Despite the appeal, suicide
systems in CARs is a rather brute approach that eliminates
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all effector cells and requires additional genetic modifica-
tions. Importantly, the ability to deplete CAR T cells in the
event of toxicities remains to be demonstrated clinically.
These approaches have been comprehensively reviewed by
Darowski et al. [60].

Perhaps the greatest challenge hindering the success of
adoptive T cell therapy in AML is target specificity, which
results from disease heterogeneity and diverse antigen
expression on LSCs. A recent AML proteomic and tran-
scriptomic study revealed a series of differentially expressed
AML-specific antigens, out of which came the rationale that
systematic therapeutic combinations would be ideal in the
context of AML therapy [18]. This approach was given
clinical relevance after a coexpression profile of LSC mar-
kers was described for AML patients [17]. The authors
found CD33, CDI123, CLLI, TIM3, and CD244 to be
ubiquitously expressed on AML cells both at diagnosis and
relapse stages, and further stressed the benefits of a dual
targeting approach for AML. Thus, despite CD33 being
expressed on the vast majority of LSCs, the importance of a
modular approach with the capacity to simultaneously, or,
in the event of antigen escape (or clonal heterogeneity),
sequentially target other AML-specific antigens is clear, and
is further evidenced by previous work [2, 61].

A strength of our platform—its modularity, stands to
benefit from the significant research that has already been
carried out on many AML targets as stand-alone targeted
therapies [16, 46, 62]. Thus, the repurposing of this
knowledge might be a fast and effective method to accel-
erate the pre-clinical development of the approach. As
specific taFv molecules can be tailored individually, the
potential for combinatorial approaches will only be limited
by the testing and approval of the separate molecules. The
SAR platform still stands to benefit from certain optimiza-
tions. Amongst these is the modulation of SAR surface
expression, an approach that has been successfully applied
to the CAR T cell setting [63]. In addition, while advanta-
geous, the short half-life of the taFv will likely require
regular infusions, which could present hurdles in the form
of practicality and cost.

Collectively, we could comprehensively demonstrate that
AML-specific taFvs can be effectively used to target AML
in a controllable manner. While further development and
more extensive testing are required before its application in
a clinical setting, the SAR platform undoubtedly offers new
solutions to the ever-challenging AML disease setting.
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