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2. Introductory summary  

2.1 Background 

Atherosclerosis, in particular ischemic heart disease and stroke, accounted for 27 % 
of the mortality worldwide in 2019 making cardiovascular disease (CVD) the most 
common cause of morbidity and mortality worldwide (1). These numbers have been 
increasing in recent decades driven by the higher life expectancies, which we were 
able to achieve though the advances in medical knowledge and technology, and the 
prevailing sedentary lifestyle especially in developed countries (2). Similar, older age 
combined with sedentary lifestyle increased the prevalence of cardio-metabolic risk 
factors like obesity and diabetes (2). 

In the early stages of cardiovascular research emphasis was put on the discovery of 
the mechanisms governing the functions of the heart and its associated circulatory 
systems like the discovery of the pulmonary circulation by Ibn al Nafis in the 13th 
century (3). The twentieth century saw the introduction of cohort studies (4), which 
have since been extensively applied in cardiovascular research to uncover its risk 
factors and the mechanisms involved in disease development and progression (5). 

Early cohort studies of CVD like the Framingham study unveiled the association of 
important risk factors with CVD like hypertension (6), and blood cholesterol levels (6, 
7). These findings have been repeatedly replicated and expanded upon in other stud-
ies including reports on the role of cardiometabolic risk factors in CVD’s pathogenesis 
like obesity (8), diabetes (8), and metabolic syndrome (9). 

Diabetes is an established risk factor of CVD (10). Diabetic patients do not only have 
higher risk of developing CVD among other diabetic complications, but they are also 
more prone to much severer forms of the disease (10). These observations are the 
background behind the current clinical practice guidelines emphasizing on tight con-
trol of diabetes in CVD high risk patients (11, 12).  

Further studies on the health effects of diabetes draw the attention to a peculiar clus-
tering of metabolic risk factors, leading to a much greater risk of CVD compared to 
diabetes alone (13). This clustering was called many names, for example syndrome 
x (13) and later the metabolic syndrome (MetS) (9). The definition of the syndrome 
changed over time and it is now defined as having at least three of five possible com-
ponents namely abdominal obesity, high blood pressure, decreased levels of high-
density lipoprotein (HDL), increased levels of low-density lipoprotein (LDL) and higher 
fasting glucose levels (9, 14). 
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Studies on the role of the different metabolic risk factors of CVD have suggested 
insulin resistance and its subsequent dysregulation in carbohydrate and lipid metab-
olism as a common pathway. However, the constellation of risk factors like that ob-
served in MetS remains elusive to explanation, pushing more of the research efforts 
toward the study of single risk factors of CVD like LDL (11). 

Discovery of the correlation between cholesterol level and atherosclerosis like coro-
nary artery disease (CAD), opened the door to studies into the lipid subtypes and 
their roles in CVD (15). Driven by the reported correlation between cholesterol level 
and atherosclerosis like CAD, research on the role of LDL in the pathophysiology of 
atherosclerosis culminated with the identification of new drugs and preventive 
measures, the most successful of which so far is Proprotein convertase subtil-
isin/kexin type 9 (PCSK9) inhibitors (16, 17).  

The introduction of molecular epidemiology in CVD research had a great impact on 
the field and our current understanding of CVD pathophysiology. Different layers of 
the molecular cascade offer different insights into cardiovascular physiology and dis-
ease. Proteins, the products of genes, are the workhorse inside the cell. Modulated 
expression of genes results in differences in protein concentration with subsequent 
modulations of cellular functions (18). Proteomics reflect not only gene expression, 
translation and post-translational modifications but also sheds the light on protein-
protein interactions and the interaction with other molecular layers of the physiological 
and pathological processes (18-20). 

Proteomics has been under constant development with recent advances in mass 
spectrometry allowing for the measurement of much more proteins in one sample 
(19). The introduction of aptamer-based proteomics allows us to measure even more 
proteins in one small sample (21), with some platforms measuring more than 5000 
proteins in each sample (20). 

In the current thesis, we aimed to use molecular level proteomics data investigating 
the cardiometabolic risk factors diabetes and MetS. Benefitting from the recent ad-
vances in proteomics, we used the aptamer-based protein measurements to unveil 
new associations with our outcomes. Additionally, we integrate available genetic as-
sociation studies’ results with our results to run a two-sample Mendelian randomiza-
tion analyses aiming to prioritize our results and/or potentially uncover causal rela-
tions. 

2.2 Aims of this study 
In this study, we aimed to investigate the associations between plasma measured 
proteins and cardio-metabolic disorders namely type 2 diabetes (T2D) and MetS 
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cross-sectionally and - when follow up data was available - longitudinally. We then 
assessed the replicated results regarding pathway classification. Starting with the 
proteome-wide significant proteins, we intended to build protein risk scores to predict 
incident disease as well as assess their use as individual biomarkers. Furthermore, 
we utilized the two sample Mendelian randomization (MR) technique to overcome the 
limitation of observational studies in determining the direction of the association and 
in differentiating correlation from causation. Our MR analyses results could also be 
used as a prioritization tool. Additionally, we applied the MR analysis in both causality 
directions, when applicable, to conclude effect directions (22, 23). 

2.3 Methods 

2.3.1 Participating studies  

For the first author papers, we used the data of two main studies in our analyses: the 
KORA (Cooperative Health Research in the Augsburg Region) cohort and the HUNT 
study (The Trøndelag Health Study). Detailed description of both studies has been 
reported before (24, 25). In short, the KORA is a cohort study with participants re-
cruited from southern Germany, while HUNT included participants recruited from the 
county of Trøndelag in Norway (22, 23).  

Both KORA and HUNT were reviewed and approved by respective local ethics com-
mittees. Both studies adhered to the rules of Helsinki with written informed consent 
collected from each participant. In both studies, each participant was extensively in-
terviewed and examined to collect clinical and demographic data. Blood was also 
collected and stored for later OMICs measurement (22, 23).  

As a discovery study, we used the subsample of the KORA F4 survey with available 
proteomics data for the cross-sectional analysis and the follow up survey KORA FF4 
for the longitudinal analysis. As a replication study, we used the HUNT 3 study for the 
cross-sectional analysis and extracted follow up data from hospital and primary care 
records for the follow up analyses (22, 23).  

Detailed information on the sample size and selection is available in the methods 
section of each paper (22, 23). 

2.3.2 Proteomics data 

Proteomics data used in both cohorts were measured using the aptamer-based tech-
nique “SOMAscan” (21). Technical information on the platform has been published 
elsewhere (21). In short, the aptamer-based technique works by having one aptamer 
that specifically binds to one protein (21). Multiple washing steps are then applied to 
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increase specificity by washing non-specific protein-aptamer complexes (21). The ap-
tamers are then quantified as a proxy of protein concentration on a Deoxyribonucleic 
acid (DNA) microarray in relative fluorescence units (21).  

To standardize the proteomics measurement, we log2 transformed the data and then 
standardized it by subtracting the mean and dividing by the standard deviation (22, 
23). 

2.3.3 Outcome definition, confounders, and association analysis 

In both manuscripts, we aimed to utilize definitions that reflect clinically applied ones. 
Extensive details on outcome definition and choice of confounders could be found in 
the methods section of each manuscript (22, 23). Briefly, for type 2 diabetes, depend-
ing on availability, we used the validated clinically defined variables. In KORA, the 
self-reported type 2 diabetes variable was validated using clinical available data as 
well as oral glucose tolerance test (OGTT) measurements (26). In HUNT, self-re-
ported variable, due to lack of OGTT measurements, was validated using primary 
health and hospital data (23).  

For MetS we used the definition as per Alberti et al. (14). Participants were catego-
rized as MetS if they met 3 out of 5 predefined criteria. The criteria were having 1) 
waist circumference of at least 94 cm in men and 80 cm in women, 2) fasting triglyc-
eride levels of at least 150 mg/dl, 3) HDL lower than 40 in men and 50 in women, 4) 
blood pressure of at least 130mmHg systolic or 85 diastolic or previously diagnosed 
hypertension and 5) fasting glucose level of at least 100 mg/dl or previously diag-
nosed diabetes (22). 

To calculate the association between proteins and respective outcome of each man-
uscript, we applied logistic regression models (22, 23).For each outcome we ran a 
proteome-wide analysis adjusted for a predefined set of confounding factors with one 
model per each protein (22, 23).  

In manuscript one, we applied the false discovery rate (FDR) (27) and in the second 
manuscript we applied Bonferroni correction to account for multiple testing. 

2.3.4 Biomarker discovery analyses 

We built and tested the performance of protein risk scores as predictive tools for each 
of the studied outcomes (22, 23). First, we used the least absolute shrinkage and 
selection operator (LASSO) (28) to statistically select proteins with the highest pre-
dictive value. We then later tested the performance of our newly developed scores 
using the Area Under the receiver operating characteristic curve (AUC) statistic (29). 
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2.3.5 Integration of molecular data to infer causality 

Finally, we applied two-sample Mendelian randomization to explore causality of our 
results. Details of this analytical methods have been extensively described elsewhere 
(30, 31). 

In short, Mendelian randomization is an instrumental variable analysis, which was 
adopted from economics to biology (32). Genotype, which is randomly allocated at 
birth, is used as an instrumental variable (IV) in an analysis mimicking clinical trials 
to infer causality of an exposure of interest on an outcome of interest (31, 32). The 
IV, which is significantly associated with the exposure is used to estimate the causal 
effect of that exposure on the outcome (30-32).  

Multiple assumptions need to be met in MR as illustrated in Figure 1: the IV must be 
associated with the exposure. If the IV is associated with the outcome, it must be only 
associated through the exposure and not through any other pathways or confounders 
(30, 31, 33). 

 
Figure 1: assumptions of Mendelian randomization analysis. A) The instrumental variable is associ-
ated with the exposure, associates with the outcome only through the exposure. B) The instrumental 

variable does not associate with the outcome through other independent pathways. C) The instru-
mental variable does not associate with the outcome through confounders. 

2.4 Summary to article 1: Proteomics of type 2 diabetes 
Diabetes is one of the well-known early-identified risk factors of CVD (34). Diabetic 
patients don’t only have a higher prevalence of CVD than the normal population, they 
are also susceptible to the development of much severer forms of CVD (34). There-
fore, a great emphasis on the tight control of diabetes has been recommended by 
CVD guidelines like those from the European society of cardiology (ESC) (35) and 
the American Heart Association (AHA) (11). 
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Through the application of proteomics, we aimed to unravel the proteins associated 
with both prevalent and incident T2D, explore their utility as biomarkers and to inves-
tigate their causal framework (23).  

For proteome-wide association study (PWAS), we used logistic regression with T2D 
as the outcome in both cross-sectional and longitudinal analyses (23). We applied 
one model per protein and all models were adjusted for age, sex, body mass index 
(BMI), smoking status, and current hypertension at baseline (23).  

For prevalent T2D, 24 out of the 85 KORA FDR significant proteins replicated in 
HUNT (23). With incident T2D, 3 out of the 10 KORA FDR significant proteins repli-
cated in HUNT (23). Replicated proteins included proteins previously reported to be 
associated with T2D and successfully identified new proteins (23).  

Aminoacylase-1, the only protein overlapping replicated results of prevalent and inci-
dent T2D, is one of the newly identified proteins (23). Aminoacylase-1, an enzyme 
that deacylates N-acylated L-amino acids other than proline and aspartate (36), has 
been found to be increased in hepatocytes (37) and decreased in omental lipocytes 
(38) of obese individuals, pointing to its potential and complex role in obesity. More-
over, aminoacylase-1 was found to be associated with the Framingham risk score, 
which predicts cardiovascular risk (39). These results point to the role of aminoacyl-
ase-1 as a potential link between both entities. Further investigation of the role of 
aminoacylase-1 in obesity, T2D and CVD is required. 

The replicated proteins with incident T2D included previously reported associations 
namely insulin growth factor binding protein 2 and growth hormone receptor (40, 41). 

Likewise, prevalent T2D protein associations replicated known association including 
mass spectrometry results like sex hormone binding globulin (SHBG) (42), renin (43) 
and gelsolin (44).  

Analysis of prevalent type 2 diabetes also uncovered novel associations including 
Peptide YY (PYY), Tumor necrosis factor-inducible gene 6 protein (TNFAIP6), Cere-
bral dopamine neurotrophic factor (CDNF), WNT Inhibitory Factor 1 (WIF1) and 
Transforming Growth Factor Beta Receptor 3 (TGFbR3). Some of these have been 
reported to be associated with diabetic complications like CVD and atherosclerosis 
for example TNFAIP6, CDNF, WIF1, TGFbR3, and PYY (45-49). 

To explore the predictive power of our newly discovered protein-associations, we 
modified the German diabetes risk score (GDRS) model (50) using variables availa-
ble in our data. We then compared our protein extended model to the modified GDRS 
model. In general, the protein extended model showed only modest improvement 
over the original model, suggesting that protein measurement is not yet suitable for 
clinical application (23). While the cost of protein measurement using aptamer-based 
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techniques is not high, the added predictive value is not significantly high enough to 
justify such cost. 

Utilizing Mendelian randomization analyses, we could infer causality of the relation 
between several proteins -with available instrumental variables- and T2D. SHBG 
showed a suggestive harmful causal effect on T2D (23). SHBG is reportedly impli-
cated in the pathogenesis of T2D particularly insulin resistance (42). On the other 
direction of causality, we could show potential causal effects of T2D on Cathepsin Z 
and renin with an effect direction identical to that of observational results (23). 

A strength of this study is the use of SOMAscan proteomics data, which enables the 
measurement of more than a thousand proteins representative of a wide range of 
pathways (21). We were able to replicate our results in the HUNT study allowing for 
better generalizability. We used readily available genetic association data to infer 
causality of our protein associations as well as the causal effect direction (23). 

We tried to our best to address our study’s limitations. The SOMAscan platform -as 
an aptamer-based platform- is liable to probe cross reactivity and non-specific binding 
(51). We confirmed that our replicated proteins have not been reported to have such 
problems (23). We could not replicate the rigorous T2D definition applied in KORA in 
the HUNT study due to the lack of oral glucose tolerance test data in HUNT. However, 
we used available data from hospital and primary care records to validate the T2D 
variable in HUNT (23). 

Proteins are dynamic molecular players and are therefore under constant changes. 
Because of the nature of our study design, we were not able to investigate these 
dynamic changes. While we applied rigorous analytic strategies in our causal anal-
yses, these results should be cautiously interpreted with the problems of MR analyses 
including but not limited to pleiotropy in mind (30, 52). 

2.5 Summary to article 2: Proteomics of metabolic syndrome 
The aim of this second manuscript was to investigate the link between proteomics of 
MetS, which comprises a group of metabolic risk factors of CVD (22). Insulin re-
sistance, visceral obesity, a harmful lipid profile in the form of increased LDL and 
decreased HDL and increased blood pressure are the components of MetS. All of 
which are proved risk factors of CVD and in particular atherosclerosis, plaque for-
mation and instability (53). 

Although the syndrome has been described decades ago, its definition has been un-
der constant change with different experts and societies proposing different defining 
components and cutoff points. To overcome this, we used the harmonized definition 
of MetS in both studies (14).  
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Our proteome-wide analyses with prevalent MetS yielded 116 protein associations, 
of which we could replicate 53 in the HUNT study. Proteome-wide study with incident 
MetS yielded 14 proteins. Due to data unavailability in the HUNT study, we were not 
able to replicate the results of incident MetS (22).  

The associations of incident MetS overlapped to a great extent with those associated 
with prevalent MetS. Soluble advanced glycosylation end product-specific receptor 
(sRAGE) was exclusively associated with incident MetS (22).  

Our results included known associations like leptin (54), thus replicating the previous 
reports of MetS protein associations. We also report new associations like NTR do-
main-containing protein 2 and endoplasmic reticulum protein 29 (22).  

We evaluated the role of our associated proteins as potential biomarkers using 
LASSO to select a subset of proteins with the highest predictive value. Our selected 
diagnostic model comprised eight proteins and had an AUC of 0.75 in KORA (22). 

Finally, we studied the causal framework governing our observational results by ap-
plying two-sample Mendelian randomization techniques. We revealed probable 
causal effects of apolipoprotein E2, apolipoprotein B and proto-oncogene tyrosine-
protein kinase receptor on MetS (22). 

2.6 Research potential 

In the current thesis we demonstrated the potential of high throughput proteomics 
and its integration with genetic data. The same approach could be applied to larger 
datasets and proteomics assays increasing power and providing a wider pathway 
coverage.  

Analyses of population subgroups of cardiometabolic risk factors, for example inves-
tigating the proteomic association and causal framework of people with CVD and di-
abetes compared to those without diabetes, would offer a much-needed insight into 
the pathophysiological mechanisms behind the observed differences in CVD-risk at-
tributed to each of these subgroups. 

Additionally, there is great potential in the integration of metabolomics data with the 
proteomics, which would complement information obtained from proteomics data 
analysis, although such integration could prove hard to interpret especially due to the 
limitations of currently available statistical methods (55). 

The combination of different layers of the molecular data to use in individualized med-
icine to identify and correctly label patient subgroups and identify new treatments and 
preventive measures specifically tailored for these subgroups, might be of great value 
to maximize these treatments’ effect and avoiding or reducing their side effects.  
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2.7 Conclusion 
Though the use of state-of-the-art proteomics’ measurement technique, we were able 
to investigate the association of the metabolic risk factors of CVD: type 2 diabetes 
and MetS. Our results replicated previously published association, thus reflecting the 
integrity of the aptamer-based proteomics technique and revealed new protein asso-
ciations like Aminoacylase-1 with T2D and NTR domain-containing protein 2 with 
MetS.  

The overlap between the T2D and MetS associated proteins underlines the potential 
involvement of common pathways in the pathophysiological processes leading to 
both diseases and their associated complications. 

By integrating the genetic data with proteomics data, we were able to investigate the 
causality framework of our results and to prioritize them.  
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With an estimated prevalence of 463 million affected,
type 2 diabetes represents a major challenge to health
care systems worldwide. Analyzing the plasma pro-
teomes of individuals with type 2 diabetes may illumi-
nate hitherto unknown functional mechanisms underlying
disease pathology. We assessed the associations be-
tween type 2 diabetes and >1,000 plasma proteins in the
Cooperative Health Research in the Region of Augsburg
(KORA) F4 cohort (n 5 993, 110 cases), with subsequent
replication in the third wave of the Nord-Trøndelag
Health Study (HUNT3) cohort (n 5 940, 149 cases). We
computed logistic regression models adjusted for age,
sex, BMI, smoking status, and hypertension. Addition-
ally, we investigated associations with incident type 2 di-
abetes and performed two-sample bidirectional Mendelian
randomization (MR) analysis to prioritize our results.

Association analysis of prevalent type 2 diabetes
revealed 24 replicated proteins, of which 8 are novel.
Proteins showing association with incident type 2 di-
abetes were aminoacylase-1, growth hormone re-
ceptor, and insulin-like growth factor–binding protein
2. Aminoacylase-1 was associated with both prevalent
and incident type 2 diabetes. MR analysis yielded nom-
inally significant causal effects of type 2 diabetes on
cathepsin Z and rennin, both known to have roles in
the pathophysiological pathways of cardiovascular
disease, and of sex hormone–binding globulin on type
2 diabetes. In conclusion, our high-throughput pro-
teomics study replicated previously reported type 2
diabetes–protein associations and identified new candi-
date proteins possibly involved in the pathogenesis of
type 2 diabetes.
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Type 2 diabetes is a significant cause of morbidity and
mortality, with an estimated worldwide prevalence of 463
million patients, one-half of whom are undiagnosed (1). It
is a complex, multifactorial disease characterized by an
interplay of both genetic and nongenetic factors that lead
to insulin resistance and hyperinsulinemia (1,2). More-
over, type 2 diabetes causes widespread microvascular and
macrovascular complications, resulting in significant health
care expenditure (1).

The proteomics of type 2 diabetes, the investigation of
a set of proteins within different tissues of diabetic animal
models, and the comparison of patients with diabetes with
healthy control subjects have enabled the discovery of new
protein–type 2 diabetes associations (3–5). Examples of
associations include adiponectin (3), leptin (5), and in-
sulin-like growth factor–binding protein 2 (IGFBP-2) (4).
Of particular clinical interest is the study of type 2 diabetes
associations with plasma proteins, which reflect systemic
effects and may serve as predictive biomarkers (3,5–7).

The integration of genetic and proteomic knowledge
has provided new insight into the pathophysiology of type
2 diabetes. The best example is Mendelian randomization
(MR), a method used to infer causality in observational
study settings (4,8). Previous MR studies of biomarkers
and type 2 diabetes have suggested causal protective roles
for proteins like adiponectin, b-carotene, N-terminal proB-
type natriuretic peptide, and sex hormone–binding glob-
ulin (SHBG) as well as causal harmful roles of delta-6
desaturase and ferritin (7).

Here, we use a highly multiplexed aptamer-based pro-
teomics platform to analyze the associations between prev-
alent type 2 diabetes and 1,095 plasma proteins in the
Cooperative Health Research in the Region of Augsburg
(KORA) study. We replicate our results in the independent
Nord-Trøndelag Health Study (HUNT) study and investi-
gate associations with incident type 2 diabetes using
follow-up data from KORA and HUNT. Moreover, we
test the performance of our newly discovered biomarkers
to predict incident type 2 diabetes when added to an
adapted version of the updated German Diabetes Risk
Score (GDRS) (9). We then evaluate these newly identified
proteins using the protein-protein interaction resource
STRING (10). Finally, we applied two-sample bidirectional
MR analysis (11) to assess causality and prioritize the newly
discovered relationships.

RESEARCH DESIGN AND METHODS

Study Populations

KORA Cohort
The KORA study comprises independent samples from
Augsburg in southern Germany (12). In the current study,
we used a subsample of 1,000 individuals randomly se-
lected from the participants of the KORA F4 survey (N 5
3,080, performed 2006–2008) with deep phenotyping data
(n 5 1,800) (13). Detailed clinical and sociodemographic
information was collected. Data from the KORA FF4 survey

(performed 2013–2014) represents the 7-year follow-up
of KORA F4. The ethics committee of the Bavarian
Medical Association (Berlin, Germany) reviewed and ap-
proved the study, and all participants gave written in-
formed consent.

HUNT Cohort
HUNT is a prospective population-based cohort from Nord-
Trøndelag County in Norway (14). We used the HUNT3
survey (n 5 1,117 with proteomics measurements, per-
formed 2006–2008) for the validation of the KORA study
results. The HUNT study collected detailed sociodemo-
graphic and clinical information. We used linked primary
care and hospital registries for information on diabetes
status at 9 years follow-up. All study participants provided
written informed consent.

Proteomics Measurement
Proteins were measured in fasting and nonfasting plasma
samples in KORA and HUNT, respectively, using the
SOMAscan platform as described previously (13,15). In
summary, plasma and bead-coupled aptamers, each of which
has a high affinity toward a specific protein, were incu-
bated. After washing steps, bead-bound proteins were
biotinylated, and complexes comprising biotinylated target
proteins and fluorescence-labeled aptamers were photo-
cleaved off the bead support and pooled. Following re-
capture on streptavidin beads and further washing steps,
aptamers were eluted and quantified as a proxy to protein
concentration by hybridization to custom arrays of aptamer-
complementary oligonucleotides. On the basis of standard
samples included on each plate, the resulting raw inten-
sities were processed using a data analysis workflow that
included hybridization normalization, median signal nor-
malization, and signal calibration to control for interplate
differences (16). Raw intensities are reported in relative
florescence units.

In KORA, one sample failed SOMAscan quality control,
leaving 999 samples for analysis. Of the 1,129 SOMAmer
probes (SOMAscan assay version 3.2), 29 failed SOMAscan
quality control. We also removed the five probes recom-
mended by the SOMAscan assay change log issued on 22
December 2016, leaving 1,095 probes for analysis. For
replication, we used the HUNT probes that passed quality
control.

Definition of Outcome and Model Covariates
In KORA, type 2 diabetes was defined as self-reported
disease validated by the responsible physician or medical
chart review or as current use of glucose-lowering medi-
cation. All participants without known diabetes were assigned
to receive a standard 75-g oral glucose tolerance test (3).
Prevalent type 2 diabetes refers to participants with the
disease at the time of blood sample collection, and incident
refers to those developing type 2 diabetes after that time
point within a 7- and 9-year follow-up period in KORA and
HUNT, respectively.
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In HUNT, prevalent type 2 diabetes was self-reported,
which we validated using clinical data from hospitals and
primary care registries using the ICD-10 code E11 and the
International Classification of Primary Care, Second Edi-
tion, code T90. We identified incident cases of type 2 di-
abetes from the same registries using identical codes.

We classified participants of both cohorts who partic-
ipated in leisure time physical activity for at least 1 h/week
as physically active (more details are available in the Sup-
plementary Material). Current hypertension was defined in
KORA as having a systolic blood pressure $140 mmHg,
diastolic blood pressure $90 mmHg, and/or use of antihy-
pertensive medication. In HUNT, we used hospital and
primary care data and ICD-10 codes I10–I15 and Inter-
national Classification of Primary Care, Second Edition,
codes K86 or K87 to identify participants with hypertension.

Drugs were assessed in KORA by asking the participants
to bring the packages of their medication and supple-
ments with them to their study center visit. Using database
software (17), medications were identified using Anatom-
ical Therapeutic Chemical codes, medication identifier bar
code, or product name.

Statistical Analysis
Preprocessing of the quality controlled SOMAscan data
was the same in both cohorts and involved log2 trans-
formation and (0, 1) standardization by subtracting the
per-cohort mean and dividing by the per-cohort SD to
allow easier interpretation of the odds ratios (ORs) per SD
of the protein.

Proteome-Wide Analysis
Using logistic regression, we ran two proteome-wide anal-
yses in KORA: associations between proteins with preva-
lent type 2 diabetes and with incident type 2 diabetes. For
each of the two outcomes, we ran one model per protein
(i.e., 1,095 models per outcome) and adjusted for the
potential confounders age, sex, BMI, smoking status, and
current hypertension at baseline. We then replicated the
results in HUNT using the same model. We excluded
participants from both cohorts with missing values for
the confounders, which led to the sample sizes of 993 and
940 for KORA and HUNT, respectively. For the analysis
with incident type 2 diabetes, we further excluded all
participants with prevalent type 2 diabetes, resulting in
sample sizes of 881 and 794 for KORA and HUNT, re-
spectively. We used the false discovery rate (FDR) Benjamini-
Hochberg method separately for the outcomes to account
for multiple testing. An association was considered statis-
tically significant at FDR ,0.05.

We replicated significant results in HUNT using the
same model. We considered proteins replicated at FDR
,0.05, with FDR calculated on the basis of the number of
significant proteins in KORA. To examine whether anti-
diabetic drug intake influenced the replicated associations,
we ran sensitivity analyses by including the drugs of interest
as confounders one at a time.

Data Analytics of Replicated Proteins
The candidate proteins were processed through the Pharos
(18) platform, experimental Gene Ontology (19) terms,
Kyoto Encyclopedia of Genes and Genomes (KEGG) (20)
pathways, human disease association data from the GWAS
Catalog (21), Online Mendelian Inheritance in Man (22),
and the text-mining DISEASES platform (23) as well as
through phenotype data from the corresponding mouse
ortholog knockouts (24). We mined these resources for
data on the potential associations between the candidate
proteins and type 2 diabetes.

Prediction of Incident Diabetes
We applied a biomarker discovery strategy to investigate
whether proteins significantly associated with incident type
2 diabetes in KORA could be used for prediction of incident
type 2 diabetes. These were 10 proteins, of which 1 failed
quality control in HUNT. We used KORA as a training data
set and HUNT as a test data set and used an adapted version
of GDRS, a diabetes risk score that was trained in 21,845
participants of the European Prospective Investigation into
Cancer and Nutrition Potsdam (EPIC-Potsdam) study with
a mean follow-up time of 7 years, as a benchmark (9). More
details on the GDRS are available in the Supplementary
Material.

Adaptation of the GDRS was necessary because some of
the variables were missing from one or both cohorts. We
defined smoking status using only information on current
and former smoking per se without regard to the number
of cigarettes smoked. We used the average of the original
GDRS score weights for each smoking category to repre-
sent our combined categories (former: [151 45] / 25 30;
current: [23 1 77] / 2 5 50). Family history of diabetes
was defined in KORA as having at least one parent or
sibling with diabetes and in HUNT, as having at least one
parent, sibling, or child with diabetes. We calculated the
risk of a positive family history by averaging the original
GDRS of having one parent, both parents, or at least one
sibling with type 2 diabetes ([56 1 106 1 48] / 3 5 70).
Our final adapted GDRS was calculated as follows: 5.1 3
age in years 1 7.6 3 waist circumference in cm – 2.7 3
height in cm 1 47 3 hypertension status 2 2 3 physical
activity (at least 1 h/week) 1 30 3 former smoking 1
50 3 current smoking 1 70 3 family history of type 2
diabetes.

We tested prediction performance of all models using
the receiver operating characteristic area under the curve
(AUC) and applied the DeLong test to compare AUCs of
nested models. First, we added the proteins to the adapted
GDRS model and applied the least absolute shrinkage and
selection operator (LASSO) (25) for model selection in
KORA. LASSO shrinks the sum of the absolute values of
the regression coefficients, forcing some to be set to 0, thus
performing a form of model selection. The LASSO l was
chosen by cross-validation using the squared error for Gauss-
ian models. The GDRS was calculated in each cohort and
used as a score that was fixed by setting its penalty factor
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to 0 to prevent any shrinkage by LASSO. We then com-
pared the performance of the LASSO protein-extended
GDRS model to the adapted GDRS model. We assessed the
calibration of the LASSO-selected model using calibration
plots (26). Moreover, we tested the performance of the
proteins as single predictors on top of the adapted GDRS
model.

MR
We attempted to infer causality of the replicated proteins
associated with type 2 diabetes by applying two-sample
bidirectional MR. Figure 1 shows the summary of the
pipeline for the causal inference analysis. In summary, we
extracted single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) from published genome-wide
association study (GWAS) summary statistics of European
ancestry if they passed the Bonferroni threshold of P ,
5e-8. We extracted the IVs from the meta-analysis of type
2 diabetes GWAS studies by Xue et al. (27) (N 5 455,607)
and the GWAS studies of SOMAscan-measured proteins by
Sun et al. (28) (N 5 3,301), Suhre et al. (13) (N 5 1,000),
and Emilsson et al. (29) (N 5 5,457) for proteins. We
identified ambiguous palindromic SNPs, defined as SNPs
with A/T or G/C alleles and an effect allele frequency of
;0.5 using the cutoff points defined by the TwoSampleMR
package in R (30). We replaced these with a proxy SNP,
defined as a SNP with r2 .0.85 with the SNP in question,
when available, or excluded them from further analyses

Figure 1—MR analysis flowchart. aClumping refers to the process of selecting only the independent IVs (i.e., those that are not in linkage
disequilibrium [LD] with one another) using the cutoff LD r2 .0.001. bHarmonizing the data refers to ensuring that the effects of the IV on the
exposure and the outcome reflect the same strand effect.
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(31). We then clumped the SNPs, which implies removing
SNPs in linkage disequilibrium with the lead SNP using the
r2 cutoff 0.001. We did not manually prune the final list of
IVs. Furthermore, IVs selected for proteins needed to be in
cis (i.e., within 1 Mb of the protein-coding gene as per
Human Genome Assembly GRCh37.p13).

We proceeded to extract the results of these IVs or of
one of their proxies from the outcome’s GWAS. For pro-
teins, priority was given to results from Sun et al. (28)
because of the larger sample size, followed by Suhre et al.
(13) dependent on availability.

We used the Wald ratio to check for causality (32). In
cases of more than one IV, we used the random effects
model of the inverse variance–weighted meta-analysis to
combine the Wald ratio estimates of all IVs (8,32). For
sensitivity analyses, whenever there was more than one IV,
we ran the MR‐Egger regression model to look for hori-
zontal pleiotropy in our causal models (33) and leave-one-
out analysis and forest plots to identify outliers among
these IVs that would be driving the results in a certain
direction and examined scatter plots to check for outliers.

Analytical steps are summarized in Supplementary Fig.
1. All analyses were done using R version 3.5.1 software
(The R Foundation for Statistical Computing). For MR
analysis, the TwoSampleMR package of R version 0.4.22
was used (30).

Data and Resource Availability
Informed consents given by KORA study participants do
not cover data posting in public databases. However, the
KORA data are available given approval of online requests
at the KORA Project Application Self-Service Tool (https://
epi.helmholtz-muenchen.de). The HUNT data can be accessed
given approval of applications to the HUNT Research Centre
(https://www.ntnu.edu/hunt/data). The data used in the MR
analysis are publicly available and can be accessed through
https://cnsgenomics.com/content/data (Xue et al. [27]), https://
www.phpc.cam.ac.uk/ceu/proteins (Sun et al. [28]), https://

metabolomics.helmholtz-muenchen.de/pgwas/ (Suhre et al.
[13]), and www.sciencemag.org/content/361/6404/769/
suppl/DC1 (Emilsson et al. [29]). Example code for the
analytic steps of the article can be accessed at https://
github.com/maelhadad/T2D_SOMAscan_Proteomics.

RESULTS

Descriptive Statistics of the Study Populations
Table 1 and Supplementary Table 1 show the baseline
characteristics of both cohorts and their follow-up subsets,
respectively. HUNT participants were on average older and
comprised more men.

Association Results of Plasma Proteins With Type 2
Diabetes
The proteome-wide analysis with prevalent type 2 diabetes
yielded 85 FDR-significant proteins (Supplementary Table
2), of which 24 successfully replicated in HUNT (Table 2
and Fig. 2A). Of these, osteomodulin was most strongly
associated (on the basis of KORA P value) with an OR-per-SD
increase in protein level of 0.61 (95% CI 0.47–0.77) in KORA
and of 0.65 (0.53–0.79) in HUNT. Among the positively
associated proteins, peptide YY (PYY) had the strongest
association (1.34 [1.1–1.62] in KORA and 1.58 [1.32–1.92]
in HUNT).

To assess whether the proteome panel was associated
with future type 2 diabetes, we performed a proteome-
wide analysis with incident type 2 diabetes using the same
model, which yielded 10 FDR-significant protein associa-
tions (Supplementary Table 3). Of these, aminoacylase-1,
growth hormone receptor, and IGFBP-2 replicated in
HUNT (Table 3 and Fig. 2B). Adiponectin failed quality
control in HUNT, and thus, replication was not possible.
Among the replicated proteins, aminoacylase-1 showed
the strongest association (OR 1.78 [95% CI 1.34–2.37]
in KORA and 1.6 [1.26–2.05] in HUNT). Interestingly,
aminoacylase-1 overlapped between the replicated results
of both prevalent and incident type 2 diabetes.

Table 1—Baseline characteristics of the prevalent study populations

Variable KORA (n 5 993) HUNT (n 5 940) P value*

Age (years) 59.31 (43–79) 69.03 (31.6–99.4) ,0.001

Sex female 514 (51.8) 245 (26.1) ,0.001

BMI (kg/m2), mean (SD) 27.79 (4.58) 28.36 (3.96) 0.003

Waist circumference (cm), mean (SD) 94.51 (13.81) 100.01 (11.01) ,0.001

Physical inactivity 376 (37.9) 472 (49.2) ,0.001

Smoking status ,0.001
Never 423 (42.6) 234 (24.9)
Former 422 (42.5) 504 (53.6)
Current 148 (14.9) 202 (21.5)

Family history of diabetes 312 (38.1) 280 (31.6) 0.005

Hypertension 396 (39.9) 389 (41.4) 0.531

Data are mean (range) or n (%) unless otherwise indicated. *Continuous variables were tested for a difference between the two
populations using t tests and categorical variables with x2 tests with continuity correction.
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Additionally, we assessed the concordance of the effect
estimates across the cohorts. Of 85 KORA FDR-significant
proteins associated with prevalent type 2 diabetes, only 7 had
different effect directions, but none of these was nominally
significant inHUNT (Fig. 3A). For incident type 2 diabetes, two
proteins showed opposite effect directions, with neither of
these reaching nominal statistical significance (Fig. 3B).

Overlap With Known Type 2 Diabetes Genetic and
Protein Associations
To assess the overlap between our results and known type
2 diabetes associations, we compared our results to gene-
based results described by Xue et al. (27). Furthermore, we
compared our replicated proteins with protein lists of in-
terest published by the Human Diabetes Proteome Project,
namely the 1,000 diabetes-related proteins, the human islet
of Langerhans proteome, the rodent b-cell proteome, and
the human blood glycated proteome (34). Of the 26 unique
replicated proteins, 18 overlapped with at least one list.
Eight proteins have not been previously found to be related
to type 2 diabetes (Supplementary Table 4).

Data Analytics of Replicated Proteins
Supplementary Table 5 shows information extracted from
Pharos for our replicated proteins. a-L-Iduronidase, cathepsin
A, and cathepsin Z shared the same lysosomal pathway
association according to KEGG (20).

Investigating Potential Effects of Drugs on Type
2 Diabetes–Protein Associations in KORA
None of the replicated protein-incident type 2 diabetes
associations showed loss of significance when adjusting for

any of the investigated drugs. On the other hand, three of
the replicated associations with prevalent type 2 diabetes
lost statistical significance when adjusting for antidiabetic
medication intake (Supplementary Table 6 and Supple-
mentary Fig. 2). All the associations retained the same
direction of effect apart from PYY, which showed an opposite
effect after adjusting for antidiabetic medication and, more
specifically, metformin.

Prediction of Incident Type 2 Diabetes
Starting with the nine proteins associated with incident
type 2 diabetes in KORA available in HUNT, we evaluated
whether a subset of them selected using LASSO would
improve the predictive performance of the adapted GDRS
benchmark model (9). LASSO selected five proteins, namely
transforming growth factor-b receptor type 3 (TGFbR3),
tartrate-resistant acid phosphatase type 5, pappalysin-1,
afamin, and scavenger receptor cysteine-rich type 1 protein
M130 (sCD163). The LASSO-selected protein-enhancedmodel
showed improvement in both KORA and HUNT (GDRS
protein-extended AUC 0.84 [95% CI 0.79–0.89] and 0.67
[0.61–0.72]; GDRS-only AUC 0.77 [0.71–0.83] and 0.66
[0.60–0.72], respectively); however, according to the Delong
test, the AUC improvement in HUNT was not statistically
significant (P 5 0.72) (Supplementary Fig. 3). The calibra-
tion plot of the LASSO-selected model in HUNT yielded an
intercept of 0.23 and a slope of 0.53 (Supplementary Fig. 3).
The intercept of the calibration plot examines the difference
of means of predicted and observed risk. In HUNT, it is.0,
thus showing higher observed type 2 diabetes cases in
HUNT as those predicted. This could be attributed to
longer follow-up in HUNT (9 years vs. 7 years in KORA)

Figure 2—Volcano plot of type 2 diabetes results in KORA, where proteins that replicated in HUNT are labeled. A: Results of the proteome-
wide analysis with prevalent type 2 diabetes in KORA. B: Results of the proteome-wide analysis with incident type 2 diabetes in KORA.
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and to the fact thatHUNT is older thanKORA and therefore
has more cases of type 2 diabetes. The slope of calibration is
0.53 in HUNT, which indicates a possible overfitting of the
model or the need for coefficient shrinkage in HUNT that
could also be attributed to the heterogeneity between the
study populations in terms of patient characteristics and
outcome definition. The training data set used gold stan-
dard screening to define type 2 diabetes, where HUNT did
not apply a similar definition and would therefore have
hidden cases and measurement error. Therefore, the out-
come being predicted for HUNT (and defined by KORA) is
slightly different from the outcome observed.

We further tested the performance of individual pro-
teins as predictors of incident type 2 diabetes in KORA and
validated our models in HUNT (Supplementary Fig. 4). The
following proteins showed relatively similar performance
in both cohorts: aminoacylase-1 (KORA AUC 0.78 [95% CI
0.73–0.84]; HUNT AUC 0.71 [0.65–0.77]), growth hor-
mone receptor (KORA AUC 0.77 [0.71–0.83]; HUNT AUC
0.70 [0.64–0.76]), and IGFBP-2 (KORA AUC 0.78 [0.72–
0.84]; HUNT AUC 0.73 [0.68–0.79]).

MR Analysis of Replicated Plasma Proteins and Type
2 Diabetes in KORA
Using up to 120 SNPs as genetic instruments, we inves-
tigated whether type 2 diabetes had a causal effect on the
26 replicated proteins from both the prevalence and the
incidence analyses (Supplementary Table 7 and Supple-
mentary Fig. 5). For cathepsin Z (MR inverse variance–
weighted b 5 0.13; P 5 2.00e-03) and renin (0.08; P 5
3.15e-02), a nominally significant causal effect of prevalent
type 2 diabetes was observed, each with the same direction

of effect as its observational results. MR-Egger analyses to
test for the presence of horizontal pleiotropy showed no
significant results for either protein (intercept P 5 0.17
and 0.1 for cathespin Z and renin, respectively). Tests and
plots to check for outliers in the IVs showed no significant
aberrations (Supplementary Figs. 6 and 7).

We also ranMR to investigate whether any of the proteins
had a causal effect on type 2 diabetes. We analyzed 13 pro-
teins for which we found independent cis-acting IVs (Sup-
plementary Table 8 and Supplementary Fig. 5). We observed
a nominally significant causal effect of SHBG on type 2 di-
abetes, with the same direction of effect as its observed
association (MR Wald b 5 20.09; P 5 2.95e-02). None of
the associations for either direction survived Bonferroni
multiple testing correction.

DISCUSSION

We report a proteome-wide analysis of type 2 diabetes in
KORA and replication in HUNT using aptamer-based affin-
ity proteomics. Our analysis yielded 26 unique replicated
significant protein associations. Of these, 24 replicated ex-
clusively with prevalent type 2 diabetes, 2 replicated exclu-
sively with incident type 2 diabetes, and aminoacylase-1
replicated with both.

Aminoacylase-1 is a zinc-dependent peptidase involved
in amino acid metabolism (35). The protein has not been
described in the context of type 2 diabetes before but has
been reported to be overexpressed in obese liver tissue,
thus linking it to obesity and inflammation (36). A further
study found aminoacylase-1 to be downregulated in obese
omental fat, which the authors hypothesized to be due to
adipocyte dysfunction caused by obesity (35). Moreover,

Figure 3—Coefficient concordance between KORA and HUNT for prevalent type 2 diabetes (A) and incident type 2 diabetes (B). Proteins
that replicated in HUNT are labeled.
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aminoacylase-1 is associated with arginine production
according to KEGG (20). Plasma levels of arginine were
found to be higher in patients with type 2 diabetes (37).

In addition to aminoacylase-1, incident type 2 diabetes
results included an inverse association with IGFBP-2 and
a positive association with growth hormone receptor.
IGFBP-2 was reported to have type 2 diabetes protective
effects and has been shown to reverse hyperglycemia in
insulin and leptin deficiency (38). These associations high-
light the role of the growth hormone axis in the early
pathophysiology of type 2 diabetes. Both growth hormone
and IGF-I are known to play roles in the insulin receptor
cascade, leading to insulin resistance (39).

The analysis of prevalent type 2 diabetes confirmed
previously known proteomic associations like gelsolin (40),
renin (41), SHBG (42), and hepatocyte growth factor re-
ceptor and revealed promising new candidate proteins,
including osteomodulin, matrilin-2, Wnt inhibitory factor-
1 (WIF1), tumor necrosis factor–inducible gene 6 protein
(TNFAIP6), cerebral dopamine neurotrophic factor (CDNF),
RGM domain family member B, TGFbR3, and SLIT and
NTRK-like protein 5, which were downregulated in type
2 diabetes cases, and lysosomal protective protein, galectin-
3 binding protein (LGALS3BP), and PYY, which were
upregulated.

Our results overlap and complement results of mass
spectrometry studies on obesity. Plasma levels of apolipo-
protein B, LGALS3BP, and SHBG were found to be altered
by sustained weight loss (43) and gastric bypass surgery–
induced weight loss (44), with the latter affecting also
plasma protease C1 inhibitor, complement C2, and gelsolin.

New protein associations with prevalent type 2 diabetes
included proteins previously reported in association with
complications of type 2 diabetes. Increased circulating
levels of LGALS3BP were linked to nonalcoholic fatty liver
disease (45) and acute venous thrombosis (46), and
TGFbR3 was reported to be associated with diabetic
nephropathy (47). TNFAIP6 and CDNF were shown to
have protective effects, while WIF1, TGFbR3, and PYY
were reported to have harmful effects, in the development
and progress of cardiovascular atherosclerotic diseases
(48–52). Along this line, members of the complement
family like plasma protease C1 inhibitor and complement
C2 were downregulated and upregulated, respectively, in
our results, and proteins from the renin-angiotensin and
kallikrein-kinin systems included the upregulated renin
and downregulated kallikrein-7.

Although our study cohorts were different regarding
the fasting status of their samples, most proteins (78 of
85 for prevalent and 8 of 10 for incident type 2 diabetes)
showed concordant effects between cohorts, while none of
the nonconcordant proteins were statistically significant in
the replication (Fig. 3). Nonetheless, fasting has significant
metabolic consequences that are expected to be reflected in
the plasma proteome and could have contributed to non-
replication in HUNT. However, there are multiple other
potential explanations for the nonreplication, perhaps

differing from one protein to another. Importantly, while
plasma protein levels differ between fasting and nonfast-
ing samples, this does not necessarily match the variance
in the protein levels caused by the disease status. As such,
disease-related variance would still be apparent despite
differences in fasting status. For example, some of our
examined proteins were reported to show differences in
their levels according to fasting status, like SHBG (53), PYY
(53), and soluble CD163 (54), yet their associations with
disease status were replicated in our study. Of the proteins
that failed replication in HUNT, MMP2 (53) and pappa-
lysin-1 (55) have been found to be affected by food intake.
However, their effect sizes were similar in both cohorts,
suggesting that fasting status may not be the primary
reason for nonreplication for most proteins.

Sensitivity analyses into the potential effect of drugs on
the type 2 diabetes–plasma protein associations showed
loss of significance of some associations after adjusting for
antidiabetic medication. The effect direction of all the re-
sultant associations remained the same except for PYY,
which showed a change of direction after adjusting for
metformin intake; however, because its effect estimate was
not significant after adjustment, it is difficult to draw any
conclusions from this.

Additionally, we evaluated the significant proteins’ abil-
ity to predict incident type 2 diabetes. The protein-extended
models showed improved performance over the adapted
GDRS benchmark model (9) in both the KORA discovery
and the HUNT replication, although the improvement was
very small and not statistically significant (P5 0.72) for the
latter. Moreover, we tested the performances of individ-
ual proteins on top of the adapted benchmark model. The
best performances in the replication cohort came from
aminoacylase-1, growth hormone receptor, and IGFBP-2,
each of which achieved approximately equal performance
in HUNT compared with KORA, results that warrant
validation in clinical trials using commercially available
ELISA kits. Because the KORA samples were taken from
individuals in a fasting state ($8 h) and HUNT samples
were taken nonfasting, these results seem to indicate
that fasting status is largely irrelevant with regard to
type 2 diabetes prediction for these candidate biomarkers.
However, fasting may potentially be relevant for other
markers, since the AUC was much smaller in HUNT com-
pared with KORA for some of the other measured bio-
markers in combination with the GDRS.

Our investigations into the causal framework governing
the relation between plasma proteins and type 2 diabetes
showed suggestive harmful causal effects of SHBG on type
2 diabetes. SHBG has been previously reported to be asso-
ciated with type 2 diabetes (42) and may be implicated in the
development of insulin resistance (42). We demonstrated it
to be negatively associated with type 2 diabetes, a causal
direction suggested by the MR analysis as well.

Causal inference analysis showed suggestive causal effects
of type 2 diabetes on both cathepsin Z and renin. In line
with previous observations, we demonstrated renin to be
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positively associated with type 2 diabetes in both obser-
vational and MR analysis results (41). The association is an
indicator of the upregulated renin-angiotensin-aldosterone
system, which is activated in obesity and type 2 diabetes,
thus contributing to cardiovascular disease complications
(41,56). Cathepsin Z is a member of the peptidase C1 family
that plays a role in lysosomal function, which might explain
its connection to diabetes through b-cell failure driven by
lysosomal degradation (57).

Study Strengths
We applied a high-throughput proteomics platform on sam-
ples from population-based cohorts for our analyses, which
enabled us to test a large number of proteins with a wide
concentration range and to generalize our results to our
samples’ respective populations. We used samples from
plasma, which is easily accessible and is the usual medium
of biomarkers. Additionally, the plasma proteome reflects
on the levels of proteins originating from a broad range of
tissues, thus giving us insight into systemic pathways.
Finally, we were able to test for the causal relationship in
both directions using publicly available data on genetic
associations with both type 2 diabetes and proteins.

Study Limitations
We are aware of several limitations to our study. First,
aptamer-based proteomics is susceptible to potential probe
cross-reactivity and nonspecific binding (28,29). However,
we verified that none of the proteins identified have been
flagged for such issues (validation data presented in Sup-
plementary Material, Supplementary Table 10, and Sup-
plementary Figs. 10 and 11). Because of the lack of oral
glucose tolerance test data in HUNT, the rigorous defini-
tion of type 2 diabetes used in KORA could not be extended,
and the discrepancy in fasting status between the cohorts
may have contributed to the limited replication of our results.
Our prediction models do not reflect the dynamic changes in
the proteome, which would require a more detailed investi-
gation. This is also true for the MR results, which reflect the
lifelong genetic risk rather than point change in single protein
levels in relation to disease status. Although, there is an
overlap between the participants of the genetic data sets used
for type 2 diabetes and proteins through KORA, none of the
associations tested using such data were significant.

Conclusion
Our proteome-wide analysis of type 2 diabetes replicated
known associations and revealed novel candidate pro-
teins. Associations with incident type 2 diabetes included
aminoacylase-1, which overlapped with prevalent type 2 di-
abetes associations. New associations with prevalent type
2 diabetes included TNFAIP6, CDNF, WIF1, TGFbR3, and
PYY, all of which are believed to play a role in the de-
velopment of cardiovascular complications, like atheroscle-
rosis. MR suggested a causal role of SHBG on type 2 diabetes,
which is in line with previous observational and MR analysis
results. It also suggested a causal effect of type 2 diabetes

on cathepsin Z and renin, both of which are known to play
a role in type 2 diabetes complications. Our results offer
insight into proteins involved in the pathogenesis of type
2 diabetes and its complications, proteins that could be
valuable drug targets for all levels of prevention.
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Annette Peters2,3,5,14* 

Abstract 

Background: The metabolic syndrome (MetS), defined by the simultaneous clustering of cardio-metabolic risk fac-
tors, is a significant worldwide public health burden with an estimated 25% prevalence worldwide. The pathogenesis 
of MetS is not entirely clear and the use of molecular level data could help uncover common pathogenic pathways 
behind the observed clustering.

Methods: Using a highly multiplexed aptamer-based affinity proteomics platform, we examined associations 
between plasma proteins and prevalent and incident MetS in the KORA cohort (n = 998) and replicated our results for
prevalent MetS in the HUNT3 study (n = 923). We applied logistic regression models adjusted for age, sex, smoking 
status, and physical activity.

We used the bootstrap ranking algorithm of least absolute shrinkage and selection operator (LASSO) to select a 
predictive model from the incident MetS associated proteins and used area under the curve (AUC) to assess its per-
formance. Finally, we investigated the causal effect of the replicated proteins on MetS using two-sample Mendelian 
randomization.

Results: Prevalent MetS was associated with 116 proteins, of which 53 replicated in HUNT. These included previously 
reported proteins like leptin, and new proteins like NTR domain-containing protein 2 and endoplasmic reticulum 
protein 29. Incident MetS was associated with 14 proteins in KORA, of which 13 overlap the prevalent MetS associated 
proteins with soluble advanced glycosylation end product-specific receptor (sRAGE) being unique to incident MetS. 
The LASSO selected an eight-protein predictive model with an (AUC = 0.75; 95% CI = 0.71–0.79) in KORA.

Mendelian randomization suggested causal effects of three proteins on MetS, namely apolipoprotein E2 (APOE2) 
(Wald-Ratio = − 0.12, Wald-p = 3.63e−13), apolipoprotein B (APOB) (Wald-Ratio = − 0.09, Wald-p = 2.54e−04) and
proto-oncogene tyrosine-protein kinase receptor (RET) (Wald-Ratio = 0.10, Wald-p = 5.40e−04).

Conclusions: Our findings offer new insights into the plasma proteome underlying MetS and identify new protein 
associations. We reveal possible casual effects of APOE2, APOB and RET on MetS. Our results highlight protein candi-
dates that could potentially serve as targets for prevention and therapy.
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Background
The metabolic syndrome (MetS) is a constellation of risk 
factors significantly increasing the risk of type 2 diabetes 
(T2D) and cardiovascular diseases (CVD) like coronary 
artery disease (CAD), stroke and heart failure [1, 2]. The 
respective risk factors are increased waist circumference, 
hypertriglyceridemia, reduced high-density lipoprotein, 
hyperglycemia and increased blood pressure. The preva-
lence of MetS has been steadily increasing in recent dec-
ades in conjunction with the obesity pandemic, driven by 
surplus eating and a sedentary lifestyle [3, 4]. It is esti-
mated that 25% of adults worldwide have MetS, causing 
significant financial impact on healthcare systems [5].

Since its conception, the nature of MetS has been 
under debate [6–9]. However, most researchers agree 
that the clustering of the above mentioned risk factors is 
more frequent than could be attributed to chance alone 
[6–9]. In the center of the debate is MetS’ pathogen-
esis, which remains in the hypothesis stage. Suggested 
common driving pathogenic pathways include visceral 
adiposity and insulin resistance with subsequent dyslipi-
demia and subclinical inflammation [6]. While the sug-
gested pathways help partly explain the clustering of risk 
factors and increased risk in some patients, they fail to 
explain the lack or incomplete clustering of those risk 
factors in others.

Recently, the introduction of omics data into CVD 
research has helped uncover molecular pathophysiologi-
cal players, an example being the identification of PCSK9 
as a drug target through genetic studies of CAD [10]. 
Omics studies with regard to cardio-metabolic risk fac-
tors have also been informative. Using the UK-Biobank 
data, a recent genetic study of MetS identified loci that 
are common to all MetS components as well as loci that 
are unique to the syndrome, i.e. not associated with the 
components themselves [11].

Proteomics, the study of proteins, can provide insight 
into the downstream players of genetics in the molecu-
lar pathogenic pathway of MetS and identify predic-
tive biomarkers or targets for drug development. 
Enabled by advances in proteomics, studies with MetS 
have expanded from single protein to multi-protein 
investigations, the largest to date featuring 249 proteins 
[12]. Reported protein associations with MetS include 
adipokines like leptin and adiponectin (ADIPOQ), liver 
secreted proteins like sex hormone binding globulin 
(SHBG) and inflammatory markers like C-reactive pro-
tein, tumor necrosis factor alpha and complement system 

proteins [13, 14]. These proteins indicate functional links 
to MetS-defining features such as insulin resistance and 
visceral adiposity, and help explain the increased risk of 
complications, like CVD, in MetS patients.

In the present study, we use a highly multiplexed, 
aptamer-based, affinity proteomics platform (SOMAs-
can™) to assess the association between 1095 blood 
plasma proteins and prevalent and incident MetS in the 
KORA cohort, and replicate our results in the HUNT 
study. The proteins assessed by the SOMAscan platform 
have been selected to represent markers of a broad range 
of biological pathways and tissue specific processes. We 
investigate the use of these proteins as biomarkers and 
explore their potential causal effects using two-sample 
Mendelian randomization (MR) [15].

Methods
Study populations
KORA cohort
The KORA study (Cooperative health research in the 
Region of Augsburg) is a population-based cohort study 
from Augsburg, southern Germany. The study was 
approved by the ethics committee of the Bavarian Medi-
cal Association. Written informed consent was obtained 
from each participant. We used KORA-F4 (conducted 
2006–2008) for cross-sectional analysis of prevalent 
MetS and its follow-up survey KORA-FF4 (conducted 
2013–2014) for the prospective analysis of incident MetS 
(mean follow-up time = 6.5, SD = 0.5  years). For both
surveys, detailed clinical and demographic information 
was collected, as was peripheral blood for later omics 
analyses. Details on the KORA cohort have been previ-
ously published [16]. A random subsample of 1000 indi-
viduals was selected from the already deeply phenotyped 
KORA-F4 study participants for proteomics measure-
ment using the SOMAscan platform. One sample was 
excluded because it failed SOMALogic quality control 
and one participant was excluded due to the lack of suffi-
cient information to define MetS leaving 998 participants 
for the final cross-sectional analysis. For the follow-up 
analysis, 371 participants with prevalent MetS and four 
participants lacking sufficient information to define inci-
dent MetS were excluded leaving 623 participants for 
analysis.

HUNT cohort
The Nord-Trøndelag Health Study (HUNT) is a pop-
ulation-based cohort from Nord-Trøndelag County in 

Keywords: Metabolic syndrome, Proteomics, Blood proteins, Mendelian randomization analysis, Diabetes mellitus, 
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Norway. We used the HUNT3 survey (performed 2006–
2008, N = 1017 with proteomics measurements) for the
replication of the KORA study cross-sectional results. 
The HUNT study collected detailed socio-demographic 
and clinical information for all participants [17]. Ten 
samples failed SOMALogic quality control and were 
excluded from further analyses. Moreover, fourteen par-
ticipants were excluded due to a lack of sufficient infor-
mation to define MetS and an additional 70 participants 
were excluded due to missing information for the covari-
ates smoking status and physical activity, leaving 923 par-
ticipants for the final cross-sectional analysis.

Proteomics measurement
The aptamer based SOMAscan platform was used to 
quantify proteins in both cohorts. Details on the platform 
[18] and its application to the KORA cohort have been
described before [19]. In brief, each aptamer was selected
to have high affinity toward a specific protein. Plasma
was incubated with the aptamer mix and then exposed
to multiple washing steps in the form of 2 bead-based
immobilization steps to eliminate unbound or unspe-
cifically bound aptamers and proteins. Finally, aptamers
were eluted from the proteins and quantified as prox-
ies to protein concentration by hybridization to custom
arrays of aptamer-complementary oligonucleotides. The
resulting raw intensities were processed with the help
of standard samples included on each plate using a data
analysis workflow consisting of hybridization normaliza-
tion, median signal normalization and signal calibration
to control for inter-plate differences [18]. The raw inten-
sities are reported as relative florescence units.

Fasting plasma samples from the KORA study were 
sent to SomaLogic Inc. (Boulder Colorado, USA) for 
analysis [19]. Of the 1129 SOMAmer aptamers (SOMAs-
can assay V3.2) 29 failed SOMAscan quality control. We 
additionally removed five aptamers as recommended by 
the SOMAscan assay change log issued on December 22, 
2016, leaving 1095 aptamers for analysis. For replication, 
we used only the HUNT aptamers that passed quality 
control [20].

MetS definition in KORA
MetS was defined according to the harmonized definition 
by Alberti et al. [21] by the presence of three or more of 
the following criteria: (1) waist circumference ≥ 94  cm 
in men or ≥ 80  cm in women; (2) fasting serum triglyc-
erides ≥ 150  mg/dl or drug treatment for elevated tri-
glycerides (fibrates); (3) serum high density lipoprotein 
cholesterol (HDL) < 40  mg/dl in men or < 50  mg/dl in 
women or drug treatment for reduced HDL (fibrates); (4) 
systolic blood pressure ≥ 130  mmHg or diastolic blood
pressure ≥ 85 mmHg or treatment with antihypertensive

medication; (5) fasting serum glucose level ≥ 100  mg/dl 
or intake of antidiabetic medication.

MetS definition in HUNT
The same definition was used for HUNT with some dif-
ferences due to the unavailability of fasting measure-
ments and information on drug treatment for elevated 
triglycerides or reduced HDL. For defining lipid compo-
nents, we applied the cut-off levels suggested by Driver 
et  al. for the diagnosis of metabolic syndrome using 
non-fasting lipid measurements [22]. For defining the 
low HDL component of MetS, we applied the same cut-
off levels as for KORA [22]. For defining high triglycer-
ides, we used a cut-off of 200 mg/dl [22]. For defining the 
hyperglycemia component, we used a cut-off of 140 mg/
dl suggested by the American diabetes association diabe-
tes diagnosis guideline to diagnose impaired glucose tol-
erance [23] or intake of antidiabetic medication.

Statistical analysis
SOMAscan data was log2 transformed and each protein 
was standardized to have a mean of zero and a SD of 1 by 
subtracting its mean and dividing by its standard devia-
tion to allow easier interpretation of the results per SD of 
log-transformed protein level.

Baseline characteristics were compared between the 
two cohorts using t-tests for continuous variables and 
chi-square tests with continuity correction for categorical 
variables.

Proteome‑wide analysis
Proteome-wide analyses to test for associations between 
prevalent and incident MetS and proteins were carried 
out using logistic regression with one model per protein. 
Each model had prevalent or incident MetS as the out-
come, the log-transformed protein level as the explana-
tory variable, and was adjusted for age, sex, smoking 
status (categorized as never smoker, former smoker and 
current smoker) and physical activity (categorized as 
active vs inactive). We applied the Bonferroni method 
to correct for multiple testing throughout the paper. For 
the proteome-wide analyses this resulted in a significance 
threshold of p < 4.6e−05 (0.05/1095).

To replicate our results for prevalent MetS, we applied 
the same model in HUNT. We considered results repli-
cated if they had consistent effect direction and survived 
Bonferroni correction calculated based on the number of 
KORA significant proteins.

Furthermore, we assessed the association of individual 
prevalent and incident MetS components with replicated 
prevalent MetS proteins and KORA incident MetS sig-
nificant results, respectively. For incident components, 
analysis was done after removing participants with MetS 
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at baseline. For each component (increased waist cir-
cumference, hypertriglyceridemia, reduced HDL, hyper-
glycemia and increased blood pressure), we applied the 
same model with the component as an outcome using the 
KORA data.

Biomarker discovery for MetS
We investigated the predictive utility of the proteins sig-
nificantly associated with incident MetS in KORA by 
utilizing the bootstrap ranking algorithm of the least 
absolute shrinkage and selection operator (LASSO) for 
model selection using the “elasso” R-package version 1.1 
[24]. LASSO attempts to shrink the coefficients of the 
model covariates to zero thus selecting the covariates 
with the best predictive ability. We applied cross-valida-
tion to select the best LASSO constraint “lambda” within 
each bootstrap iteration.

We then used the area under the receiver operating 
characteristic curve (ROC-AUC) to test model perfor-
mance calculated using the “pROC” R-package version 
1.16.2 [25]. We further assessed performance using the 
calibration plot, which examines the agreement between 
observed and fitted values of the outcome [26] and by 
comparing the performance of LASSO selected protein 
model to a baseline model based on age and sex utilizing 
the DeLong test [27].

Additionally, we tested the performance of proteins 
associated with prevalent MetS as a biomarker panel 
using KORA as a training dataset and HUNT as a test 
dataset (full details in Additional file 1).

Enrichment and protein–protein interaction network 
analyses
We used STRING [28] to evaluate the protein–protein 
interaction network of the MetS associated proteins (full 
details in Additional file 1).

Mendelian randomization analysis
We used two-sample MR to investigate potential causal 
effects of replicated proteins on MetS. Mendelian rand-
omization analysis is an instrumental variable (IV) analy-
sis, in which genetic associations are used as anchors to 
assess causal effects of an exposure of interest on an out-
come of interest. Two-sample MR entails the use of pub-
lished genetic; i.e. single nucleotide polymorphism (SNP) 
association results to obtain IVs, thus allowing the use 
of the available bigger sample sizes and meta-analyses of 
genome wide association studies (GWAS).

First, we extracted SNPs associated with the protein 
of interest from already published genetic association 
studies using data of European ancestry. We extracted 
the IVs from SOMAscan GWAS studies by Suhre et  al. 
(n = 1000) [19] and Sun BB et al. (n = 3301) [29] and the

cis only association study by Emilsson et  al. (n = 5457) 
[30].

We then identified ambiguous palindromic SNPs, 
which are SNPs with A/T or G/C alleles and an effect 
allele frequency around 0.5, using the cut-off points 
defined by the “TwoSampleMR” R-package [15]. We 
replaced the SNPs in question with an available proxy, 
defined as a SNP with r2 exceeding 0.85, or excluded 
them from further analyses [31]. To obtain a list of inde-
pendent SNPs to be used as IVs in further analyses, we 
clumped the list of SNPs using the r2 cut-off of 0.001. 
Selected IVs had to be in cis with the protein of inter-
est, i.e., within one Mb of the protein-coding gene as per 
the Human Genome Assembly GRCh37.p13. We sub-
sequently extracted the outcome summary statistics of 
the selected IVs or of one of their proxies from the MetS 
GWAS study by Lind (n = 291,107) [11].

We used the Wald ratio to estimate a causal effect if 
there was only one IV available [32]. In cases where more 
IVs were available, we applied a random effects model 
of the inverse variance weighted meta-analysis to com-
bine the Wald ratio estimates of all IVs [32, 33]. When-
ever there was more than one IV, we ran the MR‐Egger 
regression model to check for horizontal pleiotropy in 
our causal models [34], and we investigated scatter plots, 
leave-one-out analysis plots and forest plots to identify 
outliers among the IVs that could be driving the results in 
a certain direction.

All analyses were done in R version 4.0.2 (The R Foun-
dation for Statistical Computing). For MR analysis, the 
“TwoSampleMR” R-package version 0.5.5 was employed 
[15].

Results
Descriptive statistics of the study populations
Table  1 shows the baseline characteristics of both 
cohorts. The KORA sample comprised 998 participants 
with an age range of 43–75  years, of whom 515 were 
women, 371 had MetS at baseline and 147 developed 
it between baseline and follow-up. The HUNT sample 
compromised 923 participants with an age range of 31.6–
91.7 years, of whom 235 were women and 418 had MetS. 
KORA participants had significantly lower waist circum-
ference and triglyceride levels, and higher HDL levels, 
and were less often current smokers. Baseline character-
istics of the follow-up subset of KORA used in incident 
MetS analyses are shown in Table 1.

Association results of plasma proteins with prevalent MetS
The proteome-wide analysis of prevalent MetS yielded 
116 Bonferroni significant proteins, of which 51 are posi-
tively associated with MetS and 65 are negatively associ-
ated (Additional file 2: Table S1). Of these, 53 successfully 
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replicated in HUNT (Table 2; Fig. 1a). All of the 56 non-
replicated proteins available in HUNT showed concord-
ant direction of effect between the cohorts, and 35 of 
them were nominally significant in HUNT (Fig. 1b).

Among the replicated proteins, insulin-like growth fac-
tor-binding protein 2 (IGFBP2) had the lowest odds ratio 
(OR) in both cohorts per SD increase in log-transformed 
protein level, with values of 0.33 (95% CI 0.27–0.39) in 
KORA and of 0.52 (95% CI 0.44–0.62) in HUNT; and lep-
tin had the highest OR in both cohorts, with values of 3.7 
(95% CI 2.95–4.7) in KORA and 1.76 (95% CI 1.49–2.08) 
in HUNT. The correlation matrices of replicated proteins 
are shown in Additional file 1: Figure S1.

Association results of plasma proteins with incident MetS
The proteome-wide analysis of incident MetS in KORA 
yielded 14 significant protein associations at a Bonfer-
roni corrected threshold (Table  3; Fig.  2). IGFBP2 was 
the most strongly associated protein based on p-value 
(OR = 0.55; 95% CI = 0.44–0.68) and plasminogen acti-
vator inhibitor 1 (SERPINE1) had the largest magnitude 
of association (OR = 3.70; 95% CI = 2.95–4.70). The inci-
dent MetS significant proteins included 10 overlapping 
the replicated results and 13 overlapping the KORA sig-
nificant results of prevalent MetS (Fig. 2b). Only soluble 
advanced glycosylation end product-specific receptor 

(sRAGE) (OR = 0. 63; 95% CI = 0.51–0.77) was unique to
incident MetS.

MetS components analysis
For each prevalent component, we tested whether the 
prevalent-MetS-replicated proteins were also associ-
ated with the component. Each component was associ-
ated with at least 33 of these proteins, with increased 
waist circumference and hypertriglyceridemia show-
ing the highest number of associations with 50 and 48, 
respectively (Fig. 3; Additional file 2: Table S2). In total, 
18 proteins were common to all prevalent components 
(Additional file 2: Table S2).

For the incident components, increased waist circum-
ference and high blood pressure were associated with 13 
and 8 proteins out of the 14 incident MetS KORA pro-
tein associations respectively (Additional file 2: Table S3). 
ADIPOQ and IGFBP2 were associated with the four 
incident components with significant results namely 
increased waist circumference, hypertriglyceridemia, 
hyperglycemia and increased blood pressure.

Biomarker discovery
We explored the utility of proteins associated with 
incident MetS as predictive biomarkers in KORA. The 
LASSO-selected predictive model included 8 proteins 
(Additional file  2: Table  S4) and had an AUC of 0.75 

Table 1 Baseline characteristics of the study populations

* Continuous variables were tested for a difference between the two populations using t-tests and categorical variables with chi-square tests with continuity 
correction, **Differences between cohorts could not be statistically tested as KORA was measured in fasting samples and HUNT in non-fasting samples
a Mean (range)
b Number (percentage)
c Mean ± standard deviation. Hypertension was defined as having systolic blood pressure ≥ 140 mmHg and diastolic ≥ 90 mmHg or known medication-controlled 
hypertension. In HUNT we additionally used the ICD-10 codes I10–I15 of the hospital and primary care data and the codes K86 or K87 of the International 
Classification of Primary Care, Second Edition, to identify participants with hypertension

Variable Prevalent MetS Incident MetS

KORA (n = 998) HUNT (n = 923) p value* KORA (n = 623)

Agea (years) 59.3 (43–75) 68.93 (31.6–91.7) < 0.001 58.15 (43–74)

Sex  femaleb 515 (51.6%) 235 (25.5%) < 0.001 379 (60.8%)

BMIc (kg/m2) 27.77 (4.58) 28.39 (3.97) 0.002 26.21 (3.87)

Waist  circumferencec (cm) 94.56 (14.05) 100.18 (11.04) < 0.001 89.07 (11.44)

Waist hip  ratioc 0.89 (0.08) 0.96 (0.07) < 0.001 0.86 (0.08)

Physically  activeb 620 (62.1%) 468 (50.7%) < 0.001 416 (66.8%)

Smokingb < 0.001

 Never smoker 423 (42.4%) 231 (25%) 277 (44.5%)

 Former smoker 427 (42.8%) 497 (53.8%) 244 (39.2%)

 Current smoker 148 (14.8%) 195 (21.1%) 102 (16.4%)

Total  cholesterolc (mg/dl) 221.99 (38.47) 178.50 (42.34) NA** 222.83 (37.11)

HDL-  cholesterolc (mg/dl) 57.35 (15.19) 45.05 (11.25) NA** 62.84 (14.45)

Triglyceride  levelc (mg/dl) 129.06 (87.68) 161.82 (86.81) NA** 96.59 (46.08)

Hypertensiond 398 (39.9%) 382 (41.4%) 0.544 143 (23.0%)
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Table 2 Replicated results of the proteome-wide analysis of prevalent MetS in KORA and HUNT, sorted by the magnitude of the OR in 
KORA

Protein full name UniProt Gene symbol KORA (n = 998) HUNT (n = 923)

OR (95% CI) P‑value OR (95% CI) P‑value

Leptin P41159 LEP 3.70 (2.95–4.70) 4.77E-28 1.76 (1.49–2.08) 3.76E−11

Plasminogen activator inhibitor 1 P05121 SERPINE1 2.51 (2.12–3.00) 2.24E−25 1.37 (1.19–1.57) 9.99E−06

Growth hormone receptor P10912 GHR 2.33 (1.97–2.78) 3.84E−22 2.08 (1.76–2.47) 9.44E−18

Tissue-type plasminogen activator P00750 PLAT 2.17 (1.82–2.61) 1.54E−17 1.36 (1.19–1.57) 8.57E−06

Aminoacylase-1 Q03154 ACY1 2.16 (1.83–2.56) 2.95E−19 1.93 (1.64–2.30) 2.71E−14

Dickkopf-like protein 1 Q9UK85 DKKL1 1.96 (1.63–2.39) 6.02E−12 1.31 (1.15–1.51) 9.54E−05

Galectin-3-binding protein Q08380 LGALS3BP 1.85 (1.59–2.16) 3.66E−15 1.52 (1.32–1.75) 6.81E−09

GDNF family receptor alpha-1 P56159 GFRA1 1.78 (1.52–2.09) 7.06E−13 1.46 (1.27–1.70) 1.99E−07

Complement factor H P08603 CFH 1.76 (1.51–2.06) 1.44E−12 1.67 (1.42–1.98) 7.71E−10

Apolipoprotein E (isoform E3) P02649 APOE 1.73 (1.49–2.02) 1.17E−12 1.47 (1.26–1.72) 1.16E−06

Retinoic acid receptor responder protein 2 Q99969 RARRES2 1.72 (1.48–2.01) 3.04E−12 1.54 (1.33–1.80) 1.84E−08

Endoplasmic reticulum resident protein 29 P30040 ERP29 1.71 (1.46–2.00) 1.39E−11 1.40 (1.21–1.61) 3.97E−06

Complement factor I P05156 CFI 1.70 (1.46–2.00) 1.81E−11 1.36 (1.18–1.58) 2.72E−05

Proto-oncogene tyrosine-protein kinase receptor P07949 RET 1.70 (1.46–1.99) 1.19E−11 1.87 (1.59–2.21) 1.71E−13

Bone morphogenetic protein 1 P13497 BMP1 1.68 (1.44–1.97) 8.25E−11 1.40 (1.17–1.68) 2.66E−04

Afamin P43652 AFM 1.66 (1.43–1.93) 4.89E−11 1.37 (1.19–1.58) 1.28E−05

Reticulon-4 receptor Q9BZR6 RTN4R 1.65 (1.42–1.92) 7.45E−11 1.65 (1.42–1.92) 6.57E−11

Scavenger receptor cysteine-rich type 1 protein M130 Q86VB7 CD163 1.59 (1.38–1.85) 5.75E−10 1.41 (1.23–1.62) 8.61E−07

C–C motif chemokine 25 O15444 CCL25 1.57 (1.36–1.82) 1.04E−09 1.33 (1.15–1.53) 7.50E−05

E-selectin P16581 SELE 1.56 (1.34–1.82) 1.29E−08 1.68 (1.45–1.94) 3.29E−12

Ficolin-3 O75636 FCN3 1.52 (1.30–1.77) 1.15E−07 1.31 (1.13–1.52) 3.72E−04

Lysosomal protective protein P10619 CTSA 1.51 (1.31–1.76) 4.55E−08 1.29 (1.12–1.49) 4.00E−04

Cathepsin Z Q9UBR2 CTSZ 1.49 (1.29–1.73) 9.24E−08 1.42 (1.24–1.65) 1.35E−06

Thrombospondin-2 P35442 THBS2 1.43 (1.24–1.65) 7.57E−07 1.38 (1.20–1.60) 1.33E−05

C–C motif chemokine 16 O15467 CCL16 1.42 (1.21–1.68) 3.69E−05 1.34 (1.16–1.55) 5.95E−05

Insulin-like growth factor-binding protein 2 P18065 IGFBP2 0.33 (0.27–0.39) 4.63E−33 0.52 (0.44–0.62) 4.04E−14

Sex hormone-binding globulin P04278 SHBG 0.42 (0.35–0.50) 6.47E−22 0.47 (0.40–0.56) 2.86E−18

Insulin-like growth factor-binding protein 1 P08833 IGFBP1 0.43 (0.37–0.51) 1.03E−23 0.55 (0.47–0.64) 1.98E−14

Endothelial cell-specific molecule 1 Q9NQ30 ESM1 0.47 (0.39–0.56) 1.20E−16 0.68 (0.57–0.80) 1.31E−05

Netrin receptor UNC5D Q6UXZ4 UNC5D 0.48 (0.40–0.56) 8.72E−18 0.75 (0.64–0.87) 1.92E−04

WAP, Kazal, immunoglobulin, Kunitz and NTR domain-
containing protein 2

Q8TEU8 WFIKKN2 0.48 (0.41–0.57) 2.52E−18 0.65 (0.56–0.75) 3.52E−09

Brevican core protein Q96GW7 BCAN 0.50 (0.42–0.59) 4.72E−15 0.61 (0.51–0.73) 1.87E−07

Neural cell adhesion molecule 1, 120 kDa isoform P13591 NCAM1 0.51 (0.44–0.60) 6.01E−17 0.63 (0.54–0.73) 1.10E−09

Tumor necrosis factor-inducible gene 6 protein P98066 TNFAIP6 0.51 (0.44–0.60) 2.05E−15 0.65 (0.56–0.75) 5.30E−09

Wnt inhibitory factor 1 Q9Y5W5 WIF1 0.52 (0.43–0.62) 2.39E−12 0.76 (0.66–0.88) 1.62E−04

Hepatocyte growth factor receptor P08581 MET 0.52 (0.44–0.60) 1.22E−16 0.73 (0.63–0.85) 4.76E−05

Osteomodulin Q99983 OMD 0.53 (0.45–0.62) 2.38E−14 0.75 (0.65–0.87) 1.21E−04

Transforming growth factor beta receptor type 3 Q03167 TGFBR3 0.53 (0.45–0.62) 9.27E−16 0.72 (0.62–0.84) 1.78E−05

Mast/stem cell growth factor receptor Kit P10721 KIT 0.56 (0.47–0.65) 9.54E−13 0.74 (0.64–0.86) 5.65E−05

Gelsolin P06396 GSN 0.57 (0.49–0.67) 1.83E−12 0.66 (0.57–0.76) 3.50E−08

Iduronate 2-sulfatase P22304 IDS 0.59 (0.51–0.69) 2.21E−11 0.76 (0.65–0.87) 1.70E−04

72 kDa type IV collagenase P08253 MMP2 0.60 (0.51–0.69) 2.09E−11 0.64 (0.56–0.74) 3.08E−09

Neural cell adhesion molecule L1-like protein O00533 CHL1 0.60 (0.51–0.69) 2.41E−11 0.73 (0.63–0.83) 6.26E−06

Epidermal growth factor receptor P00533 EGFR 0.60 (0.51–0.70) 7.17E−11 0.73 (0.62–0.86) 2.28E−04

Interleukin-1 Receptor accessory protein Q9NPH3 IL1RAP 0.60 (0.51–0.70) 1.61E−10 0.71 (0.62–0.82) 1.61E−06

Apolipoprotein B P04114 APOB 0.60 (0.52–0.69) 9.93E−12 0.77 (0.67–0.88) 1.66E−04
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(95% CI = 0.71–0.79). Comparing the LASSO selected
predictive model to the age and sex model yielded 
a delta AUC of 0.12 in KORA, which was significant 
based on the DeLong test (Additional file 1: Figure S2). 
The top 2 performing protein were netrin receptor 
(UNC5D) with AUC = 0.66 (CI = 0.66–0.71) and ami-
noacylase-1 (ACY1) with AUC = 0.65 (CI = 0.60–0.70)
(Additional file :2Table S5).

Our investigation in the utility of prevalent MetS 
protein associations as biomarkers yielded a 15-pro-
tein diagnostic model. The model yielded lower per-
formance in HUNT with an AUC-KORA of 0.87 (95% 
CI = 0.85–0.89) and an AUC-HUNT of 0.74 (95%
CI = 0.71–0.77) (Additional file 1).

Mendelian randomization
We explored if the proteins were causal to MetS (Addi-
tional file  2: Table  S6). Of the 29 proteins for which 
we found IVs, 3 showed Bonferroni significant causal 
effects on MetS (Fig.  4), namely apolipoprotein E3 
(APOE3) (Wald-Ratio = − 0.12, Wald-p = 3.63e−13),
apolipoprotein B (APOB) (Wald-Ratio = − 0.09,
Wald-p = 2.54e−04) and proto-oncogene tyrosine-
protein kinase receptor (RET) (Wald-Ratio = 0.10,
Wald-p = 5.40e−04).

All analyses were adjusted for age, sex, smoking status and physical activity

OR; odds ratio per 1 SD increase in log-transformed protein levels

Table 2 (continued)

Protein full name UniProt Gene symbol KORA (n = 998) HUNT (n = 923)

OR (95% CI) P‑value OR (95% CI) P‑value

Neurogenic locus notch homolog protein 1 P46531 NOTCH1 0.61 (0.52–0.70) 4.64E−11 0.77 (0.67–0.88) 1.63E−04

Plasma protease C1 inhibitor P05155 SERPING1 0.61 (0.53–0.71) 3.89E−11 0.66 (0.56–0.77) 1.80E−07

Chordin-like protein 1 Q9BU40 CHRDL1 0.67 (0.57–0.79) 2.86E−06 0.72 (0.60–0.86) 4.50E−04

Thrombin P00734 F2 0.68 (0.57–0.81) 2.65E−05 0.65 (0.55–0.75) 4.13E−08

Kallikrein-8 O60259 KLK8 0.72 (0.62–0.83) 5.94E−06 0.79 (0.69–0.90) 4.12E−04

Superoxide dismutase [Mn], mitochondrial P04179 SOD2 0.73 (0.63–0.84) 2.42E−05 0.74 (0.64–0.85) 3.13E−05

Muellerian-inhibiting factor P03971 AMH 0.74 (0.64–0.85) 4.28E−05 0.77 (0.66–0.88) 4.05E−04

Fig. 1 Results of proteome-wide analysis of prevalent MetS, with replicated proteins labelled by their gene name. a Volcano plot of the results in 
KORA. b Concordance plot examining effect sizes in KORA and HUNT. OR; odds ratio per 1 SD increase in log-transformed protein levels
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Discussion
We used aptamer-based proteomics to investigate plasma 
protein associations with prevalent and incident MetS 
and, for those proteins showing a relationship with this 
syndrome, examined their utility as biomarkers and 
assessed their causal relationship with MetS. Of the 116 

proteins associated with prevalent MetS in the KORA 
F4 study, 53 successfully replicated in the HUNT3 study. 
The proteins with the largest effect estimates were lep-
tin and IGFBP2, both of which have been previously 
reported to be associated with obesity, T2D and MetS 
[35–38]. The replicated results also included 30 new 

Table 3 Bonferroni significant results of the proteome-wide analysis with incident MetS in KORA (N = 623), sorted by the magnitude
of the OR

All analyses were adjusted for age, sex, smoking status and physical activity

OR; odds ratio per 1 SD increase in log-transformed protein levels

Target full name UniProt Gene symbol OR (CI) P‑value

Plasminogen activator inhibitor 1 P05121 SERPINE1 1.82 (1.46–2.30) 2.28E−07

Growth hormone receptor P10912 GHR 1.65 (1.33–2.04) 4.63E−06

Aminoacylase-1 Q03154 ACY1 1.64 (1.30–2.09) 4.02E−05

C5a anaphylatoxin P01031 C5 1.62 (1.32–2.01) 6.52E−06

Adiponectin Q15848 ADIPOQ 0.55 (0.43–0.70) 1.83E−06

Insulin-like growth factor-binding protein 2 P18065 IGFBP2 0.55 (0.44–0.68) 8.36E−08

WAP, Kazal, immunoglobulin, Kunitz and NTR domain-
containing protein 2

Q8TEU8 WFIKKN2 0.58 (0.46–0.73) 4.09E−06

Netrin receptor UNC5D Q6UXZ4 UNC5D 0.61 (0.48–0.77) 2.82E−05

Sex hormone-binding globulin P04278 SHBG 0.61 (0.49–0.77) 3.43E−05

Iduronate 2-sulfatase P22304 IDS 0.63 (0.50–0.77) 1.84E−05

Hepatocyte growth factor receptor P08581 MET 0.63 (0.50–0.77) 1.78E−05

Advanced glycosylation end product-specific receptor, 
soluble

Q15109 AGER 0.63 (0.51–0.77) 1.10E−05

Insulin-like growth factor-binding protein 1 P08833 IGFBP1 0.63 (0.51–0.79) 4.26E−05

Interleukin-1 receptor type 1 P14778 IL1R1 0.64 (0.52–0.79) 2.64E−05

Fig. 2 Results of proteome-wide analysis of incident MetS in KORA. a Volcano plot with Bonferroni significant proteins labelled by their gene name. 
b Euler diagram showing extent of overlap between incident MetS results in KORA and prevalent MetS results in KORA and its replicated results in 
HUNT. OR; odds ratio per 1 SD increase in log-transformed protein levels
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protein associations, not previously reported to be asso-
ciated with MetS, including neural cell adhesion mol-
ecule L1-like protein (CHL1), complement factor I (CFI), 
GDNF family receptor alpha-1 (GFRA1), kallikrein-8 
(KLK8), brevican core protein (BCAN), dickkopf-like 
protein 1 (DKKL1), netrin receptor (UNC5D), NTR 
domain-containing protein 2 (WFIKKN2), and endoplas-
mic reticulum protein 29 (ERP29).

Replicated proteins overlap with the protein asso-
ciations with body mass index (BMI) and type 2 diabe-
tes. WFIKKN2, a protease inhibitor, was reported to be 
negatively associated with BMI with potential bi-direc-
tional causal effect as demonstrated by MR analysis [36]. 
ERP29, a chaperone protein, has been reported to be pos-
itively associated with BMI and to have a role in proinsu-
lin secretion [39]. Of the replicated proteins, endothelial 
cell-specific molecule 1 (ESM1), has been reported to be 
low in liver steatosis in MetS patients [40] and in macro-
albuminuria in T2D patients [41], both of which are in 
line with the negative association between ESM1 and 
MetS observed here. However, ESM1 was reported to be 
positively associated with atherosclerotic CVD [42].

Associations with incident MetS overlapped with prev-
alent MetS results, except for sRAGE, which was unique 

to incident MetS. sRAGE acts as a decoy of the RAGE 
cell surface receptor. sRAGE exogenously traps advanced 
glycation end products, therefore decreasing their harm-
ful inflammatory effects through the blockage of their 
action on RAGE. sRAGE has been previously reported 
to be inversely associated with T2D, BMI and MetS [36, 
43, 44] and was reported to lower the risk of CVD in 
T2D patients through the modulation of cardiovascular 
cell apoptosis [45]. RAGE-knockout mice were shown 
to suffer from accelerated weight gain, hypercholester-
olemia and increased insulin levels pointing to the poten-
tial complex role of the RAGE family of receptors in the 
pathogenesis of insulin resistance and obesity [46].

To assess which of the MetS components are driv-
ing our observed results, we explored potential associa-
tions between our replicated protein associations with 
prevalent MetS and the respective MetS components 
and between incident MetS significant proteins and the 
respective MetS components. In total, 18 of the 53 rep-
licated proteins were associated with all prevalent com-
ponents. Of them, five were previously reported to be 
associated with all MetS components namely leptin, 
IGFBP1, IGFBP2, tissue-type plasminogen activator 
(PLAT) and SERPINE1 [12]. Ten of these 18 proteins 

Fig. 3 Barplot showing protein associations of prevalent and incident individual MetS components with replicated prevalent MetS results (n = 53 
proteins) and KORA incident MetS results (n = 14 proteins) respectively. The abbreviations used in the y-axis for the MetS components are: Waist 
(increased waist circumference); dysglycemia (increased blood glucose level); TGs (hypertriglyceridemia); HDL (reduced HDL); BP (increased blood 
pressure)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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(leptin, IGFBP1, IGFBP2, SHBG, growth hormone recep-
tor (GHR), hepatocyte growth factor receptor (MET), 
galectin-3-binding protein (LG3BP), APOB and Wnt 
inhibitory factor 1 (WIF-1)) were previously reported to 
be associated with T2D, reflecting the shared pathogenic 
pathways between the two entities [47, 48]. Moreover, 
4 of the 18 proteins (PLAT, SERPINE1, 72  kDa type IV 
collagenase (MMP2), NCAM1) have been reported to 
be associated with CVD, providing further evidence for 
the link between CVD and MetS. However, in the present 
study MMP2 showed a negative association with MetS, 
contradicting previous reports [49]. While MMP2 has 
been reported to be increased in metabolic syndrome 
and cardiovascular disease, its deficiency has also been 
reported to be associated with metabolic and inflamma-
tory pathologies, pointing toward a complex relationship 
of MMP2 with cardiometabolic disorders [50, 51].

Of the incident MetS components, ADIPOQ and 
IGFBP2 were common to all incident components except 
for reduced HDL, which showed no protein associations. 
ADIPOQ and IGFBP2 were reported before to be associ-
ated with T2D and obesity [36, 52, 53].

Moreover, we evaluated the performance of the pro-
teins as prediction biomarkers, both as a risk score and 

as individual biomarkers. As predictors of future MetS, 
the risk score had moderate performance in KORA 
(AUC = 0.75). As single predictive biomarkers the top
five proteins included UNC5D, ACY1, SERPINE1, 
sRAGE and C5a anaphylatoxin. The lower performance 
of the proteins as biomarkers could be partly attrib-
uted to the differences in baseline characteristics of 
both cohorts and to the definition of the MetS, which 
relies on arbitrarily defined cut-off points based on risk 
assessment of its different components.

The investigation into the causal effects of proteins 
on MetS showed evidence for 2 protective casual pro-
teins—APOE3 and APOB—and one harmful, RET. 
Except for APOE3, the causal effect of the proteins had 
the same effect direction as their observational results. 
APOE3 is an isoform of the APOE gene, which is a 
protein-coding gene with two other isoforms, namely 
APOE2 and APOE4. The APOE isoforms are encoded 
by two SNPs namely rs429358-C/T and rs7412-C/T. 
The combination of rs429358-T and rs7412-T is char-
acteristic of the second isoform, of rs429358-T and 
rs7412-C is characteristic of the third isoform and of 
rs429358-C and rs7412-C is characteristic of the fourth 
isoform [54].

Fig. 4 Mendelian randomization results with MetS as outcome compared with observational effect estimates. Effect estimates represent odds 
ratios for association results and represent beta coefficients for MR with proteins as exposure
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The discrepancy between MR and observational results 
of APOE3 could be due to the fact that the causal effect 
represents lifetime exposure in comparison to the obser-
vational time point effect. Additionally, the IV used in 
the MR analysis rs1065853 with the effect allele T, is in 
LD with the T allele of the SNP rs7412. The T allele of 
the SNP rs7412 characterizes the genotype of the APOE2 
polymorphism, indicating that the MR result reflects 
the effect of APOE2 and not APOE3.APOE2 has been 
reported to be associated with lower risk of MetS in 
Uyghur ethnic men [55], with longevity [56] and with 
lower risk of Alzheimer’s disease.

Strengths and limitations
Through the use of the high throughput aptamer based 
SOMAscan platform, we assessed the association of 
MetS with a large number of proteins (1095 in total). 
The use of plasma samples allowed us to find associa-
tions which may reflect the processes of multiple tissues 
and pathways that may be involved in the pathogenesis 
of MetS; as plasma is easily accessible, our discovered 
associations may be more readily transferable for use as 
clinical biomarkers. The replication in the HUNT study 
indicates broader generalizability of our results. The 
application of MR to decipher the causal framework gov-
erning these associations will enable future investigators 
to prioritize our results toward drug target identification 
and further functional investigation of MetS.

There are a number of limitations to our study. We 
were not able to apply the same MetS definition in the 
replication study HUNT as in the discovery KORA as the 
former lacked fasting blood sample collection; however, 
we used clinically defined cut-off points of non-fasting 
measurements that reflect the same pathologies identi-
fied using fasting measurements. Notably, a study com-
paring MetS-scores defined using fasting vs. non-fasting 
samples found that both scores were linked to the devel-
opment of coronary artery disease and diabetes [57]. The 
aptamer-based technique could suffer from cross-reac-
tivity; however, our results included proteins replicating 
previously reported associations measured using tech-
niques other than SOMAscan [58]. The analysis of inci-
dent MetS were conducted in a smaller sample size than 
prevalent MetS and we could not investigate replication 
in HUNT due to the lack of follow-up data.

We applied rigorous methods in our causality analy-
sis using MR to use only valid IVs and to apply sensi-
tivity analyses to evaluate pleiotropy. However, MR is 
dependent on multiple assumptions that are hard to 
verify and test and its results should be interpreted with 
caution. Moreover, the studies we used in the causal 
analyses differed in power for the exposures and the 
outcome, with MetS GWAS having a bigger sample size 

and subsequently more power than the protein GWAS 
studies.

Conclusion
Our results provide a comprehensive analysis of the 
associations between plasma proteins and MetS. Rep-
licated results included proteins previously reported to 
be associated with cardio-metabolic traits, thus pointing 
to pathogenic pathways they share with MetS, includ-
ing insulin resistance and CVD. These proteins include 
leptin, GHR, SHBG, IGFBP1 and IGFBP2. Replicated 
results also included proteins involved in the pathogen-
esis of CVD, such as PLAT, SERPINE1 and members of 
the complement system. Our replicated results identi-
fied new proteins including ERP29, KLK8, DKKL1 and 
WFIKKN2. We identify sRAGE to be uniquely associ-
ated with the incidence of MetS, which is in line with the 
observed phenotype in sRAGE knockout mice models.

Biomarker analysis identified an eight proteins predic-
tive panel with an AUC of 0.75. Moreover, causal analysis 
using Mendelian randomization suggested causal effects 
of APOE2, APOB and RET on MetS. Further functional 
studies are needed to clarify their roles in the pathogen-
esis of MetS.
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