Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Radical I/Mg- and I/Zn-Exchange Reactions of Alkyl lodides and Co-Catalyzed Cross-Couplings Using Organozinc Reagents

Alisa Sunagatullina

aus Tuimazy, Russland

2022

<u>Erklärung</u>

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Paul Knochel betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.

München, 17.11.2022

Alisa Sunagatullina

Dissertation eingereicht am 17.11.2022

1. Gutachter	Prof. Dr. Paul Knochel
2. Gutachter	Prof. Dr. Oliver Trapp
Mündliche Prüfung am:	14.12.2022

This work was carried out from February 2019 to November 2022 under the guidance of Prof. Dr. Paul Knochel at the Department of Chemistry of the Ludwig-Maximilians-Universität, Munich, Germany.

I would like to thank Prof. Dr. Paul Knochel for giving me an opportunity of doing my PhD in his research group, for his great support and for the guidance and encouragement throughout the course of my research.

I am also very grateful to Prof. Dr. Oliver Trapp for agreeing to be the second reviewer of this thesis, as well as Prof. Dr. Konstantin Karaghiosoff, Prof. Dr. Hendrik Zipse, Prof. Dr. Franz Bracher, and Prof. Dr. Anja Hoffmann-Röder for their interest shown in this manuscript by accepting to be referees.

I also would like to thank Alexander Kremsmair and Dr. Lucie Grokenberger for the careful correction of this manuscript.

I would also like extend my gratitude to all present and past members of the Knochel group for the warm, nice and friendly atmosphere. Special thanks to "Cobalt-Team": Ferdinand Lutter, Lucie Grokenberger and Maximilian Hofmayer. Thanks also to all members of the Lab F2.017, it was such a great time together! Especially, for the priceless support and being a great cooking-team during pandemic. I thank my best friend Alexander Kremsmair for being always there for me through the research ups and downs and for putting up with me.

I would like to thank Dr. Vladimir Malakhov, Peter Dowling and Yulia Tsvik for their invaluable support and help.

I thank my friend Lutz for his endless support.

I want to thank my parents, Ilvira and Shamil, and especially my sister Nelli and her lovely family: Albert, Alim and Mariam and my cousin Dinara for their endless support and love.

Parts of this thesis have been published:

1. **A. Sunagatullina**[‡], M. S. Hofmayer[‡], D. Brösamlen, P. Mauker, P. Knochel, Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α-Bromolactones and Related Derivatives, *Org. Lett.* **2020**, *22*, 1286-1289.

2. **A. S. Sunagatullina**, F. H. Lutter, P. Knochel, Preparation of Primary and Secondary Dialkylmagnesiums by a Radical I/Mg-Exchange Reaction Using *s*Bu₂Mg in Toluene, *Angew. Chem. Int. Ed.* **2022**, e202116625.

3. **A. S. Sunagatullina**, K. Karaghiosoff, P. Knochel, Iron-Catalyzed Radical Zincations of Alkyl lodides, *Adv. Synth. Catal.* **2022**, DOI: 10.1002/adsc.202200907.

^{*} These authors contributed equally to the work.

Co-author:

4. S. K. Rout, A. Kastrati, H. Jangra, K. Schwärzer, **A. S. Sunagatullina**, M. Garny, F. Lima, C. E. Brocklehurst, K. Karaghiosoff, H. Zipse, P. Knochel, Reliable Functionalization of 5,6-Fused Bicyclic *N*-Heterocycles Pyrazolopyrimidines and Imidazopyridazines *via* Zinc and Magnesium Organometallics, *Chem. Eur. J.* **2022**, *28*, e202200733.

5. A. Kremsmair, **A. S. Sunagatullina**, L. J. Bole, P. Mastropierro, S. Graβl, H. R. Wilke, E. Godineau, E. Hevia, P. Knochel, Exploiting Coordination Effects for the Regioselective Zincation of Diazines using TMPZnX·LiX (X = Cl, Br), *Angew. Chem. Int. Ed.* **2022**, e202210491.

Fais ce que dois, advienne que pourra

List of Abbreviations

Ac	acetyl		
acac	acetylacetonate		
Alk	alkyl		
aq.	aqueous		
Ar	aryl		
Boc	<i>tert</i> -butyloxycarbonyl		
bipy	2,2'-bipyridine		
Bu	butyl		
calc.	calculated		
Су	cyclohexyl		
δ	chemical shifts in ppm (parts per million)		
DME	1,2-dimethoxyethane		
DMF	<i>N,N</i> -dimethylformamide		
DMPU	<i>N,N</i> '-dimethylpropyleneurea		
EI	electron impact ionization		
equiv	equivalent		
ESI	electrospray ionization		
Et	ethyl		
GC	gas chromatography		
HRMS	high resolution mass spectrometry		
<i>i</i> Pr	<i>iso</i> -propyl		
IR	infared		
J	coupling constant (NMR)		
Μ	molarity		
m.p.	melting point		
Ме	methyl		
MS	mass spectrometry		
NMP	N-methyl-2-pyrrolidone		
NMR	nuclear magnetic resonance		
Ph	phenyl		
ppm	parts per million		
R	organic substituent		
rt	room emperature		
sat.	saturated		
<i>s</i> Bu	sec-butyl		
Т	temperature		

TBS	tert-butyldimethylsilyl		
<i>t</i> Bu	<i>tert</i> -butyl		
TEMPO	2,2,6,6-tetramethyl-1-piperidinyloxyl		
Th	thienyl		
THF	tetrahydrofuran		
TIPS	triisopropylsilyl		
TLC	thin layer chromatography		
TMEDA	N, N, N', N'-tetramethylethylenediamine		
TMP	2,2,6,6-tetramethylpiperidyl		
TMS	trimethylsilyl		
Ts	4-toluenesulfonyl		

Table of Contents

I Introduction	1
1 Preparation of Organomagnesium Reagents	1
1.1 Direct Oxidative Addition of Magnesium to Organic Halides	2
1.2 Halogen/Magnesium-Exchange Reactions	3
1.3 Directed Metalation with TMP-bases Complexed with LiCI	5
2 Mechanism of Grignard Reagent Formation	7
3 Preparation of Organozinc Reagents	10
3.1 Oxidative Insertion of Zinc Dust to Organic Halides	10
3.2 Transmetalation	12
3.3 The Halogen/Zinc-Exchange	13
3.4 Directed Metalation	14
II Objectives	17
III Results and Discussion	18
1 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α -Bromolactones and Related Derivatives	
1.1 Introduction	18
1.2 Optimization of the Reaction Conditions	19
1.3 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α-Bromolactone 75	20
1.4 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with <i>α</i> -Bromolactone 78	21
1.5 Synthesis of an artificial rotenoid derivative MOM-protected munduserol	23
2 Preparation of Primary and Secondary Dialkylmagnesiums by A Radical I/Mg- exchange Reaction Using sBu ₂ Mg in Toluene	25
2.1 Introduction	25
2.2 Optimization of Reaction Conditions	26
2.3 Preparation of Primary Dialkylmagnesiums by A Radical I/Mg-exchange Read Using sBu₂Mg in Toluene	
2.4 Preparation of Secondary Substituted Dicyclohexylmagnesiums by A Radical I/Mg-exchange Reaction Using <i>s</i> Bu ₂ Mg in Toluene	
2.5 Preparation of Chiral Secondary Dialkylmagnesiums by A Radical I/Mg-excha Reaction Using <i>s</i> Bu₂Mg in Toluene	-
2.6 Mechanistic Probes	34
2.6.1 Radical clocks	34
2.6.2 An Atom-Transfer Cyclization of the Cyclic Iodo-Acetale 96	34
3 Iron-Catalyzed Radical Zincations of Alkyl Iodides	36
IV Summary	43
V Experimental Part	47
1 General Information	47

1.1 Solvents	47
1.2 Purification	47
1.3 Analytical Data	47
1.4 Reagents	49
2 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with <i>a</i> -Bromolactones and Related Derivatives	51
2.1 Optimization of Reaction Conditions	51
2.2 Limitations of Method	52
2.3 Preparation of the α -Bromolactones	53
2.4 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Reagents with α-Bromolactones	57
2.5 Total Synthesis of the Rotenoid Derivative MOM-Protected Munduserol (80)	71
3 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg- exchange Reaction using <i>s</i> Bu ₂ Mg in Toluene	78
3.1 Optimization of the Preparation of Primary Dialkylmagnesiums	78
3.2 Protecting group effect on the stereoconvergence of the diorganomagnesium formation	79
3.3 Typical procedure of preparation 3-substituted secondary alkyl iodides	70
3.5 Typical procedure of preparation 5-substituted secondary any foundes	19
3.4 Preparation of Starting Materials	
	80
3.4 Preparation of Starting Materials	80 90
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using <i>s</i>Bu₂Mg in Toluene 	80 90 15
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using <i>s</i>Bu₂Mg in Toluene 3.6 Mechanistic studies 	80 90 15 15
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using <i>s</i>Bu₂Mg in Toluene 3.6 Mechanistic studies 1 3.6.1 Optimization of the reaction of cyclic iodo-acetal 96 	80 90 15 15
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using sBu₂Mg in Toluene 3.6 Mechanistic studies 3.6.1 Optimization of the reaction of cyclic iodo-acetal 96 3.6.2 Reaction with the cyclic iodo-acetal 96 in the presence of styrene 	80 90 15 15 15
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using sBu₂Mg in Toluene 3.6 Mechanistic studies 3.6.1 Optimization of the reaction of cyclic iodo-acetal 96 3.6.2 Reaction with the cyclic iodo-acetal 96 in the presence of styrene 3.6.3 Radical clocks 	80 90 15 15 15 16 20
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using sBu₂Mg in Toluene 3.6 Mechanistic studies 3.6.1 Optimization of the reaction of cyclic iodo-acetal 96 3.6.2 Reaction with the cyclic iodo-acetal 96 in the presence of styrene 3.6.3 Radical clocks 4 Iron-Catalyzed Zincations of Alkyl Iodides 	80 90 15 15 15 16 20 20
 3.4 Preparation of Starting Materials 3.5 Preparation of Primary and Secondary Dialkylmagnesiums <i>via</i> a Radical I/Mg-exchange Reaction using sBu₂Mg in Toluene 3.6 Mechanistic studies 3.6.1 Optimization of the reaction of cyclic iodo-acetal 96 3.6.2 Reaction with the cyclic iodo-acetal 96 in the presence of styrene 3.6.3 Radical clocks 4 Iron-Catalyzed Zincations of Alkyl Iodides 4.1 Optimization of the Reaction Conditions 	 80 90 15 15 16 20 20 20

I Introduction 1 Preparation of Organomagnesium Reagents

Discovered by *Victor Grignard* at the University of Lyon in France in 1900,¹ Grignard reagents became one of the most used organometallic reagents. Easily prepared and with broad potential for application in organic synthesis, these new organomagnesium reagents turned out to be very successful. The importance of this contribution to synthetic chemistry was recognized early and rewarded with the Nobel Prize in Chemistry in 1912 for *Victor Grignard "for the discovery of the so-called Grignard reagent, which in recent years has greatly advanced the progress of organic chemistry"*. Today, organomagnesium reagents have found numerous applications in industrial processes and a variety of these organometallics have been published about the preparation and use of Grignard reagents² as well as their chemical and physical properties.³ In addition, mechanistic investigations of the formation and studies of the structures in solution and in solid state have been described in the literature.^{2,3,4}

 ¹ a) V. Grignard, *Compt. Hebd. Séances Acad. Sci.* **1900**, *130*, 1322; b) V. Grignard, Dissertation "Thèses sur les combinaisons organomagnesienes mixtes et leur application à des synthèses", University of Lyon, Lyon, France, **1901**.
 ² a) H. G. Richey Jr, *Grignard Reagents: New Developments*, Wiley-VCH, Weinheim, **2000**; b) M. S. Kharasch, O. Reinmuth, *Grignard Reactions of Nonmetallic Substances*, Prentice-Hall, New York, **1954**; c) G. S. Silverman, P. E. Rakita, *Handbook of Grignard Reagents*, Marcel Dekker, New York, **1996**; d) P. Knochel, *Handbook of Functionalized Organometallics*, Wiley-VCH, Weinheim, **2005**.

³ W. E. Lindsell, *Comprehensive Organometallic Chemistry II*, Vol. 1, Pergamon Press, Oxford, **1995**, Chapter 3, pp. 72-78 and references therein, b) F. H. Lutter, M. S. Hofmayer, J. M. Hammann, V. Malakhov, P. Knochel in *Organic Reactions, Vol. 100* (Ed.: S. E. Denmark), Wiley, Hoboken, **2019**, pp.63-116.

⁴ Z. Rappoport, I. Marek, *The Chemistry of Organomagnesium Compounds*, Wiley-VCH, Weinheim, **2008**.

1.1 Direct Oxidative Addition of Magnesium to Organic Halides

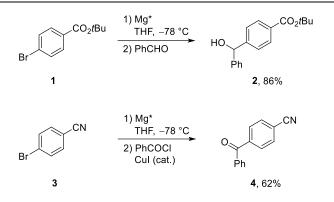
Due to their high reactivity organomagnesium species are very sensitive to air and moisture. Therefore, organomagnesium reagents are only stable and can be handled in an inert atmosphere. Most Grignard reagents of type RMgX are prepared by direct oxidative addition of magnesium turnings to organic halides (R-X) in aprotic polar solvents^{2,5} such as diethyl ether or THF (Scheme 1).

Magnesium turnings are normally covered by "an oxide" film which passivates the metal surface. That is why during preparation of Grignard reagents a typical induction period after which an exothermic reaction starts is observed. Usually, small amounts of 1,2-dibromoethane or I_2 are used to initiate radical reaction.^{2,6}

In 1929 *Schlenk* and his son discovered that Grignard reagents are present in solution as an equilibrium with the corresponding diorganomagnesium R_2Mg and magnesium dihalide MgX₂ (so-called "*Schlenk equilibrium*") (Scheme 1).⁷ Their ratio is highly dependent on the solvent, temperature and nature of the halide. For example, in 1,4-dioxane MgX₂ is precipitating and the equilibrium is shifted to R_2Mg .

RX + Mg $\xrightarrow{\text{solvent}}$ RMgX (X = I, Br, CI) 2 RMgX $\xrightarrow{}$ R₂Mg + MgX₂

Scheme 1. Preparation of Grignard reagents by oxidative addition and Schlenk equilibrium.

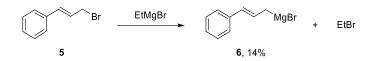

However, the preparation *via* direct oxidative addition is not compatible with many sensitive functional groups. In addition, it is also not very suitable for industry due to the exothermic nature of the reaction which makes it more difficult to control and the needed flammable solvents. A higher tolerance of functional groups can be achieved using "*preactivated*" metal species, such as Rieke magnesium (Mg*). Thus, treating ester **1** with Rieke magnesium in THF at -78 °C followed by reaction with benzaldehyde led to alcohol **2** in 86% yield (Scheme 2).⁸ The nitrile group of aryl bromide **3** was also tolerated in this reaction and after copper-catalyzed acylation gave ketone **4** in 62% yield (Scheme 2).⁸

⁵ D. Seyferth, *Organometallics* **2009**, *28*, 1598-1605.

⁶ W. E. Lindsell, Comprehensive Organometallic Chemistry I, Vol. 1, Pergamon Press, Oxford, 1982.

⁷ W. Schlenk, W. Schlenk, Jr., *Ber. Dtsch. Chem. Ges.* **1929**, 62, 920.

⁸ a) R. D. Rieke, *Science* **1989**, *246*, 1260-1264; b) T. P. Burns, R. D. Rieke, *J. Org. Chem.* **1987**, *52*, 3674-3680; c) J. Lee, R. Velarde-Ortiz, A. Guijarro, J. R. Wurst, R. D. Rieke, *J. Org. Chem.* **2000**, *65*, 5428-5430.



Scheme 2. Preparation of functionalized Grignard reagents using Rieke magnesium (Mg*).

1.2 Halogen/Magnesium-Exchange Reactions

The halogen/lithium-exchange reaction discovered by *Wittig*⁹ and *Gilman*¹⁰ allows the preparation of various organolithium compounds starting from commercially available alkyllithium reagents and the corresponding organic halides, mainly bromides and iodides.¹¹ This reaction is very fast and proceeds typically at -78 °C. In contrast to the halogen/magnesium-exchange, which is much slower and therefore offers greater tolerance to functional groups below 0 °C.

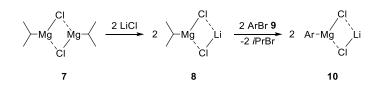
The first halogen/magnesium-exchange was discovered by *Prévost* in 1931 by reacting cinnamyl bromide **5** with ethylmagnesium bromide leading to magnesium reagent **6** (Scheme 3).¹²

Scheme 3. First example of a halogen/magnesium-exchange.

The halogen/magnesium-exchange is an equilibrium process in which, the stability of the formed organometallic species depends on its hybridization (sp > sp^{2}_{vinyl} > sp^{3}_{aryl} > sp^{3}_{prim} > sp^{3}_{sec}). Thus, the newly formed organomagnesium species are more thermodynamically stable than the exchange reagent itself.¹³ Albeit the mechanism of

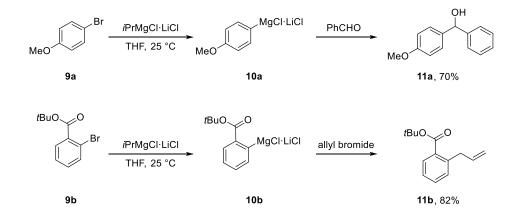
⁹ G. Wittig, U. Pockels, H. Dröge, Chem. Ber. 1938, 71, 1903.

¹⁰ a) R. G. Jones, H. Gilman, *Org. Reactions* **1951**, *6*, 339; b) H. Gilman, W. Langham, A. L. Jacoby, *J. Am. Chem. Soc.* **1939**, *61*, 106-109.


¹¹ a) W. E. Parham, L. D. Jones, *J. Org. Chem.* **1976**, *41*, 1187-1191; b) W. E. Parham, L. D. Jones, Y. Sayed, *J. Org. Chem.* **1975**, *40*, 2394-2399; c) W. E. Parham, L. D. Jones, *J. Org. Chem.* **1976**, **41**, 2704-2706; d) W. E. Parham, D. W. Boykin, *J. Org. Chem.* **1977**, *42*, 260-263; e) W. E. Parham, R. M. Piccirilli, *J. Org. Chem.* **1977**, *42*, 257-260; f) C. E. Tucker, T. N. Majid, P. Knochel, *J. Am. Chem. Soc.* **1992**, *114*, 3983-3985.

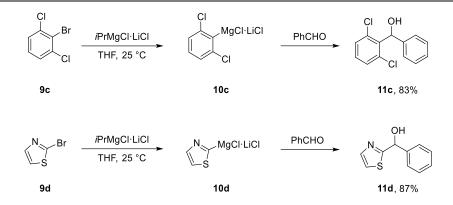
¹² C. Prévost, Bull. Soc. Chim. Fr. 1931, 1372.

¹³ D. Hauk, S. Lang, A. Murso, Org. Process Res. Dev. 2006, 10, 733-738.

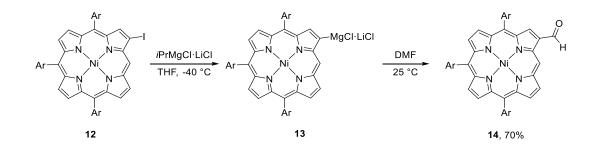

this reaction is not fully clarified yet, but it is assumed that a halogen-ate complex is an intermediate.¹⁴

Starting from 1998, *Knochel* and co-workers described I/Mg-exchange reactions using *i*PrMgBr and PhMgCl as exchange reagents on functionalized aryl iodides at low temperatures.¹⁵ In 2004, they have further improved halogen/magnesium-exchanges by using the so-called "*Turbo-Grignard*" – *i*PrMgCl·LiCl, obtained by adding stoichiometric amounts of LiCl to *i*PrMgCl **7** (Scheme 4).¹⁶ It showed an improved reactivity due to the generation of a magnesium-lithium ate complex (**8**) which reacted with aryl bromides of type **9** giving the corresponding magnesium species of type **10**.

Scheme 4. Formation of magnesium-lithium ate complex **8** by addition of LiCl to *i*PrMgCl aggregate **7**.


By using *i*PrMgCl·LiCl as exchange reagent at 25 °C, many aryl bromides bearing functional groups such as methoxy- on **9a**, ester- on **9b** and chloro- on **9c** as well as heterocycles such as **9d** were suitable substrates leading to organomagnesium species **10a-d** (Scheme 5). Trapping of the obtained organomagnesiums with aldehydes or allylations of **10a-d** afforded the corresponding products **11a-d** in 70-87% yield.

¹⁴ a) R. W. Hoffmann, M. Bönstrup, M. Müller, *Org. Lett.* **2003**, *5*, 313-316; b) V. P. W. Böhm, V. Schulze, M. Bönstrup, M. Müller, R. W. Hoffmann, *Organometallics* **2003**, *22*, 2925-2930.


¹⁵ a) L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, *Angew. Chem. Int. Ed.* **1998**, *37*, 1701-1703; b) I. Sapountzis, P. Knochel, *Angew. Chem. Int. Ed.* **2002**, *41*, 1610-1611; c) A. E. Jensen, W. Dohle, I. Sapountzis, D. M. Lindsay, V. A. Vu, P. Knochel, *Synthesis* **2002**, 565-569.

¹⁶ a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. **2004**, 43, 3333-3336; b) A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. **2006**, 45, 159-162; c) H. Ren, P. Knochel, Chem. Commun. **2006**, 726-728; d) C.-Y. Liu, P. Knochel, Org. Lett. **2005**, 7, 2543-2546; e) F. Kopp, A. Krasovskiy, P. Knochel, Chem. Commun. **2004**, 2288-2289.

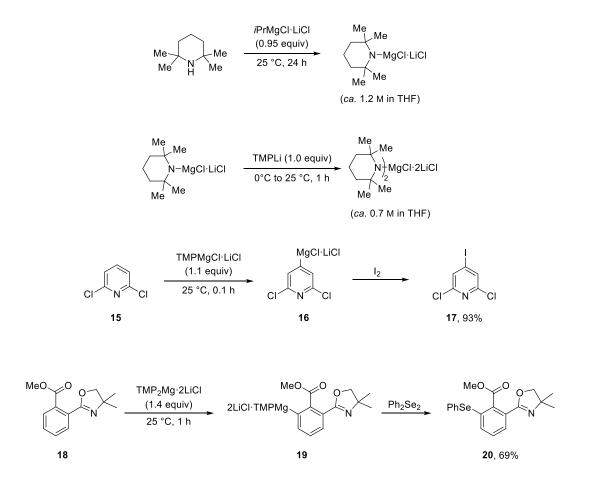
Scheme 5. Br/Mg-exchanges on (hetero)aryl bromides bearing sensitive functional groups.

Several research groups have applied this method for the convenient and expedient preparation of highly functionalized aryl or heteroaryl compounds.¹⁷ Thus, iodoporphyrin **12** also smoothly underwent the iodine/magnesium-exchange with *i*PrMgCl·LiCl at -40 °C giving magnesium reagent **13** without decomposition of the porphyrin core and further reacted with various carbonyl compounds leading to aldehyde **14** in 70% yield (Scheme 6).¹⁸

Scheme 6. Preparation and reaction of β -magnesiated porphyrins.

1.3 Directed Metalation with TMP-bases Complexed with LiCI

Since pioneering work of *Gilman*¹⁹ and *Wittig*²⁰ directed *ortho* metalation became widely used as convenient method for regioselective functionalization of aromatic compounds. Strong bases such as alkyl lithium reagents and lithium amides have been used traditionally. However, several undesired side-reactions can occur, due to the high reactivity and nucleophilicity of the obtained organolithiums, hampering broad application of these methods.

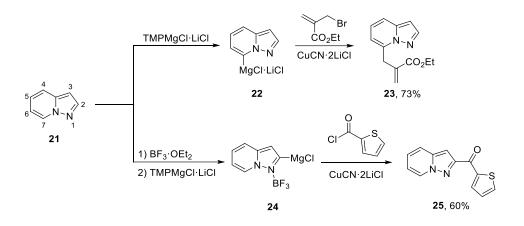

¹⁷ R. L.-Y. Bao, R. Zhao, L. Shi, *Chem. Commun.* **2015**, *51*, 6884-6900.

¹⁸ K. Fujimoto, H. Yorimitsu, A. Osuka, *Eur. J. Org. Chem.* 2014, 4327-4334.

¹⁹ H. Gilman, R. L. Bebb, *J. Am. Chem. Soc.* **1939**, *61*, 109-112.

²⁰ G. Wittig, G. Fuhrmann, Ber. Dtsch. Chem. Ges. 1940, 73, 1197-1218.

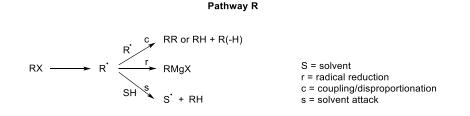
Recently, *Knochel* and co-workers described magnesium bases such as TMPMgCl·LiCl²¹ (TMP = 2,2,6,6-tetramethylpiperidyl) prepared by treating 2,2,6,6-tetramethylpiperidine with *i*PrMgCl·LiCl and TMP₂Mg·2LiCl.²² TMP₂Mg·2LiCl is usually prepared by treating TMPMgCl·LiCl with TMPLi. These bases allowed the directed magnesiation of sensitive aromatic and heterocyclic derivatives (Scheme 7). For example, 2,6-dichloropyridine (**15**) underwent a regioselective metalation with TMPMgCl·LiCl at room temperature within 5 min giving **16**. After iodination, the functionalized iodide **17** was obtained in 93% yield.^{21a} Also, oxazoline derivative **18** was treated with TMP₂Mg·2LiCl at room temperature leading to **19**, which after reaction with diphenyl diselenide gave **20** in 69% yield.^{22c}


Scheme 7. Preparation of TMP-magnesium bases and their use for directed magnesiation of sensitive (hetero)aryls.

Using this mild method, the regioselective metalation of aromatics and heterocycles has been intensively studied.^{2d} New regioselectivities can be observed by using strong Lewis

 ²¹ a) A. Krasovskiy, V. Krasovskaya, P. Knochel, *Angew. Chem. Int. Ed.* 2006, *45*, 2958-2961; b) C. Krinninger, *Spec. Chem. Mag.* 2010, *30*, 20-21; c) A. Unsinn, C. J. Rohbogner, P. Knochel, *Adv. Synth. Catal.* 2013, *355*, 1553-1560; d) K. Schwärzer, C. P. Tüllmann, S. Graβl, B.Górski, C. E. Brocklehurst, P. Knochel, *Org. Lett.* 2020, *22*, 1899-1902.
 ²² a) G. C. Clososki, C. J. Rohbogner, P. Knochel, *Angew. Chem. Int. Ed.* 2007, *46*, 7681-7684; b) M.Balkenhohl, R. Creiner, J. S. Makarov, B. Heinz, K. Karaghiosoff, H. Zipse, P. Knochel, *Chem. Eur. J.* 2017, *23*, 13046-13050; c) L. A.

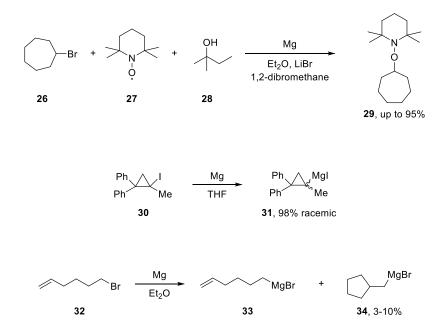
Greiner, I. S. Makarov, B. Heinz, K. Karaghiosoff, H. Zipse, P. Knochel, *Chem. Eur. J.* 2017, 23, 13046-13050; c) L. A. Bozzini, T. dos Santos, V. E. Murie, M. B. M. de Mello, R. Vessecchi, G. C. Clososki, *J. Org. Chem.* 2021, 86, 1204-1215.


acids such as $BF_3 \cdot OEt_2$.²³ For example, reaction of pyrazolo[1,5-*a*]pyridine (**21**) with TMPMgCl·LiCl selectively gave the C7-metalated species **22** which after transmetalation with CuCN·2LiCl readily reacted with ethyl 2-(bromomethyl)acrylate furnishing **23** in 73% yield. However, when **21** was treated with $BF_3 \cdot OEt_2$ prior to the addition of base, the C2-position was metalated due to coordination of BF_3 to N1 leading to increased acidity of the C2-hydrogen. The obtained magnesium reagent **24** underwent a copper-catalyzed acylation with 2-thiophenecarbonyl chloride leading to ketone **25** in 60% yield (Scheme 8).²⁴

Scheme 8. Regioselective metalations of pyrazolo[1,5-a]pyridine (21).

2 Mechanism of Grignard Reagent Formation

Suggestions for the mechanism of Grignard reagents formation can be divided into organic and inorganic explanations.² Mostly, organic chemists explain that Grignard reagent formation proceeds through intermediate radicals $R \cdot$ and a so-called "*pathway* R" (Scheme 9).^{2,25}


Scheme 9. Radical mechanism of Grignard reagent formation.

²³ A. Kremsmair, A. Hess, B. Heinz, P. Knochel, Chem. Eur. J. 2022, 28, e202103269.

²⁴ M. Balkenhohl, B. Salgues, T. Hirai, K. Karaghiosoff, P. Knochel, Org. Lett. **2018**, 20, 3114-3118.

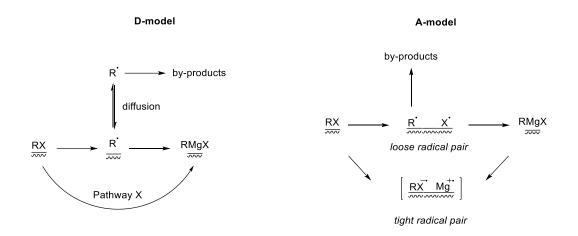
²⁵ M. S. Kharasch, O. Reinmuth, Grignard reactions of nonmetallic substances, Prentice-Hall, New York, **1954**.

The existence of $R \cdot$ radicals was proven in numerous experiments. For example, the radical trapping of a Grignard reagent obtained *in situ* from bromocycloheptane **26** with TEMPO **27** in the presence of the tertiary alcohol **28** led to TEMPO-derivative **29** in up to 95% yield.²⁶ Furthermore, formation of Grignard reagent from substituted iodocyclopropane **30** was accompanied with almost complete racemization of **31**.²⁷ Also, hexenyl bromide **32** gave the corresponding magnesium reagent **33** as a mixture with 3-10% of cyclized product **34** (Scheme 10).²⁸

Scheme 10. Radical trapping and isomerization during Grignard reagents formation as an explanation for the occurrence of radical intermediates.

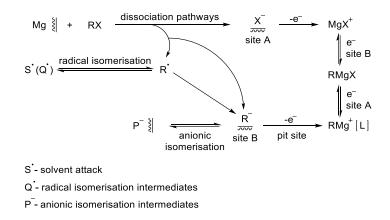
However, no chemically induced dynamic nuclear polarization was observed, which would be expected, if RMgX was formed by coupling of $R \cdot$ and MgX \cdot .²⁹ Furthermore, it was shown, that MgX \cdot is very unstable. So the nature of these radical intermediates was rather disputed.

The key problems of Grignard reagent formation are: the different product distribution of alkyl, alkenyl and aromatic halides, and the kinetics of the elimination of the induction period in the formation of the Grignard reagents.


²⁸ J. F. Garst, F. Ungvary, R. Batlaw, K. E. Lawrence, J. Am. Chem. Soc. **1991**, *113*, 5392-5397.

²⁶ a) E. C. Ashby, J. Oswald, J. Org. Chem. **1988**, 53, 6068-6076; b) K. S. Root, C. L. Hill, L. M. Lawrence, G. M. Whitesides, J. Am. Chem. Soc. **1989**, 111, 5405-5412; c) L. M. Lawrence, G. M. Whitesides, J. Am. Chem. Soc. **1980**, 102, 2493-2494; d) I. M. Lawrence, G. M. Whitesides, J. Am. Chem. Soc. **1980**, 102, 2493-2494; e) K. S. Root, C. L. Hill, L. M. Lawrence, G. M. Whitesides, J. Am. Chem. Soc. **1989**, 111, 5405-5412.

 ²⁷ a) J. F. Garst, J. E. Deutch, G. M. Whitesides, *J. Am. Chem. Soc.* **1986**, *108*, 2490-2491; b) H. M. Walborsky, M. S. Aronoff, *J. Organomet. Chem.* **1973**, *51*, 31-53; c) R. C. Lamb, P. W. Ayers, M. K. Toney, J. F. Garst, *J. Am. Chem. Soc.* **1980**, *102*, 2493-2494; d) H. G. Jr. Richey, T. C. Rees, *Tetrahedron Lett.* **1966**, 4297-4301.


²⁹ a) J. F. Garst, M. P. Soriaga, *Coord. Chem. Rev.* **2004**, *248*, 623-652; b) H. J. Bodewitz, C. Blomberg, F. Bickelhaupt, *Tetrahedron Lett.* **1972**, *13*, 281-284.

Garst et al.²⁹ predicted various isomerization products for alkane Grignard reagent formation with a radical diffusion model (D-model). However, the D-model failed in explanation of alkenyl and aromatic Grignard reagent formation, as this model predicts more side-products than it is observed. On the contrary, *Walborsky* et al.³⁰ proposed an adsorption model (A-model) which attributes the unusual configuration retention to surface-constrained radicals. However, the A-model lacks solid evidence for the assumed surface radical species and fails in prediction of many Grignard reagents formation reactions (Scheme 11).³¹

Scheme 11. A-model and D-model of radical pathway of Grignard reagents formation.

Due to its relevance for industrial processes, the mechanism of Grignard formation as well as the mechanism of Grignard reaction is still under discussion.³² Recently, *Liu* and co-workers³¹ reported a unified ionic model (Scheme 12).

Scheme 12. Ionic model of Grignard reagents formation.

³⁰ a) H. M. Walborsky, J. Rachon, J. Am. Chem. Soc. **1989**, *111*, 1896-1897; b) H. M. Walborsky, C. Zimmermann, J. Am. Chem. Soc. **1992**, *114*, 4996-5000; c) C. Hamdouchi, M. Topolski, V. Goedken, H. M. Walborsky, J. Org.Chem. **1993**, *58*, 3148-3155; d) H. M. Walborsky, Acc. Chem. Res. **1990**, *23*, 286-293.

³¹ Y. Shao, Z. Liu, P. Huang, B. Liu, *Phys. Chem. Chem. Phys.* **2018**, *20*, 11100-11108.

³² R. M. Peltzer, J. Gauss, O. Eisenstein, M. Cascella, J. Am. Chem. Soc. 2020, 142, 2984-2994.

3 Preparation of Organozinc Reagents

The first organozinc compound, diethylzinc, was prepared by *Frankland* in 1849 in Marburg, Germany.³³ Since then organozinc reagents became a useful tool in organic synthesis and have been key precursors in the Reformatsky reaction,³⁴ the Simmons-Smith cyclopropanation³⁵ and the Negishi reaction.³⁶

There are three important classes of organozinc reagents: organozinc halides of the general formula RZnX, diorganozincs R^1ZnR^2 and zincates of the general formula $R^1(R^2)(R^3)ZnMet$, where the metal (Met) is usually Li or MgX.

3.1 Oxidative Insertion of Zinc Dust to Organic Halides

The oxidative addition of zinc dust into functionalized organic halides allows the mild preparation of various organozinc iodides (Scheme 13).³⁷ This type of preparation requires activation of zinc dust due to zinc alkoxides and zinc oxide hampering the reaction. Thus, a very efficient procedure is to treat the zinc dust with 1,2-dibromoethane followed by the addition of TMSCI.^{41a,38}

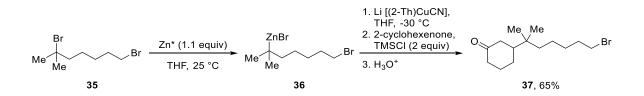
FG = CO₂R, enoate, CH, halide, (RCO₂)N, (TMS)₂N, RNH, NH₂, RCONH, (RO)₃Si, (RO)₂PO, RS, etc. R = alkyl, aryl, benzyl, allyl

Scheme 13. Preparation of functionalized organozinc compounds by oxidative addition.

Addition of lithium chloride for activation of the zinc surface enabled the preparation of even more highly functionalized alkyl-, alkenyl-, aryl- and heteroarylzinc reagents.³⁹ In the case of less reactive alkyl bromides such as tertiary bromide **35**, Rieke-zinc was used. The obtained zinc reagent **36** underwent transmetalation to the corresponding

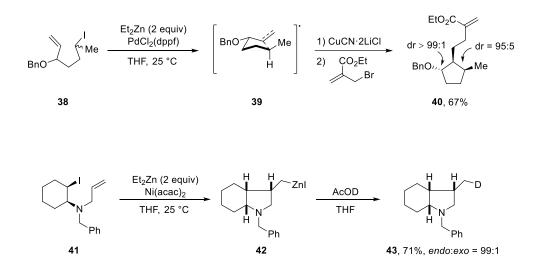
³³ E. Frankland, *Liebigs Ann. Chem.* **1849**, *71*, 171 and 213.

³⁴ S. Reformatsky, Chem. Ber. 1887, 20, 1210-1211.


³⁵ a) H. E. Simmons, R. D. Smith, *J. Am. Chem. Soc.* **1958**, *80*, 5323-5321; b) H. E. Simmons, T. L. Cairns, A. Vladuchick, C. M. Hoiness, *Org. React.* **1972**, *20*, 1-131.

³⁶ a) E. Negishi, L. F. Valente, M. Kobayashi, *J. Am. Chem. Soc.* **1980**, *102*, 3298-3299; b) E. Erdik, *Tetrahedron* **1992**, *48*, 9577-9648.

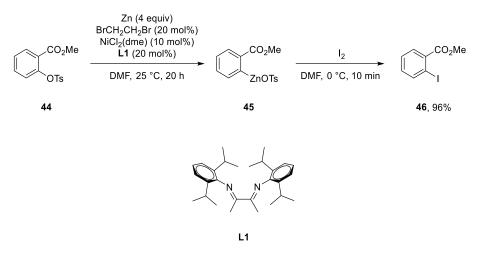
 ⁽¹⁾ a) P. Knochel, M. C. P. Yeh, S.C. Berk, J. Talbert, J. Org. Chem. **1988**, 53, 2390-2392; b) H. P. Knoess, M. T. Furlong,
 M. J. Rozema, P. Knochel, J. Org. Chem. **1991**, 56, 5974-5978; c) S. C. Berk, M. C. P. Yeh, N. Jeong, P. Knochel,
 Organometallics **1990**, 9, 3053-3064.


 ³⁸ a) M. Gaudemar, *Bull. Soc. Chim. Fr.* **1962**, 974; b) E. Erdik, *Tetrahedron* **1987**, 43, 2203-2212; c) J. K. Gawronsky, *Tetrahedron Lett.* **1984**, 25, 2605-2608; d) G. Picotin, P. Miginiac, *Tetrahedron Lett.* **1987**, 28, 4551-4552.
 ³⁹ A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, *Angew. Chem. Int. Ed.* **2006**, 45, 6040-6044.

copper derivative and after treatment with 2-cyclohexenone in the presence of TMSCI led to functionalized alkyl bromide **37** in 65% yield (Scheme 14).⁴⁰

Scheme 14. Preparation of organozinc halides using Rieke-zinc. 2-Th = 2-thienyl.

Also, transition metals may catalyze the zinc insertion reaction. Thus, PdCl₂(dppf) and Ni(acac)₂ catalyze zinc insertion leading to organometallic products *via* radical formation. For example, treatment of alkenyl iodide **38** with Et₂Zn in the presence of PdCl₂(dppf) gave radical **39** which after copper-catalyzed allylation affording enantiomerically pure cyclopentane derivative **40** in 67% yield. Nickel-catalyzed I/Zn-exchange reaction of iodide **41** afforded zinc species **42** after radical cyclization followed by deuterolysis furnishing cyclized product **43** in 71% yield (Scheme 15).⁴¹


Scheme 15. Pd- and Ni-catalyzed preparation of organozinc compounds.

Recently, nickel-catalyzed insertion of zinc dust into aryl sulfonates was reported. For example, aryl tosylate **44** was converted into zinc species **45** in the presence of

 ⁴⁰ a) R. D. Rieke, *Science* 1989, 246, 1260-1264; b) R. D. Rieke, S.-H. Kim, X. Wu, *J. Org. Chem.* 1997, 62, 6921-6927;
 c) A. Guijarro, R. D. Rieke, *Angew. Chem. Int. Ed.* 1998, 37, 1679-1681; d) E. M. Hanada, T. K. S. Togawa, M. Kawada, S. A. Blum, *J. Am. Chem. Soc.* 2022, 144, 12081-12091.

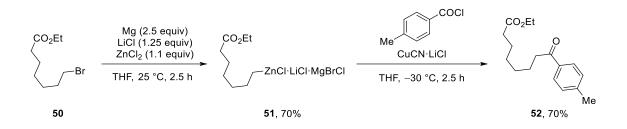
⁴¹ a) H. Stadtmüller, A. Vaupel, C. E. Tucker, T. Stüdemann, P. Knochel, *Chem. Eur. J.* **1996**, *2*, 1204-1220; b) A. Vaupel, P. Knochel, *J. Org. Chem.* **1996**, *61*, 5743-5753.

NiCl₂(dme) and **L1**. After addition of iodide methyl 2-iodobenzoate **46** was obtained in 96% yield (Scheme 16).⁴²

Scheme 16. Nickel-catalyzed zinc insertion into aryl tosylates.

3.2 Transmetalation

Lithium and magnesium organometallics undergo fast transmetalation with zinc salts due to the formation of a more thermodynamically stable carbon-metal bond.⁴³ This allows the convenient and mild preparation of organozinc compounds. A very elegant example of transmetalating lithium species prepared by treating *N*-Boc pyrrolidine (**47**) with *s*BuLi in the presence of (–)-sparteine to zinc halide **48** was reported by *Campos* and co-workers in 2006. Subsequent Pd-catalyzed Negishi cross-coupling gave the corresponding product **49** in 70% yield and er = 96:4 (Scheme 17).⁴⁴

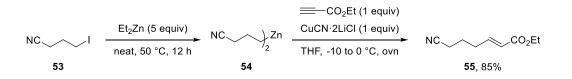

Scheme 17. Lithiation of *N*-Boc pyrrolidine (**47**) and subsequent transmetalation to the corresponding zinc reagent.

⁴² a) P. Klein, V. D. Lechner, T. Schimmel, L. Hintermann, *Chem. Eur. J.* **2020**, *26*, 176-180; b) K. Yamada, T. Yanagi, H. Yorimitsu, *Org. Lett.* **2020**, *22*, 9712-9718.

⁴³ P. Knochel, H. Leuser, L-Z. Gong, S. Perrone, F. F. Kneisel, *Polyfunctional Zinc Organometallics for Organic Synthesis in Handbook of Functionalized Organometallics,* (Ed.: P. Knochel), Wiley-VCH, Weinheim, **2005**.

⁴⁴ K. R. Campos, A. Klapars, J. H. Waldman, P. G. Dormer, C.-Y. Chen, J. Am. Chem. Soc. 2006, 128, 3538-3539.

Also, the magnesium insertion into (hetero)aryl halides in the presence of ZnCl₂ allowed the efficient preparation of various polyfunctional zinc organometallics.⁴⁵ Later, this method was extended to alkylzinc reagents bearing sensitive functional groups. For example, alkyl bromide **50** was smoothly converted into the corresponding zinc species **51** in 70% yield. After transmetalation with CuCN·2LiCl solution and subsequent acylation with *p*-toluoyl chloride ketone **52** was obtained in 70% yield (Scheme 18).⁴⁶



Scheme 18. Magnesium insertion of alkyl bromides followed by *in situ* transmetalation with ZnCl₂.

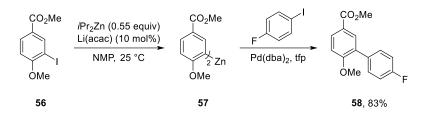
3.3 The Halogen/Zinc-Exchange

Functionalized alkyl-, alkenyl-, aryl- and heteroarylzinc reagents can also be prepared from the corresponding halides *via* halogen/zinc-exchange using diorganozinc reagents or zincates.⁴⁷ Due to the covalent character of the carbon-zinc bond an exchange reaction is comparably slow and requires polar solvents or rather harsh reaction conditions.^{3b}

Thus, 4-iodobutyronitrile **53** underwent an I/Zn-exchange using Et_2Zn at 50 °C for 12 h affording bis zinc species **54** which was transmetalated to copper-derivative and reacted with ethyl propiolate leading to (*E*)-alkene **55** in 85% yield.⁴⁸

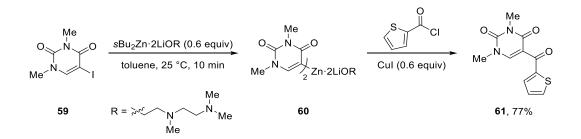
Scheme 19. Preparation of diorganozincs *via* iodine/zinc-exchange using Et₂Zn.

Also, nucleophilic catalysis using Li(acac) in polar solvent such as *N*-methylpyrrolidone was reported. Thus, aryl iodide **56** was treated with iPr_2Zn in the presence of Li(acac) in


 ⁴⁵ a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, *Angew. Chem. Int. Ed.* 2008, 47, 6802-6806; b) F.
 M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, *Chem. Eur. J.* 2009, 15, 7192-7202.

⁴⁶ T. D. Blümke, F. M. Piller, P. Knochel, *Chem. Commun.* **2010**, *46*, 4082-4084.

⁴⁷ M. Balkenhohl, P. Knochel, *Chem. Eur. J.* **2020**, *26*, 3688-3697.


⁴⁸ M. J. Rozema, A. Sidduri, P. Knochel, *J. Org. Chem.* **1992**, 57, 1956-1958.

NMP leading to organozinc reagent **57**. Subsequent palladium-catalyzed Negishi crosscoupling with 4-fluorophenyl iodide afforded **58** in 83% yield (Scheme 20).⁴⁹

Scheme 20. Nucleophilic catalysis using Li(acac) for I/Zn-exchange reactions.

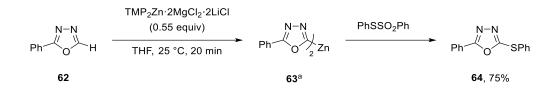
In 2019, *s*Bu₂Zn·2LiOR was reported as a highly reactive and selective exchange reagent for the preparation of di(hetero)aryl zinc reagents from various electron-rich as well as -deficient halo arenes. Hence, iodo uracil **59** underwent an iodine/zinc-exchange leading to **60** within 10 min. Copper-catalyzed acylation furnished the functionalized heterocycle **61** in 77% yield (Scheme 21). This method also enabled the first halogen/zinc-exchange reaction using aryl bromides.⁵⁰

Scheme 21. Preparation of diorganozincs using sBu₂Zn·2LiOR.

3.4 Directed Metalation

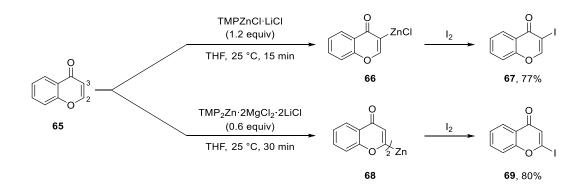
Another approach to prepare organozinc species is directed metalation.⁵¹ Among others, the most common reagents for the mild deprotonation of various sensitive aromatics and heterocyclic substrates are TMP₂Zn·2MgCl₂·2LiCl⁵² and TMPZnCl·LiCl.⁵³ These bases are readily prepared from the corresponding Mg- or Li-amide *via* transmetalation in the presence of Zn salts. Sensitive oxadiazole derivative **62** reacted with TMP₂Zn·2MgCl₂·2LiCl affording **63** in 20 min at room temperature without any

⁴⁹ F. F. Kneisel, M. Dochnahl, P. Knochel, *Angew. Chem. Int. Ed.* **2004**, *4*3, 1017-1021.


⁵⁰ M. Balkenhohl, D. S. Ziegler, A. Desaintjean, L. J. Bole, A. R. Kennedy, E. Hevia, P. Knochel, *Angew. Chem. Int. Ed.* **2019**, *58*, 12898-12902.

⁵¹ a) V. Snieckus, *Chem. Rev.* **1990**, *90*, 879-933; b) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, *Angew. Chem. Int. Ed.* **2011**, *50*, 9794-9824; c) M. Balkenhohl, P. Knochel, *SynOpen* **2018**, *2*, 78-95.

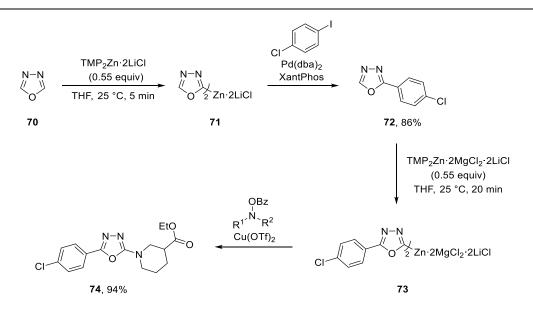
⁵² S. H. Wunderlich, P. Knochel, *Angew. Chem. Int. Ed.* **2007**, *46*, 7685-7688.


⁵³ M. Mosrin, P. Knochel, *Org. Lett.* **2009**, *11*, 1837-1840.

fragmentation of the metalated heterocycle. After quenching **63** with PhSSO₂Ph **64** was isolated in 75% yield (Scheme 22).⁵²

Scheme 22. Metalation of azole with TMP₂Zn·2MgCl₂·2LiCl. ^aSalts are omitted for clarity.

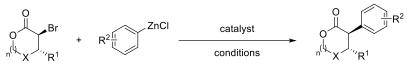
Furthermore, an elegant example for the change in regioselectivity achieved by using different bases was demonstrated on chromone **65**. Metalation using TMPZnCl·LiCl afforded C3-zincated species **66** which was trapped with I₂ giving **67** in 77% yield. However, using TMP₂Zn·2MgCl₂·2LiCl allowed C2-zincation due to complexation of MgCl₂ to the ketone blocking the C3-position. After trapping **68** with I₂ the corresponding iodo derivative **69** was obtained in 80% yield (Scheme 23).⁵⁴



Scheme 23. Regioselective metalations of chromone.

Recently, 1,3,4-oxadiazole was functionalized using TMP zinc bases. Therefore, **70** was treated with TMP₂Zn·2LiCl at room temperature leading within 5 min to zinc species **71** which underwent Pd-catalyzed Negishi cross-coupling giving **72** in 86% yield. Then, **72** was further zincated with another TMP base (TMP₂Zn·2MgCl₂·2LiCl) furnishing **73**, which was subsequently submitted to copper-catalyzed electrophilic amination leading to functionalized heterocycle **74** in 94% yield (Scheme 24).⁵⁵

⁵⁴ L. Klier, T. Bresser, T. A. Nigst, K. Karaghiosoff, P. Knochel, *J. Am. Chem. Soc.* **2012**, *134*, 13584-13587.


⁵⁵ K. Schwärzer, C. P. Tüllmann, S. Grassl, B. Górski, C. E. Brocklehurst, P. Knochel, Org. Lett. 2020, 22, 1899-1902.

Scheme 24. Stepwise functionalization of 1,3,4-oxadiazole.

II Objectives

Transition-metal-catalyzed cross-couplings are one of the most used C-C-bond forming reactions in modern organic chemistry. Cobalt salts proved to be a cheap alternative to palladium and nickel catalysts. As described before, organozinc reagents tolerate a broad range of sensitive functional groups and *trans*-diastereoselective cobalt-catalyzed Negishi cross-coupling reactions of 1,2-substituted alkyl halides have been reported. However, for the preparation of chiral agrochemicals and pharmaceuticals a general and efficient method is missing. Thus, enantiomerically enriched α -bromolactones should be tested for their suitability to undergo Co-catalyzed Negishi cross-coupling with various arylzinc reagents (Scheme 25).⁵⁶

X = CH₂, O; n = 0, 1

Scheme 25. Stereoselective cobalt-catalyzed cross-coupling of α -bromolactones with arylzinc reagents.

Furthermore, I/Mg-exchange reactions of iodo alkanes are scarcely described and have to date only been achieved using niche exchange reagents in combination with tailored substrates. Therefore, the straightforward and convenient preparation of various alkyl magnesium species *via* iodine/magnesium-exchange should be investigated (Scheme 26).

Scheme 26. Preparation of organomagnesium reagents via I/Mg-exchange.

lodine/zinc-exchange reactions are known for the preparation of organozinc species but require polar solvents, tailored organozinc exchange reagents or transition metal catalysts. The aim of the last part of this thesis was to examine less toxic and cheap iron catalysts for the zincation of alkyl iodides followed by various trapping reactions (Scheme 27).

Scheme 27. Iron-catalyzed iodine/zinc-exchange reactions of alkyl iodides.

⁵⁶ This project was developed in cooperation with Maximilian S. Hofmayer, see: M. S. Hofmayer^{*}, A. Sunagatullina^{*}, D. Brösamlen, P. Mauker, P. Knochel, *Org. Lett.* **2020**, *22*, 1286-1289 and Maximilian S. Hofmayer, PhD Dissertation, **2020**, LMU Munich.

III Results and Discussion

1 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α -Bromolactones and Related Derivatives⁵⁷

1.1 Introduction

The preparation of chiral agrochemicals and pharmaceuticals requires general and efficient asymmetric syntheses.⁵⁸ Recently, several advances involving Pd- and Nicatalyzed asymmetric carbon-carbon bond forming reactions have been reported.⁵⁹ These transition-metal-catalyzed asymmetric cross-couplings involve expensive⁶⁰ or toxic⁶¹ Ni- or Pd-catalysts. Also, reactions involving alkyl-palladium intermediates are often of limited scope due to β -hydrogen elimination side reactions.⁶² It was shown that relatively inexpensive and less toxic CoCl₂ does efficiently catalyze cross-couplings.⁶³ Also, organozinc compounds are excellent nucleophilic reagents for various Co-catalyzed cross-coupling reactions, as a broad range of sensitive functional groups are tolerated in these organometallics.^{3,50,64} 1,2-Substituted alkyl halides were used as

 ⁵⁷ Adapted with permission from (M. S. Hofmayer^{*}, A. Sunagatullina^{*}, D. Brösamlen, P. Mauker, P. Knochel, *Org. Lett.* **2020**, *22*, 1286-1289). Copyright (2020) American Chemical Society.
 ⁵⁸ (a) *Modern Drug Synthesis* (eds. J. J. Li, D. S. Johnson), Wiley-VCH: Weinheim, Germany, **2010**; (b) V. Yeh, W. A.

⁵⁸ (a) *Modern Drug Synthesis* (eds. J. J. Li, D. S. Johnson), Wiley-VCH: Weinheim, Germany, **2010**; (b) V. Yeh, W. A. Szabo in *Applications of Transition Metal Catalysis in Drug Discovery and Development* (eds. M. L. Crawley, B. M. Trost), John Wiley and Sons, **2012**, pp. 165-213; (c) *Innovative Drug Synthesis* (eds. J. J. Li, D. S. Johnson), Wiley-VCH: Weinheim, Germany, **2015**.

 ⁵⁹ (a) H. Horibe, Y. Fukuda, K. Kondo, H. Okuno, Y. Murakami, T. Aoyama, *Tetrahedron* 2004, *60*, 10701-10709; (b) M. Genov, B. Fuentes, P. Espinet, B. Pelaz, *Tetrahedron: Asymmetry* 2006, *17*, 2593-2595; (c) B. L. H. Taylor, E. R. Jarvo, *Synlett* 2011, 2761-2765; (d) J. T. Binder, C. J. Cordier, G. C. Fu, *J. Am. Chem. Soc.* 2012, *134*, 17003-17006; (e) J. Choi, G. C. Fu, *J. Am. Chem. Soc.* 2012, *134*, 9102-9105; (f) C.-Y. Wang, J. Derosa, M. R. Biscoe, *Chem. Sci.* 2015, *6*, 5105-5113; (g) M. S. Eno, A. Lu, J. P. Morken, *J. Am. Chem. Soc.* 2016, *138*, 7824-7827; (h) X. Yang, G. Xu, W. Tang, *Tetrahedron* 2016, *72*, 5178-5183; (i) G. J. Lovinger, M. D. Aparece, J. P. Morken, *J. Am. Chem. Soc.* 2017, *139*, 3153-3160; (j) K. E. Poremba, N. T. Kadunce, N. Suzuki, A. H. Cherney, S. E. Reisman, *J. Am. Chem. Soc.* 2017, *139*, 5684-5687; (k) Y. Uozumi, Y. Matsuura, T. Suzuka, T. Arakawa, Y. M. A. Yamada, *Synthesis* 2016, *49*, 59-68; (l) J. A. Myhill, C. A. Wilhelmsen, L. Zhang, J. P. Morken, *J. Am. Chem. Soc.* 2018, *140*, 15181-15185; (m) W. Huang, M. Hu, X. Wan, Q. Shen, *Nat. Commun.* 2019, *10*, 2963; (n) Y. Jin, C. Wang, *Angew. Chem. Int. Ed.* 2019, *58*, 6722-6726; (o) G. Wang, X. Xin, Z. Wang, G. Lu, Y. Ma, L. Liu, *Nat. Commun.* 2019, *10*, 559; (p) M. D. Aparece, W. Hu, J. P. Morken, *ACS Catal.* 2019, *9*, 11381-11385.

⁶⁰ World market prices for Pd: 51140 EUR/kg; for Co: 32 EUR/kg (retrieved Nov. 2019, http://www.infomine.com).

⁶¹ (a) *Handbook on the Toxicology of Metals* (eds. L. Friberg, G. F. Nordberg, V. B. Vouk), Elsevier: Amsterdam, **1986**; (b) K. S. Egorova, V. P. Ananikov, *Angew. Chem. Int. Ed.* **2016**, *55*, 12150-12162.

⁶² G. Cahiez, A. Moyeux, *Chem. Rev.* **2010**, *110*, 1435-1462.

⁶³ (a) W. M. Czaplik, M. Mayer, A. Jacobi von Wangelin, *Synlett* 2009, 2931-2934; (b) S. Gülak, O. Stepanek, J. Malberg, B. R. Rad, M. Kotora, R. Wolf, A. Jacobi von Wangelin, *Chem. Sci.* 2013, *4*, 776-784; (c) J. Mao, F. Liu, M. Wang, L. Wu, B. Zheng, S. Liu, J. Zhong, Q. Bian, P. J. Walsh, *J. Am. Chem. Soc.* 2014, *136*, 17662-17668; (d) F. Liu, Q. Bian, J. Mao, Z. Gao, D. Liu, S. Liu, X. Wang, Y. Wang, M. Wang, J. Zhong, *Tetrahedron: Asymmetry* 2016, *27*, 663-669; (e) A. Rérat, C. Michon, F. Agbossou-Niedercorn, C. Gosmini, *Eur. J. Org. Chem.* 2016, 4554-4560; (f) E. Barde, A. Guérinot, J. Cossy, *Org. Lett.* 2017, *19*, 6068-6071; (g) F. Liu, J. Zhong, Y. Zhou, Z. Gao, P. J. Walsh, X. Wang, S. Ma, S. Hou, S. Liu, M. Wang, M. Wang, Q. Bian, *Chem. Eur. J.* 2018, *24*, 2059-2064; (h) L. Thomas, F. H. Lutter, M. S. Hofmayer, K. Karaghiosoff, P. Knochel, *Org. Lett.* 2018, *20*, 2441-2444; (i) S. Linke, S. M. Manolikakés, A. Auffrant, C. Gosmini, *Synthesis* 2018, *50*, 2595-2600; (j) F. H. Lutter, S. Graßl, L. Grokenberger, M. S. Hofmayer, Y.-H. Chen, P. Knochel, *ChemCatChem* 2019, *11*, 5188-5197; (k) X. Sun, X. Wang, F. Liu, Z. Gao, Q. Bian, M. Wang, J. Zhong, *Chirality* 2019, *31*, 682-687; (l) C. Dorval, E. Dubois, Y. Bourne-Branchu, C. Gosmini, G. Danoun, *Adv. Synth. Catal.* 2019, *361*, 1777-1780; (m) V. Koch, M. M. Lorion, E. Barde, S. Bräse, J. Cossy, *Org. Lett.* 2019, *21*, 6241-6244; (n) T. Song, S. Arseniyadis, J. Cossy, *Org. Lett.* 2019, *21*, 603-607.

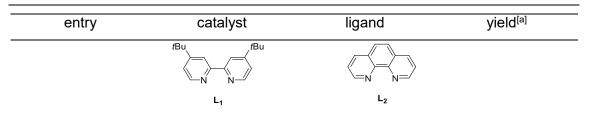
 ⁶⁴ (a) J. M. Hammann, D. Haas, P. Knochel, Angew. Chem. Int. Ed. 2015, 54, 4478-4481; (b) D. Haas, J. M. Hammann, R. Greiner, P. Knochel, ACS Catal. 2016, 6, 1540-1552; (c) D. Haas, J. M. Hammann, F. H. Lutter, P. Knochel, Angew. Chem. Int. Ed. 2016, 55, 3809-3812; (d) J. M. Hammann, M. S. Hofmayer, F. H. Lutter, L. Thomas, P. Knochel, Synthesis 2017, 49, 3887-3894; (e) J. M. Hammann, F. H. Lutter, D. Haas, P. Knochel, Angew. Chem. 2017, 129, 1102-1106; (f) J. M. Hammann, L.Thomas, Y.-H. Chen, D. Haas, P. Knochel, Org. Lett. 2017, 19, 3847-3850; (g) M. S. Hofmayer, J. M.

electrophiles for *trans*-diastereoselective cobalt-catalyzed cross-coupling reactions.^{6h,m,7a,65}

1.2 Optimization of the Reaction Conditions

In preliminary experiments, the readily available α -bromolactone **75**, which was prepared from *D*-isoascorbic acid in 99% *ee*,⁶⁶ was submitted to an arylation using 4-anisylzinc chloride (**76a**). The formation of product **77a** was optimized using various metallic salts (Table 1). Whereas CuCl₂, CrCl₂, MnCl₂, and FeCl₂ were not effective catalysts (entries 1-5), CoCl₂ gave excellent results compared to CoBr₂ or Co(acac)₂ (entries 6-8). The addition of a ligand, such as PPh₃, allowed further yield improvement (entries 9-12). NiCl₂/PPh₃ was equally efficient (entry 13).

Table 1. Reaction conditions optimization for the cross-coupling of *p*-anisylzinc chloride (**76a**) with α -bromolactone **75**.

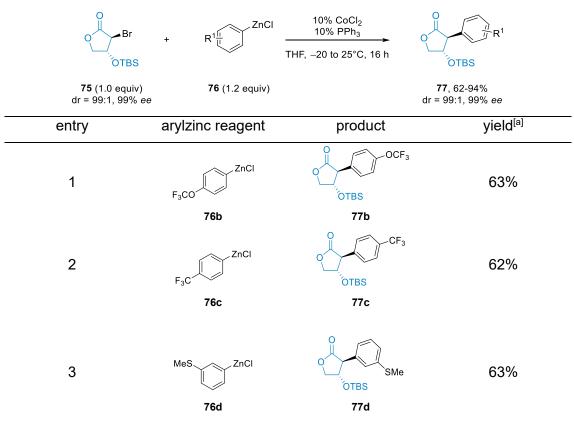

O Br OTBS	+ ZnCl MeO	10% catalyst 10% ligand THF, –20 to 25°C, 16 h	O O TBS
75 (1.0 equiv) dr = 99:1, 99% ee	76a (1.2 equiv)		77a
entry	catalyst	ligand	yield ^[a]
1	-	-	3%
2	CuCl ₂	-	-
3	CrCl ₂	-	4%
4	MnCl ₂	-	4%
5	FeCl ₂	-	5%
6	CoCl ₂	-	86% (83%) ^[b]
7	CoBr ₂	-	77%
8	Co(acac) ₂	-	75%
9	CoCl ₂	TMEDA	56%
10	CoCl ₂	L ₁	30%
11	CoCl ₂	L ₂	65%
12	CoCl ₂	PPh ₃	98% (96%) ^[c]
13	NiCl ₂	PPh ₃	98%

Hammann, F. H. Lutter, P. Knochel, *Synthesis* **2017**, *49*, 3925-3930; (h) J. Li, P. Knochel, *Angew. Chem. Int. Ed.* **2018**, 57, 11436-11440; (i) S. Graßl, C. Hamze, T. J. Koller, P. Knochel, *Chem. Eur. J.* **2019**, *25*, 3752-3755; (j) F. H. Lutter, L. Grokenberger, M. S. Hofmayer, P. Knochel, *Chem. Sci.* **2019**, *10*, 8241-8245.

Grokenberger, N. S. Hofmayer, P. Knochel, *Chem. Sci.* **2019**, *10*, 8241-8245. ⁶⁵ (a) J. M. Hammann, A. K. Steib, P. Knochel, *Org. Lett.* **2014**, *16*, 6500-6503; (b) J. M. Hammann, D. Haas, A. K. Steib, P. Knochel, *Synthesis* **2015**, *47*, 1461-1468.

⁶⁶ See Experimental Part.

Results and Discussion



[a] Calibrated GC-yield using undecane as internal standard. [b] 99.99% CoCl₂ was used. [c] Isolated yield of analytically pure **77a** (dr = 99:1, 99% ee).

1.3 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α -Bromolactone 75

These optimized conditions were then applied to the arylation of α -bromolactone **75** using various arylzinc reagents of type **76** (Table 2). Thus, *p*-trifluoromethoxyphenylzinc chloride (**76b**) was cross-coupled with **75**, leading to the desired α -arylated lactone **77b** in 63% yield (dr = 99:1, 99% ee, entry 1). Similarly, the electron-poor organozinc reagent **76c** furnished the 4-trifluorotolyl substituted lactone **77c** in 62% yield (dr = 99:1, 99% ee, entry 2). Also, the *meta*-substituted arylzinc reagents **76d** and **76e**, bearing a MeS- and a TBSO-group in the *meta* position are satisfactory coupling partners. They afforded the optically pure products **77d** and **77e** in 63-77% yield (dr = 99:1, 99% ee, entries 3-4).

Table 2. Stereoselective cobalt-Catalyzed cross-couplings of arylzinc reagents of type
76 with α-bromolactone 75 .

entry	arylzinc reagent	product	yield ^[a]
4	TBSO	OTBS	77%
	76e	77e	
5	MeO	OTBS	61%
	76f	77f	
6	O ZnCl	OTBS	84%
	76g	77g	
7	MeO MeO OBn	OMe OTBS	94%
	76h	77h	

Results and Discussion

[a] Isolated yield of analytically pure lactones of type 77.

The arylation of **75** with (6-methoxynaphthalen-2-yl)zinc chloride (**76f**) and the benzodioxolylzinc reagent **76g** gave the lactone derivatives **77f** and **77g** in 61-84% yield (dr = 99:1, 99% *ee*, entries 5-6). Interestingly, the sterically hindered organozinc chloride **76h**, having a benzyloxy substituent in the *ortho*-position, was efficiently coupled with α -bromolactone **75**. The arylated lactone **77h** was obtained in 94% yield; dr = 99:1; 99% *ee* (entry 7).

1.4 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α -Bromolactone 78

Starting from *L*-threonine and pivalaldehyde, the chiral α -bromolactone **78** was prepared, bearing a smaller methyl substituent in the β -position.⁸ The cross-coupling of **78** with various arylzinc reagents of type **76** was performed (Table 3). Thus, *p*-anisylzinc chloride **76a** led to the desired product **79a** in 81% yield (dr = 99:1, 99% ee). Similarly, *p*-trifluoromethoxyphenylzinc chloride **76b** and the electron-poor trifluoromethylsubstituted arylzinc reagent **76c** underwent the coupling reaction affording the protected β -hydroxy ester derivatives **79b** and **79c** (dr = 99:1, 99% ee) in 61-63% yield (entries 2-3). This arylation also proceeded well with *meta*-substituted zinc organometallics, such as the TBS-protected phenol (**76e**) and thioanisylzinc chloride (**76d**). The corresponding arylated esters **79d** and **79e** were obtained in 61-69% yield (dr = 99:1, 99% ee, entries 4-5). Methoxynaphthylzinc chloride **76f** and benzodioxolylzinc chloride **76g**

stereoselectively arylated the α -bromolactone **78**, leading to the protected β -hydroxy esters **79f** and **79g** in 73-82% yield (dr = 99:1, 99% *ee*, entries 6-7). Also, the zinc organometallics **76i** and **76j** bearing an ester function in the *meta*- and *para*-position were satisfactory coupling partners, leading to **79h** and **79i** in 52-76% yield (entries 8-9). The *meta*-carbethoxyphenylzinc chloride **76j** gave the product in excellent diastereomeric ratio (dr = 99:1). However, an ester substituent in the *para*-position resulted in epimerization in the course of the reaction (dr = 50:50). This can be explained by a subsequent base-catalyzed epimerization of the very acidic proton in the α -position to the aryl substituent in **79h**.

Table 3. Stereoselective cobalt-catalyzed cross-couplings of arylzinc reagents of type **76** with α -bromolactone **78** leading to protected β -hydroxy esters of type **79**.

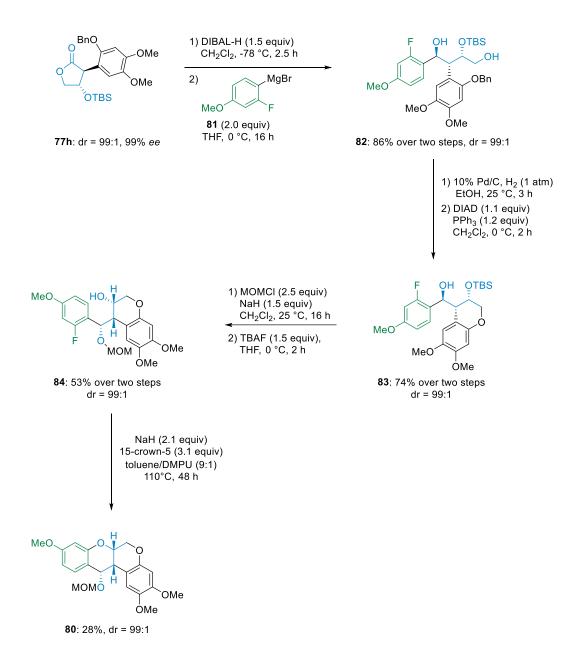
Br	+ R ¹	20% CoCl ₂ 20% PPh ₃ THF, -20 to 25°C, 16 h	
<i>t</i> Bu O Me 78 (1.0 equiv) dr = 99:1, 99% <i>ee</i>	76 (1.5 equiv)		79 , 52-82% 99:1, 99% <i>ee</i>
entry	arylzinc reagent	product	yield ^[a]
1	OMe	tBu O Me	81%
2	76a F ₃ CO	79a CCF ₃ (Bu OCF ₃)	63%
3	76b F ₃ C 76c	79b CF ₃ (Bu Me 79c	61%
4	TBSO 76e	rBu Me 79d	69%
5	MeS ZnCl 76d	(Bu Me 79e	61%

entry	arylzinc reagent	product	yield ^[a]
6	MeO	fBu O Me	82%
	76f	79f	
7	O ZnCl	tBu O Me	73%
	76g	79g	
	EtO ₂ C	tBu O Me	
8	76i : para	79h : <i>para</i>	para: 76% ^[b]
9	76j: meta	79i : meta	meta: 52%

Results and Discussion

[a] Isolated yield of analytically pure lactones of type 79. [b] dr = 50:50.

1.5 Synthesis of an Artificial Rotenoid Derivative MOM-Protected Munduserol


Many naturally occurring rotenoids and their structurally closely related unnatural derivatives show considerable antiplasmodial or cytotoxic activities.⁶⁷ These bioactive compounds were the target of several total syntheses.⁶⁸ Using this new Co-catalyzed arylation, we have prepared MOM-protected munduserol **80**, an artificial rotenoid derivative starting from the α -arylated lactone **77h** (Scheme 28). Thus, **77h** was reduced to the lactol with DIBAL-H and trapped with 2-fluoro-4-methoxyphenylmagnesium chloride (**81**). Interestingly, the diol **82** was obtained as a single diastereomer in 86% yield over two steps (dr = 99:1).⁶⁹ Next, the benzyl protecting group of **82** was removed via a palladium-catalyzed hydrogenolysis.⁷⁰ A selective Mitsunobu reaction allowed the first ring closure, affording the desired product **83** in 74% yield over two steps (dr = 99:1). Protection of **83** with MOMCI and deprotection of the silyl group with TBAF furnished **84** in 53% yield over two steps (dr = 99:1). Deprotonation of the secondary alcohol under forcing reaction conditions allowed the second ring closure *via* an intramolecular

 ⁶⁷ (a) N. Fang, J. E. Casida, *Proc. Natl. Acad. Sci. U. S. A.* **1998**, *95*, 3380; (b) N. Fang, J. E. Casida, *J. Agric. Food Chem.* **1999**, *47*, 2130-2136; (c) A. Yenesew, S. Derese, J. O. Midiwo, H. A. Oketch-Rabah, J. Lisgarten, R. Palmer, M. Heydenreich, M. G. Peter, H. Akala, J. Wangui, P. Liyala, N. C. Waters, *Phytochemistry* **2003**, *64*, 773-779; (d) A. Ahmed-Belkacem, S. Macalou, F. Borrelli, R. Capasso, E. Fattorusso, O. Taglialatela-Scafati, A. Di Pietro, *J. Med. Chem.* **2007**, *50*, 1933-1938; (e) R. S. Varughese, W. S.-T. Lam, A. A. b. H. Marican, S. H. Viganeshwari, A. S. Bhave, N. L. Syn, J. Wang, A. L.-A. Wong, A. P. Kumar, P. E. Lobie, S. C. Lee, G. Sethi, B. C. Goh, L. Wang, *Cancer* **2019**, *125*, 1789-1798.
 ⁶⁸ (a) N. Nakatani, M. Matsui, *Agric. Biol. Chem.* **1968**, *32*, 769-772; (b) E. H. Granados-Covarrubias, L. A. Maldonado, *J. Org. Chem.* **2009**, *74*, 5097-5099; (c) M. Nayak, I. Kim, *J. Org. Chem.* **2015**, *80*, 11460-11467; (d) K. H. Georgiou, S. C. Pelly, C. B. de Koning, *Tetrahedron* **2017**, *73*, 853-858; (e) K. Nakamura, K. Ohmori, K. Suzuki, *Angew. Chem. Int. Ed.* **2017**, *56*, 182-187; (f) S. Matsuoka, K. Nakamura, K. Ohmori, K. Suzuki, *Synthesis* **2019**, *51*, 1139-1156; (g) S. Perveen, S. Yang, M. Meng, W. Xu, G. Zhang, X. Fang, *Commun. Chem.* **2019**, *2*, 8.
 ⁶⁹ (a) A. Mengel, O. Reiser, *Chem. Rev.* **1999**, *99*, 1191-1224; (b) D. A. Evans, V. J. Cee, S. J. Siska, *J. Am. Chem. Soc.*

⁶⁹ (a) A. Mengel, O. Reiser, Chem. Rev. **1999**, 99, 1191-1224; (b) D. A. Evans, V. J. Cee, S. J. Siska, J. Am. Chem. Soc. **2006**, 128, 9433-9441.

⁷⁰ W. H. Hartung, R. Simonoff in Organic Reactions, John Wiley and Sons, **1953**, pp. 263-326.

nucleophilic aromatic substitution. The MOM-protected munduserol **80** was obtained in 28% yield (dr = 99:1).

Scheme 28. Total synthesis of the artificial rotenoid derivative MOM-protected munduserol (**80**).

2 Preparation of Primary and Secondary Dialkylmagnesiums by A Radical I/Mg-exchange Reaction Using sBu₂Mg in Toluene⁷¹

2.1 Introduction

Organomagnesium reagents are indispensable organometallic reagents with numerous synthetic applications.^{2a,c,4,72} They combine the inherent high reactivity of the carbonmagnesium bond with a good functional group tolerance^{2d,3} and an excellent compatibility with Lewis acid catalysts.⁷³ Magnesium organometallics are prepared by a direct insertion of magnesium turnings into organic halides^{2d} or by a directed magnesiation of aromatic and heterocyclic derivatives⁷⁴ triggered by magnesium bases such as TMPMgCl·LiCl^{21,75} or TMP₂Mg·2LiCl²² (TMP = 2,2,6,6-tetramethylpiperidyl). Recently, sBu₂Mg in toluene was used for directed magnesiations⁷⁶ allowing the preparation of various diaryl- and diheteroaryl-magnesium reagents in toluene, an industrially friendly solvent.⁷⁷ A further preparation of organomagnesium reagents involves a halogen/magnesium exchange of aryl iodides or bromides.⁷⁸ In contrast to the insertion of magnesium turnings, this reaction is of high industrial relevance and more practical for many synthetic applications due to its homogenous nature. *i*PrMqCI·LiCl^{16a,79} or sBu₂Mg 2LiOR⁸⁰ are highly efficient exchange reagents broadly used for the preparation of unsaturated aryl-, heteroaryl- and alkenylmagnesium reagents. However, the preparation of alkylmagnesium derivatives using an I/Mg-exchange is scarcely described in literature and suffers from a highly narrow substrate scope limited to primary alkyl iodides bearing a remote oxygen-coordinating group on the alkyl iodide (Scheme

⁷¹ Adapted with permission from (A. S. Sunagatullina, F. H. Lutter, P. Knochel, *Angew. Chem. Int. Ed.* **2022**, e202116625). Copyright (2022) Wiley-VCH GmbH.

 ⁷² a) A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, *Angew. Chem. Int. Ed.* 2000, *39*, 4415-4435; *Angew. Chem.* 2000, *112*, 4584-4606; b) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V.-A. Vu, *Angew. Chem. Int. Ed.* 2003, *42*, 4302-4320; *Angew. Chem.* 2003, 115, 4438-4456.

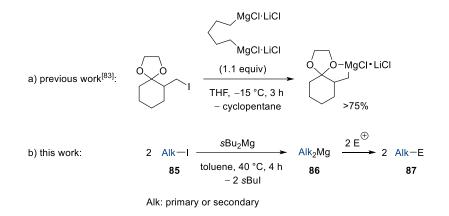
 ⁷³ a) A. Frischmuth, M. Fernandez, N. M. Barl, F. Achrainer, H. Zipse, G. Berionni, H. Mayr, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.* 2014, *53*, 7928-7932; *Angew. Chem.* 2014, *126*, 8062-8066; b) L. Klier, E. Aranzamendi, D. Ziegler, J. Nickel, K. Karaghiosoff, T. Carell, P. Knochel, *Org. Lett.* 2016, *18*, 1068-1071; c) A. Kremsmair, A. Hess, B. Heinz, P. Knochel, *Chem. Eur. J.* 2021, *27*, DOI: 10.1002/chem.202103269
 ⁷⁴ a) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, *Angew. Chem. Int. Ed.* 2011, *50*, 9794-9824; *Angew. Chem.*

 ⁷⁴ a) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, *Angew. Chem. Int. Ed.* 2011, *50*, 9794-9824; *Angew. Chem.* 2011, *123*, 9968-9999; b) M. Balkenhohl, P. Knochel, *SynOpen* 2018, *2*, 0078-0095; c) S. D. Robertson, M. Uzelac, R. E. Mulvey, *Chem. Rev.* 2019, *119*, 8332-8405.

⁷⁵ a) A. Unsinn, C. J. Rohbogner, P. Knochel, *Adv. Synth. Catal.* **2013**, 355, 1553-1560; b) K. Schwärzer, C. P. Tüllmann, S. Graβl, B. Górski, C. E. Brocklehurst, P. Knochel, *Org. Lett.* **2020**, *22*, 1899-1902.

⁷⁶ a) A. Hess, J. P. Prohaska, S. B. Doerrich, F. Trauner, F. H. Lutter, S. Lemaire, S. Wagschal, K. Karaghiosoff, P. Knochel, *Chem. Sci.* **2021**, *12*, 8424-8429; b) F. H. Lutter, L. Grokenberger, L. A. Perego, D. Broggini, S. Lemaire, S. Wagschal, P. Knochel, *Nat Commun* **2020**, *11*, 4443.

⁷⁷ a) *Solvent Recovery Book* (Ed.: I. M. Smallwood), Blackwell Science Ltd., Oxford, **2002**; b) L. Delhaye, A. Ceccato, P. Jacobs, C. Köttgen, A. Merschaert, *Org. Process Res. Dev.* **2007**, *11*, 160-164.


⁷⁸ a) D. S. Ziegler, B. Wei, P. Knochel, *Chem. Eur. J.* **2019**, *25*, 2695-2703; b) M. Balkenhohl, P. Knochel, *Chem. Eur. J.* **2020**, *26*, 3688-3697.

 ⁷⁹ a) L. Shi, Y. Chu, P. Knochel, H. Mayr, *J. Org. Chem.* 2009, 74, 2760-2764; b) P. Knochel, A. Gavryushin in *Encyclopedia of Reagents for Organic Synthesis*, 2010, John Wiley & Sons, New York.
 ⁸⁰ a) D. S. Ziegler, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.* 2018, 57, 6701-6704; *Angew. Chem.* 2018, 130,

⁸⁰ a) D. S. Ziegler, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.* **2018**, 57, 6701-6704; *Angew. Chem.* **2018**, 130, 6811-6815; b) A. Desaintjean, T. Haupt, L. J. Bole, N. R. Judge, E. Hevia, P. Knochel, *Angew. Chem. Int. Ed.* **2021**, 60, 1513-1518; *Angew. Chem.* **2021**, 133, 1536-1541.

Results and Discussion

29a).⁸¹ A more general protocol for preparing alkylmagnesium reagents was therefore highly desirable. Herein, we wish to report a *s*Bu₂Mg mediated I/Mg-exchange reaction of various primary or secondary alkyl iodides of type **85** in toluene providing dialkylmagnesiums of type **86** under mild reaction conditions. Trapping with various electrophiles (E⁺) provided a range of polyfunctional products of type **87** (Scheme 29). Furthermore, we have found that this new exchange reaction proceeded *via* a radical mechanism.⁸² Applied to secondary alkyl iodides, the new method allowed the stereoconvergent preparation of diastereomerically and enantiomerically enriched secondary dialkylmagnesiums.

Scheme 29. Preparation of dialkylmagnesium reagents **86** from primary or secondary alkyl iodides **85** *via* an I/Mg-exchange in toluene using *s*Bu₂Mg leading after quenching reactions with electrophiles to products of type **87**.

2.2 Optimization of Reaction Conditions

Thus, in preliminary experiments, we have examined the reaction of octyl iodide (**85a**) with *i*PrMgCl·LiCl in THF and have obtained mostly the corresponding substitution product (2-methyldecane in 71% yield) with little amount of desired Oct₂Mg **86a** (<5%).⁸³ Quenching **86a** with allyl bromide in the presence of 5 mol% CuCN·2LiCl⁸⁴ furnished 1-undecene (**87a**) which yield was easily determined by GC-analysis. Furthermore, switching from THF to toluene as solvent provided **86a** in 21% GC-yield.⁸⁵ These results led us to look for alternative exchange reagents and we found that *s*Bu₂Mg gave the best results.⁸⁵ *s*Bu₂Mg was conveniently prepared by treating *s*BuMgCl with *s*BuLi in a cyclohexane:ether mixture. Evaporation of the solvent and replacement with toluene

⁸¹ C. B. Rauhut, V. A. Vu, F. F. Fleming, P. Knochel, Org. Lett. 2008, 10, 1187-1189.

 ⁸² a) R. M. Peltzer, J. Gauss, O. Eisenstein, M. Cascella, *J. Am. Chem. Soc.* 2020, *142*, 2984-2994; b) R. M. Peltzer, O. Eisenstein, A. Nova, M. Cascella, *J. Phys. Chem. Soc. B* 2017, *121*, 4226-4237.
 ⁸³ See Experimental part.

⁸⁴ P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, *J. Org. Chem.* **1988**, 53, 2390-2392.

Results and Discussion

produced 0.43-0.48 M homogenous solutions of sBu_2Mg .^{78a} Furthermore, variation of the solvent at 25 °C showed that running the reaction in pure toluene without any coordinating co-solvent led to superior yields of **87a** (entries 1-3 of Table 4).⁸⁵ Performing the reaction at 40 °C further increased the yield of **87a** to 65% (entry 4). By using 0.7 equiv of the exchange reagent sBu_2Mg , **87a** was formed in 81% yield (entry 5).

Table 4. Optimization of the reaction of octyl iodide (**85a**) with sBu₂Mg leading after allylation to undecene (**87a**).

			Br	
	sBu ₂ Mg ((0.9 equiv)	
	Oct—I solvent 85a (1.0 equiv)	→ Oct ₂ Mg , t, 4 h 86a	CuCN·2LiCl (5 mol%)	87a
entry	equiv of sBu ₂ Mg	solvent	t [°C]	yield of 87a [%] ^[a]
1	0.6	THF	25	3
2	0.6	Bu ₂ O	25	traces
3	0.6	toluene	25	55
4	0.6	toluene	40	65
5	0.7	toluene	40	81

[a] All reactions were performed on a 0.5 mmol scale. Yields were determined by GC-analysis using undecane as internal standard.

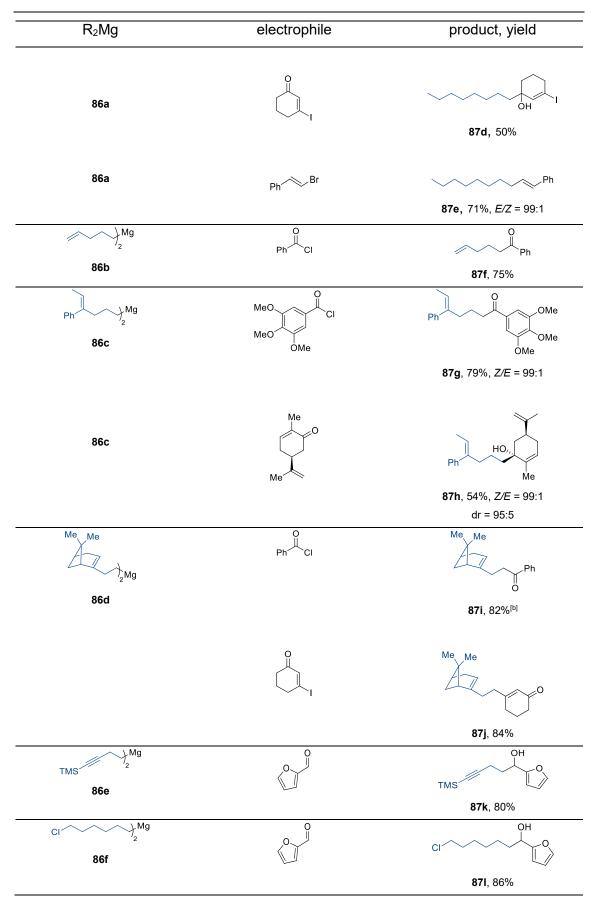
2.3 Preparation of Primary Dialkylmagnesiums by A Radical I/Mg-exchange Reaction Using sBu₂Mg in Toluene

With these optimized results in hand, we treated magnesium reagent **86a** with various electrophiles and investigated the reaction scope (Table 5). Thus, acylation of the copper derivative of **86a** obtained by adding CuCN·2LiCl (as 1 M solution in THF; 1 equiv)⁷¹ and further reaction with benzoyl chloride or cyclopropanecarbonyl chloride (0.6 equiv, -40 °C, 3 h) furnished the corresponding ketones **87b-c** in 70-86% isolated yield. Addition of **86a** to 3-iodo-2-cyclohexanone (0.6 equiv, 0 °C, 1 h) provided the tertiary alcohol **87d** in 50% yield. Fe-catalyzed cross-coupling (5% Fe(acac)₃, 20% TMEDA)⁸⁶ with (*E*)-3-styryl bromide (0.6 equiv, 0 °C, 0.5 h) gave (*E*)-1-phenyl-1-undecene (**87e**) in 71% yield (*E*:*Z* = 99:1). Unsaturated 1-iodo-4-pentene (**85b**) gave after I/Mg-exchange di(4-pentenyl)magnesium (**86b**). After transmetalation with CuCN·2LiCl and reaction with benzoyl chloride, ketone **87f** was obtained in 75% yield. (*Z*)-4-Phenyl-4-hexenyl

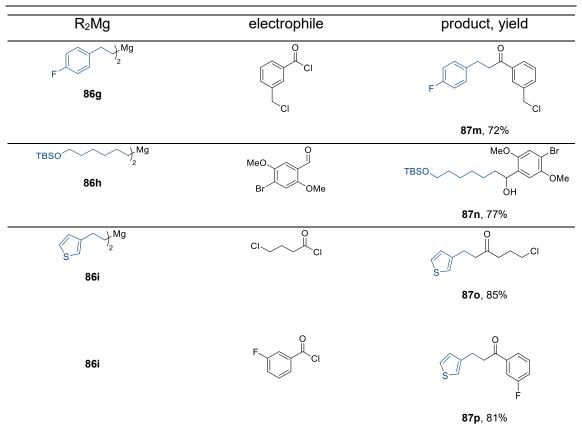
⁸⁵ We suspect that THF or Bu₂O interfered with the radical chain reaction and quenched the desired chain reaction.

 ⁸⁶ a) R. Martin, A. Fürstner, *Angew. Chem. Int. Ed.* 2004, *43*, 3955-3957; b) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, *J. Am. Chem. Soc.* 2004, *126*, 3686-3687; c) C. Bolm, J. Legros, J. L. Paih, L. Zani, *Chem. Rev.* 2004, *104*, 6217-6254;
 d) G. Cahiez, V. Habiak, C. Duplais, A. Moyeux, *Angew. Chem. Int. Ed.* 2007, *46*, 4364-4366; *Angew. Chem.* 2007, *119*, 4442-4444; e) W. M. Czaplik, M. Mayer, A. J. von Wangelin, *ChemCatChem* 2011, *3*, 135-138.

iodide (85c)87 reacted similarly and the corresponding dialkylmagnesium 86c was benzoylated with 3,4,5-trimethoxybenzoyl chloride (-40 °C, 3 h) giving the ketone 87g (Z:E = 99:1) in 79% yield. A diastereoselective addition of **86c** to (S)-carvone in toluene gave the tertiary alcohol 87h in 54% yield (Z:E = 99:1; dr = 95:5).⁸⁸ The terpenic iodide derived from (R)-nopol (85d) gave the expected diorganomagnesium species 86d which after a Cu-transmetalation underwent a smooth acylation with benzoyl chloride as well with 3-iodo-2-cyclohexen-1-one⁸⁹ leading addition-elimination to the as an corresponding ketones 87i-i in 82-84% yield. Homopropargylic iodide 85e⁸⁵ and the chloro-substituted iodide 85f were selectively converted with sBu₂Mg under the standard conditions to the dialkylmagnesiums 86e and 86f which afforded after addition of furfural the corresponding alcohols 87k and 87l in 80-86% yield. 2-(4-Fluorophenyl)ethyl iodide (85g)⁸⁵ furnished after I/Mg-exchange, transmetalation with CuCN·2LiCl and acylation with 3-(chloromethyl)benzoyl chloride ketone 87m in 72% yield. Silyl-substituted iodides such as 6-tert-butyldimethylsilyloxychlorohexane (85h)85 gave after I/Mg-exchange the corresponding dialkylmagnesium 86h which was added to a functionalized benzaldehyde leading to alcohol 87n in 77% yield. Heterocyclic iodides such as 3-(2iodoethyl)thiophene (85i)⁸⁵ underwent cleanly the I/Mg-exchange with sBu₂Mg and after transmetalation and acylation with 4-chlorobutyroyl chloride or 3-fluorobenzoyl chloride gave the ketones 87o-p in 81-85% yield.


Table 5. Preparation of various primary dialkylmagnesiums (**86a-86i**) from the corresponding iodides (**85a-85i**) using *s*Bu₂Mg in toluene and quenching with various electrophiles leading to products **87b-87p**.

R- 85a	toluono 40 °C 4 h	E [⊕] (0.6 equiv) → R−E 87b-p ^[a]
R ₂ Mg	electrophile	product, yield
Oct ₂ Mg	0 	0
86a	Ph ^C Cl	Ph
		87b , 86%
86a	⊂ CI	
		87c , 70%


⁸⁷ S. E. Denmark, J. Y. Choi, D. Wehrli, Z. Wu, L. Neuville, W. Pan, R. F. Sweis, Z. Wang, S.-M. Yang (University of Illinois), US 6867323, **2005**.

 ⁸⁸ a) T. P. Truong, S. J. Bailey, A. E. Golliher, E. Y. Monroy, U. K. Shrestha, W. A. Maio, *J. Chem. Educ.* 2018, *95*, 438-444; b) A. A. Verstegen-Haaksma, H. J. Swarts, B. J. M. Jansen, A. De Groot, *Tetrahedron* 1994, *50*, 10073-10082.
 ⁸⁹ P. Knochel, N. Millot, A. Rodriguez, C. E. Tucker in *Organic Reactions, Vol.* 58 (Ed.: L. E. Overman), Wiley, New York, 2001, pp. 417-731.

Results and Discussion

Results and Discussion

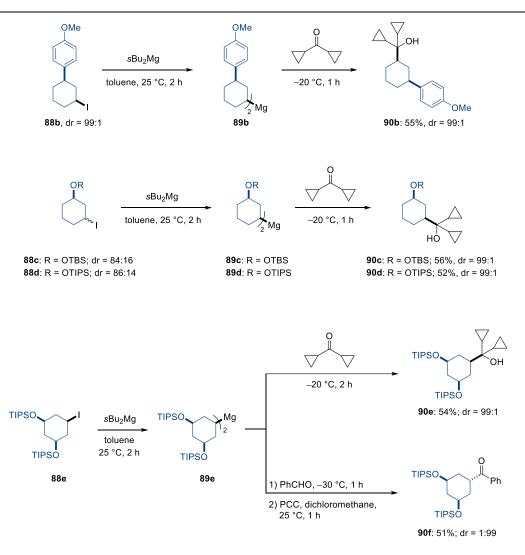
[a] Isolated yield of analytically pure products. [b] This experiment was performed on 5 mmol scale.

2.4 Preparation of Secondary Substituted Dicyclohexylmagnesiums by A Radical I/Mg-exchange Reaction Using sBu₂Mg in Toluene

Then we turned our attention to secondary alkyl iodides and chose cyclohexyl iodide (88a) as a model substrate (Table 6). A treatment of 88a with different exchange reagents as *i*PrMgCl·LiCl and *n*Bu₂Mg gave moderate yields (entry 1-2). Performing exchange reaction in THF led to only 5% GC-yield (entry 3). In contrast, in toluene in 4 hours 44% GC-yield was observed (entry 4). In contrast to primary alkyl iodides, no heating was required (entry 5). Different amounts of *s*Bu₂Mg were tested (entries 6-7). We have found again that the best exchange was obtained at 25 °C in toluene using *s*Bu₂Mg (0.6 equiv) affording dicyclohexylmagnesium (89a) after only 2 h reaction time in 42% GC-yield (entry 8). Quenching with allyl bromide gave 2-propenyl cyclohexane 90a in 48% isolated yield.

			//	Br	
		species (x equiv)		.8 equiv) PLiCl (5 mol%)	
entry	^{88a} Mg species	equiv of Mg species	^{89a} solvent	t [°C]	^{90a} yield of 90a [%] ^[a]
1	<i>i</i> PrMgCl·LiCl	1.2	THF	25	26
2	<i>n</i> Bu₂Mg	0.6	toluene	25	32
3	sBu₂Mg ^[b]	0.6	THF	25	5
4	<i>s</i> Bu₂Mg	0.6	toluene	25	44
5	<i>s</i> Bu₂Mg	0.6	toluene	40	39
6	<i>s</i> Bu₂Mg	0.7	toluene	25	42
7	<i>s</i> Bu₂Mg	1.2	toluene	25	traces
8	<i>s</i> Bu₂Mg	0.6	toluene	25	42 ^[c] (48) ^[d]

Table 6. Optimization of the reaction of cyclohexyl iodide (88a) with sBu₂Mg leading afterallylation to 2-propenyl cyclohexane (90a).

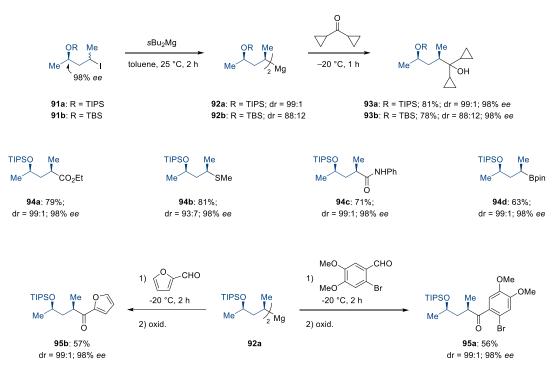

[a] Reactions were performed on a 0.5 mmol scale. Yields were determined by GC-analysis using undecane $(C_{11}H_{24})$ as an internal standard. [b] Relevant formula is $sBu_2Mg \cdot 0.5Et_2O$. [c] Exchange reaction time was 2 h. [d] Isolated yield of analytically pure compound.

Although a higher conversion could not be reached, these promising results led us to examine some substituted iodocyclohexane derivatives such as **88b-88e**. Although, we realize that this radical reaction may result in an absolute stereochemistry loss of the carbon-iodine bond, a good relative stereoselectivity may still be reached in favourable equilibration processes. Therefore, we have chosen the secondary alkyl iodides **88b-88e** bearing a bulky substituent in position $3.^{90}$ These cyclohexyl iodides used as *cis-trans* mixtures reacted with sBu_2Mg (0.6 equiv) at 25 °C within 2 h and provided the corresponding dicyclohexylmagnesium species **89b-89e** (optimum conversion of 75%) tentatively written as *cis*-isomers. Accordingly, quenching reactions of **89b-89e** with dicyclopropyl ketone provided only the diastereomerically pure *cis*-tertiary alcohols **90b-90e** in 52-56% yield showing that the exchange reaction proceeded in a stereoconvergent way (Scheme 30). In the case of the TIPSO-substituted dicyclohexylmagnesium **89e**, quenching with benzaldehyde followed by PCC-oxidation (PCC = pyridinium chlorochromate)⁹¹ led to an epimerization and provided the diastereomerically pure *trans*-ketone **90f** in 51% yield (dr = 1:99).

⁹⁰ In contrast to the previously reported I/Li-exchange which is not a radical reaction, this new radical exchange does not allow an absolute stereocontrol but relies on favourable equilibration processes producing the most stable diastereoisomer. See: A. Kremsmair, H. R. Wilke, M. M. Simon, Q. Schmidt, K. Karaghiosoff, P. Knochel, *Chem. Sci.* **2022**, *13*, 44-49.

⁹¹ G. Piancatelli, A. Scettri, M. D'Auria, Synthesis 1982, 245-258.

Results and Discussion


Scheme 30. Stereoconvergent I/Mg-exchange on cyclohexyl iodides **88b-88e** leading to dialkylmagnesium reagents **89b-89e** and subsequent addition to dicyclopropyl ketone providing the diastereomerically pure *cis*-alcohols **90b-90e** and the *trans*-ketone **90f**.

2.5 Preparation of Chiral Secondary Dialkylmagnesiums by A Radical I/Mgexchange Reaction Using sBu₂Mg in Toluene

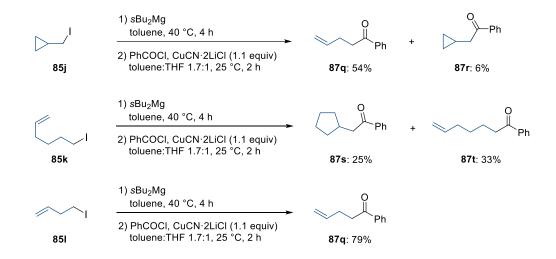
With these results in hand, we turned our attention to silylated oxygenated derivatives of commercially available optically enriched (R,R)-pentanediol (98% *ee*).⁹² We anticipated that the presence of a closely located silyl-ether function would improve the conversion of these I/Mg-exchanges. Thus, epimeric mixtures of iodides **91a** or **91b** were submitted to the usual I/Mg-exchange protocol using sBu_2Mg (0.6 equiv) in toluene (25 °C, 2 h). As expected a stereoconvergent I/Mg-exchange⁷⁹ provided diastereomerically enriched

⁹² a) K. Moriya, D. Didier, M. Simon, J. M. Hammann, G. Berionni, K. Karaghiosoff, H. Zipse, H. Mayr, P. Knochel, *Angew. Chem. Int. Ed.* 2015, *54*, 2754-2757; *Angew. Chem.* 2015, *127*, 2793-2796; b) V. Morozova, J. Skotnitzki, K. Moriya, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.* 2018, *57*, 5516-5519; *Angew. Chem.* 2018, *130*, 5614-5617.

Grignard reagents **92a** and **92b** as shown by subsequent quenching reactions with dicyclopropyl ketone affording the tertiary alcohol **93a** (dr = 99:1) and **93b** (dr = 88:12). These results indicated that the stereoconvergence of the Grignard formation **92** is highest with the TIPS-protected substrate (**91a**). Thus, we have treated **92a** with various electrophiles such as ethyl cyanoformate, *S*-methyl benzenethiosulfonate, phenyl isocyanate and methyl pinacolyl borate leading to the corresponding products **94a-94d** with high enantiomeric and diastereomeric purity (98% *ee* and dr up to 99:1; Scheme 31).

Oxid. = Dess-Martin periodinane (1.6 equiv), dichloromethane, 25 °C, 10 min

Scheme 31. Preparation of enantiomerically and diastereomerically enriched dialkylmagnesium reagents **92a** and **92b** followed by trapping with various electrophiles.


The relative stereochemistry of products of type **94** was confirmed by treating **94a** with CF₃SO₃H in dichloromethane, 25 °C, 2 h affording the corresponding *trans*-2,4dimethylbutyrolactone in 79% yield.^{79,85} Additionally, we have reacted **92a** with 3,4dimethoxybenzaldehyde or furfural (-20 °C, 2 h) producing intermediate alcohols which were oxidized using the Dess-Martin periodinane⁹³ affording the valuable homo-aldol products **95a** and **95b** in 56-57% overall yields (dr = 99:1; 98% *ee*).

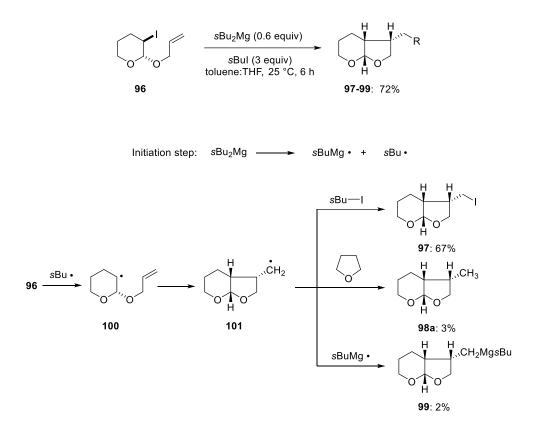
⁹³ D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156.

2.6 Mechanistic Probes

2.6.1 Radical clocks

Preliminary mechanistic studies were undertaken to demonstrate the radical nature of this I/Mg-exchange. Thus, the treatment of radical clock probes⁹⁴ such as alkyl iodides **85j**, **85k** and **85I** provided evidence of a radical pathway, since cyclopropylmethyl iodide **85j** gave, after quenching with PhCOCI, mostly the open-chain product **87q** with less than 10% of the non-rearranged ketone **87r**. On another hand, treatment of 5-hexenyl iodide (**85k**) under the I/Mg-exchange conditions afforded after benzoylation a significant amount of ring closure product cyclopentylmethyl phenyl ketone (**87s**) as well as open-chain product **87t**. As expected 3-butenyl iodide (**85l**) furnished under the same conditions only the open-chain ketone **87q** in 79% yield (Scheme 32).

Scheme 32. Radical clock experiments using alkyl iodides 85j, 85k and 85l for I/Mgexchanges and subsequent benzoylations.


2.6.2 An Atom-Transfer Cyclization of the Cyclic lodo-Acetale 96

The cyclic iodo-acetal 96^{95} was subjected to the I/Mg-exchange under various conditions. We have observed the formation of products 97, 98a and 99 in various proportions⁸⁵ but could optimize the reaction to produce the cyclic iodide 97 in 67% yield (dr = 95:5) by using commercial *n*Bu₂Mg or *s*Bu₂Mg in THF in the presence of *s*Bul (3 equiv). Interestingly, the addition of styrene inhibited the reaction completely showing the radical character of this reaction.⁸⁵ This cyclization may be rationalized by an atom-transfer

⁹⁴ M. Newcomb in *Encyclopedia of Radicals in Chemistry, Biology and Materials, Vol. 1* (Eds.: C. Chatgilialoglu, A. Studer), Wiley-Interscience, Hoboken, **2012**, pp. 107-124.

⁹⁵ a) A. Inoue, H. Shinokubo, K. Oshima, *Org. Lett.* **2000**, *2*, 651-653; b) J. L. Kuo, C. Lorenc, J. M. Abuyuan, J. R. Norton, *J. Am. Chem. Soc.* **2018**, *140*, 4512-4516.

mechanism⁹⁶ (Scheme 33). Thus, we assumed that the initiation step was a homolytic cleavage of *s*Bu₂Mg,^{72b} followed by a radical chain reaction induced by a *s*-butyl radical producing the radical **100** from the iodide **96**. After cyclization, the new radical **101** was produced and trapped by *s*Bul affording the major product **97** in 67% yield. Reaction of **101** with THF gave the bicyclic acetal **98a**. Recombination of **101** with the *s*BuMg radical will provide **99**, which was detected in 2% yield. These observations supported an atom-transfer mechanism for the I/Mg-exchange.

Scheme 33. Atom-transfer cyclization of **96** triggered by *s*Bu₂Mg providing selectively the bicyclic iodide **97**.

⁹⁶ a) D. P. Curran, *Synthesis* **1988**, 489-513; b) A. Studer, D. P. Curran, *Angew. Chem. Int. Ed.* **2016**, *55*, 58-102; *Angew. Chem.* **2015**, *128*, 58-106.

3 Iron-Catalyzed Radical Zincations of Alkyl Iodides

The halogen-metal exchange is an important method for the preparation of organometallic reagents.^{78,97} The rate of such an exchange reaction strongly depends on the nature of the metal. The more electropositive, the faster is the exchange reaction⁹⁸ demonstrated by the I/Li-exchange as one of the fastest reactions in organic synthesis.⁹⁹ However, the I/Mg-exchange, in comparison, is usually much slower¹⁰⁰ and the I/Znexchange even requires polar solvents¹⁰¹ or tailored organozinc exchange reagents such as the zincate sBu₂Zn·2LiOR.⁵⁰ Also, I/Zn-exchange reactions under transition metal catalysis were reported.¹⁰² Thus, Pd(II) and Ni(II) salts proved to catalyze the I/Znexchange under mild conditions.¹⁰⁵ In the search of a less expensive catalyst, we have examined an iron-catalyzed reaction.¹⁰³ Indeed, iron salts were reported to catalyze a range of radical cyclizations,^{106,104} using organomagnesium¹⁰⁵ or organozinc reagents followed by various cross-couplings.¹⁰⁶ Furthermore, Bertrand has described a nontransition metal catalyzed generation of radicals from alkyl iodides promoted by air.¹⁰⁷ Herein, we wish to report a new iron-catalyzed I/Zn-exchange reaction allowing the

⁹⁷ a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302-4320; Angew. Chem. 2003, 115, 4438-4456; b) A. Kremsmair, J. H. Harenberg, K. Schwärzer, A. Hess, P. Knochel, Chem. Sci. 2021, 12, 6011-6019; c) B. Wei, P. Knochel, Synthesis 2022, 54, 246-254.

⁹⁸ a) A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed., 2006, 45, 159-162; Angew. Chem. 2005, 118, 165-169; b) A. D. Benischke, L. Anthore-Dalion, G. Berionni, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 16390-16394; Angew. Chem. **2017**, *129*, 16608-16612; c) A. D. Benischke, L. Anthore-Dalion, F. Kohl, P. Knochel, *Chem. Eur. J.* **2018**, *24*, 11103-11109; d) L. Anthore-Dalion, A. D. Benischke, B. Wei, G. Berionni, P. Knochel, *Angew. Chem. Int. Ed.* **2019**, *58*, 4046-4050; *Angew. Chem.* **2019**, *131*, 4086-4090; e) J. H. Harenberg, N. Weidmann, K. Karaghiosoff, P. Knochel, *Nature 1999*, 1999, Angew. Chem. Int. Ed. 2021, 60, 731-735; Angew. Chem. 2021, 133, 742-746.

 ⁹⁹ W. F. Bailey, J. J. Patricia, T. T. Nurmi, W. Wang, *Tetrahedron Lett.* **1986**, 27, 1861-1864.
 ¹⁰⁰ a) L. Shi, Y. Chu, P. Knochel, H. Mayr, *Angew. Chem. Int. Ed.* **2008**, 47, 202-204; *Angew. Chem.* **2007**, *120*, 208-210;
 b) L. Shi, Y. Chu, P. Knochel, H. Mayr, *Org. Lett.* **2009**, *11*, 3502-3505; c) L. Shi, Y. Chu, P. Knochel, H. Mayr, *Org. Lett.* 2012, 14, 2602-2605.

¹⁰¹ F. F. Kneisel, M. Dochnahl, P. Knochel, Angew. Chem. Int. Ed. **2004**, 43, 1017-1021; Angew. Chem. **2004**, 116, 1032-1036.

¹⁰² a) H. Stadtmüller, R. Lentz, C. E. Tucker, T. Stüdemann, W. Dörner, P. Knochel, J. Am. Chem. Soc. 1993, 115, 7027-7028; b) H. Stadtmüller, A. Vaupel, C. E. Tucker, T. Stüdemann, P. Knochel, Chem. Eur. J. 1996, 2, 1204-1220; c) A. Vaupel, P. Knochel, J. Org. Chem. 1996, 61, 5743-5753.

¹⁰³ a) G. Cahiez, H. Avedissian, Synthesis **1998**, 1998, 1199-1205; b) C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217-6254; c) F. Vallée, J. J. Mousseau, A. B. Charette, J. Am. Chem. Soc. 2010, 132, 1514-1516; d) Iron catalysis. Fundamentals and Applications, B. Plietker (Ed.), Springer, Heidelberg, 2011; e) The Chemistry of Organoiron Compounds, I. Marek, Z. Rappoport (Eds.), Wiley, Chichester, 2014; f) G. Cahiez, A. Moyeux, J. Cossy, Adv. Synth. Catal. 2015, 357, 1983-1989; g) R. B. Bedford, Acc. Chem. Res. 2015, 48, 1485-1493; h) I. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170-3387; i) A. Fürstner, ACS Cent. Sci. 2016, 2, 778-789; j) G. Pototschnig, N. Maulide, M. Schnürch, Chem. Eur. J. 2017, 23, 9206-9232.

¹⁰⁴ a) J. Y. Hwang, J. H. Baek, T. I. Shin, J. H. Shin, J. W. Oh, K. P. Kim, Y. You, E. J. Kang, Org. Lett. **2016**, *18*, 4900-4903; b) S. H. Kyne, M. Clémancey, G. Blondin, E. Derat, L. Fensterbank, A. Jutand, G. Lefèvre, C. Ollivier, Organometallics 2018, 37, 761-771; c) F. T. Pulikottil, R. Pilli, V. Murugesan, C. G. Krishnan, R. Rasappan,

ChemCatChem **2019**, *11*, 2438-2442. ¹⁰⁵ a) Y. Hayashi, H. Shinokubo, K. Oshima, *Tetrahedron Lett.* **1998**, 39, 63-66; b) J. G. Kim, Y. H. Son, J. W. Seo, E. J. Kang, Eur. J. Org. Chem. 2015, 1781-1789.

¹⁰⁶ T. Hatakeyama, Y. Kondo, Y.-i. Fujiwara, H. Takaya, S. Ito, E. Nakamura, M. Nakamura, *Chem. Commun.* 2009, 1216-

^{1218.} ¹⁰⁷ a) J. Maury, D. Mouysset, L. Feray, S. R. A. Marque, D. Siri, M. P. Bertrand, *Chem. Eur. J.* **2012**, *18*, 3241-3247; b) J. Maury, S. Jammi, F. Vibert, S. R. A. Marque, D. Siri, L. Feray, M. Betrand, *J. Org. Chem.* **2012**, 77, 9081-9086; c) S. Jammi, D. Mouysset, D. Siri, M. P. Bertrand, L. Feray, *J. Org. Chem.* **2013**, 78, 1589-1603; d) K. Aikawa, Y. Nakamura, Y. Yokota, W. Toya, K. Mikami, *Chem. Eur. J.* 2015, *21*, 96-100; e) H. Kato, K. Hirano, D. Kurauchi, N. Toriumi, M. Uchiyama, Chem. Eur. J. 2015, 21, 3895-3900.

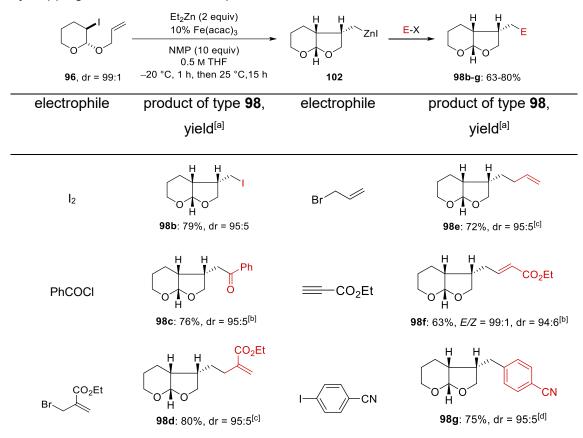
preparation of various alkylzinc organometallics from the corresponding alkyl iodides under mild conditions.

Thus, we have initiated our studies with the cyclic iodohydrin **96**.^{104c} Treatment of iodide **96** with a 1 M solution of diethylzinc in toluene in the presence of catalytic amounts of Fe(acac)₃ and *N*-methylpyrrolidone (NMP; 10 equiv) in THF at -20 °C for 1 h and subsequent aging of the mixture for 15 h at 25 °C provided the bicyclic alkylzinc iodide **102**. After aqueous work-up, the bicyclic acetal **98a** was obtained in 80% isolated yield and high diastereoselectivity (dr = 95:5; entry 1 of Table 1). In the absence of iron salts, a low GC-yield of 18% with a decreased dr of 90:10 was obtained (entry 2). Furthermore, using FeCl₃·6H₂O as an iron source gave only 5% yield of **96** (entry 3). Lowering the amount of catalyst to 2% Fe(acac)₃ led to 60% GC-yield of **96** (entry 4). Exchanging NMP for *N*, *N'*-dimethylpropyleneurea (DMPU) decreased the GC-yield of **96** to 54% (entry 5). When acetonitrile was used as a solvent, 39% of acetal **96** was obtained (dr = 92:8; entry 6).¹⁰⁸ Notably, performing the zincation at 25 °C resulted in 75% GC-yield but lower diastereoselectivity (dr = 92:8; entry 7).

Table 7. Optimization of the reaction conditions for the iron-catalyzed radical zincation

 of cyclic iodohydrin 96 leading to the bicyclic acetal 98a.

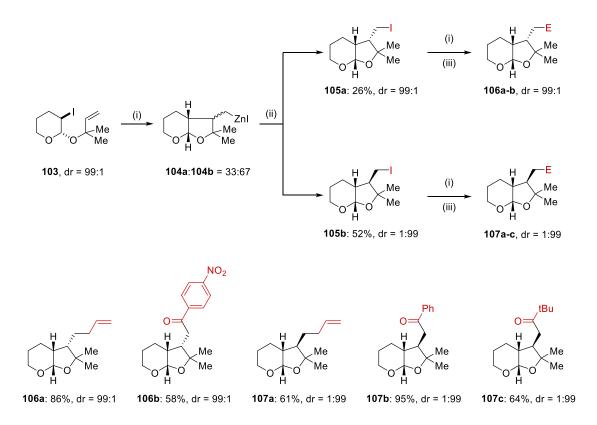
	$ \begin{array}{c} Et_2Zn (2 equiv) \\ 10\% Fe(acac)_3 \\ \hline NMP (10 equiv) \\ 0.5 M THF $	H H Znl aq. NH ₄ Cl	,,,CH ₃
96,	dr = 99:1 -20 °C, 1 h, then 25 °C, 15 h	102	98a
entry	deviation from standard conditions	GC-yield of 98a (%) ^[a]	dr (98a) ^[a]
1	None	80 ^[b]	95:5
2	No Fe(acac)₃	18	90:10
3	10% FeCl ₃ ·6H ₂ O	5	-
4	2% Fe(acac) ₃ 60		
5	DMPU instead of NMP as additive	54	95:5
6	MeCN instead of THF 39 92:8		
7	Performing reaction at 25 °C 75		


[a] The reactions were performed on 0.5 mmol scale. Yields and dr (diastereomeric ratio) were determined by GC-analysis using $C_{11}H_{24}$ as internal standard. [b] Isolated yield of analytically pure products.

¹⁰⁸ a) H. Fillon, C. Gosmini, J. Périchon, *J. Am. Chem. Soc.* **2003**, *125*, 3867-3870; b) I. Kazmierski, C. Gosmini, J. M. Paris, J. Périchon, *Tetrahedron Lett.* **2003**, *44*, 6417-6420; c) J.-M. Bégouin, C. Gosmini, *J. Org. Chem.* **2009**, *74*, 3221-3224.

With these optimized conditions in hand, we have treated the zinc reagent **102** with various electrophiles (Table 8). Thus, iodolysis of **102** furnished the corresponding cyclic iodide **98b** in 79% isolated yield and dr = 95:5. Transmetalation of **102** using CuCN·2LiCl (as 1 M solution in THF; 1 equiv) and further reaction with benzoyl chloride (3 equiv, -40 °C, 3 h) gave the ketone **98c** in 76% yield (dr = 95:5). Allylation of **102** with ethyl (2-bromomethyl)acrylate or allyl bromide (2.1-3.0 equiv, -20 °C, 2 h) in the presence of 5 mol% CuCN·2LiCl furnished the corresponding allylated products **98d**-**e** in 72-80% (dr = 95:5). Trapping of **102**, after transmetalation with CuCN·2LiCl (1.0 equiv), with ethyl propiolate led to ester derivative **98f** in 63% yield (*E*/*Z* = 99:1; dr = 94:6). Furthermore, Pd-catalyzed cross-coupling (5% Pd(OAc)₂, 10% CPhos)¹⁰⁹ with 4-iodobenzonitrile (25 °C, 16 h) gave the arylated acetal **98g** in 75% yield (dr = 95:5).

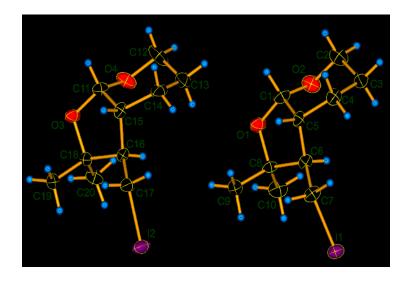
Table 8. Products of type **98**, obtained after iron-catalyzed I/Zn-exchange of **96** followed


 by trapping reactions with electrophiles.

Reaction conditions: [a] isolated yield of analytically pure products; [b] CuCN·2LiCl (1.0 equiv), electrophile (3.0 equiv), -40 °C to 25 °C, 2 h; [c] allyl bromide (2.1-3.0 equiv), CuCN·2LiCl (5 mol%), -20 °C to 25 °C, 2 h; [d] 5% Pd(OAc)₂, 10% CPhos, 25 °C, 16 h.

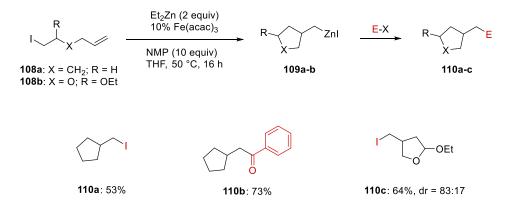
¹⁰⁹ C. Han, S. L. Buchwald, *J. Am. Chem. Soc.* **2009**, *131*, 7532-7533.

Similarly, the sterically hindered dimethyl-substituted iodooxanyl acetal 103^{107a} underwent the iron-catalyzed zincation at 50 °C giving the diastereomeric zinc species *syn*-**104a** and *anti*-**104b**. Iodolysis gave two separable diastereomers *syn*-**105a** (26%) and *anti*-**105b** (52%) after column chromatographical purification (Scheme 34).



Scheme 34. Diastereomerically enriched products **106a-b** and **107a-c** obtained after an iron-catalyzed zincation of **103** followed by different trapping reactions. Reaction conditions: (i) Et_2Zn (2 equiv), 10% $Fe(acac)_3$, NMP (10 equiv), THF, 50 °C, 8 h. (ii) I_2 , 25 °C, 1 h, separation of diastereomers. (iii) Electrophile (3 equiv).

The relative stereochemistry of *syn*-105a and *anti*-105b was proved by NOE-NMR and X-Ray analyses^{110,111} (Figure 1). Subsequent Fe-catalyzed iodine-zinc exchange reaction of *syn*-105a and *anti*-105b under the same conditions, followed by various trapping reactions led to functionalized dimethyltetrahydrofurans 106a-b and 107a-c. Thus, allylation of 104a or 104b with allyl bromide in the presence of 5 mol% of CuCN·2LiCl gave alkenes 106a and 107a in 61-86% yield (dr = 99:1). Transmetalation of 104a or 104b with stoichiometric amounts of CuCN·2LiCl followed by the addition of benzoyl chloride, *tert*-butylacetyl chloride or 4-nitrobenzoyl chloride gave the ketones 106b and 107b-c in 58-95% yield (dr = 99:1).


¹¹⁰ See Experimental Part.

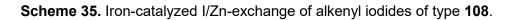
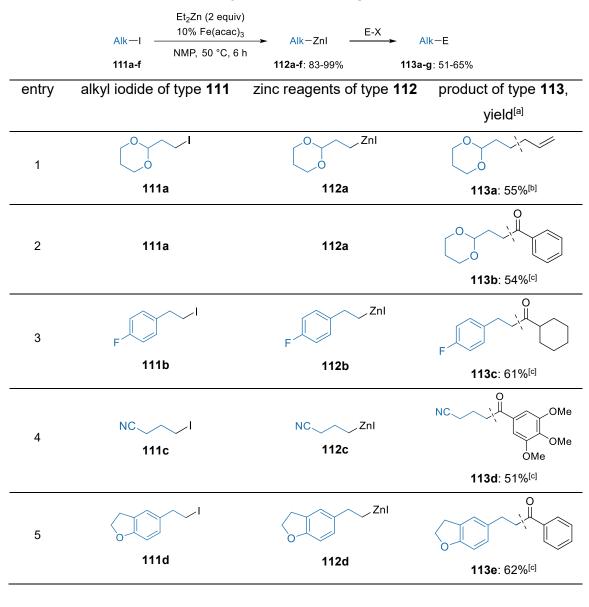
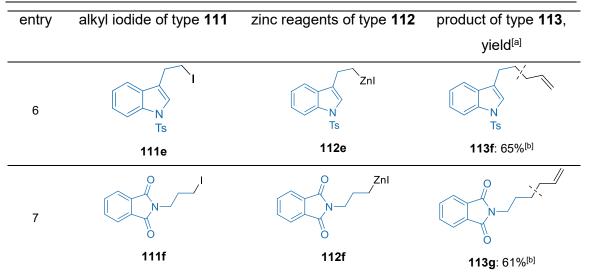

¹¹¹ CCDC-2201809 (*anti*-**105b**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/structures.

Figure 1. Molecular structure of the alkyl iodide *anti*-**105b** in the crystal. View of the two crystallographically independent molecules.^{112,113}

We have extended this I/Zn-exchange to alkenyl iodides **108a** and **108b**^{102c} (Scheme 35). Thus, 6-iodohex-1-ene (**108a**) underwent the I/Zn-exchange at 50 °C instead of -20 °C in the case of the diastereoselective ring closure (Table 7 and Scheme 34) leading to the corresponding zinc species **109a** which after iodolysis afforded cyclopentylmethyl iodide **110a** in 53% yield. These harsher conditions may be due to the generation of an intermediate primary alkyl radical which is less stable than a secondary alkyl radical. The copper-derivative of **109a** obtained by adding CuCN·2LiCl (as 1 M solution in THF; 1 equiv) was acylated with benzoyl chloride (3 equiv, -40 °C, 3 h) and gave ketone **110b** in 73% yield. Iodoacetal **108b** provided after an iron-catalyzed I/Zn-exchange the zinc species **109b** which after iodolysis furnished the iodide **110c** in 64% yield (dr = 83:17).



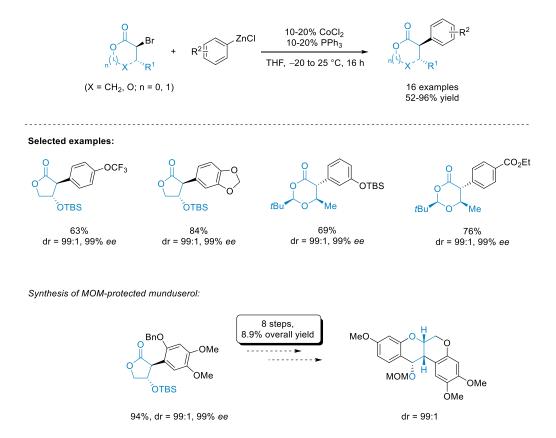

Results and Discussion

Additionally, a range of functionalized primary alkyl iodides **111a-f** underwent an ironcatalyzed zincation within 6 h at 50 °C in NMP as solvent leading to alkylzinc iodides **112a-f** in 83-99% yield.¹¹⁰ After various trapping reactions with typical electrophiles, we have obtained the expected products **113a-g** in 51-65% yield (Table 9). Thus, (2-(1,3dioxan-2-yl)ethyl)zinc iodide **112a** was trapped with allyl bromide in the presence of 5 mol% of CuCN·2LiCl giving the allylated product **113a** in 55% yield. Acylation of copper derivatives of **112a-d**, obtained by addition of CuCN·2LiCl (1 M solution in THF; 1 equiv), with various acyl chlorides gave ketones **113b-e** in 51-62% yield. Interestingly, alkyl iodides containing heteroaryl moieties (**111e-f**) readily underwent the I/Zn-exchange and after allylations with allyl bromide in the presence of 5 mol% of CuCN·2LiCl gave the expected alkenes **113f-g** in 61-65% yield.

 Table 9. Iron-catalyzed zincation of primary alkyl iodides (111a-f) followed by quenching reactions with electrophiles leading to products 113a-g.

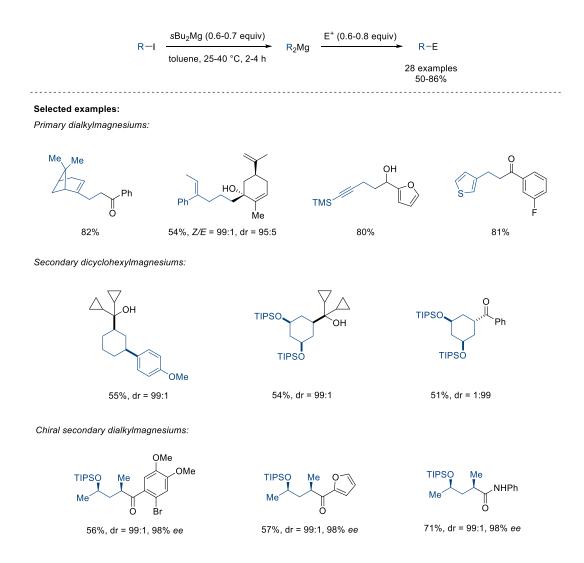
Results and Discussion

Reaction conditions: [a] isolated yield of analytically pure products; [b] allyl bromide (1.5 equiv), CuCN·2LiCl (5 mol%), -20 °C to 25 °C, 2 h; [c] CuCN·2LiCl (1.0 equiv), acyl chlorides (1.2-3.0 equiv), -40 °C to 25 °C, 3 h.


Although no detailed mechanistic studies have been performed, we propose the following mechanism in which the iron-catalyst converts the alkyl iodide **111** into an alkyl radical **114** which by recombination afforded alkyl-iron intermediate **115**. Subsequently, iron species **116** was produced *via* ligand exchange with Et_2Zn which after transmetalation generated the diethyl iron intermediate **117** (which decomposed to ethane and ethylene) and alkylzinc iodide **113** (Scheme 36).

Scheme 36. Tentative radical mechanism for the iron-catalyzed preparation of alkylzinc iodides (**113**) from alkyl iodides (**111**).

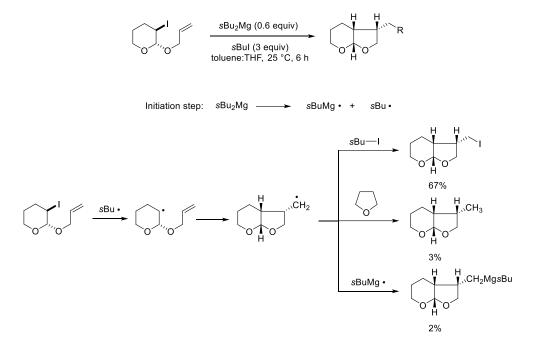
IV Summary


The first part of this thesis focused on the development of new cobalt-catalyzed reactions of functionalized arylzinc reagents. A highly *trans*-diastereoselective Co-catalyzed cross-coupling of arylzinc reagents with α -bromolactones bearing a substituent in the β -position was developed. α -Arylated butyrolactones and α -arylated protected β -hydroxyesters were obtained in the presence of 10-20% CoCl₂ and 10-20% PPh₃ in THF under mild conditions (25 °C, 16 h) in 52-96% yield (dr = 99:1, 99% *ee*). A stereoselective synthesis of an artificial rotenoid derivative MOM-protected munduserol was performed in 8.9% overall yield (dr = 99:1) (Scheme 37).

Scheme 37. Stereoselective cobalt-catalyzed cross-coupling reactions of arylzinc chlorides with α -bromolactones and related derivatives.

Summary

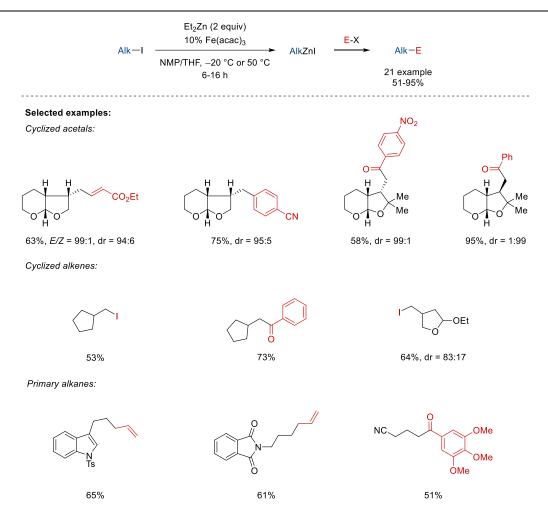
The second part of this thesis was devoted to a new preparation of various primary and secondary dialkylmagnesiums in toluene using sBu_2Mg as an exchange reagent. This exchange reaction allows the preparation of various primary dialkylmagnesiums in toluene and is extended to several secondary cyclohexyl iodides providing the thermodynamically most favored Grignard reagents. The diastereomeric ratio of these I/Mg-exchanges on secondary iodides could be further improved by using secondary alkyl iodides bearing a TIPSO-group at the 3-position. Thus, chiral secondary dialkylmagnesiums are prepared from 3-substituted silyl ethers and gave after various quenching reactions with electrophiles, highly enantiomerically and diastereomerically enriched products (up to dr = 99:1 and 98% *ee*) (Scheme 38).



Scheme 38. Preparation of primary and secondary dialkylmagnesiums using sBu₂Mg in toluene.

Mechanistic investigations using different radical clocks showed radical nature of the I/Mg-exchange reaction. *s*Bu₂Mg-mediated cyclization of the cyclic iodo-acetal gave

Summary


different products which brightly supports an atom-transfer mechanism. Using sBul as an additive led to the cyclic iodide as a main product (Scheme 39).

Scheme 39. Atom-transfer cyclization of cyclic iodo-acetale triggered by sBu₂Mg providing selectively the bicyclic iodide.

Also, a new practical iron-catalyzed I/Zn-exchange reaction allowing the conversion of primary and tailored secondary alkyl iodides to the corresponding alkylzinc reagents was developed. In the presence of a remote double bond at position 5, a highly diastereoselective cyclization took place. All the prepared organozinc reagents were trapped with allylic bromides, acid chlorides or aryl iodides in the presence of copper- or palladium catalysts (Scheme 40).

Summary

Scheme 40. Iron-catalyzed I/Zn-exchange of alkyl iodides.

V Experimental Part

1 General Information

All reactions were performed in flame dried glassware under argon with magnetic stirring under argon atmosphere using *Schlenk* techniques. Syringes used to transfer solvents and reagents were purged with argon prior to use. Starting materials were purchased from Sigma Aldrich, TCI, Acros, Alfa Aesar or Fluorochem and used without further purification.

1.1 Solvents

THF was purchased from Acros (99.5% extra dry, stored over molecular sieve, stabilized).

 CH_2Cl_2 was predried over CaCl₂ and distilled from CaH₂.

Toluene was continuously refluxed and distilled over sodium.

DMPU was predried over CaH₂ (4 h) and distilled (bp = 247 °C).

MeCN was purchased from Acros (99.9+% extra dry).

Solvents for reaction workups and column chromatography separations were distilled prior to use

1.2 Purification

Thin layer chromatography (TLC) was performed using aluminum plates covered with SiO_2 (Merck 60, F-254) and visualized either by UV detection or by staining with KMnO₄ solution (1.5 g KMnO₄, 10 g K₂CO₃, 1.25 mL 10% NaOH solution in 200 mL H₂O) or molybdatophosphoric acid stain (10 g PMA in 100 mL absolute ethanol).

Flash column chromatography was performed using silica gel 60 (40-63 µm 230-400 mesh ASTM) from Merck.

1.3 Analytical Data

NMR spectra were recorded on Varian VXR 400S, Bruker Avance III HD 400 MHz and Bruker AMX 600 instruments. Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual solvent peak of CHCl₃ (δ_{H} = 7.26, δ_{C} = 77.0) or benzene (δ_{H} = 7.16, δ_{C} = 128.1) respectively. For the characterization of the observed signal multiplicities the following abbreviations were used: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet), br (broad signal). **Mass spectra** and **high resolution mass spectra** (HRMS) were recorded on a Finnigan MAT 95Q (EI) or a ThermoFinnigan LTQ FT instrument (ESI). Electron impact ionization (EI) was conducted with an electron energy of 70 eV. Electrospray ionization (ESI) was conducted with an IonMax ion-source equipped with an ESI head. It was performed with a voltage of 4 kV at the spray capillary tube, a heating filament temperature of 250 °C and a nitrogen flow of 25 units.

Gas Chromatography (GC, GC/MS) was performed with machines of the types Hewlett-Packard 6890 or 5890 Series II (Hewlett Packard, 5% phenylmethylpolysiloxane; column length: 15 m, diameter: 0.25 mm; film thickness: 0.25 μ m). For the combination of gas chromatography with mass spectroscopic detection, a GC-MS from Hewlett Packard of type 6890/MSD 5973 was used.

Chiral HPLC (cHPLC) was measured on a Shimazu HPLC Prominence with Daicel Chiracel columns.

Enantiomeric excess (ee). The enantiomeric excess of optical enriched compounds was determined *via* chiral HPLC analysis on a Shimadzu Prominence 20A HPLC system. For developing a chiral resolution method, different chiral normal phase columns were tested with *n*-heptane and *i*PrOH as mobile phase (isocratic) using a racemic mixture of the compound.

Optical Rotation values were recorded on an Anton Paar MCP 500 polarimeter. The specific rotation is calculated as follows:

$$[\alpha]^{\varphi}_{\lambda} = \frac{[\alpha] \cdot 100}{c \cdot d}$$

Thereby, the wavelength λ is reported in nm and the measuring temperature φ in °C. α represents the recorded optical rotation, *c* the concentration of the analyte in 10 mg/mL and *d* the length of the cuvette in dm. Thus, the specific rotation is given in $10^{-1} \cdot \text{deg} \cdot \text{cm}^2 \cdot \text{g}^{-1}$. Usage of the sodium *D* line (λ = 589 nm) is indicated by *D* instead of the wavelength in nm. The respective concentration as well as the solvent is reported at the relevant section of the experimental section.

Infrared spectra (IR) were recorded from 4500 cm⁻¹ to 650 cm⁻¹ on a Perkin Elmer Spectrum BX-59343 instrument. For detection a Smiths Detection DuraSample IR II Diamond ATR sensor was used. The absorption bands ($\tilde{\nu}$) are reported in wave numbers (cm⁻¹). **Melting points (m.p.)** were measured using a Büchi B-540 apparatus and are uncorrected.

Determination of diastereomeric ratios: The selectivity of every reaction was evaluated *via* GC/MS of crude reaction mixtures prior to purification. Only a single diastereomer was detected in all the diastereoselective cases. After purification, the reported dr was determined *via* NMR.

Reactions were monitored by gas chromatography (GC and GC-MS) using an internal standard (undecane) or thin layer chromatography (TLC). Yields refer to isolated yields of compounds estimated to be >95% pure as determined by ¹H NMR (25 °C) and capillary GC analysis.

1.4 Reagents

Preparation of sBu₂Mg solution in toluene¹¹²

A dry and argon flushed 250mL Schlenk-tube, equipped with a magnetic stirrer and a septum, was charged with *s*BuMgCl (2 M in diethyl ether, 10 mL, 20 mmol). Then *s*BuLi (1.7 M in cyclohexane, 12 mL, 20 mmol) was added dropwise at room temperature. After the addition was complete, the reaction mixture was stirred for 1 h. The solvents were then removed under vacuum affording a greyish solid. Dry toluene was then slowly added under stirring. Then salts were allowed to precipitate (*ca.* 24 h) and the solution was filtered *via* syringe filter (30 mm with 0.45 µm glass fiber membrane) and transferred to a dry argon flushed *Schlenk*-tube. The concentration of the *s*Bu₂Mg was determined *via* titration with benzoic acid (70 mg in 2 mL THF) and 4-(phenylazo)diphenylamine as indicator.

CuCN·2LiCl solution in tetrahydrofurane (THF) (1 M)¹¹³

LiCl (8.40 g, 200 mmol) and CuCN (8.96 g, 100 mmol) were dried in a Schlenk-flask under high vacuum at 150 °C for 4 h. After cooling to 25 °C, dry THF was added until a total volume of 100 mL was reached. The suspension was left stirring overnight at rt until all salts had completely dissolved. The solution was stored under argon upon use.

*s*BuLi solution in cyclohexane was purchased from Albemarle and titrated against *i*PrOH in THF using 1,10-phenantroline (2 mL, 0.5 M).¹¹⁴ *s*BuMgCl was purchased from Sigma

¹¹² A. Hess, J.P. Prohaska, S.B. Doerrich, F. Trauner, F.H. Lutter, S. Lemaire, S. Wagschal, K. Karaghiosoff, P. Knochel, *Chem. Sci.* **2021**, *12*, 8424-8429.

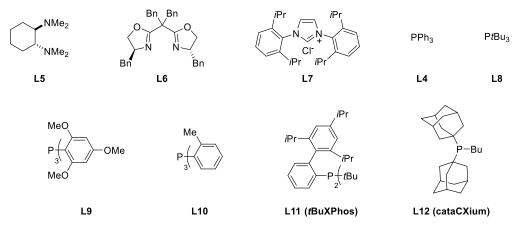
¹¹³ P. Knochel, C.P.M. Yeh, S.C. Berk, J. Talbert, *J. Org. Chem.* **1988**, 53, 2390-2392.

¹¹⁴ J. Skotnitzki, A. Kremsmair, D. Keefer, Y. Gong, R. de Vivie-Riedle, P. Knochel, *Angew. Chem. Int. Ed.* **2020**, 59, 320-324.

Aldrich and titrated against iodide in THF solution (2 mL, 0.5 M).¹¹⁵ nBu_2Mg was used from Albemarle and titrated against iodide in LiCl THF solution (2 mL, 0.5 M). Fe(acac)₃ (99.9% purity) was purchased from Sigma Aldrich.

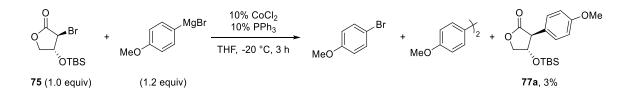
¹¹⁵ A. Krasovskiy, P. Knochel, *Synthesis* **2006**, 890-891.

2 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α -Bromolactones and Related Derivatives


2.1 Optimization of Reaction Conditions

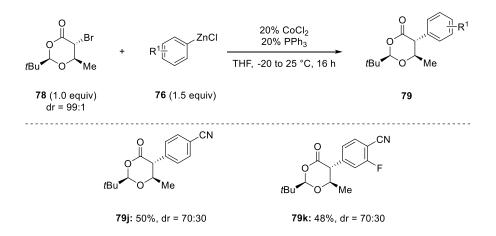
Extended Ligand Screening: The ligand effect on the arylation of the more challenging α -bromomenthone **S1** was determined in more detail (Table S1). Using *N*,*N*,*N*',*N*'-cyclohexyl-1,2-diamine (**L5**), the bisoxazoline ligand **L6**, and the NHC-ligand **L7** did not lead to significant enhancements of the diastereomeric ratio for product **S2** (entries 1-4). In contrast, 40 mol% of triphenylphosphine (**L4**) afforded **S2** in 83% yield (dr = 85:15, entry 5). Reducing the amount of PPh₃ (**L4**) to 20 mol% led to similar results (entry 6). Various trialkyl- or triarylphosphines, such as **L8-12** as additives gave the arylated menthone **S2** in lower yields or decreased diastereoselectivity (entries 7-11).

Me	Me O Br Me	+ TBSO ZnCl + 76e (1.5 equiv)	CoCl ₂ (20 mol%), additive	Me O Me O Me O Me O Me S2
(1.0 equiv)				
	entry	additive	yield ^[a]	dr
-	1	-	76%	70:30
	2	L5 (20 mol%)	60%	70:30
	3	L6 (20 mol%)	77%	75:25
	4	L7 (20 mol%)	76%	71:29
	5	L4 (40 mol%)	83%	85:15
	6	L4 (20 mol%)	82%	85:15
	7	L8 (40 mol%)	67%	69:31
	8	L9 (40 mol%)	27%	65:35
	9	L10 (40 mol%)	85%	72:28
	10	L11 (40 mol%)	73%	72:28
	11	L12 (40 mol%)	52%	68:32

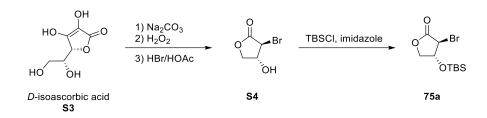

Table S1. Extended ligand screening using the α -bromomenthone **S1**.

Experimental Part

[a] Calibrated GC-yield using undecane as internal standard.


Reaction of 75 with 4-anisylmagnesium bromide. The coupling of 4-anisylmagnesium bromide with α -bromolactone **75** mainly led to the formation of bromoanisole and extensive homocoupling (Scheme S1). The arylation product **77a** was only formed in 3%.

Scheme S1. Reaction of 75 with 4-anisylmagnesium bromide.


2.2 Limitations of Method

Some *para*-substituted electron-poor organozinc chlorides **76** led to the arylation of **78** with decreasing diastereoselectivity (Scheme S2).

Scheme S2. Arylation of 78 with electron-poor organozinc chlorides 76.

2.3 Preparation of the α -Bromolactones

(3S,4R)-3-Bromo-4-((*tert*-butyldimethylsilyl)oxy)dihydrofuran-2(3H)-one (75a)

D-Isoascorbic acid (**S3**, 200 g, 1.14 mol, 1.00 equiv) was dissolved in water (1.5 L). The solution was cooled to 0 °C and Na₂CO₃ (168 g, 1.59 mol, 1.40 equiv) was added in portions. The reaction mixture was allowed to warmto rt, stirred for 30 min and cooled to 0 °C again. Hydrogen peroxide (33% in water, 400 mL, 3.98 mol, 3.50 equiv) was added very slowly in small portions. The mixture was slowly heated to 55 °C and stirred for 40 min. After cooling to 0 °C, activated charcoal (25.0 g) was added, the mixture was heated to 70 °C for 1 h and the hot suspension was filtered over celite. The filtrate was acidified to pH = 1 with concentrated hydrochloric acid (*ca*. 170 mL) and the water was removed on a rotatory evaporator. The resulting residue was extracted by refluxing in EtOAc (6 x 900 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue containing the crude chiral dihydroxylactone (128 g, 1.09 mol, 96% yield) as a yellowish oil was used in the next step without further purification.¹¹⁶

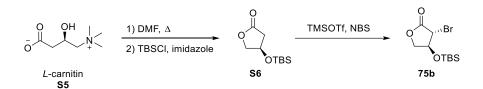
Hydrobromic acid (33% in glacial acetic acid, 420 mL) was cooled to 0 °C and added to the residue containing the dihydroxylactone. The mixture was allowed to warm to rt and was stirred for 2 h. Methanol (500 mL) was added over 3 h using a dropping funnel and the mixture was stirred at rt overnight. The volatiles were removed under reduced pressure and the resulting suspension was extracted with EtOAc (3 x 250 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 6:4) to afford the *α*-bromo- β -hydroxylactone **S4** as brownish oil (54.0 g, 300 mmol, 26% yield over two steps).¹¹⁷

The α -bromo- β -hydroxylactone **S4** (54.0 g, 300 mmol, 1.00 equiv) was dissolved in CH₂Cl₂ (500 mL) and cooled to 0 °C. Imidazole (26.6 g, 390 mmol, 1.30 equiv) and

 ¹¹⁶ a) N. Cohen, B. L. Banner, A. J. Laurenzano, L. Carozza *Org. Synth.* **1985**, *63*, 127. b) L. L. Wong, R. L. Wong, G. Loh, P. E. W. Tan, S. K. Teoh, S. M. Shaik, P. N. Sharratt, W. Chew, S. T. Tan, D. Wang *Org. Process Res. Dev.* **2012**, *16*, 1003-1012. c) S. R. Borkar, N. Bokolia, I. S. Aidhen, I. A. Khan *Tetrahedron: Asymmetry* **2017**, *28*, 186-195.
 ¹¹⁷ a) M. Bols, I. Lundt *Acta Chem. Scand. Ser. B* **1988**, *42*, 67-74. b) C. Falentin, D. Beaupère, G. Demailly, I. Stasik *Tetrahedron* **2008**, *64*, 9989-9991.

DMAP (367 mg, 3 mmol, 1 mol%) were added and TBSCI (58.8 g, 390 mmol, 1.30 equiv) dissolved in CH₂Cl₂ (200 mL) was added dropwise over 30 min. The mixture was allowed to warm to rt and was stirred overnight, was washed with sat. aq. NaHCO₃ (300 mL) and water (300 mL). The organic layer was dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 100:2.5) to afford the α -bromolactone **75a** as colorless solid (52.0 g, 176 mmol, 59% yield, dr = 99:1, 99% ee).

¹**H-NMR (400 MHz, CDCI₃, ppm):** *δ* = 4.60 (dd, *J* = 9.7, 2.4 Hz, 1H), 4.51 (td, *J* = 4.3, 2.3 Hz, 1H), 4.19 (dd, *J* = 9.7, 2.2 Hz, 1H), 4.04 (d, *J* = 2.5 Hz, 1H), 0.88 (s, 9H), 0.12 (d, *J* = 5.7 Hz, 6H).


¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 171.8, 75.4, 74.1, 41.8, 25.7, 18.0, -4.6, -4.8. FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2953, 2928, 2893, 2884, 2857, 1781, 1747, 1470, 1462, 1373, 1367, 1360, 1346, 1259, 1251, 1231, 1193, 1170, 1103, 1057, 997, 987, 937, 906, 875, 838, 824, 807, 780, 765, 713, 671, 663.

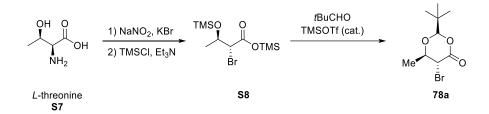
MS (EI, 70 eV): *m/z* (%) = 159 (12), 158 (12), 119 (13), 118 (32), 117 (100), 103 (10), 89 (23), 75 (30), 73 (24), 59 (16), 57 (35), 45 (12), 41 (20).

HR-MS (EI, 70 eV): $[C_6H_{10}BrO_3Si] = [M - C(CH_3)_3]^+$, calcd.: 236.9589; found: 236.9575. **cHPLC:** Chiracel OD-H; heptane:*i*-PrOH = 99.5:0.5; 1 mL·min⁻¹; 209 nm; R_f(3*S*,4*R*) = 9.2 min; R_f(3*R*-4*S*) = 9.9 min.

Optical Rotation: $[\alpha]_D^{20} = -35.2$ (c = 1.0, CHCl₃). **m.p.:** 39 – 40 °C.

(3R,4S)-3-Bromo-4-((*tert*-butyldimethylsilyl)oxy)dihydrofuran-2(3H)-one (75b)

L-carnitine (**S5**, 3.22 g, 20.0 mmol, 1.0 equiv) was dissolved in DMF (32 mL). The mixture was heated to 150 °C for 16 h, cooled to room temperature and DMF was evaporated under reduced pressure. Sat. aq. NH₄Cl (10 mL)was added and extracted with EtOAc (3 x 25 mL). The combined organic layers were washed with 10% aq. LiCl (25 mL) and brine (25 mL), dried over Na₂SO₄ and the volatiles were removed under reduced pressure. The residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 7:3) to afford the chiral β -hydroxylactone (561 mg, 5.50 mmol, 28% yield).


The β -hydroxylactone (561 mg, 5.50 mmol, 1.00 equiv) was dissolved in CH₂Cl₂ (11 mL), DMF (8 µL) and NEt₃ (0.92 mL, 6.60 mmol, 1.20 equiv) were added. The mixture was cooled to 0 °C. TBSCI (995 mg, 6.60 mmol, 1.20 equiv) was added and allowed to warm to rt overnight. Sat. aq. NH₄Cl (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under reduced pressure. The residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 7:3) to afford the β -OTBS-substituted lactone **S6** (1.18 g, 5.47 mmol, 99% yield).

Lactone **S6** (1.18 g, 5.47 mmol, 1.00 equiv) was dissolved in CH_2Cl_2 (30 mL) and NEt₃ (4.67 mL, 32.8 mmol, 6.00 equiv) was added. The mixture was cooled to 0 °C and TMSOTf (3.0 mL, 16.4 mmol, 3.0 equiv) was added and stirring was continued for 30 min. *N*-Bromosuccinimide (1.49 g, 8.20 mmol, 1.50 equiv) was dissolved in CH_2Cl_2 (15 mL) and the solution was added to the reaction mixture dropwise. Stirring was continued for 1 h, sat. aq. Na_2CO_3 (20 mL) and water (20 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3 x 25 mL). The combined organic layers were dried over Na_2SO_4 and the volatiles were removed under reduced pressure. The residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 100:3) to afford the *α*-bromolactone **75b** as colorless solid (983 mg, 3.34 mmol, 61% yield, dr = 99:1, 99% ee).

The analytical data is identical to the (3S,4R)-enantiomer 75a.

Optical Rotation: $[\alpha]_D^{20} = +35.4$ (c = 1.0, CHCl₃).

(2R,5R,6R)-5-Bromo-2-(tert-butyl)-6-methyl-1,3-dioxan-4-one (78a)¹¹⁸

L-threonine (**S7**, 20.0 g, 168 mmol, 1.00 equiv) and KBr (31.0 g, 260 mmol, 1.50 equiv) were dissolved in water (300 mL) and conc. H_2SO_4 (50 mL) was added. The solution was cooled to -12 °C and NaNO₂ (18.8 g, 272 mmol, 1.60 equiv) dissolved in water

¹¹⁸ J. Zimmermann, D. Seebach *Helv. Chim. Acta* **1987**, *70*, 1104-1114.

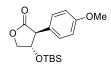
(60 mL) was added dropwise over 2 h. The mixture was allowed to warm to rt, stirred overnight and extracted with EtOAc (3 x 200 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under reduced pressure. The crude viscous oil containing the α -bromo acid (22.0 g, 120 mmol) was dissolved in CH₂Cl₂ (150 mL), cooled to 0 °C, and NEt₃ (36.8 mL, 264 mmol, 2.20 equiv) and TMSCI (33.5 mL, 264 mmol, 2.20 equiv) were added. The mixture was allowed to warm to rt and was stirred for 3 d. Pentane (100 mL) was added, the salts were removed by filtration and the filtrate was evaporated to dryness. Pentane (150 mL) was added again, the salts were removed by filtration and the filtrate was evaporated to dryness. The crude product **S8** (32.8 g, 100 mmol, 60% yield over two steps) was clean enough for the following transformation.

The TMS-protected compound **S8** (32.8 g, 100 mmol, 1.0 equiv) and pivalaldehyde (8.44 g, 98.0 mmol, 0.98 equiv) were dissolved in CH₂Cl₂ (220 mL) and the solution was cooled to -78 °C. TMSOTf (0.54 mL, 3 mol%) was added and stirring at -78 °C was continued overnight. Pyridine (0.8 mL, 10.0 mmol, 0.10 equiv) was added, the mixture was allowed to warm to rt and washed with sat. aq. NaHCO₃ (30 mL). The organic layer was dried over Na₂SO₄ and the volatiles were removed under reduced pressure. The residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 9:1) to afford the chiral (*R*)- α -bromolactone **78a** (6.87 g, 27.4 mmol, 27% yield) as colorless solid.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.00 (s, 1H), 4.31 (d, *J* = 2.2 Hz), 3.88 (qd, *J* = 6.1, 2.2 Hz, 1H), 1.40 (d, *J* = 6.1 Hz, 3H), 1.01 (s, 9H).

¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 165.4, 110.0, 72.1, 46.1, 35.7, 24.0, 19.1.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2979, 2938, 2878, 1716, 1706, 1701, 1685, 1670, 1654, 1647, 1636, 1458, 1374, 1281, 1168, 1126, 1084, 1028, 941, 853.


cHPLC: Chiracel OJ-H; heptane:*i*-PrOH = 95:5; 1 mL·min⁻¹; 230 nm; $R_f(R^*)$ = 7.4 min; $R_f(S^*)$ = 16.3 min.

Optical Rotation: $[\alpha]_D^{20} = -14.2$ (c = 1.0, CHCl₃). **m.p.:** 49 – 51 °C.

(2S,5S,6S)-5-Bromo-2-(*tert*-butyl)-6-methyl-1,3-dioxan-4-one (78b)

The (*S*)-enantiomer was synthesized by using *D*-threonine as starting material. The analytical data is identical to the other (*R*)-enantiomer **78a**. **Optical Rotation:** $[\alpha]_D^{20} = +15.8^\circ$ (c = 1.0, CHCl₃). 2.4 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Reagents with α -Bromolactones

Typical Procedure 1 (TP1) for the cobalt-catalyzed cross-couplings of arylzinc reagents with α -bromolactones. Synthesis of (3*S*,4*S*)-4-((*tert*-butyldimethylsilyl)oxy)-3-(4-methoxyphenyl)-dihydrofuran-2(3*H*)-one (77a)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum, was charged with magnesium turnings (291 mg, 12.0 mmol, 1.20 equiv), dry LiCl (508 mg, 12.0 mmol, 1.20 equiv) and dry THF (1 M solution relating to the aryl halide, 10 mL). 4-Bromoanisole (1.87 g, 10.0 mmol, 1.00 equiv) was added dropwise at 0 °C. The progress of the magnesium insertion was monitored by GC-analysis of reaction aliquots quenched with I₂. Upon completion of the insertion (2 h), the concentration of the Grignard reagent was determined by titration⁴ of I₂ in THF (c = 0.82 M).

Solid ZnCl₂ (681 mg, 5.00 mmol, 1.00 equiv) was placed in a dry and argon flushed *Schlenk*-tube equipped with a magnetic stirring bar and a septum and dried under vacuum at 250 °C for 5 min. After cooling to rt under vacuum, an argon atmosphere was applied and THF (1 M according to ZnCl₂, 5 mL) was added. The Grignard reagent (6.1 mL, 5.00 mmol, 1.00 equiv) was added at 0 °C, the solution was allowed to warm to rt and stirred for 15 min. The concentration of 4-anisylzinc chloride was determined by titration¹¹⁹ of I₂ (c = 0.43 M).

A dry and argon-flushed 20 mL *Schlenk*-tube, equipped with a stirring bar and a septum, was charged with CoCl₂ (6.5 mg, 0.05 mmol, 10 mol%). The solid was flame dried under high vacuum for 5 min. After cooling to rt, PPh₃ (13 mg, 0.05 mmol, 10 mol%) and the α -bromolactone **75a** (148 mg, 0.50 mmol, 1.00 equiv) was added. The mixture was dissolved in THF (1 mL) and cooled to -20 °C. 4-Anisylzinc chloride (1.4 mL, 0.60 mmol, 1.20 equiv) was added and the mixture was allowed to warm to rt overnight. The reaction was monitored by GC-analysis (C₁₁H₂₄ was used as an internal standard) and TLC. Upon complete consumption of the starting material (conversion 100%), sat. aq. NH₄Cl (5 mL) and ethyl acetate (5 mL) were added, the phases were separated and the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were

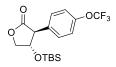
¹¹⁹ A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, *Angew. Chem. Int. Ed.* **2006**, *45*, 6040-6044.

dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **77a** as colorless solid (131 mg, 0.41 mmol, 81% yield, dr = 99:1, 99% ee).

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.16 – 7.02 (m, 2H), 6.97 – 6.73 (m, 2H), 4.44 (dd, J = 5.9, 2.4 Hz, 2H), 4.11 – 3.97 (m, 1H), 3.80 (s, 3H), 3.64 (d, J = 6.1 Hz, 1H), 0.83 (s, 9H), -0.07 (s, 3H), -0.12 (s, 3H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** δ = 175.8, 159.4, 129.5, 126.6, 114.6, 76.3, 72.6, 55.4, 55.0, 25.7, 18.0, -4.8, -4.9.

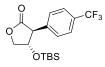
FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2997, 2953, 2930, 2856, 1785, 1613, 1515, 1473, 1465, 1345, 1249, 1221, 1177, 1144, 1122, 1109, 1091, 1072, 1023, 1011, 942, 915, 838, 826, 816, 778, 675.


MS (EI, 70 eV): *m*/*z* (%) = 237 (13), 190 (26), 162 (20), 133 (68), 121 (40), 117 (14), 89 (10), 77 (11), 75 (100), 45 (10), 44 (11), 43 (66).

HR-MS (EI, 70 eV): [C₁₇H₂₆O₄Si], calcd.: 322.1600; found: 322.1607.

cHPLC: Chiracel OD-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 227 nm; $R_f(S^*)$ = 13.3 min; $R_f(R^*)$ = 16.8 min.

Optical Rotation: $[\alpha]_D^{20} = -36.6$ (c = 1.0, CHCl₃). **m.p.:** 56 - 58 °C.


(3*S*,4*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(4-(trifluoromethoxy)phenyl)dihydrofuran-2(3*H*)-one (77b)

According to **TP1**, α -bromolactone **75a** (148 mg, 0.50 mmol, 1.00 equiv) was treated with 4-trifluoromethoxyphenylzinc chloride **76b** (0.60 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **77b** as colorless solid (63% yield, dr = 99:1, 99% ee, 119 mg, 0.32 mmol).

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 7.25 (d, J = 2.2 Hz, 4H), 4.56 – 4.31 (m, 2H), 4.21 – 3.97 (m, 1H), 3.79 – 3.57 (m, 1H), 0.82 (s, 9H), -0.08 (s, 3H), -0.15 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 174.7, 149.0, 133.4, 130.1, 121.7, 120.8 (q, J = 257.5 Hz), 76.2, 72.4, 54.9, 25.6, 18.0, -4.9. **FT-IR (ATR, cm⁻¹):** $\tilde{\nu}$ = 2956, 2932, 2860, 1786, 1510, 1472, 1464, 1390, 1254, 1214, 1154, 1126, 1070, 1028, 1004, 922, 836, 778, 674. **MS (EI, 70 eV):** m/z (%) = 290 (31), 244 (38), 216 (18), 188 (14), 187 (97), 174 (31), 118 (14), 117 (100), 101 (11), 89 (11), 75 (84), 73 (11), 61 (16), 43 (52). **HR-MS (EI, 70 eV):** $[C_{17}H_{23}O_4F_3Si]$, calcd.: 376.1318; found: 376.1311. **cHPLC**: Chiracel OD-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 210 nm; R_f(*S**) = 11.1 min; R_f(*R**) = 17.6 min. **Optical Rotation**: $[\alpha]_D^{20} = -11.0$ (c = 1.0, CHCl₃). **m.p.:** 57 – 58 °C.

(3S,4S)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(4-(trifluoromethyl)phenyl)dihydrofuran-2(3*H*)-one (77c)

According to **TP1**, α -bromolactone **75a** (148 mg, 0.50 mmol, 1.00 equiv) was coupled with 4-trifluoromethylphenylzinc chloride **76c** (0.60 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (100:8) as an eluent to afford **77c** as yellowish solid (62% yield, dr = 99:1, 99% *ee*, 112 mg, 0.31 mmol).

¹**H-NMR (400 MHz, benzene-D₆, ppm):** δ = 7.32 (d, *J* = 8.1 Hz, 2H), 6.90 (d, *J* = 8.0 Hz, 2H), 3.93 - 3.70 (m, 2H), 3.47 (dd, *J* = 8.6, 7.0 Hz, 1H), 3.15 (d, *J* = 8.1 Hz, 1H), 0.74 (s, 9H), -0.36 (s, 3H), -0.45 (s, 3H).

¹³C-NMR (101 MHz, benzene-D₆, ppm): δ = 173.0, 139.5, 130.1 (q, J = 32.4 Hz), 129.4,
125.8 (q, J = 3.9 Hz), 124.8 (q, J = 272.1 Hz), 75.7, 71.4, 54.8, 25.6, 17.8, -5.1, -5.2.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2952, 2932, 2858, 1795, 1621, 1469, 1325, 1257, 1224, 1155, 1136, 1125, 1111, 1068, 1012, 923, 836, 784, 765, 702, 674.

MS (EI, 70 eV): *m/z* (%) = 245 (8), 228 (5), 171 (15), 151 (5), 118 (7), 117 (100), 89 (6), 75 (28), 73 (7), 43 (18).

HR-MS (EI, 70 eV): [C₁₇H₂₃F₃O₃Si], calcd.: 360.1369; found: 360.1344.

CHPLC: Chiracel AD-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 216 nm; $R_f(S^*) = 9.3$ min; $R_f(R^*) = 7.4$ min.

Optical Rotation: $[\alpha]_D^{20} = -24$ (c = 1.0, CHCl₃).

m.p.: 61 – 63 °C.

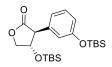
(3*S*,4*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-(methylthio)phenyl)dihydrofuran-2(3*H*)-one (77d)

According to **TP1**, α -bromolactone **75a** (148 mg, 0.50 mmol, 1.00 equiv) was coupled with 3-thioanisylzinc chloride **76d** (0.60 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **77d** as colorless solid (63% yield, dr = 99:1, 99% *ee*, 107 mg, 0.32 mmol).

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.29 (t, *J* = 7.7 Hz, 1H), 7.20 (ddd, *J* = 7.9, 1.9, 1.1 Hz, 1H), 7.08 (t, *J* = 1.9 Hz, 1H), 6.97 (dt, *J* = 7.5, 1.5 Hz, 1H), 4.49 – 4.35 (m, 2H), 4.15 – 4.01 (m, 1H), 3.70 – 3.62 (m, 1H), 2.47 (s, 3H), 0.84(s, 9H), -0.07 (s, 3H), -0.12 (s, 3H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** *δ* = 175.1, 139.6, 135.3, 129.5, 126.6, 126.1, 124.9, 76.1, 72.7, 55.5, 25.7, 18.0, 15.9, -4.8, -4.9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2954, 2928, 2858, 1792, 1592, 1574, 1468, 1416, 1350, 1262, 1252, 1226, 1180, 1152, 1126, 1086, 1070, 1014, 928, 868, 860, 836, 794, 780, 744, 696, 682, 674.


MS (EI, 70 eV): *m/z* (%) = 207 (13), 206 (100), 150 (14), 149 (74), 134 (17), 117 (29), 115 (11), 102 (21), 75 (78).

HR-MS (EI, 70 eV): [C₁₇H₂₆O₃SSi], calcd.: 338.1372; found: 338.1376.

cHPLC: Chiracel AD-H; heptane:*i*-PrOH = 99.5:0.5; 1 mL·min⁻¹; 213 nm; $R_f(S^*)$ = 31.1 min; $R_f(R^*)$ = 40.0 min.

Optical Rotation: $[\alpha]_D^{20} = -23.6$ (c = 1.0, CHCl₃). **m.p.:** 109 – 110 °C.

(3S,4S)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((*tert*-butyldimethylsilyl)oxy)phenyl)dihydrofuran-2(3*H*)-one (77e)

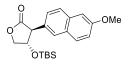
According to TP1, a-bromolactone 75a (148 mg, 0.50 mmol, 1.00 equiv) was coupled

with arylzinc reagent **76e** (0.60 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **77e** as yellow oil (77% yield, dr = 99:1, 99% ee, 163 mg, 0.386 mmol).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.22 (t, *J* = 7.9 Hz, 1H), 6.83 – 6.75 (m, 2H), 6.68 (t, *J* = 2.1 Hz, 1H), 4.52 – 4.40 (m, 2H), 4.14 – 4.03 (m, 1H), 3.64 (d, *J* = 5.7 Hz, 1H), 0.98 (s, 9H), 0.84 (s, 9H), 0.19 (s, 6H), -0.06 (s, 3H), -0.09 (s, 3H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** *δ* = 175.4, 156.3, 136.0, 130.1, 121.3, 120.3, 119.7, 76.3, 72.8, 55.6, 25.8, 25.7, 18.3, 18.0, -4.3, -4.8, -4.9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2955, 2930, 2891, 2858, 1786, 1774, 1603, 1586, 1487, 1472, 1464, 1438, 1279, 1253, 1237, 1160, 1121, 1028, 1002, 908, 870, 837, 808, 779, 722, 694.


MS (EI, 70 eV): *m/z* (%) = 365 (39), 337 (60), 278 (25), 277 (62), 233 (100), 159 (63), 117 (88).

HR-MS (EI, 70 eV): [C₂₂H₃₈O₄Si₂], calcd.: 422.2309; found: 422,2313.

cHPLC: Chiracel OD-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 270 nm; $R_f(S^*) = 5.6$ min; $R_f(R^*) = 7.8$ min.

Optical Rotation: $[\alpha]_D^{20} = -13.4$ (c = 1.0, CHCl₃).

(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(6-methoxynaphthalen-2-yl)dihydrofuran-2(3H)-one (77f)

According to **TP1**, α -bromolactone **75a** (148 mg, 0.50 mmol, 1.00 equiv) was coupled with (6-methoxynaphthalen-2-yl)zinc chloride **76f** (0.60 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **77f** as colorless solid (61% yield, dr = 99:1, 99% ee, 113 mg, 0.30 mmol).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.76 (d, *J* = 8.5 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.20 – 7.09 (m, 2H), 4.61 – 4.44 (m, 2H), 4.13 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.92 (s, 3H), 3.84 (d, *J* = 6.4 Hz, 1H), 0.84 (s, 9H), -0.08 (s, 3H), -0.14 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 175.7, 158.0, 134.1, 129.5, 129.4, 129.0, 127.9,

127.5, 126.3, 119.5, 105.7, 76.2, 72.9, 55.7, 55.4, 25.7, 18.0, -4.7, -4.9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2954, 2928, 2856, 1792, 1608, 1508, 1488, 1468, 1422, 1402, 1392, 1346, 1274, 1262, 1252, 1238, 1228, 1192, 1182, 1154, 1134, 1086, 1072, 1028, 1018, 1002, 974, 928, 906, 888, 860, 848, 834, 814, 782, 738, 704, 686, 670.

MS (EI, 70 eV): *m/z* (%) = 372 (17), 316 (2), 315 (7), 314 (23), 288 (4), 287 (18), 240 (24), 171 (100).

HR-MS (EI, 70 eV): [C₂₁H₂₈O₄Si], calcd.: 372.1757; found: 372.1747.

cHPLC: Chiracel OJ-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 233 nm; $R_f(S^*)$ = 36.6 min; $R_f(R^*)$ = 25.7 min.

Optical Rotation: $[\alpha]_D^{20} = -39.9$ (c = 1.0, EtOAc). **m.p.:** 136 – 137 °C.

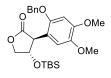
(3*S*,4*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(benzo[*d*][1,3]dioxol-5-yl)dihydrofuran-2(3*H*)-one (77g)

According to **TP1**, α -bromolactone **75a** (148 mg, 0.50 mmol, 1.00 equiv) was coupled with benzodioxolylzinc chloride **76g** (0.60 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (100:8) as an eluent to afford **77g** as colorless solid (84% yield, dr = 99:1, 99% ee, 141 mg, 0.42 mmol).

¹**H-NMR (400 MHz, benzene-D₆, ppm):** δ = 6.71 – 6.54 (m, 2H), 6.47 (dd, *J* = 8.0, 1.8 Hz, 1H), 5.35 – 5.18 (m, 2H), 3.96 (dt, *J* = 7.6, 6.6 Hz, 1H), 3.84 (dd, *J* = 8.8, 6.4 Hz, 1H), 3.51 (dd, *J* = 8.8, 6.8 Hz, 1H), 3.19 (d, *J* = 7.8 Hz, 1H), 0.77 (s, 9H), -0.29 (s, 3H), -0.31 (s, 3H).

¹³**C-NMR (101 MHz, benzene-D₆, ppm):** *δ* = 174.0, 148.6, 147.7, 129.1, 122.5, 109.1, 108.6, 101.2, 76.0, 71.5, 55.0, 25.7, 17.9, -5.0, -5.1.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2955, 2927, 2857, 2359, 2332, 1760, 1605, 1508, 1471, 1444, 1379, 1359, 1269, 1252, 1237, 1164, 1095, 1063, 1044, 996, 932, 913, 888, 826, 775, 723, 681, 666.


MS (EI, 70 eV): *m/z* (%) = 251 (30), 204 (12), 162 (21), 147 (25), 135 (100), 117 (41), 89 (14), 75 (48), 73 (13), 43 (19).

HR-MS (EI, 70 eV): [C₁₇H₂₄O₅Si], calcd.: 336.1393; found: 336.1388.

cHPLC: Chiracel OD-H; heptane:*i*-PrOH = 99:1; 1 mL·min⁻¹; 289 nm; R_f(*S**) = 18.9 min;

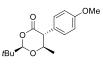
R_f(*R*^{*}) = 27.4 min. **Optical Rotation**: $[\alpha]_D^{20} = -28.9$ (c = 1.0, CHCl₃). **m.p.:** 75 – 77 °C.

(3S,4S)-3-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-4-((*tert*-butyldimethylsilyl)oxy)dihydrofuran-2(3*H*)- one (77h)

According to **TP1**, α -bromolactone **75a** (2.50 g, 8.46 mmol, 1.00 equiv) was coupled with arylzinc reagent **76h** (10.2 mmol, 1.20 equiv). The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (8:2) as an eluent to afford **77h** as yellow solid (94% yield, dr = 99:1, 99% ee, 3.65 g, 7.96 mmol).

¹**H-NMR (400 MHz, CDCI₃, ppm):** $\delta = 7.47 - 7.32$ (m, 5H), 6.71 (s, 1H), 6.63 (s, 1H), 5.06 (q, J = 11.4 Hz, 2H), 4.68 (td, J = 6.8, 6.3 Hz, 1H), 4.29 (dd, J = 9.0, 6.9 Hz, 1H), 3.97 (dd, J = 9.0, 6.3 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.60(d, J = 6.8 Hz, 1H), 0.81 (s, 9H), -0.12 (s, 3H), -0.17 (s, 3H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** *δ* = 176.1, 150.5, 149.6, 143.3, 136.6, 128.7, 128.2, 127.8, 115.3, 115.3, 99.3, 74.2, 73.2, 71.6, 56.7, 56.3, 53.1, 25.7, 18.0, -4.8, -5.0.


FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2952, 2929, 2897, 2886, 2855, 1779, 1612, 1511, 1463, 1450, 1400, 1388, 1338, 1251, 1223, 1195, 1152, 1117, 1071, 1021, 933, 882, 836, 815, 780, 758, 733, 697, 683, 672.

MS (EI, 70 eV): *m*/*z* (%) = 326 (28), 235 (51), 207 (13), 179 (11), 91 (100), 75 (42), 73 (17).

HR-MS (EI, 70 eV): [C₂₅H₃₄O₆Si], calcd.: 458.2125; found: 458.2116.

CHPLC: Chiracel AD-H; heptane:*i*-PrOH = 95:5; 1 mL·min⁻¹; 220 nm; $R_f(S^*) = 11.7$ min; $R_f(R^*) = 18.5$ min.

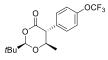
Optical Rotation: $[\alpha]_D^{20} = -44.7$ (c = 1.0, CHCl₃). **m.p.:** 83 – 85 °C.

According to **TP1**, α -bromolactone **78a** (126 mg, 0.50 mmol, 1.00 equiv) was coupled with 4-anisylzinc chloride **76a** (0.75 mmol, 1.50 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79a** as colorless solid (81% yield, dr = 99:1, 97% ee, 113 mg, 0.41 mmol).

¹H-NMR (400 MHz, benzene-D₆, ppm): δ = 6.88 – 6.78 (m, 2H), 6.78 – 6.69 (m, 2H), 4.78 (s, 1H), 3.53 (dq, *J* = 10.5, 6.0 Hz, 1H), 3.30 (s, 3H), 3.12 (d, *J* = 10.7 Hz, 1H), 1.04 (s, 9H), 0.90 (d, *J* = 6.0 Hz, 3H).

¹³**C-NMR (101 MHz, benzene-D₆, ppm):** δ = 168.5, 159.6, 130.7, 114.5, 108.2, 77.3, 55.5, 54.8, 35.5, 24.1, 19.3.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2961, 2907, 2838, 1736, 1616, 1519, 1484, 1461, 1409, 1345, 1271, 1209, 1177, 1152, 1120, 1081, 1026, 992, 970, 924, 881, 830, 762.


MS (EI, 70 eV): *m/z* (%) = 193 (47), 165 (32), 149 (28), 148 (100), 147 (45), 133 (17), 121 (14), 91 (15), 77 (16), 57 (17), 43 (13), 41 (15).

HR-MS (EI, 70 eV): [C₁₆H₂₂O₄], calcd.: 278.1518; found: 278.1514.

CHPLC: Chiracel OJ-H; heptane:*i*-PrOH = 9:1; 1 mL·min⁻¹; 222 nm; $R_f(R^*)$ = 13.3 min; $R_f(S^*)$ = 9.4 min.

Optical Rotation: $[\alpha]_D^{20} = +29.4$ (c = 1.0, EtOAc). **m.p.:** 68 – 70 °C.

(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-6-methyl-5-(4-(trifluoromethoxy)phenyl)-1,3-dioxan-4one (79b)

According to **TP1**, α -bromolactone **78a** (126 mg, 0.50 mmol, 1.00 equiv) was coupled with 4-trifluoromethoxyphenylzinc chloride **76b** (0.75 mmol, 1.50 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system.

The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79b** as colorless solid (63% yield, dr = 99:1, 99% *ee*, 105 mg, 0.32 mmol).

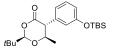
¹H-NMR (400 MHz, CDCl₃, ppm): δ = 7.21 (s, 4H), 5.15 (s, 1H), 3.99 (dq, *J* = 10.5, 6.0 Hz, 1H), 3.50 (d, *J* = 10.6 Hz, 1H), 1.23 (d, *J* = 6.1 Hz, 3H), 1.03 (s, 9H). ¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 169.6, 148.9 (q, *J* = 1.9 Hz), 134.2, 130.8, 121.6, 120.5 (q, *J* = 257.5 Hz), 109.1, 77.0, 55.5, 35.5, 24.0, 19.6. FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2974, 2966, 2876, 1738, 1512, 1486, 1366, 1344, 1258, 1208, 1150, 1114, 1088, 1030, 1020, 992, 966, 938, 922, 884, 844, 804, 762. HR-MS: Fragmentation: [C₁₀H₁₀O₂F₃] = M – [C₆H₉O₂], calcd.: 219.0633; found: 219.0625. cHPLC: Chiracel OD-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 210 nm; R_f(*R**) = 7.9 min; R_f(*S**) = 8.7 min. Optical Rotation: [*α*]_D²⁰ = -3.3 (c = 1.0, CHCl₃).

m.p.: 64 – 67 °C.

(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-6-methyl-5-(4-(trifluoromethyl)phenyl)-1,3-dioxan-4-one (79c)

According to **TP1**, *a*-bromolactone **78a** (126 mg, 0.50 mmol, 1.00 equiv) was coupled with 4-trifluoromethylphenylzinc chloride **76c** (0.75 mmol, 1.50 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79c** as colorless crystals (61% yield, dr = 99:1, 99% *ee*, 97 mg, 0.31 mmol).

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.83 – 7.55 (m, 2H), 7.51 – 7.14 (m, 2H), 5.17 (s, 1H), 4.03 (dq, *J* = 10.6, 6.0 Hz, 1H), 3.56 (d, *J* = 10.6 Hz, 1H), 1.23 (d, *J* = 6.0 Hz, 3H), 1.03 (s, 9H).


¹³**C-NMR (101 MHz, CDCl₃, ppm):** *δ* = 169.3, 139.4 (d, *J* = 1.5 Hz), 130.3 (q, *J* = 32.6 Hz), 129.8, 126.1 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.1 Hz), 109.2, 76.8, 55.9, 35.5, 24.0, 19.5.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2967, 2919, 2875, 2359, 2341, 1733, 1619, 1484, 1452, 1366,

1322, 1283, 1214, 1165, 1128, 1117, 1066, 1020, 992, 964, 884, 830, 760, 685. **MS (EI, 70 eV):** m/z (%) = 214 (3), 213 (31), 203 (31), 187 (11), 186 (100), 185 (22), 158 (13), 117 (52), 115 (11). **HR-MS (EI, 70 eV):** Fragmentation: $[C_{10}H_{10}OF_3] = M - [C_6H_9O_2]$, calcd.: 203.0684; found: 203.0677. **CHPLC**: Chiracel AD-H; heptane:*i*-PrOH = 70:30; 1 mL·min⁻¹; 215 nm; R_f(R^*) = 7.9 min; R_f(S^*) = 17.5 min. **Optical Rotation**: $[\alpha]_D^{20} = +24.0$ (c = 1.0, CHCl₃).

m.p.: 90 – 94 °C.

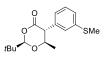
(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-5-(3-((*tert*-butyldimethylsilyl)oxy)phenyl)-6-methyl-1,3dioxan-4-one (79d)

According to **TP1**, α -bromolactone **78a** (126 mg, 0.50 mmol, 1.00 equiv) was coupled with arylzinc reagent **76e** (0.75 mmol, 1.50 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (95:5) as an eluent to afford **79d** as colorless solid (69% yield, dr = 99:1, 99% ee, 131 mg, 0.35 mmol).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.20 (t, *J* = 7.9 Hz, 1H), 6.85 – 6.69 (m, 2H), 6.64 (t, *J* = 2.1 Hz, 1H), 5.14 (s, 1H), 3.98 (dq, *J* = 10.4, 6.0 Hz, 1H), 3.41 (d, *J* = 10.6 Hz, 1H), 1.23 (d, *J* = 6.0 Hz, 3H), 1.03 (s, 9H), 0.98 (s, 9H), 0.19(s, 6H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** *δ* = 169.9, 156.1, 136.9, 130.1, 122.2, 121.2, 119.5, 108.9, 77.2, 56.1, 35.5, 25.8, 24.1, 19.6, 18.3, -4.2, -4.3.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2959, 2931, 2859, 1732, 1602, 1585, 1485, 1473, 1458, 1446, 1342, 1274, 1253, 1236, 1217, 1151, 1114, 1030, 1002, 993, 982, 961, 939, 926, 874, 860, 837, 804, 783, 758, 728, 699.


MS (EI, 70 eV): *m*/*z* (%) = 378 (5), 293 (8), 248 (18), 192 (24), 191 (100), 73 (8).

HR-MS (EI, 70 eV): [C₂₁H₃₄O₄Si], calcd.: 378.2226; found: 378.2212.

CHPLC: Chiracel OD-H; heptane:*i*-PrOH = 99.5:0.5; 1 mL·min⁻¹; 218 nm; $R_f(R^*) = 7.2$ min; $R_f(S^*) = 12.3$ min.

Optical Rotation: $[\alpha]_D^{20} = -0.9$ (c = 1.0, CHCl₃).

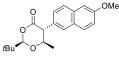
m.p.: 62 – 63 °C.

According to **TP1**, α -bromolactone **78a** (126 mg, 0.50 mmol, 1.00 equiv) was coupled with 3-thioanisylzinc chloride **76d** (0.75 mmol, 1.50 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79e** as colorless solid (61% yield, dr = 99:1, 99% *ee*, 90 mg, 0.31 mmol).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.28 (t, *J* = 7.7 Hz, 1H), 7.19 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.05 (t, *J* = 1.8 Hz, 1H), 6.94 (dt, *J* = 7.6, 1.4 Hz, 1H), 5.15 (s, 1H), 4.01 (dq, *J* = 10.6, 6.1 Hz, 1H), 3.44 (d, *J* = 10.6 Hz, 1H), 2.47 (s, 3H), 1.23 (d, *J* = 6.1 Hz, 3H), 1.03 (s, 9H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** *δ* = 169.7, 139.6, 136.2, 129.5, 127.4, 126.0, 125.9, 109.0, 77.1, 56.1, 35.5, 24.1, 19.6, 15.9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2978, 2962, 2872, 1738, 1592, 1574, 1482, 1440, 1422, 1410, 1378, 1366, 1342, 1278, 1234, 1212, 1150, 1112, 1086, 1030, 992, 968, 938, 926, 914, 780, 760, 738, 696.


MS (EI, 70 eV): *m/z* (%) = 294 (6), 181 (19), 165 (11), 164 (100), 163 (13), 117 (60), 115 (15).

HR-MS (EI, 70 eV): [C₁₆H₂₂O₃S], calcd.: 294.1290; found: 294.1281.

cHPLC: Chiracel OJ-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 211 nm; $R_f(S^*)$ = 12.29 min; $R_f(R^*)$ = 20.01 min.

Optical Rotation: $[\alpha]_D^{20} = +4.3$ (c = 1.0, CHCl₃). **m.p.:** 56 - 57 °C.

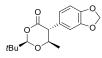
(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-5-(6-methoxynaphthalen-2-yl)-6-methyl-1,3-dioxan-4-one (79f)

According to TP1, *a*-bromolactone 78a (126 mg, 0.50 mmol, 1.00 equiv) was coupled

with (6-methoxynaphthalen-2-yl)zinc chloride **76f** (0.75 mmol, 1.50 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79f** as colorless solid (82% yield, dr = 99:1, 99% *ee*, 134 mg, 0.41 mmol).

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.74 (d, *J* = 8.5 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.60 (d, *J* = 1.8 Hz, 1H), 7.23 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.16 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.12 (d, *J* = 2.5 Hz, 1H), 5.22 (s, 1H), 4.26 - 4.02 (m, 1H), 3.91 (s, 3H), 3.62 (d, *J* = 10.6 Hz, 1H), 1.26 (d, *J* = 6.1 Hz, 3H), 1.06 (s, 9H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** *δ* = 170.2, 158.0, 134.1, 130.6, 129.3, 129.0, 128.6, 127.8, 126.9, 119.4, 109.0, 105.7, 77.2, 56.2, 55.4, 35.5, 24.1, 19.6.


FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2962, 2906, 2874, 1730, 1630, 1606, 1484, 1462, 1394, 1378, 1364, 1342, 1266, 1234, 1218, 1204, 1176, 1162, 1142, 1110, 1080, 1026, 992, 980, 960, 946, 936, 922, 900, 882, 846, 826, 812, 756, 736, 718, 668.

MS (EI, 70 eV): m/z (%) = 328 (37), 243 (47), 215 (27), 199 (56), 198 (100), 155 (24). **HR-MS (EI, 70 eV):** $[C_{20}H_{24}O_4]$, calcd.: 328.1675; found: 328.1668.

cHPLC: Chiracel OJ-H; heptane:*i*-PrOH = 98:2; 1 mL·min⁻¹; 232 nm; $R_f(R^*)$ = 39.7 min; $R_f(S^*)$ = 45.9 min.

Optical Rotation: $[\alpha]_D^{20} = +64.2$ (c = 1.0, EtOAc). **m.p.:** 199 – 200 °C.

(2*R*,5*R*,6*R*)-5-(Benzo[*d*][1,3]dioxol-5-yl)-2-(*tert*-butyl)-6-methyl-1,3-dioxan-4-one (79g)

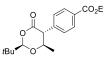
According to **TP1**, α -bromolactone **78a** (126 mg, 0.50 mmol, 1.0 equiv) was coupled with benzodioxolylzinc chloride **76g** (0.75 mmol, 1.5 equiv) using CoCl₂ (13 mg, 0.10 mmol, 20 mol%) and PPh₃ (26 mg, 0.10 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography on silica using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79g** as colorless oil (73% yield, dr = 99:1, 99% *ee*, 107 mg, 0.37 mmol).

¹**H-NMR (400 MHz, benzene-D₆, ppm):** δ = 6.58 (d, *J* = 7.9 Hz, 1H), 6.48 (d, *J* = 1.8 Hz, 1H), 6.29 (dd, *J* = 7.9, 1.8 Hz, 1H), 5.29 (dd, *J* = 13.0, 1.4 Hz, 2H), 4.71 (s, 1H), 3.44

(dq, *J* = 10.5, 6.0 Hz, 1H), 3.00 (d, *J* = 10.7 Hz, 1H), 1.02 (s, 9H), 0.86 (d, *J* = 6.1 Hz, 3H).

¹³**C-NMR (101 MHz, benzene-D₆, ppm):** *δ* = 168.2, 148.4, 147.6, 129.9, 123.2, 109.8, 108.6, 108.1, 101.2, 77.1, 55.9, 35.4, 24.1, 19.3.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2978, 2962, 2906, 2874, 1738, 1506, 1486, 1464, 1444, 1410, 1378, 1366, 1340, 1278, 1246, 1228, 1212, 1152, 1112, 1084, 1030, 992, 968, 930, 806, 762, 734.


MS (EI, 70 eV): *m*/*z* (%) = 292 (7), 207 (17), 163 (11), 162 (100), 43 (32).

HR-MS (EI, 70 eV): [C₁₆H₂₀O₅], calcd.: 292.1311; found: 292.1298.

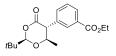
cHPLC: Chiracel OJ-H; heptane:*i*-PrOH = 9:1; 1 mL·min⁻¹; 234 nm; $R_f(R^*)$ = 10.4 min; $R_f(S^*)$ = 7.9 min.

Optical Rotation: $[\alpha]_D^{20} = +13.4$ (c = 1.0, CHCl₃).

Ethyl 4-((2R,4R,5R)-2-(tert-butyl)-4-methyl-6-oxo-1,3-dioxan-5-yl)benzoate (79h)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum, was charged with ethyl 4-iodobenzoate (207 mg, 0.75 mmol, 1.00 equiv) and dry THF (1.5 mL). The mixture was cooled to -20 °C, *i*PrMgCl·LiCl (0.50 mL, 0.83 mmol, 1.10 equiv) was added dropwise and stirred for 30 min. Solid ZnCl₂ (0.75 mmol, 1.00 equiv) was placed in a dry and argon flushed *Schlenk*-tube equipped with a magnetic stirring bar and a septum and dried under vacuum at 250 °C for 5 min. After cooling to rt under vacuum, an argon atmosphere was applied and THF (1.5 mL) was added. The solution was added to the Grignard reagent at -20 °C. The mixture containing arylzinc reagent **76i** was allowed to warm to rt and stirred for 15 min.

A dry and argon-flushed 20 mL *Schlenk*-tube, equipped with a stirring bar and a septum, was charged with $CoCl_2$ (13 mg, 0.10 mmol, 20 mol%). The solid was flame dried under high vacuum for 5 min. After cooling to rt, PPh₃ (26 mg, 0.10 mmol, 20 mol%) and the α -bromolactone **79a** (126 mg, 0.50 mmol, 1.00 equiv) was added. The mixture was dissolved in THF (1 mL) and cooled to -20 °C. The freshly prepared organozinc chloride **76i** was added and the mixture was allowed to warm to rt overnight. Sat. aq. NH₄Cl (5 mL) and ethyl acetate (5 mL) were added, the phases were separated and the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to


column chromatography purification on using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79h** as a mixture of diastereomers (76% yield, dr = 50:50, 121 mg, 0.38 mmol).

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.09 – 8.00 (m, 2H), 7.31 – 7.22 (m, 2H), 5.17 (s, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 4.03 (dq, *J* = 10.5, 6.1 Hz, 1H), 3.55 (d, *J* = 10.6 Hz, 1H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.27 – 1.19 (m, 3H), 1.03 (s, 9H).

¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 169.3, 166.2, 140.4, 130.3, 130.3, 129.4, 109.1,
61.2, 56.1, 35.5, 29.8, 24.1, 19.6, 14.5.

HR-MS (EI, 70 eV): [C₁₈H₂₄O₅], calcd.: 320.1624; found: 320.1632.

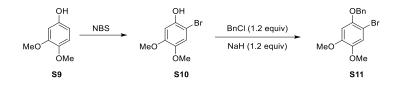
Ethyl 3-((2R,4R,5R)-2-(tert-butyl)-4-methyl-6-oxo-1,3-dioxan-5-yl)benzoate (79i)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum, was charged with ethyl 3-iodobenzoate (207 mg, 0.75 mmol, 1.00 equiv) and dry THF (1.5 mL). The mixture was cooled to -20° C, *i*PrMgCl·LiCl (0.50 mL, 0.83 mmol, 1.10 equiv) was added dropwise and stirred for 30 min. Solid ZnCl₂ (0.75 mmol, 1.00 equiv) was placed in a dry and argon flushed *Schlenk*-tube equipped with a magnetic stirring bar and a septum and dried under vacuum at 250 °C for 5 min. After cooling to rt under vacuum, an argon atmosphere was applied and THF (1.5 mL) was added. The solution was added to the Grignard reagent at -20° C. The mixture containing arylzinc reagent **76j** was allowed to warm to rt and stirred for 15 min.

A dry and argon-flushed 20 mL *Schlenk*-tube, equipped with a stirring bar and a septum, was charged with $CoCl_2$ (13 mg, 0.10 mmol, 20 mol%). The solid was flame dried under high vacuum for 5 min. After cooling to rt, PPh₃ (26 mg, 0.10 mmol, 20 mol%) and the *α*-bromolactone **78a** (126 mg, 0.50 mmol, 1.00 equiv) was added. The mixture was dissolved in THF (1 mL) and cooled to -20 °C. The freshly prepared organozinc chloride **76j** was added and the mixture was allowed to warm to rt overnight. Sat. aq. NH₄Cl (5 mL) and ethyl acetate (5 mL) were added, the phases were separated and the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification on using *i*-hexane/ethyl acetate (9:1) as an eluent to afford **79i** as colorless oil (52% yield, dr = 99:1, 83 mg, 0.26 mmol).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.99 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.86 (t, *J* = 1.8 Hz,

1H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.37 (dt, *J* = 7.7, 1.6 Hz, 1H), 5.18 (s, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 4.06 (dq, *J* = 10.6, 6.1 Hz, 1H), 3.53 (d, *J* = 10.7 Hz, 1H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.03 (s, 9H).


¹³C-NMR (101 MHz, CDCl₃, ppm): δ = 169.6, 166.2, 135.8, 133.8, 131.3, 130.2, 129.2, 129.2, 109.0, 76.9, 61.3, 55.9, 35.5, 24.0, 19.5, 14.4.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2980, 2964, 2938, 2906, 2874, 1734, 1716, 1367, 1343, 1283, 1236, 1213, 1189, 1150, 1107, 1084, 1029, 993, 970, 912, 764, 751, 729, 705, 695. **MS (EI, 70 eV):** m/z (%) = 275 (20), 235 (24), 217 (18), 191 (32), 190 (100), 162 (17), 161 (46), 145 (87), 117 (41), 115 (30), 91 (23), 57 (21).

HR-MS (EI, 70 eV): $[C_{18}H_{23}O_5] = [M-H]^+$, calcd.: 319.1545; found: 319.1547.

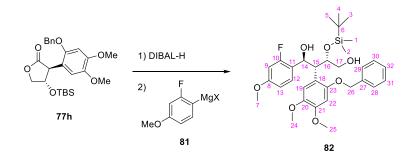
2.5 Total Synthesis of the Rotenoid Derivative MOM-Protected Munduserol (80)

1-(Benzyloxy)-2-bromo-4,5-dimethoxybenzene (S11)

3,4-Dimethoxyphenol (**S9**, 5.00 g, 32.4 mmol, 1.00 equiv) was dissolved in freshly distilled CH_2CI_2 (60 mL) and cooled to 0 °C. *N*-Bromosuccinimide (5.77 g, 32.4 mmol, 1.00 equiv) was added slowly, the reaction mixture was allowed to warm to rt and stirred for 16 h. The reaction was stopped by adding sodium thiosulfate (15 mL), a sat. solution of NH₄Cl (15 mL) and water (15 mL). The phases were separated and the aqueous phase was extracted with CH_2CI_2 (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 8:2). 2-Bromo-4,5-dimethoxyphenol (**S10**) was isolated as a brown solid (4.78 g, 20.5 mmol, 63% yield).

2-Bromo-4,5-dimethoxyphenol (**S10**, 4.78 g, 20.5 mmol, 1.00 equiv) was dissolved in THF (40 mL). The solution was cooled to 0 °C and sodium hydride (60% in paraffin oil, 1.07 g, 26.7 mmol, 1.30 equiv) was added slowly. The reaction mixture was allowed to warm to rt and stirred for 30 min. Benzyl bromide (3.65 mL, 30.8 mmol, 1.50 equiv) was added and the mixture was refluxed at 80 °C overnight. Water (100 mL) was added and the mixture was extracted with EtOAc (3 x 100 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 9:1). 1-(Benzyloxy)-2-bromo-4,5-dimethoxybenzene (**S11**) was isolated as a as yellowish solid (5.51 g, 17.1).

mmol, 83% yield).


¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.56 – 7.44 (m, 2H), 7.44 – 7.36 (m, 2H), 7.36 – 7.30 (m, 1H), 7.04 (s, 1H), 6.56 (s, 1H), 5.10 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H).

¹³**C-NMR (101 MHz, CDCl₃, ppm):** *δ* = 149.4, 148.9, 144.4, 136.8, 128.7, 128.2, 127.5, 116.1, 102.6, 101.6, 72.7, 56.6, 56.3.

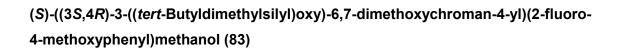
FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3084, 2998, 2969, 2952, 2934, 2920, 2909, 2899, 2877, 2845, 1580, 1503, 1462, 1455, 1445, 1437, 1392, 1373, 1331, 1276, 1264, 1247, 1211, 1199, 1186, 1168, 1164, 1119, 1083, 1045, 1033, 1027, 1011, 997, 975, 966, 922, 843, 817, 804, 759, 727, 700.

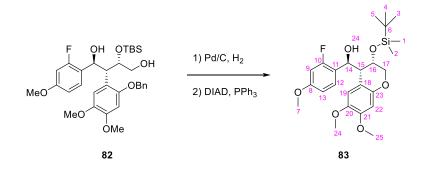
MS (EI, 70 eV): m/z (%) = 324 (16), 322 (17), 244 (11), 243 (71), 233 (44), 231 (43), 211 (10), 205 (42), 203 (41), 190 (17), 188 (17), 175 (11), 173 (11), 91 (100). **HR-MS (EI, 70 eV):** [C₁₅H₁₅BrO₃], calcd.: 322.0205; found: 322.0197. **m.p.:** 80 – 81 °C.

(1S,2*R*,3*S*)-2-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-3-((*tert*-butyldimethylsilyl)oxy)-1-(2-fluoro-4- methoxyphenyl)butane-1,4-diol (82)

A dry and argon flushed *Schlenk*-flask, equipped with a magnetic stirring bar and a septum, was charged with the chiral arylated lactone **77h** (3.45 g, 7.52 mmol, 1.00 equiv) and dry CH_2Cl_2 (40 mL) was added. The solution was cooled to -78 °C and a solution of diisobutylaluminum hydride (1.0 M in CH_2Cl_2 , 11.3 mL, 11.3 mmol, 1.50 equiv) was added dropwise to the reaction. Upon disappearance of the starting material (TLC, after 2.5 h) the reaction was quenched with sat. aq. Rochelle's salt (10 mL) and EtOAc (10 mL) and allowed to warm to rt and stirred for another 30 min. The layers were separated, and the aqueous phase was extracted with CH_2Cl_2 (5 x 20 mL). The combined organic layers were dried over Na_2SO_4 , the solvents were evaporated and the residue containing the corresponding lactol was used without further purification for the next step.

The crude lactol was dissolved in THF (8 mL) and slowly added to the arylmagnesium reagent **81** (19.5 mL, 15.0 mmol, 2.00 equiv) at 0 °C. The mixture was allowed to warm to rt and stirred for 16 h. Sat. aq. NH_4CI (15 mL) and EtOAc (15 mL) was added. The


layers were separated, and the aqueous phase was extracted with EtOAc ($3 \times 20 \text{ mL}$). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 7:3) to afford the alcohol **82** as a foamysolid (3.80 g, 6.49 mmol, 86% yield over two steps).


¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.39 – 7.33 (m, 2H, H-12, H-19), 7.30 (d, *J* = 7.6 Hz, 2H, H-27-28), 7.20 (dd, *J* = 7.5 Hz, 2H, H-29-30), 7.11 (t, *J* = 7.4 Hz, 1H, H-31), 6.50 (dd, *J* = 8.6, 2.4 Hz, 1H, H-13), 6.25 (dd, *J* = 12.1, 2.5 Hz, 1H, H-9), 6.15 (s, 1H, H-22), 5.66 (d, *J* = 10.6 Hz, 1H, H-14), 4.81 (dd, *J* = 5.7, 2.8 Hz, 1H, H-16), 4.62 (d, *J* = 11.7 Hz, 1H, H-26'), 4.51 (d, *J* = 11.8 Hz, 1H, H-26), 4.15 (dd, *J* = 10.5, 2.6 Hz, 1H, H-15), 3.82 (s, 3H, H-25), 3.68 (dd, *J* = 11.1, 5.6 Hz, 1H, H-17'), 3.46 (dd, *J* = 11.2, 7.9 Hz, 1H, H-17), 3.23 (s, 3H, H-24), 3.00 (s, 3H, H-7), 2.54 (s, 1H, OH), 1.04 (s, 9H, H-3-4), 0.32 (s, 3H, H-1/2), 0.16 (s, 3H, H-1/2).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** δ = 161.2 (d, *J* = 244.5 Hz, C-10), 160.4 (d, *J* = 11.0 Hz, C-8), 150.9 (C-23), 149.1 (C-20), 144.5 (C-21), 137.6 (C-27), 129.4 (d, *J* = 6.4 Hz, C-12), 129.0 (C-30-31), 127.8 (C-32), 127.6 (C-28-29), 123.7 (d, *J* = 13.9 Hz, C-11), 118.5 (C-18), 116.1 (C-19), 111.0 (d, *J* = 2.9 Hz, C-13), 100.7 (d, *J* = 26.9 Hz, C-9), 100.0 (C-22), 73.0 (C-16), 72.1 (C-26), 66.9 (C-14), 65.6 (C-17), 56.5 (C-25), 55.5 (C-24), 54.8 (C-7), 45.3 (C-15), 26.3 (C-3-5), 18.5 (C-6), -4.4 (d, *J* = 38.2 Hz, C-1-2).

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3489, 2953, 2932, 2855, 1737, 1624, 1613, 1587, 1507, 1484, 1464, 1444, 1401, 1374, 1360, 1313, 1248, 1214, 1191, 1153, 1106, 1092, 1033, 1025, 973, 948, 920, 889, 859, 830, 812, 775, 735, 696, 667.

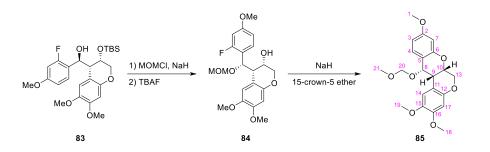
HR-MS (EI, 70 eV): $[C_{32}H_{43}FO_7Si]$, calcd.: 586.2762; found: 586.2760. **Optical Rotation**: $[\alpha]_D^{20} = +13.4$ (c = 1.0, CHCl₃).

Experimental Part

A dry and argon flushed *Schlenk*-flask, equipped with a magnetic stirring bar and a septum, was charged with the benzyl protected alcohol **82** (2.76 g, 4.70 mmol, 1.00 equiv). Pd/C (10 mol%) and dry ethanol (30 mL) was added. H₂ was bubbled through the mixture for 1 min at rt. The reaction was stirred under H₂ (1 atm.) for 3 h until full consumption of the starting material was observed *via* TLC. The reaction was filtered over celite and rinsed with EtOAc (100 mL). The solution was dried over Na₂SO₄, the solvents were evaporated under reduced pressure and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 1:1) to afford the deprotected product as a colorless solid.

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum, was charged with the aromatic alcohol (2.00 g, 4.04 mmol, 1.00 equiv) and PPh₃ (1.27 g, 4.85 mmol, 1.20 equiv). The mixture was dissolved in CH_2Cl_2 (16 mL) and cooled to 0 °C. Diisopropyl azodicarboxylate (2.34 mL, 4.45 mmol, 1.10 equiv) was added and stirring was continued for 2 h until full consumption of the starting material was observed *via* TLC. The reaction was warmed to rt and sat. aq. NH_4Cl (5 mL) and CH_2Cl_2 (5 mL) were added. The layers were separated, and the aqueous phase was extracted with CH_2Cl_2 (3x20 mL). The combined organic layers were dried over Na_2SO_4 , the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 7:3) to afford product **83** as a yellowish oil (1.67 g, 3.49 mmol, 74% yield over two steps).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.46 (t, *J* = 8.6 Hz, 1H, H-12), 6.97 (s, 1H, H-24), 6.67 (dd, *J* = 8.9, 2.6 Hz, 1H, H-13), 6.66 (s, 1H, H-19), 6.53 (dd, *J* = 12.4, 2.5 Hz, 1H, H-9), 6.47 (s, 1H, H-22), 5.51 (d, *J* = 10.1 Hz, 1H, H-14), 4.51 (dt, *J* = 8.0, 6.7 Hz, 1H, H-16), 4.21 (dd, *J* = 8.8, 6.9 Hz, 1H, H-17'), 3.93 (dd, *J* = 8.7, 6.3 Hz, 1H, H-17), 3.78 (s, 3H, H-24), 3.77 (s, 3H, H-25), 3.74 (s, 3H, H-7), 3.64 (dd, *J* = 10.1, 8.0 Hz, 1H, H-15), 0.89 (s, 9H, H-3-5), 0.02 (d, *J* = 15.9 Hz, 6H, H-1-2).


¹³**C-NMR (101 MHz, CDCI₃, ppm):** δ = 161.3 (d, *J* = 246.1 Hz, C-10), 160.9 (d, *J* = 11.4 Hz, C-8), 149.7 (C-23), 148.8 (C-21), 142.8 (C-20), 129.1 (d, *J* = 5.7 Hz, C-12), 118.5 (d, *J* = 13.0 Hz, C-11), 114.4 (C-15), 110.7 (d, *J* = 2.9 Hz, C-13), 110.3 (C-19), 101.8 (C-22), 101.3 (d, *J* = 26.2 Hz, C-9), 80.4 (C-16), 74.8 (C-14), 73.5 (C-17), 56.5 (C-24), 55.9 (C-25), 55.6 (C-7), 54.3 (C-15), 25.8 (C-3-5), 18.0 (C-6), -4.8 (d, *J* = 40.4 Hz, C-1-2).

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3323, 2980, 2969, 2954, 2934, 2883, 2856, 1709, 1626, 1588, 1510, 1465, 1451, 1417, 1374, 1311, 1229, 1203, 1180, 1153, 1106, 1076, 1043, 1029, 1006, 948, 933, 897, 833, 812, 775, 729, 671.

HR-MS (EI, 70 eV): [C₂₅H₃₅FO₆Si], calcd.: 478.2187; found: 478.2181.

Optical Rotation: $[\alpha]_D^{20} = +28$ (c = 1.0, CHCl₃).

MOM-Protected Munduserol (80)

The benzylic alcohol **83** (1.10 g, 2.30 mmol, 1.00 equiv) was dissolved in CH_2CI_2 (5 mL) and the mixture was cooled to 0 °C. NaH (184 mg, 7.67 mmol, 2.00 equiv) was added, stirring at 0 °C was continued for 30 min and chloromethyl methyl ether (0.44 mL, 5.78 mmol, 2.50 equiv) was added. The reaction was allowed to warm to 25 °C and stirred overnight. Sat. aq. NH₄Cl (15 mL) and CH_2CI_2 (20 mL) were added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 8:2) to afford the MOM- and TBS-protected compound.

This intermediate was dissolved in THF (8 mL) and cooled to 0 °C. TBAF (1.0 M in THF, 2.88 mL, 2.88 mmol, 1.50 equiv) was added, and the mixture was stirred for 2 h. Sat. aq. NH₄Cl (20 mL) and EtOAc (20 mL) was added, the layers were separated, and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to column chromatography purification (silica, *i*-hexane/EtOAc 3:7) to afford **84** as a yellowish oil (502 mg, 1.23 mmol, 53% yield over two steps).

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.46 (t, *J* = 8.5 Hz, 1H), 6.72 (d, *J* = 4.5 Hz, 2H), 6.68 (ddd, *J* = 8.6, 2.5, 0.8 Hz, 1H), 6.50 (dd, *J* = 12.2, 2.5 Hz, 1H), 5.26 (d, *J* = 9.1 Hz, 1H), 5.05 (d, *J* = 6.7 Hz, 1H), 4.99 (d, *J* = 6.7 Hz, 1H), 4.58 (td, *J* = 5.8, 3.8 Hz, 1H), 4.31 - 4.22 (m, 1H), 4.08 (dd, *J* = 9.5, 3.8 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.74 (s, 3H), 3.59 (dd, *J* = 9.2, 5.5 Hz, 1H), 3.41 (s, 3H), 2.58 (s, 1H).

¹³**C-NMR (101 MHz, CDCI₃, ppm):** δ = 161.1 (d, *J* = 246.6 Hz), 160.5 (d, *J* = 11.1 Hz), 149.8, 148.5, 144.3, 128.7 (d, *J* = 6.0 Hz), 119.5 (d, *J* = 13.3 Hz), 118.9, 111.5, 110.3 (d, *J* = 2.9 Hz), 101.4 (d, *J* = 25.8 Hz), 101.1, 96.0, 79.4, 78.9, 74.9, 56.6, 56.6, 56.2, 56.1, 55.6.

HR-MS (EI, 70 eV): [C₂₁H₂₅FO₇], calcd.: 408.1584; found: 408.1572.

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum, was charged with the alcohol **84** (37 mg, 0.091 mmol, 1.00 equiv), toluene (4.5 mL) and DMPU (0.5 mL). 15-crown-5 ether (38 μ L, 0.191 mmol, 2.10 equiv) and NaH (60% in paraffin oil, 12 mg, 0.28 mmol, 3.10 equiv) were added and the mixture was heated to 110 °C for 48 h. The mixture was allowed to cool to rt and sat. aq. NH₄Cl (2 mL) and EtOAc (2 mL) were added. The layers were separated, and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue was subjected to preparative thin-layer chromatography purification (silica, *i*-hexane/EtOAc 5:5) to afford the rotenoid derivative **80** as a yellow oil (10 mg, 0.026 mmol, 28% yield). Since there is no step, which involves a possible epimerization of the β -center bearing the OTBS group in **77h** we can assume, that the product **80** should not only be diastereomerically pure, but also enantiomerically pure. However, we did not perform the all synthesis with the enantiomer of **77h**.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.17 (s, 1H, H-14), 7.02 (d, *J* = 8.1 Hz, 1H, H-4), 6.81 (s, 1H, H-17), 6.44 (d, *J* = 2.4 Hz, 1H, H-7), 6.42 (dd, *J* = 8.1, 2.4 Hz, 1H, H-3), 5.21 (d, *J* = 6.9 Hz, 1H, H-20), 5.18 (d, *J* = 6.9 Hz, 1H, H-20'), 5.05 (s, 1H, H-8), 4.84 (d, *J* = 3.3 Hz, 1H, H-10), 4.22 (d, *J* = 10.6 Hz, 1H, H-13), 3.98 (dd, *J* = 10.6, 3.5 Hz, 1H, H-13'), 3.96 (s, 1H, H-9), 3.88 (s, 3H, H-18), 3.86 (s, 3H, H-19), 3.78 (s, 3H, H-1), 3.50 (s, 3H, H-21).

¹³**C-NMR (101 MHz, CDCl₃, ppm):** δ = 161.4 (C-2), 154.3 (C-6), 149.6 (C-12), 148.9 (C-16), 144.4 (C-15), 127.6 (C-4), 120.6 (C-5), 117.9 (C-11), 111.1 (C-14), 106.0 (C-3), 101.9 (C-7), 100.2 (C-17), 95.5 (C-20), 81.6 (C-10), 77.2 (C-8), 73.5 (C-13), 56.8 (C-19), 56.3 (C-21), 56.2 (C-18), 55.5 (C-1), 43.2 (C-9).

NOE-NMR shows a proximity of H-8 and H-9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2958, 2935, 2840, 1623, 1587, 1508, 1465, 1444, 1314, 1272, 1210, 1189, 1148, 1122, 1106, 1092, 1068, 1050, 1008, 949, 921, 833, 790, 752, 666. **HR-MS (EI, 70 eV):** $[C_{21}H_{25}O_7] = [M+H]$, calcd.: 389.1600; found: 389.1601. **Optical Rotation**: $[\alpha]_D^{20} = -18$ (c = 1.0, CHCl₃).

3 Preparation of Primary and Secondary Dialkylmagnesiums *via* a Radical I/Mg-exchange Reaction using sBu₂Mg in Toluene

3.1 Optimization of the Preparation of Primary Dialkylmagnesiums

	Oct—I solver 85a (1.0 equiv)	gCl·LiCl (1.2 equiv) nt, 25 °C, 1 h → Oct + → Br (0.9 equiv) J·2LiCl (5 mol%)	Oct
entry	solvent	GC-yield of 87a [%] ^[a]	GC-yield of
			2-methyldecane [%]
1	THF	3	71 ^[b]
2	toluene	21	14

Table S2. Extended exchange reagent screening using octyl iodide (85a).

[a] Reactions were performed on a 0.5 mmol scale. Yields were determined by GC-analysis using undecane (C₁₁H₂₄) as an internal standard. [b] Isolated yield.

	<i>s</i> Bu ₂ Mg ^[a] (x equiv		Br (x equiv)	
Oct—I — 85a (1.0 equiv)	toluene, t, 4 h	→ Oct ₂ Mg 86a	CuCN·2LiCl (5 mol%)	- Oct / / / / / / / / / / / / / / / / / / /
entry	t [°C]	equiv of	equiv of allyl	yield of
		<i>s</i> Bu₂Mg	bromide	87a [%] ^[b]
1	25	0.6	1.0	55
2	25	0.6 ^[c]	1.0	18
3	40	0.6	1.0	65
4	60	0.6	1.0	47
5	40	0.7	1.0	73
6	40	0.8	1.0	68
7	40	0.7	0.9	81
8	40	0.7	0.8	84
9	40	0.7	0.6	86

Table S3. Extended optimization of reaction conditions.

[a] Relevant formula is sBu₂Mg·0.5Et₂O. [b] Reactions were performed on a 0.5 mmol scale. Yields were determined by GC-analysis using undecane (C₁₁H₂₄) as an internal standard. [c] Commercial *n*Bu₂Mg was used as an exchange reagent.

3.2 Protecting Group Effect on the Stereoconvergence of the Diorganomagnesium Formation

OR Me		g (0.6 equiv) e, 25 °C, 2 h	Me 2Mg -20 °C, 1 h	→ OR	Ме ОН
_	entry	iodide	GC-yield ^[a]	dr ^[b]	
			[%]		
_	1	OBn Me	53	73:27	-
	2	TBSO Me ^[c]	81	88:12	
	3	TBSO Me	78 ^[d]	88:12	
	4	TMSO Me	43	82:18	
	5		41	60:40	
	6	TIPSO Me	72 ^[d]	99:1	
	7	TIPSO Me	81 ^[d]	99:1	
	8	TBDPSO Me	traces	-	

Table S4. Optimization of protecting group of 3-substituted secondary alkyl iodides.

[a] Reactions were performed on a 0.25 mmol scale. Yields were determined by GC-analysis using undecane ($C_{11}H_{24}$) as an internal standard. [b] Diastereomeric ratio (dr) was determined by GC-analysis. [c] dr = 50:50. [d] Isolated yield.

3.3 Typical Procedure of Preparation 3-Substituted Secondary Alkyl lodides

Protected alcohols were prepared according to the literature procedures^{92a} from corresponding diastereomers of commercial 2,4-pentanediol or (2R, 4R)-(-)-2,4-pentanediol.

lodine (1.2 eqiuv) was dissolved in CH_2Cl_2 (*ca.* 0.1 M) and cooled to -10 °C. Triphenylphosphine (1.2 eqiuv) was added and reaction mixture was stirred for 1 h at -10 °C. Then *N*-methylimidazole (1.2 equiv) was added dropwise and stirred for 10 min. Then solution of corresponding alcohol in CH_2Cl_2 (1 mL) was added. After further stirring

for 30 min reaction was quenched with sat. aq. (NaHSO₃+Na₂S₂O₅) solution and extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were dried over Na₂SO₄. The solvents were evaporated at 30 °C and the crude product was subjected to column chromatography furnishing the analytical pure iodide.¹²⁰ The analytical data were in full consistency with the data reported in the literature.¹⁰⁷

3.4 Preparation of Starting Materials

Preparation of Primary lodides TP2¹²¹

Triphenylphosphine (1.05 equiv) and imidazole (1.05 equiv) were dissolved in CH_2CI_2 (0.3 M) and cooled to 0 °C. Iodine (1.05 equiv) was added over 15 min and the corresponding alcohol (1.00 equiv) was added dropwise. The reaction mixture was allowed to warm to room temperature and was stirred overnight. The reaction mixture was quenched with sat. aq. $Na_2S_2O_3$ solution. The phases were separated and the aqueous layer was extracted 3× with CH_2CI_2 . The combined organic layers were washed with brine and dried over Na_2SO_4 . The solvents were evaporated and the crude product was subjected to column chromatography furnishing the analytical pure iodide.

1-lodo-4-pentene (85b)

The title compound was prepared according to the literature procedure from 5-bromo-1pentene (0.45 g, 3 mmol) and was obtained as a colorless oil (0.56 g, 2.9 mmol, 95% yield). The analytical data were in full consistency with the data reported in the literature.¹²²

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 5.75 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.15 – 4.95 (m, 2H), 3.19 (t, *J* = 6.9 Hz, 2H), 2.16 (dtt, *J* = 7.6, 6.3, 1.4 Hz, 2H), 1.99 – 1.85 (m, 2H).

¹²⁰ A. Kremsmair, H.R. Wilke, M.M. Simon, Q. Schmidt, K. Karaghiosoff, P. Knochel, *Chem. Sci.* **2021**, DOI: 10.1039/d1sc05315a.

¹²¹ H. Helmboldt, D. Köhler, M. Hiersemann, Org. Lett. **2006**, *8*, 1573.

¹²² K. Heckenbichler, A. Schweiger, L.A. Brandner, A. Binter, M. Toplak, P. Macheroux, K. Gruber, R. Breinbauer, *Angew. Chem. Int. Ed.* **2018**, 57, 7240-7244.

(Z)-(6-lodohex-2-en-3-yl)benzene (85c)

The title compound was prepared according **TP2** from (*Z*)-4-phenylhex-4-en-1-ol (1.76 g, 10 mmol) and was obtained as a pale pink oil (2.32 g, 8.1 mmol, 81% yield).⁸⁹

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.35 – 7.29 (m, 4H), 7.25 – 7.20 (m, 1H), 5.81 (q, J = 6.9 Hz, 1H), 3.15 (t, J = 6.8 Hz, 2H), 2.69 – 2.59 (m, 2H), 1.87 (dd, J = 13.5, 7.2 Hz, 5H).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 142.80, 139.08, 128.44, 126.81, 126.35, 124.48, 32.16, 30.04, 14.58, 6.90.

2-(2-lodoethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene (85d)

The title compound was prepared according to **TP2** from (*R*)-nopol (1.66 g, 10 mmol) and was obtained as a pale pink oil (2.57 g, 9.3 mmol, 93% yield). The analytical data were in full consistency with the data reported in the literature.¹²³

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.31 (s, 1H), 3.22 – 3.05 (m, 2H), 2.61 – 2.47 (m, 2H), 2.37 (dt, *J* = 8.6, 5.6 Hz, 1H), 2.31 – 2.12 (m, 2H), 2.12 – 2.05 (m, 1H), 2.00 (td, *J* = 5.6, 1.6 Hz, 1H), 1.27 (s, 3H), 1.18 (d, *J* = 8.6 Hz, 1H), 0.84 (s, 3H).

¹²³ C. Dai, J.M.R. Narayanam, C.R.J. Stephenson, *Nat. Chem.* **2011**, *3*, 140-145.

(4-lodobut-1-yn-1-yl)trimethylsilane (85e)

The title compound was prepared according to **TP2** from 4-(trimethylsilyl)but-3-yn-1-ol (1.14 g, 8 mmol) and was obtained as a colorless oil (1.77 g, 7 mmol, 88% yield). The analytical data were in full consistency with the data reported in the literature.¹²⁴ **¹H-NMR (400 MHz, CDCI₃, ppm):** δ = 3.22 (t, *J* = 7.5 Hz, 2H), 2.79 (t, *J* = 7.5 Hz, 2H), 0.16 (s, 9H).

1-Chloro-6-iodohexane (85f)

The title compound was prepared according to **TP2** from 6-chloro-1-hexanol (0.41 g, 3 mmol) and was obtained as a colorless oil (0.52 g, 2.1 mmol, 70% yield). The analytical data were in full consistency with the data reported in the literature.¹²⁵

¹**H-NMR (400 MHz, CDCl₃, ppm):** *δ* = 3.54 (t, *J* = 6.6 Hz, 2H), 3.19 (t, *J* = 6.9 Hz, 2H), 1.90 – 1.72 (m, 4H), 1.54 – 1.37 (m, 4H).

1-Fluoro-4-(2-iodoethyl)benzene (85g)

The title compound was prepared according to the literature procedure from 1-(2bromoethyl)-4-fluorobenzene (2.03 g, 10 mmol) and was obtained as a colorless oil (2.22 g, 8.9 mmol, 89% yield). The analytical data were in full consistency with the data reported in the literature.¹²⁶

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.21 – 7.11 (m, 2H), 7.09 – 6.93 (m, 2H), 3.39 – 3.25 (m, 2H), 3.15 (t, J = 7.6 Hz, 2H).

¹²⁴ R. Frei, M.D. Wodrich, D. Prasad Hari, P.-A. Borin, C. Chauvier, J. Waser, *J. Am. Chem. Soc.* **2014**, *136*, 16563-16573.

¹²⁵ K. Mori, Y. Shikichi, S. Shankar, J. Y. Yew, *Tetrahedron* **2010**, 66, 7161-7168.

¹²⁶ A.R. Mackenzie, S.M. Monaghan, US5677324A (**1997**).

Tert-butyl((6-iodohexyl)oxy)dimethylsilane (85h)

The title compound was prepared according to **TP2** from ((6-bromohexyl)oxy)(*tert*-butyl)dimethylsilane (1.16 g, 5 mmol) and was obtained as a colorless oil (1.42 g, 4.1 mmol, 83% yield). The analytical data were in full consistency with the data reported in the literature.¹²⁷

¹**H-NMR (400 MHz, CDCl₃, ppm):** *δ* = 3.60 (t, *J* = 6.4 Hz, 2H), 3.19 (t, *J* = 7.0 Hz, 2H), 1.83 (p, *J* = 7.0 Hz, 2H), 1.63 – 1.45 (m, 2H), 1.45 – 1.21 (m, 3H), 0.89 (s, 10H), 0.04 (s, 6H).

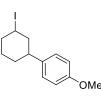
3-(2-lodoethyl)thiophene (85i)

The title compound was prepared according to **TP2** from 2-(thiophen-3-yl)ethan-1-ol (0.64 g, 5 mmol) and was obtained as a colorless oil (1.04 g, 4.3 mmol, 87% yield). The analytical data were in full consistency with the data reported in the literature.¹²⁸

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 7.29 (dd, *J* = 5.0, 2.9 Hz, 1H), 7.06 (dd, *J* = 2.8, 1.3 Hz, 1H), 6.96 (dd, *J* = 5.0, 1.3 Hz, 1H), 3.41 – 3.31 (m, 2H), 3.22 (t, *J* = 7.6 Hz, 2H).

(*E*)-(2-Bromovinyl)benzene (S12)

The title compound was prepared according to the literature procedure from E/Z mixture of β -bromostyrene. The analytical data were in full consistency with the data reported in the literature.¹²⁹


¹²⁷ J.J.S. Lamba, J.M. Tour, *J. Am. Chem. Soc.* **1994**, *116*, 11723-11736.

¹²⁸ A.K.A. de Almeida, J.M.M. Dias, A.J.C. Silva, M. Navarro, S.A. Junior, J. Tonholo, A.S. Ribeiro, *Synth. Met.* **2013** *171*, 45-50; Y. Ikenoue, N. Outani, A.O. Patil, F. Wudl, A.J. Heeger, *Synth. Met.* **1989**, *30*, 305-319.

¹²⁹ D. Müller, A. Alexakis, *Org. Lett.* **2012**, *14*, 1842-1845.

¹**H-NMR (400 MHz, CDCI₃, ppm):** *δ* = 7.37 – 7.27 (m, 5H), 7.11 (d, J = 14.0 Hz, 1H), 6.78 (d, *J* = 14.0 Hz, 1H).

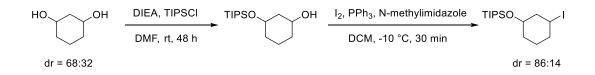
1-(3-lodocyclohexyl)-4-methoxybenzene (88b)

The title compound was prepared according to the literature procedure from 2-cyclohexenone. The analytical data were in full consistency with the data reported in the literature.¹³⁰

dr = 99:1

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.22 – 7.02 (m, 2H), 6.92 – 6.69 (m, 2H), 3.79 (s, 3H), 3.10 (tt, *J* = 11.8, 3.4 Hz, 1H), 2.23 (dddd, *J* = 14.5, 5.3, 3.2, 2.0 Hz, 1H), 2.11 (dtt, *J* = 14.7, 3.4, 1.5 Hz, 1H), 2.02 – 1.83 (m, 2H), 1.80 – 1.61 (m, 2H), 1.61 – 1.38 (m, 2H), 0.92 – 0.79 (m, 1H).

Tert-butyl((3-iodocyclohexyl)oxy)dimethylsilane (88c)



The title compound was prepared according to the literature procedure from 1,3cyclohexanediol. The analytical data were in full consistency with the data reported in the literature.¹³¹

dr = 84:16

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 4.65 (tt, *J* = 8.5, 4.2 Hz, 1H), 4.00 – 3.95 (m, 1H), 2.22 – 1.85 (m, 3H), 1.85 – 1.70 (m, 1H), 1.57 (ddt, *J* = 18.4, 11.9, 5.4 Hz, 3H), 1.41 – 1.07 (m, 1H), 0.89 (s, 9H), 0.04 (d, *J* = 2.4 Hz, 6H).

((3-lodocyclohexyl)oxy)triisopropylsilane (88d)

¹³⁰ L. Thomas, F.H. Lutter, M.S. Hofmayer, K. Karaghiosoff, P. Knochel, *Org. Lett.* **2018**, *20*, 2441-2444.

¹³¹ T. Thaler, L.-N. Guo, P. Mayer, P. Knochel, *Angew. Chem. Int. Ed.* **2011**, *50*, 2174-2177.

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirrer and a septum, was charged with 1,3-cyclohexanediol (581 mg, 5 mmol), anhydrous *N*,*N*-dimethylformamide (DMF) (15 mL) and redistilled *N*,*N*-diisopropylethylamine (DIEA) (8.5 mL, 50 mmol) forming a biphasic mixture at room temperature. Triisopropylsilyl chloride (TIPSCI) (1.12 mL, 5.25 mmol) was added dropwise. The reaction mixture was stirred for 48 h. Upon completion, this mixture was quenched with cold water, extracted with diethyl ether (3×50 mL), and washed with 2N HCl, an aq. sat. NaHCO₃ and brine. The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue containing the crude protected alcohol (622 mg, 2.29 mmol, 46% yield) as a colorless oil was used in the next step without further purification.¹³²

lodine (697 mg, 2.75 mmol) was dissolved in CH_2Cl_2 (*ca.* 0.1 M) and cooled to -10 °C. Triphenylphosphine (721 mg, 2.75 mmol) was added and reaction mixture was stirred for 1 h at -10 °C. Then *N*-methylimidazole (0.22 mL, 2.75 mmol) was added dropwise and stirred for 10 min. Then the solution of alcohol in CH_2Cl_2 (1 mL) was added. After further stirring for 30 min reaction mixture was quenched with sat. aq. (NaHSO₃+Na₂S₂O₅) solution and extracted with CH_2Cl_2 (3×20 mL). The combined organic layers were dried over Na₂SO₄. The solvents were evaporated at 30 °C and the crude product was subjected to column chromatography furnishing the analytical pure iodide.¹⁰⁸

Isolated yield: 444 mg, 1.16 mmol, 27%, colorless oil.

Purification: *i*-hexane:diethyl ether = 200:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 4.67 (dtd, *J* = 12.8, 6.4, 3.9 Hz, 1H), 4.08 (p, *J* = 4.5 Hz, 1H), 2.22 – 2.03 (m, 3H), 1.94 (dtd, *J* = 13.0, 9.0, 3.7 Hz, 1H), 1.81 (dtt, *J* = 17.5, 9.1, 3.9 Hz, 1H), 1.64 (h, *J* = 3.3 Hz, 2H), 1.61 – 1.48 (m, 1H), 1.05 (d, *J* = 2.2 Hz, 21H). (Signals for the main stereomer are given).

¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 69.1, 47.1, 38.8, 33.8, 29.3, 22.6, 18.2, 12.4. FT-IR (ATR, cm⁻¹): \tilde{v} = 2962, 2941, 2890, 2861, 2359, 2330, 1461, 1359, 1308, 1238, 1157, 1151, 1102, 1053, 1036, 883, 687, 685, 681, 679, 674, 668.

MS (EI, 70 eV): *m*/*z* (%) = 382 (1), 340 (11), 339 (68), 211 (10). 131 (11), 103 (14), 81 (100), 75 (25), 61 (16).

HR-MS (EI, 70eV): [C₁₅H₃₁IOISi], calcd.: 382.1189; found: 382.1185.

¹³² C. Yu, B. Liu, L. Hu, *Tetrahedron Lett.* **2000**, *41*, 4281-4285.

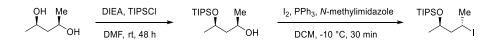
((5-lodocyclohexane-1,3-diyl)bis(oxy))bis(triisopropylsilane) (88e)

The title compound was prepared by an analogous procedure of **88d** from commercial $(1\alpha, 3\alpha, 5\alpha)$ -1,3,5-cyclohexanetriol.

Isolated yield: 1385 mg, 2.50 mmol, 25%, colorless oil.

Purification: *i*-hexane:diethyl ether = 200:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** *δ* = 4.69 (p, *J* = 3.2 Hz, 1H), 4.21 (tt, *J* = 10.7, 4.0 Hz, 2H), 2.29 (dddt, *J* = 15.4, 9.4, 4.9, 2.2 Hz, 3H), 1.53 – 1.39 (m, 3H), 1.07 (d, *J* = 2.2 Hz, 42H).


¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 68.0, 46.8, 44.5, 27.0, 18.2, 18.2, 12.4.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2943, 2892, 2866, 1463, 1382, 1233, 1116, 1087, 1075, 1064, 1013, 996, 906, 882, 866, 821, 781, 681, 657.

MS (EI, 70 eV): *m/z* (%) = 511 (15), 311 (13), 288 (24), 287 (100), 261 (20), 245 (26), 227 (18), 206 (20), 157 (18), 115 (20).

HR-MS (EI, 70eV): [C₂₁H₄₄O₂ISi₂], calcd.: 511.1925; found: 511.1919 [M-*i*Pr]⁺.

(((2R,4S)-4-lodopentan-2-yl)oxy)triisopropylsilane (91a)

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirrer and a septum, was charged with (2R, 4R)-(-)-2,4-pentanediol (520 mg, 5 mmol), anhydrous DMF (15 mL) and redistilled DIEA (8.5 mL, 50 mmol) forming a biphasic mixture at room temperature. TIPSCI (1.12 mL, 5.25 mmol) was added dropwise. The reaction mixture was stirred for 48 h. Upon completion, the reaction was quenched with cold water, extracted with diethyl ether (3×50 mL), and washed with 2N HCl, an aq. sat. NaHCO₃ and brine. The combined organic layers were dried over Na₂SO₄, the solvents were evaporated and the residue containing the crude chiral protected alcohol (1.05 g, 4.04 mmol, 81% yield) as a colorless oil was used in the next step without further purification.¹²¹

lodine (1.23 g, 4.85 mmol) was dissolved in CH_2Cl_2 (*ca.* 0.1 M) and cooled to -10 °C. Triphenylphosphine (1.27 g, 4.85 mmol) was added and reaction mixture was stirred for

1 h at -10 °C. Then *N*-methylimidazole (0.39 mL, 4.85 mmol) was added dropwise and stirred for 10 min. Then solution of alcohol in CH_2Cl_2 (1 mL) was added. After further stirring for 30 min reaction mixture was quenched with sat. aq. (NaHSO₃+Na₂S₂O₅) solution and extracted with CH_2Cl_2 (3×50 mL). The combined organic layers were dried over Na₂SO₄. The solvents were evaporated at 30 °C and the crude product was subjected to column chromatography furnishing the analytical pure iodide.^{92b}

Isolated yield: 652 mg, 1.76 mmol, 44%, colorless oil.

Purification: *i*-hexane:diethyl ether = 200:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 4.15 – 4.00 (m, 2H), 2.21 (ddd, *J* = 14.6, 9.8, 5.1 Hz, 1H), 1.96 (d, *J* = 6.8 Hz, 3H), 1.60 (ddd, *J* = 14.3, 7.5, 5.2 Hz, 1H), 1.15 (d, *J* = 6.0 Hz, 3H), 1.07 (d, *J* = 1.4 Hz, 21H).

¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 69.2, 52.6, 29.6, 25.8, 22.9, 18.3, 18.3, 12.6. FT-IR (ATR, cm⁻¹): \tilde{v} = 2964, 2943, 2921, 2890, 2865, 2361, 2339, 1462, 1373, 1252, 1149, 1127, 1058, 998, 962, 924, 881, 713.

MS (EI, 70 eV): *m/z* (%) = 355 (1), 327 (13), 286 (11), 285 (100), 241 (48), 213 (21), 199 (10), 185 (9), 75 (10), 69 (10).

HR-MS (EI, 70eV): $[C_{13}H_{28}IOSi]$, calcd.: 355.0954; found: 355.0943 [M-Me]⁺. Optical rotation: $[\alpha]_D^{20} = 34$ (c 1.00, CHCl₃).

Tert-butyl(((2*R*)-4-iodopentan-2-yl)oxy)dimethylsilane (91b)

The title compound was prepared according to the literature procedure from ethyl (R)-3hydroxybutyrate. The analytical data were in full consistency with the data reported in the literature.¹²²

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 4.28 (dqd, *J* = 11.1, 6.9, 2.8 Hz, 1H), 4.16 (dp, *J* = 8.0, 6.8 Hz, 1H), 4.00 – 3.85 (m, 2H), 2.19 (ddd, *J* = 14.4, 8.1, 6.6 Hz, 1H), 1.96 (d, *J* = 6.9 Hz, 3H), 1.93 (d, *J* = 6.8 Hz, 3H), 1.86 (ddd, *J* = 14.8, 11.2, 2.3 Hz, 1H), 1.69 (ddd, *J* = 14.2, 6.8, 6.1 Hz, 1H), 1.57 – 1.47 (m, 1H), 1.17 (d, *J* = 6.1 Hz, 3H), 1.11 (d, *J* = 6.0 Hz, 3H), 0.89 (d, *J* = 0.7 Hz, 18H), 0.14 (s, 3H), 0.10 (s, 3H), 0.07 (s, 3H), 0.07 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 68.9, 68.6, 52.8, 52.8, 29.9, 29.0, 28.9, 26.1, 26.0, 25.3, 24.1, 23.1, 18.2, 18.2, -3.8, -4.1, -4.2, -4.6.

2-(Allyloxy)-3-iodotetrahydro-2H-pyran (96)

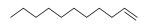
The title compound was prepared according to the literature procedure from allylic alcohol (2.04 mL, 30 mmol), 3,4-dihydro-2*H*-pyran (3.30 mL, 36 mmol), *N*-iodosuccinimide (6.75 g, 30 mmol) and was obtained as a colorless oil (7.64 g, 28.5 mmol, 95% yield). The analytical data were in full consistency with the data reported in the literature.¹³³

dr = 99:1

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 5.93 (dddd, *J* = 16.9, 10.4, 6.2, 5.2 Hz, 1H), 5.33 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.21 (dq, *J* = 10.4, 1.4 Hz, 1H), 4.68 (d, *J* = 5.3 Hz, 1H), 4.26 (ddt, *J* = 12.9, 5.2, 1.5 Hz, 1H), 4.11 (ddd, *J* = 8.1, 5.3, 4.3 Hz, 1H), 4.05 (ddt, *J* = 12.9, 6.2, 1.4 Hz, 1H), 4.02 – 3.95 (m, 1H), 3.58 (ddd, *J* = 11.2, 7.4, 3.5 Hz, 1H), 2.44 – 2.32 (m, 1H), 2.02 (dtd, *J* = 14.1, 8.3, 4.0 Hz, 1H), 1.77 (dtt, *J* = 14.3, 7.3, 3.8 Hz, 1H), 1.65 – 1.51 (m, 1H).

¹³³ C. Ollivier, P. Renaud, J. Am. Chem. Soc. 2001, 123, 4717-4727.

3.5 Preparation of Primary and Secondary Dialkylmagnesiums *via* a Radical I/Mgexchange Reaction using sBu₂Mg in Toluene


Preparation of primary dialkylmagnesiums *via* an I/Mg-exchange reaction using *s*Bu₂Mg in toluene (TP3)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum was charged with the respective primary alkyl iodide (0.50 mmol) and dry toluene (1.0 mL). Then a solution of *s*Bu₂Mg (0.70 mL, 0.35 mmol) was added *via* syringe at 40 °C and the reaction was stirred for 4 h. After that the corresponding electrophile (0.30 mmol) was added dropwise and the reaction mixture was stirred until completion. The reaction mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to column chromatography purification on silica yielding the corresponding product.

Preparation of secondary dialkylmagnesiums *via* an I/Mg-exchange reaction using *s*Bu₂Mg in toluene (TP4)

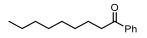
A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum was charged with the respective secondary alkyl iodide (0.50 mmol) and dry toluene (2.0 mL). Then a solution of sBu_2Mg (0.60 mL, 0.30 mmol) was added *via* syringe at room temperature and the reaction was stirred for 2 h. After that the corresponding electrophile (0.40 mmol) was added dropwise at -20 °C and the reaction mixture was stirred until completion. The reaction mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to column chromatography purification on silica yielding the corresponding product.

1-Undecene (87a)

Following **TP3**, octyl iodide (**85a**, 120 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), allyl bromide (26 μ L, 0.30 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15

Experimental Part

 μ L, 0.015 mmol, 5 mol%) and was stirred for 30 min. The analytical data were in full consistency with the data reported in the literature.¹³⁴


Isolated yield: 40 mg, 0.26 mmol, 86%, colorless oil.

Purification: pentane.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.82 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1H), 5.05 – 4.83 (m, 2H), 2.10 – 1.98 (m, 2H), 1.42 – 1.23 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 139.4, 114.2, 34.0, 32.1, 29.7, 29.7, 29.5, 29.3, 29.1, 22.8, 14.3.

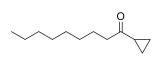
1-Phenylnonan-1-one (87b)

Following **TP3**, octyl iodide (**85a**, 120 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, benzoyl chloride (35 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 56 mg, 0.26 mmol, 86%, yellow oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.01 – 7.92 (m, 2H), 7.60 – 7.51 (m, 1H), 7.46 (dd, J = 8.3, 6.8 Hz, 2H), 3.04 – 2.91 (m, 2H), 1.73 (p, J = 7.4 Hz, 2H), 1.37 – 1.24 (m, 10H), 0.88 (h, J = 3.2, 2.8 Hz, 3H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 200.8, 137.2, 133.0, 128.7, 128.2, 38.8, 32.0, 29.6, 29.5, 29.3, 24.5, 22.8, 14.3.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2953, 2923, 2869, 2853, 1683, 1597, 1448, 1359, 1273, 1215, 1179, 1001, 969, 749, 689.

MS (EI, 70 eV): *m*/*z* (%) = 218 (1), 147 (1), 133 (11), 120 (86), 105 (100), 78 (12). **HR-MS (EI, 70eV):** [C₁₅H₂₂O], calcd.: 218.1671; found: 218.1665.

¹³⁴ C.M.R. Volla, D. Marcović, S.R. Dubbaka, P. Vogel, *Eur. J. Org. Chem.* 2009, 6281-6288.

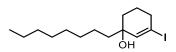
1-Cyclopropyl-1-nonanone (87c)

Following **TP3**, octyl iodide (**85a**, 120 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in tetrahydrofurane (THF) (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, cyclopropanecarbonyl chloride (27 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 38 mg, 0.21 mmol, 70%, colorless oil.

Purification: pentane:diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 2.52 (t, *J* = 7.5 Hz, 2H), 1.91 (tt, *J* = 7.9, 4.6 Hz, 1H), 1.59 (p, *J* = 7.1 Hz, 2H), 1.27 (qd, *J* = 7.6, 6.3, 3.8 Hz, 10H), 0.99 (dd, *J* = 4.4, 3.2 Hz, 2H), 0.91 – 0.80 (m, 5H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 211.5, 43.7, 32.0, 29.5, 29.4, 29.3, 24.2, 22.8, 20.4, 14.2, 10.7.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2954, 2923, 2853, 1698, 1463, 1456, 1384, 1194, 1130, 1078, 1060, 1018, 900, 818, 722.

MS (EI, 70 eV): *m*/*z* (%) = 183 (11), 182 (3), 153 (6), 139 (8), 111 (9), 97 (25), 84 (55), 83 (69), 69 (100).

HR-MS (EI, 70eV): [C₁₂H₂₃O], calcd.: 183.1749; found: 183.1740 [M+H]⁺.

3-lodo-1-octylcyclohex-2-en-1-ol (87d)

Following **TP3**, octyl iodide (**85a**, 120 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), 3-iodo-2-cyclohexen-1-one (67 mg, 0.30 mmol) was added at 0 °C and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 50 mg, 0.15 mmol, 50%, colorless oil. **Purification:** *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 6.31 (d, *J* = 2.0 Hz, 1H), 2.65 – 2.38 (m, 2H), 1.91 – 1.79 (m, 1H), 1.76 – 1.57 (m, 3H), 1.50 (dt, *J* = 8.1, 6.1 Hz, 2H), 1.38 – 1.19 (m, 13H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 142.8, 101.7, 73.2, 42.1, 39.8, 34.0, 32.0, 30.2, 29.7, 29.4, 23.4, 22.8, 21.8, 14.3.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2951, 2924, 2868, 2853, 1668, 1652, 1646, 1635, 1623, 1616, 1576, 1569, 1558, 1506, 1464, 1456.

MS (EI, 70 eV): *m*/*z* (%) = 318 (7), 233 (13), 223 (100), 220 (60), 93 (18).

HR-MS (EI, 70eV): [C₁₄H₂₃I], calcd.: 318.0844; found: 318.0838 [M-H₂O]⁺.

(1E)-Dec-1-en-1-ylbenzene (87e)

Following **TP3**, octyl iodide (**85a**, 120 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete, dialkylmagnesium solution (1.7 mL) was added to a mixture of Fe(acac)₃ (8.8 mg, 0.03 mmol, 5 mol%), tetramethylethylenediamine (TMEDA) (15 µl, 0.05 mmol, 10 mol%) and β -bromostyrene (55 mg, 0.30 mmol) at 0 °C. Then the reaction mixture was stirring for 30 min.

Isolated yield: 46 mg, 0.21 mmol, 71%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 100:3.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.39 – 7.27 (m, 4H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 6.24 (dt, *J* = 15.8, 6.8 Hz, 1H), 2.21 (q, *J* = 7.2 Hz, 2H), 1.47 (p, *J* = 7.1 Hz, 2H), 1.31 (d, *J* = 12.1 Hz, 10H), 0.90 (t, *J* = 6.8 Hz, 3H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 138.1, 131.4, 129.8, 128.6, 126.9, 126.0, 33.2, 32.0, 29.7, 29.5, 29.5, 29.4, 22.8, 14.3.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3024, 2954, 2922, 2867, 2852, 1598, 1494, 1465, 1455, 1449, 1377, 1071, 1028, 979, 962, 742, 722, 711, 691.

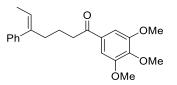
MS (EI, 70 eV): *m*/*z* (%) = 216 (18), 143 (2), 129 (13), 117 (99), 104 (100), 91 (26). **HR-MS (EI, 70eV):** [C₁₆H₂₄], calcd.: 216.1878; found: 216.1872. 1-Phenylhex-5-en-1-one (87f)

Following **TP3**, iodide (**85i**, 98 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, benzoyl chloride (35 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 39 mg, 0.22 mmol, 75%, colorless oil.

Purification: pentane:diethyl ether = 100:3.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.01 – 7.89 (m, 2H), 7.62 – 7.52 (m, 1H), 7.46 (dd, J = 8.3, 6.8 Hz, 2H), 5.83 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.14 – 4.92 (m, 2H), 2.98 (t, J = 7.4 Hz, 2H), 2.27 – 2.08 (m, 2H), 1.86 (p, J = 7.4 Hz, 2H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 200.4, 138.2, 137.2, 133.1, 128.7, 128.2, 115.5, 37.9, 33.3, 23.4.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3065, 2973, 2932, 2894, 2866, 1682, 1640, 1597, 1580, 1448, 1366, 1231, 1203, 1179, 1001, 995, 972, 911, 753, 735, 689.

MS (EI, 70 eV): *m/z* (%) = 174 (4), 173 (6), 145 (5), 120 (54), 106 (8), 105 (100), 91 (3), 78 (10), 77 (35).

HR-MS (EI, 70eV): [C₁₂H₁₄O], calcd.: 174.1045; found: 174.1037.

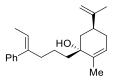
(5Z)-5-Phenyl-1-(3,4,5-trimethoxyphenyl)hept-5-en-1-one (87g)

Following **TP3**, iodide (**85b**, 143 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, 3,4,5-trimethoxybenzoyl chloride (69 mg, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 84 mg, 0.24 mmol, 79%, *Z/E* = 99:1, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** *δ* = 7.52 – 7.25 (m, 7H), 5.95 (q, *J* = 6.9 Hz, 1H), 4.03 (s, 3H), 3.99 (s, 6H), 3.02 (t, *J* = 7.3 Hz, 2H), 2.76 (t, *J* = 7.5 Hz, 2H), 1.95 (dd, *J* = 11.7, 7.1 Hz, 5H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 199.1, 153.1, 143.1, 142.4, 140.1, 132.4, 128.4, 126.7, 126.3, 123.9, 105.5, 61.0, 56.3, 37.9, 28.7, 23.3, 14.4.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2997, 2935, 2871, 2837, 1676, 1583, 1504, 1453, 1411, 1362, 1330, 1320, 1230, 1187, 1149, 1123, 1049, 1002, 850, 827, 759, 700.

MS (EI, 70 eV): *m*/*z* (%) = 334 (4), 211 (12), 210 (100), 207 (18), 195 (59).

HR-MS (EI, 70eV): [C₂₂H₂₆O₄], calcd.: 354.1831; found: 354.1827.

(1*R*,5*S*)-2-Methyl-1-((*Z*)-4-phenylhex-4-en-1-yl)-5-(prop-1-en-2-yl)cyclohex-2-en-1ol (87h)

Following **TP3**, iodide (**85b**, 143 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), (*S*)-carvone¹³⁵ (47 µL, 0.30 mmol) was added at 0 °C, and the reaction mixture was allowed to warm to room temperature in 2 h.

Isolated yield: 50 mg, 0.16 mmol, 54%, *Z/E* = 99:1, dr = 95:5, colorless oil.

Purification: *i*-hexane:ethyl acetate = 8:2.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.38 – 7.25 (m, 4H), 7.24 – 7.17 (m, 1H), 5.76 (q, J = 6.8 Hz, 1H), 5.40 (tt, J = 3.1, 1.6 Hz, 1H), 4.72 – 4.63 (m, 2H), 2.60 – 2.44 (m, 2H), 2.17 (dddd, J = 12.0, 9.2, 5.4, 2.8 Hz, 1H), 2.10 – 2.00 (m, 1H), 1.93 (ddt, J = 16.0, 9.8, 2.7 Hz, 2H), 1.84 – 1.76 (m, 3H), 1.72 – 1.22 (m, 12H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 149.2, 143.3, 140.8, 138.8, 128.3, 126.6, 126.4, 123.4, 123.3, 109.3, 74.2, 40.0, 39.4, 38.0, 30.9, 29.6, 22.2, 20.9, 17.1, 14.4.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3415, 3026, 2941, 2918, 2857, 1644, 1598, 1494, 1441, 1373, 1315, 1288, 1263, 1166, 1085, 1075, 1030, 994, 950, 887, 831, 806, 752, 697.

MS (EI, 70 eV): *m*/*z* (%) = 292 (6), 160 (12), 151 (62), 145 (24), 144 (36), 133 (19), 132 (13), 128 (28), 123 (31), 117 (20), 114 (16), 109 (100), 91 (47).

¹³⁵ T.P. Truong, S. J. Bailey, A.E. Golliher, E.Y. Monroy, U.K. Shrestha, W.A. Maio, *J. Chem. Educ.* **2018**, *95*, 438-444.

HR-MS (EI, 70eV): [C₂₂H₃₀O], calcd.: 310.2297; found: 310.2293. Optical rotation: $[\alpha]_D^{20} = -13.3$ (c = 0.15, CHCl₃).

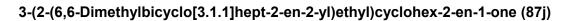
3-(6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)-1-phenylpropan-1-one (87i)

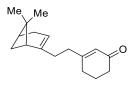
Following **TP3**, iodide (**85d**, 138 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, benzoyl chloride (35 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 57 mg, 0.22 mmol, 76%, yellow oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.00 – 7.92 (m, 2H), 7.60 – 7.52 (m, 1H), 7.46 (tt, J = 6.6, 1.4 Hz, 2H), 5.26 (tp, J = 3.1, 1.5 Hz, 1H), 3.02 (dd, J = 8.3, 7.1 Hz, 2H), 2.38 (dtd, J = 12.5, 5.5, 2.6 Hz, 3H), 2.32 – 2.14 (m, 2H), 2.13 – 2.01 (m, 2H), 1.28 (s, 3H), 1.17 (d, J = 8.5 Hz, 1H), 0.84 (s, 3H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 200.2, 147.2, 137.2, 133.1, 128.7, 128.2, 116.6, 46.1, 40.9, 38.1, 36.6, 31.8, 31.4, 26.4, 21.3.


FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2981, 2913, 2831, 1683, 1597, 1580, 1448, 1380, 1363, 1284, 1265, 1202, 1179, 1001, 973, 886, 759, 741, 688.

MS (EI, 70 eV): *m*/*z* (%) = 254 (2), 211 (13), 193 (13), 149 (13), 134 (26), 119 (100),

117 (14), 105 (63), 91 (90), 77 (35).

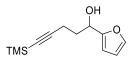
HR-MS (EI, 70eV): [C₁₈H₂₂O], calcd.: 254.1671; found: 254.1666.

Following **TP3**, iodide (**85d**, 138 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -25 °C and was stirred for 15 min. Then, 3-iodo-2-cyclohexen-1-one (36 µL, 0.30 mmol) was added, and the reaction mixture was stirred at this temperature for 4 h.

Isolated yield: 62 mg, 0.25 mmol, 84%, colorless oil.

Purification: pentane:diethyl ether = 8:2.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 5.87 (t, *J* = 1.4 Hz, 1H), 5.23 (dp, *J* = 3.0, 1.5 Hz, 1H), 2.40 – 2.33 (m, 3H), 2.32 – 2.11 (m, 8H), 2.11 – 2.04 (m, 1H), 2.03 – 1.94 (m, 3H), 1.27 (s, 3H), 1.12 (d, *J* = 8.5 Hz, 1H), 0.82 (s, 3H).


¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 200.1, 166.5, 147.0, 125.9, 117.0, 45.8, 40.9, 38.1, 37.5, 36.0, 34.2, 31.8, 31.4, 29.8, 26.4, 22.9, 21.3.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2917, 2874, 2831, 1719, 1666, 1623, 1454, 1428, 1415, 1380, 1371, 1364, 1346, 1324, 1253, 1240, 1191, 1129, 965.

MS (EI, 70 eV): *m/z* (%) = 225 (38), 209 (19), 207 (100), 191 (21), 119 (21), 117 (16), 110 (37), 105 (16), 91 (65).

HR-MS (EI, 70eV): [C₁₇H₂₄O], calcd.: 244.1827; found: 244.1824.

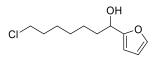
1-(Furan-2-yl)-5-(trimethylsilyl)pent-4-yn-1-ol (87k)

Following **TP3**, iodide (**85h**, 126 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), furfural (25 µl, 0.30 mmol) was added at 0 °C, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 53 mg, 0.24 mmol, 80%, colorless oil.

Purification: pentane:diethyl ether = 8:2.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.38 (dd, *J* = 1.8, 0.9 Hz, 1H), 6.33 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.26 (dt, *J* = 3.2, 0.8 Hz, 1H), 4.84 (td, *J* = 6.6, 4.0 Hz, 1H), 2.48 – 2.27 (m, 2H), 2.22 (d, *J* = 4.6 Hz, 1H), 2.05 (q, *J* = 6.9 Hz, 2H), 0.15 (s, 9H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 156.1, 142.2, 110.3, 106.3, 106.3, 85.7, 66.9, 34.2, 16.4, 0.2.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2956, 2923, 2853, 2178, 2175, 2172, 1737, 1696, 1459, 1377, 1249, 1090, 1051, 842, 760.

MS (EI, 70 eV): *m*/*z* (%) = 207 (13), 189 (31), 149 (21), 131 (42), 115 (83), 110 (100), 97 (40), 75 (50).

HR-MS (EI, 70eV): [C₁₂H₁₇O₂Si], calcd.: 221.0998; found: 221.0992 [M-H]⁺.

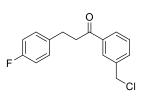
7-Chloro-1-(furan-2-yl)heptan-1-ol (87l)

Following **TP3**, iodide (**85c**, 123 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), furfural (25 µL, 0.30 mmol) was added at 0 °C, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 56 mg, 0.26 mmol, 86%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 8:2.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.37 (dd, *J* = 1.9, 0.8 Hz, 1H), 6.33 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.23 (d, *J* = 3.2 Hz, 1H), 4.67 (t, *J* = 6.8 Hz, 1H), 3.52 (t, *J* = 6.7 Hz, 2H), 1.94 - 1.70 (m, 5H), 1.55 - 1.19 (m, 6H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 156.9, 142.1, 110.3, 106.0, 67.9, 45.2, 35.5, 32.6, 28.8, 26.9, 25.5.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3363, 2934, 2858, 1505, 1464, 1456, 1149, 1070, 1036, 1009, 884, 811, 735.

MS (EI, 70 eV): *m*/*z* (%) = 107 (24), 98 (5), 97 (100), 95 (3), 94 (22), 91 (5), 81 (4), 79 (22), 77 (11), 69 (10).

HR-MS (EI, 70eV): [C₁₁H₁₇ClO₂], calcd.: 216.0917; found: 216.0911.

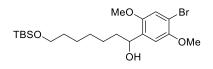
1-(3-(Chloromethyl)phenyl)-3-(4-fluorophenyl)propan-1-one (87m)

Following **TP3**, iodide (**85g**, 125 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, 3-(chloromethyl)benzoyl chloride (43 µl, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 60 mg, 0.22 mmol, 72%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.96 (d, *J* = 1.9 Hz, 1H), 7.90 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.60 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.24 - 7.16 (m, 2H), 7.03 - 6.93 (m, 2H), 4.62 (s, 2H), 3.29 (dd, *J* = 8.1, 6.9 Hz, 2H), 3.05 (t, *J* = 7.5 Hz, 2H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** δ = 198.6, 161.5 (d, *J* = 243.9 Hz), 138.3, 137.4, 136.9 (d, *J* = 3.2 Hz), 133.3, 130.0 (d, *J* = 7.8 Hz), 129.3, 128.2, 128.1, 115.4 (d, *J* = 21.0 Hz), 45.7, 40.7, 29.3.

¹⁹**F-NMR (376 MHz, CDCl₃, ppm):** δ = -117.20 (tt, *J* = 8.7, 5.3 Hz).

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3037, 2956, 2930, 2900, 1682, 1601, 1586, 1508, 1441, 1360, 1296, 1264, 1247, 1219, 1177, 1156, 1094, 1055, 1015, 987, 827, 795, 727, 704. **MS (EI, 70 eV):** m/z (%) = 276 (6), 241 (10), 227 (58), 221 (7), 155 (33), 153 (100), 125 (26), 109 (15), 89 (19).

HR-MS (EI, 70eV): [C₁₆H₁₄CIFO], calcd.: 276.0717; found: 276.0711.

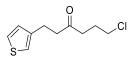
1-(4-Bromo-2,5-dimethoxyphenyl)-7-((*tert*-butyldimethylsilyl)oxy)heptan-1-ol (87n)

Following **TP3**, iodide (**85e**, 171 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), 4-bromo-2,5-dimethoxybenzaldehyde (74 mg, 0.30 mmol) was added at 0 °C, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 106 mg, 0.23 mmol, 77%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.04 (s, 1H), 6.95 (s, 1H), 4.91 – 4.80 (m, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.58 (t, *J* = 6.6 Hz, 2H), 2.35 (s, 1H), 1.79 – 1.64 (m, 2H), 1.55 – 1.41 (m, 2H), 1.40 – 1.23 (m, 6H), 0.88 (s, 9H), 0.04 (s, 6H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 150.7, 150.3, 133.4, 116.1, 111.2, 109.8, 70.3, 63.4, 57.0, 56.2, 37.6, 33.0, 26.1, 26.1, 25.9, 18.5, -5.1.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2928, 2854, 1489, 1463, 1441, 1386, 1360, 1255, 1209, 1179, 1099, 1054, 1037, 1005, 835, 813, 775.

MS (EI, 70 eV): *m/z* (%) = 460 (3), 405 (15), 403 (15), 387 (10), 385 (9), 247 (189), 245 (22), 232 (26), 230 (10), 229 (100), 176 (25), 151 (11), 138 (11), 75 (33), 73 (13).

HR-MS (EI, 70eV): $[C_{21}H_{37}BrO_4Si]$, calcd.: 460.1644; found: 460.1647.

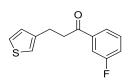
6-Chloro-1-(thiophen-3-yl)hexan-3-one (87o)

Following **TP3**, iodide (**85f**, 119 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, 4-chlorobutyryl chloride (34 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 55 mg, 0.25 mmol, 85%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.26 – 7.22 (m, 1H), 6.97 – 6.91 (m, 2H), 3.56 (t, J = 6.3 Hz, 2H), 2.97 – 2.89 (m, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.60 (t, J = 7.0 Hz, 2H), 2.09 – 1.98 (m, 2H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 208.9, 141.2, 128.1, 125.8, 120.7, 44.6, 43.7, 39.6, 26.3, 24.3.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3102, 2957, 2924, 2895, 2854, 1710, 1537, 1437, 1408, 1372, 1310, 1296, 1206, 1155, 1090, 1002, 858, 831, 774, 738, 700.

MS (EI, 70 eV): *m*/*z* (%) = 216 (6), 180 (4), 139 (3), 112 (7), 111 (100), 97 (33).

HR-MS (EI, 70eV): [C₁₀H₁₃CIOS], calcd.: 216.0376; found: 216.0370.

1-(3-Fluorophenyl)-3-(thiophen-3-yl)propan-1-one (87p)

Following **TP3**, iodide (**85f**, 119 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and was stirred for 30 min. Then, 3-fluorobenzoyl chloride (37 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 57 mg, 0.24 mmol, 81%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 95:5.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.39 – 7.27 (m, 4H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.39 (d, *J* = 15.8 Hz, 1H), 6.24 (dt, *J* = 15.8, 6.8 Hz, 1H), 2.21 (q, *J* = 7.2 Hz, 2H), 1.47 (p, *J* = 7.1 Hz, 2H), 1.31 (d, *J* = 12.1 Hz, 10H), 0.90 (t, *J* = 6.8 Hz, 3H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 198.0 (d, *J* = 2.1 Hz), 163.0 (d, *J* = 248.0 Hz), 141.3, 139.0 (d, *J* = 6.0 Hz), 130.4 (d, *J* = 7.6 Hz), 128.3, 125.9, 123.9 (d, *J* = 3.0 Hz), 120.8, 120.3 (d, *J* = 21.4 Hz), 114.9 (d, *J* = 22.2 Hz), 39.8, 24.5.

¹⁹**F-NMR (376 MHz, CDCI₃, ppm):** δ = -111.82 (ddd, *J* = 9.5, 8.2, 5.7 Hz).

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2928, 1688, 1588, 1484, 1442, 1409, 1359, 1295, 1271, 1258, 1240, 1167, 1149, 880, 860, 777, 681.

MS (EI, 70 eV): *m*/*z* (%) = 234 (9), 124 (2), 123 (31), 111 (100), 95 (15), 77 (6), 75 (6). **HR-MS (EI, 70eV):** [C₁₃H₁₁FOS], calcd.: 234.0515; found: 234.0510.

Dodecan-4-ol (S13)

Following **TP3**, octyl iodide (**85a**, 120 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), freshly distilled butyraldehyde (22 mg, 0.30 mmol) was added at 0 °C, and the reaction mixture was allowed to warm to room temperature in 1 h.

Isolated yield: 29 mg, 0.15 mmol, 51%, colorless oil.

Purification: pentane:diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCl₃, ppm):** *δ* = 5.30 (s, 1H), 1.44 – 1.35 (m, 4H), 1.26 (d, J = 5.0 Hz, 15H), 0.90 (dt, *J* = 13.4, 7.0 Hz, 6H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 74.6, 41.9, 39.4, 32.0, 30.4, 29.8, 29.5, 23.6, 22.8, 16.9, 14.9, 14.3.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3418, 2956, 2924, 2871, 2853, 1464, 1457, 1378, 1260, 1140, 1110, 1078, 1031, 979, 934, 904, 861, 800, 722, 700.

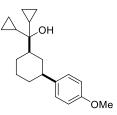
MS (EI, 70 eV): *m*/*z* (%) = 186 (11), 185 (100), 9 (12), 55(13), 43 (11).

HR-MS (EI, 70eV): [C₁₂H₂₆O], calcd.: 186.1984; found: 186.1927.

Allylcyclohexane (90a)

Following **TP4**, iodide (**88a**, 105 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), allyl bromide (26 µL, 0.30 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15 µL, 0.015 mmol, 5 mol%) and the reaction mixture was stirred for 30 min. The analytical data were in full consistency with the data reported in the literature. ¹³⁶

Isolated yield: 30 mg, 0.24 mmol, 48%, colorless oil.


Purification: pentane.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 5.81 – 5.57 (m, 1H), 5.56 – 4.89 (m, 2H), 2.02 – 1.90 (m, 2H), 1.70 – 1.63 (m, 4H), 1.41 – 1.33 (m, 1H), 1.21 – 0.98 (m, 4H), 0.88 – 0.70 (m, 2H).

¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 137.8, 115.8, 42.0, 37.7, 33.3, 27.0, 25.3

¹³⁶ D. Zhu, L. Lv, C.-C. Li, S. Ung, J. Gao, C.-J. Li, *Angew. Chem. Int. Ed.* **2018**, *57*, 16520-16524; *Angew. Chem.* **2018**, *130*, 16758-1672.

Dicyclopropyl(3-(4-methoxyphenyl)cyclohexyl)methanol (90b)

Following **TP4**, iodide (**88b**, 158 mg, 0.50 mmol, dr = 99:1) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), dicyclopropyl ketone (45 µL, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 66 mg, 0.22 mmol, 55%, dr = 99:1, colorless oil.

Purification: *i*-hexane:diethyl ether = 8:2.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.20 – 7.12 (m, 2H), 6.91 – 6.81 (m, 2H), 3.79 (s, 3H), 2.51 (tt, *J* = 11.9, 3.4 Hz, 1H), 2.19 – 2.09 (m, 1H), 2.08 – 2.00 (m, 1H), 1.95 (dq, *J* = 11.9, 3.0 Hz, 1H), 1.88 (ddd, *J* = 10.5, 4.9, 2.5 Hz, 1H), 1.69 (tt, *J* = 12.0, 3.0 Hz, 1H), 1.46 – 1.34 (m, 3H), 1.30 (td, *J* = 12.5, 3.4 Hz, 1H), 0.89 – 0.79 (m, 3H), 0.45 – 0.34 (m, 6H), 0.32 – 0.21 (m, 2H).

Relative stereochemistry was assigned based on observation of NOE for 1,3-diaxial protons.

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 157.8, 140.3, 127.8, 113.8, 72.3, 55.4, 50.7, 44.0, 36.0, 34.7, 27.3, 27.0, 16.6, 16.5, 1.4, 1.2, -0.8, -0.9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3011, 3001, 2926, 2854, 2362, 2334, 2320, 1611, 1512, 1465, 1448, 1247, 1176, 1035, 1025, 989, 912, 824.

MS (EI, 70 eV): *m*/*z* (%) = 300 (1), 190 (46), 147 (14), 121 (33), 111 (100), 91 (14), 69 (58).

HR-MS (EI, 70eV): [C₂₀H₂₈O₂], calcd.: 300.2089; found: 300.2084.

(3-((*Tert*-butyldimethylsilyl)oxy)cyclohexyl)dicyclopropylmethanol (90c)

Following **TP4**, iodide (**88c**, 170 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), dicyclopropyl ketone (45 μ L, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 72 mg, 0.22 mmol, 56%, dr = 99:1, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 3.56 (tt, *J* = 10.4, 4.4 Hz, 1H), 2.12 (ddq, *J* = 11.6, 4.6, 2.2 Hz, 1H), 1.92 – 1.74 (m, 3H), 1.58 – 1.46 (m, 1H), 1.33 – 1.07 (m, 4H), 0.89 (s, 9H), 0.84 – 0.73 (m, 2H), 0.38 (qdt, *J* = 6.5, 5.0, 2.1 Hz, 6H), 0.25 (tdd, *J* = 8.7, 6.0, 2.1 Hz, 2H), 0.06 (s, 6H).

Relative stereochemistry was assigned based on observation of NOE for 1,3-diaxial protons.

¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 72.5, 72.0, 49.0, 37.7, 36.5, 26.7, 26.1, 24.5, 18.4, 16.6, 16.4, 1.4, 1.2, -0.9, -1.0, -4.4, -4.4.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3085, 3007, 2950, 2927, 2857, 2357, 2342, 1472, 1463, 1373, 1360, 1255, 1249, 1106, 1086, 1083, 1021, 1005, 989, 969, 881, 867, 836, 773. **MS (EI, 70 eV):** m/z (%) = 324 (1), 265 (2), 133 (11), 111 (100), 95 (11), 93 (12), 91 (11), 82 (31), 81 (22), 75 (56).

HR-MS (EI, 70eV): [C₁₉H₃₆O₂Si], calcd.: 324.2485; found: 324.2466.

Dicyclopropyl(3-((triisopropylsilyl)oxy)cyclohexyl)methanol (90d)

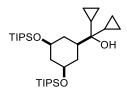
Following **TP4**, iodide (**88d**, 191 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), dicyclopropyl ketone (45 μ L, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 44 mg, 0.21 mmol, 52%, dr = 99:1, colorless oil.

Purification: *i*-hexane:diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 3.64 (tt, *J* = 10.3, 4.2 Hz, 1H), 2.23 (ddt, *J* = 12.0, 4.7, 2.3 Hz, 1H), 1.95 (dtd, *J* = 8.9, 4.4, 2.1 Hz, 1H), 1.88 – 1.77 (m, 2H), 1.57 – 1.45 (m, 1H), 1.32 – 1.11 (m, 4H), 1.06 (d, *J* = 2.2 Hz, 21H), 0.80 (dddd, *J* = 17.4, 11.5, 4.8, 2.9 Hz, 3H), 0.44 – 0.31 (m, 6H), 0.31 – 0.19 (m, 2H).

Relative stereochemistry was assigned based on observation of NOE for 1,3-diaxial protons.


¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 72.3, 72.0, 49.2, 38.0, 36.7, 26.7, 24.6, 18.3, 18.3, 17.0, 16.2, 12.5, 1.4, 1.0, -0.8, -0.9.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3615, 3509, 3085, 3008, 2954, 2938, 2892, 2863, 2362, 1680, 1463, 1425, 1387, 1381, 1370, 1355, 1312, 1255, 1247, 1180, 1094, 1066, 1020, 991, 968, 928, 914, 906, 881, 858, 830, 808, 784, 735, 677.

MS (EI, 70 eV): *m*/*z* (%) = 348 (2), 305 (21), 263 (8), 173 (17), 171 (29), 159 (23), 145 (26), 133 (14), 131 (54), 129 (20), 117 (30), 105 (15), 103 (100).

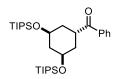
HR-MS (EI, 70eV): [C₂₂H₄₀OSi], calcd.: 348.2848; found: 348.2841 [M-H₂O]⁺.

(3,5-Bis((triisopropylsilyl)oxy)cyclohexyl)dicyclopropylmethanol (90e)

Following **TP4**, iodide (**88e**, 139 mg, 0.25 mmol) was treated with a solution of sBu₂Mg (0.30 mL, 0.15 mmol). After the exchange was complete (2 h), dicyclopropyl ketone (23 μ L, 0.20 mmol) was added at -20 °C and the reaction mixture was stirred for 2 h.

Isolated yield: 58 mg, 0.11 mmol, 54%, dr = 99:1, colorless oil.

Purification: *i*-hexane:diethyl ether = 9:1.

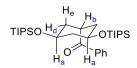

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 3.65 (tt, *J* = 10.9, 4.2 Hz, 2H), 2.26 (ddq, *J* = 11.5, 3.9, 2.0 Hz, 1H), 2.16 (dq, *J* = 12.8, 2.6 Hz, 2H), 1.46 (tt, *J* = 12.7, 2.9 Hz, 1H), 1.38 (q, *J* = 11.4 Hz, 1H), 1.25 (td, *J* = 12.4, 10.6 Hz, 2H), 1.15 – 0.97 (m, 42H), 0.84 – 0.78 (m, 2H), 0.77 (s, 1H), 0.44 – 0.34 (m, 6H), 0.32 – 0.22 (m, 2H).

Relative stereochemistry was assigned based on observation of NOE for 1,3,5-triaxial protons.

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 71.8, 69.9, 46.7, 44.9, 37.0, 18.2, 18.2, 16.7, 12.5, 1.3, -0.9.

FT-IR (ATR, cm⁻¹): $\tilde{v} = 2942$, 2891, 2865, 1464, 1382, 1373, 1158, 1083, 1061, 1021, 1014, 994, 935, 916, 881, 832, 815, 786, 679, 655. **MS (EI, 70 eV):** m/z (%) = 519 (1), 495 (12), 477 (32), 321 (45), 287 (55), 211 (75), 191 (57), 173 (93), 131 (64), 111 (56), 69 (100). **HR-MS (EI, 70eV):** $[C_{31}H_{59}O_2Si_2]$, calcd.: 519.4054; found: 519.4049 [M-H₃O]⁺.

(3,5-Bis((triisopropylsilyl)oxy)cyclohexyl)(phenyl)methanone (90f)


Following **TP4**, iodide (**88e**, 139 mg, 0.25 mmol) was treated with a solution of sBu_2Mg (0.30 mL, 0.15 mmol). After the exchange was complete (2 h), benzaldehyde (20 µL, 0.20 mmol) was added at -30 °C and the reaction mixture was stirred for 1 h. The reaction mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×30 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*.

Pyridinium chlorochromate (43 mg, 0.2 mmol) was dissolved in CH_2Cl_2 (*ca.* 1 M) and alcohol was added at rt. The reaction mixture was stirred for 3 h, then was diluted with ether and filtered through the silica. The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*.¹³⁷

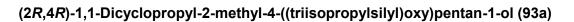
Isolated yield: 54 mg, 0.10 mmol, 51%, dr = 99:1, yellowish oil.

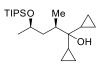
Purification: *i*-hexane:diethyl ether = 95:5.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.88 – 7.84 (m, 2H), 7.56 – 7.51 (m, 1H), 7.44 (t, J = 7.7 Hz, 2H), 3.97 (tt, J = 10.3, 4.1 Hz, 2H), 3.83 (tt, J = 5.8, 2.9 Hz, 1H), 2.23 – 2.21 (m, 1H), 2.21 – 2.15 (m, 2H), 1.58 (ddd, J = 13.1, 10.3, 5.7 Hz, 2H), 1.40 (q, J = 10.8 Hz, 1H), 1.06 – 0.94 (m, 42H).

Relative stereochemistry was assigned based on the coupling constants of H^b (H¹). The value of ${}^{3}J_{H}{}^{a}-{}_{H}{}^{e}$ is 10.3 Hz, which is consistent for ${}^{3}J_{ax-ax}$. Small couplings ${}^{3}J_{H}{}^{b}-{}_{H}{}^{d}$ and ${}^{3}J_{H}{}^{b}-{}_{H}{}^{e}$ of 2.9 Hz and 5.8 Hz correspondingly are characteristic for ${}^{3}J_{eq-eq}$ and ${}^{3}J_{eq-ax}$.

¹³⁷ G. Piancatelli, A. Scettri, M. D'Auria, Synthesis 1982, 4, 245-258.


¹³⁸ K. L. Williamson, *J. Am. Chem. Soc.* **1963**, *85*, 516-519; D. Höfner, S.A. Lesko, G. Binsch, *Org. Magn. Reson.* **1978**, *11*, 179-196.


¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 203.9, 136.4, 132.9, 128.7, 128.4, 66.4, 46.0, 40.3, 36.4, 18.1, 18.1, 12.3.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2942, 2892, 2866, 1682, 1463, 1448, 1382, 1215, 1119, 1082, 1060, 1012, 1004, 997, 954, 908, 881, 822, 794, 782, 733, 702, 679.

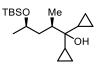
MS (EI, 70 eV): *m*/*z* (%) = 532 (1), 490(20), 489 (59), 315 (18), 287 (22), 245 (15), 185 (100), 105 (71).

HR-MS (EI, 70eV): [C₃₁H₅₆O₃Si₂], calcd.: 532.3768; found: 532.3760.

Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), dicyclopropyl ketone (45 μ L, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 115 mg, 0.32 mmol, 81%, dr = 99:1, 98% *ee*, colorless oil. **Purification:** *i*-hexane:diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 4.02 (dtt, *J* = 12.1, 6.0, 3.0 Hz, 1H), 1.89 (ddd, *J* = 13.2, 9.0, 2.9 Hz, 1H), 1.67 (ddt, *J* = 10.7, 6.9, 3.5 Hz, 1H), 1.56 (s, 1H), 1.55 – 1.47 (m, 1H), 1.20 – 1.16 (m, 4H), 1.07 (d, *J* = 1.7 Hz, 20H), 1.05 (d, *J* = 6.9 Hz, 3H), 0.82 (dqd, *J* = 8.4, 5.7, 3.4 Hz, 2H), 0.47 – 0.33 (m, 6H), 0.25 (tddd, *J* = 7.3, 5.4, 3.5, 1.5 Hz, 2H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 72.3, 67.8, 41.9, 41.8, 22.9, 18.3, 18.3, 16.5, 15.9, 15.7, 12.6, 1.4, 1.3, -0.9, -1.1.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2966, 2939, 2924, 2864, 2360, 2357, 2334, 1462, 1457, 1377, 1125, 1094, 1028, 1021, 996, 881.

MS (EI, 70 eV): *m*/*z* (%) = 311 (1), 175 (32), 174 (12), 163 (14), 157 (13), 139 (12), 133 (20), 131 (86), 129 (11), 121 (26), 111 (100).

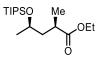
HR-MS (EI, 70eV): $[C_{18}H_{35}O_2Si]$, calcd.: 311.2406; found: 311.2394 $[M-iPr]^+$. Optical rotation: $[\alpha]_D^{20} = -12.5$ (c = 0.17, CHCl₃).

(2*R*,4*R*)-4-((*Tert*-butyldimethylsilyl)oxy)-1,1-dicyclopropyl-2-methylpentan-1-ol (93b)

Following **TP4**, iodide (**91b**, 164 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), dicyclopropyl ketone (45 μ L, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 98 mg, 0.31 mmol, 78%, dr = 88:12, 98% *ee*, colorless oil.

Purification: *i*-hexane:diethyl ether = 9:1.


¹H-NMR (400 MHz, CDCl₃, ppm): δ = 3.93 (dqd, J = 7.9, 6.1, 4.4 Hz, 1H), 1.92 (ddd, J = 13.5, 7.8, 3.5 Hz, 1H), 1.70 (tdd, J = 10.3, 7.9, 5.2 Hz, 1H), 1.39 (ddd, J = 13.5, 8.9, 4.5 Hz, 1H), 1.34 (s, 1H), 1.15 (d, J = 6.1 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.81 (dtd, J = 13.8, 7.8, 7.0, 4.1 Hz, 2H), 0.47 – 0.31 (m, 6H), 0.29 – 0.18 (m, 2H), 0.07 (s, 6H) (signals of one stereomer are given).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 72.2, 68.3, 41.8, 41.7, 26.1, 23.0, 18.4, 16.5, 16.3, 16.0, 1.4, 1.2, -0.8, -1.2, -4.3, -4.5 (signals of one stereomer are given).

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3086, 3008, 2957, 2927, 2883, 2855, 1472, 1462, 1376, 1364, 1255, 1128, 1095, 1067, 1051, 1022, 999, 986, 977, 937, 932, 914, 905, 834, 807, 773. **MS (EI, 70 eV):** m/z (%) = 293 (1), 159 (4), 139 (18), 121 (11), 119 (25), 111 (46), 107 (16), 103 (13), 93 (24), 91 (11), 79 (14), 75 (100).

HR-MS (EI, 70eV): [C₁₈H₃₃OSi], calcd.: 293.2301; found: 293.2292 [M-H₃O]⁺.

Ethyl (2R,4R)-2-methyl-4-((triisopropylsilyl)oxy)pentanoate (94a)

Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), ethyl cyanoformate (40 μ L, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 100 mg, 0.32 mmol, 79%, dr = 99:1, 98% *ee*, colorless oil.

Purification: *i*-hexane:diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 4.11 (qd, J = 7.1, 2.4 Hz, 2H), 4.02 – 3.91 (m, 1H), 2.64 (dqd, J = 8.7, 7.1, 5.3 Hz, 1H), 1.84 (ddd, J = 13.7, 8.7, 5.1 Hz, 1H), 1.55 – 1.43 (m, 1H), 1.28 – 1.22 (m, 3H), 1.20 – 1.13 (m, 6H), 1.05 (d, J = 1.7 Hz, 21H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 177.1, 67.2, 60.3, 44.0, 36.4, 24.2, 18.4, 18.3, 18.3, 14.3, 12.7.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2966, 2941, 2892, 2865, 2360, 1733, 1462, 1373, 1344, 1275, 1243, 1178, 1151, 1131, 1104, 1096, 1054, 1030, 1014, 997, 972, 949, 919, 882.

MS (EI, 70 eV): *m/z* (%) = 315 (1), 273 (54), 228 (11), 227 (100), 159 (41), 131 (55), 127 (10), 117 (13), 103 (67).

HR-MS (EI, 70eV): $[C_{17}H_{35}O_3Si]$, calcd.: 315.2355; found: 315.2346 [M-H]⁺. Optical rotation: $[\alpha]_D^{20} = -10$ (c = 0.70, CHCl₃).

(3R,5R)-3,5-Dimethyldihydrofuran-2(3H)-one (S14)

According to the literature procedure^{92b}, to a solution of **94a** (158 mg, 0.50 mmol, dr = 99:1) in CH₂Cl₂ (2 mL) was added TfOH (1 drop) at room temperature and the mixture was stirred for 2 h. Then the reaction mixture was quenched with sat. aq. NaHCO₃ and the mixture was passed through a plug of MgSO₄. The filtrate was concentrated and subjected to the column chromatography. The analytical data is in full consistency with the data reported in the literature.^{92a,139}

Isolated yield: 29 mg, 0.25 mmol, 85%, dr = 99:1, colorless oil. **Purification:** pentane:diethyl ether = 7:3. ¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = δ 4.75 - 4.62 (m, 1H), 2.79 - 2.66 (m, 1H), 2.09 - 2.02 (m, 2H), 1.37 (d, *J* = 6.4 Hz, 3H), 1.28 (d, *J* = 7.3 Hz, 3H). ¹³**C-NMR (100 MHz, CDCI₃, ppm):** δ = 180.1, 74.8, 37.2, 34.1, 21.2, 15.8. **Optical rotation:** $[α]_D^{20} = 26$ (c = 0.80, CHCI₃), lit.¹⁴⁰ $[α]_D^{20} = 36.5$ (c = 1.10, CHCI₃).

Triisopropyl(((2*R*,4*R*)-4-(methylthio)pentan-2-yl)oxy)silane (94b)

Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), S-methyl benzenethiosulfonate (58 µL, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

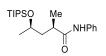
Isolated yield: 94 mg, 0.32 mmol, 81%, dr = 93:7, 98% ee, colorless oil.

Purification: *i*-hexane:diethyl ether = 95:5.

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 4.20 – 4.07 (m, 1H), 2.86 – 2.72 (m, 1H), 2.04 (s, 3H), 1.69 – 1.53 (m, 2H), 1.28 (d, *J* = 6.7 Hz, 3H), 1.17 (d, *J* = 6.0 Hz, 3H), 1.07 (s, 21H). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 66.6, 47.1, 38.0, 24.3, 21.6, 18.4, 18.3, 12.8, 12.8.

¹³⁹ L. Coulombel, E. Duñach, *Synth. Commun.* **2005**, 35, 153.

¹⁴⁰ M. Korpak, J. Pietruszka, Adv. Synth. Catal. 2011, 353, 1420-1424.


FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2960, 2941, 2922, 2894, 2864, 1462, 1454, 1446, 1376, 1372, 1246, 1148, 1125, 1105, 1080, 1065, 1052, 1030, 1013, 996, 985, 970, 932, 918, 881, 761, 720, 674.

MS (EI, 70 eV): *m/z* (%) = 247 (36), 205 (13), 163 (24), 161 (100), 133 (17), 131 (22), 119 (63), 105 (15), 103 (12).

HR-MS (EI, 70eV): [C₁₂H₂₇OSSi], calcd.: 247.1552; found: 247.1546 [M-*i*Pr]⁺.

Optical rotation: $[\alpha]_D^{20} = -7.1$ (c = 0.51, CHCl₃).

(2*R*,4*R*)-2-Methyl-*N*-phenyl-4-((triisopropylsilyl)oxy)pentanamide (94c)

Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), phenyl isocyanate (43 µL, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 2 h.

Isolated yield: 103 mg, 0.28 mmol, 71%, dr = 99:1, 98% *ee*, colorless crystals.

m.p.: 67.2 – 69.1 °C

Purification: *i*-hexane:diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.54 – 7.47 (m, 2H), 7.35 – 7.27 (m, 2H), 7.24 (s, 1H), 7.13 – 7.05 (m, 1H), 4.03 (dtd, *J* = 7.8, 6.1, 4.5 Hz, 1H), 2.61 (dqd, *J* = 8.7, 7.0, 4.9 Hz, 1H), 1.95 (ddd, *J* = 13.5, 8.8, 4.5 Hz, 1H), 1.56 (ddd, *J* = 13.8, 7.8, 5.0 Hz, 1H), 1.23 (dd, *J* = 14.7, 6.5 Hz, 6H), 1.05 (d, *J* = 1.5 Hz, 21H).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 174.9, 138.1, 129.1, 124.2, 119.8, 67.3, 44.5, 39.0, 24.2, 18.4, 18.3, 12.9.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3305, 2964, 2941, 2890, 2865, 1661, 1602, 1542, 1500, 1462, 1441, 1378, 1308, 1249, 1152, 1128, 1106, 1055, 1013, 997, 948, 882, 753.

MS (EI, 70 eV): *m/z* (%) = 348 (1), 321 (20), 320 (100), 206 (18), 190 (17), 178 (17), 172 (28), 150 (15), 136 (21).

HR-MS (EI, 70eV): $[C_{20}H_{34}O_2NSi]$, calcd.: 348.2359; found: 348.2355 $[M-CH_3]^+$. Optical rotation: $[\alpha]_D^{20} = -33$ (c = 1.00, CHCl₃). Triisopropyl(((2*R*,4*R*)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-2-yl)oxy)silane (94d)

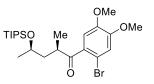
Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), MeOBpin (66 µL, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h.

Isolated yield: 93 mg, 0.25 mmol, 63%, dr = 99:1, 98% *ee*, colorless oil.

Purification: *i*-hexane:diethyl ether = 100:3.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 3.96 (dp, *J* = 7.4, 5.9 Hz, 1H), 1.57 (dt, *J* = 13.4, 7.2 Hz, 1H), 1.47 (ddd, *J* = 13.4, 7.7, 5.6 Hz, 1H), 1.22 (s, 12H), 1.15 (d, *J* = 6.0 Hz, 3H), 1.05 (s, 22H), 0.96 (d, *J* = 7.2 Hz, 3H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 83.0, 68.3, 43.3, 24.9, 24.8, 23.7, 18.4, 18.3, 15.9, 12.7.


¹¹**B-NMR (128 MHz, CDCI₃, ppm):** *δ* = 35.0.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2962, 2943, 2928, 2892, 2866, 1463, 1386, 1379, 1370, 1317, 1144, 1063, 1013, 882, 675.

MS (EI, 70 eV): *m/z* (%) = 355 (1), 227 (39), 226 (17), 185 (100), 184 (25), 157 (21), 143 (17), 75 (16).

HR-MS (EI, 70eV): $[C_{20}H_{43}BO_3Si]$, calcd.: 355.2840; found: 355.2831 [M-CH₃]⁺. Optical rotation: $[\alpha]_D^{20} = +3.1$ (c = 1.00, CHCl₃).

(2*R*,4*R*)-1-(2-Bromo-4,5-dimethoxyphenyl)-2-methyl-4-((triisopropylsilyl)oxy)pentan-1-one (95a)

Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), 2-bromo-4,5-dimethoxybenzaldehyde (98 mg, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h. This mixture was quenched with an aq. sat. NH₄Cl solution

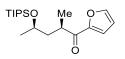
and extracted with ethyl acetate (3×50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*.

The intermediate alcohol was dissolved in CH_2Cl_2 (*ca.* 0.2 M) and Dess-Martin periodinane⁹³ (339 mg, 0.8 mmol) was added at rt. The reaction mixture was stirred for 10 min and then was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*.

Isolated yield: 136 mg, 0.28 mmol, 56%, dr = 99:1, 98% *ee*, colorless oil.

Purification: *i*-hexane:diethyl ether = 7:3.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.04 (s, 1H), 6.94 (s, 1H), 4.00 (h, *J* = 6.3 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.50 (td, *J* = 7.2, 6.2 Hz, 1H), 1.93 (dt, *J* = 13.6, 6.3 Hz, 1H), 1.63 - 1.49 (m, 1H), 1.20 (d, *J* = 0.9 Hz, 3H), 1.18 (d, *J* = 1.7 Hz, 3H), 1.05 (d, *J* = 2.4 Hz, 1H), 1.04 - 1.03 (m, 2H), 1.01 (d, *J* = 2.4 Hz, 18H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 116.5, 112.1, 77.5, 77.2, 76.8, 67.2, 56.4, 56.3, 43.3, 41.5, 23.9, 18.3, 18.3, 17.2, 12.7.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2961, 2941, 2929, 2891, 2864, 1693, 1593, 1508, 1504, 1462, 1455, 1439, 1376, 1372, 1257, 1214, 1168, 1151, 1129, 1102, 1045, 1029, 1019, 996, 988, 882, 678.

MS (EI, 70 eV): *m*/*z* (%) = 443 (1), 243 (9), 218 (38), 217 (38), 203 (32), 190 (14), 173 (100), 103 (12), 75 (35).

HR-MS (EI, 70eV): $[C_{20}H_{32}BrO_4Si]$, calcd.: 443.1253; found: 443.1245 $[M-iPr]^+$. Optical rotation: $[\alpha]_D^{20} = +0.9$ (c = 1.00, CHCl₃).

(2R,4R)-1-(Furan-2-yl)-2-methyl-4-((triisopropylsilyl)oxy)pentan-1-one (95b)

Following **TP4**, iodide (**91a**, 185 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.60 mL, 0.30 mmol). After the exchange was complete (2 h), furaldehyde (33 µL, 0.40 mmol) was added at -20 °C and the reaction mixture was stirred for 1 h. This mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*.

Experimental Part

The intermediate alcohol was dissolved in CH_2Cl_2 (*ca.* 0.2 M) and Dess-Martin periodinane¹³¹ (339 mg, 0.8 mmol) was added at rt. The reaction mixture was stirred for 10 min and then was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*.

Isolated yield: 96 mg, 0.29 mmol, 57%, dr = 99:1, 98% *ee*, colorless oil.

Purification: *i*-hexane:diethyl ether = 8:2.

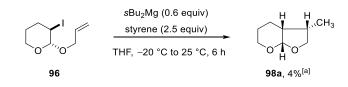
¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.57 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.18 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.52 (dd, *J* = 3.5, 1.7 Hz, 1H), 4.01 – 3.92 (m, 1H), 3.51 – 3.40 (m, 1H), 2.04 (ddd, *J* = 13.6, 8.0, 5.5 Hz, 1H), 1.54 (ddd, *J* = 13.7, 6.8, 5.7 Hz, 1H), 1.20 (dd, *J* = 6.6, 5.8 Hz, 6H), 1.07 (s, 1H), 1.06 (s, 2H), 0.99 (d, *J* = 1.0 Hz, 18H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 193.3, 152.6, 146.3, 117.2, 112.2, 67.2, 43.1, 38.3, 24.1, 18.4, 18.3, 18.2, 12.7.

FT-IR (ATR, cm⁻¹): $\tilde{v} = 2962$, 2941, 2931, 2892, 2865, 2361, 1723, 1708, 1677, 1641, 1567, 1466, 1463, 1382, 1251, 1151, 1131, 1097, 1050, 1014, 921, 883, 757, 679. **MS (EI, 70 eV):** m/z (%) = 295 (100), 277 (37), 227 (10), 199 (10), 185 (10), 147 (74), 131 (16), 119 (17), 103 (30).

HR-MS (EI, 70eV): $[C_{16}H_{27}O_3Si]$, calcd.: 295.1729; found: 295.1722 $[M-iPr]^+$. **Optical rotation:** $[\alpha]_D^{20} = -1.3$ (c = 1.00, CHCl₃).

3.6 Mechanistic Studies


3.6.1 Optimization of the reaction of cyclic iodo-acetal 96

	sBu₂Mg (f additive (solvent, -20 °¢			+	+	H H MgsBu H
96 , dr = 99:1			97	98a		99
entry	solvent	additive	yield of	yield of	yield of	dr ^[b]
			97 [%] ^[a]	98a [%]	99 [%]	
1	THF	no	33	13	18	92:8
2	THF	<i>s</i> Bul ^[c]	47	17	6	95:5
3	THF	<i>s</i> Bul	64	3	5	95:5
4	THF	<i>i</i> Prl	58	3	3	93:7
5	Et ₂ O	<i>s</i> Bul	31	22	6	94:6
6	Bu ₂ O	<i>s</i> Bul	27	23	6	94:6
7	dioxane	<i>s</i> Bul	52	6	3	92:8
8	toluene	<i>s</i> Bul	30	19	4	95:5
9	<i>n</i> -hexane	<i>s</i> Bul	12	6	4	92:8
10	THF	<i>s</i> Bul ^[d]	67 ^[e]	2	3	95:5

Table S5. Optimization of reaction conditions of cyclization of iodo-acetal 96.

[a] The reactions were performed on a 0.5 mmol scale. Yields were determined by GC-analysis using undecane (C₁₁H₂₄) as an internal standard. [b] Diastereomerical ratio (dr) was determined by GC-analysis.
 [c] The reaction was performed in the presence of 1 equiv of additive. [d] The reaction was performed in the presence of 3 equiv of additive. [e] Isolated yield.

3.6.2 Reaction with the cyclic iodo-acetal 96 in the presence of styrene

Scheme S3. Addition of styrene to the rection of cyclic iodo-acetal **96**. [a] The reaction was performed on a 0.5 mmol scale. Yield was determined by GC-analysis using undecane $(C_{11}H_{24})$ as an internal standard.

3.6.3 Radical clocks

1-Phenylpent-4-en-1-one (87q)

_ ↓

Following **TP3**, iodide (**85j**, 91 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and the reaction mixture was stirred for 30 min. Then, benzoyl chloride (35 µL, 0.30 mmol) was added, and the reaction was allowed to warm to room temperature in 1 h. The analytical data were in full consistency with the data reported in the literature.¹⁴¹

Isolated yield: 26 mg, 0.14 mmol, 54%, colorless oil.

Purification: pentane:diethyl ether = 100:3.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.01 – 7.93 (m, 2H), 7.59 – 7.53 (m, 1H), 7.46 (dd, J = 8.3, 6.9 Hz, 2H), 5.91 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.09 (dq, J = 17.1, 1.7 Hz, 1H), 5.01 (dq, J = 10.2, 1.5 Hz, 1H), 3.12 – 3.05 (m, 2H), 2.55 – 2.46 (m, 2H).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 199.6, 137.4, 137.0, 133.2, 128.7, 128.2, 115.4, 37.9, 28.3.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3080, 3062, 2918, 1684, 1641, 1597, 1580, 1448, 1411, 1361, 1278, 1252, 1206, 1180, 1001, 970, 912, 743, 689.

MS (EI, 70 eV): *m*/*z* (%) = 160 (1), 158 (2), 129 (2), 115 (4), 106 (8), 105 (100), 91 (2), 78 (3), 77 (44), 53 (2), 50 (3), 43 (2).

HR-MS (EI, 70eV): [C₁₁H₁₄O], calcd.: 160.0888; found: 160.0880.

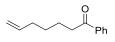
2-Cyclopentyl-1-phenylethan-1-one (87s)

Following **TP3**, iodide (**85k**, 105 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and the reaction mixture was stirred for 30 min. Then, benzoyl chloride (35 µL, 0.30 mmol) was added, and the reaction

¹⁴¹ W.E. Brenzovich. D. Benitez, A.D. Lackner, H.P. Shunatona, E. Tkatchouk, W.A. Goddard III, F. Dean Toste, *Angew. Chem. Int. Ed.* **2010**, *49*, 5519-5522.

Experimental Part

mixture was allowed to warm to room temperature in 1 h. The analytical data were in full consistency with the data reported in the literature.¹⁴²


Isolated yield: 14 mg, 0.08 mmol, 25%, colorless oil.

Purification: pentane:diethyl ether = 100:3.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.99 – 7.93 (m, 2H), 7.59 – 7.51 (m, 1H), 7.49 – 7.43 (m, 2H), 2.99 (d, *J* = 7.1 Hz, 2H), 2.39 (ddd, *J* = 8.7, 7.2, 1.5 Hz, 1H), 1.94 – 1.82 (m, 2H), 1.73 – 1.50 (m, 3H), 1.25 – 1.10 (m, 1H), 0.94 – 0.80 (m, 2H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** δ = 200.6, 137.4, 133.0, 128.7, 128.3, 45.0, 36.2, 32.9, 25.1.

1-Phenylhept-6-en-1-one (87t)

Following **TP3**, iodide (**85k**, 105 mg, 0.50 mmol) was treated with a solution of sBu_2Mg (0.70 mL, 0.35 mmol). After the exchange was complete (4 h), a 1.0 M CuCN·2LiCl solution in THF (0.55 mL, 0.55 mmol) was added at -40 °C and the reaction mixture was stirred for 30 min. Then, benzoyl chloride (35 µL, 0.30 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 1 h. The analytical data were in full consistency with the data reported in the literature.¹⁴³

Isolated yield: 19 mg, 0.10 mmol, 33%, colorless oil.

Purification: pentane:diethyl ether = 100:3.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.99 – 7.93 (m, 2H), 7.60 – 7.52 (m, 1H), 7.51 – 7.43 (m, 2H), 5.82 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.02 (dq, *J* = 17.1, 1.7 Hz, 1H), 4.96 (ddt, *J* = 10.2, 2.2, 1.3 Hz, 1H), 2.98 (t, *J* = 7.4 Hz, 2H), 2.17 – 2.07 (m, 2H), 1.76 (p, *J* = 7.4 Hz, 2H), 1.49 (tt, *J* = 10.0, 6.6 Hz, 2H).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 200.5, 138.7, 137.1, 133.1, 128.7, 128.2, 114.8, 38.5, 33.7, 28.7, 23.9.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2915, 2854, 2848, 2364, 2359, 2355, 2332, 2165, 1711, 1684, 1653, 1571, 1558, 1548, 1539, 1469, 1445, 1326, 1215, 979.

MS (EI, 70 eV): *m*/*z* (%) = 188 (1), 164 (9), 133 (15), 120 (57), 105 (100), 77 (44). **HR-MS (EI, 70eV):** [C₁₃H₁₆O], calcd.: 188.1201; found: 188.1193.

¹⁴² C.F. Malosh, J.M. Ready, *J. Am. Chem. Soc.* **2004**, *126*, 10240-10241.

¹⁴³ J.-J. Cao, F. Zhou, J. Zhou, Angew. Chem. Int. Ed. **2010**, 49, 4976-4980.

(3S,3aR,7aS)-3-(lodomethyl)hexahydro-4H-furo[2,3-b]pyran (97)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum was charged with the iodide (**96**, 134 mg, 0.50 mmol, dr = 99:1), *s*Bul (276 mg, 1.50 mmol) and dry toluene (1.0 mL). Then a solution of *s*Bu₂Mg in toluene (0.60 mL, 0.30 mmol) was added *via* syringe at -20 °C and the reaction mixture was stirred for 6 h. This mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3 x 50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to column chromatography purification on silica yielding the corresponding product. The analytical data were in full consistency with the data reported in the literature.¹⁴⁴

Isolated yield: 90 mg, 0.34 mmol, 67%, dr = 95:5, yellow oil.

Purification: *i*-hexane:ethyl acetate = 8:2.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 5.27 (d, J = 3.6 Hz, 1H), 4.01 (t, J = 8.2 Hz, 1H), 3.80 – 3.71 (m, 1H), 3.67 (dd, J = 9.4, 8.4 Hz, 1H), 3.61 (dtd, J = 11.2, 3.8, 1.6 Hz, 1H), 3.14 (d, J = 8.1 Hz, 2H), 2.81 (dqd, J = 9.2, 8.0, 6.1 Hz, 1H), 2.08 (dtd, J = 10.1, 6.3, 3.6 Hz, 1H), 1.76 (dddd, J = 12.6, 6.2, 4.2, 1.5 Hz, 1H), 1.64 – 1.53 (m, 2H), 1.47 – 1.35 (m, 1H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** δ = 101.8, 70.2, 61.3, 44.4, 38.4, 22.8, 18.8, 2.3. **FT-IR (ATR, cm⁻¹):** \tilde{v} = 3120, 3032, 2926, 2869, 2858, 1610, 1560, 1488, 1454, 1419, 1402, 1310, 1276, 1257, 1244, 1227, 1191, 1150, 1082, 1060, 1046, 1026, 912, 871, 814, 753, 697.

MS (EI, 70 eV): *m*/*z* (%) = 268 (9), 267 (100), 141 (14), 111 (65), 97 (15), 95 (28), 93 (12), 83 (16), 79 (10), 71 (41), 69 (20), 67 (21), 41 (9).

HR-MS (EI, 70eV): [C₈H₁₃IO₂], calcd.: 267.9960; found: 267.9911.

¹⁴⁴ H. Yorimitsu, T. Nakamura, H. Shinokubo, K. Oshima, K. Omoto, H. Fujimoto, *J. Am. Chem. Soc.* 2000, 122, 11041-11047; S.H. Kyne, C. Lévêque, S. Zheng, L. Fensterbank, A. Jutand, C. Ollivier, *Tetrahedron* 2016, 72, 7727-7737.

(3S,3aR,7aS)-3-Methylhexahydro-4H-furo[2,3-b]pyran (98a)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum was charged with the iodide (**96**, 134 mg, 0.50 mmol, dr = 99:1), *s*Bul (276 mg, 1.50 mmol) and dry toluene (1.0 mL). Then a solution of sBu_2Mg in toluene (0.60 mL, 0.30 mmol) was added *via* syringe at -20 °C and the reaction mixture was stirred for 6 h. This mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3 x 50 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to column chromatography purification on silica yielding the corresponding product. The analytical data were in full consistency with the data reported in the literature.¹⁴⁵

Isolated yield: 5 mg, 0.05 mmol, 5%, dr = 95:5, colorless oil.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.27 (d, *J* = 3.8 Hz, 1H), 3.93 (t, *J* = 8.0 Hz, 1H), 3.73 (ddd, *J* = 10.8, 9.4, 3.7 Hz, 1H), 3.66 – 3.56 (m, 2H), 2.51 – 2.34 (m, 1H), 1.89 (dtd, *J* = 10.4, 6.3, 3.8 Hz, 1H), 1.73 – 1.45 (m, 4H), 0.95 (d, *J* = 6.9 Hz, 3H).

¹⁴⁵ A. Ekomié, G. Lefèvre, L. Fensterbank, E. Lacôte, M. Malacria, C. Ollivier, A. Jutand, *Angew. Chem. Int. Ed.* **2012**, *51*, 6942-6946.

4 Iron-Catalyzed Zincations of Alkyl lodides

4.1 Optimization of the Reaction Conditions

ر ۱۱۰	Et₂Zn (2 equiv) ←CN Fe(acac)₃ (10 mol%) NMP, 50 °C, 6 h 112c	aq. NH₄CI H CN S15		
Entry	Deviation from standard conditions	GC-Yield of 112c		
		(%) ^[a]		
1	None	83		
2	THF as a solvent	44		
3	Bu ₂ O as a solvent	56		
4	2-Me-THF as a solvent	58		
5	Performing the reaction at 25 °C	3		

Table S6. Optimization of the zincation of 4-iodobutyronitrile (**111c**).

[a] All reactions were performed on a 0.5 mmol scale. Yields are calibrated by GC-yields, determined after aqueous work-up of a reaction aliquot using C₁₁H₂₄ as internal standard.

4.2 Preparation of Starting Materials

Preparation of Iodooxanyl Acetals TP5¹⁴⁶

3,4-Dihydropyrane (1.01 equiv) was dropwise added to a mixture of *N*-iodosuccinimide (1.02 equiv) and allyl alcohol (1.00 equiv) in CH_2CI_2 (1.8 M) at -10 °C. The reaction mixture was allowed to warm to room temperature and was stirred overnight. The reaction mixture was quenched with sat. aqueous $Na_2S_2O_3$ solution. The phases were separated and the aqueous layer was extracted 3× with CH_2CI_2 . The combined organic layers were washed with brine and dried over Na_2SO_4 . The solvents were evaporated and the crude product was subjected to column chromatography furnishing the analytical pure iodooxanyl acetal.

¹⁴⁶ F. T. Pulikottil, R. Pilli, V. Murugesan, C. G. Krishnan, R. Rasappan, *ChemCatChem* **2019**, *11*, 2438-2442.

3-lodo-2-((2-methylbut-3-en-2-yl)oxy)tetrahydro-2*H*-pyran (103)

The title compound was prepared according to **TP5** from 2-methylbut-3-en-2-ol (0.86 g, 1.05 mL, 10.0 mmol), 3,4-dihydro-2*H*-pyran (0.85 g, 0.92 mL, 10.1 mmol), *N*-iodosuccinimide (2.30 g, 10.2 mmol) and was obtained as a colorless oil (2.14 g, 7.2 mmol, 72% yield). The analytical data were in full consistency with the data reported in the literature.¹⁴⁷

dr = 99:1

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 6.00 (ddd, *J* = 17.6, 10.8, 1.7 Hz, 1H), 5.20 – 5.09 (m, 2H), 4.65 (d, *J* = 6.3 Hz, 1H), 4.07 – 3.94 (m, 2H), 3.50 (ddd, *J* = 11.7, 8.2, 3.8 Hz, 1H), 2.48 – 2.36 (m, 1H), 2.03 (dtd, *J* = 13.8, 9.2, 4.7 Hz, 1H), 1.60 (dddd, *J* = 13.6, 9.4, 8.0, 4.1 Hz, 2H), 1.33 (d, *J* = 6.9 Hz, 6H).

3-(1-Ethoxy-2-iodoethoxy)prop-1-ene (108b)

The title compound was prepared according to **TP5** from allylic alcohol (0.23 g, 7 mL, 4.0 mmol), ethyl vinyl ether (0.35 g, 0.47 mL, 4.8 mmol), *N*-iodosuccinimide (0.99 g, 4.4 mmol) and was obtained as a colorless oil (0.78 g, 7.2 mmol, 76% yield). The analytical data were in full consistency with the data reported in the literature.¹⁴⁸

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.92 (ddt, *J* = 17.2, 10.4, 5.7 Hz, 1H), 5.31 (dq, *J* = 17.3, 1.7 Hz, 1H), 5.20 (dq, *J* = 10.4, 1.4 Hz, 1H), 4.66 (t, *J* = 5.5 Hz, 1H), 4.19 – 4.01 (m, 2H), 3.62 (ddq, *J* = 43.0, 9.4, 7.1 Hz, 2H), 3.23 (d, *J* = 5.5 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (100 MHz, CDCl₃, ppm): *δ* = 134.2, 117.5, 101.3, 67.5, 62.3, 15.3, 5.4. HR-MS (EI, 70eV): [C₇H₁₂IO₂], calcd.: 254.9882; found: 254.9877 [M-H]⁺.

 ¹⁴⁷ J. Y. Hwang, J. H. Baek, T. I. Shin, J. H. Shin, J. W. Oh, K. P. Kim, Y. You, E. J. Kang, *Org. Lett.* **2016**, *18*, 4900-4903.
 ¹⁴⁸ A. Vaupel, P. Knochel, *J. Org. Chem.* **1996**, *61*, 5743-5753.

2-(2-lodoethyl)-1,3-dioxane (111a)

The title compound was prepared according to the literature procedure from 2-(2bromoethyl)-1,3-dioxane. The analytical data were in full consistency with the data reported in the literature.¹⁴⁹

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 4.62 (t, *J* = 5.0 Hz, 1H), 4.10 (ddt, *J* = 10.5, 5.0, 1.4 Hz, 2H), 3.85 - 3.71 (m, 2H), 3.20 (t, *J* = 7.1 Hz, 2H), 2.17 - 1.99 (m, 3H), 1.35 (dtt, *J* = 13.5, 2.6, 1.4 Hz, 1H).

1-Fluoro-4-(2-iodoethyl)benzene (111b)

The title compound was prepared according to the literature procedure from 1-(2bromoethyl)-4-fluorobenzene. The analytical data were in full consistency with the data reported in the literature.¹⁵⁰

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 7.21 – 7.11 (m, 2H), 7.09 – 6.93 (m, 2H), 3.39 – 3.25 (m, 2H), 3.15 (t, J = 7.6 Hz, 2H).

5-(2-lodoethyl)-2,3-dihydrobenzofuran (111d)

The title compound was prepared according to the literature procedure from 5-(2bromoethyl)-2,3-dihydro-benzofuran. The analytical data were in full consistency with the data reported in the literature.¹⁵¹

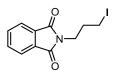
¹⁴⁹ T.K. Olszewski, C. Grison, *Heteroatom Chem.* **2010**, *21*, 139-147.

¹⁵⁰ A.R. Mackenzie, S.M. Monaghan, US5677324A (**1997**).

¹⁵¹ P.-F. Yang, I. Zhu, J.-X. Liang, H.-T. Zhao, J.-X- Zhang, X.-W. Zeng, Q. Ouyang, W. Shu, ACS Catal. **2022**, *12*, 5795-5805.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.02 (d, *J* = 1.8 Hz, 1H), 6.92 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 4.56 (t, *J* = 8.7 Hz, 2H), 3.30 (td, *J* = 7.6, 0.6 Hz, 2H), 3.20 (t, *J* = 8.7 Hz, 2H), 3.10 (t, *J* = 7.9 Hz, 2H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 159.1, 132.9, 128.0, 127.5, 125.0, 109.3, 71.4, 40.0, 29.8, 6.8.


3-(2-lodoethyl)-1-tosyl-1*H*-indole (111e)

The title compound was prepared according to literature procedure from 2-(1*H*-indol-3-yl)ethan-1-ol. The analytical data is in full consistency with the data reported in the literature. 152

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.99 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.80 – 7.73 (m, 2H), 7.45 (dt, *J* = 6.5, 1.0 Hz, 2H), 7.32 (ddd, *J* = 8.4, 7.3, 1.3 Hz, 1H), 7.25 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.23 – 7.17 (m, 2H), 3.41 (t, *J* = 7.5 Hz, 2H), 3.24 (t, *J* = 7.5 Hz, 2H), 2.32 (s, 3H).

2-(3-lodopropyl)isoindoline-1,3-dione (111f)

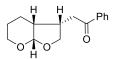
The title compound was prepared according to literature procedure from 2-(3-bromopropyl)-1*H*-isoindole-1,3(2*H*)-dione. The analytical data is in full consistency with the data reported in the literature. ¹⁵³

¹**H-NMR (400 MHz, CDCl₃, ppm):** *δ* = 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.78 (t, *J* = 6.8 Hz, 2H), 3.17 (t, *J* = 7.2 Hz, 2H), 2.25 (p, *J* = 7.0 Hz, 2H).

¹⁵² S. Rezazadeh, V. Devannah, D. A. Watson *J.Am.Chem.Soc.* **2017**, *139*, 8110-8113.

¹⁵³J. Zhou, G.C. Fu, *J.Am.Chem.Soc.* **2003**, *125*, 12527-12530.

4.3 Iron-Catalyzed Radical Zincations of Alkyl lodides


Iron-Catalyzed Radical Zincation of Alkenyl and Secondary Alkyl lodides (TP6)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum was charged with the respective alkyl iodide (0.5 mmol), Fe(acac)₃ (18 mg, 0.05 mmol), dry *N*-methylpyrrolidone (NMP) (0.48 mL) and tetrahydrofurane (THF) (1.0 mL). Then a 1.0 M solution of Et₂Zn in toluene (1.0 mL, 1.0 mmol) was added *via* syringe at indicated temperature and the reaction was stirred until completion. After that the corresponding electrophile (1.5 mmol) was added dropwise and the reaction mixture was stirred until completion as indicated by GC-analysis of worked-up reaction aliquots. The reaction mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×20 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to column chromatography purification on silica yielding the corresponding product.

Iron-Catalyzed Radical Zincation of Primary Alkyl lodides (TP7)

A dry and argon flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a septum was charged with the respective iodide (0.5 mmol), $Fe(acac)_3$ (18 mg, 0.05 mmol) and dry *N*-methylpyrrolidone (NMP) (1.0 mL). Then a 1.0 M solution of Et₂Zn in toluene (1.0 mL, 1.0 mmol) was added *via* syringe at 50 °C and the reaction was stirred for 6 h. After that the corresponding electrophile (1.5 mmol) was added dropwise and the reaction mixture was stirred until completion. The mixture was quenched with an aq. sat. NH₄Cl solution and extracted with ethyl acetate (3×20 mL). The organic phase was then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to column chromatography purification on silica yielding the corresponding product.

2-(Hexahydro-4H-furo[2,3-b]pyran-3-yl)-1-phenylethan-1-one (98c)

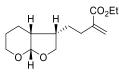
Following **TP6**, iodooxanyl acetal (**96**, 134 mg, 0.50 mmol, dr = 99:1) was treated with 1.0 M solution of Et_2Zn in toluene (1.0 mL, 1.00 mmol) at -20 °C and the mixture was let to warm up to 25 °C. After the insertion was complete after 16 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and was stirred for 30 min.

Then, benzoyl chloride (211 mg, 174 μ L, 1.50 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 2 h and worked-up as usual.

Isolated yield: 94 mg, 0.38 mmol, 76%, dr = 95:5, colorless oil.

Purification: *i*-hexane:ethyl acetate = 7:3.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.97 – 7.90 (m, 2H), 7.62 – 7.52 (m, 1H), 7.45 (dd, J = 8.4, 7.0 Hz, 2H), 5.30 (d, J = 3.7 Hz, 1H), 4.13 (t, J = 8.0 Hz, 1H), 3.81 – 3.66 (m, 2H), 3.62 (dtd, J = 11.2, 3.8, 1.6 Hz, 1H), 3.22 – 3.10 (m, 1H), 3.05 – 2.90 (m, 2H), 2.18 (dtd, J = 10.2, 6.2, 3.8 Hz, 1H), 1.72 – 1.37 (m, 4H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 198.7, 136.6, 133.4, 128.8, 128.0, 101.9, 70.1, 61.3, 36.8, 36.4, 36.2, 23.1, 19.9.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2940, 2873, 1718, 1682, 1597, 1580, 1449, 1404, 1383, 1356, 1312, 1276, 1253, 1229, 1215, 1180, 1145, 1119, 1098, 1050, 1020, 1002, 996, 948, 901, 884, 870, 754, 714, 690.

MS (EI, 70 eV): *m*/*z* (%) = 246 (1), 229 (1), 145 (19), 144 (7), 126 (8), 120 (8), 117 (11), 105 (100), 77 (40).

HR-MS (EI, 70eV): [C₁₅H₁₈O₃], calcd.: 246.1256; found: 246.1249 [M]⁺.

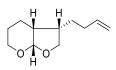
Ethyl 4-(hexahydro-4H-furo[2,3-b]pyran-3-yl)-2-methylenebutanoate (98d)

Following **TP6**, iodooxanyl acetal (**96**, 134 mg, 0.50 mmol, dr = 99:1) was treated with 1.0 M solution of Et₂Zn in toluene (1.0 mL, 1.00 mmol) at -20 °C and the mixture was let to warm up to 25 °C. After the insertion was complete after 16 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -20 °C and was stirred for 30 min. Then, ethyl bromomethacrylate (203 mg, 146 μ l, 1.05 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 2 h and worked-up as usual.

Isolated yield: 101 mg, 0.40 mmol, 80%, dr = 95:5, colorless oil.

Purification: *i*-hexane:ethyl acetate = 7:3.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 6.19 – 6.10 (m, 1H), 5.53 (q, *J* = 1.7 Hz, 1H), 5.27 (d, *J* = 3.8 Hz, 1H), 4.26 – 4.13 (m, 2H), 3.96 (tt, *J* = 8.0, 2.6 Hz, 1H), 3.74 (ddt, *J* = 10.6, 8.1, 2.8 Hz, 1H), 3.69 – 3.59 (m, 2H), 2.42 – 2.12 (m, 2H), 2.02 – 1.91 (m, 1H), 1.75 – 1.34 (m, 6H), 1.29 (td, *J* = 7.2, 2.4 Hz, 3H), 1.26 – 1.18 (m, 1H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 167.1, 140.5, 125.0, 102.1, 70.0, 61.1, 60.8, 40.7, 36.4, 30.8, 26.3, 23.3, 19.3, 14.3.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2939, 2873, 1723, 1449, 1371, 1268, 1252, 1225, 1204, 1189, 1143, 1111, 1096, 1071, 1019, 945, 895, 870, 732, 701.

MS (EI, 70 eV): *m*/*z* (%) = 253 (1), 179 (60), 163 (82), 125 (61), 123 (59), 93 (58), 79 (100).

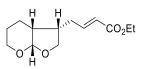
HR-MS (EI, 70eV): [C₁₄H₂₁O₄], calcd.: 253.1440; found: 253.1434 [M-H]⁺.

3-(But-3-en-1-yl)hexahydro-4H-furo[2,3-b]pyran (98e)

Following **TP6**, iodooxanyl acetal (**96**, 134 mg, 0.50 mmol, dr = 99:1) was treated with 1.0 M solution of Et₂Zn in toluene (1.0 mL, 1.00 mmol) at -20 °C and the mixture was let to warm up to 25 °C. After the insertion was complete after 16 h, allyl bromide (181 mg, 130 μ l, 1.50 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15 μ L, 0.015 mmol, 5 mol%), and was stirred for 2 h and then worked-up as usual.

Isolated yield: 66 mg, 0.36 mmol, 72%, dr = 95:5, colorless oil.

Purification: *i*-hexane:ethyl acetate = 8:2.


¹H-NMR (400 MHz, CDCl₃, ppm): δ = 5.76 (ddt, *J* = 16.9, 10.1, 6.6 Hz, 1H), 5.25 (d, *J* = 3.7 Hz, 1H), 4.99 (dq, *J* = 17.1, 1.7 Hz, 1H), 4.94 (dq, *J* = 10.1, 1.5 Hz, 1H), 3.93 (t, *J* = 8.0 Hz, 1H), 3.77 – 3.68 (m, 1H), 3.66 – 3.58 (m, 2H), 2.32 (dqd, *J* = 10.3, 7.7, 6.0 Hz, 1H), 2.05 – 1.87 (m, 3H), 1.69 – 1.29 (m, 6H) (signals of major diastereomer are given). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 138.2, 115.0, 102.0, 70.0, 61.0, 40.4, 36.5, 32.4, 26.4, 23.3, 19.3 (signals of major diastereomer are given).

FT-IR (ATR, cm⁻¹): \tilde{v} = 2926, 2873, 1685, 1675, 1504, 1454, 1439, 1433, 1403, 1300, 1263, 1144, 1112, 1022, 990, 893.

MS (EI, 70 eV): *m*/*z* (%) = 181 (1), 153 (100), 125 (92), 97 (79), 93 (39), 81 (49), 79 (93), 67 (39).

HR-MS (EI, 70eV): [C₁₁H₁₇O₂], calcd.: 181.1229; found: 181.1222 [M-H]⁺.

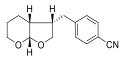
Ethyl (*E*)-4-(hexahydro-4*H*-furo[2,3-b]pyran-3-yl)but-2-enoate (98f)

Following **TP6**, iodooxanyl acetal (**96**, 134 mg, 0.50 mmol, dr = 99:1) was treated with 1.0 M solution of Et₂Zn in toluene (1.0 mL, 1.00 mmol) at -20 °C and the mixture was let to warm up to 25 °C. After the insertion was complete after 16 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and was stirred for 30 min. Then, ethyl propiolate (147 mg, 152 μ l, 1.50 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 76 mg, 0.32 mmol, 63%, dr = 94:6, *E*/*Z* = 99:1, yellow oil.

Purification: *i*-hexane:ethyl acetate = 8:2.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 6.84 (dt, *J* = 15.6, 7.1 Hz, 1H), 5.84 (dt, *J* = 15.6, 1.6 Hz, 1H), 5.26 (d, *J* = 3.7 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.95 (t, *J* = 8.1 Hz, 1H), 3.79 – 3.57 (m, 3H), 2.46 (dtd, *J* = 10.0, 7.8, 6.0 Hz, 1H), 2.31 (dtd, *J* = 14.9, 7.4, 1.5 Hz, 1H), 2.20 (dtd, *J* = 14.7, 7.3, 1.6 Hz, 1H), 1.99 (dtd, *J* = 10.2, 6.2, 3.7 Hz, 1H), 1.71 – 1.32 (m, 4H), 1.27 (t, *J* = 7.1 Hz, 3H) (signals of major diastereomer are given).


¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 166.4, 146.4, 122.7, 101.9, 69.7, 61.1, 60.5, 39.8, 36.4, 30.2, 23.1, 19.4, 14.3 (signals of major diastereomer are given).

FT-IR (ATR, cm⁻¹): \tilde{v} = 2932, 2891, 2873, 1718, 1655, 1461, 1446, 1368, 1314, 1267, 1235, 1199, 1171, 1147, 1114, 1102, 1042, 1024, 988, 947, 902, 871.

MS (EI, 70 eV): *m*/*z* (%) = 239 (14), 165 (16), 155 (19), 149 (15), 125 (100), 123 (25), 97 (28).

HR-MS (EI, 70eV): [C₁₃H₁₉O₄], calcd.: 239.1283; found: 239.1277 [M-H]⁺.

4-((Hexahydro-4H-furo[2,3-b]pyran-3-yl)methyl)benzonitrile (98g)

Following **TP6**, iodooxanyl acetal (**96**, 134 mg, 0.50 mmol, dr = 99:1) was treated with 1.0 M solution of Et_2Zn in toluene (1.0 mL, 1.00 mmol) at -20 °C and the mixture was let to warm up to 25 °C. After the insertion was complete after 16 h, Pd(OAc)₂ (5.6 mg, 0.025

mmol, 5 mol %), CPhos¹⁵⁴ (21.8 mg, 0.05 mmol, 10 mol %) and 4-iodobenzonitrile (229 mg, 1.00 mmol) were added and the mixture was stirred until completion.

Isolated yield: 85 mg, 0.35 mmol, 75%, dr = 95:5, colorless oil.

Purification: *i*-hexane:ethyl acetate = 1:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.56 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 5.25 (d, *J* = 3.7 Hz, 1H), 3.84 (t, *J* = 7.7 Hz, 1H), 3.74 (td, *J* = 9.6, 8.4, 4.5 Hz, 2H), 3.62 (ddt, *J* = 11.1, 3.4, 2.0 Hz, 1H), 2.84 – 2.75 (m, 1H), 2.73 – 2.58 (m, 2H), 1.94 (td, *J* = 10.7, 5.9 Hz, 1H), 1.77 – 1.66 (m, 1H), 1.56 (dddd, *J* = 20.3, 16.9, 9.4, 4.3 Hz, 3H) (signals of major diastereomer are given).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** δ = 145.9, 132.5, 129.3, 118.9, 110.3, 101.9, 69.6, 61.0, 42.1, 36.5, 33.8, 23.1, 19.7 (signals of major diastereomer are given).

FT-IR (ATR, cm⁻¹): \tilde{v} = 2940, 2897, 2871, 2227, 1607, 1505, 1252, 1145, 1110, 1051, 1021, 991, 947, 901, 882, 868, 820.

MS (EI, 70 eV): *m*/*z* (%) = 242 (86), 154 (58), 142 (100), 117 (37), 116 (68), 97 (33). **HR-MS (EI, 70eV):** [C₁₅H₁₆NO₂], calcd.: 242.1181; found: 242.1176 [M-H]⁺.

3-(Iodomethyl)-2,2-dimethylhexahydro-4H-furo[2,3-b]pyran

Following **TP6**, iodooxanyl acetal (**103**, 148 mg, 0.50 mmol, dr = 99:1) was treated with a 1.0 M solution of Et_2Zn in toluene (1.0 mL, 1.00 mmol) at room temperature and then the reaction mixture was heated up to 50 °C. After the cyclization was complete after 8 h, then I_2 (381 mg, 1.50 mmol) was added at 0 °C and the mixture was stirred for 3 h and worked-up as usual. The crude product obtained as a mixture of diastereomers **105a** and **105b**, which have been separated by column chromatography.

¹⁵⁴ C. Han, S. L. Buchwald, *J. Am. Chem. Soc.* **2009**, *131*, 7532-7533.

3-(Iodomethyl)-2,2-dimethylhexahydro-4H-furo[2,3-b]pyran (105a)

Isolated yield: 38 mg, 0.13 mmol, 26%, dr = 99:1, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.23 (d, *J* = 3.8 Hz, 1H), 3.84 – 3.77 (m, 1H), 3.70 – 3.62 (m, 1H), 3.17 (s, 1H), 3.16 (d, *J* = 1.6 Hz, 1H), 2.53 (dt, *J* = 9.1, 7.0 Hz, 1H), 2.19 (dtd, *J* = 10.4, 6.5, 3.7 Hz, 1H), 1.85 – 1.77 (m, 1H), 1.66 – 1.48 (m, 3H), 1.30 (s, 3H), 1.27 (s, 3H).

Relative stereochemistry was assigned based on observation of NOE for 3,3a-protons. ¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 97.8, 79.1, 61.1, 53.3, 39.9, 31.1, 24.9, 23.3, 19.1, 1.2.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2955, 2928, 2883, 2866, 1706, 1479, 1465, 1366, 1228, 1120, 1089, 1059, 1036, 1016, 999, 973, 900, 886, 877, 869.

MS (EI, 70 eV): *m/z* (%) = 295 (1), 123 (11), 111 (100), 95 (14), 93 (13), 81 (46), 79 (20).

HR-MS (EI, 70eV): [C₁₀H₁₆IO₂], calcd.: 295.0195; found: 295.0182 [M-H]⁺.

3-(Iodomethyl)-2,2-dimethylhexahydro-4*H*-furo[2,3-b]pyran (105b)

Isolated yield: 77 mg, 0.26 mmol, 52%, dr = 1:99, colorless crystals.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 4.79 (d, *J* = 3.6 Hz, 1H), 3.88 (ddt, *J* = 11.8, 4.3, 2.1 Hz, 1H), 3.36 (td, *J* = 11.8, 2.3 Hz, 1H), 3.28 (dd, *J* = 10.3, 4.3 Hz, 1H), 2.98 (t, *J* = 10.3 Hz, 1H), 2.54 (ddd, *J* = 11.9, 10.2, 4.3 Hz, 1H), 1.91 (ddq, *J* = 14.2, 4.4, 2.2 Hz, 1H), 1.89 – 1.84 (m, 1H), 1.81 (ddt, *J* = 14.0, 12.9, 5.0 Hz, 1H), 1.75 – 1.65 (m, 1H), 1.50 (s, 3H), 1.34 (ddq, *J* = 13.7, 4.7, 2.3 Hz, 1H), 1.17 (s, 3H).

Relative stereochemistry was assigned based on X-ray structure, see page SI24 of SI. ¹³C-NMR (100 MHz, CDCI₃, ppm): δ = 100.0, 85.0, 64.7, 48.0, 45.8, 31.3, 23.5, 22.4, 20.3, 2.6. **FT-IR (ATR, cm⁻¹):** $\tilde{\nu}$ = 2971, 2938, 2875, 2866, 2838, 1383, 1367, 1312, 1273, 1254, 1226, 1186, 1164, 1135, 1112, 1095, 1055, 1035, 1011, 902, 880, 874. **MS (EI, 70 eV):** m/z (%) = 295 (1), 123 (25), 111 (100), 95 (15), 93 (14), 81 (55), 79 (20). **HR-MS (EI, 70eV):** [C₁₀H₁₆IO₂], calcd.: 295.0195; found: 295.0183 [M-H]⁺.

m.p.: 58.4 – 59.6 °C

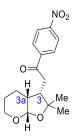
3-(But-3-en-1-yl)-2,2-dimethylhexahydro-4H-furo[2,3-b]pyran (106a)

Following **TP6**, iodide (**105a**, 148 mg, 0.40 mmol, dr = 99:1) was treated with 1.0 M solution of Et₂Zn in toluene (0.8 mL, 0.80 mmol) at room temperature and then the reaction mixture was heated up to 50 °C. After the insertion was complete after 16 h, allyl bromide (145 mg, 104 μ L, 1.20 mmol) was added at -30 °C, followed by 1.0 M CuCN·2LiCl solution in THF (0.4 mL, 0.4 mmol) and the mixture was stirred for 3 h and worked-up as usual.

Isolated yield: 72 mg, 0.34 mmol, 86%, dr = 99:1, colorless oil.

Purification: pentane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.80 (ddt, *J* = 16.9, 10.1, 6.6 Hz, 1H), 5.21 (d, *J* = 3.3 Hz, 1H), 5.06 – 4.93 (m, 2H), 3.80 (ddt, *J* = 11.0, 6.6, 3.7 Hz, 1H), 3.70 – 3.58 (m, 1H), 2.16 – 1.90 (m, 4H), 1.68 – 1.44 (m, 5H), 1.35 (dddd, *J* = 14.0, 9.7, 6.6, 4.3 Hz, 1H), 1.24 (d, *J* = 7.7 Hz, 6H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 138.4, 115.0, 98.8, 79.3, 60.9, 49.2, 38.2, 33.1, 31.2, 25.5, 25.1, 23.7, 20.1.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2967, 2931, 2869, 1706, 1479, 1465, 1366, 1228, 1120, 1090, 1059, 1036, 1000, 973, 901, 878, 869, 807, 799, 746, 728.

MS (EI, 70 eV): *m*/*z* (%) = 195 (17), 123 (41), 121 (52), 109 (43), 107 (23), 97 (47), 95 (40), 93 (55), 91 (26), 81 (100).

HR-MS (EI, 70eV): [C₁₂H₁₉O₂], calcd.: 195.1385; found: 195.1376 [M-CH₃]⁺.

```
2-(2,2-dimethylhexahydro-4H-furo[2,3-b]pyran-3-yl)-1-(4-nitrophenyl)ethan-1-one (106b)
```


Following **TP6**, iodide (**105a**, 148 mg, 0.40 mmol, dr = 99:1) was treated with 1.0 M solution of Et_2Zn in toluene (0.8 mL, 0.80 mmol) at room temperature and then the reaction mixture was heated up to 50 °C. After the insertion was complete after 16 h, a 1.0 M CuCN·2LiCl solution in THF (0.4 mL, 0.4 mmol) was added at -30 °C and was stirred for 30 min. Then, 4-nitrobenzoyl chloride (223 mg, 1.20 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 75 mg, 0.24 mmol, 59%, dr = 99:1, colorless crystals.

Purification: pentane:ethyl acetate = 1:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.36 – 8.29 (m, 2H), 8.16 – 8.10 (m, 2H), 5.22 (d, J = 3.9 Hz, 1H), 3.83 (ddd, J = 11.3, 9.0, 3.2 Hz, 1H), 3.66 – 3.56 (m, 1H), 3.18 – 3.09 (m, 2H), 2.76 (q, J = 7.3 Hz, 1H), 2.34 (qd, J = 9.6, 8.1, 5.0 Hz, 1H), 1.55 (tq, J = 9.5, 4.5 Hz, 4H), 1.33 (s, 3H), 1.30 (s, 3H).

Relative stereochemistry was assigned based on observation of NOE for 3,3a-protons. ¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 197.6, 150.6, 141.2, 129.1, 124.1, 99.5, 80.1, 61.5, 44.3, 38.5, 36.3, 30.9, 26.1, 23.3, 21.0.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2966, 2947, 2921, 2896, 2875, 2851, 1685, 1605, 1525, 1407, 1385, 1371, 1349, 1333, 1322, 1304, 1280, 1264, 1242, 1210, 1167, 1156, 1143, 1125, 1104, 1093, 1030, 1004, 987, 952, 910, 877, 852, 833, 788, 753, 746, 688. **MS (EI, 70 eV):** m/z (%) = 319 (1), 150 (89), 120 (24), 109 (100), 104 (58), 97 (46). **HR-MS (EI, 70eV):** [C₁₇H₂₁O₅N], calcd.: 319.1420; found: 319.1409 [M]⁺. **m.p.:** 121.6 – 124.6 °C 3-(But-3-en-1-yl)-2,2-dimethylhexahydro-4H-furo[2,3-b]pyran (107a)

Following **TP6**, iodide (**105b**, 148 mg, 0.50 mmol, dr = 1:99) was treated with 1.0 M solution of Et₂Zn in toluene (1.0 mL, 1.00 mmol) at room temperature and then the reaction mixture was heated up to 50 °C. After the insertion was complete after 16 h, allyl bromide (181 mg, 130 μ L, 1.50 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15 μ L, 0.015 mmol, 5 mol%) and was stirred for 3 h and worked-up as usual.

Isolated yield: 65 mg, 0.31 mmol, 61%, dr = 1:99, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 5.80 (ddt, *J* = 16.8, 10.1, 6.5 Hz, 1H), 5.07 – 5.00 (m, 1H), 4.98 (dq, *J* = 10.2, 1.5 Hz, 1H), 4.85 (d, *J* = 3.4 Hz, 1H), 3.86 (ddt, *J* = 11.7, 4.4, 2.0 Hz, 1H), 3.36 (td, *J* = 11.7, 2.4 Hz, 1H), 2.23 – 1.99 (m, 3H), 1.91 – 1.60 (m, 4H), 1.58 – 1.45 (m, 1H), 1.40 (s, 3H), 1.38 – 1.22 (m, 2H), 1.10 (s, 3H).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 138.5, 115.0, 100.7, 85.0, 64.6, 44.6, 44.5, 32.6, 31.4, 28.3, 24.2, 22.4, 20.6.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2967, 2958, 2931, 2909, 2869, 1706, 1479, 1465, 1382, 1366, 1228, 1120, 1090, 1059, 1036, 1015, 1000, 973, 901, 885, 878, 869.

MS (EI, 70 eV): *m*/*z* (%) = 209 (1), 109 (59), 97 (57), 93 (66), 91 (65), 81 (99), 79 (100), 67 (96).

HR-MS (EI, 70eV): [C₁₃H₂₁O₂], calcd.: 209.1542; found: 209.1532 [M-H]⁺.

2-(2,2-dimethylhexahydro-4H-furo[2,3-b]pyran-3-yl)-1-phenylethan-1-one (107b)

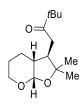
Following **TP6**, iodide (**105b**, 148 mg, 0.50 mmol, dr = 1:99) was treated with 1.0 M solution of Et_2Zn in toluene (1.0 mL, 1.00 mmol) at room temperature and then the reaction mixture was heated up to 50 °C. After the insertion was complete after 16 h, a

1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and was stirred for 30 min. Then, benzoyl chloride (211 mg, 174 μ L, 1.50 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 130 mg, 0.47 mmol, 95%, dr = 1:99, colorless crystals.

Purification: *i*-hexane:ethyl acetate = 1:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.99 – 7.92 (m, 2H), 7.62 – 7.55 (m, 1H), 7.49 (dd, J = 8.4, 7.0 Hz, 2H), 4.90 (d, J = 3.5 Hz, 1H), 3.95 – 3.84 (m, 1H), 3.44 – 3.33 (m, 1H), 3.00 (d, J = 7.3 Hz, 2H), 2.96 – 2.86 (m, 1H), 2.03 – 1.95 (m, 1H), 1.83 – 1.68 (m, 3H), 1.45 (s, 3H), 1.34 – 1.23 (m, 1H), 1.12 (s, 3H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 199.4, 137.0, 133.4, 128.9, 128.2, 100.7, 84.9, 64.8, 44.7, 41.2, 38.8, 30.6, 24.9, 22.5, 20.5.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2970, 2937, 2864, 1684, 1597, 1580, 1464, 1448, 1383, 1366, 1338, 1315, 1298, 1276, 1251, 1228, 1216, 1207, 1176, 1171, 1133, 1118, 1097, 1087, 1056, 1036, 1021, 1001, 994, 975, 901, 879, 869, 756, 750, 724, 691.

MS (EI, 70 eV): *m*/*z* (%) = 273 (1), 173 (9), 155 (9), 109 (43), 105 (100), 97 (15), 96 (10), 93 (13), 81 (10), 79 (10), 77 (46).

HR-MS (EI, 70eV): [C₁₇H₂₁O₃], calcd.: 273.1491; found: 273.1483 [M-H]⁺. **m.p.:** 68.4 – 69.3 °C

1-(2,2-dimethylhexahydro-4*H*-furo[2,3-b]pyran-3-yl)-3,3-dimethylbutan-2-one (107c)

Following **TP6**, iodide (**105b**, 148 mg, 0.50 mmol, dr = 1:99) was treated with 1.0 M solution of Et_2Zn in toluene (1.0 mL, 1.00 mmol) at room temperature and then the reaction mixture was heated up to 50 °C. After the insertion was complete after 16 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and was stirred for 30 min. Then, *tert*-butylacetyl chloride (202 mg, 1.50 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 82 mg, 0.32 mmol, 64%, dr = 1:99, colorless oil.

Purification: *i*-hexane:ethyl acetate = $9:1 \rightarrow 7:3$.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 4.84 (d, *J* = 3.5 Hz, 1H), 3.87 (dp, *J* = 11.8, 2.0 Hz, 1H), 3.33 (td, *J* = 11.6, 2.3 Hz, 1H), 2.74 (dt, *J* = 12.5, 6.5 Hz, 1H), 2.57 – 2.41 (m, 2H), 1.88 – 1.65 (m, 3H), 1.55 (ddd, *J* = 13.7, 4.0, 2.0 Hz, 1H), 1.39 (s, 3H), 1.31 – 1.22 (m, 1H), 1.14 (s, 9H), 1.02 (s, 3H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 214.5, 100.5, 84.7, 64.7, 44.6, 44.4, 39.9, 36.8, 30.5, 26.7, 24.8, 22.5, 20.4.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2924, 2901, 2848, 1704, 1473, 1463, 1456, 1446, 1424, 1380, 1365, 1315, 1228, 1120, 1089, 1056, 1034, 1008, 998, 972, 900, 884, 880, 869.

MS (EI, 70 eV): *m*/*z* (%) = 253 (1), 139 (46), 111 (18), 109 (100), 97 (32), 93 (27), 91 (13), 81 (34), 79 (26).

HR-MS (EI, 70eV): [C₁₅H₂₅O₃], calcd.: 253.1804; found: 253.1804 [M-H]⁺.

(lodomethyl)cyclopentane (110a)

Following **TP6**, 6-iodo-1-hexene (**108a**, 105 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 16 h, then I_2 (381 mg, 1.50 mmol) was added at 0 °C. The mixture was stirred for 3 h and worked-up as usual. The analytical data were in full consistency with the data reported in the literature.¹⁵⁵

Isolated yield: 56 mg, 0.27 mmol, 53%, colorless oil.

Purification: pentane:diethyl ether = 100:3.

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 3.14 (d, *J* = 7.0 Hz, 2H), 2.10 (dq, *J* = 15.1, 7.6 Hz, 1H), 1.78 (ddtd, *J* = 12.7, 7.0, 4.5, 4.0, 2.0 Hz, 3H), 1.68 – 1.49 (m, 3H), 1.24 – 1.11 (m, 2H).

¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 42.9, 33.6, 25.7, 14.5.

2-Cyclopentyl-1-phenylethan-1-one (110b)

O ∬

¹⁵⁵ T. Cohen, H. Gibney, R. Ivanov, E.A.-H. Yeh, I. Marek, D.P. Curran, *J. Am. Chem. Soc.* 2007, 129, 15405-15409.

Following **TP6**, 6-iodo-1-hexene (**108a**, 105 mg, 0.50 mmol) was treated with a solution of Et₂Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 16 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and the mixture was stirred for 30 min. Then, benzoyl chloride (211 mg, 174 μ L, 1.50 mmol) was added, and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual. The analytical data were in full consistency with the data reported in the literature.¹⁵⁶

Isolated yield: 69 mg, 0.37 mmol, 73%, colorless oil.

Purification: pentane:diethyl ether = 100:3.

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 7.99 – 7.93 (m, 2H), 7.59 – 7.51 (m, 1H), 7.49 – 7.43 (m, 2H), 2.99 (d, *J* = 7.1 Hz, 2H), 2.39 (ddd, *J* = 8.7, 7.2, 1.5 Hz, 1H), 1.94 – 1.82 (m, 2H), 1.73 – 1.50 (m, 3H), 1.25 – 1.10 (m, 1H), 0.94 – 0.80 (m, 2H).

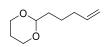
¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 200.6, 137.4, 133.0, 128.7, 128.3, 45.0, 36.2, 32.9, 25.1.

2-Ethoxy-4-(iodomethyl)tetrahydrofuran (110c)

Following **TP6**, 6-iodo-1-hexene (**108b**, 105 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 16 h, then I_2 (381 mg, 1.50 mmol) was added at 0 °C. The mixture was stirred for 3 h and worked-up as usual.

Isolated yield: 82 mg, 0.32 mmol, 64%, dr = 83:17, yellowish oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

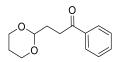

¹**H-NMR (400 MHz, CDCl₃, ppm):** δ = 5.20 (dd, *J* = 5.4, 1.9 Hz, 1H), 4.03 (dd, *J* = 8.8, 7.4 Hz, 1H), 3.71 (dq, *J* = 9.7, 7.1 Hz, 1H), 3.59 (dd, *J* = 8.7, 7.2 Hz, 1H), 3.47 – 3.35 (m, 1H), 3.30 – 3.24 (m, 2H), 2.68 (ddtd, *J* = 16.2, 9.1, 7.2, 5.1 Hz, 1H), 2.23 (ddd, *J* = 13.6, 9.6, 5.4 Hz, 1H), 1.65 (ddd, *J* = 13.5, 5.2, 1.9 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H) (signals of a major diastereomer are given).

¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 104.1, 72.5, 63.0, 41.4, 40.3, 15.4, 8.8 (signals of a major diastereomer are given).

¹⁵⁶ C.F. Malosh, J.M. Ready, *J. Am. Chem. Soc.* **2004**, *126*, 10240-10241.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2946, 2902, 2876, 1781, 1706, 1475, 1440, 1426, 1372, 1337, 1321, 1274, 1234, 1183, 1150, 1139, 1087, 1028, 975, 922, 874, 844, 808. **MS (EI, 70 eV):** m/z (%) = 254 (46), 211 (100), 210 (37), 83 (68), 55 (82). **HR-MS (EI, 70eV):** [C₇H₁₂IO₂], calcd.: 254.9882; found: 254.9878 [M-H]⁺.

2-(Pent-4-en-1-yl)-1,3-dioxane (113a)


Following **TP7**, alkyl iodide **111a** (121 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h, allyl bromide (181 mg, 130 μ l, 1.50 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15 μ L, 0.015 mmol, 5 mol%) and the mixture was stirred for 2 h and worked-up as usual.

Isolated yield: 43 mg, 0.28 mmol, 55%, colorless oil.

Purification: pentane:diethyl ether = 9:1.

¹H-NMR (400 MHz, CDCl₃, ppm): δ = 5.78 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 4.99 (dq, *J* = 17.2, 1.7 Hz, 1H), 4.93 (dq, *J* = 10.1, 1.5 Hz, 1H), 4.51 (t, *J* = 5.1 Hz, 1H), 4.09 (ddd, *J* = 12.1, 5.0, 1.6 Hz, 2H), 3.75 (ddt, *J* = 12.2, 10.3, 2.3 Hz, 2H), 2.10 – 2.00 (m, 3H), 1.60 (ddd, *J* = 9.3, 6.8, 4.6 Hz, 2H), 1.53 – 1.43 (m, 2H), 1.33 (dtt, *J* = 13.4, 2.7, 1.4 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 138.7, 114.8, 102.4, 67.0, 34.8, 33.6, 26.0, 23.4. FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2955, 2926, 2849, 1641, 1470, 1460, 1431, 1405, 1378, 1286, 1243, 1143, 1116, 1084, 1051, 1038, 994, 944, 909, 859, 842, 810. MS (EI, 70 eV): *m*/*z* (%) = 155 (7), 113 (14), 87 (100), 80(15), 79 (6), 59 (15). HR-MS (EI, 70eV): [C₉H₁₅O₂], calcd.: 155.1072; found: 155.1066 [M-H]⁺.

3-(1,3-Dioxan-2-yl)-1-phenylpropan-1-one (113b)

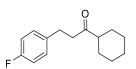
Following **TP7**, alkyl iodide **111a** (121 mg, 0.50 mmol) was treated with a solution of Et₂Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and the mixture was stirred for 30 min. Then, benzoyl chloride (211 mg, 174 μ L, 1.50 mmol) was added

and the reaction mixture was allowed to warm to room temperature in 3 h and workedup as usual.

Isolated yield: 59 mg, 0.27 mmol, 54%, colorless oil.

Purification: *i*-hexane: ethyl acetate = 4:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.01 – 7.92 (m, 2H), 7.58 – 7.50 (m, 1H), 7.44 (dd, J = 8.3, 7.0 Hz, 2H), 4.66 (t, J = 4.9 Hz, 1H), 4.09 (ddd, J = 12.0, 5.0, 1.5 Hz, 2H), 3.84 – 3.69 (m, 2H), 3.11 (t, J = 7.3 Hz, 2H), 2.05 (pd, J = 8.8, 8.2, 5.1 Hz, 3H), 1.33 (dtt, J = 13.5, 2.6, 1.4 Hz, 1H).


¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 199.7, 137.0, 133.1, 128.6, 128.2, 101.1, 67.0, 32.7, 29.4, 25.9.

FT-IR (ATR, cm⁻¹): \tilde{v} = 2957, 2924, 2853, 1686, 1598, 1581, 1468, 1449, 1432, 1407, 1376, 1364, 1321, 1288, 1277, 1242, 1217, 1208, 1181, 1147, 1134, 1085, 1046, 1008, 972, 924, 888, 853, 742, 691.

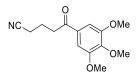
MS (EI, 70 eV): *m*/*z* (%) = 219 (3), 144 (64), 133 (35), 120 (1), 116 (13), 115 (83), 105 (100), 100 (56), 87 (41).

HR-MS (EI, 70eV): [C₁₃H₁₅O₃], calcd.: 219.1016; found: 219.1012 [M-H]⁺.

1-Cyclohexyl-3-(4-fluorophenyl)propan-1-one (113c)

Following **TP7**, alkyl iodide **111b** (125 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and the mixture was stirred for 30 min. Then, cyclohexanoyl chloride (88 mg, 80 μ L, 0.60 mmol) was added and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 71 mg, 0.31 mmol, 61%, colorless oil.


Purification: *i*-hexane: diethyl ether = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.16 – 7.09 (m, 2H), 6.98 – 6.91 (m, 2H), 2.84 (t, J = 7.4 Hz, 2H), 2.77 – 2.69 (m, 2H), 2.29 (tt, J = 11.3, 3.3 Hz, 1H), 1.86 – 1.70 (m, 4H), 1.70 – 1.60 (m, 1H), 1.37 – 1.14 (m, 5H).

¹³C-NMR (100 MHz, CDCl₃, ppm): δ = 213.1, 161.4 (d, *J* = 243.6 Hz), 137.2 (d, *J* = 3.2 Hz), 129.9 (d, *J* = 7.8 Hz), 115.3 (d, *J* = 21.2 Hz), 51.1, 42.4, 29.0, 28.5, 25.9, 25.7. FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2929, 2855, 1708, 1510, 1450, 1222, 1158, 829. MS (EI, 70 eV): *m/z* (%) = 234 (1), 151 (82), 123 (51), 122 (26), 111 (13), 109 (100), 103 (17), 83 (77).

HR-MS (EI, 70eV): [C₁₅H₁₉FO], calcd.: 234.1420; found: 234.1410 [M]⁺.

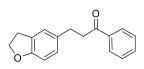
5-Oxo-5-(3,4,5-trimethoxyphenyl)pentanenitrile (113d)

Following **TP7**, alkyl iodide **111c** (98 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h (83%), a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and the mixture was stirred for 30 min. Then, 3,4,5-trimethoxybenzoyl chloride (231 mg, 1.00 mmol) was added and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 56 mg, 0.21 mmol, 51%, colorless crystals.

Purification: *i*-hexane:ethyl acetate = $7:3 \rightarrow 6:4$.

¹**H-NMR (400 MHz, CDCI₃, ppm):** *δ* = 7.20 (s, 2H), 3.91 (d, *J* = 1.4 Hz, 9H), 3.14 (t, *J* = 6.8 Hz, 2H), 2.52 (t, *J* = 6.9 Hz, 2H), 2.10 (p, *J* = 6.8 Hz, 2H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 197.1, 153.2, 142.9, 131.8, 119.6, 105.5, 61.1, 56.4, 36.1, 20.0, 16.7.

FT-IR (ATR, cm⁻¹): \tilde{v} = 3001, 2942, 2840, 1713, 1676, 1585, 1504, 1456, 1413, 1370, 1333, 1325, 1231, 1188, 1155, 1123, 1001, 868, 847, 830, 771, 713.

MS (EI, 70 eV): *m*/*z* (%) = 263 (25), 210 (7), 196 (10), 195 (100), 167 (9), 152 (9), 137 (5).

HR-MS (EI, 70eV): [C₁₄H₁₇NO₄], calcd.: 263.1158; found: 263.1149 [M]⁺. **m.p.:** 92.2 – 93.9 °C

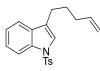
3-(2,3-Dihydrobenzofuran-5-yl)-1-phenylpropan-1-one (113e)

Following **TP7**, alkyl iodide **111d** (137 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h, a 1.0 M CuCN·2LiCl solution in THF (0.5 mL, 0.5 mmol) was added at -40 °C and the mixture was stirred for 30 min. Then, benzoyl chloride (141 mg, 116 μ L, 1.00 mmol) was added and the reaction mixture was allowed to warm to room temperature in 3 h and worked-up as usual.

Isolated yield: 78 mg, 0.31 mmol, 62%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.00 – 7.94 (m, 2H), 7.61 – 7.53 (m, 1H), 7.46 (dd, J = 8.3, 6.9 Hz, 2H), 7.10 (d, J = 1.9 Hz, 1H), 6.99 (dd, J = 8.2, 1.9 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 4.55 (t, J = 8.7 Hz, 2H), 3.27 (dd, J = 8.4, 6.9 Hz, 2H), 3.18 (t, J = 8.7 Hz, 2H), 3.00 (dd, J = 8.4, 7.0 Hz, 2H).


¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 199.5, 158.6, 137.0, 133.3, 133.1, 128.7, 128.1, 127.9, 127.3, 125.1, 109.2, 71.3, 41.1, 29.9, 29.7.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2956, 2924, 2855, 1683, 1598, 1492, 1448, 1361, 1288, 1272, 1243, 1203, 1102, 982, 944, 814, 743, 690.

MS (EI, 70 eV): *m*/*z* (%) = 252 (15), 134 (10), 133 (100), 131 (7), 115 (10), 105 (7), 105 (13), 91 (9), 77(20).

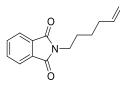
HR-MS (EI, 70eV): [C₁₇H₁₆O₂], calcd.: 252.1150; found: 252.1142 [M]⁺.

3-(Pent-4-en-1-yl)-1-tosyl-1*H*-indole (113f)

Following **TP7**, alkyl iodide **111e** (213 mg, 0.50 mmol) was treated with a solution of Et_2Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h, allyl bromide (181 mg, 130 μ l, 1.50 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15 μ L, 0.015 mmol, 5 mol%) and the mixture was stirred for 2 h and worked-up as usual.

Isolated yield: 110 mg, 0.32 mmol, 65%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.


¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 8.00 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.48 (dt, *J* = 7.7, 0.9 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.26 – 7.16 (m, 3H), 5.84 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.10 – 4.93 (m, 2H), 2.71 – 2.63 (m, 2H), 2.32 (s, 3H), 2.16 – 2.05 (m, 2H), 1.78 (p, *J* = 7.5 Hz, 2H).

¹³**C-NMR (100 MHz, CDCl₃, ppm):** *δ* = 144.8, 138.4, 135.4, 131.2, 129.9, 126.8, 124.7, 123.4, 123.1, 122.8, 119.6, 115.1, 113.9, 33.4, 28.1, 24.3, 21.7.

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3066, 2976, 2929, 2859, 1640, 1598, 1494, 1447, 1400, 1366, 1306, 1293, 1278, 1205, 1187, 1172, 1120, 1094, 1020, 975, 912, 812, 746, 703, 669. **MS (EI, 70 eV):** m/z (%) = 339 (1), 297 (4), 285 (6), 284 (8), 281 (2).

HR-MS (EI, 70eV): [C₂₀H₂₁O₂NS], calcd.: 339.1293; found: 339.1282 [M]⁺.

2-(Hex-5-en-1-yl)isoindoline-1,3-dione (113g)

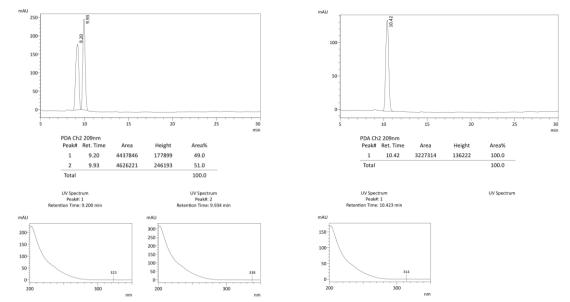
Following **TP7**, alkyl iodide **111f** (158 mg, 0.50 mmol) was treated with a solution of Et₂Zn (1.0 mL, 1.00 mmol) at 50 °C. After the insertion was complete after 6 h, allyl bromide (181 mg, 130 μ l, 1.50 mmol) was added at -20 °C, following by 1.0 M CuCN·2LiCl solution in THF (15 μ L, 0.015 mmol, 5 mol%) and the mixture was stirred for 2 h and worked-up as usual.

Isolated yield: 70 mg, 0.3 mmol, 61%, colorless oil.

Purification: *i*-hexane:ethyl acetate = 9:1.

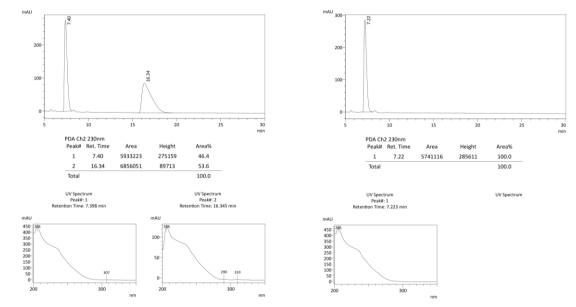
¹**H-NMR (400 MHz, CDCI₃, ppm):** δ = 7.87 – 7.77 (m, 2H), 7.74 – 7.65 (m, 2H), 5.76 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 4.99 (dq, *J* = 17.1, 1.7 Hz, 1H), 4.93 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 3.67 (t, *J* = 7.3 Hz, 2H), 2.13 – 2.03 (m, 2H), 1.74 – 1.62 (m, 2H), 1.43 (p, *J* = 7.6 Hz, 2H).

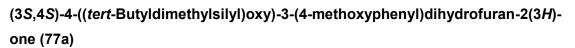
¹³**C-NMR (100 MHz, CDCI₃, ppm):** *δ* = 168.5, 138.4, 134.0, 132.2, 123.3, 115.0, 37.9, 33.4, 28.1, 26.2.

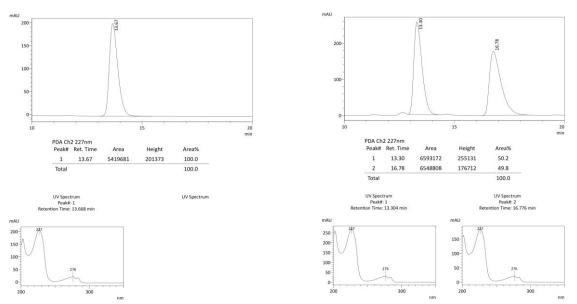

FT-IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2926, 2856, 1773, 1711, 1467, 1438, 1396, 1371, 1042, 913, 720.

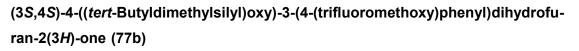
MS (EI, 70 eV): *m*/*z* (%) = 229 (1), 186 (10), 161 (20), 160 (100), 148 (45), 133 (19), 130 (31), 117 (13), 105 (10), 104 (10), 77 (10).

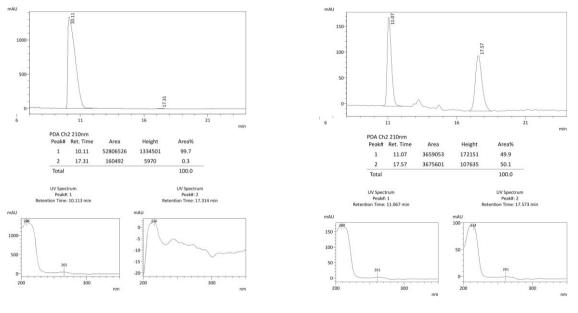
HR-MS (EI, 70eV): [C₁₄H₁₅O₂N], calcd.: 229.1103; found: 229.1094 [M]⁺.

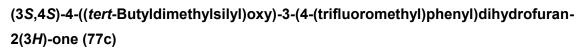

VI Appendix

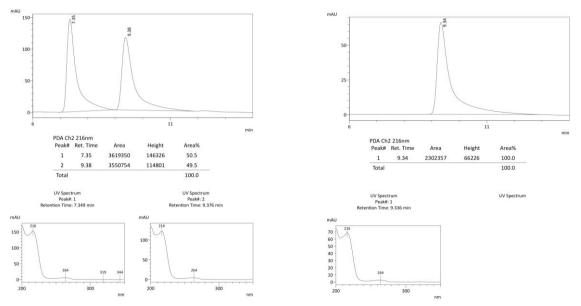

Chiral HPLC spectra

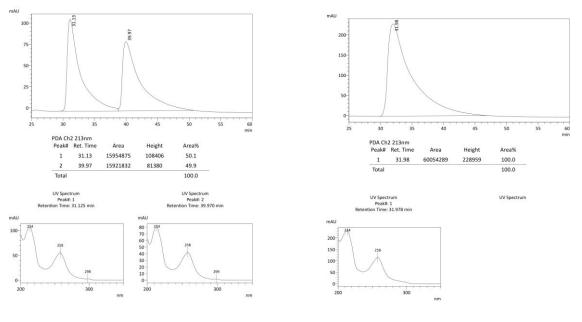


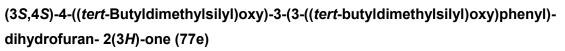

(3*S*,4*R*)-3-Bromo-4-((*tert*-butyldimethylsilyl)oxy)dihydrofuran-2(3*H*)-one (75a)

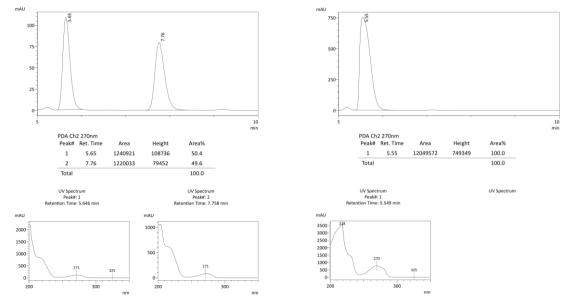

(2*R*,5*R*,6*R*)-5-Bromo-2-(*tert*-butyl)-6-methyl-1,3-dioxan-4-one (78a)

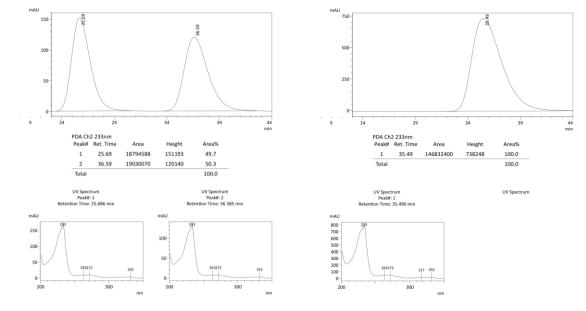


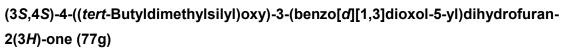


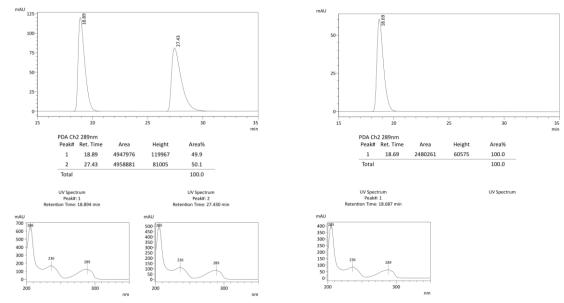




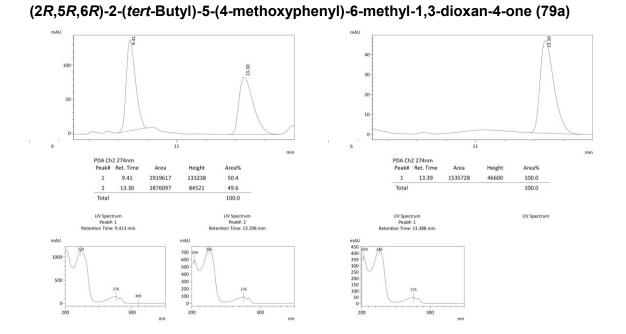


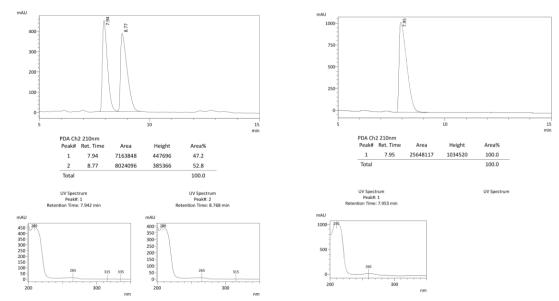

(3*S*,4*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-(methylthio)phenyl)dihydrofuran-2(3*H*)-one (77d)

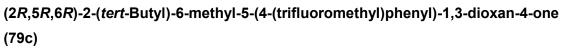


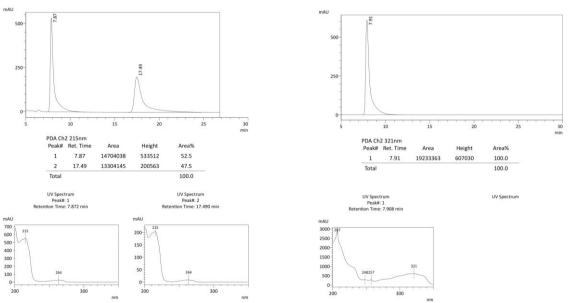


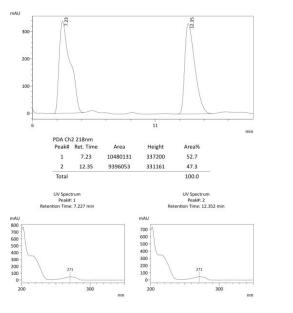

(3*S*,4*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(6-methoxynaphthalen-2yl)dihydrofuran-2(3*H*)-one (77f)

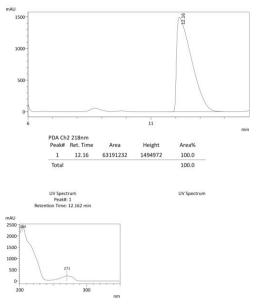


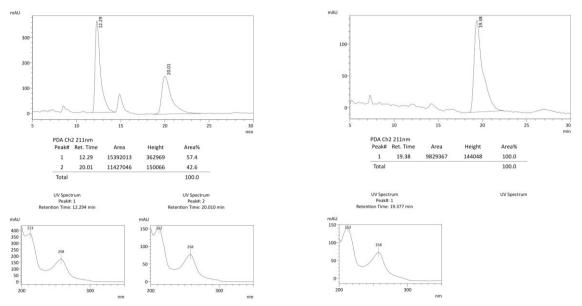



(3*S*,4*S*)-3-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-4-((*tert*-butyldimethylsilyl)oxy)dihydrofuran-2(3*H*)- one (77h)

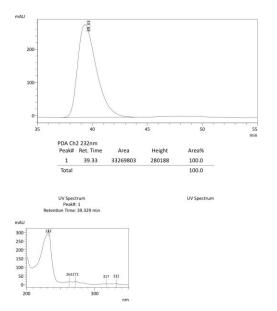



(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-6-methyl-5-(4-(trifluoromethoxy)phenyl)-1,3-dioxan-4-one (79b)



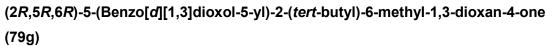


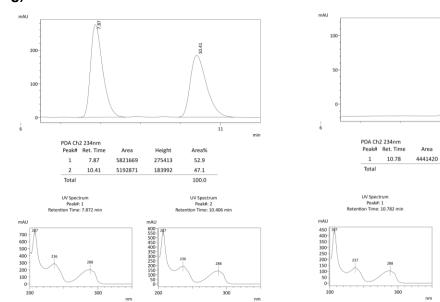
(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-5-(3-((*tert*-butyldimethylsilyl)oxy)phenyl)-6-methyl-1,3dioxan-4-one (79d)

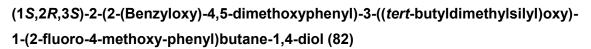


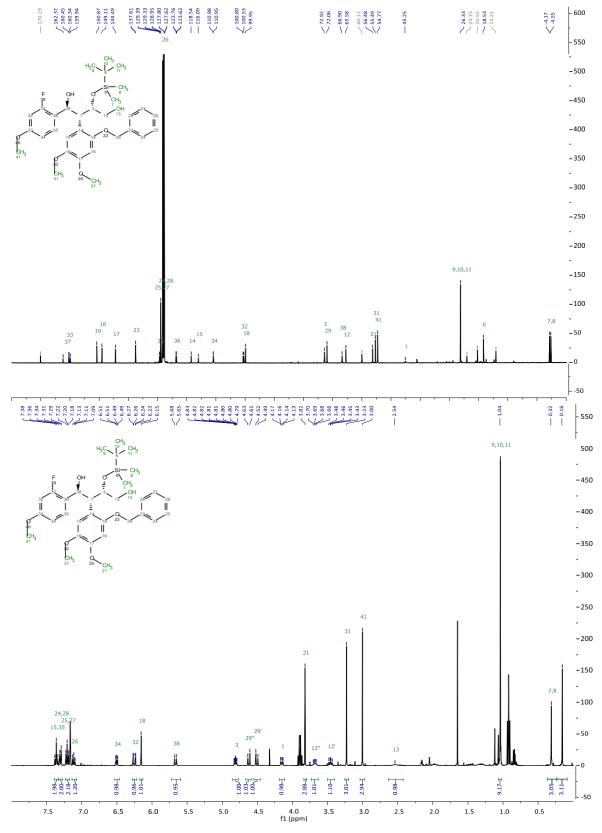
(2*R*,5*R*,6*R*)-2-(*tert*-Butyl)-5-(6-methoxynaphthalen-2-yl)-6-methyl-1,3-dioxan-4-one (79f)

11

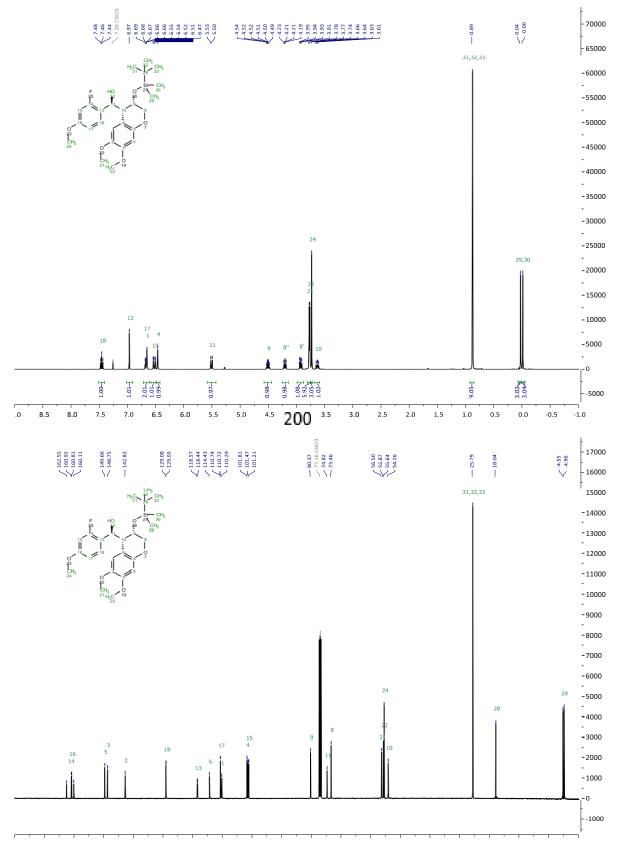

Area%

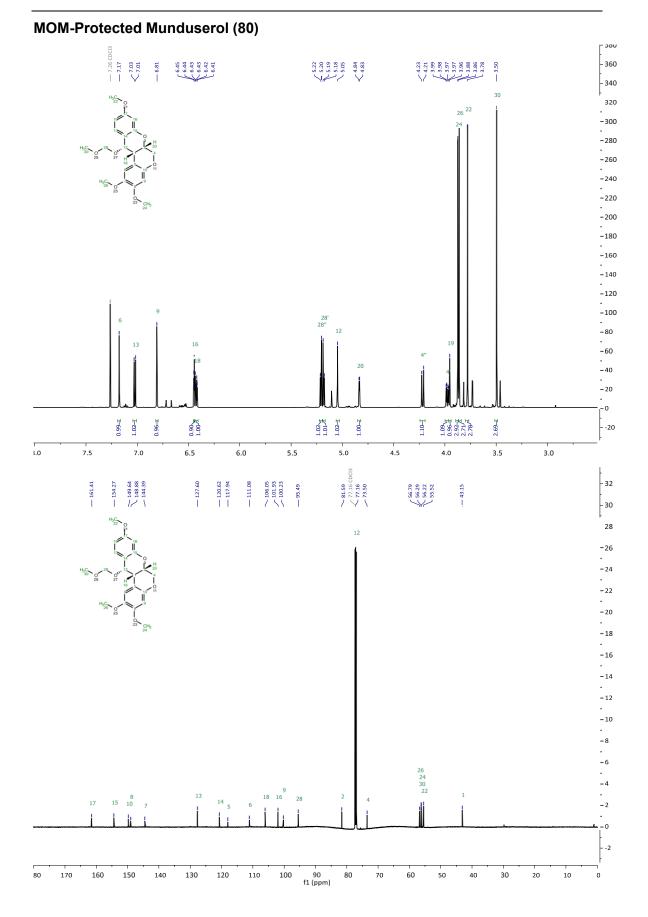

100.0 100.0


UV Spectrum

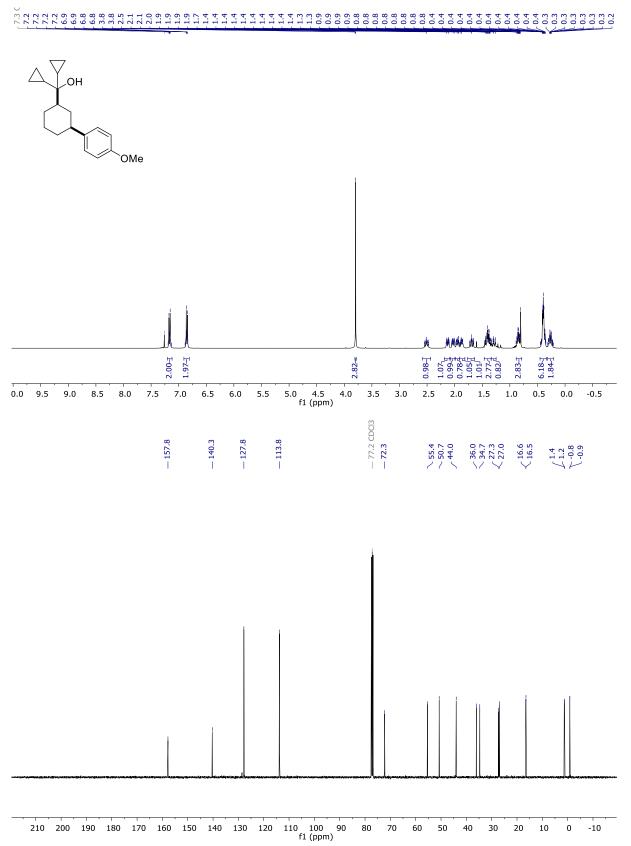

Height

135745





Appendix



(*S*)-((3*S*,4*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-6,7-dimethoxychroman-4-yl)(2-fluoro-4-methoxyphenyl)methanol (83)

Dicyclopropyl(3-(4-methoxyphenyl)cyclohexyl)methanol (90b)

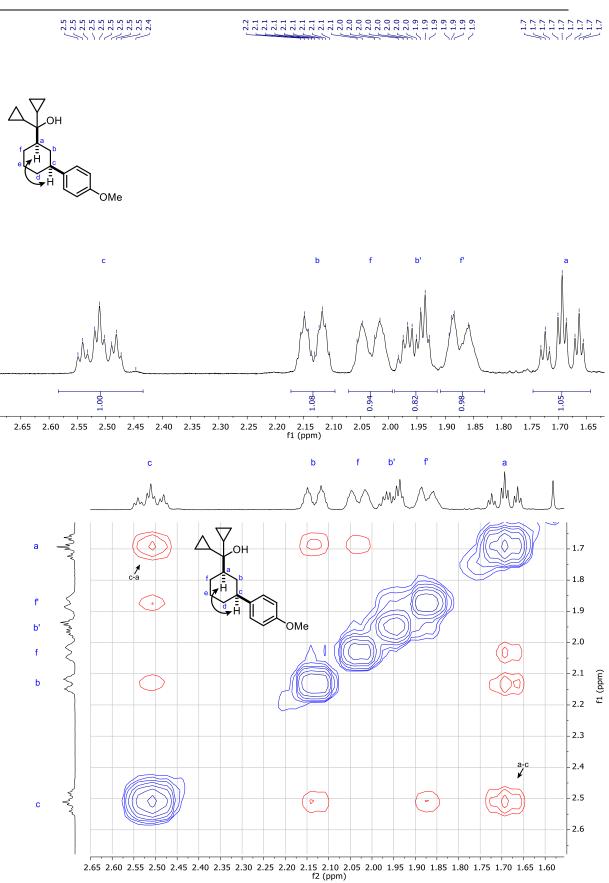
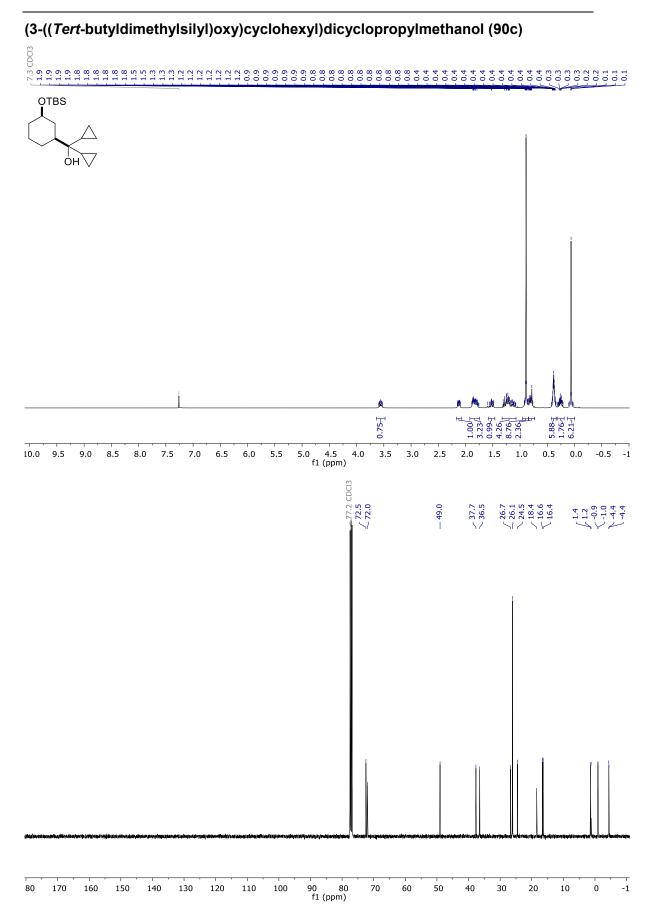



Figure S1. Selected ¹H and NOESY spectrum of **90b** (400 MHz, CDCl₃).

Appendix

OTBS

 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

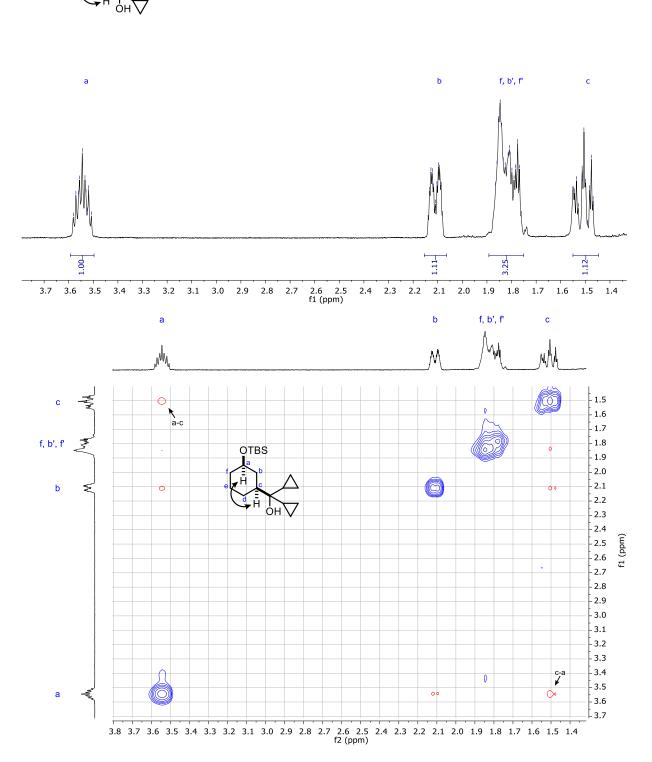
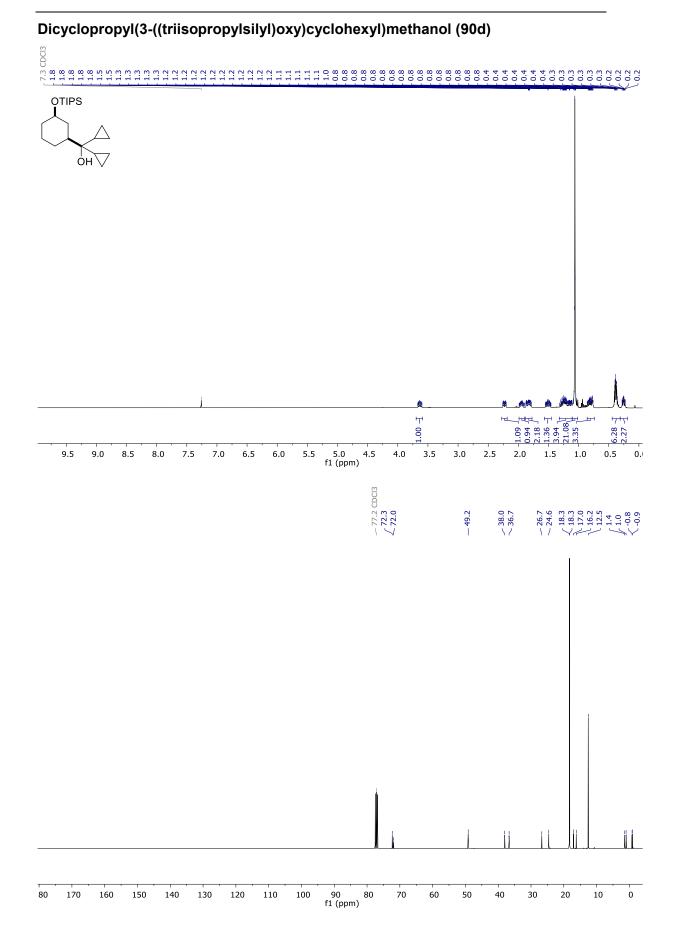



Figure S2. Selected ¹H and NOESY spectrum of **90c** (400 MHz, CDCl₃).

Appendix

 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 15.55
 <td

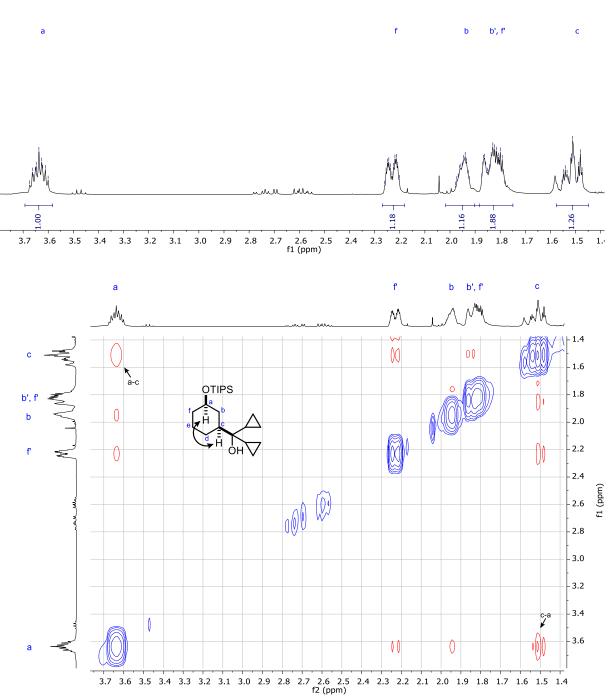
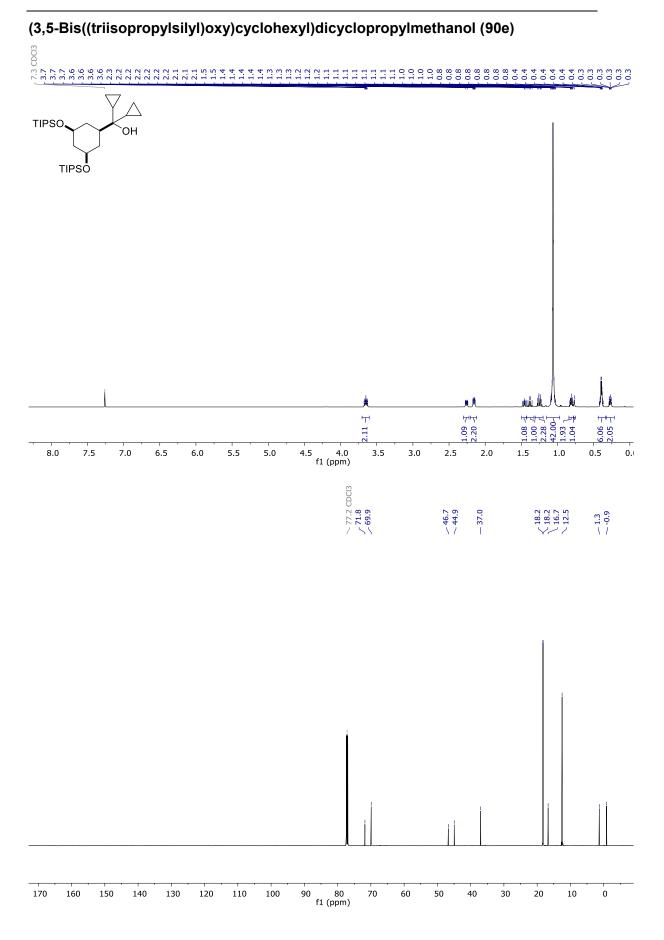
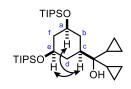




Figure S3. Selected ¹H and NOESY spectrum of **90d** (400 MHz, CDCl₃).

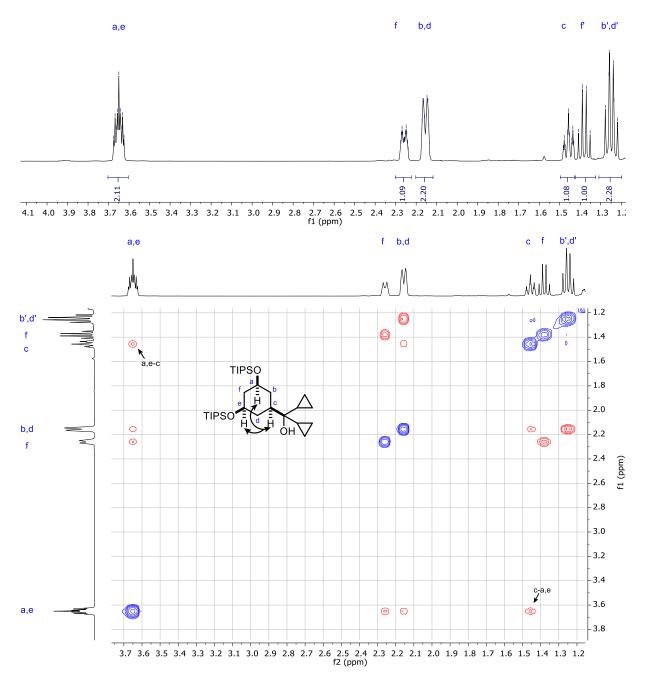
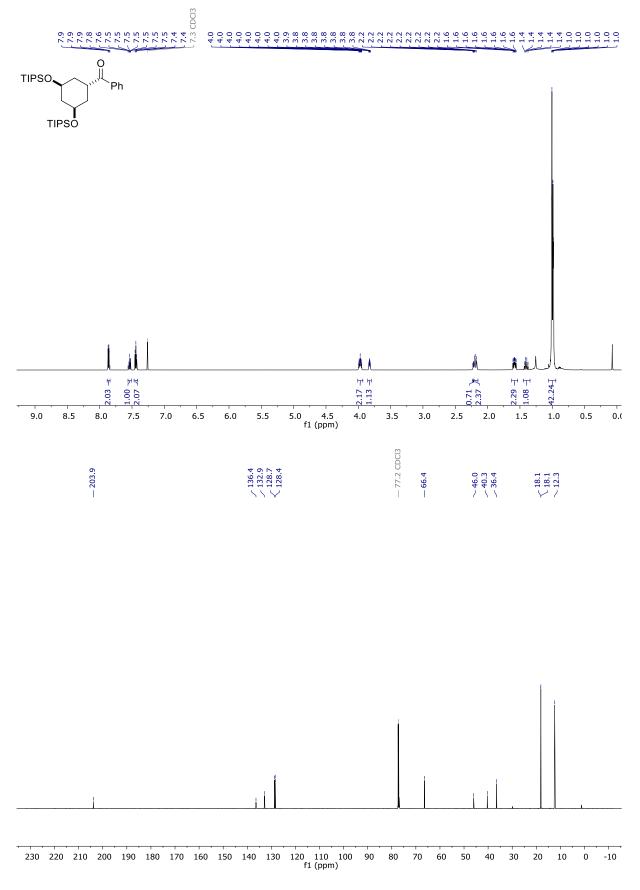



Figure S4. Selected 1H and NOESY spectrum of 90e (400 MHz, CDCl₃).

(3,5-Bis((triisopropylsilyl)oxy)cyclohexyl)(phenyl)methanone (90f)

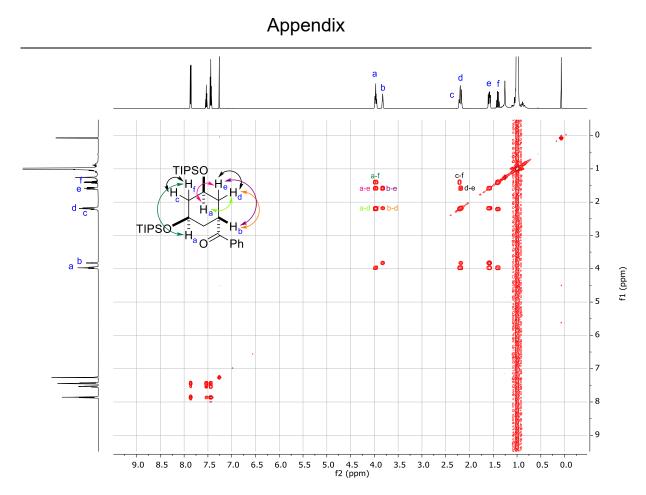


Figure S5. COSY spectrum of 90f (400 MHz, CDCl₃).

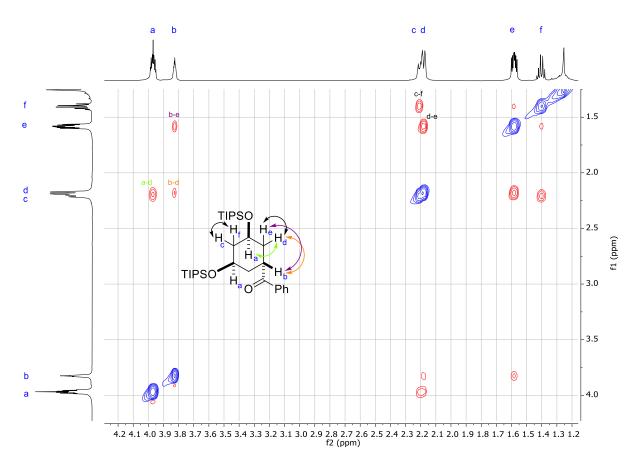


Figure S6. Selected NOESY spectrum of 90f (800 MHz, CDCl₃).

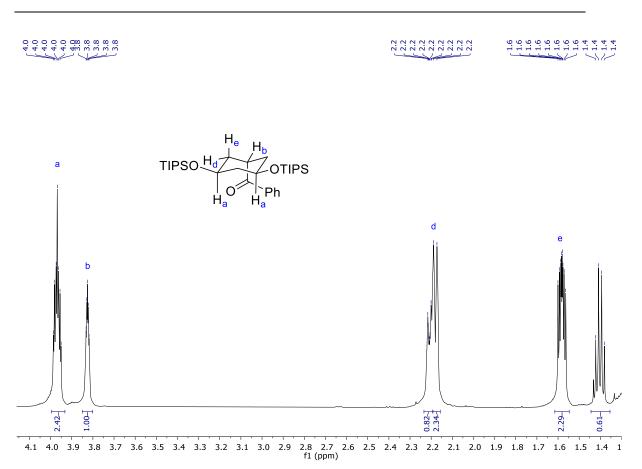


Figure S7. Selected ¹H spectrum of 90f (800 MHz, CDCl₃).

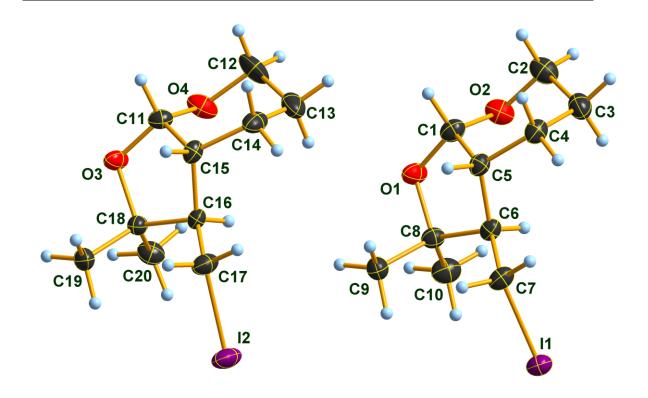
Crystallographic Data

Single Crystal X-Ray Diffraction Studies

Single crystals of compound **105b**, suitable for X-ray diffraction, were obtained by slow evaporation of *i*hexane solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-K_a radiation ($\lambda = 0.71071$ Å).

Data collection and data reduction were performed with the CrysAlisPro software.¹⁵⁷ Absorption correction using the multiscan method¹⁶³ was applied. The structures were solved with SHELXS-97,¹⁵⁸ refined with SHELXL-97¹⁵⁹ and finally checked using PLATON.¹⁶⁰ Details for data collection and structure refinement are summarized in Table S7.

CCDC-2201809 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.


¹⁵⁷ Program package 'CrysAlisPro 1.171.40.82a (Rigaku OD, 2020)'.

 ¹⁵⁸ G.M. Sheldrick, (1997) SHELXS-97: Program for Crystal Structure Solution, University of Göttingen, Germany.
 ¹⁵⁹ G.M. Sheldrick, (1997) SHELXL-97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany.

¹⁶⁰ A.L. Spek, (1999) PLATON: A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

	1
Empirical formula	$C_{10}H_{17}IO_2$
Formula mass	296.13
T[K]	123(2)
Crystal size [mm]	0.35 × 0.20 × 0.10
Crystal description	colorless block
Crystal system	monoclinic
Space group	P21/n
a [Á]	10.7844(4)
b [Á]	13.0081(3)
c [Á]	16.3505(4)
α [°]	90.0
β [°]	98.842(3)
γ [°]	90.0
V [Á³]	2266.46(11)
Z	8
ρ _{calcd.} [g cm ⁻³]	1.736
µ [mm ⁻¹]	2.796
F(000)	1168
Θ range [°]	2.01 – 25.24
Index ranges	-13 ≤ <i>h</i> ≤ 13
	-16 ≤ <i>k</i> ≤ 16
	-20 ≤ <i>l</i> ≤ 20
Reflns. collected	34926
Reflns. obsd.	3577
Reflns. unique	4601
	$(R_{int} = 0.0459)$
R_1, wR_2 (2 σ data)	0.0296, 0.0714
R_1 , wR_2 (all data)	0.0435, 0.0787
GOOF on F^2	1.034
Peak/hole [e Å ⁻³]	1.014 / -0.439

 Table S7. Details for X-ray data collection and structure refinement for compound 105b.

Figure S8. Molecular structure of compound **105b** in the crystal. View of the two crystallographically independent molecules. DIAMOND¹⁶¹ representation; thermal ellipsoids are drawn at 50 % probability level.

l1 – C7	2.171(3)	C11 – C15	1.516(4)
O1 – C1	1.405(4)	C15 – C14	1.534(5)
O1 – C8	1.467(4)	C15 – C16	1.535(4)
C1 – O2	1.431(4)	C14 – C13	1.514(6)
C1 – C5	1.516(4)	C13 – C12	1.511(6)
l2 – C17	2.163(3)	C20 – C18	1.514(5)
O2 – C2	1.447(4)	C19 – C18	1.524(4)
C2 – C3	1.523(5)	C18 – C16	1.556(4)
C3 – C4	1.513(5)	C17 – C16	1.507(5)
O3 – C11	1.386(4)	C6 – C7	1.519(4)
O3 – C18	1.477(4)	C6 – C8	1.543(4)
C4 – C5	1.542(5)	C8 – C10	1.524(5)
O4 – C11	1.429(4)	C8 – C9	1.538(5)
O4 – C12	1.438(4)	C5 – C6	1.538(4)

 Table S8. Selected bond lengths (Å) of compound 105b.

¹⁶¹ DIAMOND, Crystal Impact GbR., Version 3.2i.

C1 – O1 – C8	110.5(2)	C13 – C14 – C15	111.4(3)
O1 – C1 – O2	107.2(3)	C12 – C13 – C14	109.5(3)
O1 – C1 – C5	105.8(3)	C6 – C7 – I1	113.2(2)
O2 – C1 – C5	112.1(3)	O3 – C18 – C20	108.2(3)
C1 – O2 – C2	110.7(3)	O3 – C18 – C19	105.6(3)
O2 – C2 – C3	109.6(3)	C20 – C18 – C19	110.9(3)
C4 – C3 – C2	110.2(3)	O3 – C18 – C16	104.4(2)
C11 – O3 – C18	109.6(2)	C20 – C18 – C16	112.9(3)
C3 – C4 – C5	112.3(3)	C19 – C18 – C16	114.2(3)
C11 – O4 – C12	111.4(3)	C16 – C17 – I2	113.9(2)
C1 – C5 – C6	100.3(3)	C17 – C16 – C15	110.0(3)
C1 – C5 – C4	113.3(3)	C17 – C16 – C18	117.8(3)
C6 – C5 – C4	117.2(3)	C15 – C16 – C18	103.8(2)
C7 – C6 – C5	111.1(3)	O4 – C12 – C13	110.1(3)
C7 – C6 – C8	117.3(3)	C9 – C8 – C6	113.8(3)
C5 – C6 – C8	102.4(3)	O3 – C11 – O4	107.7(3)
O1 – C8 – C10	106.7(3)	O3 – C11 – C15	106.3(3)
O1 – C8 – C9	106.6(3)	O4 – C11 – C15	111.6(3)
C10 – C8 – C9	110.4(3)	C11 – C15 – C14	114.2(3)
O1 – C8 – C6	104.2(3)	C11 – C15 – C16	100.8(2)
C10 - C8 - C6	114.3(3)	C14 – C15 – C16	115.5(3)

Table S9. Selected bond angles	(°) of compound 105b .
--------------------------------	----	-----------------------------

Table S10. Selected torsion angles (°) of compound 105b.

C8 – O1 – C1 – O2	97.0(3)	C12 – O4 – C11 – O3	-174.0(3)
C8 – O1 – C1 – C5	-22.8(3)	C12 – O4 – C11 – C15	-57.6(4)
O1 – C1 – O2 – C2	-175.7(3)	O3 – C11 – C15 – C14	163.8(3)
C5 – C1 – O2 – C2	-60.0(4)	O4 – C11 – C15 – C14	46.7(4)
C1 – O2 – C2 – C3	66.5(4)	O3 – C11 – C15 – C16	39.4(3)
O2 - C2 - C3 - C4	-59.9(4)	O4 – C11 – C15 – C16	-77.8(3)
C2 - C3 - C4 - C5	47.7(4)	C11 – C15 – C14 – C13	-43.5(4)
O1 – C1 – C5 – C6	38.4(3)	C16 - C15 - C14 - C13	72.7(4)
O2 - C1 - C5 - C6	-78.2(3)	C15 – C14 – C13 – C12	49.6(4)
O1 – C1 – C5 – C4	164.1(3)	C5 – C6 – C7 – I1	-165.7(2)
O2 - C1 - C5 - C4	47.6(4)	C8 – C6 – C7 – I1	77.0(3)
C3 - C4 - C5 - C1	-42.1(4)	C11 – O3 – C18 – C20	-111.0(3)
C3 - C4 - C5 - C6	74.0(4)	C11 – O3 – C18 – C19	130.3(3)

Appendix

C1 – C5 – C6 – C7	-164.7(3)	C11 – O3 – C18 – C16	9.5(3)
C4 - C5 - C6 - C7	72.2(4)	l2 – C17 – C16 – C15	-170.3(2)
C1 - C5 - C6 - C8	-38.7(3)	l2 – C17 – C16 – C18	71.1(3)
C4 - C5 - C6 - C8	-161.8(3)	C11 – C15 – C16 – C17	-158.9(3)
C1 – O1 – C8 – C10	-124.0(3)	C14 – C15 – C16 – C17	77.6(4)
C1 – O1 – C8 – C9	118.0(3)	C11 – C15 – C16 – C18	-31.9(3)
C1 – O1 – C8 – C6	-2.7(3)	C14 – C15 – C16 – C18	-155.5(3)
C7 – C6 – C8 – O1	148.3(3)	O3 – C18 – C16 – C17	137.1(3)
C5 - C6 - C8 - O1	26.4(3)	C20 – C18 – C16 – C17	-105.6(3)
C7 - C6 - C8 - C10	-95.6(4)	C19 – C18 – C16 – C17	22.3(4)
C5 - C6 - C8 - C10	142.5(3)	O3 – C18 – C16 – C15	15.3(3)
C7 - C6 - C8 - C9	32.6(4)	C20 – C18 – C16 – C15	132.6(3)
C5 - C6 - C8 - C9	-89.4(3)	C19 – C18 – C16 – C15	-99.6(3)
C18 - O3 - C11 - O4	88.6(3)	C11 – O4 – C12 – C13	66.0(4)
C18 – O3 – C11 – C15	-31.2(3)	C14 – C13 – C12 – O4	-61.2(4)
		•	