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1 General Introduction 

1.1 Temporal context effect 

Accurate timing is essential for proper actions in our daily activities. Although we have 

no specific sensory organ for timing, humans are well capable of time measurement. For 

instance, we can accurately follow musical rhythms, feel the beat and rhythm while listening 

to music, and swiftly avoid collisions while driving. Animals can accurately predict when the 

food will be supplied. Early classical internal-clock models (Gibbon et al., 1984; Treisman, 

1963), such as scalar expectancy theory, use analogue of clock ticks generator and accumulator 

to explain many empirical findings, including the key signature of interval timing, the scalar 

property. That is, the variability of time estimation increases proportionally to the to-be-

estimated time interval. The internal-clock models assume a pacemaker generates pulses that 

are transmitted to an accumulator through a switch. The switch is turned on when a to-be-timed 

interval starts and is turned off when the to-be-timed interval is off. A late developed attentional 

gating theory (Zakay & Block, 1996a, 1996b) further assumes that the switch control is 

influenced by attentional sharing.  

Time perception in daily life is not always veridical to physical reality, even though 

humans are well capable of time measurement. Perception and perceptual strategies are seen 

as productions of evolution in a situated environment. Although this view is now a broad 

consensus in biology, research into the relationship between perception and the external world 

as early as 1860 prompted (Fechner, 1966) to pioneer the field of experimental psychology 

more broadly. As has been suggested in classical Perception Decision Action (PDA) loop 

framework (Hoffman et al., 2015), observers measure the external world with sensory organs 

to obtain perceptual representations of the external world. Nevertheless, the perceptual 

representation can be influenced by surrounding contexts. A large number of subjective 

distortions in time perception, including duration expansion and duration contraction, have 

been reported by various contexts, such as motion stimuli, arousal, internal states (Eagleman, 

2008; Erickson & Erickson, 1958; Lee, 2017; Sackett et al., 2010; Teixeira et al., 2013; van 

Wassenhove et al., 2008). Most of us have consciously experienced situations in which time 

flies during a delightful event or slows down during a frightening event. 
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Very often, however, time distortion occurs without explicit knowledge of what contexts 

distort the time, given that the context is often not consciously known. One such example of 

time distortion is the Vierordt effect (Vierordt, 1868), which has been reported for more than a 

century and better known as the central-tendency effect: short intervals are overestimated and 

long intervals underestimated in a randomization test (Glasauer & Shi, 2021; Jazayeri & 

Shadlen, 2010; Lejeune & Wearden, 2009; Shi, Church, et al., 2013). In a typical randomized 

experiment of duration reproduction, participants are asked to reproduce a given duration after 

receiving a probe duration. The probe durations are usually randomized across trials. Though 

participants are only asked to reproduce the duration for a specific given duration, nevertheless, 

the reproduced duration is influenced by various temporal contexts, such as the past sampled 

durations (Glasauer & Shi, 2021; Vierordt, 1868), the tested range (Teghtsoonian & 

Teghtsoonian, 1978), and the spacing of the sampled durations (Brown et al., 2005; Penney et 

al., 2014; Wearden & Ferrara, 1995). It should be noted, however, the central tendency effect 

is not limited to time domain, it has also been found in a variety of sensory magnitude 

estimation, such as brightness, size of angles, and distance and angular (rotational-body) 

displacement (Hollingworth, 1910; Petzschner et al., 2012b; Petzschner & Glasauer, 2011; 

Teghtsoonian & Teghtsoonian, 1978), suggesting the central tendency effect is highly robust 

and applies to perception of many types of magnitude. Another closely related to the central 

tendency effect is the sequential dependence (Holland & Lockhead, 1968), sometimes also 

termed as the serial dependence (Fischer & Whitney, 2014; Kiyonaga et al., 2017). That is, the 

intensity of the previous stimulus can attract the perception of the current stimulus toward it. 

This local temporal context has been shown to be closely related to the central tendency effect 

in time perception (Glasauer & Shi, 2021, 2022). The central tendency effect can be partially 

explained by the dynamic updating of local temporal context.  

In addition to the temporal contexts, non-temporal contexts can also distort subjective 

time. For examples, our estimation of elapsed time is biased by internal bodily states, including 

mental load (Angrilli et al., 1997), attention (Polti et al., 2018), emotional state (Stetson et al., 

2007), and external stimulus properties, such as size, brightness, probability of the occurrence 

(Eagleman, 2008; Kanai & Watanabe, 2006). The original internal clock-models (Gibbon et al., 

1984; Treisman, 1963) only assume the representation of time in memory is directly 

correspondent to the temporal ‘ticks’ accumulated in the memory. That is, the duration 

representation more or less veridically reflects sensory inputs. Thus, influences of non-

temporal contexts are often explained in terms of the modulation of the internal clock speeds, 
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such as large stimuli or high arousal increasing the speed of the internal clock. Yet, merely 

modulation of the clock speed could not explain various findings by attentional modulation. In 

extension to the classical internal clock-model, attentional gating theory (Zakay & Block, 

1996a, 1996b) and attentional sharing account (Fortin & Massé, 2000; Fortin & Rousseau, 

1998) includes the attention and memory in the internal clock model. For example, the 

attentional sharing account assumes that the accumulation of internal ‘ticks’ can be varied by 

the modulation of the attention to the timing process. When the attention is allocated to other 

non-temporal tasks during the time encoding process, some ‘ticks’ may be lost due to the 

attentional sharing, causing an underestimation of the perceived duration. By contrast, when 

the attention is shared during the duration reproduction phase, some ‘ticks’ could be lost during 

the monitoring of the elapsed time, subsequently causing over-reproduction of the perceived 

duration.  

In short, both temporal and non-temporal contexts could implicitly influence subjective 

time. Over the past half century, much empirical evidence has been accumulated for subjective 

time perception. Although the classical internal clock models (Gibbon, 1977; Gibbon et al., 

1984; Treisman, 1963) and their extensions, such as attentional gating / sharing accounts 

(Zakay & Block, 1996a, 1996b), can qualitatively explain empirical findings, quantitative 

predictions of various contextual biases in time perception have only been achieved in the past 

decade using the probabilistic approach (Gu et al., 2016; Jazayeri & Shadlen, 2010; Shi, Church, 

et al., 2013; Shi & Burr, 2016), more precisely, Bayesian inference, which is detailed in the 

next subsection.  

1.2 Probabilistic interpretation of the central tendency bias 

The most prominent prediction of the classical internal clock models (Treisman, 1963; 

Treisman et al., 1990), including the scalar expectancy theory (Gibbon, 1977; SET, Gibbon et 

al., 1984), is the scalar property, also known as Weber scaling. That is, the variability of a 

perceived interval proportionally increases with the given interval. The SET assumes that the 

variability in the pacemaker across trials is the main key factor that leads to the scalar property. 

However, the classical models fall short in interpreting various context-induced temporal 

biases. It can not explain the classical Vierordt effect - an effect being observed more than 150 

years ago (Glasauer & Shi, 2021; Vierordt, 1868). An early attempt is made by Helson (Helson, 

1964) with his adaptation-level (AL) theory. According to this theory, Vierordt effect arises 

from the background context - such as the sampled intervals. The perception of a stimulus is 
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assimilated to the background context. In the past decade, a similar approach has been made in 

probabilistic Bayesian inference frameworks (Jazayeri & Shadlen, 2010; Petzschner & 

Glasauer, 2011; Shi, Church, et al., 2013; Shi & Burr, 2016). One common idea is that the 

percept is an integration of the prior knowledge (the background context in the AL theory) and 

the sensory inputs, the original idea came from Helmholz’s theory of perception as unconscious 

inference. Importantly, the Bayesian approach assumes the integration is according to Bayes 

rules, the weights of the prior and sensory inputs depending on their correspondent reliability. 

Suppose the sensory input is 𝑇! ∼ 𝑁(𝜇!, 𝜎!), and the prior of the sampled intervals follows 

𝑇" ∼ 𝑁)𝜇", 𝜎"*. According to the Bayesian inference, the optimal estimation would be: 

𝑇# = 𝑤"𝜇" + )1 − 𝑤"*𝜇!, 

where the weight 𝑤" is proportional to the reliability of the prior. That is, 𝑤" =
$/&!"

$/&!"'$/&#"
. 

The estimate 𝑇(  is called optimal because the variability of 𝑇(  is the minimum among any 

linear combination of the prior 𝑇" and sensory input 𝑇".  

Under such quantitative approaches, researchers have successfully predicted the 

classical central tendency effect (Jazayeri & Shadlen, 2010), group differences in the central 

tendency effect (Cicchini et al., 2012), as well as other effects, such as time-order effects 

(Bausenhart et al., 2014; Dyjas et al., 2013), variations in the scalar properties (Ren et al., 2021). 

More recently, the static Bayesian framework has also been extended to dynamic Bayesian 

framework in explaining the dynamic updating of the priors in time perception (Glasauer & 

Shi, 2021, 2022). Dynamic Bayesian frameworks do not assume the prior is static, rather 

suggest that the prior is dynamically updated through trial-to-trial learning. One typical 

updating mechanism that can well explain such a dynamic process is the Kalman filter process 

(Petzschner & Glasauer, 2011), which has been recently used to explain the origin of the 

Vierordt effect (Glasauer & Shi, 2021). In that study, Glasauer and Shi (2021) showed that the 

central tendency effect depended on the inter-trial volatility, rather than the sampled 

distributions across the whole session. Given that the sample distributions were the same for 

the two volatility conditions, the traditional Bayesian integration fails to explain the difference 

of the central tendency in the two volatility conditions.  

The Bayesian approach has a stark contrast to the classical internal clock models. The 

Bayesian approach usually does not assume any ‘module’-like cognitive processing stages, 

which the internal clock models do, rather it assumes a quantitative integration process. In a 
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review paper, Shi et al. (2013) bridged this gap by linking the Bayesian approach to the classical 

internal clock models (see Figure 1, adapted from Shi et al. 2013). 

As shown in Figure 1, internal clock models are composed of three stages: Clock, Memory, 

Decision. Shi et al. (2013) linked them to the Bayesian integration processes, respectively. 

Specifically, in the clock stage an accumulator receives and restores a pulse or a sequence of 

pulses from a pacemaker. This stage is corresponding to the likelihood of the sensory inputs in 

the Bayesian framework. The memory stage involves two memory systems, working memory 

and long-term reference memory. The accumulated pulses within the counter process the 

duration and store them in the working memory, then retrospective comparisons occur between 

stored interval representations within reference memory. In the Bayesian framework, the prior 

information is likely stored in the reference memory, representing the observer's beliefs about 

intervals in a probabilistic manner. As denoted by a dashed black arrow, prior is updated by 

the current posterior. The posterior distribution that expresses the probability distribution of 

the current estimate is derived by the combination of updated prior beliefs with likelihood 

(denoted by a dashed red arrow). In the decision stage, responses are made based on specific 

comparison rules, such as the difference between the two temporal memory sources is less than 

a threshold. In the Bayesian framework, this optimization is achieved by minimizing the loss 

function. 

 

Figure 1 Schematic representation of Bayesian inference of interval timing and the 

information process(IP) model (adapted from Shi, Church, et al., 2013). 
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With Bayesian integration approaches, a number of studies have shown that various time 

distortions can be well explained as an optimal fusion of noisy sensory information with 

expectations based on previous experience (Cicchini et al., 2012; Roach et al., 2017; Shi, 

Church, et al., 2013; Shi & Burr, 2016). Yet, there are a number of issues that remain 

controversial, which we will explain in the following subsection. 

1.3 Open issues related to temporal context effect in interval timing 

Although there is now ample evidence of how the perceptual process can be well 

explained as an optimal integration of sensory information and prior experience shaped by 

contexts, it is not clear how the effect of surrounding context would take place on the prior 

information and sensory measurement, leading to impact on time estimation and central 

tendency effect bias.  

1.3.1 Ensemble perception of temporal sequence  

In everyday life, humans are continually confronted with piles of information from the 

outside world which are often redundant and similar, so our sensory system has adapted and 

developed an efficient system through extracting more ‘intuitive’ statistical properties to cope 

with sensory information overload and the limited capacity of working memory (Ren, 2020; 

Whitney & Yamanashi Leib, 2018). For instance, we can quickly judge whether a box of grapes 

are fresh and uniform in size at first glance without looking carefully at each grape, which 

reflects that we are capable of extracting statistical properties in the visual domain (Chong & 

Treisman, 2005). Ample studies have revealed that ensemble statistics can be rapidly acquired 

from a set of items through ensemble perception (Alvarez, 2011; Chen et al., 2018; Haberman 

& Whitney, 2012; Webster, 2014; Whitney & Yamanashi Leib, 2018). Using ensemble 

representations of various types of features, such as the average moving speed (Watamaniuk 

& Duchon, 1992), the average size (Marchant et al., 2013), and summary representation of the 

facial characteristics (Haberman & Whitney, 2009), is an efficient representation of a set with 

similar items. It should be noted, perceptual averaging is not confined to a simultaneously 

presented set of items (inherently ‘parallel’ visual domain), but also takes place for sequentially 

presented event, such as object weights and auditory frequencies (Curtis & Mullin, 1975; 

Piazza et al., 2013; Schweickert et al., 2014). However, how ensemble statistics influences the 

temporal processing, such as temporal-bisection task, remains open. 
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The temporal-bisection task was first adapted to research on animal timing (Gibbon, 

1977; Gibbon et al., 1984) and later expanded to studies on human timing (Allan & Gibbon, 

1991; Wearden, 1991). Initially, the focus of using temporal-bisection was on how humans and 

other animals make interval comparisons and researchers believed that only the sample 

durations matter in a temporal-bisection task. Subsequently, they found the bisection point (BP, 

the duration which produces 50% ‘long’ responses) in temporal-bisection tasks is subject to 

various contextual factors, including tone frequencies (Brown et al., 2005), spacing (Penney et 

al., 2014; Wearden & Ferrara, 1995) and skewness(Schweickert et al., 2014). For example, 

Brown and colleagues (2005) argued that only using the short and long standards is not 

sufficient to explain the contextual bias, as they showed the same duration in two different sets 

with the same range was perceived differently when the orders of the same duration in the two 

sets were different. Accordingly, Brown et al. (2005) proposed that both the relative range and 

the order are critical, as already shown in the previous ‘Range Frequency Theory’ (RFT; 

Parducci, 1963), and the subjective judgment of a test interval is based on the weighted average 

of its distance to the (short and long) standards and its rank order in the range, and they termed 

this as the temporal RFT (TRFT; Brown et al., 2005). Although TRFT successfully captures 

the biases in the temporal-bisection task, the order of the duration requires full knowledge of 

the whole set. To store all durations and their relative orders of a set is rather not economical, 

especially when the set size increases, the amount of stored information rapidly expands. It 

becomes impractical when the whole set is not known. One possible alternative account might 

be that instead of storing individual durations with their order information, observers adopt 

ensemble statistics of the sampled durations from a longer-term memory (Cicchini et al., 2012; 

Shi, Church, et al., 2013) to estimate the bisection point in the bisection task. Remembering 

individual items is difficult, whereas representing ensemble statistics is quick and intuitive 

(Alvarez, 2011; Ariely, 2001; Ren et al., 2020).  

To identify the best possible account of how the ensemble context modulates 

performance in the temporal-bisection task, we assume that observers likely compare a 

perceived duration to the ensemble prior (i.e, ensemble representation of the distribution of 

sampled intervals), rather than storing individual items for later comparison. Ample evidence 

has been found that using ensemble statistical information would be efficient in dealing with a 

set of sample stimuli (e.g., Alvarez, 2011; Cohen et al., 2016; Ren et al., 2020; Whitney & 

Yamanashi Leib, 2018). Combining with the IP model (see Figure 1 left panel ) introduced 

above, during handling a sequence of auditory stimuli, the current perceived duration is stored 



 
 8 

in the working memory and compared to the temporal standards stored in reference memory, 

afterwards the sample distribution (i.e., prior) will be updated by the current estimation. The 

prior distribution could be treated as the temporal ensembles, providing efficient access to the 

past sample stimuli, rather than maintaining the full information of individual items (Ren et al., 

2020; Whitney & Yamanashi Leib, 2018).  

1.3.2 Temporal context under memory load 

According to the SET theory and IP models (see Sec. 1.2), the integration of the sensory 

measure and the prior is involved with the working memory (Shi, Church, et al., 2013). Hence, 

the demands on working memory capacity (cognitive load) would impact sensory measurement 

and internal prior. Meanwhile, reproducing the perceived duration also requires continuously 

monitoring the passage of time. Thus, both working memory and attention are essential 

components for time perception. The influence of attention in subjective time has already been 

considered in the attention-gating account (Zakay, 1989; Zakay & Block, 1996a). It has been 

shown that when a person is working on a demanding task, time passes quickly, while when a 

person is working on an easy task, time passes slowly (Block et al., 2010). One common 

explanation of this phenomenon is that when attention is allocated to other non-timing tasks, 

such as on a demanding task, some ticks generated by the internal clock haven’t been counted 

and passed through to the accumulator (i.e., attentional lapse). One common task to investigate 

this is the dual-task paradigm with one timing task and the other non-timing task (Fortin, 2003; 

e.g., Fortin & Rousseau, 1998). Additionally, memory representation of a time interval could 

be mixed with other contexts, which has been shown in various experimental paradigms, 

known as memory mixing effect (Gu et al., 2016; Gu & Meck, 2011; Penney et al., 2000; 

Stanfield-Wiswell & Wiener, 2020). It should be noted, memory mixing not only occurs when 

the memory trace of a previous time interval influences the processing of the current time 

interval (Coull et al., 2013; L. A. Jones & Wearden, 2004), but also happens in a dual-task 

paradigm consisting of a secondary visual working-memory task and a primary duration 

production-reproduction task (Macar et al., 1994). Due to additional tasks in the dual-task 

paradigm, the uncertainty of the sensory input increases. Subsequently, according to Bayesian 

inference (Jazayeri & Shadlen, 2010; Shi, Church, et al., 2013; Shi & Burr, 2016), higher 

cognitive load would yield a stronger central tendency bias in a timing task with a set of 

durations.  
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Some studies have revealed two separable effects of cognitive load on duration encoding 

and duration reproduction (Fortin, 2003; Fortin & Rousseau, 1998; see also on non-timing tasks, 

e.g., Glasauer et al., 2007). For example, Fortin and Rousseau (1998) used a dual-task design 

with the second task of a Sternberg memory task (memory set of 1, 3, or 6 digits), presented 

successively prior to the primary temporal reproduction task, where the latter consisted (on a 

given trial) of an initial duration-production phase (with two beeps demarcating a duration) 

followed by the duration-reproduction phase (two taps generated by the participants). The 

memory probe (a digit that was or was not part of the memory set) was shown either during the 

duration-production or the duration-reproduction phase, and the response to the memory task 

(either positive or negative) was to be issued pressing two different response keys, one for 

probes presented during the production phase or, respectively, the other for probes presented 

during the reproduction phase. Fortin and Rousseau found the reproduced duration to be 

shortened when the memory probe was presented during the production phase, but lengthened 

when it was shown during the reproduction phase. They took this finding to support an 

attention-sharing account (Fortin & Rousseau, 1998; Macar et al., 1994), according to which 

attentional resources are shared between the timing process and other, non-temporal cognitive 

processes. That is, when attention is diverted away from the primary task by other non-temporal 

tasks during the duration encoding phase, perceived duration will be shortened. In contrast, 

when the non-temporal process interferes in the duration reproduction phase, the reproduced 

duration will be lengthened, because of the lapse in the monitoring of the passage of time. It 

should be noted, however, the role of working memory on Bayesian inference of time 

perception has been largely neglected in the literature. Up to date, there is no consensus on the 

question about cognitive load influence in both the sensory estimate and the prior 

representation in terms of their means and variances (Jazayeri & Shadlen, 2010; Shi, Church, 

et al., 2013; Shi & Burr, 2016). Notably, the question how cognitive load impacts the 

uncertainty of the magnitude encoding and prior representation is unknown.  

To explore further whether the central tendency would be differentially influenced by the 

cognitive load on the encoding and reproduction phases in duration judgments, in the thesis we 

conducted a series of experiments using the dual task to identify how cognitive load would 

influence internal prior and the perceived and reproduced duration in both the mean and the 

variability. We hypothesize that increasing cognitive load during the sensory encoding stage 

would not only lead to a general underestimation of the duration (Fortin & Rousseau, 1998), 

but also to decrease the reliability of the estimate, yielding a strong central tendency bias. By 
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contrast, introducing cognitive load during the reproduction stage would lengthen the 

reproduced duration not only to cause an overestimation of reproduction mean, and may also 

increase the variability of the reproduction. However, given that no additional cognitive load 

is imposed on the sensory encoding stage, thus the ‘memory-mixing’ stage would be unaffected 

by the cognitive load introduced during duration reproduction. When cognitive load remains 

high during both the duration production and reproduction phases, the underestimate from the 

production and the overestimate from the reproduction may cancel each other, at least to some 

extent and so we may not be able to observe a general bias. However, increasing the uncertainty 

in the sensory representation may cause a stronger central-tendency effect – a similar pattern 

to that has recently been reported in a non-temporal task (Allred et al., 2016). 

1.3.3 Prior integration in multi-prior temporal context  

Humans have developed efficient and sophisticated sensory processing systems to 

overcome information overload. For example, we can efficiently use ensemble summary to 

represent a set of items or events (Ren, 2020; Whitney & Yamanashi Leib, 2018), and use 

acquired contextual knowledge to compensate uncertainty during perception and improve the 

reliability of sensory estimation (Berniker et al., 2010; Cicchini et al., 2012; Roach et al., 2017; 

Shi & Burr, 2016). The learned contextual knowledge (represented as ‘prior’) is useful given 

that our world is relatively stable such that in most cases the context can quickly guide us for 

a better performance. According to Bayesian inference, the central tendency effect in 

magnitude estimates has been interpreted as the sensory estimates is assimilated to the prior in 

the decision stage (Fritsche et al., 2020; Jazayeri & Shadlen, 2010; Roach et al., 2017; Shi, 

Church, et al., 2013; Westheimer, 2008).  

In time perception, the duration production-reproduction paradigm is widely adopted 

to study how the prior influences time judgment (Shi, Church, et al., 2013; for reviews, see Shi 

& Burr, 2016). For example, Jazayeri and Shadlen (2010) showed that the central tendency 

effect (Vieordt effect) can be explained by assuming integration of a uniform prior with the 

sensory input. Later Cicchini et al. (2012) suggested that a Gaussian prior could also do a good 

job in predicting the central tendency bias. It should be noted that most studies investigating 

the central tendency effect use one single prior with unimodal sensory inputs. Regarding the 

timing system, it remains controversial whether humans use a single central dedicated clock or 

distributed multi-clock systems (Buhusi & Meck, 2009). There is evidence that different 

modalities may have different timing systems (Buhusi & Meck, 2009; Ivry & Richardson, 2002; 
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Paton & Buonomano, 2018). Ample evidence suggests that multiple timing mechanisms exist 

in the brain across and within sensory modalities (Gau & Noppeney, 2016; Heron et al., 2012). 

However, up to date it is not clear if the prior representation of multimodal timing is also 

distributed for different sensory modalities. The question is important given that the prior 

representation, whether modality-specific or modality-independent, could help us understand 

how temporal context is represented in our brain.  

Recent studies have shown that the prior representation might not be like the distributed 

clock systems, each having their own priors. For example, a recent study by Roach et al. (2017) 

showed that spatial separation or modality of two different ranges of durations for the duration 

reproduction task did not yield separate priors. Only when the timing tasks of two separate 

ranges of durations were different (e.g., one for reproduction and one for bisection), they 

observed separated priors. A recent study by Zang et al. (Zang et al., 2022) showed that multiple 

separated priors could only be developed when two ranges (short and long) were clearly 

separable in the range. When two ranges were overlapped, maintaining and updating two 

similar priors could be costly, even though two ranges of durations were modality-specific. 

This is consistent with the results of Roach et al.’s study (Roach et al., 2017) that observers 

formed a unified prior (global prior) by generalizing across the two interleaved stimulus sets 

instead of separate priors for each stimulus set in multi-prior context, and they did not 

distinguish the different stimulus sets in the random interleaving condition even if the stimuli 

used for the two interleaved duration distributions are clearly discriminable.  

In addition to the context of sampled distribution of durations, other contexts may also 

influence duration judgments. For example, auditory duration is often perceived longer than 

the visual duration (Shi, Ganzenmüller, et al., 2013; Wearden et al., 1998). Binary categorical 

cue (Petzschner et al., 2012a) or categorical judgments (Luu & Stocker, 2018) may also 

influence final decision making. For instance, Petzschner et al.(2012b) used overlapping short 

and long distance in a production-reproduction task with three different experimental 

conditions (“blocked-ranges, no cue”, “interleaved range, no cue”, and “interleaved range, cue”) 

and demonstrated two separate priors in the “interleaved range, cue” condition due to the 

presence of the categorical cue (‘Short’ vs. ‘Long’). It then begs the question how those 

different contexts (priors) integrate together with the sensory inputs. Would it be a flat 

integration (i.e., combining priors and sensory inputs linearly) or combined priors and sensory 

inputs in a hierarchical order? If the latter is true, what kind of structure order would be? 

Suppose the internal prior consists of a multi-level structured prior, constituting something like 
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a local-global hybrid prior or a generalization of the global prior and local prior information, 

the question of how Bayesian optimization of time perception by the incorporation of multiple 

priors and sensory measurement into the time estimation process remains unknown. 

Furthermore, the interactive influence between priors in the multi-prior context can be posed 

rigorously. We aimed to extend the basic Bayesian observer model to multi-prior temporal 

contexts, and further uncover the rules governing how learned multiple prior knowledge are 

grouped together. 

1.4 Aims of this thesis 

The goal of the current dissertation is to investigate underlying mechanisms of temporal 

context effect in the framework of Bayesian Inference in subjective interval timing. To tackle 

this issue, classical behavioral investigations and Bayesian modeling are employed. 

In Chapter 2.1, by adopting and modifying the temporal bisection paradigm of Penney’s 

study (2014), three temporal bisection experiments were carried out to investigate the impact 

of ensemble statistics in time perception by manipulations of stimulus spacing, distribution 

means, and variances, in order to identify how the ensemble context modulates performance of 

the bisection task. Hierarchical Bayesian modeling was applied to fit the behavioral data to 

validate if the shape of the interval distribution should be taken into account. 

Subsequently, in Chapter 2.2, inspired by attentional sharing account (Fortin & 

Rousseau, 1998; Macar et al., 1994), by adopting and modifying a dual-task duration 

reproduction, which consists of a secondary visual working-memory task (with low, medium, 

or high load) and a primary duration production-reproduction task, we asked the question about 

how memory load would influence the production and reproduction stages in duration 

reproduction experiment. In addition, taking the impact of cognitive load into consideration, a 

general Bayesian computational framework was proposed and developed, to validate how the 

sensory estimate is integrated with the prior during duration encoding and duration 

reproduction stages. 

Finally, in Chapter 2.3, extending our Bayesian observer model to multiple prior 

temporal contexts by taking global prior knowledge into consideration, the rules governing 

prior integration were further uncovered through investigating the role of multi-prior 

temporal contexts in time perception, to explore hierarchical priors integration process under 

multi-prior context in duration production and reproduction tasks. 
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2 Cumulative Thesis     

The current cumulative thesis is made up of three separate studies: one peer-reviewed 

and published paper (2.1), two manuscripts that have been submitted (2.2-2.3). These three 

studies are included in the following chapter, each of which is followed by a brief statement 

about the contributions of the authors concerned. 

 

2.1 Temporal bisection is influenced by ensemble statistics of the 

stimulus set 
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ABSTRACT 

Although humans are well capable of precise time measurement, their duration judgments are 

nevertheless susceptible to temporal context. Previous research on temporal bisection has 

shown that duration comparisons are influenced by both stimulus spacing and ensemble 

statistics. However, theories proposed to account for bisection performance lack a plausible 

justification of how the effects of stimulus spacing and ensemble statistics are actually 

combined in temporal judgments. To explain the various contextual effects in temporal 

bisection, here we develop a unified ensemble-distribution account (EDA), which assumes that 

the mean and variance of the duration set serve as a reference, rather than the short and long 

standards, in duration comparison. To validate this account, we conducted three experiments 

that varied the stimulus spacing (Experiment 1), the frequency of the probed durations 

(Experiment 2), and the variability of the probed durations (Experiment 3). The results revealed 

significant shifts of the bisection point in Experiments 1 and 2, and a change of the sensitivity 

of temporal judgments in Experiment 3 – which were all well predicted by EDA. In fact, 

comparison of EDA to the extant prior accounts showed that using ensemble statistics can 

parsimoniously explain various stimulus set-related factors (e.g., spacing, frequency, variance) 

that influence temporal judgments. 

 

Keywords: temporal bisection, stimulus spacing, central tendency, ensemble perception 
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INTRODUCTION 

We, humans, have the ability to perceive the passage of time relatively accurately. Our 

sense of time allows us to adapt to and interact with a dynamic external world. As has been 

suggested in classical ‘internal-clock’ models (Gibbon et al., 1984; Treisman, 1963), our ability 

to time (experienced) events in the external world is based on an internal timer. Although there 

is no physical timer in our brain, behavioral studies have shown the internal-clock model can 

explain many empirical findings and predict the key feature of time perception: the scalar 

property (i.e., the Weber scaling). However, more and more evidence show that, even though 

we are well capable of time measurement, we are still prone to biases in our timing that depend 

on both internal states (e.g., mental load, attention, emotional state) and external contexts 

(Allman et al., 2014; Allman & Meck, 2012; Pronin, 2013).  

One prominent contextual bias in time perception, which has been puzzling for more 

than a century and half, is the central-tendency effect: duration judgments are assimilated to 

the center of the sample durations. Thus, for example, when asked to reproduce a series of time 

intervals, participants judge long durations as being shorter and short durations as being longer 

than they actually are. This was first, and accidentally, discovered by Karl von Vierordt 

(Lejeune & Wearden, 2009; Vierordt, 1868), who misused the “method of average error” that 

Fechner had devised by implementing randomization instead of repeated measures (Glasauer 

& Shi, 2018). The central-tendency effect is one classical example showing that the ensemble 

mean derived from long-term memory of sampled stimuli strongly influences perceptual 

judgments. Recent studies have suggested that ensemble statistics can be rapidly computed 

from a set of variant objects or a sequence of events (Alvarez, 2011; Ariely, 2001; Chen et al., 

2018; Whitney & Yamanashi Leib, 2018). For example, we can quickly estimate the average 

size of apples in a basket, or the average tempo of a piece of music. It has been suggested that 

the use of ensemble statistics is beneficial by enhancing the reliability of sensory estimates 

(Alvarez, 2011). With regard to the central-tendency bias, this has been confirmed by Bayesian 

modeling: in duration judgments, for instance, the central-tendency bias is well predicted by 

optimal integration of the sample distribution and the sensory input (Jazayeri & Shadlen, 2010; 

Raviv et al., 2012; Shi et al., 2013; Shi & Burr, 2016).  

While influences of ensemble statistics on time perception have been demonstrated 

mainly in studies of duration reproduction or temporal averaging (Acerbi et al., 2012; Burr et 

al., 2013; Chen et al., 2018; Ren et al., 2020; Zimmermann & Cicchini, 2020), duration context 

plays a critical role in duration comparison (Fründ et al., 2014; Rhodes & Di Luca, 2016; 
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Zimmermann & Cicchini, 2020), such as in the temporal-bisection task. In a typical temporal-

bisection task, participants are given one short and one long duration as standards and they are 

asked to judge whether a given duration is closer to the short or the long standard (Allan & 

Gibbon, 1991; Raslear, 1985). Initially, researchers thought only the short and long standards 

matter in the temporal-bisection task, given that the task is to compare a sample duration to the 

both standards. However, it turned out that the sample durations themselves matter 

significantly (Brown et al., 2005; Penney et al., 2014; Wearden & Ferrara, 1995). For example, 

Wearden and Ferrara (1995) found that with the same short and long standards, a 

logarithmically spaced duration set, as compared to a linearly spaced set, had a lower bisection 

point (the time point that is subjectively equally distant to the short and long standard) – an 

effect that has been referred to as ‘spacing effect’. The main account for the spacing effect 

holds that the temporal-bisection task does not really involve comparing a sample duration to 

the short and long standards, but rather to a reference point M somewhere near the geometric 

or the arithmetic mean of the two standards (Wearden & Ferrara, 1995). Brown and colleagues 

(2005) subsequently found that using one reference point is not sufficient to explain the 

contextual bias. Rather, other factors, in particular the rank of the duration in the sampled set, 

do also matter, that is: the same duration in two different sets (with the same short and long 

standards) led to different bisection points when the order (percentile) of the duration in the 

two sets was different. Drawing on ‘Range Frequency Theory’ (RFT; Parducci, 1963) to 

combine the two factors of the relative range and the order of the sampled durations, Brown et 

al. (2005) proposed that the subjective judgment of a given time interval change is based on 

the weighted average of its range position (i.e., how far it is from the short and long standards) 

and its rank order in the distribution. Although temporal RFT (TRFT; Brown et al., 2005) 

successfully captures the biases in the temporal-bisection task, it still lacks a plausible 

theoretical explanation of how we actually process ranks and allocate weights to the relative 

range position and the relative rank. This approach would require observers to store individual 

durations and their relative orders in the set, which becomes extremely difficult, if not 

impossible, when the set size increases, and even worse when the same duration may be 

perceived differently across trials.  

One possible alternative, and straightforward, account might be that instead of storing 

individual durations to calculate their orders, observers use ensemble statistics from a longer-

term memory of the sampled durations (Cicchini et al., 2012) to estimate the M-reference (i.e., 

bisection point) in the bisection task. Remembering individual items is difficult, whereas 

representing ensemble statistics is quick and intuitive (Alvarez, 2011; Ariely, 2001). Use of 
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ensemble representations has been shown for various types of features, such as the average 

speed of moving objects (Watamaniuk & Duchon, 1992), the average size of objects (Marchant 

et al., 2013), and the average emotional (facial) expression of a crowd of people (Haberman & 

Whitney, 2009). Given the limited capacity of attention and memory we have to consciously 

identify and remember the plethora of objects and events we continually encounter, ensemble 

representations provide us with a ready means to bolster our perceptual experience (for reviews, 

see Cohen et al., 2016; Whitney & Yamanashi Leib, 2018). In the temporal domain, it has been 

shown that people can learn ensemble statistics of time intervals up to the third central moment 

(i.e., mean, variance, and skewness) and use these statistics in their decision-making (Acerbi 

et al., 2012). Thus, in the temporal-bisection task, observers likely compare a perceived 

duration to the ensemble representation of the sampled distribution, rather than storing (and 

adjusting) individual ranks for later comparison. That is, acquiring the ensemble statistics of 

the test intervals, observers make bisection judgments according to the location of a given test 

interval within the learnt distribution. We refer to this as the ‘Ensemble-Distribution Account’ 

(EDA). 

One strong difference of EDA to previous proposals (e.g., the spacing account) is that 

EDA takes the shape of the distribution into account in making bisection decisions. 

Accordingly, EDA would predict a shift of the bisection point when the shape of the 

distribution changes while the spacing of the probe durations remains the same. In addition, 

EDA would predict the variance of the ensemble statistics to influence the difficulty of 

temporal judgment (measured by the slope of the psychometric curve). On these grounds, we 

conducted three experiments to test the predictions of the ensemble-distribution account. 

Specifically, Experiment 1 was designed to examine for the shift of the bisection point in sets 

with positively skewed (PS) versus negatively skewed (NS) spacing. In this regard, EDA makes 

the same prediction as, and so would be indistinguishable from, the spacing and TRFT accounts. 

Experiment 2 further examined the bisection task with equally spaced durations under two 

skewed frequency-distribution sets (see Figure 1 for details): ascending frequency (AF) and 

descending frequency (DF). Given that the two sets have different ensemble means, we 

expected EDA to be able to predict, and account for, the difference in bisection points between 

the two conditions. Finally, Experiment 3 manipulated the variability of the sample 

distributions while keeping the mean of the distributions the same, by introducing a U-shaped 

and an inverted T-shaped set, with the former having a greater variance than the latter. 

According to EDA, the variance would influence the difficulty of the bisection (reflected in the 

JND), rather than the bisection point (reflected in the PSE). Additionally, we applied 
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hierarchical Bayesian modeling to the behavioral data according to various assumptions of how 

temporal bisection may be performed. The aim of the model fitting and comparison was to look 

at the data patterns obtained in the three experiments with respect to the manipulations of 

stimulus spacing, distribution means, and variances, to identify the best possible account of 

how the ensemble context modulates performance of the bisection task. 

METHODS 

Participants 

Forty-five university students with normal hearing took part in three experiments (15 

each in Experiments 1, 2, and 3; 25 females; mean age: 25.5 years). The sample size was 

determined based on the prior study of (Penney et al., 2014). Although they did not report effect 

sizes, we calculated 𝜂)= 0.27 based on their report of a one-way ANOVA test for the auditory 

condition. With α = .05, 1 – β = .85, and a within-subject (repeated-measures) ANOVA design, 

the sample size required for replicating this effect is 9 observers. Taking a conservative 

approach, we opted for a sample size of 15 participants. All participants gave written consent 

according to the institutional guidelines prior to their participation and were paid 9 Euro per 

hour for their service. The study protocol was approved by the LMU Faculty of Pedagogics & 

Psychology Ethics Board. All participants were naive as to the purpose of the study.  

Stimuli and apparatus 

The experiments were conducted in a sound-reduced and moderately lit test room. 

Stimuli were generated by Psychtoolbox-3 (Kleiner et al., 2007) based on MATLAB R2014a 

(The MathWorks Inc). Auditory stimuli were generated by PsychPortAudio on a HP ProDesk 

computer and presented through the loudspeakers. Participants gave their responses by pressing 

the left or right arrow keys on the keyboard. Experimental instruction and feedback information 

were presented on a CRT monitor.   

Procedure 

We adopted the bisection task in all three experiments. Participants were familiarized 

with the task in two practice blocks prior to the main experiment (56 trials per block in 

Experiments 1 and 2; 72 trials per block in Experiment 3). The practice blocks involved the 

same procedure as the experiments proper, except that (i) all test intervals were uniformly 
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distributed (i.e., equally frequent), whereas the two distributions compared and contrasted in 

the formal Experiments 2 and 3 were non-uniform; and (ii) response feedback, referenced to 

the average of the short and long standards (see next paragraph), was provided on each trial, 

whereas no feedback was given in the formal experiments. Note that in Experiment 1, the 

intervals presented during practice had the skew inherited from the duration spacing in the 

formal experiment (see subsection ‘Experiment 1’ below for details), but the feedback 

reference was the same for all practice trials. Thus, if there were any effects of the training 

conditions in the practice blocks– in particular, assimilation of the PSE to the (common) 

feedback reference or sharpening of the psychometric curve – they would be the same for the 

two conditions that we manipulated in the experiment proper and so work against finding the 

predicted differential effects between the two conditions in the formal experiment. Thus, any 

differential effects we observe are unlikely confounded by practice effects.  

A trial started with a visual fixation marker and a brief beep (20 ms, 1000 Hz, 60 dB), 

followed by a blank display of 500 ms, prompting participants to get ready for a new trial. Next, 

a white-noise stimulus (60 dB) was presented for a given duration randomly selected from a 

predetermined set, ranging from 400 to 1600 ms (seven test intervals in Experiments 1 and 2, 

eight intervals in Experiment 3; see next paragraph for details). Immediately following the 

offset of the white-noise stimulus, a display with a question mark (“?”) was shown prompting 

participants to indicate whether the duration of the stimulus was closer to the short standard or 

the long standard, by pressing the left or the right arrow key, respectively. In the practice block, 

participants received feedback after their responses, that is: either “The presented interval was 

close to the short standard” or, respectively, “... close to the long standard”, depending on 

whether the interval was shorter or longer than the average of the short and long standards. 

When the test interval coincided with the mean of the short and long standards (1000 ms in 

Experiment 2), a random feedback (50% “... close to the short standard” and 50% “... close to 

the long standard”) was given. In the formal experiment, participants received no feedback 

regarding their responses. After a blank interval of 900 to 1100 ms, the next trial began.  

Experiment 1. For better comparison, the sets of intervals introduced in Experiment 1 

were similar to the set used in the (Penney et al., 2014) study, in which logarithmic spacing of 

durations between the short and long standards was applied. As depicted in Figure 1a, the seven 

durations used in the positively skewed (PS) session were 400, 504, 636, 800, 1008, 1270, and 

1600 ms, and in the negative skewed (NS) session 400, 730, 992, 1200, 1366, 1496, and 1600 

ms. Each duration was repeated 48 times in the session (i.e., the durations were distributed 
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uniformly), and the seven durations were presented randomly intermixed within each session. 

Each participant completed two sessions, each consisting of six blocks of 56 trials. The order 

of sessions was counterbalanced (as well as possible) across participants.  

 

 
Figure 1 Sample distributions used in Experiments 1, 2, and 3. (a) Two spacing conditions 

used in Experiment 1: in the positively skewed session (PS), the intervals are spaced 

logarithmically between 400 and 1600 ms, with a mean of 888 ms and a standard deviation 

(SD) of 401 ms; in the negatively skewed session (NS), the intervals follow a mirrored 

logarithmic spacing, with a mean of 1112 ms and a SD of 401 ms. (b) Two sample-frequency 

conditions for the seven equally spaced intervals (400, 600, 800, 1000, 1200, 1400, 1600 ms) 

used in Experiment 2: the descending frequency (DF) session has an (arithmetic) mean of 800 

ms and a SD of 347 ms; the ascending frequency (AF) session has the mean of 1200 ms and a 

SD of 347 ms. (c) Two types of sample-frequency conditions for the eight equally spaced 

intervals (400, 550, 700, 850, 1000, 1150, 1300, 1450 ms) used in Experiment 3: the U-shaped 

session has a mean of 925 ms and a SD of 491 ms; the inverted T-shaped session has a mean 

of 925 ms and a SD of 175 ms. 

 

Experiment 2. Two types of sample-frequency distributions were tested in separate 

sessions: a descending sample frequency (DF) and an ascending sample frequency (AF), as 

depicted in Figure 1b. In the AF session, the sample frequencies were (1/28, 2/28, 3/28, 4/28, 
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5/28, 6/28, 7/28) for the intervals (400, 600, 800, 1000, 1200, 1400, 1600 ms); the DF session, 

the sample frequencies were reversed. There were six blocks of 56 trials in each session.   

Experiment 3. Eight intervals between 400 and 1450 ms (400, 550, 700, 850, 1000, 

1150, 1300, and 1450 ms) were used in Experiment 3. Two types of sample frequencies were 

implemented: a U-shaped distribution and an inverted T-shaped distribution (see Figure 1c). In 

the U-shaped sampling session, the presentation frequencies of durations (400, 550, 700, 850, 

1000, 1150, 1300, and 1450 ms) were (30/72, 2/72, 2/72, 2/72, 2/72, 2/72, 2/72, 30/72), 

respectively; in the inverted T-shaped sampling session, the frequencies were (2/72, 2/72, 2/72, 

30/72, 30/72, 2/72, 2/72, 2/72) for the same durations. The two types of sample distributions 

have the same arithmetic mean, but they differ in their variability. There were four blocks of 

72 trials in each session. The order of the test intervals was randomized within each session, 

and the order of the sessions was counterbalanced (as well as possible) across participants. 

Statistical Analysis 

R package Quickpsy (Linares & López-Moliner, 2016) was used to fit psychometric 

functions and calculate the points of subjective equality (PSE, here the bisection point) and the 

just noticeable differences (JNDs). We used the cumulative Gaussian function as the 

psychometric function and the standard deviation of the estimated function as the JND (i.e., the 

difference between the thresholds at 50% and 75%). All statistical tests were conducted using 

repeated-measures ANOVAs – with additional Bayes-Factor analyses to comply with the more 

stringent criteria required for acceptance of the null hypothesis (Kass & Raftery, 1995; Rouder 

et al., 2009).  

 

RESULTS 

Spacing effect in distributions with different ensemble means (Experiment 1) 

 The psychometric functions, depicting the relation between the proportion of ‘long’ 

responses and the test durations, are illustrated in Figure 2a. By visual inspection, participants 

made more ‘long’ responses in the PS session. This was confirmed by an analysis of the PSEs: 

as depicted in Figure 2b, the mean PSEs (±standard error, SE)  for the PS and NS sessions 

were 842 (±38) ms and 934 (±40) ms, respectively. A repeated-measures ANOVA revealed 

this effect of the spacing condition to be significant, F(1, 14) = 21.141, p < .001,	𝜂)= .0943, 
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BF = 47.4. Thus, Experiment 1, which used the similar stimulus settings and procedure as 

Penney et al. (2014), replicated their spacing effect, as expected (Brown et al., 2005; Penney 

et al., 2014). 

  

 
Figure 2  Results of Experiment 1. a. Bisection functions (proportions of 'long' responses 

plotted against the comparison durations, and fitted psychometric curves) averaged across 15 

participants for the two, positively (PS) and negatively skewed (NS), stimulus-spacing 

conditions. b. Boxplots of PSE of the duration judgments for the PS and NS sessions (*** 

p<.001). The dots depict individual PSEs estimated from individual participants. Lower and 

upper tips of the vertical lines correspond to minimum and maximum values, the box represents 

the interquartile range (between 25 and 75%) and the horizontal line represents the median. c. 

Boxplots of JND of the duration judgments for the PS and NS sessions (* p<.05). The dots 

depict individual JNDs of individual participants.  

 

As shown in Figure 2c, the mean JNDs (±SE) were 116.8 (±9.7) ms for the PS and 

134.1 (±9.4) ms for the NS distribution. A repeated-measures ANOVA revealed the difference 

to be significant, F(1, 14) = 5.755, 𝑝 = .031, 𝜂) = 0.059, 𝐵𝐹 = 2.10. The larger JND in the NS 

versus the PS condition is likely attributable to Weber scaling in the perceived durations. 

Subjective time is known to roughly follow Weber’s law (i.e., it exhibits the scalar property), 

with longer durations showing larger variability of the subjective estimates than shorter 

durations (Gibbon, 1977; Wearden & Lejeune, 2008). As there were more longer durations in 

the NS session than in the PS session (see Figure 1a), the uncertainty in the NS session was 

likely higher, giving rise to the increased JNDs relative to the PS session.  



 
 23 

Shifts in BPs are associated with ensemble mean but not with spacing information 

(Experiment 2) 

In Experiment 2, distributions of descending frequency (DF) and ascending frequency 

(AF) were generated for the same set of durations with equal spacing (step of 200 ms). The 

arithmetic mean was 800 ms in the DF condition, versus 1200 ms in the AF condition. Figure 

3a depicts the average psychometric curves for the two (DF and AF) conditions, showing a 

marked shift in the location of the bisection points: the mean PSE (±SE) was 997±45 ms for 

the AF condition and 821±37 ms for the DF condition (see Figure 3b). This difference was 

significant (repeated-measures ANOVA on the PSEs: 𝐹(1,14) = 	26.83 p < .001,	𝜂) = .263, 

BF = 222.0). That is, compared to the AF condition, the DF condition was associated with an 

increased probability of ‘long’ responses, the latter consisting of relatively more short intervals 

and thus having a relatively shorter arithmetic mean of the stimulus set (which serves as a 

reference for the bisection). According to EDA, temporal bisection essentially involves a 

comparison of a given duration to the estimate of the ensemble mean. Thus, compared to the 

AF set, the relatively shorter ensemble mean in the DF set would lead to more ‘long’ responses. 

 

 
Figure 3 Results of Experiment 2. a. Bisection functions (proportions of 'long' responses 

plotted against the comparison durations, and fitted psychometric curves) averaged across 15 

participants for the two, descending-frequency (DF) and ascending-frequency (AF), duration-

distributions conditions. b. Boxplots of PSE of the duration judgments for the DF and AF 

conditions (*** p < .001). The dots depict individual PSEs estimated from individual 
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participants.  c. Boxplot of JND of the duration judgments for DF and AF conditions (** p 

< .01). The dots depict individual JNDs of individual participants. 

 

As shown in Figure 3c, the mean JNDs were 108 (±22.7) ms for the DF condition and 

138.8 (±28) ms for the AF condition, with the difference being significant (repeated-measures 

ANOVA: F(1,14) = 15.38, p < .01, 𝜂) = .027, 𝐵𝐹 = 17.82). Similar to Experiment 1, the 

frequency distribution with more long durations (here the AF session) had a larger JND than 

the distribution with more short durations. Again, this was likely due to unequal Weber scaling 

in the two sets: the uncertainty induced by the long durations was more prominent in the AF 

(as compared to the DF) session, further pointing to the influence of ensemble statistics in 

duration comparison.  

Sensitivity of temporal judgment is driven by ensemble variance (Experiment 3) 

Experiment 3 was designed to examine whether performance on the temporal-bisection 

task would be affected by the variance of the contextual stimulus set. Accordingly, the 

distributions of the stimulus set (both with equal spacing of the interval durations) had the same 

mean, but they differed in their variance. Figure 4a depicts the psychometric functions averaged 

across 15 participants for each stimulus set condition: U-shaped and inverted T-shaped 

frequency distribution. Consistent with the prediction of EDA, the two psychometric curves 

cross each other at the 50% threshold, while having different slopes. As depicted in Figure 4b, 

the mean PSEs (±SE) were comparable: 863 (±31.5) ms and 864 (±26.5) ms for the U-shaped 

and inverted T-shaped distributions, respectively (repeated-measures ANOVA: F(1,14) = 

0.001, p = 0.97, 𝜂)= .000026, BF = 0.331, with the BF value providing strong evidence in 

favor of the null hypothesis). The absence of a difference in the PSEs between the U-shaped 

and inverted T-shaped distributions in this experiment, combined with findings from 

Experiments 1 and 2, suggests that the shift in PSEs was driven mainly by the ensemble mean, 

not the ensemble variance. 

In contrast, as can be seen from Figure 4c, there was a marked difference in the JNDs 

between the two conditions, with mean JNDs of 111.75 (±11) ms for the U-shaped and 86.37      

(±8) ms for the inverted T-shaped distribution. A repeated-measures ANOVA revealed the 

difference to be significant: F(1, 14) = 9.171, p < .01, 𝜂)= .117, BF = 5.96.  
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Figure 4 Results of Experiment 3. a. Bisection functions (proportions of 'long' responses 

plotted against the comparison durations, and fitted psychometric curves) averaged across 15 

participants for the two, U-shaped and inverted T-shaped, frequency-distribution conditions. 

b. Boxplots of PSE of the duration judgements for the U-shaped and inverted T-shaped 

frequency distributions. c. Boxplots of JND of the duration judgments for the U-shaped and 

inverted T-shaped frequency distributions (**p < .01). 

 

Following the prediction of EDA, we expected a significantly steeper slope (i.e., a 

smaller JND) with the inverted T-shaped, as compared to the U-shaped, frequency distribution, 

given that the variance was smaller in the former than in the latter. In addition to the variance 

of the set, the Weber scaling of the longest duration may also contribute to the large variance 

in the U-shape condition, similar to the differences in JNDs that we observed in Experiments 

1 and 2. 

MODELING 

To compare different models of the temporal-bisection task, we applied Bayesian 

hierarchical modeling (Lee & Wagenmakers, 2014) to our behavioral data, with correspondent 

assumptions about how the task is performed. The framework of the hierarchical model is 

illustrated in Figure 5. For a given duration 𝑋*
(,)  in condition 𝑖 , we assume the bisection 

response follows the binomial distribution for the probability of the ‘long’ response 𝑝*
(,). The 

probability 𝑝*
(,) is determined by the ratio comparison of probe duration 𝑋*

(,) and the bisection 

point 𝑋./
(,) according to the following psychometric relation: 
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where 𝛼(,)  and 𝛽(,) are two psychometric parameters. The left side of the equation is the 

decision variable expressed in the log-likelihood of the two alternative (“Long” vs. “Short”) 

responses, while the right side assumes the comparison is based on the ratio 1$
1()

. The ratio 

comparison on a linear scale is equivalent to the subtraction comparison on the internal log-

scaled representation, which conforms to Weber scaling (i.e., the scalar property). The 

assumption of a logarithmic scale for internal duration representation is common in theories 

and models of duration judgments (Petzschner et al., 2015; Ren et al., 2020; Roach et al., 2017; 

Wearden, 1991). The equation implies that the decision variable is a linear function of the ratio 

comparison. The coefficient 𝛽(,)  reflects both the sensitivity of the ratio comparison and a 

potential central-tendency bias (which makes the slope of the psychometric function shallower) 

for individual participants, in a given condition 𝑖 . In Bayesian hierarchical models, the 

parameters 𝛼(,)  and 𝛽(,)  are assumed to follow Gaussian distributions with the respective 

hyper-parameters (𝜇2 , 𝜎2) and )𝜇3 , 𝜎3*. In addition, EDA assumes that the distribution of 

decision sensitivity 𝛽(,) is Gaussian with a mean proportional to the reciprocal of the relative 

spread of the test durations, that is:  𝑁 E𝑘 ⋅ 4
&*
, 𝜎3H , where 𝜇  and 𝜎1 are the mean and, 

respectively, the standard deviation of the test durations, and 𝑘 is a scaling factor. In other 

words, narrower sample distributions would enhance the sensitivity of the bisection task. It 

should be noted that, as implemented, our EDA model uses the veridical spread of the sampled 

duration 𝜎1, disregarding the subjective Weber scaling in the perceived ensemble variability 

𝜎 ′1; but the framework can be easily extended to the subjective scale.  
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Figure 5 The framework of the hierarchical model. a. A psychometric function with bisection 

point 𝑋./ . b. Schematic illustration of the hierarchical model of temporal duration judgments 

(see text for details). 

The main difference among the various models, ranging from the simple bisection 

model to EDA, is how the critical reference 𝑋./
(,) (reference M in Wearden & Ferrara, (1995)) 

is used in the bisection task (see Table 1). The simple bisection model assumes the comparison 

is made either between the ratios 1+
1

 and 1
1,

 or between probe 𝑋  and the arithmetic-mean 

duration 1,'1+
5

; that is, essentially the comparison is made to either the geometric mean (GM) 

or the arithmetic mean (AM) of the standard durations. From their meta-analysis of 148 

experiments, Kopec and Brody (2010) concluded that it remains controversial whether the 

bisection point is close to the GM or AM. The bisection point is influenced by a number of 

factors, including the short-long spread (i.e., the Long/Short ratio) and the probe context. The 

spacing account, for example, assumes the comparison reference is the arithmetic mean of the 

whole probe durations, each of which is equally frequent by design (Penney & Cheng, 2018). 

The TRFT account (Brown et al., 2005; Penney et al., 2014), on the other hand, assumes that, 

rather than being veridical, subjective duration is an average of two components, namely: the 

relative position of a sampled duration in-between the short and long standards and the ordinal 

position of the duration within the sample durations. The proportion of ‘long’ responses to a 

sampled duration is then based on a comparison between its calculated relative position and 

the short and long standards. Accordingly, the estimated temporal bisection point 𝑋./
(,)  lies 

roughly between the mean of the sample distribution and the arithmetic mean of the short and 

long standards. We simulate this using the ensemble-mean model, that is: 𝑋./
(,) is the mean 

(either the GM or the AM) of the sampled distribution. Given that the mean of the sample 
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distribution is not a fixed parameter known to participants, but rather updated dynamically over 

the course of the trials, we further propose that the bisection reference (𝑋./
(,)) is also a variable 

that fluctuates from trial to trial, while being centered around the geometric or the arithmetic 

mean of the sampled distribution. We refer to this as the two-stage ensemble-mean model (see 

Table 1). The EDA model goes one step further, by incorporating the variance of the 

distribution into bisection decisions, that is: the slope of the psychometric function (𝛽) is 

inversely related to the relative spread of the ensemble distribution (&*
4

, see Table 1). EDA 

predicts that increasing the variability of the test durations would decrease the bisection 

sensitivity when the mean of the test range is fixed. Moreover, given that EDA (see Eq. 1) 

conforms to Weber scaling (Jozefowiez et al., 2014; Kopec & Brody, 2010; Wearden & 

Lejeune, 2008), 𝛽 would remain unchanged when the ratio of the mean and standard deviation 

of the test durations is kept constant. 

Table 1. Models and model assumptions about the comparison reference 𝑿𝑩𝑷 and decision sensitivity  

Models Reference 𝑿𝑩𝑷 Decision sensitivity 𝜷 

Simple Bisection model 
AM: 𝑋/0 = (𝑋1 + 𝑋2)/2 

GM: 𝑋/0 = )𝑋1𝑋2 

N.a. 

 

Spacing model AM: 𝑋/0 	=
3
4
∑𝑋5  N.a. 

GM: 𝑋/0 = )𝛱𝑋5!  

Ensemble-mean model AM: 𝑋/0 =	
1
67"

∑𝑓5𝑋5 	 constant* 

GM: 𝑋/0 =	 .𝛱	/𝑋50
7"

#$"	

 

Two-stage ensemble-
mean model 

AM: 𝑋/0 ∼ 𝑁(𝜇, 𝜎),  𝜇 = 	
1

𝛴𝑓𝑗
∑𝑓𝑗𝑋𝑗   

constant 

GM: 𝑋/0 ∼ 𝑁(𝜇, 𝜎),  𝜇 = 	 I𝛱	)𝑋𝑗*
𝑓𝑗

𝛴𝑓𝑗	

  

Ensemble-distribution 
account (EDA) 

AM: 𝑋/0 ∼ 𝑁(𝜇, 𝜎),  𝜇 =
1

𝛴𝑓𝑗
∑𝑓𝑗𝑋𝑗	  
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GM: 𝑋/0 ∼ 𝑁(𝜇, 𝜎),  𝜇 = 	 I𝛱	)𝑋𝑗*
𝑓𝑗

𝛴𝑓𝑗	

   𝛽 ∼ 	𝑁 J𝑘 ⋅
𝜇

𝜎𝑋
, 𝜎𝛽K 

Note. * TRFT model (Brown et al., 2005; Penney et al., 2014) used the percentile to approximate the subjective 

magnitude, and then applied ratio comparison between the perceived magnitude to the short and long standards, 

which implicitly incorporates some degree of variance of the distribution in the bisection decision.    

Based on those assumptions, we fitted the above five models to our data and estimated 

the corresponding psychometric functions, PSEs, and JNDs for each participant. We applied 

the AM and GM as 𝑋./
(,) in all models. The simple bisection model and the spacing model 

lowered the PSE with the GM relative to the AM, while both the two-stage ensemble-mean 

model and the EDA model yielded very close predictions with both the GM and the AM (the 

relative mean difference between the two predictions of the PSEs |/78=>0/78?>|
/78@A#

was less than 

2%), owing to the trial-by-trial variation rendering the small difference between the GM and 

AM of little effect in the hierarchical model. Overall, EDA outperformed all other models (see 

below), whether incorporating the AM or GM variant. Given this, here we consider only the 

models with the AM. To visually compare the various models with regard to their respective 

predictions of the PSEs and JNDs, we plotted their mean predictions with individual estimates 

in Figure 6. The spacing model and the ensemble-mean model made the same prediction for 

the spacing manipulation in Experiment 1 (PS vs. NS), given that the sampled durations were 

weighted equally (shown overlapped in the left panel of Figure 6). Both, however, 

underestimated the PSE and JND in the PS condition (more short durations), and overestimated 

the PSE and JND in the NS condition (more long durations). This suggests that the bisection 

point (BP) was assimilated to the mean of the skewed distribution, though only partially. By 

contrast, the two-stage ensemble-mean model and the EDA model provided a very close 

prediction to the observed PSEs in Experiment 1. In addition, the EDA model (but not the two-

stage ensemble-mean model) predicted the mean JNDs. The main difference between the two-

stage ensemble-mean (and EDA) model(s) and the ensemble-mean model is that the former 

assumes random trial-to-trial fluctuations of the ensemble mean, thus potentially incorporating 

a partial range effect in the decision (i.e., assimilation to the arithmetic mean). The ensemble 

means were more extreme in the DF and AF conditions in Experiment 2 as compared to 

Experiment 1, deviating greatly from the observed PSEs (see the middle panel in Figure 6). 

This suggests that the mean of the distribution was not the sole factor determining the bisection 
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judgments. Again, by having the reference (i.e., bisection point) vary across trials, both the 

two-stage ensemble-mean model and the EDA model well predict the observed PSEs. 

Incorporating the variance of the distribution in the bisection decision, the EDA model was 

able to predict the JNDs across all six different sets, indicating that the second moment of the 

ensemble statistics (i.e., variance) does influence performance of the bisection task.  

 

Figure 6 Observed PSEs and JNDs and mean predictions from the models compared. PSE-

JND pairs from individuals are plotted in gray dots, and their means are shown in large dark 

dots. The mean predictions of PSE-JND pairs and their PSEs from the five models are marked 

with colored error bars. Note that the predictions of the spacing model and the ensemble-mean 

model were the same (overlapped in the figure) for the PS and NS sets (the left panel), given 

that the sampled durations were equally weighted. Due to the equal spacing in the DF, AF, U-

shaped, and IT-shaped sets, the bisection and the spacing models made the same predictions 

(overlapped in the figure).  The predictions from the EDA model came the closest to the mean 

of the observed PSE-JND pairs across all six sets. 
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Figure 7 Scatterplot of prediction errors in the PSEs and JNDs derived from the five models 

for individual observers across the six duration sets presented in Experiments 1–3 (see Figure 

1). Perfect predictions are located at the center (0,0). The average prediction errors of the six 

conditions of the EDA model were the smallest.  

 

To obtain a better picture of the model predictions at the level of individual observers, 

we plotted the prediction errors (predicted vs. observed values) in PSEs versus JNDs in Figure 

7. Each point represents the errors in PSE and JND estimation, per individual participant, 

derived from a specific model of the five models compared. As can be seen from Figure 7, the 

scatter points of the EDA model are centered nearer to the origin of the XY coordinates 

compared to the points of the other models, indicating that the PSEs and JNDs predicted by 

EDA come closest to the mean of the observed values, across all three experiments. This 

observation is supported by measures of the Euclidean distances of the model predictions from 

the observed PSE-JND pairs: the mean distances were 68.4, 68.1, 75.2, 16.7, 11.9 ms for the 

simple bisection, spacing, ensemble mean, two-stage, and EDA models, respectively. Formal 

corroboration of the superiority of EDA is provided by ‘goodness-of-fit’ measures of the 

predicted psychometric curves using the Watanabe-Akaike information criterion (WAIC). The 

WAIC is a measure of the quality of a hierarchical model, which takes into account the 
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goodness-of-fit, as measured by the likelihood, while also penalizing models with more free 

parameters (Vehtari et al., 2017). Lower WAIC values indicate better model performance. The 

mean WAICs for the predicted ‘long’ responses across all test durations were 77.2, 92.7, 104.6, 

76.7, and 72.1 for the simple bisection, spacing, ensemble mean, two-stage, and EDA models, 

respectively. That is, across all conditions, the EDA model provides the best fit for both the 

PSEs and the JNDs, evidenced by the fact that the WAIC for the EDA model was the smallest 

in all cases. 

GENERAL DISCUSSION 

In the present study, we tested six different duration sets, with set properties varying in 

stimulus spacing, set mean, and set variance in three experiments, to investigate whether 

temporal-bisection judgments would be best explained by our ensemble-distribution account 

(EDA). Experiment 1 demonstrated that the skewness of unequal spacing significantly shifted 

the bisection point, confirming previous findings (Brown et al., 2005; Penney et al., 2014; 

Wearden & Ferrara, 1995). Given that the short and long standards were identical in the two 

(positively skewed, PS, and negatively skewed, NS) sets, the finding of differential PSEs 

between the PS and NS conditions argues against the simple bisection account, irrespective of 

whether it assumes the arithmetic or the geometric mean of the standards as reference. 

Experiment 2 further demonstrated that the frequencies of the sampled durations greatly 

impacted the bisection point, even when the probe durations were equally spaced in the 

ascending-frequency (AF) and descending-frequency (DF) sets. The spacing account fails to 

predict this effect. Experiment 3 kept the spacing of the durations and the mean of the sets the 

same for the U-shaped and inverted T-shaped sets, but varied their variances (larger variance 

for the U-shaped set). The results revealed the variance of the set to influence the sensitivity of 

temporal bisection, reflected in differential JNDs (despite the equivalent set means). While 

previous accounts failed to predict the PSEs and JNDs in one set or another, the EDA model 

successfully accounted for the shifts of the PSEs and JNDs in all six sets examined. The results 

of model-fitting analyses also showed the EDA model to provide the best account of the data. 

Temporal bisection and related accounts 

The temporal-bisection task was first developed in research on animal timing (Gibbon, 

1977; Gibbon et al., 1984) and later adapted to studies on human timing (Allan & Gibbon, 1991; 

Wearden, 1991). The focus of the initial studies on temporal bisection was on how humans and 
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other animals make interval comparisons (rather than on context-dependent manipulations of 

the bisection point). Accordingly, the early work implicitly assumed that the interval 

comparison in temporal bisection depends only on the probe stimulus (𝑡) and the short (S) and 

long (L) standards (e.g., Allan & Gibbon, 1991). Later studies, however, revealed that temporal 

bisection is sensitive to the probe context. Logarithmic versus linear spacing of the probe 

durations often resulted in different bisection points, even though the short and long standards 

remained the same (Brown et al., 2005; Penney et al., 2014). This raised the question as to the 

temporal reference to which observers actually compared a given probe duration. Using various 

spacing manipulations to probe for shifts of bisection points, Wearden and Ferrara (1995) 

suggested that observers likely compare the probe duration 𝑡 to a reference 𝑀, rather than with 

𝑆 and 𝐿, where 𝑀 lies somewhere in-between the geometric and arithmetic mean of the 𝑆 and 

𝐿. While this M-reference proposal could qualitatively explain the shifts of the bisection points, 

it falls short of quantitatively predicting the influence of the sampled distribution. Subsequently, 

Brown and colleagues (2005) developed the TRFT model based on the ‘range frequency 

theory’, arguing that the subjective measure of a given probe duration (𝑡 ′) is influenced by its 

temporal position within the sample range and its percentile in the distribution. The TRFT 

model still considers temporal-bisection judgments to involve a ratio comparison between 7
9B

 

and 9
B

:
, where S and L are veridical. It should be noted that the TRFT model assumes that 

observers can retrieve the ordinal (rank) position of the probe duration (i.e., percentile), which 

logically requires a representation of the full ordered sequence of the durations. Building up 

such a representation would be very memory-intensive and thus quite unlikely with a large set 

of durations. By contrast, Wearden and Ferrara’s M-reference model (1995) only requires an 

estimation of M across all trials, which is computationally less intensive. Here we adopted the 

M-reference approach to compare various models, assuming that temporal-bisection judgments 

are made by comparing the probe 𝑡  to a bisection point 𝑋./ , with the 𝑋./  being context-

sensitive. The model comparison revealed that the best fit is provided by the EDA account, 

which assumes that the bisection point is derived from the ensemble mean with trial-to-trial 

random variation. Given that the ensemble statistics are not known prior to the experiment, but 

rather updated dynamically from trial to trial, EDA, as well as the two-stage ensemble-mean 

model, can capture the dynamic adaptation of the bisection point, making them outperform the 

other models. 
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The assumption that the bisection point is sensitive to context does not rule out that 

subjective measures of individual probe durations themselves are modulated by the context. In 

fact, perceived durations are known to be subject to the central-tendency effect (Lejeune & 

Wearden, 2009; Shi et al., 2013). However, the central-tendency effect only assimilates 

individual durations toward the ensemble mean, which could degrade the sensitivity of the 

bisection task (given that the subjective distance to the mean is shortened), while leaving the 

bisection point unaffected. In other words, the bisection point is insensitive to the central-

tendency effect. Given this and for the purpose of simplicity, we did not explicitly incorporate 

the central-tendency effect in our modeling (though it was an implicit factor influencing the 

general free parameter 𝛽; see the modeling section and Eq.1).  

One strong prediction deriving from EDA, which sets it apart from the other accounts, 

is that the variability of the sampled distribution influences the sensitivity of bisection 

judgments, as corroborated empirically in Experiment 3. The duration set with the inverted T-

shaped distribution had a lower variability compared to the U-shaped set, which led to the 

psychometric curve becoming steeper. The reason is that the ensemble representation of the 

inverted T-shaped distribution would be narrower than that of the U-shaped distribution, given 

that ensemble perception incorporates the external statistics. As a result, any probe durations 

that deviate from the ensemble mean would be more likely judged as short or long in the 

inverted T-shaped set than in the U-shaped set.   

Ensemble perception for temporal sequences 

It should be noted that, while previous research on ensemble perception has primarily 

focused on summary statistics of the immediately, or simultaneously, available information, 

such as the average size of a set of objects (Alvarez, 2011; Whitney & Yamanashi Leib, 2018), 

the ensemble perception we refer to here concerns the statistical summary representation that 

is acquired through trial history. Real-world sensory inputs relevant to our behavioral goals do 

not always occur all at once, and we are often exposed to changing characteristics of goal-

relevant objects. For instance, linguistic research has shown that both infants and adults make 

use of statistical computations for deciding which series of sounds establishes a word within a 

nonstop flow of spoken sounds (Newport & Aslin, 2000; Saffran, 2001). In particular, people 

are able to track the regularities in a series, or ‘group’, of sound elements, which render the 

predictiveness of one sound element onto another. For language acquisition and the learning of 

new languages, such probability-based computations provide important rhythmic temporal 



 
 35 

information (i.e., acoustic features such as duration and frequency of speech elements and 

summary statistics of sequences of speech sounds and silent intervals) for parsing the sequential 

sounds in speech. And more recently, Chen and colleagues (2018) showed that humans 

automatically derive the mean interval from a sequence of auditory beeps, which then cross-

modally influences, or ‘patterns’, visual apparent motion. The present findings add to this 

evidence by demonstrating that temporal ensemble perception developed through trial history 

provides the ‘reference’ for duration comparison.  

One might ask why we need ensemble perception in the first place, when temporal tasks, 

such as bisection, can be accomplished with greater precision without the influence of ensemble 

statistics. To answer this question, we need to consider the fundamental roles of ensemble 

perception. The environment we live in does not comprise random objects and events, but 

rather has structure and regularity (Cohen et al., 2016). We are continually confronted with 

abundant information which is beyond our processing capacity. Accordingly, evolutionary 

pressures pushed us to utilize regularity – that is, ensemble-statistical – information to 

overcome the capacity limit (Ariely, 2001; Whitney & Yamanashi Leib, 2018). As a result, 

deriving such ensemble statistics became ‘intuitive’ and automatic. In many situations, using 

intuitive ensemble perception can help us recover unattended events, spot outliers, or make 

predictions. For example, when listening to background music while working, one can rapidly 

spot a change in rhythm even if one’s focus is not on music. Yet, in some instances, implicitly 

using ensemble statistics would give rise to unintended biases, such as the PSE/JND shifts we 

report here. It should be noted that in the bisection task, observers are actually explicitly told 

to compare the probe duration to the Short (S) and Long (L) standard. The reason why 

participants use the ensemble distribution as the reference, rather than S and L, is likely owing 

to the fact that S and L contribute to the ensemble distribution in the same way as the other 

durations (Wearden & Ferrara, 1995). 

The role of variability in ensemble perception 

Previous research on ensemble perception has largely focused on demonstrating 

humans’ ability to accurately estimate mean values from an array of objects or sensory features 

(Whitney & Yamanashi Leib, 2018). However, the variability of the sampled stimuli provides 

useful information about the range, stimulus spacing, and exceptional cases in the data set – 

hence the variance statistic is a key component in ensemble perception. Although processing 

mean information eases the limitations of our perceptual experience by summarizing multiple 
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items or features to an exemplar component (Alvarez, 2011), detecting similarities or, 

respectively, deviations among items is not solely based on the mean information, but may also 

benefit from complementary measures of stimulus range and variance (Haberman et al., 2015; 

Michael et al., 2014; Solomon, 2010). Thus, for example, ensemble variance has been 

suggested to be useful for identifying potential outliers or deviations in a crowd (Whitney & 

Yamanashi Leib, 2018). The results of the present study show that variance information is also 

exploited in temporal judgments: in temporal bisection, the variance of the sample distribution 

provides useful information for discerning the location of a probe duration relative to the 

ensemble mean, thus enhancing temporal sensitivity (as evidenced by the steepness of the 

psychometric curve).  

 

CONCLUSION 

The ensemble context is an important determinant in time perception. The present paper 

reported three experiments in which we manipulated the distribution of auditory duration sets 

to determine factors that influence temporal-bisection performance. The results revealed the 

mean and variance of the stimulus set to be critical factors, producing shifts of the bisection 

point and, respectively, changes of the slope of the bisection curves. These findings 

demonstrate that the human timing mechanism involves an ensemble averaging process which 

works similarly to other perceptual properties in the visual and auditory domains. Moreover, 

we proposed an ensemble-distribution account that explains in which way subjective 

judgments of time intervals vary according to the distribution summary statistics of the set 

mean and variance values.  

 

OPEN PRACTICES  

The data and codes for all experiments are available at 

https://github.com/msenselab/sets_in_bisection. 
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ABSTRACT 

Duration estimates are often biased by the sampled statistical context, yielding the 

classical central-tendency effect, i.e., short durations are over- and long duration 

underestimated. Most studies of the central-tendency bias have primarily focused on the 

integration of the sensory measure and the prior information, without considering any cognitive 

limits. Here, we investigated the impact of cognitive (visual working-memory) load on duration 

estimation in the duration encoding and reproduction stages. In four experiments, observers 

had to perform a dual, attention-sharing task: reproducing a given duration (primary) and 

memorizing a variable set of color patches (secondary). We found an increase in memory load 

(i.e., set size) during the duration-encoding stage to increase the central-tendency bias, while 

shortening the reproduced duration in general; in contrast, increasing the load during the 

reproduction stage prolonged the reproduced duration, without influencing the central tendency. 

By integrating an attentional-sharing account into a hierarchical Bayesian model, we were able 

to predict both the general over- and underestimation and the central-tendency effects observed 

in all four experiments. The model suggests that memory pressure during the encoding stage 

increases the sensory noise, which elevates the central-tendency effect. In contrast, memory 

pressure during the reproduction stage only influences the monitoring of elapsed time, leading 

to a general duration over-reproduction without impacting the central tendency.  

 

Keywords: time perception, dual-task performance, attention-sharing, cognitive/memory 

load, Bayesian integration, central-tendency effect  
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INTRODUCTION 

Accurate timing is essential for proper actions in our daily activities, such as 

synchronizing our body movements to a rhythm in music or pronouncing subtly different 

syllables such as /pa/ and /ba/ with voice-onset time (VOT) in the millisecond range. Yet, 

subjective time never stops surprising us. Most of us have conscious experiences of situations 

where time flies or time drags. More surprisingly, distortion of time often happens without us 

explicitly knowing it. One classical example of such implicit time distortion is the Vierordt 

effect (better known as the central-tendency effect), reported a century and a half ago (Vierordt, 

1868), which describes the phenomenon of short intervals being overestimated and long 

intervals underestimated (Glasauer & Shi, 2021a, 2021b; Jazayeri & Shadlen, 2010; Lejeune 

& Wearden, 2009; Shi et al., 2013). Notably, central-tendency effects are ubiquitous in 

different types of sensory magnitude estimation (Petzschner et al., 2015), such as in spatial 

distance and angular (rotational-body) displacement judgments (Petzschner et al., 2012; 

Petzschner & Glasauer, 2011; Teghtsoonian & Teghtsoonian, 1978).  

A common explanation of the central-tendency effect is that magnitude estimation is 

not only based on the sensory measurement but also influenced by past experience, in particular, 

of the range and distribution of tested intervals. According to the view of Bayesian inference, 

the brain integrates the sensory measure and prior knowledge together to boost the precision of 

the estimation – which, while being beneficial in most cases, also engenders a byproduct: a 

central-tendency bias (for reviews, see Petzschner et al., 2015; Shi et al., 2013). Optimal 

integration of the sensory input and prior knowledge depends on their respective reliability, 

measured by the inverse of their variance (the precision). When the sensory measurement has 

high precision, such as in professional drummers, there would be less influence of prior 

knowledge, resulting in a lesser central-tendency bias (Cicchini et al., 2012). Importantly, the 

integration of the sensory measure and the prior is likely involved in the working memory 

(WM), so that the cognitive load (the demands on WM capacity) may impact both the sensory 

estimate and the prior representation in terms of their means and variances. However, the role 

of WM on Bayesian inference of time perception has been largely neglected in the literature.  

Although not focusing on Bayesian inference of time perception, Fortin and Rousseau 

(1998) reported two separable effects of cognitive load on duration encoding and duration 

reproduction, respectively. In their dual-task design, the secondary task was a Sternberg 

memory task with a memory set of 1, 3, or 6 digits, presented successively prior to the primary 

temporal reproduction task, where the latter consisted (on a given trial) of an initial duration-
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production phase (with two beeps demarcating a duration) followed by the duration-

reproduction phase (two taps generated by the participants). The memory probe (a digit that 

was or was not part of the memory set) was shown either during the duration-production or the 

-reproduction phase, and the response to the memory task (either positive or negative) was to 

be issued using the key of the first (for probes presented during the production phase) or, 

respectively, the second (for probes presented during the reproduction phase) tap of the 

temporal reproduction response (one of two keys). Fortin and Rousseau found the reproduced 

duration to be shortened when the memory probe was presented during the production phase, 

but lengthened when it was shown during the reproduction phase. They took this finding to 

support an attention-sharing account (Fortin & Rousseau, 1998; Macar et al., 1994), according 

to which attentional resources are shared between the timing process and other, non-temporal 

cognitive processes. When attention is diverted away from the primary task by other concurrent, 

non-temporal processes in the temporal encoding (i.e., production) phase, the perceived 

duration is shortened. On the other hand, if the non-temporal process interferes with the 

reproduction of a given duration, the lapse in the monitoring of the passage of time will 

lengthen the reproduced duration. Similar findings have been reported in other timing studies 

(e.g., Fortin & Couture, 2002; Fortin & Massé, 2000), as well as in a study of non-temporal 

magnitude estimation (Glasauer et al., 2007). 

It should be noted that the above studies focused on the over- and under-estimation 

caused by the memory load. Thus, it remains unclear how memory load influences the 

uncertainty of the magnitude encoding and prior representation, as well as how it impacts the 

subsequent magnitude reproduction. Interestingly, a recent study (Allred et al., 2016) on 

working memory and spatial-length judgments suggests that high cognitive load induced by 

the secondary working memory task could lead to a coarser memory representation of spatial 

length, that is, high uncertainty, yielding a strong central-tendency effect. However, in Allred 

et al., (2016) design, the secondary working-memory task extended across the whole spatial-

length judgment task and so did not permit dissociating between load influences on the (length) 

encoding vs. the (length) reproduction stages. Accordingly, whether the central tendency would 

be differentially influenced by the cognitive load on the encoding and reproduction phases (in 

duration judgments) remains unclear. 

Taking together the literature reviewed above, we hypothesized that cognitive load 

would influence both the perceived and reproduced durations, as well as the variability of the 

estimates, which would further affect Bayesian inference in time estimation (Jazayeri & 

Shadlen, 2010; Shi et al., 2013; Shi & Burr, 2016). Specifically, we expected increasing 
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cognitive load during the sensory encoding stage not only to lead to a general underestimation 

of the duration (in line with Fortin & Rousseau, 1998), but also to decrease the reliability of 

the estimate. Accordingly, Bayesian integration of the sensory measure and the prior (also 

referred to as “memory mixing” in Gu & Meck, 2011; Jazayeri & Shadlen, 2010) would predict 

higher cognitive load to engender a stronger central-tendency bias. By contrast, introducing 

cognitive load during the reproduction stage would lengthen the reproduced duration (i.e., 

produce a general overestimation), and likely also increase the variability of the reproduction. 

However, given that no additional cognitive load is imposed on the sensory encoding stage, the 

reliability of the sensory estimate, and thus the Bayesian integration, would be unaffected by 

the cognitive load introduced during duration reproduction. When cognitive load remains high 

during both the duration production and reproduction phases, the underestimate from the 

production and the overestimate from the reproduction may cancel each other, at least to some 

extent and so we may not be able to observe a general bias. However, increasing the uncertainty 

in the sensory representation may cause a stronger central-tendency effect – a similar pattern 

to that recently reported in a non-temporal task (Allred et al., 2016).   

Table 1 Experimental designs with the dual tasks 

 

To test these hypotheses, we adopted a dual-task paradigm, consisting of a secondary 

visual working-memory task (with low, medium, or high load) and a primary duration 

production-reproduction task, in four experiments (see Table 1). Importantly, we manipulated 

the ‘spanning’ of the secondary task – that is, the period over which the memory-set items had 

to be maintained – in relation to the primary timing task in such a way that the memory task 

influenced different stages (production, reproduction, or both) of the timing task. Specifically, 

in Experiment 1, the memory task was introduced after the timing task, providing a baseline. 

In Experiment 2, the memory task spanned the duration-production phase, to examine the 
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impact of cognitive load on duration encoding. In Experiment 3, by contrast, it spanned the 

duration-reproduction phase to examine the impact of cognitive load on the duration 

reproduction. Finally, in Experiment 4, the memory task extended over the whole timing task 

(i.e., both the production and reproduction phases), to examine the combined effect of a non-

temporal task on the timing task, while also serving as a comparison to the study of memory 

load on the central tendency in a spatial task (Allred et al., 2016).  

Given that the attentional sharing account (Fortin & Rousseau, 1998; Macar et al., 1994) 

makes clear predictions of how memory load would influence the production and reproduction 

stages, and Bayesian inference makes quantitative predictions of how the sensory estimate is 

integrated with the prior, we also developed a general computational framework for duration 

encoding, Bayesian integration and duration reproduction, taking into consideration possible 

influences of cognitive load, based on our behavioral findings. We identified the role of 

attentional sharing and the temporal stage of prior integration in time estimation. Specifically, 

owing to attentional sharing between the concurrent working-memory task and duration 

estimation, participants displayed underestimation with memory pressure during the 

production, but overestimation in the reproduction phase. These two opposing influences 

canceled each other, diminishing the general bias when memory pressure covers both the 

production and reproduction phases. Moreover, we found an increased central-tendency effect 

with memory pressure during the production phase, but no significant changes with memory 

pressure during the reproduction phase. 

METHODS 

Participants 

Different groups, each of 16 volunteers (23-34 years old), were recruited for each 

experiment (9 females in Experiments 1, 2, and 4, 8 females in Experiment 3); all of them had 

self-reported normal or corrected-to-normal vision and normal hearing. The sample size was 

determined based on (Fortin & Rousseau, 1998) study, in which ten participants yielded 

significant under- and over-estimations. On the conservative side, we recruited 16 participants. 

All participants were naive as to the purpose of the experiments and received 9 Euro per hour 

for their service. The experiment was approved by the Ethics Committee of the Department of 

Psychology of LMU Munich. 
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Apparatus 

The experiments were conducted in a sound-isolated, dimly lit cabin (5.24 cd/m2). The 

visual stimuli were presented on a 21'' LACIE CRT monitor, with a refresh rate of 100 Hz. The 

viewing distance was fixed to 57 cm (maintained by the use of a chin rest). The experimental 

program was developed using Matlab (Mathworks Inc.) and Psychtoolbox (Kleiner et al., 

2007). 

Stimuli and tasks 

The experiments were dual-task experiments, consisting of a duration production-

reproduction task and a visual working-memory task on each trial. 

The duration production-reproduction task (see Figure 1 for an example) consisted of 

two phases: In the first, production phase, a grey disk (36.5 cd/m2, 6.7° in diameter) was 

presented in the center of the monitor (on a dark background: 16.7 cd/m2) for a given duration,  

randomly sampled from 500, 800, 1100, 1400, or 1700 ms. Participants were instructed to 

encode and retain the duration of the grey disk. In the following reproduction phase, 

participants were asked to reproduce the perceived duration of the grey disk as accurately as 

possible by pressing and holding the down-arrow key. The key-press triggered a visual display 

with a grey disk, which stayed on the screen until the key was released. Participants were asked 

to reproduce, as accurately as possible, the (presentation) duration of the grey disk from the 

production phase. 

The visual working-memory task also consisted of two phases: a memory phase and a 

test phase (see Figure 1). During the memory phase, a number (randomly selected 1, 3, or 5) of 

squares were presented on an invisible circle (diameter approximately 19.64°) on the dark 

background. Each square (subtending 3.35° ⨉ 3.35°) was filled with a color randomly 

selected from 180 color values uniformly distributed along a circle in CIE 1976 (L* = 70) color 

space (van den Berg et al., 2012; Zhang & Luck, 2008). Adjacent items were arranged 

equidistantly in displays with three or, respectively, five items; in one-item displays, the single 

item appeared always at the bottom position on the invisible circle. Participants had to encode 

and retain the color in which a square (at a given location) appeared (with the memory load 

increasing with the number of squares). In the test phase, one item location from the memory 

phase was selected as the location of the test (or probe) stimulus. The color of the probe square 

was either the same or different (randomly and equally determined) relative to the previous 
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(memory) item at that location. In case of a “different” probe, the color was randomly selected 

from the remaining 179 possible colors. [Note that the probe square was presented without the 

thin grey outline that framed the items in the memory phase (see Figure 1).] Participants were 

asked to indicate whether the probe item had the same or a different color as the previous item 

at that location by pressing either the left (same) or right (different) arrow key.  

 
Figure 1 Schematic illustration of the dual tasks used in Experiment 1. The duration task 

includes the production and reproduction phases (depicted in the upper two panels). The 

working memory task also includes two phases: the memory phase and the test phase (depicted 

in the lower two panels). In the example, the correct answer would have been “different”. 

Design and procedure 

Experiment 1 served as a baseline. Participants were presented with the two tasks 

successively: the duration task first and the memory task second. Thus, any interference 

between the two tasks would have been minimal (see Table 1). The experiment consisted of 18 

blocks of 20 trials each. The working-memory load (1, 3, or 5 items) was fixed per block, but 
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randomly counter-balanced across the 18 blocks. Using a block-design for the memory load in 

this baseline experiment was meant to rule out any possible interference of the memory load 

on the updating of the duration prior across trials.   

The duration task started with the cue word ‘Production’ on the screen for 500 ms, 

indicating the production phase. Then, a fixation dot appeared for 500 ms, followed by a grey 

disk in the center of the monitor; this remained visible for a given trial duration (0.5 to 1.7 s), 

after which the display turned back to a blank screen for 500 ms. Next, the second cue display 

with the word ‘Reproduction’ appeared, prompting the start of the reproduction phase. 

Participants followed their own pace to initiate the reproduction, which required them to press 

and hold down the down-arrow key. Immediately after the key press, a grey disk appeared and 

remained visible until the key was released (i.e., the visible disk duration served as the 

reproduced event). The duration of the key pressing was recorded as the reproduced duration. 

After the participant released the response key, a feedback display was presented showing the 

relative reproduction error (i.e., the ratio of the reproduction error to the given trial duration) 

by highlighting one of five linearly arranged dots (see Figure 1). The five dots, from the left to 

the right, were mapped to the relative error ranges: below -30%, between [-30%,-5%], [-5%, 

5%], [5%, 30%] and greater than 30%, respectively. The three central dots were colored green, 

and the left- and right-most dots red, indicating how large a reproduction error was made. When 

the relative error was between -30% and 30%, the error feedback display was presented for 500 

ms; otherwise, it was presented for 1500 ms, alerting participants that the error was too high.  

After a break of 1 s with a blank screen, the working-memory task started with a fixation cross 

presented for 500 ms, followed by a memory display containing one, three, or five colored 

squares visible for 500 ms (memory phase). After a blank screen of 500 ms, a probe display 

with a single color patch at one of the previous (i.e., memory-phase item) locations (test phase). 

Participants had to indicate whether this probe patch was colored the same vs. differently 

relative to the (coincident) item in the memory display, by pressing the left (‘same’) or the right 

(‘different’) arrow key. After a one second interval, the next trial began.  

Experiment 2 examined whether maintaining information in working memory during 

the production (but not the reproduction) phase would affect the sensory duration measurement 

and further influence the use or updating of priors. The tasks and displays were essentially the 

same as in Experiment 1, except that, in the trial-event sequence, the working-memory task 

spanned the duration production (and not the reproduction) phase. That is, each trial started 

with the memory phase, followed by the duration production phase. Next, participants 

performed the memory test, before proceeding to the duration reproduction phase (see Table 1 
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and Figure 1). Given that the prior updating was not impacted by memory load in the baseline 

experiment (see Results of Experiment 1), we adopted a trial-wise design for the memory load 

in Experiments 2 to 4, effectively making the load unpredictable; accordingly, the influence of 

memory load (if any) would be locally trial-based for each tested duration.  

Experiment 3 was essentially the same as Experiment 2, except that now the working-

memory task spanned the reproduction (rather than the production) phase. That is, each trial 

started first with the production phase, followed by the memory phase; then, participants had 

to reproduce the given (trial) duration and finally perform the memory test (see Table 1 and 

Figure 1).  

Experiment 4 examined how duration estimation would be affected by maintaining the 

working-memory information across both the production and reproduction phases. That is, the 

task sequence on each trial was: memory phase, duration-production phase, duration-

reproduction phase, and finally memory-test phase (see Table 1).  

 

MODELING OF DURATION ESTIMATION UNDER MEMORY LOAD 

The duration production-reproduction task involves the component stages of duration 

encoding, Bayesian integration, and duration reproduction. Here we proposed a generative 

processing architecture and potential influences of the memory load on these stages.  

1. Duration encoding 

We assume that, while the ‘raw’ sensory measure (𝑆) of given sample duration (D) is 

not influenced by cognitive load, its representation in working memory 𝑆;< may be affected 

by the load. Given that the scalar property (i.e., Weber scaling) is the key feature of duration 

estimation (Gibbon et al., 1984; Shi et al., 2013), we further assume logarithmic scaling of the 

sensory measure (𝑆), to simplify calculation; that is, S∼ 𝑁(𝜇!	, 𝜎!5), where 𝜇! is the mean of 

the  logarithmic scale representation of the given sample interval D (see Petzschner & Glasauer, 

2011; Roach et al., 2017), and 𝜎!5 reflects the variance of internal-measurement noise (𝜖):  

𝑆 = ln(𝐷) + 𝜖 ,                                (Eq. 1) 

According to the classical internal-clock and attentional-gate models (Block & Zakay, 

1997; Gibbon et al., 1984), sharing of attention by a concurrent non-temporal task would lead 

to an extra loss of the accumulated clock ticks, as well as increasing the noise of the memory 

representation of the sensory measurement (𝑆;<). Here, for modeling the concurrent memory-
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load effects, we assume – as a simple approximation and following the principle of ‘Occam’s 

razor’ – that both the number of ticks and the noise modulation (as represented on the 

logarithmic scale) are linearly affected by the memory load. 1  That is, the memory 

representation is normally distributed, 𝑆;< ∼ 𝑁(𝜇;<, 𝜎;<5 ), with both the mean 𝜇;< and the 

variance 𝜎;<5   influenced by the memory load linearly:  

 𝜇;< = ln(𝐷)−𝑘! ⋅ 𝑀 ,                                               (Eq. 2) 

and                                                    

𝜎;<5 = 𝜎!5 + 𝑙! ⋅ 𝑀 + 𝑡𝑠 ⋅ 𝐺,                                            (Eq. 3) 

where 𝑀 represents the level of the working-memory load (set to 1, 2, and 3 for the low, 

medium, and high load, respectively2), and 𝑘! and 𝑙! are scaling factors of the mean and the 

variance of the memory representation, respectively. Note that based on the attentional-gate 

model, we specifically assume that the cognitive-load influence on duration encoding in Eqs. 

2 and 3,	𝑘!	and 𝑙!, are constrained to be non-negative (𝑘! ≥ 0, 𝑙! ≥ 0). Given that the duration-

production phase was non-overlapping with the secondary working-memory task in 

Experiments 1 and 3, 𝑘! and  𝑙! were set to zero for those experiments (i.e., there would be no 

influence of the secondary task on the production phase). In more detail, 𝑘! ⋅ 𝑀 represents the 

loss of clock ticks during the accumulation process. In addition, the cognitive load increases 

the variance of the memory representation in a linear fashion (Bays, 2015), which is captured 

by the term 𝑙! ⋅ 𝑀.  

2. Bayesian integration 

The classical central-tendency effect shown in duration reproduction can be explained 

by memory mixing between the internal prior of the sampled durations and the sensory measure 

(Acerbi et al., 2012; Gu et al., 2016; Jazayeri & Shadlen, 2010; Penney et al., 2000). Given that 

the sampled durations were the same across the three memory-load conditions, we assume the 

internal prior was the same for the different memory loads, following the normal distribution 

 
 
1 This ‘linearity’ assumption does not rule out that the true relation is more complex. In principle, the linear 
constraint can be relaxed by assuming independent impacts of the memory load on the memory representation. 
However, such an approach has more free parameters than the current model, and it does not provide additional 
insights of the underlying mechanism. 
2 In the memory-load task, the set sizes were 1, 3, and 5 items of the low-, medium-, and high-load conditions,  
respectively. It has been shown that the variance is an approximate linear function of set size (for a review, see 
Bays, 2015). In addition, performance accuracy in the memory task decreased approximately linearly with the 
set size (see Figure 2). Accordingly, here we set M as a simple linear function of the set size (M = 2 × Set Size – 
1) and assume linear relations in Eqs. 2 and 3, without loss of generality. 
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with the mean 𝜇"  and the variance 𝜎"5 (both parameters in logarithmic space). The internal 

prior is then integrated with the memory representation of duration 𝑆;< according to the Bayes 

rule, which minimizes the uncertainty of the final duration representation. According to 

Bayesian inference, the posterior distribution 𝐷"#!9> ∼ 𝑁)𝜇"#!9> , 𝜎>"#!9
5 * of the final memory 

representation can be estimated by  

𝜇>"#!9 = 𝑤"𝜇" + )1 − 𝑤"*𝜇;<                                           (Eq. 4) 

   	𝜎>"#!9
5 = &!"∗&CD"

&!"'&CD"
                                                        (Eq. 5) 

The optimal weight 𝑤" is proportional to the inverse variability of the priors (𝑤" =
E
F!"

E
F!
"'

E
FCD

" ), which indicates the relative influence of the prior. The weight plays a key role in the 

central-tendency effect (Jazayeri & Shadlen, 2010; Shi et al., 2013): larger values of  𝑤" mean 

a stronger central-tendency effect. 

3. Duration reproduction 

Given that attention is required for the time-monitoring during the reproduction stage, 

the memory load might influence the final reproduction output. Our model assumes that the 

memory load influences the monitoring of the elapsed time of the reproduction, that is: there is 

a continuous monitoring of the elapsed time starting from the key press (𝜇@AB"!@C ) and 

comparison of the elapsed time with the duration held in memory (𝜇>"#!9 ). Similar to the 

production stage, the sensory representation of the elapsed time can be distorted by the memory 

load. Accordingly, the comparison is: 

Z
4B!@#G0D4HIJ!#HK0ELFG

4B!@#G
Z < 𝜖 ,    (Eq. 6) 

which is equivalent to comparing the elapsed time to the mean duration 𝜇>"#!9 + 𝑘H𝑀. In order 

to compare the model calculations to the observed reproduction behavior, we transferred the 

logarithmic space representation in the model back to the linear space, using the lognormal 

distribution with mean and variance: 

𝜇H = 𝑒4
B
!@#G'ELF'

FB!@#G
"

"                     (Eq. 7) 

𝜎H5 = ]𝑒&B!@#G
"

− 1] ⋅ 𝑒5I4
B
!@#G'ELFJ'&

B
!@#G
"

	              (Eq. 8) 
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In addition, we assume the uncertainty of reproduction is further influenced by motor 

noise 𝐷<K ∼ 𝑁(0, 𝜎<K5 ), but with the the influence of the motor noise decreasing as the 

duration increases:  

𝜎#L!@HM@C5 = 𝜎H5 +
&DM
"

N
        (Eq. 9) 

Thus, we have seven parameters in total in the above model framework: the memory 

load scaling parameters of the mean and variance of the duration encoding (𝑘!, 𝑙!),  the variance 

of sensory measurement 𝜎!5, the memory-load scaling factor 𝑘H in the reproduction phase, the 

motor noise 𝜎5<K, and the mean and variance of the prior (𝜇", 𝜎"5).  

Moreover, the general over-/under-estimation is usually measured by the average mean 

reproduction, which has a positive linear relation to an indicator called the indifferent point 

(IP), i.e.: the point at which the duration reproduction is veridical (Lejeune & Wearden, 2009)3.  

Based on Eqs. 2, 4, and 7, and letting the reproduced duration equal to the given duration (by 

the definition of IP), the log of the indifference point can be written as 

𝑙𝑛 (𝐼𝑃) = [𝑘H𝑀	 −	(1 − 𝑤")𝑘!𝑀 + 𝜎′5"#!9/2 +	𝑤"𝜇"]/𝑤"          (Eq. 10) 

As we can see from Eq. 10, the first-order impact of the memory load is the combination of the 

scaling factors 𝑘! and 𝑘H, and the second-order impact is mediated through the variance (𝜇" 

and 𝑤"). 

4. Parameter estimation 

We adopted Stan, a platform for statistical modeling and Bayesian statistical inference 

(Bürkner, 2016; Stan Development Team, 2020), to estimate the parameters in the hierarchical 

Bayesian modeling. To complete the Bayesian hierarchical model, we have used standard non-

informative priors on those hyperparameters (see Figure 2). In our proposed model, the seven 

parameters θ =)𝑘!, 𝜎!, 𝑙!, 𝜇", 𝜎", 𝑘H , 𝜎<K* are sampled from their respective prior distributions 

p(θ) with hyperparameters. The distributional belief about parameters θ can be denoted as a 

conditional probability function 𝑝(𝜃|𝐷#L!@HM@C) . Using the Bayes rule, the posterior 

distribution 𝑝(𝜃|𝐷#L!@HM@C) ∝ 𝑝(𝜃) × 𝑝(𝐷#L!@HM@C|𝜃)  can be derived from the prior 

distribution, p(θ), and a likelihood, 𝑝(𝐷#L!@HM@C|𝜃).  

After compiling the model specification from Stan’s probabilistic programming 

 
 
3 Suppose the duration reproduction engenders an approximate linear central tendency effect. With simple 
mathematical calculation, the mean reproduction bias is equivalent to wp times the difference between the 
indifference point (IP) and the mean sample duration.  
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language  to a C++ program, we used the Markov Chain Monte Carlo (MCMC) sampling 

method in RStan with 8000 iterations per chain (total of four chains) to estimate the parameters 

for individual participants by maximizing the joint posterior distribution of parameters of 

interest. The estimation was performed using the R-package RStan (Carpenter et al., 2017; Stan 

Development Team, 2018), with the data and R-code available at 

https://github.com/msenselab/working_memory_reproduction.  

 
Figure 2 Schematic illustration of the Bayesian hierarchical model through RStan in 

parameter estimation. Light green boxes show the standard distributions used for the 

hyperparameters. The green box represents the duration encoding stage, light brown boxes 

Bayesian integration stage, and the brown box reproduction stage.  

 

RESULTS 

Memory task 

The mean accuracy of individual participants for the working memory test was 

calculated by the proportion of correct responses, including the ‘hit’ responses (for trials with 

the same color of the probe and the memory item) and the ‘correct rejection’ responses (for the 

trial with different colors for the probe and memory item). Figure 3 shows the approximate 

linear relation between memory load and the mean accuracy in the memory test across the four 

experiments, with an overall decrease of the correct rates from Experiment 1 to 4.  
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Figure 3 Mean accuracy with associated standard errors (n=16) for the (secondary) working-

memory task as a function of the memory load (low, medium, high), separated for Experiments 

1-4. 

A mixed-design ANOVA of the mean correct rates with Experiment (1–4) as between-

subject factor and Memory Load (small, medium and high) as within-subject factor revealed a 

significant main effects of Experiment, F(3, 60) = 11.15, p < .001, ηg² = .36, and of Memory 

Load, F(2, 120) = 454.22, p < .001, ηg² = .88. However, the Experiment × Memory-Load 

interaction did not reach significance, F(6, 120) = 2.04, p = .066, ηg² = .093. The mean accuracy 

in the working-memory task decreased linearly as the memory load increased from the 1 to 5 

items (linear effect, t(30)=-29.181, p < .001, mean of .87, .73, .65 of low, medium and high 

load respectively), indicating that the manipulation of memory load was effective: larger set 

sizes engendered higher loads. Further LSD comparisons revealed memory accuracy to be 

significantly higher in Experiment 1 (mean of .81) than in Experiments 2–4 (means of .76, .73, 

and .70, respectively; all ps < .025), indicating that the working-memory performance declined 

significantly when the memory task was intermixed with the duration task (in Experiments 2–

4). Interestingly, performance was also significantly better in Experiment 2 than in Experiment 

4 (p < .001), that is: when the memory task was performed first (i.e., when it overlapped with 

the duration-production phase) vs. second (i.e., when it overlapped with the reproduction as 

well as the production phase).  

Duration task 

Figure 4 shows the reproduction biases and coefficients of variation (CVs) for all four 

experiments. The CV is a standardized measure of dispersion of reproduced durations (i.e., 
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normalizing the standard deviation by the duration), which is a close approximation to the 

Weber fraction. As can be seen, there was a central-tendency effect in all experiments, with the 

short intervals being overestimated and long intervals underestimated, and the CVs decreased 

as the tested (i.e., to-be-reproduced) durations increased. 

 

Figure 4. (a) Mean reproduction biases and (b) coefficients of variation (CVs), for the four 

experiments. The dots represent the observed mean data, the curves the predictions from the 

Bayesian model outlined in the modeling section; the gray, orange, and cyan colors represent 

the low, medium, and high memory-load conditions, respectively.  

The central tendency effects 

The central-tendency indices, calculated as the weight of the prior 𝑤"  in Bayesian 

modeling (Figure 4a), were significantly larger than 0 in all four experiments (all 𝑤"s > 0.36, 

all ts > 8.14, all ps < 0.001), confirming robust central-tendency effects in our duration 

estimation tasks.  
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Figure 5 (a) Mean central-tendency indices measured by the estimated weight of the prior 

(𝑤") , separately for the three memory-load conditions in the four experiments. (b) Mean 

Indifferent Points, separately for the three memory-load conditions in the four experiments. 

The gray, orange, and cyan colors represent the low, medium, and high memory-load 

conditions, respectively. Note, 𝑤" was set to the same value for Exps. 1 and 3.  

Because the working-memory task was introduced after the production phase in 

Experiments 1 and 3, the model assumed no influence of memory load on the central tendency 

(see Eq. 4 and Figure 3a). The mean weight of the prior (± standard error, SE) was 0.40 ± 0.05 

in Experiment 1 and 0.50 ± 0.04 in Experiment 3. Interestingly, the model was able to predict 

the differential central-tendency effects between Experiments 2 and 4 (see the goodness of fit 

in Figure 3, and Appendix A). Repeated-measures ANOVAs and tests of the linear relation of 

the central-tendency indices (𝑤") to the factor Memory Load (low, medium, high), conducted 

separately for Experiments 2 and 4, revealed a significant linear increase of the central tendency 

with increasing memory load in both Experiment 2 [mean central tendency for the low, median, 

and high memory loads: 0.52 ± 0.06, 0.6 ± 0.06 , 0.65 ± 0.06, respectively; ANOVA: F(1.01, 

15.2) = 55.09, p < .001, ηp² =.79; linear effect, t (30)= 10.41 p < .001] and Experiment 4 [mean 

central tendency: 0.38 ± 0.05, 0.41 ± 0.05, and 0.44 ± 0.05, respectively; ANOVA: F(1.01,15.2) 

= 33.98, p < .001, ηp² = .7; linear effect: t(30) = 8.23, p < .001]. Recall that both Experiments 

2 and 4 involved working-memory pressure in the duration-production phase, and this in turn 

caused stronger central-tendency effects for the high vs. the low memory loads. 

When collapsing all levels of memory loads together for individual experiments and 

comparing across experiments, the mean central-tendency indices turned out to differ 
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significantly among the four experiments [one-way ANOVA: F(3, 60) = 2.87, p = .044]. 

Further LSD comparisons revealed significantly higher central-tendency indices in Experiment 

2 (.590 ± .061) than in Experiment 1 (0.40 ± .05) and 4 (0.41 ± .04), all ps < .05; no other 

comparisons reached significance. The relatively stronger central-tendency effect in 

Experiment 2 may be caused by the increased sensory noise in having to perform the memory 

test task between the production and reproduction phases: this could increase sensory noise 

either due to the prolonged production-reproduction phase interval or the attentional sharing 

between the two tasks.  

In a further, Wilcoxon-test analysis, we compared the model factor 𝑙!  (see Eq. 4), 

indicative of the extent to which the variance of the sensory measure is modulated by memory 

load, between Experiments 2 and 4: 𝑙! turned out to be significantly higher in Experiment 2 

[mean of 0.201 ± 0.139] vs. Experiment 4 [0.013 ± 0.004; W = 217, p <.001]. That is, sensory 

noise was larger when the working-memory task overlapped only with the production phase of 

the duration task (in Experiment 2) as compared to when it overlapped with both the production 

and reproduction phases (in Experiment 4). In turn, the larger sensory noise led to a higher 

central-tendency effect in Experiment 2 than in Experiment 4. 

The mean indifferent points (IP) and general reproduction bias 

The mean Indifferent Points (IPs; shown in Figure 4b), at which the duration 

reproduction is veridical, can be used to index participants’ general reproduction bias: an IP 

larger than the mean tested duration is indicative of a general overestimate, while a smaller IP 

is indicative of a general underestimate. A mixed-design ANOVA with Memory Load (low, 

medium and high) as within-subject factor, Experiment (1–4) as between-subject factor 

revealed the Load  × Experiment to be significant [F(6, 120) = 6.110, p < .001, ηp² = .23], while 

the main effects were non-significant [Memory Load: F(1.01, 40.69) = .429, p = .652, ηp² 

= .007; Experiment: F(3, 60) = .285, p = .836, ηp² = .014]. To understand the interaction effect, 

we examined the Load effect on the IPs separately for each experiment. In Experiment 1, the 

IPs were essentially the same for the three memory-load conditions (.984 ± .024; see also 

Figure 3a), given that the working-memory task was introduced after the completion of the 

duration task. In Experiment 2, the IPs decreased linearly with increasing memory load [one-

way ANOVA: F(1.09, 16.37) = 5.83, p = .007, ηp² = .28, linear effect: t(30) = -3.32, p = .002, 

means of 1021 ± 26 ms, 989 ±  26 ms, and 976 ± 27 ms for the low, median, and high memory-

load conditions, respectively], indicating that a memory load imposed on the production phase 
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caused a significant underestimation of the duration. In Experiment 3, the IPs increased linearly 

with increasing memory load [F(1.03, 15.48) = 8.75, p = .007, ηp² = .37, linear effect: t(30) = 

4.182, p < .001; means of 966 ± 28 ms, 993 ±  27 ms, 1017 ± 26 ms, respectively]. The pattern 

was opposite to that in Experiment 2, showing that a memory load imposed on the reproduction 

phase led to an overestimation of the tested duration. In contrast, when the memory load 

spanned both the duration-production and reproduction phases in Experiment 4, the IPs were 

comparable among three different memory-load levels [one way ANOVA: F(1.04, 15.62) 

= .74, p = .49, ηp² = .05; means of 975 ± 28 ms, 959 ±  28 ms and 961 ± 29 ms, respectively]. 

The comparable IPs among three memory load conditions suggests that the opposite effects of 

Memory Load observed in Experiments 2 and 3 cancel each other out when the memory tasks 

spans the whole (production plus reproduction phases of the) duration task.  

Recall that participants’ general biases were modeled by two scaling factors, 𝑘! and 𝑘H:  

𝑘!  represents the magnitude of the duration shortening per unit of memory load in the 

production phase, and 𝑘H the magnitude of the duration lengthening per unit of memory load 

in the reproduction phase. When compared to zero, one sample t-tests revealed a significantly 

positive 𝑘!-value in Experiment 2 (𝑘!  = .263 ± .077, t = 3.409, p = .004),  a significantly 

positive 𝑘H -value in Experiment 3 (𝑘H  = .025  ± .003, t = 7.212, p < .001), and both a 

significantly  positive 𝑘!-value and a significantly positive 𝑘H-value in Experiment 4 (𝑘! = .459 

± .052, t = 8.824, p < .001;  𝑘H  = .229  ± .047, t = 4.924, p < .001). These results are 

confirmatory of the attentional-sharing hypothesis, that is: the concurrent memory and duration 

estimation tasks share the same attentional resource, which in turn leads to a duration 

underestimation with working memory pressure during the production phase, but duration 

overestimation with memory pressure during the reproduction phase. When the memory 

pressure occurs in both phases, the duration underestimation in production and overestimation 

in reproduction may cancel out each other, resulting in the diminishing of the general bias. 

Coefficient of variations of the duration reproduction 

The observed Coefficients of Variation (CVs) for each reproduced sample duration, 

calculated as 𝐶𝑉, 	=
&&
O&

 , where 𝜎, and 𝑅, represent the standard deviation and the mean of the 

reproduction of a given interval 𝐷,, are shown in Figure 4b. A mixed-design ANOVA of the 

CVs, with Sampled Duration (500, 800, 1100, 1400, 1700 ms) and Memory Load (low, 

medium, high) as within-subject factor and Experiment as between-subject factor revealed only 

the main effects of Duration and Experiment to be significant; no other effects (including the 
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main effect of memory load and all interactions) reached significance (all Fs < 1.47, all 

ps > .19). The main effect of Duration (F(2.429, 7.286) = 47.794, p < .001, ηp² = .44) was due 

to the CVs decreasing linearly with increasing sample duration (means of .274 ± .008, .229 ± . 

006, .205 ± .005, .195 ± .005, and .209 ± .006 from short to long durations, respectively; linear 

effect: t(60) = -11.423, p < .001]. And the main effect of Experiment [F(3, 60) = 6.535, p 

= .001, ηp² = .246; means of .203 ± .010, .259 ± .010, .213 ± .010, .and 216 ± .010 in Experiment 

1–4, respectively] was owing to the significantly higher CV in Experiment 2 compared to the 

other experiments (LSD tests comparing Experiment 2 with Experiment 1, 3, and 4, 

respectively: all ps < .003; comparable CVs in Experiment 1, 3, and 4). The relatively larger 

response variation in Experiment 2 is likely due to the working-memory test phase being 

administered in-between the duration-production and reproduction phases, while in all the 

other three experiments the memory task was tested at the end of the reproduction phase. 

Goodness of the modeling 

The Bayesian model outlined above predicted the behavioral results strikingly well, in 

all four experiments. The model performance may be gauged by calculating the means of the 

relative prediction error on the estimated durationsC𝑀𝑒𝑎𝑛 EPN@A#HLNHK0N!LHK&OGHKP
N@A#HLNHK

HD and on the 

estimated variances (𝑀𝑒𝑎𝑛(|𝑆𝐷(𝐷#L!@HM@C) − 𝑠𝑑(𝐷"H@C,Q9@C)|/𝑠𝑑(𝐷#L!@HM@C))). The results 

revealed less than 4.17% error on the reproduced durations for all experiments (3.34%, 4.17%, 

3.44%, and 3.53% for Exp. 1–4 respectively; see Appendix A for further details about the 

goodness of the model fitting).  

GENERAL DISCUSSION 

The present study examined cognitive-load interference in duration estimation using a 

Bayesian approach. Through computational modeling of the results from four experiments, we 

attempted to provide a generative model of load interference on the whole champion of 

processes in duration estimation, including duration encoding and reproduction. The Bayesian 

model we proposed predicted not only the mean but also the coefficient of variation (CV) of 

reproduction behavior.  

We found a visual working-memory load to interfere with participants’ duration 

reproduction both when the load was imposed during the duration-production and during the 

reproduction phase, albeit in a different way. In more detail, when the working-memory task 



 
 64 

overlapped only with the production phase (in Exp. 2), participants on average underestimated 

the tested durations, and they exhibited a stronger central-tendency effect under high- vs. low 

memory-load conditions. In contrast, when the working-memory task overlapped only with the 

reproduction phase (in Exp. 3), the higher the memory loaded, the more duration participants 

over-reproduced, while the central-tendency effect was comparable across the different load 

conditions. Of note, when the working-memory task spanned both the production and 

reproduction phases (in Exp. 4), there was no longer a general over- or underestimation, but 

the central-tendency effect remained stronger with higher vs. lower memory loads. Finally, 

varying levels of memory load introduced between consecutive duration reproductions (in Exp. 

1) had no discernible effects on either general reproduction biases (i.e., there was no general 

over-/underestimation) or the central-tendency bias, suggesting that the prior updating of the 

sampled durations was not influenced by the intermediate secondary task.  

Importantly, this pattern of findings could be well fitted by our Bayesian model, which 

integrated the notion of attentional-resource (Fortin, 2003; Fortin & Rousseau, 1998; Macar et 

al., 1994) between two concurrent tasks. According to the Bayesian inference model (Jazayeri 

& Shadlen, 2010; Petzschner et al., 2015; Shi et al., 2013), the reproduced duration reflects an 

optimal integration (according to the Bayes rule) of the sensory estimate of a given duration 

with the prior distribution stored in the memory, where ‘optimal’ refers to achieving minimal 

variability in the final estimate. A by-product of this is that the duration estimates assimilated 

to the mean prior, as evidenced in the typical central-tendency bias. Standard Bayesian 

inference models make no assumptions about how memory load may influence Bayesian 

inference. To address this, here we combined the attentional-sharing account (Fortin, 2003; 

Fortin & Rousseau, 1998; Macar et al., 1994) with standard Bayesian inference, assuming that 

time units would be lost in the duration encoding and reproduction stages when attention is 

shared with a secondary task. Prior work (Fortin, 2003; Fortin & Rousseau, 1998) had shown 

that the loss of time units in the encoding and reproduction stages has a differential impacts: 

when attention is diverted away from the primary (temporal) task by another, concurrent non-

temporal task during the duration-encoding phase, a certain amount of clock ticks would be 

lost, resulting in a shortened time estimation (underestimation); in contrast, when the secondary 

task is performed concurrently with the reproduction phase, the resulting loss of clock ticks 

(due to lapses in monitoring the elapsed time) would lead to a reproduced duration longer than 

the tested interval (overestimation). This descriptive explanation is quantitatively characterized 

by the linear scaling parameters 𝑘! and 𝑘H in our Bayesian model (Eqs. 2 and 7).  Both the 

behavioral findings and the model confirm the dissociable influences of memory pressure at 
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different stages of time estimation. Specifically, the concurrent working-memory task gave rise 

to an underestimation when imposed during the production phase ( 𝑘! > 0), but an 

overestimation when imposed during the reproduction phase (𝑘H> 0).  

While the attentional-sharing account (Fortin, 2003; Fortin & Rousseau, 1998; Macar 

et al., 1994) can well explain the general over- and, respectively, underestimation of the sample 

durations, it falls short in explaining the differential central-tendency effects. While there were 

central-tendency effects in all four experiments, the central-tendency bias was significantly 

modulated by memory load only in Experiments 2 and 4, that is, when the secondary memory 

task overlapped the production phase. We take this to indicate that the central-tendency bias 

was introduced mainly in the duration-encoding stage: the memory load imposed during this 

stage increased the uncertainty of the sensory measure (which we modeled with the scaling 

parameter  𝑙!  in Eq. 3), translating into a reduction of the sensory weight in Bayesian 

integration and, in turn, an increased central-tendency bias. In contrast, making the secondary 

task overlap the reproduction phase (Exp. 3) or introducing it after completion of the 

reproduction (Exp. 1) did not significantly change the central-tendency effect, which 

corroborates that the Bayesian integration occurred primarily at the encoding stage.  

It should be noted that the influence of the memory load on the central tendency was 

more pronounced in Experiment 2 than in Experiment 4, where, in the latter, the secondary task 

extended across both the duration-encoding and reproduction phases of the primary task. In the 

model, this differential load effect was captured by the value of  𝑙!  – the scaling parameter of 

the sensory-measurement uncertainty – being significantly larger in Experiment 2 vs. 

Experiment 4. This finding raises a question: if the modulation of the central-tendency effect 

exclusively arises in the encoding stage, shouldn’t the two experiments have engendered 

comparable effects of the memory load on the central-tendency bias? The fact that they didn’t 

might be explained by the order of the primary and secondary tasks. In Experiment 2, the 

secondary memory task was the first task requiring a response (i.e., the memory test preceded 

the reproduction), whereas it was the second task in Experiment 4. As can be seen from Figure 

2, accuracy in the memory test was significantly higher in Experiment 2 than in Experiment 4, 

that is, when the memory was probed first rather than second. Within the attentional-sharing 

framework, this pattern would indicate that more attentional resources were allocated to the 

first than to the second task. Consequently, allocating relatively less attention to the duration 

task in Experiment 2 relative to Experiment 4 would have led to an increase of the uncertainty 

of the duration estimates, rendering a stronger central-tendency effect. In addition, probing the 
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secondary memory task first also lengthened the gap between the encoding and reproduction 

stages, which might cause additional forgetting of the estimated duration. Such forgetting 

might assimilate the representation toward the distal (i.e., long-term) mean prior, as would be 

suggested by the adaptation-level theory (Helson, 1964). The influence of the prolonged gap 

between the encoding and reproduction stages was also numerically, though not significantly, 

evident in Experiment 3 as compared to the baseline Experiment 1 (see Fig. 4a). Unfortunately, 

because we did not record the completion time of the memory test in between the production 

and reproduction phases, we cannot quantitatively determine the impact of the prolonged gap 

on the central tendency bias. Thus, this conjecture deserves further investigation in future 

studies.  

Interestingly, Allred et al., (2016) recently reported in a line-length judgment task that 

the central tendency is likewise influenced by the memory load. In their study, the memory 

items had to be held in working memory for the whole process of the primary line-judgment 

task, which is similar to our Experiment 4. The consistent influences of memory load on the 

central-tendency effect in non-temporal (Allred et al., 2016) as well as temporal tasks (the 

present study) suggest that the Bayesian model we propose here is generic, rather than being 

limited to the time domain. Given that Allred et al.’s study design did not separately manipulate 

the memory load in the encoding and reproduction stages, their finding does not tell at which 

stage the interference occurred. Here, with four experiments imposing the memory load in 

different stages, we found that the impact on the central-tendency effect was primarily 

attributable to cognitive-load interference during the encoding, rather than the reproduction 

(retrieval), stage – an attribution that informed the construction of our computational model.  

As briefly discussed earlier, when the secondary memory task was imposed on the reproduction 

phase in Experiment 3, the central tendency was not influenced by the memory load. 

Interestingly, though, we saw a general shift (bias) in the reproduced duration (Figs. 3a): the 

higher the memory load, the larger a (general) shift we observed in the reproduced durations – 

as could also be seen in the shift of the indifference points (Fig. 4b). The dissociation between 

the central tendency and the general bias mainly came from the differential interference of the 

memory load in the duration-encoding and reproduction stages. The reproduction stage did not 

involve any Bayesian integration, just comparing the elapsed time to the estimated duration 

retained in memory. The primary impact of the memory load consists of the lapse of attention 

in monitoring the elapsed time (Fortin & Rousseau, 1998; Glasauer et al., 2007), which causes 

loss of some units of passage time and thus an over-reproduction of the (estimated) duration. 

This would explain the general shift in the reproduced duration that we observed (captured by 
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Eq. 7, also Eq. 10). Interestingly, the varying memory loads did not alter the memory 

representation of the reference (i.e., the estimated) duration, which was derived by Bayesian 

integration in the encoding stage. However, as considered above, across experiments the 

reference duration might have been influenced by the temporal gap between the encoding and 

reproduction stages. The fact that the memory load failed to change the reference duration 

suggests that the representation of the single reference duration is rather robust. However, this 

might change if the task requires two or more reference durations to be held in memory – a 

conjecture that would be interesting to examine in a future study.  

It should be noted that the general shift in the reproduced duration was not limited to 

Experiment 3: we also observed a general shift in Experiment 2, though in the opposite 

direction (Fig. 4b). As shown in model Eq. 10, unlike the central-tendency effect (captured by 

𝑤") which is only influenced by the memory load in the encoding stage, the indifference point 

is influenced by both stages, though in opposite directions. When a load was imposed only on 

the encoding stage, underestimated durations with higher vs. lower loads caused a general 

downshift in the indifference points, in addition to the influence on the central-tendency bias 

in the encoding stage. Given the opposite influences of memory load in the encoding and 

reproduction stages, we observed the opposite trends in Experiments 2 and 3. This could then 

also explain the absence of significant shifts in Experiment 4, as the net impacts of the general 

shifts roughly canceled each other out when the memory load was imposed on both stages (in 

Experiment 4).  

In summary, imposing the memory load on the encoding and reproduction stages of 

duration estimation, we replicated the general underestimation and overestimation of a given 

duration when the memory load was increased in the encoding and reproduction stages, 

respectively, as suggested by the attentional-sharing account. In addition, we found the central-

tendency bias was only influenced by the memory pressure in the encoding stage. Using a 

generative Bayesian model, we detailed when and how memory pressure affects time 

estimation and the concomitant effects on the central-tendency bias, and quantitatively 

predicted behavioral results from all four experiments. Last but not the least, the generative 

model we proposed here for the influence of the cognitive load on time perception might be 

generalizable to other forms of magnitude perception. 
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APPENDIX 

Appendix A. Model comparison 

The three-stage Bayesian model introduced here assumes logarithmic encoding of subjective 

durations, based on Fenchner's logarithmic law (Fechner, 1860). Logarithmic encoding 

implicitly assumes that time percepts follow the scalar property (Gibbon et al., 1984; Shi et al., 

2013), namely, a constant of Weber fraction of time estimation. It should be noted that it is not 

the only model in the field. An alternative assumption holds that the internal representation is 

linearly scaled, but with the noise increasing linearly with the absolute magnitude according to 

Weber’s law. However, empirical justification of linear vs. logarithmic coding of the internal 

representation largely depends on the adopted experimental paradigms (Maaß et al., 2021; 

Matthews & Meck, 2016; Ren et al., 2021). Accordingly, we explored both logarithmic and 

linear encoding models and compared their predictions to determine which model performs 

better.  

In the logarithmic-encoding model, the duration is first transformed to the logarithmic scale. 

Bayesian integration of the sensory input and memory prior, and the influences of the memory 

load operate on this scale. The duration thus estimated is then transformed back to the linear 

scale for the reproduction. The memory influence occurs at the reproduction stage on the linear 

scale (see main text for details of the model). In contrast, the linear-encoding model assumes 

that all processes operate at the linear scale. However, the model further assumes Weber scaling, 

that is: the sensory measure (S) of given sample duration (D) follows Weber’ law: 𝑆 = 𝐷 + 𝜖, 

where 𝜖 indicates internal measurement noise. The standard deviation of sensory measurement 

(𝜎! , estimated from the noise 𝜖) is approximately proportional to the mean of the sensory 

measurement ( 𝜇!	 ), 𝜎! = 𝑘 ∗ 𝜇!	 , where 𝑘  is known as the Weber fraction of sensory 

measurements. Similar to the logarithmic-encoding model, both the mean estimate and its 

standard deviation are assumed to be linearly affected by the memory load. Let the memory 

representation without loss of clock ticks be normally distributed, 𝑆;< ∼ 𝑁(𝜇;<, 𝜎;<5 ) . 

Accordingly, both the mean 𝜇;<  and the variance 𝜎;<5  are subject to the influence of the 

memory load: 

𝜇;< =	𝐷 ⋅ (1 − 𝑘! ⋅ 𝑀)                                   (Eq. 10) 

   𝜎;<5 = 𝜎!5(1 + 𝑙! ⋅ 𝑀)                          (Eq. 11) 

At the Bayesian integration stage, the distribution of the internal prior is assumed as 
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𝑁)𝜇"	, 𝜎"5* with the mean 𝜇" and the variance 𝜎"5, and the prior is integrated with the memory 

representation of duration 𝑆;< according to the Bayesian rule, so that Eq. 4 and Eq. 5 are 

also applicable in the linear-scale model. During the reproduction process, time units could 

be lost due to attentional sharing and reproduction inherited additional motor noise. Let 𝐷H ∼

𝑁(𝜇H , 𝜎H5) be the reproduction distribution with: 

𝜇H = 𝜇>"#!9	(1 + 𝑘H ⋅ 𝑀)                                  (Eq. 12) 

𝜎H5 = 𝜎5"#!9 + 𝜎<K2                              (Eq. 13) 

The notations of these key parameters in the linear model are the same as those in the 

logarithmic model.  

Both the logarithmic- and the linear-scale model perform well in predicting the mean 

reproduction and the coefficient of variation (CV). However, while the predictions are 

comparable as regards the mean reproduction, the logarithmic model predicted the CV 

significantly better than the linear model. Figure A1 represents the mean absolute errors (MAE) 

of the predictions derived from the linear- and, respectively, logarithmic-scale models 

(reproduction and CV): each point represents the mean absolute prediction error in the 

reproduction means and their CVs in the various conditions across the four experiments. As 

can be seen, the logarithmic model produced generally smaller prediction errors than the linear 

model, with a particularly marked advantage in the CVs. The prediction errors of the 

logarithmic model never exceed 0.0155, indicated by the dashed line; but the linear model 

performed worse for more than half the conditions compared to the poorest condition from the 

logarithmic model.  

To formally evaluate the models’ performance, we calculated Watanabe–Akaike information 

criterion (WAIC) and leave-one-out cross-validation (LOO-CV) as predictive information 

criteria for Bayesian models, using the Loo package in R framework (Vehtari et al., 2017; 

Watanabe & Opper, 2010). Lower values of WAIC and LOO-CV imply higher prediction 

accuracy. Table A1 lists the averaged WAICs, LOO-CVs, and prediction accuracies (AUC) of 

the reproduction means and variances across all participants. As can be seen, the logarithmic-

scale model was associated with lower WAIC and LOO-CV values and higher prediction 

accuracies across all experiments than the linear model. 
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Figure A1 Averaged absolute prediction errors of the reproduction and CV derived from the 

proposed logarithmic- and linear-scale models for individual observers in the four 

experiments.  

 

Table A1  WAIC and WBIC as predictive information criteria for Bayesian models. 

Model  Exp.1  Exp.2  Exp. 3  Exp. 4  

logarithmic 

model 

WAIC 123.244 557.315 420.216 415.359 

LOO-CV 368.069 557.315 420.216 415.359 

Reproduction AUC 96.664% 95.828% 96.552% 96.470% 

CV AUC 82.385% 86.228% 84.151% 81.594% 

linear model  WAIC 142.914 318.033 190.389 193.002 

LOO-CV 415.902 590.852 463.886 465.701 

Reproduction AUC 96.422% 95.632% 95.932% 95.932% 

CV AUC 74.588% 81.389% 77.578% 71.696% 
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2.3 Prior integration in Bayesian estimation under multi-prior 
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ABSTRACT 

To improve the reliability of sensory estimation, our humans use acquired contextual 

knowledge  compensating uncertainty during perception. Ample previous studies suggested 

that multiple timing mechanisms exist in the brain across and within sensory modalities, but 

how sensory information integrates with multiple priors that are shaped by distinct context. To 

figure out how the hierarchical Bayesian estimation structure works in multiple prior temporal 

estimation, two duration reproduction experiments with two levels of variance of short and 

long range on logarithmic scale were carried out to uncover the underlying mechanism during 

multiple prior knowledge integration. The participants were firstly trained with the short and 

long intervals session-wise, and then tested with interleaved ranges randomly inter-mixed, to 

examine potential integration hierarchies. In the present study, three hierarchical structures of 

prior integration in Bayesian estimation were proposed to uncover the governing rules. The 

model results showed their performance were equally well performance in reproduction mean 

and variance prediction despite their different structural assumptions. In the temporal context 

with smaller variability, time estimates counted more on the global prior knowledge and less 

on sensory measurement. Besides, session order impacts on the evaluation of global prior, since 

context farther in the past is less weighted than more recent context. When the short session 

was taken as the first training session, observers acquired a higher mean of global prior. 

 

Keywords: time perception, Bayesian modeling, contextual effect, temporal reproduction, 

prior integration  
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INTRODUCTION 

Timing and time perception plays a vital role in our daily life, from motor planning to 

social interactions. However, temporal estimates in everyday activities are not always accurate. 

A variety of biases in time perception (i.e., the perceived time deviates from the physical time) 

comes from not only inaccurate sensory timing but also from surrounding contexts. A typical 

contextual bias is that the perceived time for the same duration would be different when the 

duration is embedded in different temporal ranges. This phenomenon has been referred to as 

the range or regression effect (Petzschner & Glasauer, 2011; Teghtsoonian & Teghtsoonian, 

1978).  

In recent decades, with the widespread usage of Bayesian reference, various Bayesian 

observer models have been proposed to probabilistically interpret various types of contextual 

biases in magnitude estimates (Berniker et al., 2010; Knill & Richards, 1996; Ryan, 2011; Wei 

& Stocker, 2015; Zimmermann & Cicchini, 2020). The key assumption of those Bayesian 

observer models is that human perception is an optimal integration process, combining the 

sensory measurement (referred to as likelihood) and the contextual knowledge (e.g., the mean 

and variations of the previously encountered stimuli, referred to as prior) together (Fritsche et 

al., 2020; Jazayeri & Shadlen, 2010; Roach et al., 2017a; Shi, Church, et al., 2013; Westheimer, 

2008). One key benefit of this integration is to improve the reliability of the final estimate to 

cope with uncertainty (Knill & Richards, 1996; von Helmholtz, 1867; Westheimer, 2008). For 

example, when a truck in front of your car blocks the traffic light at a crossroad, you may still 

be able to estimate the timing of the green light by your past experience. The learned contextual 

knowledge about the past stimuli encountered may influence further timing process as they 

have registered in the memory (Glasauer et al., 2020; Jazayeri & Shadlen, 2010; Nagai et al., 

2012; Roach et al., 2017a). One natural outcome of the integration process is that the final 

estimate is often assimilates to the prior knowledge, which is a typical central tendency effect4 

(Hollingworth, 1910). 

One classical paradigm to observe a typical central tendency effect is the duration 

production-reproduction paradigm, which can be traced back to early Vierordt’s effect 

(Vierordt, 1868). Vierordt asked his assistant to arbitrarily produce a duration and he then 

 
 
4 Central tendency effects were confirmed by later researchers as a common phenomenon in 
time perception (Hollingworth, 1910), i.e., the reproductions of short durations are 
overestimated, meanwhile the reproductions of long durations are underestimated.  
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reproduced it. Nowadays we use a computer to automatically generate a given interval and 

participants to reproduce it. It has been repeatedly demonstrated that when intervals are 

randomly sampled from a single range, observers are relatively accurate to estimate the 

sampled range and distribution with a single prior approximation (Acerbi et al., 2012). When 

intervals from different ranges are presented blockwise and demarcated by distinct cue or 

spatial location, observers are able to generalize temporal context experiences and formed 

separate priors for individual ranges, hence a central tendency effect was observed in each 

range (Cicchini et al., 2012; Gu et al., 2016; Jazayeri & Shadlen, 2010; Petzschner et al., 2012b). 

It should be noted that most previous studies were interested in the central tendency effect, 

assuming simple Baysian integration with one single prior.  

Distributed timing system and multiple priors of temporal contexts  

Regarding the timing system, it remains controversial whether we pose a single central 

dedicated clock or distributed multi-clock systems (Buhusi & Meck, 2009). There is evidence 

that different modalities may use different timing systems (Buhusi & Meck, 2009; Ivry & 

Richardson, 2002; Paton & Buonomano, 2018). Ample evidence suggests that multiple timing 

mechanisms exist in the brain across and within sensory modalities (Gau & Noppeney, 2016; 

Heron et al., 2012). However, up to date it is not clear if the prior representation of multimodal 

timing is also distributed for different sensory modalities. The question is important given that 

the prior representation, whether modality-specific or modality-independent, could help us 

understand how temporal context is represented in our brain.  

Recent studies have shown that the prior representation might not be like the distributed 

clock systems, each having their own priors. For instance, a recent study by Roach et al. (2017a) 

showed that spatial separation or modality of two different ranges of durations for the duration 

reproduction task did not yield separate priors for the separate locations or modalities. Separate 

priors were only formed when two tasks were distinct (e.g., reproduction vs. bisection) for two 

separate durations ranges. More recently, Zang et al. (2022) illustrated that multiple separated 

priors could only be developed when two ranges (short and long) were clearly separable in the 

range. When two ranges were overlapped, maintaining and updating two similar priors could 

be costly, even though two ranges of durations were modality-specific. Their finding is partially 

consistent with the results of Roach et al.’s study (2017b) that observers formed a unified prior 

(global prior) by generalizing across the two interleaved stimulus sets instead of separate priors 

for each stimulus set in multi-prior context, and they did not distinguish the different stimulus 
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sets in the random interleaving condition even if the stimuli used for the two interleaved 

duration distributions were clearly discriminable. In addition to the context of sampled 

distribution of durations, other contexts may also influence duration judgments. For example, 

auditory duration is often perceived longer than the visual duration (Shi, Ganzenmüller, et al., 

2013; Wearden et al., 1998). Binary categorical cue (Petzschner et al., 2012a) or categorical 

judgments (Luu & Stocker, 2018) may also influence final decision making. For instance, 

Petzschner et al.(2012b) used overlapping short and long distance in a production-reproduction 

task with three different experimental conditions (“blocked-ranges, no cue”, “interleaved range, 

no cue”, and “interleaved range, cue”) and demonstrated two separate priors in the “interleaved 

range, cue” condition due to the presence of the categorical cue (‘Short’ vs. ‘Long’).  

Bayesian model in multi-prior context 

It remains an open question how those different contexts (priors) integrate together with 

the sensory measurement. Most current Bayesian approaches (Cicchini et al., 2012; Petzschner 

et al., 2015; Roach et al., 2017a) have been mainly aimed to explain subjects' performance by 

incorporating prior experience into the time estimation process with an implicit assumption of 

uni-prior temporal context without considering the interaction among different contexts. To 

obtain Bayesian optimality in a multi-prior context, we need to investigate the internal structure 

of prior integration in the multi-prior context. Would it be a flat integration (i.e., combining 

priors and sensory measurement linearly) or combined priors and sensory measurement in a 

hierarchical order? If the latter is true, what kind of structure order would be? Suppose the 

internal prior consists of a multi-level structured prior, constituting something like a local-

global hybrid prior or a generalization of the global prior and local prior information, the 

question of how Bayesian optimization of time perception for the temporal context with 

multiple priors to explain subjects' performance by the incorporation of multiple prior 

experience into the time estimation process remains unknown. The internal prior may consist 

of a multi-level structured prior, constituting something like a local-global hybrid prior. On this 

ground, we investigated the structure of the prior in detail to attain a better understanding of 

the hierarchical structure of the prior. In any case, fundamental questions remain regarding how 

these acquired knowledge (priors) are integrated with global priors and generalize to sensory 

evidence and behavioral contexts. Inspired by this, we intend to further investigate the 

underlying structure of the context-specific prior in time estimation of prior information in the 
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duration reproduction task. Furthermore, the interactive influence between priors in the multi-

prior context can be posed rigorously. 

This study 

In this study, we employed two with two levels of variance of short and long range on 

logarithmic scale by rescaling short and long ranges and expanding the separation between the 

short and long intervals to uncover the underlying mechanism during prior knowledge 

integration. Note that the geometric means of the interleaved range in two experiments were 

kept to be the equal. As no single Bayesian observer model yet has been proposed to be able to 

explain prior integration in multi-prior contexts, we aimed to extend our basic Bayesian 

observer model to multi-prior temporal contexts, and further uncover the rules governing how 

learned prior knowledges are grouped together. We proposed three possible hierarchical 

Bayesian models to explore hierarchical structure of the priors integration under multi-prior 

context. All proposed hierarchical Bayesian models were able to predict the central tendency 

effects observed from two experiments. The model results showed their performance were 

equally well performance in reproduction mean and variance prediction despite their different 

structural assumptions. These proposed models were strong evidence showing the existence of 

an additional global prior which represents the context of interleaved range for multi-prior 

context. Additionally, we found the global prior was not only influenced by the geometric mean 

of the interleaved range, but also influenced by more recent context (prior) learned in the 

session before a randomly interleaved session. In addition, the global prior was weighted more 

in time estimates with the less variability of the interleaved range. When the global range and 

variability were reduced, the influence of the global prior increased accordingly.  

METHODS 

Participants 

Thirty-two volunteers recruited from Ludwig-Maximilians-Universität Munich took 

part in two experiments (16 each; Exp1. : 13 females; mean age: 25.5 yrs; SD of age: 4.32 yrs; 

Exp.2: 5 females; mean age: 24.8 yrs; SD of age: 2.28 yrs). All had normal or corrected-to-

normal visual acuity. All participants were given written informed consent before the 

experiments and were paid 9 Euro per hour for their participation. The study was approved by 

the ethics committee of the Psychology Department of LMU Munich. All participants were 



 
 84 

naive to the purpose of the research. The number of participants was determined according to 

a power analysis conducted with G*Power (Erdfelder et al., 1996) with an alpha of .05, power 

of 95% and a relative large size effect (f(U) = 0.426) in a repeated-measures analysis of 

variance (ANOVA; 𝜂"5= 0.4), the effect size was determined according to reported data in 

previous studies (Cicchini et al., 2012; Petzschner et al., 2012b; e.g., Roach et al., 2017a). 

Stimuli and apparatus 

The experiments were carried out in a sound-attenuated and dimly lit experimental 

cabin. Visual stimuli (a gray disk, 36.5 cd/m2, 	5°of visual angle in diameter) and experiment 

instructions / feedback, were generated with Matlab software (The MathWorks Inc, 2016 

version) and Psychophysics Toolbox-3 (Kleiner et al., 2007), and were presented on a 21-inch 

LACIE CRT monitor with a monitor resolution of 1024×768 pixels and a refresh rate of 100 

Hz. The viewing distance was fixed at around 57 cm. The display background was dark gray 

(18.9 cd/m2).  

Procedure and Design 

We adopted the temporal production and reproduction task in two experiments. The 

task remained the same for all experiments. Participants were asked to reproduce the duration 

of a given visual stimulus as accurately as possible by pressing and holding the left button of 

the mouse (see Figure 1 for an example). Each trial started with a visual fixation cross for a 

random interval between 500 ms to 1s, prompting participants to get ready for the new trial. A 

production phase started immediately after the offset of the fixation display, with the visual 

stimulus (i.e., gray disk, 5°) being presented for a randomly selected interval either on the left 

(-5°) or the right (5°) side of the fixation. The test durations were sampled from two ranges: 

the short-range (< 1s) and the long-range (> 1s, details see Figure 1 and the text of the next 

paragraph). The ranges were assigned to the left or the right, fixed for a given participant, but 

counter-balanced among participants. After the presentation of the probe duration, there was a 

blank screen with 1s. Then, a white down arrow was shown, prompting participants to 

reproduce the probe duration by pressing and holding the left button of the mouse as accurately 

as possible. After the mouse was pressed, a gray circle was immediately presented in the middle 

of the screen and it disappeared when the mouse was leased, to help participants perceive their 

reproduced duration. A feedback display was then shown to indicate the relative reproduction 

accuracy [(reproduced duration - target duration)/ target duration]. The feedback display 
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consisted of five circles, corresponding to the relative deviation: below -30%, [-30%,-5%], (-

5%, 5%), [5%, 30%], and above 30% from the left to the right respectively. The feedback for 

the ‘accurate’ trials falling in between [-30%, 30%] was presented in green color for 0.5s, while 

the feedback for the ‘inaccurate’ trials (i.e., outside [-30%, 30%] ) was shown in red (two outer 

circles) for 1.5s as a warning. After an inter-trial interval of 1s, the next trial began.  

 
Figure 1 An illustration of trial procedure and stimuli in Experiments 1 and 2. The target 

intervals were shown in the left/right side of the screen according to the range that the interval 

came from (either short or long range). Participants were required to reproduce the time 

duration of the target stimulus by pressing the mouse button as accurately as possible for an 

equivalent interval of target intervals. 

To fully examine the context effects due to the blockwise ranges, we adopted two levels 

of variance on log scale by expanding or rescaling the range of short and long intervals and 

varied the separation between the short and long ranges: higher log variance (0.634 in Exp. 1) 

and lower log variance (0.538 in Exp. 2), as depicted in Figure 1. The intervals of the short 

range and long range were not overlapped and the geometric means of interleaved range for 

Exp. 1 and Exp. 2 were the same. In Exps. 1 and 2, participants performed three experimental 

sessions: the short session (five interval samples with equal logarithmic spacing were chosen 

from short-range, 400, 476, 566, 673, 800 ms for Exp. 1, 490, 543, 600, 663, 730 ms for Exp. 

2), the long session (five interval samples with equal logarithmic spacing were chosen from 

long-range, 1200, 1427, 1697, 2018, 2400 ms for Exp. 1, 1310, 1448, 1600, 1768, 1954 ms for 
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Exp. 2), and the mixed session (10 intervals from both short and long ranges were randomly 

mixed together). Each duration was repeated 32 times in the short and long session and 16 

times in the mixed session. In Exp. 1, the intervals from the short-range were equally spaced 

in the log-scale between 400 and 800 ms, with a geometric mean of 566 ms, a standard 

deviation of 158.459ms; the intervals from long-range were also equally spaced in the log-scale 

between 1200 and 2400 ms, with a geometric mean of 1697ms and a standard deviation of 

475.407ms; distribution of intervals for the mixed session had a geometric mean of 980ms and 

a standard deviation of 699.307ms. In Exp. 2, the intervals from the short-range were equally 

spaced in the log-scale between 490 and 733 ms, with a geometric mean of 600 ms and a 

standard deviation of 95.571ms; the intervals from long-range were equally spaced in the log-

scale between 1310 and 1954 ms, with a geometric mean of 1600 ms and a standard deviation 

of 254.864 ms; distribution of intervals for the mixed session had a geometric mean of 980 ms 

and a standard deviation on of 562.446ms. Note that the geometric means of interleaved range 

for Exps. 1 and 2 were kept the same (980 ms). 

In order to form separate priors for blocked ranges, we adopted distinct spatial location 

for stimulus sets from short and long ranges, similar as in Roach et al.’s study (2017b)5. 

Henceforth the short session and long session were referred to as the blocked range (BR) 

conditions, whereas the mixed session was referred to as the interleaved range (IR) condition. 

Both experiments start with BR sessions first (the sequence of the short and long sessions were 

randomly and counterbalanced designed). The IR session in which test intervals are sampled 

from short and long range was always the last session. Each session has 8 blocks and each 

block has 20 trials (in total 160-trial per session). Prior to the 24-block formal experiment, 

participants got familiarized with the task in a practice block of 20 trials, which involved the 

same procedure as the formal experiment.  

Data Analysis 

To exclude duration reproduction likely reflecting lapses of attention or accidental 

responses, outlier criterion was adopted based on the interquartile range (IQR): production bias 

outside of the 0.025 and 0.975 quantiles for each participant in each experimental condition 

were omitted from the further data analyses. Statistical differences were assessed by repeated-

 
 
5 The visual stimuli were presented at different spatial locations (left or right of fixation cross) in short and long 
sessions to build a stable prior based on spatial and temporal information, and alternated from trial to trial in the mixed 
session to remove any spatial and temporal uncertainty. 



 
 87 

measures Bayesian analyses of variance (ANOVA), and we applied one-tailed paired t-tests 

when two levels were compared. We additionally report the estimated Bayes factors(𝐵𝐹$(), 

which gives the evidence required for acceptance of the null hypothesis, obtained from 

comparable Bayesian statistics using JASP v.0.13.1 (http://www.jasp-stats.org) with default 

settings (Love et al., 2019). Further repeated-measures ANOVA analysis with conditions (IR 

vs. BR) and ranges (short vs. long) as within-subject factors to assess participants’ response 

difference between condition and range. 

BEHAVIOR RESULTS 

Mean Reproduction and Variability  

The mean reproduction responses and reproduction bias in Exps. 1 and 2 are depicted 

in Figure 2 (Exp. 1: a and b, Exp. 2: d and e). By visual inspection, we observed remarkable 

central tendency effects in all conditions. In addition, comparing two types of sessions: the IR 

session had a general shift as compared to the BR session. The short range durations were in 

general overestimated and the long range duration underestimated in IR relative to BR session.  

A 2×2 repeated-measures ANOVA on the reproduction bias in Exp. 1 revealed a 

significant main effect of Range (short vs. long) [F(1, 15) = 12.863, p <0.01, ηp² = .462, 𝐵𝐹$( > 

1000], together with a significant interaction of Range (short vs. long) × Prior Context (BR vs. 

IR) [F(1, 15) = 1.09, p < .01, ηp² = .424, 𝐵𝐹$( = 5.50], main effect of Prior Context was not 

significant [F(1, 15) < .019, p =.892, ηp² = .0001, 𝐵𝐹$( = .358]. A post-hoc one tailed paired 

t-test comparing the reproduction difference between the BR and IR sessions for the short and 

long range separately revealed significant difference between the BR and IR condition [for the 

short range: reproduction bias for intervals in the BR condition was less than IR condition, t(15) 

= -4.943, p <.0001, 𝐵𝐹$(= 345.098; for the long range: reproduction bias in the BR condition 

was greater than the IR condition, t(15) =2.073, p = 0.028, 𝐵𝐹$(= 2.763], suggesting a stronger 

overestimation for the short intervals and underestimation for the long intervals in the IR 

relative to the BR session. 
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Figure 2 Production-reproduction performance in Exp. 1 (small separate 400ms) and Exp. 2 

(large separate 577ms). (1) Mean reproduction of estimation behavior across subjects was 

plotted against test intervals, separate for the BR vs. IR conditions in Exp.1(a) and Exp.2(d). 

The dashed diagonal lines indicate veridical performance (the responses and sample stimulus 

would be equal). The scatterplots indicate the reproduced duration of subjects for target 

intervals. (2). Mean of reproduction bias in Exp.1(b) and Exp.2(e). The bias increased for 

increasing sample durations because of scalar property. Error bars denote standard errors of 

the mean across participants. (3). Normalized mean reproduction difference between IR 

condition and BR condition in Exp. 1(c) and Exp.2(f). Note that the x axis in subplots was 

transformed to log10 scale. 

Moreover, a 2×2 repeated-measures ANOVA on the reproduction bias in Exp. 2 yielded 

significant main effects of Range (short vs. long), F(1, 15) = 42.183, p <.0001, ηp² = .738, 

𝐵𝐹$( > 1000, together with a highly significant interaction of Prior Context × Range, F(1, 15) 
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= 26.494, p <.001, ηp² = .638, 𝐵𝐹$( >1000, but not significant for the change Prior Context 

[F(1, 15) = 2.452, p = 0.15, ηp² = .138, 𝐵𝐹$( = .358]. A post-hoc ANOVA on the reproduction 

bias revealed a significant effect of the Prior Context (BR vs. IR) in short range [F(1, 15) 

=12.58, p < .01, ηp² = .289] and no significant effect of Prior Context in long range [F(1, 15) 

= 22.88, p < .001, ηp² = .33]. Similarly, one tailed paired t-test comparing the reproduction 

difference between the BR and IR conditions for the short range and long range separately was 

conducted on Exp. 2 and the results showed that the reproduction bias for intervals in short 

range in the BR condition was less than IR condition [t(15) = -3.55, p <.001, 𝐵𝐹$( = 30.55]; 

reproduction bias for intervals in long range in BR condition was greater than IR condition 

[t(15) = 4.748, p = .0001, 𝐵𝐹$(  = 262.83], implying a stronger overestimation for short 

intervals and underestimation for long intervals in IR condition than BR condition in Exp. 2. 

Mean reproduction difference between prior context condition 

The mean observed reproduction difference between the IR and BR conditions in Exp. 

1 and Exp. 2 were illustrated in Figure 2 (c and f). Normalized Mean Reproduction Difference 

(NMRD) was used to scale the results of the mean reproduction bias difference between IR 

condition and BR condition, making Exps. 1 and 2 comparable. NMRBD was calculated as 

𝑁𝑀𝑅𝐷, =
O&,QR	0O&,(R

N&
, where 𝑅,,SO and 𝑅,,.O represent the mean of the reproduction of a given 

interval 𝐷, in the IR and BR conditions. A mixed-design ANOVA with Rang (short and and) 

as the within-subject factor, Experiment (1 and 2) as the between-subject factor revealed the 

the main effect Rang to be significant [F(1, 30) = 38.047, p < .001, ηp² = .445], while the main 

effect of Experiment was non-significant [F(2, 30) = .596, p = .5575, ηp² = .0014] and the Exp 

× Rang interaction was non-significant [F(2, 30) = 2.0813, p = .142, ηp² = .0.08]. In addition, 

we conducted one-tailed paired t-test comparing the reproduction difference between the BR 

and IR conditions )𝑅,,SO 	− 𝑅,,.O* for the short and long range separately, and these analysis 

revealed that NMRD in Exp. 1 was less than in Exp. 2 [t(30) = -1.449, p =.079, 𝐵𝐹$( = 1.487] 

for short range, NMRD for long range in Exp. 1 was significant greater than in Exp. 2 [t(30) = 

2.140, p < .05, 𝐵𝐹$( = 3.639], suggesting less reproduction difference in IR and BR condition 

in Exp. 1, namely that in Exp.1 there was less biased towards the grand mean compared to Exp. 

2 for both the short and long intervals. 
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Mean reproduction difference between session order 

Exp. 1 and 2 start with the short session or long session, and end with IR condition. The 

order of the short and long sessions was randomly and counterbalanced. To check the session 

order effect on the behavior, we plotted the mean observed reproduction as a function of the 

test interval, separate  for the session, and Session order [Short-Long-Mixed (S-L-M) vs. Long-

Short-Mixed (L-S-M)] in Exp. 1 and Exp. 2 (Figure 3). By the visual inspection, the Session 

order did not influence much for the long range duration reproduction, but showed visible 

separation for the short range duration reproduction. Specifically, durations in the short IR 

session were shifted higher when it was preceded by the long session as compared to the short 

session.  

 

Figure 3 Mean observed reproduction across subjects was plotted against test intervals, 

separate for Range (short (a) vs. long (b)), Prior Context (IR vs. BR) and Session order (S-L-

M vs. L-S-M) in Exp.1 and Exp.2. The dashed diagonal lines indicate veridical performance 

(the responses and sample stimulus would be equal).  

A mixed-design ANOVA of the mean reproduction bias with Experiment (1–2) and 

Session Order as between-subject factors, Prior Context (BR vs. IR) and Range (short vs. long) 

as within-subject factors revealed a significant main effects of Range [F(1, 28) = 47.89, p 

< .001, ηg² =.631], Range × Prior Context interaction [F(1, 28) =36.329, p < .001, ηg² = .565], 

and Session Order × Prior Context interaction [F(1, 28) =8.85, p <.01, ηg² = .011]. The rests 

were not significant (Fs < 4.2, p > .052). The interaction between the Session order and Prior 

context mainly originated from the short range (see Figure 3a). A long session prior to the 

mixed session inflated the reproduction in the short range, but not in the long range. Of note, 
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in BR condition, for Session Order S-L-M (short session as the first session of the experiment), 

there is no session prior to short session, so the reproduction of the short session has no general 

shift. In contrast, the inflated reproduction for Session Order L-S-M was observed compared 

to S-L-M (see Figure 3a), suggesting the reproduction of the short range in BR condition was 

influenced by long session prior to short session. The effect of Session Order on the IR 

condition was opposite to the effect on the BR condition. In the IR condition, the reproductions 

of the short and long-range were both influenced by the long session prior to the mixed session 

for session order S-L-M, and both influenced by the short session prior to the mixed session 

for session order L-S-M. Hence, we observed more inflated reproduction of S-L-M than L-S-

M for short range (see Figure 3a), and  more deflated reproduction of L-S-M than M-S-L for 

long range in IR condition (see Figure 3b). Combining the results of the BR and IR conditions, 

we concluded that the reproduction of later sessions is influenced by the previous session, that 

is, when the session prior to the current session is a long session, the reproduction would be 

increased, at least for the short range, and when the session prior to the current session is a 

short session, the reproduction would be reduced. 

Regression indices of central tendency 

To better understand the central tendency effect, we use the indicator - Centrality 

index(CI), calculated as CI = 1-slope (slope denoting the slope of linear regression function 

between reproduced intervals and produced intervals), which has been used in previous studies 

(Glasauer & Shi, 2019). In Experiment 1, a 2×2 repeated-measures ANOVA on mean CI with 

the factors Prior Context (BR vs. IR) and Range (short vs. long) revealed a significant main 

effect of Prior Context, F(1, 15) = 24.18, p < .001, ηp² = .617, 𝐵𝐹$(= 80.25, together with a 

significant interaction between Prior Context and Range, F(1, 15) = 10.973, p <.005, ηp² = .422, 

𝐵𝐹$(= 20.287. Moreover, the reproduction of IR condition in Exp. 1 had a lower CI than it in 

the BR condition (see Figure 2c), suggesting the IR condition showed lower central tendency 

effects than the BR condition. More specifically, there was significant effect between IR and 

BR condition for the short range [mean: 0.244 (IR) vs. 0.541 (BR), F(1,15) = 18.5, ηp² = .552, 

𝐵𝐹$(= 220.238], implying there were significant less central tendency effects in the IR 

condition; but there was no significant difference between IR and BR for long range[mean: 

0.306 (IR) vs. 0.340 (BR), F(1,15) = 1.709, p =0.211, ηp² = .102, 𝐵𝐹$(= 0.617]. 

For Exp. 2, with a 2×2 repeated-measures ANOVA on mean CI with the factors Prior 

Context (BR vs. IR) and Range (short vs. long) we found no significant difference of the factors 
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Prior Context [F(1, 15) =1.177, p =0.295, ηp² = .073, 𝐵𝐹$(=.325] and no significant Prior 

Context ×Range interaction [F(1, 15) = .870, p =.366, ηp² = .055, 𝐵𝐹$(= .368]. The CI in the 

Exp. 2 (as depicted in Figure 4) were analyzed by one tailed paired t-test with factor Prior 

Context, which failed to find any significant differences: the short range [mean: 0.468 (IR) vs. 

0.426 (BR), t(15) = 1.323, p = .103, 𝐵𝐹$(= 1.07]; and the long range [mean: 0.608(IR) vs. 

0.7625(BR) , t(15) = .115, p = .455, 𝐵𝐹$(= 0.514].  

 

Figure 4 Mean regression index of central tendency (CI) as a function of target duration of the 

short and long interval conditions in Exp. 1 and Exp.2. 

Figure 4 illustrates the centrality index (CI) of Exp. 1 and Exp. 2 among different prior-

condition-associated and range-associated conditions. The CI of the least-squares regression in 

Exp. 2 were significantly greater than that in Exp. 1 (see Figure 4), suggesting that the subjects 

participating in the experiment with narrower local ranges and a wider separation (Exp. 2) 

between short and long intervals showed higher central tendency effects.  

Indifference Points (IPs) 

Indifference point denotes the mean of the prior that production times were biased 

towards. To investigate the effect of the migration toward the center varying in Prior Context 

and Range, we analyzed indifference points to denote the center of compressive central 

tendency bias, as shown in Figure 5. In the BR condition, the mean IPs were located close to 

the means of the stimulus sets in the corresponding range, indicating that the local prior in the 

BR session worked independently and indifference points induced by the local prior were 

located around the center of the sampled distribution. 
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Figure 5 Mean reproduced durations as a function of stimulus duration (filled symbols) 

presented in separate prior context and range condition. Solid continuous lines through 

triangles and solid points represent linear fits of the reproduced durations from the short and 

long interval condition, respectively, whereas the dotted diagonal lines denote veridical 

(unbiased) performance. Horizontal error bars denote standard errors of the mean of 

indifferent points across participants. Open points represent the estimated indifference points 

along with bootstrapped 95% confidence intervals.  

A 2×2 repeated-measures ANOVA on indifference points in Exp. 1 with the factors 

Prior Context (IR vs. BR) and Range (short vs. long) revealed a significant main effect of 

Range [F(1, 15) = 34.39, p < .001, ηp²= .696, 𝐵𝐹$(>10000], a significant Prior Context x 

Range interaction [F(1, 15) = 7.75, p < .05, ηp²= .341, 𝐵𝐹$(=2.14], but failed to find any 

significant effect of Prior Context [F(1, 15) = 1.538, p = .234, ηp²= .093]. A post-hoc analysis 

on the estimated indifferent points showed a significant effect of Prior Context (BR vs. IR) for 

the short and long range separately [short range, mean: 0.632(±0.10) vs. 0.765 (±0.28), t(15) 

= -1.940, p =.035, 𝐵𝐹$( = 2.286; long range, mean: 1.70 (±0.45) vs.1.36 (±0.73), t(15) = 

2.203, p =.0218, 𝐵𝐹$( = 3.342], suggesting two individual local priors for the range short and 

long for the BR session were assimilated toward the grand mean of all intervals in the IR 

condition. This finding can be observed in Figure 5a, where the IPs induced by IR condition 

(solid circles) were migrated toward the mean of the grand mean of stimuli (1.16s).  

Similarly, a repeated-measures ANOVA on the IPs in Exp. 2 revealed a significant main 

effect of Range [F(1, 15) = 108.142, p < 0.001, ηp² = .878, 𝐵𝐹$(>10000], a significant 

interaction [F(1, 15) = 24.394, p < .001, ηp² = .619, 𝐵𝐹$(= 986.124], but again failed to show 
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any significant effect of Prior Context [F(1, 15) = 1.412, p = .253, ηp² = .086]. Furthermore, 

we conducted a one-tailed paired t-test comparing the estimated IPs between the BR and IR 

conditions, separately for the short and long range. These revealed IPs for the short intervals in 

the BR condition were significantly less than IR condition [mean: 0.637(±0.05) vs. 0.8 (±0.17), 

t(15) = -3.61, p <.005, 𝐵𝐹$(  = 34.096], meanwhile the IPs for the long intervals in BR 

condition were significantly greater than the IR condition in Exp. 2 [mean: 1.45(±0.127) vs. 

1.21(±0.276), t(15) = 3.96954, p <.001, 𝐵𝐹$( = 63.889], indicating in IR condition two local 

priors were assimilated to each other, that is, migrated toward the grand mean of stimuli (1.12s).  

BAYESIAN MODELING 

In the present study, both experiments exhibited reliable central tendency effects in two 

prior context conditions, with a more “centered” reproduction for the IR condition. This 

indicated a tendency toward the mean of the underlying stimulus distribution in both IR and 

BR conditions, and the two local centers (indifference points) were migrated toward the grand 

center for the IR condition. In the BR condition, the indifference points were pulled toward the 

mean of duration set in the associated testing conditions, therefore we reasoned that observer 

learned two separate priors, a short prior and a long prior for the short and long intervals, 

respectively. In the IR session, the mean reproduction shows their own central tendency with 

the migration toward the grand mean of testing intervals. Of note, regression indices of the 

central tendency in the IR condition was significantly less than the BR condition. For the IR 

condition, a stronger central tendency with narrower local ranges and a larger separation (in 

Exp. 2) was observed, compared to Exp. 1. Inspired by those results, we hypothesized that in 

addition to the short and long priors formed in the BR condition, there was a general global 

prior, which played a role in the estimation process in the last IR session. The subjective 

estimation in the IR condition was produced as the integration of the global prior with the local 

priors.  

Uni-prior Bayesian observer model 

The central tendency effect of subjective estimates in the BR condition can be well 

explained by the uni-prior Bayesian observer model (Shi, Church, et al., 2013; Shi & Burr, 

2016), where the distributions of the priors, likelihoods and posteriors are assumed to be 

Gaussian and the optimal estimate is calculated as the weighting of the sensory measurement 

of the current interval with the previous learned prior. Figure 6 illustrates how a Bayesian 
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observer learns the statistics of the history of stimuli and forms a prior around the mean of 

stimuli. The likelihood function 𝐷!(𝑥), denoting the distribution of sensory measurement when 

stimulus is 𝑥, was assumed to be Gaussian distribution with mean 𝑥. As illustrated in Figure 6, 

two separate sessions in the present study were assumed to have their own priors 𝑃7T#H9and 

𝑃:#K) around the mean of the test interval set. The reproduced duration (represented as 𝐷H) was 

considered as posterior by combing the prior (either 𝑃:#K) or 𝑃7T#H9) with the likelihood of 

noisy sensory measurement	𝐷! according to Bayes’ rule. Taking the test interval 1.2s as an 

example, 𝐷!(1.2) denoting the likelihood function of 1.2s was understood as the distribution 

of sensory measurement of 1.2s. The distribution of reproduced duration was assumed as a 

joint probability distribution (𝐷:($.5)) , which was modeled as a posterior distribution by 

integrating the sensory measurement (𝐷!($.5)) with the prior of long rang 𝑃:#K) . The most 

likely estimate is represented as the maximum of posterior 𝐷H, which has the highest accuracy. 

Coupled with measurement noise, it leads to the consequence that the measured interval in BR 

condition may differ from the test duration. 

Multi-prior Bayesian observer model 

Based on the results of indifference points, the centers of observed reproduction were 

migrated toward the grand centers of stimuli with regard to the IR condition. This migration in 

the IR condition cannot be easily explained by the uni-prior Bayesian model as the influence 

caused by two independent local priors. Otherwise, indifference points induced by the local 

priors would be predicted to be the mean of the distribution. However, the results of this study 

(see Figure 2 and Figure 5) showed indifferent points for the short and long intervals in the IR 

condition were biased towards to the grand mean.  

Although the uni-prior Bayesian model explained how a prior around the mean of the 

test duration bias posterior estimates towards the center of the range in the BR experimental 

conditions, it cannot explain the migration from the reproductions of the observers for the BR-

long (red line) and BR-short (green line) condition to the IR-long (blue line) and IR-short 

(purple line) condition, respectively, as shown in Figure 6. As mentioned above, we proposed 

that this migration was caused by a general global prior influencing the perceptual estimates in 

multiple prior context conditions. Our hypothesis is that the brain combines current sensory 

measurement, local priors, and a global prior for the final reproduction. Therefore, a multi-

prior Bayesian observer model with a hierarchical structure describing how sensory 
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measurement and prior knowledge including local priors and global prior are integrated 

together may better predict the behavioral findings. 

 
Figure 6 Schematic illustration of a hierarchical Bayesian estimator model (taking local-

global model as an example). In the IR condition, in addition to two local priors for the 

separate ranges, a global prior based on the whole range may also be developed and 

maintained in Bayesian updating. Both local and global priors integrate with the sensory 

measurement to form the time estimation. The sensory measurement (𝐷!) first integrates with 

the local prior (𝑃:) to obtain a posterior (𝐷:), which further integrates with the global prior 

(𝑃V) to generate a final posterior for reproduction (𝐷H). Taking testing duration 1.2s as an 

example,𝐷!(1.2) denotes the distribution of sensory measurement. Two test ranges, range 

short and range long, have their own priors𝑃7T#H9and𝑃:#K). The distribution of reproduced 

duration is assumed as a joint probability distribution (𝐷:($.5)) which can be modeled as 

posterior by integrating the sensory measurement (𝐷!($.5))  with the local prior of rang 

long𝑃:#K) . The formed posterior (𝐷:($.5)) further integrates with the global prior (𝑃V) to 

generate a final posterior for reproduction (𝐷H($.5)). 

 

To better explain the perceptual estimates in the mixed session, we extended our 

previous uni-prior Bayesian model to the multi-prior temporal condition by adding a global 

prior 𝑃V . To uncover the rules governing local priors and global prior, three alternative 

interpretations about the prior integration in the estimation process were proposed. The first 
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interpretation, referred to as the hierarchical local-global model, assumes that the sensory 

measurement is first integrated with the local prior, and then integrated with the global prior 

(see Figure 7a and Figure 6). The sensory measurement (𝐷!) first integrates with the local prior 

(𝑃: 	= 𝑃7T#H9	u𝑃:#K)*  to form a posterior (𝐷:) , then the formed posterior (𝐷:)  further 

integrates with the global prior (𝑃V)  to generate a final posterior for reproduction (𝐷H) . 

Alternatively, we proposed a dual-integration model (DIM) hypothesizing that the local prior 

for each range integrates with the sensory measurement separately firstly, and then the outputs 

from these integrations could be combined together to form the estimate (Figure 7b). The third 

model we proposed, referred to as the prior integration model (Figure 7c), assumes that global 

prior𝑃V  and local prior 𝑃: are firstly integrated to form a integrated prior 𝑃S, and integrated 

prior 𝑃S  is then integrated with sensory measurement 𝐷7 into the duration estimation. The 

mathematical descriptions for above proposed models are available in Appendix A. 

 
Figure 7 Dendrogram of three proposed hierarchical structures of global and local priors 

integration in Bayesian estimation: local-global model(LGM), dual integration model(DIM), 

prior integration model(PIM) a.The local-global model(LGM) assumes that the sensory 

measurement(𝐷7)  first combines with the local prior(𝑃:)  to form posterior(𝐷:) , and the 

formed posterior(𝐷:) further integrates with the global prior(𝑃V) to generate reproduction 

(𝐷H). b. The dual integration model (DIM) assumes that each range has its own prior and 

integrates with the sensory measurement separately firstly, and then the outputs from these 

integrations could be combined into the posteriors. Both local and global priors independently 

integrate with the sensory measurement to generate two posteriors (𝐷:) and (𝐷V), the latter 

two are combined together for estimate(𝐷@). c. The prior integration model (PIM) assumes 

that global prior𝑃V  and local prior 𝑃: are firstly integrated to form a integrated prior 𝑃S, and 

this integrated prior 𝑃S is then integrated with sensory measurement 𝐷7 to form the estimated 

duration.  
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Implementation of models and parameter estimation 

There are two alternative assumptions on the encoding of subjective durations, 

logarithmic scaled and linear scaled. The logarithmic encoding of subjective durations assumes 

a constant of Weber fraction of time estimation based on scalar property (Gibbon et al., 1984a; 

Shi, Church, et al., 2013), while the linear encoding of subjective durations supports a linearly 

increasing noise with the absolute magnitude according to Weber’s law(Cliff et al., 2019; 

Fechner, 1966). Since empirical justification of logarithmic or linear scaled on internal duration 

mainly depends on the adopted experimental paradigms (Matthews & Meck, 2016; Ren et al., 

2021a), hence whether adopting linear or logarithmic coding of the internal representation was 

not ascertained, therefore we conducted both logarithmic and linear encoding models and 

compared their predictions to explore which model can achieve better performance (see 

Appendix B). 

In our Bayesian framework, we applied the uni-prior model for the BR session data to 

yield the distribution of the short prior (Gaussian distribution with mean 𝜇1+and variance 𝜎1+
5 ), 

the long prior (Gaussian distribution with mean 𝜇1,and variance 𝜎1,
5 ), and the motor noise 

(𝑁(0, 𝜎<5 )). In addition, we have the parameter 𝜎!5 for the variance of the sensory measurement 

in the log scale (which we assume the Weber scaling in duration perception). After we obtained 

the parameters from the BR session, we used those six parameters for the IR session, assuming 

the local priors (either the short or the long) and the motor noise did not change. The additional 

parameters we set free were the distribution of the global prior (𝜇1= and 𝜎1=
5  denoting the mean 

and variability of global prior).  

All proposed models (see Figure 6) were implemented by Stan in Rstudio (Carpenter 

et al., 2017; Team & Others, 2018), a platform for statistical modeling and Bayesian statistical 

inference. After implementation of the notational specification of probability models, the 

model specification was compiled from Stan's probabilistic programming language into C++ 

program by the Stan platform. Sequentially, Markov Chain Monte Carlo (MCMC) algorithms 

for Bayesian Inference were used to sample the parameters to maximize the joint posterior 

distribution for the parameters of interest. In this study, 12000 iterations per chain (8 chains in 

total) with 2000 warmup iterations were applied to achieve the optimization of parameters and 

our Stan models were diagnosed with their assess convergence to check if parameters were 

drawn from the actual posterior distribution of interest. 

The proposed models were described in detail in Appendix A, and all experimental 
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dataset, R-analysis and RStan modeling codes are available at 

https://github.com/msenselab/PriorsIntegration. 

 

MODEL RESULTS 

Prediction of the mean of reproduction 

To visualize the goodness of the fit of each model, the prediction error (i.e., the error 

between predicted reproduction and observation) in the IR condition across all observers were 

plotted in Figure 8a. As depicted in Figure 8b, the mean absolute errors on predicted 

reproduction mean was plotted versus errors on predicted reproduction variance. Each point 

represents the errors in prediction error estimation derived from the proposed model per 

individual participant. The bigger points indicate the averaged means and variances of 

reproductions predicted by the model across all subjects. To further evaluate the prediction 

performance, we applied the mean absolute percentage errors (MAPE) to measure the accuracy 

of the prediction by averaging the absolute percentage error of prediction. As depicted in 

Figure 8b, the dual integration model (DIM) had better prediction performance on mean 

relative accuracy of the reproduced durations prediction(DIM 98.08%, LGM 97.42%, PIM 

97.42% for Experiment 1, and DIM 97.80%，LGM 97.49%, PIM 97.49% for Experiment 2), 

but worst relative accuracy of the reproduction variance prediction(DIM 51.92% , LGM 

56.27%, PIM 97.42% for Experiment 1, and DIM 68.46%, LGM 72.70%, PIM 72.70% for 

Experiment 2). Note that LGM and PIM models yielded equally well prediction performance 

in reproduction mean and variance prediction for varying experimental conditions. 
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Figure 8 a. Mean prediction error from proposed models (mean predicted reproduction - mean 

of observed reproduction) across observers for all test intervals from all conditions. The dotted 

lines, dashed lines and solid lines represent mean prediction error derived from the 

hierarchical local-global model (LGM), the prior integration model (PIM) and the dual 

integration model (DIM), respectively. Horizontal dotted line indicates mean observed 

reproduction. b. The scatterplot of mean absolute percentage errors (MAPEs) of the means 

and variances of reproduction predicted by models LGM, PIM, and DIM for individual 

observers in Experiments 1 and 2. Note that the results of LGM were overlapped by the results 

from PIM, since they yielded almost the same predictions. 

Furthermore, Watanabe-Akaike information criterion (WAIC) and leave-one-out 

information criterion (LOOIC) were used as fit indices for each of three Bayesian models. The 

WAIC and LOOIC are widely applied in practical Bayesian model evaluation and model 

selection. These measures not only take into account the goodness-of-fit, but also penalize 

models with more free parameters (Vehtari et al., 2017). Lower WAIC values indicate better 
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model performance. As shown in Table A1, the DIM had the best performance in both 

logarithmic and linear scale models for Experiments 1 and 2, given that it yielded the lowest 

WAIC and the lowest LOOIC. 

Estimated global priors 

In this study, we used two parameters (𝜇1= and 𝜎1=
5 ) for the mean and variability of the 

global prior distribution (for more details see Appendix A). A mixed-design ANOVA of the 

estimated mean global prior (𝜇1=) between Exp. 1 and 2 as the between-subject factor and 

Model(DIM, LGM, and PIM) as the within-subject factor revealed a significant main effect of 

Experiment [F(1, 30) = 6.391, p = .0170, ηp² = .339, 𝐵𝐹$(>1000], but failed to reveal any 

significant of Model [F(2, 60) = .00045, p=.999, ηp²<.0001, 𝐵𝐹$(>1000], or the interaction 

between two factors [F(2, 60) = .0263, p =.974, ηp² <.0001, 𝐵𝐹$(= 4.362].  

Similarly, a mixed-design ANOVA of the estimated variance of global prior (𝜎1=
5 ) 

between Exp. 1 and 2 as the between-subject factor and Model (DIM, LGM, and PIM) as the 

within-subject factor revealed a significant main effect of Model [F(2, 60) =14.545, p = <.0001, 

ηp² = .0578, 𝐵𝐹$(>1000], but failed to reveal any significant of Experiment [F(1, 30) = .842, 

p=.366, ηp²<.045, 𝐵𝐹$(=.952], or the interaction between two factors [F(2, 60) = 2.148, p 

=.125, ηp² <.001, 𝐵𝐹$(= 2.172]. The short range and long range in Exp.2 were shrunken and 

separation between the short and long-range were expanded compared to Exp.1, a more sharply 

peaked local prior (smaller variance) was expected in Exp.2. The results showed a smaller 

variance of global prior in Exp.2 was observed, consistent with our expectation. Interestingly, 

though, Exp. 1 and Exp. 2 had the same geometric mean for the IR session, we found a 

significant difference in the mean of global prior between Exp. 1 and Exp. 2.  

Effect of session order 

To examine the effect of session order on the performance during the mixed session, 

the estimated global priors (±SE) were plotted against Models (DIM, LGM, and PIM), for 

session order Long-Short-Mixed (L-S-M) and Short-Long-Mixed (S-L-M) in Exp.1 and 2 (see 

Figure 9). A mixed-design ANOVA of the estimated mean global prior (𝜇1=) with Experiment 

(Exp. 1 and 2)  and Session Order(L-S-M vs. S-L-M) as the between-subject factor and Model 

(DIM, LGM, and PIM) as the within-subject factor revealed a significant main effect of 

Experiment [F(1, 28) = 8.624, p < .01, ηp² = .235, 𝐵𝐹$( = 2.546], Session Order [F(2, 60) = 

12.48, p<.001, ηp²=.308, 𝐵𝐹$(=7.422] and Model [F(2, 60) = 14.544, p<.001, ηp²=0.045, 
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𝐵𝐹$(=.977]. Furthermore, pairwise T-tests between session order revealed significantly higher 

mean global priors for session order S-L-M than L-S-M in both Exp.1 and Exp.2 (see Table 1), 

suggesting the mean of global prior was higher when the long session as the previous session 

prior to the mixed session.  

 
Figure 9 Mean estimated global priors (and associated standard errors) derived from DIM, 

LGM, and PIM models plotted against session order Long-Short-Mixed (L-S-M) and Short-

Long-Mixed (S-L-M) in Exp.1 and Exp.2. 

 

Table 1 Statistical results of one-way pairwise t-tests between session order on the mean of 

estimated global priors derived from DIM, LGM, PIM for Exp.1 and Exp.2. 

 model t-value p-value 𝐵𝐹$( 

Exp. 1 DIM -1.258 .115 (ns) 1.438 

LGM -2.361 .017 (*) 4.569 

PIM -2.364 .017 (*) 4.585 

Exp. 2 DIM -3.150 .004 (**) 13.34 

LGM -3.658 <.001 
(***) 

28.188 

PIM -3.658 <.001 
(***) 

28.208 
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Weights of the priors in timing estimation 

The estimated weight of global prior, local prior and sensory measurement in Bayesian 

time estimation derived from the proposed models are illustrated in Figure 10.  

 
Figure 10 Weight of global prior (a), local prior (b) and sensory measurement 𝐷!(c) in timing 

estimation derived from the Bayesian models. 

A mixed-design ANOVA on the estimated weight of global prior (Figure 10a) with 

Experiment (1-2) as between-subject factor and Model (DIM, LGM, and PIM) as within-

subject factor revealed a significant main effect of Experiment [F(1, 30) = 5.024, p = .003, ηp² 

=.275 , 𝐵𝐹$(>1000], and of Model [F(2, 60) = 17.971, p <.0001, ηp²= .495, 𝐵𝐹$(=.119], but 

no significant interaction between two factors [F(2, 60) = 1.535, p =.224, ηp²=.116 , 

𝐵𝐹$(=.161]. As mentioned above, we used the same uni-prior model to obtain the same 

distribution of local priors, therefore the variability of the mixed session is the main 

independent variable causing the difference in weight of global prior. We found that the weight 

of the global prior was larger in Exp. 2 than in Exp. 1 [paired t-test LGM: t(15) =-2.392, p 

< .05, DIM: t(15)=-2.360, p < .05, PIM: t(15)=-2.391, p<.05], suggesting the weight of global 

prior is influenced by standard deviation of the mixed session, that is, when the standard 

deviation of the mixed session is smaller (Exp. 2), the estimation relies more on the global prior, 

compared to standard deviation is greater (Exp. 1) 

A 2×3 mixed-design repeated-measures ANOVA on the weight of local prior 

(Figure 10b) with the factors Model between Experiments (1-2) revealed a significant main 

effect of Model [F(1, 30) = 440.559, p = <.00001, ηp² =.973 , 𝐵𝐹$(=2579.45].  However, 

neither Experiment [F(2, 60) = .858, p =.36, ηp²= .0577, 𝐵𝐹$(=1.603], nor the Experiment 
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×Model [F(2, 60) = .072, p =9.309, ηp²=.004, 𝐵𝐹$(=.145], were significant. Another mixed-

design ANOVA on the estimated weight of sensory measurement (𝐷!)  revealed a significant 

main effect of Experiment [F(1, 30) = 5.398, p = .027, ηp² =.263 , 𝐵𝐹$(>1000], and Model 

[F(2, 60) = 153.297, p <.0001, ηp²= .877, 𝐵𝐹$(=.838], but no significant interaction between 

of the factors [F(2, 60) = .535, p =.588, ηp²=.0598 , 𝐵𝐹$(=.155]. The weight of sensory 

measurement (𝐷!) was larger in Exp.1 than in Exp. 2 [LGM: t(15) =2.286, p < .05, DIM: 

t(15)=2.351, p < .05, PIM: t(15)=2.285, p<.05] (see Figure 10c). As the variability of the 

mixed session in Exp. 2 was smaller than Exp.1, the estimated weight of sensory measurement 

(Ds)  was larger in Exp. 1 relative to Exp. 2, and this in turn caused higher central tendency 

effects in Exp. 2. 

DISCUSSION 

 The present study aimed to investigate the research question of how multiple contexts 

are integrated with the sensory measurement in time estimation. The difference of the central 

tendency effects between the IR and BR conditions and the migration of the indifference points 

in the IR relative to the BR condition suggest that time estimation in the final random 

intermixed session (IR) was not merely influenced by the local context of the sampled duration, 

rather also influenced by the previous acquired context and the global range of the sample 

intervals (we refer this as to the global prior).  To reveal the structure of prior integration, we 

proposed three Bayesian multi-prior integration models assuming estimation to be an optimal 

integration of the noisy sensory measurement with multiple priors (the local short or long prior, 

and the global prior) in a hierarchical order. Afterwards, our proposed multi-prior integration 

models were validated by fitting behavior data and the model prediction revealed our proposed 

models are in good agreement with the behavioral data. 

The structure of the prior integration  

As an extension of the basic iterative model (Petzschner & Glasauer, 2011), Petzschner 

et al. (2012b) proposed two symbolic cue integration models (categorical model and cue-

combination model) to account integration process of multiple contexts (categorical cue, and 

the sample distribution) in a distance reproduction task for the “interleaved-ranges, no cue” and 

the “interleaved-ranges, cue” sessions. Particularly, based on an assumption that distinct 

categories from which the stimuli are drawn (Feldman et al., 2009), the categorical model 

combines prior and symbolic cue as combined prior in Gaussian mixture distribution, then 
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ingrates combined prior with sensory measurement to yield the posterior. Additionally, taking 

the symbolic cue as additional modality, a cue-combination model combines symbolic cue and 

sensory measurement as fused signal firstly, then combines fused signal with prior to yield the 

posterior. Both models showed similar performance in the prediction of observed behavior, and 

the model results revealed that the cue context was incorporated into the distance reproduction.  

Similar to the approach of combination between the categorical context and prior in the 

previous study (Petzschner et al., 2012b), our proposed prior integration model combines 

global prior and local prior as integrated prior firstly, then the integrated prior combines with 

sensory measurement to yield posterior. Differ from the discrete symbolic cue in Petzschner’s 

symbolic cue models, acquired priors in our study are assumed to be continuous given the 

multiple contexts are the sampled durations (such as within the session, and the previous 

session).  In Petzschner’s study, the combined prior was a mixture Gaussian distribution which 

is achieved by weighting each prior with the conditional probability of the respective category, 

whereas the integrated prior in our PIM model were two normal distributions of local prior and 

global prior. In addition to the PIM model, we proposed two other alternative prior integration 

structures, which showed equally good in prediction: the local-global model integrated the 

sensory measurement with the local prior, then further integrates with the global prior, which 

adopts a different integration order with PIM (see Figure 7). Interestingly, the model results 

showed LGM and PIM models with two different hierarchical orders yielded the same 

prediction results in reproduction mean and variance prediction for varying experimental 

conditions, implying the different integration order of priors with sensory measurement did not 

cause difference in prediction. The overlapping of two models is partly owing to the linear 

combination in nature with the Gaussian distribution.   

Different from the sequential combination of LGM and PIM, the last proposed dual 

integration model (DIM) assumed that the sensory measurement is integrated with the local 

prior and the global prior separately, and the final decision is a combination of the two, which 

is more complex than the LGM and PIM. The idea of DIM is that the brain might keep two 

decisions first separately (one for the local and one for the global) for different decision 

scenarios (e.g., based on the relevance of the local and global contexts). As depicted in Figure 7, 

in the DIM the sensory measurement integrates twice with the global and local priors, thus two 

posteriors are partially correlated. In order to combine these two posteriors together, we applied 

the correlated distribution theory (Oruç et al., 2003). The model results of DIM showed better 

performance in prediction of reproduction mean but worse performance in prediction of 

reproduction variance, as compared to LGM and PIM.  
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Context further in the past is less weighted than more recent context 

In the present study, the same geometric mean of the interleaved range was applied to 

both experiments. Thus,  if the global prior was learnt independent of the session order, we 

should observe comparable global priors. However, the behavioral results showed the session 

order effect. The session prior to the IR session influenced the global prior more than the first 

session of the experiment, rather than equal impact on that. And all models also confirmed that 

the mean of the global prior is correlated to the mean prior of the previous session. That is, the 

mean global prior was longer for the previous long-range session as compared to the short-

range session. Recent studies have also shown a similar history dependent effect, such as the  

statistics of past interval samples adaptively incorporated in perceptual estimates and samples 

farther in the past being less taken into account during estimation because of their less 

reliability (Zimmermann & Cicchini, 2020). That means, the short prior learned in the first 

session (farther in the past) was less reliable and the long prior learned in the second session 

was higher reliable, implying the long prior was weighted in the estimation of global prior 

which caused higher global prior. This is similar to the sequential dependence in trial-by-trial 

updating (Glasauer & Shi, 2022), remote history trials had less impact on the current trial. It 

can be explained by the dynamic Kalman filter (Petzschner and Glasauer 2011), a special 

moving average process, which weights recent trials more than the earlier trials.  

 Rely more on prior information with expanding separation and narrowing local ranges 

According to the Bayesian modeling framework, when the sensory measurement has 

high precision, there would be less influence of prior knowledge, resulting in a lesser central-

tendency bias (Cicchini et al., 2012; Shi, Church, et al., 2013; Shi & Burr, 2016). The prior 

knowledge is weighted more when sensory estimates are imprecise, suggesting subjects rely 

more on prior knowledge to reduce noise (Karaminis et al., 2016). Initially, we expected a 

trade-off between the weights of local and global prior by adjusting the ranges of short and 

long sessions, while the sensory measurement would be similar. When the short and long 

ranges were shrunk and the separation between short-range and long-range was spanded in Exp. 

2 as compared to Exp. 1, responses of all subjects were expected to be attracted more toward 

the mean of local priors for short-range and long-range in Exp. 2 relative to Exp. 1. Surprisingly, 

the behavior and model results showed that the weight of prior information (including global 

prior and local prior) increases with the shortened mixed range and the widened separation in 

Exp. 2. We observed the centrality index (CI) was higher in Exp. 2 than Exp. 1 (see Figure 4), 
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suggesting the central tendency in duration reproduction tasks in Exp. 2 was stronger than in 

Exp.1. It is likely owing to the fact that the shortened range reduced the variability (uncertainty) 

as well, which subsequently led to higher reliable local and global priors.  

To check the effect of separation between the short and long range, we had to consider 

the changes of indifference points and reproduction errors between the IR and BR condition. 

The results of indifference points from two ranges in the IR session were assimilated to each 

other and a stronger migration towards the grand mean of stimuli in Exp. 2 relative to Exp. 1 

(see Figure 5). The mean of the reproduction bias showed a larger difference between the BR 

and IR session in Exp. 2 relative Exp. 1 (see Figure 2c and f). Taking the above results together, 

the experiment with a wider separation showed a stronger driving force toward the local range 

center (stronger central tendency for the local range) and more migration to the grand center 

(reflected as more changes in indifference points). 

Based on the results generated from the models, we found that local and global priors 

showed the same trend on their weights in estimation. In addition, both local priors and global 

prior weighted more in Exp. 2 (with lower variability) relative to Exp. 1 (with higher variability) 

(see Figure 10). From another perspective, sensory measurement was expected to be weighted 

less in Exp. 1, since the variability of the IR condition in Exp. 1 was larger than Exp.2 (0.634 

s in Exp.1 vs. 0.538 s in Exp.2). The model results suggested the weight of global prior was 

mainly influenced by the variability of the interleaved range. We can conclude that subjects 

rely more on prior knowledge (including local priors and global prior) but less on sensory 

measurement in the condition of wider separation between short-range and long-range.  
 

CONCLUSION 

The present study concentrated on the underlying structure of the prior knowledge integration 

in multi-prior contexts and the question of how multiple priors influence subjective duration 

timing in duration reproduction tasks. Two duration reproduction experiments with the same 

geometric mean of interleaved range but with two levels of variance of short and long range by 

rescaling short and long ranges and expanding the separation between the short and long 

intervals  were carried out. Three possibilities of integration models were proposed to explore 

the integration structure of combining multiple prior information with sensory measurement, 

and results showed their performance were equally well performance in reproduction mean and 

variance prediction despite their different structural assumptions. We found the order of the 
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training session influences the formation of global prior, since context farther in the past is less 

weighted than more recent context.  
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APPENDIX 

Appendix A. Mathematical expression of prior integration models 

In the Bayesian approach, the sensory measurement is noisy and uncertain. The 

probability distribution of the sensory measurement is presented by a likelihood function 𝐷!, 

𝐷! ∼ 𝑁(𝜇!, 𝜎!5). Local prior of short range 𝑃7T#H9 is assumed to be Gaussian distribution with 

mean 𝜇1+ and variance 𝜎1+
5 , local prior of long range𝑃:#K) is assumed to be Gaussian 

distribution with mean 𝜇1,and variance 𝜎1,
5 , and global prior 𝑃V  is assumed to be distributed 

normally with mean 𝜇1=and variance 𝜎1=
5 [i.e., 𝑃7T#H9 ∼ 𝑁)𝜇1+ , 𝜎1+

5 *, 𝑃:#K) ∼ 𝑁)𝜇1, 	, 𝜎1,
5 *, 

𝑃V ∼ 𝑁)𝜇1= , 𝜎1=
5 *]. When stimulus 𝑥 is sampled from range short𝑋!, the local priors 	𝑃:	(in 

Figure 7a and b) would be 𝑃7T#H9. Otherwise, when the stimulus 𝑥 is sampled from range long 

𝑋:, then local prior	𝑃: for current stimulus 𝑥 would be 𝑃:#K).  

1. Local-global model (LGM) 

In the sensory measurement phase, hierarchical local-global model assumes that 

sensory measurement could first integrate with the local priors, and then integrate with the 

global prior to obtain the time estimation (see Figure 7a). The uni-prior model was adopted in 

the process of integration local prior with sensory measurement. When stimulus 𝑥 is chosen 

from range short 𝑋!, the local priors 	𝑃:	(in Figure 7a) would be 𝑃7T#H9. In this case, the weight 

of local prior 𝑤7indicating the dependency of prior in Bayesian time estimate 𝑤7 =
&S"

&*+
" '&S"

. We 

assume local prior	𝑃:is the prior of the long range 𝑃:#K)when the stimulus is sampled from 

range long 𝑋: , therefore weight of local prior for the stimulus from range long 𝑤:  is 

proportional to the inverse of the variability of the local prior𝜎1,
5 , 𝑤: =

&S"

&*,
" '&S"

. Meanwhile, 

when stimulus is sampled from the range short 𝑋7, the weight of local prior for the stimulus 

from range short 𝑤7is proportional to the inverse of the variability of the local prior 𝜎1+
5 .  

The posterior of integrating local priors 	𝑃:	  with sensory measurement [𝐷! ∼

𝑁(𝜇!, 𝜎!5)] is denoted by 𝐷:, 𝐷: ∼ 𝑁(𝜇: , 𝜎:5),  

     (Eq.1) 
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and                                         (Eq.2) 

where 𝑤7 =
&S"

&*+
" '&S"

 and 𝑤: =
&S"

&*,
" '&S"

indicates the weight of local prior in time estimation 

during the first stage of integration with sensory measurement. 

 

Afterwards, the global prior 𝑃1=  integrates with the output of integrating sensory 

measurement with local prior. The posterior of integration of global prior 𝑃1= ∼ 𝑁)𝜇1= , 𝜎1=
5 * 

with posterior 𝐷: , could be presented as𝐷@ ∼ 𝑁(𝜇@ , 𝜎@5),which is the outcome of sensory 

measurement phase without consideration of motor noise, 

𝜇@ = 𝑤V𝜇1= + (1 − 𝑤V)𝜇:       (Eq.3) 

                                    𝜎@5 	=
&*=
" ×	&,

"

&T=
" '&,

"                                                   (Eq.4) 

where 𝑤V  indicates the weight of global prior in Bayesian time estimation 𝑤V =
&U
"

&*=
" '&U

" and 

𝐷>H is the estimate of the reproduction without consideration of motor noise. 

In motor reproduction phase, according to the previous studies (Shi, Church, et al., 

2013; Shi & Burr, 2016), the distribution of estimates of the reproduction with the consideration 

of related motor noise [𝐷< ∼ 𝑁(0, 𝜎<5 )] was assumed to be modeled as 𝐷H ∼ 𝑁(𝜇H , 𝜎H5) where  

   𝜇H = 𝜇@                                                 (Eq.5) 

and                                   	𝜎H5 =	𝜎@5 + 𝜎<5                                                  (Eq.6) 

2. Dual integration model (DIM) 

The dual integration model (Figure 7b) assumes the sensory measurement could 

integrate with the local and global priors separately, then outputs from these integrations could 

be combined into the final estimate. In the sensory measurement phase, the posterior of 

integration local priors	𝑃:	with sensory measurement 𝐷! is denoted by 𝐷: ∼ 𝑁(𝜇: , 𝜎:5), which 

has the same definition in the hierarchy global-local model, refer to Eq.1 and Eq.2. Meanwhile, 

the global prior 𝑃V  is known to be distributed normally with mean 𝜇1= and variance 𝜎1=
5 , the 
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posterior of integration global prior 	𝑃V 	with sensory measurement 𝐷! is denoted by 𝐷V , where 

𝐷V  is assumed to be Gaussian distribution 𝑁(𝜇V , 𝜎V5)with mean 𝜇Vand variance 𝜎V5,  

𝜇V = 𝑤)𝜇1= + )1 − 𝑤)*𝜇1=     (Eq.7) 

and                                 	𝜎V5 =
&*=
" ∗&#"

&*=
" '&#"

                                             (Eq.8) 

𝑤) =
$/&*=

"

$/&*=
" '$/&#"

 indicates the dependency of global prior 𝑃V  in Bayesian estimation of 𝐷V . 

𝐷V  and 𝐷:  are correlated because they both integrate with sensory measurement 𝐷! , 

hence we adopt an parameter 𝜑(−1 ≤ 𝜑 ≤ 1)6 denoting the correlation between 𝐷Vand 𝐷: , 

referring to combining correlated distribution theory (Oruç et al., 2003). The estimation in the 

dual integration model is denoted by 𝐷@ , which integrates 𝐷: ∼ 𝑁(𝜇: , 𝜎:5)  and 𝐷V ∼

𝑁(𝜇V , 𝜎V5). The outputs of integrating the sensory measurement with the local prior is denoted 

by 𝐷: ∼ 𝑁(𝜇: , 𝜎:5) , meanwhile the posterior of integrating the sensory measurement with 

global priors is denoted by 𝐷V ∼ 𝑁(𝜇V , 𝜎V5) . Furthermore, the observed reproduction is 

assumed to as a lognormal distribution 𝐷H ∼ 𝑙𝑜𝑔𝑁(𝜇@ , 𝜎@5 + 𝜎<5 ),  

𝜇@ = 𝑤@𝜇V + (1 − 𝑤@)𝜇:    (Eq.9) 

 𝑤@ =
	&,
"0X	(&=&=)

&=
"'&,

"05X(&=&=)
                                      (Eq.10) 

The reliability of 𝐷V  in time estimation is indicated by 

	𝜎@5 =
D$0	X"G&=

"&,
"

&=
"'&,

"	05X(&=&=)
                                           (Eq.11) 

In the motor reproduction phase, the sensory measured estimate 𝐷@  integrates motor noisy 

log	(𝐷<) ∼ 𝑁(0, 𝜎<5 ) in the same way defined in the hierarchical global-local model, 𝐷H ∼

𝑙𝑜𝑔𝑁(𝜇H , 𝜎H5). The definition of 𝜇H and 𝜎H5 refers to Eq.5 and Eq.6, respectively.  

3. Prior integration model (PIM) 

The prior integration model (Figure 7c) assumes that global prior𝑃V  and local prior 𝑃: 

are firstly integrated to conduct an integrated prior𝑃S , 𝑃S ∼ 𝑁(𝜇/ , 𝜎/5) , and the generated 

 
 
6 The correlation φ ranges from -1 to +1, where ±1 means completely positive correlation or negative 
correlation, and 0 means irrelevant. 
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integrated prior𝑃S is then integrated with sensory measurement 𝐷! to form the estimation𝐷@ ∼

𝑁(𝜇@ , 𝜎@5). In more detail, in the sensory measurement phase, the posterior of integration local 

priors 	𝑃:	with global prior𝑃V  is denoted by 𝑃S . The integrated prior 𝑃S ,𝑃S ∼ 𝑁(𝜇/ , 𝜎/5) , is 

assumed to be distributed normally with mean 𝜇/ and variance 𝜎/5,  

     (Eq.12)

                          (Eq.13) 

The posterior of integrate the integrated prior 	𝑃S 	with sensory measurement 𝐷!  is 

denoted by 𝐷@, where 𝐷@ is assumed to be Gaussian distribution 𝑁(𝜇@ , 𝜎@5)with mean 𝜇@and 

variance 𝜎@5,  

𝜇@ = 𝑤/𝜇/ + (1 − 𝑤/)𝜇!     (Eq.14) 

and                                                  	𝜎@5 =
&)
"∗&#"

&)
"'&#"

                                           (Eq.15)  

𝑤/ =
$/&)

"

$/&)
"'$/&#"

  indicates the dependency of integrated prior 𝑃S in Bayesian estimation. 

 

Appendix B. Model comparison 

One basic assumption of the prior integration introduced in this paper is Weber scaling, 

which follows Weber-Fechner's law. According to Fechner’s law, internal representation is 

logarithmically related to the external stimulus intensity. An alternative assumption of the 

internal representation is linear internal coding, according to Weber's law that the uncertainty 

of the inner perception linearly increases with the absolute intensity. Numerous previous 

studies revealed that distinguishing between the linear and logarithmic internal representation 

is largely constrained by the adopted experimental paradigms (Matthews & Meck, 2016; Ren 

et al., 2021b), however, there is no existing method to determine which internal representation 

(either in logarithmic or linear scale) is better for current experimental paradigms. Therefore, 

we conducted both logarithmic and linear coding models and compared their prediction results 

to find the best model for time reproduction prediction.  



 
 118 

According to scalar variability property that the standard deviations of sensory 

measurement are linearly increasing with the mean of stimuli (Acerbi et al., 2012; Gibbon et 

al., 1984b), the standard deviation of the priors could be denoted by𝜎1+ = 𝑘 × 𝜇1+ , 𝜎1, =

𝑤𝑓	 × 𝜇1,, 𝜎1= = 	𝑘 × 𝜇1= ,	here 𝑘 is known as Weber’s fraction of sensory measurements. 

 

Table A1 Average results of WAIC, LOOIC and prediction accuracy (AUC) of mean and 

standard variance the reproductions by fitting measured behavioral data to LGM, DIM, PIM 

models. 

 Exp1 Exp2  

LGM DIM PIM LGM DIM PIM 

 

logarithmic 

model 

reproduction 

AUC  

97.416% 98.079% 97.422% 97.497% 97.794% 97.493% 

CV AUC 56.272% 51.923% 56.266% 72.698% 68.463% 72.701% 

WAIC -67.251 -73.728 -67.222 -91.803 -92.864 -91.852 

LOOIC 51.45 45.160 52.007 27.023 26.335 26.378 

linear model reproduction 

AUC 

96.855% 96.747% 96.860% 97.305% 97.031% 97.308% 

CV AUC 54.779% 48.048% 54.778% 69.031% 64.295% 69.023% 

WAIC -74.918 -107.318 -74.979 -107.722 -128.202 -107.703 

LOOIC 44.569 11.172 43.744 10.937 -9.920 11.0 

 

To find the best model for the observed time reproduction prediction, Table A1 presents 

predicted error of mean and standard variance in the models and the average WAIC and LOOIC 

across all subjects. As shown in Table A1, the results from DIM in the logarithmic scale had 

the lowest WAICs and LOO-CV, suggesting the proposed logarithmic model can better predict 

duration reproduction biases than other models. 
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3 General Discussion 

The present dissertation investigated mechanisms underlying subjective interval timing 

from Bayesian inference perspective, focusing on Bayesian modeling of contextual bias in the 

temporal estimation process. The main research objective of this accumulative work was to 

examine the contextual bias under three types of temporal contexts in subjective interval timing: 

temporal ensemble context in a bisection task (where ensemble set properties were manipulated 

by varying in stimulus spacing, set mean, and set variance), duration reproduction under 

memory pressure (visual working-memory cognitive load), and duration reproduction under 

multi-prior temporal context.  

The first study (Chapter 2.1) focused on the temporal ensemble context in temporal 

bisection and we developed a unified ensemble-distribution account that assumes that the mean 

and variance of the duration set serve as the main reference, rather than the short and long 

standards, in duration comparison. We measured the influence of set properties on PSEs and 

JNDs by varying in stimulus spacing, set mean, and set variance in three experiments , and 

examined whether the mean of the stimuli set accounts for the shift of bisection points and 

whether the variance of the stimuli set accounts for change of the sensitivity of temporal 

judgments. Previous studies on spacing account have shown the logarithmic versus linear 

spacing of the probe durations determined the shift of bisection point (Brown et al., 2005; 

Penney et al., 2014). Our study revealed the ensemble means of the stimulus set is a critical 

factor accounting for shifts of the bisection. Our findings go beyond this by indicating that 

variance information also plays an important role in temporal judgments, because the variance 

of the sample distribution includes useful information for discerning the location of a probe 

duration relative to the ensemble mean, thus enhancing temporal sensitivity. To investigate 

whether temporal-bisection judgments would be best explained by ensemble-distribution 

account, we proposed and implemented a hierarchy model that explains in which way 

subjective judgments of time intervals vary according to the distribution summary statistics of 

the set mean and variance values. 

The second study (Chapter 2.2) addressed the question of whether the central tendency 

would be differentially influenced by the cognitive load on the encoding and reproduction 

phases in duration judgments. Four dual, attention-sharing tasks were carried out to investigate 

the impact of cognitive load on duration estimation in the duration encoding and reproduction 
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stages. By integrating an attentional-sharing account into a hierarchical Bayesian model, we 

proposed a generative model that simulates cognitive load influence on the perceived and 

reproduced duration in both the mean and the variability. The proposed model was able to 

predict both the general over- and underestimation and the central-tendency effects observed 

in all four experiments. 

In the third study (Chapter 2.3), we concentrated on the question of how multiple prior 

temporal contexts influence subjective duration timing in duration reproduction tasks. We 

found the existence of a global prior and investigated how global prior plays its role in multiple 

prior contexts. Aiming to explore a hierarchical structure of the priors integration which may 

better predict the behavioral results than the previous uni-prior observer model, we suggested 

three possible hierarchical structures of global and local priors integration in Bayesian 

estimation. Using the Bayesian inference framework, the question of how our brain learns the 

multiple modality-specific priors(local priors) through training in block-wise ranges before 

interleaved range, and uses local priors together with a global prior in multi-prior temporal 

contexts can be simulated and investigated.  

I will briefly summarize the results of the three studies, discuss how they contribute to 

the current framework and point out potential future directions.  

3.1 Summary of results 

3.1.1 Ensemble perception for temporal sequence  

The first study (Chapter 2.1) focused on influences of the distribution of sampled 

intervals in the temporal-bisection tasks and developed a unified ensemble-distribution account 

that assumes that the mean and variance of the duration set serve as the main reference, rather 

than the short and long standards, in duration comparison. It demonstrated that the bisection 

points of sample intervals were biased towards the mean duration of the whole set of auditory 

signals in the memory traces (i.e., prior in long-term memory). We tested set properties by 

varying in stimulus spacing, set mean, and set variance in three experiments, to investigate 

whether temporal-bisection judgments depend on the shape of the testing interval distribution. 

In the first study, three experiments were carried out by manipulating the distribution 

of auditory duration sets to determine factors that influence temporal-bisection performance.  
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Adopting the similar spacing samples as Penney et al. (2014), Experiment 1 replicated their 

spacing effect, as expected, to examine for the shift of the bisection point in sets with positively 

skewed (PS) versus negatively skewed (NS) spacing. To further examine the temporal-

bisection task with equally spaced durations but different sampled frequency (thus different 

ensemble means), Experiment 2 applied two skewed frequency-distribution sets: ascending 

frequency (AF) and descending frequency (DF). The results of Experiment 2 revealed 

differential bisection points, suggesting that merely spacing cannot explain the findings. Rather, 

using ensemble mean as the comparison interval can explain both findings from Experiments 

1 and 2. To further corroborate the ensemble summary plays a critical role in the temporal 

bisection, we further tested if the second moment of the distribution also matters in Experiment 

3. Specifically, Experiment 3 manipulated the variability of the sample distributions while 

keeping the mean of the distributions the same, by introducing a U-shaped and an inverted U-

shaped sets, with the former having a greater variance than the latter, but both sampled 

distributions had the same ensemble means. As predicted by the ensemble distribution account 

(EDA), we found the bisection points in two conditions were comparable, but the 

discrimination sensitity of the bisection task was worse in the U-shape condition as compared 

to the inverted U-shape condition. Additionally, we applied hierarchical Bayesian modeling to 

the behavioral data according to various assumptions of how temporal bisection may be 

performed. The aim of the model fitting and comparison was to look at the data patterns 

obtained in the three experiments with respect to the manipulations of stimulus spacing, 

distribution means, and variances, so as to identify the best possible account of how the 

ensemble context modulates performance of the bisection task. 

The results of the first study revealed the mean and variance of the stimulus set to be 

critical factors in the bisection task. Specifically, during the bisection task participants were 

not comparing the sampled interval to the standard Short or Long, but rather comparing to the 

mean of experienced intervals (i.e., the ensemble mean). In addition, the uncertainty of the 

comparison came from the representation of the ensemble statistics. When the sampled 

intervals had a large variability, the performance of the bisection task became more uncertain 

as compared to the sampled intervals with a low variability. These findings demonstrate that 

we automatically use ensemble statistics in time perception which works similarly to other 

perceptual properties in the visual and auditory domains. Thus, the EDA framework can 

explain sampled contextual biases in temporal judgments of time.  
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3.1.2 Cognitive load in central tendency bias 

The second study (Chapter 2.2) addressed the question of whether the central tendency 

would be differentially influenced by the cognitive load on the encoding and reproduction 

phases in duration judgments. We used the duration production-reproduction task as a primary 

task with a secondary color memory task in four experiments to investigate the impact of 

cognitive load on duration estimation. A typical duration production-reproduction task has two 

phases: duration encoding phase and duration reproduction phase. In the duration encoding 

phase, an interval is automatically presented via a presentation of a stimulus, whereas in the 

duration reproduction phase, participants are asked to reproduce that duration by pressing a key 

to generate a stimulus as long as the perceived one. Experiment 1 served as a baseline that the 

duration task and the memory task were sequentially separated, such that the memory task had 

a minimal impact on the duration task. The potential impact of the secondary task in 

Experiment 1 was prior updating, given that the secondary task was ‘inserted’ in between the 

duration tasks. The memory task was imposed on the duration encoding stage in Experiment 2, 

whereas the memory task overlapped with the duration reproduction stage in Experiment 3. 

We aimed to examine the differential roles of memory in the two stages. In the final Experiment 

4, the memory task was spanned over the whole duration production-reproduction task to test 

how memory pressure on both stages influences the duration reproduction.   

According to an attentional-sharing account (Fortin, 2003; Fortin & Rousseau, 1998; 

Macar et al., 1994) and Bayesian inference in time estimation (Jazayeri & Shadlen, 2010; Shi, 

Church, et al., 2013; Shi & Burr, 2016), we expected that cognitive load would influence the 

perceived and reproduced duration in both the mean and the variability. In Experiment 1, we 

found that varying levels of memory load between consecutive duration reproductions had no 

discernible effects on either general reproduction biases or the central-tendency bias, which 

suggests that the prior updating of the sampled duration was not influenced by the intermediate 

secondary task. With Experiments 2 and 3, we found the impact of cognitive load in duration 

reproduction works in a different way when the working-memory load was imposed during the 

duration-encoding (production) and the reproduction phase. To be more specific, when the 

working-memory task overlapped only with the production phase ( Experiment 2), participants 

underestimated the target durations, and a stronger central-tendency effect was shown under 

higher memory-load conditions. By contrast, when the working-memory task spanned only the 

reproduction phase (Experiment 3), participants over-reproduced more under the higher the 
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memory load condition. These findings can be qualitatively explained by the attentional-

sharing account (Fortin, 2003; Macar et al., 1994). When attention is shared in the duration 

encoding stage, some ‘ticks’ may be lost in the accumulating process, such that the reproduced 

duration is shortened. In contrast, when the attention is shared in the duration reproduction 

phase, ‘ticks’ lost in the monitoring of the passage time would ‘lengthen’ the reproduction as 

it requires additional time to compensate those lost ‘ticks’. Interestingly, we found the absence 

of significant shifts in the reproduced duration because the impacts of the general shifts roughly 

canceled each other out when the working-memory task spanned both the production and 

reproduction phases (in Experiment 4), but the central-tendency effect remained stronger with 

higher vs. lower memory loads.  

To achieve a generative model for the results from four experiments, we proposed a 

hierarchical Bayesian model taking memory load interference on both duration encoding and 

reproduction phases into consideration. More specifically, following the classical internal clock 

models, loss of pacemaker generated ticks caused by memory pressure during the duration 

encoding phase leads to underestimation and increases the sensory noise. In addition, 

monitoring the elapsed time can be disrupted by the memory load during the duration 

reproduction phase. Moreover, uncertainty of reproduction is further influenced by motor noise. 

The model prediction not only showed a good agreement with the reproduction behavior for 

individual participants, but also predicted the mean and the coefficient of variation of 

reproduction behavior. Of note, the pattern of findings was well fitted by our proposed 

Bayesian inference model which combined the attentional-sharing account with the standard 

Bayesian inference model. The dissociable influences of memory pressure in the encoding and 

reproduction stages was explained as the loss of time units reported in previous studies (Fortin, 

2003; Fortin & Rousseau, 1998). More specifically, when attention is diverted away from the 

primary (temporal) task by a concurrent non-temporal task during the duration-encoding phase, 

a certain amount of clock ticks would be lost, resulting in a shortened time estimation 

(underestimation). In contrast, when the secondary task is performed concurrently with the 

reproduction phase, due to lapses in monitoring the elapsed time there would lead to a loss of 

clock ticks during the reproduction phase which results in a longer reproduction than the tested 

interval (overestimation). This descriptive explanation is quantitatively characterized by the 

linear scaling parameters in our Bayesian model. Both the behavioral findings and the model 

confirm differential impacts of the loss of time units of memory pressure at different stages of 

time estimation.  
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3.1.3 Prior integration in multi-prior temporal context  

In the third study (Chapter 2.3), we concentrated on the underlying structure of the prior 

integration in the multi-prior context and the question of how multiple priors influence 

subjective duration timing in duration reproduction tasks. Two duration reproduction 

experiments with two levels of variance of short and long range on logarithmic scale and the 

same geometric mean of interleaved range were carried out to uncover the underlying 

mechanism during prior knowledge integration. We examined whether the subjective 

estimation of duration is influenced by priors learned from previous training block ranges 

(intervals from different ranges are presented blockwise) and illustrated the existence of a 

global prior which takes place in time estimation in multiple prior contexts.  

To investigate the questions of how multiple prior knowledge integrates together with 

the sensory inputs to form the estimation, we extended our previous uni-prior Bayesian 

model(Shi, Church, et al., 2013; Shi & Burr, 2016) by taking a global prior generalizing across 

the interleaved range into consideration. Based on an assumption that prior representation is 

modality-specific, priors based on the distinct stimulus set were treated as distinct modality to 

investigate the interaction between priors. To uncover potential prior integration structure, we 

proposed three alternative structures for integration of local prior, global prior and sensory 

inputs, including the local-global model (LGM, which integrates the sensory measurement with 

the local prior, then further integrates with the global prior to yield the posterior), prior 

integration model (PIM, which global prior and local prior are integrated as a integrated prior, 

then the integrated prior integrates with sensory measurement to form the estimated duration) 

and dual integration model (DIM, which global and local priors integrate with the sensory 

measurement separately firstly, then outputs from these integrations combine together to yield 

the posterior). These three models mimicked three possibilities of integration structures, and 

the model results showed they performed equally well in reproduction mean and variance 

prediction, despite their different structural assumptions. According to the parameter 

estimation results derived from models, we found that in the temporal context with smaller 

variability of the interleaved range the time estimates would count more on the prior knowledge 

and less on sensory inputs. Besides, the order of the training session influences the formation 

of global prior, since context farther in the past is less weighted than more recent context. When 

the short session was taken as the first training session, observers acquired a higher mean of 

global prior, becaused the influence of the long session in the near past is weighted more. 
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3.2 Future directions 
Using Bayesian inference framework and the hierarchical modeling approach, the 

current dissertation aimed to understand three specific temporal contexts in duration judgment: 

ensemble sampled distributions, memory pressure, and global ranges. However, there are still 

some inherent limitations that current Bayesian computational frameworks can not achieve. 

Firstly, our current Bayesian models can well predict an optimal fusion of an experience-

dependent prior expectation with the current noisy sensory measurement, and estimate the 

parameters for individual participants by maximizing the joint posterior distribution of 

parameters of interest. Those models are steady-state models. How our brain reaches such a 

steady-state level remains open. It requires trial-to-trial simulation of the decision processing 

of timing. Therefore, further studies are required to develop a new methodology for sequential 

state and parameter estimation combining with the recursive Bayesian estimation (Kalman 

filter) in Bayesian estimation to obtain the trial-wise simulation of timing processing. The 

behavior of the observers could be better simulated by an iterative Bayesian filtering 

framework (Doucet et al., 2000; Särkkä, 2013) where estimates are derived from the current 

noisy measurement merged with updating prior on the trial by trial basis. Furthermore, Simple 

Bayesian observer models, like we implemented in the studies, often assume Gaussian 

distribution (unimodal distribution), which is lacking its ability to account for bimodality prior 

distributions (Acerbi et al., 2014; Sanborn & Beierholm, 2016). It remains challenging to select 

priors in Bayesian inference. When the assumption of the prior is too flexible, there is a risk 

that Bayesian inference becomes merely fitting the empirical data (M. Jones & Love, 2011). 

Therefore, given that our models were constrained to use normal distribution for prior and 

sensory measurement during the Bayesian estimate process, it remains to improve for future 

studies to select proper priors, which are flexible yet have biological implications.  

Moreover, Studies 2 and 3 of the current dissertation focus on Bayesian estimation of 

the central tendency bias in reproduction tasks. Although we mentioned above that the 

perceptual process is well-explained as a process in that humans learn statistical regularities 

and exploit this knowledge to improve perceptual decisions, the nature of the precise timing 

mechanism itself is still an open question. Despite decades of research, the process of how 

people perceive and process timing remains relatively unclear. Taking the second study as an 

example, we observed the influence of the memory load on the central tendency was more 

pronounced in Experiment 2 (working memory task overlapped the production phase but not 

the reproduction phase) than in Experiment 4 (working memory task was extended across both 
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the duration-encoding and reproduction phases), which was captured as well by a scaling 

parameter that denotes the sensory-measurement uncertainty. The estimated result of this 

parameter from our proposed model was significantly larger in Experiment 2 than in 

Experiment 4. This finding raised a question if order of the primary and secondary tasks was 

related to the proportion of allocating attention, and we hypothesized that more attentional 

resources were likely allocated to the first than to the second task. In Experiment 2, the 

secondary memory task was the first task requiring a response, whereas duration reproduction 

was the first task and the secondary memory task was the second task in Experiment 4. Given 

that we did not record the completion time of the memory test in between the production and 

reproduction phases, we cannot quantitatively determine the impact of the prolonged gap on 

the central tendency bias. Thus, further investigation is required to address these remaining 

questions.  

Finally, Study 1 of the dissertation illustrated that set properties play a major decisive 

role in influence of bisection points and sensitivity during temporal bisection judgments. 

However, it remains unknown whether only these set properties as a comparison interval or 

two distinct time traces of the current and comparison interval simultaneously contribute to the 

decision process. Thus, it is worth exploring the neural evidence of the timing mechanism using 

event-related electroencephalogram (EEG) techniques, specifically the contingent negative 

variation (CNV) which manifests itself in the supplementary motor area (SMA) and often is 

taken as an index of decision making and temporal memory (Kononowicz & van Rijn, 2014; 

Macar & Vidal, 2003). If we could find the differences on the CNV amplitudes for the same 

target intervals but from different temporal contexts, that could be strong evidence to show 

how temporal judgment was influenced by two temporal contexts in neural underpinnings and 

uncover relations between the CNV changes with ensemble means of interval set during a 

temporal bisection task. Also, the findings in Study 3 of the dissertation suggests that a general 

global prior in addition to local priors affects participants’ behavior in the multi-prior temporal 

context in duration reproduction tasks, it remains lack of neural evidence supporting of 

Bayesian integration in timing (Ma et al., 2008; Singletary et al., 2021). A further study of the 

neural substrates of ensemble processing under multi-prior temporal context by exploring the 

CNV activity is required. 
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3.3 Conclusions 
Taken above three studies together, the current dissertation investigated contextual 

biases in subjective interval timing with the Bayesian inference framework and hierarchical 

Bayesian modeling approach.  

 Previous studies had shown that duration itself and stimulus spacing affects bisection 

points in temporal-bisection judgments, but in which way subjective judgments of time 

intervals vary according to spacing and ensemble statistics need to be explained. The first study 

(Chapter 2.1) reported three experiments that varied the probed duration spacing (Experiment 

1), the frequency of the probed duration (Experiment 2), and the variability of the probed 

duration (Experiment 3) to determine factors that influence the temporal-bisection performance, 

and proposed a unified ensemble-distribution account (EDA) to explain the contextual effect 

in temporal bisection. Our findings suggested that not only the set properties (i.e., set mean and 

set variance) play a major decisive role in the influence not only on bisection points but also 

sensitivity during temporal-bisection judgments. Comparing EDA to the extant prior accounts 

showed that ensemble statistics can easily explain how the effect of various stimulus set-related 

properties (e.g., spacing, frequency, variance, skewness) are actually combined in temporal 

judgments. These findings demonstrated that the human timing mechanism involves an 

ensemble averaging process, similarly to other ensemble perceptual properties in the visual and 

auditory domains.  

The second study (Chapter 2.2) examined the impact of cognitive (visual working-

memory) load on duration estimation in the duration encoding and reproduction phases through 

four dual experiments (with duration reproduction task as the primary task and working 

memory task as the secondary task). Our findings suggested more memory load press (i.e., set 

size) during the duration-encoding phase increased the central-tendency bias and shortened the 

reproduced duration; in contrast, more memory load press during the reproduction phase 

increased the reproduced duration but without influencing the central tendency. Additionally, 

by integrating an attentional-sharing account into a hierarchical Bayesian model, the shifts of 

reproduction observed in all four experiments were well predicted. The model results further 

suggested that the central-tendency bias was only influenced by the memory pressure in the 

encoding stage. Memory pressure during the encoding stage increases the sensory noise, which 

elevates the central-tendency effect. In contrast, memory pressure during the reproduction stage 

only influences the monitoring of elapsed time, leading to a general shift of reproduction 
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without impacting the central tendency. Last but not the least, the generative model we 

proposed here for the influence of the cognitive load on time perception might be generalizable 

to other forms of magnitude perception. 

The third study (Chapter 2.3) focused on investigating how the hierarchical Bayesian 

estimation structure works in multiple prior temporal estimation. Two duration reproduction 

experiments with two levels of variance of blocked range on logarithmic scale and the same 

geometric mean of interleaved range were carried out to uncover the underlying mechanism 

during multiple prior integration. The participants were firstly trained with the short and long 

intervals session-wise, and then tested with interleaved ranges randomly inter-mixed, to 

examine potential integration hierarchies. Three hierarchical prior integration models, 

assuming estimation to be an optimal integration of the noisy sensory inputs with multiple 

priors (short prior, long prior and global prior) in a hierarchical order, were proposed to uncover 

the governing rules. The model results showed their performance were equally well 

performance in reproduction mean and variance prediction despite their different structural 

assumptions. We found that the order of the short session and long session influences the 

formation of global prior. Taking the short session as the last training session before the mix 

session increased the estimation of global prior, in contrast, taking short session prior to the 

mix session decreased the estimation of global prior, which was illustrated by the parameter 

estimation results derived from models. Additionally, for the experiment with smaller variance 

on log scale by narrowing short and long range and expanding separation between short and 

long-range, the estimates would rely more on the global prior information and less on sensory 

inputs.  
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Deutsche Zusammenfassung 

Ein genaues Timing und die Wahrnehmung der Zeit sind für das richtige Handeln bei 

unseren täglichen Aktivitäten unerlässlich. Obwohl der Mensch kein spezifisches Sinnesorgan 

für die Zeitmessung hat, sind wir sehr wohl in der Lage, die Zeit zu messen, z. B. musikalischen 

Rhythmen genau zu folgen, den Takt und den Rhythmus zu fühlen, wenn wir Musik hören, und 

das Zeitintervall zu bestimmen und Zusammenstöße beim Autofahren schnell zu vermeiden. 

Obwohl der Mensch sehr gut in der Lage ist, die Zeit zu messen, ist die Zeitwahrnehmung im 

täglichen Leben nicht immer wahrheitsgetreu, sondern wird in der Regel von dem umgebenden 

Kontext beeinflusst. Die meisten von uns haben bewusst Situationen erlebt, in denen die Zeit 

während eines freudigen Ereignisses verfliegt oder sich während eines beängstigenden 

Ereignisses verlangsamt. Eine große Anzahl subjektiver Verzerrungen der Zeitwahrnehmung, 

einschließlich der Ausdehnung und Verkürzung der Dauer, wurde durch verschiedene 

Begleitumstände wie Bewegungsreize, Erregung und innere Zustände beschrieben (Lee 2017; 

Sackett et al. 2010; Erickson and Erickson 1958; van Wassenhove et al. 2008; Teixeira et al. 

2013; Eagleman 2008). Da der Kontext oft nicht bewusst bekannt ist, erfolgt die Zeitverzerrung 

ohne explizites Wissen darüber, welche Einflüsse die Zeit verzerren.  

Bei einer typischen Aufgabe zur Reproduktion der Dauer müssen die Teilnehmer zwar 

nur die Dauer für eine bestimmte vorgegebene Dauer reproduzieren, dennoch wird die 

reproduzierte Dauer durch verschiedene zeitliche Umstände beeinflusst, wie z. B. die zuvor 

abgetasteten Dauern  (Vierordt 1868; Glasauer and Shi 2021a; Jazayeri and Shadlen 2010), den 

getesteten Bereich  (Teghtsoonian and Teghtsoonian 1978) und die Abstände der abgetasteten 

Dauern (Brown et al. 2005; Wearden and Ferrara 1995; Penney, Brown, and Wong 2014). 

Zusätzlich zu den zeitlichen Begleitumständen können auch nicht-zeitliche Umstände die 

subjektive Zeit verzerren. Unsere Schätzung der verstrichenen Zeit wird durch interne 

körperliche Zustände verzerrt, darunter mentale Belastung (Angrilli et al. 1997), 

Aufmerksamkeit(Polti, Martin, and van Wassenhove 2018), emotionaler Zustand (Stetson, 

Fiesta, and Eagleman 2007) und externe Reize wie Größe, Helligkeit und Wahrscheinlichkeit 

des Auftretens (Eagleman 2008; Kanai and Watanabe 2006)). Ein klassisches Phänomen der 

durch Kontexteffekte verursachten Zeitverzerrung ist der Zentraltendenz-Effekt (namentlich 

Vierordt-Effekt): kurze Intervalle werden überschätzt und lange unterschätzt (Jazayeri and 

Shadlen 2010; Lejeune and Wearden 2009; Shi, Church, and Meck 2013; Glasauer and Shi 

2021a; Vierordt 1868). Der Effekt der zentralen Tendenz zeigte eine systematische Regression 
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in Richtung des Mittelwerts der Stichprobendauer, was eine systematische Verzerrung 

darstellt, die von Begleitumständen auf globaler Ebene beeinflusst wird. Ein weiteres, eher 

lokales Phänomen, das vom zeitlichen Kontext auf lokaler Ebene abhängt, ist die sequentielle 

Abhängigkeit (Holland and Lockhead 1968), auch als serielle Abhängigkeit bezeichnet 

(Fischer and Whitney 2014; Kiyonaga et al. 2017), die besagt, dass die Intensität des 

vorhergehenden Reizes die Wahrnehmung des aktuellen Reizes anziehen kann. Es hat sich 

gezeigt, dass dieser lokale zeitliche Kontext eng mit dem Effekt der zentralen Tendenz in der 

Zeitwahrnehmung zusammenhängt (Glasauer and Shi 2021b). Der Effekt der zentralen 

Tendenz kann teilweise durch die dynamische Aktualisierung des lokalen zeitlichen Kontextes 

erklärt werden.  

Im letzten halben Jahrhundert wurden sowohl zeitliche als auch nicht-zeitliche 

kontextuelle Verzerrungen nicht nur bei der Erforschung der Eigenschaften des Timings (d.h. 

Zentraltendenz-Effekt und Serienabhängigkeit), sondern auch bei der Modellierung des 

Timing-Prozesses eingehend untersucht. Die ursprünglichen Modelle der internen Uhr (J. 

Gibbon, Church, and Meck 1984; Treisman 1963) gehen davon aus, dass die Zeitrepräsentation 

im Gedächtnis direkt mit den im Gedächtnis akkumulierten zeitlichen "Ticks" korrespondiert, 

was darauf hindeutet, dass die Dauerrepräsentation mehr oder weniger wahrheitsgetreu 

sensorische Eingaben widerspiegelt. So werden nicht-zeitliche Einflüsse häufig mit der 

Modulation der internen Uhrgeschwindigkeiten erklärt, z. B. dass große Reize oder hohe 

Erregung die Geschwindigkeit der internen Uhr erhöhen. Die bloße Modulation der 

Uhrengeschwindigkeit konnte jedoch verschiedene Befunde nicht durch 

Aufmerksamkeitsmodulation erklären. In Erweiterung des klassischen Modells der internen 

Uhr beziehen die Attentional-Gating-Theorie (D. Zakay and Block 1996; Dan Zakay and Block 

1996) und der Attentional-Sharing-Aspekt (Fortin and Rousseau 1998; Fortin and Massé 2000) 

die Aufmerksamkeit und das Gedächtnis in das Modell der internen Uhr ein. Das Modell der 

Aufmerksamkeitsteilung geht davon aus, dass die Anhäufung interner "Ticks" durch die 

Modulation der Aufmerksamkeit auf den Timing-Prozess variiert werden kann.  

Obwohl die klassischen Modelle der inneren Uhr (Treisman 1963; J. Gibbon, Church, and 

Meck 1984; John Gibbon 1977) und ihre Erweiterungen, wie z. B. die 

Aufmerksamkeitsverteilung (D. Zakay and Block 1996; Dan Zakay and Block 1996) qualitativ 

empirische Befunde erklären können, wurden quantitative Vorhersagen verschiedener 

kontextueller Verzerrungen in der Zeitwahrnehmung erst im letzten Jahrzehnt mit Hilfe des 

probabilistischen Ansatzes erreicht (Jazayeri and Shadlen 2010; Shi, Church, and Meck 2013; 
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Shi and Burr 2016; Gu et al. 2016). Der Bayes'sche Ansatz steht im krassen Gegensatz zu den 

klassischen Modellen der inneren Uhr. Der Bayes'sche Ansatz geht in der Regel nicht von 

"modulartigen" kognitiven Verarbeitungsstufen aus, wie es die Modelle der internen Uhr tun, 

sondern von einem quantitativen Integrationsprozess. In einem Übersichtsartikel überbrückten 

Shi et al. (2013) diese Lücke, indem sie den Bayes'schen Ansatz mit den klassischen Modellen 

der internen Uhr verknüpften. Mit Bayes'schen Integrationsansätzen haben eine Reihe von 

Studien gezeigt, dass verschiedene Zeitverzerrungen gut durch eine optimale Fusion von 

verrauschten sensorischen Informationen mit Erwartungen, die auf früheren Erfahrungen 

beruhen, erklärt werden können (Roach et al. 2017; Cicchini et al. 2012; Shi, Church, and Meck 

2013; Shi and Burr 2016).  

Während sich klassische Intervall-Timing-Modelle darauf konzentrieren, wie einzelne 

Intervalle kodiert, gespeichert und verarbeitet werden, ist immer noch unklar, wie zeitliche 

Begleitumstände (z. B. Intervallsequenzen, mehrfache Interleaving-Bereiche) und nicht-

zeitliche Umstände (z. B. Gedächtnisbelastung) interne Schätzungen beeinflussen könnten. 

Ohne die Rolle dieser zeitlichen und nicht-zeitlichen Kontextfaktoren vollständig zu 

untersuchen, bleibt es eine Herausforderung, den Timing-Prozess vollständig zu verstehen und 

zwischen verschiedenen Timing-Modellen zu unterscheiden. In dieser Studie gehen wir daher 

der Frage nach internen Zeitmodellen für drei spezifische Kontexte nach (d.h. Ensemble-

Kontext, Kontext unter Gedächtnisbelastung, Multi-Prior-Kontext), um die kontextuelle 

Verzerrung in der Zeitwahrnehmung mittels Bays'scher Inferenz zu erklären. Ziel der aktuellen 

Studie ist es, die kognitiven Mechanismen, die dem kontextuellen Effekt bei der subjektiven 

Intervallzeitmessung zugrunde liegen, mittels Bayes'scher Inferenz zu untersuchen. Um diese 

Frage anzugehen, werden klassische Verhaltensuntersuchungen und Bayes'sche 

Modellierungstechniken eingesetzt. 

In Kapitel 2.1 werden unter Übernahme und Modifizierung des ursprünglichen 

Paradigmas von (Penney, Brown, and Wong 2014) drei Experimente zur zeitlichen Bisektion 

durchgeführt, um die Auswirkungen des Ensemble-Kontextes auf die Zeitwahrnehmung durch 

Manipulationen der Stichprobenverteilung durch Stimulusabstände, Verteilungsmittelwerte 

und Varianzen zu untersuchen, um zu ermitteln, wie der Ensemble-Kontext die Leistung der 

Aufgabe der zeitlichen Bisektion moduliert. Experiment 1 replizierte wie erwartet den 

Abstands-Effekt (Wearden and Ferrara 1995; Penney, Brown, and Wong 2014), um die 

Verschiebung des Bisektionspunktes in Sets mit positivem (PS) und negativem (NS) Abstand 

zu untersuchen. Um die Aufgabe der zeitlichen Bisektion mit gleichmäßig verteilten Dauern, 
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aber unterschiedlichen Ensemble-Mitteln zwischen den beiden Bedingungen weiter zu 

untersuchen, wurden in Experiment 2 zwei Sets mit schräger Frequenzverteilung verwendet: 

aufsteigende Frequenz (AF) und absteigende Frequenz (DF) Die zeitliche Bisektion beinhaltet 

im Wesentlichen einen Vergleich einer gegebenen Dauer mit der Schätzung des Ensemble-

Mittels. Im Vergleich zum AF-Set würde der relativ kürzere Ensemble-Mittelwert im DF-Set 

zu mehr "langen" Antworten führen. Die Ergebnisse von Versuch 2 zeigten, dass die 

Verschiebung der Bisektionspunkte mit dem Ensemble-Mittelwert des Probenintervallsets, 

nicht aber mit der Abstandsinformation zusammenhängt. Die Ergebnisse von Experiment 3 

zeigten eine signifikant steilere Neigung der Bisektionsfunktionen bei der umgekehrten T-

Form im Vergleich zur U-Form, da die Varianz bei der U-Form geringer war als bei der T-

Form. Dies zeigt, dass die Varianz die Schwierigkeit der Bisektion beeinflusst und nicht die 

Bisektionspunkte. Die Ergebnisse zeigten, dass der Mittelwert und die Varianz des Stimulus-

Sets kritische Faktoren sind, die den Bisektionspunkt verschieben bzw. die Empfindlichkeit 

der Bisektionsunterscheidung beeinflussen. Diese Ergebnisse zeigen, dass die 

Dauerwahrnehmung einen Ensemble-Mittelungsprozess beinhaltet, der ähnlich wie andere 

Wahrnehmungseigenschaften im visuellen und auditiven Bereich funktioniert. Um zu 

untersuchen, ob die Beurteilung der zeitlichen Halbierung am besten durch die Ensemble-

Verteilung erklärt werden kann, haben wir ein hierarchisches Modell vorgeschlagen und 

implementiert, das erklärt, auf welche Weise die subjektive Beurteilung von Zeitintervallen je 

nach der Verteilungsstatistik des Mittelwerts und der Varianz beim Vergleich der Dauer 

variiert. Die hierarchische Bayes'sche Modellierung wurde auf die Verhaltensdaten angewandt, 

um zu überprüfen, ob der Gesamtmittelwert und die Varianz der Intervallverteilung 

berücksichtigt werden sollten. Unsere Ergebnisse gehen darüber hinaus, indem sie darauf 

hinweisen, dass die Varianzinformation auch eine wichtige Rolle bei zeitlichen Beurteilungen 

spielt, da die Varianz der Stichprobenverteilung nützliche Informationen für die 

Unterscheidung der Lage einer Probedauer relativ zum Ensemblemittelwert enthält und ein 

Intervallsatz mit geringerer Varianz die Sensibilität der zeitlichen Beurteilung erhöht.  

Anschließend wurde in Kapitel 2.2, inspiriert durch die Darstellung der 

Aufmerksamkeitsteilung (Macar, Grondin, and Casini 1994; Fortin and Rousseau 1998), durch 

die Übernahme und Modifizierung eines Dual-Task-Paradigmas von (Allred et al. 2016), 

bestehend aus einer sekundären visuellen Arbeitsgedächtnisaufgabe (mit niedriger, mittlerer 

oder hoher Belastung) und einer primären Dauerproduktions- und -reproduktionsaufgabe, der 

Frage nachgegangen, wie die Gedächtnisbelastung die Produktions- und Reproduktionsphasen 
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im Dauerreproduktions-Experiment beeinflussen würde. Es wurden vier Aufgaben mit geteilter 

Aufmerksamkeit durchgeführt, um die Auswirkungen der kognitiven Belastung auf die 

Schätzung der Dauer in den Phasen der Kodierung und Reproduktion der Dauer zu 

untersuchen. Experiment 1 diente als Basislinie ohne kognitive Belastung bei 

Reproduktionsaufgaben, und die Aufgabenabfolge bei jedem Versuch war als Dauer-

Produktionsphase, Dauer-Reproduktionsphase, Gedächtnisphase und schließlich Gedächtnis-

Testphase konzipiert. In Experiment 2 wurde untersucht, ob die Beibehaltung von 

Informationen im Arbeitsgedächtnis während der Produktionsphase (nicht aber während der 

Reproduktionsphase) die Messung der sensorischen Dauer und die Verwendung oder 

Aktualisierung von  Prioren beeinflussen würde. Versuch 3 ähnelt Versuch 2, mit dem 

Unterschied, dass sich die Arbeitsgedächtnisaufgabe nur mit der Reproduktionsphase 

überschnitt, d. h. jeder Versuch begann zunächst mit der Produktionsphase, gefolgt von der 

Gedächtnisphase. In Versuch 4 wurde untersucht, wie die Dauerschätzung beeinflusst wird, 

wenn die Arbeitsgedächtnisaufgabe sowohl die Produktions- als auch die Reproduktionsphase 

umfasst. Wir erwarteten, dass die kognitive Belastung die wahrgenommene und reproduzierte 

Dauer sowohl im Mittelwert als auch in der Variabilität beeinflussen würde, und fanden eine 

entgegengesetzte Auswirkung der kognitiven Belastung auf die sensorische 

Enkodierungsphase und die Reproduktionsphase: Unterschätzung der wahrgenommenen Zeit 

in der ersten und Überschätzung der Reproduktion in der zweiten Phase. Außerdem wurde 

unter Berücksichtigung der Auswirkungen der kognitiven Belastung ein allgemeiner 

Bayes'scher Berechnungsrahmen vorgeschlagen und entwickelt, um zu überprüfen, wie die 

sensorische Schätzung mit dem Prior während der Phasen der Zeitkodierung und 

Zeitreproduktion integriert wird. Mithilfe eines generativen Bayes'schen Modells haben wir 

detailliert beschrieben, wann und wie der Gedächtnisdruck die Zeitschätzung und die damit 

verbundenen Auswirkungen auf die Verzerrung durch die zentrale Tendenz beeinflusst, und 

sowohl die allgemeine Über- und Unterschätzung als auch die in allen vier Experimenten 

beobachteten Effekte der zentralen Tendenz quantitativ vorhergesagt. Nicht zuletzt könnte das 

von uns vorgeschlagene generative Modell für den Einfluss der kognitiven Belastung auf die 

Zeitwahrnehmung auf andere Formen der Größenwahrnehmung verallgemeinerbar sein. 

Die dritte Studie (Kapitel 2.3) konzentrierte sich auf die Frage, wie mehrere vorherige 

zeitliche Kontexte die subjektive Zeiteinschätzung der Dauer bei Aufgaben zur 

Dauerreproduktion beeinflussen, und untersuchte die Struktur der vorherigen Integration 

während der Zeitschätzung in mehreren vorherigen zeitlichen Umgebungen. Durch die 
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Übernahme und Modifikation des klassischen Paradigmas der zentralen Tendenz (Roach et al. 

2017; Jazayeri and Shadlen 2010) wurden zwei Dauerreproduktions-Experimente mit zwei 

Varianzen der kurzen und langen Reichweite auf der logarithmischen Skala, aber dem gleichen 

geometrischen Mittelwert der verschachtelten Reichweite durchgeführt, um den zugrunde 

liegenden Mechanismus während der Integration von Vorwissen aufzudecken. Die Teilnehmer 

wurden zunächst mit den kurzen und langen Intervallen blockweise trainiert (d. h. Lernen und 

Anpassen an unterschiedliche Bereiche der abgetasteten Intervalle) und dann mit 

verschachtelten Bereichen getestet. Ziel dieser Studie ist es, mögliche Integrationshierarchien 

der globalen und lokalen Prioren der Geschichte zu untersuchen. In dieser Studie wurden kurze 

und lange Dauern mit zwei Orten assoziiert. Wir untersuchten, ob die subjektive Schätzung der 

Dauer von globalen Prioren beeinflusst wird, die aus vorangegangenen Blöcken gelernt wurden 

(Intervalle aus verschiedenen Bereichen werden blockweise präsentiert), und fanden heraus, 

dass die Existenz eines globalen Priors bei der Zeitschätzung in der verschachtelten Sitzung 

zusätzlich zu den kurzen und langen Prioren, die in kurzen und langen Sitzungen erworben 

wurden, stattfindet. Um zu untersuchen, wie der globale Prior seine Rolle in verschiedenen 

Prior-Kontexten spielt, und um eine hierarchische Struktur der Prior-Integration zu erforschen, 

haben wir drei mögliche hierarchische Strukturen der globalen und lokalen Prior-Integration in 

der Bayes'schen Schätzung vorgeschlagen. Darüber hinaus haben wir unser Bayes'sches 

Beobachtermodell auf mehrere zeitliche Kontexte erweitert, indem wir globales Vorwissen 

berücksichtigt haben. Die Regeln für die Integration von Prioren wurden durch die 

Untersuchung der Rolle von globalen Prioren bei der Schätzung weiter aufgedeckt. Es wurden 

drei hierarchische Prior-Integrationsmodelle vorgeschlagen, und die Ergebnisse zeigten, dass 

die von uns vorgeschlagenen Modelle nicht nur die Verzerrung des Effekts der zentralen 

Tendenz, sondern auch den Variationskoeffizienten gleichermaßen gut vorhersagen können, 

trotz unterschiedlicher struktureller Annahmen. Wir fanden heraus, dass der globale Prior nicht 

nur durch das geometrische Mittel des Interleaved-Bereichs bestimmt wird, sondern auch 

stärker durch den aktuellen Kontext beeinflusst wird und dass die Sitzung vor der Mix-Sitzung 

den globalen Prior stärker beeinflusst als die erste Sitzung des Experiments, anstatt sich 

gleichmäßig darauf auszuwirken. Wenn das Experiment eine geringere Variabilität im 

blockierten und verschachtelten Bereich auf der logarithmischen Skala aufweist, stützt sich die 

Zeitschätzung außerdem stärker auf das globale Vorwissen. 

Die drei oben genannten Studien haben zusammengenommen kognitive Mechanismen 

von Kontexteffekten im Intervall-Timing aufgedeckt, indem sie den Rahmen der Bayes'schen 
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Inferenz nutzten und insbesondere auf drei spezifische Kontexteffekte abzielten: den 

Ensemble-Kontext, den zeitlichen Kontext unter Gedächtnisbelastung und den zeitlichen 

Kontext mit mehreren Prioren. Erstens untersuchten wir die Ensemble-Wahrnehmung für die 

zeitliche Abfolge und entdeckten, dass der Mittelwert und die Varianz des Stimulus-Sets 

kritische Faktoren sind, die zu Verschiebungen des Bisektionspunktes führen bzw. die 

Empfindlichkeit bei zeitlichen Bisektionsurteilen bestimmen. Zweitens wurde die 

Wechselwirkung zwischen statistischem Kontext und kognitiver Belastung bei der 

Zeitwahrnehmung und der Reproduktion der Dauer mit Hilfe des Bayes'schen 

Modellierungsansatzes untersucht, um die unterschiedlichen Auswirkungen der Belastung des 

Arbeitsgedächtnisses auf die Kodierungs- und Reproduktionsphase der Dauer zu verstehen. 

Drittens haben wir durch die Erweiterung des standardmäßigen uni-prioren Bayes'schen 

Modells auf den multi-prioren zeitlichen Kontext den Einfluss früherer Sitzungen aufgedeckt, 

was darauf hindeutet, dass wir die lokalen und globalen Priors zusammen betrachten müssen. 

Anschließend schlugen wir drei Modelle für die Integration von Prioren vor, die der 

Reproduktion der Dual-Task-Dauer zugrunde liegen. Der Vergleich der Modellvorhersagen 

zeigte, dass die vorgeschlagenen Modelle trotz ihrer unterschiedlichen strukturellen Annahmen 

eine gleich gute Vorhersageleistung zeigten. Zu guter Letzt wurden die oben genannten 

Ergebnisse durch die von uns vorgeschlagenen und implementierten Bayes'schen 

Modellrahmen erklärt. 

 

    
    
   
 


