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expanded the definition of hybrid methods to include RTM-calibrated parametric methods. 
This definition extension also provides a generally valid framework for the methods applied 
in the three papers of this thesis. 

1.3 Thesis Outline 

1.3.1 Research Questions 
This thesis presents three different hybrid approaches that are categorized into 

(1) Beer-Lambert law physically-based, (2) parametric, and (3) nonparametric. Each makes 
use of the PROSPECT or PROSAIL RTMs for calibration or training. In this way, a general 
physical basis for all methods is established which is, however, only meaningful to the extent 
of how accurately the RTM is able to reproduce reality despite its simplicity. This ability 
thereby is not only related to the assumptions made within the model, but also largely to 
the sampling strategies applied to build the respective calibration or training databases. 
Although each of the presented retrieval approaches focuses on different crop traits, their 
individual estimation performance appears to be predetermined in view of their ability to 
differentiate superimposed nonlinear radiative processes in a canopy (nonparametric 
nonlinear > parametric linear). Furthermore, all methods were validated and checked for 
plausibility on various in situ datasets. These datasets show varying levels of differentiation 
in the temporal and spatial domains, as well as in the number of samples, sampled level 
(leaf or canopy), number of plant types, and growth stages. Thus, the characteristics of 
these data sets co-determine the quality of the estimations and directly influence the 
conclusions to be drawn. 

With the theoretical background at hand and the above stated, the following 
overarching research questions are formulated:  
 

• Q1: Are PROSAIL-simulated databases suitable for both training and calibration 
of retrieval algorithms and what are the main sources of uncertainty? 
 

• Q2: Can RTM-calibrated parametric methods compete with nonparametric 
nonlinear ML approaches in terms of retrieval performance, and in view of general 
applicability and transferability? 
 

• Q3: How meaningful is the validation of retrieval methods based on limited in situ 
measurements with varying levels of differentiation? 
 

• Q4: What are the opportunities that arise for agricultural monitoring from the soon-
to-be-available EnMAP data streams and which developments are to be expected 
regarding future imaging spectroscopy missions? 

 











Paper I: Physically-Based Retrieval of Canopy Equivalent Water Thickness Using 
Hyperspectral Data 
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Figure 2.5. Uncalibrated PWR-results for the PROSPECT LUT (a); LOPEX93 data (c); and 
ANGERS data (e); compared to results after calibration: PROSPECT LUT (b) LOPEX93 (d); 
and ANGERS (f). 
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5 CONCLUSIONS AND OUTLOOK 

This thesis demonstrates three different novel methods to derive agricultural relevant 
biophysical and biochemical variables from imaging spectroscopy data. These encompass 
canopy water content, chlorophyll and carotenoid content, as well as dry and fresh biomass 
and carbon content. All approaches follow a hybrid retrieval scheme as defined in chapter 
1.2.4. All are based on the PROSPECT or PROSAIL RTMs for calibration or training and 
in situ data and/or airborne spectrometric imagery for validation. In the following, the in 
chapter 1.3.1 formulated research questions will be answered based on the theoretical 
background, the obtained results and discussions in the three presented papers, and the 
experience of the author. 
 
Q1: Are PROSAIL-simulated databases suitable for both training and calibration of retrieval 
methods and what are the main sources of uncertainty?  

PROSAIL has become by far the most widely applied RTM for the estimation of 
biophysical and biochemical crop traits. Although this seems to be justified in view of 
satisfactory estimation results obtained, assumptions and simplifications made for the 
purpose of invertibility should always be considered as a source of uncertainty. Due to a 
continuous development and steady recalibration efforts, the number of considered leaf 
biochemical parameters in the leaf RTM PROSPECT increased from n = 3 in 1990 to n = 9 
in 2021 which largely promoted the model's ability to reproduce radiative transfer in leaves 
and enabled, e.g., the first-time quantitative retrieval of crop carbon content (paper III). 
Using PROSAIL for the development of methods, a high degree of uncertainty is introduced 
in the transition from leaf to canopy level using 4SAIL, assuming a horizontally 
homogeneous canopy, which may not be valid for complex canopy architectures. 
Nonetheless, this simple 1-D turbid medium assumption may be difficult to improve prior 
to the claim of model invertibility. One possible improvement may be a more elaborated 
handling of soil background by either including a specific soil model or by including soil 
spectra observed in the study area into the calibration or training database. 

Another fundamental issue are unrealistic parameter combinations that may occur in 
databases created with PROSAIL. Proposed strategies comprise physiological constraints, 
as realized in this thesis, for instance by applying plausibility checks by means of the Ccx-
Cab-relationship and green peak verification (paper II), or the CBC > Cp condition 
(paper III). A generally valid approach to allow only realistic combinations to be simulated 
would be highly desirable but seems to be almost impossible to realize in view of highly 
nonlinear parameter interrelationships and edge cases (e.g., senescence). Another promising 
strategy is the application of AL heuristics, as demonstrated in paper III with an effective 
reduction of redundancy in the training samples. While these techniques, so far have only 
been applied in combination with ML approaches, implementing AL methods to reduce the 
number of potentially unrealistic spectra may also be beneficial as a preprocessing step 
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before calibration of parametric approaches. 
Q2: Can RTM-calibrated parametric methods compete with nonparametric nonlinear ML 
approaches in terms of retrieval performance, and in view of general applicability and 
transferability? 
State-of-the-art hybrid ML approaches, such as the one presented in paper III of this thesis, 
are anticipated as a highly promising approach for solving inference problems from 
hyperspectral Earth observation data due to their synergistic use of physically-based models 
and the high flexibility, accuracy and consistency of nonlinear nonparametric methods. For 
this reason, optimized ML approaches will be indispensable toward reliable mapping of crop 
traits from spectrometric imagery of the EnMAP mission and other upcoming spaceborne 
hyperspectral sensors. However, although uncertainty intervals, as provided by GPR, 
support the interpretation of results, complete insight into detailed mechanisms of the 
methodology cannot be obtained. In contrast, this is very much the case for the methods 
presented in paper I and II whose mechanisms are well describable and interpretable. This 
transparency led to important findings, such as, the limited detectability of water due to 
the limited radiation penetration depth in conjunction with the canopy architecture 
(paper I) or possible inadmissible green peaks as simulated by PROSAIL that were only 
detected due to unrealistic results that occurred during the development of the SIR 
algorithm (paper II). Also, transferability and general applicability have been demonstrated 
for the parametric methods, but final validation is needed based on consistent spaceborne 
observations as will be available with EnMAP data. Incidentally, advanced indices that 
make full use of the available hyperspectral information such as 3-segment SIR may also be 
used in future studies as physics-aware dimensionality reduced input for ML algorithms to 
either improve estimations or to serve as endmember for crop type discrimination when 
additional time series information is available. Available detailed crop type information may 
then also add to improved crop type specific water content estimations by specifically setting 
the calibration factor in the Beer-Lambert law inversion scheme. 

 
Q3: How meaningful is the validation of retrieval methods based on limited in situ 
measurements with varying levels of differentiation? 
All presented methods in this thesis were validated and checked for plausibility on various 
in situ datasets. These comprise the MNI dataset, spanning four full seasons of spectrometer 
and variable measurements of diverse crops and various airborne spectrometric imagery of 
the HyMAP, AVIRIS, and AVIRIS-NG sensors. For some flight campaigns also crop traits 
ground measurements were available, such as from the 2003 ESA SPARC campaign and 
from the 2021 ESA Hypersense Campaign. The validation of quantitative model-based 
estimations is crucial to evaluate and improve their performance in terms of the underlying 
assumptions, model parameterizations, and input data. When validation of retrieval 
methods is performed, the level of measured variable differentiation is of outmost 
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importance. For instance, destructive separate leaf, stalk, and fruit aboveground biomass-
based water content and carbon measurements as obtained in the MNI and Hypersense 
campaigns provided accurate information about water and carbon detectability in grain 
and/or corn canopies. This kind of measurements are very labor intensive and thus measured 
crop variability is limited. On the other hand, as was rarely so successfully achieved like in 
the SPARC 2003 campaign, a field team can manage measuring biochemical variables on 
leaf level for many crop types during one day of fieldwork. These leaf measurements can 
then be upscaled to canopy level using LAI data. Hence, captured variability is high but 
crop type specific information content is low due to erroneous LAI upscaling as discussed in 
paper I. Nevertheless, a high captured crop variability supports the evaluation of model 
performance which is commonly performed using regression analysis. When collecting more 
accurate destructive measurements, this necessary data variability can only be obtained by 
laborious repeated temporal samplings over the whole growth cycle at study sites with short 
access routes such as the LMU MNI site. Although many field spectrometer measurements 
were performed, scaling issues (e.g., BRDF-effects) between proximal sensing and remote 
sensing by airborne or spaceborne measurements could not be addressed. Provided that 
campaigns such as the MNI campaign are continued when EnMAP data is available, 
datasets comprising both temporal and species variability may form an essential basis for a 
final validation of the methods presented in this thesis. It should be noted that PRISMA 
data could not be used for an effective validation of the methods due to severe artefacts in 
the VNIR region of the atmospherically corrected reflectance product.  

 
Q4: What are the opportunities that arise for agricultural monitoring from the soon-to-be-
available EnMAP data streams and which developments are to be expected regarding future 
imaging spectroscopy missions? 
Once the EnMAP mission will leave commissioning phase, acquisitions can be scheduled 
and in situ data collection can be aligned with EnMAP overflights. Provided that the 
reflectance product is of high quality regarding atmospheric correction and geolocalization, 
the presented models are ready to be applied and can be subjected to validation under 
consistent spaceborne acquisition conditions. With these models, fast mapping of canopy 
chlorophyll, carotenoid, and water content, as well as biomass and carbon content will be 
possible for cultivated areas from 30 × 30 km EnMAP scenes at 30 m spatial resolution. 
Nonetheless, EnMAP as a scientific precursor mission will only be the beginning of 
spaceborne imaging spectroscopy. Further missions are planned and eventually the field of 
hyperspectral Earth observation will evolve toward Global Spectroscopy as proposed by 
Schaepman (2019; personal communication with Rast, M., August 8, 2022). To be useful 
for future practical farming, the derived high-level products may be incorporated into 
decision support systems for fertilization or irrigation planning, yield estimation, or 
estimation of the soil carbon sequestration potential.  
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Furthermore, synergies between hyperspectral and other systems may be explored. 
Insights gained from EnMAP data may contribute to the incorporation of important spectral 
regions for agricultural monitoring into next generation multispectral sensors with higher 
spatial resolutions or provide information about a best trade-off setup between contiguous 
spectral coverage and high spatial resolution of future sensors. 

In this spirit I will conclude with the words,  
"The methods are prepared and now we wait for data to be available." 
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APPENDIX 

APPENDIX A: Author's Tools in the EnMAP-Box Agricultural Applications 

  
Appendix A.1: The Interactive Red Edge 
Inflection Point (iREIP) tool. The user can 
optimize the REIP detection by an example 
vegetation spectrum from the image before 
image processing. It also allows the saving of 
1st and 2nd spectral derivatives. 

Appendix A.2: The Analyze Spectral 
Integral (ASI) tool. The user can select 
wavelength boundaries manually for integral 
calculation or use "Save 3-band"-mode for 
automatic separation of Cab, Ccx, and Cw 
absorption ranges. 

 

 

Appendix A.3: The Plant Water Retrieval 
(PWR) tool. It applies the retrieval method 
presented in paper I to extract the optically 
active water layer from the 970 nm water 
absorption feature. 

 

 


