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Abbreviations 

AD - Alzheimer’s Disease 

ACME - Average Causal Mediation Effect 

ADE – Average Direct Effect 

BA - Broca Area 

CR - Cognitive Reserve 

FDG-PET - Fluor-Desoxy-Glucose-Positron Emission Tomography 

FMRI - Functional Magnetic Resonance Imaging 

FPCN - Fronto Parietal Control Network 

LFC - Left Frontal Cortex 

MCI - Mild Cognitive Impairment 

MNI - Montreal Neurological Institute 

MRI - Magnetic Resonance Imaging 

RANN - Reference Ability Network Study 

ROIS - Regions Of Interest 

RFMRI - Resting-State-fMRI 

TFMRI - Task-Related-fMRI 
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1. Zusammenfassung 

Die globale funktionale Konnektivität des linken Frontalkortex (LFC) - ein gut vernetzter 

Knotenpunkt (Hub) des Kontrollnetzwerkes - ist mit verbesserter fluider Intelligenz sowie 

relativ gut erhaltenen kognitiven Fähigkeiten, trotz alters- oder Alzheimer-bedingter 

Neuropathologie, assoziiert. Daher stellt dieser LFC Hub ein potenzielles Korrelat 

kognitiver Reserve dar. Jedoch sind die funktionellen Mechanismen, die der Assoziation 

zwischen globaler funktionaler Konnektivität und verbesserter fluider Intelligenz 

unterliegen, noch größtenteils unbekannt. Da der LFC Hub einen Teil des kognitiven 

Kontrollnetzwerkes darstellt und davon auszugehen ist, dass dieser die Aktivität und 

Inaktivität anderer funktioneller Hirnnetzwerke steuert bzw. kontrolliert, ist die 

Haupthypothese dieser Doktorarbeit, dass der Assoziation zwischen globaler 

funktioneller Konnektivität des LFC Hub und besserer kognitiver Fähigkeiten (bspw. 

fluide Intelligenz) eine erhöhte Netzwerk Segregation zugrunde liegt. Funktionelle 

Netzwerk Segregation ist definiert als das Ausmaß der Hirnorganisation in abgetrennte 

Netzwerke, die durch eine erhöhte intra-Netzwerk Konnektivität und eine erniedrigte 

inter-Netzwerk Konnektivtät ausgezeichnet sind. Die Haupthypothese wurde überprüft, 

indem ein Datensatz mit 255 gesunden Studienteilnehmern, die alle an zwölf 

verschiedenen Aufgaben in einem MRT teilnahmen, analysiert wurde. Für jeden 

Studienteilnehmer wurde die globale, funktionelle LFC Konnektivität pro Aufgabe 

bestimmt und die Assoziationen mit der jeweiligen Aufgabenleistung sowie der 

Netzwerk Segregation getestet. Es zeigte sich ein positiver Zusammenhang zwischen 

höherer globaler LFC Konnektivität mit Aufgaben aus dem Teilbereich der fluiden 

Intelligenz, welche durch eine erhöhte funktionelle Netzwerk Segregation teilweise 
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mediiert wurde. Diese Ergebnisse deuten darauf hin, dass Netzwerk Segregation einen 

potenziell funktionellen, protektiven Hirnmechanismus darstellt, durch den der LFC Hub 

einen positiven Einfluss auf die Kognition im normalen Altern ausübt. Dieser 

Zusammenhang stellt eine Möglichkeit dar, wie der LFC Hub nicht nur im normalen 

Altern, sondern auch bei neurodegenerativen Erkrankungen wie der Alzheimer-

Krankheit die kognitive Reserve erhöht und somit den asymptomatischen 

Krankheitsverlauf verlängert. 
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2.  Abstract 

Global functional connectivity of the left frontal cortex (LFC), a hub of the cognitive 

control network, is associated with higher fluid intelligence and relatively preserved 

cognition despite age- and Alzheimer’s disease (AD)-related brain changes, rendering 

LFC connectivity a candidate substrate of cognitive reserve. Yet, the mechanisms by 

which LFC connectivity supports cognition are unclear.  Given that the control network, 

and in particular the LFC, is thought to orchestrate activity of other functional networks, 

the main hypothesis underlying this doctoral thesis was that the association between LFC 

connectivity and higher cognitive abilities such as executive function is mediated via an 

enhanced network segregation. Functional network segregation is defined as the degree 

of how much the brain is organized in distinct networks that are characterized by a 

higher intra-network connectivity and a lower inter-network connectivity. The main 

hypothesis was tested by examining a data set containing information about 255 

participants aged between 20 and 80 years who participated in twelve fMRI tasks 

covering a range of four cognitive domains. For each participant, global LFC connectivity 

was assessed and associations with performance scores and network segregation were 

tested. Higher global LFC connectivity was associated with higher performance scores 

in fluid reasoning tasks which was partially mediated by an enhanced network 

segregation. These findings show that LFC connectivity increases fluid reasoning task 

performance in normal aging via an enhanced brain network segregation, suggesting a 

potential mechanism by which LFC connectivity supports cognitive function, and 

potentially cognitive reserve. 
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3.  Introduction 

3.1. Our aging society 

Our world population is facing a demographic transition of large extent: we will soon 

have more elderly than children and more people at extreme old age than ever before 

(WHO, 2011). In 2012, when the global population reached seven billion people 

worldwide, 8 percent were aged 65 years and older (WHO, 2015). It was only three 

years later in 2015 that the older population rose by 55 million people and the proportion 

of the elderly shifted to 8.5 percent (WHO, 2015). This rapid demographic transition is 

partly driven by the effects of falling fertility rates, increases in life expectancy due to 

better disease prevention, healthier lifestyle and better available therapeutics (Bloom et 

al., 2011; Piggott & Woodland, 2016). Hence, more developed countries such as Japan, 

Germany or countries in Western Europe, which all have a growing elderly population 

while decreases in the fraction of the youth, will be most affected by this demographic 

trend in near future (United Nations, 2011). While this trend appears to have the greatest 

effect on more developed countries, it is also observed in all developing countries (e.g., 

countries in Africa or South America) with the exception of 18 countries designated as 

“demographic outliers” (United Nations, 2005). 

With a shift of that dimension in the average lifespan of the world population, age-related 

neurodegenerative diseases such as Alzheimer’s disease (AD) are on the verge (Reitz et 

al., 2011). As the world population continues to age, the amount of individuals at risk of 

AD increases as well, particularly among the elderly (i.e., > 85 years) (Alzheimer's 

Association, 2020). While in 2010 there were only 35.6 million cases of AD worldwide, 
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this number is projected to be duplicated every 20 years, projecting the numbers for 

2030 to 65.7 million cases and 115.4 million cases in 2050 (Mayeux & Stern, 2012).  

 

3.2. Alzheimer’s disease & dementia 

AD, the most common cause of dementia in western nations, is an irreversible, 

neurodegenerative disease that affects primarily people older than 65 years (Fiest et al., 

2016; Ott et al., 1998). Individuals that are older than 85 years face an even higher risk 

of up to 50% to develop AD and subsequently a more rapid rate of cognitive decline 

(Duthey, 2013). In addition, unmodifiable risk factors for AD include a positive family 

history and genetics (Duthey, 2013). The most important heritable risk factor for 

developing AD is a change in the e4 allele of the apolipoprotein E also termed as ApoE 

(Elias-Sonnenschein et al., 2011). Heterozygoty of this allele increases the risk for AD 3-

4 times, while homozygoty increases the risk 8-12 times (Alzheimer's Association, 2020). 

Although most cases are not genetically inherited, about 1% of AD cases have been 

identified as genetically driven by autosomal dominant mutations (Alzheimer's 

Association, 2020).  

 

The neuropathologic cascade of AD starts years before the onset of symptoms with two 

proteins accumulating in the brain: the senile plaques ß-amyloid and neurofibrillary 

tangles called tau (Serrano-Pozo et al., 2011). While extracellular ß-amyloid 

accumulates decades before first symptoms arise, tau accumulates within neurons and 

emerges in later disease stages than ß-amyloid-pathology (Jack et al., 2010; Selkoe & 

Hardy, 2016). The initial causal mechanism that starts the development of senile plaques 
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and neurofibrillary tangles is still unknown to date. The deposition of both proteins is 

hypothesized to cause neuronal loss and dysfunction which ultimately leads to cognitive 

decline (Perl, 2010). Specifically, this cognitive dysfunction is defined as dementia which 

is a general term describing a broad variety of different symptoms including loss of 

memory, reduction in verbal skills, problem-solving and other cognitive abilities that 

affect people in their daily lives and routines (WHO, 2020). These symptoms are later in 

stage often accompanied by deterioration in emotional control, social behavior and 

motivation (WHO, 2020). Hence, dementia is not a disease on its own, but rather a 

complex of symptoms (i.e., syndrome) that can be caused by a range of different diseases, 

with AD being the number one candidate contributing to 60-70% of all cases worldwide 

(Burns et al., 2002). Other diseases that can lead to dementia include Parkinson’s 

disease, stroke, traumatic brain injury, vascular disease, HIV, Huntington’s disease or 

Lewy-body-disease but also a variety of other diseases (Hanagasi et al., 2017; Kaul, 

2009; Paulsen, 2011; Pendlebury et al., 2019; Peterson et al., 2019).  

Even though the main risk factor for developing AD and dementia is age, dementia is not 

a part of normal aging. It is the result of a pathologic chronic dysfunction in the brain 

and differentiates from healthy aging by the severity of cognitive decline and a loss of 

independence in daily function (McKhann et al., 2011). Age-related cognitive decline is 

subtle and mostly affect perceptual speed, attentional control and executive function 

contrary to cumulative knowledge and experiential skills which are well-preserved in 

higher age (Murman, 2015). While cumulative knowledge and experiential skills are 

referred to as crystallized knowledge, skills such as problem-solving, logical thinking or 

the general ability to reason are referred to as fluid intelligence which depends only 

minimally on prior learning experiences (Brown, 2016). Moreover, fluid intelligence 
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peaks in early adolescence and starts to decline progressively around the age of 30 to 40 

while crystallized intelligence is longer preserved (Hartshorne & Germine, 2015). Some 

studies have shown that a frontal dysfunction can be linked to the age-related changes 

in fluid intelligence suggesting that disturbances in the frontal lobe may specifically 

contribute to the cognitive decline in normal aging (Bugg et al., 2006).  

There is, however, an increasing amount of research demonstrating that the prevalence 

of age-related cognitive decline and dementia can be reduced and the onset of dementia 

may be delayed by numerous lifestyle factors including education, leisure activities, 

physical activity or eating a healthy diet (Clare et al., 2017; Stern et al., 1994). Thus, the 

trajectories of normal and pathological aging are both susceptible by protective factors 

which contribute to the concept of cognitive reserve (Stern, 2003).  

  



 
 

 12 

3.3. The concept of cognitive reserve  

Remarkably, patients diagnosed with AD are affected differently by the burden of 

neuropathology (e.g., deposition of tau tangles or ß-amyloid plaques) showing that 

although two individuals may have the same relative level of neuropathology, the onset 

of dementia and severity of cognitive decline can vary significantly (Stern, 2009). One 

of the first studies to observe that neuropathology caused by AD does not inevitably lead 

to full developed dementia was Katzman et al. in 1988. Katzman and colleagues 

reported ten cases of cognitively normal, elderly individuals (i.e., no cognitive 

impairment) which showed progressed AD-related neuropathology in their brain tissue 

postmortem (Katzman et al., 1988). However, these patients did not suffer from dementia 

or cognitive decline despite the presence of AD-related neuropathology (Katzman et al., 

1988). This research demonstrated that a lack of symptoms in AD cannot be fully 

explained by a lower extent of AD-neuropathology but is probable to be attributed to 

other factors such as protective brain mechanisms or functional properties. In addition, 

multiple studies demonstrated that a lower level of education is a potential risk factor for 

developing dementia, indicating that intellectual enrichment and a higher general 

cognitive ability might impact the risk of symptom onset in AD (Katzman, 1993; Stern et 

al., 1992). This was also shown by the famous nun study that confirmed that life 

experiences over an extended period of time (i.e., higher occupational activity, 

education) in early, mid and late life have strong associations with the risk of AD, which 

further supported the findings of Katzman (Mortimer et al., 2003).  

In summary, multiple studies demonstrated that the risk of dementia can be reduced by 

a variety of lifestyle choices and that AD-related neuropathology can exist at a relative 
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level without necessarily leading to dementia or cognitive decline. These findings 

suggest that there might be an underlying functional mechanism protecting these 

cognitively normal (i.e., asymptomatic) elders from the effects of AD’s neuropathology. 

This protective mechanism is defined as cognitive reserve or resilience (Cabeza et al., 

2018; Stern et al., 2020).  

Cognitive reserve (CR) describes the phenomenon of lower cognitive decline than 

anticipated based on the level of age-related or pathological brain changes (Stern, 2009). 

The theory of CR propounds that life-long experiences shape the ability to ameliorate 

the effect of neuropathology such occurring in AD on cognitive abilities. Thus, CR does 

not slow down the development of brain pathologies or age-related brain changes, rather 

CR delays the onset of symptoms. Hence, individuals with a higher level of CR 

experience a longer pre-dementia disease trajectory compared to those with lower CR. 

Katzman estimated that secondary education delays the onset of AD-dementia by five 

years into the future showing that CR could be used as a nonpharmacological approach 

for disease prevention (Katzman, 1993). Essentially, CR is not only observed in AD but 

also in other diseases including Parkinson’s disease, Lewy-body disease, stroke, multiple 

sclerosis or traumatic brain injury (Gonzalez-Fernandez et al., 2011; Hindle et al., 2014; 

Kesler et al., 2003; Perneczky et al., 2008; Sumowski & Leavitt, 2013). Moreover, the 

concept of CR has also been shown to be relevant for age-related cognitive decline 

(Tucker & Stern, 2011; Whalley et al., 2004) which demonstrates that CR resembles a 

general protective feature that takes effect not only in a wide range of different diseases 

but also affects normal age-related cognitive decline. Hence, protective brain 

mechanisms that underly CR in normal aging, may also be attributed to CR in AD or 

other neurodegenerative diseases. 
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As illustrated in Figure 1, age- or AD-related brain changes ultimately lead to a decline 

in cognitive function, or even to a more drastic decline: dementia. However, individuals 

with a comparably high CR, experience the consequences caused by age-related brain 

changes or AD-neuropathology later and are thus later affected by dementia. This shows 

that CR prolongs the asymptomatic disease trajectory and individuals maintain their 

relative cognitive function longer. Nevertheless, the functional protective mechanisms 

supporting CR are still unclear and more information must be gathered to understand 

how these protective brain mechanisms support CR and delay the onset of age- or AD-

related cognitive decline.  

 

Figure 1: Illustrated concept of cognitive reserve 

 

 

Considering CR is associated with a delayed onset of dementia and an extended 

individual life trajectory without increased social health costs, CR offers a great 

opportunity for a possible secondary prevention of AD. Previous studies have shown that 

a one-year delay of the onset of dementia would lead to an age-dependent decrease in 

Figure 1: Working model for the concept of cognitive reserve (Stern, 2009). Higher cognitive reserve delays the 
development of age- or disease-related cognitive decline. Hence, affected individuals experience cognitive 
decline or dementia in later stages of their disease trajectory. The protective brain mechanisms underlying the 
concept of cognitive reserve are mostly still unknown to date. 
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dementia-prevalence of over 10% (Zissimopoulos et al., 2014). Understanding how CR 

works by examining contributing factors and analyzing the underlying mechanisms is 

key to further exploit the opportunity to prevent, delay or halt the consequences of AD 

and lower the potential costs for our aging society. To date, there are numerous 

protective factors known that may enhance or contribute to CR. For instance, studies 

have demonstrated that higher educational and occupational attainment is associated 

with higher CR (Stern et al., 1994) showcasing that CR is actually susceptible to lifestyle 

choices and not a static property people are born with. Other studies indicate that higher 

brain volume is associated with better cognitive performance after brain injury and thus 

contributing to CR (Kesler et al., 2003). Although some of the factors that enhance CR 

are well known, the neural implementation of CR is still mostly unrevealed. There are, 

however, studies indicating that CR is supported by possible functional brain differences 

including advanced neural flexibility and increased neural network function obtained 

due to diverse life experiences (Baroncelli et al., 2010; Hu et al., 2013; Xu et al., 2015). 

Other studies postulate that an increase in brain network efficiency leads to a higher 

capability for information processing  (Barulli & Stern, 2013; Stern, 2006). Functional 

brain features such as network efficiency or network segregation can be explored by 

using functional magnetic resonance imaging (fMRI). 
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3.4. Functional MRI & functional connectivity 

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive, neuroimaging 

approach introduced in the early nineties (Bandettini et al., 1992; Kwong et al., 1992) to 

measure in vivo brain activity and connectivity. The most common method used to 

detect brain activity operates by utilizing the principle that an increase in local neuronal 

activity leads to a higher demand of energy and subsequently to an enhanced cerebral 

blood flow with higher levels of oxygenated and lower levels of deoxygenated 

hemoglobin. This underlying principle is termed blood oxygenated level dependent 

(BOLD) contrast technique (Ogawa et al., 1990) which originates from a characteristic 

feature of hemoglobin in MRI: oxygenated hemoglobin is less magnetic compared to 

deoxygenated hemoglobin and this difference is detectable in fMRI. Thus, the fMRI-

assessed BOLD magnitude is an indirect measure of neural activation and represents a 

score consisting of local cerebral blood flow, blood volume and oxygenation level 

(Soares et al., 2016). In summary, the BOLD contrast is used to visualize areas in the 

brain with increased local neural activity compared to other regions. One of the 

advantages of fMRI is the relatively high spatial resolution; a standard 3 Tesla MRI can 

feature an isotropic resolution of ~3mm. After preprocessing the fMRI-images, the 

resultant interdependencies of local neuronal activity are most commonly represented 

as a statistical map reflecting connectivity across different brain regions (see Fig. 2). The 

size for the x- and y-axis is dependent on the applied brain atlas which sets the 

coordinates of predefined regions. This statistical map reveals temporal dependent co-

activation patterns between different brain regions using a traditional notion of similarity 

such as Pearson’s correlation. Methodically, these co-activation patterns or degrees of 
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correlation are defined as functional connectivity (FC) which describes a statistical 

dependence among neurophysiological events (BOLD-signal) of anatomically separate 

brain regions (Aertsen et al., 1989; Friston et al., 1993).  

Conceptually, two brain regions exhibit FC if there is a statistical relationship between 

the recorded events of activity. For example, if region A is coupled to region B by 

constantly being correlated in rise and fall of activity, it exhibits a high FC to region B. 

This concept defined as functional connectivity follows the neuroscientific Hebbian 

theory: “cells that fire together, wire together”, or more precisely “what fires together is 

wired together”.  

FC can be detected in different brain states: resting-state or task-related fMRI. Resting-

state fMRI (rfMRI) is a stimulus-independent method to examine spontaneous FC at a 

consistent brain state (Biswal, 2012). During a resting-state experiment the participants 

are asked to remain calm, have their eyes closed and restrict their thoughts as much as 

possible. Application of this technique has allowed the discovery of multiple networks 

(“resting-state networks”) that are synchronized in their BOLD fluctuations at rest (Biswal 

et al., 1995; Raichle et al., 2001). In contrast, task-related fMRI (tfMRI) represents a 

stimulus-dependent method to examine BOLD-fluctuations while the study subject is 

engaged in a particular task (e.g., memory recall, motor execution or visuo-spatial tasks). 

Further studies revealed that synchronized BOLD-fluctuations found in rfMRI (i.e., brain 

networks) correspond well to similar coactivation patterns in tfMRI (Toro et al., 2008). 

In comparison, tfMRI coactivation patterns showed a higher global efficiency than rfMRI 

which suggests a more efficient information transformation during task performance (Di 

et al., 2013).  
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Since the emergence of functional connectivity, a new neuroscientific discipline of 

examining the brain has evolved: connectomics, i.e. understanding cognitive processes 

as the resultant of communication between different brain regions that are forming large-

scale and complex networks (Rubinov & Sporns, 2010). 

Figure 2: Functional connectivity matrix (statistical heatmap) 
 

  

Figure 2: Heatmap illustrating a statistical map containing FC values between different regions of interest (ROIs). 
Values for this statistical map originated from data of the RANN study (see Chapter 4.1.) illustrating the meaned 
FC of 255 subjects. The number of ROIs is dependent on the applied brain atlas. Here, the Schaefer 400 atlas 
was applied (Schaefer et al., 2018). Blue values represent negative FC while yellow/red values represent positive 
FC. The dark red line ranging from top left corner to bottom right corner resembles FC values between the same 
brain region (i.e., therefore constant red line and thus high FC). 
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3.5. The brain is a network 

The human brain is a complex network consisting of a substantial amount of different 

brain regions (i.e., network nodes) that are functionally and structurally connected with 

each other. Throughout these connections, brain regions and neurons form an integrative 

organization in which information is processed and transferred between different 

structures and functionally linked brain regions. Functional transmission between 

distinct brain regions is presumed to play a fundamental part in overall cognitive 

function, relying on the permanent incorporation of information across different regions 

of the brain (Zeki & Shipp, 1988). 

Conceptualizing the brain as a network provides the possibility to examine how FC and 

information processing are altered in neurodegenerative diseases including AD 

(Bullmore & Sporns, 2009). The brain shares the same defining properties as other 

networks seen in technology, nature or human society: they all consist of nodes (e.g., 

regions, neurons) that are linked via connecting edges (e.g., white matter tracts, FC). This 

theoretical framework defined as graph theory is used to mathematically analyze neural 

systems in terms of graphs or networks comprising nodes (Bullmore & Sporns, 2009).  

Instead of understanding the brain as just one single network, the brain functions as a 

network throughout multiple spatial and temporal scales. At the microscopic scale, 

neuronal cells represent nodes and the connecting synapses between them are 

represented as links. At the systemic scale, to which fMRI is sensitive, the cerebral cortex 

is organized into distinct regions (nodes) which are structurally connected by white 

matter tracts (links) and functionally via synchronized infraslow-frequencies (Marek & 

Dosenbach, 2019). The complete network map of an organism’s brain, its connectome, 
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is comprised of functional and structural connections throughout the human brain and 

plays a key role in cognitive processes (Sporns et al., 2005). The goal of connectome 

studies is used to further investigate the architecture of brain networks and how this 

organization shapes brain function. This network map is approximately organized into 

15-20 distinct functional sub-networks (Gordon et al., 2016) which differ in function and 

scale. The structure and organization of functional subnetworks is critical for cognitive 

processes and thus a possible target for neurodegenerative diseases leading to cognitive 

decline and dementia. Neurodegenerative diseases such as AD lead to a disruption of 

connectivity and ultimately to a reduced functionality of networks that underly cognition 

(Zhang et al., 2010).  

Recent studies demonstrated, that well inter-connected regions in the brain might protect 

the functional organization of brain networks from neuropathology and could therefore 

be considered as potential substrates of CR (Franzmeier et al., 2017B; Franzmeier et al., 

2018). 
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3.6. LFC hub connectivity as a substrate of cognitive reserve 

Just like networks in nature, technology and society, the brain has regions that exhibit 

higher connectivity (i.e., higher wiring) and regions that exhibit lower connectivity (van 

den Heuvel & Sporns, 2013b). Regions with higher connectivity either feature many 

functional or anatomical links or are more diversely connected throughout the brain 

(Grayson et al., 2014; Liska et al., 2015). In graph theoretical terms these brain regions 

with exceptionally high numbers of connections to other brain regions are defined as 

network hubs and are considered to play an essential role in integrative and coordinative 

mechanisms (Power et al., 2013; van den Heuvel & Sporns, 2013a). In the illustrated 

example (see Fig. 3), the blue point exemplifies a typical hub, i.e. a node having more 

connections throughout the network compared to other nodes. Removing the blue point 

from the illustration would fundamentally deconstruct the portrayed network of nodes 

while removing a gray node in the periphery would only slightly damage the 

organizational structure. The blue hub enables the communication between different 

nodes and regions that are only connected via this specific key point. Accordingly, hubs 

can be also found in the brain and are usually referred to as “rich club” or “diverse club” 

(Bertolero et al., 2017; van den Heuvel & Sporns, 2011). These findings demonstrate that 

hubs are critical for the efficiency of network organization by playing a key role in brain 

communication and neural integration. 
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Figure 3: Illustration of a brain hub 

 

Moreover, individuals with highly inter-connected hubs and a consistently modular 

network structure showed increased cognitive performance regardless of the task they 

were engaged in (Bertolero et al., 2018). Specifically, further studies revealed that well 

interconnected hubs prominently existing in the frontoparietal control network (FPCN) 

and cingulo opercular network, are associated with greater cognition and fluid reasoning 

abilities (Gratton et al., 2018). In particular, a specific hub in the frontoparietal control 

system, the left frontal cortex hub (LFC, covering BA 6/44) close to the Broca area, has 

been linked to neuro-protective factors such as fluid intelligence and education (Cole et 

al., 2012) and might therefore serve as a potential candidate substrate of CR (Franzmeier 

et al., 2018). Additionally, higher brain-wide connectivity of the LFC hub at a certain 

extent of neuropathology (here: posterior-parietal FDG-PET hypometabolism) has been 

associated with better memory performance (Franzmeier et al., 2017A) and higher 

functional network efficiency in AD (Franzmeier et al., 2018). Further, Cole and 

Figure 3: Illustration demonstrating the concept of network hubs. The blue node represents the typical network 
organization for a hub as gateway for connecting different gray nodes throughout the network. Removing one 
gray node would not necessarily lead to major network disruption while removing the blue node would destroy 
the organizational structure and lead to major communication issues. 
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colleagues showed that the LFC hub and other hubs of the FPCN are orchestrating the 

activity of other networks by rapidly updating their FC dependent on the specific task 

context (Cole et al., 2013). In general, higher global FC is used as a measure of 

interconnectedness and presumed to showcase the extent of control a brain region might 

exhibit over another. Specifically, the LFC is postulated to act as a flexible hub, 

increasing its connectivity to regions relevant for the current task demand (Miller & 

Cohen, 2001). Following this theory, increased LFC hub connectivity to specific 

memory-related functional networks (e.g., default-mode network, dorsal attention 

network) has been associated with higher memory performance at a given level of 

neuropathology as well (Franzmeier et al., 2017B). This demonstrates that hubs of the 

FPCN (particularly the LFC hub) contribute to an overall controlling function in the brain 

while also being associated with protective factors against cognitive decline and 

dementia. Investigating the potential underlying mechanisms that could explain the 

protective and functional role that hubs of the FPCN and specifically the LFC hub play, 

might be key in the further understanding of CR and thus an important step to defeat AD. 

Hence, in this doctoral thesis a potential protective brain mechanism was investigated 

by which the LFC hub might distribute control over other regions of the brain and 

enhances functional network organization to optimize cognitive function in defiance of 

age-related or neuropathological brain changes. This protective brain property or 

mechanism is commonly referred to as system or network segregation (Chan et al., 2014). 
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3.7. Network segregation 

Research on networks revealed that the brain exhibits organizational properties that 

support brain efficiency and resistance to perturbation (Strogatz, 2001). One of these 

properties is the organization in subnetworks consisting of nodes that exhibit a high intra-

network FC and a comparably lower inter-network FC: network segregation. This 

functional property is defined as the difference of mean intra-network FC (Zintra) and mean 

inter-network FC (Zinter) as a proportion of mean intra-network FC (Zintra) (Chan et al., 

2014). 

𝑓𝑜𝑟𝑚𝑢𝑙𝑎: 

network	segregation =
𝑍!"#$% − 𝑍!"#&$

𝑍!"#$%
 

As illustrated in Figure 4, this specific FC pattern leads to a higher extent of segregation 

for subnetworks which in turn is beneficial for effective network function (Tononi et al., 

1994). However, while an excess in segregation of subnetworks can result in a decrease 

of interaction between brain regions, a too high extent of inter-network connectivity can 

lead to a more rapid disease progression (Salathe & Jones, 2010). Furthermore, this 

specific functional organization is proposed to be beneficial for energetically demanding 

cognitive processes and thus linked to a higher extent of brain efficiency (Manza et al., 

2020), i.e. lower cost. Previous studies showed that higher rfMRI assessed network 

segregation is associated with higher cognitive performance across the adult lifespan 

(Chan et al., 2014). Thus, network segregation is not only associated with enhanced 

cognitive performance in some cognitive domains but also represents an age-related 

brain property that decreases across the healthy lifespan.  
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Consequently, network segregation can be conceptualized as an indirect age-invariant 

brain efficiency marker as it is associated with higher cognitive performance 

independent of age. This leads to the question whether network segregation could serve 

as one functional brain mechanism by which LFC enhances cognitive function in normal 

aging, thus supporting the concept of CR. 

 

Figure 4: Conceptual illustration of network segregation 

 

 

 

Figure 4: Illustration demonstrating the concept of network segregation adapted from an illustration created by 
Gagan S. Wig (Wig, 2017). Here, two networks are displayed which consist of nodes (colored points) connected 
by edges (black links). On the left and on the right simplified networks with different extents of network 
segregation are shown. Every color represents the affiliation to a specific subnetwork of the respective node. 
On the left, a network with four subnetworks is shown. This network has a low network segregation visualized 
by the greater intermingling of nodes and a higher extent of inter-network connections. On the right is a network 
with four subnetworks but a comparably higher extent of network segregation visualized by the higher extent 
of intra-network connections and the lesser extent of inter-network connections. 
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3.8. Aims of this thesis 

The goal of this doctoral thesis was to investigate a potential mechanism underlying the 

association between global task-related LFC hub connectivity and higher cognitive 

performance in normal aging. The main hypothesis postulates that task-related LFC hub 

connectivity contributes to cognitive function in normal aging by enhancing network 

segregation.  
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4. Methods 

4.1. Study sample 

The data represented in this doctoral thesis originates from the “Reference-Ability-

Neural-Network-Study” also referred to as RANN (Stern et al., 2014) which was provided 

by Yaakov Stern and Christian Habeck from Columbia University. 255 healthy 

participants were included which were all in the age range from 20 to 80 years and all 

participated in a set of twelve different cognitive tasks. Three tasks each represent one of 

the four reference abilities (i.e., cognitive domains): fluid reasoning, vocabulary, 

episodic memory and perceptual speed. These reference abilities are hypothesized to 

cover the vast majority of age-related cognitive changes across four cognitive domains 

(Salthouse & Davis, 2006). All participants underwent screening for dementia or MCI 

before attending the study which was assessed with the Mattis Dementia Rating Scale 

(MDRS). Further premises for the study participants were to speak English as their native 

language, to be dominantly right-handed and have at minimum a basic skill level at 

reading. Demographic features of these participants are represented in Table 1. 
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Table 1: Participant Demographics 

 

 

 

 

  

Decade N %F Education AMNART IQ DRS 

20-29 30 66.3% 15.1 (±2.2) 113(±8.4) 140.4 (±2.7) 

30-39 37 62.2% 16.4 (±2.5) 112(±7.6) 139.7(±2.6) 

40-49 33 51.6% 15.9 (±2.6) 114 (±8.4) 138.6 (±1.7) 

50-59 48 52.1% 16.1 (±2.0) 117 (±8.2) 140.7 (±2.9) 

60-69 68 52.9% 17.1 (±2.4) 118 (±8.6) 139.7 (±3.3) 

70-80 39 74.4% 12.0 (±2.5) 121 (±6.2) 140.1 (±2.8) 

Table 1: Overview of the study participants from the RANN study. Participants were divided into six different 
age groups to demonstrate age-group-specific participants demographics. %F represents the percentage of 
females in that particular cohort. Education was assessed as years of education. AMNART IQ was estimated 
based on American National Adult Reading Test. DRS stands for Mattis Dementia Rating Scale. Mean standard 
deviation are displayed in brackets. 
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4.2. Task description 

In brief, all study subjects participated in twelve computerized tasks which were 

performed in two separate fMRI-based sessions (see Fig. 5). The cognitive domain 

vocabulary was tested by the following tasks: synonyms, antonyms and picture naming. 

Here, subjects were required to match a particular word to its correspondent synonym 

and antonym or to terms that were comparable or different. In the third task - picture 

naming - participants were asked to label images that were displayed for 4.5 seconds on 

a screen. The performance was measured in correct trials completed. The cognitive 

domain perceptual speed was covered by the tasks: digit symbol, letter and pattern 

comparison. These tasks tested the ability to react as quickly and precisely as possible 

which was measured in reaction time. The third cognitive domain fluid reasoning was 

tested by the following tasks: paper folding, matrix reasoning and letter sets. This domain 

refers to the ability of basic mental processes of reasoning that depend minimally on 

prior learning. Again, the performance was measured in correct trials completed. The 

fourth cognitive domain episodic memory was again covered by three tasks: logical 

memory, word order recognition and paired associates. Here, participants were required 

to memorize specific details from presented stories, to remember paired words or words 

in a specific order. Again, performance was measured in correct trials completed. For a 

more detailed task description please see: Stern et al., 2014, “The Reference Ability 

Neural Network Study: motivation, design, and initial feasibility analyses”. 
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4.3. Overview of analysis regime 
 

  

Figure 5: Overview of analysis regime: 1) 255 study participants underwent twelve fMRI tasks covering a range 
of four reference abilities (i.e., cognitive domains). 2) EPI sequences for each participant and each fMRI task 
were acquired and preprocessed using SPM 12 (Statistical Parametric Mapping). The fMRI data was analyzed 
using a fixed general linear model (GLM) to create design matrices for the following step. Next, a cPPI 
(correlational psychophysiological interaction analysis) was conducted to retrieve task-related LFC hub 
connectivity and correlation matrices showing condition-specific functional connectivity for 400+1 different 
ROIs. 3) Global LFC hub connectivity and network segregation scores were computed for each task and study 
participant. 4) Statistical analysis was applied to further investigate the data set and analyze the associations of 
LFC hub connectivity with fMRI task performance and network segregation. The EPI image displayed was 
published by ”PGP-Scientists, Personal Genome Project” and is licensed under CC0. 
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4.4. fMRI data acquisition 

All fMRI sequences were obtained using a 3.0T Philips Achieva Magnet (MRT). Each 

study participant underwent a 2.5-hour fMRI imaging session twice in which they 

engaged in twelve distinct tasks (see Chapter 4.2.). In addition, a T1-weighted image was 

created to determine the exact position of each participant. Every fMRI scan used a 240 

mm field of view. The fMRI images were generated using an echo-planar imaging (EPI) 

sequence sensitive to BOLD (TE/TR = 20/2000 ms, flip = 72°). EPI sequences were 

utilized since this technique allows fast image acquisition and is thus less sensitive to 

motion (Poustchi-Amin et al., 2001). Each scan produced 41 slices of brain volumes 

(3mm thick axial images, 112x112 (voxels) in-plane resolution). A neuroradiologist 

reviewed each subject’s scans. Any significant findings were transferred to the 

participant’s primary care physician. 

 

4.5. Preprocessing of fMRI data 

To minimize artifacts created at data acquisition, each individual’s twelve fMRI scans 

were preprocessed using Statistical Parametric Mapping (SPM) 12 (Wellcome Trust 

Centre for Neuroimaging, UCL, London, UK). First, to accomplish a higher comparability 

between subjects all functional and structural images were warped into a standardized 

MNI template which was achieved utilizing a non-linear algorithm employed in SPM 12 

(Ashburner, 2007). Second, the fMRI images were corrected for possible motion artifacts 

as too much movement changes the origin of the measured signal. As last preprocessing 

step, slice-time- and field-map correction was applied and the fMRI images were 
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subsequently smoothed to decrease noise signal which was achieved by using an 8 mm 

FWHM (full with at half maximum) kernel.  

 

4.6. Definition of LFC and regions of interest (ROIs) 

First, the coordinates of the LFC hub were created by following a protocol from a 

previous task-related fMRI study using a 3D-sphere shaped ROI (MNI coordinates: x= -

42, y=6, z= 28) with a radius of 8 mm. The LFC seed ROI was overlaid onto the gray 

matter-masked fMRI data series to obtain the task-related functional connectivity within 

the defined LFC ROI (Franzmeier et al., 2017C). Using the pre-established Schaefer atlas 

(Schaefer et al., 2018), the rest of the brain was parcelled into 400 distinct ROIs (see Fig. 

6) which were subdivided into a seven subnetwork system (Yeo et al., 2011). Global 

positive functional connectivity of the LFC hub was computed by meaning the positive 

connectivity of the hub to every other ROI in the 400 ROI Schaefer atlas. Note that 

negative functional connectivity of the LFC hub and the 400 Schaefer ROIs were 

excluded due to an unclear interpretation of the result. 
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Figure 6: 400 ROI brain parcellation 

 

 

 
 

 

Figure 6: Illustrated 400 ROI brain parcellation (Schaefer et al., 2018) that was constructed by using the R 
library ggseg (Mowinckel & Vidal-Piñeiro, 2020). Task-related FC was calculated for each ROI in the Schaefer 
400 atlas and for the Left Frontal Cortex hub (LFC) ROI (MNI coordinates x = 42, y = 6, z = 28) which is 
superimposed in red with a blue circle. Abbreviations: DAN = Dorsal Attention Network, DMN = Default Mode 
Network, FPCN = Fronto Parietal Control Network, Limbic = Limbic Network, Motor = Motor Networks, VAN 
= Ventral Attention Network, Visual = Visual Motory Network. 

 



 
 

 34 

4.7. Analysis of task-related fMRI data 

After preprocessing, the subject level tfMRI data was analyzed utilizing a fixed-effects 

general linear model (GLM) which was achieved with SPM 12. This statistical method is 

employed to distinguish between noise and the stimulus-dependent signal (Monti, 2011) 

and is a prerequisite for the subsequent analysis. For each participant, the experimental 

design matrix was created by entering six motion regressors, time and dispersion 

derivatives and two condition regressors: (1) task mode on (2) task mode off. Each 

regressor variable was convoluted with the canonical hemodynamic response function 

(HRF) which represents the characteristic BOLD impulse response that can be attributed 

to neuronal activity (i.e., neurovascular coupling). 

 

 
4.8. Correlational psychophysiological interaction (cPPI) analysis 

The psychophysiological interaction (PPI) analysis is a statistical method for examining 

condition-specific changes in the activity and relationship between different brain 

regions (e.g., ROIs) (O'Reilly et al., 2012). This statistical approach is suitable to measure 

how higher condition-specific activity of one brain region is associated with condition-

specific activity in another brain region (Friston et al., 1997). In comparison, the GLM 

contrast may show neural activity in different brain regions of interest but based on this 

method one cannot distinguish between independent or interactive neural activity. 

Hence, a PPI analysis is used to analyze condition-specific inter-regional covariations of 

neural activity. Specifically, in this doctoral thesis, a correlational psychophysiological 

interaction (cPPI) analysis was conducted to obtain task-related functional connectivity 

of the LFC hub and every ROI in the Schaefer 400 atlas. The cPPI analysis was performed 
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by using the pre-established cPPI-Toolbox (Fornito et al., 2012) which required the first-

level design matrices created with the GLM model (see Chapter 4.7.). First, the extracted 

time courses belonging to the LFC ROI and the 400 Schaefer ROIs were deconvolved 

using the empirical Bayesian method (Gitelman et al., 2003), then multiplied with the 

condition regressors: (1) task mode on and (2) task mode off and subsequently 

reconvolved with a canonical HRF creating the region-specific cPPI interaction 

regressors which represent the conditional changes of neural activity in the respective 

ROI. For subject-level cPPI analysis, a design matrix was produced that included the (1) 

PPI interaction regressors, (2) deconvolved LFC and ROI BOLD time courses, (3) 

condition regressors and (4) covariates of no interest (motion parameters and time 

derivatives). Subsequently, the cPPI-Toolbox computed FC matrices representing the 

task-related (i.e., condition-specific) FC of 400 Schaefer ROIs and the LFC hub while 

engaged in the respective fMRI task. In total, twelve FC maps per study participant were 

constructed representing condition-specific covariations of neural activity. 
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4.9. Calculation of network segregation 

Network segregation was computed for each subject and every task to retrieve task-

related network segregation scores (255 participants x 12 tasks). Following a pre-

established approach (Chan et al., 2014), the network segregation scores were calculated 

by the difference in mean intra-network FC and mean inter-network FC as a proportion 

of mean intra-network FC, as noted in the following formula: 

 

𝑓𝑜𝑟𝑚𝑢𝑙𝑎: 

network	segregation =
𝑍!"#$% − 𝑍!"#&$

𝑍!"#$%
 

Zintra resembles the extent of intra-network FC and Zinter resembles the extent of inter-

network FC. Zintra was calculated as the mean Fisher z-transformed r between nodes 

within the same subnetwork and Zinter was calculated as the mean Fisher z-transformed r 

between nodes of one subnetwork to nodes of all other subnetworks. For this formula, 

all negative FC values were disregarded and only positive FC values were retained. No 

threshold for positive FC was applied.  
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4.10. Statistical analysis 

To investigate whether network segregation as a functional brain property (mediator 

variable) can serve as an underlying mechanism by which LFC hub connectivity 

(independent variable) enhances cognitive performance (outcome variable) a causal 

mediation model was conducted. Causal mediation models serve to clarify mechanisms 

that underly the relationship between two variables.  

 

First, for conducting a causal mediation model three obligatory criterions must be met: 

(1) the independent variable (LFC hub connectivity) significantly predicts the outcome 

variable (task performance), (2) the independent variable significantly predicts the 

potential mediator (network segregation) and (3) the mediator variable remains a 

significant predictor of the outcome variable when the independent variable is included 

in the regression analysis (Baron & Kenny, 1986). To meet these three criterions, linear 

regression models were conducted for all twelve fMRI data sets to test all three 

associations between (1) LFC hub connectivity and fMRI task performance, (2) LFC hub 

connectivity and network segregation, (3) network segregation and fMRI task 

performance. In each linear regression model, control variables (i.e., age, gender and 

education) were utilized to account for confounding effects. All reported regression 

models were calculated using the lm command as implemented in the R base library (R 

Development Core Team, 2018).  

 

After significant effects were found for all three multiple linear regression models, a 

causal mediation model was applied to assess whether network segregation (i.e., 

mediator variable) can mediate the association between global task-related LFC hub 
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connectivity (i.e., independent variable) and task performance (i.e., outcome variable). 

The calculation of the causal mediation analysis was achieved by utilizing the mediate 

command as implemented in the R package “mediation” (Tingley et al., 2014). For each 

conducted causal mediation analysis, the significance of the indirect effect (average 

causal mediation effect = ACME) and direct effect (average direct effect = ADE) was 

computed via non-parametric bootstrapping (n = 1000 iterations) and the mediations 

were considered as a full (i.e, complete) mediation when ACME was significant and the 

ADE was insignificant. However, when ACME and ADE were both significant, the result 

was interpreted as partial mediation. All associations and variance explained were 

considered significant at a threshold of p < 0.05. 
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5. Results 

5.1. LFC hub connectivity predicts fluid reasoning performance 

As a first analysis step, the aim was to explore whether global LFC hub connectivity is 

predictive of task performance in any of the four cognitive domains (memory, fluid 

reasoning, perceptual speed, vocabulary). The associations between global task-related 

LFC hub connectivity and task performance were assessed for each of the twelve tasks 

with the following linear regression model: 

 

𝑚𝑜𝑑𝑒𝑙:	 

𝑡𝑎𝑠𝑘	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝑥	𝐿𝐹𝐶	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑎𝑔𝑒 + 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜖 

 

Higher task-related LFC hub connectivity during fluid reasoning tasks was significantly 

associated with better task performance in two tasks belonging to the cognitive domain 

fluid reasoning (letter sets: ß = 0.192, p < 0.01 and paper folding: ß = 0.170, p < 0.01). 

However, there were no significant associations with task performances in the other 

three cognitive domains (i.e., memory, perceptual speed and vocabulary) and also no 

significant association with one task performance (matrix reasoning) in fluid reasoning. 

All regression models were controlled for age, gender and education. Scatter plots for 

associations between global LFC hub connectivity and fMRI task performance are 

illustrated in Figure 7. 
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Figure 7: Scatter plots illustrating the associations between  
global LFC connectivity and task performance 

 
 

 

  

Figure 7: Scatter plots illustrating the observed significant associations between A) task-related LFC hub 
connectivity and fMRI task performance in letter sets (cognitive domain: fluid reasoning) and B) task-related 
LFC hub connectivity and fMRI task performance in paper folding (cognitive domain: fluid reasoning). 
Standardized ß-weights and p-values derived from linear regression analysis are shown in the lower right corner 
of the plots. All models were controlled for age, gender and education. 
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5.2. Network segregation predicts cognitive performance in tfMRI 

Next, the aim was to test whether task-related network segregation (Chan et al., 2014) 

was predictive of fMRI task performance in any cognitive domain. Hence, the following 

linear regression model was applied: 

𝑚𝑜𝑑𝑒𝑙:	 

𝑡𝑎𝑠𝑘	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 × 𝑛𝑒𝑡𝑤𝑜𝑟𝑘	𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑎𝑔𝑒 + 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜖		

 

Higher task-related network segregation was found to be positively associated with fMRI 

task performances in all tasks belonging to the cognitive domain fluid reasoning. The 

positive associations in fluid reasoning tasks were strongest in descending order: matrix 

reasoning: ß = 0.263, p < 0.01, letter sets: ß = 0.256, p < 0.01, paper folding: ß = 0.248, 

p < 0.01. However, besides positive associations with fluid reasoning task performances, 

there were also positive associations for one task belonging to the cognitive domain 

memory (logical memory: ß = 0.164, p = 0.02) and for two tasks belonging to the 

cognitive domain vocabulary (synonyms: ß = 0.194, p < 0.01, antonyms: ß = 0.227, p 

< 0.01). In conclusion, positive associations were found between task-related network 

segregation and fMRI task performances in every cognitive domain except for the 

cognitive domain perceptual speed. Again, the linear regression models were controlled 

for age, education and gender. Scatter plots for associations between network 

segregation and fMRI task performance are illustrated in Figure 8 and 9.  
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Figure 8: Scatter plots illustrating the associations  
between network segregation and task performance 

 
 

 

Figure 8: Scatter plots illustrating the associations between A) task-related network segregation and fMRI task 
performance in letter sets (cognitive domain: fluid reasoning), B) task-related network segregation and fMRI 
task performance in paper folding (cognitive domain: fluid reasoning) and C) task-related network segregation 
and fMRI task performance in matrix reasoning (cognitive domain: fluid reasoning). Standardized ß-weights and 
p-values derived from linear regression analysis are shown in the lower right corner of the plots. All regression 
models were controlled for age, gender and education. 
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Figure 9: Scatter plots illustrating the associations 
between network segregation and task performance 

 
 

Figure 9: Scatter plots illustrating the associations between A) task-related network segregation and fMRI task 
performance in synonyms (cognitive domain: vocabulary), B) task-related network segregation and fMRI task 
performance in antonyms (cognitive domain: vocabulary) and C) task-related network segregation and fMRI 
task performance in logical memory (cognitive domain: memory). Standardized ß-weights and p-values derived 
from linear regression analysis are shown in the lower right corner of the plots. All regression models were 
controlled for age, gender and education. 
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5.3. LFC hub connectivity is associated with network segregation in          
fluid reasoning 

 

The main hypothesis postulates that global, task-related LFC hub connectivity is 

associated with better cognitive performance in normal aging by enhancing the 

functional organization of brain networks (i.e., network segregation). As a prerequisite 

for the subsequent causal mediation analysis, the association between task-related LFC 

hub connectivity and network segregation was tested by conducting the following linear 

regression model: 

𝑚𝑜𝑑𝑒𝑙: 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘	𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 × 𝐿𝐹𝐶	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑎𝑔𝑒 + 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜖	

 

First, positive associations between higher task-related LFC hub connectivity and task-

related network segregation were observed for all tasks belonging to the cognitive 

domain fluid reasoning (see Fig. 10). Specifically, LFC hub connectivity was predictive 

of enhanced network segregation in subsequent tasks: letter sets (ß = 0.25, p < 0.01), 

paper folding (ß = 0.139, p < 0.01) and matrix reasoning (ß = 0.2, p < 0.01). Further 

associations between global LFC hub connectivity and network segregation were found 

for tasks belonging to the other cognitive domains as well. In the cognitive domain 

memory, the associations were not significant for the tasks logical memory and word 

order while there was a negative, significant association between LFC hub connectivity 

and paired associates (ß = -0.133, p < 0.01). In the cognitive domain perceptual speed, 

the associations were not significant for digital symmetry and letter comparison while 

there was a negative, significant association between LFC hub connectivity and network 

segregation in pattern comparison (ß = -0.171, p < 0.01). In the cognitive domain 
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vocabulary, no significant associations for any tasks were observed but negative 

insignificant tendencies were noticed. Again, all regression models were controlled for 

age, gender and education.  
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Figure 10: Scatter plots illustrating the associations  
between LFC connectivity and network segregation 

 
 

Figure 10: Scatter plots illustrating the associations between A) global LFC hub connectivity and network 
segregation in letter sets (cognitive domain: fluid reasoning), B) global LFC hub connectivity and network 
segregation in paper folding (cognitive domain: fluid reasoning) and C) global LFC hub connectivity and 
network segregation in matrix reasoning (cognitive domain: fluid reasoning). Standardized ß-weights and p-
values derived from linear regression analysis are shown in the lower right corner of the plots. All regression 
models were controlled for age, gender and education. 
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5.4. Network segregation mediates the association between LFC hub 
connectivity and fluid reasoning performance 

 
As the final step of analysis, a causal mediation model was conducted to investigate 

whether network segregation can mediate the association between global LFC hub 

connectivity and task performance in the cognitive domain fluid reasoning. Since global 

LFC hub connectivity was found to be positively associated with a) network segregation 

and b) two fMRI task performances in fluid reasoning, a causal mediation model was 

conducted for the respective two tasks (letter sets and paper folding) matching the 

obligatory criterions.  

 

For the task letter sets (see Figure 11.A), the effect of global LFC hub connectivity on task 

performance was found to be partially mediated via an increased network segregation. 

Using non-parametric bootstrapping, the significance of the indirect effect (i.e., average 

causal mediation effect = ACME) and direct effect (i.e., average direct effect = ADE) was 

computed and unstandardized ACME’s and ADE’s were calculated for 1000 

bootstrapping iterations. The 95% confidence interval was determined by defining the 

ACME and ADE at the 2.5th and 97.5th percentiles. The bootstrapped unstandardized 

ACME of network segregation was significant (ACME = 0.165, p < 0.01) and the 95th 

confidence interval ranged from 0.06 to 0.29. Since the bootstrapped ADE was also 

found to be significant (ADE = 0.405, p < 0.05), the computed mediation was interpreted 

as a partial mediation. 

A similar partial mediation was found for the second fluid reasoning task paper folding 

(see Figure 11.B) where the effect of global LFC hub connectivity on task performance 

was partially mediated via an increased network segregation. After applying non-
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parametric bootstrapping procedures again, the ACME and ADE were both found to be 

significant (ACME = 0.1, p < 0.05 and ADE = 0.417, p < 0.01). Here, the 95th confidence 

interval of ACME ranged from 0.01 to 0.22. Thus, again, the computed mediation was 

interpreted as partial mediation.  

 

 
Figure 11: Illustration of the causal mediation analysis 

 

 
Figure 11: Path diagrams illustrating how higher task-related network segregation partially mediates the 
association between global LFC hub connectivity and performance in the respective task (A: letter sets, B: paper 
folding). Shown for each path are standardized ß-weights derived from linear regression analyses (i.e., a = effect 
of global LFC hub connectivity on network segregation, b = effect of network segregation on fMRI task 
performance, c = effect of global LFC hub connectivity on fMRI task performance, c’ = effect of global LFC hub 
connectivity on fMRI task performance when network segregation is included, ACME = indirect effect of global 
LFC hub connectivity on task performance). All paths are controlled for age, gender and education. The 
significance level of standardized ß-weights is represented by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001), 
where significance of indirect effects (i.e., ACME) is based on non-parametric bootstrapping procedures (n = 
1000 iterations). 



 
 

 49 

6. Discussion and Conclusion  

The main goal of this doctoral thesis was to investigate a potential protective brain 

mechanism facilitating the association between global LFC hub connectivity and better 

cognitive function in normal aging. It was hypothesized that global LFC hub connectivity 

supports cognitive function by increasing the functional organization of brain networks, 

i.e. task-related network segregation.  

The major findings of this doctoral thesis show that (1) task-related LFC hub connectivity 

is associated with an enhanced fMRI task performance in the cognitive domain fluid 

reasoning (2) higher task-related network segregation is associated with better task 

performance throughout the cognitive domains of fluid reasoning, vocabulary and 

memory (3) task-related LFC hub connectivity predicts increased network segregation in 

tasks belonging to the cognitive domain fluid reasoning, and (4) increased network 

segregation partially mediates the association between global LFC hub connectivity and 

task performance in fluid reasoning.  

First, the association between brain-wide LFC hub connectivity and fMRI task 

performance in four different cognitive domains was tested. Here, positive associations 

were found for all three fMRI task performances belonging to the cognitive domain fluid 

reasoning (i.e., fluid intelligence). In every other cognitive domain, no significant 

associations were found. These findings are in line with results of prior studies which 

revealed an association between the frontoparietal control system (i.e., including the LFC 

hub) and fluid intelligence (Cole et al., 2015; Cole et al., 2012). As fluid intelligence in 

particular decreases with advanced age (Horn & Cattell, 1967), higher LFC hub 
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connectivity may thus represent a key feature to comprehend how some individuals 

maintain cognitive function at a relative high level despite age-related brain changes. 

Nevertheless, there is still a lack of information about brain mechanisms supporting the 

association between higher, global LFC hub connectivity and relatively preserved fluid 

intelligence in older individuals.  

Next, to investigate whether network segregation could serve as such a protective brain 

mechanism, the association between network segregation and cognitive performance 

was tested.  Throughout three cognitive domains (i.e., fluid reasoning, vocabulary and 

memory) higher network segregation predicted increased fMRI task performance. 

Overall, these results demonstrate that the segregation of subnetworks is beneficial for 

cognitive performance in normal aging and may thus represent a functional brain 

mechanism. Moreover, functional brain mechanisms portray a possible gateway to 

comprehend inter-individual differences in age- and AD-related cognitive decline. Since 

positive associations were found across multiple tasks (six out of twelve fMRI tasks), 

network segregation appears to enhance cognition throughout several cognitive domains 

and may thus be identified as a global functional property. However, as network 

segregation predicted cognitive performance strongest in fluid reasoning tasks, it’s 

arguable that this mechanism is especially required under circumstances where attention 

and cognitive control are being utilized. In addition, recent evidence suggests that 

attention- and control-networks in particular have a more drastic age-related decrease 

in functional network segregation compared to sensory-motory systems indicating that 

an age-related cognitive decline (i.e., decrease in fluid intelligence) can be partially 

attributed to a reduced segregation of networks (Chan et al., 2014). Together, these 

results line up with previous studies showing that the segregation of networks is pivotal 
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for high-demand cognitive tasks whereas network integration (i.e., the higher cross-

wiring of different networks) is necessary for tasks where multiple networks are involved 

(e.g., working memory processes) (Cohen & D'Esposito, 2016). Increased functional 

network segregation could therefore reflect a higher autonomy of the respective task-

relevant network and lead to a less resource-dependent cognitive process (Bassett et al., 

2015). Hence, higher functional network segregation might be associated with higher 

task performance throughout several cognitive domains as it preserves resources by 

enhancing the functional organization of networks.  

To address the question whether network segregation could serve as a protective brain 

feature by which the LFC hub increases cognitive function in normal aging, associations 

between LFC hub connectivity and network segregation were tested. Higher LFC hub 

connectivity was found to predict network segregation in all tasks belonging to the 

cognitive domain fluid reasoning (i.e., paper folding, matrix reasoning and letter sets). 

Here again, no significant associations were found between LFC hub connectivity and 

task performance in the other three cognitive domains. Recent studies support these 

results by showing that control network hubs (i.e., the LFC hub) enable the functional 

organization of brain networks into difficult-to-reach states which plays an important 

role in executing challenging activities such as fluid reasoning (Gu et al., 2015). Thus, 

network segregation could offer one possible explanation on how higher global LFC hub 

connectivity increases brain efficiency and thereby improves cognitive performance 

despite age-related or pathological brain changes. In contrast, participants with lower 

LFC hub connectivity showed a reduced functional connectivity pattern by exhibiting 

less intra-connected subnetworks and more diffusely connected brain regions (see Fig. 

12). These findings extend and confirm previous findings on fMRI-assessed LFC hub 
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connectivity and its relation to protective brain features (Franzmeier et al., 2017B; 

Franzmeier et al., 2018).  

After all three obligatory criteria for conducting a causal mediation analysis were met 

(see Chapter 4.10.), network segregation was found to partially mediate the association 

of higher LFC hub connectivity with increased cognitive performance in fluid reasoning. 

Since the LFC hub has been previously associated with higher cognitive reserve in AD 

(Franzmeier et al., 2017B), it is assumable that network segregation could thus be 

identified as a potential protective brain feature underpinning functional mechanisms by 

which LFC increases or attributes to cognitive reserve. Specifically, as part of the FPCN, 

the LFC shifts its connectivity to networks across cognitive tasks and thereby orchestrates 

the activity of neural networks (Cole et al., 2014). Hence, the association between global 

LFC hub connectivity and higher network segregation could indicate that the LFC hub 

regulates brain activity at the network level during task performance, thus enhancing the 

activity of task-relevant networks while reducing the activity of task-irrelevant networks, 

resulting in less diffuse global brain activity but higher network segregation. However, 

the current study is correlational in nature and a causative interpretation is not possible 

but needs to await experimental manipulation of LFC hub connectivity. Together, these 

results imply that higher global LFC hub connectivity contributes to cognitive function 

in normal aging via enhancing the functional segregation of subnetworks and thereby 

increasing cognitive performance in certain task states (i.e., fluid intelligence).  

 

For the interpretation of these findings, multiple limitations should be considered. In this 

thesis, a potential mechanism (i.e., network segregation) was investigated by which 

global LFC hub connectivity contributes to cognitive reserve in normal aging. While LFC 
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hub connectivity has been found to influence cognitive reserve in the face of major 

neuropathology in AD, in this study only healthy individuals were assessed who did not 

experience cognitive decline or were diagnosed with AD. Therefore, the transferability 

of these findings to patients who are diagnosed with AD may be unclear. Furthermore, 

recent findings suggesting that higher LFC hub connectivity is associated with better 

memory performance could not be replicated in this thesis (Franzmeier et al., 2017C). 

This might be due to the fact that this association is stronger shown in individuals who 

already experience significant pathological brain changes or symptoms. In addition, for 

the calculation of network segregation the brain was parcellated into 400 regions 

forming a large-scale network consisting of seven subnetworks (Schaefer et al., 2018; 

Yeo et al., 2011). Since the brain undergoes age-related changes throughout the life 

(Varangis et al., 2019), the a priori definition of seven subnetworks could be problematic 

for the measure of network segregation. However, studies indicate a high reproducibility 

for the formation of large-scale networks in aging and AD (Meunier et al., 2009). 

Furthermore, please note that a “causal mediation analysis” might suggest that the 

calculated partial mediation effect is causal and therefore directly explains the observed 

relationship between LFC hub connectivity and task performance in fluid reasoning. 

Nevertheless, this is a wrong assumption as a “causal mediation analysis” only serves to 

clarify the association between independent (i.e., LFC connectivity) and dependent (i.e., 

task performance) variables but cannot clarify the direct, causal effect. Although a 

significant partially mediated effect was calculated, partial mediations only account to 

some extent for the relationship between independent (i.e., LFC hub connectivity) and 

dependent variable (i.e., task performance). Hence, network segregation might be just 

one of many possible protective brain properties by which LFC distributes to the 
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phenomenon of cognitive reserve. This shows that additional protective brain properties 

or other possible underlying functional mechanisms might confound for the effect of 

network segregation.  

 

In conclusion, these findings indicate that network segregation serves as a potential 

functional mechanism by which the LFC hub increases cognitive performance in normal 

aging. Since the LFC hub has been previously associated with cognitive reserve in AD 

and is thus considered to be associated with protective brain features, network 

segregation could be identified as one potential key mechanism to cope with AD-

pathology. As network segregation only partially mediated the association with cognitive 

performance, there are still unanswered questions regarding additional functional 

mechanisms underlying global LFC hub connectivity and its relation to cognitive reserve. 

Although this thesis gives some insight into one protective mechanism by which the LFC 

hub increases cognitive performance and thus attributes to cognitive reserve in normal 

aging, these results must be further validated in study samples containing patients 

diagnosed with AD or other neurodegenerative diseases. To date, 110 years after the 

discovery of AD, there is no effective treatment available and pharmaceutical therapy 

remains a big challenge. However, studies have demonstrated that non-invasive 

stimulation of the LFC hub is possible and that an application of this therapeutic 

procedure results in higher connectivity and enhanced cognitive performance (Drumond 

Marra et al., 2015; Gratton et al., 2013). Hence, increasing the understanding of 

functional mechanisms and protective brain properties underlying cognitive reserve in 

normal aging and AD could further support the application of concepts such as 

transcranial brain stimulation or cognitive training as a secondary prevention approach.  
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Figure 12: Force-directed plots illustrating the association between  
LFC hub connectivity and network segregation 

  

Figure 12: Force-directed plots with a spring-embedded layout created with group-meaned, task-related FC derived from the 
task letter sets (cognitive domain: fluid reasoning). Participants were divided into four cohorts based on their quartiled LFC 
connectivity. For every cohort, the FC matrices of each participant were meaned into one FC matrix and a force-directed plot 
was constructed. The node sizes are dependent on their meaned FC (i.e., bigger nodes exhibit higher FC during the task letter 
sets). Networks with greater relation to fluid reasoning (e.g., DAN and Control) exhibit higher network segregation. The DAN-
network is highlighted for each quartile with a yellow, transparent circle. As LFC hub connectivity decreases, the DAN network 
segregates itself less from other networks and the nodes shrink in size representing a lesser extent of FC. This trend can be 
observed for other subnetworks as well. Abbreviations: DMN = Default Mode Network, DAN = Dorsal Attention Network, 
FPCN = Fronto Parietal Control Network, Limbic = Limbic Network, Motor = Motor Networks, VAN = Ventral Attention 
Network, Visual = Visual Motory Network. 
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