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Summary

Summary

Over the last decades, the rapid advances in the field of mass spectrometry (MS)-based
proteomics have turned it into one of the most powerful technologies available for studying
biological systems. This technology has led to the identification and quantification of
thousands of different proteins and their modifications under various biological conditions.
The recent introduction of trapped ion mobility spectrometry in proteomics — exemplified by
the timsTOF instrument and providing an additional dimension of ion separation - has
further extended capabilities, making it even more high-throughput and sensitive. As a
result, this ‘next-generation proteomics’ is generating huge amounts of data on a daily basis
that provide information to study complex biological problems, such as mechanisms
controlling cell signalling or cellular heterogeneity in health and disease. However, the
visualization and further exploration of this big data has not kept pace with its generation,
which has posed problems in critically validating and interpreting the data. | therefore

address this challenge in my thesis.

Looking through the course of my PhD studies in chronological order, when | started
working in the group there were no software tools to efficiently access and visualize
timsTOF data. The slow and inconvenient access to the extremely large timsTOF
proteomics data was at that time a major limitation and also a foundation for my further
projects. The next step was therefore the joint development of a software tool called
AlphaTims, which efficiently indexed the next-generation proteomics data and drastically
accelerated the data access (Article 4). This project, like many of the following ones, was
based on the development in our department of a novel open-source Python-based
framework for efficient processing of large scale, high-resolution MS data sets called
AlphaPept (Article 5). This framework has become an ‘ecosystem’ for proteomics software
development, not only providing the necessary functionality, but also incorporating the
basis of scientific software development standards, such as high-quality code, extensive
documentation, automated testing, and continuous integration. As a next step, | co-
developed a tool called AlphaMap to facilitate the visual inspection of the peptide-level
proteomics data with post-translational modifications (PTMs) (Article 3). Finally, to simplify
the validation of the next-generation proteomics data acquired on the timsTOF instrument,
| developed AlphaViz, an open-source Python-based visualization tool that allows the user
to examine the validity of peptide identification and quantification by visually comparing

them to the signal presented in the raw timsTOF data (Article 2).

Deviating from standard scientific software development, during my PhD studies | also had

the opportunity to participate in collaborative projects covering areas such as method
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development and deep learning prediction of peptide properties. Early in my PhD I
contributed to the implementation of a novel diaPASEF scanning mode on the timsTOF
instrument, where we demonstrated up to 100% ion utilization for fragmentation and
achieved deep proteome coverage of more than 7,000 proteins in only two-hour HelLa runs
(Article 6). Two years later, we were able to refine this method, now quite favored in the
field, by optimally positioning the quadrupole isolation windows and gaining 14% coverage
of the peptide population and almost 60% for phosphopeptides (Article 7). The ability to
acquire very large timsTOF data sets with collisional cross section (CCS) values, enabled
us to investigate for the first time the general nature of CCS values for peptides. We then
trained a deep learning model that predicts them with high accuracy (median deviation of
1.4%) (Article 8). We found that CCS values correlate with known physical peptide
properties, such as mass and bulkiness, but have large variance depending on the specific
context in the peptide sequence. A year after that, we introduced a new highly modular
deep learning system called AlphaPeptDeep, which allows us to predict with very high
confidence all sequence related peptide properties using the same system, and to easily
build and train custom deep learning models for any project in just a few lines of code
(Article 9).

Altogether, the work represented in this thesis focuses on the exploration of different
aspects of ‘next-generation proteomics’ timsTOF data, ranging from the development of
scientific software to access, process or Vvisualize this new type of complex
multidimensional MS proteomics data, through MS-proteomics method development and
finally the application of emerging artificial intelligence technologies, such as deep learning,

in proteomics.
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1. Introduction

1.1. Mass spectrometry-based proteomics

Proteins are key components of all living organisms. They provide structure, transport
other molecules, catalyze reactions, transmit signals and, in fact, execute or at least
participate in every biological process. Although all cells within an organism generally
contain the same genotype throughout their life cycle, their phenotype changes over
time and between cells, tissues and organs. These alterations occur as a result of gene
regulation, the process of protein translation, protein modification and localization as
well as interaction between proteins in protein complexes. For the analysis of proteins
on a global level, the term proteomics was coined several decades ago by M. Wilkins to
describe the entire complement of proteins expressed in a specific state of a cell
population, a tissue, an organ or an organism (1). It was used in analogy to other terms,
such as genomics and transcriptomics, that already exist in the field, to refer to the
sequencing of the complete deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)

repertoires, respectively.

However, to compete with the speed and efficacy of analytical methods used for
oligonucleotide sequences, accurate large-scale proteomics had to evolve from the
gualitative analysis of a single isolated protein towards the robust high-throughput
guantitative analysis of complex protein mixtures containing thousands of proteins. Note
that proteomics is here taken to mean mass spectrometry (MS)-based proteomics and
not large-scale antibody-based methods. Three milestone inventions played a major role
even before and then in this transformation process (2, 3). Firstly, Joseph Thomson is
considered the father of MS for his work in the discovery of the electron, which earned
him the Nobel Prize in 1906, as well as for building the first mass spectrometer (3). The
second was the discovery of the quadrupole and the three-dimensional ion trap by
Wolfgang Paul who won a share of the physics Nobel Prize in 1989. His first device was
the ancestor of many of the commercial mass spectrometers available today. The third
was the almost simultaneous invention of two key soft ionization methods, electrospray
ionization (ESI) by the team of John Fenn and matrix-assisted laser desorption ionization
(MALDI) by two different groups. These two technologies were awarded part of the
chemistry Nobel Prize in 2012 (4-6). They allowed biological macromolecules to be
transferred from the liquid or solid matrix, respectively, to the gas phase for further
analysis by mass spectrometry (MS). These advances have extended the application of
MS to large molecules and opened up a new field to study biological systems and

gradually made it the preferred method of proteomics analysis.
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From these early days to the time when the complete proteomes of many species could
be analyzed in a qualitative and quantitative manner (7), a huge number of discoveries
and developments related to the various steps of the proteomics workflow had to take
place. These ranged from the standardization and miniaturization of sample preparation
protocols (8, 9), innovative columns and liquid chromatography systems (10), to new
acquisition schemes (11-15), next-generation mass spectrometer types (16, 17) and
software development (18-22).

In order to streamline the description of the methods that follow, | next introduce some

important MS concepts and terminology that will be used in this thesis.
1.1.1. Bottom-up proteomics

MS-based proteomics can use different types of input material, ranging from cell lines,
tissues and organs to entire microorganisms. First cells from the sample are lysed,
proteins extracted and alkylated. Then they are enzymatically digested to peptides using
sequence-specific enzymes such as trypsin, and are then further analyzed by a
combination of analytical techniques (Fig. 1A). This approach, based on the digestion of
proteins to peptides for further analysis, is referred to as “bottom-up” or “shotgun”
proteomics, in contrast to the “top-down” protein-based approach, which aims at the
analysis of entire proteins without prior digestion (23). The resulting peptide mixture is
further separated by an aqueous/organic solvent gradient in the liquid chromatography
(LC) step and ionized via ESI (Fig. 1B). Coordinated with the elution from the column,
the mass spectrometer scans the entire mass range (MS? level) every few seconds and,
based on the preferred acquisition strategy, isolates and fragments only a list of pre-
selected peptides (targeted approach) (24), the topN most intense precursors (data-
dependent acquisition, or DDA) or all peptides falling within a certain m/z window (data-
independent acquisition, or DIA) (25). This fragmentation process is called tandem MS
(MS/MS). The information of the peptide masses together with their fragment masses is
used for peptide identification and quantification by database searching (Fig. 1C). In the
final step, the identified peptide sequences are assembled into a set of proteins while
solving the protein inference problem (26). The three main steps of the classical bottom-
up MS-based proteomics workflow, comprising sample preparation (A), LC-MS/MS
analysis (B), and data analysis (C), shown in Figure 1 (27), are described in more detail

in the following sections.
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Figure 1: Shotgun or bottom-up proteomics workflow. (A) Sample preparation. In this step, proteins
are extracted from cells or tissue and enzymatically digested into peptides. Additional enrichment and
fractionation steps can be applied at the protein or peptide level to increase proteome coverage. (B) Liquid
chromatography — mass spectrometry. Peptides are separated by a high-performance liquid
chromatography (HPLC) system and ionized by electrospray (ESI) for subsequent mass spectrometry (MS)
analysis. Here a typical topN data dependent acquisition scheme is depicted where a full MS scan (MS?) is
followed by n MS? scans of the n most intense precursors at MS? level. (C) Data analysis. Information from
the full MS and MS? spectra is used by proteomics workflows to search a database containing the sequence
of all potential proteins in the sample. Figure by Hein et al. (27)

1.1.2. Sample preparation

As described earlier, bottom-up proteomics requires a specific sample preparation
process that includes enzymatic digestion of proteins to short MS-accessible peptides
and removal of any other agents that should not be introduced into the mass
spectrometer. Various sample preparation protocols have been developed over the
years, dependent on the type of samples (cell culture, tissue, organ, organism), the
amount of sample material or even the type of biological questions to be answered.
Regardless of the protocol used, the efficiency of protein extraction and isolation directly

influences the quality of the subsequent MS analysis as well as the accuracy and
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reliability of the results obtained. In the following, the main steps of sample preparation
are described.

Cell lysis. The first step in efficient protein extraction is the disruption of cellular
structures. Depending on the type of scientific question, the lysis of biological material
can be performed either mechanically, e.g. by bead-milling, blending and grinding,
physically, using heat or sonication, or chemically, by using various chemicals or
enzymes (28). Usually native protein folding is undesirable and an additional
denaturation step can be carried out to unfold all proteins and inhibit any enzymes to
avoid modifications related to sample preparation or non-specific proteolysis. This
includes the use of detergents such as sodium dodecyl sulfate (SDS) and sodium
deoxycholate (SDC), emulsifiers or surfactants.

Reduction and alkylation. Next, the stable disulfide bonds of isolated proteins are
reduced and alkylated to disrupt the disulfide bridges and prevent their possible
reforming. Typical reducing agents in proteomics are dithiothreitol (DTT) or tris(2-
carboxyethyl)phosphine (TCEP) (29), while the most commonly used alkylating agents
are iodoacetamide (IAA) or chloroacetamide (CAA) (30).

Digestion. Different sequence-specific enzymes are employed for proteolytic digestion
of proteins. Note that the choice of protease significantly affects the outcome of the
experiment. The enzyme must be active in the presence of denaturants, highly
sequence-specific and generate multiply-charged peptides of a certain average length.
Considering all these aspects, trypsin is the most common protease in proteomics, often
used in combination with the enzyme LysC. Trypsin cleaves C-terminally to lysine and
arginine, whilst LysC — only to lysine residues (31). In special cases, chymotrypsin
(cleaves C-terminally to aromatic residues), Asp-N, Lys-N, Lys-C, Arg-C, or Glu-C can
be employed in shotgun proteomics to increase the overall protein sequence coverage

or to generate peptides with different properties (32).

Sample clean-up. Before proceeding to the chromatographic separation, most
protocols include a final clean-up step to remove all chemicals like detergents and salt
remnants that could potentially damage the LC or MS setup as well as suppress
ionization in ESI. This challenge has been successfully addressed by developing
different techniques like 'Filter-Aided Sample Preparation’ (FASP) or 'Stop and Go
Extraction tips’ (StageTips) that combine some or all of the afore-mentioned steps in a
single reaction chamber (33—-35). These approaches have greatly reduced the risk of
loss or contamination of biological material, making it easier to automate the entire

sample preparation step and have become routine in proteomics (7, 36).
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In some specific cases, additional steps may be performed prior to the LC-MS analysis.
Post-translational modification (PTM) studies typically involve additional enrichment
steps to overcome sensitivity and complexity problems in the detection of low abundant
and sub-stoichiometrically modified peptides (as will be discussed in Section 1.3 below)
(37). In the case of deep proteomic measurements, fractionation techniques are often
applied to reduce peptide sample complexity by dividing one peptide sample into several
less complex ones (38). However, it is always necessary to be aware of the trade-offs
between an increase in proteome depth and sequence coverage versus an increase in

number of sample preparation steps, sample amount and measurement time.
1.1.3. Ligquid chromatography — mass spectrometry (LC-MS)

The separation of peptides in time and space is essential for high quality and
reproducible results. This is particularly important for complex proteome samples, which
exceed the scan capacities of even modern mass spectrometers (39). Historically,
peptides were separated in the front end of the mass spectrometer using different
coupled units (40). But nowadays, after digestion, the peptide mixture is further
subjected to separation on columns of a liquid chromatography (LC) system coupled to

the mass spectrometer.

Liguid chromatography. In reverse-phase chromatography in proteomics the
separation of peptides is based on different hydrophobic interactions with a stationary
phase, typically C18-silica phase. A gradient with a linearly increasing percentage of
organic solvent, such as acetonitrile, in aqueous buffers gradually elutes peptides from
the reversed-phase column. Using high-pressure pumps to ensure constant flow
through the LC column, proteomics typically uses long columns with a small inner
diameter, filled with small particle size to achieve better chromatographic resolution and

lower numbers of co-eluting peptides concentrated into small volumes.

The EASY-nLC instrument of Thermo Fisher and the Evosep system were used for the
projects in this thesis. The EASY-nLC system provides a well-established low-flow rate
setup that enables optimal ionization of peptides and achieves high sensitivity in
proteomics experiments (41). The recently introduced LC system called Evosep is

beneficial for high throughput projects where short gradients are required (10).

Mass spectrometry. As the peptides elute from the chromatographic column, they are
ionized via ESI and the resulting charged ions are passed through an ion transfer tube
into the vacuum region of the MS instrument. The mass spectrometer continuously
scans the peptide mass range and assigns masses, or more precisely mass-to-charge

ratios (m/z), and intensities to the eluting peptides. As peptide mass alone is not
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sufficient for identification, a second MS step, called tandem MS, MS/MS or MS?, is
employed. In this step the peptides selected for fragmentation are isolated and
subsequently fragmented by collision with neutral gas molecules, such as nitrogen,
helium or argon. Different peptide fragmentation methods are used in tandem MS,
including collision-induced dissociation (CID), its variant higher-energy collisional
dissociation (HCD) and electron-transfer dissociation (ETD) (42-44). All these
dissociation strategies differ in the generation of distinctive fragmentation patterns in
MS? scans. CID or HCD techniques almost exclusively result in the formation of b- (N-
terminal part) and y-ions (C-terminal part) (45), whereas ETD predominantly produces
c- and z-ions with a small number of y-ions (Fig. 2). Although HCD is the most widely
used dissociation strategy in proteomics, the choice of using other fragmentation
techniques may depend on the purpose of the experiment. For example, ETD is widely
used to study labile PTMs and results in better fragmentation of long, multiply-charged

or modified peptides (46).
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Figure 2: Fragmentation scheme. (A) Different fragmentation strategies applied to the peptide with
four amino acids lead to the formation of different ion species. CID and HCD dissociation techniques
generate mainly b- and y-ions, whilst ETD generates c- and z-ions. Adapted from (45). (B) Example of an
HCD-type MS? spectrum. A typical HCD fragmentation spectrum demonstrates a partial series of b-ions
(red) and an almost complete series of y-ions (blue), which is a known characteristic of HCD. Below the
spectrum, the identified ions are shown on the amino acid peptide sequence (Figure from Article 1).
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1.1.4. Proteomics data analysis

Nowadays, high-resolution MS-based proteomics produces an enormous amount of
data. For instance, a single two-hour gradient run of a digested HelLa lysate contains
around 90,000 spectra with a raw file size of several gigabytes. Therefore, efficient data
analysis software has been developed to analyze and interpret these data. In our
department, a freely available software package called MaxQuant was developed
almost a decade and a half ago (22). Over the years, it has become a standard in the
community due to its convenient all-in-one package solution and accurate quantification.
However, in the era of open science, the need for transparency in research as well as
opportunities for collaboration within the community have become an intrinsic part of
software development (this will be discussed in Section 1.4). In Article 5, we show a
new joint effort of our group to develop a new open and super-fast proteomics
framework, called AlphaPept, maintaining high software standards with the integration
of state-of-the-art machine learning and deep learning technologies. Based on the
bioinformatics workflow employed in these software tools, the entire process of data

analysis in proteomics can be divided into several parts (Fig. 3).

Feature detection. In the first step, the peptide features have to be detected in the full
scans in a multidimensional space (retention time, m/z, intensity and optionally ion
mobility as discussed in Section 1.2) and assembled into isotope patterns by deisotoping
the spectrum (47). For each MS! feature detected, the m/z and intensity of a possible
peptide precursor are determined. To increase accuracy and achieve consistency
across all measured data dimension, an additional recalibration step is suggested (48,
49).

Peptide identification. For peptide identification, known precursor masses derived
from assembled isotope patterns are assigned to corresponding MS? fragmentation
spectra. There are several approaches to how this information can be used to determine
the peptide sequence, mainly de novo sequencing or database searching. In de novo
sequencing, the mass difference between all peaks in the MS? spectrum is calculated
and, if possible, assigned to the (un)modified amino acid (50). In principle, this should
lead to a complete peptide sequence, even allowing the identification of new peptides
and proteins not described in the available databases, but is still not sufficiently sensitive
due to the effects of missing fragment ion peaks and spectral noise on accuracy (51).
Conversely, database searching uses all known information about the precursor to
compare this against theoretical spectra derived from in-silico digestion of a reference

organism database containing all known or possibly be produced protein sequences
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(26). However, some substantial improvements have already been made by introducing
deep learning into de novo peptide sequencing (52, 53). Peptides are identified by
scoring each measured fragmentation spectrum against all theoretical fragmentation
spectra in the database within a specified peptide mass tolerance to find the highest
scoring peptide-spectrum match (PSM). Various approaches have been developed to
prevent false identifications, including the target-decoy approach and different machine
learning algorithms (54).

Protein assembly. The next step is to solve the “protein inference problem” by
assembling the identified peptides into proteins. This task is not trivial, as many peptides
are non-unique and can be assigned to different proteins, especially in the case of
proteoforms (26). As one possible solution, the concept of ‘protein grouping’ is
introduced, which allows proteins to be assigned to the same group if they share one or
more peptides and have no uniquely distinguishable peptides (55). Similar to the peptide

identification level, false protein identifications should also be controlled at this level (56).

Protein quantification. The aim of every proteomics experiment is not only to identify
proteins, but also to obtain information on the amount of proteins. Quantitative
proteomics approaches can be divided into absolute and relative (57, 58). Absolute
guantification uses different labelling techniques to measure the absolute amount of
protein in a sample. In standard label-based methods, the intensity of differentially
labeled peptides is compared within the same LC-MS/MS run at MS! level (stable
isotope labeling with SILAC or dimethyl) or at MS? level (isobaric labeling with TMT or
iTRAQ). In contrast to this, relative quantification uses no labeling and compares the
relative amounts of protein between different samples to derive their relative

concentration changes.
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Figure 3: Proteomics data analysis workflow. (A) Feature detection. The detection of MS* peptide
features in a three-dimensional m/z-retention time-intensity space and assembling them into isotope
patterns. Additional mass and retention time recalibration steps are applied. (B) Peptide identification by
database search. Experimental MS? spectra are scored against theoretical spectra from an in-silico
digested sequence database. Using the target-decoy approach, true identifications are distinguished from
false identifications at a defined false discovery rate (FDR) threshold. (C) Protein identification. By solving
the ‘protein inference’ problem, peptides are assembled into proteins and additional FDR filtering is applied
at this level to avoid protein false identifications. (D) Protein quantification. Quantification of peptides and
proteins within the run based on stable-isotope labeling and across multiple runs based on the label-free
quantification. Figure by Hein et al. (27).
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1.2. lon mobility spectrometry in proteomics

lon mobility spectrometry (IMS) has advanced considerably in recent decades as an
analytical technique for the analysis of ionized chemical substances on the basis of their
velocity in the gas phase under the influence of an electric field. IMS, together with MS,
traces its origins back to the late 1890s when scientists first studied the separation of
charged particles in electric and magnetic fields (59). However, relative to the rapidly
developing MS field, for quite a long time, IMS remained a stand-alone method with
limited applications, e.g. for the detection of explosives, drugs, and chemical warfare
agents (60). In the early 1960s, several groups showed in parallel the advantage of
different configurations of hybrid IMS with MS analyzers, separating ions based on their
ion mobility (IM), which takes into account their size, shape and charge, and m/z
information (61—-63). All this, together with many critical developments in MS, such as
soft ionization, has extended the application of IMS and enabled the analysis of complex

samples, which has found use in various fields, including proteomics (64—66).

Several IM technologies have been developed over the last decades, each having its
own operating principle, design and already commercially released devices. According
to the classification by May and McLean, all IM techniques can be categorized into three
groups based on their underlying separation concepts, namely (i) time-dispersive
methods, (ii) space-dispersive methods, and (iii) confinement, or trapping, and selective
release methods (67). Time-dispersive IM methods generate an arrival time spectrum
in which all ions drift along with the gas flow and include such methods as drift tube ion
mobility spectrometry (DTIMS) and traveling wave ion mobility spectrometry (TWIMS),
which have been commercialized by Agilent and Waters, respectively. Space-dispersive
methods, which include field asymmetric waveform ion mobility spectrometry (FAIMS)
and have been commercialized by Thermo and SCIEX, respectively, separate ions
along different drift paths based on their IM differences. The latter group, which applies
ion trapping followed by selective release, traps ions within a specific region and
selectively releases them for further analysis based upon the differences in IM. It
includes the trapped ion mobility spectrometry (TIMS) method recently introduced by

Park and co-workers from Bruker Daltonics (68, 69).

The basic idea behind TIMS is the reverse concept of the classical DTIMS. Instead of
driving ions through a stationary gas, TIMS holds ions stationary in a moving gas
column. This allowed the size of the analyzer to be significantly reduced (down to 5-10
cm) as it has to be large enough to hold ions stationary. Since first publication, TIMS
has become an efficient alternative to other IM techniques, providing high resolving
power (up to R ~ 300), duty cycle (100%), and efficiency (~80%) (70). The small size of
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1. Introduction

the TIMS device and its rapid ion separation have opened up new perspectives when
coupled to modern high-resolution mass analyzers, such as time-of-flight (TOF)
instruments, which efficiently transmits ions and achieves mass accuracy from low to
sub-ppm (71). Combined upfront with an LC system, the LC-TIMS-TOF instrument,
nested within analytical time scales based on the separation speed, allows the
separation of complex biological mixtures in 4 dimensions of separation, such as a

retention time — ion mobility — m/z — intensity.

Almost all of the projects described in this thesis use completely or partially data
acquired on the Bruker timsTOF Pro mass spectrometer using different acquisition
strategies in the PASEF scanning mode. All of these aspects are therefore covered in
the following chapters.

1.2.1. The TIMS-TOF instrument

A hybrid analytical instrument employing both TIMS and TOF techniques called the
timsTOF Pro has garnered much attention since its introduction by Bruker Daltonics
(Fig. 4A). Since then, further advances have made the timsTOF popular due to its wide
dynamic range, high sequence coverage and very high sensitivity, enabling it to reach

even the single cell level (72).

After separating the peptides by LC and ionizing them via ESI, they enter the mass
spectrometer. They are pushed through a glass capillary, are deflected by 90 degrees
and focused using several focusing lenses. This prevents uncharged contaminants from
entering the ion path and makes the instrument more robust. The long TIMS tunnel is
divided into three separate sections (dual TIMS setup and transfer region) that are
responsible for different processes (Fig. 4B). The trapping section accumulates and
holds ions in an electrodynamic tunnel through which a constant gas flow (v) is directed
from the entrance funnel to the exit funnel and which is counteracted by an increasing
electric field gradient (E) along the tunnel. Based on these two forces, the ions entering
the TIMS tunnel occupy a position in the flow in which the drag forces are
counterbalanced by the electric (E) forces separating the ion based on their IM values
along the TIMS tunnel. For all peptide ions, IM values account for their size, shape and
charge, and have an inverse correlation with collision cross sections (CCS). Since low-
mobility ions with larger CCS need higher E forces to counterbalance their high drag
forces, they end up closer to the exit, whilst high-mobility ions with smaller CCS are
located closer to the tunnel entrance. After an accumulation time of 100 ms, all trapped
ions are transferred in a single step to the TIMS analyzer through the transfer region

within 1-3 ms. In the analyzer, a gradual linear decrease in the voltage gradient (TIMS
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ramp time) releases ions as a function of their ion mobility within 100 ms, which is the
so called TIMS ‘frame’. In parallel, the trapping section starts filling up again with the
next batch of ions. As a result, compared to the standard continuous acquisition mode,
no ions need to be discarded with this approach, and it allows the duty cycle to be
increased up to 100%.

At the exit of the dual TIMS device, ions pass through the ion transfer multipole into the
guadrupole mass analyzer (73). As the name implies, it consists of four parallel
cylindrical metal rods. A direct current and oscillating radio-frequency voltage are
applied to the rods, which sets up the electric field in the quadrupole. This field forces
ions traveling down the quadrupole between the rods to follow a trajectory that oscillates
around the central axis. lons with certain m/z values, called resonant ions, reach the
detector, while other ions, or non-resonant ions, collide with the rods and become
neutralized. The constant variation of the applied voltage tunes the quadrupole to
different m/z values. After the filtering step all the ions are transferred to the collision
cell. There, they collide with a low pressure of an inert gases, such as helium, argon or

dinitrogen, causing them to break apart and form fragments.

It the last step, either intact peptides or fragment ions enter a second mass analyzer,
which here is represented by a time-of-flight (TOF) analyzer. The basic principle of these
analyzers is that they separate ions with different m/z by measuring the time it takes
them to pass through a field-free region. The instrument first uses an electric field to
accelerate the ions to the same potential. The accelerated ions fly orthogonally along
the flight tube until they are reflected in the reflectron, which increases the flight time
without increasing the length of the tube, while correcting for initial differences in kinetic
energy. Finally, the ions are detected by the microchannel plate detector, where the
measured time of flight depends on the m/z values of the ions. Lighter ions arrive before
the heavier ones. The time during which the ions remain in flight is converted by the

detector into an accurate arrival time.

When describing the composition of the LC-TIMS-Q-TOF hybrid instrument, it is
important to remember that all analytical separation techniques used can only be
combined due to their different time scales (Fig. 4C). Typically, the first separation of
peptides occurs on the LC column in the range of minutes or hours with peak widths of
several seconds, followed by accumulation and separation on the TIMS device and the
guadrupole filtration within milliseconds. Further coupling with the fast TOF instrument
is on the microsecond time scale, while detector operates even faster within
picoseconds. All these dimensions exhibit an offset of one or more orders of magnitude

in time, resulting in complete mass resolved MS* or MS? spectra.
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Figure 4: Architecture of the timsTOF instrument. (A) Main components of the instrument. High
performance liquid chromatography (HPLC) separates the peptide mixture, which is ionized via
electrospray. The peptide ions are then accumulated and separated in a TIMS device. After a quadrupole
selection step, the ions are fragmented in a collision cell and finally analyzed by a TOF mass analyzer.
Adapted from (74). (B) Structure and principle of work of the dual TIMS device. The entire TIMS tunnel
consists of three parts: (i) the trap where ions are accumulated and trapped, (ii) the transfer region, and (iii)
the analyzer which elutes trapped ions into the downstream mass analyzer by lowering the electrical field.
Adapted from (70). (C) Analytical time scales of the timsTOF pro instrument. Each dimension of
separation is approximated on the time scale in seconds. Adapted from (67).

1.2.2. PASEF principle

A new scanning mode on the timsTOF Pro instrument, termed Parallel Accumulation —
SErial Fragmentation (PASEF), was recently introduced by our group and has become

a valuable addition to the instrument for many workflows including proteomics (75-77).

In conventional MS/MS experiments on the TIMS-Q-TOF mass spectrometer, first the
ions are accumulated and subsequent separated by IM. Downstream the quadrupole
mass filter selects only one precursor ion from the ion beam for further analysis, whereas
all other ions eluting from the TIMS device are discarded (Fig. 5A). In PASEF mode, the
selection of precursor ions in the quadrupole occurs serially. Synchronized with the dual
TIMS device elution, the quadrupole sequentially adjusts its position to select multiple
precursor ions for further analysis within a single TIMS scan. These selected co-eluting
precursor ions are further fragmented and their fragments can be exclusively
distinguished by their different ion mobility positions even though they share the same

elution time (Fig. 5B).
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Figure 5: The PASEF principle compared to the conventional TIMS-MS/MS operation mode. (A)
Selection by quadrupole of only one precursor from the TIMS scan in a conventional TIMS-MS/MS operation
mode. All other precursor ions are discarded from further analysis. (B). In the PASEF scan mode the
sequential rapid switching of the quadrupole allows multiple precursors with different m/z and IM values to
be selected at the same retention time. Adapted from (78).

This implementation of the PASEF scan mode is made possible by the extremely fast
switching time of the quadrupole position (< 1ms). Keeping in mind the time scale of the
LC-TIMS-Q-TOF device (Fig. 4C), this allows to fit in the acquisition scheme the

sequencing of up to fifteen precursors in each of PASEF scan (13). Combined with the
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fast-sampling speed of the TOF analyzer, the instrument acquires complex proteomics
samples with consistently high sensitivity, which is particularly important for proteomics
studies with extremely low sample amount, such as single-cell analysis. Recently, we
demonstrated the identification and quantification of 4000 protein groups with high
reproducibility from just 1ng of a HeLa sample (72).

1.2.3. PASEF acquisition strategies

Since it was first introduced, the PASEF principle has been successfully applied to three
main acquisition schemes in proteomics: for data-dependent acquisition (dda-PASEF),
for targeted approach (prm-PASEF), and for data-independent acquisition (dia-PASEF)
(Fig. 6).
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Figure 6: Schematic of three main PASEF scan modes. Coeluting peptides can be analyzed in three
different modes: dda-PASEF (top panel), prm-PASEF (middle panel) and dia-PASEF (bottom panel). For
each mode, three consecutive scans are shown within 100 ms each. The PASEF MS/MS scans are
displayed for the last PASEF scan only. The quadrupole isolation windows appear in grey boxes. Adapted
from (78).
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dda-PASEF mode

In the classical DDA approach, the mass spectrometer isolates and fragments the topN
most abundant precursor ions from the MS? scan (79). This approach remains the most
common MS acquisition strategy and has traditionally been employed for initial
characterization of proteomics samples and discovery of new proteins. However, most
implementations suffer from limited reproducibility of identification, a high number of

missing values and a narrow dynamic range (80).

In the dda-PASEF mode, the masses of the individual precursors and their IM values
are first determined in the full MS scan. The algorithm then finds the topN most abundant
precursors and optimizes the quadrupole switching path for subsequent MS? scans.
Depending on the m/z values of the precursor ions, the quadrupole isolation window
varies from 2 to 3 Th, allowing to isolate at best only the monoisotopic peak of the target
ion and (some of) its isotope peaks and to generate a high-quality fragmentation

spectrum.

As discussed in the previous section, the PASEF scan mode by default significantly
increases the number of precursors analyzed in a single experiment. Furthermore, the
online PASEF precursor scheduling algorithm optimizes the quadrupole route for each
dda-PASEF scan and aims to maximize the number of precursors per acquisition cycle
that can be successfully identified and quantified (13). This real-time approach offers
many advantages. Firstly, single-charged species can be easily removed from further
analysis due to their characteristic positions in the m/z — IM plane. The ‘target intensity’
parameter included into the sequencing algorithm enables to achieve high proteomic
depth by sequencing the low-abundant precursors repeatedly (several times to reach a
certain intensity threshold) and aggregating their spectra in the postprocessing step to

increase the signal-to-noise ratio.
prm-PASEF mode

Targeted data acquisition strategies can be applied to obtain a predefined set of
precursors with high reproducibility and specificity in complex biological samples. One
of the main traditional targeted approaches is called parallel reaction monitoring, or
PRM. In this method, a mass spectrometer monitors a list of predefined specific peptide
precursors over an expected elution time window by acquiring MS? spectra (81).
Although recent developments in targeted strategies on a global scale improved
guantitative readout of relatively large groups of peptides, this method is still limited by

the acquisition speed of the instrument and consequently the number of proteins (82).
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Combining PRM with the PASEF scan mode overcomes some of the limitations of the
targeted method due to the PASEF sequencing power. This can be exploited either to
target more precursors without increasing cycle times or to use very fast separation

methods, which is essential for clinical applications (83).
dia-PASEF mode

In the standard DIA mode, the mass spectrometer sequentially isolates from every MS?
scan not only individual precursor ions within narrow isolation windows, but a group of
ions falling within a given mass range (e.g. 25 Th). Although this ensures that all
precursors from this wider isolation window are fragmented at least once per cycle, the
complexity of fragmentation spectra, consisting of fragments of many co-eluting

precursors within the same window, still remains a challenge to disentangle.

In contrast to the standard DIA scheme, the dia-PASEF mode operates in the m/z — IM
plane, where the isolation windows are defined in a two-dimensional space. Due to the
fact that ion mobilities and masses are correlated, for peptide ions of a given charge
state, we were able to program the quadrupole to efficiently isolate most of the precursor
cloud along the IM elution (covered in Article 6). For this, in dia-PASEF mode, a full
TIMS MS scan is acquired to determine the position of individual precursor ions,
including their m/z and ion mobility values. The gquadrupole mass isolation window then
shifts from high m/z and high IM to low m/z and low IM (from upper right to lower left),
as instructed by the method, to fully cover the ion cloud. In Figure 6, we demonstrate
the dia-PASEF scheme, which consists of three dia-PASEF scans with equidistant
isolation widths covering the precursor cloud in the three IM windows per dia-PASEF
scan. This allowed us to achieve high sequence coverage and very high sensitivity for
different biological samples. However, the original method still missed some regions of
the precursor space and was not optimized for studies with non-standard peptides
distribution in the m/z — IM plane, i.e. for phosphoproteomics studies. We have therefore
recently developed optimal dia-PASEF methods with our Python tool py diAID,
described in Article 7, which allows variable isolation windows optimally positioned in
two-dimensional space for nearly complete precursor coverage. Compared to the
original ‘high speed’ dia-PASEF method, we gained 14% (84% vs. 98%) coverage of
the unmodified peptide population and almost 60% (34% vs. 93%) for phosphopeptides.

1.3. Post-translational modifications in MS-based proteomics

Eukaryotic cells need to rapidly respond to a range of cell-intrinsic and cell-extrinsic
cues. This is only possible through an extensively connected and tightly regulated

complex signaling network that allows the integration of different stimuli. Post-
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translational modifications (PTMs) are one of the essential mechanisms for controlling
the entire cellular network by transducing signals coming from within the cell or the
environment. PTMs increase the functional diversity of proteins by changing the
biochemical properties, playing a key role in many cellular processes such as cellular
differentiation, protein degradation, signaling and regulatory processes, regulation of

gene expression and protein-protein interactions.

PTMs can be divided into reversible and irreversible ones (84). The reversible group
includes (i) addition of chemical groups, such as methylation and phosphorylation, (ii)
complex molecules, like some glycosylations or AMPylation, and (iii) polypeptides in
case of ubiquitylation, while irreversible modifications, which only occur in one direction,
include (iv) specific covalent modifications of the amino acid side chain, such as
deamidation, and (v) proteolytic cleavage (Fig. 7). PTMs can occur on a single type of
amino acid or in multiple amino acids and lead to changes in the chemical properties of
the modified sites. More than 200 diverse types of PTMs are known to date, ranging
from small chemical modifications (e.g. phosphorylation and acetylation) to the addition

of complete proteins (e.g. ubiquitylation).

Phosphorylation is the best studied and one of the most common PTMs. | have worked
with various phosphoproteomics datasets in many of the projects presented in this
thesis. Therefore, | will primarily focus on this type of PTM, its role in cell signalling and

the challenges we encounter studying it.
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Figure 7: Variety of post-translational modifications (PTMs). The distinct PTM classes are colored
differently. The type of modification, if they are reversible and examples of PTMs are indicated separately
for each class. Adapted from (84).
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1.3.1. Phosphorylation

Phosphorylation is a reversible PTM. It results from the transfer of the terminal
phosphate group (y-POs?) from adenosine 5'-triphosphate (ATP) to the hydroxyl oxygen
of certain amino acids (Fig. 8). Three amino acids, such as serine, threonine and
tyrosine (Ser/Thr/Tyr), are mainly phosphorylated in cells and demonstrate a relative
abundance of about 86%, 12% and 2% in normally growing cells, respectively (85). The
phosphorylation changes the chemical properties of the amino acid from hydrophobic
apolar to hydrophilic polar, which can lead to changes in protein structure and stability,

protein—protein interactions, enzyme activation or subcellular localization.

The addition of a phosphate group to a substrate protein is carried out by enzymes called
protein kinases, which are one of the largest gene families and account for about 2% of
the entire human genome (86). More than 500 human kinases are known, mutations or
dysregulations of which play a role in the progression of many human diseases,
including cancer and neurological disorders. Therefore, to maintain a constant balance
between phosphorylation and dephosphorylation, the phosphorylation process can be
reversed through the activity of ~ 200 different phosphatases that transfer the phosphate
group to adenosine 5’-diphosphate (ADP). Currently, about 300,000 phosphosites are
recorded on the PhosphoSitePlus platform, providing information on experimentally
observed PTMs of human and mouse proteins (87). But if we take into account the
estimate that ~30% of all cellular proteins are phosphorylated on at least one residue,
or the results of existing phosphorylation site prediction tools, then about 750,000

additional sites are likely to be phosphorylated (88, 89).
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Figure 8: Mechanism of reversible phosphorylation by kinase and phosphatase. The protein receives
the phosphate group as a result of ATP hydrolysis through the enzymatic activity of kinase. The reverse
process is orchestrated by phosphatases through the transfer of the phosphor group to ADP. Adapted from
(90).
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1.3.2. Protein phosphorylation in cell signaling

Protein phosphorylation plays a critical role in the regulation of many cellular processes,
such as cell cycle, cell growth, apoptosis and countless signal transduction pathways.
For a large subset of proteins, phosphorylation is tightly linked to protein activity and is
a key mechanism of cell signalling. The conformational changes that can occur in
proteins after phosphorylation may lead to several different outcomes. In some cases,
they regulate the catalytic activity of proteins. One of the other possible outcomes is the
recruitment by phosphorylated proteins of neighboring proteins with structurally
conserved domains that specifically recognize and bind to different phosphomotifs. Both
outcomes are essential for signal transduction. Signaling pathways can be constituted
by kinases, ranging from tyrosine kinase receptors on the cell surface to downstream
kinases, primarily serine/threonine kinases. In a nutshell, ligand binding at the cell
surface triggers a phosphorylation cascade, with phosphorylation and activation of one
protein stimulating the phosphorylation of another, amplifying the signal and transmitting
it through the cell. The signal continues to propagate until it is turned off by the action of
a phosphatase. To exemplify the cell signaling process, | have chosen one of the most
important signaling pathways in mammalian cells, called the epidermal growth factor

(EGF) pathway, which has also been investigated in the Articles 2 and 7.

The EGF signaling pathway acts through a series of different kinases, stimulating a
whole signhaling network associated with a large number of outcomes, such as cell
proliferation, growth, migration, differentiation, and inhibition of apoptosis (Fig. 9) (91).
The epidermal growth factor receptor (EGFR) is a transmembrane protein that is
activated by binding of its specific ligands, including EGF and transforming growth factor
a (TGFa). Upon activation, EGFR is converted from an inactive monomer to an active
dimeric form. This dimerization stimulates the intrinsic intracellular tyrosine kinase
domain, which auto phosphorylates tyrosine residues of the cytoplasmic EGFR domain.
Activated EGFR is now able to bind various cytoplasmic adaptor proteins via tyrosine-
specific binding domains, including src homology-2 (SH2) or phosphotyrosine binding
(PTB) domains. One of these adaptor proteins is the growth factor receptor binding
protein-2 (GRBZ2), which recruits the Son of sevenless homolog 1 (SOS-1) protein. SOS-
1 moves in close proximity to members of the Ras family, from "Rat sarcoma virus",
which is able of binding guanine nucleotides. SOS-1 activates the RAS protein by
exchanging its bound guanosine 5’-diphosphate (GDP) for guanosine 5-triphosphate
(GTP). Activated RAS in turn activates the protein kinase (MAPK) cascade, in which the
previous member phosphorylates and the next one in the following sequence: RAS —

RAF kinase, named for Rapidly Accelerated Fibrosarcoma — mitogen-activated protein
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kinase kinase (MEK) — extracellular-signal-regulated kinases (ERKSs); ERKs act on
various target molecules responsible for cell growth and proliferation. Another EGFR-
activated signaling cascade, called PI3K-AKT-mTOR pathway, is responsible for
controlling metabolism, proliferation, cell size and survival. EGFR can also directly
activate transcription factors of the STAT family involved in processes such as immunity,

cell division, cell death and tumor formation.

The EGFR signalling pathway demonstrates that a large number of signalling pathway
control mechanisms are required in order to always maintain the correct level of
signalling within cells. Any deviations from this control mainly lead to various disease
states, e.g. aberrant EGFR signalling is common in a number of cancers and can
correlate with tumor development and progression (92). Hence, the understanding of
aspects of cellular signalling using phosphoproteomics can significantly help in
explaining the biological behavior of disease cells and facilitate the search for a

treatment.
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Figure 9: Schematic representation of the EGF/EGFR signaling pathway. Adapted from
(https://commons.wikimedia.org).

1.3.3. Phosphoproteomics and its challenges

Many different analytical techniques have been developed over time to analyze groups
of phosphoproteins in small targeted studies of various signalling pathways. However,
due to the size and complexity of the signaling network, it is extremely important to
investigate the dynamics of the phosphorylation on a global scale. Phosphoproteomics
in principle allows the analysis of all phosphorylation events simultaneously, rather than

looking at individual phosphorylated proteins. This is especially useful in cases where
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deregulation of signaling is linked to a disease. To address this challenge, high-
resolution mass spectrometry has become the primary method of choice for detecting
and quantifying phosphorylation events on a proteome-wide scale in an unbiased
manner. Recent developments in MS have greatly improved phosphoproteomics
research, with tens of thousands of phosphorylation sites now being reported in a
standard phosphoproteomics experiment (93).

Despite improvements in phosphoproteomics studies, the study of phosphorylation
events using bottom-up MS is still challenging in many aspects (94). Firstly,
phosphorylation is a transient and dynamic process, resulting in low abundance of
phosphopeptides, which impedes their detection, especially in complex mixtures. This
issue can be alleviated by employing prefractionation techniques and enrichment
strategies prior to MS analysis. A plethora of such methods have already been
introduced, including the frequently used affinity-based and antibody-based methods
(Fig. 10) (95).
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Figure 10: Enrichment of phosphopeptides. Affinity-based methods include (i) immobilized metal affinity
chromatography (IMAC), (ii) metal oxide affinity chromatography (MOAC), and (jii) strong cation exchange
(SCX) chromatography. In the IMAC and MOAC methods, positively charges metal ions, e.g. Fe(lll), or
metal oxides, e.g. titanium oxide, respectively, are immobilized with a solid phase on the chromatography
column and bind the phosphopeptides. Separation and enrichment on negatively charged strong cation
exchange (SCX) columns occurs based on peptide charge, with phosphopeptides enriched in earlier-eluted
fractions. The antibody-based approach involves immunoprecipitation of phosphotyrosine peptides.
Adapted from (95).

Another difficult challenge is the unambiguous localization of phosphosites, which is
essential for understanding the role of phosphorylation events (96). The confident
assignment of phosphorylation to a particular amino acid position on a modified
sequence requires the presence of the corresponding fragment ions, which are not
always present in MS? spectra. This can also be further complicated by the presence of
multiple potential phosphosites. To address this problem, several computational
algorithms have implemented a probability-based PTM localization score, e.g. the
Andromeda PTM score, which reports a probability score for all sites (97). It is mainly
determined by the presence and intensity of unmodified and phosphorylated fragments

in the MS? spectra.
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Finally, quantification in phosphorylation studies is based on single peptides and this
remains a critical issue in the field, especially for DDA strategies, potentially resulting in
a large number of missing values. Recent advances in the application of the DIA for
rapid phosphoproteome profiling on the Orbitrap MS instrument have already enabled
the quantification of over 13,000 phosphopeptides from HelLa cells using only a 15
minutes gradient (98). Further refinements and the use of the optimized dia-PASEF
method on the timsTOF system, discussed in Article 7, doubled our numbers with less
input material and provided a nearly complete data matrix including a high degree of
confidence for positional phosphoisomers (99).

1.4. Scientific software development and open science

The development of any type of software pertains to the analysis, design,
implementation, testing, deployment, and maintenance of software tools. All of these
components play key roles in the success of any software development. However, in
the scientific software development it is quite challenging to follow all software
engineering practices employed in other fields due to the following characteristics of
scientific projects (100). First of all, in most cases it is problematic to define all the
requirements for the development of a software tool from the very beginning of a project.
The research question tends to remain imprecise, and perceptions of the structure and
functions of the software change as the research progresses. Moreover, very often the
software implementation by itself is not the main purpose of the research. Secondly,
because of the complexity of the topics, software in the scientific field is usually
implemented by experts in the subject area being researched instead of trained software
engineers. Finally, due to the lack of confidence in the success of the project and the
reduced time for software development in scientific research, the focus tends to be on
rapid code generation rather than architecture or project design, and explicit code
documentation for further reuse or maintenance of tools after development are often

missing.

To overcome the issues described, there are a number of practices that assist in
achieving a better quality of the product in scientific development (101). Firstly, the
choice of programming language is extremely important, as it must have a shallow
learning curve for new developers, as well as overall high readability and versality.
Based on these criteria, Python is the main programming language in our department
just like in many other research labs. Also, Python provides support for many scientific
libraries, such as NumPy, SciPy, etc., making it easier for scientific software developers
with different backgrounds to use already implemented complex algorithms for their own

projects. These available community-proven packages make the code base more
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reliable and maintainable, which allows the focus to be on the research questions rather
than on the implementation details.

Furthermore, Open Science, as a set of practices that enhance openness, transparency,
rigor, reproducibility and replicability of the scientific research, has recently become
widespread in many scientific fields, including proteomics (102). This is partly due to the
need to address the ‘crisis of reproducibility’ of published articles in all scientific fields,
even in the natural sciences (103). An ‘open-source code’ base can benefit researchers
by saving time and funding resources and by engaging the community in their research,
which is especially important in rapidly evolving fields such as machine learning or
visualization. Furthermore, public exposure motivates maintaining high standards of

code quality, including comprehensive documentation and testing.

The natural combination of Python with Open Science empowers researches with a set
of tools for a comfortable working environment. It allows to follow the standards of
software engineering, i.e. to write self-explanatory code for data analysis and
visualization, to store and share code and control its versions, and to apply authorship

of the tools developed.

In this regard, Jupyter notebooks have become some of the most used tools for Python
software development in various fields, including data science, machine learning, etc.
(104). Jupyter notebooks can easily be adapted to the old concept of ‘literate
programming’, introduced by Knuth in 1984, where code, analysis results, like
visualizations, and static documentation are included in a single file (105). It additionally
supports markdown syntax, which enables standard text formatting and the inclusion of
complex elements such as images and formulas, providing additional information that
simplifies the understanding of complex scientific concepts. Recent MS-based
proteomics publications are also starting to provide analysis code written in Jupyter
notebooks (106, 107).

Running on the local machine, Jupyter notebooks depend on the computer’s central or
graphics processing units, CPU and GPU respectively, as well as the size of the random-
access memory (RAM). Once the user begins to perform some complex manipulations,
i.e. visualization of big data, this can quickly exceed the limits of the local machine.
Community resources can be used to overcome these limitations. In particular, Google
Colab, a free Jupyter notebook environment provided by Google, runs in the cloud and
stores its notebooks on a connected Google Drive (108). This allows developing any

code without depending on the computational power of the personal computer, and to
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use freely available GPUs or even TPUs, tensor processing units built into Colab, to
perform heavy computing tasks.

To provide access to the community, various resources such as source code, metadata,
documentation, etc. can be hosted privately or publicly using Git and GitHub (109).
GitHub is a free code hosting platform for software development and version control
using Git. The GitHub repository enables to keep a history of all changes that have been
made to code and text, making it possible to go back to earlier versions of the repository
if needed. Developers and researchers alike can use GitHub as a dynamic and
collaborative environment for continuous integration, often referred to as a social coding

platform, for peer-reviewing, commenting or discussions.

Several archiving services, such as Zenodo (https://zenodo.org), are included in GitHub

to apply authorship to the code. This allows the entire repository to be assigned a
permanent DOI, a Digital Object Identifier, that can be included in literature information

resources such as PubMed Central (110).

To make it easier for users to interact with published code and data locally and yet
without additional installations, GitHub provides integration with online hosting solutions

for Jupyter Notebooks such as Binder (https://mybinder.org). In this way, readers can

execute code online without downloading any data or installing any software. Almost all

of the aforementioned tools were used in the articles presented in this thesis.
1.5. Visualization in MS-based proteomics

Visualization together with data processing and analysis are central and crucial
components of all complex biological experiments, including all modern high-throughput
MS-based proteomics experiments. As part of a complex proteomics pipeline,
visualization assists in the interpretation of complex proteomics data and is key to
communicate the results of complex experiments not only quantitatively, but also
visually (111). Rapid advances in MS-based proteomics technology have prompted the
development of new software tools in the field, including proteomics visualization.
Currently, this proteomics visualization efforts can be divided into two main groups: (i)
visualization functionalities integrated into proteomics data analysis tools (18, 112); (ii)

independent visualization tools for different steps of the proteomics pipeline (113, 114).

Despite recent improvements in the area, there are still a number of challenges in
proteomics data visualization. First of all, visualization is usually not a priority when
developing scientific algorithms or creating new workflows for analyzing proteomics
data. The release of visualization tools often occurs with a significant delay after the

publication of the main workflows (22, 112). Another problem is the closed nature of
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many popular proteomics tools. In this case, even recently published tools can rapidly
become outdated, not allowing to extend functionality or add support for the latest
visualization advances, such as interactivity or ‘big data’ visualization. Consequently,
data analysis and visualization in proteomics often remain the exclusive ability of experts
familiar with the data that have strong programming expertise.

To alleviate these issues, over the last decade the proteomics community has released
a plethora of open-source visualization tools written in the programming languages R
and Python (115, 116). In this thesis, | have extensively used Python to develop all
visualization tools. In addition to its general advantages, described in the previous
section, Python provides a large variety of well-documented and well-maintained
visualization libraries. Some of the visualization packages | have regularly used for the
projects presented in this thesis are Plotly, Bokeh, Datashader and Panel. The
generation of interactive plots for exploratory data analysis, for instance in Bokeh

(https://bokeh.org/) or Plotly (https://plotly.com/), allows on-demand access to data only,

which is very important for high-throughput proteomics data, and includes various basic
manipulation tools, like selection, zooming, saving, etc. In turn, the recently released

Datashader library (https://datashader.org) efficiently handles big data visualization by

rasterizing the data space like in the conventional histogram but using a two-dimensional
(2D) space and color-coding the number of points per a 2D bin. This makes it much
easier to distinguish patterns in big proteomics data without applying the usual
workarounds, such as down sampling or reducing opacity. Another useful library is Panel

(https://panel.holoviz.org/), which helps to combine data analysis and visualization

approaches with modern web frameworks to create browser-based graphical user
interfaces (GUIs) without any of the common technologies to develop a website or web
application such as HTML or JavaScript. Due to the large amount of data acquired in
proteomics experiments, much more biological insights can usually be extracted from
the data than is presented in a single publication. Therefore, dedicated and easily built
online resources or recently popular dashboards can help to solve this issue and provide
additional access and visual inspection of data for all users. The popularity and usability
of all the libraries mentioned is confirmed by the number of recently released

visualization tools and resource pages for the field of proteomics (113, 117, 118).

The proteomics data visualization can be divided into several steps following the main
phases of proteomics data analysis, which include visualization of (i) raw data at LC,
MS! and MS? level; (ii) peptide identification with or without PTMs; (iii) quantitative
information at protein, peptide and PTM level; (iv) multidimensional experimental

designs; and (v) protein networks.
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As all software tools presented in this thesis mainly cover visualization of raw data, as
well as visualization of peptide identifications and PTMs, these topics will be covered in
the following sub-chapters. More information on visualization of the other steps of the
proteomics pipeline is contained in a recent review that | co-authored that discusses
interpreting and generating bottom-up proteomics data visualizations (Article 1).

1.5.1. Raw data visualization

Raw data acquisition is an intermediate step in the proteomics pipeline between the
experimental part in the laboratory and the data analysis part, and it is of utmost
importance to ensure satisfactory quality of the raw data for further analysis. Data quality
at this step is mainly assessed by visual inspection of the raw LC-MS data using various
computational quality control tools, making it easier to reveal possible pitfalls in the
samples or instrumentation setup (119). The software tools implemented in Articles 2
and 4 focus on the visualization of raw timsTOF data. Therefore, | will cover the standard
important visualizations of raw MS data on precursor and fragment ion levels and how

they can be interpreted and used to verify data quality.

Precursor level. Visualization at the level of intact peptide ions is the first step in
checking the quality of sample data and helps to identify any LC or MS instrumentation
issues. Firstly, the total ion chromatogram (TIC), which displays the summed intensity
of all precursor ions detected over time, shows the number of precursor ions that reach
the MS detector along the gradient (Fig. 12A, blue line). This step can already help to
spot various LC-MS issues, such as mistakes in sample preparation (unexpected shape
or low number of peaks, low intense peaks), unstable spray or MS failure (intensity
drops) or poor peak separation (120). Visualizing another type of chromatogram, called
base peak intensity (BPI) chromatogram and plotting the intensity of the most abundant
precursor ions over time, can uncover other issues, such as sample overloading or
contamination (Fig. 132A, red line). The quality of individual precursor ions can also be
checked using extracted ion chromatograms (XICs) (Fig. 12B). In this case the raw data
is sliced based on the mass and charge range within a given mass tolerance and its
intensity is plotted against the retention time. This helps to assess the quality of the

detected precursor features and the spread of contaminants in the sample.

To gain insight into the distribution of precursor ions along the gradient, precursor maps
are widely used. In the case of timsTOF data, the signal intensity of the detected
precursor is visualized in color on a heat map in the m/z - ion mobility plane for each

time points and can be tracked over the entire retention time (Fig. 12C).
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A Chromatogram
Select: —— TIC MS1 —— BPI MS1

308
258

208

Intensity

158 i ! T
108 JH R 1R (V1R t i

5B it

FY O RTARR NTIANAL d' EPN

0 20 40 60 80 100 120
RT, min
B
XIC

2M

1.5M
Z

2 M
iC)
S

0.5M ﬂ A
o J Lﬂ
0 20 40 60 80 100 120
RT, min
C MS1 ion mobility heatmap

£
o
o
>
=
o
Q
w
P
()
>
=

800 1000
m/z, Th

Figure 12: Visualization of raw data at the precursor ion level. (A) Total ion chromatogram (TIC) and
base peak intensity (BPI) chromatogram of MS! data. (B) Extracted ion chromatogram (XIC) for the
precursor (m/z = 457.9978) with m/z tolerance of 5 ppm. (C) Two-dimensional MS? ion mobility heatmap of
precursor intensities acquired on a timsTOF instrument at a single time point, demonstrating a correlation

of m/z and ion mobility (Figure from Atrticle 1).

Fragment level. Depending on the type of data acquisition strategy chosen, DDA or
DIA, the information to be visualized at the fragment level is different. In the case of DDA
data, it is essential to evaluate important MS? spectra and manually validate the
identifications based on them. This can be done by plotting an MS?2 spectrum highlighting
the identified fragment ions as shown in Figure 2. The pitfalls that can be revealed here

are mainly related to fragmentation of the precursor ions, e.g. poor fragmentation
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(intense precursor peak and few fragment ions) or co-fragmentation of several peptides
(many additional fragments besides the identified ones are visible). The theoretical
fragmentation spectrum (even with intensities predicted by deep learning) may be
shown below the experimental spectrum as a mirrored spectrum. This helps to validate
the identifications immediately showing which fragments are missing or (in)correctly
identified in the experimental spectrum.

Due to the complexity of the MS? spectrum in DIA, it is more common to look at the
elution profiles of the precursor and all its fragment ions in retention time or m/z — ion
mobility dimensions to assess the quality of DIA identifications (Fig. 13). Ideally, they
should have a sharp elution peak and high correlation between fragments.
Misassignments are indicated by a shift of the fragment peaks or blending of additional

peaks of individual fragments.
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Figure 13: Visualization of raw DIA data at the fragment ion level. Elution profiles of the coeluted
peptide precursor and its fragment ions in retention time (A) and retention time — ion mobility (B) dimensions
(Figure from Atrticle 1).
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1.5.2. Peptide and PTM visualization

Identifications in bottom-up proteomics are always based on peptide rather than intact
protein information. Therefore, visualization of the identified peptides and their PTMs
aligned with known protein sequence information allows evaluation of protein coverage
and is essential for downstream MS data exploration. Sequence coverage can be
visualized along the protein sequence in a non-overlapping manner or collapsed into a
single line per sample to avoid clutter, as in Article 3 (Fig. 14A). This makes it possible
to assess differential sequence coverage across multiple samples or datasets acquired

with different methods or analyzed by different software tools.

PTM studies can also benefit greatly from visualizations, where the position of PTMs,
intensity or localization probability are shown for each modification site. This can either
be done in a simple way where only PTM positions are shown (asterisk, Fig. 14A) or

with a ‘lollipop plot’ showing the PTM site localization and intensity (Fig. 14B).

Peptide and PTM visualization can also benefit from the inclusion of sequence
annotations available in public databases, such as UniProt or PhosphoSitePlus (121,
122), or any other useful information, i.e. the expected proteolytic cleavage sites. As
described in Article 3, this helps researchers to inspect the peptide and PTM levels of a
protein of interest in order to validate it in a biological and clinical context, i.e. by

checking for possible sequence variations or unexpected anomalies.
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Figure 15: Peptide and PTM visualization. (A) Peptide sequence visualization of mutant and wildtype
samples with overlapping identified peptide collapsed into a single line, detected PTM (acetylation of protein
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N-terminus) and external features (domain and chain). Figure created using AlphaMap (Article 3). (B)
Lollipop plot visualizing phosphosites, their log10 intensity and localization probability (bubble size) (Figure
from Article 1).
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2. Aims of the thesis

The aim of this thesis was to visually explore the newly emerging complex ‘next-
generation proteomics’ data, which has been studied in our group since the first timsTOF
instrument was introduced. Motivated by the lack of tools to effectively access, visualize
and effectively process raw data, we set out to develop them for our own use and
empower the community. This would enable exploration using different angles to
understand more about the data itself, as well as to extract more information and

biological insights from it.

Considering the computational perspective, we primarily sought to develop software
tools enabling ourselves and, by extension, the entire proteomics community to explore
the various phases of proteomics data analysis, such as fast data access, efficient data
processing or comprehensive visualization as an essential step in understanding and
validating the data. A red thread through all these computational projects was to use
and build upon the various established scientific computing tools, in particular the
Python universe. This common idea allowed for unified development, providing more
support in the form of readily available and community-proven scientific libraries. In turn
this allowed us to focus on in-house research questions instead of reimplementing
existing algorithms. In line with the basic ideals of Python, | followed the concept of
open-source software, making the tools and the source code freely available to the
community. This motivates the community to use the tool, as well as to contribute ideas
or their own implementations. Knowing that one does not need to implement an entire
data analysis pipeline, but can simply update part of the code with some novel ideas,
provides a good starting point even for a biological scientist and enables rapid

progression of the field.

With these tools in hand or under development, | wanted to contribute to other aspects
of data insight that remained challenging in the group. In terms of method development,
the crucial point was to contribute to the implementation of the new scanning modes on
the timsTOF instrument and to improve the existing ones. This helped to improve the
sensitivity and to increase the throughput of the instrument, in addition to improved data

quality.

In recent years, the field of proteomics has greatly benefited from the developments in
machine learning and in particular deep learning. They are set to dramatically boosted
the quality and reliability of proteomics workflows, as experimental results have to match

predictions in a multidimensional data space. We applied this to the ‘next-generation
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proteomics’ data to understand the nature of collisional cross sections, as well as to be

able to predict this dimension of separation to further improve validity.

All the knowledge gained was intended to also apply to the functional study of post-
translational modifications, especially phosphorylation and its role in cell signalling.

In conclusion, the overall aim of my thesis was to enable the exploration and integration

of several layers of information, including prior knowledge amassed by the community.
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3.1. Article 1. A practical guide to interpreting and generating

bottom-up proteomics data visualizations

Authors: Julia Patricia Schessner*, Eugenia Voytik", Isabell Bludau

Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
* These authors contributed equally

Published in Proteomics (2022).

Rapidly advancing mass spectrometry-based proteomics today allow in-depth analysis
of highly complex proteomics mixtures. This results in the generation of a large amount
of complex data that is often hard to interpret comprehensively. Adequate data
visualization is a critical part of this proteomics data analysis process but is currently
neglected. It could greatly assist in the interpretation of multidimensional proteomics
data as well as in communicating the results of evermore complex experiments.
However, due to the complexity of proteomics analysis, understanding the results is
difficult for a broader audience, especially non-specialists, which slows down the

dissemination of proteomics method.

In this review, we provide an overview of commonly used visualizations of the different
steps of the proteomics pipeline. Covering the entire workflow, we describe the use
cases and relevance of each visualization in proteomics, assisting researches with
guidance as to which aspects are critical for interpretation and reporting. Moreover, an
entire section of the review is devoted to how Python and various established open
science tools can be used to transparently generate customized proteomics
visualizations. To emphasize the importance of this and to help readers get started with
their own visualizations, the code for generating all data figures from the review is
provided on GitHub with all necessary documentation and examples. Finally, we also
include a list of published Python libraries available for analysis and visualization of

proteomics data.

| contributed to this review by helping to devise and writing the manuscript, as well as

developing the Python codebase for figures.
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1 | INTRODUCTION
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Abstract

Mass-spectremetry based bottom-up proteemics is the main method to analyze pro-
teomes comprehensively and the rapid eveolution of instrumentation and data analy-
sis has made the technology widely available. Data visualization is an integral part of
the analysis process and it is crucial for the communication of results, This is a major
challenge due to the immense complexity of MS data. In this review, we provide an
overview of commonly used visualizations, starting with raw data of traditional and
novel MS technologies, then basic peptide and protein level analyses, and finally visu-
alization of highly complex datasets and networks, We specifically provide guidance
on how to critically interpret and discuss the multitude of different protecmics data
visualizations. Furthermaore, we highlight Python-based libraries and other open sci-
ence tools that can be applied for independent and transparent generation of cus-
tomized visualizations. To further encourage programmatic data visualization, we pro-
vide the Python code used to generate all data figures in this review on GitHub [https:
Haithub.com/MannLabs/ProteomicsVisualization).

KEYWORDS
battom-up prateomics, data visuslization, open science sdence communication

chromatography (LC) system [7] and new types of mass spectrome-
ters allowing peptide separation by lonmobility [8-13]. Secondly, these

Mass spectrometry (MS)-based bottom-up proteomics allows com

prehensive amalysis of highly complex proteomes [1-8], Thanks to
recent technological advances that dramatically incressed proteomic
depth and throughput, MS technology ls nowad ays accessible to many
non-cxpert labs either through core Facilites or individual proteomics
setupe. Firstly, the field has witnessed a huge eshancement of instru-
mentation, exemplified by & new robust and high-throughput Hgueid

Abtreviztions: BRI, bost peak e nsiny; DOA, deka dependent accpibston, DUA, daks
Independent scquisition: DO digtd object identifie; FOR, f ey e discovery rate, LC liguid
chramatagraphy; ME, mazsspecirometry; PC, orinclpal comoonant: PCA, principal
eompanent aralysis; TR post-transiationalmoditication; TIC, total lo chromagngrans 210,
extract=d ion chromatogram

advances were accompanied by the development of high-throughput
data acquisition technigues [14-19] and a bursl of compatational
methode for proteomics data analyele [Z0-24), Facllitated by increas-
Ingly powertul computational hardware and programming backands,
computational proteomics has evolved into anindependent. multidisci-
plinary feld, but now presentsanew barrler to sclentiste lcking exper-
tise gither in protesmics or biol nformatics,

Adequate data visualization Is crucial toInterpret d ata and commu-
nicate results af evermare camplex experiments [25, 25]. A variety of
data analysis tools have integrated visualization functions to address
this nead [27-530], but visualization s usually not among the highest
priorities in the development of novel d ata analysis workfows and is
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oftan an afterthoupht. Consequently, data assessment, interpretation
and visualization often remain exclusive abilities of expertz familiar
with the data and capable of handling it programmatically. This dras-
tical by slows down methed dissemination and knowledge transfer to a
broader audience from different research fields. Due to this reguired
experiise, communication with non-experts In proteamies ks often sub-
optimal. While there are several reviews that either focus on stand-
alone software wols (31, 32] or cover computational aspects of the
visualization process by making an overview of available R libraries
[33], they do naot necessarily pravide insight to non-experts in pro-
teomics onwly certain visualizations are important or how to inter pret
them.

In this review, we provide an overdew of several common types of
visualizatiors, focusing on their use and interpretation rather than the
sottware. We also demonstrate how such visuzlization can be interac-
tively created with Python, one of the most common programming lan-
puapes In sehence that has a low threshold ta learn and use. Following
the main steps of protecmics data analysis, we first describe the visu-
alization of raw data and peptide identification with a special focus on
novel M5 instrument types and data acquisition modes. Next, we cover
the visualizatlon of guantitative Information on the level of protelns,
peptides and post-transiational modifications (PTMs). In light of the
continuously increasing complexity of experimental designs, we also
include strategiesFor visualizing multidimensional dataand a prirmeran
protein networks. For each visualization we describe its common use
cases and relevance, what it shows, and what aspects of it are impos-
tant for interpretation and reporting, In the final section, we deseribe
how Py then and community resources can be used to create and share
customized data visualizations by utilizing both gerericand specialized
libraries, To make |t easier for readers to adopt custamized M5 data
visualization themsslves, we provide fully doaimented Python code
that was used to gencrate all data Figures presented in this review on
GitHub: bt padeithob comd®ana La bs/ ProteomicsVisualization, With
this review we want toenable researchers working on interdisciplinary
profects to (1) eritically assess proteomics data visualizations in pub-
ications, (2) discuss effectively with experts, and ultimataly (3} tum
their own data into visualizations that optimally communicate their
results

Z | VISUALIZATION OF PROTEOMICS DATA

In brief a standard MS-based bottom-up proteomécs workow can
be described as fallows (see g 1 In [A]). Proteins are enzymatically
digestad inta short, Ma-accessible peptides and separated using 3 LC
setup that is directly coupled 1o a mass spectrometer (LC/MS setup),
The M5 then measures both intact peplide masses and the correspond -
ing massesof peptide fragment ions that are generated onthe fly, which
i called tandem mass-spectrometry {LC-MS/MS setup), The result-
ing peptide and tragment ion spectra are then used to Identify which
peptides were present in the sample based on a reference proteoms,
commonly provided as species-specific protein FASTA file. With many

Statement of significance

We review data visualizations used to evaluate and com-
municate boltom-up protecsmics data, Critlcal aspects are
explicitly explained by presenting concrete use-cases of raw
and processed proteomics data, As practical guidance, we
highlight publicly avallable Python-based tools and provide
olr own codebass for data visualizations that are presented
herein, This should help the interdisciplinary use of bottom-
up proteomics by ensurtng a comman ground for d ata com-
munication and by enabling independent data exploration
and visualization.

strategies avallable, identificd peptides are then quantified ard thelr
information is agoregated to the protein level by protein Inferance
Strategies for peptide and protein quantification vary from absolute
guantification within samples ta relative guantification across sam-
ples, A moredetalled introduction to bottom-up proteomics isavaltable
elsewhere [24). Intable 1we provide anoverview of the analysis steps,
visualizations and most Important pitfalls/best practices covered in this
review, Many of the recommendations we make apply beyond the pro-
teomics field and many statistical aspects are beautifully explained In
the"Polnts of significance” serfes in Nature Methads.

21 | Raw data visualization

At the heart of all proteomics projects s the raw data acqul red by the
M5 [35] and unsatisfactory anatysis results can often be traced back to
low data guality. Evaluating the raw M5 data guality is therefore a crit-
ical first step during data analysis, vet it is often neglected. Data gual-
ity is commonly assessad by visual exploration of the raw M5 data, a5
ft can reveal a varlety of flaws of samples and |nstrumentation allke
[31]. Alternately, various computational quality control methods are
also available in the fiekd and are extensively covered in literature [ 36],
In this section, we cover standard visualizationsof raw M5 data on pre-
cursor and fragment ion level and how to read them. For most of these
visualizations either the M5 vendars or the M5 search coftware tools
provide a graphical user interface. As one prominent aption for visu-
alizing data from public repositories we want to point out the PRIDE
Inspeetar [37]

211 | Visualizations at the precursor level

lon chromatograms. The first steps of data guality control should
always Include & pedormance assessmont of the LC and the MS
This is commaonly done by inspecting how many precursor ions reach
the M5 detector over time, visualized in the total lon chromatogram
{TIC). showing the summed intensity of all detected precursar ions
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FIGURE 1 Visualization of proteomics data at the precursor level (A-C) For these subFigures a dataset |62 from PXD0O12867 is used. (A)
Total ionchromatogram (TIC) and base peak intensity (BPI) of MS1 datafrom2 h nanoLC gradient measured on an Orbitrap based instrument. Low
signal stretches in the first and last 10 min are due to loading time and LC flushing respectively. (B) Extracted ion chromatogram (XIC) for the
analyte (m/z =457.9978) with 5 ppm m/z tolerance, {(C) Two-dimensional M51 map showing the intensity of observed precursor masses across the
whole retention time. (D} Two-dimensional MS1 jon mobility heatmap of precursor intensities acquired on anion mobility separating
time-of-flight instrument al a single time point. demonstrating a correlation of m/z and ion mebility (PXD017703,[107)).
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TABLE 1 Overviewof all visualizations presented in this review, including assodated data, analysks steps, and pitfallsrecommendations

Bata
M51 raw data

M52 raw data

Peptide/PTM data

Protein intensities

Two-conditon
COMmMparisons

Mudtidimensionsl
experiments

Protein networ by

Analysis step

Inspection of M51ion
chromatograms to identify
|mstrumentation and foading
IssiEes

Anabysis of individual elution
prefibes

Inspecton of precursor magps
to identify instrumentation
Issumes

Inspection of DDA peptide
fragmentation

Inspection of DIA peptide
fragment groups

Map identified peptides o
protein sequence

Map differantial sequence
overage and external
sequence featuresPThs

Map PTM pasitions and
quantities to sequences

Dynamic range and
narmalizztion

Proteams coverage

Froteome correlation and

repraducibiity

Differantial expresson
analysis by bwo-tailed tests

Enrichment analysis (eg., by
Fisher's axatt test)

Dimensionality reduction to
display complexdatasets

Reprodudbiiity by PCA
Variabiflity contribution in PCA

Cluster analysis to group
proteins and/or samples

Diisplay all featiress for a
subset/summany of the data

Display protein distances

Dizplay hizrarchical groups
Display biological processes

Yisualizations

Total ion chromatogram (TICH
Base peak intensity (BP)

Extractad lon chromatogram
4]

Two-dimensional precursor
maps

{mirrared) M52 spectra and
seguence fragmentation

Twao-dimensicnal or
Three-dimensional elution
rofiles

Man-overlapping trates

Cwerlagping traces per
candition + external traces

Lellipop plot
Inkens/ty histagramis}

Proteinrank piot

Pairwise correlztion plots and
sampe correlation
heatmaps

Walcano plots with sguare
cutoffsmon-finear volcano
lines

Variabile visualization
depanding an experment
complexity

Two-timensional projection of
proteins

PCA loadings plot
Bar chartwith all PCs

Heatmap with mar ginal
dendrograms

Prafile plot/paralle!
coordinates/radar plot

Weighted edge network

Hierarchical network

Semantic network

Figure
1A

1C.1D

A28

.20

4C. 4D

AE. 4F

aG

5450, 5E

Pitfalls/recommendations

Compare to a high-guality reference
chromatogram matched by instrument,
gradient, and sample complexity.

Mass range s critical: wide enough for mass
errars tight o nough for specific seloction,

Compare to 2 high-guality referonoe map.
Different dimensions can be displayed

Number of fragmentsis cnuclal,

Elution peak shape should be highly
correlated across fragments,

Missind cleavagds and repeated Irag mentation
are apparent.

Missed cleavages are hidden in favar of
differential coverage.

Driffer ent quantitatve measeres can be
s fon y-axis

Replicates shauld have similar shape

Lenwer tail reveals depth limitation

Usa for small and high nombers of samples
respectively,

Multiple hypothesis correction is mandatary,
FOR and power (square cutoff) or s0
{non: [inear cutoff) nesd to be reported.

The prvalue s the mast impor tanl paramdter
to clisplay if fewer visual chapnels are
ayailable.

Aleorithm determines topolosy
PCAUMARASNE],

Replicates should cluster.

Main discriminators of samples can be
ldentified.

Distance measure and clustaring adgorthim
are koy parameters, outolts are largely
arbitrary.

Selection depends ondata types and visibility
af the key result

Avoidd hair balls, by parsimonious selection of
nodes and ediges, use a deterministic
layouting algorithm.

Depends on underlying grouping:

Indicate source for relationships.
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against the retention time (blue line in Figure 1A). Problems that can
be revealed inspecting the TIC are poor peak separation (very broad
peaks), unstable spray or MS filure {intensity drops) and mistakes
in sample preparation (low intensity, few peaks. unexpected overall
shape) (38, 39). Another major issue is saturation of the whole LC-
M5 system, for example, by overloading or contamination. This can
be revealed by the base peak intensity (BP1) plot, which shows the
intensity of the most abundant ions detected over time (red line In
Figure 1A} If the system is saturaled one can see plateaws |n the BP|
trace. It is generally advisable to have a reference TIC and BPI1 plot for
the sample ty pe and Instrument setup used Lo be able todetecl anoma-
lics.

It com furt her be important to follos up on individual detected ions
of groups of ions, to evaluate, for example. the spread of contaminants,
the peak shape of quality controf ions-or the quality of identified pep-
tidefeatures, To thisend, sxtracted ionchromatograms (X1Cs) arecom-
manly used (Flzure 18). The desired mass and charge range |s extracted
from the aw data and its intensity is plotted against the retention
time. In doing s0 it is important to set adequate boundaries (o the
mass range (M2 tolerance), accounting for mass errors and coeluting
fons.

Precursor maps. To get an overview of the whale range of precursor
masses detected slong the retention time, a two-dimensionzl M51 map
can be vsed (40, 41]. 1t shows the intensily (colar) of obsarved precur-
sor masses (x-axis) across the chromatographic retention time (y-axis)
as a heatmap (Figure 1C). Same as for the TIC, it is advisabée 1o have a
reference image for this Lo be able to see anomalles, as they could again
hintat technical issuss with the instrument,

Recent developments in MS instrurnentation introduced ion mobil-
ity as an additlenal separation dimension [, 11, 13], which should
be evaluated in a similar way as the m/ dimension. Akin to the two-
dimensional MS1 map. precursar signal Intensities can be visualized
in the lon mobility dimension against the m/z dimension (Figure 10}
This heatmap would be even more informative if it showed the inten-
sity across all three dimensions (retention time, lon mobllity and m/z).
While thic is in principle possible, the resuiting visualizations are hard
tninterpret intuitively and improving themis one of the remaining chal-
larges in proteomics data visualization [42].

212 | Misualizations at the fragment |evel

The first principal step of aggregating raw M5 spectrainto proteomic
data ks the ldentification of analyzed peptide sequences. The two
required element s for sequence identification are the measured pep-
tide fragment (M52} spectra and the sequence search space, both of
which depend on the acquisition mode and to & lesser extent the
quantification strategy used [413], We cover label-free data-dependent
acquisition (DDA and data-independent acquisitian (DIA)} here,

DDA In the classical DDA approach the MS instrument isolates
and frapments individual selected peptide ions from the precursor
scan (ME1). most commonly the top-N most i ntanse enas. The spectra
are then searched against a sequence database that contains masses,

Proteomics | so

sometimes alsa intensities, of peptide fragments from in silico protein
digestion and fragmen tation [44-44],

It can be important to manually evaluate the MS2 spectra and the
identifications basad on them, particularly when follow-up experi-
ments hinge on a single or few proteins or even peptides. To do so. one
can look at the [ndividual M52 spectra, highll ghting the N-terminal and
C-tarminal fragment ions of the single selected precursor (Figure 24),
Underneath the spectrum itself. the sequence of the |dentified peptide
andd the position of identified N/C terminal fragment fons are indlcated.
Depending on the exact fragmentation method used, the peotide
bond breaks at different positions, yielding different pairs of lons,
mast commanly bfy jons, lssues that can become apparent hera are
co-fragmentation of several peptides (many more fragments visible) o
other lsotopes of the same peptide lisotopic clusters for fragments),
or paor fragmentation (wery tew ions and intense precursor peak). To
check the quality of the peptide-spectrum-match against the library,
mirrored spectra are commonly wsed {Figure 2B). Here the theoretical
fragment masses are shown on a mirrored y-axis, which makes |t
immediately apparent which fragments are missing or should correctly
be identified in the measured spectrim.

DIA In DIA mode, instead of isolating a single precursor mass, mass
ranges containing multiple precursors are isolated ard fragmented foe
every M5 scan, covering more precursors, but yielding more complex
ME2 speetra. For a general introduction 1o DIA we suggest this revidw
[491

Due o the increased complexity, the simple ME2 spectrum visual-
izations lose most of thelr redovance and a spectral ibrary containing
only masses and intensities is no longer sufficient for identification. DIA
libraries therefore additionally contain the retention time and if apoli-
cahle the lon mabllity of the precursor iens to narrow the search space
at each time point [20, 48-50]. On top of the fragment masses, the
exactcoelution of fragments and thelr precursor is now crucial for scor-
ing candidate identifications. To assess the quallty of DA [dentification,
it is therefore most comman to look at the elution profiles of all frag-
ments associated with a specific precursor, [deally, they should Forma
single sharp peak together with the precursor (Figure 2C). Indicators of
peak misassignment woudd be peak shift s or Mending additional peaks
of individual fragments. Here, measuring ion mobility can lead to higher
corfidence, as fragments should correlate along this dimension aswell,
Both dimensions together can be visualized in heatmaps for the pre-
cursor and all its fragments in retention lime and lon mobillty space,
colored by intensity (Figure 20,

Additional complexity, Independent of the acguisition mode MS
spectra can be complleated by peptide modifications, but the same
visual techniques apply. Modifications can be either biologically gen-
erated PTMs (eg., phosphoryation) [51, 52]. artifacts introduced dur-
ing sample preparation [eg., oxidation) [53] or sample labelling tech-
nigees (eg, TMT [54] or EASITag [55]). Depending on the exact type,
modifications lead 1o additional peaks For neutral losses or reparter lon
series In M52 spectra, or even require an additional level of fragmenta-
tion [(M53) to acquire additional fragments. To interpret these complex
spectra more spechalzed background knowled ge thal poes bevond the
scope ofthis review is required.
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FIGURE 2 \Visualizations of proteomics data at the fragment ion level, (&) Peptide M52 spectrum penerated by datadependent acquisition
(PADO12847, |42]). The peptlde sequence is annotated with the identified b- and y-lans, [B) Mirrored M52 spectrum showing the experimental
{tap) and predicted (bottom) spectra for the same peptide 25 inA, confirming the carrect identification (PXOO12847, [62]). (C-D) Codlutionaf a
peptide precursar and its fragment lons acquired on anion-mobility separating time-of-flight Instrument (PRDO17703, [207]). (C) Extractedion
chromatograms in the eliution timewindow of precarsor and fragments nicely overlap, I:DI Heatmaps of innintensities inion-mabifity and retention

time dimensians provide additionat information on coelution in the ion-mobility dimension
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FIGURE 3 Peptide visualization. (&) Figure displaying peptide coverage along the protein sequence, over ap between peptides and

ident/ fication frequency [color scale) (PXDO12847 [62]). (B) Figure displaying difterential peptide coverage across sets of samples with
overlapping peptides collapsedinto a single trace, PTMs (hore onfy n-terminzl acebylation) and external features (PXDD12BAT, |62]). Generated
wslng [58].{C) Lollpop plot displaying phosphosites, thelr intenslty and locafization probability (bubble size) (PXDO106%7, [ 77

2.2 | Peptide and PTM visualization

When moving from raw data to apgregated peptide and protein quan-
tifications. it Is important to point out again that all bottom-up pro-
teomics data is based on the identification of peptides rather than
Inlactproteins, Therefore, assessing the coverage of proteinses uences
with identified peptides provides essential information Sequance cov-
erage can for example be assessed using a Flgureln thestvle of the Pep-
tideAtlas |56] (Figure 3A). Here, all unmoditied peptides are displayed
in a norn-overlapping way along the protein sequence and are colored
by their Identification frequency acrass samples. This representation

is wedl sulted for assessing the reproducibility of peptide identification
and to evaluate peptide overlaps caused by missed peplide cleavages.
Ta evaluate differential sequence coverage between samples, averlap-
ping peptides should be collapsed to-a single line per sample to avoid
clutter (Figure 3B},

If PTMs are measured, their position, intensity and localization
prabability can be visualized per modification site, If only the position
needs 1o be visuallzed in the context of ientified peptides, they can
simply be added to these peptide views (start mark in Figure 3B} IF
a PTM's intensity andsor site probability are of interest 2 lollipop plot
can be vsed (Figure 3C)L Thase can for example b found on Phosphe-
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SitePlus {57). Here, the size of the markers reflects the site probabil-
ity and their vertical posilion reflects the intensity. For any of these
visualizatlons it can be very informative to inclide additional annota-
tion traces, for example, showing tryptic cleavage sites. and protein
domains. This is for example possibie wsing AlphaMag [58], which was
also used here to create Figure 38 With these visualizations in hand,
various aspects of ohserved peptide and PTM signals associated with
4 protein of interest can be visualized and easily compared with data
available in external databases. In dolng so it is important (o keep in

mind that not all peptides are snigue for just 3 single protsin [5%, 40].

2.3 | Protein gquantity visualization and basic
analysis

Agpregating peptide quantific ations into protein quantifications is any -
thing but a trivial task and highly depends on the Inference strategy
and quantification method used [61] Agnostic to the quantification
method, the assignment of peplides to proteins is nol always uniguely
possible, and therefore proteomics studles often talk about pratein
groups [59, a0]. These usually consist of any number of protsins that
could becontained in the sample based on aset of shared non-unique,
or "razor”, peptides identified. Most protein groups consist of geneti-
cally closely related proteins, like izofarms or paralogs. From here on
out we will focus on the analysis of protein groups Independent of
the inference and guantifcation method wsed, but want to point out
that each quantificastion method comes with i ndividual parametars and
visualizations used for quality control. All following visualizations can
in principle also be applied on the peptide level. but are mostly used
on the proteln level. We will start with the evaluation of single condi-
tinn samples and simple two-condition comparisons by the example of
aknock-outversuswildty pe experiment [¢2 ] and then move on o more
complex experimental designs and protein networks in the following
sections.

Range and reproducibility. Once proteln groups are guantified the
first thing to lock at is the distribution of their intensities. This ks fre-
guently done using log-intensity histograms (Figure 44) or bexplots.
These can indicate if certain samples have different intensity distribu-
tions, which might necessitate normalization, or a significantly red uced
depth. They can further be used to assess the distribution of certain
protein catezories relevant ta the dowrstream analysis. lke inmputed
values or reverse database hits as in Figure 44,

The dynamic.range of a dataset is another important parameter as
the measurement af low abundant protedns ks a major limitation In
untargetad bottom-up proteomics. Ta display it, a protein rank plot
can be used (Figure £B). Depending on the guantification method
and the downstream processing, the y-axis can represent either raw
intensity units or estimates of absolute protein quantities (=g, IBADQ
[63), proteomle ruler [&4]) In full proteome studies, the highest abun-
dant proteins typically include cytaskeletal and ribosomal protelns and,
depending on the proteomic depth, the lower tail includes, forexample,
signaling proteins and transeription factors,

MNext, i is important to assass the reproducibil ity of replicate sam-
ples and the general similarity of samples to compare, For a limited
number of samples, multi-scatter plots displaying all painwlse log:
intensity distributions and their correlations can be used (Figure 40,
For larger numbers of samples, where avisualization of all sampée pairs
Is na longer feasible, reproducibllity can be assessed by a heatmap of
correlation values (Figure 40, or attermativaly by principal component
analysis {see next chapter).

Wolcano plots. The minimal comparative experiment spans twocane
ditions with n hiological replicates each. The standard analysis work-
flow Tor this is Lo perform multiple hypothesis corrected two-sample
(Student's T-) tests [45, 44) The multiple hypothesis correction is
essential in any proteomics experiment, as p-values can be seemingly
significant (i.e, very small) juet by chance when making thousands
of comparisans from the same dataset at once. Plotting the negative
Iog10of the [corrected) p-value against the difference in log-space fos
each protein leads to the classical volcano plot [Figure 4E-F).

The thresholds tor calling 3 protein differentially abundant cin be
determined by one of two methods; (1] sguare cutoffs for p-value and
fold-change (Figure 4E), or (2} non-linear valcano lines (Figure 4F)
{1} For square cutoffs, the horlzontal threshold s selected based on
a desired multiple hypothesis testing corrected p-value (or FOR). The
vertical fold-change cutoff & set with regard to the experimental
power, which is the probability of delecting an effect of a cerlain size,
given it actually exists. When using square cutoffs, the pawer should
always beindicated asin Fipure 4E, regardless of whether a fixed power
is used bo caleulate the fold-change cuteffor the other way around [67],
{2} For nonlinear volcana lines. an 50 parameter is set instead of 3 spe-
cific fold-change cutofl [68). The s parameter is added as a constant
to all standard deviations used in the t-1ests and can roughly be inter-
preted asthe assumed systematic error of the measurements, thereby
satting a lower bound on the fold-change as a function of the measured
standard deviation.

In both methods the boundaries on the fold-change ensure that
the biological variability exceeds the numerical variability intreduced
by measurement noise or imperfect normalization. Both methods are
valid if applied correctly, but yigld stightly different hitlists and are both
highly dependenton the arbitrarily selected parameters. It should alse
be kept in mind that either method still has a false discovery rate and
protein groups can be on either side of the boundaries by mistake, The
boundaries rather serve the purpose of generating a statistically sound
list for further downstream analysis, importantly, multiple hypathesis
correction always has to be performed and documented. Usually this
Ie dane elther by Benjamini-Hochberg correcton or by performing
a parmutation test. For square cutoffs the v-zxis usually shows the
corrected p-value (not done here to ease comparison),

Enrichment analysis. One common analysis to do downstream of
a wolcano analysis is ta look at overrepresentation of biologically rel-
ewvant groups of proteins eg. biclogical pathways of cellular com-
partments) In the hitlist compared to the overall proteame (methods
reviewsd in [67]) This is usually done by a Fisher's exact test [70] or
gene set enrichment analysis (GSEA [71]) based on systematic annata:
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FIGURE4 Dataset properties and two-condition comparisons. The data displaved in this Figure is Laken from [62], where the princpal
comparison was drawn between wildtype and ARPNA budding yeast cells (PXDO12847), (A) Intensity histograms showing the distribut ion and
number of protein groups are used 1o assess sample comparability, Hits from the reverse decoy database are annotated. (B) Protein rank plat from
highest to lowest abundant proteins, illustrating the dynamic range. {C) Pairwise correlation plots demonstrate the biological and technical
reproducibility. (D) Sarmple correl stion mately that is sultable to higher sample numbers than the pairwise correlation plat. (t additienally |Bustrates
sample grouping, (E, F) Vol cano plots showing results of comparlsons between two condltions, here between wildtype and ARP N4 samples.
Multiple hy pathesks testing was done by permutation and the FDR was set to 001, {E) Square significance cutoffs with minimal log 2 fold change
set to 1.5, which has astatistical power of Q.81 (F) Monlinear volcano lines based ons0 = 0.1 adjusted p-value. (G) Enrichment analysis by Fisher's
exact test for significant proteins from F, FDR = 5% after Benjamini-Hochberg correction, For all significant terms the corrected p-valug, groa p size

and the enrlchment factor are displayed.
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tions availabie for example, through gene ontology [ 72, 73] Often this
i5 done using online tools that use the whole theoretical profieome as
background. However, battomeu p proteom|ics is not able to quantify all
proteins and unidentified proteins should not be inchided in the back-
ground for an enrichment analysis | 74). Thus, only tools that can con-
sider the specific background should be wsed {eg., String [75] or Pan-
ther [7a]). The three main valies resulting from an enrichment analy-
sis per candld ate group are enrichment factor, group size and multiple
hypothesis testing corredted p-value, which can be visualized together
[Figure 4G), From this one could now draw biclogically relevant con-
clusions, linking the prior difference between the compared samples
to enriched sets of protein groups, If differential enrichment in several
samples is displayed, the s-axis can be used to display the different s am-
ples and the size can be switched from proup size to p-value, Perseus bs
a common tool to generate many of the sforementioned visualizations
and to run most underlying analyses, including the enrichment analy-
sis | 29) Hewever, glven the output of the statistical analysis almast aty
comprehensive visualizationtool can create thess Figures,

24 | Multi-conditional and multidimensional
experimental designs

Withincreasing throughput, thanks te improvements |n MSinstrumen-
tation, more complex experimental desipns became practical. Com-
man multi-conditional designs include time course expariments [77]
and profillng experiments scross subcallular compartments [ 78] of pro-
tein complex fractionation [ 791, Two- and multi-conditional designs
can further be combined into multidimensional experiments with each
other (e g, measuring subed lular profiles over time [80] or In differ-
ent genetic backgrounds [ 781 and with additional variablies (e.g. demo-
graphic parameters In clinical sample cohorts [81]). In this section we
use a comparative spatial proteomics dataset | 78] for demonstration
plrposes.

Dimensionality reduction. Whikc the full scope of a two-condition
experiment can easily be displayed in two-dimensional, higher dimen-
sional experiments require dimensionality reduction for visualization.
Just selecting two dimersions can be ugeful iF a direct comparison s
needed, but this will Blways disregard biclogical variabllity added by
other dimensions, This is problematic because it can mask correlated
or arthogonal effects.

One universal tool to incorporate these effects inta dimensionality
reduction is PCA [82): The data is usually scaled and log-transformed
and then linearly transformed anto a new coordinate system, such
that the first companent describes the largest fraction of the over-
all data varlability and successive components decreasingly less This
effectively ageregates a lange fraction of the data variability into fewsr
dimensions, This serves thres purposes, First, any number of dimen-
sions can be reduced to the main PCs o visuallze all protelns and thelr
annotatlon groups intwo-dimensional (Figure 5A). Second, the contri
bution of each originat dimension to the PCs Hoading plot) serves as
guality control for sample greuping (Flgure SB), where tight dustering
of replicates should be apparent. Third, the variability contributed by

each PC can inform on the Independence of the acquired dimensions
{Figure 5C), If many PCs have a similar contribution to the overall vari-
ahility. this indicates Independent underbying variables In contrast, a
single highvariahility PC often indicates that several of the underfying
variablesare at least parlially dependent.

Dther dimensionality reduction alporithms are ISME  [83]
{Figure 50} and UMAP [84] (Figure 5 ). The major difference between
PCA and tSNE/UMAP Is that the latter performs non-linear trans-
formalions, whereby distances between individual proteins become
incomparable. Their advantage is that they usually achieve visually
more obvious separation of protein custers In return and can provide
perfarmance benefits for two-dimansional clustering algorithms, In
principle, these techniques can also be applied to a [sample ¥ protein]
rather than a [protein & samplel matrix to (ook at the data from a
different perspective.

Heatmaps. & commaon visualization across different “omics” tech-
nologies are heatmaps with margina dendrograms [Flaure 5F). They
can he used to understand the relations between samples and pro-
teins alike. During the early stages of the analysis process heatmaps are
olten wsed simllar to the PCA loadings plot to evaluate sample sim-
ilarity. Howewer, in contrast to the PCA plot they are based directly
on the distance between the untransformed protein quantifications in
each sampie. Based on these distances a dendrogram is built, where
branches of similar samples are grouped together. Additionally, it
shows which groups of proteins fellow a similar abundance pattern
across samples, by building a verfical dendrogram across proteins ina
slimilar fashilon. The latter Is particularky useful when it comes toa later
stage of the analysis when proteins with specific behaviors of interest
need to be grouped in order to form wpotheses about the underlying
blology. Critical lactors in creating and Interpret ng these heatmaps are
the distance metric and clustering methods applied [63] to sither axis
and the normallzation method that unifies the color scale across pro-
telns. The dislance is usually either euclidean distance or Pearsan cors
relation. For normalization across samples z-scoring if often used.

Wisualizing Individual dimensions. The methods described abowe
are most useful to display proteomic data across all messured dimen-
sians, To show single dimensions (e.g,, time courss) or to combine pro-
teomic data with other data types, different visuslizations are betler
suited. The simplest way to display Individual experimental dimensions
is a line plot (Figure 5G), which works with continuous and categori-
cal dimensions al ke Since showing the full proteamic seope would lead
to clutter, we recommend sither showing a relevant subset of proteins
with thinlines, indicating density by opacity, or alternatively showing
summary slatistics. For some apallcations a radar plot might be pre-
ferred over a linear axis to ease interpretation (Figure 51). Suitable
applications Indude dme course experiments along circadiancycles o
biclogical slices of & bigger whaole, for example, different organ tissises.

Mixing data types. It other data types l=g, dinical parameters,
additional “amics™ data, quality parameters) are integrated with
prateomic data, it Is likely that none of the visualizations above can
be applied. In that case one can turn to dimension plots having either
paralle! coordinates or categories. These have multiple psrallel anes
that can each represent a different data type with individual ranges.
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Here, every line represents 2 dataset (epg. protein or sampie) and
connects the daia points across the parallel dimensions (Figure 5H).
If all dimensions are categorical, the group sizes and membership
combinations are displayed instead,

25 | MNetwork representations of proteomic data
Many extensi ve proteomics studies, such as interactomices |84, B |, pro-
teome profiling based [AR104] or extensive clinical studies [89], focus
on networks betwesn proteins or could be mined For them. Ay exper-
Iment that vields enough data to Identify or quantify the physical or
phenotypic relation between several pairs of proteins is sufficient to
bulld a network, albeit of variable size. Sincs all networks are bt from
nodes and edges. many networks look similar at a first glance although
they usually convey vastly different information. In proteomics, most
often the nodes represent proteins and edges wsually represent one
of three types of information; physical interaction or proximity {inter-
actomics), phenotypic similarity [profiling) or shared annotations (g8,
Gene Ontology). The most relevant distinctions made In granh the-
ory are between weighted and unwsighted networks and between
directed and undirected networks: Additionally, the type of both nodes.
and edges can be homoagenous throughout the nebwork o not. Fora
general review of networks in biological systems see [47)

Different combinations of these characteristics give rise to three
different types of networks often encountered in proteomics stud-
fes: |1) The most direet representation of messured relations batween
nodes are netwaorks with homogenous nade types and weighted edges
{Figure &A). Since a two-dimensional layout isoften insufficient to con-
vey ed pe propertles accurat ey simply by length, additional visual chan-
nels like number of edges, color and thickness can be used. Groups of
nodes are wsually highlighted by color (eg., guery proteins vs interac-
tors), §2) Akin to dendragrams, hleraschical networks [Figere 48] con-
wey information about the organization of proteins into groups, These
retworks are inherently directed, areoften unweighted and generally
have heterogeneous node types [e.g.. protein complexes and proteins).
{3 Incorporating extracted or annotated information about bislogical
processes [ke proteln regulation ghves rise to semantic networks,

When reading or creating a network it is important to realize which
type of networle is used/frequired, what the main information behind
nodes and edges s and how they are encoded In the visbalization
{see Fung et al. 2012 for more considerations). Depending on the
degree of complexity and customization required, different tools can
be wsed to create metworks: Uterature based interaction networks
can be generated using STRING [76] and biological pathway graphs

are provided by Reactome [90]. For netwarks based on guantifica-
tions provided by a researcher, many tools are available, including
Cytoscape [71] - a very extensive and expand able standslone saftware
- and Perseus, although it only contains limited netwark functiona li-
ties | 2], For scientists with programming experience several options
exist Induding the Cytoscape &P ¥3], Python libraries like Network X
[74] and graphviz (httpsd graphvizreadthedos.io), the R library net-
work [#5], or lgraph {https:/igraphorg). which |5 available in both
languages. A more spedalized tool for clinical proteomics that alms
to capture comprehensive prior knowledge is the clinical knowledge
graph (CRG) 7).

3 | CUSTOM PROGRAMMATIC DATA
VISUALIZATION

In the previous sections we have described several commanty used
visualizations in the proteomics field, along with available software
tools to create them. However, depending on the experimental design
and specific focus af a study, It might stlll be challenglng to find a
fitting visualization in one of these tools. A scientist might want to
create something entirely novel, or just costomize the Figure beyond
the capabilities of the tool that you are using. Besides these practical
limitations, the data visualization process can also conbribute to low
transparency and reproducibility in scientific papers by use of closed
source software and lack of documentation [97] Thess challenges
can be maslered by programming the wvisualizations onesell and
sharing the code appropristely. Thus, in this section we describe
how Python in combination with established open codefscience
tools can be used to generate customized proteomics visualizations
transparenthy.

3.1 | Proteomics data visualization in Python

For this review we chose Python as a programming language, because
it is widely known For its readability and versatility, as well as a shal-
low learning curve for new developers and & very active, support-
ive and collaborative community. The |atter |s particularly useful con-
sidering that “open code’ and community engagement can benefit
researchers By saving time and furding resources [78]. As a primer foc
prateomics visualization in R, we recommend [23], Similarto R, Pythan
aiready has a large variety of well-doowmented and well-maintained
librardes for sclentific computing [991 Althaugh Pythan has anly been
in widespread use in the computational proteomics field for roughly

nelividual PCs. Qnly the first three PCs are shown here, as they jointly cover = $0% of the data variability. (D) Projection ontonan-linear tSNE
dimensions, This has a similar density a5 the PCA, but different arrangement of organelies. (E) Projection onte non-lingar UMA P dimensions.
Although this shows the same dataset as A and D, clusters are a lot more visible because the local density is increased. {F) Heatmap with marginal
dendrograms [complete linkage) of all erganelle marker proteins. Samples aro clusterad by Pearson correlation, protelns by suclidean distance. (G)
Line plot showing profiles along the subcellular dimension of all ER marker proteins (H} Parallel coordinates plots can be used to relate proteomic
data Lo other data dimensions that use different scales. Here, showing the identification score and q-value together with the normalized protein
ntensity inone sample{same proteins asin G). (1) Radar plot displaying average profiles per organe lar marker groug.
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TABLE2 Selectionofopen-source saftware libraries for
protearmics data analysis and visu all 2atien In Python

Library
pymziL [110,111]

Deseription

An meML data parser for fastacoess and
handling of the data with integrated data
wisuakizat oo,

Pyteamice [112113]  Aframework for proteomics data anatysis,

supoorting different data formats:

pyOpentd S [114] A library for the analysis of proteamics and

metaboiomics cata,

miultiphlerz [115] Aseriptable framework for access to

manufacturers formists via meAPL.

PaDuA[114] A Python package optimlzed for the
processing and analysis of quantifisd

[phosphaolprote omics data.

AlphaTims [117] A Python package for efficlent accession and
visualization of Bruker Tims TOF raw data.
AlphaMap [38] A Python package for the visual annotation af

proteamics data on the peptide el with

seQuence specific knowledge.
spectrum utils [118]  APython package for processing and

visualization of MS/MS apectra.

a decade, a number of libraries for MS data accession and specialized
analysis tashs are already established (Table 2)

Sirnilar to this data analysis stack. mary daka visualization libraries
exist that are differently well suited for difterent purposes. Static plots
in Python can be generated using Matplotlib [100) or Seaborn [101),
Both librarles are hghly versatile, but Seaborn adds additional func-
tionality on top of Matplotlib, for example, it offers more choices
for plot styles and colors. Interactive plots are particularly useful for
exploratory data analysis by providing data on demand and baskc Loals
like zooming, selecting, rotating, and so on, These can be built in
libraries such as Bokeh (docs bokeh.org) and Plotly (hitps./ploly.coim),
Plotly is wery popular in the sclentific field due to the high number
of unique visualizations, including three-dimensional and scientificuse
cases, Thus, we also used It throughout the code used to generats the

Figures In this review.

Oine overall challenge of data visualization is how to efficienthy han-
die bip data_ Big data is particularly challenging, because the simulta-
neous display of thoussnds of data points usually leads to codusion
of information {as can be seen in Figure 54) and oftentimes misinter-
pretation. Commean workarounds are down sampling, reduced opacity
{as in Figure 5E), replacement by summary statistics (s in Figure 5F)
and more, While these methods can often improve data display, the
full data scope should always be evaluated and in many cases, it can-
rot be replaced, Aneasy way tovisualize it without ocelusion is offered
by the Datashader llbrary (httpsw/datashadecorg). it rasterizes the
data space similar to a histogram, but in two-dimersional and encodes
the number of points per bwo-dimensional bin by color {Figure 1C,
Figure 305 This fadlitates quick visualization of patterns or structures
in big data sets.

Due to the amount of data contalned In most proteomic studies,
there is usually more hiological insights to be gainad than can be
described In a single publication. While uploading datasets to reposi-
tories s generally mandatory nowadays, data can be made even more
accessible by providing 2 dedicated online resource or even an analy-
si8 service with embed ded Interactive visualizations. Python prowvides
several libraries that integrate data analysls and visuzlization eapsbll
ities with modern web frameworks to create browser based graphical
user interfaces, examples being Dash (hit psofdashplotly.com), Stream-
lit (rttps:/docsstreamlitiol and Panel (hitps:/fpanelholoviz.org).

Lsing a combination of the scientific Pythan stack, the generalized
visualization lbraries and welb englnes. several visuallzalion tools and
resource pages for the proteomics field have already besn created
[46,58,%6,102-104|.

3.2 | Open science tools

T enable full sccessibility, transparency and reu sability of customvisu-
allzations we briefly Introduce several existing open science and open
source principles and tools.

Fiestly it is important to fully dooument what any code is doing and
to provide necessary contexl akin to wet-lab protocols and dooumen:
tation. & modem software development tool supporting this is Jupyter
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(httpefjupyter org), which is compatible with Python B and Julia. i
integrates code, exeoution output (eg, visualizations) and static doc-
urmentation in a single interactive, but freezable file format. The docue-
mentation is written inthe very simple markdown syntax, which allows
standard text formatting and inclusion of complex elements like Images
and formulas_ In recent MS-hased proteomics publications, one already
sees |inks to the study specific code provided in Jupyter[58,105], Given
a suitable Python environment and access to the data anybody can
thereby reproduce resulls transparently. In case local hasdware & lim-
iting code execution, community resources can be used, Specifically,
Google provides a free but powerful Jupyter notebook emvironment
called Google Colab [10&],

Secondly, it is important to share cod e publichy and since code usu-
ally continues evolving after publication it is crucial to transparently
keep track ot code versions, dependencias and contributions. The com-
munity standard tool for version control is Git, complemented by the
public hosting service GitHuby [107], which is free to use for scien-
tific projects, Beyond sharing versioned code, it 5 also a social ood-
ing platform that enables community contributions like peer-review
and ersuires transparent attribution of code contributions to authors.
For code that regquires Interactlve execu ton, or creates Interactive cle-
ments, GitHub provides integration enline hosting solutions lke Binder
(https:Ymybinderorg). To create persistent and citable digital object
identifers (DO1s) for code repositories, Zenodo (hitpsizenodaorg)
ean be used directly from GitHub.

To give new developers an easy entry paint and an example of wihat
these tools can do, we applied them to the Python code we wrote to
create the data visualizations inthis review, The repository is hosted an
the GitHub (https//github.comMannlabs/ProtoomicsVisualization),
which Includes a link o the hosted Interactive version in Binder and
instalation instructions for 3 computational proteomics Python envi-
ronment and a short gulde on how to contribute oustom visualizatons

for others to rewse.

4 | CONCLUSION

Irn this review we have summarized data visuallzations specific to the
protecmics field, from raw data to complex experimental designs. As
this field is rapidly progressing and highly transiational, we decided to
not anly cite existing tools for visuali zation, but ta further provide guid-
ance towards creating commaon data visualizations programmatically
and intzrpreting them critically and correctly, As the options for exper-
Imental deslgn are canstantly evaolvlng we could not cover all flavors
of proteomics data visualization herein. It will be exciting to see how
interactive web technelogies and virtual reality will improve the way
we visually explore proteomics data In the years to come, especially
with regard to current limitations on three-dimensional visualization,
Lastly, we want to encourage our readers to try out different viswallza-
tlon types and visual channels interactively for the data they have at
hand and to view data viswalization as a creative, yet crudial step of sci-
erneand sclence communication,
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As the method of choice in proteomics, MS routinely identified and quantifies thousands
of proteins and their (modified) peptides. However, only a small subset of these proteins
of specific biological or clinical relevance, such as key proteins of signaling pathways or
biomarker candidates, are typically subjected to in-depth downstream analysis.
Unfortunately, expert evaluation of the underlying raw data of these proteins and their
individual peptides rarely occurs or only occurs in one of several possible dimensions,
preventing researchers from concentrating their investigation on the best possible

biological candidates.

In this publication, we introduce a new open-source software tool called AlphaViz. It
allows to superimpose the identifications found by common proteomics workflows on
the raw data for easy validation of proteins by visualization of their (modified) peptides.
This is the first visualization tool that takes advantage of recent developments in deep
learning prediction of peptide properties to verify experimental versus predicted results.
AlphaViz mainly focuses on four-dimensional ‘next generation proteomics’ timsTOF data
and utilizes all available data dimensions for validation purposes, including the additional

ion mobility dimension.

Using AlphaViz, we demonstrate how easy it is to evaluate critical proteins and their
peptides reported by various proteomics search engines at the raw chromatographic,
ion mobility, MS* and MS? levels. This helped to reveal likely false positives, despite
their high search engine scores. Conversely, the deep learning prediction of various
peptide properties, the so-called ‘predict mode’ in AlphaViz, demonstrates the retrieval
of the raw data for peptides likely present in the raw data but not reported by the search
engine. By applying AlphaViz to the phosphoproteomics study of the EGF signaling
pathway, we (in)validated the presence of key signaling proteins, and were also able to
explore specific signalling events of interest that were missed by the proteomics

software through direct inspection of the raw data.
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As the first author of this paper, | conceptualized and designed the study, wrote the
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ABBREVIATIONS
BPI base peak intensity
CCs collisional cross section
DDA data-dependent acquisition
DIA data-independent acquisition
EGF epidermal growth factor
FDR false discovery rate
GOBP Gene Ontclogy Biological Process
Gul graphical user interface
M ion mobility
QR interquartile range

MS/MS or M52

tandem M5

PASEF parallel accumulation — serial fragmentation
PEP posterior error probability

PTM post-translational modification

PyPI Python Package Index

RT retention time

TIC total ion current

TIMS trapped ion mobility spectrometry

TOF time-of-flight

Xic extracted ion chromatogram

£ ]
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ABSTRACT

Although current mass spectrometry (MS)-based proteomics identifies and quantifies
thousands of proteins and {modified) peptides, only a minority of them are subjected to in-
depth downstream analysis. With the advent of automated processing workflows, biologically
or clinically important results within a study are rarely validated by visualization of the
underlying raw information. Current tools are often not integrated into the overall analysis nor
readily extendable with new approaches. To remedy this, we developed AlphaViz, an open-
source Python package to superimpose output from common analysis workflows on the raw
data for easy visualization and validation of protein and peptide identifications. AlphaViz takes
advantage of recent breakthroughs in the deep learning-assisted prediction of experimental
peptide properties to allow manual assessment of the expected versus measured peptide
result. We focused on the visualization of the 4-dimensional data cuboid provided by Bruker
TimsTOF instruments, where the ion mobility dimension, besides intensity and retention time,
can be predicted and used for verification. We illustrate how AlphaViz can quickly validate or
invalidate peptide identifications regardless of the score given to them by automated
workflows. Furthermore, we provide a ‘predict mode’ that can locate peptides present in the
raw data but not reported by the search engine. This is illustrated the recovery of missing
values from experimental replicates. Applied to phosphoproteomics, we show how key
signaling nodes can be validated to enhance confidence for downstream interpretation or
follow-up experiments. AlphaViz follows standards for open-source software development and
features an easy-to-install graphical user interface for end-users and a modular Python package
for bioinformaticians. Validation of critical proteomics results should now become a standard

feature in MS-based proteomics.

Keywords: data visualization; quality control; DIA-NN; AlphaPept; TimsTOF

57



3. Publications

binRxiv pregrint doi: hitps/dol org/10.1101/2022.07.12 493676; this version posted July 13, 2022, The copyright holder for this praprint (which
was noi cartified by peer review) is the authortunder, who has granted bioRixiv a license 1o display the preprint in perpetuity. It is made
avaliable under aCC-BY 4.0 International license.

INTRODUCTION

Mass spectrometry (MS)-based proteomics has evolved into a powerful and widely used
analytical technique for researchers in diverse biological and clinical fields (1, 2). The increased
throughput of MS instruments has led to the identification and quantification of thousands of
proteins and their (modified) peptides in many experimental settings. To ensure the guality of
such experiments, many journals now require to follow specific guidelines prior to submission
(3). However, automated analysis workflows typically present long lists of identified and
guantified peptides and proteins used for downstream analysis by the investigator. Only a small
subset, like key proteins of signaling pathways and biomarker candidates are chosen for
biological follow-up experiments or additional validation by orthogonal assays. Unfortunately,
the underlying raw data for these critical peptides or proteins are rarely assessed at all or only in
few of several possible dimensions, which could prevent investigators from following up on the

best study candidates.

Applying the famous proverb "One picture is worth ten thousand words" to proteomics,
visualization may be the most obvious solution for validating identifications at the level of raw
MS data (4, 5). Inspecting the actual spectra of particular peptides, such as those with post-
translational modifications (PTMs) or those uniquely identifying a protein of interest, can reveal
important information, in addition to that used by the search engine. Furthermore, the advent
of ultra-high sensitivity LC-MS based workflows for the analysis of minute protein amounts down
to the level of single cells is currently lacking raw data visualization tools for the inspection and
validation of proteins of interest at the limit of detection (6-9). The identification of a peptide
amino acid sequence is part and parcel of high-confidence spectral identification and traditionally
entailed visual inspection and validation by the investigator. However, the ever-increasing
acquisition speed of mass spectrometers and the complexity of state-of-the-art scan modes in
large-scale proteomics experiments rendered this approach impractical when dealing with huge

data sets,
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In part, this is due to many challenges in proteomic data visualization. The visualization step
usually ranks last in the development of scientific algorithms or the establishment of novel
workflows for analyzing proteomics data. Visualization tools tend to become publicly available
with a considerable delay after the publication of the main workflows (10, 11). Because of their
closed nature, even recently published tools may rapidly become outdated if they fail to take
advantage of current advances in wisualization such as in interactive biological ‘big data’
visualization. In this regard, increasing established open source concepts can help to keep up with
the rapid pace of computational developments, building on powerful collaborative packages, for
instance those in the increasing popular Scientific Python environment (12-14), In our group, we
have focused on the visualization of highly complex multi-dimensional data acquired on Bruker
TimsTOF instruments, which includes the additional ion mobility dimension (15). The AlphaTims
package, as well as the parallel OpenTIMS effort, allows ready access and visualization of raw
data, which has not been practical due to the long accession times and absence of convenient

data structures (16, 17).

A major development in MS-based proteomics in recent years has been the success of machine
learning in predicting peptide properties including retention time, ion mobility and the intensities
of fragments in the M52 spectra (18, 19). As a result, all these properties could be used tovalidate
the proposed peptide spectrum matches, and this has already been done for spectral intensities
{20). We reasoned that combining data visualization with the benefits of deep learning
predictions, such as fragment ion intensities, retention time or ion mobility predictions, could
dramatically benefit the entire visualization and validation approach. As a particular example, the
assignment of convoluted fragmentation patterns in Data Independent Acquisition [DIA) to
peptide sequences is still an active area of research with major search engines such as DIA-NN or
Spectronaut sometimes disagreeing on the identification or matching of particular peptides (21,
22). Clearly, visualization of co-eluting fragments in the context of predicted retention times and
fragment intensities (‘in silico truths’) could help in establishing confidence in critical peptide

identifications.
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Many of the currently existing visualization tools are proprietary and integrated into MS data
analysis software pipelines by the MS manufacturer, such as Compass DataAnalysis (Bruker
Daltonics), Freestyle and Xcalibur (Thermo Fisher Scientific), Sciex 05 (Sciex) or by independent
providers, such as Spectronaut and Skyline (22, 23). There are also standalone tools for
visualization such as the PRIDE Inspector (24). However, in all these cases, these tools are difficult
to reuse, extend, or integrate into existing workflows for example for novel multi-dimensional

data, such as TIMS-TOF data.

Here, we developed a visualization tool with the following geals: It should allow (1) intuitive
visualization of search engine results of the underlying raw data; (2) integration of in sifico
predictions by deep learning algorithms; (3) automation for end users through a graphical user
interface or Jupyter Notebooks; (4) open-source accessibility and easy extendibility by
bioinformaticians to incorporate new developments, for example interactivity, big data

visualization and graph customization.

With these goals in mind, we developed AlphaViz, an open-source Python-based visualization
tool that allows the user to explore identification and quantification confidence of peptides by
visually comparing them to the signal presented in the unprocessed MS data. AlphaViz links
identifications to the evidences of the raw data to assess their quality by using results from
currently supported software tools, such as MaxQuant, AlphaPept and DIA-NN (10, 13, 21). It
makes use of current advances in visualization, such as interactivity, “big data” visualization or
real-time graph customization. The interactive plots included in AlphaViz provide the data on-
demand in order not to overwhelm users, and include, for instance, zooming, selection and
annotation. "Big data” capabilities make it possible to visualize millions of data paoints in a single
graph in a browser. This enabled the visualization of M5 heatmaps in AlphaViz, allowing to plot
intensity of observed precursor masses across retention time and to visually assess MS peptide
features in an enlarged view, In addition, customization of the plots, such as selection of a chart
color scale or the size and format of the exported plots, enables researchers to easily create and

extract illustrations of candidate proteins and peptides that are suitable for publication.
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AlphaViz follows robust software development standards (high-guality code, extensive
documentation, automated testing, and continuous integration} as a part of the AlphaPept

‘ecosystem’ (13).
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EXPERIMENTAL PROCEDURES
Publicly Available MS Datasets

To demonstrate the use of AlphaViz for DDA data, we obtained raw data files of a fractionated
Hela library (fraction 1) generated with the 120-min gradient dda-PASEF method together with
output of the MaxQuant software (v.1.6.1.13) from ProteomeXchange (data set PXD010012)
(25). For the visualization of DIA data, we used a dataset previously acquired in our group: a 21-
min gradient (60 samples per day) HelLa sample acquired on Evosep / timsTOF with the dia-PASEF
method {data set PXD017703) (26). The results of DIA-NN analysis (v.1.7.15) of these data were

taken from reference (27).

Additionally, we are presenting in-detail phosphoproteomics analyses. We used a recently
published dataset where Hela cells were stimulated with EGF or left untreated, enriched for
phosphopeptides and acquired in three replicates each on a timsTOF Pro instrument with a 21-
min gradient and an optimal phosphoproteomics dia-PASEF method {28). The copied output of
DIA-NN analysis (v.1.8) was filtered for 1 % PTM g-value, collapsed with the Perseus plug-in and
filtered for 75 % localization probability (28).

Data Acquisition for the Predict Mode Measurements

To demonstrate the ‘predict mode' of AlphaViz, we synthesized phosphorylation positional
isomers of the Rabl0 peptide FHTITTSYYR. These isomers were dissolved in solution A* (0.1%
TFA/2% ACN], and 125, 250, 500, 1250, 2500, and 5000 fmol of them were spiked into 50 fmol of
bovine serum albumin. We measured the samples using a dia-PASEF method optimized for
phosphoproteomics and 21 minutes Evosep gradients (60 samples per day method) combined
with the timsTOF Pro (Bruker Daltonics) (28). The peptides were separated using an 8 cm » 150
pm reverse-phase column packed with 1.5 pm Ciz-beads (Pepsep) connected to a 10 pm |D nano-
electrospray emitter {Bruker Daltonics). Our dia-PASEF method covered an m/z-range from 400
to 1400 Da and an ion mobility range from 0.6 to 1.5 Vs cm @ with 12 dia-PASEF scans (cycle time:
1.38s). The collision energy depended on the ion mobility and changed from 60 eV at 1.5 Vs cm”
ZtoSd4eVat1.17Vsem?2to 25eV at 0.85 Vs cm™?, and to 20 eV at 0.6 Vs cm2.

Design and Implementation
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AlphaViz is written in Python, and its source code is freely available on GitHub

(https://github.com/Mannlabs/alphaviz) wunder the Apache license. The AlphaViz

implementation combines a comfortable, reproducible and transparent working environment
{Jupyter notebooks, GitHub, Binder, pytest} with a Python scientific stack consisting of highly
optimized packages with elaborate testing, documentation and maintenance, allowing a focus
on domain knowledge rather than implementation details (Fig. 1A). For data analysis in Python,
we use NumPy for array manipulation, Pandas to handle tabular data, and Numba to speed up
code execution with just-in-time code compilation. Furthermore, we use several open-source
Python libraries for proteomics data analysis, such as AlphaTims to access Bruker '.d’ files and to
canvert them to Hierarchical Data Format (HDF) for fast reuse (16), and Pyteomics to handle
‘ fasta’ files (29). A set of well-established plotting libraries was used to generate all plots and a
graphical user interface {GUI): (1) Bokeh, Plotly and Holoviews were used to build different types
of interactive visualizations; (2) Datashader for fast visualization of large data sets; (3) Panel to

implement a fully stand-alone GUI.

The alphaViz implementation in the GitHub repository is organized into independent functional
madules: (1) a ‘data’ folder with some necessary tables for performing calculations; (2) an ‘i’
module providing functionality for reading output files of proteomics data analysis programs; (3)
a ‘preprocessing’ module that includes data preprocessing functionality; (4) a ‘plotting” module
containing all functions creating plots; (5) a 'utils” module including commeon utilities; (6) and a
‘gui’ module containing the entire implementation of the AlphaViz GUI. The helper units include:
(1) a 'style’ folder with files specifying the style of the dashboard elements; (2} an ‘img’ folder
with logos and static images included in the GUI; (3] a 'docs’ folder including a comprehensive
GUIl user guide. Besides the modular ‘alphaviz’ folder, the repository contains additional
important information such as: (1) an ‘nbs’ folder with Jupyter Notebooks as tutorials for
AlphaViz as a Python package usage; (2) the ‘test’ and 'test_data’ folders containing functions
which test the functionality of all previously mentioned Python modules and the necessary test
data for them; (3) a general .README file with details on installation, usage of the different
AlphaViz modes (GUI or a Python package), contributions and much moare; (4) a ‘requirements’

folder with specific dependencies; (5) all other folders, e.g. ‘misc’, ‘docs’, “.github’ and ‘release’
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that are involved in a continuous integration pipeline with automatic testing, creation of GUI
installers for all 05, the release of the new versions on GitHub, PyPI

{https://pypi.org/project/alphaviz/) and ‘Read the Docs’

(https://alphaviz.readthedocs.io/en/latest/).

Maodes

Depending on users’ programming skills, AlphaViz can be operated in two modes: a user-friendly

browser-based GUI and a well-documented and tested module with Python functionalities.

The AlphaViz GUI has one-click installers provided on the GitHub page for Windows, macOSs and
Linux (https://github.com/MannLabs/alphaviz#fone-click-gui). A comprehensive AlphaViz user

guide is provided on GitHub.

AlphaViz can be installed from PyPI using the standard pip module. Compared to the GUI, this
mode provides more flexibility for users with programming experience, allowing reuse of the
plotting or data importing or preprocessing functions to reproduce the same analysis and
visualization. To facilitate the use of AlphaViz as a Python package and to lower the entry barrier
for users, we created Jupyter notebook tutorials separately for the different available pipelines:
for DDA data analyzed with MaxQuant, for DIA data analyzed with DIA-NN, and for the targeted
mode without any prior identification. The tutorials offer code to reproduce the results obtained

in the GUI.
Quality metrics

We include the following statistical distributions of peptide data which should be checked in

AlphaViz to ensure good data quality:

- for DDA data analyzed by MaxQuant (sixteen parameters): m/z, Charge, Length, Mass,
1/K0, CCS, KO length, Missed cleavages, Andromeda score (peptide score), Intensity, Mass
error [ppm], Mass error [Da], Uncalibrated mass error [ppm], Uncalibrated mass error
|Dal, Score (protein score), (EXP) # peptides (the number of experimentally found

peptides);

10
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- for DDA data analyzed by AlphaPept (eighteen parameters): m/fz, Charge, Mass, IM,
Length, delta_m, delta_m_ppm, fdr, prec_offset_ppm, prec_offset_raw, hits, hits_b,
hits_y, n_fragments_matched, (EXP) # peptides, g_value, score, score_precursor;

- for DIA data analyzed by DIA-NN (seventeen parameters): m/z, Charge, Length, IM,
CScore, Decoy.CScore, Decoy.Evidence, Evidence, Global.Q.Value, QValue,
Quantity.Quality, Spectrum.Similarity, (EXP) # peptides, Global.PG.Q.Value, PG.0O.Value,

PG.Cuantity, Protein.Q.Value.
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Fig. 1. AlphaViz project dependencies and workflow. A, Python libraries and other services used in AlphaViz. The
Python libraries and services fall into three groups, those for (1) efficient working and test environment; (2) data
preprocessing and handling; and (3) visualization and the graphical user interface, B, Overview of the AlphaViz
workflow, First AlphaViz directly reads the raw data together with the results of the supported proteomics
workflows, reporting identified and quantified proteins of interests i.e, differentially regulated proteins. The overall
sample quality can then be assessed using various quality metrics as a basis for further evaluation. Next, the user
can inspect the individual quality of the critical proteins as well their identified peptides through AlphaViz. This is
done at different levels, such as LC, IM, MS1 and M52 levels, which can also be predicted using the built-in deep
learning models for comparison. The ‘predict mode’ also allows to retrieve the signals from the raw data for peptides
of interest that were not reported by the search engine {see Results for further explanation).
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RESULTS

We developed AlphaViz to visually validate critical proteins and peptides at the raw data level. It
currently supports timsTOF data acquired in data-dependent acquisition (DDA} or data-
independent acquisition (DIA) mode. As detailed in the Experimental Procedures, AlphaViz is
written in Python using various open-source libraries for data accession, analysis and
visualization. To ensure that the tool can be used by a wide audience, AlphaViz is available on
Windows, mac05, and Linux, in two different modes: a convenient graphical user interface (GUI)

and as a well-documented and tested Python package.

AlphaVir works either with the output of proteomics software pipelines or only at the raw data
level. Using the output results, it first enables the overall quality of a particular sample to be
assessed, as a basis for further automated analysis. It then superimposes the identifications
provided by comman proteomics workflows, such as MaxQuant, AlphaPept, or DIA-NN, on the

raw data signals.

For integrating in silico predictions of experimental peptide predictions from the (modified)
sequences, we use our AlphaPeptDeep package that itself is built on the pDeep model (30-32).
In contrast to pDeep, AlphaPeptDeep supports not only M52 prediction but also retention time
(RT) and collisional cross section (CCS) prediction for any peptide maodification (33, 34).
Furthermore, AlphaPeptDeep provides easy-to-use transfer learning functionalities that were

also used in AlphaViz to fine-tune the experiment-specific RT predictions.

These readily available in silico predictions for any peptide sequence, enables a distinct ‘predicted
mode’ whereby the calculated coordinates of a peptide sequence of interest are projected onto

the raw data. A variety of its applications are shown below,

In the following, we employ several use cases or examples to describe the entire validation
procedure for peptides of several specific proteins using DDA and DIA data, pinpointing unreliable
peptides although they were highly scored by software analysis tools. We then show applications
of peptide signals retrieved directly from the raw data based on the predicted or experimental
properties of the peptides. Finally, we illustrate the use of AlphaViz to explore critical nodes in

the phosphoproteome of the EGF signaling pathway.
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Visual validation of global parameters and individual peptides of critical proteins

Today, researchers typically at best inspect a few examples of all detected peptides, yet rarely
the main biclogical or clinical hits that are the main results of the project. Furthermaore, the
overall quality of the proteomics dataset is often not examined at the level of MS results. This is
partly because it may not be easy in the available software to assess these crucial parameters
and results, especially for dda- or dia-PASEF data. Clearly, it would be desirable to be able to
confirm at a global level of each LC-MS run that the proteomics data is free of major issues ar
biases so there is a solid basis for further evaluation. After that, verification should be done
individually for each protein of particular interest at the peptide level. This will help to increase
confidence in the protein identifications reported by the search engines or result in discarding

the identification during the various quality checks as illustrated below.

In Figure 2A we exemplify the entire validation process applied to the DDA data, which originates
from a Hela sample acguired on a timsTOF instrument with a 120-min gradient in dda-PASEF
maode and analyzed by MaxQuant (Fig. 2A, Experimental Procedures) (10). We first imported all
raw data and MaxQuant results. AlphaViz then displays the overall guality metrics of the raw data
to ensure the quality of the MS runs, which is shown for Fraction 1 as an example (Fig. 2B). In the
total ion chromatogram (TIC) and base peak intensity (BPI) chromatogram the typical shape and
overall high stable intensity level of the M51 and M52 TIC reveal no anomalies {Fig. 2B). The M51
and MS2 BPI also indicate no major issues with saturation of the LC-MS system, such as
overloading or contamination (Supplementary Fig. S1A). To dig deeper into the raw data quality,
we suggest using AlphaTims, which quickly displays any desired slice of the billions of raw data
points (16]. Next, we selected six metrics available in AlphaViz to obtain an overview of all the
peptides identified by MaxQuant, which revealed typical distributions for m/z values, peptide
lengths, ion mobility values, and number of peptides per protein (Fig. 2B, Supplementary Fig. 518,
Experimental Procedures). However, a clear overall mass-shift is apparent. This is caused by
AlphaViz using the raw data directly instead of re-calibrated values after a first database search.
When inspecting individual peptides (see below), the re-calibrated mass measurements are used,
with a user-definable tolerance, i.e. for visualizing extracted ion chromatogram (XIC) traces.
Many peptide metrics are relative to an overall distribution and visualizing their position
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respective to the raw data with AlphaViz allows context-specific interpretation. For instance, the
Andromeda score (MaxQuant) at 1% FDR shows an interquartile range (IQR) between 47 and 100
with 379 outliers above 177, suggesting that values above 100 should have a very high probability

to be correct,

We next inspected peptides of interferon-related developmental regulator 1 protein (1D 000458)
to represent a protein of particular biological importance that was identified with only a few
peptides and a relatively low protein score of 35 which is in the first quartile of the distribution
{Supplementary Fig. 51B). The protein g-value {probability to be wrongly identified) is only about
10*, derived from the peptide posterior error probabilities (PEPs) of its two identified peptides,
one of them also as an oxidized form. The Andromeda scores of the unmodified peptides are
130.3 and 132.4, well within the highest quartile with a PEP of less than 0.6%. Because of the
discrepancy of these high peptide scores and the low protein score, we visualized the underlying

raw peptide data in AlphaViz.

We first assessed the XIC of the unmodified peptide HLYNSAAFK (% 15 ppm, + 0.05 1/K0, Fig. 2C).
This revealed a pronounced peak at the reported retention time of 32,96 min, close to the value
of 34 82 min predicted by AlphaPeptDeep. Moreover, the peak shape was Gaussian with limited
tailing. Similarly, the extracted ion mobilogram (ppm and retention time window of + 15 ppm
and + 30 seconds) shows a narrow peak at the reported 1/K0 of 0.874, almost identical to 0.892
predicted by AlphaPeptDeep. This also illustrates the advantage of the additional ion mobility

dimension to evaluate the quality of peptide identifications.

AlphaViz can also visualize the M51 context from which the precursor was picked for sequencing,
in this case revealing a well-defined feature in the m/z and ion mability dimensions (the entire
heatmap with the zoomed view in Fig. 2C). All fragment ions for this particular peptide are
present in the MS2 spectrum with an average absolute mass error of 3.1 ppm. The spectrum
predicted by deep learning in the mirrored spectrum has a similar intensity pattern as the
measured one (Pearson correlation coefficient of 0.841, Fig. 2C, bottom panel]. Although some

peaks remain unidentified, most of the larger peaks are correctly annotated.
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We then examined the second unmodified peptide LPSLLSCDDVNMR. Despite its similarly high
score, and PEP of 107, its XIC was two orders of magnitude less intense and without a well-
defined peak shape at the claimed retention time (82.45 min; predicted 83.28 min). Similarly, the
extracted ion mobilogram also lacks the expected clear peak shape at 1.064 1/K0 (predicted
1.038 1/K0, Fig. 2D). In comparison to the previously analyzed peptide, it is apparent in the
heatmap for the MS1 frame that the peptide of interest was picked in a crowded region, which
could potentially lead to a chimeric M52 spectrum. This goes along with its fuzzy M51 feature in
the m/z and ion mobility dimensions and a relatively large mass deviation of around 50 ppm (Fig.
1D). In addition, the MS1 spectrum reveals an isotope pattern with some interference from
another precursor. However, when inspecting the MS2 spectrum, many ions from the b- and y-
series were identified by MaxQuant with a mean mass error of 0.3 ppm and demaonstrated a
similar intensity pattern with the predicted mirrored spectrum (Pearson correlation coefficient
of 0.780, Fig. 2D, bottom panel). This turned out to be the reason for the high Andromeda score
of the peptide, which is based on the number of detected fragment ions. Nevertheless, both the
low values of the overall absolute peak intensities in the MS2 spectrum (below 300) and the poor
data quality in other above-mentioned dimensions suggest that this peptide is a false positive hit
despite the high peptide score. Thus, we illustrate the use of AlphaViz to evaluate two identified
peptides of the same protein reported by MaxQuant with similar scores, only one of whom

should be considered as a reliable hit according to our analysis.
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Fig. 2. Validation pipeline in AlphaViz of two unmodified peptides of the same protein using timsTOF DDA data
analyzed by MaxQuant. A, Workfiow. A fractionated 120-min Hela sample, acquired with dda-PASEF and analyzed
by MaxQuant (PXDO10012) (25), was imported in AlphaViz. B, Overall sample quality. Chromatograms and additional
guality metrics of fraction 1. Interferon-related developmental regulator 1 protein (ID 000458) was selected for
further detailed exploration. The “Protein coverage” bottom panel shows the identified peptides in the sequence
context of the protein (similar to, but less detailed than AlphaMap (35)). € and D, The visualization of XIC,
maobilogram, M51 spectrum with overall and zoomed MS1 heatmaps together with the experimental and predicted
M52 spectrum. C, Peptide view. |nspection of the unmodified peptide HLYNSAAFK reveals it to be a high confidence
Identification. O, Peptide view. The unmaodified peptide LFSLLSCDDYMNME has low confidence.
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Visual validation of peptidoforms of the proteins of interest

In recent decades, MS has become the tool of choice for large-scale identification and
guantitation of proteins and their post-translational modifications (PTMs) and the computational
workflows for the analysis of DDA have matured. DIA analysis is comparatively newer and less
established, especially when PTMs are being analyzed (28, 36-39). Although modern proteomics
workflows report the localization of the identified PTMs and the associated probabilities, in our
experience it is still necessary to manually validate the results for individual proteins and PThs
of critical importance. Compared to DDA data, validation of peptides at the raw level in the DIA
pipeline should additionally include detailed inspection at the precursor retention time and, if
applicable, ion maobility values. The values extracted from the library should then match the
values in the raw data within the experimental error, especially the coelution of matched

fragments and precursors.

Figure 3A presents the entire validation process of peptidoforms applied to a8 Hela sample
acquired on a timsTOF Pro instrument with a 21-min gradient in dia-PASEF mode and analyzed
by DIA-NN (Experimental Procedures). We first imported the raw data file of the selected sample
along with the DIA-NN output result into AlphaVfiz. The overall sample quality panel in AlphaViz
was used to evaluate the overall quality of the selected sample (A5_1_2451] (Fig. 3B). The TICs
and BPIs for M51 and M52 levels demanstrate typical shapes and overall high level of intensity
without any visible anomalies (Fig. 3B, Supplementary Fig. S2A). As before, for further quality
checks, such as verification of mass calibration or lon mobility stability, we suggest using
AlphaTims (16). By selecting six out of seventeen available quality metrics, we observed typical
distributions of important parameters, such as peptide m/z, ion mobility values and a
preponderance of double- and triple-charged ions (Fig. 3B, Supplementary Fig. 52B, Experimental
Procedures). Furthermare, a high number of peptides identifying each protein also serves as an
important quality assurance. For our example, the peptide score distribution (Quantity.Quality
score| in DIA-NN for each individual peptide at 1% FDR shows an IQR between 0,67 and 0.91,
suggesting that scores above 0.91 {top 25% of the significant scores) should be correct with a

high probability.
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Satistied with the overall sample quality check, we chose eukaryotic initiation factor 441l protein
{ID P38919, g-values < 107 for further investigation because of its high sequence and PTM
coverage including a total of 20 peptide variants that mapped to thirteen peptides with g-values
< 5*103 Two of these peptidoforms were the unoxidized and oxidized forms of the N-terminally
acetylated peptide ATTATMATSGSAR, which were reported with similar scores by DIA-MN of 0.98
and 0.91 respectively.

To investigate if both forms were actually present, we first assessed the M51 heatmap of the
unoxidized peptide ATTATMATSGSAR (Fig. 3C). The extracted position of the peptide on the m/z
wversus ion mobility MS1 heatmap revealed a well resolved feature (Fig. 3C). The elution profiles
of its precursor with all fragment ions (£ 30 ppm, + 0.05 1/K0, £ 30 sec) likewise demonstrated a
sharp high-intensity precursor peak at 6.13 min {predicted 6.29 min), which coelutes with almost
all of the main fragment ions. Taking advantage of ion mobility to ensure the presence of the M5
signals, we also visualized the heatmaps for the precursor and each individual fragment in
retention time and ion mobility dimensions colored by intensity. These heatmaps confirm the

presence of the analyzed peptide.

Investigation of the MS1 heatmap of the oxidized form of the same peptide revealed a
comparably well-defined M51 feature (Fig. 3D). However, analysis of the elution profiles in the
retention time dimension only showed a low-intensity precursor peak at 4.56 min (predicted 4.07
min} with only few and unaligned peaks. Conversely, the heatmaps for the precursor ion and its
fragment ions confirm the absence of fragment ions signals within the expected retention time
and ion mobility ranges. Correct identification of modified peptides in DIA data is a2 known
challenge and is thought to be impeded by the presence of shared unmodified fragments of the

base peptide in the DIA matching library (38).
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Fig. 3. Validation pipeline in AlphaViz of two peptide variants using timsTOF DIA data analyzed by DIA-NN. 4,
Workflow. & 21-min Hela sample, acquired with dia-PASEF and analyzed by DIA-NN (PXD017703), was imported into
Alpha\iz (26, 27). B, Overall sample quality. Chromatograms and additional quality metrics of fraction 1. Eukaryotic
initiation factor 4A-lll protein (ID P38919) was selected for further detailed exploration. The “Protein coverage”
hbottom panel shows the identified peptides in the sequence context of the protein. C and 0, Visualization of overall
and zoomed-in M51 heatmaps, precursor and fragments elution profiles in bath retention time (line plots) and
retention time and ion mobility (heatmaps) dimensions. € Peptide wiew. The unoxidized N-terminal acetylated
peptide ATTATMATSGSAR shows high confidence. D, Peptide wiew. The oxidized peptidoform of the same peptide
demaonstrates low confidence.
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Validation of peptides directly in DIA raw data with the ‘predict mode’ in AlphaViz

The processing of DIA data Is computationally challenging due to the high complexity of M52
spectra containing fragments of multiple precursors from each single isolation window. Peptides
with low signal intensities can be difficult to detect and easy to misinterpret. Conversely, quality
measures of such peptides, provided as g-values, often fall below preset thresholds, resulting in
“missing values”, even though the peptide is actually present. We hypothesized that by manually
visualizing their signals in AlphaViz, they could still be extractable from the raw data. This is
enabled by the integration of deep learning assisted prediction of retention time and ion mobility
of AlphaPeptDeep in AlphaViz. We tested our hypothesis with two use cases: one regarding the
detection of positional iseforms of a synthetic phosphopeptide and one regarding the retrieval

of missing values.

We had previously identified the Rab10 protein as a clinically important substrate in Parkinson's
disease (40, 41). In the course of developing an assay to measure the phosphorylation site
occupancy, we had synthesized positional phosphoisomers of the Rabl0 peptide FHTITTSYYR
(Fig. 4, left panel) (42). When analyzing these peptides by DIA software, they were not reported
to be present (Experimental procedure). By predicting the retention time and ion mobility values
for the different charges of two known phosphoisomers, their elution profiles were easily
detected in the raw data of the two highest concentrations (Fig. 4, right panel, Supplementary
Fig. 53). The XICs {+- 30 ppm, +- 0.05 1/K0, +- 30 sec) demonstrate clearly defined high-intense
precursor peaks with coeluting b3-b6 and y3-y6 fragment ions. The presence of these fragment
ion signals is further confirmed by heatmaps that take advantage of the additional ion mobility
dimension, Note that there is a slight difference between the predicted and actually observed
retention time, which is not unexpected given the estimated accuracy of the prediction (32).
Given the co-elution behavior of the expected fragments in the AlphaViz, we confirmed the
presence of the intended phosphoisomers and concluded that they were not detected in all

samples because of low MS signals.
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Fig. 4. Validation of the presence of synthetic phosphoisomers of Rabl0 peptide in DIA raw data. Lefr panel,
Synthetic positional phospho-isomers of the Rab10 peptides. Right panel, Extracted peptide signals for the sequences
with a green box in the left panels. Heat map of transitions from the raw data for the unmodified peptide and its two
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To test if AlphaViz could retrieve seemingly missing values, we used the same Hela DIA dataset
as for the visual validation of peptide-forms above (Experimental Procedures). For illustration,
we selected the cysteine-carboxylated peptide LCYVALDFEQEMATVASSSSLEK, which was the only
one identifying the POTE ankyrin domain family member F protein {ID ASA3ED). It was only
reported by DIA-NN in one of three technical replicate analyses (5ample A6_1_2452) but with a
high peptide g-value of 7*10%, To assure that the pratein is really present, we investigated the
raw data signal of this peptide in AlphaViz (Fig. 5). For the replicate in which the peptide was
identified, the position of the peptide on the M51 heatmap is in a crowded part of the lon cloud,
but the zoomed-in view revealed no interfering peptides (Fig. 5). The XICs and heatmaps for the
peptide and fragments (b3-b8 and y3-y8 fragment ion series) confirm the presence of the

peptide. Taking into account the information about the detected peptide, such as its retention

75



3. Publications

bioRxiv preprint doi: https:/doi.org/10.1101/2022.07.12.499676; this version posted July 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
avallable under aCC-BY 4.0 Internationa! license.

time, charge, and ion mobility, we were able to retrieve this peptide sighal in the other two
replicates where this peptide had not been reported. Interestingly, we found high quality signals
for this peptide comparable to the first sample in both remaining copies, suggesting that

improvements to the software could in the future lead to even higher data completeness.
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Fig. 5. Validation of peptide signal presence in all replicates of an experiment. Left part, Experimental details. Three
replicates of a Hela analysis on a timsTOF pro instrument analyzed by DIA-NN (PXD017703) (26, 27). The POTE
ankyrin domain family member F protein (ID ASA3EQ) with only a single cystein-carboxylated peptide
LCYVALDFEQEMATVASSSSLEK identified in one replicate (Sample A6_1_2452) was selected for further investigation.
Right part, Extracted peptide signals. Raw data extracted for the identified peptide (top). Based on the known

peptide sequence, the raw signal of this peptide was successfully extracted from the two remaining samples in which
the peptide was not initially identified.
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Data quality assessment and discovery of EGF signaling events using AlphaViz

Studies on post-translational modifications (PTMs) by their nature rely on the identification and
quantification of single peptides and are especially affected by poor peak qualities and missing
values, the two major challenges AlphaViz tries to overcome. We investigated signalling events
activated along the well-studied epidermal growth factor (EGF) signaling pathway. Binding of EGF
to its receptor EGFR induces a signalling cascade mediated by phosphorylation leading to cellular
praoliferation, differentiation and survival (43). We used a recently published dataset where Hela
cells were stimulated with EGF or left untreated, acquired in three replicates each on a timsTOF
pro instrument with a 21-min gradient in dia-PASEF mode and analyzed with DIA-NN
(Experimental Procedures) (28). When filtered for 100% valid values in each condition, DIA-NN
detected 1,403 phosphosites as significantly upregulated, of which 56 were localized on proteins
known to be part of the EGFR signaling pathway [according to Gene Ontology Biological Process
(GOBP) (44). To evaluate the data quality of regulated phosphosites, we picked significantly
upregulated phosphosites with DIA-NN scores = 0.7 (FDR < 0.05). The majority of regulated
phosphosites with higher DIA-NN scores showed well correlating elution profiles of precursor and
fragment ions, for example the peptide carrying the phosphorylation on 5642 of RAF1 (Fig. BA,
green in Fig. 6B). However, others demonstrated poor data quality (red in Fig. 6A). This also
affected phosphorylation on proteins known to be associated with the EGFR signaling pathway
that are presumably correct. For example, the CBL (Casitas B-lineage Lymphoma) protein, an E3
ligase known to ubiquitylate EGFR showed poor quality elution profiles for its peptides
phosphorylated on 5619 and S667 despite a maximum DIA-NN score between replicates of 0.92
and 0.94 respectively (red in Fig. 6B) (45). Specifically, AlphaViz only retrieved an elution peak for
the precursor but none of the expected fragments co-eluted. This was the case for a number of
peptides in the EGFR pathway (red in Fig. 64). We assume that the neural network in DIA-NN
scored the presence of the peptide in these cases mainly based on the precursor. While this may
be justified in these cases, it would be problematic without supporting biological a priori
information. We hope that this observation will initiate improvement to software tools — for
instance it could be reported that matching was only based on M1 level. In any case, we

recommend to employ AlphaViz for data quality checks befare extensive follow-up experiments.
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A second challenge are missing values, especially in PTM studies. Although this problem is much
reduced in DIA compared to DDA data, it still occurs frequently especially as sample size grows
(39, 46-48). This is due to the complexity of spectra, the low abundance of modified peptides
and the technical variability, Unfortunately, it has been impossible or extremely laborious to
manually check raw data for specific spectra or elution groups of modified peptides that were
not reported by the proteomics workflows. The predict mode in AlphaViz addresses this issue. It
only requires the peptide sequence, peptide charge and type and localization of its modification

to predict its retention time, ion mobility and fragment intensities.

We first investigated functional phosphorylation events on proteins involved in EGF signalling
that showed increased intensities upon EGF treatment, but were lost due to filtering the dataset
for 100 % valid values in at least one condition. In most of these cases, the data guality of
phosphopeptides in replicates where the DIA software did not report intensities was comparable
to the respective replicates with reported intensities. This affected phosphorylation events on
proteins along the whole EGF signalling pathway starting with the EGFR receptor itself (Y1197),
kinases regulating downstream signalling like GSK3B (T390) and phosphorylation events
activating transcription factors like MEF2D (5251) and ATF2 (590) (Fig. 6C, Supplementary Fig.
54). These examples are clearly false negatives of the computational pipeline and they prove the
potential of our tool to recover biologically correct regulatory sites. In the case of novel sites,

AlphaViz could have prevented them from being discarded because of data incompleteness.

Besides these reported regulatory phosphosites, the predict mode also provides the possibility
to look for phosphorylation events in the raw data that have not been identified by the
proteomics software at all. In these cases, AlphaViz uses the peptide sequence, PTM localization
and charge state of modified peptides of interest to retrieve the corresponding locations in the
raw data. To illustrate, in the EGF dataset, we would have expected increased phosphorylation
of the nuclear pore complex protein 50 (NUPS0) on position 5221, which is mediated by the
extracellular signal-regulated kinases (ERK) downstream of the EGF receptor (49), but no such
peptide was reported. Remarkably, elution group profiles at the predicted retention time and ion
mobility were of good guality and confirmed the presence of this phoshopeptide in the sample

(Fig. 6D}. This was also the case in a second example, relating to EGF-induced activation of the
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protein kinase C delta (PRKCD), a kinase regulating cell-adhesion upon EGF stimulation, which

leads to its autophosphorylation at S304 (50, 51). Hence, the predict mode allows us to efficiently

investigate specific signalling events of interest that were missed by MS software tools through

direct inspection of the raw data.
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Fig. 6. Investigation of EGF-induced phosphorylation events in AlphaViz. A, Scheme of significontly upregulated
phosphosites investigated in AlphaViz. Based on visual inspection, we divided the reported phosphosites into four
main groups: high confidence (green), low confidence (red), recovered after filtering (yellow), and predicted and
confirmed (white). B, Elution profiles of two phosphorylation sites with high (S642 of RAF1) and low (S619 of CBL)
confidence. C, Elution profiles of two phosphorylation sites (Y1197 of EGFR and 590 of ATF2) recovered after filtering
out. D, Elution profiles of twe phosphorylation sites (5221 of NUPS0 and 5304 of PRKCD) not reported by DIA-NN

but found in the data using predict mode.
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DISCUSSION

Increasingly automated and capable proteomics processing workflows provide researchers with
an easy way to summarize the results of proteomics experiments with statistical confidence
measures. However, expert evaluation of individual peptides and proteins is lost along the way.
To remedy this, we have developed AlphaViz, a Python-based software package for easy visual
validation of critical identifications. Like other members of the AlphaPept ecosystem, it adheres
to modern and robust software development principles and it is available to community as a

Python module and the GUI for end users,

Future implementations of AlphaViz will include the support for more MS platforms, especially
Orbitrap instruments, as well as the integration of results from other used proteomics software
packages. Furthermore, due to the well-documented and tested open-source code, AlphaViz is
easily extendable by bicinformaticians who want to integrate the latest cutting-edge ideas, as
already demonstrated by AlphaPept and AlphaTims (13, 16). Additionally, directly linking protein
candidates from fully automated downstream analysis packages like the clinical knowledge graph
will further strengthen the link between raw data and biological insight (14). Since the
visualization capabilities of AlphaViz are only limited by data structure, it can also be used for the

in-depth inspection of lipidomics and metabolomics data.

Here we have demonstrated how AlphaViz can quickly give the researcher confidence in
identified, critical peptides by inspection of the search results with the raw chromatographic, ion
mobility, M51 and M52 levels. Canversely, visualization strangly suggests that some peptides are
likely false positives despite of their high search engine scores. Furthermore, AlphaViz makes use
of the revolution in deep learning enabled prediction of experimental peptide properties from
the identified amino acid sequence. This feature is the basis for the ‘predict mode’, in which we
retrieve the raw data for peptides that were not reported by the automated waorkflow, but were
potentially present in the data. This may allow the rescue of low-level signals that are biclogically
expected to be present or are present in some but not all replicates. In phosphoproteomics of

the EGF signaling pathway, we showed how this can help to validate the presence of reported
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signal nodes, and to avoid extensive follow-up experiments for novel phosphorylation sites

whose raw data make them unlikely to be true.

In conclusion, we believe researchers will profit from the minimal time investment to visually
check their critical peptides and proteins, potentially saving the community and themselves from
futile follow up work. This is particularly true of very surprising and biologically unexpected
results that then fail to be reproduced by the wider community, In this context, journals could
encourage or mandate the inclusion of such extra data and visualizations for the critical peptides
or peptidoforms that form the basis of the new hypotheses, helping to address the ‘crisis of

reproducibility’ (52, 53).
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Although bottom-up MS proteomics routinely reports thousands of proteins, it is
conceptually based on the analysis of peptides rather than intact proteins. Therefore,
evaluating the sequence coverage of individual proteins by identified peptides with
respect to specific protein domains and comparing observed and previously annotated
post-translational modifications is an important part of the downstream MS data
exploration and is carried out on a regular basis. However, the ability to integrate and
visualize experimental data at the peptide and PTM level together with curated protein
sequence information across multiple datasets while supporting different state-of-the-art

proteomics data analysis software frameworks is still missing in the proteomics field.

To remedy this, we developed AlphaMap, a Python package that facilitates the visual
exploration of proteomics data at the peptide level, while additionally integrating protein
sequence information based on proteolytic cleavage sites and annotations from the
UniProt database. We described the use of AlphaMap in a variety of applications, from
optimizing sample processing, through technical comparisons, to validating candidate
in a biological or clinical context. Since its publication, it has already become a regularly
used tool in our group (Article 7). Furthermore, the easily extendible modular design of
AlphaMap has made it possible to further integrate the mapping of peptides and PTMs
to three-dimensional protein structures predicted by AlphaFold (123).

My contribution to this paper was to implement the core AlphaMap functions and the

graphical user interface, as well as to help write the manuscript.
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Abstract

Summary: Integrating experimeantal information across protzomic datasets with the wealth of publicly available sa-
quence annaotations is a crucial part In many proteomic studies that currently lacks an automated analysis platform,
Here, we present AlphaMap, a Python package that facilitates the visual exploration of peptide-level proteomics data.
Identified peptides and post-translational modifications in proteomic datasets are mapped 1o their corresponding pro-
tain saguence and visualized together with prior knowledge from UniProt and with expectad protechytic cleavage sites,
The functionality of AlphaMap can be accessed via an intuitive graphical user interface or—more flexibly—as a Python
package that allows its integration into commeon analysis workflows for data visualization. AlphaMap produces
publication-gquality illustrations and can easily be customized 1o address a given research question,

Availability and implementation: AlphaMap is implementad in Python and released under an Apache license. Tha

source code and one-click installers are freely available at hitps:/github.com/MannLabs/alphamap.

Contact: mmann@biochem.mpg.de

Supplementary information: Supplementary data are available at Biginforrmatics online.

1 Introduction

Borome-up mass speciromeny (M5) has beoome the leading rechnol-
ORY frer iJrutiE}'u:F and quanilying  profeomes {Acheesolkl and
Mann, 2003, 2016; Miller of al, 2020). Since peprides rather than
intact profeins are messuned, visualizing identified pepridss and
post-translational modifications (FTMs) together with known pro-
wein sequence imformanion is an impoertant aspect f downstream M5
data exploration. However, the ahility to easily imtegrate and visual-
ize experimental dara wgether with already known sequance annora-
tions is an wnmet need in the protecmics communiey, Although
established visualization platforms peevide manual visualization of a
i‘iﬂBll- [‘\'lll'ﬂlﬂ:'ll!uE 5..=|r|p|u or daraser ar g time (Omasies o8 af |
20014}, there 15 2 Jack of tools that support state-of-the-art data ana-
|1..-:i';.'| \nr}tw‘qr\r fri'mlrmrrlu :ll'ld I‘ll.il.l caln 1"n.|r.1lin,' l:xF!l,‘TIlrt\,‘ﬂliI L=
quence coverage across multiple samples or daeasets in combination
with available sequence annorations mined from UniPror, the stand-
ard knowledgebase for prorein information (Dareman, 20191, To
make this wealth of informanon easily accessible to profeomics

£ The Authnaizh 2021, Published by Duford Unbcersity Press

researchers, we diveloped AlphaMap, a Python package thar facili-
rates the visual exploraton of peptide-level proteomics daca,

2 The AlphaMap computational framework

In line with other recently developed sofrware toals from our lab
(Seravss e wf., 2001 Willems ef of., 2021), we iI|I11|.:||||:l|l|:|J
AlphaMap tn pure Python because of its clear, casy to understand
syntax and the availabilicy of excellent supporting sciennfic hbranes,
To read fasta files, we leverage the Pytcomics Python package
(Goloborodke or ol 2013; Levitsky et al, 2019). Plody i a well-
established plotting hbrary that we use tor generating AlphaMap's
sequence visualization (Ploty Technologivs Inc,, 2013), allowing
Aexable customizaton and peear user interacovity, To enable easy
access to the AlphaMap funcoonality wath a low barner of enery, a
stimid-alone graphical vser interface (GULY was impletmented using
the Panel libea ry (Rudiger ot af, MEE. .’\|ph.\M.lp can he launched
either as a browser-based GLUI after simple local inssallaton or as a

840
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standard Python module msmalled vaa PyPl (Python  Sofrware
Foundation, n.d. ) or directly from its GitHub repoatory,

In line with the AlphaPepr ecosvstem (Strauss et of,, 2021), we
make the AlphaMap code openly available on GitHub, using its
many supporting leatures for unie and sysrem testing via GitHob
wctioms, For code development, we adopted the concepr of 'literare
programming’ (Knuth, 19%4), which combines the algorithmic code
with readable documentacion and testing, Using the nbdev package,
the vodebase can directly be inspected in well documented Jupyrer
MNorehanoks, from which the ende w automarically exteaceed (Kluyver
etal,, 2016), We envision thar these design principles will enconrage

the broader commumty o mregrare AlphaMap in their own dara
analysis and visuabization wockfows with the possibilicy 1o easily
adopr the code according to specific needs.

3 Overview of the AlphaMap workflow

AlphaMap uses pepride-level protepmics dara as inpue. Ir currently
supports the direct impore of data processed by MaxQuane (Cox
and Mann, 2008}, Spectronaur (Broderer of al, 2005}, DIA-NN
{Demichev e al., 2020), FragPipe (Kong ef @, 2017 and our
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recently introduced Alphalepr framewerk (Strauss of al, 2021). In
contrast to Proter (Omasits ef ol 2004), users can select multple
independent dacasets for co-visualization, These could either have
been processed by the same or with different M5 analysis tools. Tt is
alsa possible to selece only 2 single sample, or a subset of wamples of
a given mpur file for individual sequence visvalizanon. In addition
1o the pepnde-level data penerated from LC-MS5 analyvsis, AlphaMap
leverages a plethora of manvally corated sequence-specific protein
Tevel infirmarion avilable fevm UmiPror. Fasea files aned UmProt se-
guence annocations are readily accessible in Alpha®Map for the 13
moer popular Unilror organisms as well as tor SARS-CoV and
SARS-CaV-l, Functwonaliy ro enable the mregration of addimonal
organisms s further available as pase of our Fython pockage.
Finally, the vaer can selecr the different layvers of information thar
should be displaved in the interacrive sequence representarion,
ncluding selected protease cleavage sites and Uml'rot sequence
anntations,  Figore 1A shows o schematic overview  of the
Alphablap workflow. Derailed mseructions for ite mstallation and
usage are further provided in the supplemencary user guide, In add-
itiom b imteractive sequence visualization of & vser-selecred protein,
AlphaMap provides individanl links to externnl darabases and rools
for further sequence evaluation in UniPror (Bareman, 2019),
PhosphoSitePlus [Hembeck er al., 2015), Proter (Omasits er al,,
2014, PDB {Berman ef af,, 2000) and Pepride Atlas | Desicre er al.,
2001,

4 Application of AlphaMap to investigate full
proteome and PTM data

Figure 1B shows the sequence visoalizarion of the peprides and
PTMs identified Eor the epidermal grovwth tactor recepror (EGFR)
in human ASA9-ACE? celly that were infected with SARS-CoV-2
ar 3ARS-CoV (an exemplary viral protein derecred in chis daraser
i visualized o the Supplementary Material) (Stukalos er al,,
2021}, We show three independent experimental traces: one for
full protecme data, one tor phospho-enriched peptides and one
for ubiguitin-enriched pepudes. The proteome data indicires a
homogeneous coverage across the entire protein sequence. As
expected, phosphorylation and uhquitmanon are bmited to the
Ceterminal region of the protein, which is annotared o be
exposed to the cytosol, [n addition, the kinase domain of EGFR 15
highly uhiquinmared in our daraser, whereas the sorrounding cyro-
sofic regions are phosphorvlated. Interestingly, AlphaMap repors
that most of our phserved phosphorylation sites have been previ
ously dentified, whereas none of the identified ubigquitinanon
sites are annotated in UniFror, Please note char unmaodified pepn-
des are also observed in both the phospho- and ubiguitin-enriched
samples due to the impertect selectnaty of enrichment prorocals,

Heyond the uses highlighted here, we envision AlphsMap o fa-
cilitaze darz analysis and mterpretaton for a vanery of differeac
applications:

o Candidate validation; AlphaMap can b used to assess the se-
quence coverage of identfied biomarker candidares (or other pro-
teins of interest) 1o evaluate posstble sequence variations or
unexpected anomalies on the basis of readily available sequence

information.,

* Preparation of panels for publicanon: Sequence visualizatinms
from AlphaMap can dicectly highhghr the precise M5 derived in-
formation abour protems of anrerest in biologieal or clmical
projjects.

*  Technical comparisons: AlphaMap can be nsed o evaluate se-
quence coverage between different data acquisinion strategics
such as data-dependent and data-independent acquasition, alter-
narive insrument plarforms or software rools.

¢ Oprimization of sample processiog: Visualization of protein
cleavage sites for different proteases can help to oprimize sample

processing with rhe goal to achieve a more complere sequence
COVEE e

5 Conclusion

AlphaMap offers an interactive GUL and 2 Python package for visu-
alizing peptide-evel bottom-up proteomics data on the basis of inds-
vidual procein sequences, including information of carated UniPror
sequence annatatiens and expecred proteclyric cleavage sites, We ex-
pect that future developments by ns and the community will exeend
the variery of avalable annotanons in AlphaMap, tor ecample by
including prior knowledge of sequence conservation or predicted
funesomal domams, In addition, we will integrare quantitative imfor-
mation and ditferential analysis resules into the AlphaMap sequence
representations, ‘We envision thar AlphaMap will assist M5-hased
pratgomics rescarchers in mspectng peptide: and FTM-level dara,
thereby providing valuable intormarion in the process of candidare
vilidanon in bislogical and climcal conexe,
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Over the years, technical advances in MS field have enormously increased the amount
and complexity of the data acquired. This is particularly relevant for complex biological
samples, e.g. in proteomics, lipidomics or metabolomics, which greatly benefit from
separation in more than just the mass dimension. In particular, the recent coupling of
MS with trapped ion mobility spectrometry (TIMS) has led to the emergence of a new
ion mobility dimension and has demonstrated many advantages, especially for MS-
based proteomics samples. However, the fast data accession of complex
multidimensional timsTOF data has proven to be a challenge in visualizing and

understanding the data.

In this publication we introduced an open-source Python package termed AlphaTims.
By indexing sparse four-dimensional timsTOF data of billions of detector events at the
scale of seconds, AlphaTims subsequently allows access to data along any available
dimension in a sub-second accession time on standard hardware. The fast data access,
combined with easy adaptability and extendibility due to detailed documentation and an
open code base makes AlphaTims an important software tool that is already widely used

in the proteomics community (124).

For this project, | was involved in the formal analysis and the project’s investigation, the

implementation of the code base and the writing of the manuscript.
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AlphaTims: Indexing Trapped lon Mobility
Spectrometry-TOF Data for Fast and Easy
Accession and Visualization

Sander Wiiiems'a_
Matthias Mann'~

High-resolution MS-based proteomics generates large
amounts of data, even in the standard LC-tandem MS
configuration. Adding an ion mobility dimension vastly in-
creases the acquired data volume, challenging both
analytical processing pipelines and especially data
exploration by scientists. This has necessitated data ag-
gregation, effectively discarding much of the information
present in these rich datasets. Taking trapped ion mobility
spectrometry (TIMS) on a quadrupoale TOF (Q-TOF) plat-
form as an example, we developed an efficient indexing
scheme that represents all data points as detector arrival
times on scales of minutes [LC), milliseconds (TIMS), and
microseconds (TOF). In our open-source AlphaTims
package, data are indexed, accessed, and visualized by a
combination of tools of the scientific Python ecosystem.
We interpret unprocessed data as a sparse four-
dimensional matrix and use just-in-time compilation to
machine code with Mumba, accelerating our computa-
tional procedures by several orders of magnitude while
keeping to familiar indexing and slicing notations. For
samples with more than six billion detector events, a
modern laptop can load and index raw data in about a
minute. Loading is even faster when AlphaTims has
already saved indexed data in an HDF5 file, a portable
scientific standard used in extremely large-scale data
acquisition. Subsequently, data accession along any
dimension and interactive visualization happens in milli-
seconds. We have found AlphaTims to be a key enabling
tool to explore high-dimensional LC-TIMS-Q-TOF data
and have made it freely available as an open-source Py-
thon package with a stand-alone graphical user interface
at httpsy/aithub.com/MannLabs/alphatims or as part of
the AlphaPept ‘ecosystem’.

The increasing amounts and complexity of data present a
fundamental challenge of data accession in different scientific
fields. MS, a leading analytical method in clinical and (bio)

, Eugenia Voytik', Patricia Skowronek ', Maximilian T. Strauss ', and

chemical research, is no exception. This issue is compounded
when coupling M3 with other technigues such as LG and ion
mobility spectrometry (1), which allow separating analytes
efficiently In scientific domains such as proteomics, lip=
idomics, and metabolomics {2-4). In our laboratory, this is
exemplified by TOF mass analyzers and trapped ion mobility
spectrometry (TIMS) (5-7). Typically, analytes are first sepa-
rated throughowut LC gradient times of several minutes or
hours. After jonization, they enter a TIMS tunnel where they
are trapped and separated in approximately 100 ms, This step
discretizes continuous LC separation nto jon packets with
undistinguizhable chromatographic retention time values, and
this smallest unit of LC separation is defined as a frame. Afler
TIMS separation, a quadrupole (Q) usually provides selection
for tandem MS (MS/MS) before ions reach the TOF acceler-
ator. lon packets are then sent orthogonally into the TOF
analyzer at regular intervals of about 100 ps by an electrody-
namic pusher, As mentioned previously, such a pusher event
discratizes continuous TIMS separation into ion packets with
undistinguishabla ion maobility (1/Kg), and this smallest unit of
TIMS separation iz defined as a scan. Finally, a detector at the
end of the TOF accelerator discretizes continuous ion arrival
times into TOF peaks of a few hundred picoseconds wide.
This combination of analytical techniques, in brief LC-TIMS-0-
TOF, has received much attention since the introduction of the
timsTOF Pro instrument (Bruker Daltonics),

The parallel accumulation-sernal fragmeantation [FASEF
method synchronizes ion mobility separation with O selection,
combining high-throughput with high sensitivity in both data-
dependent acquisition and data-independent acquisition (D14)
(5, &). Despite its very high data-acquisition rate, the full mass
resolution ls maintained in the MS or MS/MS mode by
coupling the high-resolution TOF mass analyzer to a GHz
detector. This rapid detection rate in combination with high
sensitivity often leads to billions of detector events per
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sampla. While the actual measurements are intensity values of
ion species, the exact time of a detector avent can be directly
converted to the TOF miz, O m/z, ion mobllity, and chro-
mategraphic retention time values,

As a conseguence of the rasulting large data size, the
accession and further visualizaton of LC-TIMS-Q-TOF data
have proven 10 be challenging and slow in practice. During the
last years, the single solution in the field was provided by the
manufacturer's closed-source library, integrated Into Bruker's
proprietary software Compass DataAnalysis. To achieve
reasonable data size and access times, this invalved pre-
processing steps, including data kinning, However, this re-
guires choosing parameters such as bin sizes somewhat
arbitrarily and, in general, conceals the actual measurements.
Consequently, the results depend on this preprocessing, and
validation at the level of raw data Is impractical.

Very recently, this led to parallel developments tackling
some of these ksues. The notable examples are OpenTIMS
{9), an open-source C++ library with bindings for the Pythan
and R languages to read Bruker data, and MSFragger in
combination with lonQuant, which allews to identify and
guantify proteins rapidly without the need to preprocess raw
data (10). However, these tocls were developed using specific
applications in mind., We reasoned that fast and generic
accession in arbitrary dimensions of the data would need to
be optimized for speed, usability, and exiensibility. This
combination would enable community-driven developments
to tackle curent bottlenecks such as novel implementations
of feature-finding algorithms, retrieval of extracted ion chro-
mategrams (XIGs) for DIA analysis, or fast interactive data
visualization of raw M3 data.

Hera, we present AlphaTims, a user-friendly software tool,
that drastically accelerates accession and visualization of raw
LC-TIMS-0-TOF data compared with the vendor's software. It
provides an indexing procedure in such a way that the un-
processed data are interpreted as a sparse four-dimensional
matrix. This matrix iz specifically designed for LC-TIMS-0-
TOF data, allowing fast retrieval of arbitrary data slices along
all of the available dimensions in milliseconds. It is imple-
mented in pure Python with only a few dependencies to make
it readable, flexibie, and lightweight. This makes it sasily
adoptable and adaptable by the community. At the same time,
it matches the performance of programs wrntten in the
C programming lenguage, by using the popular packages
MNumPy for array manipulation and Numba for just-in-time (JIT)
compilation to machine code (11, 12). AlphaTims can save an
indexed dataset as a single portable high-performance hier-
archical data format (HDFS) file (13}, which has proven ils ef-
ficlency and extensibility in various scientific fields and has
also been used in MS-based protecmice before (14-16), Ths
further accelerates data access and allows us to store arbi-
trary metadata and downstream processing results. We then
use Datashader, an optimized rendering Python package to
plot millions of data points on standard hardware (17}, in

combination with Pane! and Bakeh (Python packages to build
user-friendly dashbeards to access and visualize data) to
extend the usabllity of AlphaTims to a broader audience
regardless of computational expertise, AlphaTims is a modular
tool that is also a part of the AlphaPept (18) (hitps./github
com/MannlLabs/alphapapl) ‘ecosystem’ developad in our
department, which provides tools for the different facets of
MS-based computational proteomics. It can be used as a fully
stand-alone graphical user intedace (GUI, command-line
interface (CLI, or Python module for Windows, macOS, and
Linux and & freehy available under an Apache license at
https://github.com/MannLabs/alphatims.

EXFERIMEMTAL PROCEDURES
Sample Preparation

Human cervical cancer cells (Hela, 53, and ATCG) wera cultured in
Dulbecco’'s moedified Eagle's madium with 10% fetal bovina serum,
20 mM glutamine, and 1% penicillin-streptomycin (all Life Technolo-
gies Ltd). The cells were collectad using centrifugation, washed with
PBS, flagh-frozen in llguid nitrogen, and stored at <80 “C.

Following the in-StageTip protacal (19), cell lysis, reduction, and
@hylation with chloroacetamide were camed out simultanecusly in a
lysis buffer (PreOmicsl. The resultant dried peplides ware racon-
shituted in double-distiled water comprising 2 vel% acetonitrile and
0.1 vol% TFA to a concertration of 200 ng'ul and further diluted with
double-distiled water centaining 0.1 vol¥ formic acid. The manu-
facturer's instructions were followed to load approximately 50 ng or
200 ng peptides onto Evotips (Evosep).

Lc

Purtfied tryptic digests were separated with either a predefined '200
samples per day' (SPD] mathod {B-min gradient time, 50 ng peptides)
or a predefined 60 SPD method (21-min gradient time, 200 ng pep-
ticdes) on an Evosep One LG system (Evosep) (20), A fused silica 10-pm
ID emitter (Bruker Dallonics) was placed Inside a nancelectrospray
source (CaptveSpray source, Bruker Daltonics). For the 200 SPD
method, the emitter was connected to a 4-cm = 150-pm reverse-
phase column, packed with 3-pm C,. beads, and for the 60 SPD
method, to an B-cm x 150-pm reversa-phasa column, packed wath
1.5-pm G4y beads (PepSep). Mobile phases were water and acstoni-
trile, buffered with 0.1% formic acid.

In addifion, 400-ng pephdes wers separated over & 120-min
gradient time on a S50-cm in-house reverse-phase column with an
inmer diamater of 75 pm, packed with 1.8-pm C,5 beads (Or Maisch
FepraSid-Pur AQ) and & faser-pulled electrospray emitter, The column
was heated to 60 "C in an oven compartment. The binary LC system
conslsted water as buffer A and acetonitrile/water (B0%/20%, /) as
buffer B, both buffers containing 0.1% formic acid (Easy-nLG 1200,
Therma Scientific), The gradients started with a buffer B concentration
of 3%. In 85 min, the buffer B concentration was increased to 30%, in
5 min to 60%, and in 5 min to 95%. A buffer B concantration of 85%
was held for 5 min before decreasing to 5% in 5 min and re-
equiiibrating for further 5 min. All steps of the gradisnts were per-
formed at a flow rate of 300 nl min~".

MS

LG was coupled enline to a TIMS O-TOF instrument {timsTOF Pro,
Bruker Dalionics| with ddaPASEF and diaPASEF (7, B via a Captive-
Spray nano-slectrospray ion source. For both acquisition modes, tha
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ion mokbility dimension was calibrated with three Agilent ESI-L Tuning
Mix ions (miz, 1Ky 622.0289 Th, 0.9848 Vs cm™®;, 922.0097 Th,
11895 Vs om™™ 1221.99068 Th, 1.3820 Vs em™™). Furthermore, the
collision energy was decrsased |nearly from 59 eV at 1K =
1.6 Vs cm ™ to 20 eV at 1/Ky = 06 Vs em ™,

For the ddaPASEF method, each topN acguisticn cycle consisted
four PASEF MS/MS frames for the 200 SPD and 60 3P0 methods and
ten PASEF M3/MS frames for the 120-min gradient tme, The accu-
mulation and ramp times were set o 100 ms, Singly charged pre-
cursors wess excluded from fragmentation using a palygon filter in the
iz, 1/K) plane. Furtthermore, all precursors that reached the target
value of 20,000 were excluded for 0.4 min. Precursors wers isolated
using a O window of 2 Th for mz <700 and 3 Th far miz =700, Far
diaPASEF, we used the ‘high-speed’ method (m/z range: 400-1000
Th, 1/Ks range; 0.65-1.6 Vs cm *, diaPASEF windows: B x 25 Th), as
described (B).

A seventh sample was acquired with identical settings as the
60 SPD ddaPASEF method. To intentionally introduce anomalies, the
TOF was calibrated with an offset.of 1 Da, and the air supply through
the CaptiveSpray nano-electrospray source filter was blocked be-
tweaen minute 12 and 13,

AlphaTims Development

The AlphaTims source code is frealy avallable on GitHub (htips:/
github.com/tdannLabs/@phatims) under an Apache license. Tha Py-
thon code {alphatims folder) is divided into two core modules: bru-
kes.py provides the TimsTOF class and all functicns 1o create, index,
and -access objects from this class, whereas the utlis.py module
provides generic utilities for logging, compitation, parallelization, and
Y0, Threa additional modubes implamant alf functionality for plotting,
GUI, and the CLI.

In addition to the core Python code, the GitHub repository includes
much Iintroductory and background information. This includes (1) an
extensive README for navigation, installation, and usage instructions,
{2) a Jupytar Notebook folder (nbs) with & Python tutorial and a per-
formance notebook to reproduce all timings as presented In this
article, (3) a documeantation folder (docs) to create all documentation
for the Bruker, utils, and plotting modules hosted on hitps:/alphatims.
raadinedacs a, (4) a miscellanecus folder (misc) faciiitating manual
creation of new GUI releases and Python Package Index (FyPi) re-
leases on hitpsy)pyplorg/oroject/akshatims, (5) a .github folder to
perform continuous  integration including  testing and  automatic
releasing of new versions, and () a requirement folder to handie ali
dependencies.

AlphaTims is developed In pure Python and only has seven core
dependencies: (1] hipy to handle HOFS files, (2) Numba for JIT
camplation, (3) Pandas for tabular results, (4) pyzstd for generic
decompression of Bruker binary data, and (5-7) tadm, psubl, and click
for CLI support. Al plotting capabilities and the GUI are anabled by
four additional packages: (1) Bokeh for visualizations and the dash-
board, 12) hwPlot to connect Pandas DataFrames with Bokeh, (3)
Datashader for fast rendering of vissalizations, and (4) selenium for
browser suppart. As an alternative to myiz and 1/, estimation, wa also
provide the optlon to retreve callbrated values with Bruker libraries on
Windows and Linux machinegs. Additional requirement lfes axist purely
for lagacy code and to facilitate development with dependencies such
as, for example, Pylnstaller to create the stand-alone GUI or twine 1o
release new versions on PyPL

Camputational Sysfem

All development and testing of AlphaTims was done on a MacBook
Pro (13-inch, 2020) with a 2.3 GHz Quad-Core Intel Core i7 processor,
32 GB 3733 MHz LPDDR4X memory, and 2 TB Flash storage running
macOS Cataling version 1015.7. Functionality on Linux and Windows

was tested through continuous integration on default GitHub virtual
machines running Ubuntu 20,04 and Windows Server 2019 (hitps://
docs.github. com/andagtions/using-github-hosted-runnars/about-
github-hosted-runners).

RESULTS AND DISCUSSION

To better explain the indexing procedure at the heart of
AlphaTims, we shortly summarize the data structures used in
the vendor's software in their TIMS data format (tdf). A '.d
folder' contains two primary files to store raw LO-TIMS-Q-TOF
dala acquired with the UmsTOF Pro (Bruker Daltonics)
(Flg. 1A). The first of these s the analysis.tdf file, an ordinary
S0Lite database, that contains all metadata from the acqui-
sition, It furthermore stores summarized information for each
individual frame (lon pachet with the same retention time
values) and, if applicable, at which scans (ion packet with the
same fon mobility values) the Q isolation window was
changed. The second file, analysis.idf bin, contains all raw
detector events and their intensity values as compressed bi-
nary data.

Indexing Procedure and Performance

AlphaTims represents relevant data from a ‘.d folder' in
multiple NumPy amays. First, it decompresses the hinary
analysis.tdf bin file to read all detector events and come-
sponding intansity values. While Bruker stores detector events
and intensity values in a single homogeneous aray, Alpha-
Time separates them into three distinct arrays. In the first, the
(nonzero) intensity values of all detector events are stored in
crder of their acquisition time, A second array of equal length
then stores their TOF indices as offsels for each individual
pusher event. To indicate when pusher events happened,
AlphaTims defines a third dense array that stores the number
of detector events that are registered per pusher event. By
taking the cumulative sum of this latter array, pointers are
cregted to indicate the start and end indices of individual
pusher events in the two tormer arrays. Together, these three
arrays unambigucusly define a compressed sparse row matrix
{21) with indices of pusher events as rows, TOF indices as
columns, and Intensity values as values (Fia. 18).

Mext, AlphaTims retrieves the unique number of frames,
scans, and TOF indices from the analysis.tdi SQL database,
and from an array containing all retention time values., On
Windows and Linux, arrays with ion mobility and TOF m/z
values are retrieved from Bruker libraries that are integrated
into AlphaTims. These Bruker libraries are unavailable on
macO5; however, as a work-around, we provide an estimation
of these values based on the start values and end values as
provided in the analysis.tdf 50U database. As there are typi-
cally 800 frames per minute, 1000 scans per frame, and
400,000 detector events per pusher event, the size of these
thres arrays is nealectable comparad with the total number of
cdetector events that frequently surpasses a billion,
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Fiz. 1. Schematic of AlphaTims' indexing and data accession. 4, data dimensions: the imsTOF instrument acquires detactor events after
separation and selection in four different dimensions. After passing through the LG, TIMS, and quadnupale, an lon beam enters the TOF
accelerator where a pusher event [synchronized with the LT, TIMS, and quadrupole) sends ions in &n orthogonal direction toward the detector.
LG, trappad ton mability spectromatry (TIMS), and TOF coordinatas can be reprasanted as discrate (ndices iframa, scan, and TOF Indicas) or as
cantinuous values (retention time [RT]), ion mobility, and TOF m/z valuas). B, indexing procedure: AlphaTims uses several amays to store LC-
TIME-Q-TOF data. First, the intensiy values are stored in 2 compressed sparse row matrix (intensity matrix) with TOF indices as columns
and indices of pusher events as rows (push index pointerafindptr). Each uniqua pusher event comesponds to 8 unique combination of a frame
and gcan index, according to the formula push, = scan, + frame,, - #scans, Note that the scan-frame matrix presented here is purely a visual aid
and e not stored explicily, as the unique relationship between frame, scan, and push Indices makes this redundant. An additional sparse array
stores the push indices where the quadrupole settings are changed (quad change indices). For instance, in the first frame {bie), the quadrupale
Is not changed, whereas it is changed once the second frame {green) starts and another time withéin this frame {e.g., diaPASEF with two windows
per frama). An aray of equal length denctes which mir values fower and upper bounds) ara selected with the quadrupole at each of thess
indices. C, amay storage: owing to the indexing, AlphaTims only needs to store a few amays of variable size (each square represents an order of
magnitude). The referance arrays containing mobility, retention time, and TOF m/z values take between a thousand and one millicn elemeants.
Wil the quadrupols arrays are mostly deperdent an the LT gradient length (in minutes), these amays are generally also less than one million
elements. The largest amays are those that represent the sparse intensity matrix: push indptr, intensity values, and TOF indices, with the latter
two arrays frequently containing bilfions of elements. Finally, a faw bytes are used to store relevant metadata. D, accession procedure; data
accassion with AlphaTims can be performed In any dimension. This can ba done by provicing ranges of Interest enher as indices or as values. In
casa of the latter, LC, TIMS, and TOF values are always converted to the closest index by fast binary searches in thelr corresponding arrays. All
af the sslected LG and TIMS Indices are then converted to push indices by the formula push; = scan, + frame, - #scans. Because the
quadrupate mdz aray s not ordersd, a linsar pass over all quadrupole mfz values is required to determine which quadrupole index pomters are
valid, and only those that cverap with the previously selected push indices are retained. For each indlvidually sefected push index, a binary
search retrieves all TOF indices that satisfy the requasted TOF range. Finally, all selected detector events are filtarsd with a single pass over their
carresponding intensity values to obtain the final set of detector avents that satisfies the multidimansional range of interast.
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Finally, another sparse array is created to indicate at which
push indices the 0 sattings change, In ddaPASEF, this hap-
pens on avarage ten times per frame to select different pre-
cursars, In diaPASEF, this depends on the asquisition schame
and desired cycle time. Typically, each frame of a recurring
diaPASEF acquisition cycle is split up into eight window
groups that all have different Q settings. This array of Q
change indices is accompanied by two other arrays of equal
length. The first of these is two-dimensional and defines the
lower and upper G m/z values selected by the Q. The second
defines the precursor index. For DIA, the pracursor indices are
equal to the diaPASEF window group.

AlphaTims collects all these arrays, together with global and
frame-specific metadata from the analysis.\df file, and stores
this as an alphatims.bruker TimsTOF object Into working
memory (Fig. 1C). Because a single detector event takes up
6 bytes {an Uint32 for the TOF index and an UInt16 for the
intensity) and their respective arrays generally dwarf all others,
the required working memaory (in gigabytes) is roughly equal to
six times the number of detector events (in billions). The
alphatims.bruker. TimsTOF object acts as a fully indexed
sparse four-dimensional matrix with associated metadata.

To facilitate fast reuse of this object and avoid recreation of
the indices, it can be stored on disk as a portable HOFS file
with Python's hSpy package. This is possible on all operating
systemns, but TOF mdz and lon mebility values of HDFS files
created on macDS can differ from Windows and Linuy owing
to the avallability of the Bruker libraries, as mentioned above.
By default, the HDFS file size is egual to the required working
memory, but compression can be used to decrease this
roughly two-fold, While compression slows down loading and
saving of HDFS files approximately from 2 to 10 times, an
AlphaTims object in working memaory is always decompressed
and interactive accession is thus unaffected. These (dejcom-
pressed HDFS files can always be (delcompressed and
resaved, making them ideal for file transfer or archiving. A
major benefit of such file transter is that HDFS files created on
Windows or Linux can be transferred to macQ5, thereby uti-
lizing the m/z and ion mebility values from the Bruker libraries
on all operating systems instead of requiring the aloremen-
ticned estimation. Mote that not all HOFS formats are inter-
changeable with the HDF5 format of AlphaTims. This is
primarily because these formats were developed in the past as
maore general community standards for arbitrary MS data and
therefore explicitly store (matajdata per individual spectrum. In
contrast, AlphaTims HDFS files are very efficient as we can
assume they contain homogenous LC-ion mobility spec-
trometry=0-TOF data that are stored in only a few arrays with
a single set of indices and metadata.

To assess the performance of AlphaTims' indexing pro-
cedure, we acquired Hela samples with gradients of 8, 21,
and 120 min in both ddaPASEF and diaPASEF modes
{Experimental Procecures). At the shortest time dimension, a
single pusher event could record almost 400,000 TOF

detection events in an m/z range of 100 to 1700 Th. Separa-
tion in the TIMS tunnel lasted 100 ms and is composed of
1000 of these pusher events, covering a 1/K; range of 0.6 to
1.6 Vs om™®. Up to 240 billion events could thus have been
recorded per minute; however, in practice, no rin acguired
more than 0.03% of these potential detector events, and the
data can be considered sparse (Fig. 2).

On a laptop (Expenmental Procedures), reading all detector
events into working memory and indexing them took Alpha-
Tims less than a second for the smallest run and less than
90 5 even for the largest run with 6.4 billion detector events.
In contrast, opening any of these runs with Bruker's Com-
pass Datafnalysis software (v5.3) required at least double
the time on d Windows desklop with overall batter specifl-
cations. To speed up data import even further and allow
maodification or addition of downstream results, AlphaTims
also allows exporting the indexed data as a portable HDFS
file, which only takes seconds. When these HDFS files are
imported, no decomprassion and indexing is required, mak-
ing them roughly three times faster to load than raw Bruker
“d folders'. While reading .d folders with AlphaTims benefits
from multiple CFUs to speed up decompression, loading
from HDFS files is only limited by disk reading speed.
Regardless, the required time to load or save either a .d folder
or HOFS file is approximately linear in function of the number
of defector events and independent of LC gradient or
acquisition scheme,

Currently, reading and indaxing data is done after acquisi-
tion. Given that thess steps take only a fraction of the time it
takes to acquire the data, we hypothesize that it would also be
possible 1o Index data that are being acquired in real time. This
would only reguire 1o know the TOF and TIMS dimensions
upfront, which are parameters that indeed are determined
before acquisition. All other arrays are sorted in function of
time and can thus easily be created in real time with dynamic
buffer arrays. Such live indexing would not require storage of
unindexed data and avoids wasting acquisition time on sam-
ples with poor guality,

Accession Procedure and Performance

COnce data are imported and indexed, an alphatims.-
bruker. TimsTOF object can be accessed inall dimensions with
traditicnal Python slices or ‘fancy index slicing' from NumPy
(12} {(Fig. 101, The order of the dimensions in such an object is
equal to the order of their respective components in the tim-
sTOF Pro: LC, TIMS, Q, TOF, and detector, Typically, the user
defines a range of Interest that is translated Into & slice with a
single index or by a (start and stop) tuple. When decimal
values are provided for the LC, TIMS, or TOF dimension
instead of indices, AlphaTims always assumes them to
represent retention time, on mobility, or TOF m/z values. By
default, these are converted to the closest integers repre-
senting frame, scan, or TOF indicas by looking them up in their
appropriate arrays with a fast binary search. In the case of Q
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Fiz 2. Time performance of AlphaTims. Different Hela samples were acquired in both odaPASEF (full outing) and digPASEF [dofied
autling) with gradient lengths of 8, 21, and 120 min ([Expenmental Pracedures), When a raw Bruker '.d folder’ is read, AlphaTims needs to
decompress, import, and index all detector events (blug). Once this is performed, the indexed dataset can be saved as an HDFS file (green).
When an HDFS file Is read Instead of a raw Bruker '.d folder, no decompression or indexing s required (prange). Multiple detector events of each
run were ratrieved by slicing each dimension individually, The retrieved detector events comespond to an LG slice with 100 = retention time (s)
< 100.5 fred), a TIMS slice with scan index = 450 ([purple), & guadrupole slice with T00.0 < guad mvz value <710.0 {brown), and a TOF slice with
621.9 = TOF miz value < 822.1 {pink). All timings were obtained with Python timeit function for robust and reproducible results that were
averaged over at lesst seven repeats; See hitpay/github.comdMannLabs/alphatime/blob/mastarnbs/perormenca. ipynb for exact numbers.

TIMS, trapped ion mobility spectromeatry.

miz values, precursor indices, or intensities, no translation =
necessary.

Once a multidimensional slice of interest is defined,
AlphaTims first selects all the possible push indices that
aatisty the LC and TIMS dimensions and converts thess to
push indices with the formula pushy =
scan, + frama,, - #scans. As these push indices are ordered,
they are located in the Q changs index array in a single iter-
ation. Only those push indices with a valid G m/z value are
selected, and for each of them, appropriate TOF indices are
refrieved from the sparse intensity matrix. As the TOF indices
are ordered per individual pusher svent, a binary search
quickly retrieves all TOF indices that satisfy the requested TOF
slice. Finally, it is checked which of all the selected detector
evenis have an intensity value that satisfies the detector slice.
The results are then retumed as a Pandas (htip:/pandas.sf.
nel) DataFrame whose columns describe all indices and
values, or—if desired—as a NumPy array with indices of de-
tector events.

Far each of the six Hela samples (Expenmental
Procedures), we tested four differemt slices: an LC slice with
retention time values between 100 and 100.5 5, a TIMS slice
with a scan index of 450 providing all mass spectra at the
corresponding ion mobility, a @ slice with only fragments frem
a precursor range betwesn 700 and 710 Th, and finally, a TOF
slice with m/z values between 621.9 and 622.1 (Fig. 2). As
expected, samples with longer gradients, and thus more de-
tector events, also yield more detector events when sliced in
the TIMS and TOF dimensions. While this is also true for the O

dimension, the effect of being & ddaPASEF or diaPASEF
rmethod is stronger than the gradient lengthin these examples.
This is not surprising because the O selected just 2 or 3 Thin
cdaPASEF, whereas the selected windows in diaPASEF were
abways 25 Th.

Mext, we evaluated the time that was needed to access all
of the previous data slices with AlphaTims. Owing to the
indexing structure, the index of any pusher event can be
converted to a frarme and scan index with a simple linear
formula and vice versa (Fig. 10). As such, it can be expected
that accession in these dimensions should be very fast as no
actual searching is involved. Indeed, even retreving five
rillion detector events with slicing in the LG or TIMS dimen-
sion is carried out in just 0.2 s (Fig. 2). Moreover, the time
required to slice in these dimensions only depends on the
number of detector events that are retrieved and only indi-
rectty on the gradient length or acquisition scheme. Slicing in
the Q dimension is very similar. While slightly slower than the
LC or TIMS dimensions, there is a comparable linear de-
pendency for the required slicing time that is purely a function
of the number of detector events that are retrieved. This
slowdown is dus to additional filtering of Q change indices
from the sparse array. As this Q index pointer array itself is
wery sparse lon average, 1% nonzero elements when
compared with the number of pusher events), the impact of
this additional filtering Is small. However, slicing in the TOF
dimension is roughly an order of magnitude slowsr than slicing
in any other dimension, primarily caused by the fact that every
pusher event needs to be filtered individually, as the TOF
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dimension is indexed per pusher event, When TOF slicing is
combined with other dimensions, fewer selected pusher
evants are selected, which makes even this slowest step
instantaneous to the user, As the time required for TOF slicing
is still linearly dependent only on the number of retrieved de-
tector events, AlphaTims is very scalable even to long gradi-
ents, very complex samples, and data acguisition schemeas.

Using AlphaTims

AlphaTims is freely available as an open-source Python
package with an Apache license on Windows, macOS, and
Linux. To enable the usage for & wide audience regardless of
computational background, it can be operated in any of the
three following modes: a stand-alone GUI, a stand-alone CLI,
or directly as a Python module.

Gl Mode

A simple installer for the AlphaTims GUI can be downloaded
from our GitHub page, requiring just a few mouse clicks, Both
the instaliation and usage of AlphaTims have been made as
intuitive as poessible, but a comprehensive GUI manual is also
available with In-depth step-by-step explanations and
screenshois,

The GUI allows interactive exploration of unprocessaed LC-
TIMS-Q-TOF data conveniently in browsers such as Google
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Chrome or Mozilla Firefox, It was pregrammed in pure Python
and uses only a few libraries of Python’s Holoviz visualization
aecosystem. These Include Holoviews itself and Bokeh to
visualize differamt plots such as the total ion cument (TIC),
Datashader for fast rendering of these plots, and Panel to
combine the plots with control widgets into an interactive
dashboard {Expedmenial Proceduras). With the control wid-
gets, the user can slice the data simultaneously in multiple
dimensions as described previosuly (Accession Procedure
and Performance). The selected coordinates can then be
projected on either a single axis to show mass speactra, ion
mobilograms, or X1Cs or on multiple axes to create heatmaps
in the LG, TIMS, and TOF dimensions.

Having reduced the visualization of LC-TIMS-Q-TOF to a
fast and straightforward task, it can be incorporated in a wide
variety of practical applications. In the folowing text, we
demaonstrate this on the example of visual guality control, For
this purpose, we intentionally acquired a sample with a few
anomalies {including a large offset of the mass scale and
temporary pressure change in the CaptiveSpray source) to see
if we could indeed quickly detect any issues. Thaere were 0.7
billion detector events in this 21-min ddaPASEF run. The data
could be iImported with a single mouse click, and the TIC was
visible within 10 s of opening the AlphaTims GUI. This
immediately revealed an anomaly, namely the drop in ion
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cumrent baetween minute 12 and 13 that we had engineered
befarehand (Fig 34). Without having done any processing at
all, the user is forewarned about unrefiable intensity valuas in
that region. We then used the frame widget to select the first
100 frames and projectad Intensity values on the TOF and
TIMS dimensions, showing the expected relation for m/z and
ion mobility values of differently charged precursors (Fig. 28)
As an important quality metric, the user can assess the sta-
bility of added calibrant ions {1222.0 Th, 1.28 Vs cm™), which
is expected to be continuously present throughout the whole
run. By resetting the selected frames to the whale range and
modifying just two values of the TOF widget, we selected all
ions in the miz region between 1221.0 and 1225.0 Th, By
adjusting the heatmap axes to show chromatographic reten-
tign tima values on the x-axis and myz values on the y-axis, we
expect to see a continuous signal throughout the whole
gradient for the callbrant spray with an miz value of 1222.0 Th,
However, there is a continuous and steady signal for an miz
value of 1223.5 Th instead, accompanied by a less-intense
isptope at 1224.5 Th (Fig. 3C). Based on these cbservations,
we deduce that the TOF m/z values are greatly misscalibrated
{@s intended for this sample) and that the reported m/z values
are oo unreliable for further analysis. Mext, we changed the
y-axis of the heatmap to show the ion mobility values and
inspect the detected ion at 1223.5 = 0.1 Th during the com-
plete LC gradient. This clearly revealed another issue batween
minute 12 and 13. Nomally, the ion mobility value of the
calibrant spray should remain constant at a wvalue of
1.38 Vs cm™, but in this case, the apparent value drops to
1.1 Vs em? for a full minute (as a result of the purposely
altered gas flow) (Flg. 3D). This coincides with the previously
detected drop in the TIC, meaning that not only the Intensity
but also the other coordinates are unreliable in this timeframe.
Thus, a brief assessment of the data in less than 30 s with just
a few user inputs already detected and pinpeinted the main
issues with data quality. Other quality asseszments to analyze,
for example, fragmentation effictency of ddaPASEF samples
or positioning of Q selections in diaPASEF samples do not
require much more effort and quickly become routine even for
inexperienced users.

CL! Mode

Althaugh it is very easy to use, AlphaTims" GUI requires
manual input for visualization. For users who wish to automate
repetitive tasks, the AlphaTims CLI provides the same func-
tionality as the GUL Instead of manually updating control
widgets, all seitings and wvalues can be provided to the
command-line either directly or with & simple scripl. As there
is no need to display an interactive dashboard, this mode s
even faster and more versatile than the GUI. More complex
data slices can be selected than with the GUI, while all resuits
can still be exported. This includes visualizations in png, or
htmi format, csv tables with selected ion coordinates, and

atternative formats of the whole sample such as portable
HDFE files and mascot generic format files. All of these
commands and their options are fully documentad in the CLI,
and a brief tutorial is available on GitHub.

Python Mode

Although the CLI is more flexible than the GUI, it is impos-
sible for us to implement all the imaginable use cases of
AlphaTims. Instead, we also make it available as a Python
module and leave it to the end user to implemant any addi-
tional functionality or incorporate it into other Python projects.
AlphaTims can be installed from PyFi as a Python module with
the standard pip module of Python 3.8. There is both a light-
weight version available with just a few dependencies that
purely focuses on data indexing and accession and an
extended version with mere dependencies that includes the
compiete visualization library as used for the GUI and CLI.

Enabling AlphaTims in other Python scripts or Jupyler
notebooks requires a single line of code that imports the
module, Some cenvenience funclions enable legging or set
the number of available threads for multithreading and ensure
transparent, reproducible, and efficient usage of AlphaTims.
All functions of AlphaTims are implemented in pure Python
and fully documented to facilitate flexibility, readability, and
usability. However, functions that are computationally inten-
sive have been decorated with Numba to use JIT compitation
to machine code. This enables a performance similar to the
fastest low-level languages such as C.

Importing and indexing data is carred cut with a single
command that returns an alphatims.bruker. TimsTOF object,
which can be treated as a four-dimensional matrix. Inspired by
the slicing approach in NumPy, one of the fundamental Py-
thon libraries for scientific computing, AlphaTims provides
slicing in multiple dimensions simultaneously as described
previously (Accession Procadure and Performance), As a
result, AlphaTims data slices can take advantage of the vast
amount of Python packages that act on Pandas DataFrames
as well,

To demonstrate the basic usage of AlphaTims in Python, we
have provided a brief Jupyter Notebook tuterial on GitHub
(https:/github.com/MannLabs/alphatims/blob/master/nbs/
tutorialipyni), This notebook explains how to set up Alpha-
Tims and enable logging for transparent and reproducible data
analysis, import samples and export indexed HDFS files for
faster reanalysis, select individual data points and data slices,
and visualize data to create similar plots as with the GUI or
CLI. The final part of the tutarial includes an example to show
how AlphaTims can be used to investigate a specific peptide
in diaPASEF data based on a spectral library created with, for
instance, AlphaPept, Skyling, or Spactronaut (18, 22, 23).

The above example lilustrates a use case of AlphaTims in
Jupyter Notebooks that have become a standard in modem
data science (Fig. 4). AlphaTims and Bruker diaPASEF data
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Fiz. 4. A section of a Jupyter Notebook using AlphaTims as a Python module. Jupyter Notebooks allow to structure and execute Fython
coda In individual cells. In the last part of the AlphaTims tutonal, data from a diaPASEF sample is imported (cell "in [20]"). The same sample was
also acquired in ddaPASEF, and a spectral library was generated with AlphaPept. Relevant coordinates of the peptide YNDTFWE were retriaved
fram this spectral library &nd defined in the tutorial (call “in [21]"). & function ‘inspect_peptide’ was defined (cell "in [22]', see AlphaTims' Fython
tutarial at hittpss/githubocom/MarnLabs/alphatimeDlob'/master mostutonat ipynb), allowing to visualize extractad lon chromatograms (X1Cs) for
the doubly charged precursar and all fragmants of this peptide (cells "in (23] and "out [23]). Based on the these XIGs, some Interfarence seems
to be present for the precursor signal of this peptide. Howeyer, when the precursor and fragments of this peptide are visualized as a heatmap in
both the LC and TIMS dimensons, it bucomaes clear thal this mlerference is fully resalved inthe TIMS dimensicn (cell "in [24]" and "oul [24]").
TIMS, trapped ion makility spectromstry.,
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are first imported, and then, all coordinates of both the pre-
cursor and all fragments of a spacific peptide are defined. With
a simple custom Python function, all detector evants that
match these coordinates within a certain tolerance can be
retrieved and visualized in an Interactive plot, Traditionally,
such an interactive plot represents only the XICs of the
selected precursor and its fragments, but this ignores the
TIMS dimension. In contrast, with AlphaTims in this Jupyter
Motebook, we can saslly provide heatmaps in both the LC and
TIMS dimensions for the precursor and all fragments, thereby
illustrating the benefit of using TIMS data for peak capacity
and interference removsl, Using this extra Information allows
us to manually verify that the peptide of the spectral library is
both quantitatively and qualitatively present in the diaPASEF
data as well.

COMCLUSION

The compaosition of a wide variety of {biojchemical samples
can be determined with LC-TIMS-0-TOF, which acquiras the
intensity values of ions with billions of detector events that are
convartible to chramatographic retention time, ion mahility, Q
mifz, and TOF mifz values. Although there are several tools that
use these data for specialized applications, a generic software
tool that is optimized for speed, usability, and extensibility—
thereby  enabling community-ciriven  developments—was
lacking.

AlphaTims indexes unprocessed data in mere seconds,
thereby making it equivalent to a sparse four-dimensional
matrix. This allows to subsequently access the unprocessed
data in milliseconds, regardless of the original complexity of
the dataset Owing to this fast accession, AlphaTims also
requires only mifliseconds to provide interactive data visuali-
zations along any dimension, including XICs, ion mobilo-
grams, mass spectra, TICs, or two-dimensional heatmiaps,
AlphaTims is easy to install and use on all major operating
systems, without requiring any computational expertise. It can
be used as a stand-glone GUI, CLI, or Python module and
includes extensive help in the form of 2 README file, test
data, a Python tutorial, CLI manual, and a GUI manual. it is a
fully open-source package with & minimal number of de-
pendancias and is freely availabla under an Apache license at
https.Agithub.com/MannLabsfaiphatims.

Owing to the documented and freely available code base,
AlphaTims can easily be integrated in other community pro-
jects. As an example, we are already actively integrating it in
accelerated DIA workflows and AlphaViz, a new softwars tool
in the AlphaPept ‘ecosystem’ that visualizes identified pep-
tides within raw data. Furthermaore, we also envision to expand
the AlphaTims source code and include for instance other
vendars, a low-memory mode with optimized usage of HDFS
files, a multisample mode to directly compare different runs, or
even on-the-fly indexing of data that are being generated in
real time.

DATA AVAILABILITY

AlphaTims is a fully open-source package and is freely
avaliable with an Apache license at htips//github.com/
Manniabs/alphatims. The results in this articie were ob-
tainad with AlphaTims, version 0.2.8. The mass spectrometry
profeomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE (24) partner repository
with the dataset identifier PXDO27359.
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Driven by the ever-increasing amount of raw data and its complexity in MS-based
proteomics, computational proteomics has rapidly evolved into an independent
interdisciplinary field. To process raw MS data and derive the identification and
guantification of peptides and proteins, a large variety of various proteomic frameworks
and algorithms, ranging from commercial, closed-source to freely available, open
source, are now available. However, the complexity of the analysis and the lack of
transparence for many closed-source software tools present a major barrier for needed
further developments such as improvements in execution speed, integrating new

developments and generally preventing scientists to contribute directly.

To address this challenge, we developed AlphaPept, a Python-based open-source
framework for efficient and transparent processing of large amounts of high-resolution
MS data. We achieved hundredfold increase in speed by using Numba for just-in-time
machine code compilation on CPUs and GPUs, while retaining the clear syntax and fast
development speed inherent in Python. Adopting the recent implementation of the
‘literate programming’ concept, the AlphaPept code base is implemented in Jupyter
Notebooks, providing extensive documentation on the complex algorithmic background.
Furthermore, we followed solid software engineering principles as embodied on GitHub,
such as continuous integration, deployment and extensive automated testing.
AlphaPept provides a platform for researchers with novel algorithmic ideas to test or
integrate their functionality easily and in a transparent and efficient way, without having
to re-create the entire pipeline, which is especially important for the rapidly developing

field of machine and deep learning.

In this project, | contributed to the file importing functionality, performed testing and

helped write the manuscript.
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AlphaPept, a modern and open framework for MS-based
proteomics
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ABSTRACT

In commaon with other omics technologies, mass spectrometry (MS)-based proteomics produces
ever-inereasing amounts of raw data, making their efficient analysis a principal challenge.
There is a plethora of different computational tools that process the raw MS data and derive
peptide and protein identification and quantification. During the last decade, there has been
dramatic progress in computer science and software engineering, including collaboration tools
that have transformed research and industry. To leverage these advances, we developed
AlphaPept, a Python-based open-source framework for efficient processing of large high-
resolution MS data sets. Using Numba for just-in-time machine code compilation on CPU and
GPU, we achieve hundred-fold speed improvements while maintaining clear syntax and rapid
development speed, AlphaPept uses the Python scientific stack of highly optimized packages,
reducing the code base to domain-specific tasks while providing access to the latest advances in
machine learning. We provide an easy on-ramp for community validation and contributions
through the concept of literate programming, implemented in Jupyter Notebooks of the
different modules. A framework for continuous integration, testing, and benchmarking
enforces solid software engineering principles. Large datasets can rapidly he processed as
shown by the analysis of hundreds of cellular proteomes in minutes per file, many-fold faster
than the data acquisiton. The AlphaPept framework can be used to build automated processing
pipelines using efficient HDF5 hased file formats, web-serving functionality and compatibility
with downstream analysis tools. Easy access for end-users is provided by one-click installation
of the graphical vser interface, for advanced users via a modular Python library, and for
developers via a fully open GitHub repuository.
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INTRODUCTION

[nereasingly large duta sets, combined with exponentially increasing computational power and
algonthmic advances, are transforming every aspect of science, This 15 accompanied and enabled by
developments in open and transparent science. The open-source community has been a particular
success, starting as a fringe movement to a recognized standard for software development, whose
value 15 embraced and adapted even by the largest technology companies. Public exposure supports
high code quality through scrutiny by developers from diverse backgrounds, while increasingly
sophisticated collaboration mechanisms allow rapid and robust development cycles. The most
advanced machine and deep leaming research, for example, builds on open-source projects and
datasets and is itself open-source. These laudable developments reflect the core ideas of science and
present great opportunities in the ever more important computational fields,

In mass spectrometry (MS)-based proteomics, algorithms and computational frameworks have been
a comerstone in interpreting the data, resulting in a large vanety of different proteomic software
packages and algorithms, ranging from commercial, freely available to open source, exemplified by
and reviewed in (Vilikangas. Suomi, and Elo 2017; Chen et al. 2020). Typical compwational
workflows comprise the detection of chromatographic features, peplide spectrum matching, all the
way through protein inference and quantification (Nesvizhskii, Vitek, and Acbhersold 2007; Zhang ct
al. 2020). Advances in (MS)-based proteomics are also being accelerated through the sharing of
datasets, such as publicly available data on the Proteome Exchange repository (Vizeaino et al, 2014,
Deutsch et al. 2017),

Prompted by the developments in the Python scientific environment and in collaborative development
tools, we developed AlphaPept, a Python-based open-source framework for efficient processing of
large amounts of high-resolution MS data. Our main design goals were accessibility, analysis speed,
and robustmess of the code and the resulis, Accessibility refers to the idea of facilitating the
contribution of algorithmic ideas for (MS)-based proteomics, which is today typically limited to
bioinformatics experts. We decided on Python because its clear, easy-to-understand syntax, and
because the excellent supporting scientific hbranes make it easier for developers from different
backgrounds to contribute to and implement new ideas. Using community-tested packages makes the
codebase more maintainable and robust, allowing us to focus on domain knowledge instead of
implementation details. We turthermore adopted a recent implementation of *hiterate programming’
{Knuth 1984). in which code and documeniation are intertwined. Using the nbdev package, the
codebase is connected to extensive documentation in Jupyter Notebooks in a way that immediately
explains the algorithmic background, making it casier to understand the underlying prineiples and
documenting design decisions for others (Kluyver et al, 2016). With the help of the Numba package
for just-in-time compilation (JIT) of Python code (Lam, Pitrou, and Seibert 2015), AlphaPept
achieves extremely fast computation times, Furthermore, we implemented robust design principles
of software engineering on GitHub, such as continuous integration. deployment and extensive
automated validation.

Depending on the user, AlphaPept can be employed in multiple ways. A “one-click’ installer can be
treely downloaded for Windows, providing a web server-hased graphical user interface (GUT) and a
command line mterface; A Python library that allows re-use and modification of its functionality in
custom code, including in Jupyter Notebooks that have become a standard in data science and finally,
in a scalable could environment.

[n the remainder of the paper, we describe the functionality of AlphaPept on the basis of nbdev
notebooks. such as feature finding, peptide identification and protein quantification. We demonstrate

bk

106



3. Publications

bioRxiv praprint dok: htps 1'doi.org/10,.1101/2021.07 .23, 453373; this version posted July 26, 2021, The copyright holder for this preprint
(which was not certified by pear review) is the authorfunder, who has granted bioRxiv a foense o display the prepring in perpetuity. If is
made available under aCC-BY 4.0 Internationa! boansze.

the capabilities of AlphaPept on small- and large-scale datasets. Finally, we demonstrate how
AlphaPept can be utilized as a proteomic workflow management system and how it can be integrated
with downstream analysis tools such as Perseus or the Clinical Knowledge Graph (CRG). (Sanios et
al. 2020; Tyanova et al. 2016) and we provide an outlook on novel functionality to be incorporated
s00n.

RESULTS

Overview of AlphaPept architecture - Academic software development is often highly innovative but
is rarely undertaken with dedicated funding or long term personnel stability. Such constraints have
successfully been mitigated by collaborative software engineering approaches and the collective
efforts of volunteers. This is exemplified in state of the art open-source projects such as NumPy
{Harris et al. 20207 and scikit-learn (Pedregosa et al. 201 1), This paradigm has also been taken over
by relatively recent and highly popular deep learning frameworks like Google's Tensortlow (Martin
Abadi et al. 2015) and Facebook’s PyTorch (Paszke et al. 2019) and 1s thought to lead to mereased
code quality due to community exposure and a large testing audience. Inspired by these
developments, AlphaPept implements robust design principles of soltware engineering on GitHub,
such as continuous testing and integration, For instance, code contributions can be made via pull
requests which are automatically validated. By making the code publicly available and providing a
stringent testing eovironment, we hope to encourage contrnibution and testing from a diverse
background while maintaining very high code quality.

Organization in notebooks with nbdev allows us to colleet documentation, code and tests in one place,
This enables us to aulomatically generate the documentation, extract production code and test
tunctionality by exceuting the notebooks. Furthermore, we extend the notion of unit and svstem
testing by including real world data sets on which the overall improvement of newly implemented
tunctionality is routinely evaluated. To continuously monitor system performance, summary statistics
are automatically uploaded to a database where they are visualized in a dashboard.

The advantages of high-level languages gencrally come at the price of execution speed, especially
for Python. Asa result, this expressive language is often only used as a thin wrapper on C++ libraries.
In AlphaPept, we make use of the Numba project (Lam, Pitrou, and Seibert 20135}, which allows us
to compile our Python algorithms directly with the industry-standard LLVM compiler (backend to
most C4++ compilers and supercomputing languages such as Julia). This allows us to speed up our
code by orders of magnitude without losing the benefits of the intuitive Python syntax. Furthermeore,
AlphaPept readily parallelizes computationally intensive parts of the underlyving algorithms on
multiple CPU cores or — if available - Graphical Processar Units (GPUs) for further performance
gains.

As far as possible, AlphaPept uses the standard, but powerful packages of the Python data analysis
universe, namely NumPy for numerical caleulations, pandas for spreadsheet-hke data structures and
scikit-learn for machine leaming (Fig. 1A). Furthermore, we chose the binary, high performance
HDF3 file format, which is used across scientific arcas, including “big data’ projects (see below). All
these packages are platform-independent, allowing deployment of AlphaPept on Windows, Mac and
Linux computers, including cloud environments.

An integral feature of AlphaPept development are Jupyter notebooks, which have become ubigquitous
in scientific computing. Using the nbdey package. cach part of the MS-based proteomics workflow
is modularized into a separate notebook. This allows extensive documentation of the underlying

107



3. Publications

bioRxiv praprint dot: https Jfdoi.org/10.1101/2021.07.23 453373; this version posted July 26, 2021, The copyright holder for this preprint
{which was not certified by peer review) is the autharfunder, who has granted bioRxiv a foense o display the prepring in perpetuity. If is
made available under aCC-BY 4.0 International boanza.

algorithmic production code, which is automatically extracted from and synchronized with the
notebooks. Furthermore. the notebooks eapture the background information of each part of the
compuiational proteomics workflow, making it much easier to understand the underlying principles.
We have found this to be an excellent way ol developing software, which brings together the typical
cycle of exploration in notebooks with the production of a robust and tested code base, Figure 1B
shows an overview of the steps in the analysis of a typical proteomics experiment in AlphaPept
corresponding to the notebooks. These separate processing steps will be discussed in wm in the
sections below.

Feature FASTA Searching
Finding Processing

o~ 9 s e R e Matching Quantifying Scaring Recallbrating

Figure 1: AlphaPept ‘ccosystem’ and Modules

A AlphaPept relies on multiple community-tested packages, We use highly optimized libraries such as Numba,
NumPy, CuPy, scikit-learn, SciPy and pandas to achieve performant code. As GUL we provide a browser-
based application built on streamlit. For data handling, the HDF3 file technology is used. The repository itself
1s hosted on GitHub, the core code s documented in Jupyler Motehooks using the nbdev package. To ensure
mamtainability, packages are continuously monitored for updates via dependabol. New code 1s automatically
validated using GitHub actions and summary statistics (timing, identifications and quantifications) are
uploaded to a mongoDB database and visualized. B All algorithmic code of AlphaPept is organized in Jupyter
Notebooks. For the key processing steps in the pipeline, such as importing raw data, Feature Finding, FASTA
processing, Searching, Recalibrating, Scoring, Quantilying and Matching, there are individual notebooks with
background information and the code.

Highly efficient and platform-independent MS daia access — MS-based protcomics or metabolomics
gencrates complex data types of MS1 level features, variable length MS2 data and mappings between
them. Furthermore, data production rates are rapidly increasing, making robust and fast access a
central requirement. The different MS vendors have their own file formats, which may be highly
optimized but are meant to be accessed by their own software, We therefore faced the task of
extracting the raw data into an equally efficient but vendor-neutral format that could be accessed
rapidly.

First, AlphaPepi needs to convert vendor specific raw files. For Thermo files we created a cross-
platform Python application programming mterface (API) that can directly read .RAW MS data
(pyRawFileReader, Fig. 2a). [t uses PythonNET for accessing Thermo™s RawFileReader NET library
(Zeng, Wen-Feng 2021, 1), obviating the need for Thermo’s propietory MSFileReader. For
Windows, PythonNET is available by default as a part of Windows™ NET Framework. For Linux
and MacOS, PythonNET requires the open-source Mono library. Although our solution uses stacked
APIs. loading the spectra of a Thermo RAW file of 1.6 Gb into RAM takes only about one minute
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which can be speeded up even more by parallel file processing. Access to Bruker's timsTOF raw data
is also directly handled from our Python code, in this case through a wrapper to the external
timsdata.dll C/C++ library, both made available by Bruker. In parallel with this publication, we
provide AlphaTims, a highly efficient package o access large 1on mobility time-of-Might data through
Python slicing syntax and with ultra-fast access times (htips://gmithub.com/MannLabs/alphatims ).

To accommaodate raw data acquired through other vendors, we use Pyteomics (Goloborodko et al.
2013; Levitsky et al. 2019). This package allows reading mzML and other standard M5 daia formats
with Python, Thus, by first converting raw data with external software such as e.g. MSConvert
{ Adusumalli and Mallick 2017), AlphaPept also provides a genene framewaork for all vendors.

As a storage technology, we chose HDF5 (Hierarchical Data Format 5), a standard originally
developed for synchrotron and other extremely large scale expernimental data sets, that has now
become popular in a wide range of scientific fields (Folk et al. 2011). HDF3 has many benelits such
as independence of operating systems, arbitrary [ile size, extremely fast accession and a transparent,
Mexible data structure, The latter is achieved by organizing HDFS files in groups and subgroups, cach
containing arrays of arbitrary size and metadata which describes these arrays and (sub)groups. In the
last few vears, it 15 also becoming more popular in the hield of MS (Wilhelm et al, 2002, 5). AlphaPept
adopts the HDF35 technology via the Python's h3py package (Collette 2013).

As an additional design choice we also store intermediate processing results in the HDF5 container,
so that individual processing steps can be performed in a modular way and from different computers.
This enables researchers to quickly implement and validate new ideas within the downstream
processing pipeline, Thus, for each new sample, AlphaPept creates a new .ms_data.hdf file and for
each step in the workfow, the Tile is extended by a new group (Fig, 2b). In this way. the .ms_data bl
file ensures full portability, transparency and reproducibility while being fast to access and with
minimal storage requirements. For example, the 1.6 Gb Thermo file mentioned above is converted 1o
a HDFS file of 200 MB, all of which can be accessed in a total of 0.2 5 (Fig. 2D).

We next provide functionality for MS data pre-processing. such as centroiding and extraction of the
n-most abundant fragments, should this not already have happened in the vendor software, MS1 and
MS2 scans form the two major subgroups in the HDFS file. As HDFS files are not optimized for lists
of arrays with variable length, we convert the many individual spectra into a defined number of arrays,
each contaiming a single data type, but concatenating all spectra. These arrays are organized in two
sets: Spectrum metadata (spectrum number, precursor m/z, RT, etc), where each array position
corresponds to one spectrum; and spectrum data, where each array position corresponds to a single
mi/z-intensity pair. To unambiguously mateh the spectrum datapoints to their metadata, an index array
is ereated. It 18 part of the first set of arrays and contains a pointer to the position of the first data pair
tor each spectrum within the second set. The position of the last pair does not need to be stored as it
is implied by the start position of the next spectrum. Thereby. all m/z values and intensities for each
spectrum can easily be extracted with simple base Python slicing, while fixing the number arrays
contained in the hdf container. Loading data from HDF3 to RAMtakes less than a second, effectively
speeding up data accession more than 300-fold compared to loading the RAW file (Fig. 2d).

109



3. Publications

bioRxiv preprint doi: hitps'doi.org/10.1107/2021.07.23 4533 73; this version posted July 26, 2021, The copyright holder for this prepninl
(which was not certified by peer review) is the autharfunder, who has granted bioRxiv a foense o display the prepring in perpetuity. If is
made available under aCC-BY 4.0 International boanze.

AT TN B rppond
| Thermo | Thermo RawFileReader for each
'x - pyHawFileReader [ atapj
Bn.lker TimsDaia ) |.!F 1
— maw
C/C++ Library
. {+— Features
Other | Search
le.g. ~——— Pyleomics
mzhL)
C D Therme RawFileReader Example
I s
I T | | Raw to memary 69.1
1l w LU . RT
: i Raw to haf 69.9
Inmnsn-y n...'... Efﬂ Hdf to mamory 0.2

‘: Raw to hdf (& files, 1 CDFE:I- --J'#EE;I 420.8
i Raw to hdl {6 files, 6 cores) 4] 99.1

i | 'I 107 100 100 100 10
Spectrum data Time (seconds)

Metadata

Figure 2: Highly efficient and platform-independent MS data access

A MS data from different vendors is imported to an HDF3 container for fast and platform-independent data
access. To read Thermo data, we provide a Python application programming interface, Bruker data is accessed
via Bruker™s proprictary DLL, Additionally, generic data can be imported using the Pyteomics package. B The
output of each processing step is appended to the HDF3, allowing processing in a modular way. C To
efficiently store MS spectra, multiple spectra of variable length are concatenated, and start indices are saved
in a lookup table, I HDFS Accessing times, Loading data from HDFS into memory takes less than 1s for a
typical 2h full proteome analysis of a HeLa sample acquired on a Thermo Orbitrap mass spectrometer.

Extracting isotope features — Having stored the MS peaks from all mass spectra in an efficient data
struclure, we next determine isotope patlerns over chromatographic elution profiles. This
computationally intensive task is crucial for subsequent peptide identification and quantification.
MaxCQuant (Cox and Mann 2008) introduced the use of graphs for feature hinding, which was then
improved upon by the Dinosaur tools { Teleman et al. 2016) and we also decided to follow this elegant
approach.

In the first step - called hill building — centroided peaks from adjacent scans are connected. As there
are millions of centroids, our first implementations using pure Python took several minutes of
computing time. We subsequently refactored the graph problem and parallelized it for CPUs using
Numba and CuPy for GPUs, resulting 1n a 300-fold speed up (about 1s on GPU). Since not every
user has access to GPUs,; AlphaPept employs dedicated Python *decaorators’, a metaprogramming
technique allowing a part of the program to modify its another part at compile time to transparently
switch between parallelized CPU, GPU and pure Python operation.
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In more detail, AlphaPept refines hills by first splitting them in case they have local minima indicating
two chromatographic elution peaks (Fig. 2B). Additionally, hills are removed whose elution profiles
do not conform to minimal eriteria. like minimal length and the existence of loeal minima. To
efficiently connect hills, we compute summary statistics such as weighted average m/z value and a
bootstrap estimate of its precision. Hills within retention ime boundaries are grouped into pre-isolope
patterns. To correctly separate co-eluting features, we generate seeds, which we extend in elution
time and check for consistency with a given charge stale, similarity in elution profile and for
conformity with peptide isotope abundance properties via the averagine model (Senko, Beu, and
McLalfertycor 1995). This results in a feature (here a puossible pepiide precursor mass), which is
described by a table.

Feature finding on the Bruker timsTOF involves ion mobility as an additional dimension. Currently,
this functionality is provided by a Bruker component, which we linked into our worklow via a Python
wrapper, and s the only part that is not in natively included as Python code in AlphaPept. Instead,
this wrapper uses Python's subprocess module, which can integrate other tools into AlphaPept just
as easily.

For a typical proteomics experiment performed on an Orbitrap instrument, Figure 3C provides an
overview of the number of data points from MS peaks to the final list ol isolope patterns, Note that
AlphaPept can perform feature finding separately for cach file as soon as it is acquired (described
below). Furthermore, although described here for MS1 precursors, the AlphaPept feature finder is
equally suited to MS2 data that occur in parallel reachion momtormg (PRM) or DIA acquisition
modes.

A i extraction .’] Numba + CuPy (12 5] B Spilt/ Fier
teer e+ T Numba, threaded (2.8'5) 7N i
E S = - L EL]
sest.ts j Mumba (3.6 5) g
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. = - . — & - ! V
E : : .:: : T .: - -
— @ - “]l] 1UI 102 “]1
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Figure 3: Extracting isotope features

A Individual M3 peaks of similar masses are connected over the retention time using a graph approach,
resulting in ‘hills", Using a native Python implementation, hill extraction takes several minutes. Numba,
parallelization on CPUs or GPUs reduces hill extraction to seconds. B Extracted hills are refined by splitting
at loeal minima and only allowing well-formed elution profiles. C Starting with 20 million points for & typical
Thermo HelLa shotgun proteomics file, these are connected to approximately one million hills, which increased
to 1.5 mullion afier hull splitting and liliering. Subsequent processing results in 200,000 pre-isotope patierns
that ultimately yield 230,000 isotope patierns due to assignment 1o specifie charge states,

Peptide spectrum matching — The heart of a proteomics search enging is the matching of msms specira
(o peptides in a protein sequence database. AlphaPept parses FASTA files containing protein
sequences and descriptions, “digests’ them into peptides and caleulates fragment masses according to
user specified rules and amino acid modifications {Fig 3D). We again use HDF3 files, which enables
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efficient storage of fragment series despite their varying lengths, Generation of this database only
happens once per project and only takes minutes for tvpical organisms and modifications. From a
FASTA file of the human proteome. typically five million “in silico’ spectra of fragment masses are
generated. In case no enzyme cleavage rules are specified or for open search with wide precursor
mass tolerances, the fragments are instead generated on the fly to avoid excessive file sizes.

To achieve maximum speed, AlphaPept employs a very rapid fragment counting step to determine
initial peptide spectrum matches (PSMs), As this step only involves addition and subtraction of
elements in numerical arrays, the machine code produced by Numba is very efficient and easily
parallelized. This leaves a much smaller number of peptides that have at least a minimurm number of
fragment matches to the experimental spectrum. { This is similar to the Morpheus score (Wenger and
Coon 2011 3), which also computes the fraction of msms signals accounted for by the match.) For the
human proteome and mass measurement accuracy of parts per million, the inital millions of
comparisons are decreased (o @ maximum of op-n remaining candidates per msms spectrum
{(typically 10). This enables more computationally expensive scoring in & second step. Different
scores can be implemented in AlphaPept, and by default we chose the widely used X!Tandem score
{Craig and Beavis 2003). Note that the sole function of this score is to rank the PSMs, whereas
statistical significance is determined by counting reverse database hits and by machine learning (see
below).

We perform a first search for the purpose of recalibrating the mass scale as a function of elution time
(Fig. 4B). Here, we use weighted nearest neighbor regression instead of binning by retention time
{explained in the accompanying Jupyter Notebook). The k-nearest neighbors regressor that we
selected allows non-linear grouping in several dimensions simultaneously (retention time and mass
scale mn the case of Orbitrap data and additionally ion mobility in the case of tmsTOF data),

Hawving recalibrated the data, the main search is performed with an adapted precursor tolerance. We
turthermore calculate the matched ion intensity, matched ions, neutral loss matches for further use
and reporting together with charge, retention time and other data.

To demonstrate the speed up achieved by our architecture and the performance decorator, we tumed
illustrative examples (Fig. 4C). On a Hela cell line proteome acquired in a single run, comparing
260k spectra to 5 million database entries, the computing time in pure Python was about 23 h. This
decreased to 126 s when employmg Numba (> 500x improvement), to 105 s when using Numba with
CuPy on GPU and further to 13 s on multi-threaded CPU (see companion Figure Notebook). The
GPU acceleration is not larger because the code is already very efficient on CPU and some workflow
tasks are memory bound instead of computationally bound. Improved memory management on GPU
could further decrease GPU computational time. In any case, AlphaPept reduces the PSM matching
step to an insignificant part total computation time.

112



3. Publications

bioRxiv preprint doi: hiips'doi.org/10.1107/2021.07.23 4533 73; this version posted July 26, 2021, The copyright holder for this pregrinl
{which was not certified by pear review) is the autharfunder, who has granted bioRxiv a foense o display the prepring in perpetuity. If is
made available under aCC-BY 4.0 Internationa! boanza.

B
Mumba + CuPy

S U 1 Tiiosss)

i 1 H = r—-—"Expg-lmanm Numba, threaded
h F t Spectra ':I (12.8 g)

RESKGISQECS .
iy ['— - E 1 4 1 |Numba (12585)
BT YO 55T

Digestion, Theoretical .
modifications spaclina Database bt | =" | el

w 1wt 1w 1wt 10f
Time {seconds)

Figure 4 Database search

A The FASTA processing notebook contains functionality 1w caleulate fragment masses from FASTA files
which are saved in an HDF3 container for subsequent searches. B Initially, a first search is performed, and
masses are subsequently recalibrated. Based on this recalibration, a second search with more stringent
boundaries i performed. € Using the decorator strategy, the search can be drastically speeded up. from 23 h
n a pure Python implementation to seconds with Mumba and CuPy.

Machine learning based scoring and FDR estimation - Assessing the confidence of PSMs requires a
scoring metric that separates true (correctly identified) from false (wrongly identified) targets in the
database. Multiple defined features are calculated by the AlphaPept search engine and used in a score
to rank the targets. A nonsense database of pseudo-reversed sequences where the terminal amino acid
remains unchanged (de Godoy etal, 2008) is used to directly estimate the False Discovery Rate (FDR)
by counting reverse hits. Score thresholds subsequently decide which targets should be considered
identified. To further validate this approach and to ensure accurate FDR estimation across different
development stages in AlphaPept, our GitHub testing routine includes an empirical two species FDR
test based on an “entrapment strategy’ (Muntel et al. 2019).

In recent years, maching learning has gained increasing momentum in science in general, but also in
its specific applications to MS data analysis, One of the first of these was the combination of multiple
scoring metrics to a combined discriminant score that best separates high scoring targets from decoys,
This was initially integrated into PSM scoring through an external reference dataset to train the
classifier (Keller et al. 2002). The widely used Percolator approach subsequently emploved a semi-
supervised learming approach that was tramed directly on the dataset itself (Kall et al. 2007). This
automatically adapts the ML maodel to the experimental data and along with other MS analysis tools
(MacLean ef al. 2000; Rast et al, 2014; Teleman el al. 2015; Fondrie and Noble 2021; Rosenberger
et al. 2017) we also employ semi-supervised learming for PSM scoring in AlphaPept.

The AlphaPept scoring module falls into five parts: { 1) feature extraction for all candidate PSMs, {2}
selection of a candidate subset, (3) traming of a machine learming classifier, (4] sconng of all
candidate PSMs and (3) FDR estimation by a target-decoy approach (Fig. 4A). Most features for
scoring the candidate PSMs are directly extracted from the search results, such as the number of b-
and y-1on hits and the matched jon intensity fraction, Some additional features are subsequently
determined, including the sequence length and the number of missed cleavages. After feature
extraction, a subset of candidate PSMs is sclected with an initial 1% FDR thresheld based only on
the X!Tandem score (Fig. 4B). Together with an equal number of randomly selected decoys, this
creates a balanced dataset for machine learning. This is split into training and test sets (20% vs. 80%)
and provides the mput of a ML classifier. We chose a standard scikit-learn random forest classifier
as 1t performed similarly to XGBoost with fewer dependencies on other packages, We first identity
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optimal hyper-parameters for the classifier with a grid-search via five-fold cross-validation, The
resulting best classifier optimally separates target from decoy PSMs on the test set. Applying the
trained classifier o the entire ser of candidate PSMs yields discriminant scores that are used o
estimate g-values based on the classical target-decoy competition approach,

The contribution of different features to the discriminant score for an exemplary tryptic HeLa sample
is shown in Figure 4C, Interestingly, for our data, the number of matched y-ions alone outperforms
the basic search engine score and most of the top-ranking features are related to the number of
malched ions and their intensity. The ML algorithm markedly improved the separation of targets vs
decoys, retrieving a larger number of PSMs at every g-value (Fig. 4D). ML-based scoring in
AlphaPept improved identification rates by 15% ata 1% FDR at the PSMs level, in line with previous
efforts (Kill et al. 2007). AlphaPept allows ready substitution of the underlying PSM score and
machine learning algorithms, Furthermore, additional features to deseribe the PSMs are readily
integrated, such as fon mobility or predicled fragment intensities. We envision that this kind of
flexibility will enable continuous integration of improved workflows as well as novel ML techniques
into AlphaPept.

Once a set o PSMs at a defined FDR is identified. protein groups are determined via the razor protein
approach (Nesvizhskii and Acbersold 2005), Here, peptides that could potentially map to multiple
upigue proteins are assigned to the protein group that already has most peptide evidence, We
determine protein-level g-values by selecting the best scoring precursor per protein, followed by FDR
estimation by target-decoy competition siomlar o the peptide level {Nesvizhskin 2000; Savitski et al.
2015; The et al. 2016; Gupta and Pevzner 2009). Finally, we wvalidated the scoring and FDR
estimation in AlphaPept with the entrapment strategy mentioned above, by analyzing a HeLa sample
with a mixed species library, contaming targets and decoys derived from both a human FASTA and
a FASTA from Arabidopsis thaliana. This revealed that AlphaPept provides accurate g-value
estimates, reporting approximately the same number of Arabidopsis thaliana proteins as decoy
proteins at % protein FDR,
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Figure 5: Machine learning-based scoring and FDR estimation

A We train a Random Forest (RF) classifier on a subset of candidate PSMs to distinguish targets from decoys
based on PSMs characteristics. A semi-supervised machine leaming model is applied with the following steps:
{1} extraction of all candidate PSM scores, (2) selection of a PSM subset for machine learming, (3) training of
a RF classifier, and (4) application of the tained classifier 1o the full set of PSM candidates. Finally, the
probability of the RF prediction is used as a scare for subsequent FDR control (5), B Training of the ¢lassifier
{step 4 i panel A) follows o train-test split scheme where only a fraction of the candidate subset is used for
training, Using stringent cross-validation, multiple hyperparameters are tested to achieve optimal RF
performance. The best classilier is benchmarked against the remaining test set. C Example Feature importance
for an Orbitrap test set, where the number of y-ion hits is the highest contributing factor to the model. Note
that the RF algorithm can utilize any database identification score such as the X!Tandem score chosen here,
which is the second most important feature. See the AfphaPept workflow and files Notebook for an explanation
of features. D Optimized identification with the ML score. Compared to the X!Tandem score alone, the ML
optimization identified about 15% more PSMs for the same g-value,

Label-free quantification - The ultimate goal of a proteomics experiment is to derive functional
insights or assess biomarkers from quantitative changes at the protein level. to which peptide
identifications are only means to an end. Algorithmically this guantification step entails either the
determination of isotope ratios in the same seans (for instance SILAC, TMT or EASI-tag ratios) or
the sommewhat more challenging problem of first integrating peaks and then deriving quantitative
ratios across samples {label-free quantification), which we focus on here. We imitially adapted the
MaxLF(} pipeline for label-free quantitative proteomics data (Cox et al. 2014). The first task is to
determine normalization factors for each run as different LC MS/MS runs need to be compared —
potentially spaced over many months in which instrument performance may vary — and as total
loading amounts likewise vary for instance due to pipetting errors. The basic assumption is that the
miajonty of peptides are not differentially abundant between different samples. This allows derving

115



3. Publications

bigRxiv praprint doi: hiips'doi.org/10.1107/2021.07.23 4533 73; this version posted July 26, 2021, The copyright holder for this pregrninl
(which was not certified by pear review) is the autharfunder, who has granted bioRxiv a foense o display the prepring in perpetuity. If is
made available under aCC-BY 4.0 Internationa! boansa.

the run-specific normalization factors by minimizing the between-sample log peptide ratios (Cox et
al. 2014) (Note that this assumption is not always valid and can be restricted to certain protein
classes.). In a second step, adjusted intensities are derived for each protein, such that protein
intensities between different MS runs can be compared, To this end we derive the median peptide
fold changes that maximize consistency with the peptide evidence.

The normalization, as well as protein intensity profile construction, are quadratic minimization
problems of the normalization factors or the intensities, respectively. Such minimization problems
can be solved in various ways but one fundamental challenge is that these algorithms have a time
complexity of O(n?), meaning that the computation time increases quadratically with the number of
comparisons, One strategy to overcome this limitation is to only perform minimization on a subset
of all possible pairs (termed ‘FastLFQ") (Cox et al. 2014). Despite this, the computation time of the
underlying selver will determine the overall runtime and accounts for the long run times on very large
datasets, However, a variety of very efficient solvers that are based on different algorithms are
contained in the Python SciPy package (SciPy 1.0 Contributors et al. 2020). To test these approaches,
we created an in sifico test dataset with a known ground truth (see Quantification Notebook).
Comparing different solvers using our benchmarking set uncovered dramatic differences in precision,
runtime and success rate (Fig. 6A). Among the better performing algorithms were the least-squares
solvers that were previously used. The Brovden Fleicher- Geldfarb-Shanna  (L-BFGS-B),
Sequential Least Squares Programming (SLSQP) and Powell algorithms were particularly fast and
robust solutions being up to 16x quicker than the Trust Region Reflective algorithm (trf) from the
default least-squares solver. More remarkably., they were able to optimize much better to our known
ground truth, OF all four tested optimizers, the mean error of trf was, on average 24% worse. Being
able to readily switch between different solvers provided by SciPy allows us to fall back on other
solvers if the default solver fails, i.e. AlphaPept will switch from L-BFGS-B to Powell if the solution
does not converge.

We compared our methed to MaxLF(Q) in a quantitative two-species benchmarking dataset, in which
E. coli proteins change their abundance by a factor of six between conditions, while human proteins
do not change (Meier et al. 2018). To specifically assess the benefits of the new optimization strategy,
we [irst tested the algorithm directly on the MaxQuant output (see companion Notehook for Figure
). Both approaches clearly separated human and £, coli proteins, however, the standard deviation
was smaller when applying the AlphaPept optimization algorithm, which also has fewer outlier
quantifications (Fig 6B), supporting the analysis of the iu-silico test set. Comparing results of the
complete workflow with AlphaPept on the same files further improved identifications and
quantifications,
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Figure 6: Algorithm selection and performance of label-free quantification

A Timings of different, highly optimized solvers from the Scil'y ecosystem, to extract oplimal protein intensity
ratios in AlphaPept. Solvers showed drastic differences in speed, closeness 1o ‘ground truth’, and propertion
of successful optimizations on fr-silico test data. Based on these tests, AlphaPept employs a hybrid
optimization strategy that uses L-BFGS-B and Powell for optimized performance. robustness and speed. B
Comparing the AlphaPept LFQ solver on MaxQuant output data demonstrates similar separation in mixed-
species datasets with smaller standard deviations. C Applying AlphaPept directly on the same dataset further
impraves identifications and quantification accuracy.

Maich-between-runs (MBR) and dataset alignment — We implemented functionality 1o transfer the
identifications of MS1 features to unidentified MS1 features of other mns (match-benveen-runs).,
First, we align multuple datasets on top of each other by applying a global offset in retention time,
mass and — where applicable — 1on mobility. To determine offsets for all runs, we first compare all
possible pairs of runs and calculate the median offset from one dataset to another based on the
precursors that were identified in both, As these offsets are linear combinations of each other, i.c.,
the offset from dataset A to dataset C should be the offset from dataset A 1o B and B 1o C; this
becomes an overdetermined equation system, which we solve by a weighted linear regression model
with the number of shared precursors as weights.

Afier dataset alignment, we group precursors of multiple runs and determine their expected properties
as well as their probability density and create a library of precursors, Next, we take the unidentified
M1 features from each run and extract the closest match from the library of precursors. Finally, as
we know the probability density of each feature, we can caleulate the Mahalanobis distance from
each identification transfer and use this as a probability estimate to assess the likelihood that a match
is correct. Further information about the alignment and matching algorithm can be found in the
Maiching notebook.
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Benchmarking AlphaPept on large data sets — A prime goal of the AlphaPept effort is robustness and
speed. To showease the usability of AlphaPept for large scale studies we re-analyzed 200 Hela
proteomes from a recently published long-term performance test (Bian et al. 2020). To confirm
comparable identification performance in the mitial analysis, which was done with MaxQuant, we
evaluated the number of uniquely identified protein groups and PSMs per group. This yielded a
median of 4277 unique protein groups and 43,872 unique peptides per experimentally defined group,
as expected. Next, we compared the protein level quantification. The median coefficient of variation
without our Python maxLFQ implementation was 27.1% and 9.2% aflter LFQ oplimization. For 90%
ol protein groups, CVs were below 20% with LFQ optimization and below 34% without
Investigation of each computational task revealed that a large part 1s spent on importing raw data and
feature finding. Searching and scoring are highly optimized and contribute only a small fraction of
the overall computing time. Operations across files such as LFQ alignment and matching again make
up a large part of computation time,

A B
S 4000 - i
& g
2 3000 - 2
a o
o) =18
© 2000 - w
o =
w o
2 1000 - s
E
= 0-
5 10
Cycle Cycle
D 1000
4000 4 £ 800 -
] £ 600 -
3 3000 - v 400
) E 2004
!5 2000 1 £ Al LENEN BN BNEN BN N T T UL
B : EEPSENEEETE
S 10004 4 — w/ g%@%@% geEags
— W/fo *2;“:5-9.5 D@
1 : = EEE 558 c&
0 25 50 75 585°88 2z
Cv (%) E” & 5

Figure 7: Benchmarking AlphaPept on 200 HeLa proteomes

A total of 200 DDA Hela cell proteomes — the 10 cycle long term performance test from Kuster and
coworkers (181 Ghyte) (Bian et al. 2020 was analyzed by AlphaPept. A ldentification performance at the
protein group level. B Identification performance at the peptide level. C Quantification performance with or
without MaxLFQ optimization. For 90% of protem groups, CVs are below 20% and 54%, respectively.
Timing of the Alphalept computational pipeline. Search through scoring are highly optimized and contribute
little to overall computation time.

Continueus validation on standard datasets — Our current continuous integration pipeline uses a
range of data sets typical for MS worklows, These include standard single shot runs, such as Hela

14
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quality control (QC ) runs, as well as recently published studies, For every addition to the main branch
of the code base, AlphaPept reanalvzes these files fully automatically, allowing extensive systems
checks. Additionally, these checks can be manually triggered at any time and therefore enable swifi
validation of proposed code changes prior to submitting pull-requests. This makes comparing studies
that were analyzed with different software versions much more transparent. To further increase this
idea of transparent performance tracking, we automatically upload summary statistics, such as
runtime, number of proteins and number of featurey for each run 10 a database and visualize these
melrics 1 a dashboard (Extended methods). Table 1 shows example tracking metrics from the
database,

Version Test file Processing time [min) Number of features Number of peptides
a8 HelLa Orbitrap 18 218792 44777
028 Hela timsTOF 102 231545 541158
o228 Hela Orbitrap 19 218780 41028
0.2.9 Hela tmsTOF 113 431545 BETTE
02190 Hels Orbitrap 14 218774 4498459
0.3.25 HelLa msTOF 105 HE4892 78217
0328 HelLa Orbitrap 18 260705 3522
0.3.26 Hela imsTOF 88 B64982 TTa6"
0327 Hela Orhitrap 21 2E0G22 54283
0.3.27 Hela imsTOF B9 BE4002 7762

Table 1: Example performance tracking metrics for different AlphaPept versions extracted
from the database.

AlphaPepit user interface and server — A central element For any software tool 15 case of use for the
end user. In the most basic setup, this 1s determuned by the accessibility of the GUI, Following recent
trends, we decided on server-based technology for AlphaPept. In a basic setup, the web interface is
called by connecting to a local server instance on the user’s laptop or local workstation (Fig. 8A) via
a browser. For more demanding pipelines, AlphaPept can be run on a powertul processing PC and be
accessed from multiple other devices. This makes access to AlphaPept platform independent,
including mobile devices.

Adding server functionality typically comes at the cost of maintaiming a dedicated APl and
infrastructure. For AlphaPept we make use of a very recent but already very popular Python package
called streamlit (www .streamlit.com), which was developed to facilitate the sharing of machine
learmning models. By only adding one addinonal Python package, we have access to a powerful and
responsive server infrastructure. Here, the web interface serves merely as an input wrapper to gather
the required settings and display results and starts the AlphaPept processing in the background.

AlphaPept workflow management system — Importantly, the server-based user interface extends the
processing functionality of AlphaPept from only pracessing individual experiments to a continuous
processing and monitoring  framework. The core processing function of AlphaPept accepts a
dictionary-type document to process an experiment, with defined parameters per setting. To store
these settings, we chose Y AML, a standard human-readable data-serialization langnage, resulting in
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files of only a few kilobytes in size. This ensures that they can be modified programmatically and
easily checked with common editors.

The settings structure is used by the AlphaPept GUI to build a folder-based workflow management
system. It creates three folders in the user folder ("Queue’. ‘Failed’. and *Finished’) and monitors
them for new data. When defining a new experiment within the GUIT, a settings Y AML file is created
in the Queue folder, and the core function will start processing, This allows defining multiple
experiments, which will then be processed one after another, YAML files of processed runs will be
moved to the ‘Finished’ or ‘Failed” folder (Fig. 8B).

We chose this folder-based processing gueue as this allows manual inspection of the processing queue
by simply checking the files in the folders. Furthermore, computational alterations of the processing
queue are straightforward by writing custom scripts that copy settings files generated elsewhere o
the queue folder. AlphaPept has a file watcher module that can monitor folders for new raw files and
automatically add them to the processing queue immediately after sequisition is finished. Its modular
structure can easily be extended with custom code for integration into larger processing environmentis
with database-based queuing systems. Reler to the interface notebook. which calls the wrapper
function and allows customization of the pipeline.

Visnalization of results and continuous procesying — For visualization of tabular or simmary statistics
results, our streamlit application utilizes the “Finished® folder structure where it stores readily
accessible summary information of previously processed files (Fig. 8C), AlphaPept has a History tab
that compiles these previous results to show performance over time or across analyzed MS runs (Fig.
BD). Here, the user can choose to plot various summary statistics such as identified proteins or
peplides as well as chromatographic information such as peak width or peak tailing. As a particular
use case, this provides a standard interface which allows instant QC run evaluation in combination
with the tile watcher.

To inspect an individual experiment, AlphaPept’s browser intertace can also plot identification and
guantification summary information. Furthermore, basic data analysis functions such as voleano or
scatter plots and Principal Component Analysis (PCA) are provided. This 15 based on streamlit and
scikit-learn functionality and can therefore be readily extended. AlphaPept exports the analysis results
{guantified proteins and peptides) in tabular format to the specified results path so that it can be
readily used for other downstream processing tools such as Perseus (Tyanova et al. 2016) or the
recently introduced CKG (Santos et al, 2020),

Alphatept deployment and integration — The utility of a compulational tool critically depends on
how well it can be integrated into existing workflows. To enable maximum flexibility and to address
all major use cases, AlphaPept offers multiple ways to install and integrate it.

First, we provide a one-click installer solution that is packaged for a standard Windows system
obviating additional installation routines. It provides a straightforward interface to the web-based
GUL We chose Windows for the one-click solution as it 1s the base O8 for the vendor-provided
acquisition and analysis software and most users. The one-click installation also has a command-line
interface (CLI) for integration into data pipelines.

Next, AlphaPept can be used as a module in the same way as other Python packages. This requires
setting up a Python environment to run the tool, which also contains all the functionality of the
previously deseribed CL1and GUIL Compared to the Windows one-click installer, the Python module
extends the compatibility to other operating systems. While Python coede is in principle cross-
platform, some third-party packages can be platform bound, such as the Bruker feature finder or
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DLLs required to read proprietary file types. The modular nature of the AlphaPept file system allows
to preprocess files and continue the analysis on a different system (e.g., feature finding and file
conversion on 8 Windows acquisition PC and processing on a Mac system).

Fimally. the Python module makes the mdividual functions available to any Python program. This is
particularly useful to integrate only parts of a workflow in a script or to optimize an individual
workflow step. Besides the nbdev notebooks that contain the AlphaPept core code, we provide several
sandboxing Jupyter Notebooks that show how individual workflow steps can be called and modified.
In this way, AlphaPept allows the ereation of completely customized work flows.
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Figure 8: Alphapept user interface, workflow management, deploving and imtegrating

A The AlphaPept GUI is based on a server architecture that can be installed on a workstation and used locally,
Additionally, it can be installed on a server and accessed remately from multiple workstations in the network,
B AlphePept processing pipeline. The AlphaPept GUI creates three folders for its processing system. New
experiments are defined within the nterface and saved as YAML files in the Queue lelder with avtomatically
triggered processing, C Example plots from the History and Results Tab in AlphaPept: Overview of the
number of features, peptides and protein groups per injected sample (lefi panel). Graphing retention time
tailing as a function of acquistion date, as an illustration of using AlphaPept for quality assurance.

AlphaPept pracessing times — To give the reader an impression of typical processing timings for each
of these deployment variants, we ran AlphaPept on various hardware for several use cases: laptop,
office PC. workstation and cloud (Table 1). AlphaPept can be readily employed with cloud providers
such as Amazon Web Services. We tested our default testing prpeline (see timing table below) on
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two different Amazon EC2 instances (t3a.2xlarge: 0.42 Eur/h and t3.xlarge: 0.22 Eur/h), an incurred
computational costs of 0.22 and 3.82 Euros for one 120 min Orbitrap HelLa file and 8 timsTOF files,
respectively. when processed in a European location. Computational costs can be further improved
by choosing resource-optimized hardware or buying compute power in advance.

For a typical proteomics laboratory, we envision AlphaPept running in continuous mode, to
automatically process all new files, This allows continuous feedback about experiments while
drastically speeding up computation when subsequently combining multiple processed files inlo
experiments and experiments into an overall study, because the computational steps that do not
change (e.g.. raw conversion, database generation or feature finding) can be reused. To illustrate this,
the test set with 8 Bruker files from PXD010012 takes 194 minutes on a Workstation with
preprocessing and 23 minutes when using preprocessed files,

Laptop Office Pc Workstation Cloud 1 | Cloud Nl
Macteok Pro Cpliptex FOB0 Cusborm WS (138 2udarge) | AWS (13.dame)
macs Big Sur Windows 10 Windows 10 Windows Server Windows Server
923 GHe x B 19 3.7 GHz®10 B350 GH: x12 EPIC 2.2 GiHr x4 SEDN 2.4 GHrz x2
32 Gh RAM B4 Gh RAM 128 Gb RAM 32 Gh AAM 16 Gh RAM
IRT Sample* 9 1 2 3 I 2
(Thermo) Fuli
23 16 18 40 47
Ful
HeLa 120 min ] 1 5 1 12
(Thesmo) Preprocessed
a5 7 21 46 V3
Full
PROOOG109 - B a0 B s B | od
files {Tharma) Preprocassed
IRT Sample - 1 2 3 z
(Bruker) Full
" a7 111 i | 393
Hela 120 min Fud
[} 5] ¥ 16 19
{Bruker Proprocessed
- 242 194 T
PxDMO01Z- B Fu - -
; 10012 - G2 24 23 BS 132
files {Bruker} Preprocaessed

Table 2: Running times of AlphaPept for various hardware (tfimings in minuotes)
# IRT = low complexity mixture of peptides (internal retention time standard )
** to process Bruker files on Mac Os X, we preprocessed them on Windows

Being able to import AlphaPept as a Python package also lowers the entry barrier of prolcomics
analysis workflows  for individual rescarchers and  laboratories with  little  computational
infrastructure, as it makes it compatible with platfforms like Google Colab, a free cloud-based
infrastructure built on top of Jupyter notebooks with GPUs. This allows processing without having
to set up software on specialized hardware and allows direct modification of the underlying
algorithms. We provide an explanatory notebook for running a workflow on Google Colab, including
a 120min HeLa example file that has been convered on the Windows acquisition computer. This also
highlights how the modular HDF5 file format allows us to move the MS data between operating
systems,

DISCUSSION
Here we have introduced AlphaPept, a computational proteomics framework where the relevant

algorithms are written in Python itself, rather than Python being used only as a seripting layer on top
of compiled code. This architectural choice allows the user to inspeet and even modify the code and
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enables seamless integration with the tools of the increasingly powerful and popular Python scientific
ecosystem. The major drawback of such an approach would have been the slow execution speed of
pure Pyihon, however extensive use of the Numba just in time compiler — on muliiple CPUs or a
GPU - makes AlphaPept exceptionally fast. as we have shown in this manuscript. Together with the
use of recently developed browser-based deployment, AlphaPept covers the full range of potential
users from novice users to systems administrators wishing to build large cloud pipelines.

A related and important design objective of AlphaPept was to enable a diverse user community and
invile community participation in its further development. To ensure quality, reproducibility and
stability, we implemented a large suite of mechanisms from unit through end-to-end tests via
automatic deployment tools. This in turn allows us to streamline the integration of community
contributions after rigorous assessment. Furthermore, GitHub provides state-of-the-art wols and
mechanisms to allow the effective collaboration of diverse and dispersed developer communities,

Currently, AlphaPept provides functionality for DDA proteomics but we are in the process of
enabling analysis of DIA data, ultra-fast access to and visualization of 1on mobility data (AlphaTims,
hitps://github.com/MannLabs/alphatims), deep learning for predicied peptide properties and
improved quantification, all made possible by its modular design.

One of the large goals of AlphaPept is to “democratize’ access o computational proteomics. To this
end, besides implementation in Python, we adopted the ‘literate programming’ paradigm which
integrates documentation and code. We adopted the nbdev package, providing both beginner and
expert computational proteomics researchers with an easy and interactive ‘on ramp’. In our case this
takes the form of currently 12 Jupyter notebooks dealing with all the major sub tasks of the entire
computational pipelime from database creation, raw data import all the way to the final report of the
results. We imagine that students and researchers with novel algorithmic ideas can vse this paradigm
to add their functionality in a transparent and efficient manner, without having to re-create the entire
pipeline. This could especially enable increasingly powertul machine learmning and deep learming
technologies to be integrated into computational proteomics (Torun et al. 2021; Wen et al. 2020;
Mever 2021).
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Software and Data availability

AlphaPept is fully open-source and is freely available under an Apache license at
https://github.com/MannLabs/alphapept. All data is available on GitHub or the Max-Planck datashare
as test data. Each notebook / file contains respective download links for the files used. The results in
this manuscript were obtained with AlphaPept version (.3.26 if not otherwise indicated.
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of the search algorithim, MTS wrote the Thermeo feature finder, quantification and downstream
processing modules, code structure and user interface. EV contributed file importing functionality,
IB extended the scoring functionality with ML and FDR control. SW added HDF file handling,
revised the general code structure and added pertormance functions, WFZ and CA contribuied and
improved quantification. J8 crtically reviewed testing and documentation. Rl and MG contributed
to GPU support and code acceleration. All authors contributed ideas, performed testing and wrote the
manuscripl,

EXTENDED METHODS
Notebook availability.

All notebooks are available in the repository on GitHub, The documentation created based on the
notehooks is available here: https://mannlabs github, io/alphapept!. Additional information about

code not covered in the Notchooks presented here can be found in the Documentation
{ https:/imannlabs. github.io/alphapept/additional _code htmi).
A cloud hosted Notebook with an example data file is pmwded 1t the free Go-c-glc Colab sm:

MongoD B Dashboard

The continuous integration pipeline has the action *Performance test pyinstaller™. This action
freezes the current Python envirenment into an executable and runs the test files. The results of
these tests are uploaded to a noSQL database (MongoDB) for the tested version number, Key
performance metrics are visualized in charts here:

https://charls mongodb.com/charis-alphapept-itfxv/public/dashboard /567 L def-bed6-4d90-8494-
Reil724h727h

tmsTOF and Orhitrap Hela samples — The test files comprise representative single run analvses of
complex proteome samples. Human HeLa cancer cells were lysed in reduction and alkylation buffer
with chlorpacetamide as previsouly described (Kulak et al. 2014), and proteins were enzymatically
digested with LysC and trypsin. The resulting peptides were de-salted and purnified on
styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS) StageTips before injection into an
EASY nL.C 1200 nanoflow chromatography system (Thermo Scientific). The samples were loaded
ona 50 cm x 75 pm column packed in-house with 1.9 um C¢ beads and fitted with a laser-pulled
emitter tip. Separation was performed during 120 min with a binary gradient at a flow rate of
300 nL/min. The LC system was coupled online to either a quadrupole Orbitrap (Thermo Seientific
Orbitrap Exploris 450) or a trapped ion mobility — quadrupole time-of-flight ( Bruker timsTOF Pro 2)
mass spectrometer. Data were acquired with standard data-dependent topl 3 (Orbitrap) and PASEF
methods (timsTOF), respectively.
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tims TOF and Orbitrap iRT samples — 11 iRT peptides (https://biognosys.com/product/irt-kit’) were
separated wa a 5.6 min Evosep gradient (200 “samples per day™) yielding test dma with low
complexity, that facilitated guick testing of computational functionality. An Evosep One liquid
chromatography system (Evosep) was coupled online with a trapped ion mobility spectrometry
(TIMS) quadrupole time-of-flight (TOF) mass spectrometer (timsTOF pro, Bruker Daltonics). iRT
standards (Biognosys) were loaded onto Evotips according to the manufacturers’ instructions and
separated with a 4 em x 150 pm reverse-phase column with 3 pm Cie-beads (Pepsep). The analytical
column was connected with a zero-dead volume emitter (10 pum) placed in a nano-electrospray ion
source {CaptiveSpray source, Bruker Daltonics). Mobil phase A contained 0.1 vol% formic acid and
water and mobil phase B of 0.1 vol%: formic acid and acetonitrile. The sample was acquired with the
dda-PASEF acquisition mode, Each topN acquisition mode contained four PASEF MS/MS scans and
the aceumulation and ramp time were both 100 ms. Only muliiply charged precursors over the
intensity threshold of 2500 arbitrary units (a.u.) and within a m/z-range of 100 - 1700 were subjected
to fragmentation. Peptides that reached the target intensity of 20,000 a.u. were excluded for 0.4 min.
The guadrupole isolation width was set to 2 Th below m/z of 700 and 3 Th above a m/z value of 700,
The ion mobility (IM} range was configured to 0.6 — 1.51 Vs cnr” and calibrated with three Agilent
ESI-L TuneMix lons (mz, IM; 622,02, 0,98 Vs cm®; 922,01, 119 Vs em?; 1221.99, 1.38 Vs em™).
The collision enerzy was decreased as a function of the ion mobility, starting at 1.6 Vs cm™ with 59
¢V and ending at 0.6 Vs cm™ with 20 eV,
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The concept of data-independent acquisition (DIA) was introduced more than 15 years
ago, but recent developments have made it superior to alternatives in a wide range of
proteomics applications. The main attractions of DIA are its high data completeness and
a wide dynamic range. This acquisition scheme ensures that the selection windows
collectively cover the entire m/z range of interest and that every peptide precursor is
isolated and fragmented in every acquisition cycle. However, the overall ion sampling
efficiency at the mass-selective quadrupole for conventional DIA methods is as a matter

principle limited to 1-3% of all available ions.

In a joint effort of the Aebersold, Rést and Mann groups, in this study we have combined
the recently introduced PASEF principle with DIA to overcome this fundamental
limitation (13, 125). We employed this novel acquisition method, called diaPASEF, on a
trapped ion mobility mass spectrometer (a timsTOF Pro instrument from Bruker), which
provides an additional ion mobility dimension of separation. Using the correlation of
mass and ion mobility, we acquired up to 100% of the peptide fragment ion current in
low-complexity samples. We demonstrate the performance of diaPASEF in typical
proteomics experiments, such as single two-hour runs of the HelLa proteome analysis,
achieving deep proteome coverage of more than 7,000 proteins. Applying the diaPASEF
scan mode to analyze very low sample amounts, we detected exceptional coverage of
4,000 quantified proteins from only 10 ng samples, highlighting the intrinsic high
sensitivity of diaPASEF on the TIMS-QTOF setup.

| was involved in data access, data analysis and visualization of timsTOF data in this

project.
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diaPASEF: parallel accumulation-serial
fragmentation combined with data-independent
acquisition

Flarian Meier @2, Andreas-David Brunner ™', Max Frank©3, Annie Ha?, Isabell Bludau',
Eugenia Voytik', Stephanie Kaspar-Schoenefeld?, Markus Lubeck?, Oliver Raether?, Nicolai Bache®,
Ruedi Aebersold %7, Ben C. Collins %2> Hannes L. Rést©** and Matthias Mann "=

Data-independent acquisition modes isolate and concurrently fragment populations of different precursors by cycling through
segments of a predefined precursor m/z range. Although these selection windows collectively cover the entire m/z range, over-
all, only a few per cent of all incoming ions are isolated for mass analysis. Here, we make use of the correlation of moleculfar
weight and ion mobility in a trapped ion mobility device (timsTOF Pro) to devise a scan mode that samples up to 100% of the
peptide precursor ion current in m/z and mobility windows. We extend an established targeted data extraction workflow by
inclusion of the ion mobility dimension for both signal extraction and scoring and thereby increase the specificity for precursor
identification. Data acquired from whole proteome digests and mixed organism samples demonstrate deep proteome coverage

and a high degree of reproducibility as well as quantitative accuracy, even from 10 ng sample amounts.

ass spectrometry-based proteomics, like other omics

technologies, aims for an unbiased, comprehensive and

quantitative description of the system under investiga-
tion'". Proteomics workflows have become increasingly success-
tul in the characterization of complex proteomes in great depth’™
Application ta large sample cohorts requires a high degree of repro-
ducibility and data completeness, which makes data-independent
acquisition {DIA) schemes particularly altractive™ . In contrast to
diila-altpr:nd:n'l acquisition {DDAY, in which p:-lrliq;u!ar precur-
sors are sequentially selected, in DIA, groups of ions are recursively
isolated by the quadrupole and concurrently fragmented 1o gener-
ate conveluled fragment ion spectra composed of fragments from
many different precursors” ", Although DIA guarantees that each
precursor in a predefined mass range is fragmented once per cycle,
spectral complexity poses a great challenge to subsequent analysis',
Marrower isolation windows result in less complex spectra, but this
increases the total number of windows and hence the DIA cycle
times needed to cover the entire mass range™™". Moreover, as every
precursor is isolated only once per cycle, the ion sampling efficiency
al the mass-selective guadrupole for DIA methods is limited to
1-3% with typical schemes of 32 or 64 windows.

The addition of ion mobility separation ta the chromatographic
and mass separation should increase sensitivity and reduce spec-
tral complexity’ = The Lruppr_'d 101 mub‘ii':l}-‘ spectrometer (TIMS)
is a particularly compact mobility analyzer in which lons are cap-
tured in an ion wnnel, between the oppesing forces of the gas flow
from the source and the counteracting eleetric field'™=". Trapped
ions are then sequentially released as a function of their mobility
as the electric potential is lowered. In proteomics, ramp times typi-
cally range from 50 to 1(Hims, in between chromatographic peak

widths (seconds) and the time-of-flight (TOF) spectral acquisition
{approximately 100 ps per pulse). In a TIMS-guadrupole-TOF con
figuration, the mobility separation can be synchronized with the
guadrupole mass selection in @ method termed parallel accumuia-
tion-serial fmgmentmtinn [PASEF}, Given that multiple precur-
sors are mass selected and fragmented during a single TIMS scan,
PASEF achieves a more than tenfold increase in sequencing speed
in DDA, without the loss of sunsilivihl.-' that is otherwise inherent
in very fast i'rasmr:nthtiun n_'}';,'h:s' <4 This 15 because the precursor
fon current Is compressed into narrow ion mobility peaks and, with
twio TIMS In series, jons can be accumulated and mobility analyzed
in parallel™.

Here, weinvestigate whether the PASEF principle can be extended
to LA, which would combine the advantages of this acquisition
method with the inherent efficiency of PASEE To realize this vision,
we modified the mass spectrometer to support diaPASEF acqui-
sition cyeles. Building on open-source software”, we perform tar-
geted extraction of fragment jon traces from the four-dimensional
data space for peptide quantification. We explore the performance
of the diaPASEF principle in typical proteomics applications such as
single-run proteome analysis and label-free quantification, as well
as in the characterization of very limited sample amounts,

Results

The diaPASEF principle. In the timsTOF Pro instruoment {Bruker
Draltonik), peptides separated by liquid chromatography are fon-
ized, introduced inte the mass spectrometer and immediately
trapped in a dual TIMS device (Fig. 1a). Mobility-separated fons
reach the orthogonal accelerator, from which rapid TOF pulses
result in high-resolution mass spectra (resolution =35,000 over

'"Proteomics and Signal Transducton, Max Planck Institute of Biochemistry, Martinsried, Garmany. ‘Functional Proteomics, Jena Unnersity Hospital, lena,
Garmary. "Donnelly Centre for Cellular and Biomolecular Resesrch, University af Torento, Terente, Canada. *Briker Daltorik GmbH, Bremen, Germany
*Evosep Bicsystems, Odense, Denmark. "Department of Biology, Institute ot Malecular Systems Biology, ETH Zurich, Zurich, Switzertand. "Facully of
Science, University af Zunch, Zunch, Switzerland. "School of Biological Sciences, Queen's University of Beltast, Belfast. UK, "MNF Canter for Protein
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Fig. 1| The diaPASEF acquisition methed. a, Schematic jon path of {he timsTOF Pra mass spectrometer. b, Correlation of ion mebilty and myd in a tryplic
digest of Hola cell lysate. e, In diaPASEF, the quadrupcle isolation window (gray) Is dyramically positioned as a function of lan miobility {arrow?, In 2 single
TIKAS scan, lons from the selected mass ranges are fragmented to record ion mobility-reselved MS/0M3 spectra of all precursors. d, Implementation of
diaPASEF precursos selection with a stepped quadrupole solation scheme. &, Representalive example of a single diaPASEF scan with the precursor selection

scheme from d (Supplementary Fig. 1)

the entire mass range). For peptide lons of a given charge state,
ion mobilities and masses are correlated {Figo 1h), We reasoned
that this feature could be vsed to isolate precursor mass windows
for DIA without losing the tons outside the respective windows, in
contrast to other DIA acquisition schemes. Given that low-mobility
{typically high m/z) ions are trapped near the TIMS exit, they are
released first, and the mass-selective quadrupole therefore needs
to be first positioned at high mi/z. As higher mobility (typically
decreasing m/z) jons are sequentially relessed from the TIMS, the
:1||:1d.rup{)|.r.' mass tsolatton window should slide down ta lower my/z
values to I-u”}-' transmil the ion cloud (Fig_ 1c). To approximalte this
ideal diaPASEF scan, we stepped the isolation window as a func-
tion of TIMS ramp time (Methods), covering the vast majority of
precursors of the 2+ and 3* chirge states (Fig, 1d and Supplementary
Fig. 1). Implementation of this principle required firmware able to
synchronize collision energies with the mass selection (Methads),
Maote that the fragment jons in cach DIA windew are detected at
the exact ion mobility position of the precursor (Fig, 1¢). Over the
chromatographic elution of a precursor, the intensities of its frag-
ments follow the precursor intensity in ime {z direction), The sig-
nal traced out by the set of fragments of an individual precursor s a
set of very flat ellipsoids (x or m/z dimension), spreading in the fon
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maobility direction (p direction] and elongated in the rétention time
dimension (z dimension). For the entire experiment, this leads to a
data cuboid in four-dimensional space, containing all fragment ions
of all precursors over the entire elution time, with sgnal intensity as
the fourth dimension,

Ouantification of the increase in ion sampling efficiency. To
explore the diaPASEF principle in practice, we measured & tryptic
digest of BSA and compared the signals obtained across the DDA,
DIA and diaPASEF acguisition methods, As a 1}lp'il::|.| cx:l.rn.p!c. the
peptide DLGELHFK eluted over 93 (Fig. 2u). In DDA, the duub]:,'
charged precursor was accumulated at the beginning of the elution
peak once for 100 ms before fragmentation. This is approximately
1% of the total elution time and muoch less than 1% of the entire
precursor ion population, as estimated by the relative peak area.
In DIA, with a comparably fast cycle time of 1.6s, the peptide was
fragmented seven times over its clution profile. This is sufficient
1o reconstruct the chromatographic peak shape, but still captured
nnl}r a small proportion of the total ion .r.ignrll {less than 5%). R:.'
comtrast, the diaPASEF scheme [Sup]ul:mc:nlar}r Fig_ 2) 5a|n'plr_'d the
fragments in each scan for a total of more than 100 times, which
resulted in a nearly complete record of the fragments at every time
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Fig. 2 | Efficiency of different data acquisition methods. a, Extracted fragment ion chromatograms of the y, ion of the doubly charged DUGEEHFE peptide
pracursar in a 45 min lguid chromatography-mass spectrometry analysis of BSA digest acquirad with typical DDA and DA methods as well a5 with a

close to W00% duty cycle diaPASEF method showe in Supglementary Fig 2.au, arbitrary units. b, Detected len cuerent from multiply charged precursors in
single-run analyses of 200ng Hela digest acquired with DDA, DI& and two diaPASEF schemes (Supplementary Figs. 3.4), To extract the ion current afier
qguadrupole isoiation, no collision erergy was appliad and the ion current in the expected peptide space was summed for each TIME scan. The plot shows the
rolling average af 60 TIMS scans. ¢ Same as in b, but for cumulative lon current.

point (96% efficiency in terms of acquisition time because of the full
scans acquired in between diaPASEF cycles).

We next studied the ion sampling efficiency for a HeLa cell tryp-
tic digest. To address the very high density of fragment fons in the
data cuboid, we chose a scheme with four diaPASEF scans, each
isolating approximately one-fourth of all precursors with 50m/z
isolation windows, and another scheme with 16 diaPASEF scans
and 25 sz isolation windows (Supplementary Figs, 3,4), To com-
pare acquisition schemes, no collision energy was applied and we
extracted the total ion current of isolated precursors in the expected
peptide space in the mfz-ion mobility plane (Methods). In DIA,
the sampled fraction of the jon current was approximately three-
fold higher than in DDA, whereas the four-scan diaPASEF scheme
further increased the accumulated pgptide ion current b:, a factor of
five compared with DIA (Fig. 25.0), We conclude that the diaPASEF
principle yields the expected inerease in data acquisition efficiency
in both simple and complex proteomes,

Targeted data extraction in four dimensions. To identify and
quantify peptides from this novel date strocture, we developed
Mobi-DIK {ion maebility DLA analysis kit; Fig, 3a). The workflow is
hased on the targeted extraction of sets of fragment jons of a spe-
cific precurser from the acquired dataset over chromatographic
elution time, followed by statistical scoring. Mobi-DIK extends
this targeted data analysis principle for DIA™ (as implemented in
the OpenSWATH software suite”) to diaPASEE First, ion mobil-
ity-enabled spectral libraries are generated from data-dependent
PASEF runs using, for instance, the MaxQuant™ output, The
spcctm] llbm.r}' is l:lruccss.cd using Openhs tools™ " which we
here extended to support fon mobility. Calibration between the
assay library and experimental data is automatically performed
in nefe, vetention time and jon mobility dimensions using a set of
high-confidence peptides (Methods). The Mobi-DIK package uses
the vendor interface ta query diaPASEF raw data, convert them to
mzML files, and link the selation windows to individual TOF scans,
The algorithm then uses the tarpeted extraction paradigm for DIA
data to construct four-dimensional data cuboids with a user-defined
widih in m/z {(ppin}, retention time (s) and ion mobility (Vsem™),
These are projected onto the retention time and 1on mobility axes
to oblain fragment fon chromatograms and mobilograms for each
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precursor-to-fragment transition in the spectral library. Restricting
the ion mobility extraction width removes signals from co-eluting
peptides in the same precursor mass window that have different ion
mohility (Fig. 3b and Supplementary Figs. 5-7) Through inves-
tigation of transitions in a sngle-run analysis of Hela digest, we
found that when the fon muhillt:r extraction window was narcowed
to .06 Vs cm~, this resulted in an average fourfold increase in the
signal-to-nolse ratios (Supplementary Fig, 81 Note that the acquisi-
tion scheme already removes interfering fons with very differention
mobility such as singly charged species, therefore the true gain in
signal-to-noise ratio (compared with the respective value of a DIA
experiment without ion mobility) is even higher.

From all projected traces, we next pick peak groups along the
chromatographic dimension using established OpenSWATH mod-
ules, This step selects putative peak candidates and scores them
based on their chromatographic co-elution, goodness of library
muatch and correlation with the precursor profile”. For Mobi-DIK,
we extended these modules by lon mobility scores, Through use
of the high precision of TIMS ion mobility measurements (<1%
in replicates of complex samples ), a discriminatory score is com-
puted based on the difference between the library and the experi-
mental ion mobility, Addidenally, we extract full ian mobilograms
for each fragment ion to score the mobility pesk shape as well
as the peak consistency between all fragment ions, In line with
the increased signal-to-noise ratios, the corresponding "MS/MS
signal-to-noise” score increased proportionately with narrower ion
mobility extraction windows (Fig. 3¢), As @ resalt, i a single-run
ann]}'siﬁ of a full proteome d'i.EE!il {see below), Largelcd extraction
in the ton mobility dimension {combined with fon mability-aware
scoring) increased peptide identifications by 22% compared with a
naive analysis (Fig. 3d),

Single-run proteome analysis. To investigate diaPASEF in a typi-
cal DIA experiment, we first built a project-specific library from
24 high-pH reversed-phase peptide fractions of a HeLa digest with
data-dependent PASEE, which consisted of 135,671 target precur-
sors and 9,140 target proteins. For sample amounts on column of
at least 200 ng and liquid chromatography-mass spectrometry runs
of 120min, we reasoned that a diaPASEF method with a some-
what lower duty eycle, but higher precursor selectivity, should
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Fig. 3 | lon mobility-aware targeted data extraction, a, Steps in the Mobi-DIEK workflow to extract fragment 1ion chromatograms from diaPASEF scans with
restricted lon mobility windows and ion mebility-enhanced peak group scoring in OpensWATH, Colors tred, blue and cyan} indicate fragment ions from a
precursor of interest; gray indicates background signals. b, Example fragment lon chromatograms of DGLLIGYHSAK (calor-coded ) extracted with (bottom
panel} and withou! (lap panel} restriction in the iea mobilily demension fram a single-run diaPASEF experiment of Hela digest Fragment ions: v, orange;
Yo Bresen; yu rack vy, purple; v brewem; by, blue. € Remaval of interlenng signals from co-elutng precursers m the same diaPASEF window in tnplicate
diaPASEF analysls of 3 Hela digest, Histograms of the M3/ M3 signal-to-noise (57N ) scores of identifed precursors for different ion mobility extraction
wiridows. n=T158.603 (full}, 194,157 {0.09 Vs cm ) and 202,218 (0.06 Vs cm). d, Percentage of detected peptide precursors in triplicate diaPASEF runs
froen e at an FOR of 1% 25 2 function of the ian maobidity extraction window,

be beneficial. We devised a method with four windows in each  lines in the ion mobility dimension (Supplementary Fig. 9). The
100ms diaPASEF scan and 25 m/s precursor isolation windows  theoretical coverage of library precursor fons was 99.5% and 92.1%
{Supplementary Fig. 4). Eight of these scans covered the diagonal  for doubly and triply charged peptides in the anabyzed mi/z range
scan line for dnuhl!.r l:harg,ed peplides in the m/z-ion mnl‘rﬂit}r p]nne JH1=1,2(K1, reup?di\-‘e]y.

and a second parallel scan line ensured coverage of triply charged In triplicate runs, we detected a total of 80,580 peptide precur-
species. To reduce potential artitacts from reduced ion transmission  sors (with 1% precursor and protein false discovery rates (FDRs)),
at the edges of the diaPASEF windows, we ovetlapped these scan and on average 67,312 peptide precursors per run {Fig. 4u and
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Supplementary Fig. 10). The ion mobility values in the disPASEF
runs were highly correlated with the library values (r>0.99, Fig,
4h}), and the median absolute deviation of the fragment ion mobility
values in diaPASED from those in the library runs was 0.6% (Fig,
4e) The median summed absolute fragment mass deviation was
6Appm and the median absolute retention time deviation was 173,
Together, these values define the precision of the pesition of each
precursor and its fragments in the diaPASEF data cubuoid,

Overall, 56,998 unique peptide sequences were identified at an
FDR of 1%, from which 7,601 proteins per ran on average and 7,800
proteins in total were inferred using only proteotypic peptides as
mapped in the low-redundancy Swiss-Prot database and at a global
protein FDR of 1% (Fig 4d and Sup]::'lr_'mc ntary Fig. 11). The quanti-
lied proteins spanned a dynamie range of approximately four orders
of magnitude, as estimated by protein copy numbers derived from
the library (Fig. 4¢). Of these, 7,348 proteins (M%) were quantified
in all three replicates, 307 in two and only 145 proteins in a single
replicate, resulting in a virtually complete data matrix (Fig, 4} with
a median coefficient of variation of 7.7%.

Label-free quantification benchmark. Next, we set up a
two-proteome experiment, We spikr:& lﬂLl-nE Hela _-iamplt!i with
approsimately 45ng and 15ng of a tryptic veast digest, respec-
tively, and measured both samples in triplicate single runs as above,
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Mobi-DIK analysis using a combined human and yeast library
quantified a total of 32,808 human and 7483 yeast unique pep-
tide sequences from 101,395 human and 7,992 yeast peak groups,
for which 7,943 human and 2,250 yeast proteins were inferred.
Although the low-2bundance yeast spike-in constituted only 7%
of the sample, we quantified 7,697 human and 1,394 yeast proteins
in a1 least twe replicates in both samples, Their protein abundance
ratios split into two distinct populations according to the mixing
ratios (median 2.7-fald, Fig. 5). In line with the quantitative pre-
cision demonstrated above, the human population clustered pre-
cisely wround the 111 ratio throughout the full sbundance range
I:I:T“f.lﬂ_.] ={1.22). The low-abundance yeast .lip':!-:r:—lni were quamiﬁcd
with a somewhat lower overall precision {a{log,) = 0.70), although
quantilatively similar to human proteins in the same abundance
range. We therefore conclude that the label-free diaPASEF workflow
precisely and accurately quantifies changes in protein abundance.

Adaptation of diaPASEF to high-throughput and high-sensitivity
proteomics, The dialPASEF schemes can be optimized to balance
selectivity (narrower isolation windows), sensitivity (higher mass
spectrometry Efﬁcienc}n fewer diaPASEF scans) and precursor cov-
crage [Fjs_ 6ia). Fast chr(lmalugrap]ti:_ methods l}'pin;ul]‘\' rcquin:
shorter mass spectrometry eyele imes to achieve a sufficient num-
ber of data points lor accurate quantification. Hence, we devised

1233
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Fig. 5 | Label-free protein quantification benchmark. a, Hola digest was spiked with agproximately 45 ng (sample A) and 15ng (sample B} yeact digest,
and analyzed in triplicate 120 min diaPASEF single suns each, wsing the 16-scan diaPASEF scheme (Supplementary Fig. 43, log-transformed ratlos are
plotted as a function of protein abundance for n=7697 human and n=1.394 yeast proteins. Dashed gray lines indicate the expacted ratio. LOESS
regression fnes are dashed and colored by species. b, Bowplots of the data in 8, showing the madian ratio {center line), the 25th and 75th percentiles
{lower and upper box limits, respectively), the 1.5 interguartilz range (whiskers) and the cuwtliers (diamonds),

an acquisition scheme that focused on @ narrower precursor range
with a 0,95 cycle time (Supplementary Fig. 12). To test this scheme,
we turned to & liquid chromatography system with fast turnaround
times and predetined, standardized gradients for the analysis of 60,
100 and 200 samples per day (Evosep One)”. In triplicate analysis
of 200ng Hela with the 60samples per day method (21 min gra-
dient}, we quantified on averape 4,813 proteins per run and 5183
in total with a median coefficlent of variation of 5.8% (Fig. 6bg),
Remarkably, 4,255 proteins were quantified with a coefficient of
variation of <<20%. When the throughput was increased to 100 and
200 samples per day, more than 4,000 and 3,000 proteins in tripli-
cate were still quantified, respectively. At 200 samples per day, the
median coeflicient of variation increased to only 10.3%, which indi-
cates that an even faster diaPASEF method could be viable.

When the number of diaPASEF scans is lowered and the
quadrupole isolation width is increased, diaPASEF can be tuned
to utilize a higher fraction of the incoming ion beam and still
achieve a high precursor selectivity because of the ion mobility
separation, To demonstrate this concept, we analyzed only 10 ng of
HelLa digest in triplicate 12{ min single runs and used a diaPASEF
scheme that samples approximately 25% of the jon current of a
given precursor {Supplementary Fig, 3). Compared with the stan-
dard method, the high duty cycle increased the detected fragment
ion signal on average by approximately fourfold and resulted in a
more precise quantification of the comman peptides, in particular
for low-abundance peptides (Fig, 6d), Although the method coy-
CTR & Narrower PI'EL'LII'SE]I' spacc, wi quanllf:icd n EVCrage apprc:lxi-
maltl}' 13,000 pl:FltidCH with each method and, in effect, the
high-sensitivity method extended the detection range of peptides
approximately fourfold af the lower end (Fig. 6e). The standard
diaPASEF method already quantified on average 3,538 proteins
per injection of 1ng Hela digest, which highlights the intrinsic
high sensitivity of diaPASEF and of the TIMS-QTOF setup. The
high-sensitivity method further increased this to 3,835 proteins on
average. Cumulatively, we guantified 4,310 proteins in triplicates
of 10 ng in}ecl‘im‘ps, of which 3,909 were quanti.ﬁer[ in at least two
replicates (Fig. 6], The increased quantitative precision at the pep-
tide level also translated into higher precision at the protein level,
resulting in median coefficients of variation of 9.0% and 11.2% lor
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the high-sensitivity and the standard methods, respectively (3,132
and 2,690 preteins quantified with a coefficient of variation of
<20%), However, at higher sample amounts, narrower quadrupole
windows were more beneficial. With the high-sensitivity and the
standard diaPASEF methods we quantified 4,755 and 4,833 pro-
teins, respectively, from 50 ng samples with a coefficient of varia-
tion of <20% (median coefficients of variation of 5.1% and 7.3%),
and 5,396 and 5,626 proteins, respectively, from 100 ng samples
with a coefficient of variation of <20% (median coefficients of
variation of 4.4% and 5.7%, respectively),

Discussion

Here, we have dc\'dnped and demonstrated a PASEF workilow in a
TIMS-TOF mass spectrometer that implements the DIA principle.
Tovmake use of the correlation between the ion mobility and the mz
of peptides, precwrsors are trapped and then released in synchroni-
zation with the quadrupole position in our diaPASEF scheme, which
results in almost complete sampling of the precursor ion beam. This
is in contrast to DDA methods, which convert only a very small
fraction (generally much less than 1%) of the incoming ion beam
into fragments, and even to typical DIA workflows, which convert
a few per cent of the jon beam at best. For less complex mixtures,
we achieve close to 100% of the theoretical maximum, whereas for
more complex mixtures, it was beneficial to use the quadrupole to
decrease spectral complexity and increase slectivity, and thereby to
some extent reduce the fraction of total available tons sampled, Note
that results could be further imgmrvcd hy the use af ]:n'ig]'ll-.'.r elec-
trospray sources and the minimization of fon losses that may occur
along the jon path through the instrument and during mass selec-
tion. On the predecessor QTOT instrument (Bruker impact 11) we
found a =B0% jon transmission up to the collision cell and an over-
all detection probability of approximately 10% for ions transterred
into the vacunm™, and an ion trapping efficiency of approximately
70% has been reported for the TIMS device .

To extract information using spectral library-based targeted
data nnzh«'sis_. we extended the {)peng'l.-‘-"ﬁ'ﬂ-[ tanl dw.e]ﬂped
for DIA applications to efficiently make use of the ion mobility
dimension far library matching, to provide full FDR control and
excellent guantification.
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Even in this first implementation, we achieved deep proteome
coverage of more than 7,000 proteins in single, 2h experiments
from 200 ng Hela peptide sample on column with a high degree
of reproducibility. Our two- proteome experiment verifies that the
quantitative accuracy of the method is in line with previous strat.
egies even when substantially constrained by the lower loading
amount of yeast { 13ng). Even more remarkably, we detected more
than 4,000 proteins in triplicate injections of only 10ng Hela pep-
tide mass on column. This result points to a perhaps unexpected
advantage of diaPASEE namely that the high ion sampling also
full}r translates into hﬁghl:'r sensitivity, Likewise, the wery short
q'cli: time of our new scan mode was found to be ndvunlagtuua
lor short gradients, which is an increasingly important atteibote
becanse large-scale biological and clinical studies require very
large throughput, Given that DIA methods record chromato-
graphic profiles for each fragment ion, they are also increasingly
attractive for site-specific analysis of modified peptides™'. With
diaPASEE such strategies could additionally benefit from the sepa-
ration of positional isemers in the ion mobility dimension”. For
the future, we imagine that both hardware and software can still be
grcaﬂy np‘limiz.cd o further increase the amount and qua|it}r of the
information contained in and extracted from the extremely rich
four-dimensional diaPASEF data cuboids, For example, advanced
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data acquisition schemes could sample the correlation of precursor
mobility and mi/z more precisely if the isolation window width is
varied or the quadrupole is scanned rather than moved in discrete
steps. Furthermore, we note that applications of diaPASEF are not
restricted to peptides bur could equally well be extended to metab-
olites, lipids or other compound classes™
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Methods
Sample preparation. The human cancer cell line (Hels 53, ATCC) wis coltured
b Dulbeceo’s modified Exglds mediom with 100 fetal boving seram, 20mM
ghutamine and 1% penicillin-streptomycin, Cells were collested by contrifugation,
waahed with phosphate-butferad seline, fash-frogen b lguld nitrogen and stored
ot =807 Cell lysis, reduction and alkdaton were performed 1o lysis bufter with
chloroacetamide [Predimics) as reparted previousiy ™. In beief, the cell suspension
was heated to 950 for 1 min and subsequently sonificated to further disrupe
cells and shear nucleic acids, Protelns were énzyenatically desved overnight by
adding eqoal amoants of Lys-C and frypsin in o 1:100 (wi/wi) enzymeprotein
rutin. De-salting and purication were performed sccording 1o the Prelimics iST
pratecol on s styrane divinylhenzene reversed -phase sulfonste (SDRE-RFS) sorbent,
Purificd peptades wese vacuum-centrafuged g deyness and seconstituted in
doulle-distlled water with 2vol% ecetoniietle {ACN) and 0.1 val% triluoroacetic
ackd (TEA) for single-rum LC-MS analysis or fractionation

Tow evaluste the quantitative accuracy of diaPASEE, we pc:d'ormm! ]
two-protesime expeniment with HeLa and yeast. Furthermore, to evaluate the
achievable sample throaghput we anulyeed Hela samples using the Fvosep One
liaquid chromatography system. For these experiments. purified and predigested
yeast standard was parchased fmom Prosvea and resuspended in 0.1 vol® formie
acid; whole Hela cell pellets were purchased from CIL Bintech and lysed using
triflusroctlianed”. b briel the cell suspenson was kept on bce for 10min and
subsequently incubated for 20min at 56 °C. We ased 200 mM dichiothrein o
reduce protelns at 90 °C {Hvmin), and 200 mM lodoacetamide to alloylate cystelne
residues during 90 min at roem temperature (21 °C). Proteins weee enzymatically
cleaved overnight by adding trypsin na 1100 (wiiwn) engymesprotein sile. The
proteome digests were de-salted and purified on a solid phase extraction cartridge
{Fmpaare O, SPE cartridge, Sigma Aldrich), Samples were wished with 0,1 vol%
formis acid snd subsequently elwted with 50vol% ACN in 0.1 vol% formic azid
Purified and dried peptides were reconstituted in 0.1vol% formic acid for injection.
Tar the two-proteame experiment, the purifed peptides fromm Hela and yeast were
cirtibined as Tl ows: s;u'n]'lle A consisted |||'1'{ij|5 Tytampii i 115115 Vil Pml:rlna.
per LC-MS injection, and sample B of 200ng human and 15 ng yeast prodeins per
LC-M5 imection, For the Evisep experiments, approximately 200 ng peplides
wia loaded ants Evolips (EV2001, Evosep) bn accordance with the manafacturer’s
instructions

High-pH reversed-phase fractionation. To generate a comprehensive library

of Hela precumor and frogment Lons, peptides were fractionated of pH 10 with

a 'speder fractionator’ coupled to an EASY nLC 1000 chromaiography system
{Thermuo Fisher Scientific) as described previously”. Approsimately 50 pg purified
peptides were separated on g 30 cm C, column n 96min and antomatically
comcatesated o 24 fractions by shibfting the exit vaboe every 1205, The Bactions
were vecunm-centrifuged to dryness and reconstituted in doable-distilled

water with 2vol® ACN and 0.1 val%h TEA for LC-MS analysis, To generate
spectral libraries far the Evosep and twa-proteome experiments. 100 jig porified
P.rptil!rs.‘ froin yeast and from Hela Ij.lEElli were each fractionated ot IIH 10 oa
reversed-phase columm (Waters Acquity CSH C18 column, 1,7 pm, 2.1 % 150 mm )
wsing a Diomex Llimate 3000 system (Thermo Fisher Scientifich, For mass
spectronietric analyss, te frecte-dred fractlons were reconstituted o 1% formic
achl amad pliaced in the sutesampler of loaded otio Bvotips

Liquid chromatography. Nanoflow reversed- phase chromatography was
performed on an EASY-nLC 12060 system {Thermo Fisher Scientific). Peptides
were separaled in 120 min at a flow mte of 300 ol min™" on a 50cmx 75pm eolomn
with alager-pulled electrospray emitter packed with 18um Reprobil-Pur C ,-AQ
particles (D, Muisch}). Mobile phases A and B were water with &1 vol% formic
il aad BO20:0. 1 ved e ACM:water:formic acad, rospoctivedy, The fraction of B was
limgarly increased from 5% Lo 30% in 95 min, followald by an increase (o 60% m
Smuin and a further increase to 95% in Smio before re-equilibracon.

For the two-proteome experiment, we used o nanoElute liquid chromategranhy
system {Broker Daltonics). Peptides were separated in 120min at o Now pate of 400
nlmin~ on & commiercially svailable reversed-phase ), column with an integeated
CapsiveSpray Emitter {25cm % 75pm, 1L.6um, lonOpticks), Mobile phases A and B
were 0.4 vol® formic acid in water and 0.1 val% formic acid in ACK, respectively
The fraction of B was linearly increased from 2% to 25% in ®lkmin, followed
by an kncrease to 25% dn 10 min and a farther incocase to 80% in 1 ¥ oo belore
re-equilibration,

For pmt:umrinﬂ}usmthfm l.-,ra:llcnn. we used an E\rus:p One Elqlnd
chromatography system’’ and analyzed the samples with the predefined 60, 100
o1 20k} samples per day methods (Evosep RCNet 1.3 plugin). For the 60 and 100
sumples per day methods, we wed an Som % 130 pm colamn with 1,5 pm ©,,
bezds (EV 104, Evosep) and for tle 200 samples per day method, we wseda 4em
1 50pm eolwmn with 1.8 C, beads (EV1 107, Evosep. Mobile phases A and B
weee 00 vol% formic acid ln water and 0.1 vol® formbc acld in ACN, respectively.

Mass spectrometry. Liquid cheomategraplyy was couplad online 1o a hybrid TIMS

guadrupode TOF mass spectrometer (Bruker ims TOF Pro) via a CaptiveSpray
nang-electrospray fon sowrce. A detatled description of the instrument & available
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in ref, *, The dual TIMS analyzer was operated at a fixed duty cyde close o 100%
using equal acenmulation and ramp times of 100ms esch, We performed DDA
in PASEF mode with 10 PASEF scans per top™ acquisition cycle. Singly charged
precursors were excludied by their position in the pe'z-ion maobility plane, and
procursors that reached a target value of 20,000 arbitrary units weee dynamically
excluded for 0.4 min. The quallrupu]l_' isodation width was set o 2oz for sz < 700
and Lo 3z for mez = P00, TIMS elution voltages were calibrated linearly to obtain
the reduced lon mobility coefficients (17K, ) using three Agilent ESE-1L Tuning Mix
loms [pv'z 622, 912 and 1,232),

To perfotm DLA, we extendesd the instrument contrel soltwarne (Bruker
otefContral wa) to define quadrupole lsolation windows as a functien of the
TIMS scam time (daPASEF]. The mstrument control eloctronics were maodified
Lo allenw searnbess and synchroneds ramping of all applied voltages. We tested
multiple schemes for data-independent precursor windows and placement in
the seyfe-lon mobilivy plane and defined up to cight windaws for single 100ms
TIMS scams, a5 detailed eardier. Acquisition schemes for the dinPASEF methods
used heralnare shown tn Supplementary Pigs. 1-4,1Z, To Uit the aumber of
MST scans, we repeated diaPASEF in acquisition schemes; for example. each of
the four dRPASEF scans was done twice in the high-sensitivity scheme, and thes
resulted in one MS1 and cight diaPASEF scans per acquisition cyele. In both scan
mwodes, the collision ERETLY Was ramped Ilne:n':,' a5 a function of the mability
from 59V at 1K, =16 Vsom ! o M0eV at 1/K, =06 Vsan ™, To vimealize the
isolation of precersor ions in Fig. 1d and anabyze the jon current from mulviply
charged precursars {likely pepeide precursors) i Fig 2, we set the collision energy
1o 52V 10 prevent fragmentation, 1o the BSA experiment, we distribured the 14
diaPASEF windows to one TIMS scan each and defined 14 % 50 Th precurscr
tsobation windows from /s 325 to 1025 In the Hela LA experiment, we defined
32 25Th isolation windows from se/z 400 to 1,2000 Ta adapt the MS1 cycle time
in dinPASEF, we set the repetitions 1o.2 in the |6-scan diaPASEF scheme and to 4
i thie 4-scan diaPASEF scheme n these experiments.

Spectral library generathon, To generate spectral lHbearies for targeted data
extraction, we (st ujul?a‘zlﬁ ||.|B||-}IH r\:\r}'md—Phuﬂ! fractions ah:qLI]tt-ll i [F04
mode with MaxCuant v 16,50 or 1670, which extracts four-dimensionz| features
on the M51 leved Cretention time, #e'z, ion mobtlity and intensety} and links

them to peptide. spectrum matches. We kad acquired the 120 min Helz library
previuusly for the purpose of predicting jon mobidity cros-sections by deep
learning”. The maximur precursor mass telerance of the main search was set 1o
2 ppon and de-isotoping of fragment ions was deactivated. Other than that,

wie sed the default "TIMS- DDA parameters, Tandem rmass spectrometry spectea
were matched agaimal an in silico (|1'ggﬂ afl the gppru]:ria.ie Swiss-Prog profleome
tatabase (human, 20,407 entries; Seccharonnpces cerevitiie, 6,721 entries)

and o list ol comman contaminants. The minimum peplide length wasse (o 7
amino acids, and the peptide mass was limited to 4,600 Ba. Carbamidemethylation
of cysteine residues was defined as a fixed modification, and methionine oxidation
and acetviatbon of prodein N-termint were defined as varlable modifications.

The FIOE was controlled at < 1% at both the peptade spoctrum mateh level and

e Pm[c!n]c\wl. The Mobi- DK software PII.'&LIEE bardlds on Upt'n.ub' tools o
compile spectral libraries in the sandardized TrabML or pap formats from the

M Cuant output tables and retaing thie full ioo mobilay infoermation for each
precurser-1o-fragment lom teansion, Only protectypic peptides with precursor
nifs = A were Incladed in the Lbeary; they were vequered to have a mininm of
six fragment ions with sz 350 and to be outside the precarser mass isolation
range, We generated separate, project-specific libearies for the 120 min Hela
experiments; the two-proteome experiment and the Evosep experiment

151 :.1mp|r.-s per da':,' method ).

Targeted data extraction, To analyze dinPASEY data, we developed anion
meobility TPLA analysis kil (Mobl-DIE) that extracts fragment ki braces (o
the four-dimensional data space, as detailed earlier. Repeated diaPASET

scans were merged. Raw data were automatcally re-calibrated usmg curated
reference values in 'z, Tetention time and ion mobility dimensiens (387
peptides for Hnear and 3,184 peptides for non-lnear allgnment), We applied

an vutlier detection in each dimension before calculating the final fit function
to increase robusiness, Peak picking and subsequeni scoring functionalitias in
the Mobi-DHE soeftware build on QpenSWATH modules, For diaPASEF, we
extended these modules b alse consider the additional ion mobility dimenslon,
OpenSWATH (revision: e0b#870) was run with the following paramseters:min_
coverage={L1 (0,3 In Fig 7}, RTNomalizationalignmenvettiol = LOWESS,
RTNormalivation:levessspan = (101, Scoring:TransitionGroupPicker: Peak P
IckerMRMsgolay_frame_length=11, Scoringstop_report_afier_feiture =5,
ri_extraction_window =250, Scoring:Sceres:use_ion_mobility_scores,
me_carnection_function = quadratic_regression_delta_ppm. use_ms_trages,
m_extraction_windew =25, mz_exteaction_window_unit=ppm, mz_extraction_
window_ms] =35, m_ﬂtmtinn_windxlw_msL_unit:gp'm.. ml_mez_extraction_
window_unit = ppm. if_mz_extraction_window =40, Calibration:mab_lm_
calibrration, ivn_mobility_window =006, in_im_exstraction_window= %9,
ETNormalization:NrETRBins =8, KTHNormalization: MinBinsPilled =4 All other
parameters were se1 to defanlt values: PyProphet was used 1o train an XGBoos!
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classifier for target-decoy separation by first creating one concatenated and
slbsampled OpenSwath output for each set of three replicate inections of the same
acquisition strategy and sample amonnt. The classifier was subsequently applied to
seore all samiples, with FDR controlled to <E% 2t the peak group leve per sample,
and at both the global peptide and ghobal protein levels, For the twio- protesms:
Ezpcrimrnl, the Enul(in FIVR was set tor < 1%, and THIC al'ngm:u:ni' Wi Prrrmluzll
wsing & peaksgroup kevel seed g value threshaold of (0] &nd extension g valee
threshold of 415, 1n the case of two overlapping A PASEF wandows, the amalysis
was performied separately for the individual windows, and for FOR estimation the
brighest seoring pek growp was selected. Protein abundances were estimated wsing
an R implementation of the MaxLEQ" algorithm for DIA ternved fg {(v1.9) with
default parameters”, Potential contaminants were excluded from further analysis,

Bisinformatics. Guiput tzbles from the Mobi-DIE dats analysis pipdine were
further amalyzad and visualized [n the R stutistical computing envirowment v4 or
in Python v1.6. fon chromatogrms shown in Fig, 2 were extracted from raw data
files with the Bruker DataAralysis software. To estimate the peptide precursor ko
current sampled with different acquisition methods in Fig, 21, we extracted tandem
mass spectrametry spectra directly from the raw data files using an S0QL interface.
Gitven that the Bolated precursers were not fragmented in this experiment, we
were iblle fo restrict the u:ml}-:sLa 1 likehy mlt]ll}ﬂ!' charged peptide fons Ir},- thetr
pasition in the ion mobility-m/z space. For this, we empircally estimated a line
separating singly from multiply charged speciesand discarded all signale with B
K, 20,0009 aa/s - (048, Proteln oopy numbers were estimated with the Protesmile
Raler” Pesseus' (vDaobB) plugin from the MasQuant autpual table,

Statistics. Summary statishics such us coeflicients of wanation were caloulated
based on replicate injections of the same sample (n=3 technical replicates) to
indicate the techintcal variation of the mass spectrometry method

Reporting summary. Further information on research design s avilable in the
Nature Rescarch Reporing Summary linked to this article

Data availability

The mass spectrometry raw data and spectral libraries generated and analyeed
during the current study have been deposited with the ProteomeXchanpe
Consortiam via the PRIDEY partner repasitory with the dataset identifier
PRI7T03, Hivne saplers {taxon identifier: 9600} and 3. cerevishie (faxon
identifier: 359292) protenme ditabases wiere downloaced Trom e g,
unipres.org. Source data are provided with this paper.

Code availability

Code is available under the thees—clawse BS license on b fgitkab coms
OpenMS OpendS and heps gl orndRoest Ll - pasel
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3.7. Article 7. Rapid and in-depth coverage of the (phospho-
)proteome with deep libraries and optimal window design for
dia-PASEF
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Our recently published development of data independent acquisition (DIA) on a trapped
ion mobility mass spectrometer, called dia-PASEF and introduced in Article 6 is
particularly beneficial for acquiring a wide range of proteomics data while maintaining a
high sequence coverage and very high sensitivity. However, with the original dia-PASEF
method, the placement of the DIA windows in the two-dimensional m/z and ion mobility

space was empirical and — as it turns out — not optimal.

In this study, we address this challenge by developing a new method called py_diAID.
It optimally places variable isolation windows using a Bayesian optimization scheme
depending on the precursor density in the m/z —ion mobility plane. The py_diAID method
is freely available on GitHub as a Python package and a graphical user interface on the
major operating systems. In combination with deep project-specific DIA libraries and
short gradients, we reproducibly identified and quantified over 6,000 proteins in only 11
minutes LC gradients (100 samples per day) and an astounding 7,700 proteins in 44
minutes gradients. Performing, to our knowledge, the first large-scale study of PTMs on
the timsTOF platform, we quantify around 20,000 phosphopeptides in quadruplicate
measurements, achieving 93% precursor coverage compared to 34% using the

previously published ‘fast’ dia-PASEF method.

For this study, | helped implement the py_diAID tool and analyze the data.
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ABBREVIATIONS
ABC ammonium bicarbonate
ACN acetonitrile
CAA 2-chloroacetamide
dda data-dependent acquisition
dia data-independent acquisition
EGF epidermal growth factor
FA formic acid
GO Gene Ontology
1M ion mobility
IPA isopropy! alcohol
KEGG Kyoto Encyclopedia of Genes and Genomes
MeOH methanaol
PASEF parallel accumulation — serial fragmentation
PBS phosphate-buffered saline
PTM post-translational modification
py_diAID Python package for Data-Independent
Acquisition with an Automated Isolation
Design
sDC sodium deoxycholate
SPD samples per day
TBS tris-buffered saline
TCEP tris{2-carboxylethyl|phosphine)
TFA trifluoroacetic acid
TIMS trapped ion mohbility spectrometry
2
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ABSTRACT

Data-independent acquisition (DIA) methods have become increasingly attractive in mass
spectrometry (M5S)-based proteomics, because they enable high data completeness and a
wide dynamic range. Recently, we combined DIA with parallel accumulation - serial
fragmentation (dia-PASEF) on a Bruker trapped ion mobility separated (TIMS) quadrupole
time-of-flight (TOF) mass spectrometer. This requires alignment of the ion mobility
separation with the downstream mass selective quadrupole, leading to a more complex
scheme for dia-PASEF window placement compared to DIA. To achieve high data
completeness and deep proteome coverage, here we employ variable isolation windows
that are placed optimally depending on precursor density in the m/z and ion mohility plane.
This Automatic Isolation Design procedure is implemented in the freely available py_diAID
package. In combination with in-depth project-specific proteomics libraries and the Evosep
LC system, we reproducibly identified over 7,700 proteins in a human cancer cell line in 44
minutes with guadruplicate single-shot injections at high sensitivity. Even at a throughput
of 100 samples per day (11 minutes LC gradients), we consistently quantified more than
6,000 proteins in mammalian cell lysates by injecting four replicates. We found that optimal
dia-PASEF window placement facilitates in-depth phosphoproteomics with very high
sensitivity, quantifying more than 35,000 phosphosites in a human cancer cell line
stimulated with an epidermal growth factor (EGF} in triplicate 21 minutes runs. This covers
a substantial part of the regulated phosphoproteome with high sensitivity, cpening up for
extensive systems-biological studies.

KEY WORDS

TIMS; PASEF; data-independent acquisition; phosphoproteomics; systems biclogy

INTRODUCTION

MS-based proteomics has become a powerful tool to study proteomes in a systematic and
unbiased manner (1). In recent years, this development has been accelerated by data-
independent acquisition (DIA) (2), where predefined isolation windows cycle through the m/z-
range of interest, and regularly subject the covered peptide precursors to fragmentation (3—
6). Although the concept of DIA was established more than a decade ago (4, 7), only the most
recent DIA implementations and hardware advancements in MS and data analysis are at par
or even exceeding data dependent acquisition (DDA) with regards to sensitivity,
reproducibility, and dynamic range coverage (2, 6, 8) and surpass targeted approaches in
throughput and ease-of-use (9, 10). This holds also true for studying post-translational
modifications {11-13).

DIA has recently shown promise in combination with trapped ion mobility spectrometry
(TIMS) mass spectrometers, as demonstrated with single-cell analysis (14, 15). The TIMS
tunnel is a compact and high-performance implementation of ion mobility separation. It
captures the peptides from the incoming ion beam discretizing the continuous LC elution.
Within the TIMS tunnel, each ion reaches an equilibrium position based on the opposing
forces of a gas flow and an electric field gradient. Decreasing the electric field gradient elutes
the peptide ions as a function of their ion mobility (16—19). In the Bruker timsTOF instruments,
the TIMS device is placed upstream of mass-selective quadrupole and high-resolution time-
of-flight mass analyzer and is itself divided into two parts (20-22). The mobility separation
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can be synchronized with the guadrupole isolation, leading to high ion beam utilization,
increased sensitivity and decreased spectral complexity due to the additional ion mobility
dimension (b, 20, 23). This principle is termed PASEF for parallel accumulation-serial
fragmentation (21, 24).

When combined with DIA (dia-PASEF), peptide precursors separate not only in the m/z but
also in the ion mobility dimension, in contrast to standard DIA modes (2, 6). We have observed
that dia-PASEF is particularly beneficial for acquiring a wide range of proteomics data while
maintaining a high sequence coverage and very high sensitivity (6, 15). Furthermore, ions are
detected by inherently fast TOF analysis allowing fast DIA cycle times, which is particularly
advantagecus for short LC gradients (6). The resulting, complex spectra can be efficiently
analyzed by machine learning or deep learning-based algorithms such as DIA-NN (25, 26).
Here, we set out to explore the potential of dia-PASEF to further increase coverage and
guantitative accuracy on the fast and sensitive ion mobility-mass spectrometry platform. In
dia-PASEF, two-dimensional precursor isolation schemes are defined in the m/z-ion mobility
plane, We used a Bayesian optimization algorithm ensuring optimal placement of the
acquisition scheme in both dimensions. Single-runs acquired with these optimal dia-PASEF
methods were searched against in-depth project-specific libraries. Furthermore, we
combined dia-PASEF with the Evosep One LC system, which features a pre-formed gradient
particularly designed for high throughput by eliminating inter-run overhead (6, 27). Together,
our optimized dia-PASEF workflow for high throughput proteomics quantified more than
7,000 proteins in only 21 minutes from quadruplicate injections of a tryptic Hela digest.
Motivated by these proteomic results, we also investigated py_diAlD for phosphaorylation
analysis. On the Orbitrap MS platform, Olsen and co-workers recently demonstrated an
efficient combination of fast chromatography runs with DIA, quantifying more than 13,000
phosphopeptides in very short [15 min) LC/MS5 runs from Hela cells using the Spectronaut
software (11). In a small scale study, Ishihama and co-warkers showed that phosphopeptides
analysis benefits from the additional ion mobility dimension in PASEF (28). For large-scale
PTM studies, our optimized py_diAlD acquisition schemes cover nearly all theoretical
phosphopeptide precursors and quantified expected changes in the well-studied EGF-
receptor signaling pathway with minimal time and sample consumption,

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

All experiments were done using Hela cell lysate obtained from Hela 53 cells (ATCC), routinely
used for proteomics method development and benchmark experiments (supplemental Fig.
51). Altogether, the data set includes 322 raw data files (uploaded to PRIDE, see below). We
used the same Hela batch for generating libraries and single-run data of both proteome and
phosphoproteome measurements. In brief, proteome measurements with different gradient
lengths and the technical comparisons of the original and optimal dia-PASEF methods for
phosphoproteomics were acquired in quadruplicates. Unless otherwise mentioned, 200 ng
Hela lysate were used for single-run proteome and 100 pg for the single-run phoshopeptide
enrichment experiments. The libraries were acquired as described below. The experimental
design and statistical rational are described in the respective figure legends. The EGF
experiment was performed in biological triplicates to determine significantly different
phosphaosite levels between the EGF-treated and control samples. Technical quadruplicates
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were acquired to evaluate reproducibility and quantitative accuracy by calculating coefficient
of variations (CVs) and mean of the replicate injections, Moreover, we alternated the M5 run
order to avoid potential carryover effects or any similar biases.

Sample preparation

Hela 53 cells (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies
Ltd., UK) containing 20 mM glutamine, 10% fetal bovine serum, and 1% penicillin-
streptomycin. Sample preparation was essentially performed as previously described in the
in-stage tip protocol (29). In brief, the cells were washed with PBS and lysed, Protein reduction
and alkylation and digestion with trypsin (Sigma-Aldrich) and LysC (WAKO) (1:100,
enzyme/protein, w/w) were performed in one step. Resulting peptides were dried and
reconstituted in a solution A* (0.1% TFA/2% ACN). Peptide concentrations were measured
optically at 280 nm (Nanodrop 2000; Thermo Scientific) and 200 ng peptides were loaded
onto Evotips for LC-MS/MS analysis as described previously (15). The Evotips were washed
with 0.1% FA/99.9% ACN, equilibrated with 0.1% FA, loaded with the sample dissolved in 0.1%
FA, and washed with 0.1% FA.

For phosphoproteomics, Hela cells at a plate confluence of 80% were treated for 10 min with
100 ng/mL animal-free recombinant human EGF {PeproTech) or Gibco™ distilled water
(Thermo Fisher Scientific) and washed three times with ice-cold TBS before lysis in 2% 5DC in
100 mM Tris-HCI (pH 8.5) at 95°C. Protein concentrations were determined using the BCA
assay and samples were then reduced and alkylated with 10 mM TCEF and 40 mM CAA,
respectively, Altogether, 25 mg protein material of sample was used for the library
generation, 8 mg for EGF treated experiments including method benchmarking and 4 mg for
untreated experiments. The sample was digested with trypsin (Sigma-Aldrich) and LysC
(WAKO) (1:100, enzyme/protein, w/w) overnight and subsequently desalted using Sepax
Extraction columns (Generik DBX). Each cartridge was prepared with 100% MeOH and 99%
MeQH,/1% TFA. After equilibration with 0.2% TFA, the samples were loaded with a protein
concentration of 1 mg/mL, washed with 99% IPA/1% TFA, 0.2% TFA/5% ACN, and 0.2% TFA
solutions, The peptides were eluted with 5% NHaOH/80% ACN, Lyophilized peptides were
reconstituted in equilibration solution (1% TFA/80% ACN) and 100 pg peptide material per
sample/AssayMAP cartridge, each containing 5 pL Fellll}-NTA, was enriched for
phosphopeptide with the AssayMAP bravo robot (Agilent) (30). Phosphopeptides were dried
in a SpeedVac for 20 min at 45°C and loaded onto Evotips as described above.

High-pH reversed-phase fractionation for library generation

To generate proteome libraries, 10 pg and 60 pg peptides were separated with high pH
reverse-phase chromatography into 24 and 48 fractions, respectively, on a 30 cm Cis column
with an inner diameter of 250 pm at a flow rate of 2 yl/min using the spider sample
fractionator (31). The gradient consisted of the binary buffer system (PreOmics GmbH). The
buffer B concentration of 3% was increased to 30% in 45 min, 40% in 12 min and 680% in 5 min,
and 95% in 10 min. After washing at 95% for 10 min, buffer B concentration was re-
equilibrated to 3% in 10 min. The exit valve concatenated the eluted peptides automatically
by switching after a defined collection time (80s for 24 and 60s for 48 fractions). The fractions
were dried in a SpeedVac and reconstituted in solution A*. A quarter of each fraction was
loaded onto Evetips for LC-MS/MS analysis. Below we will refer to ‘the reference proteome
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library’ that represents a 24 high pH fractions and dda-PASEF spectral library of a tryptic Hela
digest acquired with a 21 min Evosep gradient.

To generate a phosphoproteome library, peptides obtained from the EGF stimulated cells
were separated using an UFLC system (Shimadzu), 6 mg peptide material was fractionated
with a binary buffer system: A (2.5 mM ABC) and B (2.5 mM ABC/80% ACN). The peptides
were loaded onto a reversed-phase column (ZORBAX 300Extend-Cys, Agilent) and separated
ata 1 mb/min flow rate at 40°C. The buffer B concentration of 2.5% was increased to 38% in
82.5 min, 75% in 2 min, and 100% in & min. It stayed at 100% for 2 min and was reduced to
2.5% in 2 min. In total, 95 fractions were collected and fractions with low peptide yield, as
determined using Nanodrop, were pooled (supplemental table 1) and dried in a SpeedVac.
Next, 76 fractions were enriched for phosphopeptide, which were subsequently loaded onto
Evotips.

LC-MS/MS analysis

The Evosep One liquid chromatography system coupled with a timsTOF Pro mass
spectrometer (Bruker) was used to measure all samples. The 60 and 100 SPD (samples per
day) methods required an 8 cm = 150 wm reverse-phase column packed with 1.5 um Cis-beads
[Pepsep) and the 30 SPD method a 15 cm = 75 um column with 1.9 um Cis-beads (Pepsep) at
40°C. The analytical columns were connected with a fused silica ID emitter (10 um 1D, Bruker
Daltonics) inside a nano-electrospray ion source (Captive spray source, Bruker). The mobile
phases comprised 0.1% FA as solution A and 0.1% FA/B0% ACN as solution B.

The library samples were acquired in dda-PASEF mode with four PASEF/MSMS scans at a
throughput of 60 and 100 SPDs and 10 PASEF/MMSMS scans at 30 SPD per topN acquisition
cycle. Singly charged precursors were filtered out by their position in the m/z-ion mohility
plane, and only precursor signals over an intensity threshold of 2,500 arbitrary units [a.u.)
were picked for fragmentation. While precursors over the target value of 20,000 a.u. were
dynarnically excluded for 0.4 min, ones below 700 Da were isolated with a 2 Th window and
ones above with 3 Th. All spectra were acquired within an m/z-range of 100 to 1700 and an
ion mobility range from 1.51 to 0.6 Vs cm™.

We described the original dia-PASEF method in Meier et al. (6). The dia-PASEF methods
optimized here with py_diAlD cover an m/z-range from 300 to 1200 for proteome and fram
400 to 1400 for phosphoproteome measurements. Each method includes two ion maobility
windows per dia-PASEF scan with variable isolation window widths adjusted to the precursor
densities. Eight, 12 and 25 dia-PASEF scans were deployed at a throughput of 100 (cycle time:
0.96 s), 60 (cycle time: 1.38s), and 30 SPDs (cycle time: 2.7s), respectively. We created dia-
PASEF methods with equidistant window widths (supplemental Fig. S5) with the software
“Compass DataAnalysis” (Bruker Daltonics). These acquisition schemes are plotted on top on
a kernel density estimation of precursors from a reference library in supplemental Figure 52-
4, The ion mobility range was set to 1.5 Vs em™ and 0.6 Vs cm™, The accumulation and ramp
times were specified as 100 ms for all experiments. As a result, each MS51 scan and each
MS2/dia-PASEF scan last 100 ms plus additional transfer time, and a dia-PASEF method with
12 dia-PASEF scans has a cycle time of 1.38s, The collision energy was decreased as a function
of the ion mobility from 59 eV at 1/Ks = 1.6 Vs crm? to 20 eV at 1/Kp = 0.6 Vs cm? and the ion
mobility dimension was calibrated with three Agilent ESI Tuning Mix ions (m/z, 1/Ks: 622.02,
098 Vs cm?, 922.01, 1.19 Vs cm™, 122199, 1.38 Vs cm™). For phosphoproteomics
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experiments, the collision energy was decreased from 60 eV at 1.5 Vs cm™ to 54 eV at 1.17 Vs
cm?to 25 eV at 0.85 Vs cm? and end at 20 eV at 0.6 Vs cm™,

Raw data analysis

We employed DIA-NN, M5Fragger and Spectronaut for transforming raw data inte precurseor
and fragment identifications based on 3D peak position (RT, m/z precursor, and ion mobility).
In each case, all data was searched against the reviewed human proteome {Uniprot, Nov
2021, 20,360 entries without isoforms) with trypsinfLysC as digestion enzymes. Cysteine
carbamidomethylation was set as fixed modification. Methionine oxidation, methionine
excision at the MN-terminus, and in the case of the phosphoproteome searches,
phosphorylation (STY) was selected as variable modifications. A maximum of two missed
cleavages and up to three variable modifications were allowed.

The project-specific libraries for DIA-NN analyses were generated with FragPipe (32) (FragPipe
16.2, MSFragger 3.4 (33-35), Philosopher 4.0.0 (36), Python 3.8, EasyPQP 0.1.25 (37)). The
default settings were kept except that the precursor mass tolerance was set from -20 to 20
ppm and the fragment mass tolerance to 20 ppm. Additionally, Pyro-Glu or ammonia loss at
the peptide N-terminus and water loss on N-terminal glutamic acid were selected as variable
maodification. The output tables were filtered for an 1% FDR using the Percolator (38, 33) and
ProteinProphet (40) option in FragPipe (supplemental table 2}.

DIA-NN 1.8 was used to analyze the single-shot experiments against the project-specific
libraries generated with FragPipe (32). The default settings were kept except that we changed
the charge state to 2 - 4, The precursor's m/z range was restricted from 300 to 1200 for
proteome and 400 to 1400 for phosphoproteome analysis. The fragment m/z range was set
from 100 to 1700, and the mass and MS1 accuracy to 15 ppm. ‘Match between run’ was
enabled while ‘protein inference’ was disabled. We also enabled ‘robust LC (high precision)’
as the quantification strategy. The proteomics output tables were filtered for a maximum of
1% of g-value at both precursor and global protein levels. For phosphoproteomics, the post-
translational modification g-value also had to be a maximum of 1%. The PG.MaxLFO column
integrated in the DIA-NN output tables reports normalized gquantity employing the MaxLFQ
principle (41) and was used for gquantitative analysis on the protein level. For our
phosphoproteomics analysis, we used the scoring of post-translational sites implemented in
DIA-NN with 'PTM Site Confidence' indicating the localization probability (13).

Spectronaut  (v16, Biegnosys AG, Schlieren, Switzerland) (3) was used for comparative
analysis and we used the same search settings as described above if not stated differently.
The FDR cutoff was set to 1%. The precursor peptide and g-value cutoffs were 0.2 and 0.01,
respectively. The protein g-value experiment and run wide cutoffs were 0.01 and 0.05,
respectively, The dataset was analyzed with a sparse g-value and no imputation was
performed. For phosphoproteomics experiments, the PTM localization cutoff was set to 0.
The results were filtered for the best N fragments per peptide between 3 to 25.

Peptide collapse (v1.4.1), a plug-in tool for Perseus (42), collapsed peptide output tables from
DIA-NN or Spectronaut to phosphosite tables using default settings and a localization cutoff
of 0.75 (Class | sites) (11). The DIA-NN output table was reformatted by renaming all columns
and entries calculating peptide positions to conform to the format required for the plug-in
tool. For collapsing, Perseus took only phospharylation into account. During collapsing
phosphopeptide ions to phosphosites, each phosphasite corresponding to the same peptide
obtains the same intensity, however imputation may lead to differences in fold changes. If
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the same phosphosite was identified on different peptides, which may also have
modifications other than phosphorylation or different charge states, the intensities were
summed up.

Statistical Analysis

Visualization and statistical analyses were performed using the output tables of DIA-NN or
Spectronaut with Python (3.8, lupyter notebook) and the packages pandas (1.4.2) and pyfaidx
[0.6.1) for data accession and py_diAlD (0.0.16), AlphahMap (0.1.10), matplotlib (3.4.3), and
seaborn (0.11.2) for visualization. The statistical analysis of the EGF experiment was
performed in Perseus {1.6.2.2). Logz-transformed intensities were filtered for 100 % valid
values in at least one condition. The missing values were replaced drawing from a normal
distribution (width 0.3 and downshift 1.8). Next, we applied the two-sided Student’s t-test
[So=0.1, FDR = 0.05) to obtain the significantly changing phosphorylated peptides. A Fisher’s
exact test was performed for GO term and KEGG pathway enrichment analysis (p-
value<0.002).

RESULTS

Principle and limitations of the original dia-PASEF window design

In the timsTOF mass spectrometer (Bruker Daltonics), a dual TIMS tunnel releases the
captured peptide ion species individually as a function of their mobility. In a PASEF MS/MS
scan, a quadrupole transmits part of the ion beam where the precursor m/z values fall into a
pre-defined isolation windaw (Fig. 1A). These precursors are subsequently fragmented by
applying a particular collision energy. A downstream TOF analyzer acquires high-resolution
mass spectra. In dia-PASEF, changing the guadrupole position is synchronized to the ion
maobility elution, increasing the M5 efficiency because the isolation window is placed on top
of the precursor cloud ({6). This movement happens in distinct steps and thereby divides one
PASEF scan into multiple ion mobility windows. The quadrupecle isolation window is first
placed at high m/z for a certain amount of time, after which it jumps to a position in the lower
m/z range. This transition point corresponds to a particular ion mobility value for each dia-
PASEF scan. In each subseguent dia-PASEF scan, the starting m/z window is offset to lower
values (Fig. 1B, C). Together, these isolation windows cover a large proportion of the m/z and
the ion mobility dimensions, constituting a two-dimensional acquisition scheme (Fig. 1B).
Due to software constraints, the original dia-PASEF methods (6) comprise a repeating pattern
of the top ion mobility windows per dia-PASEF scan. This leads to a configuration with
equidistant guadrupole isolation widths (Fig. 1B). As a result, covering a wide m/z range
comes at the cost of a high cycle time and reduced quantitative accuracy due to lower elution
peak coverage, Alternatively, many peptide ions outside the m/z range would not be included
in the acquisition scheme (Fig, 1C, D).

Mareover, when using equidistant isolation windows, the distribution of peptide ions per
window is imbalanced, resulting in a high spectral complexity in highly dense regions (Fig. 1E).
Lastly, this scheme for acquisition window setting is also suboptimal in the fon mobility
dimension (Fig. 1F).
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Figure 1: Principle of dia-PASEF on a timsTOF with equidistant two-dimensional isolation windows.

Al Schematic of a TIMS wnnel lollowed by guadrupole isclation

B dia-PASEF acquisifion scheme depicting three dia-PASEF scans divided into three ion makbility (IM)
windows. Verlical arrows indicate the elulion of the ions with decreasing electrical fizld and horizontal arrows
indicate the movement of the guadrupcle. The patiern of the top lon mobility windows is repeated and the
top and bottom ion mobility windows are extended to the upper and lower ion mobility range, respectively.

€} Orginal dia-PASEF acquisition schame {6) plotted on a kemel density distribution of all precursors. One
dia-PASEF scan is divided into three ion mobility windows by three distinct movemenis of quadrupaie
isolation. This schame comprises eight dia-PASEF scans with equidistant isolation width covering in total
849 of the peptide ion population.

D) Histogram of miz of all peptides covered by the acquisition method in (C), and peplides not covered by the
methad but identified in a separately recorded spectral library.

Ej MNumber of peptide ions per rsolation window.

F) Histogram of ion mobilities of all peptides covered by the acquisition method, and peptides nol covered by
the method but identified in a separately recorded spactral library.

The subfigures C-F are based on a reference proteome library (see Expenmental Proceduras),

Establishing an optimal dia-PASEF window design

We first investigated the optimum balance between the number of dia-PASEF scans and ion
maobility windows per dia-PASEF scan to obtain a deep proteome coverage and guantitative
accuracy. As described above, the original dia-PASEF method included three ion mobility
windows per dia-PASEF scan. Having more ion mobility windows per dia-PASEF scan reduces
cycle time but also diminishes precursor coverage due to smaller isolation windows in the ion
mability dimension [supplemental Fig. 554, B). For instance, splitting the isolation width into
two parts halved the complexity per spectrum and thereby increased identifications.
However, doubling the number of dia-PASEF scans increases cycle time, which worsens the
quantitative accuracy since only haif as many data points are collected over one elution peak
(supplemental Fig. 55A). We tested the impact of increasing the number of ion mability
windows per dia-PASEF scan and found that two ion mobility windows per dia-PASEF scan are
optimal {supplemeantal Fig. S5C}. Six points per elution peak are thought to be necessary for
accurate guantitation (43). In the case of 21 minute gradients {60 SPD}, we empirically found
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a median peak width of 8.27 s with our set-up (supplemental Fig. S5D) enly considering
precursors with a CV value below 20%. Each individual dia-PASEF scan takes around 100 ms
plus one 100 ms MS1 scan per cycle and overhead time. Hence, 12 dia-PASEF scans amount
to a cycle time of 1.38 5, ensuring adequate quantitative representation of the LC elution peak
(see Experimental Procedures, supplemental Fig. 55E).

Given the limitations of our previous two-dimensional acquisition scheme, we needed to
place and adjust m/z and ion mobility isolation windows flexibly. Existing tools such as "Define
dia-PASEF Region” in Compass DataAnalysis (Bruker) or the “dia-PASEF window Editor” in
TimsContirol (Bruker) require the manual fitting of the scan area onto the peptide ion
population and only generate isolation windows with equidistant widths. Therefore, we
developed a Python package for Data Independent Acquisition with an Automated lsolation
Design (py_diAID). It places two-dimensional dia-PASEF acquisition schemes in the m/z-ion
mobility plane based on desired parameters (number of dia-PASEF scans, covered m/z and
ion mobility range, and cycle time) and the empirical acquired reference data, which can be a
proteomics library containing precursor ion infarmation. The algorithms in py_diAID optimally
adjust the variable quadrupole isolation widths according to the precursor density, aiming for
an equal number of precursors fragmented per isolation window. Our simulations show that
variable isolation widths enable short acquisition cycles covering essentially the entire m/z-
ion mobility range (Fig. 24, right panel).

Our algorithm first bins the precursor ion populations equally along the m/z-dimension. A
trapezoid defines the extent of scan area and the position of the acquisition scheme in the
m/z-ion mobility plane (Fig. 24, left panel). Based on this, py_diAlD calculates the optimal
dimensions of each isolation window (Fig. 2A, middle panel) and extends the top and bottom
ion mobility windows to the limits of the measured ion mobility range to maximize the
covered peptide ion population (Fig. 24, right panel and supplemental Fig. 56). The selected
mass windew of the quadrupole jumps at the determined transition point of each ion mobility
window within each dia-PASEF scan. In each subsequent dia-PASEF scan, the starting m/z
window is offset to lower values based on the individual width of the previous window (Fig.
2A). Next, py_diAID evaluates the generated acquisition scheme based on the covered
precursor ions of an experimentally acquired library or subset thereof, for example ane
filtered by a charge state or by a population of modified peptides. This is a multivariant non-
linear optimization problem, and we used the gp_minimize module provided by the Scikit-
Optimize (skopt) library in Python to perform this task that is highly used in machine and deep
learning for the hyperparameter optimization (see Experimental Procedures). Its inputs are
the trapezoid corners and it iteratively decides which parameters should be tested next based
on the above evaluation. This process is repeated for many iterations (about 200 in practice,
supplemental Fig. 57) until it converges to the best window placement. py_diAlD is available
as a Python module, a command-line interface, and a graphical user interface on all majer
operating systems under an Apache 2.0 license (supplemental Fig. 58). The source code is
freely available on GitHub (hitps://github.com/Mannlabs/pydiAlD).

We first benchmarked the optimal dia-PASEF methods designed with py_diAID against the
original dia-PASEF method. The optimal dia-PASEF method calculated by py_diAlD covered
99% of all doubly and 94% of all triply charged precursors in the ‘reference library’, that was
generated with FragPipe. This compares to 88% and 71% coverage with the original dia-
PASEF. The original dia-PASEF method had already been extensively and manually optimized
for the short gradient lengths and the tryptic Hela digest employed here. This explains why
the number of experimentally identified proteins is very similar between both methods
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(supplemental Table 1). However, even in this case, py_diAlD's optimal acquisition scheme
increased the number of identified peptides by 6% in single-run injections (Fig. 2B) and across
the entire retention time (Fig. 2C), while the number of peptide identifications in replicate
injections deviates only by 1%. Inspection of the data shows that the additional peptides
originate both from the previously not covered regions and from the most dense elution
times, More than 80% of all identified peptides were commonly identified by both methods
(Fig. 2D). In other applications, such as phosphoproteomics, the gains by py_dialD were much
larger {see below Fig. 5).
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Figure 2: py_diAID algorithm and evaluation.

Al py_didlD design of the cptimal acguisition scheme and window placement for a 21 min gradient (60
SPD, Evosep) with variable widihs to balance the distrbution of peptide jons, providing nearly complete
peptide ion coverage.

The left panel illustrates the first steps of the py_diAID algorithm: defining the mdz-range of interast,
binning the peptida ians in the méz-dimension and definition of the scan area in the IM dimension
middle panel: Caleulation of the isolation window dimensions and coordinaies based on the scan area.
right paned: Extension of the isolation windows 1o the imits of the lon mobility ranges. The arow at the
bottom indicates that the py_diAlD algorithm evaluates the new acquisition scheme, defines the
[ollowing test sel of scan area parameters by Bayesian optmization, and resumes with the steps In the
laft panel. This is repeated for a user-defined number of iterations (more details in supplemental Fig.
56},

Als plolted on top of & kemeal density distribution based on the reference proleome library.

B} Average peptide identifications by the original and optimal dia-PASEF methods.

C) Mumber of peptides identified per minute over the entire retention time.

0y Venn diagram showing the shared and unigue peptides identified by both methods.

Data in B fo D are from quadruplicate injections of 200 ng tryptic Hela digest with a 21 min gradient and

analyzed with the reference proteome library.
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Deep proteome coverage in short LC-gradients

We next investigated if coupling our optimized dia-PASEF methods with project-specific, in-
depth libraries yields higher peptide identification and improves guantification accuracy. To
generate such an in-depth library, we separated 15 pg of the Hela sample that we also used
for single dia-PASEF acquisitions into 48 concatenated fractions using high pH reverse phase
chromatography of the Spider fractionator {see Experimental Procedures) (31). These
fractions were measured in dda-PASEF mode and again analyzed with FragPipe and its Speclib
workflow. We compared our ‘reference library' generated with limited sample amount
(2.5 pg proteolytic digest) and 24 fractions to the new one with ample sample amount (15 pg)
and twice as many fractions. As expected, the latter was substantially larger, containing 45%
more peptides (counting all modifications) and 13% more proteins. Altogether, this deep
library constructed from 21 min runs comprised 124,155 peptides and 8,439 different protein
groups (Fig. 34, B).

Next, we compared single dia-PASEF runs with reference vs deep library using DIA-NN and
found a corresponding increase in the proteome depth (39% more peptides and 12% more
proteins) (Fig. 3C, D). Using the deep library identified 76,214 + 1,021 peptides and the
reference library 51,711 + 641 peptides (Fig. 3C). With the deep library, an astounding
7,056 1+ 8 proteins were identified with our optimized acquisition scheme in each of four
replicate runs on average. Specifically, with the reference library, DIA-NN reported 14%
significant protein identifications on the basis of one peptide and this percentage decreased
slightly to 11% with the deeper library (Fig. 3D).

Quantitative reproducibility between the quadruplicates was virtually identical when using
the reference or deep library (4.5% vs 4.4% on protein level and 12.1% vs 13.45% on peptide
level} (Fig. 3E). Taken together, we found that single run identification benefited from a
project-specific, in-depth library while maintaining the accuracy of guantification. We
therefore used the 48 fractions library for all 21 min runs to generate eguivalent libraries for
evaluating a range of gradient lengths as described next (referred to as ‘project-specific deep

libraries’).
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Figure 3: Workflow optimization for the 21 min gradient with project-specific deep libraries

Al Peptides identified of the reference vs. the project-specific deep library for 21 min nins,

B] Shared protzing and depth on the protein level in the two libraries.

€} Awverage peptide identification of four single-run injections. This data and the one in (DY and (E) were
genaratad from guadruplicate injections of 200 ng tryptic Hela digest acquired with a 21 min gradiant and
searched with the referance (24 fractions) or project-specific library (48 fractions).

D) Awverage protein idenfifications and identifications with only one peptide in the single runs.

E] Coefficiens of variation al the protein lavel based on the MaxLFD algorithm of DIA-NN. Boxplols show the
madian {center line}, 25 and 75th parcentiles (lower and upper box limits, respectively), and tha 1.5«
interquartile range (whiskers). n = 6,384 (24 fractions) and 7,121 {48 fractions) shown in panel C.
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We next investigated the effect of even shorter gradients as well as somewhat longer
gradients on proteome depths and gquantitative accuracy. As before, each library was
acquired with dda-PASEF and 15 pg Hela lysate separated into 48 fractions. Extending the
gradient to 44 min {30 SPD method on the Evosep One system) identified an average of
7,756 % & proteins based on 100,900 + 634 peptides (including all modifications). This
represents an identification increase of 10% on protein level in comparison to the 21 minutes
gradient. The median CV between the gquadruplicates was 4% at the protein level for these
technical replicates, and 7,393 protein groups had CVs below 20% (Fig. 44, C).

We expected that the fast scan rate of the timsTOF, together with our optimized method
might still accurately measure a large part of the proteome even in very short gradients (6,
32). Indeed, the 100 SPD method (11 min gradient) still identified 6,285 £ 18 proteins (59,811
+ 368 peptides). Quantitative accuracy reported by DIA-MN did not suffer and remained at a
median CV of 4%. Taking only the proteins with CVs equal or below 20%, the 100 SPD method
still resulted in 6,121 proteins, covering 83% of proteins that could be accurately quantified
with the 44 min gradient while substantially reducing the analysis time (Fig. 4A). Rank order
reproducibility was also high for these technical replicates for all gradient lengths
[supplemental Fig. 59-10, r=0.999 for proteins and r=0,992 for peptides). As expected, the
number of peptides identified per minute decreased when increasing the gradient length
while the 11-min gradient reached the highest numbers (9,330 peptides per minute
translating to 155 peptide identifications per second at the apex, Fig. 4D).

In conclusion, our data show that our improved workflow constitutes a powerful
technological platform capable of accurately quantifying a large part of the proteome at high

throughput.
in noul of 4 = 1 min{ 100 3PD
1otsl no. 1 3 21 min / 60 SPD
<CV 20% 2 == 4 = &4 min / 30 SPD
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Figure 4: Comparison of different gradient lengths/ throughput based on single-run analysis.

A) Al single-run identifications and those with a CV < 20% for the 11 min, 21 min and 44 min gradients.

B) Ceefficients of variation at the protein level based on the MaxLFO algorithm of DIA-MNN. Boxplots show the
median (center ling), 25", and 75th parcentiles (lower and upper box limits, respactivaly), and the 1.5x
interquartile range (whiskers), n= 6341 {11min /100 SPD) and 7,121 (21min/ 60 SPD}, and 7,802 (44min
£30 SPD) shown in panel A,

C}  Analysis of peptide quantification in n out of four technical replicates shows that the large majority is
guantified consistently.

D} The number of peptides per second over the retenfion fima for the thrae gradient lengths.

The data was acquired in quadruplicate injections of 200 ng Hela digest and analyzed with 48 fraction, dda-

PASEF libraries each recorded with the coresponding gradien! length. 11-min lbrary: 8,553 proteins and

122,105 peptides, 21-min liorary; 8 439 proteins and 124,155 peptides, 44-min ibrary: 9,461 proteins, 175 839

peplides.
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Comparison of proteome results between DIA-NN and Spectronaut

The above analyses were all performed with the DIA-NN package. To determine if our results
depend on the software used, we employed Spectronaut (Biognaosys) (3), another widely used
software package (11, 44). This revealed that both packages identified comparable numbers
of proteins. For instance, in the 60 samples per day method, Spectronaut reported 7,285
significant protein groups, whereas DIA-NN reported 7,056 (supplemental Fig. 511 A). In the
version tested (Spectronaut 16), this also held for even shorter gradients (6,250 vs. 6,285).
Having established that the overall protein numbers are similar, we next investigated the
overlap between the found proteins. As DIA-NN has a different protein grouping algorithm
from Spectronaut, we performed this analysis on the level of genes and peptide precursors.
Employing similar grouping schemes at the gene level showed a high level of concordance,
with 548 genes unigue to Spectronaut and 208 unigque to DIA-NN out of a total of 7,668
identified genes for both (supplemental Fig. 511 B). For the total of 128,002 identified peptide
precursors, the discrepancy was somewhat larger, with 28% unigue identifications for
Spectronaut and 5% for DIA-NN (supplemental Fig. 511 C). Overall, based en these proteome
results, we conclude that the gains achieved by py_diAID are independent of the DIA analysis
software used.

Rapid phosphoproteocmics with optimal isolation window design

Phosphorylation, one of the most prevalent and most studied post-translational modification,
refers to the addition of a phosphoryl group — usually on serine, threonine or tyrosine amino
acid residues. This introduces a mass and ion mobility shift on the modified peptides,
indicating that analysis of phosphopeptides can benefit from the additional ion mohility
dimension in PASEF (45, 46). To date, dia-PASEF has not been explored in a large-scale study
of the phosphoproteome or any other post-translationally modified sub-proteome.

It is well known that the ion mobility dimension separates peptides in clouds primarily
reflecting their charge status. In the timsTOF case, Figure 5A depicts dense clouds containing
doubly, triply, and quadruply charged peptide ions (47). In the case of phospho-enriched
samples, projecting the distribution of phosphorylated peptides into the m/z and IM space
revealed a substantial shift of ion cloud to higher m/z values and higher IM values, due to the
80 Da increase in their mass, higher charge states and conformational changes upon
phosphorylation (Fig. 5B). These observations suggest that dia-PASEF methods need to be
tailored for phosphoproteomics. To this end, we first generated an in-depth phospho-library
from EGF stimulated Hela cells that were separated into 76 fractions and then enriched for
phosphorylated peptides. These enriched fractions were measured with the 60 SPD method,
dda-PASEF in little more than one day. We analyzed the results both by FragPipe combined
with DIA-NN and by Spectronaut 16 (see Experimental Procedures). This generated an in-
depth library of 187,730 modified or unmodified peptides, 123,133 phosphopeptides and
107,154 phosphosites for DIA-NN. Spectronaut 16 obtained very similar results {194,309
modified or unmodified peptides, 132,270 phosphopeptides and 114,158 phosphosites). The
overlap between phosphopeptides was 50% (supplemental Fig. S13A).

When we simulated the coverage of the original dia-PASEF method for the 21 min
gradient (6], we found that it only reached a coverage of 34% of phosphopeptide ions in our
deep phospho-library, in contrast to the 81% achieved for unmodified peptides (Fig. 5C).
Therefare, we used our phospho-library as input for py_diAID to obtain a dia-PASEF method
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tailored for phosphoproteomics. This resulted in a theoretical coverage of 93% of all doubly
charged and 92% of all triply charged phosphopeptide ions (Fig. 5D).

We next utilized this optimal dia-PASEF phospho-method to measure the samples containing
phosphorylated peptides enriched from 100 pg digest of EGF stimulated Hela cells. We first
analyzed the resulting files with DIA-NN against cur deep phospho-library. In agreement with
our simulations, the original dia-PASEF method identified 8,192 phosphosites and 13,485
phosphopeptides whereas the optimal method detected 28% more phosphosites (10,510)
and 43% more phosphorylated peptides (19,258) (Fig. 5E). To illustrate this further, we
mapped the experimentally acquired phosphopeptides to the EGF receptor (EGFR) sequence
essential for transmitting the EGF signal using AlphaMap (48). This revealed that the optimal
dia-PASEF phospho-method doubled the number of detected phosphosites to a total of 14
(Fig. 5F).

The intensities of the phosphopeptides detected in our deep FragPipe phospho-library in dda-
PASEF mode and 76 fractions span almost seven orders of magnitude (supplemental Fig.
5124). When searching single dia-PASEF phospho-runs against our phospho-library using DIA-
NN, we found that single short gradients covered 21% of the phosphopeptide sequences,
ranging from 12% in the most abundant quintile to 0.3% in the least abundant one (Suppl. Fig.
5124). Apart from the statistical analysis, the AlphaViz package (49), based on AlphaTims (50),
allows visualization of any phosphopeptides of interest. This is shown for the phosphopeptide
ELVEPLT[Phospho (STY}]PSGEAPNQALLR on EGFR, where the distinct precursor and fragment
peaks are clearly visible in the retention time dimension and even more important in the
retention time — ion mobility plane, supporting the DIA-NN assignment (supplemental Fig.
5128, C).

Next, we analyzed the same single-run phospho dataset with Spectronaut. To our surprise —
especially given the comparable results at the proteome level — Spectronaut drastically
increased the number of identified phosphosites to 28,980 (supplemental Fig. S13B). This was
even more pronounced for identified phospho-peptides (72,216, supplemental Fig. S13C).
Accordingly, the common overlap of phosphosites was only 26% (supplemental Fig. S138).
We do not know the origin of this large discrepancy, but we encourage the providers of these
software packages to resolve this, especially as the code is not available for inspection. In the
context of our study, we decided to continue with the mare extensive Spectronaut results, as
they appeared to still correctly represent the regulation in the EGFR signaling experiment
described below.
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Figure 5: Method optimization specifically for phosphoproteomics.

Al Peptide distribution of a proteomics digest displayed as kemel density estimation depandent on the charge
and histograms of the abundance of differently charged precursors based on our deep proteomics library.

B} Peptide distribution of 8 phosphoproteomics diges! displayed as kemel density estimation and histograms
of the abundance of differently charged precursors based on our phosphopeptide Torary.

C) Orginal dia-PASEF method plotted on top of the phosphopeptide library.

D) Optimal dia-PASEF method tailored to the phospho-library.

E| ldentfied phosphosites and phosphopeptides based on quadreplicates of 100 pg EGF-stimulated and
enriched Hela digest, separated within 21 min and searched with DIA-NM against the phospha-library.

F)  AlphaMap visuglization (48); Protein sequence coverage of the epidermal growth factor receptor (EGFR)
depending on the acquisition method

In-depth phosphoproteomics analysis of the EGF-signaling pathway

To benchmark our optimal dia-PASEF workflow, we chose the well-studied epidermal growth
factor [EGF) signaling pathway in Hela cells. The binding of EGF to the EGF receptor (EGFR)
results in the activation of downstream kinases, which phosphorylate a repertoire of
numerous substrates, regulating diverse cellular processes (51). We aimed to guantitatively
and accurately measure the differential phasphaorylation of proteins invelved in this signaling
pathway using our rapid and sensitive method. To this end, EGF-treated and control samples
were collected in three biological replicates, digested into peptides and enriched for
phosphorylated peptides [see Experimental Procedures). Subsequently, we measured the
enriched phosphopeptides with dia-PASEF in 21 minutes and searched the deep

16

156



3. Publications

bioRxiv preprint daol: I’-[éo&:r’.’dni arg10.1101/2022.05.31.494163,; this version posted May 31, 2022. The copyright holder for this preprint
(which was not cerified by peer réview) s the autharfunder, who has granted bioRxiv a licensa (o dispiay the preprint in parpaiuity. it is
made avadable uncer aCG-BY 4.0 International licensa,

phosphopeptide library that we already employed for the method optimization described
above with Spectronaut 16.

With our workflow, we quantified 46,136 phosphorylation sites on 4,300 proteins. Of these,
35,537 sites were identified with a high site localization probability (75%, Class | sites (52))
and 20,001 were guantified in all replicates of at least one experimental condition (Fig. GA).
The dia-PASEF workflow allowed high reproducible quantification demonstrated by a median
Pearson coefficient above 0,92 for replicates within conditions (Fig. 6B). Remarkably, a full
26% (5,200, 5% FDR) and 10.5% (2,117, 1% FDR) of phosphorylation sites were significantly
modulated upon EGF treatment (Fig. 6C).

As expected, Gene Ontology (GO} enrichment analysis revealed strong overrepresentation of
proteins involved in the EGFR signaling pathway (GOBP) and related pathways among the
significantly EGF-upregulated phosphoproteins (Fig. 6D). Most are known to be critical for
intact EGF signaling. For example, we detected phosphorylation of TE93, ¥1110, Y1172, Y1197
on the receptor EGFR itself, ¥427 on the adaptor protein Src Homology 2 Domain-Containing-
Transforming Protein C1 (SHC1), Y653 on Growth Factor Receptor Bound Protein 2-Associated
Protein 1 (GAB1) and on the downstream kinases Mitogen-Activated Protein Kinase 2
(MAP2K2) (T394) and Mitogen-Activated Protein Kinase 1 and 3 (MAPK1/3) (T185/Y187,
T202/¥204) [53) (Fig. 6C, E). These phosphosites are typically used to examine EGF signaling
with classical methods such as immunoblotting or with targeted mass spectrometry (9, 10,
54). These approaches, however, only allow relatively low throughput analyses, that require
dedicated assay development procedures or the generation of phosphospecific antibodies. In
contrast, by combining the automated phosphoenrichment on the BRAVO platform with the
robust Evosep and timsTOF setup, our approach achieves 60 5PD. This allows us to track and
accurately quantify the induction of more than 60 phosphorylation events on proteins critical
for EGF signaling (part of GOBP: EGFR signaling pathway) within a single 21-min run
[supplemental Fig. 514). Importantly, besides the phospharylations of the classical EGF
signaling members, many other sighaling events that, for example, result from signaling
crosstalk downstream of the EGF receptor can also be detected, including 5897 of the Ephrin
Type-A Receptor 2 (EPHA2), 5339 of the C-X-C Motif Chemokine Receptor 4 (CXCR4} and T701
of Erb-B2 Receptor Tyrosine Kinase 2 (EREB2) [supplemental Fig. 514).

Toidentify functionally important phosphorylation events not directly linked to EGF signaling,
we matched the functionality prediction score developed by Beltrao and co-workers to the
upregulated phosphorylation events (55). We identified 659 phosphosites with a high
functional score of >0.5 to be significantly upregulated, which are not part of the GOBP term
‘EGFR signaling pathway’ (FDR<0.05) (supplemental data 1). These include EGF-induced
phosphorylation of E3 ligases like Mindbomb Homelog 2 (MIB2) (5309) and members of the
linear ubiguitin chain assembly complex Ring Finger Protein 31 (RNF31) (S466) and Sharpin
(5165), which are most frequently studied in the context of TNF signaling {supplemental Fig.
514) (56-59). similarly, phosphorylation of Receptor Interacting Serine/Threanine Protein
Kinase 1 (RIPK1) on 5320, which prevents TNF-induced cell death, was also increased upon
EGF signaling (supplemental Fig. S14) {60, 61). This phosphorylation is mediated by MAP
kinase-Activated Protein Kinase 2 (MAPKAPK2), which is activated upon EGF stimulation
demonstrated by its increased phosphorylation at T334, These are just some examples of
functional candidates whose role in EGF signaling has still to be determined.

Together, this EGF study demonstrates the quantitative capabilities of the dia-PASEF-based
phosphoproteomics workflow. We conclude that efficient analysis of ions separated in the IM
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and m/z space enables the investigation of signaling pathways with high sensitivity in a high-

throughput manner.
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DISCUSSION

The optimal placement of dia-PASEF windows in the two-dimensional m/z and ion mobility
space is not trivial. We here developed py_diAID which is available on GitHub at MannLabs
and is installable as a Python module with a command line interface or as a GUI on Windows,
Mac and Linux. It adjusts the isolation window width to the precursor density, and optimally
positions the solation design in the m/z-IM space. This leads to near-complete theoretical
precursor coverage for proteomics. Compared to the original dia-PASEF method (6), the gains
for phosphorylated precursors are especially striking (34% vs. 93%).

MS-based proteomics is a rapidly developing technology. For perspective, to cover ten
thousand proteins we had to measure the samples for twelve days with four-hour gradients
ten years ago (62). Here, we coupled a robust, high throughput LC system to the TIMS-qTOF
instrument employing the rapid sampling speed of a TOF analyzer. It offers short gradients
and also low overhead time, enhancing the overall throughput capabilities (27). With this, we
generated in-depth project-specific libraries of 9,461 proteins in only 13% of the previous
measurement time. Furthermore, once the libraries are ready, subsequent proteome
characterization using py_diAID generated methods happens in only 44 minutes to a depth of
7,700 proteins (less than 1% of the measurement time necessary ten years ago). Our workflow
is also twice as fast as currently employed high throughput screening strategies for cancer
proteomics, while achieving greater proteome depth on cell lysate (63-65),

5o far, there have been only a few reports of the timsTOF principle on phosphoproteomics
(28). Here, we show that this instrument is capable of in-depth phosphoproteomics with very
high sensitivity, Specifically, we identified thirty-five thousand phosphosites in only
21 minutes in triplicates from 100 pg EGF-stimulated Hela cell digests. Our workflow opens
up the possibility to measure multiple pathways in a short time, We demonstrated that
guantitatively analyzing the regulated phosphoproteome covers the well-studied EGF
signaling pathway together with auxiliary pathways. Interestingly, our workflow is even faster
than selected reaction monitoring employed as a targeted screening method for assessing the
activation of signaling pathways (9). However, our method is generic to any pathway and
applicable in principle to the entire phosphoproteome.

In the current implementation, the dia-PASEF windows are adjusted based on empirical data
before the acquisition. These adjustments could also be implemented in real-time based on
the precursor density achieving an acquisition design optimized to the individual time points
of an entire gradient. Furthermore, we employed in-depth libraries. While they can be
generated quickly, current developments of in silico generated DIA libraries or direct DIA
methods may soon obviate the need for this step. Likewise, we expect that py_diAID will
perform similarly for other PTMs.
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Despite its relatively short history, the new timsTOF instrument in combination with the
PASEF method have already become a widely used technology in proteomics
laboratories. This has made it possible to measure ion mobility values and to derive
collisional cross section (CCS) values representing ion size and shape on a very large
scale. However, despite numerous attempts to understand the nature and predict the
utility of the peptide CCS values using machine learning approaches, the relations
between linear amino acid sequence and CCS had proven too complex to be

generalized or predicted using simple rules.

To tackle this challenge, we measured more than two million CCS values of about
500,000 peptides with unique sequences from whole-proteome digests of five biological
species with high precision and an accuracy of a few percent. This revealed on a global
scale the sequence-specific factors that determine CCS values, such as hydrophobicity,
the proportion of prolines and the location of histidines. The size of the acquired dataset
made it possible for the first time to develop a deep learning model capable of learning
complex interactions between amino acids that influence peptide shape and finally to
predict CCS values directly for any peptide sequence. We found that CCS values are
intrinsic properties of the molecule, similar to molecular weights and that they can be
predicted by our model with a median deviation of 1.4%, not far from the experimental

variation.

My contribution to the project was mainly to the data analysis in this project.
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The size and shape of peptide ions in the gas phase are an under-explored dimension for
mass spectrometry-based proteomics. To investigate the nature and utility of the peptide
collisional cross section (CC3) space, we measure more than a million data points from
whole-protecme digests of five organisms with trapped ion mability spectrometry (TIMS)
and parallel accumulation-serial fragmentation (FASEF), The scale and precision (CV < 1%)
of our data is sufficient to train a deep recurrent neural network that accurately predicts CCS
values solely based an the peptide sequence Cross section predictions for the synthetic
ProteomeTools peptides validate the model within a 1.4% median relative error (K > 099},
Hydrophabicity, propartion of prolines and position of histidines are main determinants of the
cross sections in addition to sequence-specific interactions. CC5S values can now be predicted
for any peptide and organism, tarming a basis for advanced protéomics workflows thal make
full use of the additional information.

'Deparimant Proteamics and Signal Transduction, Max Flanck Institute of Biochemistry, Martinsried, Germany. © Institute of Computaticnal Biology,
Halmheltz Zentrum Minchen—German Redearch Centor for Environmantal Health, Mouharberg, Germary 3 Department of Mathermatics, TU Minchen
Wiunich, Germary. 4 NHF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Dernmark, “Present address
Functional Protecmics, Jera Uraversity Hospital, Jena, Germany. "These authars cantributed squadly; Florian Maier, Miklas D. kéhier, Ardreas-David Brunrer
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he combination of ion mobility spectrometry (IMS] and

mass spectrometry  (MS) extends conventional liquid

chromatography-mass spectrometry (LC-MS) by an extra
dimension of separation, increasing peal capacity, selectivity, and
depth of analysis'~®, Recent advances have greatly improved the
sensitivity of commercially avatlable IMS devices and the tech-
nology is now set for a broader application in MS-hased pro-
teomics™ 11,

IMS separates fons in the gas phase {typically in the mbar
pressure range) based on their size and shape within milliseconds.
This time scale allowes rl:!:urdi.t'ls full ion mobility spectra bebween
typical chromatographic peaks (seconds) and the acquisition
pulses of tme-of-flight (TOF) instruments (~100 ps}, We have
recently integrated trapped ion mobility spectrometry (TIMS}!112,
a refatively new and particularly compact ion mobility device, with
a high-resolution quadrupole TOF mass analyzer!™ %19, [n MS/
M5 mode, this opens up the possibility 1o swep the precursor
selection window as a function of jon mobility, allowing the
fragmentation of multiple precursors during a single TIMS scan'?.
We termed this novel scan mode parallel accumulation-serial
fragmentation {PASEF) and demonstrated that it increases M5/
MBS rates more than ten-fold without any loss in sensitivity as is
otherwise inherent to faster scanning rates!™ !,

An intriguing feature of the combination of TIMS and PASEF
is that it should allew the acquisition of lon mobility values on a
very large scale. Such data have previously been measured on a
case by case basis by classical drift tube IMS, in which a weak
electric field drags ions through an inert buffer gas'® %, Larger
ions collide more frequently with gas molecules and hence tra-
verse the drift tube with a lower speed as compared with their
smaller counterparts, [n TIMS the physical process i the same,
except that the setup is reversed with the electric held holding
ions stationary against an incoming gas flow, prior to their
controlled release from the device by lowering the eleciric
field"*?", In both cases, the measured ion mobility {reported as
the reduced ion mobility coefficient Ky} can be used to derive a
collisional cross section (CC5), which 15 the rotational average of
an ion's gas-phase conformation®!®2, The CCS mtrinsically
depends an the ion structure, which is also illustrated by the fact
that different classes of biomolecules (e.g., metabolites, carbohy-
drates, peptides) show different trends in their ion mobilities as a
function of molecular mass™. Interestingly, conformations also
vary within a compound class - to the extent that isobaric peptide
sequences can be distinguishable by their different CC8427,

The link between the amino acids of a peptide and its measured
cross section has the patential to increase the confidence in its
identifications through reference or predicled CCS values, This
has motivaled researchers to develop varous (machine learning)
models based on amino acid-specific parameterization and phy-
sicochemical properties!®* -3 However, as comprehensive
experimental data are not available, predicting the full complexity
of the peptide confarmational space remains elusive. Further-
more, it is not clear which properties should be considered to best
parameterize such models and make them generalizable. We
reasoned that a combination of very large and consistent dalasels
acquired by PASEF with state of the art deep learning methods
would address both challenges. Due to their inherent flexibility
and their ability to scale to large datasets, deep learning methods
have proven very successful in genomics™7 and more recently in
proteomics for the prediction of retention times and fragmenta-
tion spectra’>—7,

We here set aut to explore the nature and utility of the peptide
CCS space in proteomics by first measuring a very large datasct of
CCSs by TIMS-TOF PASEF across five ditferent biological spe-
cies. Building on this dataset, we develop and train a hi-
directional recurrent newral wetwork with long  short-term

memory (LSTM) units to predict CC8 values for any peptide
sequence in the tryptic peptide universe. [nterpreting our network
based on recent approaches from explainable Al allows us to
investigate the nature of the underlying relationship between
linear peptide sequence and peptide cross section.

Results

Construction of a very large-scale peptide CCS dataset. To fully
capture the conformational diversity of peptides in the gas phase,
we penerated peplides from  whole-cell proteomes of Cace-
norhabdivis elegans, Drosophila melanogester, Escherichia colf,
HelLa, and budding yeast using up to three different enzymes with
complementary cleavage specificity (trypsin, LysC, and LysN), To
increase the depth of our analysis, we split peptide mixtures into
24 tractions per organistn and analyzed cach of them separately
with PASEF on a TIMS-quadrupole TOF MS (Methods; Fig, 1a).
As this is the same setup we used before, we combined our new
experimental data with our previously reported dataset from a
tryptic Hela digest!,

L total, we compiled 360 LC-MS/MS runs and processed them
i the MaxQuant software*®37, This resulted in about 2.5 million
peptide spectrum matches and 426,845 unigue peptide sequences
at globally controlled false discovery (FDR) rates of less than 1%
at the peptide and protein levels for each organism and enzyme.
MaxOuant links each peptide spectrum match o a four-
dimensionzl (4D} isotope cluster {or Feature’) in mass, retention
time, ion mobility, and intensity dimension. For each of these, the
ion mobality value is determined as the intensity-weighted average
of the corresponding mobilogram trace and can be converted into
an ion-newtral CCS value wsing the Mason-Schamp cquation”!,
Some peplides occur in more than ene conformation and have
multiple peaks in an LC-TIMS-MS experiment, but for simplicity
we here chose (o keep only the most abundant feature per charge
state (Supplementary Fig. 1),

Owverall, our dataset comprises over two million CCS values,
which we collapsed to about 570,000 unigue combinations of
peptide sequence, charge state and, if applicable, side chamn
modifications such as oxidation of methionine (Fig 1h). Peptide
sequence lengths ranged from 7 wp to 55 amino ecids with a
median length of 14, The trypsin and LysC datasets contributed
79 of the peptide sequences (C-terminal B or K}, whereas LysN
peptide (N-terminal K) accounted for the remaining 21%. Within
the two classes of peptides, the proportion of the terminal amino
acids conformed to their expected frequencies from the database
(Fig. lc, d). Due to our selection of enzymes, peptides should have
at least one basic amino acid. Consequently, singly chirged ions
were @ small minority (2%), which we excluded from further
amabysis. We detected 69% of the peptides in the doubly charged,
and 25% in the triply charged and 4% in the guadruply charged
state. Plotting the mass-to-charge (m/z) vs, CCS distribution of all
peptides separates them by their charge state aver the 'z range
A00-1700 A2 and 300-1000 A2 in cross section (Fig. 1¢). Within
each charge state, my'z and CCS were correlated i accordance with
previous observations in smaller datasets?%132538300 Oyerall, 95%
of all tryptic peptides were distributed within +£8% around power-
baw trend lines for each charge stte (Supplementary Fig. 2).
Interestingly, the deviation increases with charge state and mass—to
the extent that there are two distinct sub-populations for charge
state 3—perhaps due to the increased amino acid variability and
structural flexability in longer sequences. Our data show that
peptides occupy sbout one-quarter of the 20 m/z-mobility space,
whereas a fully orthogonal 2D separation would occupy the full
space, Assuming an average wn mobility resolution of 60, this
translates into an at least ten-fold incressed analytical peak capacity
as compared with only MS (Supplementary Fig 3),
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Evaluating the accuracy, precision, and utility of TIMS CCS
measurements. Peak capacity indicates how many peptides can
be anmalytically resolved from each other. However, for their
identification it is sufficient to determine their apex positions with
adequate preciston. In MS-based proteomics, accurate measure-
ment of the peptide mass greatly reduces the number of candi-
dates in database searches™®, and the retention time can likewise
be employed as a dilter, as is ypically done in the analysis of data-
independent acguisition (DIA) experimenis!!, We reasoned that
ion mobility values should be precise and reproducible as they are
based on gas-phase interactions and defined electric fields, in
centrast to chromatographic retention times, which depend on
surface interactions that vary according to sample matrices and
over time, We therefore investigated the precision, accuracy and
added benefit of jon mobility measurements in our dataset.
First, we calculated correlation coefficients for retention times
and CCS values from pair-wise overlapping tryptic peptides in the
168 LC-MS/MS runs that had the highest number of shared
peptides across organisms, Depending on evolutionary distance,
this number ranged from none 1o hundreds and these formed the
basis of our calculations, We obtained two triangular half-
matrices of color-coded Pearson correlation coefficients—one for
the retention time correlations and one for CCS (upper and lower
part of Fig. Za, respectively). Correlation values were generally
above 0.9 for both retention time and cross section, although
experiments were done over several months on three dillerent
instruiments. Flowever, correlations of COS values were syatem-
atically higher than those for retention times, for example, the

median correlation for the Hela runs between June 2018 and
May 2019 is ¢ = 0.990 for retention times and » = 0.995 for cross
sections (bagsed en 1264 peptides per pairwise comparison on
average). Further, the upper triangle of the heatmap shows
patches of similar color, unlike the mirrored positions in the
fower triangle (Fig. 2a). This indicates chromatographic batch-
effects  resulting in  non-linear shifts or changes in the
peptide elution order. In contrast, the absence of similar patterns
in the CCS comparisons supports our starting  hypothesis
that the ion mobility is largely independent of experimental
circumstances.

Closer inspection of the wvariation in CCS wvalues revealed
mastly linear shifts, which do not affect the correlation
coefficient. These shifts were only in the range from absolute 0
to 40 A2 (median 9.4 A%) even for very distant measurements, and
they are mainly due to variations of the gas flow in the TIMS
tunnel Importantly, a linear alignment based on a few peptide
CCS values almost completely corrects for these shifts (Methods,
Fig. 2b), With such an alignment, CCS values can be compared
across disparate datasets, which we did for all analyses shown
here, Across the 347,885 peptide COS values measured at feast in
duplicate, the meadian coefficient of variation (CV) was 0.4%,
which highlights the excellent reproducibility of TIMS CCS
measurements also over longer periods of time and across
instruments {Fig. 2c). This may even be improvable as suggested
by our pm\ri.ul.uily’ n:purlcd CWs of 0.1% for rep!icnh: injections of
a whole-proteame digest on a single instrument!”. Reassuringly,
we found an excellent correlation of TMMCCS,, values and drift
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Fig. 2 Precision, accuracy, and utility of experimental peptide CCS values. a Color-coded pairwise Pearson correlation values of peptide retention time
(upper trianguelar matrix} and CC5 values (lower triangular matric) between the 168 LC-MS/M5 runs of fractionated tryptic digests. Experimantal metadata
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independently measured in bwo typical LC-M5 rns of fractions from Drosophila and Hela (n = 68). € CVs of repeatedly measisred peptide CC5 values in
the full dataset (n= 347,885 peptides). d Specificity of combined peptide mez and CC5 information for doubly and triply charged peptides with C-terminal
arginine or lysine (n=324.246 and 112.01%) with 3 fixed msz tolerance of £1.5 pom and as a function of CCS tolerance. For details, see main text and

Wiethods

tube 1on mr)h'riit!; e’:tpcrimen!su"l" [Pearson r—= 0.997) with an
average absolute deviation <2% (Supplementary Fig. 1)

T investigate the utility of the additional CCS information for
peptide identification, we returned to Fig. le and defined
tolerance windows in myz and CCS dimensions for each peptide
with Cotermunal arginine or lysine as expected in toyptic digests
(identified 111-' MSIMS at an FDR < 1%). We then determined the
fraction of windows in this map that were exclusively occupied by
a single peptide, meaning a unigue match between experimental
measurement and our large peptide dataset (Fig. 2d). We set the
mass tolerance at the median mass accuracy (£1.5ppm) and
varied the CCS tolerance separately for doubly and triply charged
peptides, because they occupy different cross section areas
(Methods)., Without the CCS information, at +£50% tolerance,
about 90% of the doubly charged and 67% of the triply charged
peptides had at least one ather peptide within 1.5 ppm distance
{'nom-unique’). The fraction of unique peptides increased once
the CCS window was restricted to less than £10%, in accordance
with the roughly 20% spread of CCS values in Fig. le. Within
three standard deviations {£1.5%) of the measured CCS values,
about two-thirds of the doubly charged and 75% of the triply
charged specics were unigue and these fractions increased
progressively for narrower CCS windows. We thus conclude that
fon mobility can substantially reduce the number of potential
peptides  that need to be considered, benefiting  peptide

wdentification or MS1 leve!l feature |nntching, At current CCS
value accuracy, this is about a factor of two to thres. As Fig. 2d
ilso shows, an increase in accuracy down to 0.1% could make the
lurge majority of peptides unique (56% for 27 and 90% and 37 in
a +0.5% CCS window),

Dependence of CCS values on linear sequence determinants.
Having investigated the accuracy and utility of peptide CCS
values, we asked whether a dataset of this scale could alse shed a
light on potential substructures in the sz vs. fon mobility space
and the relationships between linear peptide sequences and their
corresponding gas-phase structures. Tn the wifz vs, CCS space of
Fig. le, more compact conformations appear below and more
extended confirmations appear above the overall trend lines
for CCS values as a funiction of miz

We first explored whether amino acids with preferences for
sacnndnry rmt’e'm structures®®, would also effect ngride ion
structures in the £as Fl‘l.l:i-l,: and form clusters in this gloh:li wiew
{Supplementary Fig 5). This is a Jong-standing mterest in ion
mohility research and detailed studies of model peptides revealed
that in particular helical structures can be stable in the gas
phaﬁc‘““'*. qupmg the amino acids i each pcpt;idc sequence
that faver helices in proteins, we ound a tendency toward higher
CCS with an increasing fraction of &, L, M, H, , and E. This
siggests that such peptides, indeed, have a propensity to adopl
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Fig. 3 A global view on peptide cross sections, a Mass-to-charge vs collisional cross section distribution of all peptides in this study colored by the
GRAYY hydrophobicity index (= 5593791 b Subset of peptides with C-terming arginine or lysine colored by the fraction of prolines in the linear
sequence (n =452 532}, ¢ Histidine-containing peptides of (b} colared by the relative position of histidine (n =171425). Trend lines (dashed) are fitted ta
tha overall peptide distribution to visualize the carrelation of ion mass and mobility in each charge state,

extended helical rather than more compact globular structures, In
contrast, peptides with a high fraction of amino acids favoring
trn structures (G, 5 D, N, and P) tended o more compact
conformations. Note, however, that these are subtle, population-
wide effects. An interesting résult was that peplides with <10% of
the mostly non-polar amino acids V, I, F, T, and ¥ (favoring sheet
structures in proteins) formed a narrow band of compact gas-
phase conformations.

Such tendencies have been aseribed to intra-molecular
interactions such as coulombic repulsion, charge sohvation and
hydrogen bonding® "1 We reasoned that the hydraphohicity of
peptides could thus be a good indicator of these interactions in a
global view. Indeed, the GRAVY score™, a commonly used index
of hydrephobicity, highlighted distinet areas of the m/z vs. jon
mobility space and within the CCS value distributions of each
charge state, the peptides below the trend line had lower CRAVY
scores than those abave (Fig, 3a). The two mejor subgroups of the
triply  charged peptides also followed this trend in that
hydrophobic peptides had a higher propensity 1o be in the upper
population and vice versa. [nterestingly, and perhaps counter-
intuitively, this correlation was less apparent when comparing the
refative bulkiness of amino acid residues even though these
propertics are related (Supplementary Fig, 6). These results are,
however, m line with early work in ion mobility, indicating that
non-polar amino acids contribule over-proportionately to the
peptide CCS value®® and stabilize helices in the absence of
solvent!”, When rotationally averaged, this results in larger,
effective cross sections.

To resalve structural trends at the level of individual amino
acids, we visualized their relative distribution in the same 2D
space. Proline is unique due to its cyclic structure, which results
in an inability to donate hydrogen bonds and to disruption of
secondary structures in proteins, We found that peptides with
maore prolines had somewhat smaller CCS values on a global scale
{Fig. 3b). In line with the above reasoning, this could he explained
by a disruption of extended conformations and preference for
globular anes.

A peptide’s CCS value is not enly determined by its amino acid
cemposition, but alse by its amino acid sequence. As a large-scale
example of this, we generated complementary peptide sequences
with Iysine cither at the N-terminus (LysN digestion) or at the C-
terminus (LysC digestion). As described before™, the two peptide
populations are most distinct in triply charged specics (Supple-
mentary Fig, 7). Comparing 43,463 complementary sequences of

doubly charged peptides, we found changing CCS values in the
range of —5% up to +10% with a slight median shift of about 1%
toward higher CCS values for peptides with C-terminal lysine,
The 14,388 triply charged species split in two sub-populations,
with one maximum at about +1% similar to the doubly charged
species and a second maximum at a shift of about +8%. This
indicates that for the latter, switching the position of lysine from
the C- to the N-terminus destabilizes the extended conformation,
Assuming that the LysC peptides have a more extended
conformation due to charge repulsion of the terminal charges,
this again conforms to the above considerations,

We next investigated such effects in histidine-containing
tryptic peptides, by color-coding them by their relative histidine
position in the linear sequences (Fig. 3¢). Peptides with histidines
close to the N-terminus are more likely to adopt an extended
conformation and peptides with histidines closer o the C-
terminal lysine or arginine are more compact in the gas phase.
This again emphasizes that the internal charge distribution and
the ability to solvate charges intra-molecularly have a strong
influence on peptide CCS values.

Although our analysis revealed interesting general trends and
stgpested common principles, it is challenging to combine them
into robust madels that rationalize the trends and determine the
CCS value of a given peptide from ils linear sequence, More
importantly, peplide CCS values do not lend themselves Lo global
ab initio calculations as this 15 beyond the capabiliies of
computational chemistry. To that end, we next turned to deep
learning.

Deep learning accurately predicts peptide CCS values, To
constrict an aceurate CCS predictor that can incorporate these
large-seale peptide measurements, we decidad to employ a flexible
deep learning model, We set out to define a network architecture
that is capable of learning a non-linear mapping function con-
necting the linear amino acid peptide sequence with associated
charge states to the experimentally measured CCS value with the
following properties: (i) Exploit the sequential structure of the
data where cach peptide is encoded as a string of amino acid
sequences; (if) Account for the influence of an amine acid in the
context of the entire peptide sequence; and (i} Process peptide
sequences of arbitrary length. An architecture fulfilling those
properties 15 a bi-directional LSTM network on top of the raw
sequence followed by & two-layer multilayer perceptron {MLF)
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Fig. 4 Deep learning peptide CCS values. a Architecture of the nedral network, Bi-directional long short-term maodel (LSTMY: () amino acid sequence
input, (i} veclorization of amina acid information for processing. Cin) bi-directional LATM layers, (v} reduction to fixed length peptide feature vector by
concatenating the last cutput neurors of both directional LSTMs, and (v) CCS predictzan. b Relative deviation of predictes CCS values from an independent
exparimental validation datasat of synthetic peptides from the ProteomaTools project. € Correlation af predicted versus experimental CCS values {n=

156,004}, d Dependence of the median relative error on fraining dstaset size, @ Same for Pearson correlation cosfficient, Source Data are provided as a

Source Data file.

(Fig. 4a, Methods). Smmilar models have already proven successtul
in proteomics? >34, The bi-directional LSTM layers enable the
model to interpret each amino acid in the context of neighboring
amino acids, while the following concatenation layer reduces the
resulting N (sequence length) vectors into a single set of 258
features, together encoding the properties of the entirety of the
peptide seguence. Topether with the charge state, this vector
censtitutes the input to the MLP module for the final CCS value
regression. The entire architecture is implemented with differ-
entiable modules and is end-to-end trainable. We trained our
model with the set of 559,979 unique CCS values from our
experimental data of the five organisms.

Machine learning models, in particular deep learning models,
cunt easily be owver-fitted, resulting in poor peneralization
performance on new datagets, While holding oot samples within
the dataset helps, for o more rigorous safeguard, we acquired an
independent additional dataset from the synthetic ProteomeTools
peptides™. This vielded 155004 unique peptide sequences as an
external test set, which was never seen by the model during
training, In this test set, our model reached a high accuracy witha
L4% absolute median deviation and a Pearson correlation
coefficient of 0.992 (Fig. 4b, c). For the subset of doubly charged
peptides the median absolute deviation was 1.2%, and for triphy
and quadruply charged species it was 1.8% and 2.0%, respectively
{Supplementary Fig, 8). Presumably as a result of an increasing
number of accessible conformations, we found that the median
absolute deviation increased from 1.2% for CCS values <400 A2,
to 1.5% for CCS values between 400 and 800 A% (n = 129,710)
and 2.2% for 2580 peptides with CCS values »800 A* (Supple-
mentary Fig, 9. Of alT predicted CCS values, 90% were within
+4.0% deviation from the experimental data. [n comparison, the
experimental median absolute deviation between tryptic peptides
from ProteomeTools and endogenous peptides was 0.6% {r=
0.995, 1 =54,914).

In our ProtecmeTools data we also found a subset of 7% of the
peptide sequences, for which MaxQuant identified at least one
secondary feature with a CCS difference >2% relative to the most

abundant feature. As we trained our model with CCS values of
the latter, it is expected to predict the CCS value of the mamn
conformation in such cases. However, for peptides with a more
compact secondary conformation, we ohserved a bias toward
lower CCS values and vice versa (Supplementary Fig. 10), Future
prediction models may therefore benefit from  considering
multiple conformations, in particular for longer peptides and
higher charge states.

To independently validate the accuracy of our predictions in a
real-world example, we replaced experimental CCS values in a
spectral library for DIA, built from the 24 Hela fractions, with
our predictions. We then used the experimental and the predicted
libraries individually to re-analyze a triplicate diaPASEF experi-
ment of & whole-protesme Hela sample™®, Targeted data analysis
in the Spectronaut™ software makes use of library values to score
peptide signals and to restrict the data extraction window in the
ion mobility dimension, thereby removing interfering signals
from precursors with similar moss and retention time, but
different ion mobility. The software automatically performs an
alignment of the diaPASEF experiment to the library and
optimized the medlan lon mobility extraction windew w 0L07
and 0.09Vscm 2 for the experimental and predicted library,
respectively, The median ahsolute deviation of peptide ion
mobility values were 0.74% and 0.93%. Overall, the experimental
and predicted libraries performed very similarly, resulting in 7766
(experimental) and 7685 (predicted) identified protein groups on
average (Supplementary Fig, 11).

Given that datasets in hundreds of thousands may still not be
seen as large in deep learning, we next investigated the
dependency between model accuracy in the test set and training
dataset size { Fig, 4d, £), We observed a monotonous improvement
in relative prediction accuracy as well as in the Pearson
correlation with growing training dataset size. The model error
decreased from 1.91% median relative error at 5600 samples to
142% for a st of 279,990 training samples, reflecting a
substantial decrease in relative error of more than 20%. In
contrast, moving from 279,990 samples to the full set of
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Fig. 5 Explainable artificial intelligence reveals context-dependent amino acid contributions. a Example peptide sequences with SHAF value attributions
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554470 sampJes resulted moa relative mmprovemnent af un]y 1 4%,
to a median relative error or 1.4%, These diminishing returns in
accuracy of prediction indicated that the number of CCS values
was sufficient—at least for currently achievable data quality.

Resolving amino acids contributions. Deep learning models are
often deemed black boxes, as they are powerful predictors but
learned relationships are typically hard to interpret. To make our
maodel interpretable i relation to our experimental findings and
to extract further molecular insights we calculated Shapley
Additive Explanation (SHAF) % values for each amino acid in
each sequence. In this case, SHAP values indicate the influence of
a specific amine acid on the peptide CCS value by comparing it to
reference values determined by randomly sampling sequences.
This allowed us 1o interpret the CCS prediction for a peptide
sequence by determining the individual, contextual attribution of
cach aminoe acid (Methods).

Figure Sa illustrales our analysis of sequence-specific aming
acid SHAP values for three representative peptide sequences. Tn
the regular tryptic peptide sequence (i), arginine and leucine with
long side-chains shitted the prediction value to larger CCS as
cempared with a random sequence, while the smaller glycine
contributed less than average. In the atypical peptide sequence
{i), the attribution of leucine was similar, however, the
attribution of arginine was largely reduced in the N-terminal
position, The context-dependent attribution of cach amino acid
was also evident from the long peptide sequence (iii), indicating a
refatively large contribution of the small amino acid alanine 1o the
preciction  value, Interestingly, in this particular sequence,
glhitamic acid had a positive attribution, whereas asparagine

somewhat reduced the prediction value, despite the faet that both
arc similar in size and mass,

Plotting the aggregated SHAP value distribution over the entire
test dataset for each individual amine acid, showed the expected
relative order in terms of their average contribution (Fig. 5bj:
light and small amino acids such as glycine and proline had
smaller SHAP values, whereas large and bullky amino acids such
as tryptophan, arginine and lysine had larger atiributions on
average. [n line with this observation, the average SHAP values
coprelated well with the amino acid mass and bulkiness™, as
indicated by Pearson correlation coefficients of 0.79 and .69,
respectively (Flg. 5c, d). Deviations from these correlations, for
example, for asparagine, aspartic acid, leucine, and isoleucine,
which all have similar mass, could be explained by ditferences in
their bulkiness and hydrophebicity, in line with our experimental
results above, Collectively, these results highlight that our deep
learning model learned plavsible features, extracting related
physical quantities on the level of individual amino acids
automnatically from the training data, even though we solely used
the linear peplide sequence as an input,

Beyond the average values. the contribution of individual amine
acids to a CCS prediction had vastly different values depending on
their position in a sequence (Fig. 5h), Whereas the contributions of
ghycine, serine, ghatamic acid, and methionine were quite constant,
thase of lysine, arginine, and histidine nearly varied over the entire
range of observed SHAP wvalues. In particular for histidine, this
agrees with our empirical observation that the position in the linear
sequence had o distinet effect on the cross section (Fig. 3c). We thus
conclude that our model resolves substantial structural effects for
some of the amino acids within each sequence to provide a very
accurale CCS estimate for the entire peplide,
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Fig. & The human peptide CCS universe. a Tvo-dimensional UMAFP representation of 816,948 unique tryptic peptide sequences colored by thelr predictad
CCS value. b Same UMAF plot, Peptide sequences with experimental values in this study are highlightad in orange (18%)

Human whole-proteome level CCS prediction. The human
proteome gives rise o 616,948 unique tryptic peptide sequences
(considering a minimum length of 7 amino acids and no missed
cleavages), of which we measured about 18% in the course of this
study, To investigate the enlire peptide universe and to create a
reference database of all tryptic peptides in the human organism,
we next used our trained deep learning model to predict CCS
values for the remaining 82%. Given the importance of charge in
jon mobility and the fact that it does not follow from the linear
sequence in a trivial manner, we first trained a second deep
learning model on our experimental training data to also predict
the charge state (Methods). We then fed eich human peptide
sequence together with its predicted charge state into the trained
COS medel, resulting in a virtwally complete compendium of
human peptide CCS values {Supplementary Data 1).

To provide a bird's-eye view of the structure of these data, we
visualized the data manifold learned in the last layer of the neural
network, in which each sequence is described by a vector of 256
neuril network features. These features represent all information
refevant to the prediction and were used to regress the final CCS
values, However, the data manilold is o high dimensional to be
directly accessible to human interpretation, hence we used a non-
linear dimension  reduction  algorithm  (Uniform  Manifold
Approximation and Projection, UMAP™) 1o visvalize the data
i a 203 space. In this view, each point represents @ single peplide
sequenice and each local structure represents classes of peptides
with similar features, Distances in this space can be interpreted as
similarities between sequences in terms of the features extracted
by the network, meaning that sequences with similar gas-phase
properties are close to each other. Figure 6a reveals that the
neural network organized the data in three connected manifolds,
in which the sequences are ordered in terms of their sssociated
CCS value, starting with low CCS values {<300 A%) in the first
cluster and increasing to high values (>%00 A2) in the third
cluster. Similar to the representation in ni/z vs. CCS space, we
found that the main chasters were directly associated with the
charge state and, within each charge state, there were apparent
local structures,

Importantly, our experimental CCS values are distributed
across the entire predicted peptide universe (orange and blue
points in Fig. 6b), with very high densities in the CCS regions
#0-800 A%, and lower densities in the region below 300 A%, This
reassures that the depth of our experimental datasel was sufficient
1o sample the full feaure space, and therefore suggests that our

model can be applied to predict CCS values of any tryptic peptide
sequence with similar high accuracy.

Discussion

Technological advances have rekindled the interest in IMS, which

is now about to become mainstream in proteomie laboratories.
Differential ion mobility spectrometers act as filters, only allowing
selected jons to enter the mass spectrometer. In contrast, TIMS
allows to measure jion mobility values and to derive CCS values
that reflect an ion's size and shapl:_ To invrsﬁg,ah: the benelit of
this additional information in proteomics and making use of the
speed and sengitivity of PASEF, we measured over two million
S values of about 500,000 unigue peptide sequences from five
biological species, This covers a substantial proportion of the
peptide space and is by far the most comprehensive dataset of
CCS values to date,

This scale allowed us to st assess the analytical benehits of
CCS values, which tum out o correspond w a roughly en-fold
increase (n separation power, We further established that at an
accuracy of 1%, the number of possible precursors of a peptide in
a proteomics experiment decreases about two- to three-fold, Such
an accuracy can be achieved with a simple linear re-calibration
across distant measurements and different instruments. With this
re-calibration, CCS values essentially become intrinsic properties
of a molecule—meaning they do not depend on external cir-
cumstances—similar to their molecular weights, and unlike their
retention times, In this regard, we note ongoing research on
minimizing ion heating cffects in TIMS measurements, as this
may also influence the observed cross section or result in frag-
mentation before MS/MS, depending on instrument settings and
space-charge effects"' =%, However, resulls presented here and in
other studies! 3226556 indicate that T™MSCCS values are generally
in excellent agreement with the current gold-standard drift tube
ion mobility,

The scale and wniformity of our dataset makes it a valuable
resource to investigate fundamentals of peptide gas-phase struc-
turcs in detail. Beyond the well-known correlation of CCS values
with peptide mass, they also correlated with physicochemical
amino acid properties such as hydrophobicity, while the con-
tribution of certain amine acids varied based on their position in
the sequence, While this scale allowed us to compare a multitude
of different peptide sequences, a limitation of our analysis is that
we considered anly one CCS per peptide and charge state for

8 | RZOZTNZNES | hibpsd Adoiong ADN035/44746 7-021-21352-8 | www.nalure.comymalurecormmunicalions

174



3. Publications

ARTICLE

simplicity, However, ions from a single peptide may occur in
multiple gas-phase conformations that can be resalved by IMS™".
Even more information could thus be derived by resolving the
ion-mobility fine structure, for example. of higher charge states®!
of proline-containing peptides™. As peptide CCS values in the
gas phase are fully determined by their linear amino acid
sequences, we reasoned that they should also be predictable with
high accuracy. Indead, after training our state-of-the-art deep
learning model on our extensive dataset, it achieved a median
accuracy of about 1% for independently mweasured synthetic
peptides, close Lo the experimental uncertainty. Our model gen-
eralized very well to the extent that it accurately predicted CCS
values even for unseen peptides, such as those from the lrni;f;si.ng
genes' subsel in ProteomeTools™, Adding even more data values
would have diminishing returns, however, prediction accuracy
could be further improved with even more consistent measure-
ments and higher ion mobility resolution or by considering
multiple conformations. To obtain a sufficient number of CCS
values for deep learning, we trained and validated our model with
complex samples of proteclytic digests and pooled synthetic
peptides, In the future, this work could be complemented with
manual investigation of isolated peptides, for example, to study
mobility peak shapes and multiple conformations in more detail
and independent of MS feature detection algorithms or other
factors.

We also interrogated our deep learning model with regard to
the determinants of its predictions with Shapley  Additive
Explanation (SHAP). Amino acids greatly differ in the extent to
which their CCS contribution depends on their sequence contest
—ranging from almost none to a rather wide positive or negative
contribution compared to an average amino acid. This highlights
how our model, indeed, learned underlying principles. These
could reatlily be extended to other pr:pi_i&c classes, such as
modified™ or cross-linked®™ peptides, using transfer learning”™,
with litle additional experimental effort,

Our study complements recent efforts in predicting properties
of peptides an the basis of their sequences alone, especially those
using d learning for retention times and MS5/MS spectra
intensities "% Taken together, almost any peptide property
relevant to proteomics workflows can now be predicted accu-
rately, even in an jon mobility setup, Conceptually, this allows the
community to nearly fully reconstruct the expected experimental
values of a MS-based proteomics experiment, given a list of
identified and quantified peptides. In more narrow terms, there is
great potential to render time- and cost-intensive experimental
libraries largely dispensable as exemplilied here for diaP ASEF,
The CCS maodel presented here further extends the capabilities of
such strategies 1o make full use of the ion mobility dimension.
Similarly, predicted CCS values open up the possibility to reuse
comprehensive community libraries such as the Pan Tuman
library™ for ion mobility-enhanced DIA or targeted workflows,
We further envision that the combination of predicted CCS,
retention tme, and MSMS spectra may improve scoring in
database searches and narrow down the list of candidates. This is
especially important in challenging applications such as pepti-
domics or proteomics of microbiomes™ that have a very large
search space, To foster its application snd turther developments,
we make the source code available for training and predictions, in
addition to the ready-to-use predictions of the human peptide
universe included here.

Methods

Sample preparation. The human Hela cell line (53, ATCC) & elegans [N2 wild-
typed, O, weelaeagaster [CantonS), E, coll [XL1 Blue), and Sacchurompies eevevisine
(BY 4741} were cultivated following standard protocets. All animal experiments

were performed in compliznce with the institutional regalations of the Max Planck
institute of Biochemistry and the government ogences of Lipper Bavaria, Whole
organisms were first grinded in liqmd nitrogen and cell pellets were directly sus-
pended in bysis bulier with chloroacetamide (PreOmics, Germany) 1o simulla-
neoushy lyse cells, reduce protein disulbde bonds, and alkylate cysieine side
chains 2, The samples were boiled at 95 °C for 10 min and subscquently sonicated
at maxlmiem power {Biorupior, Disgenode, Belgium). Protelytic digestion was
perfermed overmight at 37 °C by adding ather () equal amounts of LysC and
trypsin, (i) LysC, or (i) LysM in o 110D ensvmeprotein (wifwt) rato, The
reaulilng peptides were de-saloed and perified via solid-phase extraction oe styr-
Enbcliviw&r]hmune reversed Flluse mlfonate (SDBE-RPS) sorbent u.ccurding tn oar
‘in-StageTip" protocol (PreOmice), The dried eluates were reconstituted in water
with 2% acetonitrile (ACN] and 01% trifluorosdcetic acid (TEA) Tor further ana-
lysis, The synthetic ProteomeTeols™ peptides were reconstituted in the sams
buffer. To make the data comparable and rensable, we spiked iRT standands
(Blognasys) inn all samples.

High-pH reversed-phase fractionation. Peptide fractisnstion was performed at
pH [tk on an EASY-nLC 10048 (Thermo Fsher Scientific, Liu'mu.n}rll s &

0 ey o= 250 fum Cig rz'.'ur\ul-p]m.-ie cnlumn lff'l’e('}mil_'ﬁ_l. Apynmiuuwl},‘ ﬁﬂps aof
peptides were separated at a flow rate of 2 pL min~ L with g binary gradient sarting
from 3% B, which was Hnearly increased o 30% B withnn 45 min, to 60% B within
17 min, and 1o #5% Bowithin 5 min before re-aquilibration, Fractions were collected
into 24 wells by ssitching the rotor valve of an automated concatenation system’”
[Spider fractionater, Frethmics) in 90 = intervals. Peptide fractions were vacuum-
centrifuged o dryness and recomstituted in water with 2% ACN and 0.0% TFEAL

Liquid chromatography and mass spectrometry, [C-MS was performed on an
EASY-nlLC 1200 (Thermo Pisher Sclentafic) system coupled anline 90 a hybrid
TiMSquadeupole TOF mass spectrometer'™ {Bruker Dultonik dmsTOF Pro.
Germany) via o nano-clectraspray lon source {Broker Daltonik Captive Spray]
Approsimately 200 ng of peptides wers separted on an n-houge 45 om o« 75 pm
reversed-phase column at o Jow ruge of 300 nlomin~! in an oven compartment
heated to 60 *C. The column was packed in-house with 1.9 pm C,y beads (Dr.
Maisch Reprosl-Pur AQ, Germany) up to the laser-pulled electrospray emitter tip,
Mabile phases A and B were water and BU%/20% ACNfwaler (viv], respectively,
and both buffered with 41% formbe agdd (viv) To analyze fractionated peptides
Erom whole proteome digests, we used a gradient starting with a lnear increase
from 5% B to 30% B over 95 min, followed by further linear increases to 60% B and
finally to 95% B in 5 min cach, which was held constant for 5 min before retuming
to 5% in 5 min and re-equilibration for 5 min, The pooked synthetic peplides were
analyzed with & gradient starting from 5% B to 30% & in 35 min, followed by linear
Increases to 60% B and 95% in 25 min esch before washing and re-equilibration
for a total of 5 min.

Thie mass spectrometer was sperated in data-dependent PASER mode with
1 survey TIMS-MS and 10 PASEF MS/MS scane per scquisision cyde. We analyzed
an lon mobility range from 17K, = 150 t0 006 Viem = using equal jon
accumulation and ramp time in the dual TIMS analyer of 100 ms each, Suitable
precursar jons for MS0S anabysis were isolated in a window of 2 Th for sz < K
and 3'Th Fer me'z > 700 by rapadly switching the quadngole position in sync with
the dlution of precursors from the TIMS devics, The collision energy was lowered
stepwise a5 a funclion of increasing ion mobility, starting from 52 eV for 0-19% of
the TIMS ramp time, 47 ¢V for 19-38%, 42¢¥ for 38574, 37 eV for 57=76'%. and
32 ¢V until the end, We made use of the mdz and jon mobility information 1o
exclude singly charged precursor sons with a polygon filier mask and further used
'd]rnqlnin: exclusion’ to awnid l'l!'stl‘.luﬂ)cinl" of precursons that reached a I..]l&"r!
widue” oof 20004 a.u, The ion mobility dinension was calibrated [inearly vsing three
toms from the Agilent EST LS tuning mis (s, 17K 220080, 09848 Vacm ™
9220047, 1.1895 Vs em % and 12209906, 1.3820 Vsem 7). All experimental
parameters with relevance to the measurement of CCS values are summarized in
Supplementary Table 1.

Data ng. M4 raw files were analyred with MaxQuant'™ version 1.6.5.0,
which extracts 40 isotope pattemns (*festures'} and associated MS/MS spectra. The
buile-in search engine Andromeda™ was wed to match observed fragment fons to
theoretical peptisde fragment ion masses devived fom in silive digests of a reference
proteome and o list of 245 potential contaminants using the appropriate digestion
rulies fior each proteolytic enayme (trypsin, LysC ar LpsR) We allowed a maximum
of two missing values and required a minimum sequence kength of 7 amino acids
while limiting the maximum peptide mass to 4600 Do Carbamidomethylation of
cysteine wag defined ag a fived modification, and oxidation. of mahienine and
acetylatiom of profein M-lermint were mchuded in the search os variable mad-
Ifications, Reference proteomes for each organism including isoforms were acces-
sedd from UniProt (Hoom sdprens: 91618 entres, 201905, E. coli: 4403 eniries,
1901 £ lepans: 28,403 entrics, 200900 8. corevisiar: 6049 entries, 2009/01; 1.
melanogister: 23,304 entries, 201%01), The synthetic peptide library (Proteome-
Tools™) was searchied against the éntire human reference proteome, The -
tmum mass toderances were set 10 20 and 40 ppm for precursor and fragment ions,
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respectively. False discoversy rates were controlled at 1% on both the pepride
spectrum mateh and protein Jevel with s target-desov approach. The analyses were
performed separately for each organism ard each set of synthetic peptides {pro-
beotypic set’, "SRM atlas’, and ‘missing gene wet'), To demonstrate the atlity of CCS
prediction, we re-analyzed three diaPASEF experiments from Meier ef al *% with
Spectronent 14.7. 201007 47784 [ Biognosys AG), replacing experineental jon
maobility values in the spectral library with our predicions. Slagly charged peptide
precursors were excluded from this analysi as the nevral network was exclustvely
trained with multiply charged peptides.

Biginlormatic analysis, Hwintormatic anadyss of the MaxCuant satput Bles and
data visualization was performed with Python verston 3.6 employing the following
packages: NumPy, pandus, SaPy™, Biopython™, Matplolib, snd Seaborn. Decoy
database hite were sxcloded from the :m:ﬂ]:sis as well as Peptide features asl:ignni
with sevo Intensity values. Peptides can acdopt multiple conformations, both in the
Hgaeleh and in the gas phase. For simplification, we here selected only the most
abundant festure for each modified peptide sequence and charge state per LC-
TIMS-M5 run. To account for experimental drifts in the measurements of
TIMSCES valies over time, we performed o hierarchical clustermg (similar to'7)
and aligned all experiments by calculating pair-wise linear offsets {3 = 5 + ) going
from the closest to the most distant nodes. Multiple messurernents of the same
madified pepride and charge date in different LEC-MS experiments were mergsd o
one unigue COS value by calculating the mean, To perform nearest nelghbor
anafysis in the oz va, CCS space, we representid the data in & Kd-tree structuse
ustng the Chebyshey dissance metric 1o define a rectangular area witls & given mass
and COS tolsrnee swrrounding a node of interest

Deap learning model for CCS prediction The deep learning model takes a raw
{madified) peptide sequence as inpud., First, each amine acid gets one-hot encoded
o a 26-dimensicnal vector representation for processing. This one-hot encoding
also i applicd to the elements "ox) and "(ac), resulting in a tetal Festure vector
with dimension L = 26 with L being the length of @ given peptide. This vector s
comnected to a two-layer bi-directional recurrent network with LSTM™ units with
S0 hidden nodes each, which extract context-based Teatures for each individual
armine acid. This feature embedding gets further reduced 1o a global 256
dimersivnal peptide feature vector by concatenating the last output newons of
hath the LSTM networks ageregating from left or right over the sequence, This
peptide feature vector is further concatenaed with additional charge state of the
sequance and then is fed 1o a logistic regression layer which regresses the expected
CCS valug For the sequence. The most significant hyperparameters, namely;
number of hidden newrons, number of layers were chosen by munning o small
search (n a first preliminary step on & validation set consisung of 10% of the
truining data. The combination of recurrent layers with the concalenation step
allows the mode srchitecture to process peptide seguences with arbitrary lengthe.
The final madel is envd-to-end optimized by an ADAM Optimizer on 559,979
unlepue COS values (modified peptide sequence and charge state) and validated on
155,14 holdout peptides from the synthetic Proteome Tools library, The full fra-
miework s implemented nsing Python with TensorFlow™ s the autoprad library,
znzhllns the nevral network tr|1tlmiza.li.nri. O an 7-49300K CPL machine ﬂiuippﬂi
with an NVIDIA Geforce 1080 our model was trained within & b and the pre
diction of single peptide OCS values takes approximately | ma

Deop learning model for paptide charge state prediction. To predict the most
probable (most shundani} charge state from the Hnear peptide sequence, we bailt a
charge prediction neural network which has the identical strocture as our CCS
prediction model. It takes the raw peptide sequence as input following the same
ong-hot encoding procedure and predicts 1 single associated charge value We
truinesd the charge prediction model on the seme 539,979 unigue irining valugs
and validated it on the holdout st of 135,004 peptides feom ProteomiTaols, The
charge prediction model seaches a final accuracy of 93.5% for predicting the three
vbserved charge states 2, 3, and 4.

Analysis of amino acid feature attribution of the fearnt netwerk. For a given
sequence and ils CCS prediction, every amino acid is asocated with o SHAR
value™™ % This SHAP value quantifics how the presence of the amine acid influ-
ences the fnal prediction. By the summation-toe-delta peoperty, the SHAF valuwes
ire comstrained i i way such that the surm of all SHAP values in a sequence resulis
in the final CC§ prediction. SHAP valucs are a unification of multiple existing
approaches™ 1 for explaining predictinns by feature attribution. Foe interproting
the predictions of sur model we use the DeepExplaiver from: the official SHAP
mplementation {hitpsgithub.comyslundberg/shap). The DecpExplainer approx-
rates SHAP valoes and ss based on DeepLift™. Here the importance of individual
features is approximated by comparing the model ootput for an inpat that contains
the specific feature value w the moded outpur whete the featire & st te a refesende
value. A crucial step for this-approach is fo define the reference values. In our cags,
the inputs are sequences of ane-hot-encoded aming acids and we use 128 randomly
chosen background sequences from the dataset in order to define meaningtul
reference vahes For all nearons, In order to capture non-linearities, the DeeplLifl
approach approximates feature ativibutions lor every newren in the medel. 1 starts

ar the eurput layer and propagates the values to the input by backpropagation,
which is called applying the chain rle for multipliers in the otginal publication®!.
Applying this approach to the mput sequences.in oour CCF model we are able 1o
eaprure the SHAP valuwe for an individial amine acid in a peptade segaence

Visualization of kearnt network representation of the human proteome To
visualize the 256-dimensional neural network feature space, we apply the UM apsl
algorithm, which & a dimension reduction techrigue for general non-linear
dimenston reduction and it assumes uniform distribution of the data on a Rie-
mannian manifold Under certain conditions this menifold can be moedeled with a
fuzzy topedogical structure. The 20 embedding, which s used for visualization is
found by searching for a low-dimensional projection of the data that has the closest
pusssble equivalent feeey topokogcal structure, Therelore, paktwise siolacities
betwzen peptide sequences in the high-dimensional NN space approximately
vesemble positsons i the low-dimensional embedding visualization,

Reporting summary. Further information on pesearch desian s available in the Nanre
Research Heporting Summary linked v this article

Data availability

The M5 raw files amd associated Mas{hant outpot files generaied and analyvaed
throughout this study have been depesited ai the ProteomeXchange Consortinm vis the
PRIDE partner repository™ with the dataset identifier PXD0 19086 The previously
apguired Hela data s available thiough the dataset ddentifier FXDOI0012. The diaP ASEF
raw' files are availoble throagh the datasel sdentifer FXDULTAIE. M soprens (faxon
identifies: 9606), & rerevisiar (taxon idenlifier: 552292}, I melanugasier (taxon identifer
72270 E ool {taxon identifice 833331 and O elrgwru {tamon identiber 6239) proteome
datahases were downlosded from UniProt [https: Seww onipros osg], Sonrce date are
provided with this paper.

Code availability

The sounce cade of oarr desp kearning mcde and data analpses sertprs are available an
GitHub {hitpeigithub.conythelslab/Deep Collisional CrossSection. and hitpsrfgithub,
comiman n|-1buDrrrfn]h\.i‘lnih(:mmﬁm;hnn|
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Under revision in Nature Communications.

Recent advances in deep learning have proven very useful in proteomics, especially for
predicting various experimental peptide properties. The initial development of deep
learning models to predict each of these properties individually has subsequently led to
a plethora of high-performance deep learning models. However, most of these efforts
have focused only on the prediction of individual properties and furthermore many of
them have not fully complied with open-source standards. This makes them difficult to
adopt or extend and prevents from being updated to improve results in line with

improvements in deep learning technologies.

Therefore, our group has recently introduced a highly modular deep learning system
called AlphaPeptDeep. It provides models with comparable or superior performance for
all peptide properties at the same time. Using a transfer learning approach, our
integrated deep learning models eliminate the need to provide large data sets to refine
models for specific experimental conditions. Moreover, the ‘model shop’ in
AlphaPeptDeep enables non-specialists to build and train a model from scratch using
few lines of codes. This is exemplified by building a deep learning model that predicts
the propensity of any peptide sequence to be presented as a human leukocyte antigen
(HLA) peptide by the immune system. Given this model, the search space for identifying
HLA peptides can be drastically reduced, greatly increasing identification rates in this

very challenging sample type.

As a part of this project, | contributed to the visualization functionality of AlphaPeptDeep
and extensive testing of the tool through its successful integration into AlphaViz,

described in Article 2.
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Abstract

Machine learning and in particular deep learning (DL} are increasingly imporiant in
mass spectrometry (MS)-based proteomics. Recent DL models can predict the
retention time, ion mobility and fragment intensities of a peptide just from the
amine acid sequence with good accuracy. However, DL is a very rapidly developing
field with new neural network architectures frequently appearing, which are
challenging to incorporate for proteomics researchers. Here we introduce
AlphaPeptDeep, a modular Python framework built on the PyTorch DL library that
learns and predicts the properties of peptides
(hitps:/github.com/MannLabs/alphapeptdeep). It features a model shop that
enables non-specialists to create models in just a few lines of code. AlphaPeptDeep
represents post-translational modifications in a generic manner, even if only the
chemical composition is known. Extensive use of transfer learning obviates the
need for large data sets to refine models tor particular experimental conditions. The
AlphaPeptDeep models for predicting retention time, collisional cross sections and
fragment intensities are at least on par with existing tools. Additional
sequence-based properties can also be predicted by AlphaPeptDeep, as
demonstrated with a novel HLA peptide prediction model to improve HLA peptide
identification for data-independent acquisition.

Introduction

The aim of MS-based protecmics is fo obtain an unbiased view of the identity and quantity
of all the proteins in a given system ', This challenging analytical task requires advanced
liguid chromatography — mass spectrometry (LC/MS) systems as well as equally
sophisticatad bioinformatic analysis pipelines®. Over the last decade, machine learning
(ML) and in particular deep naural network (NN)-based deep learning (DL) approaches
have become very powerful and are increasingly beneficial in M3-based pro!aumics"'E.

l[dentification in proteomics entails the matching of fragmentation spectra (M52) and other
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properties to a set of peptides. Bioinformatics can now predict peptide properties for any
given amino acid sequences so that they can be compared to actually measured data.
Thie can markedly increase the statistical confidence in peptide identifications.

To do this, a suitable ML/DL model needs to be chosen which is then trained on the
experimental data. There are a number of peptide properties that can be pradicted from
the sequence and for each of them different models may be most appropriate. For the
peptide retention times in LC, relatively siraightforward approaches such as iRT-calculator,
RTPredict, and ELUDE have shown good results™®, However, large volumes of training
data are readily available in public repositories today and DL models currently tend to
perform best®. This is also the case for predicting the fragment intensities in the MS2
spectra, where DL models such as our previous model pDeep'™'', DespMass:Prism 2,
Prosit'® and many subsequent ones now represent the state-of-the-ar. They mostly use
long-short term memory {LSTM”] or gated recurrent unit ﬁGFtU'E} models. Recently,
transformers have been adopted in prolecmics and show better perfarmance’®!”. This
illustrates the rapid pace of advance in DL and the need for updating proleomics analysis
pipelines with them. However, the focus of existing efforts has not been on extensibility or
modularity, making it difficult or in some cases impossible to change ar extend their NN
architeciures,

Here we set out io address this limitation by creating a comprehensive and easy to use
framework, termed AlphaPepilDeep. As part of the AlphaPept ecnsystem*a. we keep iis
principles of open source, community orientation as well as robustness and high
pertormance. Apart from Python and its scientific stack, we decided to use PyTorch,”™ one
of the most popular DL libraries

AlphaPeptDeep contains pre-trained models for predicting MS2 intensities, retention time
(RT), and collisional cross sections (CCS) of arbitrary peplide seguences or entire
proteomes. It also handles peptides containing post-translational medifications (PTMs),
including unknown ones with user-specified chemical compositions. AlphaPeptDeep
makes extensive use of transfer leaming, drastically reducing the amount of training data
required.

In this paper, we describe the design and use of AlphaPeptDeep and we benchmark its
performance for predicting M32 inlensifies, RT, and CCS on peptides with or without
PTMs. On challenging samples ke HLA peptides, AlphaPeptDeep dramatically boosts
performance of peptide identification for data-dependent acquisiton. We also describe
how AlphaPeptDeep can easily be applied to build and train models for different peptide
properties such as an HLA prediction model, which narrows the database search space
for data-independent acquisition, and hence improves the identification of HLA peptides
with the AlphaPeptDeep-predicted spactral library.

Resulls
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AlphaPeptDeep overview and model training

For any given sel of peptide properties that depend on their seguences, the goal of the
AlphaPeptDeep framework |s to enable easy building and training of deep learning (DL)
modets, that achieve high performance gwven sufficient training data (Fig. 1a). Although
modern DL libraries are more straightforward to use than before, designing a neural
network (NN} or developing a deployable DL model for proteomics studies is not as simple
as it could be, even for biologisis with programming experience. This is because of the
required domain knowledge and the complexity of the different steps Involved in building a
OL model. The framewaork of AlphaPepiDeep is designed o address these issues (Fig
1b).

The first challenge is the embedding, which maps aminoc acid seguences and their
associated PTMs into a numeric tensor space that the NN needs as an input. For each
amino acid, a ‘one-hot encoder’ is customarnly used to convert it into a 27-length
fingerprint vector consisting of 0s and 15 (Online Methods). In contrast, PTM embedding
is nol as simple. Although recent sludies also used one-hol encoding lo embed
phosphorylation for MS2 prediction via three additional amino acids™, this is not
extendable to arbitrary PTMs. In pDeep2 (ref''), the numbers of G, H, N. O, 8, P atoms for
a site-specific modification are prepended to the embedding vector which is flexible and
can be applied to many different PTMs. AlphaPepiDeep inherils this teature from pDeep2
but adds the ablity to embed all the other chemical elements. To make the input space
manageable, we use a linear NN that reduces the size of the input vector for each PTM
{Online Methods, Extended Fig. 1). This allows efficient embedding for most modification
types, excepi for very complex ones such as glycans. The PTM embedding can be called
directly from AlphaPeptDeep building blocks

To build a new model, AlphaPeptDeep provides modular application programming
interfaces (APls) to wse different NM architectures, Common ones like LSTM,
convolutional NN (CNN) as well as many others are readily available from the underlying
PyTarch library. Recantly transformers — attention-based architectures to handle long
sequences — have achieved breakthrough results in language processing bul wera then
also found to be applicable to many other areas like image analysis™  gene expression®’
and protein I’Dlding”. AlphaPeptDeep includes a state-of-the-art HuggingFace transformer
flbra.ry?:'. QCur framework also easily allows combining different NN architectures for
different prediction tasks.

The training and transfer leaming steps are mostly generic tasks. even for different NMs.
Therefore, we designed a universal training interface aflowing users to train the models
using just a single line of Python code - modal.trainf). In our training interface, we also
pravige a “warmup” training strategy to schedule the learning rate for diferant training
apochs (Online Mathods). This has proven very useful In different tasks to reduce the bias
al the early fraining slage™. Almost all DL tasks can be done on graphical processing
units {GPLs) and training a model from scralch on a standard GPU usually take nol more
than hours in AlphaPeptDeep and is performed only once. Transfer learming from a
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pre-trained model is feasible within minutes, even without GPU.

After training, all learned NN parameters should be saved for persistent applications. This
can be readly done using DL library functionalities, and is alsc implemented in
AlphaPeptDeep — model.save(). In the latter case, AlphaPepiDesp will save the source
code of the NN architactures in addition to the fraining hyperparameters. Thus, the NN
code and the whole training snapshol can be recovered even if the source code was
accidentally changed in the AlphaPeptDeep or developers' codebase. This is especially
useful for dynamic computational graph-based DL libraries such as PyTorch and
TensorFlow in 'eager mode' because they allow dynamically changing the NN
architectures.

The most essential functionality of the AlphaPeptDeep framework is the prediction of a
property of a given peptide of Interest. When using only the CPU, ona can choose
mulliprocessing (predicting with multiple CPU cores), making the prediction speed
acceptable on regular personal computers (PCs) and laplops (nearly 2h for the entire
reviewed human proteome). Prediction on GPU is still an order of magnitude faster. As
PyTorch caches the GPU RAM in the first prediclion batch, subsequent batches for the
same model will be even faster. However, GPU random access memory (RAM) should be
released after the prediction stage, thus making the RAM available for other DL models.
These steps are automatically done in AlphaPepiDeep within the madelpredicl()
functionality.

AlphaPeptDeep provides several templates In the “model shop” module to develop new
DL models from scratch for classification or regression with very little code. All these
high-level functionalities in AlphaPeptDeep give the user a guick on-ramp and they
minimize the effort needed o build, train and use the models. As an illustrative example,
we built a classifier to predict it a peptide elutes in the first or second half of the LC
gradient using only several lines of code. Training tock only ~16 minutes on nearly 350K
peptide-spectrum matches (FSMs) an a standard Hela dataset™ and the model achieved
959 accuracy in the testing set (Extended Fig. 2).
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Figure 1. Overview of the AlphaPeptDeep framewark. (a) Measurad peptide properties are encaded with
the respective amino acid seguences and used to train a network in AlphaPeptDeep (left]. Once a model
is trained, it can be used on arbitrary sets of peptide sequences Lo predict the propenty of interest. This
then improve the sensitivity and accuracy of peptide identification. (b) The AlphaPepiDeep framework
reads and embeds the peptide sequences of interest. Its compenents include the build functionality in
which the model can build. It is then trained, saved and used to predict the property of interest. The dial
represents the different standard properties that can be predicted {RT, retention time; CCS, callision
section; MS2, intensities of fragment spectra). Custom refers to any other peptide property of interast.
lower part ists aspects of the functionalities in more detail.

The MS2, RT, and CCS prediction models in AlphaPeptDeep are all publicly available in
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our Python modules (Fig. 2). The MS2 prediction model was inherited frem pDeep?2 but
reimplemented on transformers which have been shown very useful in MS2 prediction'®!”,
The pre-trained MS2 madel in AlphaPeptDeep is much smaller than other madels without
sacrificing accuracy (4M parameters vs B4M in the Prosit-Transformer'’), making the
prediction extremely fast (Extended Fig. 3). We also applied the same principle of
light-weight models to our RT and CCS models (less than 1M parameters for each, Cnline
Meihods), which we built on previous LSTM maodels® .

We trained and tested the MS2 models with tens of millions of spectra fram a vanety of
instruments, coliision energies and peptides, and trained the RT and CCS models with
about half a million RT and CCS values of peptides (Suppl. Data 1). The results of this
initial training were then stored as pre-trained models for further use or as a basis for
refinement with fransfer leaming.

Using these pre-lrained models and specifically designed data struclures (Online
Methods), the prediction of a speciral library with MS2 intensilies, RT, and ion mobilities
(converted from CCS, Online Methods) for the human proteome took only 10 min on a
reguiar GPU and 100 minutes on the CPU with multiprocessing (Extended Fig. 3). As this
prediction only needs 1o be done at mosl ance per project, we conclude that the prediction
of libraries by DL Is not a limitation in data analysis workflows.

MS2 Intensities RT/CCS
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Figure 2. The buili-in and pre-trained M32, RT, and CC3 prediction models, The M52 model is built on
tour transformer fayers, and the FT/CCS models consist of a convalutional neural netwerk (CNM) layer
followed by teo bidirectienal long shon-term memory (BILSTM) layers. The pre-trained MS2 model
currently supports predicting the intensities of backbane by ions as well as their medification-associated
neutral losses it any {e.g. =58 Da loss of phosphorylation on Ser/Thr). However. the user can sasily
configura the MS32 model to train and predict water and ammonium losses from backbone fragments as
well,

Prediction performance of the AlphaPeptDeep model for MS2 spectra
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With the AlphaPeptDeep framework for prediction of MS2 intensities, AT and CCS in hand,
we first benchmarked the MS2 model against datasets of tryptic peptides (phase 1 in Fig.
3a). The training and testing dala were collected from various instruments and callisional
anergles (Suppl. Data 1], including ProteomeTools™, which were derived from synthatic
peptides with known ground truth. We spiit the data sets in two and trained on a LSTM
model similar 1o pDeep or on the new transformer model. As expected, transformer
performed better than the LSTM model on the test datasets (Extended Fig. 4). Overzll, an
ProteomeTools, 97% of all significantly maitching PSMs had Pearson comelation
coefficients (PCC) of the predicled vs. the measured fragment intensities of al least 90%
{Fig. 3a), which we term 'PCC90" in this manuscript, Note that the experimental replicates
also exhibit some variation, making the best possible prediction accuracy somewhat less
than 100%. On the ProteomeTocls replicates measured with the Lumos mass
spectrometer, 99% had PCCs above 30% (Suppl. Data 1), meaning that our predicted
intensities mirored the measured ones almost within expenmental uncerainties (99%
experimental vs. 97% pradicted). Next, we lesled the model on the same ProteomeTools
sample bul measured on a trapped ion mobility Time of Flight mass spectrometer
{timsTOF) in dda-PASEF mode™®, and achieved a PCG30 of 87.9% (Suppl. Data 1),
showing that the prediction from the pre-trained model is already very good for timsTOF
even without adaplion,

As expected, our pretrained model performed equally well across difterent organisms.
Interestingly, it did almost as well on chymotrypsin or GluC-digested peptides although it
had not been trained on them {Fig. 3a).

HLA class 1 peptides are short pieces of cellular proteins (about @ amino acids) that are
presented to the immune system at the cell surface, which is of great interest to
biomedicine”’. Because of their low abundarce and non-tryptic nature, they are very
challenging to identify by standard computational workflow, a task in which DL can helpa'.
In a second training phase, we added a synthetic HLA dataset, which was also from
ProteomeToals™, into the training set and trained the model for additional 20 epochs ('fine
tuning the model'). We first checked if the new model negafively impacted parformance on
the tryplic data sets, but this turned aut not to be the case (phase 2 in Fig. 3a). On the HLA
peptides, however, performance substantially increased the PCC90 from 79% to 929,

Finally, we extended cur model to predict phosphorylaied and ubiguitylaied peptides,
which have spectra somewhat distinct from unmodified peptides. In this case, in addition
io backbone fragmentation intensities, AlphaPeptDeep also needs to leamn the intensities
of fragments with or without modifications. For phosphopeptide prediction, performance of
the pre-franed mode! was much worse, with PCCS80 values of only around 30%. However,
after training on PTM datasets at phase 3, the performance dramatically increased,
almaost 1o the level of tryplic peptides (Fig. 3a). The ubiquitylation prediction (righimast in
Fig. 3a) was already reasonable with the pre-rained model butl increased further after
phase 3 training (PCCA0 from 75% 10 93%).

186



3. Publications

bioRxiv praprint doi: hitps:fdoi.org 1 0.1101/2022.07. 14499992, this version pested July 16, 2022, The copyright haldaer for this proprint (which
was nat cenified by peer raview) | the autherfunder, who has i‘ranteu bloBxiv a licanse lo display the preprint In perpelulty, It s made
available under aCC-8Y-NC 4.0 Intermational licensa,

Prediction performance of the AlphaPeptDeep models for RT and CCS

RT and CCS models are guite similar to each other as their Inputs are the peptide
sequences and PTMs, and oulpuls are scalar values. For both we used LSTM
architeciures. In the CCS prediction model, precursor charge siates are considered in the
model as well. Taking advantage of the PTM embedding in AlphaPeptDeep, the RT and
CCS models naturally consider PTM information, and hence can predict peptide
properties given arbitrary PTMs. We trained the RT model on dalasets with regular
peptides (unmodified and Met-oxidated) from our Hela measuremenis™>,

We first tested the trained RT model on regular peptidas from the pan human library™. As
shown in Fig. 3b, the pre-trained model gave very good predictions in most of the BT
range, but falled io accurately predict the last few minutes (iIRT (ref’) valuss higher than
100) possibly due to the different fiushing settings of the LC in training and iesting data.
These differences could be addressed by line-tuning the model with experiment-specific
samples. Few-shol fine-tuning with only 500 training samples improved the accuracies of
the RT prediction from an R® of 0.927 to 0.986.

We also tested the RT madel on a phosphopeptide dataset,™ although the model had not
been trained on such data. After fine-tuning on 500 peptides, the R® increased from 0.958
to 0.984 (Fig. 3b). As RT behavior of peptides varies with the LC conditions in difterent
experiments, we highly recommend fine-tuning whenever possible. It tums oul that
few-shot fine-tuning worked well to fit short LG conditions as well {Extended Fig. 5). Finally,
as expected, the more training peptides we used, the better the fine-tuning, and with many
peptides our mode| reached R values up to 0.99 (Fig. 3b).

While the CGCS model was frained on regular human peptides from our prior Hela
dataset™ {Suppl. Data. 1), we tested the trained model on E. coli and yeast peptides from
the same instrument in the same publication. For these regular peptides the CCS model
achieved an R® =0.98 of the predicted and detected CCS values. Mext, we searched the
Hela and drosophila data by the open-search mode in Open-pFind™, 1o obtain
experimeantal CCS values for modified peptides (Onling Methods). For these peptides in
the testing set, the R® was 0.965 and 0.953, respectively, a prediction accuracy quite close
io the one far regular peptides, even for unexpected modifications. The predicted CCS
values can be converted fo ion mobilities of Bruker timsTOF using the Mason Schamp
equation,™
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Figura 3. The performance of MSZ/RT/CCS modeis. {(a) The MS2 prediclion accuracies of the three
training phases on different fesing datasets. The performance s evaluated by "PCCS0° (percentage of
PCC valuas larger than 0.9). The prefix ‘PT' of each data set refers to ProteomaTools. PTH and PT2 refar
to ProleomeTools part | and |, respectively. The black bars are the PCG90 vales ol exparimanmial
spectra. {b) For AT prediclion, few-shot learming can correct the RT bias between different LC condifions.
{c) Our CCS model works well for both regular (fop panels] and unexpectedly madified (bottomn panels)

peptides,

Prediction performance for 21 PTMs with transfer learning

To further demonstrate the powerful and fiexible support for PTMs in AlphaPeptDeep, we
tested the pre-trained tryptic MS2 (phase 1 in Fig. 3a) and RT models using the 21 PTMs,
which were synthesized based on 200 templale peptide sequencesw.

Interestingly, there is a group of modifications for which the prediction of M52 spectra is as
good as the values of unmodified peptides (Fig. 4a). These include Hydroxypro@P,
Methyl@R, and Dimethyl@R for which the PCCS0 was greater than 80%. This is
prasumably because these modifications do not change the overall fragmeantalion pattarn
much. In contrast, mast of the ather PTMs cannotl be well predicted by the pre-trained
models, for example, the PCC80 values were less than 10% lor Malonyl@k and
Citrullin@R. Remarkably, transfer leaming for each PTM type using as few as ten
peptides with different charge states and collisional energies greatly improved the
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prediction accuracies on the testing data. The largest improvements of PCC90 were as
high as 60% (Citrulin@R and Malonyl@K, Fig. 4a). Overall, compared with the
pre-trained meodel, the ones tuned by ten peplides improved the PCCO0 from a median of
48% to 87% (Fig. 4b). We speculate that this is because the fragmentation properties of
amino acids at different collisional energies have been well learned by the pre-trained
model after which transfer learmning only needs to learn the properies of modified ones.
Including 50 PTM bearing peptides improved this number to 93% whereas using 80% of
all the identified peptides (n = 200) with these PTMs only improved prediclion by another
2%. This demonstrates that our models can be adapted to novel situations with very little
additional data, due to the power of transter leaming.

AlphaPeptDeep has been included in AlphaViz'®, a tool suite for RAW MS data
visualization (hitps /github.com/Mannlabs/alphaviz), which among other features allows
users to visualize a mirrored plot between experimental and predicted spectra. As an
axample, the MS32 prediction of the peplide "AGPNASISLKSDK-Biolin@K11" before and
afler lransler learning Is displayed in Fig. 4¢. The y12++ ion was first wrongly predicled by
the pre-trained model, but this was corrected after transier leaming with only 50 other
biotinylated peptides. AlphaPeptDeep also allows users to visualize the ‘attention’
weights— a key feature of transformer models — showing whal data atiributes were
important for the prediction. To depict the atlention changes between pre-trained and
transter learning transtormer models, we used the BertViz package
(hitps /igithub.com/jzesevig/beriviz) (Extended Fig. &}

Next, we tested the performance of our pre-trained RT model using the datasets of 21
PTMs, Although the model was never trained an any of these PTMs, the accuracy of AT
prediction on these peptides exceeds that of DeeplC®, an RT prediction model designed
for unseen PTMs IHE of 0.95 of AlphaPeptDeep vs. 0.89 of DeeplLC, Fig. 4d and 4=). In
this case, transfer learning enly slightly improves the results, presumably because some
of these synthetic modified peptides elute in very broad peaks, which makes them hard to
predict.

10
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Figure 4. Model performance with transier learning on 21 PTMs from ProteomeTools. (a) The accuracy of
MS2 prediction with different numbers of peptides for transfer learming for each PTM. Each PTM is tested
separately, "B0% seqs” refers fo using 80% of the ideniified modified sequences for transfer learning. (b)

Owerall aceuracy without unmodified peptides

from {a). {c} Transfer learning dramatically improves the

M52 prediction of the example paptide "AGPNASISLKSDK-Biotin@K 11" {luned by 50 other peptides). (d)

Comparisons ol RT predection for each PTM

an pre-trained and transfer learming (by 50% al all the

icfentilied peptides) models, as well as DeeplC models. (g) Overall B distribution withaut unmadified

peptides from (d).

Boosting Data-Dependent Acquisition (DDA} identification of HLA peptides

As explained above, HLA peptides are among the most challenging samples for
MS-based proteomics. Given the excellent model performance of the transformers in
AlphaPeptDeep, we hypothesized that pradiction of their MS2 spectra could substantially

improve their identification.

The non-tryplic nature of these peptides resulls in an extremely large number of peptides
thal need o be searched, leading to a decreased sialistical sensitivity at a given false
discovery rate (FDR) level (usualy 1%). The key idea of using M32, RT and CCS
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prediction fo support HLA peptide identification is that, for correct pepfides of the searched
spectra, the predicted properties should be very close fo the detected ones, while the
predicted properties of the irrelevant peptides tend to be randomly distributed. Therefare,
the similarities or differences between the predicted and detected properties can be used
as machine learning features to distinguish correct from false |dentifications using
semi-supervised leaming. Such an approach has long been implementad in Percolator
and later in other tools to re-score PSMs™, which increases the sensitivity at the same
FOR level”'™*, However, due fo the lack of supporl for arbitrary PTMs with DL models it
has noi been for open-search of HLA peptides. Modern protein open-search engines like
pFind™ can perform very fast unspecific peptide search without limiting the peptide mass
window using the sequence tag technique®’, enabling the identification of unexpected
PThs.

AlphaPeptDeep fully supports the Percolator algorithm for regular as well as open-search
of HLA peplides (Online Methods). To accelerate the rescaring, we calculate the fragment
intensity similarities between predicted and detected spectra on a GPU, making the
rescoring process extremely fast (~1 hour to rescore 16,812,335 PSMs from 424 MS runs
using a PC with a GeForce RTX 3080 GPU, where ~603% of the time was used for loading
the RAW files). This means that the rescoring by AlphaPepiDeep is not a bottleneck for
HLA peptide search.

To investigate how much AlgphaPeptDeep can boost the HLA peptide search, we applied it
on two datasets, MSV000084172 from samples in which particular mono-allelic HLA-I
types wera enriched™, here referrad to as the ‘mono-allelic dataset’ and our published
dataset from tumar samples (PXD004894*%) refered to as the ‘tumor dataset’. These two
datasets had been analyzed with a regular search engine (MaxQuant™) by the Kuster
gri:lupz‘E (Fig. 5a) and we here used pFind in the open-search mode (Fig. Sb).

First, we wanted to compare the AlphaPeptDeep results with MaxCuant as well as Prosit,
a recently published DL based tool thal has also been applied to HLA peptides™. Since
Prosit only supports fixed iodoacelamide modification on alkylated peplides (1AA in Fig.
5a), we only usad the results of the same 1AA RAW files in rescoring. Cn the mono-allefic
and the tumaor datasets, AlphaPeptDeep coversd 93% and 969% of the MaxCQuant results
while. more than doubling the overall numbers at the same FDR of 1% (Fig. 5a).
Compared to Prosit, AlphaPeptDeep captured 91% of their peplides and still impraved the
overall number on the mono-allelic dataset by 7%.

MNext, we searched both datasefs with the open-search mode of pFind (Fig. 6h), and
rescorad the results in AlphaPeptDeep. Here, both alkylated and non-alkylated peptides
wera analyzed. Interestingly, the open-search ilsell already identified similar numbers of
peplides as the DL-boosted regular search, bul AlphaPeplDeap further improved the total
number of identiflied peplides by 29% and 42%, while retaining 99% and 98% of the pFind
hits al the same FDR for the monp-allelic and lwmor datasets, respeclively (Fig. 5b).
This demonstrates the benefits of AlphaPepiDeep's support of open-search for HLA
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peptide analysis.

AlphaPeptDeep with open-search identified FTMs such as phosphorylation, which are
known to exist on HLA peplides but are very difficult to identify by regular unspecific
search. For the mono-allelic datasel we identified a total of 420 phosphopeptides. To
gauge the biological reasonability of these peptides, we searched for sequence motifs of
bath the phosphorylated and non-phosphorylated peptides. This revealed the expected
HLA peptide motifs, dominated by the anchor residues for their cognale major
histocompatibility complex proteins. Only the phospho-HLA peptides additionally had
linear phospho-motifs, like the prominent SP motif commeon to proline directed kinases
(Fig. 5¢ and Extended Fig. 7). We also identified 359 phospho-HLA peptides from the
tumor dataset, with similar phospho-motits (Extended Fig. 7). Wa further used
AlphaPeptDeep to inspect retantion time and MS2 spectrum similarities (Extended Fig. 8).
MNote that the MS2 and RT models wera only fine-tuned by at most 100 phospho-PSMs
from eight RAW files (Online Methods), so mos! of the phosphopeptides from other RAW
files were not used in fine-luning. Our method was also able 1o idenlify other PTMs
associated with HLA peptides, such as cystainylation*® (Extended Fig. ). Overall, most of
the HLA peptides additionally identified by this method had modifications related 1o
sample preparafion, such as deamidation, N-terminal pyro-Giu, and N-terminal
carbamidomethylation (Extended Fig. 9).
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Building an HLA prediction model for HLA DIA Search
In recant years, DIA has become a method of cholee o generate large-scale proteome

datasets, DIA data analysis traditionally raqtﬂras DDA experimants (o genarale a library 1o
which the data is then matched” . These libraries contain RT, ion mobility (if applicable)
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and the most intense and specific fragments for each peptide. The generation of
experimental libraries is laborious and sample consuming. With the development of DL in
proteomics, hbraries with predicted RT, CCSion mobilities and fragment intensities fram
whole proteome sequences are becoming more and more popular, although there is still a
debate about whether measured or predicted libraries are preferable. This is because the
large search space introduced by purely in silico libraries can make FDR control difficult.

DIA for HLA peptide analysis is also gelling more attention™*, So far, these efforts have
been restricted to expenmental DIA libraries because analysis with a predicted HLA library
is far more challenging than with an experimental one. This is mainly because HLA
peptides are not tryptic, meaning they do not follow specific cleavage rules and do not
necessarily have a favorable fragmentation pattem. The number ot theoratical peptides
with amino acid lengths between 8 and 14 from a reviewed human proteome is more than
7OM, which is nearly two orders of magnitude more than that of tryplic peptides in the
same length range (~900K). Due lo this enormous search space, a predicted library is
difficull or even impossible to search by slate-of-the-arl DIA search lools such as
DIA-NN™ and Spectronaut®'.

Fortunately, HLA peptides follow cerlain sequence motifs guided by the HLA-types that
are present. We reasoned that these motifs could be leamed by DL for mare efficient
peptide identification. To test this hypothesis, we built an HLA prediction model using the
model shop functionalities in our AlphaPepileep frameweork (Online Methods). This
model - a binary LSTM classifier predicts if a given seguence is likely to be an HLA
peptide presented to the immune system and extracts these peptides from the human
proteome sequance. There are two main goals of the model: (1) keep as many actually
presented HLA peptides as possible (i.e.. high sensitivity); and {2) reduce the number of
predicted peptides 1o a reasonable number (i.e., high specificity). Note that sensitivity is
more impartant here as we hope that all measured HLA peptides are still in the predicted
set.

Based on these goals, we developed a pipeline which enables predicted library search for
DlA data (Fig. 6a). In brief, we firs! trained a pan-HLA pradiction mode| with peptides from
all known HLA types ('pre-trained madel’ in Fig. 6a). Mormaliy, only a few HLA types are
actually present in the samples from any given individual. Therefore, we used transfer
leaming to creale a person-specific model with sample-specific peptides ('tuned model in
Fig. 6a). This model should then be able to predict whether an HLA peptide is potenfially
present in the sample or not, thus further reducing the number of peptides to be searched
and increasing prediction accuracy. For this strategy, we need to identity a number of
sampla specific HLA peptides. This can be done directly from the already acquired DIA
data by a ‘direct-DIA search' * obviating the need for a separate DDA experiment. This
involves grouping eluting fragment detected peaks belonging to the same peplide signal
into a pseudo-spectrum for DIA data, and then searching the pseudo-spectrum with
convantional DDA search algorithms.
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To test this pipeling, we used the HLA-| dataset of the RAS57 cell line in PXD022950%,
We started with our pan-HLA prediction model from 94 known HLA types (Fig. 5). It
reduced the number of sequences from 70M to 7M with 82% sensitivity. However, 7M
peptides are still too many to search and the model would have lost 18% of true HLA
peptides. Furthermore, the pre-trained model is not able 1o identify unknown HLA types as
it is anly trained on already known ones,

To enable transfer learning, we searched RAS57 data with DiA-Umpiresz. It identified
12,998 unigue sequences with length from 8 to 14. We used transfer leaming on 80% of
this data 1o train the sample specific HLA model while keeping 20% for testing. This
dramatically increased the specificity to 96% with 92% sensitivity (note that this is judged
on the identifications by direct-DIA; thus our sensitivity may be even higher). The number
of HLA peptides predicted by this model is 3M, which is comparable to the tryptic human
proteome library.

Having predicted our sample-specific HLA peplides, including their M32 fragmen! spectra
and RTs, we used this as input for a DIA-NN search of the DIA data. Our workflow
identified 36,947 unigue sequences. PEAKS-Online™ is a very recently published tool
which combines searching a public library, direct-DIA, and de nova sequencing. It
identified 30,733 unique sequences within the same length range. Our workflow almost
tripled the number of unigue seguences of DIA-Umpire and obtained 20% more than
PEAKS-Oniine. As a reference, MaxQuant identified 14,563 sequences in the 8 io 14 aa
range on DDA of the same sample in the original publicatiun"’ﬂ.

To judge the reliability of the identified HLA peptides, we used MixMHCpred™ to
deconvolute these identified peptides at the 5% rank level based on the HLA type list in
the original publication of the datasets™® (Fig. 6b). The overall pepiide distribution
identified by cur pipeline for different HLA types was very similar to that of the original
DDA data, indicating that our additionally identified HLA peptides were refiable at the
same level.

Finally, we directly tested if our pipelineg is also able to identify peptides with unknown HLA
types. To simulate this siuation, we removed all peptides of the dominant HLA-A"68:01
and used the rest to train a new pan-HLA model. This means that all HLA-A68:01
peptides in the RAS5S7 sample were now unknown. Then we used only 100 HLA-A"68:01
and all non-HLA-A'68:01 peptides identified by direct-DIA and deconvoluted by
MixMHCprad for transfer learning. The resulting library then identified 29,331 peptides
including 7.868 from HLA-A*68:01 (Transfer learning with 1000 HLA-A'68:01 peptides
retrieved almost all of them) (Fig. 6b). This demonstrates that few-shot transter learning is
aple to rescue many of the peptides of an unknown HLA type even if the paptide number
is low after direct-DIA identification.
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Figure 6. HLA prediction madel buill on AlphaPepiDeep functionaliies. (a) The pipaline with the HLA
prediction model to extract potential HLA peptides from the proteoms databases. The HLA model Is a
binary classitier that predicis if a gven sequence 15 a patentially presenied HLA sequenca. (o) Our HLA
prediction modal boosts the number of identified HLA-| peptides comparad 1o ather tools. Call ling HLA
dala from RAS5T with saguence lengths from 8 to 14 wera used. The lop bar plois shaw the number of
identified unique sequences of HLA types for each search method. The boltom bar plots the relative
frequency of these HLA types. Trash’ means the peptides cannot be assigned fo any HLA types by
MixMHCpred at 5% rank lewvel. 'AlphaPeptDeep fib' (red) refers to the library predicted by the
sample-specific HLA model and our M52 and AT medels. The bars represent DDA data analyzed by
MaxCuant, and the DIA data analyzed by DIA-Umpira, or PEAKS-Online (ncluding de novo sequencing.
AlphaPeptDesp with the sample-specific HLA library clearly oulperiorms these. The resulls of amitling
the daminant HLA-A'BE:01 (ABB01) HLAtype in the pan-madel and using lranster learming with including
1O ar 100 of these peptices identified by direct-DIA from the data are shown in the last two bars of the
AGADT type (see arrows in fhe panel).

Conglusion

We developed a deep leaming framework called AlphaPeptDeep that unifies high-level
functionalities to train, transfer leam and use the models for peptide property prediction.
Based on these functionalities, we built M32, RT and CCS models, which enabled the
prediction for a large variety of differant PTM types. These models can boost DDA
identification of for example, HLA peptides, not only in regular search but also in
open-search. We also provided a module called ‘'model shop' which contains generic
models so thal users can develop new ones from scralch with just a few lines of code.
Based on the model shop, we also built an HLA prediction model 1o predict whether a
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peptide sequence is a presented HLA peptide. With the HLA model and the M52, RT and
CCS models in AlphaPeptDeep, we predicted the HLA spectral libraries directly from the
whole human proteome, and searched them using HLA DIA data. This is the first time that
the predicted libraries at the proteome-level have been used to search DIA data for HLA
peptides. Our predicted fibraries out-periormed other methods including recently
publishad pipelines specifically designed for HLA DIA analysis.

Although AlphaPeplDeep is both powerlul and easy to use, we note that lraditional
machine learning issues, such as overfitling in the framewcrk, siill need io be kept in mind.
For instance, users still need to split the data, train and test the models on different sets.
Trying different hyperparameters such as the number of training epochs is still necessary
as well. Different mini-batch sizes and learning rates may also impact on the modsl
training. However, the model shop at least provides baseline models for any property
prediction problem,

We hope AlphaPeptDeep will minimize the challenges for researchers thatl are not Al
experts to build their own models either from scratch or on top of cur pre-trained models.
As we pointed out in our recent review'. peptide property prediction can be involved In
aimost all steps o improve the computational proteomics workflow. Apan from specific
properties of interest in MS-based proteomics, it can in principle be used fo solve any
problem where @ peptide property is a function of the amino acid seguence, as we
demonstrated by successfully predicting potential HLA peptides to narrow the database
search. Therefore, with sufiicient and reliable training data, we believe AlphaPepiDeep
will be a valuable DL resource for proteomics.

Online Methods

Infrastructure development

To develop AlphaPeptDeep, we built an infrastruciure package named AlphaBase
(hutps /github.com/MannLabs/alphabase) which contains many necessary functionalities
for proteins, peptides, PTMs, and spectral libraries. In AlphaBase, we use the pandas
DataFrame as the base data structure, which allows transparent data processing in a
tabular format and is compatible with many other Python packages. AlphaPepiDeep uses
ihe AlphaBase DataFrames as the inpul to build models and predicts properiies of
peptides. Aming acid and PTM embedding is performed directly from ‘seguence’ (amino
acid sequence), ‘'mods’ (modification names). and ‘mod_sites' [modification sites)
columns in the peptide DataFrame.

Amino acid embedding

Each amino acld of a sequence s converied [o a unique integer, for example, 1 for ‘A", 2
for ‘B, ..., and 26 for 'Z'. Zero Is used as a padding value for N- and C-terminals, and
other “padding” positions. As a resull, therg are 27 unique integers 1o represent an aming
acid seguence. A ‘one-hol encoder’ is used to map each integer into a 27-D vector with
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zeros and ones. These vectors are mapped to an N-dimensienal embedded vector using
a linear layer (Extended Fig, 1), For this, we additionally make use of the
‘torch.Embedding method, which is more efficient and flexible and can support more
letters such as all the 128 ASCI codes.

PTM embedding

For each PTM, we use a 6-D embedding vector to represent the G, H, N, ©, 5, and P
atoms. All ather atoms of a PTM are embedded inlo a 2-D vector with a fully connected
(FC) layer. The 6-D and 2-D veclors are concatenated into an 8-D veclor to represent the
PTM (Extended Fig. 1.

MS2 model

The MSZ model consists of an embedding layer, positional encoder layer, and four
transtormer layers tfolowed by two FC layers. The embedding layer embeds not only
amino acid sequences and maodifications but also metadata (if necessary) including
charge slates, normalized collisional energies, and instrument type. All these embedded
tensors are concatenated for the following layer.

We added an additional transformer layer to predict the ‘modioss’, which refers to neutral
loss intensities of PTMs, for example, the —98 Da of the phospho-group. This modloss
layer can be turned oft by sefting ‘'mask_modloss’ as “True'. The output layer dimension is
(n—=1) x 8 for each peptide, where n is the length of the peptide sequence, and B refars
o eight fragment types, i.e. b+, b++, y+, y++, b_modloss+, b_modloss++, y_modloss+,
and y_modloss++. With ‘'mask_modloss=True', the modloss layer is disabled and the
predicted modlass intensities are always zero, The hidden layer size of transformers is
256. The total number of the model parameters is 3.988.974.

All matched bfy fragment intensities in the training and testing datasets were normalized
by dividing by the highest maltched intensity for each spectrum. The MS2 models were
trained based on these normalized intensities. For prediction, negative values will be
clipped lo zero, hence the predicted values will be between zero and one.

In training phase 1, we only used tryptic peptides in the training datasets. The training
parameters were: epoch=100, warmup epoch=20, learning rate (Ir)=1e-5, dropout=0.1. In
training phase 2, HLA peptides were added to the training sel and the paramelers were:
epoch=20. warmup epoch=5, Ir=1e-5, dropout=0.1, mini-batch size=256. In phase 3,
phosphorylation and ubiquitylation datasets were added for training, and only
phosphorylation sites with =0.75 localized probabilities were considered. The training
parameters were: epoch=20, warmup epoch=5, Ir=1e-5, dropout=0.1, mini-batch
slze=256. For transter learning of the 21 PTMs, the parameters were: epoch=10, warmup
apoch=5, Ir=1e-5, dropout=0.1, mini-baich size depends on the peplide length. L1 loss
was used for all training phases. We used the “cosine schedule with warmup” method
implemented in HuggingFace for warmup training of these models including all the
following modals.
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For Thermo Orbitrap instruments, the fragment intensities of each identified PSM are
directly extracted from the raw dala. For this, we imported the centroided MS2 spectra
with Thermo's RawFiloReader API that is integrated in AlphaPept, hance the extracted
intensities are reproducible across different search engines. For dda-PASEF data. the bly
ion intensities are exfracted directly from the mams txt file of MaxQuant results. Mote that
difierent search engines may have different ceniroiding algorithms for dda-PASEF.
resulting in quile different fragment intensities, so fine-lwning is highly recommended for
dda-PASEF data analyzed by difterent scitware.

A fragment DataFrame is designed to store the predicted intensities. lts columns are
fragment ion types {e.g., 'b_z1' for b+ and 'y_z2 for y++ ions), and the rows refer o the
different fragmented positions of peptides from which the fragments originate. Tha start
and end pointers of the rows ('frag_start_idx’ and ‘frag_end_idx"} belonging to peptides
are stored in the peplide DataFrame 1o connect between peplides and their fragmeants.
The fragment DataFrame is pre-allocaled only once for all peptides before prediction.
While predicting, the predicted values of a peptide are assigned to the region of the
peptide located by 'frag start idy” and ‘frag end idx’. The fragment DataFrame allows
fast creation and storage of the predicted intensities. The tabular formal further increases
human readability and enables straightforward access by programming.

RT model

The BT model consists of an embedding layer for sequences and modifications, and a
CNN layer followed by two LSTM layers with a hidden layer size of 128. The putputs of the
last LSTM layer are summed over the peptide length dimensian and processed by two FG
layers with output sizes of 84 and 1. The total number of the model parameters is
708,224,

All AT values of PSMs in the training dalasets were normalized by dividing by the time
length of each LC gradient, resulting in normalized AT values ranging from 0 fo 1. As a
result, the predicted RTs are also normalized. The training parameters werg: epoch=300,
warmup epoch=30, Ir=1e-4, dropoul=0.1, mini-batch size=256. The fine-tuning
parameters are: epoch=30. wamup epoch=10, Ir=1e—4, dropout=0.1, mini-batch
size=256. L1 loss was used for training.

To compare predicted RT values with expenmental ocnes, each value is multiplied with the
time length of each LC gradient. For testing on peptides with iRT values. we used 11
paeptides with known iRT values” 1o build a linear model batwean their iRT and predicted
RT values. Then all the pradicted RTs in the testing sets are converted to iRT values using
the linear modsl.

CCS model
The CCS model consists of an embedding layer for sequence, modifications and charge
states, and a CNN layver followed by two LSTM layers with a hidden layer size of 128, The
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outputs of the last LSTM layer are summed over the peptide length dimension and
processed by two FC layers with output sizes 64 and 1, The fotal number of the model
parameters is 713,452,

The training paramelers are: epoch=300, warmup epoch=30, Ir=1e-4, dropoul=0.1,
mini-batch size=256. L1 loss was used for training. The predicted CGCS values are
converted to mobllities of Bruker timsTOF using the Mason Schamp e::p.:.ati::m.a"E

Rescoring

Rescoring includes three steps:

1. Model fine-tuning. 5,000 PSMs are randoemly sampled from at most eight RAW files at
1% FDA to fine-tune the MS2, AT and CCS (if applicable) medels to obtain
project-specific models. The top-10 frequent modifications are also selected for
fine-tuning from the eight RAW files. At most 100 PSMs are samplad for each
modification. Therelore, the fine-luning covers not only unmodified peptides, bul also
modified peptides.

2. Deep learning feature extraction. The tuned M32, RT and CCS models are used to
predict MS2, AT and CCS values for all the reported PSMs including decoys. All
PSMs are malched against the MS2 spectra in the RAW files to oblain detected
fragment intensities. Then the predicted and detected values are used to calculate 61
score features, which Include correlations of fragments, RT differences, mobility
differences, and so on {Suppl. Data. 2).

3. Percolator for rescoring. We use the cross-validation schema™ to perform the
semi-supervised Percolator algorithm to reduce the chance of overfitting. All the
peptides are divided into K folds (K=2 in the analyses of this work) and rescored by 5
iterations in Percolator.  In each iteration, a Logistic regression model from
scikit-learn™ is trained with the 61 features on the K—1 folds, and the model is used to
re-score on the remainder. All the K folds will be re-scored after repeating this for K
times on each of the foids.

Muliprocessing is used in step 2 for faster rescoring. Because GPU RAM is often limited.
it can become a boltleneck meaning that anly one process is allowed to access the GPU
space at a time for prediction. We developed a producer-consumer schema to schedule
the tasks with different processes (Extended Fig. 10). The PSMs are maiched against
MS2 spectra in parallel with multiprocessing grouped by RAW files. Then. they are sent
back to the main process for prediction in GPU. At last, the 61 Percolator features are
extracted in parallel again. All correlation values between matched and predicted MS2
intensities are also calculated in GPU for acceleration. As this is not memaory intensive, the
GPU RAM can be shared and used in parallel from different processes. For
multiprocessing without GPU, all predictions are done with separate processes and
rasults merged into the main process to run Parcolator.

HLA prediction model
The HLA prediction model consists of an embedding layer for sequences, 2 CNN layer
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followed by two LSTM layers with a hidden layer size of 256. The cutputs of the last LSTM
layer are summed over the sequence length dimension and processed by two linear
layers with output sizes of B4 and 1, The sigmoid activation function is applied for last
linear layer to obtain probabilities. The total number of the model parameters iz 1,669,697,

For training and transfer leaming, identified HLA pepfides with sequence lengths from 8 to
14 are regarded as posilive samples. Megative samples were randomly picked from the
reviewed human protein sequences. The seguence number and length distribution were
the same for the positive and negative samples. These samples were then split 80%: for
training and 20% for testing. The parameters for training the pre-trained model were:
apoch=100, warmup epoch=20, Ir=1e—4, dropout=0.1. For transfer leamning, the DIA data
werg searched by DIA-Umpire and MSFragger” in HLA mode at 1% FDR with reviewed
human protein sequence. The paramsters for transter leaming were: epoch=50, warmup
epoch=20, Ir=1e-5, dropout=0.1, mini-batch size=256. Binary cross-entropy loss was
used lor training.

To predict HLA peptides from fasta files, we first concatenate protein sequences into a
lang string separated by the “§" symbol. Next, we use the longest common prefix (LGP}
algorithm™ to accelerate the unspesific digestion for the concatenated sequence. Only the
start and end indices of the peptides in concatenated sequence are saved, thus
minimizing the usage of AAM. These indices are used to generate peptide sequences on
the fly for prediction. The LCP functionalities have been implemented in AlphaBase. All
sequences with a predictaed probability larger than 0.7 were regarded as potential HLA
paptides.

Open-search for Orbitrap and dda-PASEF data

We performed an open search on the Thermo RAW data with Open-pFind. For HLA DDA
data, the reviewed human protein sequences from UniProt (hitps:/www.uniprol.org/) were
searched with the following parameters: open-search mode=True, enzyme=Z at
C-terminal (i.e., unspecific enzyme), specificity=unspecific. The search tolerance was set
1o £10 ppm for MS1 and £20 ppm for M52, All medifications marked as ‘isotopic label in
UniMed (www.unimad org) were removed from the searched maodification list. The FDR
was set as 1% at the peptide level.

Ta enable Open-pFind search for dda-PASEF data, the specira were loaded by AlphaPept
APIs"™ and exported as pFind compatible MGF files using our in-house Python script. The
reviewed drosophila and human seguences were used to search the respective tryptic
DDA data with parameters: open-search modae=True, enzyme=KR at C-terminal, enzyme
specificity=specific. The search tolerance was set to £30 ppm for both MS1 and MS32.

Spectral libraries

Functionalities for speciral libraries are implemented in AlphaBase. When providing
DataFrames with seguence, modification and charge columns, the fragment m/z values
and intensilies are calculated and stored in fragment DataFrames. AlphaBase also
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integrates functionalities to load and save DataFrames in a single Hierarchical Data
Format (HDF} file for fast access. For subsequent use with DIA-MNN or Spectronaut, all the
DataFrames are then convarted inte a tab-separated values file (".tsv) which is compatible
with these tools.

For HLA DIA analysis. we used reviewed human protein seguences to predict HLA
peptides. We considered charge slates from ane to three for each peptide. All RT, CCS,
and MS2 were predicted using the model from training phase 3. The 12 mast abundant
bfy ions with 1+ and 2+ charge states were written {o the “.isv file. Fragment m/z range
was set to be from 200 to 1800, precursor m'z range was from 300 to 1800.

In DIA-NN. the mass tolerance for M51 and MS2 were set to 20 and 10 ppm respectivaly,
with a scan window of 8. All other parameters ware the default values of DIA-NN, The
results identified from the tirst pass were used for post-search analysis.

Data availability

The reviewed protein sequence databases of human, E. coli, fission yeast, and drosophila
were downloaded from uniprot (hitps:Swww.unipral.oral). The training and testing data
werg from PRIDE with 1Ds: PXDO010595, PXD0O04732, PXD021013, PXD009443,
PXD0D0138, PXD019854, PXD019086, PXDO04452, PXD014525, PXD0D17476,
PXDD18347, PXD021318, PXD026B05, PXD026824, PXD029545, PXD0O00269, and
PXD001250,

The mono-allkelic HLA DDA dataset was downloaded from  MassIVE with 1D
MSVOO0084172. The tumor HLA dataset was downloaded from PRIDE with 1D
PXD004834,

HLA DIA data and the MaxQuant results of DDA data from the RAS57 cell line were
downloaded from PRIDE with ID PXD022950. HLA DIA results of PEAKS-Online were
downloaded from the PEAKS-Online publication.™ Only results from RAW files
20200317 _0OE_HFX2 _LC3_DIA_RAS57_RO1.raw’ and
20200317 _QE_HFX2 LC3 DIA_RAS57 _R02.raw’ from RAS5T were used to compare
different methods.

Result files and Python notebooks to repreduce the analysis resulis in this study (fotal of 7
GByte} can be found in bitps fdol.om/10.6084/m3.figshare. 20260761,

Code availability

The source code of AlphaBase and AlphaPeptDeep are lully opaned on GitHub:
nips:/althub.com/Mannlabs/alphabase and
niips:/aithub.com/MannLabs/alphapeptdeep. They are also avaflabla through PyPl with
“pip install alphabase” and “pip install pepideep”. The versions used in this study of
AlphaBase and AlphaPeptDeep are 0.1.2 and 0.1.2 respectively. All the pre-trained MS2,
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RT, and CCS models can be found in
https:/github.com/Mannlabs/alphapeptdeen/releases/download/pre-trained-models/pretr
aned models.zip, These models will be automatically downloaded when using the
AlphaPeptDeep package for the first time.

The versions of other software are displayed in the Reporting Summary.
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4. Discussion

Although the timsTOF instrument has only very recently been introduced, it has already
gained much attention and has shown very promising results in proteomics, including its
wide dynamic range, high sequence coverage and very high sensitivity. The release of
such a novel instrument and other subsequent instrumental advances creates a strong
need for the development of software allowing to efficiently handle the data. Although
perhaps a natural duty for the manufacturer, experience shows that commercial

suppliers seldomly and in any case slowly meet this need.

Therefore, once | started working with the timsTOF data, it became clear that the first
and absolutely essential step was to replace the existing, but extremely inconvenient
and time-consuming data access. This step was to influence, if successful, all
subsequent projects. Having become aware of the common problems in scientific
software development, where code, even if released to the public, often does not meet
basic software engineering standards, we decided to build an open-source proteomics
framework, called AlphaPept, allowing users to explore the complex steps of proteomics
data processing in a simple way in Jupyter notebooks or to focus on their own new
algorithmic ideas, replacing only parts of existing code (Article 5). Once built, this
framework allowed MS data to be analyzed several orders of magnitude faster, while
also providing an environment for developing all other software projects in our group to
robust software engineering standards, such as high-quality code, extensive
documentation, automated testing, and continuous integration. All these ‘good software
engineering practices’ help to develop stable, robust, easy-to-use and extend software
tools. However, due to the specific nature of scientific projects, e.g. an imprecise or ill-
defined research question at the beginning of the development process, it is quite
difficult to adopt these practices to this domain. At the moment there are no set
guidelines for development specifically in science and generally there are only attempts
by various individual groups to internally establish some good practice through trial and
error. Given this background, | thought that it would be interesting to see what methods
could be adopted to standardize the scientific development process to make it more
efficient and generally accepted. The development of the AlphaPept ecosystem

provided a great opportunity to explore these abstract principles in practice.

The AlphaPept ecosystem became a solid basis for the timsTOF data accession tool
implemented in the AlphaTims project (Article 4). AlphaTims provided access to
complex timsTOF data across any available dimension in just milliseconds, indexing

sparse four-dimensional timsTOF data of billions of detector events in a matter of
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seconds, thereby removing a serious bottleneck. Now it also takes only milliseconds to
interactively visualize raw data such as TICs, XICs, mobilograms and mass spectra.
Due to the easy usability and extensibility of the tool it has also been quite well received
by the community, and | myself have been able to use it as a basis for further projects.
This example illustrates how important community efforts can be in a complex scientific
field such as proteomics. Clearly community involvement can benefit researchers by
saving time and funding resources by simply using the tools available as a basis for
further projects, especially if they already meet the aforementioned standards for

software development.

With AlphaTims on hand to quickly access and visualize unprocessed timsTOF data, |
decided to validate the identifications reported by popular proteomics workflows by
exploring their underlying raw information. This project, named AlphaViz, arose as a
result of the need in our group to be able to critically evaluate individual biologically or
clinically important proteins and their (modified) peptides (Article 2). This had been
unavailable for the timsTOF platform, or indeed for most other proteomics workflows.
The AlphaViz package helps to quickly visually (in)validate the identification of peptides
regardless of the score given to them by automated workflows. AlphaViz is also the first
software tool to use the latest advances in the deep learning MS-property prediction to
allow the visual comparison of the expected vs. the measured peptide results. We have
successfully established that peptide signals present in the raw data can be
unambiguously ascertained, although they were not reported by the search engine. This
project has provided a tool that combines the previous developments with the deep
learning prediction to greatly facilitate data visualization. It is also turned out to be a key
advance to communicate the results of complex experiments not only quantitatively, but

also visually.

The importance of visualization as well as its ability to help understand data integrated
from different resources data is further demonstrated by the AlphaMap project (Article
3). AlphaMap enables visual exploration of proteomics data at the peptide level, while
additionally integrating prior knowledge gathered by the community, such as UniProt
annotations and proteolytic cleavage sites. AlphaMap has already been extended by
adding an additional layer of information, such as the three-dimensional structures of
proteins predicted by AlphaFold (123).

With these tools implemented, | have contributed to a range of specific project in the
group. For instance, a novel diaPASEF scanning mode on the timsTOF instrument and
its further optimization allows to acquire up to 100% of the peptide fragment ion current

and achieve deep proteome coverage even in short gradients, such as over 6,000

209



4. Discussion

proteins in 11 minutes gradient (Article 6, 7). These improvements enhance the overall
throughput capabilities, enabling it to be successfully used for single-cell analysis, and
achieve very high sensitivity for phosphoproteomics data. In the future, | look forward to
seeing this extended towards optimizing the acquisition method in real time, as well as
its application to other PTMs.

As mentioned, the field of proteomics is greatly benefiting from the latest developments
in the machine learning and, in particular, deep learning. Several projects in which | have
been involved complement recent efforts to predict peptides properties, in our case CCS
values based on measured ion mobilities, on the basis of their sequences alone (Article
8, 9). This allowed us to better understand the nature of CCS values but also to apply a
combination of predicted peptide properties, such as retention time, ion mobility and the
fragment intensities in MS? spectra, to predict the spectral libraries needed for DIA. This
also narrows down the list of possible candidates and improves scoring in such a

challenging application as peptidomics.

A biological focus of my thesis is on post-translational modifications, in particular
phosphorylation, and its functional exploration. With the described tools and methods at
hand, | applied the timsTOF principle to an in-depth study of phosphoproteomics
(Article 2, 3, 7). For the first time, we were able to quantitatively and accurately identify
35,000 phosphosites in just 21 minutes LC gradients, covering a substantial fraction of
the regulated phosphoproteome with high sensivity. Further detailed analysis of the well-
studied EGF signaling pathway in HelLa cells revealed differential phosphorylation of
proteins involved in this signaling pathway. Visualization and validation of the presence
of (un)reported key signal nodes helped to enhance confidence in these results, which

would be interesting for biological interpretation or follow-up experiments.

Based on my several years of working in a scientific and bioinformatics environment, |
have come to the conclusion that there are several important aspects that should be
further improved in scientific software development. In recent years we can observe a
positive trend where more and more groups are working towards the ideals of open
science. In a complex scientific field such as proteomics, this would give a great boost
both to software development as well as to the advancement of the MS-based
proteomics in general. An important aspect that remains is how to instill software
development practices in researchers, given the nature of scientific problems and their
lack of specific training. | believe that changes in the culture of research and software
development are necessary and can be brought about by better integration of agile
practices, which are naturally useful for exploratory, iterative and collaborative

development. This should help improve the quality of code, expand project
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4. Discussion

documentation and ensure better testing, all of which should lead to better quality and
reuse of tools in the field. In my view, journals should encourage or make it compulsory
for the development of scientific tools to follow these principles prior to submission, just
as data quality are now routinely be checked in the case of experimental data.
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Abstract

Plasma and serum are rich sources of information regarding an
individual’s health state, and protein tests inform medical decision
making. Despite major investments, few new biomarkers have
reached the clinic. Mass spectrometry (MS)-based proteomics now
allows highly specific and quantitative readout of the plasma
proteome. Here, we employ Plasma Proteome Profiling to define
guality marker panels to assess plasma samples and the likelihood
that suggested biomarkers are instead artifacts related ta sample
handling and processing. We acquire deep reference proteomes of
erythrocytes, platelets, plasma, and whole blood of 20 individuals
(= 6,000 proteins), and compare serum and plasma proteomes,
Based on spike-in experiments, we determine sample guafity-asso-
ciated proteins, many of which have been reported as biomarker
candidates as revealed by a comprehensive literature survey. We
provide sample preparation guidelings and an anline resource
{www.plasmaproteomeprofiling.orgl to assess overall sample-
related bias in clinical studies and to prevent costly miss-assign-
ment of biomarker candidates.

Keywords biomarker discovary, mass spectrometry, plasma promomics,
sample gualitg study design
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Introduction

Protein levels determined in blood-based laboratory tests can be
useful proxies of Jdiseases. These hiomarkers assess normal physio-
logical status, pathogenic processes, or a response {o anexposure or

inltervention |F'DA-NIH_'E'-':Dma'rk.?r-‘h‘-"mk'ing-{,‘r:mlp, 2016). Proteins:

and enzymes constitule the largest proportion of laboratory tests,
reflecting the imporiance of the plasma proteome in cimcal diag-
nostics (Geyer ef al, 2017]. Typical protein biomarkers such as the

enzymes aspartate aminotransferase (ASAT) and alanime amino-
transferase (ALAT) for the diagnosis of liver diseases or cardiac
troponing Indicating myocardial necrosis are used routinely in clind-
cal decision making. Ensymatic activity or antibody-based labora
tory tests are performed in high-thoughput and an relatively low
costs, as the stamndared of health care, However, specific bicmarkers
are only available for a very limited number of conditions and mast
have been introduced decades age (Anderson er af, 2013), There is
thug a critical need to make the blomarker discovery process mare
efficient

Protein-hinder assays quantifying many plasma proteins in paral-
lel have become available (Gold er al, 20010; Assarsson ef af, 2014),
resulting in large-scale biomarker mining efforts (Gane ¢ af, 20186;
Herder er af, 20168; Sun er al, 2018]). Orthoegenal to those technolo
gies, mass spectrometry: (MS)-based proteomics has become increas-
ingly powerful in all domains af proein research (Asbersold &
Mann, 2003, 2016; Munoz & Heck, 2014). M5 measures the mass
and fragmentation spectra of ryptic peptides derived from the
sample with very high accuracy, Because these peptide and fragment
masses dre witgue, MS-based proteomics s Inberently specific, which
can be an advantage over enzyme tests and Immuanoassays (Wild,
2003 ). Within its limit of detection, M5-based proteomics can analyze
all proteins in a system and i unbiased and hypothesis-free in this
sonse,

The proteomic community has developed guidelines for the
development, specificity, and potestial chinical  application of
hiomarkers. These discuss quality standards and emphasize the
importance of selecting cohorts that are appropriaie in size, thus
ensuring the statistical significance of potential findings (Mischak
et of, 2010; Surinova et al, 2011; Skates e al, 2013, Hoofnagle er al,
2016, Geyer et al, 2017). That being said, there are ng sysiematic
procedures in place 1o assess the prateame-wide effects of pre-analy-
tical handling of blood-based samples. Considening that plasma
samples are often collected during daily clinical rourine and variably
processed, sample collection and processing clearly have the poten-
dal o negatively influence clinical studies, making It difficale o
uncover true biomarkers, while potentially conmributing incorrect
ones, Especially in case-contro] stuclies, any difference in the
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collection and processing of samples may result in systematic bias.
S0 far, relatively linle attention has been pad 1© 1his crucial aspect
on a protenme-wide scale and these studies mainly investigate pre-
analytical effects (Rai et af, 2005; Timms et al, 2007; Schrohl ef al,
2008; Qundos ef al, 2013; Hassis ¢ al, 2015)

Recently, we developed "Flasmd Proteome Proliling”, an aoto-
mated MS-based pipeline for high-throughput screening of plasma
samples [Gever et af, 2006a). In this article, we apply this technel-
opy o systematically assess the quality of individual samples and
clinical studies with the aim w0 idemtify generally applicable guoal-
ity marker panels. Blood collection and subsequent errors in
prepacation are  lkely sources of plisma contamination. To
address this issue, we construct proteormic catalogs of contaminal-
Ing cell types as well a= proteomic changes that may e induced
during processing, This resalis {n three panels of contaminating
proteins, recommendations for assessing the quality of plasma
samples and for consistent sample processing. We develop an
enline ol for Momarker studies and st the applicability of the
panels on a recent investigation on the effects of weight loss on
the plasma proteome (Geyer of al, 2016h]. A comprehensive litera
ture review of plasma proteome stodies highlighis thar abow half
of them potentially suffer from limitations related to sample
processing.

Results
Erythrocyte and platelet proteins in the plasma proteeme

Durimg the development of our Plasma Proteome Profiling pipeling
and its optimization for high<throughput screening of human
cohorts (Geyer ef af, 2076a), we repealedly observed groteins that
tended 1o emerge as groups of statstically significant outliers but
appearaid 10 be independent of the particular stody. We hypothe-
gized that they reflected sample quality issues. Manual and bioinfor-
matic inspection revealed three classes of origing eryvibrocytes,
platelets, amd the Blosd coagulation sysrem. Consequently. we
designed experiments to svstemalically characterize (hese main
guality issues of the plasma proteome,

First, we acquired reference proteomes of ervihrocyies and plate-
lets, which are by far the most abundant cellular components
(5= 10° and 3 » 10 cells per ul]. We harvested these collular
components from 10 healthy females and 10 males to obtain repre-
sentative erythrocytes, platelets, and pure (platelet-free] plasma and
further collected platelet-rich plasma and whole blood (Fig LA; see
Materials: and Methods). Cell counting confirmed the purity of the
samples (Table EV1]). All five blood fractions were separately
prepared for each individual by our automated protecmic sample
preparation pipeline; tollowed by liquid chromatography coupled o
high-resolution mass spectrometry (LC-MS/MS). To create reference
protecmes, we generated a very deep library from pooled samples
by analyzing estensively pre-fracionated peptdes (Kulak er af,
2017, see Materials and Methods). A total of 6,130 different proteins
were [dentified from 61,654 sequence-unique peptides (Fig 18 and
CJ, The platelet proteome was the most extensive (5,793 proteins),
whereas we detected 1,069 proteins in ervthrocyies, 1,682 in
platelet-rich plasma, and 912 in platelet-free plasma. The compar-
izon of platelet-rich plasma to platefet-free plasma (84% additional

20f12  EMBO Molecular Madicine 11 £10437 | 2019
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proteins) demonsirares the extent of proteins that can be inroduced
by platelets,

Next, we investigated purified samples for all 20 study partici-
pants individually. The average numbers of identified proteins and
peptides were very consistent in all individuals (Appendix Fig 51},
To construct panels of easily detectable and robust quality mark-
ers, we calculated the average protein intemsities and the coeifi-
clent of wvarlation (CV) across the study panticipants. As a
prerequisite; we required that the proteing should be substantially
more abundant in erythrocytes as well as platelets rather than in
plazma. According to these criteria, we selected the 30 mast abun-
dant proteing with CVe below 30% and at least a 10-feld higher
expression level in the contaminating cell type than in plasma
[Fig 1D aml E). MIFA-like proteln | (NIF3L1), 4 low-abundance
ervthrocyie-specific protein, was excloded, because it was incon-
sistently identified as was the platelet-bound coagulation facior
F13A1, whose function makes §1 an unsuitable platelet marker,
The remaining proteins represent our cellular quality marker
pamnels (Table EV2). They overtap by just twa proteins {actin/ ACTB
and glveeraldehyde-3-phosphate  dehydrogenase/GAFDH), and
their quantities were ot carrelated with each other (Appendix Fig
52). Thus, they are specific and independent indicators for the
origin of plasma quality,

Comparing median expression valuees of proteins shared between
the blood compeonents revealed that plasma proteins do correlate
with whole blood (Pearson’s’ correlation coefficient R = 0.431, as
expected. In contrast, there was no corrélation between the platelet,
erythrocyte, and plasma proteomes [Appendix Fig 52). This indi-
cates ihat the levels of cellular prolelns 0 plasma afe 0ol a coRstant
fraction of those in the cellular proteomes. The platelet panel was
ennched m platelet-rich plasma compared 1o normal (platelet-free)
plasma. Both pamels are de-enriched in pure plasma compared to
whole blood, however, thiz effected the ervthrocyte panel even
maore strongly, hecause centrifugation removes prythrocyies more
effiziently than platelets. A histopram of both panels over the shun-
dance range visualizes their distribution in the different blood
compartments [(Appendix Fig 52). Erythrocytes are 10-fold more
abundant and fourfold larger than platelets, and indeed, the torre-
sponding panel proteins have @ 42-fold difference in whole blood.
In plasma, hewever, their raio was nearly one (o one, agan
pinpointing a mare efficient removal of ervthrocytes than of plate-
lets in standard sample preparation, The {act that several proteing
of both panels were still detectable in pure plasma indicates a bage-
line level of contaminamts due to Imperfect de-enrichment or the Iife
eycle of these cells, The four most abundant erythrocyte proteins,
HEAL, HBB, CAlL, and HED, were present in pure plasma of almost
all individuals, whereas lower abundant proteins were only sporadi-
caliv Identified. In contrast, platelei proteins were gquantified over a-
jarger abundance range and same of them were found in every indi-
vidual.

In addition to the sum of panel protein abundances, we calcu-
laved thelr coreelation o the standard relference paoel defined by the
200 participants (o geveral hundred plasma samples of a previcus
study (Gever et al. 2016h), A distinct contamination of erythmooyte
profeins seems to be a part of the plasma proteome as the erythro-
cyte panel has in general a relatively high correlation between the
reference cohort erythrooyte levels and the plasma samples in the
above-mentioned study. In conirast, in many plasma samples there
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was no carrelation detectable between the reference cohart platels
levels and the plasma samples in the study. In practice, a correla-
tion = 0.5 indicated that the proleins are present as a resall of
comtamination [Appendix Fig 53A-C). Note that an apparent
contaminant protein could still be -applied as a biomarker
howewver, in this case its abundance value should be different from
the pattern i the reference quality panel,

Serial dilution experiments validate the erythrocyte and platelet
quality marker panels

To determine whether the two protéin panels: correéctly quantify
comamination In plasma, we generated four pools of erythrocytes
and platelets from five study participanis at a thme. These pools were
diluted in nine steps into platelat-free plasma for a total range of 107,
followed by cefl counting and protegmic analysis (Fig 2A). This
resulted in an expected decrease in the cellular proteome ratic o
plasma [Fig 2B and C), All but two of the panel proteins were consis
tently quantified over the dilution range. As the proteds within each
panel has the same origin, we defined a single varable for each cell
type by summing their intensities and dividing by the summed inten-
sities of all quantified plasma proteing, This vielded two remarkably
robust “contaminaton Indices” that tuwrmed out to be linear with
the cell numbers determined by cell cytometry

R=098 and 059, Fig2D and E) Spiked-in

respect o
{Table EV3:

1 200% The Authors

contaminations of 1:100 eould readily be detected, which corre-
sponds to 4 concentration of 70,000 erythrocytes or 30,000 platelets
per pl plasma.

Quality marker panel for blood coagulation

In additlon o contamination due 1o cellular constituents, partial and
variable coagulation coull contribute to systematic bias n
biomarker studies. Indeed, we had found coagulation-related
proteins to be connected te sample handling from finger pricks
while developing our plasma protecmics pipeline [Geyer ef al,
206a). In clinical practice, an anticoagulant |8 pre-added o
commercially available containers o that it is combined with bleod
upon withdrawal. Prompt inversion mixes the anticoagulant with
the blood, vielding pure plasma after centrifugation (Fig 3A]. Any
delay in adding or mixing could cause partial coagulation—in the
extreme case of missing anticoagulant and waiting for 30 min, one
would obtain serum mstead of plasma.

To generate a pandl for assessing blood coagulation, we sysiéimali-
cally compared 72 plasma va. 72 serum samples {four individuals, 158
aliquots), From a total of 2,009 quantified proteins, 299 were signifi-
cantly aliered (Fig 3B}, The most significantly de-enriched proteins
after clotting were typical constituentg of the coagulation cascade
such as fibrinogen chains alpha (FGA), beta (FGE), and gamma
[FGG] (P= 107" = 40fold), whereas the platelet-associated
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Figure 2. Spike-in of erythrocyte and platelet fractions into pure plasma.

A Dilubonand analyfis scheme:

B, C Protein intensites were 7-scared across the dilution series (B] for the 39
guatity markers of the-erythrocyte panel and () for the 2% markers of
the plitelet panel as a FURETICN GF thedr spiké-in propotion t plasma.
Whiskers indicate 10-30 percentiles, and horizontal Fines denote the

mean,

0 Corfelanon of erytheocyte count 1o the “contamination index® for the
-erythrocyte marker panel,

E Corfelation of platelet count 1o contarminaton (ndex for the platelee
marker panel,

coagulation facter F13AL and antithrombin-11 [SERPINC ) decreased
by more than hall Interestingly, the strongest elevated proteins in
serum were highly abundant platelet proteins: platelel hasic proiein
(PPBP), platetet glycoprotein Ib alpha chain [GP1BA), throm-
bospondin T (THBS1), and platelet glycoprotein ¥ (GP5] (P= 107'%
twolold to fivefold increase). In total, 208 proteins increased and 91
decreased due to coagulation. The former 2et of proteins, which have
higher tevels i serum than in plasma, were also quantitatively
coriched with high-abundant platelet prateins (P < 10°%; median
rank 699 of 3,150 proteins), indlcating coagulation-Induced actlva-
tion of platelets,

To define a robust panel of quality markers for the exwent of
coagulation, we first selected the 30 mosl significantly altered
proteins between serum and plasma. Although not among the top
30, we added the platelet factor 4 variant 1 (PRav1; P =10 ", 2.2
fold up in serum), because it was an excellent indicator of
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coagulation In our studies and has already been reported in the
contest of pre-inalytical varlation {Timms e al, 2007)

In contrast to the erythrocyte and platelet panels, proteins of the
coagulation panel increase or decrease due to blood clotting and the
fold changes vary strongly between them, Because fold changes are
greatest for the decreasing proleins, we calculated the coaguiation
marker ratio only from them (sum of all plasma proteins divided by
sum of plasma-elevated coagulation proteing). This ratio was very
robust when comparing serum and plasma, clearly separating them
with median ratios of 9 and 120 for theze distinct sample types
|Fig 3C]. Of the coagulation marker panel, only F13A1, PPEP, and
THEBS1 were in common with the platelet panel and none with the
erythrocyte panels [Fig 3D). The low overlap observed for the three
quality marker panels should make them highly speciile waols w
elucidate the presence and arigin of sample-related bias,

Application of the quality marker panels to a biomarier study

The above-defined marker panels can assess sample-related issues
at three levels: the quality of each sample in a clinical cobon, poten-
tial systematic bias in the entire study, and the likelihood that indi-
vidual Momarker candidates belong to the contaminant proteomes.

We recently investigated changes in the plasma proteome upon
weight loss [Geyer ef al, 2006a,b). Briefly, caloric resiriction in 52
individuals for 2 monthe was followed by weight mainenange for
1 year. Plasma Proteome Profiling of seven longitudinal samples
revealed significant changes in the profile of apolipoproieing, a
decrease in inflammatory proteins and markers correlating with
nsulln sensitivity. Given that prowein abundance changes of < 20%
were often highly significant, we expeceed thar overall sample qual-
ity was high, making this study suitable Tor testing the practical
applicability of the quality marker panels,

First, we assessed the quality of each sample separately by calcu-
lating the three contamination indices and ploting thelr distribution
in the total of 318 measurements. For each index, we initially
defined potentially contaminated samples as those with a value
maore than two standard deviations above the mean (red lines in
Fig 44). This flagged 12 samples, six with platelet contamination,
one with increased erythrocyte levels, and five with signs of partial
coagulation. Resalving the three guality marker panels 1o the levels
af inglividual preveins resulted in almost perfectly parallel traecio-
ries {Appendix Fig S4A-C]. Acrordingly, the correlations to the
reference quality marker panels were aubstantial (R = 0,77}, Over-
all, the variation of the contamination indices was highest for the
plateleis also visible by a contamination index difference (max/min
ratio) of a factor 182 berween the least and the most contaminated
sample, followed by ervthrocytes (max/min 23}, and lowest for
coagulation (max/min 5}, The platelet proteins talin-1 {TLN1),
myasin-9 (MYHS), and alpha-actinin=1 (ACTN1) had the largsst
variations, afl with maximal changes =~ 5,000-fold. Catalazse (CAT),
carbonic anhydraze 1 and 2 (CAlL, CA2] from the ervthrocyte index
varled maxlmally by mare (has 500-fokd. The three (Ibrinogens o
the coagulation panel changed by up to 20-fald, Indicating that anly
partial coagulation events took place [Fig 44).

Note that evaluating individual sample gquality based on the stan-
dard deviation of all samples, as done here, has the benefit of being
independent of (he specific proteomic method wsed 10 measure
protein ameunts. However, this reguires that most samples have
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low levels of contaminatien, so that cutliers of the statistical disuri-
bution are clearly apparent. 7 this & nor the case, we propese using
general, study-independent cutoff values to differentiate between
samples of high and poor quality in such studies,

To assess potential systematic bigs for groups of sampies such as
cases and controls or different thme points; we applied a [-iest based
voleano plot. Most of the significantly upregulated proteins at time
point 4 wese members of the platelet panel [Fig 48). With this infor-
mation in hand, we contacted our collaboration partners, who
tracked down the platelet contamination 1o a switch of the blood-
taking equipment due to low supplies.

In practice, such sample ssues will occagionally happen in a clinical
study, and our quality marker pancl._!! wonld allow elimination of the
affected samples However, il contaminating proteins can reliably be
distipguished from relevant biomarker candidates, the data could still
be used. In our example, six of the eight significant outliers were from
the platelet panel, and the other two proieins—GP1BA and NRP1—
could sl be of imtered. To investigate this further, we ingpected (he
global correlation map of all proteins, time points, and paricipants
(Albrechisen et af, 2018k In this hierarchical chestering analysis,
proteins that are co-regulated have a high correlation wo each other and
appear in groups, visualized as red patches [Fig 4C). Here, the platelet
cluster was the second fargest one with 38 proteins (R = 0.69), All
guantiied platelel pane] proteins were In this cluster, as was GP1BA,
flagging them as likely contaminants {Fig 4C and inset), Interestingly,
NRP1, a receptor involved in angiogenesis, did not groop with the
platelet proteins, sugzesting 2 potential biological role. This s
supported by the fact that NEP1 was significantly regulated over all
tme peints compared 10 the baseline, in contrast (o the platéler cluster
Prodeins,

The other two quality marker panels are also readily apparent i
the global correlation map. Ten members of the erythrocyte pane!
cluster tightly as do the three fibrinogen chaine {Appendix Fig 55)
However, in this study the fbrinogens group with proteins involved
in low-prade inflammation, reduction of which was ane of the main
finelings of our study (Appendix Fig 55). In contrast, the coagulation

140
A.ﬁml-magu]am B 10 F‘;Son
& 10—1‘!]
3 T oraa FGE
iig_ Pasm g
e i E 10®
F1aA1
4 10® bl
\D PPEP 5p4gA e 1
ey Sanum 1070 THeSY %B
= B PRAVY,
L) 10*
Comgifesion 2 4 06 1 2 3

Ptasma : Serum fold-change [Log, ]

Flgure 3 Quality marker panel for blood coagulation.

EMEBQ Molecular Medicine

marker PF4v1, which is alzo a highly abundant protein in plarelets,
clustered in the plateler group in this analvsis, indicating that i
varied as a result of sample preparation.

To make the above-described analysia readily available, we
created an online platform at www. plasmaprotecmeprofiling.org, It
provides a toolbex for the interactve assessment of the gquality of
plasma proteomic data, Lists of protein abundances from MaxQuant
search result tables or the template (Table EV4] can be uploaded by
a simple drag and drop system, The systermn automatically generates
the three comtamination index values as shown in Fig 4A. If the user
indicates cases and controls, the data ser will be analyzed for
systematie bias as visvalized in a volcano plot (Fig 48). The global
comrelation ‘map is also displayed with the clusters of the quality
marker panels [Fig 4C). The website is designed in (he Dash data
visnalization framework, which allows further interactive analysis
of the data |{see Materials and Methods), Potential biomarker candi-
dates in the voleano plot can be selected and displayed in the global
carrelation map 1o check whether the protein falls inte or near one
of the guality marker clusters.

Revisiting results of published biomarker studies

Having examined cne study in detail, we set out to survey the
extent 1o which quality marker protelns are reporied as hiomarker
candidates in the Herature, To this end, we performed a compre-
hensive PobMed search requiring the terms ‘proteamics’. ‘pro-
eome’, ‘plasma OR serum’, 'biomarker’ and ‘mass spectrometry’
spanning the time frame [rom 2002 to April 2008, We excluded
review  papers,  purely  technological  publicattons  without
momarker candidates, anmimal studies, and publications withaut
prideins as qualitative or quantitative variables, From the resalting
210 publications, we manually extracted the lists of the biomarker
candidates that were reported as "significantly altered proteins” by
the authors, Cene and protein names wore mapped 1o the corre-
sponding protein identifiers in our reference pangls and analysed
for their frequencies.
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8 Volcano plot eompanng 72 plisma vs 72 serum proteames. Proteing highlighted in yellow were ¢hosen accarding e their Pvale as marsers for coagubation. Only
the plasme-enriched protesrs {tompared o serumy were used in the calculation of the coagulation contamination Indax,
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Remarkably, 113 studies (54% ) reported at least one poteatial gual-
ity marker as a biomsarker candidate or as a statistically significant
association (Fig 40} As the total quality marker panel consists of 84
profteins and the median number of candidates per clinical study was
sevell, & certain overlap is not entively unexpected, Howeser, the
candidaies in guestion almost always were near the top of most aburn-
dant preteins of the quality marker panels, making it highly likely that
they are indeed contaminants. Furthermore, while an individual
protein ¢ould still be a genuine biomarker candidate, the fact that 22
studies (11%) reported two of them, and a further 23 stodies (11%)
three or more, again malkes quality issues the likely explanation.

The majonty of these studies reported protelns as potential
biomarkers or as significant outliers of the coagulation panel. followed
by the ervthrocyme and platelet panels (Fig 4E], The most freguent one
was chustenin (CLL; 27 times), followed by the fibrinogens (alpha, beta,
and gamma; 22, 10, and 15 times], prothrombin (F2; 17 times), kinino-
gen [KWGL; 15 times), antithrombin-Ill (SERPINCI; 13 times], and
platelet bagic protein (PPBP: 10 times). 1 is worth noting thal proteing
related to erythrocyte leakage may falsely be taken (o indicate activa-
tion of oxelative pathways. For example, the hemoglobin subunits
{eg. HBAL, HBB, and HBD, listed 1, &, and | tme), carbonic anhy-
drazes (CAl and CAZ, 6 and 6 times], fructose-bisphosphate aldolase
(ALDDA, S times], peroxiredoxin 2 (PRDXI, 3 times}), and superoxide
dismutase (SO0, 2 times] are annotated with keywords linked to
oxidation. To illustrate this, a recent publication connected plasma
proteame alterations in tvpe | diabetes w oxidative stress. This may he
a spurious link because the reported proteins were mostly members of
the erythrocyte quality marker panel (Liv ef @, 2008). Although
platelet panel protelns are pot prominet e the biomarker lerarae
yel, we expect that they—along with Jower abundant ervibrocyte
specific proteins—uwill play an imcreasing role as technological progress
enables higher plasma proteome coverage. We caution that platelet
proteins already found in the biomarker Herature such as PPEP,
THBES , and PF4 are often linked o coagulation events.

Recommendations for future proteomic studies

Based on our experience with the above-detined thres guality
marker panels (Table EV2] and analvsis of thouzands of plasma
protepmes, we devised a general guideline for minimizing and
detecting biases related 1o sample taking and processing (Table 1)

To further document the influence of common variables in the
blond-taking process, we invited 10 healthy individuals and
colierted Dood in 10 different bloesd sampling ubes. In this experi-
ment, we systematically vaned the type of plasmay/serum, the hlopd
specimen wbes {with or without gel), and the deposition of blood
into the sampling tube [vacuwm va. pull svatem).

The most prominent differences were again between serum and
plasma (Fig 3B; Appendix Fig 56). Apart from this, we found that
contaminations  with high-abundant  erythrocyte-specific  proteins
appeared in several compartsans. Serum and EDTA plasma both had
significandly higher levils than lilium beparln and clicate plasing
(Appendix Fig 56A-F). Moreover, vacoum sampling can have an
influence on erythrocyte-specific protein levels for some tubes. For
instance, we found significantly increased levels of HBAL and HBE
io Hibkium heparin plasma tubes afier vacuum sampling compared to
a pull system, but not in the same comparison when wsing serum
tubes  [Appendix Fig S7A-DY. Fuorthermore, erythroeyte-specific
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proteins were significantly increased in lithium heparin pull ubes
Imore than twofald), which contain @ gel plug compared o pull
tubes without 2 gel plug (Appendix Fig S8A-13. In contrast, thers
were no differences between serum tubes with and without gel,
These findings illustrate how even seemingly minor changes in
blood-taking equipment can result in statistically significant dif-
ferences of protein levels, which could confound biomarker studies,
They also highlight the value of unbigsed, system-wide investigation
af the blood proteome and our quality marker panels.

We also found that the procedure of sampling the plasma from the
whes has a prominent effect on plareler contamination (Appendix Figs
5% and S10). Thus, we recommend not 1o collect the lowest layer of
the plasma above the platelet bed after centrifugation. Furthermore,
amy delay from centifugation to plasma barvest has the potental 1w
mduce platelet protem contamination, These factors mainly influence
the platelet rather than the erythrocyte contamination index, indicating
that proteins from the plaielet proteome are the most likely cause of
erroneous assignment of biomarker candidates.

Discussion

Blood plasma remains the predominant biological matrix 1o assess
health and dizease in dinical settings. Around the world, every day
hundreds of thousands of samples are analyzed 1o determine the
Tevels of individual proteins. Likewise, blood plasma is directly or
indirectly assessed in most clinical trials. Protein levels in plasma
can readily be affected by cellufar contamination or handling-refated
ssues, and in clinical practice, this i partially addressed by simple
1es1s such as those for hemoglobin contamination. However, these
tests are not systematic or quantitative and they can only be used 1o
exclude clearly contaminated samples.

Because of jts high specificity and unbiased nature, M5-hased
protecmics s ideally suited o characterize the quality of hlood
plasma and it requires <= 1 pl of material. So far, research on sample
guality involving M5 has mainly been vestricted 1o the stability of
internal standards in targeted assavsand has rarety addressed over-
all sample quality {Schrohl et ai, 2008; Hassis et al, 201 5; Hooinagle
et gf, 2016). Emploving our Plasma Proteome Profiling pipeline to
various elinical swdies suggesied that platelets, erythrocytes, and
coagulation are by far the most impertant causes of plasma quality
issues. We acyuired very deep reference proteomes for these cell
types and blood compartments, which we provide to the community
10 evaluate the possible origin of proteins emerging (rom biomarker
studies. We defined three panels of about 30 proteins each that can
serve as contamination indices [Table EV2). Using the example of a
longitudinal Plasma Proteome Profiling study of weight loss and our
online resource, we ilustrated how the contamination indices can
flag individual suspect samples and systematic biases, Furthermore,
correlation analysis reveals whether poiential biomarkers emerging
from a given study are likely to be associated with quality-related
proteome changes instead. Conversely, this procedure can “rescue”
genuine blomarker candldates that are parl of the quality marker
proteomes. A% an example, fibrinogens, a member of the coagula-
tien guality marker panel. can also change during an inflammatory
eondition and might be correlated with ¢lassical inflammation mark-
ers such as CRP. In certain diseases, the entire set of proteins of a
quality marker panet can be altered. For example, increased platelet
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Figure 4. Quality marker panels in a weight loss study and literature study,
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& Assessment of individual samiple quality with respect to the three contamination indices ssing the online toal at wiw plasmaproteameprofiing org Samples with
indices that & maore than two standand devistions fram the mean (horizontal red dineg are fizpged ag potantiafy contaminated fred bars and sample numbers),
B Voleans plot of the proteame camparisen af brme point L ve 4. Prateing of the plateles panel ase highlighted in bBue and twe additiensl significantly regulated

orodeing in red.

il

Global correlation map on the left with @n inset of the platelat cluster on the right, The twe significant autliers of the vabcans plot In (B} are marked in red Platelst

panel proteins are highlighted in blue inthe inset. Asd patches in the global cormelation meg indicrie postive and blus gaiches negative conelations
0 Literature analysls of 210 pubdications uslng M5-based plesma proteamics to identify new biomarkers The number of quality markers reported as bomarker

candidates in thess studiss is indjcated,

£ Oisribution of the repored quality markers according te the three types of likely contsminations. The distnbation is shown scress studies that Epart one, two: or

thres proteing of the same quality marker panel

levels—thromborythemia—can have a variety of causes ranging
from chronic Inflammation o myeloproliferative diseases. Likewise.
increased concentration of ervilrocyle-specitic proteinsg can be
caused by hemolytic diseases such as in autoimmunity, While these
cases are not the ustal reasons why a guality marker panel s
altered, they need 1o be considered when judging the analvtical
validity of a plasma measurement.

The clinical potential of the plasma proteome has long been
realized and is also emphasized by the fact that more than 50

Table 1. Practical considerations to minimize systematic bias.
General instructions

Aunid pooling of samples

Use plasma ar serum exclusively, nota combination
Sample collection

Standardize bicod collection and pra-analytical procedures (preferably
same person collecting blood, centrifuge, sampling container, storage
tamperaturz, and time]

Centrifuge blood to Benerate plasma immediately
Cantrifuge according to manufacturar’s instruction
Harvest plasmi immediotely after cantrifugation

Harvest the plasma starting from the top of the container and pool it
befode aliguotling

Piscard the st 500 ] of plasma ta avoid contamination with platelets or
wze a second centrifugation step ta generate platelet-pocr plasma

Freeze somples immediately after harvesting
Principal assessment of study sample quality

When working with a new bateh of samples from collaborators: run at
least 10 test samples of each study group by mass spectrometry

Use quality marker panels to check for-any indication of contarmination
Main study

Cantinuously zssess quality during the project 1o detect and avoid
systematic Bias (pre-analytics; mass spectrametric anakyses)

wverall qualicy: regort the number of contaminated samples

Systematic bias; repadt potential systematic biss

Check whethar biomarker candidates are contained in the guality marker
panels

identificazion of several quality markers as biomarker candidates may be
indicative of a study vector

IFa quality marker is among the biomarker candidates; thoreugh validation
5 reguired
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FDA-approved biomarkerss can be guantified even in relatively
shallow proteomic measurements of plasma (Geyer et af, 2016a),
If there aré as many new biomarkers among the less abundant
proteins, there should be'a didgnostic treasure trove still 1o be
discovered (Geyer of af, 2017), Millions of plasma zamples are
stared in binhanks worldwide, representing an immenss untappsd
resouree thal could be analyzed by MS-based prodeomics or large-
scale affimty-based methods. Despite initial enthusiasm and
community efforts such as the Human Proteome Crganization's
plasma proteomic initiative {Omenn ef al, 2005; Schwenk et al,
2017, few If any new pratein biomarkers have entered the clinic
in recent decades. This is prabably at least partially due to techno-
logical limitations to characterize the vast dynamic range of the
plasma protecme, which in turn has led to underpowered study
degigns (Geyer ot al, 2017), While many of theése challenges are
already being addressed, we suspect that problems with sample qual-
ity represent another imporant season for the paucity of new
biomarkers and, even maore senously, for incorrect biomarkers being
used. Examuning our own daia as well as the scientific literature, we
here show that sample quality issves indeed have am Impact on
reparted results. Nearly half of the reviewed swudies reponed an least
one potential blomarker that 1s In owr quality marker panels, and
many had twe or more, making sample comamination very likely.
While coagulation-related issues are currently most  prominent,
increasing depth of plasma proteome coverage mayv replace platelet
contamination as the most important source of ercor in the future, A
carolfary of the very large abundance variation of proteins introduced
by quality Issues is that it showld further discourage pooling of
samples, While this increases throughput, even a single contaminated
sample can readily skew an entire batch.

Systemadic bias Introduced by imperfect sample handling or
processing may lead to reporting incormect blomarkers, Conversely,
tandomly distributed samples with poor quality will diminish over-
all statistical quality and may chscure true hiomarker candidates.

The sources of quality issues are different kinds of variations in
the pre-znalvtical processes; and we found plaselet contamination
during plasma harvesting to he one of the main culprits. Among the
few previous. siudios, Hassis er al (2015) investigated  dififerent
sample handling ercors and concluded that only extreme conditions,
such as delay o sample storage for 4 days, substantially changed
the plasma protecme, However, proceeding with such extreme cases
is rare, and quality issues are much more likely to originate from
recontamization with whale blood after centrifugation during the
plasma harvest or post-centrifugation times and resuspension of
platelets; for instance. The comparison of 10 different blood
zampling tubes showed that even seemingly minor differences in
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the sample handling devices like a pull vs a vacuum deposilion
svstern can bave a statistically significant effect on the measured
pratesme. Tharefore, we want to stress the importance of strictly
tollowing standard operating procedures. We here provide general
considerations for minimizing sample-related issues, ranging from
Immediate harvest of the plasma after centrifugation to discarding
the lowest layer of plasma to avoid recontamination with platelets
(Table 1}. These recommendations update and extend general
good [aboratory practices as well as HUPO guidelines (Omenn
eral, 20053; Rai eral, 2005). We also advocate that plasma
samples are quality-checked by MS-based protecmics, at least for
a representative subsct, This lg especially important for clinical
studies but also for targeted single-analyte measurements, which
by thetr nature dre blind (o the overall composition of the sample
Although it would be pessible to determine contammation indices
by multiplexed affinity-based methods, we recommend MS for
this purpose because of its very high specificity and its unbiased
nature. Furthermore, the proteomic depth needed 10 assess the
guality is easily achievable even in rapid and economical
measurements.

The concepts and methods put forward in this stedy could read-
ily be adapted to other body fluids such as urine, saliva, or cere-
brospinal (heid. This woeuld require developing the appropriate
contamination indices, Furthermore, the three quality marker cate-
gories are the largest bt not the only ones, For instance, we imag-
in2 that simifar experiments can be performed 10 gange the effect of
storage duration and temperature on the plasma protecme ag it
influences MS-based profecmics;

In conclusion, sample-related quality issues are clearly a concern
for bromarker siudies. However, we show here that they can be
addressed nigorously and comprehersively by MS-based proteormcs
As this technology continues to improve in throughput, depth, and
robustness, we envision that it will be employed (o routine clinical
practice,  Blomarker panels nstead of single markers will he
measurad by MS-hased proteomics as this takes advantape of its
inherently multiplexed nature and allows (he characterization of
clinlcal conditions more comprehensivety, These hiomarker panels
could routingly be extended with quality marker panels as iniro-
duced here, helping to establish biomarker-gnided decisions in a
wide vartery of clintcally imporant areas,

Materials and Methods
samples for defining the three quality marker panels

All participants gave written informed consent for their participation
in the Munich Studyv on Blomarker Reference Values [MyRel), which
is registered under the local ethic number 11-16. All experiments
conformed to the principles st our in the WMA Declaration of
Helsinki and the Department of Health and Human Services
Belmaont Report.

To establish the qualty marker panels, whole blood was
harvested by venipuncture of 10 fermales and 10 maled into commer-
cial EDTA-containing sampling containers. The blood was centri-
fuged at 200 g for 10 min, and both the peliet and the supermaiant
were kept for further processing steps. The botom laver of 500 ul
plasma wae discarded 1o avoid contamination of the platelet-rich

2005 The Authors

EMBQ Molecular Medicine

plasma fraction with erythrocytes. The pellet was centrifuged at
2,000 g Tor 15 min, and the top laver containing plagma, the
huffy eoat, and 1 mi of ervthrocytes were discarded. After adding
4 mi PBS contaiming 1.6 mg/ml EDTA, the suspension was
centrifuged at 2,000 g for 15 min and the supernatant was
discarded wgether with 500 yl of the top layer of the eryihro-
cytes. This step was repeated, and the pure erythrocyte fraction
was harvested, We centrifuged the supernatant from the first
centrifugation step containing plasma and platelets a second time
at 200 g for 10 min and harvested the supernatant, which consti-
wites the platelet-rich plasma. This step was repeated, and we
eollected the supernatant and the platelet after centrifugation at
2,000 ¢ for 15 min. The supernatant was centrifuged a second
thme a1 2,000 g for 15 min o harvest platelet-free plasma by
sampling only top layer of the supernatant, bul discarding the
bottom [aver of 500 pl. The plateleis were washed twice by
adding 4 ml PBS containing 1.6 mg/ml EDTA and centrifugation
at 2,000 g for 15 min. The supernatant was discarded, and the
pure platelet fraction was harvestad.

For the serum and plasma comparisen, blood samples from two
females and two males were split into 18 samples each and serum
and plasma were harvested after centrifugation at 2,000 g for
15 min.

To Investigate the eifects of different bipod sampling devices on
the blood plasma proteome, we invited 10 healthy individuoals (five
female and five males] and collected bleod in the 10 different blood
zsampling devices {Table EVS). After collecting whole blood, it was
incubated at room temperature for 30 min o atlow coagulation in
e serumm tubes. The plasma tabes were also stared at rosn temper-
atare for the same rime, and the different tubes were centrifuged
wogether. Afterward, 0.3 ml of plasma or serum was sampled from
the top of the tubes,

To evaluate the platelet contamination in different layers of
plasma after centrifugation, bload was collected In twa different 9-
ml S-Monovette EDTA-containing sampling containers (Sarstedt).
The blood of one container was tansferred to-a 15-ml centrifugation
fube without separation gel. Both containers were centrifuged at
2,000 g tor 15 min. Plasma was harvested in nine volume fractions
starting from the top layer in 500 pl steps o the top of the buffy
eoat, The buify coat iseli was not touched, and a small amount of
plasma {-200 pl) remamed on top

High-abundant protein depletion for building a matching library

We created a matching library and applied a consecutive deple-
fion strategy, in which the top 6 and top 14 most abundant
plasma proteins were depleted by using & combination of two
immunodepletion kits, as described in ref. Geyer et ol [2016a},
Briefly. the Agilent Multiple Affinity Removal Spin Cartridge was
used for the depletion of the wop six highest abundant proteing
lalbumin, G, 1gA, anlitrypsing, transferrin, and hapteglobin,
follpwed by Seppro Human 14 Sigma Immunodepleton for the
14 highest abundant proteing (albumin, 186G, 184, [gM, 1D, trans-
ferrin, fibrinogen, w2-macroglobulin, «l-antitrypsin, haptoglobin,
#l-acid  glycoproiein,  ceruloplasmin,  apolipopretein = A-l,
apolipoprotein A, apolipoprotein B, domplement Clq, comple-
ment C3, complement C4, plasminogen, and prealbumin). Follow-
ing depletion, we fractionated our samples using the high pH
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The paper explained

Problem

New biomarkers are urgently needed In many health and disease
coniests and mais ipectrometnye-hased protesmice 5 a potentially
pqwerl'yl and promising technology for their discovery, as It can
analyre the plasma proteome (0 a guentitéthve and specific manner,
Howewer, 8 systematic analysis of pre-analytical variations might
obscure the discovery 'of novel biomarkers and has not been
performed so far,

Results

We employ Plasma Proteome Profiling 1o discover three qualiy
marker- panels. that report on the status of plasma samples with
resards 1o erythrooyte lysis platefet contamination, and partial cosgu-
lation. These panels tan identify individual samples of poor guality
and correct for systematic bias in biomarker studies Moreover, they
tan be applied to evaluate whether-a novel biomarker candidatz is
linked to ope of the sowrces of contaminétion. We further provide
Sample préparation guicelings and an oniing fESOUFCE 10 Assess the
owerall sampla-retated blas In indwideal samples In clinical studles

Impact

Quality issues due to efythrocyle: lysis, placeiet contsmination; and
partial coagulation might affect up 1o 50% of all Blormarker studies as
we showed by 3 lleereture survey of mare than 200 published manu-
scripts. Our guality mearker panels will prevent costly miss-assignment
of potential Eomarker candidates and support the discovery of
promising bomarkers

teversed-phase “Spider [ractionator” into 24 fractions as described
previously (Kulsk et af, 2017),

Sample preparation: protein digestion and
in-StageTip purification

Sample preparation was carmed out according lo our  Plasma
Proteome Profiling pipeline as described in Gever gt af (2016a,b) with
an avtomaled setap on an Agilent Bravo Liguid Handling Platform. In
brief, plasma samples were diluted 1:10 with 5H,0 and 10 pl of the
sample was mixed with 10 pl PreOmics: lvsis buffer (P.O. D000I,
PreOmics GmbH) Ter reduction of disulfide brndges, cysielne alkyla-
tion, and protein denaturation at 95°C for 10 min (Kulak ef af. 2014}
Trypsin and LysC were added to the mixture after a 5-min cooling
step at room temperature, at a rato of 1:100 micrograms of engymea
Lo mscrograms of protein. Digestion was performed ai 37°C for | b
An amount of 20 ug of peptides was loaded on two 14-gange
StageTip plugs, followed by consecutive purification steps according
to the PreChmics iST protocal (www preomics.com), The StageTips
were centrifuged using an in-house 3D0-printed StageTip centrifugal
device at 1,500 g The collected material was completely dried using
a SpeedVac centrifuge at 60°C (Eppendori, Concentrator  plus)
Peptides were suspended in buffer A* [2% acetonitrile (viv), 0.1%%
formie achd (vy/v)] amd sonlcaled (Branson Ulrasonics, Ultrasonie
Cleaner Model 2510), Peols for each of the five sample types (whole
bloed, erythrocytes, platelets, plasma, and platelet-free plasmaj were
penerated from the 20 individuals -and prepared accerding to the
peocedure above, The peptides were fractionated using the high pH
reversedbphase “Spider fractionator” into 24 fractions as described
previously to generate deep proteomes (Kulak et af, 2017],
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Ultra-high-pressure liguid chromatography and
mass spectrometry

Samples were measured using LC-MS instrumentation consisting of
an EASY-nLC 1000 or 1200 ultra-high-pressure system  (Thermo
Fisher Scientlfic), which was coupled o a Q Exactive HF Orbiirap
|Therme Fisher Scientific] using a nano-electrospray fon scurce
[Therme Fisher Seientific]. Furified peptides were separated on 40-
em HPLC columns [10: 75 pm in-house packed into the tip with
Reprosil-Pur C18-AQ 1.9 ym resin (Dr. Maisch GmbH]|. For each
LC-MS/MS analysis: about L5 pg peptides were used for 45-min
rutis and for ¢ach fraction of the deep plasma data set.

Peptides were loaded in buffer A [0.1% formic acd and 5% DMSO
[w/vl and eluted with a Hoear 35-min gradient of 3-30% of buife; B
[0.1 % formic acld, 5% DMSO, and 80% (viv) acetonitrile], ollowed
stepwise by @ 7-min increase o 75% of buffer B-and a 1-min increase
10 98% of buffer B, followed by a 2-min wash of 98% buffer B at a
Mow rave of 450 nly/min. Column temperature was ke at 60°C by an
n-hovse-developed oven comtaming a Peltier element, and parame-
ters were monitored in real time by the SpravQC software (Scheltema
& Mann, 2012). M5 data were acquired with a Topl5 data-dependent
M5/MS5 scan method for the construction of the library and BoxCar
scans [Meier et al, 2018) for the study samples. Target values for the
full-sean M5 specira wene 3 > 1W0® charges (o the 300-1,650 m/z
range with & maximum injection time of 55 ms and 2 resolution of
&(h,000 a1 myz 200, Fragmemation of precursor ions was performed
by higher-energy C-trap disseciation [HCD) with a normalized colli-
sion energy of 27 eV, MB/MS scans were performed at 4 resolution of
30,000 at myz 200 with an ion target valoe of 1 = 107 and a mraxi-
mum ingection time of 120 ms. Dynamie exclusion was sel i0 30 5 w0
avond repeated sequencing of identical peptides,

Data analysis

MS raw files were analyzed by MaxQuant software, version 1.5.6.8,
[Cox & Mann, 2008), amd peptide lists were searched against (the
human UniProt FASTA database, A contaminant database generated
by the Andromeda search engine (Cox etal, 2011) was configured
with cysteine carbamidomethylation as a fixed modification and N-
werminal acetylation and methionine oxidation as variable modifi-
cations, We ser the false discovery rate [FDR) w 0.01 for protein and
peptide. levels with 2 minimum length of 7 amino acids for peptides,
and the FDR was determined by searching a reverse database. Enzyme
specificity was sel as C-terminal o arginine and lysine a5 #xpecied
using trypsin-and LysC as proteases, A maximum of two missed cleav-
ages were allowed. Peptide identification was performed with an [nitial
precursar mass deviation up to 7 ppm and a fragment mass deviation
af 20 ppm. The “match between man algorithm”™ in the MaxQuant
quantification {Nagaraj et af, 2012) was enabled after congtructing a
matching library consisient of depleted and all the undepleted plasma
samples. All proteins and peptides matching to the eversed datbase
were (Mered out, Label-freg peotein quaniitation (LEQ) was perfarmisd
with a mintmum ratio counl of 2 (Cox ef al, 2014).

Bioinformatic analysis

All bioinformatic analvses were performed with the Perseus soft-
ware of the MaxQuant computational platform (Cox & Mann, 2008;
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Tyanova er al, 2018). For the global correlation analysis; proteins
were fillered for at least 50% valid values in the welght loss study
and the hierarchical clustering was performed wsing Euclidean
distance. The weight lose study confained in total 28 proteins of the
platelet panel, but after sorting for 50% valid values only 24 were
left and all of them clustered in the platelel panel.

Online platform for automated analysis of clinical studies

Cur online portal is eguipped with a user-friendly graphical inter-
face that supporis the most commaon web browsers, such as Google
Chrome., Firelox, and Internet Explorer, For the front-end develop
mernt, a Dash framework was used (version 0.27.0), which consists
of a Flask server {1.0.2) that commuriicates with front-end React |s
components wsing J50N, or JavaScrp Object Notation, packets (a
minimal, readable format for structuring data) over HTTF, or Hyper-
text Transfer Protocol, requests that work as requesi-response
protocols between a client and server. Taking advantage of the full

power of Cascading Style Sheets [C55), every graphical element was.

customized: the sizing, the positinning, the colors, and the fonts,

The platform takes the results of the MS data processed by the
MaxQuant software {Cox & Mann, 2008) from the proteinGroups
table (to be extended to other formats). During the data uploading,
the input file is verified through a combination of preliminary tesis
We built a complex data structure using general Pvthon libraries,
such as NumPy, Pandas, and 5cPy. Using three panels of markers for
plateiet contamination, erythrocyte contamination. and coagulation
events in plasma samples, respectively, we ldentilv samples affected
by quality lssues. Samples having at least 50% “valld values™ {le
those with quantification results) ase preprocessed by cleaning the
data and prepare them for {he subsequent visualization step.

Data availability

The M5-based proteomic data have been deposied o the Proteo-
meXchange Consortum via the PRIDE partner ceposiiory and are
avatlable via ProteemeXchange with wdentifier PXDO1174% (hiips:/
www.ebi.ac.uk/pride/archive /projects/PXD01 1749],

Expanded View for this article 15 available anline,
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