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Abstract

In this thesis we summarize a number of theoretical studies dealing with various properties
of quantum dots. Small quantum dots with a large level spacing are very well described
by the Anderson impurity model. In modern quantum dot experiments all parameters of
this model can be tuned via external gate voltages. Thus, it should be possible to check
our theoretical findings experimentally. We are particularly interested in temperatures
T smaller than the so-called Kondo temperature Tk, T" < Tx. The Kondo temperature
Ty is an energy scale below which a local spin inside the dot interacts strongly with the
conduction electrons in its neighboring leads. Consequently we employ Wilson’s numerical
renormalization group method [1], a numerical technique which allows for an accurate
calculation of properties of quantum dots in the Kondo regime.

We start with a general introduction to the physics of quantum dots, an introduction
to the Kondo effect and the numerical renormalization group method (Part I).

The main part of this thesis, Part II, is divided into several studies:
(i) We analyze the properties of the Kondo resonance of a quantum dot that is coupled to
leads with a finite spin polarization. We find that this polarization suppresses and splits
the Kondo resonance. We extend our study to a dot that is coupled to a lead with an
arbitrary density of states and study the gate-voltage dependence of the Kondo resonance.
(ii) We investigate the filling scheme of a spinless two-level Anderson model as a function
of gate voltage. We identify parameters where the two levels do not fill monotonically
when being lowered relative to the Fermi energy of the leads. For asymmetrically coupled
levels, we even find an occupation inversion of the two levels (i.e. the upper level has a
bigger occupation than the lower level) for a specific gate voltage region. We explain this
behavior by means of the self consistent Hartree approach.
(iii) We calculate the finite frequency conductance of a Kondo quantum dot within the
Kubo formalism. An analytical formula, which establishes a relation between the frequency
dependent conductance and the (local) equilibrium spectral function, is derived. By means
of the fluctuation dissipation theorem we establish a relation between current noise and
the equilibrium spectral function.
(iv) Motivated by emission experiments in self-assembled semiconductor quantum dots [2]
we study optical transitions between 'Kondo’ and 'mon-Kondo’ states. For this sake the
‘standard’ Anderson model is extended. We find that the emission and absorption spectrum
can be nicely understood by analogy to the X-ray edge absorption problem.

In Part IIT we summarize technical details that have been of relevance in this thesis.
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Part 1

General Introduction






Chapter 1

Introductory remarks

Many-body phenomena [3] are of central interest in many fields of modern condensed
matter physics. Those phenomena are challenging both from an experimental and from a
theoretical point of view.

In typical bulk materials, it can often be difficult to distinguish whether a measured
effect stems from single particle physics or is really due to correlation effects. Quantum
dots (QDs) (small electron droplets which are confined in all spatial dimensions) on the
other hand, are ideally suited to investigate the interplay of single-particle and many-body
physics in a controlled fashion. In typical QDs many-body effects become observable at
temperatures 1" below ~ 1K. Consequently, a lot of effort was invested to reach these
limits experimentally. In QDs it is possible to study correlation effects systematically. In
particular, it is possible to tune QDs such that one of the simplest strongly correlated
models, the Kondo model (KM), can be realized experimentally.

New theoretical methods need to be used to investigate regimes where many-body ef-
fects are important. It turns out that mean-field theories are not capable of describing
all effects that arise from many-body correlations properly. The quest for new theoretical
methods, such as the numerical renormalization group method, lead to renormalization
techniques which allow for a quantitative description of effects where correlations are im-
portant. The fruitful interplay between experimental and theoretical developments allowed
for a considerable progress in Kondo physics, the physics related with the Kondo model,
within the last years.

This thesis deals with some low-temperature properties of different QD-systems. We are
particularly interested in zero-temperature properties of those systems. Since correlation
effects are crucial in this regime we employ Wilson’s numerical renormalization group
(NRG) method to tackle this problem.

The thesis is divided into four parts:

A pedagogical introduction to the field is given in Part 1. After we provide basic knowl-
edge about QDs in Chapter 2, we give a detailed introduction to the Kondo problem in
Chapter 3. In Chapter 4/ we discuss the method that is heavily used in this thesis, the
NRG-method.
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The second part of this thesis, Part II, contains several studies that were carried out
and published during my PhD-studies.
In Chapter |5 we consider a QD coupled to leads with a finite spin polarization and ana-
lyze the delicate effect of a spin polarization in the leads on the Kondo resonance. In the
first part of this Chapter we are interested in the consequences of this polarization on the
Kondo resonance while keeping the gate voltage fixed (Section 5.1). In the second part
(Section 5.2), on the other hand, we focus on the gate voltage dependence of the Kondo
resonance for a QD coupled to leads with a particular density of states (DoS). We find that
the local spin splitting of a QD coupled to leads of that type can be controlled by means
of an external gate voltage.
Chapter 6/ deals with the filling of a spinless two-level QD. We observe a non-monotonic
filling scheme for a particular region in parameter space and explain this behavior via a
simple self-consistent Hartree approach. We identify gate voltage regions where the QD
occupation is even inverted, i.e. the occupation of the energetically higher lying level is
bigger than the occupation of the energetically lower lying level, given the two levels are
coupled with a different strength. The generalization of this study to the spinfull case is
currently in preparation.
The finite frequency conductance of a Kondo QD is investigated in Chapter [7. We use the
Kubo formalism to compute the frequency-dependent conductance of a QD in the Kondo
regime. We identify two possibilities to measure the equilibrium spectral function of a
generic QD, namely via (i) a finite frequency conductance measurement or via (ii) a cur-
rent noise measurement.
We study optical transitions between a 'Kondo’ and a 'mon-Kondo’ state in Chapter &.
Transitions of this type have recently come into experimental reach in self assembled
QDs [2]. In contrast to the previous Chapters, where various transport properties of QDs
were considered, we focus on optical properties in Chapter 8. We use Fermi’s Golden Rule
to calculate the line shape related to the transitions mentioned above. The findings can
be nicely explained by an analogy to the X-ray edge problem.

Part III, the Appendix, contains technical details relevant for the studies carried out
in Part II. In Appendix A, the general NRG-mapping of a single-level QD coupled to a
lead with a spin- and energy-dependent DoS is performed.
Dynamic quantities, such as the widely used spectral function, are rather difficult to cal-
culate for the following two reasons: firstly, to realize a continuous function, d-functions
need to be broadened properly. Secondly, the different energy scales of the NRG-iteration
have to be combined properly to obtain a function valid on all energy scales. Both issues
are addressed in Appendix Bl
To keep the numerical effort of the NRG-iteration tolerable and to get rid of artificial
perturbations, we introduce some relevant and useful symmetries of the NRG-procedure
in Appendix (C. Their use is crucial as we are usually dealing with a Hilbert space of
considerable dimension (its dimension is typically ~ 10%).
Problems that inherit more than a single energy scale (e.g. systems in presence of a magnetic



field B) have to be treated with a generalized NRG-procedure, known as the 'DM-NRG'-
method. This method, invented by Hofstetter [4], generalizes the 'traditional’ NRG-method
which incorporates only a single energy scale. We introduce the 'DM-NRG’-method in Ap-
pendix D.

The Kramers-Kronig relations are well established relations for causal functions. Since we
are mostly interested in functions that have a sharp feature around the Fermi energy (e.g.
the Kondo resonance of width ~ T), it turns out that their numerical implementation is
rather tricky. Following Bulla [5] we introduce an accurate method to perform this trans-
formation in Appendix [E.

In Appendix F we present a general way for the calculation of the conductance through
an interacting region. We derive equations for the conductance based on the Kubo formal-
ism [6]. In particular, these relations allow for the accurate determination of the frequency-
dependent conductance of a 'Kondo-QD’ as used in [7] (see also Chapter 7).

The last part, Part IV, contains miscellaneous. It contains the bibliography, a list
of publications, the acknowledgements, “Deutsche Zusammenfassung” and finally the cur-
riculum vitae.
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Chapter 2

Quantum dot (QD) basics

The tunability of QDs makes them ideal devices to study quantum impurity problems
experimentally. Due to the small spatial dimensions of QDs the energy levels inside the
QDs are quantized. QDs with large charging energies (up to 1.5meV =~ 15K; see e.g. [8])
can be routinely manufactured, thus charging effects are important below temperatures
T ~ 15K. Therefore: QDs reveal both charge and energy quantization.

2.1 Experimental realization of QDs

Quantum mechanical effects occur when the system size L is of the order of the de Broglie
wavelength! \p = meF and the thermal wavelength A\p = ,/ ﬁ of the electrons,

i.e. L ~ Ap, Ar. Here m* denotes the effective electron mass (at the Fermi energy) and
vp the Fermi velocity. Due to a much smaller Fermi velocity semiconducting materials
have a significantly larger de Broglie wavelength (Ap ~ 100nm) than metallic materials
(Ap ~ 0.1nm). Accordingly, quantum mechanical effects are observable in semiconductor
QDs with a diameter L ~ 100nm, a length scale that can be routinely realized with today’s
fabrication techniques.

The most frequently used tunable QDs - a property that self-assembled QDs do not
share - are lateral and vertical QDs, see Fig. 2.1l
A lateral QD, see Fig. 2.1(left panel), is defined by metallic gates on top of a semiconductor
heterostructure (typically GaAs/AlGaAs). Near the interface of these two semiconducting
materials a two-dimensional electron gas (2DEG) forms. When a negative voltage is applied
at the top gates a small electron droplet, a QD, is formed in the 2DEG which itself is below
the surface of the heterostructure. In addition, the gates allow for an accurate control of
the tunnel barriers between the QD and the neighboring reservoirs (i.e. the source and
drain region), the shape of the QD and the electro-chemical potential inside the dot.
A vertical QD, on the other hand, is etched out of a double-barrier heterostructure [9]
and finally coated by metal gates, see Fig. 2.1(right panel). The number of electrons in a

"'Which is identical to the Fermi wavelength here.
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vertical dot can be controlled very accurately by side gates without changing the tunnel
barriers. Lateral QDs do not share this property: a variation of the electron number in
lateral QDs results in a variation of the tunnel barriers as well.

Transport measurements through a QD can be performed by coupling it (via adjustable

Figure 2.1: Left: Atomic force microscopy picture of two coupled lateral QDs (bright
central circles), serving as an ’artificial’ molecule [10]. A negative voltage in the gates A
(source), B (drain), 1 and 2 leads to a partial depletion of the 2DEG (which is below the
surface of the heterostructure). Right: Vertical (QDs are realized by coating a pillar with
metallic gates [L1]. The side gates allow for an accurate control of the number of electrons
in the island without changing the tunnel barriers. Transport measurements in QDs are
performed by applying a finite bias voltage Vsp (a source-drain voltage) across the dot.

tunnel barriers) to electron reservoirs whose role it is to feed the QD with electrons. When
a finite bias voltage Vsp is applied across the QD a current (which depends sensitively on
the parameters of the QD) might be driven through the QD.

2.2 Level quantization

The energy difference between neighboring eigenenergies of a system, the level spacing 0 F,
is set by the system size L. Qualitatively, a decrease in system size results in an increasing
level spacing [12].

A lateral QD traps electrons in a disk of diameter L. A crude approximation of this
geometry is a square of side length L, thus the level spacing is 0 E oc 1/L?. More precisely

the level spacing of such a QD [13] is given by

0E ~1/pL? (2.1)
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where p = ,;}—FF is the (material dependent) DoS (at the Fermi energy) of the 2DEG. Note
that metallic systems have a much bigger DoS as compared to semiconducting materi-
als. Thus, for fixed L, the level spacing of metallic QDs is much smaller than that of

semiconducting QDs.

2.3 Charging effects

Due to the spatial confinement of the electrons inside the QD, Coulomb repulsion between
all electrons inside the QD is an important energy scale. The energy penalty that has to
be paid when an additional electron enters the QD (initially occupied with N electrons),
N — N +1, is called the charging energy E¢ of the QD, Ec = €?/2C (C denotes the total
capacitance of the QD). A good estimate of the total capacitance of a disk of diameter L
is C' ~ gL [13], with the dielectric constant &g, thus

62

2€0L '

Since the level spacing 0F has a different L dependence as the charging energy FE, see
Egs. (2.1) and (2.2), one can (in principle) tune the ratio of these two energy scales exper-
imentally by choosing L appropriately,

Eo , (i) . (2.3)

oF 6077,@ )l A F
In typical QDs, the diameter L is larger than Ap (L > Ag), thus charging energy E¢ is the
dominant energy scale (Ec > §F).* Semiconductor QDs with a diameter L ~ 100nm have
typically the following parameters: Eo ~ 1.5meV (as mentioned before), F =~ 0.1meV.
At sufficiently low-temperatures charging effects result in Coulomb blockade behavior, i.e.
the QD is charged one by one when its local electro-chemical potential is lowered relative
to the Fermi energy of the reservoirs.

One remark should be made here: the interaction between electrons inside a QD is not
solely due to charging effects. The first correction to E¢ is due to exchange interaction Fg,
an energy scale that arises from spin-spin interaction. Similar to Hund’s rule in atomic
physics a QD can lower its energy by maximizing its total spin.

2.4 Tunability of QDs

The success of QDs is associated with their tunability. As mentioned in Section 2.1,
different gate voltages allow for a precise control of a variety of relevant parameters of the
QD, such as the coupling strength between the QD and its surrounding reservoirs.

Here, we comment on gates that (i) allow for a rigid shift of the discrete levels inside
the QD and (ii) enable one to perform transport measurements (as a function of the bias

2The prefactor in Eq. (2.3), %, is of order one in typical materials.
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voltage Vsp) between the source and drain region. A schematic illustration is given in
Fig. 2.2, where the left (right) reservoir plays the role of the source (drain) contact.

A back gate (tunable via the gate voltage Vi) influences the electro-chemical potential
inside the QD. Tt can thus be used to realize task (i). Task (ii) can be realized by directly
applying a bias voltage between the left /right reservoir, see Fig. 2.1(b). We will henceforth
use the word lead synonymous for reservoir. The chemical potentials of the left /right lead,
i/ g, obey the relation uyp = ugr + eVsp.

Since the electro-chemical potential in a QD (containing N electrons) pg.:(N) can be tuned
by means of Vi, one can control the number of electrons inside the QD for temperatures
T < Ec. For Vsp =0 (= pp = pr) and pgor (N + 1) > g > pgee (V) the QD is filled with
N electrons. The (N + 1)-th electron can not enter the QD as long as figor(N +1) > p, i.e.
transport is blocked [Coulomb blockade, Fig. 2.2(a)]. In typical semiconductor QDs with
Ec > 0F one can measure the level-spacing 6 F of a QD by continuously increasing the
source-drain voltage Vsp, while keeping Vi fixed. Any time a new discrete level of the QD
enters the transport window (of width eVsp) a peak in the differential conductance can be
observed, see Fig. 2.2(b).

(@) (b)
L udot(N +1) R L

E-.+6E

pdot (N)

eV

Figure 2.2: (a) The gate voltage V¢ allows for a rigid and linear shift of the electro-chemical
potential of the n-th electron in the QD pgn(n), n € N. For T' < E¢ the QD is filled with
N electrons, if the corresponding chemical potential pig.¢(N) lies below the lowest chemical
potential of the leads pgor(N) < min{pr, pr} and pagee(N + 1) > min{pur, pr}, (b) The
chemical potential of the left (L) and right (R) lead pz/r can be changed relative to each
other by tuning the source drain voltage Vsp. The sketch shows how the discrete energy
levels in a QD can be probed by increasing the bias voltage Vsp. The excited states (of
spacing 0 F) can be seen as peaks in differential conductance measurement.

2.5 Experimental consequences on transport

In this Section we show that both energy scales F¢ and dF can be extracted from dif-
ferential conductance measurements. As discussed above, a differential conductance mea-
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surement can be used to probe the internal structure of the QD. A measurement of the
Coulomb oscillations (dI/dVsp vs. Vg, Vsp — 0) allows for the estimation of F¢, see
Fig. 2.3(left panel). The level spacing dF, on the other hand, can be determined from a
measurement of dI/dVsp vs. Vsp (with fixed V), known as the Coulomb staircase.

Note that the peaks in the differential conductance measurements have a finite width

(each local level is broadened) for the following two reasons: the local level (i) is coupled to
reservoirs with strength I' and (ii) it is thermally broadened ~ kpT.y, as the experiment is
carried out at finite temperature Te,,. Obviously discrete peaks in differential conductance
measurements are no longer observable once the total width of the level ~ (I" 4+ kgT)
exceeds the energy scale of interest (E¢ or 6F), see Fig. 2.3(left panel). Thus, in weakly
coupled QDs (I' = 0.0lmeV) with level spacings §E ~ 0.1meV (~ 1K) and a charging
energy Fo ~ 1.5meV, discrete peaks in the differential conductance are observable up to
temperatures of several hundred mK. Note that an increase in the coupling I' enhances
quantum fluctuations in the QD leading to a suppression of the discrete peaks in the
differential conductance.
The charging diagram, see Fig. 2.3(right panel), gives a compact specification of a QD. To
illustrate the differential conductance dI/dVsp as a function of both Vi and Vsp one uses
a color scheme. From the position of the maxima of the differential conductance in the
charging diagram, one can extract the relevant parameters F¢ and §F.

02 g iE T T T 3
L (a) experiment ce T2125K
= L — = T:08K | 2
~ ---- T:04K
L2 ) 1
@ — T:=02K
LC’ Ol_ Vep 0
= .
= 1
=
= B )
S I\ -2
‘\.\u
. 3

-0.2 0.25 -0.3 -0.35

Figure 2.3: Left: Conductance as a function of gate voltage V; in lateral QDs in the limit
Vsp — 0 [14]. The conductance peaks are separated by Ec (Fc > JF). As expected,
the Coulomb blockade peaks get washed out when the temperature T is increased towards
Ec. Right: Charging diagram of a QD [courtesy of A.K. Hiittel (LMU)]. The differential
conductance is plotted as a function of both V; and Vsp. For Vgp = 0 the Coulomb
oscillations (with period ~ E¢) can be observed. Fixing Vi; and varying Vsp, illustrated
in Fig.[2.2(b), allows for the determination of J F, known as the Coulomb staircase.
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2.6 Kondo effect in QDs

Under certain circumstances (as will be shown below) a many-body resonance, known as
the Kondo resonance, can develop in QDs. The following two requirements are necessary
for the observation of this resonance: (i) the system is tuned to the local moment regime
(LMR)* and (ii) the experiment is carried out at a temperature smaller than the so-called
Kondo temperature Tk, which in turn depends exponentially on the parameters of the QD,
cf. Eq. (3.29).

Based on theory, it was predicted in 1988 that the Kondo effect should be observable
in QDs [16], [17]. However, it took roughly another ten years before its experimental ob-
servation by Goldhaber-Gordon et al. [18]. In Fig. 2.4(a) the setup of this experiment is
shown. The QD is coupled (with strength I') to two (left and right) leads with identical
chemical potential pj, = pr = p. In order to satisfy the condition Tiy, < Tk, several gates
can be used to tune the QD parameters ¢4, I and U (this quantities that will be explained
in Chapter 3) such that this requirement is fulfilled. This tunability allowed for many
controlled "Kondo-experiments’ in the course of the last years, e.g. [19, 20]. Consequently,
a better understanding of this non-trivial many-body effect was established within the last
years.

20

-500 -250 0 250 500
Vso (V)

Figure 2.4: (a) Image of the device used by Goldhaber-Gordon et al. [19] to measure the
Kondo effect in QDs. This experiment can be very well described by the Anderson model,
a model that will be introduced in Section3.1. (b) Differential conductance dI/dVsp vs.
Vsp of a QD for temperatures ranging from 15mK up to 900mK [20]. The arrow indicates
an increase in dI /dVsp at Vsp ~ 0 upon lowering the temperature 7' (a fingerprint of the
Kondo effect). Note that the differential conductance dI/dVsp vs. Vgp clearly mimics the
Kondo resonance in the local DoS for sufficiently low-temperatures.

3The LMR is realized if the topmost nonempty level of the QD contains a single electron, acting like a
free spin with ny =n| ~ & [15].
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From a theoretical point of view the key quantity that governs this many-body res-

onance is the local DoS. In particular, the sharp resonance in the local DoS pinned at
the Fermi energy of the leads, is responsible for an increase in the linear conductance (for
T < Tk) as found experimentally in Refs. [19, 20]. Fig. 2.4(b) shows the temperature
dependence of the differential conductance (which is essentially the local DoS) observed in
an experiment carried out at TU Delft (Netherlands) [20].
From the Friedel-sum rule [21], we know that the height of this resonance is oc . The
linear conductance G(T) is consequently expected to saturate in the limit 7 — 0 to its
theoretical limit, known as the unitary limit (which is 2e?/h as observed in Ref. [20]; see
lower inset in Fig. 2.5), resulting in a perfect transmission of an incoming electron.

The Kondo effect in QDs is usually identified by a logarithmic increase in the linear
conductance G(7T') as a function of decreasing temperature (for temperatures ~ Tk ), see
lower inset in Fig. 2.5, As expected, for temperatures well below Ty, a saturation of
G(T) appears. One experiment showing this signature very nicely was carried out at TU
Delft [20]. In this experiment the linear conductance through a QD contacted to leads
(with a single channel) really reached the unitary limit of G' = 2¢2/h, see Fig. 2.5.

20 — —
I .----.\FR AN
U
uL?Z = i/ ;
1517 4 2 | TR
zA e N\ 77
ZA | 7 I N\
— sy ;f 4 1 /
C§ i );;' ‘: 7 =\
q) 1 O | 7 / v’-‘ ’
" /
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Figure 2.5: A measurement of the linear conductance G(7') vs. gate voltage upon lowering
the temperature Ty, (carried out by van der Wiel et al. [20]). For those gate voltages where
the QD is in the LMR (see inset in the top left corner), a monotonic increase in G(7') is
observed for a decrease in the temperature T (indicated by two 'up’ arrows). In both
"Kondo-valleys’ the theoretical maximum of 2e?/h is almost reached. The logarithmic
increase in G(7') upon lowering 7" in a 'Kondo-valley’ is shown in the lower inset. The
conductance in the valley between the two ’Kondo-valleys’, i.e. in a 'non-Kondo’ valley,
decreases as 7' is lowered.
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In contrast to the Kondo effect in bulk materials, where the resistivity increases below

Tk, in QDs the conductivity increases for T' < Tk . Kondo correlations lead to an opposite
behavior in QDs as compared to bulk systems.
The reason for this behavior is the following: in presence of magnetic impurities the scat-
tering is strongly enhanced for temperatures T' < Tk. Since QDs are contacted to a left and
a right lead an increasing scattering enhances the forward scattering drastically. Thus, the
transmission through the QD increases, its resistivity decreases. In bulk materials, on the
other hand, a magnetic impurity is connected to various 'channels’. Consequently an in-
creasing scattering does not result in a decreasing resistivity, as the electrons are scattered
in all possible directions.

To summarize the findings of this Chapter: the level quantization that appears in
QDs constitutes an analogy between ’real’ atomic systems and QDs; consequently QDs
are often referred to as ’artificial’ atomic systems. Since a detailed understanding of two-
level systems is necessary for the realization of recently proposed quantum computing
devices [22], QD-physics recently gathered additional interest. In particular, intense studies
on coupled QDs, ’artificial molecules’ [Fig. 2.1(a)], are carried out at the moment.

The analogy between QDs and ’real’ atoms was strengthened when Kondo physics was
measured in QDs (1998) [18, 23, 24], roughly ten years after it was predicted theoretically
[16, 17]. Kondo physics is of central interest throughout this thesis. Modern many-body
methods are required to capture the physics of strongly correlated electrons in the Kondo
regime properly.

Before we focus on Kondo physics, however, we introduce a theoretical model, the Anderson
impurity model, that describes QDs extremely well. It is well-known that this model is
capable of Kondo physics. Thus, it allows for an accurate study of various interesting
aspects of this many-body phenomenon.



Chapter 3

Introduction to the Kondo effect

This Chapter is divided into two parts: in the first part we introduce a theoretical model
that describes the physics of QDs extremely well. The second part of this Chapter is
devoted to Kondo physics. Some aspects of the Kondo effect are addressed there.

3.1 The Anderson model

In this Section we introduce the Anderson model (AM), a model (suggested by P. W.
Anderson in 1961 [25]) that describes the physics of single impurities hosted in a metal.
This model had a revival when it was realized, roughly 15 years ago, that it is the effective
model in the framework of dynamical mean field theory [26]. As the AM is extremely well
suited for the description of QDs, it got an additional boost when the first controlled QD
experiments were carried out.
Within this thesis, the AM is of central relevance since (in contrast to the Kondo model) it
allows for the calculation of several experimentally accessible quantities, such as the gate
voltage dependence of the conductance, see Fig. 2.3(left panel).

A theoretical model that captures the physics of QDs has to consist of three parts: (i)
a local part (ﬂd), which describes the isolated QD, (ii) a tunneling part between the QD
and its surrounding reservoirs (Hyg) and (iii) a part that describes the reservoirs (Hy), in
total R R R R

Ham = Hg + Heg + Hp. (3.1)

We start analyzing Eq. (3.1) by considering Hy: the energetic situation inside the QD,
as depicted in Fig. [3.1(a), is determined by the bare energy of the i-th local level €y
(with typical level spacing d E' between neighboring levels)," the charging energy E¢, the
exchange energy Fg and the Zeeman energy. An isolated multi-level QD therefore takes
the form

ﬂd = Z Gdidjo.dig + Z UzﬁzTﬁzl + Z Uijﬁiaﬁja’ — MBgB Z Sf + JZ SZ . Sj7 (32)

io oo’ iF] i i#j

!The bare level energy ey4; is measured relative to the chemical potential of the leads .
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8.

+1
eVG

Figure 3.1: (a) Relevant parameters for the theoretical description of a QD: the charging
energy U, the local level position of the i-th level €4 (adjustable by Vi) separated from its
neighboring levels by the level spacing 6 E. Additionally the QD-Hamiltonian Hg, Eq. (3.2),
includes a Zeeman and an exchange term. (b) The coupling of the i-th local level to the
leads (assumed to be non-interacting) results in a level-broadening of width I';. In general
neighboring levels are not expected to have equal width [27], T'; # T';4q.

with the replacement Ec — U and Es — J. Note that multi-level QDs possess an intra-
level U; and an inter-level charging energy U;;, in contrast to single-level dots that only one
possess an (intra-level) charging energy U. Here d;, (i, = d;-radw) are the Fermi operators
for spin ¢ electrons in level ¢ of the QD, S? = (f;; — 1y )/2, and S; = Z;w i T iy
(with the Pauli-matrices o, )*. The fourth term of Eq. (3.2) denotes the Zeeman energy of
the local spin with the Bohr magneton pp and the gyro-magnetic ratio g (a quantity that
characterizes the coupling between the magnetic field and the ’QD-material’). Spins that
are aligned parallel to an external magnetic field B are consequently favored. Additionally
we included an exchange interaction J (the first correction to pure Coulomb interaction),
a term which allows the dot to lower its energy by maximizing its total spin. This term is
especially important for QDs close to a singlet-triplet transition [28].

The coupling between the QD and its environment (7:@ is the Hamiltonian of the envi-
ronment), see Fig. [3.1(b), is described by the tunneling term Hyq,

Ha = 3 (Viiochodio + Vit i) (3.3)
koir

,’:(E - Z Gk’rc;rcgrckar- (34)
kor

Here, the operator c,Tm, creates an electron with momentum k& (corresponding to an energy

€xr) and spin o in lead r = L, R. The leads, described by 7:&5, are assumed to be identical,

2 Those are are given by o% = <(1) (1)>, oY = ((2) BZ> and 0% = <(1) _01>, in standard represen-

tation.
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non-interacting and in equilibrium with a dispersion €,;, = €xg = €. Henceforth we will
frequently use the phrasing conduction band (CB) electrons instead of lead electrons. We
consider the tunneling matrix elements Vj;, in ﬂgd, originating from the overlap of the wave
functions that participate in the tunneling process (i.e. wave functions that correspond to
‘impurity’ and ’lead’ electrons, respectively) to be k-independent, Vi, = Vi [29]. Note
that the system lowers its energy when the impurity hybridizes with its environment, see
Eq. (3.3), i.e. when impurity electrons become delocalized.

Below, we focus on a single-level AM [30), 31], so the index i will be dropped. This
simplification avoids tedious mathematics while the general concepts still apply.
Due to the coupling between the impurity and the conduction band (V. # 0), the local
level acquires a width I", depicted in Fig. 3.1(b). We neglect the additional temperature-
dependent level broadening (~ kpT.y,) here, as we are mostly interested in 7" = 0 quantities
in this thesis. One expects, based on second order perturbation theory in the tunneling,
that the level width ' is o< |V,]* and o p,(w), the DoS in lead r [note: pr(w) = pr(w) =

p(w) =", § (w— €)]. More rigorously, this quantity can be computed from the imaginary

Vi 2
kr Z‘(I,u—‘ek '
uation, i.e. iw — w 4 id, one immediately”? arrives at S [Sg] = —7 >, Va7 6 (w — €x).
When we assume both leads symmetrically coupled, V;, = Vg = V', we obtain the total
level-width T' = =S [¥] [29], or equivalently

part of the non-interacting self-energy [¥o], 3o (iw) =

After analytic contin-

D(w) = 2mp(w)|V]2. (3.5)

Transport through an interacting single-level QD is therefore characterized by the following
five relevant energies: U, T, ¢, (all adjustable by external gates), B (an external magnetic
field) and Ty, (set by the fridge).

Before we really solve the AM [as introduced in Eq. (3.1)], however, we perform a
unitary transformation [16], which reveals that a single-level impurity couples effectively
to one channel only, the symmetric combination of the left and the right lead.

3.1.1 Unitary transformation of the AM

In this Section a rotation in the 'L-R’ basis of lead electrons is introduced. In general a
single-level impurity may couple differently to its left and right leads, Vg # V1. The basis
transformation [10]

Usko _ 1 VR VL CkoR (3 6)
Qako VIVLI? + | VR|? =VL Vg CkoL
defines fermionic operators, ary/uko, that describe electrons in the symmetric and anti-

symmetric channel, respectively. By means of this transformation the single-level Ander-
son Hamiltonian H 4, is rotated such that it couples to the (symmetric) channel only, i.e.

Hog = Yoo VVE+VE <oﬂ;kgda + d];ozska> [32] (the antisymmetric channel decouples from

3lim,, ¢ ﬁ =P (%) Find(x) with P denoting the principal value.
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the impurity).
After this transformation, illustrated in Fig. 3.2, the Hamiltonian takes the more compact
form

HAM = ZGdd dy +UTLT’/Ll ,U/BgBS +Z€kaskaa3k0+zv< Skad _'_d a8k0> <37)

o ko

with V = / V7?4 V3. Note that we have dropped the uncoupled channel Y ko ekallwoza,w

-

Figure 3.2: The unitary transformation Eq. (3.6) reveals that a single-level impurity couples
effectively to one channel only (described by the fermionic operator o, ), the symmetric
linear combination of the left and the right lead [~ (VL cxor + VR ckor)]. The strength of

this coupling is given by V = \/VZ + V2.

in Eq. (3.7), which does not influence QD-operators at all.

QDs can be tuned via Vg such that the dot is on average singly occupied |33]; a scenario

that is, as noted in Section 2.6, essential for Kondo physics. For this particular choice of
Vi the topmost occupied level contains a single, unpaired electron (known as the LMR)?,
which can be used to mimic a magnetic impurity.
As will be shown below, an AM in the LMR can be projected onto an effective model.
As charge fluctuations are small in this regime, it suffices to perform this projection via
second order perturbation theory in the tunneling (where I'/¢, is the small parameter).
This projection is known as Schrieffer- Wolff (SW) transformation [30].

3.1.2 Mapping onto an effective model: Schrieffer-Wolff trans-
formation

To realize a QD in the LMR we fix the gate voltage ¢; such that

< N« pg|l e+ U, (3.8)

4 For completeness we mention all possible regimes of a single-level AM here: the mized valence regime
(MV) is characterized by large charge fluctuations, realized for ¢4 ~ p or (e4+U) ~ p. That regime where
the local level is either empty (€4 > ) or doubly occupied (e4+ U < ) is called the empty orbital regime
(EO).
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ensuring that the QD is singly occupied, (n) ~ 1. For this particular choice of ¢; the empty
and the doubly occupied states in the QD can be disregarded, since they are energetically
highly unfavorable. Thus, the impurity is either occupied with an 1} or |} electron (for the
rest of the first part of this thesis we use the following notation: ¢ =1} / |} corresponds to
a spin o electron in the impurity and o =7 / | to a spin o electron in the CB). Thus, the
impurity spin can be described by a spin operator S, S = iy o dio, d,.

Due to wvirtual excitations, see Fig. 3.3, there is still a small (but finite) probability

for the QD to contain zero or two electrons, even though condition (3.8) is fulfilled. For
lea| > T, these virtual excitations are appropriately described by second order perturbation
theory in the tunneling between the local level and the CB-electrons. Due to the Pauli-
principle, virtual processes are only possible between CB and impurity electrons with
anti-parallel spin [34]. As these processes lower the energy of the system by an amount
AFE, the effective Hamiltonian - describing the low-energy properties of the system - should
include a term that favors anti-parallel alignment between electron spin in the QD and the
CB.
There are two types of virtual processes, hole-like (excitations to an unoccupied local level;
lower middle panel in Fig. 3.3) and electron-like (excitations to a double occupied local
level; upper middle panel in Fig. 3.3) processes. A hole (electron)-like process lowers® the
energy of the system [35] by AEy, (AE,)

AEw(e) = w (3.9)
AE(cy) = % (3.10)

with the Fermi function of the leads f(e) = 1/(1 4 elx=#)/ksT),

Fig. 3.3 sketches all relevant virtual processes. The impurity spin might: (i) remain
unchanged (either with o ={} or o =|}), (ii) flip its spin from {}—{ (in two possible ways -
corresponding to a transition from the left side to the right side in Fig. 3.3)) or (iii) flip its
spin oppositely from {—1 (also in two possible ways - corresponding to a transition from
the right side to the left side in Fig. [3.3). As the total spin is conserved, the CB electron
spin has to flip oppositely to the impurity spin [in the processes (ii) and (iii)] or remain
unchanged [in process (i)]. A compact representation of all those processes is realized by
rewriting them with spin operators. Consequently, a QD in the LMR shall contain a term
S-§ = [5253 + % (S+sa + S‘s{)} with the QD spin operator S, the CB spin operator Sy,
S0 = 32 » alkuawaskw [with agke as defined in Eq. (3.6)] and the usual definition
of the ladder operators ST/~ and sar / —, respectively. A spin-flip event between the left and
the right ground state shown in Fig. 3.3, for example, is described by the operator S~ s .

Due to the Fermi functions, only states ¢, > p [ex < p] contribute in Eq. (3.9)
[Eq. (3.10)]. As we restricted ourselves to ¢4 < pu < €4+ U, see Eq. (3.8), we can
approximate the denominators in Egs. (3.9) and (3.10) by their smallest possible values,

V2

5Virtual excitations lower the energy by an amount AE ~ SR ol
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Figure 3.3: Sketch of a QD in the LMR with its two possible ground states: the electron
in the QD might either be a spin f} (left side) or a spin | electron (right side). In the
middle of the figure the possible virtual excitations (obeying the Pauli principle), due to
hybridization between impurity and lead electrons, are shown. The lower middle panel
shows a hole-like excitation, realized by a CB hole that tunnels into the QD. The upper
panel in the middle shows an electron-like excitation, where a CB electron tunnels into the
QD. The energy gain due to these processes is described in Eq. (3.9) and (3.10). As the
left and the right state in the figure are connected by virtual transitions the possibility of
a spin-flip inside the QD exists!

e eppsy —€a~p—egand U +eqg — €pp<y = U +€q — .
Thus, virtual processes lower the systems energy by an amount
V2 V2

J= + .
p—€e U+e—p

(3.11)

Summing up all possible virtual transitions sketched in Fig. 3.3] we arrive at an effective
Hamiltonian for the LMR.
Heg = He + 2JS - S, (3.12)

with the local (Heisenberg) coupling J between the impurity spin and the conduction elec-
tron spins.

This heuristic arguments illustrated the general concept of a Schrieffer-Wolff (SW) transfor-
mation. For a detailed, more rigorous discussion, see Ref. [30] or [36]. A SW transformation
enables one to project a general Hamiltonian (which is the single-level AM here) into a spe-
cial subspace of its full Hilbert space (the LMR). The corresponding effective Hamiltonian,
Eq. (3.12), describing the LMR is known as the Kondo Hamiltonian Hett = Hr.
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In this Section we argued, based on a perturbation expansion in the tunneling, how
the impurity can lower its energy by means of virtual transitions. In particular processes
where the impurity spin flips will become of great interest below, when the Kondo effect
will be discussed.

3.2 The Kondo effect

The non-trivial physics associated with the presence of magnetic impurities in a solid is
referred to as the Kondo effect. The experimental discovery of a shallow minimum in
the resistivity of metals that contain magnetic impurities (at temperatures 7' ~ 10K)
triggered big interest in this field. Kondo was able to relate this phenomenon to spin-flip
scattering events. Kondo could show that this scattering mechanism becomes more and
more dominant when the temperature of the system is lowered successively.

3.2.1 The historical origin - the resistivity minimum in bulk

Back in 1934 de Haas, de Boer and van den Berg were measuring the electrical resistivity
p°(T) of Au as a function of temperature. They observed an unexpected local minimum
of the resistivity at temperatures T ~ 10K, see Fig. [3.4. In several other experiments it
was confirmed that the resistivity of 'pure’ metallic samples (like gold, silver and copper)
passes through a minimum when the temperature is gradually decreased. However, as was
found later, the 'pure’ samples were not really pure but contained a small concentration of
magnetic impurities.

The resistivity of a metal is determined by different scattering mechanisms: (i) the
electrical resistivity due to the scattering between conduction electrons and lattice distor-
tions (phonons) p%, oc T° should clearly die out in the limit 7" — 0. (ii) The resistivity
contribution stemming from electron-electron scattering, p¢' . oc T? (known from Fermi
liquid theory), is also expected to vanish for very small temperatures. (iii) The scattering
between electrons and static impurities is temperature independent. Consequently also
the corresponding resistivity reveals no T-dependence (static impurities are present in a
constant concentration, say Cimp).” Summing up the contributions stemming from the
mechanisms (i)-(iii) suggests a monotonic temperature dependence of the electrical resis-
tivity p(T) = acimpp§ + bT? + ¢I”® (a, b and ¢ denoting proportionality constants and
pel a characteristic resistivity). Additionally a saturation is expected in the limit T — 0,
limp_o p(T) = acimpps. Clearly the mechanisms (i)-(iii) can not explain the above men-
tioned anomaly in the electrical resistivity, sketched in Fig. 3.4(a).

It took about thirty years until the puzzle of a minimum in p®(T") was solved by J.
Kondo (1964) [38]. He associated the minimum with the presence of magnetic impurities,
such as Co, in the measured samples.

Magnetic impurities allow for a novel scattering mechanism, spin-flip scattering, not
included in the mechanisms (i)-(iii). In particular, one finds that this scattering mechanism

6Both magnetic and non-magnetic impurities participate in this scattering mechanism.
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resistance

temperature

Figure 3.4: (a) Sketch of the temperature dependence of the electrical resistance for pure
metals (solid line) and metals that contain a small concentration of magnetic impurities
(dashed line). Note the local minimum in the resistivity around 7" ~ 10K for samples
containing magnetic impurities. (b) Picture of Jun Kondo. Figure and picture from [37].

is temperature dependent. The spin-flip scattering introduces a new energy scale in the
problem, the Kondo temperature Tk . It turns out, that this scattering mechanism starts
to dominate for temperatures 7' that are comparable to Tx. Indeed, the logarithmic
increase in the resistivity for temperatures smaller than ~ 10K, e.g. observed observed
in the experiments of de Haas et al., can be nicely explained by that type of scattering
(P52 a0(T) o< In(Ty /T)]. The local minimum of p°/(T') can naturally be explained by adding
up all scattering contributions to the resistivity

PpN(T) = acimppl) + bT? + TP + Cimpps In(Tx /T, (3.13)

with an additional characteristic resistivity p¢l.

In Section 3.2.3 we give a derivation for the logarithmic temperature dependence of the
electrical resistivity due to the scattering of electrons from magnetic impurities. For this
sake we examine the Kondo model, the 'LMR-limit’ [see Eq. (8.8)] of the more general
AM, carefully.
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3.2.2 The Kondo model

In 1964 J. Kondo [38] introduced a model that describes the scattering of conduction
electrons from a localized magnetic impurity, i.e. a localized spin [39]. This model, the
Kondo model [cf. Eq. (3.12)],

Hy = He+2JS-8 = ﬂé‘l‘z J [Sz (aim%m - alklask"i> + S+&lkl0¢sk'T + S_aimask’i ’
Kk

(3.14)
was motivated by experiments carried out in the 1930s, as explained in Section 3.2.1. As
mentioned before, the operators S and § in Eq. (3.14) denote the impurity and conduction
electrons spin operators, respectively, with ST |} = |[f) and S~ |1) = [} (é‘aL/_ acts
accordingly on CB-electrons). In contrast to the AM (parametrized by V', ¢; and U),
the Kondo model contains only the parameter J, which is related to the parameters of
the AM via Eq. (3.11). The parameter J characterizes the coupling strength between the
localized spin and the CB electrons. As H has non-vanishing matrix elements between the
states (I} (1] and | 1) [1), (| (1] Hx |1} |1) # 0, the Kondo Hamiltonian obviously contains
spin-flip processes. Here the state ||) [{}), for instance, mimics a state where the impurity
contains a spin {} electron and the CB is represented by a spin | electron.

Kondo calculated the resistivity in a perturbation expansion of Hy in J. He found that
the second order contribution (in J) to the scattering amplitude diverges logarithmically
for temperatures smaller than a characteristic temperature, the Kondo temperature Tk.
Therefore the perturbative approach of Kondo is only valid for temperatures T > Tk.
For temperatures T" < Tk the proper (theoretical) understanding of the KM arises from
‘scaling’ ideas, suggested by P.W. Anderson in the late 1960s. This ideas were used to
develop an accurate theoretical description for the regime 7" < Tx. The Renormalization
group (RG) theory (developed by Anderson and Wilson) is the appropriate theory in this
regime.

3.2.3 Kondo’s explanation

In metals conduction electrons can be described by plane waves carrying a crystal mo-
mentum, say k. The scattering of electrons from magnetic impurities can be described as
follows: an incoming spin o electron of momentum £ gets scattered into an outgoing spin
o’ electron of momentum £’. Since the total spin is conserved in the scattering event, the
localized spin has to flip if 0 # ¢’. One finds, interestingly, that the spin-flip scattering is
temperature dependent. We are going to derive that T-dependence here.

Our interest in scattering events between a localized magnetic impurity (of spin S) with
electrons of momentum £ and spin o suggests to label the involved conduction electron
states as

T) = |k o) (3.15)

and to write the impurity spin in terms of the impurity spin operator S. After the scattering
event the electron carries a momentum k&’ and a spin ¢’. The perturbation expansion of
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Hy in J can be performed by rewriting Eq. (3.14) as Hy = He + H with H’ describing
the interaction of the CB electrons with the impurity spin, H =2JS - .

In order to determine the eigenstates of Hy, Hx |¥) = € |¥), we rewrite the Schrédinger
equation as (¢ — Hy) |[¥) = H'|W). The general solution of this equation is a sum of the
"homogeneous’ solution and the ’'particular’ solution. We can immediately identify plane
waves |Wo) as eigenstates of Hy, Hy |¥o) = €|Ty), i.e. as the homogeneous’ solution.

The formal solution of the full Schrodinger equation is

1
) =|¥ — H |V 3.16
9) = [80) + —— ), (3.16)
known as the Lippmann-Schwinger equation (see e.g. [40]). Eq. (3.16) can be solved by
substituting the 'new’ value of |¥) in the r.h.s. of this equation, resulting in |¥) = |¥y) +
————7T |¥g). The hereby defined 7-matrix takes the form

5+7,0+ H,
() 7(2) T7@3)
//AT rA/ 1 " rA/ 1 i 1 “7
T=H +H———H +H— —H —H b (3.17)
e+10t —H, e+1:0t —H, e+4+1i0T —H,

Eq. (3.17) shows the first three contributions to the 7-matrix of the perturbation expansion
in J.

To first order in J, the 7-matrix consists of six possible scattering events, sketched in
Fig. 3.5l Whereas the impurity spin is conserved in Fig. [3.5(a) [two possibilities| and (b)
[two possibilities], it flips in Fig. 3.5(c) [one possibility] and (d) [one possibility].

The first-order contributions to the 7-matrix can thus easily be inferred from Fig. 3.5 [34]

KTV = JS7,
K UTON L) = —J8°,
K 1TV L) = IS,
K TWET) = JsST. (3.18)

Note that we kept the dependence on the impurity spin in terms of the impurity spin
operator here. We continue to use this notation below.

The probability to scatter from a plane wave with momentum k to another one with
momentum k', Wy, is related to the amplitude for this scattering event Tj;/. In particular,
T, ,5,?, a matrix element of 7™, contains all possible transitions given in Eq. (3.18). The
second order contribution to the scattering probability has the form

27'[‘ij 2
Wi = =2 )
25%
2 Nlm g h — —
- |J|2 Thimp 962 (92)F 4 'S+ (ST + §— ()
27N,
= WP =gms(S + 1) (3.19)
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Figure 3.5: Possible processes for the 7-matrix to first order in J. The lower (dashed) line
represents the impurity (with corresponding spin S indicated by thick arrows), whereas
the curved (solid) lines represent the CB electrons [with initial (final) momentum & (k')
and spin o (0’)]. The impurity spin S (and correspondingly the CB electron spin o) is
conserved in the scattering processes (a) and (b) and it is flipped in processes (c) and (d).

Note that the factor 1/2 [in the second line of (3.19)] ensures the proper average over the
initial impurity spin configurations. Due to our notation, we replaced the impurity spin
operators with their expectation values in the third line of Eq. (3.19), S = (5%). The
quantity N, labels the number of magnetic impurities in the sample.

To finally compute the resistivity p¢ . we need to compute the transport relaxation time

imp»
at the Fermi energy 7(kr),
m

el
Pimp = ne*r(kr)’

with the density of conduction electrons at the Fermi energy n = N/V = k% /372 The
transport relaxation time depends sensitively on W,,.” To second order in .J this relaxation
-1 __ 37J2S(S+1)cCimpn

- 2erh ’

with the Fermi energy er = h%k%/2m and the impurity concentration ciy,. Finally, we ob-
tain the second order contribution (in J) to the resistivity by inserting 7(kr) in Eq. (3.20),
el,(2) 37rmJ25'(S + 1)Cimp
fmp 2e2eph ‘

(3.20)

time for an electron at the Fermi surface, i.e. k = kp, is given as [7(kr)]

(3.21)

Note that pfrlr’g) is temperature independent indicating that it can not explain the anomalous

temperature dependence found in the experiments of de Haas et al. .

77(1’;) => 5 Wi (1 —cos0)d(eg — €j,) with the angle 6" between k and K.
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Now, we will go to the next order in perturbation theory, i.e. to 7®. It will turn out
that in this order a prefactor appears that diverges logarithmically in the limit of small
temperatures.

When second order processes are considered (7 = H—L s + H' ), corresponding
diagrams are shown in Fig. 3.6, intermediate states of momentum k; appear that have to
be summed. Fig. 3.6/ contains all possible second order processes for incoming and outgoing
CB electrons with spin 1. For instance, Fig. 3.6(c) describes a virtual process, where first
an incoming electron (with momentum & and spin T) scatters from the impurity, thereby
flipping both the impurity and its own spin and changing its momentum to the intermediate
value k;. Afterwards, the virtually excited conduction electron (of momentum k; and spin
1) scatters again with the impurity by flipping both spins again and finally leaving with
final momentum &" and spin 7. This second order process, see Fig. 3.6(c), contributes the

it SZ‘ 1 V.1

Figure 3.6: All possible second order processes for CB electrons entering and leaving the
system with spin . The intermediate states can either be electron-like [(a) and (c)] or hole-
like [(b) and (d)]. Note that the impurity spin (thick arrows) flips virtually in processes
[(c) and (d)] in contrast to processes [(a) and (b)].

following term to (k' 1| 7@ |k T):

%: J2 (K 1| alk,Tasms—e N zoi - mgmimasm k1) = Z 22 = ; +J28+ )]’
(3.22)
where the relation <aski lmo‘lki l> = ele:% was used. Here f is the Fermi-Dirac
distribution.

Another second order contribution to (k' 1| 7® |k 1) is shown in Fig.[3.6(d). The diagram
describes a scattering process, where first the impurity spin is flipped (t—1}) by creating
an electron-hole pair with an outgoing electron of momentum £’ and spin . After this
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event, an incoming electron of momentum k and spin T scatters with the impurity a second
time by flipping its spin back to its original state ({}—1) and thereby destroying the hole
of momentum k;. Evaluating this diagram results in

1 S*S” f(en)
S" 2K 1ol ag St ————57al, = - 7 1
(K" 1] gy, sin € +i0+ — H, 2 ) Z € — € — € + e, + 107

T ki

- ZJQS ST () (3.23)

€ — €, — 101’

where we used € &~ ¢, & € &~ 11 since we are interested in having both values k and k' near
the Fermi level.

The two remaining diagrams in Fig. 3.6, namely (a) and (b), can be evaluated analo-
gously and give the following contributions to (k' T|7® |k 1),

11— flew)] 5%)" f(er)
ZJ? € — e, + 107 and Zﬂe—ek —i0t’ (3:24)

respectively. Note that the sum of the two contributions given in Eq. (3.24) is temperature
independent, since the contributions that include the Fermi function cancel each other®.
The contributions from Egs. (3.22) and (3.23)), however, do not cancel. Therefore we iden-
tify the spin-flip scattering with the mechanism that gives rise to a temperature dependent
scattering.

To second order in J, we approximate the 7-matrix with 7 ~ 7W + 7@ The
second order contribution 7 leads to a correction of the scattering probability Wi,
see Eq. (3.19), which we call §Wj. The correction Wy is of third order in J. As

2 * *
Wi ~ | T |” ~ ’TIE;Q + [T,i,? (T ,5,?) + <T ,5,?) T, k(,?} we obtain the correction dWy to
the transition probability as

h 1 2\ D)*
TN Wt = ) (Tk(,j) + (T,&j) 7% ~ J3. (3.25)
Adding all spin contributions to Wy leads to
h fler) — 3
Wi ~ S(S+1)J%y =22 3.26
2N Wik (S+1)7°) € — en, (3.26)

k;

The third order contribution to the resistivity, however, requires the tricky determination of
the corresponding transport relaxation time 7(k). To do so, the sum over the intermediate
states has to be performed

Z f(;;g_z)eg 2 /dqp(ﬁi)@ — %p(O)/_ dqw, (3.27)

€ — € € — €
ks 1 D )

8The summation over k; is taken as a principal value integration.
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Here the energy-dependent DoS p(e;) has been replaced by its value at the Fermi energy
p(u), p = 0. Moreover, the high-energy divergence has been cut off by restricting the
conduction electron states to a band of finite width 2D (D is usually referred to as the
bandwidth of the conduction band).

We will now consider two limiting cases to obtain an interpolation formula for the inte-
gral given in Eq. (3.27): (i) for ¢ < kT, we approximate the integral with 2In(D/kT),
whereas (ii) for € > kT we approximate it with 2In(D/|e|). This leads to the com-

pact - temperature dependent -approximation Zk %;1/2 ~ In (W) There-

fore, the third order contribution (in J) to the transport relaxation time, [r(kp)]”" =

37TJ2S(S'+1)cimpn
2eph

in the resistivity.

Remarkably 7 () reveals that the existence of magnetic impurities leads to an enhanced
scattering rate for electrons in the close vicinity of the Fermi energy for sufficiently low
temperatures. This enhanced scattering, known as the Kondo resonance, explains the
temperature dependence of the resistivity observed in bulk materials. Surprisingly, the
energy scale that is related to this phenomenon, the Kondo temperature Tk, is not an
intrinsic energy scale of the problem such as €4, U or V' (in case of the AM). The value of
Ty results from an interplay between the impurity spin and all its surrounding conduction
electrons, it is a many-body phenomenon.

Including this order, the resistivity, see Eq. (3.21), becomes temperature dependent. In
particular, when we assume k1" > € the resistivity takes the form

el,(3) 37rmJQS(S + 1)Cimp
fmp 2€2€Fh

1+4Jp(0)In m] , see also [34], introduces a temperature dependence

[1 — 4Jp(0)1n (KT/D)]. (3.28)

The temperature dependent contribution to the resistivity indeed agrees very well with the
resistance minimum found in the experiments of de Haas et al., mentioned in Section 3.2.1.
Note that Eq. (3.28) reproduces the logarithmic divergence that was experimentally found,
see Eq. (3.13). We are now able to clarify the physical meaning of all contributions to the
resistivity, p?(T) = acCimppl + bT? + TP + Cimpp$in(Tx/T). Whereas p§ is a specific
resistivity that includes magnetic and non-magnetic impurities, pS! includes only magnetic
impurities. At this point we do not want to specify the dependence of Tk on the parameters
of the system further. This will be done in the next Section.

At the end of this Section, we want to allude a new problem, which arises from the per-
turbation expansion performed above: what happens for small temperatures (in particular
in the limit 7" — 0)7
Obviously, the behavior suggested in Eq. (3.28) has to be unphysical for 7" — 0 since it
implies a divergent resistivity in this limit. In fact, the perturbative expansion for the
resistivity can not be trusted any more, once the third order contribution becomes of the
order of the second order contribution, i.e. for |[4Jp(0)In (kT/D)| ~ O(1) [see Eq. (3.28)].
Clearly this happens for sufficiently small temperatures.

For these temperatures, the perturbative method fails and one needs scaling techniques
for a proper solution of the Kondo problem. Therefore a lot of conceptual work was
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needed to overcome the breakdown of perturbation theory to properly describe the emerg-
ing regime. We investigate this regime, the regime of extremely small temperatures, in the
next Section.

3.2.4 General properties of the Kondo effect

It was realized in Section [3.2.3, that the spin-flip scattering introduces a logarithmic tem-
perature dependence to the electrical resistivity. Obviously, a degeneracy between the two
spin states of the impurity is necessary for spin-flip scattering to appear. A magnetic
field B [of strength Ty (more precisely upgB = kgTk), see below] clearly removes this
degeneracy and thereby destroys spin-flip scattering and consequently the Kondo effect.

Below the temperature where perturbation theory breaks down, known as the Kondo
temperature Tk, an effective screening of the unpaired spin (i.e. the magnetic impurity)
takes place due to coherent virtual transitions between the impurity spin and its surround-
ing conduction electrons; the (many-body) ground state [40] of the system is a singlet of
binding energy Tk . All conduction electrons are arranged such that the magnetic moment
is screened and the singlet can be formed. Thus for T < Tk, kgTx ~ De /POl (see
e.g. [40]) with p(0) the leads DoS at the Fermi energy, the localized magnetic impurity
interacts strongly with its surrounding electrons.
Once T becomes less than T the system is in the strong coupling regime, universal scaling
sets in. In absence of a magnetic field no other energy scale is left in the problem [40].
This means all measurable quantities, like the conductance G(T'), scale as T'/Tk or w/Tk
for energies smaller than Tk.

In the framework of the single-level AM [tuned such that the LMR is realized, see
Eq. (3.8)] the value of Tk can be estimated in the framework of poor man’s scaling (as
done by Haldane [41]) or by Bethe-Ansatz [29]

1
kpTy = 5\/Ure’“d<€d+U>/FU. (3.29)

Note the exponential dependence of Tk on the system parameters €4, U and I'. According
to Eq. (3.29), Tk is minimal for ¢; = —U/2. It increases as €4 approaches 0 or —U.

For fixed gate voltage Vi (i.e. fixed €;), on the other hand, Tk can be exponentially
enhanced by increasing I". This can be achieved by opening the QD.
This knowledge is of experimental relevance, as it allows one to tune T to values that are
experimentally accessible (i.e. Tiy, < Tk ). However, a continuous increase of I has other
drawbacks. Once I' exceeds the level-spacing dF, transport processes involve more than
one level. Consequently a multi-level AM has to be considered. We study such a model
in Chapter |6, for instance, where we focus on the e;s-dependence of the occupation of a
multi-level AM.

The crossover scale Tk, given in Eq. (3.29), can also be extracted from the following
dynamic quantity: the imaginary part of the spin susceptibility x”(w), defined in Eq. (4.9)),

9In this regime the impurity binds on average one conduction electron to form this singlet. A magnetic
field of strength B 2 Tk destroys this singlet.
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shows Curie-Weiss behavior for temperatures 7' > Tk, x"(w) ~ ﬁ, ie. X"(w) decays
as oc w! (apart from logarithmic corrections) for w > Tk. For T < Tk, on the other
hand, the system behaves like a Fermi liquid, y"(w) o« w for w < Tk. Numerically, it is
convenient to extract Tk from the (numerically) computed spin susceptibility x”(w) by
identifying it with the maximum of y”(w).*” In case of a single-level AM this (numerical)
determination of Ty agrees very well with the values for Ty obtained from Eq. (3.29). For
more complicated models (such as the two-level AM), however, Eq. (3.29) does not apply
any more. Then x”(w) can still be used to extract the value of Tk.

The fact that the ground state of the system is a singlet for T' < Tk results in a sharp
resonance in the local DoS A(w) pinned at the Fermi energy of characteristic width ~ Tk
(see Section 4.1.2)). Indeed, a three-peak structure in A(w), two broadened peaks (of width
') at energies ¢4 and €5+ U and the Kondo peak, can nicely be seen in Fig. 4.4(left panel),
which was calculated with NRG. The determination of the local DoS is crucial since it is
the key quantity for the computation of transport properties.

To summarize: Kondo correlations are established if (i) there are (at least) two degener-
ate states in the system (like spin-degenerate states), (ii) the degenerate states are coupled
to a Fermi sea with finite strength I" and (iii) the average number of electrons in the system
is fixed (U suppresses adding a further electron). Some references to experimental results
related to QDs in the Kondo regime were already given in Chapter 2.6l

3.2.5 Poor man’s scaling (PMS)

In 1970 P.W. Anderson introduced a method, the poor man’s scaling (PMS) method [42], to
derive an effective Hamiltonian that captures the low-energy properties of a given system.
Anderson’s idea was to obtain an effective Hamiltonian, say at an energy w*, by succes-
sively integrating out high energy states of the system until the scale w* was reached. He
imposed the physical condition that this scaling procedure (equivalent to a decrease in the
bandwidth from D to D, see Fig. 3.7) leaves the scattering between conduction electrons
and the impurity invariant. One can satisfy this requirement by continuously adapting the
physical parameters of the Hamiltonian (say the coupling J in case of H &) under study, i.e.
to allocate a cutoff-dependent parameter J (f)) to the corresponding effective Hamiltonian
Heq (D). This adjustment results in a 'flow’ of the parameter J(D), the coupling becomes
cutoff dependent.

PMS for the Kondo model

Here we want to discuss the PMS of the KM. Since this procedure can be easily found in
the standard literature, see e.g. Ref. [40] or [43], we keep this discussion short.

A scaling equation for the isotropic KM is obtained, when one successively eliminates the
excitations (say of energy k;) that lie in the band edge D < |k;| < D. When one restricts
all excitations that appear in the second order diagrams discussed in Section 3.2.3 (see

Tn Chapter 4/ we introduce the NRG method and explain how to compute x”(w) in the framework of
this method. The right panel of Fig. [4.4 shows x"(w) calculated with NRG.
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especially Fig.3.6), to this interval'! the scaling equation for the Kondo coupling .J can be
derived. For a flat band (p =const.) the scaling equation of the Kondo has the form

dJ
dln D

A detailed derivation of this equation can, for instance, be found in Section 3.3 of [40)].
The consequence of a decrease in the cutoff D can be understood when one integrates
Eq. (3.30) from D to D. This integration yields
s J

Ty =17 20 In(D/D) (3:31)

= —2pJ%. (3.30)

with the effective coupling J corresponding to the reduced bandwidth D. Provided we are
in the weak coupling regime (p.J < 1), we can infer from Eq. (3.31), that J is continuously
growing since 1+ 2p.J In(D/D) < 1 (D < D).

The bandwidth is continuously reduced until it reaches the scale of interest, the tem-
perature T, D ~ T. Consequently, the effective coupling at a temperature 7' is given as

J(T) = W One immediately realizes that .J(T') diverges, for 1+2p.J In(T/D) = 0.

The temperature that is related to the divergence in .J(T) is called the Kondo temperature
Tk
Tx = DeV/0), (3.32)

PMS for the Anderson model

Here we apply the PMS method to the AM. Following Haldane [41] we calculate how the
energy levels of the AM are renormalized if high energy states are integrated out.
To illustrate this flow, we consider a single-level AM in the limit U — oo, i.e. the
relevant energy level is either empty |0) or singly occupied with a spin o electron |1, o).
The flow of the energy of the empty level eg)) and the singly occupied level 627) is obtained,
as mentioned above, by successively integrating out the ’high energy’ band-states (see
Fig. 3.7). By this we mean the following: the presence of the highly excited states, of
energy ~ D is absorbed by a change of the energies of the empty 5ed0 and singly occupied

levels 5ed Within second order perturbation theory in V we obtain
V 2
0) 56&0) (—: — (—:d Z/ | | dw (3.33)
el — (e +|w])

D 2
1 ~(1 1 ( )‘VU’
Loy + o) =l - y:/(n @
D Cdo ( €4 + |w|>

+/D wdw. (3.34)

D ed_ U+ |w|

~
—0 f. U—oo

"N This means that all k;’s in expressions like Eq. (3.22)) are restricted to the interval D < |k;| < D.
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Figure 3.7: The marked high energy states (of width 4, § — 0) are those that are integrated
out in the course of the scaling procedure. D denotes the full bandwidth and D the new
effective bandwidth after the high energy states have been integrated out. This procedure
leads to a 'flow’ of the parameters of the considered model so that the derived Hamiltonian
describes the low-energy physics of the system properly.

Here the tilde denotes the renormalized local levels and o ={ / || if 0 = / 9. When
we assume the leads DoS to be constant and spin independent, p,(w) = p, and define
[, = 2mp|V,|?, this leads to

-D
0 — _ E dw
A ; (27T> /—D o]+ el — O (3.35)

do ~ €d
r.\ (" d
seld) = - (_> / — (3.36)
2 ) b |w|+ ey — ey
As long as e&? - 6&0) < D we can approximate |w| + eéo) - e&? ~ |w| in the integrals

in Egs. (3.35) and (3.36). Thus the flow of €4,, most easily seen in differential form

1)

0€iy = (56510 - 56((10), is described via

decr o F&

dlnD ~ 27’ (3.37)

equivalent to Eq. (2) of [44] [valid for U — oo]. Note that the renormalization of €4,
depends on I';, i.e. on the coupling of the opposite spin species. The reason is that, the
empty level |0) hybridizes with the singly occupied level |1,0) (involving band states of
both spin directions), so both spin species contribute (see Eq. 3.33), while for the o-
occupied level |1,0) (which hybridizes only with |0) for U > |e4]) only spin o electrons
contribute (Eq. [3.34), and after a partial cancellation, only the contribution of & survives.



Chapter 4

Wilson’s Numerical Renormalization

Group (NRG)

Naively one might expect that high energy states can be disregarded when one is in-
terested in the low-temperature properties of a system. As the Fermi function f is
smoothened around the Fermi energy p with a width ~ kg7 (known from the Sommerfeld-
expansion [45]) one is tempted to consider only states of energy |w—p| < kgT to be relevant
for transport.! However, as the intermediate states of momentum k; in the (second order)
perturbation expansion (see Section [3.2.3) are not restricted to this interval, one might al-
ready anticipate, that in the Kondo problem states of all energies are relevant. To account
for all energies of the problem, |w| < D, the idea of the renormalization group (RG) was
introduced.

Within the PMS-approach, introduced in Section 3.2.5, high energy states are succes-
sively integrated out, leading to an effective 'flow’ of the parameters of the model. A
prominent example of such a flow, as discussed in Section 3.2.5, is the flow of the pa-
rameter J (in case of the Kondo model), see Fig. 4.1. The PMS-method allows one to
identify relevant (parameters that are flowing to larger values under a decrease of the cut-
off), marginal (... not flowing under a decrease of the cutoff) and irrelevant (... flowing to
zero ...) parameters. Once one has identified the irrelevant parameters of a system, one
knows, in principle?, which mechanisms govern the low-temperature physics of the system,
i.e. one has derived an effective Hamiltonian. However, PMS breaks down once the relevant
parameters start to diverge.

That drawback was overcome by another prominent RG-method, the NRG-method. In
this Chapter we introduce this renormalization scheme.

In the early 1970’s K.G. Wilson succeeded to construct a nonperturbative solution of
the KM [46] (which was later extended to the AM by Krishna-murthy et al. [31], 147]).
Since the “NRG-method does not rely on any assumptions regarding the ground state or

!Typical transport integrals include the derivative of f.
2The question whether marginal operators are important has to be investigated separately.
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leading order divergent couplings” [28§] it is superior to a mean-field description or scaling
equations. A detailed description of the procedure is given in Appendix Al

Wilson’s ingenious idea was to discretize the CB (of bandwidth 2D) logarithmically [1]
via a discretization parameter A (A > 1). This discretization enabled him to take all
CB energies into account. He reached this goal by dividing the CB into energy intervals
[—an, —zni1| and oy, on] with 2y = DA™Y, N € Ny. Wilson showed that this CB-
discretization becomes exact if the discretization parameter approaches 1, A — 1. Moreover
he was able to show that the method still works extremely well for a moderately large choice
of A (up to A ~ 3).

Within the NRG-scheme the continuous CB operators are expanded in a Fourier series
with fundamental frequency 2wy = 7AY /(1 — A7') in each (logarithmic) interval. Defin-
ing a single fermionic degree of freedom fo, [defined in (A.13))] allowed Wilson to rewrite
the hybridization Hq between the impurity and all CB electrons in a compact way, see
Eq. (A.14). The Lanczos algorithm, ansatz (A.22) in Appendix [A.2, then allows one to
tridiagonalize the remaining CB (represented by constant Fourier components within each
logarithmic interval). This permits one to solve the problem at hand numerically. Indeed
the transformation of the CB onto a semi-infinite chain, the "Wilson chain’, with corre-
sponding fermionic operators f]TVU creating a spin o electron at the N-th site of the Wilson
chain [Eq. (A.24)], allows for an iterative diagonalization and consequently a numerical
exact solution of the Kondo problem. Further details of this procedure can be found in
Appendix Al

More formally, as can e.g. be found in Ref. [31], the KM is recovered in the limit of an
infinite long Wilson chain Hyx = limy_.sc s (1+A) A~WN=D2 1 with

N-1
[:[N — A(N—l)/2 {HO + Z [A‘n/2€£{ (f:Lafn+1‘7 + f71—;+10'fn0'>] } . (41)
n=0,0
Here Hy = H, (3=r) and £F = \/(1_/\*12;/*\17)7(1:1&*2"*3)’ cf. Eq. (2.18) of [31]. The £&’s are

the tunneling matrix elements between two sites along the Wilson chain (which decay o
A~N/2 [46]) and Hy = JSfJMO'WfO,, (with S as defined in Section 3.1.2). The typical energy
scale in the N-th iteration, wy, is roughly set by £X. Wilson showed wy ~ A~(V=1/2 [46].
Note that a rescaling factor 3 (1 + A~') has been introduced [31] here. This factor ensures

that the recursion relation I:INH = VAHy + Yo [{ﬁ <f;{,afN+1U + f;{,HUfNUH takes a

particular simple form [see Eq. (A.40)) for the general case]. In contrast to the more general
case, discussed in Appendix /Al the leads DoS in Ref. [31] was assumed to be constant and
spin independent.

Note that the exponential decrease of ¢& (oc A™Y/2) in Eq. (4.1) ensures that the
problem can be solved by iterative diagonalization, as the energy scales of the different
iterations separate nicely. Other models like the Hubbard model - where the hopping matrix
element are constant - can not be solved by NRG and one needs to use other methods such
as the density matrix renormalization group (DMRG) method [48] for tackling problems
of this kind.
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As expected from PMS the parameter J of the Kondo problem is small at the beginning
of the NRG-procedure corresponding to high energies (weak coupling regime). Once the
strong coupling regime is reached, i.e when the NRG-iteration has proceeded far below
the energy scale Tk (see Fig. 4.1), however, J diverges. To capture the crossover regime
(at an energy Tk ) between the weak and the strong-coupling regime well, it is crucial to
keep sufficiently many the lowest lying eigenstates of the system in each iteration. Fig. 4.1
shows the crossover of J as a function of decreasing energy (i.e. increasing iteration).
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Figure 4.1: In the course of the iteration, i.e. with decreasing energies, the Kondo coupling
J flows’ from a small value [weak coupling (WC) regime] to a very big value [strong
coupling (SC) regime|, a behavior that was already indicated in Eq. (3.31). The shaded
regions mark these two regimes. Especially the complicated crossover regime (white region)
can only reliably be calculated via NRG.

In summary, the scheme provided by Wilson [46] relates effective Hamiltonians on suc-
cessive energy scales [40] by a transformation R, Hy; = R[Hy|. Due to the separation
of energy scales Wilson showed that the Kondo problem can be solved by iterative pertur-
bation theory [meaning the (N + 1)-th site of the Wilson chain can be viewed as a small
perturbation of Hy].

As an example we shortly show the principle of the numerical procedure for Hy: the
matrix that describes the initial Hamiltonian of the KM, Hy is a 8 x 8 matrix which consists
of the impurity and the first site of the Wilson chain. We define the eight basis states of this
matrix as product states of the two possible impurity states |[{}) and [{}) and four possible
electronic states at the first site of the Wilson chain |0),, ng 10)y = [T)o, fgi 10) = 1)
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and fJT fg 110)g = [T1)o- An arbitrary state in the zeroth-iteration can thus be written as
W)y = i) |o), with ¢ € {0,1,],T]} and o = {1, }. In this basis spanning the Hilbert
space Ho the Hamiltonian H takes the form

0 [ (D 1D 1T Im 10y [ D D [TH D)
10) ) 0 0 0 0 0 0 0 0
1T 1) 0 3 0 0 0 0 0 0
1)1 0 0 —1J 0 0 J 0 0
o= 1T 0 0 0 0 0 0 0 0
O 10) [4) 0 0 0 0 0 0 0 0
1) [ 0 0 J 0 0 —1J 0 0
1) 10) 0 0 0 0 0 0 =J 0
1TL) 1) 0 0 0 0 0 0 0 0

We start the procedure by diagonalizing f[o, Hy — ng. This is achieved by rotating H, to
a proper basis, UT Holdy = ﬁg, where U is determined numerically. Since we are interested
in the low-temperature properties of 7:(1(, the eigenenergies of Hy are sorted with respect
to increasing energy and in the course of the iteration only the low-energy states are kept.
This sorting is important, as the size of the Hilbert-space grows as ~ 4%, indicating that
already after a few iterations the Hilbert space has to be truncated. Obviously all relevant
operators one is interested in, in particular the fermionic operators acting on the zeroth
site of the chain fy,, have to be transformed to this new basis as well and afterwards sorted
w.r.t. increasing eigenenergies of ]:Io.

In this basis the matrix corresponding to H, can easily be obtained by connecting the
0-th and 1-st site of the Wilson chain [Eq. (A.40)]

0y, ) 1), 111),

0y (VAHS & & 0

- | e VARS 0 5 F
Hl_ K rx rd K s«
|l>1 0 foi 0 \/KHO - OJiOT

T\ o & Sy VAR

I

with fi = UT foslo. Note: (i) Hd and fz, are 8 x 8 matrices (from the Hilbert space Hy),
thus the Hilbert-space H; corresponding to H; has dimension 32. (ii) states including the
first site of the Wilson chain are written as |¥) = [i) |V), with i € {0,T, ], 7|}, or more
general

o) =i

N+1 | >N+1

V)

v (4.2)
Analogously to above, we can now determine the eigenspectrum of H, by diagonalizing
H,. Before we do so, however, we need to determine f{ra which ensures that the iteration

can be continued. In the original (undiagonalized) basis of the Hilbert space H; these
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operators are trivially given as

oy I W 1T

0, [ 0 0 0 0

P |T>1 1651 0 0 0

flo'_ |l>1 léa,l 0 0 0 ) (43)
Iy \ 0 =16, Ldsy O

where 1 denotes 8 x 8 unit-matrices. This steps [diagonalization, sorting w.r.t. increasing
eigenenergies, truncating, adding the next site of the Wilson chain, setting up the fermionic
operator that acts on the new site’ of the Wilson chain, see Eq. (4.3)), diagonalization, .. .]
are repeated until the iteration converges.

Convergence can be checked in a flow diagram (see Fig. 4.2), where the lowest lying
eigenstates of the system are plotted as a function of the iteration number. Once the strong
coupling fixed point is reached the method has converged.
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Figure 4.2: Figenenergies (with corresponding degeneracy) of the KM as a function of the
iteration N corresponding to an energy ~ A~™2. The energies of all levels are drawn
with respect to the ground state energy (diamonds on x-axis) and are rescaled by AN/2,
as they are exponentially decreasing in the course of the iteration. After ~ 20 iterations
the system flows to the strong coupling fixed point. The iteration converged after ~ 35
iterations. Parameters: J = 0.25, A = 2.

We would like to make a final remark here: as the size of the Hilbert-space grows
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exponentially fast it is crucial to make use of the system’s symmetries to speed up the
numerical calculation, see Appendix (C.

4.1 Physical quantities computed with NRG

There are two classes of quantities we are interested in: (i) thermodynamic quantities, ob-
tained by properly averaging over a given operator, say A, (A) = 2 > m € B (m Alm)B
A typical example of this class is the impurity occupation A=n (in case of the AM). As
will be shown below, another thermodynamic quantity,the impurity specific heat Ciy,p(T),
requires not even the knowledge of matrix elements. (ii) Dynamic quantities, such as the
spectral function A(w,T"), which are harder to compute since, additional to the task of cal-
culating the corresponding energy spectrum and matrix elements of the involved operators,
appearing d-functions have to be combined and broadened properly (see Appendix B)).

The energy-dependence (or alternatively temperature-dependence) of the quantities of
interest enters via the iteration number N, as in the N-th step of the NRG-iteration
physical quantities are computed at a typical energy wy ~ A~N=Y/2D (or temperature
kgTyn ~ A_(N_l)/2D).

In contrast to zero-temperature calculations one has to stop the NRG-iteration at a
specific iteration number in case of finite temperature calculations. Once wy reaches the
scale kgT, to be precise kT = 1 (1 4+ A~1) A=V=1/2 je. after Ny iterations

log (£%5)

log(A)

Np={1-2 (4.4)

with [...] denoting the integer function, the NRG-iteration has to be stopped. The reason
for this is the following: for N > Ny the typical energy scale wy is smaller than the thermal
energy, i.e. relevant excitations of the system are not included any more since they have
already been truncated.

4.1.1 Thermodynamic quantities

Using two specific examples we give a rough idea how to compute thermodynamic quantities
in this Section.

The knowledge of the energy spectrum is already sufficient for the calculation of the
impurity specific heat Ciyp (1), C(T) = —T;—;F (T") (with the total free energy of a canon-
ical ensemble F(T') = —kgT'InZ). Cimp(T') is obtained by subtracting the free electron
specific heat (corresponding to J = 0, i.e. the specific heat in absence of the impurity)

from the specific heat of the whole system [47]. This difference can be rewritten as [40]

d d - v
Cinp(T) = — {TQd—T lim (mtr(e-ﬁA WIVEHN )Y (e AT DN (I=0) +]n2>}

3Z denotes the partition function Z =3 e PEm with B = (kpT)™L.
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- ()

For the calculation of other thermodynamic quantities, such as the impurity occupation
no =, dl dy, one has to implement the initial matrix elements of 7 as well. In case of
a single-level AM ng has the form

0) 1 W)

o /0 0 0 0
Mmoo 11 0 0
EW Lo 0 1-1 0

mp\o o 0 2.1

where 1 denotes 4 X 4 unit matrices. Obviously n has to be transformed in the same man-
ner as the Hamiltonian in the course of the iteration. To finally obtain the expectation
value (n), one has to average over the eigenstates of the system, i.e. a knowledge of the
eigenspectrum of Hy and of the matrix elements of the operator 7 (in the N-th iteration)
is required.

Thermodynamic quantities can be computed rather accurately (more accurate than dy-
namic quantities, see Section 4.1.2)), since they are obtained from the low-energy part of
the spectrum (where NRG has, by construction, its highest resolution).

Indeed, a careful comparison of the gate voltage dependence of the zero-temperature

occupation between the NRG and the Bethe-Ansatz solution (an analytic exact solution
of the problem) allows for an accuracy check of the numerics. In Fig. 4.3(left panel) we
plot the local level occupation n = (n) (for T' = 0) for a single-level AM as a function of
eq once computed via Bethe-Ansatz [49, 50] and once computed via NRG (see also [33]).
We find perfect agreement between both methods.
In contrast to Bethe-Ansatz, however, NRG allows us to study the QD occupation as
a function of decreasing temperature as well. Fig. 4.3(right panel) shows how the QD
occupation evolves upon lowering the temperature. As already mentioned, in the limit of
small temperatures three regimes can be identified (EO: |n — 1| ~ 1, MV: |n — 1| ~ 0.5,
LMR: |n — 1] ~ 0).

For T' = 0 the impurity occupation can be used to compute the phase shift A¢, a spin
o electron experiences when being scattered off the magnetic impurity, A¢, = n, 7, known
as the Friedel-sum rule [21]. For T' = 0 a relation between A¢, and the conductance holds
[Gy ~ sin?(A¢,)] which is based on Fermi liquid theory . This relation allows one to
determine the conductance G from the knowledge of the occupation of the impurity.

4.1.2 Dynamic quantities: A(w,T) and x"(w,T)

Dynamic quantities are harder to compute than thermodynamic ones since they are en-
ergy and temperature dependent. Nevertheless we are interested in those quantities, since
in most experiments transport properties instead of thermodynamic properties are mea-
sured. Transport properties can typically be expressed via a function L,,;, m,l € Z, where
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Figure 4.3: Left: Gate voltage dependence of the local occupation n of a single-level AM.
We find excellent agreement between the exact Bethe-Ansatz solutions [49,50] and NRG-
calculations, indicating the high accuracy of the numerics. The right panel shows the three
possible QD regimes: the Local-moment-regime (LMR) (n ~ 1), where Kondo correlations
can exist (see also the 'Kondo plateau’ in the left panel), the mixed valence (MV) regime
(Jn — 1| & 1) and the empty orbital (EO) regime where the QD is either empty or doubly
occupied. For temperatures smaller ~ 0.01U the system reaches the strong coupling limit.
Note the particle-hole symmetry around ¢; = —U/2. Parameters: U = 0.12D, A = 2.

Ly ox [ g—fjlwmdw (f labels the Fermi-function of the leads). Examples are the resistivity
p(T) = % Loy or the thermopower S(T') = —eiTﬁ—;i
As such integrals depend crucially on the lifetime 7(w,T)™! ~ A(w,T) [51], a good knowl-
edge of the system’s spectral function A(w,T') is essential to compute transport properties
of a given system. Another important dynamical quantity is the spin spectral function
X' (w, T).

Consequently, we introduce this two important dynamical quantities, A(w,T’) and
X"(w, T) in this Section.

The spectral function A(w,T) is defined as

Alw,T) = L [G"(w,T)], (4.5)

(e

where Gf(w, T) is the Fourier-transformed? of the retarded Green’s function G(t,T) =
—if(t)({d(t),d"(0)}). Obviously the calculation of A(w,T) requires the determination of
the matrix elements of d. Consequently one has to implement the matrix elements of the
operator d in the zeroth step of the NRG-iteration, d.

For arbitrary temperatures the retarded Green’s function can be written (in Lehmann
representation) as

G, T) = —if(t) >

nm

(nld(t) [m) (m|d" |n), (4.6)

1GR(w,T) = ffooo dt e“tGl(t,T)
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where Z(3) = ., e % denotes the partition function and |n) an eigenstate with corre-
sponding eigenenergy E,, of H. A A

When we insert the time evolution® d(t) = e*d(0)e~" into Eq. (4.6) and finally perform
the Fourier transformation we arrive at the spectral function [51]

e PBn 4 ¢=BEm 2
Aw,T) =3 Z?ﬂ) (ml df |02 6(w — (B — E,)). (4.7)

nm

In particular, the "= 0 limit (in which we are mostly interested in) can easily be obtained
from Eq. (4.7),

Alw, T =0) = 3| (n] d'0)[* 5w — (B, — Eo))+ Y | (0]d! ) 6o — (Bo — Bn)),

(4.8)
where |0) denotes the ground state of the system. As finite temperature spectral functions

A(w,T) involve transitions between excited states |(m|d |n>|2, they are more difficult to
calculate than A(w,T = 0) (see e.g. Fig. B.1). We already pointed out in Eq. (4.4) that it
is crucial to stop the iteration after Ny steps when one is interested in a finite temperature
calculation.

In Fig. 4.4 we plot the (properly renormalized) spectral function A(w,T = 0) for dif-
ferent values of ¢, for a single-level AM obtained from NRG. The accuracy of the numerics
can be checked by comparing the numerically obtained value of A(w = 0,7 = 0) with that

known from the Friedel-sum-rule [21], A(0,0) = Sini(r%m [with n = >__(dld,); here we

took I', = iI' and n, = in (since B = 0)]. A further check of the numerical accuracy
of the calculation of the spectral function A(w,T = 0) can be achieved by comparing its
integrated weight ffoo dw A(w,T = 0) with the thermodynamically calculated occupation
n. As high energy features in A(w,T = 0) are dominantly responsible for the occupa-

tion obtained via fi)oo dw A(w, T = 0), we do not expect a perfect agreement between

ffoo dw A(w,T = 0) and n. Remember that the NRG-method is designed to describe
low-energy properties of the system accurately. A trick due to Bulla [52], that involves the
self-energy of the AM, can slightly cure this problem.

In the Kondo regime, the spectral function shows a three peak structure: (i) two atomic
resonances of width ~ T" near ¢; and €¢; + U and (ii) the Kondo resonance of width ~ Ty
(pinned at the Fermi energy). It was already pointed out before that a finite magnetic field
of strength B < Ty leads to a suppression and splitting of the Kondo resonance. An even
bigger magnetic field completely destroys the Kondo effect. As shown by Hofstetter [4],
the ’traditional’” NRG-procedure has even to be changed for B # 0. In this case the
“density-matriv NRG” (DM-NRG) method should be used. A detailed description of the
DM-NRG-method is given in Appendix D.

5Here the time evolution operator has the form U(t,0) = e~ M.
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Figure 4.4: Left: Spectral function A(w,T" = 0) for different values of ¢;. The Kondo
resonance (of width ~ Tk ) can be nicely seen for that values of ¢; (namely ¢; = —U/6 and
eq = —U/2) where the impurity is roughly singly occupied, i.e. in the LMR. Note that the
Friedel-sum rule [21] is fulfilled extremely well (with a deviation less than 3%). Additional
side peaks of width I" appear in the spectral function which are due to the discrete (atomic)
levels at €5 and €5 + U. Right: Spin spectral function x” for the same values of ¢; as in
the left panel. The maximum in x”(w,T = 0) appears at a frequency w ~ Tk (given the
Kondo effect exists); for frequencies below Tk the system behaves like a Fermi liquid, i.e.
X' (w, T =0) x w.

In some cases, e.g. when one is interested in the transmission phase shift ¢(w,T),

3G (w
tan[p(w, T)] = M, it is necessary to calculate both the imaginary part S [GR(w, T)]

and the real part R [QR(w, T)] of G. For causal functions, such as the retarded Green’s
function, this can be achieved by a Kramers-Kronig transformation [7], see Appendix E.

The spin susceptibility x(t) = x/(t) +ix"(t), a second dynamic quantity we briefly want
to explain here, describes the response of a system, which is a magnetization mi(t) at a
time ¢, after a magnetic field h(0) was applied at t = 0

mi(t) = x(t,0)h(0). (4.9)

It was pointed out before, that it is convenient to define Tk as the maximum of the spin
susceptibility x”(w) [29], see Fig. 4.4l

In linear response theory the spin susceptibility is given by x(t) = 2'9(t)<[§fmp(t), S'fmp(())D.
For a single-level AM S? ~ has the following matrix elements in the zeroth iteration

0 m )

0y /0 0 0 0

(55 )= M |0 100 0
mp0 L0 0 —3-1 0
i\ 0 1 0 0
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When we write x(¢) in Lehmann representation, achieved by inserting a complete set of
states, we obtain (for ¢ > 0 and 7" = 0):

X(t) = iy (0[S e ) (n] 5,100 = i [(n] S5, [0)] 0

Its Fourier-transformed then takes the form

Xw@) = Y |(n] S, 0] lim / il (Bu—Eo)inlt gy _

n—0% Jo

2 2 2 1 .
— zn: [(n] S%,, 0)] [79 (w_ B EO)) — ind(w — (B, — Ep))
Thus the T' = 0 spin-susceptibility x”(w) has the form

X'(w) =73 [(n] 82, 10)|* 6(w — (B, — Ep)). (4.10)

To summarize: additional to the knowledge of the eigenstates |n) (with corresponding
eigenenergies F,) and matrix elements (e.g. (n|S7,,[0)) of a system, the computation of
a dynamical quantity involves a (proper) broadening of appearing J-functions. In Ap-
pendix B we focus on this issue.
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NRG-studies of Quantum Impurity
Models



46




Chapter 5

QDs coupled to ferromagnetic leads

In Chapter 2/ we stressed that lateral semiconductor QDs, commonly used in transport
experiments, are defined by depleting a 2DEG (via negatively charged gates). An example
of such a structure is shown in Fig. [5.1(left panel). In absence of an external magnetic
field the local interacting region, the source and the drain region (all these regions consist
of the same material) do not have a preferred spin direction, i.e. they are unpolarized.
Consequently, for B = 0 the electrons of the leads screen a localized spin in the QD for
T < Tk. As explained in Chapter 3| this results in an enhanced linear conductance (due
to the Kondo resonance in the local DoS).

Leads that consist of one spin species only (half-metallic leads), are obviously not
able to screen a local moment, no Kondo correlations can develop in this scenario. This
way of thought brings one to an interesting theoretical question, namely whether Kondo
correlations do exist for a local moment which is coupled to a reservoir with a finite spin
polarization (partially polarized leads). In this scenario it is not obvious what kind of
consequences the leads’ polarization on the Kondo effect has.

Experimentally the idea of contacting a QD to a lead that consists of a different ma-
terial than the QD itself came into reach when Liang et al. [53] managed to contact a
divanadium-molecule (serving as QD) to gold electrodes, see Fig. 5.1(right panel). Usually
the contacting between the QD and its surrounding leads is rather difficult. In conductance
experiments through this device, however, the Kondo effect was observed, indicating that
Liang et al. managed to realize a sufficiently good contact between the molecule and its
leads. If one replaced the gold electrodes by manganese, the model we are studying in this
chapter would be realized.

In the following papers [15, 54] we discuss the effect of a finite spin polarization in the
leads on the Kondo resonance. In Section 5.1 we study the consequence of a finite leads
polarization P # 0 on Kondo physics (with fixed gate voltage €;). It turns out that a finite
spin polarization P # 0 results in a splitting and a suppression of the Kondo resonance.

In Section 5.2 we address the question how the splitting of the Kondo resonance varies
upon changing ¢; for QDs coupled to leads with a 'realistic’ DoS. We find a strong gate
voltage dependence of the splitting of the Kondo resonance that depends crucially on the
particular band-structure in the leads. Surprisingly the suppression and splitting of the
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Source Drain

Figure 5.1: Left: "Traditional’ way of realizing a QD, coupled to leads which consist of the
same material as the QD itself (Photo from: http://www.unibas.ch/phys-meso/). Right:
Liang et al. [53] managed to contact a divanadium-molecule, depicted above the image, to
gold contacts. This opens up the exciting possibility to contact QDs to arbitrary leads.

Kondo resonance, which usually appears in case of a QD contacted to polarized leads, can
be compensated by an appropriately tuned gate voltage e,.

5.1 Effect of a finite spin polarization in the leads on
the Kondo resonance

In this Section we study the effect of a finite spin polarization P in the leads on the Kondo
resonance. To ensure that the QD is in the local moment regime, i.e. it is roughly singly
occupied, we fix the gate voltage at e, = —U/3 throughout this study.

We assume the DoS in the leads p, to be flat and normalized ) fg;o podw = 1 but
spin-dependent, as shown in Fig. 5.2(left panel).t’ Correspondingly, the spin polarization
P of the leads is determined by the DoS at the Fermi energy P = %. For flat
bands, as considered here, the full information about spin asymmetry in the leads can be
parameterized by a spin-dependent hybridization function ', = %F(l + P).% Based on
second order perturbation theory in the tunneling one expects a spin-dependent shift and

'Here we disregard an additional spin splitting at the edge of the bands (Stoner-splitting), which leads
to a logarithmically suppressed effective magnetic field.
20 =1 () corresponds to +(—).
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w/D
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Po(w)

Figure 5.2: Left: Spin-resolved leads DoS p,(w) (w € [—D; D]) for a flat band with P > 0.
The imbalance of available T- and |-electron states determines the spin polarization P of
the leads. Right: The cartoon illustrates the consequence of a finite spin polarization in
the leads, namely a spin splitting of the local level €4, (here: P > 0 and e¢; > —U/2).

consequently a spin splitting of the local level? for a finite spin polarization of the leads
(P #0), see Fig. 5.2(right panel). Consequently one expects the Kondo resonance of a QD
contacted to spin polarized leads to be suppressed and split, similar to a QD in presence
of a magnetic field.

Below we present a careful NRG-study of the problem outlined above. We find that the
full Kondo resonance of a QD that is coupled to spin polarized leads can be recovered (with
a reduced value of Tk) given an appropriately tuned external magnetic field is applied.

3For e¢q # —U/2 and Ty # I'| one expects a spin-dependent shift of the local level de4y, Seqr ~

ea+U ‘€q 7& eq+U w 66‘“'
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The Kondo effect in quantum dots (QDs)—artificial magnetic impurities—attached to ferromag-
netic leads is studied with the numerical renormalization group method. It is shown that the QD level is
spin split due to the presence of ferromagnetic electrodes, leading to a suppression of the Kondo effect.
We find that the Kondo effect can be restored by compensating this splitting with a magnetic field.
Although the resulting Kondo resonance then has an unusual spin asymmetry with a reduced Kondo
temperature, the ground state is still a locally screened state, describable by Fermi liquid theory and a
generalized Friedel sum rule, and transport at zero temperature is spin independent.

DOI: 10.1103/PhysRevLett.91.247202

The prediction [1] and experimental observation of the
Kondo effect in artificial magnetic impurities—semi-
conducting quantum dots (QDs) [2,3]—renewed interest
in the Kondo effect and opened new opportunities of
research. The successful observation of the Kondo effect
in molecular QDs such as carbon nanotubes [4,5] and
single molecules [6] attached to metallic electrodes
opened the possibility to study the influence of many-
body correlations in the leads (superconductivity [7] or
ferromagnetism) on the Kondo effect. Recently, the ques-
tion arose whether the Kondo effect in a QD attached to
ferromagnetic leads can occur or not. Several authors have
predicted [8—11] that the Kondo effect should occur.
However, it was shown recently [12] that the QD level
will be spin split due to the presence of ferromagnetic
electrodes leading to a suppression of the Kondo effect,
and that the Kondo resonance can be restored only by
applying an external magnetic field. The analyses of
Refs. [§—12] were all based on approximate methods.

In this Letter, we resolve the controversy by adapting
the numerical renormalization group (NRG) technique
[13,14], one of the most accurate methods available to
study strongly correlated systems in the Kondo regime, to
the case of a QD coupled to ferromagnetic leads with
parallel magnetization directions. We find that, in general,
the Kondo resonance is split, similar to the usual
magnetic-field-induced splitting [15,16]. However, we
find that, by appropriately tuning an external magnetic
field, this splitting can be fully compensated and the
Kondo effect can be restored [17](confirming Ref. [12]).
We point out that precisely at this field the occupancy of
the local level is the same for spin-up and -down, n; = ny,
a fact that follows from the Friedel sum rule [19]. More-
over, we show that the Kondo effect then has unusual
properties such as a strong spin polarization of the Kondo

247202-1 0031-9007/03/91(24)/247202(4)$20.00
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resonance and, just as for ferromagnetic materials, for the
density of states (DOS). Nevertheless, despite the spin
asymmetries in the DOS of the QD and the leads, the
symmetry in the occupancy n; = n; implies that the
system’s ground state can be tuned to have a fully com-
pensated local spin, in which case the QD conductance is
found to be the same for each spin channel, G; = G.

The model—For ferromagnetic leads, electron-
electron interactions in the leads give rise to magnetic
order and spin-dependent DOS p(w) # p,(w), (r=
L, R). Magnetic order of typical band ferromagnets such
as Fe, Co, and Ni is mainly related to electron correlation
effects in the relatively narrow 3d subbands, which only
weakly hybridize with 4s and 4p bands [20]. We can
assume that, due to a strong spatial confinement of d
electron orbitals, the contribution of electrons from d
subbands to transport across the tunnel barrier can be
neglected [21]. In such a situation, the system can be
modeled by noninteracting [22] s electrons, which are
spin polarized due to the exchange interaction with
uncompensated magnetic moments of the completely
localized d electrons. In the mean-field approximation,
one can model this exchange interaction as an effective
molecular field, which removes spin degeneracy in the
system of noninteracting conducting electrons, leading to
a spin-dependent DOS. The Anderson model (AM) for a
QD with a single energy level €4, which is coupled to
ferromagnetic leads, is given by

H= Ze,.k(,c:rkgc,k(, + edZﬁ,, + Uy,

rko o
+ > (Vyydhe, o + Vigeh ,dy) — gupBS,. (1)
rko

Here ¢4, and d,, (i, = d};dg) are the Fermi operators for
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electrons with momentum k and spin o in the leads
and, in the QD, V,; is the tunneling amplitude, S, =
(Ay — A4))/2, and the last term is the Zeeman energy
of the dot. All information about spin asymmetry
in the leads can be modeled by the spin-dependent
hybridization function I',,(w) = 7>, 6(w — €,)VZ, =
7p,o(w)VZ, where V., =V, and p,,(w) is the spin-
dependent DOS.

In order to understand the Kondo physics of a QD
attached to two identical ferromagnetic electrodes with
parallel configurations, it suffices to study, instead of the
above general model [Eq. (1)], a simpler one, which
captures the same essential physics, namely, the fact
that I',;(w) # I',j(w) will generate an effective local mag-
netic field, which lifts the degeneracy of the local level
(even for B =0). A simple (but not unique) way of
modeling this effect is to take the DOS in the leads to
be constant and spin independent, p,,(w) = p, the band-
widths to be equal D; = D|, and lump all spin dependence
into the spin-dependent hybridization function, I',,(w),
which we take to be w independent, I', (w) =T,,. By
means of a unitary transformation [1], the AM [Eq. (1)]
can be mapped onto a model in which the correlated
QD level couples only to one electron reservoir described
by Fermi operators ay,, with strength I';, = > .T,

H = kZeka,:r”akg + edZﬁo + Uy
(o o
+ > T/ (mp)dbay, + af,dy) — gupBS,. (2)
ko

Finally, we parametrize the spin dependence of I', in
terms of a spin-polarization parameter P = (I'y — I')/
I, by writing I'yyy = 3T(1 = P), where I' =T, + T.

In the model of Eq. (2), we allowed for I'; # I} but not
for Dy # D), as would be appropriate for real ferromag-
nets, whose spin-up and -down bands always have a
Stoner splitting AD = D; — D;, with typical values
AD/ D; = 20% (for Ni, Co, and Fe). However, no essen-
tial physics is thereby lost, since the consequence of
taking D; # Dy is the same as that of taking I'} # I},
namely, to generate an effective local magnetic field [25].

The occurrence of the Kondo effect requires spin fluc-
tuations in the dot as well as zero-energy spin-flip ex-
citations in the leads. Indeed, a Stoner ferromagnet
without full spin polarization —1 <P <1 provides
zero-energy Stoner excitations [26], even in the presence
of an external magnetic field.

Method—The model [Eq. (2)] can be treated by
Wilson’s NRG method. This method, with recent im-
provements related to high-energy features and finite
magnetic field [15,16], is a well-established method
to study the Kondo impurity (QD) physics. It allows
one to calculate the level occupation n, = (A,) (a static
property), the QD spin spectral function, Im yi(w) =
FLiO@){[S.(1), S.(0)])}, where F denotes the Fourier
transform, and the spin-resolved single-particle spectral

247202-2

density A,(w,T,B,P) = —1Im G}, (w) for arbitrary
temperature 7, magnetic field B, and polariza-
tion P [where Ggo(w) denotes a retarded Green function].
From this we can find the spin-resolved conduc-
tance G, = (2/H)2N)/(A + 1)’T, [, dw A, (w) X
{-0f(w)/dw}, where f(w) is the Fermi function and
A =Ty,/Tr, denotes the coupling asymmetry. We
choose A = 1 below.

Generation and restoration of spin splitting.—In this
Letter, we focus exclusively on the properties of the
system at 7 = O in the local moment regime, where the
total occupancy of the QD, n =Y  n, = 1. The occur-
rence of charge fluctuations broadens and shifts the posi-
tion of the QD levels (for both spin-up and -down), and,
hence, changes their occupation. For P # 0, the charge
fluctuations and, hence, level shifts and level occupations
become spin dependent, causing the QD level to split [12]
and the dot magnetization n; — n; to be finite (Fig. ). Asa
result, the Kondo resonance is also spin split [28,29] and
weakened (Fig. 2), similarly to the effect of an applied
magnetic field [15,16]. This means that Kondo correla-
tions are reduced or even suppressed in the presence of
ferromagnetic leads. However, for any fixed P, it is pos-
sible to compensate the splitting of the Kondo resonance
[Figs. 2(c) and 3(c)] by fine-tuning the magnetic field to
an appropriate value, By, (P), defined as the field which
maximizes the height of the Kondo resonance. This field
is found to depend linearly [27] on P [Fig. 1(c)] (as
predicted in [12] for U — o0). Remarkably, we also
find (throughout the local moment regime) that at By,
the local occupancies satisfy n; = n [Fig. 1(b)]. The fact
that this occurs simultaneously with the disappearance
of the Kondo resonance splitting suggests that the local
spin is fully screened at Bopp-

Spectral functions.—We henceforth fix the magnetic
field at B = Bcomp(P). To learn more about the properties
of the corresponding ground state, we computed the spin
spectral function Im{y%(w)} for several values of P at
T =0 (Fig. 3). Its behavior is characteristic for the
formation of a local Kondo singlet: As a function of
decreasing frequency, the spin spectral function shows a

I D
A = _ *
/ . R %,
nn, | a b ny+n “ % ¢ N
05 | Mt )/ 1 L htny \ % O\Q
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/ B/T=0.1 \\ ", o
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0 == - = 0.2
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FIG. 1 (color online). Spin-dependent occupation of the dot
level at (a) B =0 and (b) B = —0.1I", as a function of spin
polarization P. (a) For B = 0, the condition n; = n; holds only
at P = 0. (b) For finite P, it can be satisfied if a finite, fine-
tuned magnetic field, Beom,(P), is applied, whose dependence
on P is shown in (c). As expected, it is approximately linear
[12,27]. Here U = 0.12D, ey = —U/3, T = U/6,and T = 0.
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FIG. 2 (color online). (a) QD spectral function A(w) =
> sA,(w) for several values of spin polarization P; inset:
expanded scale of A(w) around ep. (b) The spin-resolved
spectral function for fixed P. For P — —P, we have A, —
A_,. (c) Compensation of the spin splitting by fine-tuning an
external magnetic field. Parameters U, €4, I', and T as in Fig. 1.

maximum at a frequency w,,,, which we associate with
the Kondo temperature [ie., kgTx = hw,,, at B =
Bomp(P)], and then decreases linearly with o, indicating
the formation of the Fermi liquid state [14]. By determin-
ing Tx(P) (from w,,,,) for different P values, we find that
Tk decreases with increasing P [Fig. 3(b)]. For metals
such as Ni, Co, and Fe, where P = 0.24, 0.35, and 0.40,
respectively, the decrease of Tk is weak, so the Kondo
effect should be experimentally accessible. Remarkably,
both Im{x%(w)} and the A, (w) collapse rather well onto a
universal curve if plotted in appropriate units [Figs. 3(a)
and 3(c)]. This indicates that an applied magnetic field
B omp restores the universal behavior characteristic for the
isotropic Kondo effect, in spite of the presence of spin-
dependent coupling to the leads. Figure 4(a) shows that
the amplitude of the Kondo resonance is now strongly
spin dependent, which is unusual and unique. The nature
of this asymmetry is related to the asymmetry of the
DOS in the leads, and its value is exactly proportional to
~1/T",,.. As a result, the total conductance G,, is not spin
dependent [Fig. 4(b)]. This indicates the robustness of the
Kondo effect in this system: If the external magnetic field
has been tuned appropriately, it is able to compensate the
presence of a spin asymmetry in the leads by creating a
proper spin asymmetry in the dot spectral density,
thereby conserving a fully compensated local spin and
achieving perfect transmission.

Friedel sum rule—Further insights can be gained
from the Friedel sum rule, an exact T = 0O relation [19]
that holds for arbitrary values of P and B [30]. The
interacting Green’s function can be expressed as [14]

So(w) =[w — e, +il, — So(@)]7!, with spin de-
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FIG. 3 (color online). (a) The spin spectral function

Im{%(w)}. (b) Dependence of Tk on spin polarization P. The
dotted line shows the prediction from Ref. [12]—namely,
Tx(P)/Tk(0) = exp[C arctanh(P)/P], where the best fit is ob-
tained for C = —5.98. Equation (6) from Ref. [12] with (p1 +
p)Jo = (T/m)U/[legl(U + €4)] would lead to C = —4.19. (c)
QD spectral function for several values of P. Parameters U, €4,
I, and T are as in Fig. 1, B = Beomp(P).

pendent €4, and I'y,; the former due to Zeeman splitting
(€40 = €4 — 1/2 ogugpB) and the latter due to the ferro-
magnetic leads. Here X, (w) denotes the spin-dependent
self-energy. Now, the Friedel sum rule [19] implies that,
at T = 0, the following relations hold:

_ _ 11 (€ag — €p + Z5(ep)
ng, = ¢0’/7T = E ;tan ( FU >, (3)
2
Ay (ep) = S(T1a) @
I,

where 2R(w) = Re 2, (w), and ¢,(w) is the phase of

& (). Since E?(f]:) #* EF(EF), an equal spin occupa-
tion, n; = ny, is possible only for (eq — eg + E?(EF))/
I} = (eq — €5 + 2} (€p))/T}, which can be obtained only
for an appropriate external magnetic field B = Bqpy. For
the latter, in the local moment regime (n = 1), we have
ny = ny = 0.5, so that ¢; = ¢ = 7/2, which implies
that the peaks of A; and A; are aligned. Thus, the
Friedel sum rule clarifies why the magnetic field Beomp,
at which the splitting of the Kondo resonance disappears,
coincides with that for which n; = ny. For B = B gy, the
spin-dependent amplitude A, (egp) of Eq. (4) and the con-
ductance G, ~T,A,(er) agree well with the above-
mentioned NRG results [Figs. 4(a) and 4(b)].

In conclusion, we showed that the Kondo effect in a QD
attached to ferromagnetic leads is in general suppressed,
because the latter induce a spin splitting of the QD level,
which leads to an asymmetry in the occupancy n; # n,.
Remarkably, the Kondo effect may nevertheless be re-
stored by applying an external magnetic field Bopy, tuned
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FIG. 4 (color online). (a) Spin resolved QD spectral function
amplitude A, (w = 0) at the Fermi level, and (b) the QD
conductance G, as functions of the spin polarization P, for
B = Bomp(P) and symmetric couplings (I'., = I'g,), with U,
€4, ', and T as in Fig. 1, implying n, = 0.5. The dashed line in
(a) is 1/(1 = P) [Eq. (4) with n, = 0.5]. As expected, we find
G, = €*/h, with a numerical error less than 1%.

such that the splitting of the Kondo resonance is compen-
sated and the condition n; = ny is fulfilled. Although the
Kondo resonance is strongly spin polarized, it then fea-
tures a locally screened state, a spin-independent con-
ductance, and a Kondo temperature which decreases with
increasing spin asymmetry.
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Note added.—After submission of our paper, a preprint
[31] studying a similar problem using the NRG technique
appeared, with conclusions consistent with ours.
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5.1.1 Quantitative determination of the compensation field B oy,

After finishing the work presented above we became particularly interested (motivated by
questions of D. Ralph) in (i) a quantitative determination of the compensation field Beomp
and (ii) why the condition ny = n| implies an unsplit Kondo resonance.

We use poor man’s scaling to derive the total shift of the local level de4,, which is
due to electrons at the band edges, i.e. at energies w ~ +D. For the case of finite U the
scaling starts at U and breaks down when ¢, is reached, thus Eq. (3.37) has to be adjusted
correspondingly. The shift of the level ¢4, is given as

O€de = ﬁfg. (5.1)

Note that Eq. (5.1) holds only for ¢; > —U/2 (with finite €4), as Eq. (3.37) was derived
in the limit U — oo. The case ¢, < —U/2 produces opposite signs, as one expects from
particle-hole symmetry. For P > 0, i.e. I'} > I'|, and in absence of an additional applied
magnetic field one obtains from Eq. (5.1) €41 < €4y, s0 ny > n; [see Fig. 5.2(right panel)].
Obviously, one can apply an additional local magnetic field, which decreases n; somewhat
faster than n, is increased (since the former is broader than the latter). It turns out that a
compensation field Bgomp, tuned such that the condition ny = n| is fulfilled, realizes the case
where the QD-spin is perfectly screened even though the leads have a finite polarization.
Note that the condition ny = n| implies ¢; = ¢; (due to the Friedel sum rule [21]) which
results in n, ~ % or ¢, ~ w/2 for o =7 / | as ¢4 is fixed such that n ~ 1. At T'= 0, in
strong coupling (the opposite limit to poor man’s scaling), the interacting Green’s function
can be written as G, (w) = w—edg—&-ifl‘a—Eo(w) = |G, (w)|e'®s. Therefore the condition ny = n;
implies that both spin-resolved spectral functions are on resonance - the Kondo resonance
is not split [see question (ii) above]. To have a resonance at the Fermi energy the real
part of the self-energy has to fulfill X2(0) = —(e4, — €r), which means that the self-energy
term Y is not small, indicating the importance of correlation effects. One can get an

approximation about the dependence of Beomp by means of PMS, Eq. (5.1), via

wrp (5.2)

BCOmp ~ 5€dT — 5€dl = — o

That Beomy should be linear in P and I' can be understood from poor man’s scaling (coming
from weak coupling) and is confirmed by the numerics presented before [see question (i)
above].

5.1.2 Experimental relevance

The theoretical study presented in this Section was recently confirmed in an experiment
of Pasupathy et al., “The Kondo Effect in the Presence of Ferromagnetism”, [55]. Tt was
confirmed in this experiment that Cgy molecules (serving as QDs) can be strongly coupled
to nickel electrodes (serving as ferromagnetic leads) so as to exhibit the Kondo effect.



5.1 Effect of a finite spin polarization in the leads on the Kondo resonance 55

The shapes of the nickel electrodes were designed such that the two electrodes have
different magnetic anisotropies. Consequently, these electrodes undergo a magnetic reversal
at different values of the magnetic field. This design has the fundamental advantage that
the relative orientation of the magnetic moments in the two electrodes can be controlled
(via an external magnetic field) between parallel and antiparallel alignment.

Pasupathy et al. found, that ferromagnetism suppresses Kondo-assisted tunneling, but
Kondo correlations are still present in QDs contacted to ferromagnetic leads. In agreement
with our prediction they observed a split conductance, see Fig. [5.3, for the case of the
parallel aligned nickel electrodes. For antiparallel aligned electrodes, on the other hand,
the strong-coupling Kondo effect was recovered, in agreement with a prediction of Martinek
et al. [44] (see Fig. 5.3/ for B ~ 15mT).
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Figure 5.3: Conductance curves for a Ni-Cgy-Ni device. An external magnetic field al-
lows to switch the magnetic orientation of the electrodes between parallel and antiparallel
alignment. For B ~ 15mT (see right panel) the alignment between the electrodes is ap-
proximately antiparallel, the strong-coupling Kondo effect (with an enhanced conductance
at V' = 0 as shown in the right panel) is recovered even in presence of ferromagnetic elec-
trodes. The peak in the conductance at V' = 0mV, shown in the left panel, corresponds to
this particular magnetic field. For a different magnetic field (a magnetic field B ~ 175mT
is marked in the right panel) the electrodes are essentially parallel oriented and the con-
ductance is split and suppressed (the split conductance in the left panel corresponds to
this magnetic field). This observation was predicted in the study presented in this Section.
Figure taken from 5.3

Currently the group of D. Ralph [566], Cornell University, is also trying to contact Mn-
atoms (serving as QDs) to ferromagnetic leads, made of Mn as well. Unfortunately, the
contacting between the Mn-atoms and the Mn-leads turns out to be extremely difficult.



56 5. QDs coupled to ferromagnetic leads

Another possibility to realize QDs contacted to polarized leads is to use QDs based
on single wall carbon nanotubes (SWNT), instead of semiconductor QDs. This systems
allow for various studies of Kondo effects in devices with magnetic or superconducting
electrodes [57].

SWNT are usually grown on iron catalysts. If this (ferromagnetic) catalyst is by ac-
cident close to the contact between a non-magnetic lead and the SWN'T, it can evidently
appear that the tunneling between the SWNT and the leads becomes spin-dependent [58],
a scenario that directly applies to the study presented in Section /5.1.

In a recent study Nygaard et al. [59] presented experimental data on a SWNT based
QD, where the Kondo resonance was split at zero magnetic field, see Fig.5.4. This splitting
was interpreted, in agreement with the findings presented in this Section, as evidence for
the coupling of the dot to a ferromagnetic impurity.
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o~ 0.04 + 80 mK| 145 mK

0.04 - 220 mK| - 550 mK
| 1 |

-0.5 0.0 05 -05 0.0 0.5
V (mV) V (mV)

Figure 5.4: Differential conductance as a function of V of a nanotube QD [59]. The splitting
of the zero bias anomaly can nicely be explained by a QD coupled to ferromagnetic leads.
The splitting disappears when the temperature 7' is increased. We could qualitatively
reproduce this behavior in an (unpublished) NRG-calculation.
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5.2 Gate controlled spin splitting in the Kondo regime

In the above mentioned experiment of Nygaard et al. [59] also the gate voltage dependence
of the splitting of the Kondo resonance was studied, see Fig. 5.5. Three typical classes of
gate voltage dependence of this splitting were found, which the numerical study presented
in this Section confirms.

—

d/dV (a.u.)

o

Figure 5.5: The gate voltage dependent spin splitting of the Kondo resonance as observed
in the experiment of Nygaard et al. [59].

In the following paper (submitted to Phys. Rev. Lett.) we neither assume the leads
DoS to be flat nor we disregard the Stoner splitting. The leads DoS of our choice can be
found in Fig. 1 of the paper presented below. In contrast to the previous work [15] we
really take the energy-dependence of the DoS into account. The chosen DoS corresponds to
a dispersion as found for free electrons. Form a methodological point a view this approach
is more sophisticated than the iteration scheme introduced by Wilson [1]. Here, Wilson’s
iteration scheme [1] has to be extended to handle leads with an arbitrary DoS. The way
how this can be achieved is described in Appendix|A. Note that the spin-dependent DoS
in the leads we use here (which is, by the way, not particle-hole symmetric) complicates
the NRG-iteration dramatically, as spin-dependent hopping matrix elements and spin-
dependent onsite energies along the Wilson chain have to be determined numerically. This
is achieved by solving the equations introduced in Appendix /Al As these matrix elements
are decaying exponentially fast, their numerical determination requires rather advanced
numerical techniques (for further information see Appendix'A.2).

In this study we find that it is not sufficient to consider only the leads DoS at the Fermi
energy p,(er) for a proper description of the resulting splitting of the Kondo resonance. It
turns out, instead, that all lead energies are necessary to describe the resulting splitting
of the Kondo resonance properly - even though high energy states are logarithmically
suppressed. For all choices of p,(w) we find that one can tune the splitting of the Kondo
resonance by means of an external gate voltage. Moreover we find that the Kondo resonance
is fully recovered for a special choice of €4 for a particular form of p,(w) [see Fig. 1(c) of the
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paper below| . This finding suggests the interesting possibility to mimic a local magnetic
field inside a QD by means of an external gate voltage.
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The effect of a gate voltage (V) on the spin-splitting of an electronic level in a quantum dot
(QD) attached to ferromagnetic leads is studied in the Kondo regime using a generalized numerical
renormalization group technique. We find that the V,-dependence of the QD level spin-splitting
strongly depends on the shape of the density of states (DOS). For one class of DOS shapes there
is nearly no V,-dependence, for another, V; can be used to control the magnitude and sign of the
spin-splitting, which can be interpreted as a local exchange magnetic field. We find that the spin-
splitting acquires a new type of logarithmic divergence. We give an analytical explanation for our
numerical results and explain how they arise due to spin-dependent charge fluctuations.

PACS numbers: 75.20.Hr, 72.15.Qm, 72.25.-b, 73.23.Hk

The manipulation of magnetization and spin is one
of the fundamental processes in magneto-electronics and
spintronics, providing the possibility of writing informa-
tion in a magnetic memory [1], and also because of the
possibility of classical or quantum computation using
spin. In most situations this is realized by means of an
externally applied, nonlocal magnetic field which is usu-
ally difficult to insert into an integrated circuit. Recently,
it was proposed to control the magnetic properties, such
as the Curie temperature of ferromagnetic semiconduc-
tors, by means of an electric field: In gated structures
[2], due to the modification of carrier-density-mediated
magnetic interactions, such properties can be modified
by a gate voltage. In this Letter we propose to control
the amplitude and sign of the spin-splitting of a quantum
dot (QD) induced by the presence of ferromagnetic leads,
only by using a gate voltage without further assistance of
a magnetic field. To illustrate this effect we investigate
the Kondo effect and its spin-splitting as a very sensitive
probe of the spin state of the dot and the effective local
magnetic field in the QD generated by exchange interac-
tion with the ferromagnetic leads.

Recently, the possibility of the Kondo effect in a QD at-
tached to ferromagnetic electrodes was widely discussed
[3-9], and it was shown, that the Kondo resonance is split
and suppressed in the presence of ferromagnetic leads
[7. 8]. It was shown that this splitting can be compen-
sated by an appropriately tuned external magnetic field,
and the Kondo effect is thereby restored [7, 8]. In all
previous studies of QDs attached to ferromagnetic leads
[3-9] an idealized, flat, spin-independent DOS with spin-
dependent tunneling amplitudes was considered. How-
ever, since the spin-splitting arises from renormalization

effects i.e. is a many-body effect, it depends on the full
DOS-structure of the involved material, and not only on
its value at the Fermi surface. In realistic ferromagnetic
systems, the DOS shape is strongly asymmetric due to
the Stoner splitting and the different hybridization be-
tween the electronic bands [1].

In this Letter we demonstrate that the gate voltage de-
pendence of the spin-splitting of a QD level, resulting in a
splitting and suppression of the Kondo resonance, is de-
termined by the DOS structure and can lead to crucially
different behaviours. We apply the numerical renormal-
ization group (NRG) technique extended to handle bands
of arbitrary shape. For one class of DOS-shapes, we find
almost no Vj-dependence of the spin-splitting, while for
another class the induced spin-splitting, which can be in-
terpreted as the effect of a local exchange field, can be
controlled by V5. The spin-splitting can be fully compen-
sated and its direction can even be reversed within this
class. We explain the physical mechanism that leads to
this behavior, which is related to the compensation of the
renormalization of the spin-dependent QD levels induced
by the electron-like and hole-like quantum charge fluc-
tuations. Moreover we find that for the QD level close
to the Fermi surface, the amplitude of the spin-splitting
has a logarithmic divergence, indicating the many-body
character of this phenomenon.

Model and method. — The Anderson model (AM) of a
single level QD with energy €¢p and Coulomb interaction
U, coupled to ferromagnetic leads, is given by
H = Z erkgcikachg- + €o Z e + UﬁTﬁ¢

rka o
+ Z(Vrkdjrcrko + h-c-) —BS, . (1)

rko
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Here ¢pke and d, (e = d}‘,da) are Fermi operators for
electrons with momentum %k and spin o in the leads
(r = L/R), and in the QD, V,4 is the tunneling am-
plitude, S, = (fiy — 7i})/2, and the last term denotes the
Zeeman energy of the dot. The energy ¢ is experimen-
tally controllable by Vj (o =~ V).

In order to discuss the gate voltage dependence of the
QD level spin-splitting, we consider here a more real-
istic, both energy and spin dependent band structure
[pri(@) # pry(@)], violating p-h symmetry pro(w) #
pro(—w), which leads to an energy dependent hybridiza-
tion function Tre (w) = 7 3, H{w—e€xe)V,% = Tpre(w) Ve,
where we take V., = V, to be constant. We apply the
NRG method [10, 11] extended to handle arbitrary DOS
shapes and asymmetry. To this end, the standard log-
arithmic discretization of the conduction band is per-
formed for each spin component separately, with the
bandwidths, Dy = D = Dy, chosen such that the to-
tal spectral weight is included in [—Dy, Dy] for all values
of V, studied here (to avoid different systematic errors
upon changing ;).

Within each interval [—wp, —wpt1] and [wpt1,wn)
(with w, = DoA™") of the logarithmically discretized
conduction band (CB) the operators of the continuous
CB are expressed in terms of a Fourier series. Even
though we allow for a non-constant conduction electron
DOS, it is still possible to transform the Hamiltonian
such that the impurity couples only to the zeroth order
component of the Fourier expansion of each interval [12].
Dropping the non-constant Fourier-components of each
interval [10, 11] then results in a discretized version of
the Anderson model with the continous spectrum in each
interval replaced by a single fermionic degree of freedom
(independently for both spin directions). Since we allow
for an arbitrary DOS for each spin component o (1,)) of
the CB this mapping needs to be performed for each o
separately. This leads to the Hamiltonian:

H =" ey + Uyiny + /oo /7 Y _[d} foo + fl,ds]
a o

+ Z [En()’f’:;g'fn(f + tno'(frtwfn+la' + fl+1a-fna')] 3 (2)

on=0

where f,, are fermionic operators at the nth site of the
Wilson chain, &, = 1/2 jfgoo [y (w)dw, tpe denotes the
hopping matrix elements, and ¢, = ¢¢ — BS,. The ab-
sence of particle-hole symmetry leads to the appearance
of non-zero on-site energies, £,, along the chain. In this
general case no closed expression for the matrix elements
tne and e,4, both depending on the particular structure
of the DOS via ', (w), is known, therefore they have to
be determined recursively. This requires rather advanced
numerical methods, due to the exponentially fast decay
of tp, and &,, along the chain [13].

This method allows one to calculate the level occu-
pation n, = (fi,) and the spin-resolved single-particle

_ | TZ T (0)A (o) [6%/h]

d)
B/U=0.017

. -0. 0.0 0.05

»/U /U

FIG. 1: (color online). Vg-dependence of the spin-splitting:
Normalized spectral function 7, T, (0)A,(w) as a function
of energy w and gate voltage eg, for the three different DOS
shapes (depicted in insets) characterized by a different @Q,
which modifies both the spin and p-h asymmetry: (a-c) for
magnetic filed B = 0, (d) B/U = 0.017, (e), and (f) B/U =
0.0083. The white dashed lines are obtained using Eq. (3)-
Here U = 0.12Dy, 7Vy = UD/6, A = 0.15D and T = 0.
Inset: the scheme of the parabolic DOS shape for spin 1 (red)
and | (blue).

spectral density A,(w) = —2ImG} (w), where G (w) de-
notes a retarded Green’s function. For symmetric cou-
pling [I'zy(w) = T'ry(w)] the spin-resolved conductance
takes the form G, = w% fj:: de‘U(w)Aa(w)(—%“;ﬁl)
where f(w) is the Fermi function.

Spectral function and conductance. — Here, we fo-
cus our attention on 7' = 0 properties. We have an-
alyzed several types of DOS shapes and found three
typical classes of the V-dependence of the Kondo res-
onance splitting. Since our method enables us to per-
form NRG calculations for arbitrary band-shapes, we de-
cide to choose an example which turns out to encom-
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3
pass all three classes, namely p,(w) = %:’sﬁD_'gﬂ(l + | Gle/n]
0Q)Vw+ D+ oA, where w € [-D — oA, D — gA], 00 1.0 20
002 00BM 002 004002 00BN o0 004

Dy=D+A, [0 =1(-1) for 1 ({)], a square-root shape
DOS equivalent to a parabolic band (as for free elec-
trons) with Stoner splitting A [14], and some additional
spin asymmetry @), which modifies the amplitude of the
DOS [see Fig. 1(insets)].

In Fig. 1 we present the weighted spectral function
A(w) =me?/hY], Ty (0) Ay (w), normalized such that for
w = 0 it corresponds to the linear conductance G = A(0),
as a function of energy w and ¢. We focus on a nar-
row energy window around the Fermi surface where the
Kondo resonance appears; charge resonances are visible
when ¢y or U + ¢y approach the Fermi surface, namely
at energies /U 2 —0.1 or < —0.9. Although the NRG
method is designed to calculate equilibrium transport,
one can still roughly deduce, from the spin-splitting of
the Kondo resonance of the equilibrium spectral function
A(w), the splitting of the zero-bias anomaly AV in the
non-equilibrium conductance G(V'), since eAV ~ 2Ae [7]
(Ae = & — €, is the splitting of the renormalized levels).

We present A(w) for three DOS shapes depicted in the
insets of Fig. 1: (i) @ = 0 (ad), (ii) @ = 0.1 (bse),
and (iii) @ = 0.3 (c,f), with 2A = 0.3D [15], leading to
the three typical behaviors. Here the parameter () tunes
the spin and p-h asymmetry [see the definition of p, (w)]
resulting in different behaviours (for a detailed discus-
sion see the last section). For (i) we find nearly any
eo-dependence of the spin-splitting; for (ii), a strong €o-
dependence without compensation of the spin-splitting
(i.e. no crossing), and for (iii) a strong €p-dependence
with a compensation (i.e. a crossing) and a change of
the direction of the QD magnetization. The compen-
sation (crossing) corresponds to the very peculiar situa-
tion where the Kondo effect (strong coupling fixed point)
can be recovered in the presence of ferromagnetic leads
without any external magnetic field. A behavior as pre-
sented in Fig. 1(a,b) was recently observed experimen-
tally [16, 17], where indeed a variation of the gate voltage
results in two split conduction lines G(V,V;) which are
parallel for one case and converging for the other case,
similar to our findings.

Effect of a magnetic field. — In Fig. 1(d,ef) we
show how a magnetic field B modifies the results of
Fig. 1(a,b,c): in (i) the spin splitting can be compensated
at a particular magnetic field Beomp (here Beomp/U =
0.017) and the Kondo effect is visible in a wide range
of €; for (ii), at B/U = 0.0083, the Kondo effect is re-
covered only at one particular €p-value, which depends
on the applied magnetic field; case (iii) shows that the
crossing point shifts with B. Since Bcomp can be viewed
as a measure of the zero-field splitting, Ae(B = 0, ¢) ~
—Bomp(€o), the eg-dependence of Ae can be measured
by studying that of Beomp, for which one needs to mea-
sure the linear conductance G(eg,B) as a function of

m:n¢-ni
G[e2/h12

"'B/U=0.0083
0.0

-0.5
eg/U

FIG. 2: (color online). The QD’s linear conductance G as
a function of gate voltage eo and external magnetic field B
for the DOS shapes (a), (b), and (c) as for Fig. 1(a), (b),
and (c) respectively. (d) Spin-dependent occupancy n, of
the dot level as a function of gate voltage eo for the DOS
shape as in Fig. 1(c) and B = 0. (d) The ey-dependence of
the total occupancy of the dot n and magnetization m for
the situation from Fig. 1(c). (e) The conductance G for the
situations from Fig. 1(c - dashed), (d - solid), and (f - long

dashed). Parameters U, I, and T as in Fig. 1.

both B and €. In Fig. 2(a-c) we plot G(eg,B) for the
three bands of Fig. 1. The two horizontal ridges (res-
onances) in Fig. 2(a-c) correspond to quantum charge
fluctuations (broadened QD level) of width ~ I'. The
lines with finite slope in Fig. 2(a-c) reflect the restored
Kondo resonance and hence map out the eg-dependence
of Beomp(€0) = —Ae(€o) when the magnetic field compen-
sates the spin-splitting. Interestingly the spin-splitting
and the corresponding Beomp tend to diverge (|Ae| — o0)
when approaching the charging resonance, as is best vis-
ible in Fig. 2(c).

Such a finite slope in G(eg,B) was observed for a
singlet-triplet transition Kondo effect in a two level QD
(Fig.2(d) Ref. [18]). The corresponding transition leads
to a characteristic maximum in the valley between two
charging resonances (Fig.3(c) Ref. [18]), similarly as in
our Fig. 2(e). In that system the effective spin asymme-
try (assumed by our model) is realized by the asymmetry
in the coupling of two QD levels [19].

In Fig. 2(d) we show how the occupation n, and the
magnetic moment (spin) of the QD m = ny —ny = 2(S,)
change as a function of ¢y for the situation of Fig. 1(c).
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One finds that even though B = 0, it is possible to con-
trol the level spin-splitting of the QD, i.e. its spin, and
thereby change the average spin direction of the QD from
the parallel to anti-parallel alignment w.r.t. the lead’s
magnetization. This opens the possibility of controlling
the QD’s spin state by means of a gate voltage without
further need of an external magnetic field, which is diffi-
cult to apply locally in practical devices.

Perturbative analysis. — One can understand the be-
havior presented in Fig. 1(a-c) by using Haldane’s scal-
ing method [20], where charge fluctuations are integrated
out. This leads to a spin-dependent renormalization of
the QD’s level position €, and a level broadening I';. In
contrast to Ref. [7] we consider here the case of finite
Coulomb interactions U < oo, which means that also the
doubly occupied state |2) is of importance. The spin-
splitting is then given by Ae = dey — de; + B, where

SR Y PRLECTES S RO IEA

T w— € e+ U —w
The first term in the curly brackets corresponds to
electron-like processes, namely charge fluctuations be-
tween a single occupied state |o) and the empty |0) one,
and the second term to hole-like processes, namely charge
fluctuations between the states |o) and |2). The ampli-
tude of the charge fluctuations is proportional to I', which
for I' >T determines the width of QD’s levels. Eq. (3)
shows that Ae depends on the shape of I',(w) for all w,
not only on its value at the Fermi surface. The dashed
lines in Fig. 1(a-c) show +Aec as a function of ¢ [from
Eq. (3)] for the same set of parameters as in the NRG
calculation, and are in good agreement with the posi-
tion of the (split) Kondo resonances observed in the lat-
ter. Eq. (3) shows that the dramatic changes observed
in Fig. 1 upon changing @ are due to the modification of
the p-h and spin asymmetry.

Eq. (3) predicts that even for systems with spin-
asymmetric bands I'y(w) # I (w), the integral can give
Ae = 0, which corresponds to a situation where the
renormalization of ¢, due to electron-like processes are
compensated by hole-like processes. An example is a sys-
tem consisting of p-h symmetric bands, T, (w) = Ty (—w),
for which there is no splitting of the Kondo resonance
(Ae = 0) for the symmetric point, ¢¢ = —U/2. For
real systems p-h symmetric bands cannot be assumed,
however the compensation Ae = 0 is still possible, as in
Fig. 1(c). Eq. (3) also shows that the characteristic en-
ergy scale of the spin-splitting is given by I' rather than
by the Stoner splitting A (A > T'), since the states far
from the Fermi surface enter Eq. (3) only with a logarith-
mic weight. However, the Stoner splitting introduces a
strong p-h asymmetry, so it can influence the character
of gate voltage dependence significantly.

For a flat band [, (w) = [y, Eq. (3) can be inte-
grated analytically. For Do > U, |go| one finds: Ae ~
(PT/m) Re| ¢(eo) — (U +€) ], where P = (I'+—T'}) /T,
#(x) = (3 + iz%r), and ¥(z) denotes the digamma

function. For T = 0, the spin-splitting is given by
Ae~ (PT /m)In(leo|/|U + €ol) , (4)

showing a logarithmic divergence for ¢ — 0 or U +¢9 —
0. Since any sufficiently smooth DOS can be linearized
around the Fermi surface, this logarithmic divergence oc-
curs quite universally, as can be observed in log-linear
versions (not shown) of Fig. 2(a-c). For finite tempera-
ture (" > 0) the logarithmic divergence for ¢; — 0 or
€0 — —U is cut off, Ae =~ —1PT[¥(1) + In 22L], which
is also important for temperatures T < Tx.

In conclusion, we demonstrated, using the extended
NRG technique for general band shapes, the possibility
of controlling the local exchange field and thereby the
spin-splitting in a QD attached to ferromagnetic leads by
means of the gate voltage. A new type of the logarithmic
divergence of the QD’s level spin-splitting was found, and
attributed to spin-dependent charge fluctuations.
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Figure 5.6: An alternative representation of the spectral function A(w,e€;) of a QD con-
nected to leads with a spin- and energy-dependent density of states (as shown in the inset).
In contrast to a QD coupled to leads with a constant and spin-independent density of states,
where a Kondo-plateau in A(w = 0, ¢4) is observed for —U < ¢4 < 0, a three peak structure
in A(w = 0,¢4) is found here. For that particular density of states, the splitting of the
Kondo resonance, its full recovery and the resulting opposite splitting upon a variation of
€q can be inferred. (Parameters are equivalent to Fig. 1(f) of Ref. [64)).
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5.2.1 Comprehensive study dealing with QDs coupled to ferro-
magnetic leads

Currently we are working on a paper that summarizes the effects of a particular leads DoS
on the Kondo resonance. Our goal is to study both the gate voltage and the polarization
dependence of the Kondo resonance for the three classes of DoS presented below. In Fig. 5.7
these three classes of leads DoS are sketched.

The DoS sketched in (a) was studied in Section 5.1 without, however, analyzing the gate
voltage dependence of the spin splitting. Even though this issue was already addressed
in [60], we reexamine it here again, as its interpretation was in parts misleading.

The DoS corresponding to Fig. 5.7(b) has, so far not been studied at all. Our numerics
confirms the expectation, based on poor man’s scaling, that such a Stoner splitting leads
to an logarithmically suppressed effective magnetic field.

The most general case is studied in case (c¢). Even though this case has already intensively
been studied in Section 5.2 we will incorporate it in this comprehensive study.

p e poy o,
N 1

- - |

I 1 -1
Po(w) Po(w) Po(w)

Figure 5.7: In a project we are currently working on we are studying the effect on the
Kondo resonance for these three DoS classes. This study summarizes the studies presented
above. Case (a) was investigated in [15] without investigating the gate voltage dependence
of the spin splitting. The scenario with a finite Stoner-splitting, case (b), has so far not
been investigated with NRG. Case (c) corresponds to a DoS as used in [54].



Chapter 6

Non-monotonic occupation in
two-level QDs

In Chapter 3.2.4 we pointed out that an increase in I', i.e. an opening of the QD, results
in a significant enhancement of Tk, see Eq. (3.29). This adjustment is sometimes required
to reach the goal Tk < Texp (Where Ty, is set by the fridge). However, when I' becomes
of the order of the level spacing A, I' ~ A, inter-orbital processes inside the QD might
become relevant [61], i.e. a single-level AM does not properly describe the QD any more.

Indeed, recent experiments on a "Kondo-QD’ [8 62]*, observed an anomaly which can
not be explained by means of a single-level AM. To be more specific: in Refs. [8, 62] Yang
et al. observed an increase in the transmission phase ¢ of a QD in the Kondo valley by
almost 27 (for detailed information see [8, 62]). This observation can not be explained
in the framework of a single-level AM, as theoretically shown by Gerland et al. [33] (in
Ref. [33] the transmission phase of a single-level AM was predicted to increase by 7 inside
a Kondo valley). However, since the QD in [8 62] is rather open (with a ratio A/I" ~ 1-3)
it is very likely that a simple single-level AM is not capable of all processes involved in
these experiments.

Motivated by these experiments [8, 62] and a theoretical study of Silva et al. [61] we
initiated a study on a two-level AM. In contrast to Ref. [61], however, we studied a two-level
QD including interactions.

In this studies we find, somehow surprisingly, a non-monotonic filling of the local levels
upon lowering them w.r.t. the chemical potential of the leads. Naively one might expect,
based on standard Coulomb blockade, that the QD levels should fill one after the other.
It is the interplay between the relevant energy scales A, I', (the coupling strength of the
upper level), T'y (the coupling strength of the lower level) and U that can lead to a non-
monotonic filling of the two local levels, as presented below. Thus, the appropriate filling
scheme of a more complicated QD depends strongly on the above mentioned parameters.
Of course, in the limit A > I',, I'; standard Coulomb blockade is recovered.

!The parameters of the QDs in these experiments were: U ~ 1.5meV, A ~ 0.1-0.5meV, U/T =~ 1-10,
Tk ~ 500mK and Toxp = 50mK.



66 6. Non-monotonic occupation in two-level QDs

As the observed non-monotonicity is due to interaction and not to spin effects, we
first study this phenomenon with spinless electrons. The results of this study are shown
below [27] (submitted to Phys. Rev. Lett.). A generalization of the findings presented
below to the spinfull case is currently in preparation.
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‘We analyze the local level occupation of a spinless, interacting two-level quantum dot coupled to
two leads by means of Wilson’s numerical renormalization group method. A gate voltage sweep,
causing a rearrangement of the charge such that the system’s energy is minimized, leads to oscil-
lations, and sometimes even inversions, in the level occupations. These charge oscillations can be
understood qualitatively by a simple Hartree analysis. By allowing a relative sign in one tunneling
matrix element between dot and leads, we extend our findings to more generic models.

PACS numbers: 73.63.Kv, 73.23.Hk, 72.10.-d

Introduction.- Small Quantum Dots (QD) are electron
droplets confined in a small area [1] characterized by a
relatively large level spacing A, and a comparably large
charging energy U. The enhanced level spacing makes
these systems ideal devices to study various physical phe-
nomena [2] such as Coulomb Blockade (CB) [3] and the
Kondo effect [4]. Moreover, QDs are of interest as the
basic elements of spin qubit realizations [5].

In experimental realizations QDs are typically con-
nected by tunnel barriers to metallic leads whose role is to
feed the QD with electrons, as well as to allow for trans-
port measurements through it. By changing the gate
voltage applied to a plunger gate close to the QD, the
single particle spectrum of the QD can be (rigidly and
linearly) shifted downwards relative to the Fermi level in
the leads. Correspondingly, the single particle levels in
the QD would naively be expected to get occupied one
by one, in order of increasing energy.

In this Letter, we show that this simple picture of the
charging process is only an extreme limit of a much richer
and interesting phenomenology. To demonstrate this, it
suffices to consider a very simple model: we study a spin-
less, interacting two-level Anderson model (2LAM), con-
sisting of a lower and a upper QD level (¢, €,) with level
spacing A = ¢, —¢;. (A possible experimental realization
is discussed at the end; more general models, e.g. includ-
ing spin, show effects similar to those described below.)
We use both the numerical renormalization group (NRG)
and a self-consistent Hartree approximation to calculate,
at temperature T = 0, the evolution of the occupation of
the single particle levels as a function of gate voltage.

The generic picture of the charging process emerging
from our analysis is the following. For any finite cou-
pling to the leads T’ (& A), sweeping the levels towards
the lead Fermi level (by tuning the gate voltage) causes
the occupations of both, lower and upper, levels to in-
crease at comparable rates. This process continues until
one level takes over and becomes more occupied than the
other. At this point the electron that occupies this level
electrostatically repels the other level, pushing up its en-

ergy and emptying it. As a result the occupation of the
other level performs an oscillation as the gate voltage is
swept. The naive QD charging scheme, in which every
step of the CB staircase is associated with the filling of
only one single particle level in the QD, is only achieved
when these charge oscillations are small, i.e. for I' < A.
Below, we discuss in detail the physics of “charge oscilla-
tions” and the dependence of their amplitude and form
on the system parameters. In particular, we discuss un-
der which conditions the amplitude of these oscillations
can be made so large as to cause an occupation inversion,
i.e., lower level less occupied than upper level.

Model.— We consider a spinless 2LAM with Hamilto-
nian H = ﬂd + 7'74 + 7-7,14. Two leads, identical, non-
interacting and in equilibrium, are described by H; =
> ka eka,c}\c oCka, Where cL ., Ccreates an electron with energy
¢, in lead @ = L, R. The isolated QD is described by

He = Y edld; + Uiy, 1)

i=u,l

where d}‘ creates an electron in the QD in level ¢;
(i = £,u), measured w.r.t. the Fermi level defined by
the leads, n; = d:fdi is the number operator, and U
is the charging energy, which we fix at U = 0.2D
throughout this Letter, 2D being the bandwidth. Fi-
nally, the tunneling between the QD and the leads is de-
scribed by Hig = ka(Vkmc}\mdi + h.c.). We consider k-
independent tunneling matrix elements Vi;q = Vi, which
are L-R-symmetric in magnitude [6], Vur = Vur = Va
and V1, = sVyr = V4, but with a possible relative phase
s = exp(i¢) between the L and R matrix elements of the
lower level [7]. Time reversal symmetry implies ¢ = 0,7
(hence s = £1). The corresponding bare level widths are
T; = 2mpV2, where p is the density of states in the leads.

The two possible choices for s = %1 lead to two dis-
tinct models (see Fig. 1): (i) for s = +1, both local levels
couple to the same channel, namely the symmetric linear
combination of the left and the right lead (cxr + ckr),
while the antisymmetric combination (cx;, — ¢xr) decou-
ples completely; (ii) for s = —1, the upper and lower local
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FIG. 1: Schematic depiction of the model. The sign s between
the tunneling amplitudes V;g and Vi, determines whether the
two dot levels couple to the same (symimetric) channel (s =
+1, upper mapping), or to two different channels (s = —1,
lower mapping), with strength V; = v/2V;, i = £, u.

levels couple to different channels, namely to the sym-
metric or antisymmetric combinations, respectively [8].

We shall denote the ground state expectation value of
the occupation of level i by n; = (7;), and parameterize
the gate voltage by the average bare level position € =
(e +€y) /2. For Ty = T, = T, this parameterization
reveals particle-hole symmetry [9] around ¢* = —U/2,
namely n,(e+€*) = 1—ny(e* —¢), independent of A and
T. I Ty #T,, this symmetry is broken for both s = +1.

Charge oscillations.— We start our analysis by con-
sidering equally coupled levels, I'y = I', = I', and use
NRG [10] to calculate the e-dependence of n;. Naively
one may expect that if the QD is initially empty, the
QD levels get occupied monotonically one by one as € is
decreased, the usual CB behavior. In other words, first
the occupation of the lower level would be expected to
increase monotonically as €; crosses the Fermi level, and
subsequently n, would increase as €, + U approaches it.
However, our NRG results [Fig. 2] show that this intu-
itive picture is valid only if the coupling to the leads is
much smaller than the dot level spacing, I' < A. In par-
ticular, when I' 2 A, n, and n, show a non-monotonic
e-dependence, characterized by charge oscillations of n,,
(or ng) when the lower (or upper) level crosses the Fermi
level [11]. The oscillation in n, occurs because as soon
as the lower level begins to be occupied significantly, the
system can gain charging energy by additionally filling
the lower level and emptying the upper level (an analo-
gous argument works for ny).

To explore how strongly these charge oscillations vary
with T'; A and how they are affected by the sign of s, we
show in Fig. 2 the behavior of n;(e) for variable T’ and
s = %1, keeping A fixed (at 0.2U). In the limit I'/A <« 1
level £ becomes occupied rather suddenly (curve 1') when
it crosses the Fermi level at € = A/2, and similarly for the
upper level at e = —U—A/2 (curve 1). In addition to this
typical CB behavior, we observe, even for the smallest
T considered (I' = 0.1A), a tiny non-monotonicity or
charge oscillation in n, (ng) roughly at that € where the
occupation of the lower (upper) level increases sharply
from 0 to 1. A gradual increase of I' towards I'/A ~ 1
results in a strengthening of these charge oscillations. In
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FIG. 2: NRG results for the occupation of the lower [ne,

(curves 1’ - 3')] and the upper level [ny, (curves 1 - 3)] for
fixed A and different values of ', for (a): s = +1 and (b):
s = —1. The dotted lines indicate where the lower/upper
level crosses the Fermi level, at e = A/2 and e = —U — A/2.

the limit I'/A > 1, Fig. 3 (c) and (d), the monotonic
increase in the occupation is recovered, though the actual
dependence of n; on € depends strongly on the sign of s.

Hartree approach.— A simple and qualitative under-
standing of the charge oscillations observed in our NRG
results can be formulated in the framework of a self-
consistent Hartree approximation (scHA), and studying
the evolution of the Hartree levels as function of e. This
scheme accounts for the interaction by replacing the bare
levels €; of the noninteracting problem, with the corre-
sponding Hartree levels

€ — € =¢;+Uny, (2)

where 7 = £/u if i = u/{. By integrating out the leads,
we obtain the effective noninteracting dot Hamiltonian

2 _ el —iT, (—ivToTe) 8541 3)
d (—i\/I‘ul‘g) 05,41 ef — il :

The corresponding retarded dot Green’s function, defined
as GE(t) = —ib(t)({di(t),d}(0)}), can be obtained ex-
actly for both values of s, by solving the matrix equation
GR(w) = (w — Herr)~1. To finally obtain the Hartree ap-
proximation for the interacting Green’s function, one has
to self-consistently calculate the average level occupation
n;(€), using the T = 0 relation

0
nile) = 71/ dos Im 67w, €). ()
T —0oC

Since the self-consistent Hartree equation (4) may have
more than one solution, a criterion is needed to pick the
correct one. To this end, we note that, for given e, the
system adjusts its local level occupations n,, and ny such
that its total free energy Fi(ny,n¢) is minimized. Within
the scHA approach, F; can be obtained by integrating
Eq. (4), so that the conditions for F; to be extremal,
8F;/dn; = 0, reproduce Eq. (4); we should then pick
that solution of Eq. (4) for which the extremum is a global
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minimum of Fs. In the case of two nearly degenerate
minima, the scHA neglects the possibility of tunneling
between them, and a different approach has to be consid-
ered. Nevertheless we find, somehow unexpectedly, that
in the case of exactly degenerate minima, e.g. A =0,
an average over the minima reproduces the NRG results
rather accurately (see s = —1 parts of Figs. 3, 4).

For simplicity we implemented this strategy explicitly
for s = —1, but not for s = +1, since for the latter HSf is
not diagonal, which makes the determination of Fl; very
tedious. For s = —1, Eq. (4) yields the condition n;(e) =
3—Larctan{(¢; + Uny;) /T;} , and the corresponding free
energy has the form

T, .
F i = Ungng + Z [emif?zlog(smwni) . ()

i=u,l

Figs. 3 and 4 compare NRG with corresponding scHA
results for n;(€). For s = —1, we minimized F_; [Eq. (5)]
and find remarkably good agreement between NRG and
scHA. For s = +1, for which we did not determine F,,
we show the results of a “naive scHA”, obtained by sim-
ply plotting a numerical solution of Eq. (4) and “hoping”
(without checking) that it is the correct one. Clearly,
the results so obtained cannot be trusted on their own
merit; we present the naive scHA results nevertheless, to
illustrate precisely this point: indeed, in Fig. 3(a,c) [for
T'/A > 1] they do not agree well with NRG results.

In addition to providing a simple way to compute phys-
ical quantities, the scHA, and in particular the concept of
Hartree levels [see insets of Fig. 3(b,d)], may be used to
qualitatively understand how the physics of the charge
oscillations depends on the various system parameters.

nU
1
05
1r
05
(c)
-15 -05 0.5 -15 -0.5 0.5
e/U e/U

FIG. 3: Comparison of NRG and scHA results for n,(¢), for
fixed A and variable I' [(a), (b)] or fixed " and variable A
[(¢), (d)]. The naive scHA used for s = +1 works well for
I'/A < 1. Insets in (b) and (d): corresponding Hartree levels
€7 and ¢! (dashed and solid lines), from Eq. (2). The arrow
in (d) denotes the local minimum of ¢ at €.

Suppose that both Hartree levels are swept downwards,
starting from € well above the Fermi level. When the
lower level comes within I'y of the Fermi level, it begins
to fill up and the upper Hartree level e is pushed up by
U, causing a charge oscillation in n,. The latter will be
stronger the larger n, was before the oscillation, i.e., the
larger the width (T'y,) of the upper level, and the lower the
value €7 (¢) of the upper Hartree level at its local mini-
mum, say € (cf. Fig. 3). Indeed, if e (eo) < Ty, then the
upper level achieves a rather significant occupation be-
fore full occupation of the lower level (and corresponding
emptying of the upper one), implying an increase in the
amplitude of the corresponding charge oscillation. More-
over, since e/ (¢9) is also the lower the more suddenly the
lower level gets filled, a smaller T’y also strengthens the
charge oscillations. Thus, strong charge oscillations can
be obtained quite generally by allowing v = T, /Ty # 1.
The above argument implies that n,-oscillations are en-
hanced for v > 1; by an analogous argument, with £ <+ u,
ny- oscillations are strengthened for v < 1.

Fig. 3 (c) and (d) include a special situation, namely
4 =1and A =0, for which both ¢, = ¢, and e = €.
This causes a sudden jump for s = +1 in n, (Fig. 3 ¢),
but none for s = —1 (Fig. 3 d). To understand why, note
that for A = 0 and s = +1 the odd local combination
(dy, — dy) decouples from the leads; thus, its width is zero
and hence its occupation increases abruptly when its en-
ergy drops below zero. On the other hand, for s = —1
the occupation increases gradually, since the width of the
odd combination is comparable to that of the even one
(dy + dy). A similar argument explains why for small but
non-zero A/T (odd level almost decoupled for s = +1)
as in Fig. 2, curves 3 and 3, the charge oscillations are
still observable for s = +1 but not for s = —1.

Occupation inversion.— Interestingly, when either
v < 1or v > 1, the lower and the upper Hartree lev-
els might actually cross each other (see inset Fig. 4d),
leading to an inverted occupation [Figs. 4(a) to 4(f)].

Since the bare energy levels are separated by the level
spacing A, the conditions Un 2, A and max (T, T'y) 2 A
must be met to achieve such an occupation inversion.
Figs. 4(a) to 4(f) show how the asymmetry (v # 1) of the
couplings affects the occupation of level £ and u (dashed
and solid lines) both for s = +1, leading to an inversion
of the occupation within a certain range of e.

Our discussion of occupation inversion generalizes a
recent related study by Silvestrov and Imry [12]. In an
attempt to understand the origin of repeated and abrupt
phase lapses observed in the transmission phase of a mul-
tilevel QD [13], they studied a multilevel model consist-
ing of one level (say u with coupling I,,) strongly coupled
to the leads and at least one additional weakly coupled
level (say £ with coupling T';). They considered the par-
ticular case Ty > A > I'y — 0, and compared the
energies of the configuration (n,,ng) = (1,0) to that
of (ny,n¢) = (0,1) in second order perturbation the-
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FIG. 4: (a)-(f): v # 1 results in an inversion of the occu-

pation for a certain range of e. The scHA results (crosses,
boxes) for s = —1 (where F_ is known) agree well with NRG
results (solid, dashed lines). For v > 1 (< 1) the Hartree
levels cross near the right (left) CB peak (see inset (d) for
v = 4), implying an occupation inversion above (below) the
corresponding crossings.

ory in the tunneling. Their results indicate that the
system is able to sustain an occupation inversion un-
til ¢, = —U/[exp(2rA/Ty) +1] ~ —U/2. Although
we study this problem from an opposite point of view,
i.e., we either solve it exactly by NRG or first solve the
tunnel-coupling exactly and then treat the interaction
self-consistently, the inversion range found in Ref. [12]
coincides with the results [14] of this Letter.

Our analysis indicates that the example of Ref. [12] for
occupation inversion is a special case of a more general
phenomenon whose strength depends on y: as « is in-
creased from 1 (where no occupation inversion occurs),
(i) the range of gate voltages in which inversion occurs in-
creases, with the inversion point moving towards the mid-
dle of the CB valley; and (ii) the maximal value reached
by n, right before the inversion increases gradually to-
wards 1, i.e., the effect becomes more pronounced.

Ezperimental realization. — We expect that our predic-
tions of the non-monotonicity of the charging of a 2LAM
should be experimentally relevant (in spirit, if not in de-
tail) for any quantum dot system containing orbital lev-
els that are “nearly degenerate”, in the sense that their
spacing is smaller than the level widths. One way of
realizing the specific models studied here would be to
use two capacitively coupled quantum dots, each with
large level spacings, associating their topmost not-fully-
occupied levels with €, and ¢;, and using a large magnetic
field to lift the Zeeman degeneracy of each. The way in
which the charges on these dots evolve with gate voltage,
i.e., the evolution of ni(e), could then be measured ex-
perimentally using QP C’s serving as extremely sensitive

charge sensors, see e.g. Fig. 1 (a) of Ref. [15].

Summary.— We have studied the gate voltage depen-
dence of the occupation of a spinless two-level Anderson
model for the generic case of a relative sign s in the tun-
neling amplitude. We found a non-monotonic behavior
in the occupation of the local levels, due to charging ef-
fects between electrons within the QD, and explained this
effect in the framework of a self-consistent Hartree ap-
proximation. Remarkably, the occupations of the upper
and lower levels can even be inverted if the level-to-lead
couplings are sufficiently asymmetric. We expect simi-
lar effects to occur quite generally, for any quantum dot
system having level spacings comparable to level widths.
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Chapter 7

Frequency-dependent transport in
the Kondo regime

In this study (submitted to Phys. Rev. Lett.) we focus on the linear AC' conductance
G(w) = G'(w) +iG"(w) (usually a complex quantity) of a single level QD (i.e. A/T > 1).
In typical experiments where Kondo correlations are important usually the linear DC
conductance is measured. Therefore recent studies have mostly focused on this quantity.
However, a measurement of the AC conductance has recently come into experimental
reach [63].

Therefore, we generalize previous conductance studies in the Kondo regime to the
AC case. For this sake we have to determine the complex quantity G(w). Note that
the DC conductance G(w = 0) is purely real, G(w = 0) = G'(w = 0). We use the Kubo
formalism (see appendix F)) to obtain a reliable, nonperturbative calculation of G(w) which
is reliable at all frequencies w. This is because for sufficiently large values of w, w > U,
the charge on the island is fluctuating, so the used formalism has explicitly to allow for
charge fluctuations.

We derive an approximate formula, a first order perturbation expansion of the result of
Jauho et al. [64], for the linear AC conductance in the Kondo regime valid for frequencies
w much smaller than the charge-excitation energy A, = min{|e4|, |U + €4]}. The validity
of this formula is demonstrated by comparing it with the conductance calculated within
the framework of the Kubo formalism.

The numerics reveals that G'(w) has the same power laws as the spectral function A(w)
for frequencies w < Tk. This fact suggests that A(w) and G’(w) are related to each other.
Indeed, the derived analytical formula (from [64]) allows us to relate both quantities in
the limit of |w| < A.. This establishes a useful relation between the frequency-dependent
conductance G(w) and the spectral function A(w).

Moreover, it was demonstrated in recent experiments of Deblock et al. [65] that it is
feasible to measure the current fluctuations of a mesoscopic device at frequencies up to
90GHz. Motivated by this experiments we also calculate the frequency-dependent equilib-
rium current fluctuations C'(w). The fluctuation dissipation theorem (FDT) establishes a
relation between the conductance G(w) and the current fluctuations C'(w), which enables us
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to establish a relation between the frequency-dependent noise C'(w) with the symmetrized
spectral function Ag(w)" (which by itself is related to G(w)), for |w| < A.. This rela-
tion is of experimental relevance, as it allows one to extract the symmetrized equilibrium
spectral function Ag(w) (for |w| < A, i.e. the Kondo peak) from a measurement of the
frequency-dependent noise.

In our calculations we assume a time-dependent chemical potential in the leads. Since
the leads are capacitively coupled to the local dot level one expects also an oscillating local
level - an effect which we disregard as this capacitive coupling is a rather weak one. We
study the effect of an alternating chemical potential of the left and right lead which is
realized by applying an AC bias voltage (of frequency wac). Experimentally the frequency
of the (time-dependent) AC bias voltage has to be chosen such, that the Kondo scale can be
detected, i.e. hwac ~ kpTy. For a typical value of Tk, Tx = 1K, the frequency-dependent
conductance G(w) has thus to be determined for frequencies wsc up to ~ 20GHz.

For |w| < A, this quantity is identical to A(w) to a very good approximation.
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We study the AC conductance and equilibrium current fluctuations of a Coulomb blockaded
quantum dot. A relation between the equilibriumn spectral function and the linear AC conduc-
tance is derived which is valid for frequencies well below the charging energy of the quantum dot.
Frequency-dependent transport measurements can thus give experimental access to the Kondo peak
in the equilibrium spectral function of a quantum dot. We illustrate this in detail for typical ex-
perimental parameters using the numerical renormalization group method in combination with the

Kubo formalism.

In the past years semiconductor quantum dots have
gained considerable attention as tunable magnetic impu-
rities [1]. Due to their small size, electronic transport
through these structures is strongly influenced by the
Coulomb blockade [2]. Quantum dots with an odd num-
ber of electrons display a well-known many-body phe-
nomenon, the Kondo effect [3, 4], as predicted in [5].
In these systems, a single unpaired spin is screened at
low temperatures, giving rise to an enhanced DC (zero-
frequency) conductance at low bias voltage.

Theoretical studies have so far mostly focused on the
DC conductance [5] and zero-frequency noise [6]. From
the differential conductance dI/dV at finite bias volt-
age V one can obtain information about the Kondo reso-
nance in the spectral density. Such measurements, how-
ever, yield only an average of the spectral density in
a frequency window of width eV. Moreover, in a typ-
ical quantum dot coupled to two leads with comparable
strength, they access only the spectral function under
non-equilibrium conditions. It is known that in this case
a finite bias suppresses the Kondo peak [7]. It has been
demonstrated experimentally that an AC modulation of
the gate or bias voltage has a similar effect [8, 9].

In this Letter we suggest that the Kondo resonance in
the equilibrium spectral function can be measured by a
frequency-dependent transport measurement. We derive
a direct relation between the spectral function and the
linear AC-conductance through a quantum dot. Alter-
natively, the Kondo peak can be measured by detecting
equilibrium fluctuations in the current through the quan-
tum dot at frequencies of the order of the Kondo tem-
perature Tx. Such measurements have come into exper-
imental reach with recent advances in the measurement
of high-frequency current fluctuations [10]. Conductance
measurements in the relevant frequency regime are chal-
lenging, mainly due to parasitic currents through hardly
avoidable capacitances. One should, however, be able to
extract the signal due to the current through the quan-
tum dot from this background by an adiabatic change
(much slower than the inverse Kondo temperature [11])
of gate voltage that drives the dot periodically into and
out of the Kondo regime.

FIG. 1: The studied setup. We extend previous studies on the
single-level Anderson model by allowing for time dependent
chemical potential uq(t) = p £ (eVac/2)coswt in lead a €
{L, R}.

We predict the frequency-dependence of the AC con-
ductance and the equilibrium noise for typical experimen-
tal parameters. We apply the nonperturbative numerical
renormalization group (NRG) [12] in combination with
the Kubo formalism. This extends previous calculations
which used perturbative methods [13]. It allows us to
access the most interesting regime of frequencies of the
order of the Kondo temperature for a device that exhibits
a strong Kondo effect.

The exact correspondence between spectral function
and AC-conductance holds only when charge fluctuations
on the quantum dot are negligible. Using our rigorous
NRG results, we verify that this condition is well satisfied
for frequencies below the charging energy of the dot.

The setup that we study is shown in Fig. 1. At low
energies, a Coulomb-blockaded quantum dot is well de-
scribed by the single-level Anderson model

H =Y eapdid, + Unana, + Y Valdicy,, + h.c)

o kao

+ 3 ler — pa®] e (1)

4
a€{L,R}

where the chemical potentials ppgr)(t) = u £
(eVac/2) coswt for the left (right) lead include a time-
dependent bias V,.. We assume that the AC pertur-
bation does not couple to electrons in the local level
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d, (nge = d}‘,da). Vo couples the level d to electron
states cxoo With momentum k and spin 0 = £1 in lead
a € {L,R}. In the following, D denotes the conduction
electron bandwidth. €4, = €4+ 0B*/2, B* = gupB, is
the energy of the local level, including the Zeeman shift
in presence of a magnetic field B. U is the Coulomb
repulsion of electrons on the dot.

Following [14] we relate the current I through the
quantum dot to the local Green’s function of the level d.
For frequencies hiw < A, much smaller than the charge

2e?Vae
Aw 1+ A

Iw)=—

in linear response to V,.. Here f(e) is the equilibrium
Fermi function of the leads and G"(t1,t2) = —if(t; —
t2){{d(t1),d  (t2)}) the retarded Green’s function of d
evaluated in equilibrium (V.. = 0). From Eq. (2) we
obtain the real (G') and imaginary (G") parts of the lin-
ear conductance,

2
G%@::Q;MFLPR/dq&HAk+w)—Ak—wﬂ
(3)
") = & St [ p(] - 2Reg7@
+ReG (e + w) +ReG (e — w)} , (4)
where I' = T, + ' and A(w) = —iImG"(w) is the

spectral function. At zero temperature kT < hw and in
the presence of particle-hole symmetry [A(e) = A(—€)]
Eq. (3) is readily inverted. This establishes a relation
between A(w) and G'(w),

B r o
AW = 57, T80 Y

G'(w)], (5)

valid in the regime iw < A,.. By Eq. (5), the Kondo peak
in the equilibrium spectral function can be extracted
from a measurement of the AC-conductance through a
quantum dot.

The frequency-dependent equilibrium current fluctua-
tions (Johnson-Nyquist noise)

0 .
[

are related to the linear conductance by the fluctuation
dissipation theorem (FDT)

OI®) —{I)’] (6)

2hw

excitation energy A, = min{|eq|, |U + €4|}, charge fluctu-
ations on the quantum dot can be neglected and the cur-
rents flowing through the right and the left lead are equal
to a good approximation: Iy, = —Ig. It is then advanta-
geous to write the total current as I = (I, —Alg)/(1+X),
where A\ =T /T, Iy = vaj and v is the conduction
electron density of states. Expressing the currents Iy, and
I by the Green’s function of d (see Eq. (15) in [14]), we
find for energy-independent couplings I', the current

I‘R/ dte“"t/ dtl/ Re (=1 (sin wt — sinwty) f (e )gr(t,tl)] +0(Vae)? (2

[,

log[G’(w)/(2€°/)]
Ve

G'(w)

o
3

G(w)/(2€°/h)

0.5

ew)/Tt

=05 progsy
-2000 0 2000
Rk,

-200 -100 0 100 200
RG/KT,

FIG. 2: (a) Real and imaginary parts of the AC conductance
obtained via the Kubo approach (solid lines) and from the
conductance formulas Eqgs. (3) and (4) (dashed lines). Note
the excellent agreement for frequencies Aiw S 100k Tk (Ac =
600 kTk). (b) Doniach-Sunji¢ tails in A(w) are responsible
for the power law behavior (dashed line) in the conductance
(solid line), G'(w) ~ w™ /2, for frequencies h |w| > kTxk. (c)
Comparison of the frequency-dependent conductance phase
¢(w) in the Kondo regime (solid line) (parameters U = 0.12D,
U/T' =6, eg = —U/2, T = 0) with that for a resonant level
(eq = 0) of width kTx (dotted line).

Consequently, the spectral function can alternatively be
inferred from a measurement of C(w). At zero tempera-
ture, kT < h|w|, we arrive at

n T 0

A(lwl) = T3 T, Th 0| C(—|w)), (8)

where we have again assumed particle-hole symmetry.
Note that at zero temperature C(w) is non-vanishing
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only for w < 0, that is fluctuations have to be mea-
sured by probing absorption by the quantum dot. In
[10] the measurement of current fluctuations at frequen-
cies up to w ~ 100GHz has been reported. This fre-
quency scale is of the same order of magnitude as the
Kondo temperature in typical Kondo quantum dots [1].
It makes noise measurements a promising candidate for
experimental studies of the Kondo peak in the spectral
function of a quantum dot.

We turn now to a discussion of the frequency de-
pendence of AC-conductance and equilibrium noise in a
Kondo quantum dot with typical experimental param-
eters. We apply the numerical renormalization group
(NRQG), first used by Wilson to solve the Kondo prob-
lem [12]. This method is nonperturbative and does not
suffer from low-energy divergences common to scaling ap-
proaches. In particular, it provides accurate results in
the most interesting crossover regime hw < kTx. Within
NRG we apply two independent approaches: Using the
Kubo formula, we are able to calculate the conductance
in the Anderson model Eq. (1) numerically exactly. On
the other hand, using Eqgs. (3) and (7), we obtain conduc-
tance and noise from the single-particle Green’s function
of the d level, that we determine by NRG as well. By
comparing the two approaches we shall demonstrate the
validity of the approximation underlying Eqgs. (3) and (4)
for frequencies of the order of the Kondo scale.

We apply the Kubo formalism following Izumida et
al. [15]. We define an electric current from lead L to

RasT = ¢ [(NR) — (NL)], where No = 3, c};wckw

is the total number of electrons in lead a and N, =
# [H, No]. Introducing a linear response tensor o by
(N,) = oag(w)y, where MIL(R) = % (eVae/2) coswt is
the time-dependent bias applied to the left (right) lead,
the total linear AC conductance takes the form

2
e
G(w) = T [0’1_,]_,(&]) + 0’1{1{(&)) - O'LR(LU) — O'RJ_,(LU)] .
(9)
The complex response tensor o can be written as
ap(w) = i; [Kap(w) — Kap(0)], where

Kap(w) = 7; /0 " dpemdtiot <[Nﬁ(0),1\'fa(t)]> (10)

with 6 — 0%. (...) in Eq. (10) refers to the equilib-
rium expectation value with respect to the Hamiltonian
H with V,c = 0. We evaluate this expression using
NRG [12]. From the matrix elements of the current oper-
ator (n|I|m) the imaginary part K g is obtained directly
while the real part K 5 can be calculated via a Kramers-
Kronig transformation.

In Fig. 2 we compare the conductance obtained from
Eq. (3) with the result of the calculation in the Kubo
formalism for ¢, = —U/2 and B = 0. We find excel-
lent agreement for frequencies below the charge gap A..

log[C(w)/U(2e°/)]

log[-RG/KT ]

_9 1 1 1 1
-4 -2 0 2 4

log[-RaKT,]

FIG. 3: The equilibrium current fluctuations C(w) depend
linearly on w for h |w| < KTk [17], as shown for various mag-
netic fields B. The inset shows that the fluctuations are spin-
independent even in presence of a finite magnetic field B*
(B* = 10kTk, (red) crosses: o =1, (black) solid line: o =J).
Parameters: U = 0.12D, U/T =6, ea = -U/2, T = 0.

Moreover the large frequency (hiw >> kTk) asymptotes
of the conductance reveal a decay of G'(w) ~ w™'/2
[Fig. 2 (b)]. This is expected as a consequence of the
Doniach-Sunji¢ tails of the spectral function [16] together
with Eq. (5). The deviation of G'(w) from the unitary
limit (by ~ 6%) is due to systematic numerical errors
accumulating in the NRG procedure. Fig. 2(c) shows
the frequency-dependent phase ¢(w) of the linear con-
ductance, G(w) = |G(w)| "¢,

The frequency-dependence of the equilibrium noise ob-
tained by a direct numerical evaluation of Eq. (6) within
NRG is plotted in Fig. 3. As one expects, the fluctuations
reach a maximum for frequencies iw ~ U. The linear
behavior C(w) ~ w at small w is a manifestation of the
Fermi-liquid nature of a screened Kondo impurity. Fig. 3
also shows how a finite magnetic field B suppresses low-
frequency equilibrium fluctuations. The inset demon-
strates that at low frequencies the noise for spin-up and
spin-down electrons is identical, even in the presence of
a magnetic field. This is because an impurity with large
charging energy A, >> T is half-filled: (n4)+(n;) = 1. As
a consequence of the Friedel sum rule [18], the spectral
densities at the Fermi energy er for spin-up and spin-
down electrons Ay, (ex) o« sin’(w(n4,,)) are then equal.

We now use Eq. (8) to extract the spectral function
A from the numerical current noise data of Fig. 3 where
charge fluctuations on the dot have been taken into ac-
count. The results are shown in Fig. 4. They nicely
demonstrate the splitting and the suppression of the
Kondo peak upon increasing the external field B. A com-
parison with the spectral function directly calculated by
NRG confirms that Eq. (8) does indeed work very well
for frequencies iw < A.. In particular, our method re-
produces the Kondo peak in the spectral function accu-
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FIG. 4: Spectral function A(w), extracted from the current
noise C(w) via Eq. (8) (lines) and calculated directly by NRG
(stars) for different values of the magnetic field B. Eq. (8)
captures the Kondo peak in A(w) very well, including sup-
pression and splitting in presence of a magnetic field B.

rately. Due to intrinsic broadening in the NRG which
affects both A(w) and C(w), Eq. (8) becomes less accu-
rate for finite B.

Having demonstrated that neglecting charge fluctua-
tions in deriving Eqs. (5) and (8) is very well justified,
we comment on another limitation of our approach. Cal-
culating the linear response of the quantum dot, we have
assumed the bias voltage in a conductance measurement
to be small. While this in itself is not a problem, one
might worry, however, that due to the finite frequency of
Vae extra decoherence processes would make the limit of
linear response very restrictive. The decoherence rate
of the dot’s spin due to the oscillating bias voltage for
hw > kTk can be estimated [19] as

hrt (eVac)2kTK 1
Tk  \kTx/) hw [In(hw/kTx)?

For the Kondo physics not to be disrupted by V,., we
need Ar—1/kTx <« 1. Eq. (11) shows that this con-
dition can be easily fulfilled by the usual requirement
eVae K kTx. We expect that this statement remains
true for frequencies of the order of Tx. We conclude
that transport is described accurately by our linear re-
sponse conductance for voltages that are much smaller
than the Kondo temperature.

In conclusion, we have studied AC transport through
a quantum dot in the Kondo regime, using the numeri-
cal renormalization group technique in combination with
the Kubo formalism. We have expressed linear conduc-
tance and equilibrium current fluctuations in terms of
the single-particle Green’s function. This relation be-
comes exact at low frequencies, when charge fluctuations
on the dot can be neglected. It has been shown to work

4

very well for frequencies of the order of the Kondo scale.
This opens up the exciting possibility of measuring the
equilibrium Kondo resonance directly in a transport mea-
surement.
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Chapter 8

Kondo correlations in optical
experiments

Recent photoluminescence (PL) experiments [2] revealed that it is feasible to measure the
absorption and emission spectrum of a single self-assembled QD (an InAs QD embedded
in a GaAs semiconductor). It was found that an illumination of the semiconducting QD
with photons (of energy hv) triggers transitions inside the QD where an electron from
the valence band (VB) level is elevated to the conduction band (CB) (or vice versa).
Hereby an excited state, an exciton (electron-hole pair), is created (or destroyed). In an
absorption (emission) experiment the QD absorbs (emits) a photon of energy hv by creating
(destroying) an excitonic state, say X.

The spatial confinement of the QD results in a discrete level structure inside the QD.
An external gate voltage can rigidly shift the internal level structure leading to a filling
(emptying) of the QD. The gate voltage dependence of optical transitions, as found in
Ref. [2] [see Fig. B.1(top panel)], can be understood, by identifying a particular value
of the gate value with a particular excitonic state. Here a single exciton with n extra
electrons in the CB, for instance, is named X"~. The lower panel of Fig. 8.1 shows the
discrete PL signals found in [2] which stem from the excitons X, X'~ X2~ ... realized
upon successively lowering the gate voltage.

Indeed, the transitions observed in the PL experiment (PL counts vs. the gate voltage),
shown in the top panel of Fig. 8.1, can be nicely explained by an atom-like electronic level
structure inside the QD. The lower right panel of Fig. 8.1 nicely illustrates the involved
states. The filling scheme suggested there quantitatively describes all observed PL-signals.
For instance, the two appearing lines for the decay of the X2~ state can be understood very
well when one identifies the two possible decay channels of this state: after the exciton has
decayed, two electrons are left in the CB - one electron in the s- and another one in the
p-level. These two electrons have either (i) parallel or (ii) anti-parallel spins. In case (ii)
the excited state can immediately relax to the ground state of the system (the s level being
doubly occupied). In case (i), however, a spin-flip event of the p-electron is required before
the system can relax into its ground state. Therefore one expects a long-living state, i.e.
a sharp signal, in case (i) and a short living one (correspondingly a broad signal) for case
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(ii).

The expectation that case (ii) has a smaller amplitude and is broader w.r.t. case (i)
can be clearly seen in the experiment. In summary: PL-experiments reveal an atom-like
electronic level structure of the QD.

The possibility of tuning the QDs filling by an external gate voltage enables one to
address interesting optical transitions within this experiment. We are particularly inter-
ested in a scenario when the wetting layer surrounding the dot is filled with electrons and
hybridizes with the local level in the dot. In this case an interesting optical transition be-
tween a strongly correlated 'Kondo’” and an uncorrelated 'nmon-Kondo’ state is possible. To
study this effect we investigate the simplest transition that fulfills this requirement, namely
the absorption experiment where an initially singly occupied CB (left panel of Fig. [8.2))
becomes doubly occupied under creation of an exciton (right panel of Fig. 8.2). For this
sake we study an extended AM, consisting of a local VB level and a local CB level which is
coupled to a lead, as sketched in Fig.8.2. Additionally, we introduce a Coulomb attraction
between VB holes and CB electrons in the QD which accounts for the exciton binding
energy Uege. In the unphysical limit U, = 0, where the VB is completely decoupled from
the CB, we find that the absorption spectrum is determined by the local density of states
of the QD. Even though this limiting case is unphysical, it provides a good check of the
accuracy of the involved numerics.

For finite values of U,y we observe two rather dramatic new features: firstly, the thresh-
old energy below which no photons are absorbed, say wg, shows a marked, monotonic shift
as a function of U.. Secondly, as U is increased, the absorption spectrum shows a
tremendous increase in peak height. In fact, the absorption spectrum diverges at the
threshold energy wy, in close analogy to the well-known X-ray edge absorption problem.
Exploiting analogies to the latter, we propose and numerically verify an analytical ex-
pression for the exponent that governs this divergence, in terms of the absorption-induced
change in the average occupation of the local conduction band level.

The work presented here (to be submitted to Phys. Rev. B) has already partly been
published in the Diploma thesis of Rolf Helmes, a diploma-student of Prof. Jan von Delft.
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Figure 8.1: Top: The PL energy vs. gate voltage characteristics shows sharp distinct
PL signals that can be nicely explained by an atom-like electronic level structure in the
semiconductor QD. An external gate voltage allows for a controlled filling of the CB of
the QD one by one. An excitonic state with n excess charges is named X"~. [Photo:
courtesy of A. Hoegele (LMU)]. Bottom left: PL vs. energy plots for the distinct gate
voltage regions found in the top panel (e.g. the lowest plot corresponds to a gate voltage
—0.8V< Vg < —0.6V). Bottom right: The filling scheme shown on the right explains the
sharp observed PL signals very well. Thus, the PL experiment serves as direct evidence
for the atom-like electronic level structure inside the QD. Figure taken from [2].
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Conduction Conduction
Band Band
Valence Valence
Band Band

Figure 8.2: Sketch of an absorption process. The left panel shows the initial state (a
singly occupied CB). An incoming photon of energy hv excites an electron from the VB
into the CB. The resulting (final) state, X'~ is shown in the right panel. Here we consider
a scenario where the wetting layer (surrounding the dot) is filled and hybridizes with
the electrons inside the dot. This example marks a transition from a strongly correlated
("Kondo’) into an uncorrelated ('non-Kondo’) state, as marked in the figure. Since the
mass of the holes in the VB is significantly larger than the electron mass in the CB we
disregard the coupling between the VB holes and the lead electrons.
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Anderson-Excitons: the effect of a Fermi sea on emission and absorption spectra

R. W. Helmes,! M. Sindel,! L. Borda,"»? and J. von Delft!
1 Physics Department and Center for NanoScience, LMU Miinchen, 80838 Miinchen, Germany
? Institute of Physics, TU Budapest, H-1521, Hungary
(Dated: October 21, 2004)

Recent experiments measuring the emission of exciton recombination in a self-organized single
quantum dot (QD) have revealed that novel effects occur when the wetting layer surrounding the
QD becomes filled with electrons, because the resulting Fermi sea can hybridize with the local
electron levels on the dot. Motivated by these experiments, we study an extended Anderson model,
which describes a local conduction band level coupled to a Fermi sea, but also includes a local
valence band level. We are interested, in particular, on how many-body correlations resulting from
the presence of the Fermi sea affect the emission and absorption spectra. Using Wilson’s Numerical
Renormalization Group, we calculate the zero-temperature emission (absorption) spectrum of a QD
which ends up in (starts from) a strongly correlated Kondo ground state. We predict two features:
Firstly, the threshold energy wo - above which no photon is emitted (below which no photon is
absorbed) - shows a marked, monotonic shift as a function of the exciton binding energy Uexc.
Secondly, we find that the spectrum shows a power law divergence, with an exponent that can be

understood by analogy to the well-known X-ray edge absorption problem.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Recent optical experiments':? using self-assembled
InAs quantum dots (QDs), embedded in GaAs, showed
that it is feasible to measure the absorption and emission
spectrum of a single QD. In emission spectrum measure-
ments, an electron-hole pair (exciton) created by laser
excitation recombines inside the QD, whereby a photon
is emitted which is measured. In absorption spectrum
measurements, on the other hand, photons are absorbed
inside the QD by exciton excitation.

Due to spatial confinement, the QD possesses a charg-
ing energy and a discrete energy level structure, which
can be rigidly shifted with respect to the Fermi energy
by varying an external gate voltage V. Therefore Vg
allows for an experimental control of the number of elec-
trons in the QD, which in turn determines the energy of
the absorbed and emitted photons. Indeed, the optical
data show a distinct Vg-dependence and justify the as-
sumption of a discrete energy level structure of the QD.

In the experimental set-up, depicted in Fig. 1, the InAs
QDs are surrounded by an InAs mono-layer, called 'wet-
ting layer’ (WL), like islands in an ocean. Above a certain
value of Vg, the conduction band of delocalized states of
this WL begins to be filled, forming a two-dimensional
Fermi sea of delocalized electrons, i. e. a two-dimensional
electron gas (2DEG). The 2DEG hybridizes with local-
ized states of the QD, leading to anomalous emission
spectra which could not be explained by only considering
the discrete level structure of the QD?.

Motivated by these experiments, here we investigate
the optical properties of a QD coupled to a Fermi sea, at
temperatures sufficiently small that Kondo correlations
can occur (T=0). The Kondo effect in a QD has already
been detected in transport experiments®4, where it leads
to an enhanced linear conductance. So far the Kondo

effect in QDs has been studied almost exclusively in rela-
tion to transport properties. The experiments of Refs.!»2
open the exciting possibility to study the Kondo effect in
optical experiments.

In optics, the Kondo effect has to the best of our knowl-
edge been discussed theoretically only with respect to
non-linear and shake-up processes in a QD%%. In this
paper we investigate the absorption and emission spectra
of a QD. We are especially interested in optical transi-
tions (examples are shown in Fig. 4 below) for which the
QD starts in or ends up in a strongly correlated Kondo
ground state, and will investigate how the Kondo cor-
relations affect the observed line shapes. In Ref.” the
emission spectrum in the Kondo regime has already been
studied, however with methods which only produce qual-
itative results.

The paper is organized as follows: In Section II, we
extend the standard Anderson model® by including a lo-
cal valence band level (LVBL) containing the holes. In
contrast to Refs.’»? we consider only one local conduc-
tion band level (LCBL) to simplify the calculations. In
Section ITI, we explain how Wilson’s numerical renormal-
ization group (NRG) method® can be adapted to calcu-
late the emission and absorption spectrum of the QD. In
Section IV, we present the results of our calculations and
predict two rather dramatic new features. Firstly, the
threshold energy above which no photon is emitted or
below which no photon is absorbed, respectively, say wy,
shows a marked, monotonic shift as a function of the ex-
citon binding energy Uexc; we give a qualitative explana-
tion of this behaviour by considering the interplay of vari-
ous relevant energy scales. Secondly, as Ugxc is increased,
the emission and absorption spectra show a tremendous
increase in peak height. In fact, the absorption spectrum
shows a power law divergence at the threshold energy wy,
in close analogy to the well-known X-ray edge absorption
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FIG. 1: Right hand side: experimental setup used in Refs.'?
(Picture: courtesy of the group of K. Karrai.) [bottom to top:
GaAs substrate (2000 nm), highly doped GaAs back contact
(20 nm, zero-point of x-axis), GaAs tunnel barrier (20 nm),
InAs mono-layer, forming the wetting layer, together with the
QDs, GaAs layer (30 nm), AlAs/GaAs tunnel barrier (~ 100
nm), GaAs (4nm), NiCr top gate]. The gate voltage Vg, ap-
plied between the back contact and the top gate, drives no
current through the system, since the contacts are separated
by two tunnel barriers. Left hand side: position-dependence
(in x-direction) and energy-dependence of the lower conduc-
tion band edge of the layered structure for two different gate
voltages V;* and ng; the different band gaps of each mate-
rial result in jumps at the corresponding interfaces. Since
the InAs band gap is smaller than that of GaAs, there is a
dip in the band gap at the GaAs-InAs interface, resulting in
QDs with localized conduction and valence band states. The
number of localized electrons trapped in the QD can be con-
trolled by V4, which shifts the energy levels with respect to
the Fermi energy Er (set by the back contact). Inset: holes
can be trapped as well due to the bump of the upper band
edge of the valence band at the position of the QDs. Ir-
radiation by laser light excites electron-hole pairs (excitons)
inside the GaAs layer, which migrate and become trapped in
the InAs QDs. Finally they recombine by emitting photons,
whose emission spectrum is detected.

problem!®. Exploiting analogies to the latter, we propose
and numerically verify an analytical expression for the
exponent that governs this divergence, in terms of the
absorption-induced change in the average occupation of
the LCBL. Conclusions are given in Section V.

II. MODEL

The experimental setup used in Refs.1:2, which inspired
our analysis, is depicted in Fig. 1 (see Fig. caption for de-
tails). To model this system, we consider an Anderson-
like model® for a QD, with localized conduction and va-
lence band levels, coupled to a band of delocalized con-
duction electrons stemming from the WL. Our model is
similar in spirit, if not in detail, to that proposed in
Refs.”!1. Tt consists of six terms, illustrated in Fig. 2:

2

Ouantum Dot

FIG. 2: Model of a semiconductor QD, consisting of one
LCBL and one LVBL, with energies €. and ey, respectively.
The Coulomb repulsion of two electrons in the LCBL has the
strength Uc. The coupling between the LCBL and the 2DEG
is parametrized by the tunnelling matrix element V. Crucial
for the model is the Coulomb attraction between holes in the
LVBL and electrons in the LCBL, which has a strength Uexc.
The excitation of electrons from the LVBL to the LCBL (by
photon absorption) and the relaxation of electrons from the
LCBL to the LVBL (by photon emission) is considered as a
perturbation with a strength .

H = HO + Hpert; (1)
where
Ho = He + Hy + Huexe + HwL + He—wWL- (2)

We consider one LCBL with energy €. and one LVBL
with energy e,, originating from the conduction or va-
lence band of the InAs QD, respectively. Note that €,
is smaller than e, by the order of the band gap; since
this difference is at least two orders of magnitude larger
than all other relevant energy scales, its precise value is
not important, except for setting the overall scale for the
threshold for absorption or emission processes.

Since one LCBL is sufficient to produce the effects of
present interest, we will, in contrast to Refs.»2, disregard
further local levels to simplify the calculations'2.

The LCBL and the LVBL are described by H. and H.,
respectively,

He = Zecﬁca + Ucﬁc‘rﬁcla
a

Hv = zcvﬁvo + Uv(]- - ﬁvT)(l - ﬁvl): (3)

g

where fic, = c:f,c,, and Ny, = v}‘,vg. Here the Fermi
operators ¢/ and v} create a spin-o electron in the LCBL
or in the LVBL, respectively. The parameters U, and U,
are Coulomb repulsion energies which have to be paid if
the LCBL is occupied by two electrons or if the LVBL is
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empty, respectively. Since states with two holes are very
highly excited states independent of the value of U, [due
to the band gap], the actual value of U, has no influence
on the results. The term

HUexc = - Z Uexcﬁco(]- - ﬁva’) (4)

o,0’

accounts for the exciton binding energy: the Coulomb

attraction between each electron in the LCBL and each

hole in the LVBL lowers the energy of the system by Ueyc.
The 2DEG formed in the WL is described by

Hw =Y ell,lio, (5)

k,o

where the Fermi operator ZZU creates a delocalized spin-o
electron with wave vector k. The hybridization between
the LCBL and the 2DEG is described by

Heowr, = 3V (i e+ chilao ) (6)
k,o

where the tunneling matrix element V' was assumed to be
real and energy-independent. The hybridization between
the LCBL and the 2DEG is henceforth parametrized by
' = 7ppV?, where pp is the density of states (DOS)
of the 2DEG at Ep; we assume a flat and normal-
ized DOS with bandwidth D. Since in the considered
experiments™?, the mass of the (heavy) holes is signif-
icantly larger than the mass of the electrons, we neglect
the hybridization between the LVBL and the 2DEG.
The last part of the Hamiltonian,

Hpert = ’YZ (cj.;vo' + U;‘;Cg—) 3 (7)

describing the excitation (first term) and the annihilation
(second term) of excitons in the QD by photon absorp-
tion or photon emission, respectively, is considered as a
perturbation of the system. The constant y describes the
strength of the coupling of the transitions to the photon
field. Treating this term perturbatively is valid as long
as the coupling strength to the photon field given by the
constant v is small compared to the Kondo temperature
Tk, see below, the smallest energy scale in our studies,
17| « Tk.

For the scenario of a local spinfull level coupled to a
Fermi sea, the Kondo effect occurs if the temperature
T < Tk and the average occupancy of the local level is
roughly one, i. e. in our case (fic) = Y {fics) = 1, known
as the ’local moment regime’ (LMR). Here Tk is given
by

Tk = (Ucr/z)u‘z ewec(ec+Uc)/2FUc7 (8)
see Ref.13. If T < Tk, Tx is the only relevant energy scale

in the problem. The Kondo effect introduces a quasi-
particle peak, the Kondo resonance, at the Fermi energy
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FIG. 3: The normalized'® local density of states Ac(w) of the
LCBL in the Kondo regime, with ¢, = —U;/2. The Kondo
effect results in a resonance at the Fermi energy Er. There
are side peaks of the singly (doubly) occupied local level at
w = FU:/2 of a level width 2T".

Eyp in the local density of states (LDOS) Ac(w),

Acw) = D2 (el 1G) 6 (w— (B — Bo))

f,o

+(GI NI 8w+ (B~ Ba))],  (9)

see Fig. 3. Here |G) and |f) are eigenstates of H, with
energy Eg and Ek, respectively, where |G) is the ground
state. The LDOS Aq(w) of the LCBL is a well-known
function which was first calculated with the NRG by
Costi et al.!4, and has been studied frequently since.

In transport experiments at T' < Tk, the Kondo effect
causes the ’zero bias anomaly’, an enhanced conductance
due to the quasi particle peak at Ex. Here we will in-
vestigate how the Kondo effect affects the emission and
absorption spectrum'®.

Fig. 4(a) and Fig. 4(b) show examples of absorption
and emission processes to be studied in this paper. For
both examples the QD is tuned such that the LCBL is
initially singly occupied, (fi.) = 1, i. e. in the LMR and
therefore gives rise to a strongly correlated Kondo state
for T < Tk.

In the absorption process, Fig. 4(a), a photon excites
an electron from the LVBL into the LCBL. Due to the
exciton binding energy, the LCBL is ’pulled down’ by
the value of Ugye. Thus the occupation of the LCBL in
the final state can have any value between one and two,
depending on the value of Uex relative to the charging
energy U, of the LCBL. If the final occupation is not in
the LMR, the Kondo-state is lost.

In the emission process, Fig. 4(b), an electron from
the LCBL recombines with a hole in the LVBL, thereby
emitting a photon. In contrast to the absorption process,
here the occupation of the LCBL decreases since the ex-
citon binding energy is lost in the final state. Again the
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.

ro
Kondo|state

FIG. 4: QD (cf. Fig. 2) tuned such that the LCBL is ini-
tially (left hand side) singly occupied. (a) Photon absorption
process, inducing a transition from a state without hole and
a singly occupied LCBL (Kondo state) to a state with one
hole and a doubly occupied LCBL (non-Kondo state). As
indicated, the occupation of the LCBL in the final state is
determined by the value of ec — Uexc + Uc relative to Er.
(b) Photon emission process, inducing a transition between a
state with hole and a singly occupied LCBL (Kondo state) to
a state without hole and empty LCBL.

Kondo state is lost if the final occupation is not in the
LMR.

II1. METHOD

To calculate the emission and absorption spectra, we
use Fermi’s Golden Rule for the transition rate out of an
initial state |i), normalized to 7,

o(w) = ‘7|2Z|f|HPert|>‘ 6 (w— (B — E3)), (10)

where |i) and the possible final states |f) are eigenstates
of Hy, cf. Eq. (1), with energy E; and Ey, respectively.

No analytical method is known to calculate both the
eigenenergies of Hy and all matrix elements (i|Hpers|f)
exactly. Here we calculate them with Wilson’s Numerical
Renormalization Group (NRG) method®, a numerically
essentially exact method'”.

A. Block structure of Hamiltonian

Since Ho commutes with fiy,, the number of holes in
the LVBL is conserved. Thus it is convenient to write the

4

unperturbed Hamiltonian Hg in the basis [ )4+ wi.®| )y,
where |¥).+ w1 denotes a product state of the LCBL and
the 2DEG, and |¥), denotes a state of the LVBL. In this
particular basis the unperturbed Hamiltonian #y reads

O [ [Hv [Ty
Hvo 0 0 0

0 Hyr 0 0

0 0 Hyy 0 ’

0 0 0 Hoty
where the Hamiltonians

Hyo = Howi +Hwr +He — D Wexcfico + Uy

Ho = (11)

HVT = He—wrL + Hwr + Hce — ZUexcﬁ/czr + €y,

a

Hyty = He—wi +Hwr + He + 2¢y (12)

act only on states |¥)e+wr. Since we have not included
a magnetic field in our model, Hyt = Hyy-

Absorption (A) and emission (E) processes (see Fig. 4)
involve transitions between different blocks of Eq. (11):

Az [G) = [G)erwi @ [Ty = [f) = [Deywr @ |o)y
E: [g) =lg)etwr @ o)y = [f) = [flerwr @ [T4)v,(13)

where |G) is the ground state of Ho, |G)c+wr the corre-
sponding ground state of Hy4, and |g)cy+wr is the ground
state of H,, and o =1, ]. Since absorption is described
by Hpers = et vy, |f) is a state of the block Hy,. Emis-
sion is described by Hpers = A/v:f,cg, thus here [f) is a state
of the block H,4,.

To calculate the absorption spectrum, cf. Fig. 4(a),
we insert |G) for |i) in Eq. (10). Then aq(w) gives the
probability per time unit for the transition from |G) to
any final state |f) of H,, [containing one hole], equiva-
lent to the probability per time unit that a photon with
frequency w is absorbed, which is the desired absorption
spectrum ag(w), divided by |y|2. The actual value of
v is not important, since it does not affect the shape of
the absorption function, but only its height. The same
argument applies to the emission spectrum, cf. Fig. 4(b).
Here, one needs to insert |g) for [i) in Eq. (10).

To employ the NRG to calculate a;(w) via Eq. (10),
one has to overcome a technical problem. The NRG is
a numerical iterative procedure, where the energy spec-
trum is truncated in each iteration [besides the first few
iterations]. In standard NRG implementations, transi-
tions from or to highly excited states can only be calcu-
lated qualitatively rather than quantitatively. In our case
we need to compute transitions to or from states of the
blocks Hye, see Eq. (13), which are highly excited since
they are separated by the order of the band gap from
states of H,¢,, see Section II. We solve this problem by
keeping the same number of states for the blocks H,,
and Hy4y in each NRG iteration, which is in principle
the same as running two NRG iterations for both blocks
at the same time. This approach is similar to the one
used by Costi et al.!®, who studied a problem analogous
to ours.
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B. Limiting case of vanishing exction binding

energy (Uexc =0)

To check the accuracy of the modified NRG method,
we begin by considering the limiting case of vanishing
exciton binding energy, Usxe = 0. We will show that for
this particular case the emission and absorption spectra
are related to the local spectral function.

For Uegxc = 0 the LVBL is decoupled from the LCBL
and the 2DEG, see Eq. (4). Therefore, we can decompose
the states in the same way as above, |¥) = |¥). wr ®
|®),, and write the total energy can be written as a sum,
E = Ectwi + E,. Thus, using Egs. (10) and (13), the
absorption and emission spectrum can be written as

2
ag(w) = 27 Y [erwrflel |G)erwr| -
f,o
0 (w — (Ercpwr — Eg,c+wL) — Aw)),
og(w) = 2”2 ‘c+WL<f‘ctr|g)c+WL|2 :
f,o
d(w — (Ete+wi — Eg,c+wi) + Aw)) . (14)
Here Aw = E¢ y— Eq .y = —€y represents a constant shift.

To compare the LDOS with the absorption and emis-
sion spectrum, we devide it as A.(w) = AF (w) + AF (w)
with

AE@) = Y [leswr (fle} |G|
[
8 (w— (Br,e+wL — Eg,e4wr))] for w >0,
— 2
A7 @) = Y [leswr(Gleb D erwa
o
é (w + (Ef’c+WL — EG,c+WL))] for w < 0.

(15)

Since the operator ¢} does not change the state of the VB,
the sum in Eq. (15) runs only over states [f) of Hy4,.

To compare Egs. (14) with Egs. (15), note that for
Uexc = 0 the blocks of the Hamiltonian (11) are degener-
ate (aside from a constant shift), Hy, = Hy4y, and thus
|G)e+rwr = |g)c+wr- Therefore

ag(w) = 21AT (w — Aw),
) = 2mA7 (—w — Aw). (16)

Therefore, for Ug. = 0, we can calculate the absorp-
tion and emission spectra in two different ways: firstly,
with the modified NRG procedure and secondly, via Eq.
(16) with A.(w) obtained from the NRG as well. We find
an excellent agreement between both approaches.

IV. RESULTS

In Section ITIB we showed that for U, = 0 the ab-
sorption or emission spectrum are related to the LDOS.

5
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FIG. 5: Emission and absorption spectra for different values
of Uexe (€c/Uc = —0.5,U, /U, = 1.0 and T'/U, = 0.15). An
increase in Uexc results in a monotonic shift of the threshold-
energy wo of the emission and absorption spectra and in an
increase in height at wo. The right panel shows the diver-
gence of the emission spectrum at the threshold energy wo
normalized to Tk (Tk /U = 0.020, extracted from Eq. (8)).

We start from this well-understood limiting case and
study how the absorption and emission spectra behave
upon increasing Ugx.. We use the modified NRG proce-
dure, described in Section III, to calculate the emission
and absorption spectra ¢; (w) perturbatively, see Eq. (10).
The results are shown in Fig. 5. We see two striking be-
haviors: Firstly, there is a tremendous increase in height
for both the absorption and emission spectra. In fact,
we find that the spectra diverge at the threshold energy
wp, the energy below which no photon is emitted or ab-
sorbed, respectively, in close analogy to the well-known
X-ray edge absorption problem. Secondly, the threshold
energy wo shows a marked, monotonic shift as a function
of the exciton binding energy Uexc.

A. Exponent of the power-law divergence

Let us first study the height of the spectra. For energies
w near the threshold energy wo, w — wp, we find a power-
law divergence for both!? the emission and the absorption
spectra,

afw) ~ (w_lwo)ﬁ, W — wo. (17)

To extract the exponent 3 from our numerical results we
have determined the slope of the emission and absorp-
tion spectra in a double logarithmic plot. An example is
shown in Fig. 6, where the absorption spectrum is plotted
for varying Usgxc-

Remarkably we find an universal behavior of the expo-
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FIG. 6: Asymptotic behavior (w — wo) of the shifted absorp-
tion spectra normalized to Tk (T /U. = 0.10, extracted from
Eq. (8)). For energies w — wp < 0.1Tx we find the power-law
behavior as predicted in Eq. (17). The exponent 3 increases
as Uexc is increased. The lower bound of ag(w) is set by the
number of NRG iterations (here: w — wo ~ 1073Tk for 50
iterations).

nent 5, given by the following equation,

(An)?
2 7

B=An— (18)
where An = (n.)g — (nc)g. Here (n;)g and (n.), de-
note the average occupation of the states |G) and |g),
respectively, see Section III. [Note that for w — wy,
lg} — |G) and |G) — |g) are the critical transitions in
the case of emission and absorption, respectively. Since
An is the same for both transitions, we find the same
exponent 3 for both absorption and emission for a given
choice of parameters.] At U, = 0, we have An = 0,
since |G)erwr = |g)c+wr, see Section III. As U, in-
creases, (nc)g and thus An is also increased, since the
Coulomb attraction between the hole and the electrons
in the LCBL pulls down the LCBL to an effective value
€ = €. — Uexe [note that |g) is an eigenstate of Hy,,
whereas |G) is an eigenstate of Hy4, and thus indepen-
dent of Uex].

The exponent 5 has been extracted for different values
of e.. For each value of ¢, we have varied An between
0 and ~ 0.8 by varying Ugxc between 0 and U.. The
results are shown in Fig. 7. We find a very good agree-
ment between the results extracted from the NRG and
the universal behavior predicted in Eq. (18): all data
points nicely collapse onto the curve predicted by Eq.
(18).

The numerical results presented in Fig. 5 should thus
be interpreted in the following way: for Uexe = 0 we have
An = 0 and thus 8 = 0, which gives a finite height of the
emission and the absorption spectrum at the threshold
[in fact the height is 27 times the height of the corre-
sponding LDOS, see Section III]. As soon as we choose

An

FIG. 7: The exponent 3 of the power-law divergence extracted
from the NRG results for different values of e. (symbols) coin-
cides very well with the formula for 8 given by Eq. (18) (solid
line), indicating that 8 is determined only by An. Here An
has been varied between 0 and ~ 0.8 by varying Uex. between
0U. and 1U. in steps of 0.1U.. where the values of ¢, and Uegxc
have been varied (Uexc/U.: has been varied between 0.0 and
1.0 in steps of 0.1).

values of Uexe > 0, we find § > 0, leading to an infi-
nite height of the emission and the absorption spectrum,
which cannot be resolved by the numerical data. How-
ever, with increasing U the exponent § also increases,
resulting in a steeper slope of the peak at the threshold,
which leads to a higher peak in the numerical results.

An explanation for the universal behavior given by Eq.
(18) can be given by studying the analogy between the
physics presented in this paper and the well-known X-
ray edge absorption problem. A result analogous to Eq.
(17) was found by Schotte and Schotte?®, where the ab-
sorption spectrum was studied for the X-ray edge prob-
lem. [In Ref.2® all results are presented for the absorp-
tion spectrum. However, by rewriting Eq. (7) in Ref.2°
for emission, their results can be applied to the emission
spectrum as well. Keeping that in mind, we will focus
only on the absorption spectrum in the following, but
the argumentation can easily be applied to the emission
spectrum as well.] In Ref.2? an expression for the expo-
nent 3 is derived using arguments relating phase-shifts
and local screening charges,

B=1-YNZ, (19)

a

where N, is the ’effective number of electrons’ [which is
not necessarily an integer], with spin o, which flow away
from the local level in the absorption process. We can use
this result to analyze our absorption spectra, too, since
the system behaves like a Fermi liquid for T = 0. Thus
arguments based on the relation between phase shifts and
screening charges do apply.
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FIG. 8: Illustration of an example for the absorption process |G) — |g), the relevant absorption process for energies w close
to the threshold wo: in the initial state |G) (left panel) the LVBL is doubly and the LCBL is singly occupied ({n.)a = 1,
since e, = —U,/2 in the example). The state |G) is a superposition with contributions from states with empty and singly
occupied LCBL (bottom left), where the contribution with empty LCBL has small but finite weight. In the depicted absorbtion
process a photon causes the promotion of an electron of the LVBL to the LCBL (middle panel), leading to a transition from
the contribution with empty LCBL to a state with one hole and singly occupied LCBL, which is a contribution to the state
|g) (right panel) [the weight of the contribution depends on the value of Uexc, see text]. Thus one electron with spin o flows
away from the QD (blue), adding one unit of charge to N, (charge with spin ¢ flowing eway from the QD in the absorption
process). The Coulomb attraction in the state |g) between the hole in the LVBL and the electrons in the LCBL pulls down
the level e, to an effective value & = €, — Uexc resulting in an increase of the average occupation (nc)g of the LCBL by An
compared to {(nc)a. The charge An flows towards the QD, thus An/2 has to be substracted from N, and Nz (with ¢ = {|, 1}

for o = {1, {})-

To see that Eqgs. (18) and (19) are equivalent, we will
now study the absorption process |G) — |g) [relevant
absorption process at threshold] and count the charges
Ny. It is helpful to consider an example for the pro-
cess |G) — |g), shown in Fig. 8, where the initial state
|G) is the strongly correlated Kondo ground state with
singly occupied LCBL. The state |G) is a superposition
of states with different occupation of the LCBL, where
the contribution of the state with empty LCBL is small
but finite (depicted at the bottom of Fig. 8). If the op-
erator c}v, [the part of Hperty corresponding to absorp-
tion] is applied to |G), this contribution results in a state
with one hole and singly occupied LCBL. Thus one elec-
tron with spin o flows away from the QD (illustrated in
blue in Fig. 8), adding one unit of charge to N,. This
contribution to the final state ¢tv,|G) is a part of the
state |g), which also has contributions from states with
empty, singly and double occupied LCBL (bottom of Fig.
8). The weight of the contribution with singly occupied
LCBL to |g) depends on Ug,: the Coulomb attraction

of the hole in |g) pulls down the LCBL to the effective
value €. resulting in an increase of the average occupation
(nc)g of the LCBL by An compared to (nc)q, see above.
As Uexc is increased, the charge An [which screens the
Coulomb potential of the hole] and thus the weight of
the contribution to |g) with doubly occupied LCBL also
increases, whereas the weight of the state with singly oc-
cupied LCBL decreases. The charge An flows towards
the QD, thus An/2 has to be substracted from N, and
Nz (with o = {{,1} for 0 = {1, ]}). [Another possibility
for a transition form |G) to |g) starts from the contribu-
tion to |G) with a sinlgy occupied LCBL and ends up in
a contribution of |g) with double occupied LCBL. One
receives the same amount of charge for N, and N; if
one argues that one unit of charge with spin ¢ has to
leave the doubly occupied LCBL and the charge An has
to flow into the LCBL to reach the average occupation
(nc)g = (nc)a + An.] Picking up all contributions to N,
and N; to calculate the exponent 8 via Eq. (19), one gets
B=1—(1-An/2)?—(An/2)? = An — (An)?/2, which
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is the result expected from Eq. (18).
A similar argument has been used in'82!, where the
local spectral function of the Anderson was studied.

B. Behavior of the threshold energy wg

Let us now switch to the second effect observed, the
monotonic shift of the threshold energy wy. The thresh-
old energy for both emission and absorption is given by
wg = Eg—Eq, where Hy|G) = Eg|G) and Ho|g) = Eglg),
as explained in Section III. The shift can be understood
by considering a mean-field estimate of the relevant en-
ergics Eg and Ejg,

1
Eg = 26 +€elnchg + ZUc(”c)%;:

1
E; m e +e(nc)g + ZU°<"°)§ — Usxc{nc)g. (20)

The average occupations {n¢)g and (nc)g can be calcu-
lated by the NRG as well. Eq. (20) allows for a rough
estimate of the threshold energy wo,

wy = Eg—EG

N —€y + €, ((nc)g - <nC)G)
U ()2 — (o)) — Usefnely. (21)

The results for wy shown in Fig. 9 reveal a good agree-
ment between the threshold energy extracted from the
emission and absorption spectra calculated with NRG
(solid line) and the estimation given by Eq. (21). In the
latter approach (n¢)g and (nc)g have been determined
via the NRG, see top panel of Fig. 9 [note that (nc.)g =
const. with (nc)a = {nc)g at Uexc=0]. We find a linear
behavior of wy as a function of Uy for those values of
Uexc Where (n.)g stays approximately constant. For this
sake three regions of constant occupation are identified,
region I ((nc)g ~ 0), I ((nc)g ~ 1) and III ({nc)g ~ 2).
As expected by considering the last term in Eq. (21), we
observe the slope of wg(Uexc) to be 0 in region I, to be
—1 in region IT and to be —2 in region III, respectively.

The cross-over regions (dotted lines in Fig. 9), where
(nc)g changes between 0 and 1 (I — II) or between 1 and
2 (II — III), on the other hand, show non-trivial behavior
of wo. In these regions the terms in Eq. (9) compete with
each other, which explains the non-linear behavior (note
that in these regions (nc)g is a function of Us as well).

V. CONCLUSIONS

Motivated by experimental results’:2, the aim of this
paper was to calculate the emission and absorption spec-
tra of a QD in the strongly correlated Kondo ground-
state. We have studied an extended Anderson model
including a local valence band level and a local conduc-
tion band level which is coupled to a Fermi-sea (2DEG),

8

| — NRG
O Mean-field

L . 1
0 0.5

FIG. 9: Behavior of the threshold energy as a function of
Usexc- Upper panel: average occupation of the LCBL (n¢)g of
the state |g), see Eq. (13). Three distinct regimes are identi-
fied: empty orbital (I), LMR (II) and full orbital (III) regime,
where the LCBL is empty, singly or doubly occupied, respec-
tively. Since the Coulomb attraction between an hole in the
LVBL and the electrons in the LCBL ’pulls down’ the LCBL
[éc = €c — Uexc], an increase in Uexc bears the same effect for
(nc)g as a decrease in e.. Lower panel: threshold energy wo
versus Uexc extracted from the NRG results (solid) and ob-
tained from the mean-field estimate (circles), Eq. (21), where
(nc)g of the upper panel has been used.

see Section II. For the academic limiting case of a van-
ishing exciton binding energy, Uexe = 0, we could relate
the emission and absorption spectrum to the well known
local density of states of the local conduction band, see
Section ITI. Starting from this limit case, we have studied
the spectra for arbitrary values of Ugy. Using the NRG
method, we have produced our main result, Fig. 5, which
shows two rather dramatic features: Firstly, we noticed
a tremendous increase in height of the emission absorp-
tion spectrum as Ugy is increased. In fact, the spectra
show a power-law divergence at the threshold energy, the
energy below which no photon is absorbed or the energy
above which no photon is emitted, respectively. Remark-
ably the exponent of the divergence depends only on An,
the difference in occupation of the local conduction band
level between the inital and final states for transitions at
the threshold. We showed that the universal behavior
of the exponent can be explained by considering the X-
ray edge problem, which stands in close analogy to the
physics presented in this paper. Secondly, for increas-
ing Uy, there is a marked shift of the threshold energy,
which can be understood on a mean field level.

In the present generation of experiments'2, the wet-
ting layer forms a 2DEG only for values of the gate volt-
age Vi for which several local conduction band levels are
occupied (not only one, as assumed in the present pa-
per). However, we expect?? that future generations of
samples could be produced for which the assumptions of
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our model, namely one LCBL with presence of a 2DEG,
are fulfilled.
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Chapter 9

Summary and outlook

In this thesis we have been focusing on zero-temperature properties of QD-systems. The
different QD-systems that we analyzed were modeled by the Anderson impurity model,
a model that is extremely well suited to describe QD-physics. In the limit of small tem-
peratures correlation effects are crucial. Consequently, we employed Wilson’s numerical
renormalization group method, which is essentially a numerical exact method for the deter-
mination of the low-temperature properties of the various models we studied. We expect
our predictions to be observed in (future) experiments.*

Table 9.1 shows four different classes of impurity models we were solving in this thesis.
One can categorize these classes by the number of (spinfull) levels inside the impurity
and the number of (spinfull) channels the impurity couples to. In particular, the number
of channels the (complex) impurity couples to sets a serious restriction for the numerical
solution of a particular model.? Within each of those classes particular symmetries can be
exploited. As stressed in Appendix (C the use of symmetries is essential for an accurate
determination of the quantities one is interested in. As this symmetries depend on the
particular model under study we do not refine Table 9.1 w.r.t. particular symmetries here.

Whereas in this thesis, we only considered QDs coupled to fermionic baths,® the NRG-
method is not restricted to fermionic baths. The ’bosonic’ NRG, developed by Bulla et
al. [66], overcomes this restriction. This generalization of the NRG-method is a new path
one should definitely follow. It opens the exciting possibility to study models, such as the
spin boson model (see [66]), which are, for instance, relevant in the context of quantum-
computation [22].

The code that was programmed during my PhD-studies is rather flexible. Therefore it
allows for the solution of various problems (dealing with fermionic baths) without changing

'The spin splitting of the Kondo resonance for a QD contacted to ferromagnetic leads has already, in
agreement with our predictions, been observed [55] (see also [59]).

2Tt is the number of coupled channels that governs the growth-rate of the Hilbert space in the course
of the NRG-iteration.

3In Chapter 6/ and [7 we solved models up to four different fermionic baths, (two different channels each
carrying a spin index).
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| | 1 channel | 2 channel |

1 level | Chapter 5, 8| Chapter 7
2level | Chapter 6 | Chapter 6

Table 9.1: The table classifies the models that have been solved in Part II of this thesis.
Models that fall into one of these classes can, in principle, be solved with the NRG-code
that was produced within my PhD-studies. Since the symmetries one should exploit depend
crucially on the model one is studying we do not refine this table by including possible
symmetries.

the structure of it.

In a recent experiment on single wall carbon nanotubes [67], for instance, a fascinating
feature of a sixfold split Kondo resonance (in presence of a finite magnetic field) has been
observed. In this experiment, carried out at TU Delft (Netherlands), the nanotube was
tuned such that it behaves, in absence of a magnetic field, as a two-fold degenerate QD*
coupled to two distinct channels. Once the relevant model of this experiment is identified, it
is rather straightforward to use the developed code to compute the (level and spin resolved)
spectral functions of the system, which enables one to gain a deeper understanding of the
experimental results.

4Tt turns out that a magnetic field couples differently to the spin and the orbital degree of freedom,
leading to a difference between the Zeeman and the orbital splitting.
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Appendix A

Derivation of the NRG-equations

In the early 1970’s K.G. Wilson succeeded to construct a nonperturbative solution of the
Kondo Model (KM) [1]. The crucial step in Wilson’s procedure was the mapping of the
free conduction electrons (that surround the impurity) onto a chain, the Wilson chain.
Krishna-murthy et al. [31], [47] extended this procedure to the Anderson Model (AM) [25]
in the early 1980’s.

In contrast to Wilson and Krishna-murthy et al., who assumed a flat conduction band
(CB)," we consider here a CB with a spin- and energy-dependent density of states (DoS)
po(€) [the energy dispersion in the CB ¢y, is related to p,(€) via py(€) = >, 0(w—exo)]. For
this sake the iteration scheme used in [1] has to be generalized for a CB with an arbitrary
DoS p,(€). To establish this generalization we follow Bulla [68], [69] and Hofstetter [70]:*

For simplicity the mapping of the single level AM,

ﬂAM = 7:ld + Z 6kch]Lkngcr + Z Vka (CTko'dU + di;ckcr> ) (Al)
ko ko
Hen Hua

on the Wilson chain will be described below. As explained in Eq. (3.7), the AM consists of
three parts, the CB 7:(03, the tunneling part Hyq and the impurity part H, which does not
need to be specified here. The operators d, and ¢y, denote the impurity and CB operators
lactually the symmetric linear combination of the left and right lead (called g, in part
I, see Section [3.1))] which obey Fermi statistics (with o describing the z-component of spin
orientation), respectively. The corresponding mapping of an impurity that couples to N
channels® - the case N = 1 is shown here - can easily be obtained via a generalization of
the procedure outlined below. In Chapter 6, for instance, the mapping for N = 2 had to
be performed.

! The bandwidth D of the CB is the natural energy scale; for a flat and normalized CB the DoS is
. . D
given by: p(e) =3 po(€) = 55, since Y- [} dep,(e) = 1.
2An impurity that couples to an arbitrary DoS is of particular importance in DMF T-applications [26].
3¢ko — Ckio, © € {1,---,N}. Note, however, that a single level impurity couples effectively to one
channel only (as a unitary transformation [16] reveals).
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A.1 Manipulation of the CB

A continuous representation of 7:£(;B and 7:(&1 is more convenient for the derivation of the
NRG-mapping [69]. To achieve this, we replace the k-sums in Eq. (A.1) by a continuous
representation

1
Hep = Z/ de g (€) al ac,, (A.2)
—J

My = Y /_ 1 de ho(€) (dface +h.c.). (A.3)

In Eq. (A.2) an isotropic energy representation of the CB (with band edge D = 1, i.e.
le] < 1) with a generalized dispersion g,(€) has been introduced. Accordingly, a generalized
hybridization function h,(e) was inserted in Eq. (A.3). The continuous CB-operators a.,
obviously have to obey Fermi statistics {ac,a',.} = 0(¢ — €)d,,. The equivalence of the
discrete and continuous version of Hy, [i.e. between Eq. (A.1) and Eqs. (A.2), (A.3)] is
established if the effective action on the impurity degree of freedom is identical in both
representations. Given that the functions g,(¢) and h,(€) obey the relation

—89"86(6) (1o (951(6))]7 = pole) Vo le)]*, (A.4)

where g;'(€) is the inverse of g,(¢), this requirement is fulfilled and the discrete and the
continuous representation of the AM are identical (see Eq.(10) of [69]).

Obviously, there are many possibilities to satisfy Eq. (A.4). One possibility is to choose the
dispersion g,(€) = g, '(e) = € and the generalized hybridization h,(€) = /A, () /7, with
e-dependent hybridization A,(€) = mp,(€) [V, (€)]” (other possibilities can, for instance,
be found in [69]). For reasons that will become clear below, this choice is well suited
for a constant (or at least sufficiently smooth) hybridization A, (€). For a hybridization
with a strong energy-dependence [71], however, the functions g,(¢) and h,(¢) are chosen
differently [still satisfying Eq. (A.4)]. An example of the latter case is given in Fig. [A.1(a)
[the corresponding functions g, (€) and h,(¢€) are sketched in Fig. [A.1(b)].

Eq. (A.3) reveals that the impurity couples to all energy scales of the problem, i.e.
infinitely many degrees of freedom. Wilson’s original idea, a logarithmic discretization of
the CB, allowed him to transform ﬂgd into a tractable form. The logarithmic discretization
resolves low-energy states with a high accuracy, but does not simply disregard high energy
states of the CB, as shown in Fig. /A.1(a). By introducing a discretization parameter A
(A > 1) Wilson divided the CB into energy intervals ranging between [—A~"; —A~("D]
and ]A_(”“); A‘”], n € Ny. In each logarithmic interval a Fourier Series

_L_ oFiwnpe if A—(n+1) +e < AP 7
UE () = { NG ;lse SEES AT pe (A.5)

is defined where the superscript £ labels wave functions defined for positive/negative en-
ergies. The subscripts n and p mark the interval and the harmonic index of the Fourier
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expansion. Note that the width of the n-th interval d, = A™" (1 — A~!) determines the
fundamental Fourier frequency w, = 27/d, of that interval. The expansion (A.5) now

b
a) &/D ) £/D Ao Aep
0
1 ’0’6"0‘. /\
5esS
\V -
N
A
0:0‘ 2
N
0058 AN
0 ;‘ _//%n: —
58 Pol(€) 2
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K57
Ros
0
—1-F¥ -N —
e —
As(e) 96(€) [hnol?

Figure A.1: (a) Since the impurity couples to all energies, the CB is logarithmically dis-
cretized (with discretization parameter A). (b) For an energy-dependent hybridization
A, (€) (left) one chooses the generalized hybridization h,(¢) = hi to be constant in each
logarithmic interval; for this choice only the (p = 0)-component of the CB couples to the
impurity (right panel). The corresponding dispersion g,(¢), sketched in the middle panel
(solid line), follows from solving Eq. (A.4). For reference the linear dispersion g,(€¢) = €
(dashed line) is plotted as well.

allows one to replace the continuous operators ae, in Hep and Hyq [cf. (A.2) and (A.3)] by
discrete ones,

o = D [Anpo U0, (€) + bupe Uy, (€)] - (A.6)

np

A discrete set of anti-commuting operators e and by, [note: {anpo, aL,p,U,} = Opn/ Oppy Or”
and analogously for b,,,] with harmonic index p and spin o,

Unpo = /_de[\Il:{p(e)]*aw, (A7)

1

b = / 4e[T; ()] o, (A8)

1

that act on the n-th positive or negative logarithmic interval is defined hereby.
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A.1.1 Transformation of 7:(gd

We start the derivation of the NRG-equations by a transformation of the tunneling part
Hyq of the AM. Inserting the expansion (A.6) into Eq. (A.3) yields
+ h.c.} )

AT _A—(n+1)
Hyg = Z { [d:; (anpg/ de ho ()W (€) + bnpa/ de ha(e)\llflp(e)>
(A.9)

npo Af(n+1) —_A—"n
Henceforth, we take the generalized hybridization function h,(e) to be constant [69] in
all logarithmic intervals, h,(¢) — hZ , see Fig. [A.1(b), which ensures that the impurity
couples to s-waves only, i.e. to the (p = 0)-contributions (Riemann-Lebesgue Lemma) [70].
Consequently the harmonic index p can be dropped in Eq. (A.9). This particular choice of

the generalized hybridization function, the averaged hybridization function

bt = {\/ i depo (Vo ()2 if AT < e <A (A.10)
else

by = {V i S dep (Ve i AT < e AT (4
else

forces us to adjust the generalized dispersion g,(¢) such that Eq. (A.4) still holds. In
general, as indicated in Fig.A.1(b), this results in a nonlinear generalized dispersion g, (e).
Inserting Eqs. (A.10) and (A.11) into Eq. (A.9) simplifies Hyy considerably

Nf()o'

Hea = \/’ Z dT (hotno + mem,) +he. |, (A12)

with v = \/ " veny de Ay (€) and v, = \/f A e A, (€), respectively. As indicated

in Eq. (A.12)), it is convenient to define a fermlomc operator fo, (with {foo, fgg,} = Oo0');
which has the form

1 . .
= —— Al
fOo’ m Z (fynaana + ’-)/no—bnd) ) ( 3)

with do, = ), [(’y,fa) (Vi) } = f A, (€)de. The operator f creates a spin o electron

in the maximally localized state (which is essentlally the conduction electron field on the
impurity site), equivalent to the zeroth site of the Wilson chain, see Fig. [A.2. In the limit
of constant hybridization, A,(¢) = A,, Eq. (A.13) reproduces the well-known result [31],

for = 3020 V/dn/2 (ang + buo) = /(1 = A1) /2 3707 A" (ang + buo).

We insert the maximally localized state into Eq. (A.12) and finally obtain

'Hgd = Z [\/TOU (deOO' + h.c. )] . (A.14)

[
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Eq. (A.14) nicely illustrates that the impurity couples to a single fermionic degree of
freedom only, the zeroth site of the Wilson chain. To fully map H s on a linear chain,
however, still Hop needs to be transformed properly. We focus on this issue in the next
Section.

A.1.2 Transformation of 7:103
When we insert the expansion (A.6) into Eq. (A.2) the CB-Hamiltonian H¢p reads

Hew =2 / de 9o (€ { (@l [T ()] Anpro U (€) + bl [\I/;p<e>]*bnp/a\lf;p,(e)}}.

p’
(A.15)
Though only (p = 0)-contributions couple directly to the impurity [remember that we chose
constant hybridization h , see Eqs. (A.10) and (A.11)], (p # 0)-contributions might be-
come important via an indirect coupling to the impurity [via the (p = 0)-mode].
Therefore two contributions remain in the pp’-sum of Eq. (A.15): >0/ [-.] = [- ] —o =0t
ol o

The first term of this sum (p = p’ = 0), which we label HCB, reduces Eq. (A.15) to

7:{(Cl')B - Z [Cno ncranff + Cnabngbna} ) (A16)

—A—(n+D)
with the general expression (! = (1/d,,) fA (e de go(€) and (o = (1/dy,) [\ de go(€).
Note the following: since the smgle particle energies of the CB electrons (= depend only
on the integral over the logarithmic intervals an exact knowledge of g,(€) [which can be
inferred from Eq. (A.4)] is not required.
Bulla et al. [69] showed that for the particular choice taken here [h,(¢) — hZ in each
logarithmic interval], the single-particle energies (= are given by

A*’!‘L
+ = fA (n+1 dﬁEA()’ (A17)
f ~ s de Ag(€)
_A—(n+1)
de € A, (e )
_ _A-n
no = n (A18)
S de Ay (e)

A comparison between the general expression for ¢ and Eq. (A.17) reveals that the dis-
persion is indeed nonlinear here, g,(€) = € {[dnAU(e)]/ [f/(::m deAU(e)] }

For constant hybridization A, (e) = A, the linear dispersion [g,(¢) = €] is recovered within
this more general framework. Also the result for Heop of Krishna-murthy et al. [31] [who as-
sumed A, (e) = A; see Bq. (2.12) of [31], Hop =LA+ A)Y, A (af, ane — bl bus),
ie. (& ==+35(1+ A1) A", is recovered in this more general scheme.
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The second contribution to the (pp)-sum, >_ .. ]

momenta. This term, labeled by ﬂg}?, takes the form

p—0s couples off-diagonal angular

I

A\

,

AT
Hey = D S |aloptnpe ( / de g (€) [w:pzaeﬂ*wzp«e)) +

o | 70 ~(n+1)

—_A—(n+1)
+ bILp:Oo-bnp/O' (/A_n de g, (€) [\I/:{pzo(e)]* \If:p,(e)> (A.19)

N

g

Iz

Note that the mapping of the AM on the Wilson chain is still exact at this stage (7:(0 B =
7:{8,)3 + ﬂg}g), with h,(€) and g,(€) satisfying Eq. (A.4). In particular, Eq. (A.19) stresses
that a complete description of the CB includes all possible angular momenta p.

We analyze the importance of 7:((02))3 by computing the integral I; in Eq. (A.19) for the
particular case of a linear dispersion (which results in: I, = —1I;):* inserting Eq. (A.5) into
I, results in

1 A" 1 . A"
I = T /A<n+1) de e exp (iw,p'e) = T {eXp (iwnp'€) | — (iwnp') > + € (iwnp’)] }‘A—(H-FU
which finally reduces to
= A e i (1 — A7) (A.20)
= ex i — :
! 2mip’ plemp

[see also Eq. (2.10) of [31]].
We conclude from Eq. (A.20) that 7:((0223 becomes less and less important for A ap-

proaching 1. Wilson showed [1] that the p # 0 contributions, i.e. 7:[((/%, can be dropped to
a very good approximation for A = 2, which was mostly used in this thesis.”

From now on we will disregard 7%(6%)3, which is like dropping a small perturbation in
Hep. The first approximation we use is therefore

Hep ~ HUL, (A.21)

i.e. we replace Eq. (A.2) by Eq. (A.16).

4The reasoning also holds for an arbitrary dispersion, see [69].
5The approximation works still pretty good for bigger values of A, e.g. A = 3.
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A.2 Mapping of the CB onto a semi-infinite chain

To solve H.ans numerically, it is convenient to bring Hes, Eq. (A.16)), into tridiagonal from,
see Fig. [A.2, i.e. to map H¢ep onto a semi-infinite chain (the Wilson chain Hy¢),

Z ( :0' a’ILaaTw' + C’r?o‘ bILab’VZO') - Z [Enaf:LafnU + tno’ <f’io‘fn+10' + f'rJrL+10'fn0'>i| . (A22)
n=00 n=00

IF[C’B 7:[WC
For this mapping (see e.g. [72]) we use the tridiagonalization procedure developed by
Lanczos [73] with diagonal matrix elements ¢,, and off-diagonal ones t,, [70].
The tridiagonalization procedure of Lénczos allows us to determine Hep |V,,), where
|U,.o) = fI_|0) denotes a one-particle state (with Fock vacuum |0), n e Np),

€Enoc th—1c
7:{C’B ‘\Ijna> = <\Ijno" 7:{C’B ‘\Ijna> |\Iln0'> + <\Ijnflo" 7:{CB ‘ana> ‘\Ijn710'>
tna’

A
e ~N

+ <\Ijn+la| ﬂC’B |\1an> |\I]n+1cf> . (AQS)

We can immediately identify the matrix elements €, t,,_1, and t,,, by comparing Eq. (A.23)
with the ansatz (A.22). Eq. (A.23) nicely illustrates that the n-th site of the Wilson chain
is only connected to its two neighboring sites, the (n — 1)-th and the (n + 1)-th site of the
chain. It can also nicely be seen that the recursive determination of the fermionic oper-
ators f,, involves the calculation of the onsite energies and the hopping matrix elements
along the Wilson chain. Below, the derivation of the corresponding recursion relations is
summarized.

The single-particle operator f,, that acts on the n-th site of the Wilson chain is given
by the ansatz

fno = Z (unmoamo + Unmobma) ) (A24)
m=0
with coefficients u,,,, and v,,,, that need to be determined recursively.
The initial values ug;, and vom,, are immediately found by comparing the ansatz (A.24)
with fo, as given in (A.13)),
+

f}/ma fyT?LO'
Uome = ——=, Vomo = . A.25
’ 7900 ‘ Vv 7900 ( )

An inversion of the ansatz (A.24) leads to @ne = Yo _ Umno frmo a0 Do = D> Vo fmo-
When we insert a,, and b,, in the Lh.s. of Eq. (A.22) and compare corresponding f,,
operators on both sides of this equation we obtain

(CTTLsunmUajna + g;zsvnmlfbjna> = Emff):a + lno ’l—i—la +ln-10 7]:—10- (A.26)

m=0

6 foo was already given in Eq. (A.13); see Eq. (A.24) for the general definition of f,,.
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In particular, the (n = 0)-comparison in Eq. (A.26) (which reflects the comparison of the
foo operators) yields

s + At - A
2 (%L + C’“%bina) = €0 I3, + toa (A.27)
Oc Oc

where Eq. (A.25) has already been inserted.

Since the operators f,, obey Fermi-statistics, { fno, fl,a,} = Onn0s07, the anticommutator
of the r.h.s. of Eq. (A.27) with fo, yields {eo, fgo_ + tos flt,, foo} = €oo. The corresponding
anticommutator of the L.h.s. of Eq. (A.27) with fy, as given in (A.13),” finally leads to the

relation .
=52 [SCET e C e B (A.28)

m

m=0

The initial hopping matrix element ¢y, can now easily be determined from Eq. (A.27)
by computing the anticommutator {eogfgg + too f1ys €00 foo + tonfio} = (€00)? + (tor)? =

+ o+ - - + o+ - - T _ _
S { (Majm + Cmi,ﬁbina) : (Maiw + %lﬁm) } As €, is known we obtain

Voo Voo Voo
1o, as
(1) = - {z (Gho)” (k)™ + (Gan)” ()] = D (G (i) + G m—w)z}}

(A.29)
When we insert Egs. (A.13), (A.28) and (A.29) into Eq. (A.27) and compare this with the
ansatz for i, BEq. (A.24), we obtain

. ,y;w +
Ulme — —\/19_001500 ( mo 600), (ASO)
Ym _
- ___'mo _ . A.31
Ulmo mtog ( mo 600’) ( 3 )

Following the above argumentation one finally obtains the spin-dependent onsite energies
€no and hopping matrix elements t¢,,, at the n-th site of the Wilson chain as

o = D [(Wmo) *Chio + (Wamo) G (A.32)
() = D | Wana)® (Goo)” + Cana)” (Go)”] = (tn1e)® = (o), (A33)
with the coefficients of the single-particle operator f,. 1y, defined in Eq. (A.24),
e = 7 (G = ear) e = bt 1] (234
teine = 1[G = ) Vo = trcsoicsa] (A39)

n

3

"Note that the discrete operators a,, and b,, are anticommuting as well.
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Even though, only the matrix elements along the Wilson chain (e,, and t,,) are finally
required, it is crucial to determine the coefficients u, 1 1me and v, 1., as well, since €,, and
tno depend on these coefficients, see Eqs. (A.32) and (A.33).

Note: the mapping of the CB onto the Wilson chain does not change electron-hole
symmetry (as it is a unitary transformation). The Wilson chain, given in Eq. (A.22),
consists only of hopping matrix elements t,, and onsite energies €,,. Thus an electron-
hole symmetric hybridization A, (€) implies that all onsite energies along the Wilson chain
vanish, €,, = 0 Vn € Ny. More rigorously the reasoning goes as follows: for an electron-
hole symmetric hybridization [A,(e) = A,(—¢)] the relations (. = —(, and v =~
are valid, thus ¢y, = 0 [Eq. (A.28)]. This results in u1,,, = —V1me What leads to €, = 0
[Eq. (A.32)]. From Egs. (A.34) and (A.35) one realizes that this leads to uome = —Vome
which results in €3, = 0 etc. .

We shall make a final remark here about the numerical solution of the above mentioned
equations: since the band energies are exponentially decaying in the course of the iteration
one has to use reliable numerical routines (i.e. arbitrary-precision Fortran routines [69]) to
solve for the coefficients (Unme, Unme) and matrix elements (t,, €50 )-

A.3 Iterative numerical diagonalization

When we rename the impurity operator d, = f_;, the AM takes a particular compact
form

7:(C}34‘\"7:{Zd

7~ N

Foass = Fat Y [or (Fotvse + fhorohin) + evneflonsbune]. (430

n=—1,0

with the coupling between the impurity and the CB t_j, = /%= [see Eq. (A.14)], the

kinetic energy (o t,,) [see Eq. (A.33)] and the onsite energy (x €,,) [see Eq. (A.32)] of
the CB, written in form of the Wilson chain. Note that there is no possibility of a spin-flip
event along the chain. The Hamiltonian (A.36)) is valid for an arbitrary energy- and spin-
dependent hybridization function A, (€), it is therefore a generalization of the one obtained
by Krishna-murthy et al. [see Eq. (2.14) of [31]]. For the particular case considered by
Krishna-murthy et al. [31] (A,(e) = A, i.e. flat and spin-independent bands), their result
is recovered with
&

1A
V(L= A1 — A=)

1
te = 5(1+ AHA T2 (A.37)

and €,, =0 Vn € Nj.
The obtained ’chain-Hamiltonian’, depicted in Fig. |A.2, can be solved by iterative
diagonalization. In the limit of an infinite long Wilson chain the AM is recovered,
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Figure A.2: The Wilson chain can be iteratively diagonalized, since only neighboring sites
are coupled with each other. One proceeds by first diagonalizing Hy, the Hamiltonian that
describes the system consisting of the impurity and the first N sites of the Wilson chain,
then setting up Hy1 [via Eq. (A.40)] by coupling Hy to the (N +1)-th site of the chain and
restarting the diagonalization procedure. Along the chain the energy resolution increases
since smaller and smaller energies (~ A~(V=1/2 in the N-th iteration) are coupled to Hy.
The ty’s are the exponentially decaying tunneling matrix elements and the ey the onsite
energies along the chain. For symmetric hybridization, A(e) = A(—¢), ey =0V N € Ny.

Han = lim A~WN=D2F (A.38)

with the Hamiltonian H ~ that contains the first NV sites of the Wilson chain

N-1
HN = A(N_l)/2 {Hd + Z [tna (frto’fn-‘rla' + fi+1afno> + €n+lof;[+1afn+lo] } .

n=—1,0
(A.39)
Indeed, Eq.(A.39) coincides with the formula found by Krishna-murthy et al. [Eq.(2.18)
of [31]] for A,(e) = A.
Eq. (A.39) allows us to set up the NRG-iteration, heavily used in this thesis

Hyyy = VAHy + AN [tNa (f]]:fng—Ha + f]]:/'—‘,—lngO') + NN fNee| - (A40)

The latter equation defines a transformation R that (i) relates effective Hamiltonians on
successive lower energy scales with each other and (ii) couples only neighboring sites along
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the (Wilson) chain (Hyy1 = R[Hy]).®
Note that the energy resolution in the N-th iteration is of order ~ A=V , see also
Fig. [A.2. The rescaling factor AN=Y/2 in Eq. (A.39) ensures that Hy contains numbers
that are ~ O(1), i.e. numerically “good” numbers. Hy is an effective Hamiltonian that cap-
tures the physics at a temperature kg7'/D ~ A~(N=D/2 Tower temperatures are reached
when one proceeds along the Wilson chain.
In the course of the iteration one solves the Schrédinger equation iteratively, i.e. one com-
putes the eigenstates and corresponding eigenenergies of Hy. The exponential decay of
the matrix elements ty, and ey, is crucial for the success of the iteration scheme (A.40).
The iteration scheme (A.40) becomes particularly transparent in matrix-notation,

1)/2

[ Ty ir [ Dyvin Ty
0y, [ VAHS tn1fhy tnifl, 0
s = Mo | tvifvr VAHSG +eniny 0 tnfh
Dy | tNLfNy 0 VAHY + ey —tnt fl
1Ty 0 tn fny —tn1 VAHS + Y o EN+1o

Here each entry represents a (truncated) matrix which is written in the basis where Hy is
diagonal, H%.

Since the Hilbert space is growing exponentially fast when one proceeds along the chain a
truncation is necessary. Thus, one only keeps the lowest lying eigenstates of Hy (typically
~ 1000) in each iteration. This is achieved by diagonalizing Hy, Hy — HY & sorting it
w.r.t. increasing eigenenergies and finally truncating it.

The NRG-iteration for the KM is identical to the one for the AM (with identical €,
and t,,). The only thing that needs to be adjusted is the initial Hamiltonian H,. For the
KM the coupling between the impurity and the zeroth site of the Wilson chain is ~ J
(the Kondo coupling) (and not ~ v/A as for the AM).

A.4 Results of the iterative diagonalization

As explained above, before the Hamiltonian Hy is coupled to the next site of the chain,
it is diagonalized, Hg |W,), = EN|¥,) . The knowledge of the n-th eigenstate |W,)  (in
the N-th iteration) and its corresponding eigenenergy E2 enables us to calculate physical
quantities at a scale wy ~ A~N=D/2D_ Additionally, the calculation of an expectation
value of an operator O requires the knowledge of the corresponding matrix elements (in
the basis of ]:Iff,; see Section 4.1)) of this operator.

The calculation of dynamic quantities (see also Section 4.1), such as the spectral
function A, (w ) deﬁned as As(w) = =13 [GF(w)], with the retarded Green’s function
GE(t) = —if(t <{d }>, requires even more tricks. The spectral function obtained

8For constant hybridization one obtains from Eq. (A.37): txy — A~N/2 for N — oo.
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in the N-th iteration AY(w) takes the following form in Lehmann representation [74]

e BEm 4 o—BEY

Zn(T)

A1) =" | (Tl dh |00 6 (w— (BY = EN)). (A1)

nm

Two problems arise from the way Eq. (A.41) is written: (i) what is the 'optimal’ way of
replacing the o-functions in Eq. (A.41)? An important question since one is interested in
computing the continuous spectral function A,(w,T’) (see Appendix B.1). (ii) How should
one mix the matrix elements in the spectral function AY(w,T) to obtain the best possible
spectral function of the system A,(w,T)? We comment on this issue in Appendix B.2.



Appendix B

How to obtain continuous dynamic
functions

It was pointed out in Section 4.1/ that dynamic quantities, such as the spectral function
A(w,T) [see Eq. (4.5)], can be written as a sum of d-functions; the spectral function corre-
sponding to the N-th NRG-iteration, for instance, can be found in Eq. (A.41)). Figure B.1
shows the eigenspectrum of the N-th iteration (horizontal lines) with possible transitions
(indicated by the arrows), i.e. non zero matrix elements (U, |d, [¥,,) , for (a) T =0 and
(b) T # 0. Note that for T # 0 transitions between excited states are possible.

Since the typical energy scale in the N-th iteration is wy, AN (w,T) contains mostly
transitions at this energy scale, i.e. AN(w,T) ~ A(wy,T). Information about bigger
(smaller) energies in A(w,T’) are obtained at an earlier (later) stage of the iteration pro-
cedure.

Our final goal, namely to obtain a continuous spectral function A(w,T') (w € [—D; D)),
is achieved when the following two problems are resolved: (i) d-functions appearing in
AN(w, T), see Eq. (A.41), have been broadened properly and (ii) spectral functions AV of
different iterations have been combined appropriately as explained above [i.e. >\ AN ~
A(w)].

Task (i) will be resolved in Section B.1}, task (ii) in Section B.2.

B.1 The broadening of the J-functions

The broadening of the d-functions by gaussians or lorentzians suggests itself, as the iden-
tities d(c — €) = lim,_g #ﬁe_(c_fw(%% or §(c — €) = limgqoim [76] hold, re-
spectively. It turns out, however, that dynamic quantities (such as the spectral function)
are very sensitive to the properties of the corresponding broadening-functions. Based on
some properties of the spectral function, such as (i) the height of the spectral function
at the Fermi energy A(w = 0,7 = 0) (Friedel-sum-rule), (ii) the accuracy of the relation
n(T =0) = fi]oo dwA(w, T = 0) [the (thermodynamically computed) occupation n(7 = 0)
is known with high precision] and (iii) the width of the atomic resonances (which is I'),
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0 - I 0

Figure B.1: Possible transitions that contribute to AN (w, T = 0) (a) and AN (w, T # 0)
(b). Here all energies are measured w.r.t. the ground state energy of the N-th iteration.
Note the following: (i) for finite temperatures the possibility of transitions between excited
states exists and (ii) an additional energy scale T' comes into play. Therefore one should
stop the NRG-iteration once the energy resolution ~ A=V=1/2 is comparable to T. The
dashed lines in (a) and (b) mark the cutoff in the energy spectrum which arises from the
truncation of highly excited states. Figure taken from [75].

one can decide which broadening-function is preferable.

It turns out that it is favorable to replace the appearing d-functions by gaussians rather
than lorentzians. This is because gaussians, in contrast to lorentzians, decay exponentially
fast. Sakai et al. [77] showed that a gaussian adopted to the logarithmic grid used in the
NRG-scheme, i.e. a logarithmic gaussian, has even better properties than the 'usual’ gaus-
sian has. Fig. B.2 shows a comparison between both functions: the logarithmic gaussian
is not symmetric around its center, in contrast to the 'usual’ gaussian. It can be inferred
from Fig. B.2l that logarithmic gaussians suppress low energies even more than ’'usual’
gaussians do. Since these energies are resolved at later iterations this suppression makes
them preferable w.r.t. 'usual’ gaussians.

Consequently appearing d-functions are broadened by a logarithmic gaussian |75]

6—02/4

e/

with positive energies € and c¢ [for negative energies Eq. (B.1) has to be adjusted corre-
spondingly|. In typical NRG-calculations we use o ~ 0.6.

To improve our intuition of the gaussian and the logarithmic gaussian we compute their
width here: at energies ¢ + 0v/2 the "usual’ gaussian has decayed to 1/e of its maximal

_ (n(c)=In(e))?
2

e (B.1)

dc—e€)—
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log. gaussian
gaussian

Figure B.2: Logarithmic gaussian [solid; see Eq. (B.1)] vs. 'usual’ gaussian (dashed) for
¢ =2 and o = 0.6. The logarithmic gaussian is not symmetric around its center c; it has
comparably more weight at higher energies than a ’usual’ gaussian does. Note that the
width of the logarithmic gaussian (see text) scales with its center, whereas the width of
the gaussian is determined by o only.

value, its width is thus ~ . A logarithmic gaussians, however, decays to 1/e of its maximal
value at energies ¢ & dc, with dc = ¢ (e*° — 1). This implies that its widths scales with the
value of its center c.

B.2 How to combine information from different iter-
ations

To illustrate problem (ii) we use the spectral function A(w) as a showcase. A good summary
about this topic is given in an article of Bulla et al. [75].

One way to obtain a continuous spectral function A(w) is to analyze the sum of the N-
th NRG-iteration, AN (w, T =0) =3 | (n|d'|0) |2 S(w— (BN — EY)) at a frequency &y
which is typical for the N-th iteration, say oy = ¢ wy (typically ¢ ~ 2; wy = A~N=D/2),
In this scheme, the spectral function of the N-th iteration is replaced by the averaged value
at frequency wy, AN(w) — AN (wy). One chooses ¢ such that it corresponds to a state
with an energy that lies roughly in the middle of the N-th cluster (by cluster we mean the
set of all possible transitions included in the N-th iteration). Rather big (small) values of
c are better described at an earlier (later) stage of the iteration. The continuous spectral
function A(w) is finally obtained by connecting the ’averaged’ points (wy; AV (0y)). In this
approach one does not have to worry about the issue of over-counting the matrix elements
of the spectral function since consecutive intervals are evaluated separately. This issue is
relevant for the procedure outlined below.

The second possibility to evaluate A(w,T') is to first combine information of the relevant
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matrix elements from neighboring clusters, say the N-th and (N + 2)-th cluster (to avoid
even/odd oscillations), and finally to broaden the combined spectrum. This procedure was
suggested by Bulla et al. [75]. As shown in Fig. B.3, one combines the matrix elements
of the N-th (which contains all relevant matrix elements of previous clusters) and the
(N + 2)-th cluster such that one finally obtains a mixed cluster that includes information
of both original clusters. To do so one embarks the following strategy: those energies of
the N-th cluster that are not contained in the (N + 2)-th cluster are just copied in the
mixed cluster. Correspondingly energies of the (/N +2)-th cluster that are not contained in
the N-th cluster are copied in the mixed cluster. For this sake relevant energies w--2, W,
and w)F? (see Fig. B.3) have to be identified. Formally, matrix elements with energies
e > w2 or e < WX, are copied in the mixed cluster.

The energy region where the N-th and (N +2)-th cluster overlap is combined with appropri-
ate weighting of the contributions stemming from the two initial regions. Double-counting
of matrix elements is avoided by introducing a weighting function whose weight increases
(or decreases) linearly between 0 and 1 (or 1 and 0) for w®, < e < wN+2 as shown in
Fig. B.3l As the (N 4 2)-th cluster describes smaller energies better than the N-th cluster
does, it is appropriate that the weighting function of the (N +2)-th cluster has its maximum
weight at wl. (the contrary holds for the N-th cluster). After completing this procedure
a set of all relevant (properly weighted) matrix elements (still at discrete energies) for the
(N + 2)-th iteration is obtained.

The spectral function A(w,T) is finally obtained by broadening all §-functions of the final
cluster. In this approach, every d-peak is broadened which has the substantial advantage
w.r.t. the first procedure that the parameter ¢ does not have to be chosen in this scheme.
This approach, introduced for finite temperature calculations first, works very well in the
T = 0 limit, too. To summarize: in contrast to the previous approach, here one broadens
the full (combined) spectrum and one does not average over a cluster.

Below we want to comment on some technical details of the broadening procedure.
As the logarithmic gaussian is restricted to positive (or negative) energies (cf. Fig. [E.1))
it is important to introduce a broadening scheme that interpolates between negative and
positive energies. In the finite temperature broadening scheme suggested by Bulla et al. [75]
a lorentzian is used for broadening the J-functions at energies |e| < 47". For |e| > 4T the
d-functions are broadened by the logarithmic gaussians introduced in Eq. (B.1).* Therefore

the d-functions are approximated by

1

™ (c—e)UQ—i-O'Q’ |€‘ < AT, o =0.6T,
o(c—€) — e—02/4 _ (n(c)=In(le]))?

0'|6|\/E6 T 5 |€| > 4:1—'7 o = 03

Finally we want to show a plot of the matrix elements of neighboring clusters. In the his-
togram Fig. B.4 matrix elements of the N-th and (N + 2)-th cluster are plotted versus the
typical energy of the N-th cluster A=(V=1/2D_ Tt can be nicely inferred from this figure that
the (IV + 2)-th cluster contains excitations at smaller energies than the N-th cluster. For

!Note that the logarithmic gaussians are restricted to positive (negative) frequencies for ¢ > 0 (¢ < 0).
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Figure B.3: The initial cluster contains information about all (even) iterations up to the
N-th iteration. The combination of this cluster with the (IV + 2)-th cluster, schematically
depicted, results in a cluster that contains all relevant information up to the (N + 2)-th
iteration. The vertical lines correspond to relevant matrix elements (obtained via NRG)
that one needs to combine to achieve a continuous spectral function. Relevant energies in
this scheme are: the biggest energy of a non-vanishing matrix element of the (N + 2)-th
iteration w¥*? and the corresponding smallest energies of the N-th and (N +2)-th iteration
wh. and wX*2. The linear weighting functions ensure that the obtained spectral function
does not suffer from double counting of involved matrix elements.

this particular example, Fig. B.4/reveals that there are just a few nonzero matrix elements
within each cluster. Additional to this, one realizes that the absolute value of the matrix
elements decreases in the course of the iteration. This histogram is an important tool to
find out which of the above mentioned two procedures of combing the matrix elements is
better suited to obtain a smooth dynamical function.

Given the individual clusters contain many nonzero matrix elements, the procedure sug-
gested by Bulla at al. [75] is preferable. For only a few matrix elements within each
cluster (as shown in Fig. B:4), however, the first suggested method turns out to be more
successful [78].
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Figure B.4: Matrix elements of the Kubo operator (see Appendix [F) in the case of a
calculation done for one level coupled to two leads (two channels) (as used in [7]). The
odd channel decouples in this particular example. Therefore there are only a few nonzero
matrix elements of this operator left. Note that the procedure suggested in Fig. B.3 is not
successful here, since the different clusters contain only a few nonzero matrix elements.
Here, the evaluation of a continuous function according to the first described procedure is
more successful.



Appendix C

Symmetries in the NRG-scheme

The most time-consuming steps of the NRG-iteration are the iterative numerical diago-
nalizations of (truncated) Hamiltonians Hy of size (Ny x Ay) and the following unitary
transformations of all relevant operators. Since both processes scale like N3 it is crucial to
identify symmetries of the problem which enables us to divide the full Hilbert space into
smaller subspaces. This ensures that the model one is interested in can be solved with suf-
ficient precision (set by the value of Ny) while keeping the computational time tolerable.
Especially when one studies more complicated models, such as two channel models, the
use of symmetries is essential.

An additional reason why one should use the symmetries of a model is the following:
as mentioned in Appendix A the Hilbert space along the Wilson chain is growing expo-
nentially fast. To circumvent this problem a truncation scheme (a pure energy criterion) is
introduced where only the lowest lying eigenstates of the system are kept. This truncation
scheme, however, might introduce ’artificial perturbations’ in the NRG-iteration. For in-
stance, if one does not use the full spin symmetry (present in absence of a magnetic field;
for details see below), one can introduce an ’artificial magnetic field” during the truncation
process by dividing spin multiplets. One can get rid of these ’artificial perturbations’ by
implementing the corresponding symmetry.

Neither the impurity part Hy nor the chain part of the NRG-iteration (A.40) creates
or annihilates an electron. The total charge of a system that contains the impurity and
the first N sites of the Wilson chain, Qx (normalized to half-filling),

N

QN = Z (fqiafna - 1) + (dzdo - 1) ’ (Cl)

o,n=0

is therefore a conserved quantity within the NRG-procedure, formally [QN,TA{N} =0

VN € Ngy. From [QN,ﬂN] = 0 follows that 7:lN has to be diagonal in @)y; therefore the

full Hilbert space of the N-th iteration can be decomposed into subspaces sorted w.r.t. all
possible charge quantum-numbers ). Thus it is convenient to add a charge label to an
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arbitrary state of the N-th iteration |¥) = [¥;Qy), .

Even though one is tempted to introduce also a total spin symmetry S, we do not
implement this symmetry, as it is broken in presence of a finite magnetic field B (which
is often used in our studies). If one would, however, want to use this symmetry, one has
to compute Clebsch-Gordan coefficients to be able to use reduced matrix elements.t In
presence of a finite magnetic field in z-direction, however, the z-component of the spin S 3
defined as

N
S =52 (Fifur = Flifor +dldy = did,). (€2)

n=0

is still conserved, [S’ e H N] = 0. Note that this symmetry is broken if the possibility of a

spin-flip event along the chain exists or if an additional magnetic field in x or y direction is
present. Given this symmetry exists, the Hilbert space of the N-th iteration can be further
decomposed. In this case the states are labeled by their total charge and the z-component
of the total spin |¥) = |¥;Qn,S%),

In case of two-level impurities, as studied e.g. in [27], one might introduce additional
symmetries such as a 'symmetric’ and an ’antisymmetric’ charge quantum number, Q?V and
; §s respectively, given the system can be separated into a symmetric and an antisymmetric
subsystem. When these conditions are met, it is convenient to write an arbitrary state as

|\IJ>N = |\II’Q?\77 ?’\?75]ZV>N

! For B = 0 the eigenstates of ﬂN are eigenstates of the operators QN, (S?V) and SZZ\, In absence of a
magnetic field one can label the eigenstates of Hy with [¥; Qn, Sy, mYy), -



Appendix D

The density matrix Numerical
Renormalization Group (DM-NRG)

The traditional NRG-scheme inherits only one energy scale (corresponding to the effective
temperature of the N-th iteration ~ A~Y/2). In cases where different energy scales are
involved serious problems arise, as outlined in Ref. [4]. If a finite magnetic field is present,
for instance, the energy scale wWyagn ~ gtpB is a relevant energy scale as well. A cure of this
problem was invented by Hofstetter [4], who proposed a generalization of the traditional
NRG-method.

As a magnetic field (with characteristic energy wmagn) affects the spectral function
A(w,T) on all frequencies w, it was shown in Ref. [4] that one has to distinguish carefully
between the two scales w and wpagn. For B # 0 the expectation value of an operator can
not be calculated by ’just’ combining the matrix elements as suggested in Appendix Bl
The scheme one should use instead is Hofstetter’'s 'DM-NRG’ procedure [4].

The fundamental new idea within this approach is that any expectation value is calculated
by considering the density matrix p which contains information of the full system.
Indeed, as shown in [4], this more sophisticated treatment has only consequences (in par-
ticular on ’high-energy’ features) when more than one energy scale is relevant - else the
'DM-NRG’-method coincides with the traditional method on all energy scales.

In presence of a magnetic field one would naively expect the following: at high energies
a tiny perturbation (e.g. a small magnetic field) does not affect the spectrum at first
glance. However, this small perturbation might break the spin symmetry of the ground
state leading to a finite polarization of the impurity and therefore result in a remarkable
effect at high energies. As shown in Fig. D.1 a finite magnetic field (due to a finite spin-
polarization in the leads) results in a systematic redistribution of spectral weight from the
lower to the upper atomic level. The ’traditional’ NRG-scheme (lower panel in Fig. D.1))
is not capable of this effect.

Hofstetter [4] realized that in such a scenario it is crucial to start with the correct
ground state (which is the one in presence of a magnetic field), the real many-body ground
state of the system, to observe the behavior anticipated above. Therefore the DM-NRG-
method consists of two stages:
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First the usual NRG-procedure is run until the strong coupling fixed point is reached, say
at the energy Ty+. At this energy the density matrix of the system p,

p= % S e BT

(ml, (D.1)

m) .

m

with Z =" e—Fm /(kpTx *), is constructed. Here EY are the eigenenergies of the eigen-

states |m) . of Hy-. p fully describes the physical state of the system. In particular, the
(retarded) equilibrium Green’s function takes the form

Go(t) = —ib(t)tr [p{do(t),d(0)}] . (D.2)

In the DM-NRG-scheme one uses Eq. (D.2) instead of Eq. (4.7) to compute A(w,T') [related
to G via Eq. (4.5)], i.e. the spectral function is evaluated by using the correct reduced
density matrix p¢. As shown in [4] the reduced density matrix is obtained by splitting
the Wilson chain into a smaller cluster of length N (N < N*) and an environmental part
which contains the remaining degrees of freedom.

In practice, one has to store all unitary transformations (up to the N*-th iteration)
that lead to the real ground state, evaluate the density matrix at this iteration, and then
evaluate the expectation value given in Eq. (D.2) backwards (i.e. VN € Ny, N < N*).
In the course of this 'backwards-iteration’ the reduced density matrices are obtained by
tracing out the environmental degrees of freedom. Consequently one deals with a triple
sum at every iteration step N (N < N*) and finally obtains the spectral function of the
N-th iteration as

A, Ty) = ) Gildbim), (il dh i), piand(w — (EY — E))

%,7,m
37 dmldl 1), il L), oS (w — (BN — EN)). (D.3)
©,7,m

Since we only keep the matrix elements of df, we wrote the last expression in the corre-
sponding form. It is worthwhile mentioning that in the DM-NRG-approach transitions
between excited states are allowed which are forbidden in ’traditional’ zero-temperature
NRG-calculations. Thus, both terms in Eq. (D.3) contribute at positive and negative
frequencies to AN (w, Tiy).

For the spin correlation function, introduced in Eq. (4.10), one obtains a similar formula

Xy(w) = m Y (mlS7 ), (] 57 i), dhmnd(w — (EY — Ex))

1,7,m
—7 Y {ml 87 15), (il 57 i), it yo(w — (BN — EY)), (D.4)
1,7,m

in the framework of the DM-NRG-method.
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Figure D.1: Spectral function A(w,T = 0) of a QD coupled of polarized leads with varying
leads polarization P [15] once computed with the DM-NRG (top) and for comparison with
the usual NRG-method (bottom). As discussed in [15], finite P has similar effects as an
applied magnetic field, leading to a systematic shift (indicated by the arrow in the upper
plot) of spectral weight to the upper atomic level. The spectral functions computed via the
DM-NRG nicely show this behavior while those computed with the 'conventional’ NRG-
method are not capable of this shift. For small energies, both methods are essentially
identical.
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Appendix E

Kramers-Kronig (KK) relation

The KK-relations [79] establish a relation between the real and the imaginary part of a
causal function® k(w) = R[k(w)] +iS [k(w)], w € {—00, 00},

R[r(w)] = %P /_ N %dw’, (E.1)
S [r(w)] = —%79 / N de', (.2)

where P [ de = lim._,o [f_E 3 “(w ) dw' + = de} denotes the prin-
cipal value of the corresponding mtegrals. In cases when one is interested in both, real
and imaginary part of a causal function, it suffices to compute only one of them. The
corresponding conjugated part can be obtained from relation (E.1) or (E.2), respectively.
However, the computation of the principal value (with high precision) makes the KK-
transformation a nontrivial numerical task.

We follow an idea of Bulla [5] for performing the KK-transformation here. In the course
of NRG the imaginary part of an arbitrary causal function, say < [k(w)], is given (before
broadening) as a sum of matrix elements «, at energies p,, S[k(w)] = 3., @nd(w — pp).*
Since the integration is a linear operation, there are obviously two possibilities for the
KK-transformation of &[k(w)]: (i) one first sums up the broadened J-functions (leading
to a continuous function) and afterwards performs the KK-transformation, R [x(w)] =
>, and(w— )] or (ii) one performs the KK-transformation of all é-functions before
summing them up, R [x(w)] =D, a, [0(w — )] F

Since typical functions of our interest, like [QR(w)}, reveal sharp features around the
Fermi energy (Kondo resonance) it is much harder to obtain the KK-transformed following
approach (i). For this reasons we follow the second approach.

Cx

Let us consider the causal function $[k1(w)] = d(w — p,), a single delta function at
energy p,. The complex function k1(z), k1(z = w + in) = (—1) J,”d w9 “;765"), z e C

1Such as the retarded Green’s function G%(w).
*Note: §[GF(w)] ~>, ‘<n| dt |0)’2 0(w — pp), i.e. a sum of -functions.
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and n — 07, is easily obtained by analytic continuation. We know from Appendix B that

the broadening of the d-peak works best when one replaces them by logarithmic gaussians

"2
S(w—pn) — zp:\; exp [—(hw_b#"ﬁ], centered at the positive energy p,, (analogously for

pn < 0) with b &~ 0.6. It is convenient to write the logarithmic gaussian as a function f
1 e_b2/4

that only depends on w/p,, o B exp[ %] =1 f( > thus

ng:w+M):(—l>Ammdéj£§). (E.3)

T zZ—w
By means of the definitions 2’ = ;’—/, r = = and § = I—)’L we can therefore compute both
the real and the imaginary part of k;(z)

9(z)
. 1 / / — ' )
R [w1(z = w +1i0)] = ( ); “ﬁ@)wfuiyy :_§Z“E®
x — ; — i i — / ! —5, = _M
Slki(z=w+1id)] = ( )p [ /0 dxf(x)5/2+(x_$/)2l = 7Tpn,(E.5)
h(a)
with the function f(z) (defined for z > 0 only)® given as
—b2/4 1 2
flx) = ebﬁ exp {—< r;;c) } : (E.6)

The functions that describe the real and the imaginary part of x(z), namely g(z) and
h(z), cf. Egs. (E.4) and (E.5) have to be determined for sufficiently small §’; chosen such
that the integrals in Eqs. (E.4) and (E.5) have converged (typically ¢’ ~ 0.01). Note that
the required convergence makes an adjustment of ¢’ necessary when the value of b in the
logarithmic gaussian is changed. The big advantage of this treatment is that one has to
compute (numerically) the function g(x) for any given b, with an accordingly adjusted ¢,
only once. Consequently we store the function g(z) for the most relevant values of b on
the hard disk.

Finally we remark on an anomaly: although the logarithmic gaussians are confined to
positive or negative frequencies, their KK-transformed, obtained from g(x), see Eq. (E.4),
are not restricted to those intervals, see Fig. E.1.

3Note: for # < 0 Eq. (E.6) is not defined, thus we define f(x) = 0 Vz < 0.
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Figure E.1: KK-transformation of the logarithmic gaussian, Eq. (E.6), f(z) (for b = 0.50)
for the case of p, > 0 and p, < 0. g(z), defined in Eq. (E.4), is shown for both cases as

well (with ¢’ = 0.001). In contrast to f(z), its KK-transformed, g(z), is finite for positive
and negative energies.
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Appendix F

Kubo formalism

The linear conductance through an interacting region can be calculated for an arbitrary
impurity contacted to a left and a right lead within the Kubo formalism [6]. In contrast to
the formula developed by Meir and Wingreen [8(0], where the conductance G through an
interacting region is related to S[G%], the condition of proportional coupling (I';, oc I'g) is
not required for the Kubo approach. In particular, in multi-level QDs with a relative sign
in the tunneling matrix elements between the different levels, the condition of proportional
coupling is not met, see e.g. the s = —1 case in [27].

Since the conductance is calculated in a monlocal way within the Kubo formalism,
one really has to perform a ’two-channel’ calculation (which means that the system size
increases by a factor of 16 in each step of the NRG-iteration) when one uses this approach.

The Kubo formalism allows one to relate the linear conductance with the current-
current correlator, see Izumida et al. [6]. Obviously the operator K* = N, — N =

[H Ny — NR] with N, = Y ko C]wLCkUL and Np = Y ko CLURCkaR [with Fermi operators
CkoL (Ckor) Of the left (rlght) lead], is of particular interest within this formahsm Since only
the tunneling part of H does not commute with Ny — N R, One obtains K* = [Hgd, N;,—N R
As shown in Section [3.1, it is often convenient to work in the symmetnc/ antisymmetric
basis described by the Fermi operators g, and auk, [as defined in Eq. (3.6)]. In this basis
K* has the form

NL - NR = Z(CLO'LckUL - CLO'RC]?UR) = Z(aikaOéSkU + aikaaakff)’ (Fl)
k,o ko

We illustrate this procedure by looking at the case of a two level, two channel problem
with a relative minus sign in one tunneling matrix element, as studied in Ref. [27]. In
the symmetric/antisymmetric basis Hyq takes the form Hpy = D ko Vi(dl gy + hoc) +

Vg(d%aakg + h.c.) (d;, are the Fermi operators of the impurity level i, i = {1,2}, and
V; = V2V are the corresponding tunneling matrix elements), which finally leads to

&L - ]QIR = % Z[{/l (dloaakg - akadlU) + %(d;UQSkU - skonU)] (FQ)
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Note, even though the operator N, — Ny is purely imaginary, we can use real matrices to
compute Eq. (F.2).

F.1 Derivation of the Kubo formula

When a small bias voltage is applied across a QD, a current is driven through the system.
Here we compute the linear conductance G through an interacting QD which is connected to
leads of chemical potentials u;, = eV/2 and ur = —eV/2, respectively (shown in Fig. F.1).

Consequently the system consists of an equilibrium part (the equilibrium Anderson model

eV/2

§ ______

L R

Figure F.1: The leads connected to the QD have different chemical potentials which drives
a current through the QD. An overall potential difference of magnitude V is applied on the
QD. Note that V has to be sufficiently small to justify the use of linear response theory.

’Heq) and an additional perturbation, 7:(53/5 = ﬂeq +H , H = —N i, — Nrpug. Since we
consider the perturbation H’ to be small, we use first order perturbation theory in H’

inear response theory) to compute G. e introduction of a linear response tensor o,
li theory) t te G. The introducti fali t
(No) = > _50app (with o/ = L/R), allows us to write G(w) as

—~

Glw) =Y g» = gw = %2 [02(w) + orR(W) — 0L(W) — ore(W)].  (F.3)

To compute 045, we first compute (N, (t)) for arbitrary times (see [40], Appendix B)' and
then take the expectation value (N, (t = 0)). The steady state conductance is thus related
to

t=0 . t=0

(6ate =0 = r{ [T Naupaloltatt = [ om0 tyn, ()

—0o0 —0o0

! In linear response theory, the change A A(t) of an observable A due to a (time dependent) perturbation
V(t) = BF(t) is given as (AA(t)) = 5tr fioo[B, PeqlA(t — t')F(t')dt'. Here we are interested in a time-
independent perturbation, an applied bias voltage.
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which implies

1 ; _]- i 9 ’ i A7 ’
Uaﬂ<t/) = Z»_htr {[_Nﬂ7 peq]Na(tl>} = Et?“ {[N[j, peq]eﬁHeqt NaeiﬁHeqt } . (F5)
Here p., = %e‘ﬁﬂeq denotes the density matrix of the unperturbed Hamiltonian. The cyclic

property of the trace allows us to write the frequency-dependent conductivity o,5(w), the
Fourier transformed of Eq. (E.5), in the following way

Oap(w) = 6ILI(I)1+ %tr /0 eth_étf_%ﬂeqt[Ng,peq]e%ﬂeqt]\'foidt . (F.6)
x(t)

To simplify notation we will skip the lims .o+ henceforth. Integrating Eq. (F.6) by parts
yields

i [ et 00 iwt—dt i - L
Tap(w) = + tr(x(®)5” — /0 dt- tr | (5 Heq)e™ 71" [Ng, peglen ' N,

hliw—96 w—0 h

+€7%ﬂeqt [Nzu peq] (%ﬂeQ)eéHeqtNa} }

= i) - i [T e o (G R 0
tr (0N pal e ) | b (1)

We rewrite the terms tr{(%ﬂeq)[N/g, Ped Na(t)} = —%tr{peqNg(t)ﬂeqNg — pegHeq N3N, (1)}
and tr{Na(t)[Ng, peql (Hea)} = 5tr{pegNa(t)NsHeq = pegNsHeqNs(t)} in Eq. (F.7) and
finally obtain the frequency-dependent linear conductivity

us) = 1§t (Wnpl)

W
N N
1 o0 'i m— ;/“
_ dt iwt—dtt . - Ae N Nat —Nat M Ae N
s | e | | P, N 6) = Nt 1 Pl N

1

W —

- [T (o) -

w —

5 /0 ) dteiwt—5t<[Nﬁ,Na(t)]>eJ. (F.8)

Analogously to [6] we define Kog(w) = 5 [[° dte™' = <[Nﬁ(0), Na(t)]> which enables us
eq
to simplify Eq. (F.8)
1
Tap(w) = — {Kas(w) = Kap(0)}, (F.9)
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with K,5(0) = %tr{[Nﬁ,peq]Na}. Note that the compler causal function K,p(w) =

(W) +iK] 5(w) is obtained by averaging over the unperturbed system. When one inserts
a complete set of states, it is straightforward to perform the integration® that is necessary
to obtain K,s3(w)

Kop(w) = %Z/o dte™t=ot Z ((n[ pegN3 |m) (m| eiiteal N o Heal In) (F.10)

— (] pege et N TPt [ (] N [m) )
- o ; 1 . .
= / dte’ 0t Bt {g <e‘ﬁE"—e—ﬁEm)} (n] N [m) {m| No |n)
n,m 0

= 2 (efﬁEn _ e*ﬂEm) <n] Nﬁ |m> (m\ N, ‘”)/ dtet (o= (En—Em))t—dt
0

(Em — Ey + hw) — ihd

1 . .
_ 1 —BE. _ —BEm
7 ngm (e e ) F. —F, + )’ 5 (h0)? (n| Ng|m) (m| Ny |n) .

[efﬁEn _e—BEm
n,m Z

3 \ \ hw— n— &m
Eq. (F10) yields K/yw) = 3 | (n] Ny m) {m| Ny n) gote=tEn o)

e~ BEn _o—BEm : . _ .
and Kgz(w) =2, [T} (n| Ng |m) (m| No ) (m—(En_EIi))u(mp (with § — 07)

resulting in®

, e~ Bem _ g=Ben . . 1
o) = =30 [Tl Nl Gl ) s (R)

n,m

e~Pem — e=Fen . .
) = w3 | ol ) (] )8 — (e = ). (F-12)

Obviously the functions K/ 4(w) and K 5(w) have the following symmetries: K/ ;(w) =

ap(—w) and K{5(w) = — gﬁ(—w)‘1 implying
as(0) # 0 (F.13)
7(0) = 0. (F.14)

Even though we can only compute K[ 3(w), but not K7, ;(w) within the framework of NRG,
we can access K7, 3(w) by performing a KK-transformation (see Appendix [El) of K7/;(w) [as

2 [ i(hw—(Ep—Em))t—0t _ 3 _1(Em—En+hw)+dh
Jo~© dten (e VO = b e o e

3 77(5(04) = 1ima_)0 %—‘1—(12

“For T = 0 an integration of K//;(w) results in: [*_ dwK//;(w) = 7 (0| [Na, N5][0), with the ground
state of the unperturbed system |0). Note that [Na, Nﬂ} = 0 (trivially for @« = §; in the case o # (3 the
conservation of charge, N =0, with N = Nj, + Ng, yields N, = —Ng confirming the assertion). The

accuracy of the numerics can be checked, since [ G”(w)dw should give an exact zero; the numerical value
we obtain is ~ 1074, i.e. it is in excellent agreement with this sum-rule.
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K,p3(w) is a causal function]

1 0o KV (w/)
K = = — F.15
) = P [, (F.15)
1 [ KW
K" = —— —oB T g F.16
) = —p [ =, (F.16)

with the principal value P of the integral. Finally Eq. (F.10) simplifies to

Gas(w) = — (K 5(w) — K'y(0) + K" 5(w)) (F.17)

W

with 1ts real-part o 5(w irectly obtalned from
ith i 1 ;5 di ly obtained f: NRG

Kop(w)
Opp(w) = Z (F.18)
and its imaginary part [obtained via a KK-transformation of K 4(w)]
KGp(w) — K75(0)
ol s(w) = ——22 Al (F.19)

w

Thus, the frequency dependent conductance [7] is, substituting (F.9) in (F.3), G(w) ~
w, where K(w) = Kpp(w) + Kgr(w) — Kpr(w) — Kgr(w). G'(w) can thus be
written as

2

O T | il (;wf%) il o= (BB |

The definition

W) =7y [ p } ’(n| (—K) |m>‘2 5(hw — (En — Ey)) (F.21)

allows us to write G”(w) as the KK-transformed of G'(w) [see Eq. (F.19)],

G'w) 7w [ W] = o)t
s oo -

The operator K = Z—i_f(*, used in Egs. (F.20) and (F.22)), was defined in the introduction of

this Appendix (remember K* ~ [Hyq, N, — Ng]). Phase and absolute value of the linear
conductance, ¢ and |G(w)|, are given as

_ W™ — )"
¢ = arctan <— W) > (F.23)
Gw)| _ m/4 2 KK KK\ ?
= gy IVE DV - v (F.24)
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The (numerical) strategy we use is the following: after we implement the operator K , which
allows us to determine W(w) [see Eq. (F.20)], we take its KK-transformed, [W(w)]"* ¥,

which determines G”(w), see Eq. (F.22).

When one is only interested in the DC' conductance G the delicate limit G = lim,,_o G(w)
has to be computed. Due to the properties of the real and the imaginary part of K,z [cf.
Egs. (F.13) and (F.14); K7 5 is an even whereas K4 is an odd function] the DC conductance
is purely real.



Part 1V
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Deutsche Zusammenfassung

Die vorliegende Arbeit umfasst eine Reihe theoretischer Studien, die sich mit verschiedenen
Aspekten von Quantenpunkten beschaftigen.
Kleine Quantenpunkte mit grossen Niveauabstinden lassen sich sehr gut mit Hilfe des
nach P.W. Anderson benannten Storstellenmodelles beschreiben. Da wir in der vorliegen-
den Arbeit in erster Linie dieses Modell benutzen, erwarten wir, dass unsere Vorhersagen
experimentell nachweisbar sind.® Es sei hier bemerkt, dass sich alle Parameter der oben
beschriebenen Quantenpunkte durch externe Gatterspannungen experimentell einstellen
lassen.
In besonderer Weise interessieren wir uns fiir den Temperaturbereich, unterhalb dessen
ein lokaler Elektronenspin (im Quantenpunkt) stark mit den ihn umgebenden Leitungse-
lektronen (in den Zuleitungen) wechselwirkt. Dieser Temperaturbereich wird durch die
sogenannte Kondo Temperatur Tk festgelegt (d.h. T < Tk). Zur exakten Berechnung
verschiedener Transporteigenschaften von Quantenpunkten fiir Temperaturen 7' < Tk be-
nutzen wir die von Wilson entwickelte numerische Renormierungsgruppenmethode [1].

Der vorliegenden Dissertation stellen wir eine allgemeine Einleitung zur Physik von
Quantenpunkten, mit besonderer Betonung auf den Kondo Effekt in Quantenpunkten,
voran. Dariiber hinaus beinhaltet der erste Teil eine Einfithrung in die von uns verwendete
numerische Renormierungsgruppenmethode.

Der zweite Teil dieser Arbeit, der Hauptteil, ist in die folgenden verschiedenen Studien
aufgeteilt:
(i) Wir analysieren die Eigenschaften eines 'Kondo’ Quantenpunktes, der an spinpolar-
isierte Zuleitungen gekoppelt ist. Es stellt sich heraus, dass die Spin-Polarisierung der
Zuleitungen zu einer Aufspaltung und einer Unterdriickung der Kondo Resonanz fiihrt.
Wir erweitern unsere Studien auf den Fall eines Quantenpunktes, der an Zuleitungen mit
einer beliebigen Zustandsdichte koppelt. Fiir diesen Fall untersuchen wir die Gatterspan-
nungsabhangigkeit der Kondo Resonanz.
(ii) Wir untersuchen das Fillungsverhalten eines spinlosen Anderson Modells das zwei
lokale Niveaus besitzt als Funktion der Gatterspannung. Wir identifizeren Parameterbere-
iche, in denen sich die beiden betrachteten Niveaus nicht monoton fiillen, wenn sie rela-
tiv zur Fermi-Energie der Zuleitungen abgesenkt werden. Fiir asymmetrisch gekoppelte
Niveaus finden wir sogar eine Besetzungsinversion, d.h. fiir einen bestimmten Gatterspan-
nungsbereich ist das energetisch hoher liegende Niveau starker besetzt als das energetisch

°Die theoretische Studie in Kapitel 5.1 wurde bereits experimentell nachgewiesen, siehe [55].
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niedriger liegende Niveau. Das gefundene Verhalten erklaren wir mit Hilfe eines selbstkon-
sistenten Hartree Ansatzes.
(iii) Wir berechnen den frequenzabhéngigen Leitwert eines Quantenpunktes im Kondo
Regime unter Benutzung der Kubo Formel. Wir leiten eine analytische Formel ab, die eine
Beziehung zwischen dem frequenzabhéngigen Leitwert und der (lokalen) Gleichgewichts-
Spektralfunktion herstellt. Das Fluktuations-Dissipations Theorem gestattet es uns, eine
Beziehung zwischen Stromrauschen und der (lokalen) Gleichgewichts-Spektralfunktion auf-
zustellen.
(iv) Emissionsexperimente in selbstorganisierten Quantenpunkten [2] motivierten uns, op-
tische Ubergénge zwischen 'Kondo’ und ’Nicht-Kondo’ Zustinden zu untersuchen. Zu
diesem Zwecke verallgemeinern wir das iiblicherweise verwendete Anderson Modell. Wir
finden, dass sich sowohl das Emissions- als auch das Absorptionsspektrum durch eine
Analogie mit dem X-ray edge’ Problem erklaren lassen.

Der dritte Teil dieser Arbeit enthélt Herleitungen, die fiir das Verstandis der vorliegen-
den Arbeit von grosser Bedeutung sind.
Der vierte Teil dieser Dissertation enthélt sonstige Informationen.
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