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Zusammenfassung

Mit der Sequenzierung von Einzelzellen ist es möglich, die Genexpression jeder einzelnen Zelle
zu messen, im Gegensatz zur Massensequenzierung, die nur eine Messung der durchschnittlichen
Genexpression ermöglicht. Eine Kenntnis der Genexpression der einzelnen Zellen ermöglicht,
dass darauf basierend Methoden aufgebaut werden können, um eine automatisierte Zuteilung
von Einzelzellen zu Zelltypen vorzunehmen. Die Bestimmung von Zelltypen ist entscheidend für
die Analyse von Krankheiten und für das Verständnis der menschlichen Gesundheit basierend auf
dem genetischen Profil einzelner Zellen. Üblicherweise werden Zelltypen mithilfe von Clustering-
Verfahren zugeordnet, die speziell für Einzelzelldaten entwickelt worden sind. Zu diesem Zweck
wird beispielsweise das single-cell consensus clustering (SC3) verwendet, welches von Kiselev et
al. (Nat Methods 14(5):483-486, 2017) vorgeschlagen wurde. Dieses gehört zu den führenden
Clustering-Verfahren von Einzelzelldaten und wird auch für die folgenden Beiträge von Bedeu-
tung sein.

Diese kumulative Dissertation zielt auf die Entwicklung geeigneter Analysetechniken für das
Clustering hochdimensionaler Einzelzelldaten und deren zuverlässige Validierung ab. Außer-
dem wird ein Simulationsrahmen für die Untersuchung des Einflusses verzerrter Messungen von
Einzelzellen auf die Clustering Performance bereitgestellt. Darüber hinaus werden Clusterindizes
als informative Gewichte in die regularisierte Regression einbezogen, was als weicher Genfilter
betrachtet werden kann.

Beitrag 1 verbessert die Anpassung des ursprünglichen SC3s an den zugrundeliegenden biolo-
gischen Prozess der Übergänge von Einzelzellen. Wir schlagen das unüberwachte ‘adapted single-
cell consensus clustering (adaSC3)” vor, das die Hauptkomponentenanalyse des ursprünglichen
SC3s durch sogenannte Diffusion Maps ersetzt, die den Übergang einzelner Zellen berücksichti-
gen. Daher respektiert adaSC3 nicht nur methodisch den biologischen Prozess der einzelnen
Zellen, sondern verbessert auch die Genauigkeit. Wir evaluieren die Genauigkeit von SC3,
adaSC3 und einigen konkurrierenden Methoden sowohl auf Einzelzell-RNA-Sequenzierungsdaten
als auch auf Simulationsdaten, welche alle denkbaren Kombinationen von Partitionen bei gleicher
Stichprobenanzahl enthalten. Für alle durchgeführten Studien können wir eine überzeugende
Leistungsfähigkeit von adaSC3 feststellen.

Beitrag 2 schlägt eine Assoziations-Genauigkeits-Heuristik vor, die eine interne Qualitätsbe-
wertung des unüberwachten Clusterings ermöglicht. Da sich die interne Validierung nicht auf
externe Informationen stützen kann, sind Heuristiken das Beste, worauf man hoffen kann. Unser
Beitrag motiviert eine Analogie zur Entscheidungstheorie, in der eine hohe Homogenität der
Meinungen unter Experten ein starker Indikator dafür ist die richtige Entscheidung getroffen
zu haben. Wir betrachten die Einteilung von Einzelzelldaten, die mit verschiedenen Methoden
erlangt werden können als Analogie zu sogenannten Expertenmeinungen. Für die Beurteilung
assoziierter Clustering Ergebnisse entwickeln wir χ2-basierte Assoziationsmaße. Die Evaluierung
unserer Heuristik erfolgt auf denselben Benchmark-Daten, die in Beitrag 1 benutzt wurden, sowie
auf Simulationsdaten mit unterschiedlichen Abhängigkeitsgraden. Dazu werden die unterliegen-
den Kodierungen ex-post in diese Analyse inkludiert. Dabei stellen wir fest, dass hoch assoziierte
Clusterings zu einer insgesamt hohen Genauigkeit führen und daher als vertrauenswürdig gelten.
Bei geringer Assoziation besteht ein höheres Risiko, ein Clustering mit schlechter Performance
zu wählen.
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Beitrag 3 verwendet Techniken der Theorie von verallgemeinerter Intervallwahrscheinlichkeit,
um die Unsicherheit bei der Messung von Einzelzell-RNA-Sequenzierungsdaten zu quantifizieren.
Wir analysieren mehrdimensionale Simulationsdaten, die auch Abhängigkeitsstrukturen unter
Verwendung von Copulas einbeziehen. Dabei simulieren wir drei verschiedene Szenarien, die ein
homogenes, ein heterogenes und ein intermediäres Szenario repräsentieren und alle der gleichen
Abhängigkeitsstruktur folgen. Basierend auf diesen Szenarien konstruieren wir obere und untere
verzerrte Messungen mithilfe von unteren und oberen Verteilungsfunktionen, die zu zwei weiteren
Simulationsszenarien führen. Unter Einbeziehung eines Goldstandards ist es möglich, dass wir
Hinweise für eine mögliche Kalibrierung von Messinstrumenten geben können.

Beitrag 4 kombiniert Clustering-Techniken mit regularisierter Regression. Wir schlagen das
“Discriminative Power Lasso (DP-Lasso)” vor, das ein weiches Genfiltern ermöglicht. Für un-
seren Ansatz betrachten wir verschiedene Clustering-Validierungsmetriken basierend auf jeder
einzelnen Kovariablen. Je besser eine Variable univariat die entsprechende kategoriale Ziel-
variable in verschiedene Cluster zerlegen kann, desto höher wird die Variable im Rahmen der
adaptiven Lasso-Regularisierung gewichtet. Dieser Vorschlag ist durch den zugrundeliegenden
genetischen Hintergrund motiviert, wobei davon ausgegangen wird, dass die entscheidenden Gene
in jeder Zielgruppe unterschiedlich exprimiert sind und eine hohe Trennschärfe aufweisen. Nach
der Skalierung integrieren wir die erhaltenen Gewichte in das adaptive Lasso. Da wir vor der
Durchführung der regularisierten Regression keine Kovariable ausschließen, kann unser Ansatz
in der Tat als eine weiche Filtermethode angesehen werden. Wenn eine Kovariable weniger
wichtig erscheint, wird sie höher bestraft, während der Strafwert bei wichtigen Kovariablen
niedrig ist. Die Anwendung von DP-Lasso im Kontext von Einzelzelldatensätzen und gener-
ierten Simulationsdaten zeigt, dass DP-Lasso im Vergleich zum klassischen Lasso sowohl eine
variablensparsamere Lösung als auch eine genauere Vorhersage liefert.





Summary

With the sequencing of single cells it is possible to measure gene expression of each single-cell in
contrast to bulk sequencing which enables only average gene expression. This procedure provides
access to read counts for each single cell and allows the development of methods such that single
cells are automatically allocated to cell types. The determination of cell types is decisive for the
analysis of diseases and to understand human health based on the genetic profile of single cells.
It is of common use that cell types are allocated using clustering procedures that have been
developed explicitly for single-cell data. For that purpose the single-cell consensus clustering
(SC3), proposed by Kiselev et al. (Nat Methods 14(5):483-486, 2017) is part of the leading
clustering methods in this context and is also of relevance for the following contributions.

This PhD thesis aims at the development of appropriate analysis techniques for the clustering
of high-dimensional single-cell data and their reliable validation. It also provides a simulation
framework for the investigation of the influence of distorted measurements of single cells towards
clustering performance. We further incorporate cluster indices as informative weights into the
regularized regression, which allows a soft filtering of variables.

Contribution 1 improves the matching of the original SC3 to the underlying biological pro-
cess of transitions of single cells. We propose the unsupervised “adapted single-cell consensus
clustering (adaSC3)”, replacing the principal component analysis of the original SC3 with dif-
fusion maps that take the transition of single cells into account. Therefore, adaSC3 does not
only respect the biological process of single cells methodologically but also improves accuracy.
We evaluate the accuracy of SC3, adaSC3, and some competitive methods both on single-cell
RNA-sequencing data and on simulation data, incorporating different subpopulation partitions.
For all conducted studies we can state a convincing performance of adaSC3.

Contribution 2 proposes an association accuracy heuristic that allows an internal quality
evaluation of unsupervised clustering. As internal validation cannot rely on external information,
heuristics are the best one can hope for. Our contribution is motivated by an analogy to
decision theory where high homogeneity of opinions among experts is a strong indicator to have
chosen the right decision. We consider the groupings of single-cell data that are obtained by
different methods as analogous to the referred expert opinions. For the assessment of associated
clustering results, we adopt χ2-based association measures and evaluate our heuristic on the
same benchmark data as used in Contribution 1, as well as on simulation data with different
degrees of dependence, including ground truth ex-post. We can state that highly associated
clusterings result in an overall high accuracy and are therefore considered as trustworthy. In
case of low association, there is a higher risk of choosing a clustering with bad performance.

Contribution 3 uses techniques from the generalized interval-probability theory to quantify the
uncertainty in the measurement of single-cell RNA-sequencing data. We analyze multidimen-
sional simulation data that also incorporate dependence structures using copulas and simulate
three different scenarios, representing a homogeneous, a heterogeneous and an intermediate sce-
nario that follow the same dependence structure. Based on these scenarios, we construct upper
and lower distorted measurements using lower and upper distribution functions that lead to two
further simulation settings. With the inclusion of a gold standard, we can provide instructions
for possible calibration of measurement instruments in case of repeated measurements.
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Contribution 4 combines clustering techniques with regularized regression. We propose the
“Discriminative Power Lasso (DP-Lasso)”, which allows soft filtering. For our approach we
consider different clustering evaluation metrics for each covariate separately. The better a vari-
able can univariately decompose the underlying categorical target variable into distinct clusters,
the higher the variable is weighted within the adaptive Lasso regularization. This proposal is
motivated by the underlying genetic background, assuming that decisive genes are differently
expressed in each target group and have a high discriminative power. After scaling, we incorpo-
rate the obtained weights into the adaptive Lasso. As we do not exclude any covariates before
performing regularized regression, our approach can indeed be seen as a soft filtering method.
In case that a covariate seems less important, the covariate has a higher penalty term, whereas
the penalty is low in case of important covariates. The application of DP-Lasso to single-cell
data sets and generated simulation data shows that DP-Lasso provides both a sparser solution
and a more accurate prediction compared to Lasso.
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1 Motivation: Challenges and
opportunities of single-cell
RNA-sequencing data

1.1 Biological background and workflow of single-cell
analysis

With the invention of the microscope in the 17th century, access to the shape and functions
of cells has been enabled, which led to a categorization of groups of cells (Trapnell, 2015).
In 1977, the technique of Sanger sequencing allowed the determination of a nucleotide
sequence of the deoxyribonucleic acid (DNA), which had been discovered in 1953. Both
have been rewarded with a Nobel prize. Since the advent of next generation sequencing in
the year 2005, an intensive study of the genome can be realized based on huge amounts of
data (Shendure et al., 2017). The most recent techniques of single-cell RNA-sequencing,
such as Illumina sequencing, allow to study the diversity of cell populations. This includes
the detection of rare or new cell types (Briggs et al., 2021; Duò et al., 2020), as the data
provides insights into biological functions and complex biological systems on the level of
a single cell (Pouyan et al., 2016). Therefore, single-cell data bring along a tremendous
advantage, compared to the traditional bulk RNA-sequencing where only the average of
gene expression is measured among all cells. The drawback of bulk data is that depending
on the cellular composition of the tissue, the measurements are confounded because the
genes are regulated in dependence of their cell state which gets lost by averaging the gene
expression over all cells (Trapnell, 2015). As single cells do not develop synchronously, the
average measurements of different sampling time points do not represent the underlying
transition process. These transitions might be due to the development of certain gene
functions or cells passing through several states from a zygote to an adult species. The
development of an embryo is a continuous process, stimulated by certain genes (Trapnell,
2015). Both the decisive genes and the passed states are not known a priori because this
is a very complex and dynamic biological process. The analysis of cells passing from one
state to another is a very specific challenge related to single-cell RNA-sequencing data.
However, the improved resolution of measuring the gene expression profile (GEP) of single
cells (Zappia et al., 2017) also contributed to the mentioned opportunities of single cells,
which enable valuable insights into the heterogeneity of cells. This new technique allows a
better understanding of the underlying biology and human diseases (Angerer et al., 2017).

The Human Cell Atlas project aims at creating a data-driven reference for cell types that
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are involved in the biological functioning or development of a specific organism (Angerer
et al., 2017). With the understanding of a healthy organism, it is easier to explain the
occurrence of diseases by mapping single-cell RNA-seq samples to reference atlases (Kiselev
et al., 2019). As stated by Trapnell (2015) there is however no clear definition of cell types
and therefore it is of highest priority to develop accurate unsupervised clustering methods
for an appropriate creation of the Human Cell Atlas. Consequently, clustering methods
are considered the most powerful tools for that purpose. This might explain the high
interest into the research field of single-cell data, which is indicated by more than 120
published software packages in peer-reviewed journals or preprints in 2017 (Zappia et al.,
2017) and more than 1000 tools counted in September 2021 (Zappia and Theis, 2021). The
corresponding software packages target different steps of the single-cell RNA-sequencing
analysis workflow, schematically presented in Figure 1.1. The workflow, described in the
following includes the sequencing, pre-processing, dimension reduction and clustering of
single cells, followed by its biological interpretation.

Figure 1.1: Workflow of scRNA-sequencing data analysis and targeted fields for contributed
work with particular importance for this thesis, displayed in bold.

Single-cell RNA-sequencing procedure

The single-cell RNA-sequencing (scRNA-seq) procedure first isolates each single cell and
measures its abundance of mRNA using a cell-specific sequencing library, which contains a
collection of the mRNA fragments (Angerer et al., 2017). After library preparation, RNA
fragments are sequenced. Each of these subsequences is called a read, and the number
of nucleotides per fragment is defined as read length. The sequencing depth contains the
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mean of how often each nucleotide was measured in the genome (Sims et al., 2014). In
the step of alignment, each of these reads has to be aligned to a subsequence of the
reference genome. The alignment to the gene depends on the sample location along the
transcript of the sample (Svensson et al., 2018; Angerer et al., 2017). The output of the
sequencing procedure are then counts, which represent the frequency how often one read
can be assigned to the same gene for each single cell, resulting in a count matrix (Luecken
and Theis, 2019). The data sets treated below contain annotated genes, which is the reason
why we will refer to the term count matrix only.

Data preparation and data structure

Providing some background information, the quality control includes outlier detection,
which can be an indicator of dying cells, broken membranes or doublets (Luecken and
Theis, 2019) leading to the exclusion of cells (cell filter). Quality control also aims to
circumvent confounding effects such as batch effects and library effects (Zappia et al.,
2017), which are not considered in the following. We are also not going to elaborate on
spike-in genes, which can serve as control genes, allowing a distinction between biological
and technical dropouts because we assume that the scRNA-sequencing data used below
are well prepared according to Kiselev et al. (2017).

The second part of the pre-processing procedure is the normalization, as illustrated in
Figure 1.1. The normalization aims to obtain relatively comparable gene expression values
between the different cells (Vasighizaker et al., 2022), preventing differing gene expression
for identical cells due to e.g. sequencing uncertainty, which can be lead back to sampling
effects. One of the most often used normalization techniques is the counts per million
(CPM) normalization or in case of full-length scRNA-sequencing protocols the transcripts
per million (TPM) normalization. Full length protocols allow that cells are comparable to
each other, incorporating the gene length (see e.g. Patel et al. (2014), Kowalczyk et al.
(2015), Soneson and Robinson (2018)). Especially for the pre-processing procedure there
exists no golden standard and many tools are available.

Concerning the measurement of gene expression it is possible that genes have 0 counts.
Here, one has to distinguish between biological reasons (e.g. species, tissue type, cell type,
treatment, and cell cycle) or technical reasons (e.g. platform, protocol, or processing). The
dropout of the latter can be explained by the amplification rate, where in case of choosing
a too low sequencing depth, some gene expression is not measured (Zappia et al., 2017).
Wagner et al. (2013) claim that the zero-inflated negative binomial (ZINB) distribution is
the most appropriate distribution for the count data of single-cell RNA-sequencing. With
this distribution the high frequency of zero counts as well as the gene-wise over-dispersion
due to high noise can be respected (Svensson et al., 2018; Angerer et al., 2017). Kleiber and
Zeileis (2016) describe the ZINB distribution as a mixture of a dropout rate and a negative
binomial distribution, which will especially serve for the construction of simulation settings
of Contribution 1 and Contribution 3. According to literature, such as (see Brennecke et al.
(2013); Grün et al. (2014)), the biological and technical variation could also be described
by a Poisson distribution. In this case, only read counts strictly greater than 0 are taken
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into account neglecting the zero-inflation rate.
After quality control and normalization one attemps to compensate missing values by

imputation techniques (Svensson et al., 2018). Then, it is common standard to reduce
the number of genes by a gene filter to exclude non-informative genes, as there are high
dropout rates in the very high dimensional single-cell data. The challenge of gene filtering
is the determination of thresholds (Zhang et al., 2021), which should guarantee sufficient
data quality without the danger of data peeking. The problem hereby is that the quality
control could be adapted after visualization or clustering, which would have an impact on
the results (Luecken and Theis, 2019).

Dimension reduction and clustering

As a next step following the schematic overview of Figure 1.1, a combination of dimension
reduction and clustering is applied, which will be the main focus within this dissertation.
These approaches target at an insight into the data through the cell clusters, while main-
taining the underlying data structure in a low dimensional space. Clustering single cells
brings along the great opportunity to allow access to different cell states by the analysis of
differing gene expression. The visual inspection of defining cell types is obtained by consid-
ering two dimensional plots obtained after dimension reduction. The manual definition of
cell types requires a clustering, which leads to a data-driven categorization, relying on the
abundance pattern of the obtained clusters (Duò et al., 2020). Within this dissertation we
consider the cell types of the analyzed single-cell RNA-sequencing data as ground truth.
Referring to the blue highlighted field of Figure 1.1 this dissertation targets dimension
reduction techniques combined with clustering approaches and their validation, provided
in Contribution 1, Contribution 2, and Contribution 3. We therefore give some theoretical
background about dimension reduction and cluster analysis in Chapter 2. In addition,
regularization techniques are combined with cluster theory in Contribution 4.

Validation / Biological interpretation

As the term cell type is not well defined one has to be careful at which level one searches for
cell types. While for some researchers the level of “T cells” is sufficient, others might look
for so called CD4+ or CD8+ T cells, which are subtypes of T cells (Luecken and Theis,
2019). Thanks to reference data bases such as the Mouse Cell Atlas (Han et al., 2018) and
the Human Cell Atlas (Rozenblatt-Rosen et al., 2017), the annotation of clusters to cell
types is supported. For the according procedure, a differential expression (DE) testing (e.g.
Wilcoxon rank-sum test or the t-test and its adjustments allow multiple testing (Vasighiza-
ker et al., 2022)) between each cluster and the remaining clusters is conducted. Significant
genes are then ranked according to their adjusted p-values and further criteria with the as-
sumption that especially up-regulated genes are of interest (Luecken and Theis, 2019). The
corresponding marker genes serve for the annotation of the respective cluster to the closest
cell type population, including an appropriate reference, such as the Gene Set Enrichment
Analysis (GSEA) (Vasighizaker et al., 2022; Subramanian et al., 2005). Thus an analysis



1.2 Current dimension reduction and clustering techniques used in the
context of single-cell data 5

on the single cell level also allows a deeper understanding of the behavior and development
of diseases, providing the pathway to personalized medicine. However, this investigation
cannot be done for bulk data and its medical applications as they allow no insight into
the GEP at a cellular level. Compared to single-cell data, it is therefore not possible to
explain the reason why gene expression might have an impact after drug prescription. For
the subsequent investigation, we mainly extract the underlying single-cell states through
cluster analysis, respecting different uncertainty scenarios. The identification of new cell
types or the confirmation of predefined cell types aims at a better understanding of a cell’s
development and the emergence of diseases (Zappia et al., 2017). Especially the research
field of immunology and health care improved substantially, as it was possible to measure
cellular markers, such as proteins on the level of single cells (Pouyan et al., 2016). Also the
opportunity of having access to intra-tumor heterogeneity (Yu and Du, 2022) contributed
to the development of personalized medicine.

1.2 Current dimension reduction and clustering
techniques used in the context of single-cell data

As described above, a manual determination of cell types is done in a data-driven way
by cluster analysis, which is therefore the most relevant and decisive part in the scRNA-
seq workflow (see Tian et al. (2021); Shapiro et al. (2013); Kolodziejczyk et al. (2015a);
Kiselev et al. (2019)). Due to the high dimensional single-cell data, clustering methods
might not lead to well-interpretable results in case of a direct application to the count
data. It is therefore recommended to first project the high dimensional data into a lower
dimension (Gan et al., 2022). The most commonly used dimension reduction techniques in
this context are mainly based on the principal component analysis, according to the review
papers of Kiselev et al. (2019) and Zhang et al. (2020). For instance, SC3 (Kiselev et al.,
2017), pcaReduce (Zurauskiene et al., 2016) and TSCAN (Ji and Ji, 2016) are all based
on the principal component analysis (PCA). The Clustering through Imputation and Di-
mensionality Reduction (CIDR) (Lin et al., 2017) is an algorithm which includes principal
coordinates for dimension reduction. For respecting the cells’ differentiation trajectories,
Haghverdi et al. (2015) propose the use of diffusion maps by Coifman and Lafon (2006),
which include some stochasticity in the dimension reduction process. The general tool-
boxes Scanpy (Wolf et al., 2018) and Seurat (Butler et al., 2018) are specifically adapted
to the analysis of single-cell gene expression data. In case of Seurat a pre-selection of highly
variable genes (HVG) is done before dimension reduction and clustering. According to the
review paper of Duò et al. (2020), especially Seurat and SC3 are dominating methods.

In the following an overview of clustering methods often used for benchmarking single-
cell data is provided. RaceID-based algorithms (Grün et al., 2015, 2016; Herman et al.,
2018) are of special interest for detecting rare cell populations. Concerning the clustering
of pcaReduce, first several k-means clusterings (MacQueen et al., 1967) are applied, which
are then combined with a subsequent hierarchical clustering. The same procedure holds
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for the consensus clustering of SC3. Concerning the clustering part of CIDR, hierarchical
clustering is performed. As an outlook, the category of community-detection-based clus-
tering includes spectral clustering and the often used Louvain algorithm (Blondel et al.,
2008), where the latter is part of Seurat and scanpy. Spectral clustering algorithms such as
SIMLR (Wang et al., 2018) use several kernels to learn the similarity of single cells for the
subsequent spectral clustering (Gan et al., 2022). Concerning the density-based clustering
approaches, especially the algorithm DBSCAN (Ester et al., 1996) has to be mentioned,
as well as its extensions GiniClust (Jiang et al., 2016) and Monocle2 (Qiu et al., 2017).
These are particularly useful for detecting rare cell types.

For being able to sequence a large number of single-cells, some deep learning approaches
can be applied for dimension reduction (see Gan et al. (2022); Tian et al. (2021) or the
review of Zhang et al. (2020)). Especially neural networks or (variational) auto-encoders
perform well (Tian et al., 2021), such as Deep Count Autoencoder (DCA) (Eraslan et al.,
2019) or the variational autoencoder for scRNA-seq data (VASC) Wang and Gu (2018).
However, these deep learning approaches will not be studied further within this dissertation.

1.3 Outline of this thesis

In this dissertation, we consider uncertainties that might occur during the single-cell work-
flow analysis described in Section 1.1. In Chapter 2 we first introduce the term high
dimensional clustering, providing the concepts of dimension reduction techniques in Sec-
tion 2.1 and clustering in Section 2.2. In Section 2.3 we give a short overview of the often
cited single-cell consensus clustering of Kiselev et al. (2017). In Chapter 3 we present a
study of each contribution on its own, including both a summary and possible perspectives.
The contributions target the uncertainty of the biological background and the uncertainty
of different clustering results. Furthermore, we included measurement uncertainty and
clustering information as input for regularization approaches.

We explicitly propose

� ... better adapting the dimension reduction of the original SC3 to the biological
background of single-cell data (Section 3.1).

� ... an association accuracy heuristic which aims to support the data-driven process
of defining cell types, based on different clustering methods (Section 3.2).

� ... a simulation framework, considering dependence structure of genes, and a possi-
bility to analyze the consequences of distorted measurements on the clustering per-
formance (Section 3.3).

� ... an inclusion of univariate grouping information obtained by cluster indices into
regularization approaches (Section 3.4).

Chapter 4 provides some general concluding remarks.





2 High dimensional clustering

For an appropriate analysis of high dimensional single-cell data, the first challenge is to
extract valuable information in a compact way. In the unsupervised case, a dimension
reduction technique can be performed, which is also the motivation for Contribution 1
to Contribution 3. In supervised cases, methods such as regularization techniques are
often applied (Contribution 4 ). In this dissertation, we use the term high dimensional
clustering, referring to the use of clustering information of high dimensional data. In
detail this means that generally a dimension reduction technique is applied prior to the
subsequent clustering. In contrast to that, Contribution 4 uses the univariate clustering
information for the regularization of the high-dimensional single-cell data.

2.1 Dimension Reduction

Dimension reduction (DR) aims to embed the high dimensional data into a lower di-
mension. For observation i ∈ {1, · · · , N} we therefore denote the covariate vector of
length p with x·i, and the lower dimensional vector with y·i, which contains p′ ≤ p
transformed covariates. The according embedding can be achieved directly by mapping

(x·1, · · · , x·N)
DR−→ (y·1, · · · , y·N), preserving the structure of the original data Xp×N , con-

sisting of p covariates and N observations. The resulting data matrix of each DR Y(DR)
p′×N is

thus obtained by:

Xp×N DR−→ Y(DR)
p′×N with p′ ≤ p. (2.1)

For dimension reduction techniques, it is in general of relevance whether the correspond-
ing methods use a local or a global embedding. While local embeddings focus on “nearby”
observations, global embeddings focus on preserving “faraway” observations in the low-
dimensional embedding (Silva and Tenenbaum, 2002). Furthermore, dimension reduction
techniques can be distinguished by linear and non-linear embeddings. As scRNA-seq data
follow a non-linear pattern, the linear embedding of the principal component analysis
(PCA) or the classical multidimensional scaling (CMDS) have the tendency to miss impor-
tant information (see Tenenbaum (1997)). Therefore, especially for the high-dimensional
gene expression data, many non-linear dimension reduction techniques have been proposed.
In the subsequent part of this chapter we give an overview of DR techniques.
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Principal Component Analysis (PCA)

The principal component analysis (PCA) is a linear dimension reduction technique, as
higher dimensions are embedded into lower dimensions by linear combinations. PCA is a
very popular tool for dimension reduction because it is well interpretable and can identify
decisive factors, which are important genes in our case.

The PCA can be led back to Pearson (1901) and Hotelling (1933) and has the aim
to reduce p correlated covariates to a considerably lower number of so called principal
components, explaining as much of the variance as possible. This goal is achieved by
transforming the observed covariates into linear combinations, which are the principal
components. These principal components are uncorrelated and orthogonal to each other,
ordered by decreasing variance. Especially in genetics, where genes are highly correlated,
the PCA allows to reduce the number of dimensions substantially. While the first principal
component still explains most of the variance, the proportion of explained variance to the
total variance decreases more and more with further components, with the consequence
that the last principal components explain only a negligible part of the total variance.
Accordingly, e.g. thresholds or the scree test can serve for the determination of the number
of selected principal components.

We consider the positive semidefinite covariance matrix Σ of the data matrix X , but we
can also think of Σ as correlation matrix, with rank(Σ) = r ≤ p. As Σ is symmetric, the
spectral decomposition allows to solve the following equation:

Σ = ΨPCAΛPCAΨT
PCA. (2.2)

The solution of Equation (2.2) are the eigenvectors ψ
(PCA)
1 , · · · , ψ(PCA)

r , which form the

orthogonal matrix ΨPCA with the corresponding eigenvalues λ
(PCA)
1 , · · · , λ(PCA)

r . These are
sorted in descending order and are part of the corresponding diagonal matrix ΛPCA. The
according lower dimensional embedding can be achieved by selecting the first p′ ≤ r ≤ p
eigenvectors of ΨPCA leading to Y(PCA) := (ψ

(PCA)
1 , · · · , ψ(PCA)

p′ )
TX .

Classical Multi-Dimensional Scaling (CMDS)

The classical multi-dimensional scaling (CMDS) is a global dimension reduction technique,
which was proposed by Torgerson (1952). The aim of the CMDS is to find a low dimensional
embedding Y(CMDS), which is described as configuration, such that Euclidean distances
d2(x·i, x·j) of observations i and j are maintained the best possible. It is hereby assumed
that no pairwise distance is missing (Wang, 2012):

dY(y·i, y·j) ≈ d2(x·i, x·j) = ||x·i − x·j||2, ∀i, j ∈ {1, · · · , N}. (2.3)

The embedding of the CMDS is optimal when the distances of Y are as close as possible to
the distances of X over all pair-wise observations. The according criterion is achieved by
minimizing the so called stress function (see Hastie et al. (2009)). In general, any Euclidean
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metric is accepted for the embedding of CMDS1. For each pair of observations i and j the
squared distance is obtained with: Sij = D2

ij, which builds the matrix S, and allows the
construction of the centered Euclidean square-distance matrix Sc.

The main advantage of multidimensional scaling is that only a dissimilarity matrix is
needed instead of the original data, which is especially interesting for gene data, as p >> N .
A generally obtained result of Wang (2012) shows that the centered Gram matrix Gc is
equal to Gc = −1

2
Sc. In general, this result allows to construct a squared dissimilarity

matrix S instead of the centered original data for the inner product, leading to the gram
matrix. We further denote the eigenvector matrix of CMDS with ΨCMDS and the diagonal
matrix of eigenvalues with ΛCMDS, which are obtained by the spectral decomposition of
the centered Gram matrix Gc:

Gc = ΨCMDSΛCMDSΨT
CMDS. (2.4)

The low dimensional embedding can then be realized with the selection of p′ eigenvectors
for ΨCMDS, which leads to the reduced data set: Y(CMDS) = (ψ

(CMDS)
1 , · · · , ψ(CMDS)

p′ )
TX .

Isometric Feature Mapping (IM)

The isometric feature mapping (IM) by Tenenbaum et al. (2000) is a global dimension
reduction technique. In contrast to the linear dimension reduction techniques, the un-
derlying geometry of this nonlinear DR is a manifold, which is a topological space that
is locally Euclidean (Lee, 2010). It is assumed that the data X ⊂ Rp lie on a Riemann
manifold M ⊂ Rp. The according isometric mapping f (IM) : M → Rp′ , f(x·i) = y·i aims
to arrange the low dimensional data Y ⊂ Rp′ , with p′ ≤ p (Wang, 2012), such that the
Euclidean distance d2 matches the geodesic distance dM as much as possible for all pairs
of observations:

d2(y·i, y·j) ≈ dM(x·i, x·j),∀i, j ∈ {1, · · · , N}. (2.5)

As approximation of the geodesic distance dM, the graph distance dG of an undirected
graph G is considered. With the constructed graph, we can then calculate the distance
between each pair of data points that are connected, considering k ∈ {1, · · · , K} neigh-
bors2. The set of all possible paths between x·i and x·j will be denoted with Γ. Thus,
the corresponding vector for path γ = (x·0, · · · , x·s+1) contains all connection points with
x·i = x·0 as startpoint and x·j = x·s+1 as endpoint, which allows the calculation of the path
distance dγ using the Euclidean distance d2:

dγ(x·i, x·j) = d2(x·0, x·1) + · · ·+ d2(x·s, x·s+1). (2.6)

1We base our description on the pair-wise Euclidean distance d2(x·i, x·j) of observation i and j, which was
also used by Torgerson (1952). In case that CMDS is applied to Euclidean distances, the embedding
is the same as if PCA was applied to the centered original data (see Hastie et al. (2009), and proof in
Wang (2012)).

2see footnote 5 of Contribution 1 for the chosen algorithm, determining K.
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Based on the set of path distances γ ∈ Γ, the graph distance dG chooses the closest
distance between all paths of x·i and x·j (Tenenbaum et al., 2000):

dG(x·i, x·j) = min
γ∈Γ

dγ(x·i, x·j). (2.7)

The advantage of the graph distance is that the detour of passing by s connection points
might deliver a shorter distance compared to the direct way, underlying the Riemann
manifold M for X . As a next step, a CMDS is applied to the graph distance matrix
DG, such that the intrinsic geometry is maintained in the low dimensional data set Y(IM).
The corresponding squared distance of isomap S

(IM)
G includes the square of the introduced

graph distance matrix DG for each pair of observations. Centering the obtained S
(IM)
G and

following the same derivation as CMDS, the according centered Gram matrix Gc of the
isometric mapping is obtained. In accordance to the above described methods, a spectral
decomposition of Gc can be applied (Wang, 2012), providing the eigenvector matrix ΨIM

and eigenvalue matrix ΛIM :

Gc = ΨIMΛIMΨT
IM . (2.8)

Selecting the p′ first eigenvectors (ψ
(IM)
1 , · · · , ψ(IM)

p′ ) allows the embedding into the low

dimensional data set Y(IM), following the same DR procedures as shown above.

Locally Linear Embedding (LLE)

The locally linear embedding (LLE) introduced by Roweis and Saul (2000) can be seen as a
local non-linear transformation technique. For the global embedding of the upper described
isometric feature mapping (IM), the whole data structure is taken into account for the
calculation of the geodesic distance. In contrast to IM, LLE focuses on a local region of the
nearest neighbors. For the locally linear embedding, we assume a p-dimensional manifold
M ⊂ Rp. In accordance to IM, we consider the same undirected graph G = [X , A],
with adjacency matrix A. If the adjacency matrix value Aij of observation i and j is
not equal 0, observation j is defined as a neighbor of observation i. All observations j,
fulfilling the described requirement are part of the observation set H(i), and form the
according neighbors of observation i (Wang, 2012):

H(i) := {j, Ai,j 6= 0}, (2.9)

The covariate values of the described observation setH(i) build the according neighborhood
set O(i) of observation i, with:

O(i) := {x·j ∈ X , j ∈ H(i)}. (2.10)

The underlying geometric assumption is that each x·i can be approximated by an orthog-
onal projection f from the manifold M to the tangent space Tx·i , leading to x̃·i = f(x·i).

To avoid the computational effort of the tanget projection M f→ Tx·i for the according
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mapping, we try to minimize the distance of x·i to its neighborhood set O(i), underlying
barycentric coordinates3, as described in Wang (2012), including its observation set H(i)
only. As we assume a connected graph, at least one j is connected with i (j ∈ H(i)), the
according weights wi,j are constructed to weight the impact of each x·j ∈ O(i) on x·i. This
leads to solving the optimization problem, described by Hastie et al. (2009):

min
Wi,j

||x·i −
∑

j∈H(i)

wi,jx·j||2, s.t.
∑

j∈H(i)

wi,j = 1, (2.11)

such that the L2 norm of x·i is minimized with respect to the reconstructed x̃·i =∑
j∈H(i)

wi,jx·j, including only j ∈ H(i), with H(i) 6= ∅, which builds on the idea of barycen-

ters. Thus, close neighbors should be weighted highly, whereas faraway neighbors are
weighted less. To make Equation (2.11) identifiable, the number of considered neighbors
K has to be less than p. Furthermore, the minimization problem has to fulfill the sparseness
criterion setting wi,j = 0 in case of j /∈ H(i), allowing only the reconstruction of x·i by its
neighbors x·j ∈ O(i) (Wang, 2012). Equation (2.11) can be solved by constructing an inner
product over a reference point x·k, with k ∈ H(i). The according Gram matrix allows then
access to an appropriate weighting for each pair of observations, leading to weight matrix
W , respecting the above mentioned requirements. The weight matrix is then adapted to
the LLE kernel E = (I −W )T (I −W ), which is a positive semidefinite matrix, and thus
can be used for the following spectral decomposition, leading to eigenvector matrix ΨLLE

and diagonal eigenvalue matrix ΛLLE:

E = ΨLLEΛLLEΨT
LLE. (2.12)

The low dimensional embedding can then be realized by using the p′ eigenvectors, leading
to the reduced data set: Y(LLE) = (ψ

(LLE)
1 , · · · , ψ(LLE)

p′ )TX .

Laplacian Eigenmaps (LE)

The local embedding of Laplacian eigenmaps (LE) (Belkin and Niyogi, 2003) also aims to
solve the sparse eigenvalue problem in a nonlinear manner. In accordance with the local
dimension reduction of LLE, LE also consider an undirected graph G = [X , A]. The same
neighborhood set O(i) of observation i will be used for the calculation of the weights of the

3Möbius (1827) introduced barycentric coordinates, placing masses on a triangle, such that a point of
interest is the gravity center. Barycentric coordinates allow to describe the position of each observation,
using a set of vertices V = {x1, · · · , xN} that form a simplex in RN−1. Point x̃ is by definition the
gravity center of the weights (w1, · · · , wN ) of vertices (x1, · · · , xN ):

x̃ = w1x1 + · · ·+ wNxN , such that

N∑

i=1

wi = 1.

In case of a simplex in RN−1, barycentric coordinates w are non-negative, given the point x̃ is part of
the simplex (Wang, 2012).
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graph Laplacian L. For LE a p-dimensional Riemann manifold M is assumed (M⊂ Rp),
such that X ⊂ Rp. With the function f the mapping f : M → R should be described.
As stated by Wang (2012) the graph Laplacian L is approximated and discretized. These
transformations result in the self-adjoint graph Laplacian LLE. The construction of the
according weight matrix WLE can be based on a heat kernel, which contains the distance of
x·i to x·j (see Belkin and Niyogi (2003)), delivering a weighting for each pair of observations
of the underlying adjacency matrix. Alternatively, in case that x·j is (not) part of O(i),
as the pair is (not) connected the corresponding weight is one (zero). With DLE we
denote the diagonal matrix of the weight matrix WLE. After having obtained access to
LLE = DLE −WLE, and DLE (Wang, 2012), the matrices LLE and DLE are used to solve
the following eigen problem of Laplacian eigenmaps:

LLEf = λLEDLEf, (2.13)

with eigenvalues: 0 = λ
(LE)
0 ≤ λ

(LE)
1 ≤ · · · ≤ λ

(LE)
p , and eigenfunctions f = (f 1, · · · , fp),

which correspond to the eigenvectors (ψ
(LE)
1 , · · · , ψ(LE)

p ). The selection of p′ eigenvectors
or eigenfunctions then allow the low dimensional embedding Y(LE) with p′ ≤ N − 1.

Diffusion maps (DM)

Diffusion maps (DM) (Coifman and Lafon, 2006) consider the connectivity for each pair
of observations, which are defined as a probability, reaching each other by a random walk.
Unlike IM, diffusion maps are considered as robust, as they look at all pair-wise paths,
including t steps, in contrast to the shortest geodesic distance of IM, no matter how many
steps have to be taken (De la Porte et al., 2008). Coifman and Lafon (2006) propose approx-
imating the connectivity of x·i and x·j by a diffusion kernel. In accordance to the notation
above, we denote the kernel of x·i and x·j with wi,j, approximating its connectivityi,j:

connectivityi,j ≈ wi,j. (2.14)

As a choice for wi,j, one could think of the Gaussian kernel, which includes a parameter
for the determination of the neighborhood size. For the exact relation of the pair-wise
connectivity, a normalization constant for the pair-wise weighting Zi is needed, leading to
the discrete construction of connectivity:

connectivityi,j =
1

Zi
wi,j, with Zi =

N∑

j=1

wi,j. (2.15)

The pair-wise probability interpretation pi,j, also used for the application to single-cell
data following Haghverdi et al. (2015), can be realized by respecting the whole neighbor-
hood with:

pi,j =
1

Z̃i

wi,j
ZiZj

, with Zj =
N∑

i=1

wi,j, and Z̃i =
∑

j 6=i

wi,j
ZiZj

, . (2.16)



2.1 Dimension Reduction 13

Each row of the obtained transition probability matrix P sums up to 1 (Coifman and
Lafon, 2006). Multiplying the corresponding matrix P with t repetitions allows to take
into account in how many steps one observation to another should be reached for each pair
of observations. The higher the parameter t, the more the path respects the underlying
geometric structure, resulting in a path’s overall high probability (De la Porte et al., 2008).
Thus, P can be considered as a transition kernel of a Markov chain. This brings along
the property that for a connected graph a unique stationary distribution can be expected
and the chain is reversible. For finite X the chain is even ergodic. These attributes, in
combination with some assumptions on the kernel allow the spectral decomposition of the
Markov chain, leading to (Coifman and Lafon, 2006):

P = ΨDMΛDMΨT
DM . (2.17)

For the low dimensional embedding p′ eigenvectors are taken leading to: Y(DM) =
(ψ

(DM)
1 , · · · , ψ(DM)

p′ )TX . As stated in Haghverdi et al. (2016), the eigenvectors of P and P t

are the same, however P t includes the eigenvalues to the power of t.

Comparison in the context of single-cell data

The presented dimension reduction techniques are needed to embed the high dimensional
single-cell RNA-sequencing data into lower dimensions. These techniques use either matrix
factorization or neighbor graphs, and are part of the contributions, presented in the next
chapter. The linear techniques PCA and CMDS use matrix factorization; IM, LLE, LE,
and DM are built on neighbor graphs. The linear dimension reduction techniques PCA
and CMDS might not be an accurate method for single-cell data, which have a high zero-
inflation rate and are over-dispersed. Thus, the linearity assumption could be violated.
PCA and CMDS are also both global embeddings and therefore cannot take into account
the intrinsic data structure (Buettner and Theis, 2012; Sumithra and Surendran, 2015).

IM, LLE, LE and DM provide non-linear dimension reduction techniques in order to
improve the limitations of PCA and CMDS as described by Wang (2012). Even though IM
is a global embedding like PCA and CMDS it takes the nearest neighbors into account by
using graph distances. IM perform well in case of dense enough data structures. LLE and
LE embed the high dimensional data preserving the local neighborhood structure. LLE
is based on a neighborhood set highly depending on the number K of included neighbors.
If K is chosen too high the locally embedding cannot be guaranteed, whereas a too low
number of K leads to no stable results. The drawback of LE is its sensitivity to outliers,
resulting in an unstable embedding. The global DM rely on a Markov transition matrix and
have the advantage that they are very effective in detecting the different states of single
cells. Of course apart from the described techniques, there exist many more dimension
reduction methods that are appropriate for single-cell RNA-sequencing data.
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2.2 Cluster analysis

For high dimensional data, clustering is the subsequent step of dimension reduction, as
indicated in the overview of Figure 1.1. The purpose of clustering is to detect the un-
derlying subgroups of the compact data structure, obtained by the low dimensional data
set Y = {y·1, · · · , y·N}. The aim of clustering in general is to combine observations that
are similar to each other into groups, called clusters, in which the distances to dissimilar
observations in other clusters are higher compared to the distances of observations within
a cluster as described by Hastie et al. (2009). Clustering is also called data segmentation
as the underlying process aims to find the natural group structures in an unsupervised
way (Kiselev et al., 2019). Hereby, the challenge is to cluster the set of N observations
I = {1, . . . , N} into a set of clusters C = {1, . . . , K} based on a clustering algorithm M ,
with K << N . The clustering process thus corresponds to the mapping of:

I M→ C. (2.18)

In the following, first different clustering approaches are described which are needed in
Contribution 1 to Contribution 3, followed by validation measures assessing the cluster
quality, which serve as preparation for Contribution 2 and Contribution 4.

Clustering algorithms

Clustering algorithms can be divided into four categories: the general partitional cluster-
ing, where k-means is the most often used algorithm, hierarchical clustering, community-
detection-based clustering, and density-based clustering.

K-means:
As a representation of the partitional clustering we present the k-means algorithm (Mac-
Queen et al., 1967). In the first step a specific number of clusters, which is denoted with
K has to be defined. Then, the algorithm randomly sets K centers and creates K clusters
by allocating each observation to the closest center. In our case, the closeness is obtained
by the squared Euclidean distance between the transformed covariates of observation i of
length p′ (y·i) and the according cluster center m·k. In the second step, the center of each
cluster is recalculated and new clusters are built by moving the observations to the nearest
center, called centroids. This step is repeated until the number of maximum iterations is
reached, or the assignments remain the same after checking for each observation, whether
the centroid of the allocated cluster C∗ is still the closest, fulfilling the following criterion
for each observation i (Hastie et al., 2009):

C∗(i) = argmin
1≤k≤K

||y·i −m·k||2. (2.19)

The k-means algorithm can be initiated with different starting values in order to check
the stability of the obtained partitions. Different initiations are of high relevance giving
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the chance to find the global minimum of Equation (2.19) over all observations (i ∈ I).

Hierarchical clustering:
Hierarchical clustering contains two strategies: agglomerative and divisive clustering. As a
starting point of the agglomerative clustering, each observation forms its own cluster. The
remaining observations are then iteratively combined with the most similar observations
until all observations are unified in one single cluster. The union of clusters can be ob-
tained by single linkage, complete linkage, or average linkage (Hastie et al., 2009). In case
of single linkage, the dissimilarity d of the closest observations of each cluster is considered.
In case of complete linkage the maximal dissimilarity is considered4. Average linkage uses

the average dissimilarity between the groups

(
1

NCiNCj

∑
i∈Ci

∑
j∈Cj

dij

)
. NCi and NCj correspond

to the number of observations that are part of of the underlying cluster C of observation
i and j. Divisive clustering proceeds in reverse order, starting with all observations in
one cluster. The subsequent splits aim at dissimilarity, such that the obtained clusters are
most dissimilar to each other until each observation is part of its own cluster.

Community-detection-based clustering:
With increasing sample size of scRNA-seq data sets, both the k-means and the hierar-
chical clustering become computationally very expensive. The community-detection-based
clustering aims at the identification of neighborhoods, which are connected groups of ob-
servations (Kiselev et al., 2019). The idea is related to a graph-based clustering. In our
case the nodes of a K nearest neighbors graph represent single-cells and the edge weights
contain the pair-wise distances of single cells (Zhang et al., 2020).

Density-based clustering:
Density-based clustering considers highly dense regions of observations as clusters, which
are aimed to be well separated from low density regions. The approach of the density-
based spatial clustering of applications with noise (DBSCAN), introduced by Ester et al.
(1996), needs a minimum number of observations forming the circle of the considered
similarity. The advantage of DBSCAN is that the obtained clusters can be of different size
and shape, allowing to handle outliers. As stated by Hennig (2015), the choice of a certain
clustering method depends on the research objective. In contrast to identifying clusters
of subpopulations that are assumed to be represented in a balanced way, algorithms such
as GiniClust (Jiang et al., 2016), and RaceID (Grün et al., 2015) have been proposed in
the context of single-cell clustering, in order to identify rarely represented subgroups. This
is of special interest in cancer research, as rare cell types might be (cancer) stem cells or
circulating tumor cells (Grün et al., 2015).

4Dissimilarity measures for quantitative variables can be for example the absolute difference, Euclidean
distance, or the Pearson correlation.
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Cluster validation

Apart from choosing a clustering algorithm, cluster validation plays an important role for
evaluating the quality of the obtained clustering result (Liu et al., 2010) because espe-
cially in scRNA-sequencing analysis the subsequent downstream analysis relies on them.
Analyzing the low-dimensional data after dimension reduction by visual inspection aims
to get insights whether distinct patterns can already be detected. Visualization valida-
tion techniques, such as biplots of the PCA or CMDS deliver a first impression about the
underlying grouping structure. In bioinformatics applications, visual inspection has often
been applied. However, these inspections are highly subjective, and might lead to biased
decisions (Handl et al., 2005). Therefore, validation measures are needed for preventing the
subjective influence especially in gene expression data. For that purpose there mainly exist
two categories of validation procedures (Halkidi et al., 2001; Handl et al., 2005): external,
and internal validation.

External validation:
External validation includes the gold standard or ground truth, which is a rarity in prac-
tice, as normally the class labels are not known (Liu et al., 2010; Handl et al., 2005). Thus,
the external information is not used for clustering but is included for the subsequent val-
idation. The adjusted Rand Index (ARI) (Hubert and Arabie, 1985; Rand, 1971), purity
(Rendón et al., 2011), normalized mutual information (Strehl and Ghosh, 2002) and the
F-measure (Larsen and Aone, 1999) are examples of external validation measures. Since
information about the aimed partitioning is available, the number of clusters doesn’t have
to be determined as the “true” number is known (Liu et al., 2010). It is of higher relevance
to choose the optimal clustering algorithm for the investigated situation.

Internal validation:
Internal validation assesses separateness and compactness based on quantitative measures
such as distance or variance measures of the defined clusters (Liu et al., 2010). For example
the Davies-Bouldin index (Davies and Bouldin, 1979), and the silhouette index (Rousseeuw,
1987) target both separation and compactness. While the silhouette index determines sep-
aration and compactness observation-wise, the Davies-Bouldin index considers the different
clusters. Furthermore, there exists also the special case of cluster validation based on sta-
bility (see e.g. Ben-David et al. (2006); Handl et al. (2005); Ullmann et al. (2021)). For
the stability investigation, the same clustering algorithm has to be applied several times to
different data situations. A good stability can be obtained if different data sets with the
same data distribution result in similar partitions. Accordingly, data sets are re-sampled,
artificially perturbed, or already clustered data are clustered again in order to investigate
stability.

Apart from finding the best partition, internal validation also serves for the determina-
tion of the number of underlying clusters K. In general, the partition with the highest
compactness and separation leads to the choice of K. Also, the sum of squares plot or di-
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rectly the internal validation measure plot among all possible Ks might support the choice
for the number of clusters. Alternatively, the Gap Statistic, proposed by Tibshirani et al.
(2001) might be helpful. The latter is an often applied approach in bioinformatics (Handl
et al., 2005).

A difficulty of internal validation is that some algorithms are specifically targeted to
some of the validation criteria, such as the k-means algorithm which is focused to reach
maximal compactness. As compactness is also part of internal validation, the underlying
cluster algorithm should be taken into account during the validation process. Hennig et al.
(2015) claim that it is of high relevance to have a qualified understanding of the data situ-
ation, the vised clustering target, and the clustering methods which are available in order
to obtain a suitable application. Especially Contribution 2, Contribution 3, and Contribu-
tion 4 will develop on this issue. Contribution 2, which proposes an association-accuracy
heuristic builds on the dilemma of “true” versus “real” clusters, as discussed by Hennig
(2015).

2.3 Single-cell consensus clustering (SC3)

The single-cell consensus clustering (SC3) of Kiselev et al. (2017), which will be the foun-
dation of Contribution 1 and Contribution 2, has been cited a lot and is considered as
one of the most appropriate clustering methods for single cells (Duò et al., 2020). The
clustering of SC3 mainly builds on the principal component analysis (PCA) and Laplacian
eigenmaps (LE), applied to the preprocessed dissimilarity matrices, as described in the pa-
per of Kiselev et al. (2017) and Contribution 1. To each combination of dissimilarity matrix
and dimension reduction technique, an eigenvalue decomposition is applied, resulting in
the eigenvectors ΨDR. Then, an automatic selection of eigenvectors is done, generating
different low-dimensional data sets5 Y(DR) to which a k-means clustering is applied, using
the algorithm of Lloyd (1982). Based on all the performed k-means clusterings, which can
be considered as ensembles, a consensus matrix is built, including the average value of how
often each pair of observations was clustered together. These frequencies are denoted as
consensus values and form the resulting consensus matrix for all pair-wise combinations.
In the default setting, the final clustering result is obtained by hierarchical clustering, ap-
plying complete linkage to the consensus matrix, choosing the partition with the number
of clusters used in k-means.

5The choice of the number of selected ordered eigenvectors depends on the number of total observations N .
In detail, this means that a clustering is performed on the rounded 4% of N , increasing the number
of included eigenvectors by 1, until the rounded number of 7% of N is reached, for each of the six
combinations of different transformations. However, this guideline applies only if the number of k-means
clusterings which have to be applied by one combination remains below 15. Otherwise, for the clustering
15 first eigenvectors are randomly selected out of the obtained range.





3 Summaries and perspectives of the
contributing material

In the following, we provide a detailed overview of each contribution, summarizing its
main content, describing the analysis, and reporting the most important findings. Af-
ter each summary, we comment on the submission and discuss possible perspectives for
further research. All four contributions propose methods for the analysis or prevention
of uncertainties in the context of clustering high dimensional single-cell data during the
workflow of single-cell RNA-sequencing data analysis (see Figure 3.1). The figure shows

Figure 3.1: Connections of Contributions 1 to 4 to the underlying workflow of the single-
cell RNA-sequencing data analysis.

the interrelationships of the individual contributions, targeting high dimensional cluster-
ing in Contribution 1 to Contribution 3, and using cluster indices for regularization in
Contribution 4. Especially Contribution 1 and Contribution 2 target method uncertainty,
including decision uncertainty in Contribution 2. Contribution 3 incorporates measure-
ment uncertainty, and Contribution 4 aims at leading regularization techniques into the
right direction, reducing method and decision uncertainty.
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3.1 Contribution 1: Method uncertainty meets biological
background

Fuetterer, C., Augustin, T., and Fuchs, C. (2020). Adapted single-cell consensus clustering
(adaSC3). Advances in Data Analysis and Classification, 14(4):885–896.

3.1.1 Summary

In Contribution 1, we start with a methodological improvement of the introduced single-cell
consensus clustering (SC3) of Kiselev et al. (2017) by replacing the principal component
analysis with diffusion maps. As already argued in Chapter 1 and Chapter 2, dimension
reduction combined with clustering is of high relevance in the research field of single-cell
RNA-sequencing data. Especially with regard to the manual determination of cell types,
appropriate clustering algorithms are needed, but also the detection of newly defined cell
types might be of interest to find new marker genes. This could lead to new biomarkers,
which aim to serve as predictive or prognostic markers of diseases. In the context of single-
cell consensus clustering, studies such as Duò et al. (2020), Freytag et al. (2018), Menon
(2018) state that the approach of Kiselev et al. (2017), which includes a combination of
principal component analysis and Laplacian eigenmaps as dimension reduction techniques,
is part of the most recommended methods.

Replacement of principal component analysis by diffusion maps in SC3

We propose adapting the original SC3 (see Section 2.3) better to the biological background
of single cells. The principal component analysis (PCA) is replaced by the diffusion maps
(DM). Following the hint of Haghverdi et al. (2016), the differentiation of single cells should
not be considered as a linear continuous process (Bendall et al. (2014); Buettner and Theis
(2012)). Therefore, the PCA as linear dimension reduction technique is considered as not
appropriate and with diffusion maps, we respect the transition of single cells, passing from
one state to another in a non-linear way. With the inclusion of diffusion maps we thus adapt
SC3 more to an explicit application of single-cell data resulting in the proposed adapted
single-cell consensus clustering (adaSC3). AdaSC3 contains Laplacian eigenmaps (LE)
and diffusion maps (DE) as two non-linear dimension reduction techniques compared to
the original SC3, which includes the linear PCA and the non-linear LE. Replacing the linear
PCA by the non-linear DM for the combination of clustering results with those obtained
by the LE still allows performing the subsequent clustering, similar to SC3. Thus, in
general, the obtained clustering result enables to catch the decisive states, in which specific
biological functions start to develop or benign cells mutate into malignant cells. Apart from
the change of the dimension reduction method, adaSC3 follows the same procedure as SC3.
Accordingly, adaSC3 includes the same pair-wise distance matrices for each embedding.
We thus take the same dissimilarity measures for single cells into account, constructing a
corresponding graph on which we base the low dimensional embedding of diffusion maps.
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Results of real data and the simulation study

The investigated real data sets, which are also part of the original benchmarking of Kiselev
et al. (2017), as well as the constructed simulation data show a better performance of the
proposed adaSC3 compared to SC3. Apart from replacing the PCA with DM, we also
considered the dimension reduction techniques classical multidimensional scaling (CMDS),
isomaps (IM), and locally linear embedding (LLE) of Section 2.1 as competitors, which are
applied to the same dissimilarity matrices as part of the normal SC3.

For the construction of simulation data, we considered the zero-inflated negative binomial
(ZINB) distribution as stated in Section 1. For each covariate xj· with j ∈ {1, . . . , p} we
generate the simulated gene expression with a mixture of the negative binomial distribution
(NB) and zero-inflation parameter φj for each covariate j:

fZINB(Xj = xj·) =

{
πj + (1− πj)fNB(0) if xj· = 0

(1− πj)fNB(xj·) if xj· ∈ N.
(3.1)

With the generalized form of the negative binomial distribution a gamma distribution Γ
of the Poisson rate is included into the mixture of Poisson distributions in Equation (3.2).
Following Zeileis et al. (2008), the size parameter of each covariate φj can be considered
as continuous in the part of the negative binomial (NB) distribution. Furthermore, the
expectation parameter of each covariate is denoted with µj:

fNB = f(xj·|µj, φj) =
Γ(xj· + φj)

Γ(φj)xj·!
·

µ
xj·
j · φ

φj
j

(µj + φj)xj·+φj
. (3.2)

The according ZINB has been used for simulating two groups with all possible partitions
of N observations. Both the expectation and the size parameter are considered to have
an impact on the cluster performance and have been included into an intensive simulation
framework provided in Section 5 of the original contribution. We can state that adaSC3
reached the overall highest performance measured by the adjusted Rand index (ARI) com-
pared to all included competitors. Concerning the benchmark data, we have shown in four
out of five cases that adaSC3 results in better or equal performance than SC3 and reaches
the highest ARI in three out of five cases among all competitors. We can further state
that adaSC3 performs considerably better in the case of extremely unbalanced settings,
especially observed for the simulated data. This result corresponds to the findings of Coif-
man and Lafon (2006) that the upper and lower tails of the distribution can be maintained
very well by diffusion maps. All in all, we come to the conclusion that adaSC3, including
two non-linear DR techniques, reaches a methodological improvement and leads to more
accurate and stable results, while the biological background of single-cells is respected.
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3.1.2 Comments and perspectives

AdaSC3, the extension of SC3 was developed following the same framework as proposed
by SC3 and takes the biological structure of single-cells into account. As described in
Section 2.3, the original SC3 performs an automatic selection of eigenvectors for dimension
reduction based on the total number of observations N . Adapting SC3 and its extension
adaSC3 more to the statistical standards, one could replace the automatic selection of p′

components with some statistically motivated tools, such as those mentioned in Section 2.1.

Concerning the clustering part, as further investigation it could be interesting to replace
the k-means algorithm by density based clustering, such as DBSCAN whose strength lies in
the detection of rare cell clusters. Setting a focus more to rarely represented cells in tissue
samples is of special interest for example for the investigation of how healthy cells turn
into cancer cells. The correct detection of mutated single cells is hereby of high relevance,
especially during the first stages of cancer development.

Related to that, clustering single-cell data serves as a data-driven approach for the de-
termination of cell types. It is thus of interest whether the visual inspection corresponds to
the data-driven manual inspection and vice versa. The identified groups and the according
marker genes allow to support or counteract cell development obtained by visual inspec-
tion. If the data-driven partition corresponds to the visual findings, one could replace the
visual grouping by the manual grouping, which is especially efficient in high dimensions of
single-cell data. Otherwise, the detected data structure might lead to the discovery of new
marker genes. Whether the clusters found by adaSC3 contribute to the findings of new or
more trustworthy marker genes compared to SC3 is not part of Contribution 1 as the focus
of the described contribution lies on the methodological improvement. As biomarkers are
developed on marker genes, our method might also provide new insights into that research
area. Unfortunately, this has not been investigated within this dissertation. The according
field of biomarker discovery has already brought and will further deliver a lot of benefits
with regard to drug development - however ethical drawbacks have to be kept in mind.

As stated by Duò et al. (2020) not every combination of clustering results in a higher
performance but for adaSC3 the chosen combination leads to an improvement. Further-
more, Kiselev et al. (2017) argue that the original SC3 consensus clustering leads to stable
results. The according stability can be reached by first combining several k-means cluster-
ings on which a hierarchical clustering is performed. The according combinations can thus
prevent unstable results of k-means. Another aspect that has been investigated in SC3, as
well as in the first proposal of consensus clustering, introduced by Monti et al. (2003), is the
determination of the number of clusters K. As the consensus value indicates the relative
frequency for each pair being clustered together, the consensus matrix gives an insight into
the stability of clusterings for different numbers of chosen partitions K. The optimal choice
of K according to stability validation would be the one with the most stable clustering.
The according internal validation measure of the consensus value, which is reclustered by
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hierarchical clustering aims at a highly stable result as it includes several k-means clus-
tering results obtained from different (data) transformations. The most stable clustering
is obtained in case that either each pair is always or never clustered together. The same
thought can be transferred to applying different clustering algorithms and considering the
consensus of different methods on the same data set. This could bring along much effort
in the subsequent biomarker discovery step, bringing us to the content of Contribution 2.

3.2 Contribution 2: Expert decisions meet clustering
decisions

Fuetterer, C., and Augustin, T. (2021). Internal Validation of Unsupervised Clustering
following an Association Accuracy Heuristic. In IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM): Workshop on Machine Learning and Artificial Intel-
ligence in Bioinformatics and Medical Informatics (MABM 2021), 2201–2210.

3.2.1 Summary

With Contribution 1 we provided another competitor to the original SC3. However, as
stated in Section 1.1, there exist many unsupervised clustering methods, on which subse-
quent decisions depend on, such as the determination of cell types. In general, clustering is
performed if the true underlying grouping structure is unknown or hardly accessible. In case
that no external information is available, internal validation of clustering is often the only
way to validate the clustering. In Contribution 2, we relate the consensus of expert opin-
ions to the agreement of clustering results. We therefore propose an association-accuracy
heuristic, which allows to judge the trustworthiness of different clustering methods. With
the construction of association measures, we can estimate the risk of choosing a bad clus-
tering among the considered well-established methods for a given application.

Association accuracy heuristic

Inspired by decision making theory in which the opinions of experts are considered to be
independent of each other, one has higher confidence in decisions in which all experts share
the same opinion. In this case it is common standard to trust unanimous decisions and no
further studies are requested. However, the more heterogeneous the experts’ opinions are,
the less one trusts them, and caution is required. In these heterogeneous settings, further
studies would be required for identifying the best choice.

Relating to the idea of the consensus of experts, we state that if different well-established
methods target the same application situation and deliver comparable clustering results,
we are close to the true underlying groupings. Referring to decision theory, where experts
are needed for proper decision making, we request well-established methods. These have to
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be well defined and should not contain stupid methods which would immediately destroy
our heuristic because the consensus of trivial estimates would not contribute to a reliable
decision. Under these assumptions, we propose the following association accuracy heuristic,
introduced in Section I of the original contribution (p. 2202):

“The degree of association between clustering results derived by different meth-
ods is an indicator for the extent of trustworthiness of the results. Under high
association, a high accuracy of each method can be expected, while lowly as-
sociated clustering results indicate a high risk of choosing a method with bad
performance.”

For being able to judge the described association of clustering results, we propose χ2-
related association measures. With the consideration of several clustering methods, the
underlying concept can be referred informally to the approach of bootstrapping where the
idea is to pull oneself up by its own bootstraps, generating more samples for an adequate
efficient testing procedure. With our approach, we also generate more information being
able to assess the degree of concordance between the partitions obtained by different meth-
ods. We refer to the groupings as trustworthy in case that the different methods deliver
highly associated clustering results described by the following association measures.

Construction of association measures

For the measurement of associated clustering results, we propose χ2-based association
measures as internal validation to which we refer as method-association-measures. In con-
trast to the classical compactness and separation criteria within one clustering method, we
consider the (dis)similarity of the clustering results, obtained by different methods. For
analyzing the association of individual groupings among different (clustering) methods we
propose a reinterpretation of the adjusted contingency coefficient C, and Cramér’s V. For
the pair-wise evaluation, we consider the Φ-coefficient, where it is only of interest whether
a pair of observations is clustered together or not among the clustering results of two dif-
ferent methods Mk and Ml being elements of the set of all methods M = {M1, ...,Mq}.
The vectors PMk

and PMl
of method Mk and Ml contain the (dis)similarities of each pair

leading to the following association measure constructed on
(
N
2

)
pairs of observations:

Φ(PMk
,PMl

) =
χ2(PMk

,PMl
)(

N
2

) , k 6= l, k, l ∈ {1, ..., q}, (3.3)

With the proposed association measures we directly take into account the number of ob-
servations N and the number of clusters K. As we apply the Φ-coefficient to 0/1-coded
variables, the Φ-coefficient is equivalent to the Pearson correlation as proven by Cramer
(1946) and can thus be interpreted in the same way. The proposed method-association-
measures allow the user to be aware of the risk choosing a partition that might lead to
low accuracy. In addition, comparing clustering results with differing K might lead to a
selection of K, which represents the highest association of clustering methods.
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Results of simulation study and real data

For the investigation of our heuristic for both simulated data and real scRNA-seq data,
we first assess the association of context-related methods. Apart from SC3 and adaSC3
we further include the Potential of Heat-diffusion for Affinity-based Trajectory Embedding
(PHATE) (Moon et al., 2019), as well as t-distributed stochastic neighbor embedding (t-
SNE) (Van der Maaten and Hinton, 2008) and Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2018) in combination with k-means. As simulation
data we generate correlated groups as described in Section IV of Contribution 2, which can
be reached assuming a multivariate normal distribution. With increasing correlation, we
aim to simulate increasing dependence of the simulation groups. From these scenarios, we
expect that lowly correlated simulation groups achieve highly associated clustering results
and highly correlated simulation groups achieve a lower association among the clustering
results. Including the underlying cluster labels after the investigation of association allows
the judgement that stronger dependence between the different simulation groups leads to
less accuracy of the considered clustering methods. The results obtained by the bachelor
thesis of Stermann (2021), which was supervised by Thomas Augustin and me, confirm
the expectations that also in the case of simulating ZINB data, lower correlated simulation
data result in higher performance. In Contribution 2 we further showed that it was possible
to rank both the real data sets as well as the simulated data sets according to their median
of associated methods. The ranking correlated strongly with the performance ranking of
the different methods. We thus argue that our association accuracy heuristic can provide
valuable insights, delivering method-association-measures that are indeed an indicator for
expected accuracy, maintaining an internal validation measure.

3.2.2 Comments and perspectives

Referring to the above stated situation that no external validation is feasible for the ob-
tained clustering situation, one has to rely on internal validation measures, such as com-
pactness and separation. As stated in Section 2.2, certain algorithms are constructed to
fulfill some of the requested criteria. Instead of blindly trusting one clustering algorithm,
we propose investigating several methods, which are well-established for the application
at hand. Comparing the results of the different algorithms with independent experts we
claim that our association measures provide a deeper insight into the expected accuracy
of clustering results. However, as truth is not known, our heuristic can only provide a
measurement of an estimated risk. Thus, our heuristic is the best you can hope for as no
prediction is possible with missing truth, as no model can be trained in this case.

The constructed method-association-measures allow an internal validation that is also
comparable across different data sets with differing K and N . The proposed association
measures can be connected to the assumption underlying the approach of general consensus
clustering, introduced by Monti et al. (2003). Instead of classical stability validation for
example by resampling procedures, we analyze different methods on the same data sets to
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get insights into the (dis)similarity behavior of methods. This view could relate the pro-
posed measures also to stability validation, which can be considered as a part of internal
validation (see Section 2.2). Furthermore, with our association measures we are able to
identify situations with low and high risk, completely trusting data-driven partitions. The
distinction of strongly and lowly associated methods is especially of interest with regard
to increasing sample size, leaving only lowly associated situations to the work of experts
with the indication that trusting one single method in a situation with lowly associated
methods is a risky choice.

We consider our heuristic as generally and easily applicable, as well as quite useful and
powerful. This is especially true for situations where the ground truth is extremely costly
to generate for external validation, like for single-cell RNA-sequencing data. Nevertheless,
domain experts are still needed, choosing appropriate methods for assessing the associa-
tion of clustering results and deciding in which situation it is better to consult an expert in
order to prevent blind trust into one single method or our heuristic. During the process of
developing the framework, we observed that clustering methods that were most associated
over all methods also had the tendency of highest performance. However, this result is
not part of published work but could open the pathway to selecting the best method in a
completely unsupervised manner.

In case of an overall low association of clustering results, we protect ourselves by consid-
ering these situations as not trustworthy. As we incorporate all pair-wise combinations of
methods into our application, we build our assessment on stable associated clustering re-
sults. However, a specification of a lower bound for the number of included well-established
methods q would be desirable, which we expect to be different depending on the application
areas.
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3.3 Contribution 3: Uncertainty meets measurement
distortion

Fuetterer, C., Schollmeyer, G., and Augustin, T. (2019). Constructing Simulation Data
with Dependency Structure for Unreliable Single-Cell RNA-Sequencing Data Using Copu-
las. In De Bock, J., de Campos, C., de Cooman, G., Quaeghebeur, E., Gregory Wheeler, G.
editors, Proceedings of the Eleventh International Symposium on Imprecise Probabilities:
Theories and Applications. PMLR, 103:216–224.

3.3.1 Summary

In the previous contributions a new clustering method has been proposed as well as an
association accuracy heuristic, which allows to relate the clustering results of the differ-
ent methods to each other. With the simulation framework presented in Contribution 3,
it is possible to analyze the influence of distorted measurements, including dependence
structures of covariates. We therefore simulated downward and upward distorted measure-
ments based on upper and lower distribution functions. Furthermore, we respected the
multivariate dependence of genes by including copulas into the simulation process. Apart
from the uncertainties within a method, which played a role in the last two contributions,
we investigate technical uncertainty in this contribution. This uncertainty can occur dur-
ing the sequencing process due to e.g. the amplification rate, missing gene expression,
or measurement instrument variation. But also, stochastical noise and imputed values
might contribute to distorted data. In accordance with the contributions above, this work
has also arisen in relation to single cells. With this contribution we provide a framework
which allows an intensive study of clustering performance comparing simulation groups of
1) undistorted measurements with each other, simulating a homogeneous, an intermediate,
and a heterogeneous scenario, 2) upper and lower distorted measurements to no distortion,
and 3) include the influence of dependence structures by different copula families.

As orientation for the construction of the upper and lower parameter ranges of undis-
torted measurements, a zero-inflated negative binomial (ZINB) distribution is assumed
with parameters estimated from the real single-cell RNA-sequencing data of (Kolodziejczyk
et al., 2015b), simulating two target groups (g = 2).

Undistorted measurement scenarios

For the simulation setting within this contribution we first construct three undistorted
simulation scenarios with l = {1, 2, 3}, including different ranges of varying parameter
intervals, which overlap more and more with increasing heterogeneity. The first scenario,
which is also the most homogeneous setting contains the smallest range for expectation
parameter values µ1, size parameter values φ1, as well as for the fraction of zero-inflation
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values π1. The second scenario (µ2, φ2, π2) includes broader bounds for each parameter
range, and the third scenario (µ3, φ3, π3) has the broadest parameter range. The first
scenario represents a homogeneous setting, followed by an intermediate setting in the
second scenario, and the third scenario consists of the most heterogeneous setting, which
leads to the overall parameter set of simulation group 1:

θ(1) = {µ(1)
1 , φ

(1)
1 , π

(1)
1 , µ

(1)
2 , φ

(1)
2 , π

(1)
2 , µ

(1)
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3 , π

(1)
3 },

and overall parameter set of simulation group 2:

θ(2) = {µ(2)
1 , φ

(2)
1 , π

(2)
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(2)
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(2)
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(2)
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For group 1, and scenario l, a ZINB(µ
(1)
l , φ

(1)
l , π

(1)
l ) is generated. For group 2 a differ-

ent range of parameters is included into the according distribution ZINB(µ
(2)
l , φ

(2)
l , π

(2)
l )

for simulating the covariates of each scenario. The obtained simulation groups are then
combined for each scenario, leading to the simulation setting of independent, undistorted
scenarios.

Lower and upper distribution functions

Based on the undistorted scenarios, we construct upper and lower distorted count data
using the concept of lower and upper distribution functions as described by Montes et al.
(2015) in the context of imprecise probability theory. For that purpose, we consider a

set of distribution functions F (g)
j , specific to target group g and covariate j. The aimed

lower and upper distribution functions F
(g)
j (xj·) and F

(g)
j (xj·) are thus constructed by the

extraction of the infimum and supremum of F
(g)
j ∈ F (g)

j for the considered covariate value
xj·, which are again distribution functions (Montes et al., 2015):

F
(g)
j (xj·) = inf{F (g)

j (xj·) : F
(g)
j ∈ F (g)

j }, (3.4)

F
(g)
j (xj·) = sup{F (g)

j (xj·) : F
(g)
j ∈ F (g)

j }. (3.5)

In the applied simulation framework the lower and upper distribution functions are
obtained by choosing the infimum and supremum of the empirical cumulative distribution

functions leading to F̂
(g)
j and F̂

(g)
j . The simulated read counts xj· of each target group g

of the simulated undistorted scenarios (l = 1, 2, 3) are obtained with:

F̂
(g)
j (xj·) = inf

l=1,2,3
F̂

(g)
j (xj· | θ(g)

l ), (3.6)

F̂
(g)
j (xj·) = sup

l=1,2,3
F̂

(g)
j (xj· | θ(g)

l ). (3.7)

The empirically based lower and upper distribution functions allow the simulation of upper
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and lower distorted measurements. The artificial construction of distorted data leads to
the proposal how to simulate unprecise data. The obtained lower distribution function
represents situations, in which for each covariate higher count data are measured, whereas
the upper distribution function reflects situations measuring lower count data. As the upper
and lower cumulative distribution functions do not follow a ZINB distribution anymore,
we underlie the upper and lower quantile functions as marginal distributions. For the
construction of dependent simulation data, using copulas, we maintain the underlying
marginal distributions, which results in a ZINB for the non-distorted simulation scenarios.

Simulating dependence structure using copulas

For the integration of the dependence structure of the single-cell data of (Kolodziejczyk
et al., 2015b), we use copulas fulfilling the attributes described by Nelsen (2007). Copulas
allow to generate a joint distribution, maintaining the specified marginal distributions for
each covariate. As we build each simulation group on its own marginal distribution, we
are able to underlie the same group-specific dependence structure. A copula of a pairwise
dependence structure aims to map two distribution functions to one joint distribution
function. Also, in case of a high number of covariates p, it is possible to find a joint
distribution function FX , maintaining the univariate marginals, leading to a copula C of a
specific family v (see theorem of Sklar (1959)):

F
(g)
X (x1·, · · · , xp·) = Cv(F

(g)
1 (x1·), · · · , F (g)

p (xp·)). (3.8)

As a next step copulas were applied to the above defined lower and upper distribution

functions F
(g)
j and F

(g)
j . We therefore adapt Sklar’s theorem according to Montes et al.

(2015) and Škulj (2018) leading to joint distribution functions of the distorted measure-
ments. For the applied simulation study, copulas are built on the estimated cumulative
distribution functions of each scenario, allowing the artificial construction of upper and
lower distorted measurements, including the same multivariate dependence structure as in
the undistorted case. In our study, we consider the Gaussian copula, the Clayton copula,
and the Frank copula as possible copula families v.

Results of simulation data including the dependence structure of real data

The simulation framework thus consists of the undistorted simulation settings, considering
both an independence structure and the different dependence structures obtained by using
the three different copula families. These settings are also investigated with regard to
the distorted simulation data. All simulation data contain two balanced target groups
(g = 2) with differing p. To each setting, a k-means clustering is applied with K = 2.
For the undistorted settings, we expect that with increasing heterogeneity, the underlying
data structure can be better detected. These expectations hold true for the settings with
independent simulation groups, as well as for the Gaussian copula. In contrast to the lower
distorted setting, the upper distorted setting still leads to a good clustering performance.
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This is especially true for the independent setting as well as for the Frank copula. The
downward distortions result in considerably poorer clustering performance. Apart from
that scenario, an increase in sample size has the tendency to reach a higher clustering
performance for all considered dependence structures.
All in all, the proposed simulation framework constructed for count data of single cells
allows the investigation of dependence structures in scenarios with increasing heterogeneity
and to analyze the consequences of distorted data sets, which can occur during the technical
preparation of the data.

3.3.2 Comments and perspectives

With the proposed simulation framework, a complex simulation study is possible with re-
gard to different degrees of heterogeneity providing the simulation of distorted data. With
the lower distribution function, we simulate the tendency to measure higher read counts, as
the according cumulative distribution function leads to a lower probability for lower read
counts compared to the upper distribution function. The opposite holds for the upper
distribution function. Comparing the lower and upper distorted measurements, the latter
are limited by the supremum of the simulated undistorted settings, and thus allow more
heterogeneity between the groups. In comparison to that, the value range of the lower
distorted setting is limited by 0, and thus the two underlying groups cannot be distin-
guished appropriately. Of course, the degree of heterogeneity as basis of the undistorted
settings can be left to the user. Alternatively, repeated measurements could be included
as a possible set of distribution functions. The higher the heterogeneity of the underlying
settings, the higher the probability that the resulting distorted settings include extreme
values. Nevertheless, with these adjustment screws, the consequences of heterogeneity can
be investigated directly. Respecting the multivariate dependence of gene data, we can
extend the simulation settings by including copulas of different families maintaining the
marginal distribution of each gene. Thus, the influence of dependence can be simulated,
including an analysis of its consequences for the clustering performance. We consider our
complex simulation framework as possibility for an extensive study of methods allowing
both the incorporation of specific uncertainties and different dependence structures.

Including repeated measurements as foundation of the undistorted scenario provides in-
sights into measurement variation, which would be especially interesting in case that a gold
standard could be included as well. Within our framework, the repeated measurements
determine a possible range of the measured gene expression. Furthermore, the construction
of the downward and upward distorted measurements based on repeated measurements,
compared to a possible gold standard might provide hints for calibrating the measurement
device. In contrast to adding a constant term as measurement error, or underlying a cer-
tain distribution for simulating measurement distortions, the proposed framework allows
the simulation of complex data structures. This is also of special interest for investigat-
ing more complex algorithms compared to k-means, especially in combination with the
non-linear dimension reduction techniques provided in Section 2.1. The measurements
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of a biased instrument would influence a subsequent dimension reduction in case of no
constant distortions. With our contribution we provide a complex simulation framework,
investigating the measurement uncertainty with regard to the clustering performance of
different high dimensional clustering approaches. Referring to the underlying distribution
assumption within this dissertation, the simulated distorted measurements can take into
account the differing parameters of the ZINB distribution. Simulating genes with increas-
ing zero-inflation rates could show an influence of the high amplification rate during the
measurement of single cells, which lead to a high number of missing measurements. This
would be the extreme case of the upper distribution function. In contrast to that, expected
dispersion and the effect of extreme outliers could be analyzed with the lower distribution
function providing an upper range of possible measurement uncertainty.

For further research, the result of including specific dependence structures might be of
interest as it adapts the simulation settings as close as possible to the underlying data struc-
ture. A specific research project could further analyze imprecise copulas, allowing other
distributions, such as the Poisson distribution, which is also discussed as being appropriate
for single-cell data. Our approach is not limited to the application of single-cell data and
can be generalized and adapted to other underlying distributions. It is also possible to
investigate more than two subpopulations. However, the inclusion of possible scenarios is
limited because the higher the number of scenarios, the more extreme the according upper
and lower distribution functions.
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3.4 Contribution 4: Clustering information meets
regularized regression

Fuetterer, C., Nalenz, M., and Augustin, T. (2021). Discriminative Power Lasso – In-
corporating Discriminative Power of Genes into Regularization-Based Variable Selection.
Technical Report. Available under: https://epub.ub.uni-muenchen.de/91666/1/DPL_

TR_2022_03.pdf

3.4.1 Summary

Apart from the unsupervised learning tasks, single-cell data can also be used for classifi-
cation. With regard to their high dimension, it is of relevance to reliably extract only the
most decisive genes. Especially for the development of biomarkers the selection of only
a few genes significantly reduces the effort as fewer candidates have to be investigated
during intensive additional studies. With Contribution 4 we propose the Discriminative
Power Lasso (DP-Lasso), which allows to connect the grouping information of univariate
covariates based on clustering theory with the approach of regularized regression.

Discriminative Power Lasso (DP-Lasso)

With the Discriminative Power Lasso (DP-Lasso) we aim at strongly penalizing covariates
not directly contributing to the target variable. For the construction of the DP-Lasso
we incorporate univariate information of covariates into the regularization process of the
adaptive Lasso (Zou, 2006). The novelty of this method is to first tune a regularization
model based on the training data by including the grouping quality of each covariate
with regard to the target variable instead of univariate estimates as it is the case for
the adaptive Lasso. We refer to the grouping quality, inspired by clustering indices, as
discriminative power (DP), providing hints to the multivariate model, which univariate
information should be penalized less with regard to high compactness and separation.
We then integrate the discriminative power as penalty factors into the adaptive LASSO,
resulting in the Discriminative Power Lasso (DP-Lasso). In accordance to the adaptive
Lasso (Zou, 2006), the overall loss function, provided by the following equation has to be
minimized:

L(z,X, β, λ, w) = E(z, ẑ, β) +

p∑

j=1

λj|βj|, (3.9)

with E being the loss function of the true and predicted values of the response vector
z and ẑ, obtained by the design matrix X and parameter vector β. The second term of
Equation (3.9) is the penalization term, which is the sum of the products between the local
shrinkage parameter λj for each covariate and the absolute regression coefficient over all
p covariates. We replace the original penalty term of the adaptive Lasso by the covari-

https://epub.ub.uni-muenchen.de/91666/1/DPL_TR_2022_03.pdf
https://epub.ub.uni-muenchen.de/91666/1/DPL_TR_2022_03.pdf
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ate specific DP, leading to the following penalization: λ
(DP )
j := λw

(DP )
j = λ 1

DPj
. Thus,

with a higher discriminative power value of covariate j, denoted with DPj, we aim at less

penalization, and therefore the according discount factor w
(DP )
j is smaller. In accordance

with regularized regression models, the data are split into training and test data. For the
construction of the discriminative power we include the true underlying class labels of z
to assess compactness and separation of each covariate based on the training data. So,
instead of the original clusters we investigate the K given classes of the target variable.
With the cluster indices it is aimed to measure for each covariate the compactness within
each category of the target group and the separation between two categories of the target
group. We thus adapt the Davies-Bouldin (DB) index (Davies and Bouldin, 1979) and the
silhouette index (Rousseeuw, 1987) to the underlying context. The according formulas for
the covariate-specific Davies-Bouldin index DBj and the silhouette index Sj can be found
in Section III of Contribution 4. The adapted interpretation of the DB index ∈ [0, 1] is
that the lower its value, the more compact and the more separated are the underlying
groups among the considered covariate. The resulting discount factor is thus as follows:
w

(DB)
j = DBj. The silhouette index is interpreted in the opposite way. The higher the

absolute value of the silhouette index Sj ∈ [−1, 1], the more compact and the better the
underlying classes are separated by the investigated covariate, leading to the according
discount factor w

(Sil)
j = 1/|Sj|.

As a second idea, we modify the underlying concept of the analysis of variance (ANOVA)
(Fisher, 1992), such that it is possible to explore whether there is a difference of gene expres-
sion with regard to the categorical target variable. For the covariate specific weighting of
the discriminative power, we consider each covariate as grouping factor. Thus, in our case,
the according F-statistic is calculated among the true underlying groups g = (1, . . . , K),
reflecting the ratio of between-group variability and within-group variability, including the
group specific index h for each covariate value (xhj), and the number of observations, which
are part of the same group (ng):

Fj =

(N −K)
K∑
g=1

ng(x̄
(g)
·j − x̄·j)2

(K − 1)
K∑
g=1

ng∑
h=1

(x
(g)
hj − x̄

(g)
·j )2

. (3.10)

Based on the obtained F-value Fj, we can state that the higher the F-value of covariate j,
the more the mean values of the respective groups differ, as the degree of freedoms are
the same for univariate investigations. The corresponding discount factor is thus defined
with w

(ANOV A)
j = 1

Fj
. For a very low Fj value, the according discount factor results in

extremely high penalization. In order to avoid numerical instabilities we therefore include
the logarithmic transformation of w

(ANOV A)
j as penalty factors.

The constructed discriminative power indices DP-LDB, DP-LSil, and DP-LANOV A based
on the DB index, the silhouette index and on the ANOVA will be compared to the perfor-
mance of Lasso, Elastic Net (Zou and Hastie, 2005), and adaptive Lasso.
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Results of simulated and real single-cell data

Within our simulation study we simulated for a fixed number of N , and differing number
of covariates p, a normal distribution with increasing heterogeneity σ2 ∈ {1, 2, 3}. In each
study, 10 relevant covariates are assumed to be differentially expressed genes, with differing
expectation values of −1, and 1 for the corresponding subpopulations (K = 2). The
remaining p−10 covariates are simulated with a mean equal to 0. For the validation of our
proposed DP-Lasso models in comparison to its competitors we consider precision, relating
the number of differently simulated covariates to the selected number of covariates of each
model. In case of high precision, we can trust the model, selecting decisive covariates.
Furthermore, we are interested in the recall, which measures the fraction of differently
simulated covariates detected. Regarding the recall, Lasso, Elastic Net, and adaptive
Lasso seem slightly better, which could mean that the discriminative power Lasso selects
a too low number of covariates. With regard to precision, all DP-Lasso approaches result
in the highest precision in case of σ2 = 1. In case of σ2 = 2 and σ2 = 3, the DP-LANOV A
shows the highest precisions for each simulated number of covariates p.

Concerning the real single-cell RNA-sequencing data, the number of selected covariates is
stable and considerably lower compared to all competitors. For the number of selected co-
variates, the ANOVA-based approach DP-LANOV A selects the lowest number of covariates,
whereas the adaptive Lasso reaches a sparser model compared to the remaining DP-Lasso
models. In the binary classification task, the misclassification rate is very well comparable
to Lasso, and Elastic Net but performs better than the adaptive Lasso. In case of the
multiclass classification task the DP-Lasso models are considerably better than the adap-
tive Lasso but result in a tendency towards a higher misclassification rate compared to the
Lasso and the Elastic Net.

3.4.2 Comments and perspectives

The proposed DP-Lasso allows a stricter selection of covariates maintaining a high perfor-
mance of the regularization model. Adapting clustering indices instead of clusters to the
underlying target category enables to investigate the impact of each covariate to compact-
ness and separation of the target variable. We make use of explorative tools from cluster
theory, assessing compactness and separation of the real target group instead of the orig-
inal purpose, which assesses partitions obtained by clustering. These adaptions serve as
discriminative power measures. We further incorporate a reinterpretation of the ANOVA
as discriminative power measure. Instead of a univariate regression, we investigate how
well the target variable is explained by each covariate. This is in contrast to the original
ANOVA, which analyzes the influence of the grouping variable on the continuous target
variable. Both the cluster indices and the ANOVA are not directly affected by the number
of classes and are independent of a reference category. Only the according frequencies of
each class have an impact on the determination of compactness and separation and thus
on the discount factor, which includes the discriminative power. This can be seen as an
advantage over the challenge described by Tutz and Ulbricht (2009) and Tutz et al. (2015),
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where in case of a multiclass classification task each category is penalized, which brings
along the decision problem whether the covariate itself remains part of the model.

Nevertheless, the applied discriminative power measures fulfill their purpose leading the
multivariate model into the right direction and providing informative univariate weights as
confirmed by the conducted simulation study. With the proposed DP-Lasso we use a soft
filter instead of a pre-selection of genes. It is clear that soft filtering needs more computa-
tion time compared to a hard gene filter. However, in contrast to a hard filter no critical
threshold has to be determined. Furthermore, the proposed method leads to stable and
reproducible results and is efficiently implemented, as it makes use of the Lasso framework.
In comparison to the competitors Lasso and Elastic Net, the DP-Lasso approach delivers a
considerably lower number of selected covariates maintaining a comparable performance to
its competitors. Furthermore, the DP-Lasso shows a high stability selecting a stable num-
ber of covariates. Especially with regard to precision, the DP-Lasso models perform quite
well, whereas with regard to recall the competitors are slightly better, with the Elastic Net
performing best. However, the relation of precision and recall is best met by the DP-Lasso
approaches with a preference to the DP-LANOV A. Thus, the included compactness and sep-
aration leads for all DP-Lasso models to a considerably lower number of covariates, which
is also decisive for the underlying classification task. As a further extension of our method,
we could think of integrating the different discriminative power measures of covariates into
the group Lasso, or alternatively into a multitask learning approach.

The combination of variable selection and regularization plays a very important role in
genetics, that is why special attention has to be paid to the correlation of covariates such
as investigated by Tutz and Ulbricht (2009) and Tutz et al. (2015). These approaches are
needed to target the well-known problem of Lasso, which has stability problems in case of
strongly correlated data. The combination with ridge regression, which uses a L2 norm
instead of the L1 norm of Lasso, also aims to prevent the stability pitfalls by including the
strong convex penalty term. The Elastic Net still chooses both covariates in case that they
are strongly correlated. With group Lasso the problem of correlated covariates is aimed to
be circumvented by penalizing groups of covariates instead of single ones. Alternatively,
approaches which cluster correlated covariates are also often used. Examples include the
Cluster Elastic Net (CEN) (Witten et al., 2014), and the octagonal shrinkage and clustering
algorithm for regression (OSCAR) (Bondell and Reich, 2008). With DP-Lasso we can give
different weights to highly correlated covariates if they behave differently with regard to
the target variable. We therefore consider our approach as very promising, as also in case
of a correlated design matrix a distinction of variables with higher importance to the target
variable can be obtained. One step further is the Integrative LASSO with Penalty Factors
(IPF-Lasso) proposed by Boulesteix et al. (2017), which penalizes different sources of data
individually for regularized regression. In the investigated context of single-cell data it
would definitely be of interest to include different data sources to which our approach
should be extendable as well.





4 General concluding remarks

In this dissertation we provide methodological contributions, analyzing the consequences
of measurement uncertainty, method uncertainty and its consequences to clustering per-
formance. We investigate different dependence structures, including possible transitions
of single-cells from one state to another. With the replacement of the principal compo-
nent analysis of the original single-cell consensus clustering (SC3) (Kiselev et al., 2019)
by diffusion maps, the underlying biological function of single cells can be taken into ac-
count. This leads to the proposed method adapted SC3 (adaSC3) in Contribution 1. For
validating clustering partitions from different methods, we propose adapted association
measures with the according association accuracy heuristic, provided in Contribution 2,
preventing the risk of choosing a bad partition due to high method uncertainty. Contribu-
tion 3 allows a construction of simulation studies with increasing heterogeneity or repeated
measurements, which enables the generation of artificially lower and upper distorted data.
In addition, complex dependence structures can be included into the proposed simulation
framework for an intensive study of the performance of different clustering algorithms.
The proposals of all three contributions allow to analyze the consequences of distorted
single-cell RNA-sequencing measurements with well suited clustering algorithms and in-
ternal validation. In contrast to these completely unsupervised procedures, Contribution
4 incorporates validation measures of clustering theory into the regularization framework,
leading to a selection of a lower number of decisive covariates. Based on the training data,
the test set of the investigated single cells can be classified into cell types in a supervised
way.

In Chapter 3 concluding remarks and outlooks are provided for each contribution. A
more general perspective is given concerning the future of this research field. As many
single-cell RNA-sequencing studies have been conducted, and open science plays a very
important role, a large number of data bases are shared, especially due to the overall aim
of completing the Human Cell Atlas. The high dimensional clustering and its underlying
workflow essentially support the manual determination of cell types. As stated in this
thesis, the clustering of single cells considerably contributed to the labeling of cells as the
foundation of prediction and might be the future methodology to determine biomarkers.
Also, the labeled cell data bases obtained by manual or visual inspection provide classifiers
for a joint classification analysis, with the expectation to gain consistent labels.
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Clustering approaches as well as regularization techniques aim at identifying decisive
genes of the different groupings. While single-cell clustering enables the detection of new
cell types, classical regularization models are restricted to firmly fixed cell types. During
the year 2018 there was an increasing trend of clustering single-cell RNA-sequencing data.
This trend decreased in the year 2021, as stated by Zappia and Theis (2021). Nowadays
there is more a tendency to integrate different samples into classification tasks. Due to the
increasing data volume, classification tasks will replace cluster analysis. A future challenge
will be an appropriate definition of the term cell type as it is not yet properly defined.
Also due to the very complex designs, such as including several conditions, replicates, data
sources, and different cancer types, future analysis will profit from the integration of suit-
able data sets for classification approaches. Multiple data sources such as genomics, pro-
teomics, metabolomics or microbiomics data should be considered for classification tasks.

However, before further expensive studies are conducted, it might be beneficial to invest
in some more benchmarking studies because of the high number of methods in this research
field. Especially the open data and open source code might support this avenue.

The proposed contributions have shown that taking into account the data structure as
well as having the application task in mind, delivers a great opportunity for the develop-
ment and validation of methods with regard to accurate applications.
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Tutz, G., Pößnecker, W., and Uhlmann, L. (2015). Variable selection in general multinomial
logit models. Computational Statistics and Data Analysis, 82:207–222.

Tutz, G. and Ulbricht, J. (2009). Penalized regression with correlation-based penalty.
Statistics and Computing, 19(3):239–253.

Ullmann, T., Hennig, C., and Boulesteix, A.-L. (2021). Validation of cluster analysis
results on validation data: A systematic framework. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, page e1444.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research, 9(11).

Vasighizaker, A., Danda, S., and Rueda, L. (2022). Discovering cell types using mani-
fold learning and enhanced visualization of single-cell RNA-Seq data. Scientific reports,
12(1):1–16.
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Abstract
The analysis of single-cell RNA sequencing data is of great importance in health
research. It challenges data scientists, but has enormous potential in the context of
personalized medicine. The clustering of single cells aims to detect different sub-
groups of cell populations within a patient in a data-driven manner. Some comparison
studies denote single-cell consensus clustering (SC3), proposed by Kiselev et al. (Nat
Methods 14(5):483–486, 2017), as the best method for classifying single-cell RNA
sequencing data. SC3 includes Laplacian eigenmaps and a principal component anal-
ysis (PCA). Our proposal of unsupervised adapted single-cell consensus clustering
(adaSC3) suggests to replace the linear PCA by diffusion maps, a non-linear method
that takes the transition of single cells into account. We investigate the performance
of adaSC3 in terms of accuracy on the data sets of the original source of SC3 as well
as in a simulation study. A comparison of adaSC3 with SC3 as well as with related
algorithms based on further alternative dimension reduction techniques shows a quite
convincing behavior of adaSC3.
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1 Introduction

Personalized medicine based on genomic data promises the precise and individu-
alized treatment of diseases using information from a patient’s genome (Cho et al.
2012). There is tremendous research interest in this field, especially with regard
to cancer. Hereby it is of interest to determine the different stages of cancer as
well as the understanding of the complex development of organs for instance, by
analyzing the single cells that are obtained from the single-cell RNA sequencing.
Data-driven approaches have led to projects such as The Human Cell Atlas (2020),
which aims to establish an interpretable structure for the different cell types of sin-
gle cells and serves as an orientation for the study of diseases. The mission of the
Human Cell Atlas is “(t)o create comprehensive reference maps of all human cells—
the fundamental units of life—as a basis for both understanding human health and
diagnosing, monitoring, and treating disease.” Based on the genetic profiles of these
single-cell RNA sequencing data, an unsupervised classification allows a data-driven
distinction of intra- and intertumoral heterogeneities as well as the determination
of different pathways during the development (Duò et al. 2018). The approach of
single-cell consensus clustering (SC3) by Kiselev et al. (2017) has gained much atten-
tion, not only due to its superior performance in the comparison study of Duò et al.
(2018). SC3 is also explicitly tailored to single cell data. Nevertheless, the origi-
nal incorporation of the linear dimension reduction of principal component analysis
may offer a potential for improvement. Following Bendall et al. (2014) and Buet-
tner and Theis (2012), for single cells the transition from one state to another is
a non-linear continuous process. Therefore, we propose to replace the PCA of the
SC3 method by diffusion maps (Haghverdi et al. 2015), resulting in a new unsuper-
vised algorithm, which we call adapted single-cell consensus clustering (adaSC3).
The use of diffusion maps is not only motivated by the biological behavior of sin-
gle cells but is also supported empirically: First, diffusion maps allow for a natural
modeling of the transition of single cells by Markov processes. Secondly, according
to Haghverdi et al. (2015), when applying diffusion maps to single cell data, they
also seem to perform best compared to other non-linear transformation methods such
as independent component analysis, Kernel PCA, Isomap, or Hessian Local Linear
Embedding.

Our paper ist structured as follows: We first give an introduction into single-cell
RNA sequencing data in Sect. 2. In Sect. 3, we present the methodological back-
ground, starting in Sect. 3.1with the proposed adapted single-cell consensus clustering
(adaSC3), as well as some related competing methods. In Sect. 3.2, we focus on the
special suitability of diffusion maps, included in our framework of adaSC3. Ana-
lyzing some characteristic single-cell RNA sequencing data sets, introduced already
in Sect. 2, adaSC3 is compared to its competing methods in Sect. 4. The perfor-
mance of adaSC3 and its competing methods is further evaluated with partition-wise
simulation data in Sect. 5. Section 6 concludes with a brief discussion and out-
look.
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Table 1 Characteristics of the scRNA-seq data sets, with N single cells, G genes and k categories of cell
types

Data set N G k

Biase et al. (2014) 49 13,322 3

Deng et al. (2014) 269 10,333 10

Goolam et al. (2016) 124 11,154 5

Treutlein et al. (2014) 80 5757 5

Yan et al. (2013) 90 10,077 7

2 Single-cell RNA sequencing data (ScRNA-Seq data)

The health and development of living organisms can heavily be impacted by the kind
and activity of their genes, referred to as gene expression.With the technique of single-
cell RNA sequencing (scRNA-seq) introduced by Tang et al. (2009), it is possible to
measure the gene expression for single cells. In scRNA-seq, genomic profiles are
measured in terms of read counts, that is the number of small sequences (“reads”) that
result from a cell’s RNA that can be identified as belonging to a particular gene. A data
set comprising N cells and G genes will hence be a N × G matrix containing non-
negative integers (including zero). The scRNA-seq data of Biase et al. (2014), Deng
et al. (2014), Goolam et al. (2016) and Yan et al. (2013), provided by the Hemberg
Group of the Sanger Institute (2020), contain read counts of single cells of a mouse
or a human with different cell states that are passed during differential transcription
for targeting the analysis of cell division in a pedigree. Gene expression is stochastic,
and often the reads follow different distributions for different cell types. Another
topic of interest is the examination of having reached varying pathway stages. For
example, the experiments of Treutlein et al. (2014) were carried out to investigate
cell transition during lung development. In detail, these experiments aim to analyze
the development of the distal lung epithelium of the mouse based on the different
transcriptional states.

The data sets shown in Table 1 had been used for the evaluation of SC3
by Kiselev et al. (2017). Fulfilling the reproducibility and the sample size cri-
terion for the unsupervised classification leads to the data situation1 described
in Table 1. Except for the data set of Biase et al. (2014), the distributions
of cell types are quite unbalanced encompassing between 80 and 269 single
cells.

1 Since in the SC3 framework, as described in the transformation step of adaSC3 later, components in
higher dimensions are chosen randomly, it is important to focus on data sets with a small amount of single
cells, in order to keep the analysis replicable.Moreover, for providing the same data situation asKiselev et al.
(2017), we had to adapt the data set of Biase et al. (2014) such that the number of single cells corresponds
to the data description of the original SC3 paper.
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3 Methods

In this section, we first present the proposed adapted single-cell consensus clustering
(adaSC3), which allows, by replacing PCA with diffusion maps, to take the varying
pathways and their different transcriptional states into account. Furthermore, we con-
sider several SC3-like approaches that later serve as competitors including different
transformation techniques.

In the second part of this section, we look more closely at diffusion maps, which
allow an appropriate embedding of the complex data structure of single cells in the
transformation step of adaSC3.

3.1 Unsupervised adapted single-cell consensus clustering (adaSC3) and its
competitors

Single-cell consensus clustering aims at classifying the gene expression of single cells
in an unsupervised way such that groups are determined in a data-driven manner for
detecting new subgroups or confirming manually determined cell types. The clas-
sification process subdivides the cell population with regard to the homogeneity of
the genetic profile into subgroups of single cells, which represent, for example, dif-
ferent stages of a disease or of a development process within a patient or within a
mouse. The original SC3 is implemented in the software R (R Core Team 2020) and
can be described as a pipeline consisting of several transformation steps including an
automatic dimension reduction, resulting in a clustering respecting all combinations.
For the construction of the adapted single-cell consensus clustering (adaSC3) and its
competitors, we rely on the same principle framework as SC3 but consider different
transformations.2 The concrete procedure of adaSC3 consists of the following steps:

1. Preprocessing As a result of the scRNA-seq process, one obtains the gene expres-
sion matrix E containing the read counts of N single cells and G genes. As a
preprocessing step, the original matrix E is reduced by a gene filter, as proposed
in the original work, that aims to exclude rare and omnipresent genes.3 This leads
to the expression matrix E ′ of dimension N × G ′.

2. Calculation of distance matrix DBased on the expressionmatrix E ′, the Euclidean
distance matrix is constructed for each pairwise single cell combination. Further-
more, two measures of dissimilarity are applied on the log-transformed data of
E ′ using the Pearson and the Spearman correlation, respectively. For the sake of
simplicity, the obtained distance and dissimilarity matrices will each be referred
to as distance matrix D.

3. Transformation technique T For each of the obtained distance matrices D, we
apply Laplacian eigenmaps4, introduced by Belkin and Niyogi (2003) as proposed
in the original SC3. In addition, we apply diffusion maps, described in more

2 AdaSC3 and its competitors are also implemented inR and are available from the first author upon request.
3 Genes with an expression value of > 2 in less than 6% of the cells as well as genes with a positive
expression value in more than 94% of the single cell population are excluded.
4 That are implemented as a spectral embedding in the Python software library Scikit-learn
(Pedregosa et al. 2011) as the best size of the neighborhood for the aimed embedding.
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detail below, instead of the originally proposed principal component analysis. To
each of the six combinations, consisting of three different distance matrices D
and two transformation techniques, an eigenvalue decomposition is applied. This
leads in total to 3 × 2 = 6 different eigenvalue decompositions, resulting each
in respectively N − 1 eigenvectors ψ1, . . . , ψN−1 with their ordered eigenvalues
1 > λ1 ≥ · · · ≥ λN−1.

4. Consensus clustering In accordance to SC3,we adopt the automatic selection of the
number of eigenvectors to be considered. For each eigenvalue decomposition, a k-
means clustering,with k being deterministic, representing the number of categories
of the underlying cell types as proposed in the original paper of Kiselev et al.
(2017), is conducted. The automatic selection of eigenvectors of the described
scenario starts incorporating the first eigenvector until the rounded integer of the
4% quantile of the set {1, . . . , N }. The subsequent clusterings include each one
further eigenvector until the 7% quantile is reached for including the maximal
range of eigenvectors for the last clustering of each combination. The result of
each k-means clustering m is summarized in a consensus matrix C, indicating the
relative frequency of how often a pair of single cells is grouped together over
all nm clusterings. Based on the obtained consensus matrix C, a final complete-
linkage clustering is performed. It aims to achieve higher performance and a more
robust result for the classification of single cells, leading to the final grouping of
k subgroups. The quality of clustering is evaluated ex-post by the Adjusted Rand
Index (ARI) as proposed in the original work of Kiselev et al. (2017).

Apart from the original SC3 that includes a PCA and Laplacian eigenmaps as
transformation techniques, we construct further competing algorithms following the
same principle as of adaSC3. Instead of diffusion maps and Laplacian eigenmaps, we
propose additional algorithms leading to two different types of constructions, differing
in the number of incorporated transformations. The first construction only uses one
single transformation technique T in Step 3 of adaSC3. We therefore analyze the
influence of the non-linearmanifolds of isomaps (IM), locally linear embedding (LLE)
as well as themultidimensional scaling (MDS), in addition to the transformation of the
principal component analysis (PCA), Laplacian eigenmaps (LE), and diffusion maps
(DM), each on their own.5 The second type of construction consists of the combination
of each mentioned transformation T with Laplacian eigenmaps. This leads to the
algorithms namedby the incorporated transformations, resulting inLE+ IM,LE+LLE
and LE + MDS, in addition to the original SC3 (PCA + LE) and adaSC3 (DM+LE).

3.2 Diffusionmaps

In the following, we describe the motivation of embedding the complex structure of
single cells during transition into an appropriate global non-linear manifold, using

5 For the construction of IM and LLE, Kayo (2006) proposes to use for IM and LLE the same estimate for
the optimal neighborhood size, implemented by the R function calc_k of the R package lle (Diedrich
et al. 2012). Isomaps are then constructed using the R package vegan (Oksanen et al. 2019); the locally
linear embedding further relies on the R package lle (Diedrich et al. 2012) and MDS is based on the
R package stats (R Core Team 2020).
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diffusion maps. As stated in the introduction of Angerer et al. (2016), diffusion maps
allow the reconstruction of the different states that are connected via different transi-
tions. One possible transition is the mutation of one single cell into another. For the
following construction of diffusion maps, we only consider the transition of one single
cell into another within one step. Another decisive fact is the robustness of diffusion
maps to noise. Furthermore, with the normalization, described in the following, diffu-
sion maps are able to detect lowly represented cell types. Coifman and Lafon (2006)
provide the general framework of diffusion maps that can be adapted to single cells
following (Angerer et al. 2016) that is presented in the next steps. For the construction
of diffusion maps, consider two states x, y ∈ Ω , withΩ as the appropriate state space.
x and y represent single cells; their gene expressions, measured by count data, lead to
the pairwise distance D(x, y).

1. For each choice of the distance measure D, each point (single cell) is considered
as a node of a symmetric graph with weight function KD

KD(x, y) = exp

(
−D(x, y)

2α2

)
,

indicating the affinity of a pair of single cells with scale parameter α, reflecting
the best size of the included neighborhood.6

2. In the following, we construct the core of a transition kernel of a Markov chain

PD(x, y) = KD(x, y)

Z(x)
, with Z(x) =

∑
y∈Ω

KD(x, y) .

3. With a density interpretation of the upper term, the following density normalized
transition probability matrix

P̃D(x, y) = 1

Z̃(x)

KD(x, y)

Z(x)Z(y)
, with Z̃(x) =

∑
y∈Ω\x

KD(x, y)

Z(x)Z(y)

can be obtained. As the research question consists of mapping the differentiation
behavior of single cells, we are only interested in the transition between single
cells. Thus, the diagonal of P̃D(x, y) is set to zero, and the normalization is adapted
appropriately, summing up only the gene expression of differing pairs of single
cells with y �= x .

4. Based on the normalizedmatrix P̃D , indicating the transition of one state to another
by an ergodic Markovian diffusion process, the aimed transformation is obtained.

4 Results

In this section, we evaluate the clustering performance of adaSC3 and its competitors.
The accuracy of combining each of thementioned transformations in combinationwith
Laplacian eigenmaps is illustrated in Table 2.

6 The estimation of α relies on the methods implemented in the R package destiny (Angerer et al. 2016).
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Table 2 ARI of all algorithms including two transformation techniques with
*: overall best clustering performance of the combination Laplacian eigenmaps (LE) with isomaps (IM),
locally linear embedding (LLE), and multidimensional scaling (MDS), as well as SC3 and adaSC3;
bold: best performance comparing SC3 and adaSC3

Data Set LE+ IM LE + LLE LE + MDS SC3 adaSC3

Biase et al. (2014) 0.95 1.00* 1.00* 0.95 0.95

Deng et al. (2014) 0.68 0.70 0.56 0.67 0.76*

Goolam et al. (2016) 0.54 0.69* 0.54 0.69* 0.68

Treutlein et al. (2014) 0.53 0.42 0.56 0.66 0.77*

Yan et al. (2013) 0.75 0.75 0.65 0.65 0.75*

AdaSC3 leads in three out of five cases (Deng et al., Treutlein et al. and Yan et al.)
to better clustering results, compared to the original SC3, and it is identical in the case
of the data set of Biase et al.. Concerning the competing algorithms, the combinations
of LE with IM andMDS tend to deliver worse results compared to adaSC3. However,
LE + LLE achieves two times the best performing classification but fails extremely
in the case of the Treutlein et al. data set. The slightly worse performance of adaSC
compared to SC3 concerning the complete Goolam et al. data set of Table 2 should
not be over-interpreted as the resampling results based on leaving out each single cell
once, we reach considerably higher performance compared to SC3. Furthermore, we
can state that adaSC3 delivers the highest overall performance concerning both the
resampling study as well as using only one transformation technique as illustrated
in the Supplementary Material. We therefore consider our proposal as generally the
best approach among its competitors, of SC3 and its related approaches, based on the
benchmarking data sets. This result is especially surprising as the scRNA-seq data
sets were originally used for determining the proposed default settings of SC3, such
as e.g. the automatic choice for the lower dimension.

5 Simulation data

The classification accuracy of the simulation data is investigated in the same way as
the scRNA-seq data. We are interested in the consensus clustering accuracy of two
simulation groups, which are constructed with different ranges of distribution param-
eters describing the read counts. With shifted parameter ranges, one can consider the
simulation groups as representing a healthy and a diseased population. According
to the literature, the use of a zero-inflated negative binomial (ZINB) distribution is
recommended as the most adequate approximate distribution for modeling the read
counts of single cells. It allows larger variability of read counts compared to the former
used Poisson distribution (see e.g.Wagner et al. 2013). Based on the constructed simu-
lation data following a (generalized version of a) ZINB distribution for the expression
of each gene, we will investigate the influence of various parameters describing each
gene for all possible group partitions for a fixed total number N of single cells.
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5.1 Construction of simulation data

The ZINB distribution (Kleiber and Zeileis 2016) is a mixture between a negative
binomial probability mass function and a point mass at zero. For generating ZINB
distributed simulation data we use the R package emdbook (Bolker B, Bolker Main-
tainerBen and Imports,MASS2020),which is basedon ageneralizationof the negative
binomial (NB) distribution with parameters μ and φ for the non-zero inflated part.7

The parameter μ is a continuous positive real value, describing the mean. The disper-
sion parameter φ represents the shape parameter of the gamma distribution underlying
the generalization of the NB. The fraction of zero-inflation is taken into account by
the parameter π .

In the following scenarios, we investigate the influence of different parameters of
the distribution family. In order to mimic a realistic situation, the scRNA-seq data of
Kolodziejczyk et al. (2015) is taken for estimating the parameters of a ZINB distribu-
tion8 and allow the construction of ranges for each parameter looking at the shifted
quantiles of the estimates of the parametersμ andφ. This leads to the parameter ranges
M(1) and Φ(1) for cell population 1 and M(2) and Φ(2) for cell population 2. The
parameter range � for π is set to be the same for both populations.9 Thus, the simu-
lated read counts of each gene follow a ZINB(μ1, φ1, π1) distribution for simulation
group 1 and a ZINB(μ2, φ2, π2) for simulation group 2, according to the following
scenarios:
· Simulation scenario (a) for different ranges of μ:

μ1 ∈ M(1) and μ2 ∈ M(2), φ1 = φ2 ∈ Φ(2), π1 = π2 ∈ �

· Simulation scenario (b) for different ranges of φ:
μ1 = μ2 ∈ M(2), φ1 ∈ Φ(1) and φ2 ∈ Φ(2), π1 = π2 ∈ �

· Simulation scenario (c) for different ranges of μ and φ:
μ1 ∈ M(1) and μ2 ∈ M(2), φ1 ∈ Φ(1) and φ2 ∈ Φ(2), π1 = π2 ∈ �

· Simulation scenario (d) for the same range of μ and φ:
μ1 = μ2 ∈ M(2), φ1 = φ2 ∈ Φ(2), π1 = π2 ∈ �

For each of the simulation scenarios (a) to (d), we sample N1 times out of ZINB(μ1
φ1, π1) and N2 times out of ZINB(μ2, φ2, π2) such that, for comparison purposes, the
gene-specific parameters remain the same when generating all possible partitions of
N1 : N2 (with N1 + N2 = N ), starting with 1 : (N −1) until (N −1) : 1, with N = 50
for the respective scenario. In order to obtain simulation data with the dimension
N × G for each partition, we repeat this procedure 200 times. Thus, read counts of
G = 200 genes are generated with the new parameter values drawn uniformly from
the respective intervals.

7 Details explaining the generalization of the negative binomial distribution function based on a mixture of
Poisson distributions with gamma distributed Poisson rates can be found e.g. in Fuetterer et al. (2019). They
investigate the influence of different heterogeneity degrees of count data using simulation data as well as up-
and downwardly distorted measurements via the ZINB distribution describing the case of measurements
tending to lower read counts and upper read counts.
8 The manual construction of two cell populations rely on the differentially cultured murine embryonic
stem cell populations “2i” and “serum” for each of the 38.616 genes.
9 The constructed parameter ranges are part of the Supplementary Material.
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5.2 Clustering performance based on simulation data

The following plots show how the group partition (x-axis) of a combination of two
transformation methods influences the clustering accuracy, measured by the Adjusted
Rand Index (ARI) (y-axis). In the ideal case, the accuracy is 1 for each of the partitions,
which would indicate that the classification perfectly corresponds to the underlying
group allocation. This criterion is best met for adaSC3, not only in the case of using
only one transformation technique (see Supplementary Material), but also in combi-
nation of those with Laplacian eigenmaps (LE) for simulation scenarios (a) to (c).
Simulation (d) serves as a reference where no difference in the gene-specific param-
eters was simulated and no accurate grouping should be detected. Each partition of
each scenario is repeated 10 times and the accuracy of the respective clustering results
is visualized by boxplots. Results of simulation scenario (c) and (d) can be found in
the Supplementary Material.

5.2.1 Simulation scenario (a): variation in expectation parameter�

In the case of differing parameter μ represented in scenario (a), adaSC3 seems
to perform best among the combined methods (see Fig. 1) as well as compared to
each method on its own. It can also be seen that the inter quantile range of boxplots
have the tendency to be shorter for adaSC3 and reach higher ARI values compared
to its competitors. Therefore, we conclude in general that our approach generates
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Fig. 1 ARI among all partitions of N = 50 with regard to the combination of different transformation
techniques for simulation scenario (a)
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a more efficient clustering allocation. Furthermore, it should also be noted that the
performance of the method adaSC3 seems to be better when more single cells are
part of simulation group 1 compared to simulation group 2. This might allow the
interpretation that the detection of true positives achieves higher accuracy compared
to the detection of false negatives, given the diseased population has on average higher
gene expression.

5.2.2 Simulation scenario (b): variation in size parameter�

For partition-wise created simulation data differing in the parameter φ one can state,
referring to Fig. 2, that apart from adaSC3 the combination of LE + LLE performs
quitewell, too.However, thismethodneedsmore partitions before it starts detecting the
difference in the simulation groups and fails drastically earlier compared to adaSC3.
For approximately balanced data, LE + LLE often leads to worse results. The tendency
that the clustering performance depends on the partitions can be confirmed over all
methods for simulation scenarios (a) to (c), in which adaSC3 is affected the less.

With regard to scenario (c), the simulated differences of both parameters μ and φ

lead to a quite accurate classification for most methods with an overall superiority of
adaSC3, representing the scenario being the closest to the reality. For the simulation
design with no difference in the simulation groups, the allocation of single cells is as
expected and represents random allocation.
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Fig. 2 ARI among all partitions of N = 50 with regard to the combination of different transformation
techniques for simulation scenario (b)
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6 Conclusions

The approach of adapted single-cell consensus clustering (adaSC3) is tailored to the
clustering of single cells. It reflects the biological structure of single cells by including
diffusion maps with the aim to respect the transition process of the underlying data.
Indeed, the inclusion of diffusion maps instead of the originally proposed PCA led to a
better clustering performance. We consider adaSC3 to be the best method compared
to all investigated competitors, both in the analyzed scRNA-seq data as well as in the
simulation study. This motivates further research that takes into account the biological
basis of the data before constructing or combining some methods, as this could be
rewarded both in terms of interpretation and accuracy, as shown in this paper.

Based on the discovery that balanced data seems to be detected correctly with
higher quality, the distribution of classified classes could be taken into account for
an unsupervised evaluation. Furthermore, studies of additional scRNA-seq data and
further simulations are needed to reinforce the results of this paper. This is especially
due to the fact that adaSC3 was evaluated on the same scRNA-seq data used for
the development of the original SC3 method. This makes the overall superiority of
adaSC3 over SC3 even more surprising, while on the other hand some bias of these
data sets favoring SC3-like methods cannot be excluded.
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1

Clustering Performance of Complete Single-cell RNA-seq Data

As announced in the paper, Table 1 contains the classification results for the
individual transformations of the complete scRNA-seq data in comparison to
SC3 and adaSC3:

Table 1: ARI of consensus clustering using a specific combination of methods
PCA: Principal Component Analysis, LE: Laplacian Eigenmaps, DM: Diffu-
sion Maps; IM: Isomaps and MDS: Multidimensional Scaling;
*: best clustering performance among all transformations;
bold: better performance comparing SC3 and adaSC3.

Data Set PCA + LE LE + DM PCA LE DM IM LLE MDS
(SC3) (adaSC3)

Biase et al. [1] 0.95 0.95 0.95 0.95 0.95 0.95 1.00* 1.00*
Deng et al. [2] 0.67 0.76 0.67 0.95* 0.34 0.44 0.43 0.50
Goolam et al. [3] 0.69 0.68 0.69 0.68 0.94* 0.54 0.69 0.54
Treutlein et al. [5] 0.66 0.77* 0.58 0.63 0.52 0.34 0.36 0.32
Yan et al. [6] 0.65 0.75* 0.65 0.75* 0.64 0.60 0.91 0.65
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2

Resampling on Single-cell RNA-seq Data

For classification we used the scRNA-seq data, described in Section 2 of the
manuscript, and consider a resampling scheme to analyze how stable the results
of the individual approaches are. For this purpose, each single cell was omitted
once from each scRNA-seq data set, such that the classification was performed
N times on N −1 data points. The sample that is drawn without replacement
was compared to the corresponding underlying cell types of the sampled N−1
single cells. By these resampling experiments, we evaluated each iteration and
underline the good performance of adaSC3 with the scRNA-seq data of Biase
et al. [1], Deng et al. [2], Goolam et al. [3] and Treutlein et al. [5] in Figure 1
and of Yan et al. [6] in Figure 2.
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Fig. 1: Resampling results of the scRNA-seq data sets for adaSC3 and its
competitors
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Fig. 2: Resampling results of the scRNA-seq data set Yan et al. [6] for adaSC3
and its competitors.
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Construction of Simulation Data

To determine realistic simulation data, we mimic the data set of Kolodziejczyk
et al. [4] that contains embryo stem cells of a mouse. This data set was selected
for the construction of the simulation data because it contains a high number
of single cells (N = 704) and a high number of genes (G = 38.616). Another
advantage of this data is that it contains two quite balanced subgroups with
295 and 250 single cells representing the state “2i” and “serum”, which are
used for the construction of the simulation groups. The remaining 159 sin-
gle cells of “a2i” are not considered for the construction of the simulation data.

We estimated the parameters of the zero-inflated Negative Binomial (ZINB)
distribution of each gene for the respective cell population. From these esti-
mates we determined ranges for the parameters of our simulation data with
the 35% to 80% quantiles of the estimated parameters of the labelled group 2i
for simulation group 1 and the 15% to 60% quantiles of the estimated parame-
ters of the labeled group serum for simulation group 2. The lower quantiles of
simulation group 2 should represent the healthy population with lower mean
and lower dispersion of gene expression compared to simulation group 1. This
leads to the following ranges of parameters µ and φ of the ZINB distribution
for simulation group 1 and 2 shown in Table 2:

Table 2: Intervals of the estimated parameters of a ZINB distribution based
on the cell types “2i” and “serum” used by steps of (I) : 0.1; (II) : 0.001;
(III) :0.0001.

Parameter Range Constructed Ranges Constructed Ranges
based on 2i based on serum

M(1) M(1) := [45, 293](I) M(2) := [12, 112](I)

Φ Φ(1) := [0.24, 0.94](II) Φ(2) := [0.12, 0.47](II)

Π Π := [0.001, 0.01](III) Π := [0.001, 0.01](III)
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Results of Simulation data

Simulation Scenario (a) - Variation in Expectation Parameter µ
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Fig. 3: Clustering accuracy (ARI) among all partitions of N= 50 with re-
gard to the individual transformation techniques for simulation scenario (a)
in comparison to SC and adaSC3.

Simulation Scenario (b) - Variation in Size Parameter φ
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Fig. 4: Clustering accuracy (ARI) among all partitions of N= 50 with re-
gard to the individual transformation techniques for simulation scenario (b) in
comparison to SC and adaSC3.

64 Attached contributions



6

Simulation Scenario (c) - Variation in both Parameter µ and Parameter φ
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Fig. 5: Clustering accuracy (ARI) among all partitions of N= 50 with regard
to the individual transformation techniques as well as in combination with LE
for simulation scenario (c).
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Simulation Scenario (d) - Variation in no Parameter µ and φ
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Fig. 6: Clustering accuracy (ARI) among all partitions of N= 50 with regard
to the individual transformation techniques as well as in combination with LE
for simulation scenario (d).
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Abstract—One challenge of unsupervised clustering is that
its clustering results cannot be directly evaluated in terms of
expected accuracy. In case of internal validation, the clustering
is validated based on the compactness within a cluster as well
as the separation of clusters. Especially in high dimensional
settings, internal validation as well as user inspection, becomes
more difficult and expensive the higher the dimension of the
data. We therefore propose an association accuracy heuristic,
relating the association of results obtained by different methods
to their accuracy. This heuristic is based on an analogy to
decision making where high homogeneity among the opinions
of independent experts is a widely accepted indicator for having
chosen the right decision. Analogous to expert opinions, we assess
the groupings of different state-of-the art clustering methods. To
measure the (dis)similarity of the clustering results, we propose
method-association-measures, that are built on an adaption of
χ2-based association measures. Our heuristic is investigated in
a simulation study as well as on single-cell RNA sequencing
data. Incorporating the ground truth allows a validation of the
proposed association accuracy heuristic. Our results provide the
opportunity to distinguish between situations where clustering
results are expected to be trustworthy and settings where external
intervention is indispensable to protect ourself against high risk
of bad clustering results.

Index Terms—Unsupervised Clustering, Internal validation,
Association measure, Non-linear embedding, Single-cell RNA
sequencing data

I. INTRODUCTION

With single-cell RNA sequencing (scRNA-seq), enabled by
[1], progress has been made by allowing sequencing on the
level of single cells. The measured gene expression of one
gene is obtained by counting the number of cDNA-fragments
in the sequencing library (“reads”) that can be assigned to
the underlying gene sequence. The result of the measurement
process over all genes and all single cells is a count matrix,
containing the reads of N single cells and p genes (N << p).

As stated by [2], the groups of single cells, called cell types,
are usually unknown and are mostly obtained by an explo-
rative analysis applying different context-adapted clustering
algorithms. For a manual grouping, which is the case of the
used scRNA-seq data, much effort is needed, which becomes
even infeasible in case of a high number of markers (genes that
are used to identify specific cell types). In addition, manual

The first author is very grateful to the LMUMentoring program, supporting
young researchers. 978-1-6654-0126-5/21/$31.00 ©2021 European Union

inspection is influenced by the researcher’s experience and
interpretation of visual embeddings leading to human mistakes
[3]. These are the reasons why automatic clustering methods
are more and more applied in order to achieve accurate
groupings. In case of single cells, methods such as Seurat [4]
and SC3 [5] are often used for determining cell types [6].

Far beyond genetics, the evaluation of unsupervised clus-
tering is a well-known issue for different application fields
such as for example marketing, biology, insurance, earthquake
studies as well as text clustering targeting natural language
processing tasks. While computation time becomes cheaper
and cheaper, expert decisions remain expensive. Accordingly,
the development and application of automated algorithms is
increasing, which leads to fewer decisions that have to be made
by humans. The cluster validation can be based on internal or
external validation, on stability measures, hypothesis testing or
visual validation as shown by [7] and [8]. Especially on the
field of internal validation, no involvement of domain experts
is planned. Therefore the automatic validation of unsupervised
clustering becomes increasingly important. Since no external
information about the ground truth is included in the internal
validation at all, the quality assessment can only be performed
using heuristics. Remaining strictly in an unsupervised setting,
such heuristics can guide an assessment of the uncertainty
of making wrong decisions and preferably create measures
that can recommend clustering approaches that indicate low
uncertainty.

In general decision making, one relies on the consensus of
experts. In case of an agreement of expert opinions, one trusts
them. Otherwise, caution is required, and, accordingly, deeper
studies are then needed to determine which opinion is best. If
we now transfer the above setting to unsupervised clustering,
we can focus on the extent of the agreement of different
well-established clustering methods1. This assumption allows
interpreting the agreement of the resulting clusterings as the
consensus of experts’ opinions, applying our heuristic for
internal validation. Based on this decision making analogy,

1We stress the well establishments of the methods to be considered, i.e.
their expertise. Consensus as agreement itself is not sufficient; it is crucial
that the consensus occurs within a well informed group of experts. So it goes
without saying that stupid clustering methods that come to the same result
can be constructed without showing reasonable accuracy.

68 Attached contributions



we consider the following association accuracy heuristic:
The degree of association between clustering results

derived by different methods is an indicator for the
extent of trustworthiness of the results. Under high
association, a high accuracy of each method can be
expected, while lowly associated clustering results
indicate a high risk of choosing a method with bad
performance.

For the measurement of association of the methods we
construct method-association-measures, that are inspired by
adapted χ2 association measures, describing the (dis)similarity
of methods either observation-wise or pair-wise observations.
By highly(lowly) associated methods, we understand a
high(low) average association value with low(or high)
variation of association within one method-association-
measure. The proposed association measures can also serve
for internal validation, allowing to quantify and rank the
association of the methods’ results among context-related data
sets. Our heuristic is evaluated in high-dimensional settings
in order to assess whether the proposed method-association-
measures are an indicator for the expected performance.
We first examine the association accuracy heuristic under
systematically varied dependence of the data structure in our
simulation study. Then, we investigate the heuristic in the
context of single-cell RNA sequencing data, in comparison
to the internal validation measure of the silhouette index [9].
In both settings, we investigate the association of context-
related clustering algorithms that include different non-linear
embeddings: SC3 [5], adaSC3 [10], phate [11], and the
combination of umaps [12] with k-means.

The paper is structured as follows. In Section II, we review
already existing validation measures of clustering algorithms.
In Section III, we provide method-association-measures, al-
lowing the assessment of observation-wise as well as pair-
wise (dis)cordant clustering results of methods, described in
Section III-B and Section III-C. We provide their interpreta-
tion in Section III-D. Including ground truth for evaluating
the accuracy of the methods after the investigation of their
(dis)similarities allows an evaluation of our heuristic for both
the simulation study (see Section IV), as well as for some real
scRNA-sequencing data (see Section V). Section VI concludes
and gives a short outlook.

II. RELATED BACKGROUND

Clustering is part of unsupervised learning [13], which is
also known as a data mining task [14], allocating the most
similar objects to the same cluster. The validation of cluster-
ing can be based on external, relative or internal validation
measures. For the external validation, external information
such as the gold standard or the underlying ground truth is
required for assessing the clustering quality [15]. External
validation then measures the “purity” of the obtained clus-
tering and the underlying class labels [16]. Relative cluster-
ing validation compares the clustering results of the same
algorithm, achieved by different parameter values, based on

the same data set. Internal evaluation uses distance metrics
and variances to assess the inter-cluster separation and the
intra-cluster cohesion (compactness), without the inclusion of
external information [15]. One internal validation measure
is the classical silhouette index [9], which is constructed
on the individual level of compactness and separation. This
index takes the averaged compactness within the individual’s
cluster as well as the averaged separation to the closest cluster
into account, and is then averaged over all observations. An
absolute value of the silhouette index of 1 indicates that for
each observation the corresponding cluster is compact itself
and well separated to all other clusters. The more the absolute
value approaches 0, the less homogeneous are the observations
within the same cluster, and the less heterogeneous are the
observations to the observations of the closest cluster.

In general, all internal evaluation measures have the aim to
recommend the best clustering algorithm on a specific data
set, see also [16] for general reviews of classical measures.
As external information, such as the true class labels or
ground truth, is often not available, internal validation is the
only possibility for assessing a clustering algorithm. This in
particular applies to high-dimensional settings, where it is very
likely that the knowledge of underlying ground truth is neither
complete nor correct [14]. Especially in genetics, we have high
dimensional settings where the number of variables p is sub-
stantially higher than the number of observations N (p >> N )
(see e.g. [17] and [18]), which causes additional challenges for
internal evaluation. For those settings, subspace clustering or
dimension reduction approaches with a subsequent clustering
is often performed. Under some assumptions, with increasing
dimensions, the difference between the highest distance and
the smallest distance gets very small, in relation to the smallest
distance, which is a result of the curse of dimensionality [19].
It is therefore not recommendable to base internal validation of
high-dimensional data on distances, as they are not confidently
interpretable.

III. HOW TO MEASURE AND TO INTERPRETE THE
ASSOCIATION OF METHODS

In the following, we present the construction of our method-
association-measures that aim to measure the (dis)similarity
of different methods. Throughout the paper an appropriate
group alignment has been conducted in advance. This can be
achieved by the Hungarian Algorithm of [20] (Bioconductor
package cola, [21]). The relabeling mainly serves for a clear
description and allows access to a more intuitive understanding
of the aim of our heuristic. The χ2-based construction of the
association measures derived in this section are invariant to
swapping labels. In Section III-A a motivation for constructing
appropriate method-association-measures is provided. After
the visual motivation, we propose the according association
measures in Section III-B and SectionIII-C, followed by their
interpretation, given in Section III-D.
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A. Visual Motivation

Within this paper we consider different state-of-the art
clustering methods in the context of single-cell data. In order
to get a better idea of our association accuracy heuristic,
we will visualize the results of the clustering methods SC3,
adaSC3, phate, and umaps in combination with k-means. The
relabeling was done by taking the clustering method SC3
as reference. Aiming at a direct comparison of methods in
the following radar chart, we set the number of clusters K
equal to the number of underlying number of groups G of the
below introduced data sets of Biase et al. [22] and Treutlein
et al. [23]. In Fig. 1 we can see the relative frequencies
of the underlying cell types (truth), as well as the relative
frequencies of each cluster within one method for each of the
displayed data sets. The relative frequencies are indicated by
the polar coordinates for each clustering method. All relative
frequencies within one plot sum up to 1, as each single cell can
only be grouped to one single cluster. If all clustering methods
assign the same frequencies to the different groupings, and
agree with the relative proportions of the underlying ground
truth, the radii of the radar chart are the same for each
method, resulting in a perfect circle. Such almost perfect
circle is obtained in case of the Biase et al. data set (left
of Fig. 1). Here, all clustering methods result in the same
grouping frequencies but all of these methods slightly differ
to the the underlying truth. We stress out that the more similar
the clustering results of the different algorithms, the rounder
the K circles of the radar charts, visualizing the strength of
association of the clustering results. The radar chart on the
right of Fig. 1 represents the relative frequencies of group
assignments of the Treutlein et al. data set [23] and indicates
more dissimilar clusterings. Referring to the expert analogy
above, identifying the clustering methods with experts, we
investigate the associations among the clustering results of the
different methods.

Fig. 1: Radar charts indicating the relative fraction of obser-
vations that were assigned to the specific clusters based on the
considered clustering methods that are arranged in clockwise
order for the clustering results of the data set of Biase et al.
[22] (left) and Treutlein et al. [23] (right).

For that purpose, we construct association measures meeting
the following requirements:

- In a setting with completely homogeneous assignments,
each clustering method proposes the same grouping. The
respective association should be described as perfect
association.

- With descending concordance, reflecting a setting with
more heterogeneous assignments, the association measure
should indicate less association.

To achieve this aim in the construction of association mea-
sures, we consider the clustering results as attributes of the
specific clustering method. This allows an adaption of classical
χ2−based association measures, in our case providing an
assessment of association strength of methods. For the internal
evaluation of our heuristic, we suggest the below presented
method-association-measures, which include the adaption of
classical association measures. On the one hand, the contin-
gency coefficient C and Cramér’s V, presented in Section III-B
respect the obtained clusterings for each observation on its
own. On the other hand, the introduced method-association-
measure of the Φ-coefficient is constructed on pair-wise obser-
vations and introduced in Section III-C. In Section III-D we
provide the interpretation of our method-association-measures.

B. Adjusted Contingency Coefficient C and Cramér’s V

We consider the set I = {1, . . . , N} of N observations,
where each observation is part of one of the K adapted
clusters for each of the considered clustering methods M =
{M1, . . . ,Mq}. As each method M ∈M is seen as a mapping
from the set of units I to the set C = {1, . . . ,K} of K cluster
labels, each clustering method M is reinterpreted as a variable
with K attributes. In the contingency table (Table I) we have

TABLE I: Contingency table showing the observed frequencies
of cluster (cMk

, cMl
) ∈ {1, . . . ,K}2 for method Mk and Ml.

Mk

Ml 1 · · · K

1 n11 · · · n1K n1·
...

...
. . .

...
...

K nK1 · · · nKK nK·
n·1 · · · n·K N

the same number of rows and columns as we only consider
methods with the same number of clusters K. For every
method Mk and Ml, we specify ncMk

cMl
as the absolute

frequency of observations that are part of group label c ∈
{1, ...,K} with the respective methods Mk and Ml (∀ k 6= l,
k, l ∈ {1, ..., q}). To apply χ2 (see e.g. [24, Chapter 4]), con-
trasting ncMk

cMl
with ñcMk

cMl
= ncMk· ·nc·Ml

/N , the number
expected when assuming independence of the variables under
given marginal distributions. With these absolute frequencies,
the corresponding classical association measure χ2 can be
calculated for each possible combination of clusterings of
method Mk and Ml. Then, χ2(Mk,Ml) indicates the degree of
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association of the clustering results of method Mk and method
Ml:

χ2(Mk,Ml) =

K∑

cMl
=1

K∑

cMk
=1

(ncMk
cMl
− ñcMk

cMl
)2

ñcMk
cMl

. (1)

As it is known that χ2 is influenced by the number of
considered observations N , as well as by the number of K
clusters, it is common practice to adjust for these parameters
(see e.g. [24, Chapter 4]). For that purpose, we base our
subsequent analysis of the method-association-measures on the
adjusted contingency coefficient C

C(Mk,Ml) =

√
K

K − 1
·
√

χ2(Mk,Ml)

N + χ2(Mk,Ml)
, (2)

and Cramér’s V

V (Mk,Ml) =
χ2(Mk,Ml)

N · (K − 1)
, (3)

which allow a comparison of association values across the data
sets.

C. Φ-Coefficient

For the following construction we take a different perspec-
tive, directly investigating whether pairs of observations are
assigned (dis)similarly. It is therefore of relevance whether a
pair of unequal observations {i, j}, with i, j ∈ I is grouped
into the same cluster or not by method M :

PM ({i, j}) =

{
1, if M(i) = M(j)

0, else.

Considering the (dis)similarity over all pair-wise combinations
results in the

(
N
2

)
dimensional vector PM . With the same aim

as above, declaring the categories of concordant and discordant
clusterings of method M (PM ) as attributes, allows to adapt
the classical Φ-coefficient (see e.g. [24, Chapter 4]). In contrast
to the upper defined method-association-measures we now
incorporate the (dis)similarity of methods based on pair-wise
observations:

Φ(PMk
,PMl

) =
χ2(PMk

,PMl
)(

N
2

) , k 6= l, k, l ∈ {1, ..., q}. (4)

This method-associated measure describes the association of
pair-wise obtained clusterings of method Mk and Ml and can
here also be interpreted as the Pearson correlation2.

D. How to interprete the association measures

The proposed association measures quantify the strength of
association of methods in a very convenient way, delivering
an easily interpretable range of values. An association of
0 indicates no association between the different methods,
whereas an association of 1 describes a perfect association
of the methods. The above introduced equivalence between

2Following [25] the Φ-coefficient is equivalent to the Pearson correlation
applied to 0/1 variables.

the Φ-coefficient and the Pearson correlation (see footnote 2)
provides easy access for interpretation, as correlation measures
are a popular tool in applied science. Furthermore, there exists
a broad range of the general interpretation of the association
measures for different application fields such as medicine,
psychology, politics, and social science (see e.g. [26], [27],
[28], [29], and [30]). These guidelines allow for a context-
specific categorization of different degrees of associations.
However, it is of note that these guidelines are based on hu-
manly conducted experiments instead of observations obtained
by different data-driven methods. As far as we know, we are
the first investigating the degree of association obtained from
different clustering methods instead of human experiments, so
no appropriate guideline is available yet as more applications
are needed.

IV. SIMULATION DATA

For the investigation of our association accuracy heuristic,
we construct simulation data of two sub-populations (groups)
with three different degrees of mutual dependence. We assume
a multivariate normal distribution MVN 1 = MVN (µ1,Σ1)

for simulation group 1 and MVN (ρ)
2 = MVN (µ2,Σ

(ρ)
2 )

for simulation group 2. For Σ1 we assume the empirical
covariance matrix of the underlying cell population “4cell”
of the data set of [31] as true, and extract the covariance
matrix for p randomly chosen variables. Σ

(ρ)
2 contains the

same variances as simulation group 1. The covariances of
simulation group 2 are constructed in dependence of the
standard deviations given by Σ1. With fixed correlation ρ, it is
therefore possible to generate Σ

(ρ)
2 which enables a simulation

study with different dependence structures3. This allows to
simulate the second group as weakly (ρ = 0.1), moderately
(ρ = 0.5) and highly (ρ = 0.9) correlated to the first group.
We refer to these simulation settings as simulation data with
a low, moderate, and strong dependence structure.

The purpose of our simulation data is that in case of a
low dependence structure a low overlap of the two subgroups
is simulated. With a higher simulated dependence it is more
difficult to distinguish the underlying groups and the different
clustering algorithms should differ more in their clustering
results. This simulation setting aims to construct settings with
lowly, moderately and strongly associated clustering results.
Given our heuristic is correct, we expect that overall highly
associated methods, simulated by the low dependence structure

3The formula Cov(Xq , Xr) = ρ ·
√
V ar(Xq) ·

√
V ar(Xr) ∀q 6= r ∈

{1, . . . , p} allows the construction of the covariance matrix for all p = 1000
covariates of simulation group 2 in dependence of ρ ∈ {0.1, 0.5, 0.9},
maintaining the same variances as simulation group 1, leading to Σ

(ρ)
2 . We

randomly sample N1 = 50 times out of MVN 1 = MVN (µ1,Σ1) and
N2 = 50 times out of MVN (ρ)

2 = MVN (µ2,Σ
(ρ)
2 ). For robustness, we

repeat this procedure 10 times, generating 10 simulation data sets for each
of the three determined dependence structures, resulting in 30 simulation
data sets with N = 100 observations and p = 1000 covariates. For each
iteration, we sample p times randomly out of the set µ1 and µ2, which have
been determined with [100, 200] and [0.41, 20] with steps of 0.0001. In a
Bachelor thesis supervised by us, [32] investigates the influence of different
dependence structures within the simulation groups, underlying a zero-inflated
negative binomial distribution.
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Fig. 2: Association values of the adjusted contingency co-
efficient C (green), Cramér’s V (violet), the Φ-coefficient
(orange), and the silhouette index (yellow) for the clustering
methods of the simulation data with low, moderate and strong
dependence structure.

result in an overall high accuracy, whereas lower associated
methods, simulated with a strong dependence structure are
expected with an overall lower accuracy, including methods
with bad performance as the underlying subgroup structures
are expected to be hard to detect for some algorithm(s).

As we will consider high dimensional data sets, a
dimension reduction or manifold embeddings are needed
before the subsequent clustering can be assessed. We apply
the context-related clustering algorithms for single-cell
RNA-sequencing data: SC3 [5], adaSC3 [10], phate [11], as
well as umaps [12] in combination with k-means [33]. The
generation of the method-association-measures, including
the adjusted contingency coefficient C and Cramér’s V, can
still be calculated using the DescTools R-package [34]. The
Φ-coefficient is calculated with the correlation function of the
stats R-package [35]. As a competitor for internal validation,
we include the silhouette index of the R-package cluster [36].
To study the performance of the clusterings, we will include
the underlying ground truth. This allows the consideration
of the adjusted Rand index (ARI) [37], which was applied
for the original evaluation of SC3 and adaSC3 [5], [10],
using the R package mclust of [38]. We further investigate
the Normalized Mutual Information (NMI), accessible by
the R package aricode [39], as well as the F1-score, which
is provided by the R package MLmetrics [40]. As a fourth
accuracy measure we include the purity, which is based on
the R package funtimes [41].

Compared to the highly elaborate process of data collection

Fig. 3: Accuracy values of clustering methods for each of the
simulation data with low, moderate and strong dependence
structure, evaluated by the adjusted Rand index (ARI), the
Normalized Mutual Information (NMI), the F1-score, and the
purity.

of single-cell RNA-sequencing data, as well as the high effort
for the alternative of manual inspection, we see the effort of
analyzing the sequenced data simultaneously by several differ-
ent clustering methods as more than justified. The simulation
study has been conducted with a computer containing a 2.60
GHz Intel (R) Xeon(R) processor with 64 GB 3000 Mhz of
RAM. The computation time for generating the simulation data
is 43 minutes. The performed clustering for all simulation data
takes in total 4.03 minutes. The calculation of all association
measures of the whole simulation study is performed in 11.95
seconds.

A. Association

With regard to Fig. 2, we can see the values of the
internal validation measures of the different clustering meth-
ods. The figure contains the results of the constructed
method-association-measures: adjusted Contingency Coeffi-
cent C (green), Cramér’s V (violet) and the Φ-coefficient
(orange) for each simulated dependence structure. In addition,
the silhouette index (yellow) for each method is included.
We see that with higher simulated dependence structures, the
values of our method-association-measures decrease. In addi-
tion, the variation of associated clustering results gets higher
with increasing dependence structure. However, the silhouette
index remains the same over all three settings. In addition,
the boxplots, illustrating the moderate setting, indeed lie in
between of the results of the more extreme settings. In the
case of simulated low dependence, the deviation of association
among the same clustering methods is very low, represented
by small boxes. In case of simulated strong dependence, the
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deviations of associated clustering results get larger, which
is also reflected by the resulting larger boxes including their
lower bounds of the corresponding boxplots.

B. Accuracy

For the simulated low dependence, the accuracy values
shown in Fig. 3 are very high with very low deviations for
all four accuracy measures. In case of the moderate setting,
the median of the accuracy value remains very high in all
measures. The ARI and the NMI show now higher deviation of
accuarcy compared to the previous setting. For the simulation
data that was generated with a strong dependence structure, the
median slightly drops in case of the F1-score and the purity,
and even a little bit more for the remaining two accuracy mea-
sures. Especially in the simulation setting underlying a strong
dependence structure, a very poor performance is reached for
some clustering methods.

C. On the Relationship between Association and Accuracy

Concerning the simulation data with low dependence struc-
ture, the median of all method-association-measures is espe-
cially high and become smaller the stronger the dependence
structure. In contrast to these method-association-measures,
the silhouette index remains approximately the same over the
different settings. Over all four accuracy measures one can see
that the median of the accuracy value is lower the stronger
the dependence structure of the simulation data. Furthermore,
the deviation of performance gets higher, the stronger the
dependence structure of the simulation data. Comparing the
association values of the method-association-measures to the
accuracy values, we can see that Cramér’s V is quite close
to the accuracy values of the ARI and the NMI. As the two
figures contain a different number of observations, a direct
comparison of the boxplot value ranges is not recommend-
able. This is the reason, why we consider the rankings in
the following. With increasing dependence structure of our
simulation settings, the rankings of our method-associated-
measures show the same order for the accuracy. The rankings
of each method association measure for increasing dependence
structure is perfectly correlated to each other as well as to the
according ranks of accuracy, which would respectively lead to
a Spearman’s rank correlation coefficient of 1 (see e.g. [24,
Chapter 4]). However, this is not the case for the internal
validation measure of the silhouette index. With regard to our
method-association-measures, we can state that the claim of
our association accuracy heuristic is completely fulfilled in the
simulation data considered.

V. CLUSTERING OF SINGLE-CELL RNA-SEQUENCING
DATA

The validation of the association accuracy heuristic is stud-
ied on the same single-cell RNA-sequencing data that are also
part of the original works of [5] and [10], proposing SC3 and

adaSC34. In addition, we add the data set of Darmanis et
al. [42] and Fan et al. [43] as further benchmark data sets.
Each data set examines another biological research questions,
which can be categorized by the following. The benchmark
data describe cell differentiation (e.g. [22], [42], [44], [45]
and [46]), known cell types (e.g. [47], [48]), as well as the
discovery of decisive genes characterizing mammalian cells
(e.g. [49], [43]). The experiments contain N single cells, p
genes as well as G true underlying groups, as specified in
Table II.

TABLE II: Original single-cell RNA-sequencing data sets
including N single cells, p genes and G cell types.

Data set N p G
Biase et al. [22] 49 25,734 3
Darmanis et al. [42] 466 22,088 9
Deng et al. [49] 269 22,431 10
Fan et al. [43] 63 26,357 7
Goolam et al. [44] 124 41,428 5
Kolodziejczyk et al. [45] 704 38,616 3
Pollen et al. [47] 64 23,710 4
Treutlein et al. [46] 80 23,271 5
Yan et al. [48] 90 20,214 7

For the following analysis, we first evaluate the internal
validation given the number of clusters K corresponds to the
number of specified cell types G, setting K := G. In a second
step, we investigate the association measures as well as the sil-
houette index with K = 2, · · · , 10 clusters. Doing so, we aim
to assess whether the introduced association measures might
also serve for choosing the correct number of clusters. With
regard to the application of our association accuracy heuristic
on scRNA-seq data sets, we see the additional calculation time
for the association values also as more than justified here.
The clustering and the calculation of association was run on
the same computer as described above. The clustering of all
methods for one K takes about 1 minute for most of the data
sets. In case of the Kolodziejczyk et al. data set which contains
the highest number of single cells, one run of all clustering
methods takes 45 minutes. The calculation of the association
measures over all Ks, lies between 1 and 16 minutes.

In this section we start with the description of the associ-
ation and accuracy of the clustering results of the benchmark
data provided in Section V-A and in Section V-B. We then
utilize both measures to evaluate the association accuracy
heuristic (see Section V-D). In Section V-C we take a look
at the capability of the proposed method-association-measures
for choosing the correct number of underlying groups.

4The subsequent application of SC3 and adaSC3 differs from the original
version in that no gene filter is applied to favor no clustering method. In
addition, we limited our application to N = 500 single cells to ensure
traceable, unsupervised clustering, as justified in [5], [10].
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Fig. 4: Association values of the contingency coefficient C
(green), Cramér’s V (violet) and the adjusted Φ-coefficient
(orange) as well as the silhouette index (yellow) for the
methods of the benchmark data.

Fig. 5: Accuracy values of clustering methods of the bench-
mark data, evaluated by the adjusted Rand index (ARI), the
Normalized Mutual Information (NMI), the F1-score, and the
purity.

A. Association of the Clustering Results of Different Methods

In Fig. 4, the benchmark data are ordered according to
their descending medians of the respective internal validation
values. We can see that all four measures agree in ranking the
Biase et al. data set first, as this data set shows its highest
median among all the remaining benchmark data sets. All
method-association-measures assess the corresponding cluster-
ing results of this data set as perfectly associated. Although,
the Biase et al. data set is ranked first, the median of the
silhouette indices of each method is approximately 0.75 and
does by far not reach its maximal value of 1. We can state
that for all single-cell RNA-sequencing data, the boxplot
of the silhouette index indicates always considerably higher
variation among the clustering results compared to the method-
association-measures.

Concerning the following rankings, the contingency coeffi-
cient C proposes exactly the same order of data sets as the
Φ-coefficient. Compared to the Φ-coefficient, the contingency
coefficient C always shows higher association values with a
(considerably) lower standard deviation. The ranking based on
Cramér’s V is only marginally different. With exception of the
data sets of Fan et al. and Deng et al., Cramér’s V differs in
the order by maximally one rank compared to the remaining
association measures. In case of Cramér’s V, one could even
argue to place the boxplot of Fan et al. after the Deng data set
due to its lower whisker, respecting the 25% quantile in the
total ranking. The resulting change of the order would make
Cramér’s V more comparable to the other method-association-
measures. The rankings of the silhouette index differ the most
in comparison to all the other considered measures. In gen-

eral, the observation-based association measures (contingency
coefficient C and Cramér’s V ) have the tendency of indicating
higher association values with less deviations. The pair-wise-
based measure of the Φ-coefficient assesses the association
with generally lower association values. Overall, the silhouette
index shows the lowest values.

Measuring the correlation of the rankings with Spearman’s
rank correlation coefficient based on the medians of each
internal validation measure leads to the left part of Table III.
We can see, in accordance with the description of the above
association, that the contingency coefficient C and the Φ-
coefficient are perfectly correlated to each other. With a
Spearman correlation coefficient of 0.9, Cramér’s V is also
highly correlated to these measures. The silhouette index
is correlated with approximately 0.8 to each of the other
association measures.

B. Accuracy
For the evaluation of our association accuracy heuristic,

the investigation of accuracy (see Fig. 5) is mandatory. The
clustering methods in case of the Biase et al. data set show
very high accuracy for all four external validation measures.
With exception to the data set of Deng et al. and Treutlein et
al., the ARI and the NMI propose exactly the same descending
order for all remaining benchmark data sets. Also, the rankings
of the overall F1-score show quite similar rankings of the
data sets, whereas the purity differs the most to the remaining
accuracy measures. For the data sets of Treutlein et al., Pollen
et al. and Fan et al., the adjusted Rand index indicates a poor
performance for some methods. In addition to that, in case of
the Pollen et al. data set, all measures indicate a very high
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TABLE III: Spearman’s rank correlation coefficients of the association measures and the accuracy measures for the considered
benchmark data sets

Association Accuracy

contingency coefficient C Cramér’s V Φ-coefficient silhouette index ARI NMI purity F1-score

contingency coefficient C 1.00 0.90 1.00 0.75 0.77 0.83 0.47 0.75
Cramér’s V 0.90 1.00 0.90 0.83 0.65 0.70 0.38 0.60
Φ-coefficient 1.00 0.90 1.00 0.75 0.77 0.83 0.47 0.75
Silhouette 0.75 0.83 0.75 1.00 0.38 0.45 0.18 0.47

ARI 0.77 0.65 0.77 0.38 1.00 0.98 0.87 0.87
NMI 0.83 0.70 0.83 0.45 0.98 1.00 0.83 0.88
purity 0.47 0.38 0.47 0.18 0.87 0.83 1.00 0.73
F1-score 0.75 0.60 0.75 0.47 0.87 0.88 0.73 1

TABLE IV: Benchmark data, showing the averaged internal validation measures (and its standard deviations) over the clustering
results of each data set for differing number of clusters K.

Data set Internal validation measure 2 3 4 5 6 7 8 9 10
contingency coefficient C 0.69 (0.22) 1.00* (0.00) 0.95 (0.02) 0.94 (0.03) 0.93 (0.03) 0.95 (0.03) 0.96 (0.02) 0.97 (0.01) 0.97 (0.02)

Biase Cramér’s V 0.59 (0.26) 1.00* (0.00) 0.85 (0.06) 0.78 (0.11) 0.73 (0.10) 0.78 (0.10) 0.77 (0.09) 0.80 (0.07) 0.80 (0.09)
Φ-coefficient 0.31 (0.40) 1.00* (0.00) 0.77 (0.13) 0.61 (0.21) 0.58 (0.22) 0.64 (0.24) 0.59 (0.25) 0.65 (0.19) 0.58 (0.17)
silhouette index 0.61 (0.23) 0.72* (0.21) 0.62 (0.11) 0.61 (0.07) 0.59 (0.12) 0.49 (0.18) 0.50 (0.12) 0.47 (0.07) 0.45 (0.10)
contingency coefficient C 0.68 (0.34) 0.88 (0.08) 0.94 (0.03) 0.94 (0.03) 0.95 (0.02) 0.96 (0.02) 0.96 (0.02) 0.96* (0.01) 0.96 (0.02)

Darmanis Cramér’s V 0.62 (0.39) 0.74 (0.16) 0.81 (0.07) 0.78 (0.07) 0.77 (0.05) 0.78 (0.06) 0.77 (0.07) 0.74* (0.06) 0.74 (0.08)
Φ-coefficient 0.50 (0.51) 0.59 (0.26) 0.70 (0.14) 0.65 (0.22) 0.64 (0.19) 0.69 (0.21) 0.67 (0.21) 0.60* (0.17) 0.55 (0.12)
silhouette index 0.28 (0.31) 0.31 (0.34) 0.32 (0.33) 0.32 (0.33) 0.30 (0.31) 0.33 (0.34) 0.31 (0.31) 0.31* (0.31) 0.27 (0.27)
contingency coefficient C 0.70 (0.32) 0.81 (0.15) 0.91 (0.02) 0.92 (0.03) 0.94 (0.03) 0.93 (0.03) 0.96 (0.02) 0.97 (0.01) 0.96* (0.01)

Deng Cramér’s V 0.65 (0.37) 0.65 (0.19) 0.74 (0.05) 0.74 (0.08) 0.74 (0.09) 0.69 (0.08) 0.76 (0.09) 0.78 (0.03) 0.75* (0.02)
Φ-coefficient 0.50 (0.51) 0.54 (0.31) 0.73 (0.11) 0.73 (0.18) 0.70 (0.14) 0.60 (0.12) 0.55 (0.18) 0.55 (0.10) 0.55* (0.09)
silhouette index 0.41 (0.38) 0.44 (0.38) 0.38 (0.32) 0.40 (0.30) 0.42 (0.31) 0.42 (0.30) 0.44 (0.28) 0.43 (0.25) 0.43* (0.25)
contingency coefficient C 0.70 (0.14) 0.81 (0.00) 0.91 (0.03) 0.92 (0.02) 0.94 (0.03) 0.93 (0.04) 0.96 (0.04) 0.97 (0.02) 0.96* (0.01)

Deng Cramér’s V 0.65 (0.20) 0.65 (0.01) 0.74 (0.07) 0.74 (0.06) 0.74 (0.08) 0.69 (0.12) 0.76 (0.14) 0.78 (0.08) 0.75* (0.06)
Φ-coefficient 0.50 (0.36) 0.54 (0.03) 0.73 (0.13) 0.73 (0.18) 0.70 (0.17) 0.60 (0.22) 0.55 (0.21) 0.55 (0.16) 0.55* (0.16)
silhouette index 0.41 (0.27) 0.44 (0.26) 0.38 (0.19) 0.40 (0.21) 0.42 (0.17) 0.42 (0.20) 0.44 (0.17) 0.43 (0.20) 0.43* (0.20)
contingency coefficient C 0.80 (0.34) 0.98 (0.06) 0.94 (0.03) 0.92 (0.02) 0.93 (0.03) 0.93* (0.02) 0.95 (0.02) 0.96 (0.02) 0.97 (0.02)

Fan Cramér’s V 0.71 (0.39) 0.94 (0.14) 0.80 (0.07) 0.74 (0.08) 0.74 (0.10) 0.72* (0.09) 0.76 (0.09) 0.76 (0.07) 0.77 (0.11)
Φ-coefficient 0.48 (0.58) 0.88 (0.24) 0.68 (0.14) 0.62 (0.15) 0.58 (0.20) 0.55* (0.21) 0.56 (0.20) 0.59 (0.18) 0.54 (0.21)
silhouette index 0.47 (0.33) 0.50 (0.35) 0.52 (0.26) 0.53 (0.23) 0.58 (0.18) 0.55* (0.14) 0.58 (0.15) 0.54 (0.16) 0.49 (0.15)
contingency coefficient C 0.69 (0.33) 0.94 (0.08) 0.93 (0.03) 0.96* (0.02) 0.95 (0.02) 0.94 (0.02) 0.95 (0.02) 0.95 (0.01) 0.95 (0.01)

Goolam Cramér’s V 0.64 (0.38) 0.87 (0.14) 0.79 (0.09) 0.86* (0.06) 0.79 (0.08) 0.74 (0.07) 0.74 (0.09) 0.73 (0.07) 0.72 (0.06)
Φ-coefficient 0.47 (0.50) 0.78 (0.21) 0.64 (0.15) 0.72* (0.09) 0.61 (0.07) 0.57 (0.09) 0.55 (0.13) 0.49 (0.13) 0.46 (0.11)
silhouette index 0.49 (0.31) 0.53 (0.37) 0.50 (0.38) 0.51* (0.36) 0.53 (0.37) 0.51 (0.37) 0.48 (0.36) 0.47 (0.41) 0.47 (0.40)
contingency coefficient C 0.69 (0.13) 0.85 (0.02) 0.93* (0.07) 0.95 (0.07) 0.95 (0.05) 0.96 (0.03) 0.98 (0.02) 0.97 (0.02) 0.98 (0.02)

Kolod Cramér’s V 0.64 (0.17) 0.70 (0.04) 0.80* (0.12) 0.81 (0.18) 0.78 (0.14) 0.80 (0.10) 0.85 (0.08) 0.81 (0.08) 0.82 (0.07)
Φ-coefficient 0.53 (0.27) 0.50 (0.04) 0.67* (0.20) 0.72 (0.29) 0.67 (0.31) 0.70 (0.23) 0.76 (0.20) 0.73 (0.16) 0.76 (0.12)
silhouette index 0.29 (0.27) 0.31 (0.29) 0.29* (0.28) 0.26 (0.31) 0.29 (0.32) 0.29 (0.32) 0.30 (0.28) 0.28 (0.30) 0.28 (0.29)
contingency coefficient C 0.85 (0.10) 0.87 (0.07) 0.86* (0.06) 0.88 (0.05) 0.89 (0.04) 0.90 (0.03) 0.91 (0.04) 0.93 (0.02) 0.93 (0.01)

Pollen Cramér’s V 0.77 (0.15) 0.73 (0.13) 0.66* (0.12) 0.65 (0.09) 0.64 (0.09) 0.62 (0.06) 0.63 (0.11) 0.65 (0.08) 0.64 (0.04)
Φ-coefficient 0.59 (0.26) 0.50 (0.25) 0.41* (0.18) 0.42 (0.15) 0.42 (0.19) 0.39 (0.13) 0.42 (0.22) 0.38 (0.15) 0.37 (0.09)
silhouette index 0.41 (0.23) 0.41 (0.19) 0.41* (0.17) 0.39 (0.17) 0.36 (0.18) 0.33 (0.20) 0.33 (0.17) 0.31 (0.18) 0.31 (0.21)
contingency coefficient C 0.78 (0.17) 0.86 (0.07) 0.85 (0.08) 0.85* (0.07) 0.90 (0.03) 0.91 (0.04) 0.91 (0.04) 0.91 (0.04) 0.92 (0.04)

Treutlein Cramér’s V 0.54 (0.21) 0.54 (0.11) 0.52 (0.16) 0.44* (0.12) 0.36 (0.08) 0.33 (0.10) 0.31 (0.10) 0.28 (0.09) 0.25 (0.11)
Φ-coefficient 0.47 (0.27) 0.78 (0.19) 0.64 (0.26) 0.72* (0.28) 0.61 (0.11) 0.57 (0.13) 0.55 (0.11) 0.49 (0.14) 0.46 (0.12)
silhouette index 0.43 (0.20) 0.39 (0.19) 0.31 (0.25) 0.28* (0.20) 0.28 (0.19) 0.28 (0.17) 0.28 (0.20) 0.26 (0.20) 0.24 (0.20)
contingency coefficient C 1.00 (0.00) 0.95 (0.04) 0.95 (0.02) 0.97 (0.02) 0.97 (0.01) 0.98* (0.01) 0.97 (0.01) 0.98 (0.01) 0.98 (0.01)

Yan Cramér’s V 1.00 (0.00) 0.87 (0.09) 0.83 (0.05) 0.88 (0.07) 0.87 (0.05) 0.87* (0.07) 0.83 (0.06) 0.84 (0.06) 0.86 (0.05)
Φ-coefficient 1.00 (0.00) 0.74 (0.17) 0.78 (0.08) 0.84 (0.10) 0.83 (0.08) 0.81* (0.10) 0.73 (0.14) 0.69 (0.13) 0.69 (0.12)
silhouette index 0.53 (0.36) 0.58 (0.30) 0.60 (0.24) 0.64 (0.16) 0.68 (0.16) 0.71* (0.11) 0.67 (0.09) 0.64 (0.12) 0.63 (0.12)

variation of accuracy concerning the different methods. With
regard to the Spearman’s rank coefficient in Table III, we can
see that all accuracy measures are very highly correlated to
each other, based on the rankings of their median accuracy
value. Furthermore, the ARI and NMI are almost perfectly
correlated, and also highly correlated to the overall F1-score
and to the purity.

C. Detection of the underlying K

In order to find out whether the corresponding association
measures could also be a measure for choosing the cor-
rect K, we investigate the internal validation measures for
K = 2, · · · , 10 (see Table IV). We consider both the average
values for each method as well its standard deviation, provided
in brackets. In bold we highlight the highest value of each
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measure or the different data sets. The asterisk indicates the
true underlying number of groups of the benchmark data. We
can see that among our association measures, the contingency
coefficient C most often detects the true underlying number
of cell types (3 times out of 9 data sets). This is exactly the
same frequency as for the silhouette index. Both measures
show their highest averaged values for the Biase et al. data set,
whereas the other data sets differ in their reached maximum
values of the two measures, selecting the correct number of
underlying cell types. Cramér’s V and the Φ-coefficient detect
the true underlying number of groups only in the case of the
Biase et al. data set.

D. On the Relationship between Association and Accuracy

In the description of association and accuracy, we have
seen some similar rankings in case of the the contingency
coefficient C and the Φ-coefficient, as well as for the ARI
and NMI. Relating association and accuracy to each other, we
can observe that the value range of the Φ-coefficient shows
a tendency of related NMI values. Especially the clustering
methods applied to the data sets Treutlein et al. and Pollen et
al. are both poorly associated and have a poor performance. In
case of the Daramanis et al. data set, a high variation of the Φ-
coefficient can be observed. This might give a hint that at least
one method performs differently compared to the others. With
regard to the corresponding accuracy values, we can see that
indeed one method leads to considerably lower performance.
For the same association measure a high variation is indicated
for the lower ranked data sets of Fan et al. and Treutlein et
al., which results in really bad performance of some methods.

For a further validation of our association accuracy heuristic,
we take the Spearman’s rank correlation coefficients of Ta-
ble III into account. Both the contingency coefficient C as well
as the Φ-coefficient are highly correlated to the ARI and to the
NMI. Cramér’s V is less correlated to these accuracy measures.
The silhouette index only shows poor or fair correlation with
regard to purity, ARI and NMI.

VI. CONCLUSION

In this paper, we propose a heuristic that is especially useful
for high-dimensional settings, where user inspection easily
becomes infeasible. We demonstrated that our association ac-
curacy heuristic works perfectly for the constructed simulation
data under systematically varied dependence and allows a
trustworthy ranking in case of the single-cell RNA-sequencing
benchmark data sets. In the simulation study, Cramér’s V
seemed to work out best, whereas in case of the real data, the
Φ-coefficient seems best for relating association with accuracy.
However, we emphasize that all method-association-measures
deliver very reliable rankings that have the tendency to reflect
well the order of the overall accuracy of the different data sets.

With the Spearman correlation we have been able to show
that highly associated methods are indeed highly correlated
with their accuracy. We therefore see our heuristic as validated
in both the simulated data and real data, and state that it
is definitively worth more investigating. Furthermore, we see

a big advantage in case of the pair-wise constructed Φ-
coefficient as it is nicely interpretable. In addition to that, the
Φ-coefficient brings along the benefit that the association of
groupings with differing K can be analyzed as its construction
is based on considering pair-wise (dis)similar groupings. This
could bring the advantage of incorporating e.g. the context
specific clustering method Seurat, which is also often used for
determining new cell types.

Our heuristic provides the user a quite powerful tool for
internal validation in situations where ground truth is not easily
available. In situations, where several context related state-of-
the-art methods are lowly associated, no automatic determi-
nation of cell types is recommended. This might prevent the
blind trust into one single method.

As our heuristic is easily applicable, no background knowl-
edge of the methods is requested, which could bring along
the drawback that different methods could be applied with-
out questioning its suitability in the specific application. We
do not recommend the silhouette index as it only shows a
low correlation to accuracy. Unfortunately, we cannot give
a general recommendation of the best performing method-
association-measure. But we can recommend all the proposed
method-association-measures as they show a high correlation
to accuracy.

Of course, further studies are required, on benchmark data
sets as well as on refined simulation settings, also including
more than two simulated sub-populations. We claim that our
heuristic is not only limited to clustering methods. Further-
more, the investigation of the relationship between association
and accuracy could be even more interesting with a higher
number of methods, an aspect that has not been investigated
in detail but clearly is of further research interest.

For determining the correct number of underlying groups,
the contingency coefficient only succeeded in very highly
associated situations. This could be an argument that our
method-association-measures might not deliver the correct
number of underlying groups but provides access to stable
partitions over different methods. As we only have access
to ground truth, nobody knows the reality. This might be an
argument for sticking to the agreement of methods as we do
it in case of expert decisions.
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Abstract
Simulation studies are becoming increasingly impor-
tant for the evaluation of complex statistical methods.
They tend to represent idealized situations. With our
framework, which incorporates dependency structures
using copulas, we propose multidimensional simula-
tion data with marginals based on different degrees
of heterogeneity, which are built on different ranges
of distribution parameters of a zero-inflated negative
binomial distribution. The obtained higher and lower
variation of the simulation data allows to create lower
and upper distribution functions lead to simulation data
containing extreme points for each observation. Our
approach aims at being closer to reality by considering
data distortion. It is an approach of examining clas-
sification quality in case of measurement distortions
in gene expression data and might propose specific
instructions of calibrating measuring instruments.
Keywords: Simulation studies, Copula, Imprecise
probabilities, Lower and upper distribution function,
Distorted measurements, Classification, Single-cell
RNA-sequencing data, Statistical genetics

1. Introduction

In the context of gene expression there are up to 30%
of measurements with missing data, as Yang et al. [16]
indicate. This phenomenon can be traced back to the failure
of measuring low read counts and the stochastic nature
of gene expression. But it is not only known that gene
expression in the lower range of the count data is difficult
to measure. Another property of the sequencing procedure,
which is the process of measuring gene expression, is that
the upper sequencing range of the gene expression is also
more sensitive to outliers. Therefore, measurements of
gene expression do not always reflect reality which justifies
the motivation of incorporating distortion of measuring
tendencially higher and lower values into simulation data.

In this paper we show how the extent of different degrees
of heterogeneity as well as distorted measurements with
and without dependence structure affect the quality of a
typical procedure in single-cell genetics concerning the

classification of two subpopulations.

Thus, we will create three different scenarios for
each subpopulation which represent a homogeneous
and a heterogeneous population as well as a mixture of
both. The homogeneous population will be constructed
containing the smallest range of possible gene expression,
whereas the heterogeneous population allows for a higher
variability of possible gene expression. The mixture of
both populations allows values with a range lying in
between these populations. The pointwise lower and upper
distribution functions were formed over the simulation
data of the three scenarios for each target group. These
are inspired by imprecise probability theory and should
express the situations that compared to the real data
situation, higher and lower ribonucleic acid (RNA) values
were measured during the sequencing procedure.

Each of the created simulation situations based on
the three scenarios as well as the distorted data will be
analysed assuming that the genes are independent of each
other, but also assuming the same dependence structure as
the one given by the scRNA-sequencing data set provided
by the authors Kolodziejczyk et al. [6]. The generation of
simulation data allows keeping the dependence structure
between genes as well as the marginal distributions. For
the choice of the marginal distribution we decided to use
the zero-inflated negative binomial distribution (ZINB) as
it approximates best the measurement of gene expression
in the context of single-cells (= read counts) [see 15]. If
the dependence structure was not taken into account but
simulated under independence, these high-dimensional
data would lead to dependence structures of individual
genes that cannot be controlled. This might have an
influence on the classification results. With our approach
it can be ensured that each of both target groups have the
same dependence structures between the individual genes
as in the used real data. This approach allows to set the
focus explicitly on the simulated values. Thus, it is possible
to examine the influence of distorted measurements in
detail.

© 2019 C. Fuetterer, G. Schollmeyer & T. Augustin.

78 Attached contributions



SIMULATION DATA WITH DEPENDENCE STRUCTURE IN AN IMPRECISE PROBABILITY SETTING

For each simulation study with and without dependence
structure containing different numbers of genes we want
to evaluate the classification quality that a single-cell is
correctly assigned to the respective subpopulation. This
is done by taking the adjusted Rand index (ARI) [see e.g.
13], which is equal to 1 when the classification perfectly
corresponds to the given single-cell populations and 0 in
case of random assignment.

The paper is organized as follows. In Section 2, the
construction of simulation data reflecting the different
degrees of heterogeneity based on the marginal distribu-
tions of ZINB are described. Section 3 describes how we
use the theory of lower and upper distribution functions
to generate distorted data reflecting more or less reliable
data based on the scenarios presented in Section 2. Taking
the dependence structure of genes into account in the
simulation data by using copulas can be found in Section
4, which also contains the notation and theory of copulas.
The results of the final simulation data are summarized
in Section 5, followed by the conclusion, discussion and
outlook in Section 6.

All the conducted steps presented below are based on
appropriate packages of the R program (version 3.5.1) or
were implemented in R by the first author.

2. Situations Reflecting Different Degrees of
Heterogeneity

The aim of this section is to determine the influence of un-
reliable meausurements on the classification quality in the
view of two subpopulations. We introduce a new framework
of creating simulation data by defining three different sce-
narios for each subpopulation respectively, representing a
homogeneous (Scenario 1) and a heterogeneous population
(Scenario 3) as well as a transition scenario of those (Sce-
nario 2). This leads total to three simulation data (Scenario
1, Scenario 2, Scenario 3) containing two subpopulations
n(1)= 250 and n(2)= 250.

2.1. Use of Reference Data for Different Degrees of
Heterogeneity

The original single-cell data set of Kolodziejczyk et al. [6]
that was used as reference contains 295 single-cells of
single-cell population 1 and 250 single-cells of single-cell
population 2. Based on the gene expression of each of
these subpopulations, the target groups of the simulation
data were constructed. The sample size was chosen
close to the publicly available, real single-cell RNA-seq
data set of Kolodziejczyk et al. [6] to represent realistic
scenarios in our simulations. The simulation data were also
inspired by the quantiles of the estimated parameters of the

original genes following a zero-inflated negative binomial
distribution for the underlying structure of our scenarios.

The choice of the zero-inflated negative binomial
distribution is based on recent research that states that
the marginal distribution of gene expression can be
approximated best by the zero-inflated negative binomial
distribution following Wagner et al. [15]. Therefore,
the parameters describing a zero-inflated negative bino-
mial distribution were respectively estimated from the
real data based on the single-cells belonging to each
of the two single-cell populations. The zero-inflated
negative binomial distribution is a mixture of a point
mass at zero and the negative binomial distribution as
count distribution. This allows an inflation of observing
a zero read count, which is represented by the first
summand. The second summand stands for the nega-
tive binomial distribution, e.g. Kleiber and Zeileis [5], [17]:

fZINB(X j = x) =

{
π j +(1−π j) fNB(0) if x = 0
(1−π j) fNB(x) if x ∈ N

with

X j: Random variable describing
the counts of the j-th gene (j = 1, ..., m)

π j: Weight of the zero-inflation
x: Observed read count
µ: Mean
φ : Shape parameter

For the generation of the simulation data, a general-
ization of the negative binomial distribution was used
which is a mixture of Poisson distributions with a gamma
distributed Poisson rate. The corresponding probability
density function is the following:

fNB(x) = f (x|µ,φ) = Γ(x+φ)
Γ(φ)·x! ·

µx·φφ

(µ+φ)x+φ

This generalization of the negative binomial distribution
allows φ to be continuous. In the implementation we use
the parameters µ ∈ R+, describing the expectation of the
negative binomial distribution and its dispersion parameter
φ ∈ R+. The parameter π will describe the fraction of
zero-inflation as introduced above.

For our simulation data, we focused on genes that
follow a zero-inflated-negative binomial distribution in
both subpopulation 1 and subpopulation 2. We excluded
genes with a proportion of 80 % or more zeros and with
read counts never exceeding the value 2 over all measured
single-cells. Genes not having a zero-inflation of their
measurements are fitted to a negative binomial distribution.
Applying these calculations to the originally 30 200
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available genes, 26 856 genes are in compliance with these
criteria, which leads to 26 856 estimates of the parameter
vector for the negative binomial or zero-inflated negative
binomial distribution per target group using the R package
emdbook [1]. The construction of this simulation study is
based on all the 7225 genes that fulfilled the criteria above
following a zero-inflated negative binomial distribution in
both subpopulations of the reference data.

2.2. Undistorted Simulation Data

In order to simulate from an imprecise setting we consider
different scenarios with different interval widths, which are
determined by the different parameter intervals of µ ,φ and
π for each scenario in target group 1 (Group 1) and target
group 2 (Group 2).

The simulation design based on the quantiles of the es-
timated parameters of the 7225 genes will generate simu-
lation data that are ZINB distributed. Scenario 1 describes
the most homogeneous scenario, which is the reason for the
determination of the narrowest parameter interval which
leads to the smallest difference in the range of values in the
subsequent sampling process. Accordingly, Scenario 3 is
constructed as the broadest parameter interval, since it is
intended to represent the most heterogeneous scenario. The
transition Scenario 2 lies in between Scenario 1 and Sce-
nario 2. As shown in Table 1 the difference in quantiles for
both target groups increases for each scenario of parameter
µ (Sc. 1: 45%, Sc. 2: 60%, Sc. 3: 70%) as well as for φ and
π (Sc. 1: 10%, Sc. 2: 20%, Sc. 3: 30%).

µ φ π
Sc. Group 1 Group 2 Group 1, Group 2 Group 1, Group 2
1 [35%-80%] [15%-60%] [45%-55%] [45%-55%]
2 [25%-85%] [10%-70%] [40%-60%] [40%-60%]
3 [20%-90%] [5%-75%] [35%-65%] [35%-65%]

Table 1: Quantiles of the estimated ZINB parameters of the
reference data that are used for the construction
for each scenario of target group 1 and target
group 2.

Based on simulation studies we investigated the influence
of the different parameters towards clustering quality and
came to the result that the parameter µ has the highest
influence on the clustering quality, which was the reason for
allowing a broader range for Scenario 1-3. This means more
variation for this parameter during the sampling process as
well as a higher range of Scenario 2 and 3 compared to the
remaining parameters. In order to facilitate the detection
of a difference between the two target groups based on a
lower number of genes (m = 50,100,500) as in the real
setting, target group 2 was constructed with lower values
as target group 1. The remaining parameters were based on

the same quantiles for each target group as they do not play
a decisive role with regard to the classification result.

Based on the determined quantile ranges of the parame-
ters µ , φ and π , we construct the corresponding parameter
intervals from the reference data for group 1 (see values
Table 2) and group 2 (Table 3):

Sc. µ1 φ1 π1
1 [45, 293] [0.27, 0.47] [5.30*10−7, 0.01 ]
2 [27, 397] [0.24, 0.55] [3.65*10−7, 0.04]
3 [19, 576] [0.18, 0.78] [2.28*10−7, 0.08 ]

Table 2: Constructed intervals of the ZINB parameters of
each scenario describing group 1.

Sc. µ2 φ2 π2

1 [12, 112] [0.27, 0.47] [4.85*10−7, 2.11*10−5 ]
2 [6, 171] [0.23, 0.55] [3.26*10−7, 2.91*10−2]
3 [2, 217] [0.17, 0.82] [2.18*10−7, 6.11*10−2 ]

Table 3: Constructed intervals of the ZINB parameters of
each scenario describing group 2.

For both subpopulations, the parameters describing the
marginal distribution (ZINB) of each gene for target group
1 and group 2 are obtained by drawing out of the possible
ranges for each parameter, assuming a discrete uniform
distribution. The described procedure (see Table 2 and
Table 3) is conducted for each of the three scenarios.

This leads to parameter set for group 1:

θ (1) = {µ(1)
1 ,φ (1)

1 ,π(1)
1 ,µ(1)

2 ,φ (1)
2 ,π(1)

2 ,µ(1)
3 ,φ (1)

3 ,π(1)
3 },

and equivalent for group 2:

θ (2) = {µ(2)
1 ,φ (2)

1 ,π(2)
1 ,µ(2)

2 ,φ (2)
2 ,π(2)

2 ,µ(2)
3 ,φ (2)

3 ,π(2)
3 }.

Based on the m sampled parameters θ (1)
l for each

scenario l of target group 1 and θ (2)
l for target group 2, the

simulation data are constructed by generating n1 = 250
and n2 = 250 random numbers out of a zero-inflated
negative binomial distribution for m genes. As a final step,
the individual subgroups are joined such that simulation
data with the dimension ((n1 +n2) x m) are created. This
represents the situation of "No dependence structure" of
the undistorted simulation data.
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3. Constructing Distorted Data via Lower
and Upper Distribution Functions

In this subsection the simulation data with distortion built
on the constructed scenarios will be presented. These up-
wardly and downwardly distorted data are based on the
gene-wise lower (Fj

(g)) and upper (Fj
(g)) distribution func-

tions according to Montes et al. [7] for each target group
g (g = 1,2). Therefore, we derive functions Fj

(g), Fj
(g):

R→[0,1], by

Fj
(g)(x) = in f{F(g)

j (x) : F(g)
j ∈F

(g)
j },

Fj
(g)
(x) = sup{F(g)

j (x) : F(g)
j ∈F

(g)
j }.

The set of possible distribution functions of each gene of
each target group (F (g)

j ) is limited to the three different
scenarios.

We will investigate simulation data being biased upwards
as well as being biased downwards. Therefore, we deter-
mine F̂j and F̂j on the read counts x of the gene-wise upper
and lower estimated distribution functions for each single-
cell of the constructed simulation data set representing the
different scenarios l for group g

F̂j
(g)
(x) = inf

l=1,2,3
F̂j

(g)
(x | θ (g)

l ),

F̂j
(g)
(x) = sup

l=1,2,3
F̂j

(g)
(x | θ (g)

l )

and consider the concatenation of the determined gene
expression of all the single-cells over all m genes as
distorted data.

This means, that in contrast to the classical imprecise
probability definition of considering the set of all possible
distribution functions constituting the lower and upper
distribution function, we take the infimum and supremum
distribution value of each single-cell for each gene over the
three constructed scenarios. This means that the distorted
data are generated according to the lower and upper
distribution functions. This approach leads to gene-wise
distribution functions that are no longer distributed to
ZINB. The intention behind the construction of these
distorted data is that we want to analyse the effects on
the quality of clustering in case we obtained tendencially
decreased read counts with the measuring instrument or
increased read counts. It will be investigated how the
distribution of these biased read counts is changed by
taking the upper and lower distribution function. This is
illustrated for target population 1 in Figure 1 and target
population 2 in Figure 2 using the cumulative distribution
function.

The lower distribution function (blue) reflects the situa-
tion of read counts being biased upwards for fictional gene
3. Given the instrument has a tendency to measure smaller
values is represented by the upper distribution function
(red) in the following two figures:

Figure 1: Lower and upper cumulative distribution func-
tion of simulated gene 3 for group 1 using the
statistical software R [9].

Figure 2: Lower and upper cumulative distribution func-
tion of simulated gene 3 for group 2 using the
statistical software R [9].
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Applying the described procedure of lower and upper
distribution functions on m genes and combining them as
described in the case of the undistorted data leads to the
distorted simulation data with "No dependence structure".

With regard to these distortions in both directions, we
will later analyse the classification results without depen-
dence structure and with dependence structure. This brings
us to the last extension of our simulation data, described in
the next subsection of taking the dependence of genes into
account.

4. Dependence Structure Using Copulas

Since the marginals in gene expression data have already
been studied quite well and the dependence structure can be
estimated on the basis of real data sets, the use of copulas
for the construction of our simulation data is justified.
Thus, the idea using copulas in a gene-based context in
our simulation data leads to a construction of generating
univariate marginal distributions Fg

j for each gene j
keeping the underlying univariate marginal distributions
Fj as well as keeping the same dependence structure as
in the real data set for both target groups. Based on this
motivation, the principle of copulas will be introduced
in the first step based on the distribution function for
two genes of group g. The described application will be
extended towards distorted measurements, but first of
all we would like to briefly recall on the concept of copulas.

Given a function C fulfills the following aspects (1)-(3)
and allows a mapping of [0,1] x [0,1]→ [0,1], then C can
be well described as a copula, e.g. Nelsen [see 8] :

(1) C(F(g)
1 , F(g)

2 ) = C(0, F(g)
2 ) = 0, ∀ F(g)

1 , F(g)
2 ∈ [0,1]

(2) C(F(g)
1 ,1) = F1 and C(1,F(g)

2 ) = F(g)
2 ∀ F(g)

1 , F(g)
2 ∈ [0,1]

(3) C(F(g)
1 (x2),F

(g)
2 (x2))-C(F(g)

2 (x2),F
(g)
2 (x1))−

C(F(g)
1 (x1),F

(g)
2 (x2))+C(F(g)

1 (x1),F
(g)
2 (x1))≥ 0,

∀F(g)
1 (x1)≤ F(g)

1 (x2),F
(g)
2 (x1)≤ F(g)

2 (x2)

In order to obtain the joint distribution function
F(g)

X (x1, ...,xm) in higher dimensions m for one target
group, one can construct a copula function over all
marginal distributions. Sklar [12] states that one can find a
copula function of family v over all marginal distributions,
which leads to the joint distribution function, that keeps the
univariate marginal distributions:

F(g)
X (x1, ...,xm) =Cv(F

(g)
1 (x1),F

(g)
2 (x2), ...,F

(g)
m (xm))

This theorem will be later used for the creation of
undistorted datasets respecting the dependence structure.

With the introduction of copulas it is possible to consider
non-linear dependence structures [see 8]. Based on the
fact that gene expression below a certain limit cannot be
measured during the sequencing procedure, it is assumed,
that genes tend to have a higher correlation in the low value
range. There might also be a dependence in the higher
value range as genes can contain outliers and extreme
single-cells might tend to have genes with extremely high
gene expression.

For example, it is possible that the Pearson correlation
in the data is very low, but if one takes a closer look at a
scatter plot of two genes, it could show a high dependence
structure, as it is the case with the reference data. This
observation can be explained by an underlying non-linear
dependence in the data, which is considered using copulas.

4.1. Use of Reference Data for Dependence Structure

For the construction of the dependence structure using
a copula, we assume the dependencies of m genes from
the original count data of Kolodziejczyk et al. [6] as true.
The built copula represents the joint distribution of the
originally observed m genes and remains fixed for each
simulation study (with fixed m). The dependence structure
obtained by the real data, is based on both single-cell
populations in order to prevent group specific effects.

With the use of the VineCopula R package of Schep-
smeier et al. [10], the structure is generated by the R-vine
tree which is maximized over the edges of the spanning
tree with regard to the empirical Kendall’s tau τ̂i j:

max ∑
edges ei j∈ spanning tree

| τ̂i j |,

with a spanning tree as a tree which is based on all nodes.

In each simulation data set, the allowed copula families
of constructing the tree are based only on the specified
copula family for each target group using the same genes
in the original data for both subpopulations. The structure
selection algorithm of Dissmann et al. [2] constructs all
possible pairwise copulas of the given copula family
and chooses those parameters which correspond to the
maximum likelihood estimation.

4.2. Simulation Data With Dependence Structure

For each simulation study, the situation of assuming
the genes to be independent will be defined as "No
dependence structure". With the use of the terms "Gaussian
Cop", "Clayton Cop" and "Frank Cop", we designate the
simulation data keeping the same marginals like in the "No
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dependence structure" setting and sample out of the built
copulas for respecting the same data structure using the
Gaussian copula, the Clayton copula and the Frank copula.

The application of each copula with the defined
dependence structure for each scenario as well as for
the constructed distorted data sets, generates a common
distribution function. For each of the scenarios one can
generate the simulation data by applying the quantile
function with the sampled parameters for each gene. In the
case of the distorted data, we do not have the parametric
marginals anymore as they are no longer zero-inflated
negative binomially distributed. So we computed in
accordance to the upper and lower cumulative distribution
function, the lower and upper quantile function in order
to sample from the joint distribution, keeping the same
marginals.

In addition to the classical construction of copulas intro-
duced above, the copulas will also be used for undistorted
datasets, actually for downwardly distorted count data and
for upwardly distorted count data. Following the fact, that
Fj

(g) and Fj
(g) are again cumulative distribution functions,

allows to determine the joint distribution over all m genes
by using the following copula construction of family v [see
7, 14]:

Cv(F1
(g), ...,Fm

(g)) and Cv(F1
(g)
, ...,Fm

(g)
)

5. Results

This lead to the final simulation data with and without
dependence structure for distorted and undistorted data
and for different numbers of genes m. Each of these
combinations was analyzed on the basis of 50, 100 and 500
genes. All the simulation studies contained 500 single-cells
with 250 single-cells representing each target group. For all
simulation studies, we first classified the gene expression
assuming there is no dependence structure between the
genes. In addition, we studied the influence of different
copulas (Gaussian, Clayton and Frank copula) fitted to the
same original count data, given the same number of genes.
Taking the same dependence structure over each target
group as in the reference data, allowed a better comparison
of the simulation studies as we focused on the marginal
distributions and decided to keep the fitted structure fixed
over each simulation design. This applied not only to the
distorted data, but also to each scenario.

Before presenting the classification results, we want
to point out the intention behind the construction of the
different simulation datasets once again. The simulation
data of each scenario represents different ranges of

possible read counts. Scenario 1 allows the smallest range
of parameters for the ZINB distribution and therefore
represents the most homogeneous scenario. Scenario 3
contains the broadest range of possible parameters and
therefore reflects the most heterogeneous data situation of
all the scenarios, containing also the most homogeneous
scenario (Scenario 1). As the range of the parameters
for Scenario 2 lies in between the one of Scenario 1 and
3, one can state that Scenario 2 is a transition scenario
from homogeneous to heterogeneous. The simulation data
set which was created by the lower distribution function
represents the data set situation of measuring tendencially
higher read counts. With the construction of the upper
distribution function, one aims to reconstruct read counts
that are tendencially biased downwards.

In the following, a k-means clustering of the mclust R
package of Scrucca et al. [11] is performed creating two
clusters with and without using the dependence structures
of the Gaussian, Clayton and Frank Copula. For evaluating
the clustering quality, the adjusted Rand index is applied,
which is also implemented in the R package mclust. In
accordance to the undistorted data, the assumption that the
single-cells of different target groups are independently
distributed is still valid for distorted data. Therefore it
does not cause any problem to simply merge the data sets
constructed for each target group to obtain a whole data set
containing both subpopulations for each simulation data
set.

5.1. Results of the Undistorted Data

Based on the construction of the undistorted data, which
are represented by the three scenarios, one can assume that
detecting the different subpopulations might be easier in
the third scenario compared to the second and first scenario.
This assumption can be confirmed in the case of the in-
dependent settings for 50, 100 and 500 genes with regard
to the adjusted Rand Index, which is displayed in Table
4 , 5, and 6. In case of considering dependence structures
in the simulation data, this statement is only valid for the
simulation data of all investigated numbers of genes using
the Gaussian copula and for the Clayton copula in the di-
mension of using 500 genes. All in all, one can state that in
the lowest dimension, the Gaussian copula performs best
for scenarios tending to be more heterogeneous. In case of
a very homogeneous data situation it seems as if the choice
of the Frank copula was the best. With 100 and 500 genes,
the Frank copula performs best in every scenario.
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Scenario 1 Scenario 2 Scenario 3
No dependence structure 0.32 0.49 0.55

Gaussian Cop 0.46 0.53 0.63
Clayton Cop 0. 42 0.41 0.38
Frank Cop 0. 60 0.47 0.53

Table 4: ARI for the simulation data for n1= 250, n2= 250,
m= 50 (Simulation study 1 of undistorted data
only).

Scenario 1 Scenario 2 Scenario 3
No dependence structure 0.52 0.71 0.87

Gaussian Cop 0.68 0.70 0.70
Clayton Cop 0. 42 0.41 0.38
Frank Cop 0. 92 0.80 0.91

Table 5: ARI for the simulation data for n1= 250, n2= 250,
m= 100 (Simulation study 2 of undistorted data
only).

Scenario 1 Scenario 2 Scenario 3
No dependence structure 0.65 0.85 0.98

Gaussian Cop 0.88 0.88 0.93
Clayton Cop 0.49 0.49 0.51
Frank Cop 1 1 0.99

Table 6: ARI for the simulation data for n1= 250, n2= 250,
m= 500 (Simulation study 3 of undistorted data
only).

To conclude at this stage, one has to pay attention to the
choice of the right copula. Especially in the case of simu-
lation data, one should not create independent simulation
data as a simplification of reality. One should rather pay
attention to the right choice of copulas which can achieve
better results compared to an independence structure.

5.2. Results of the Distorted Data

In the following, we describe the classification results of
the distorted data, which can be found in Table 7, Table 8,
and Table 9. The clustering performance of the distorted
data was always better in case of using the lower distribu-
tion function compared to the upper distribution function
in the setting of an independence structure as well as in
the setting of the Gaussian, Clayton and Frank copula. In
addition, one can state that with the use of the lower dis-
tribution functions the clustering performance gets better
with an increase of the dimension. The only exception is
the clustering performance of the Frank copula using 100
genes instead of 50 genes, which leads to a decrease of
the adjusted Rand index from 0.63 to 0.61. In case of the
lower distribution function, the Clayton copula performs
the worst. Choosing the best performance in using 50 and

100 genes, one obtains the best classification result using
an independence structure. In the highest dimension of 500
genes, the Frank copula performs best.

Lower Distribution Upper Distribution
No dependence structure 0.80 0.14

Gaussian Cop 0.49 0.41
Clayton Cop 0.29 0.24
Frank Cop 0.63 0.20

Table 7: ARI for the simulation data for n1= 250, n2= 250,
m= 50 (Simulation study 1 of distorted and undis-
torted data).

Lower Distribution Upper Distribution
No dependence structure 0.90 0.18

Gaussian Cop 0.49 0.35
Clayton Cop 0.34 0.24
Frank Cop 0.61 0.17

Table 8: ARI for the simulation data for n1= 250, n2=
250, m= 100 (Simulation study 2 of distorted and
undistorted data).

Lower Distribution Upper Distribution
No dependence structure 0.93 0.30

Gaussian Cop 0.75 0.27
Clayton Cop 0.47 0.14
Frank Cop 0.97 0.01

Table 9: ARI for the simulation data for n1= 250, n2=
250, m= 500 (Simulation study 3 of distorted and
undistorted data).

The performance of clustering having tendencially lower
read counts is not going to be interpreted because the results
are quite bad and can almost be compared to a random
assignment of observations to the target groups.

6. Conclusions, Discussion and Outlook

6.1. Conclusions

With the construction of the upwards and downwards
distorted data of the three scenarios it was possible to
generate distorted simulation data. The values of the upper
distribution functions reflect the situations containing
lower gene expression, whereas the lower distribution
functions contain upper distortions of the simulated values
of each scenario. Due to the fact that only positive values
(including zero) can be generated out of the ZINB means
that the deviations in the upper measuring range can
vary distinctively more than in the lower range of values.
In connection with the measured gene expression, the
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immense outliers are often also addressed in the analysis
of real scRNA-seq data sets. This is another indication
that the simulation data might represent well the real data
situation of single-cells.

One can state for the classical simulation studies that
choosing the right copula can improve the clustering
performance. Specifying the effect of different copulas on
distorted data requires further analysis.

The phenomenon of the natural ranges of the lower
distribution and upper distribution simulation data might be
the explanation for the bad performance of the simulation
data of the upper distribution. This leads to the conclusion
that in the extreme case of measuring always the highest
value one allows higher variation of gene expression
which leads to an easier distinction of the target groups.
Whereas in the case of measuring tendentially always
the lowest value only brings little variation of gene
expression and leads to less adequate classification results.
In accordance to this statement, we have seen that the
clustering performance tends to be better, the more
heterogeneous the data are. We can further conclude that
the clustering behaviour of the undistorted data improves,
the more genes are used. This fact can also be observed
in the case of using lower distributions but that does not
apply to the distortion based on the upper distributions for
the reasons already mentioned.

The proposed approach has been a first step to provide
simulations showing consequences of distorted measure-
ments towards the ability of assigning single cells to the
right group membership. The approach has been designed
to represent the extreme cases of distorted data. For a more
in depth investigation into each direction of distortion it
might be appropriate to continue developing tools of deter-
mining distortion based on well defined scenarios.

6.2. Discussion and Outlook

With the decision of creating simulation data based on
quantiles, we set the focus on genes with a tendency
of a homogeneous gene structure without outliers since
imprecise measurement might play a higher role in these
situations. Therefore, the range of obtained results might
nicely reflect the imprecision of the real measurements
of gene expression. In case of using the lower (upper)
distribution function, the tendency of measuring always
higher (lower) gene expression than the real one, might
reflect the measurement error of an instrument that has the
tendency of measuring higher (lower) gene expression.

The construction of distorted simulation data might
nicely correspond to the idea that the measured gene
expression can be distorted into both directions. Especially

the case of having strong outliers can have a high impact
on the classification result. With our simulation studies, we
investigated the clustering behaviour based on maximal
500 genes, but in reality there are several thousands of
genes to analyse. Choosing the lower and upper distribution
function, constructed by the infimum and supremum of
different distribution functions, might not be a valid choice
in a higher dimension setting anymore. Given we would
generate the lower and upper distribution functions in even
higher-dimensional settings and given we still have the
three defined scenarios, then the proportion of those read
counts, which are located at the respective boundaries of
the value range, would increase. Thus, the final clustering
would take place increasingly on read counts with very
little gene expression or on genes with very strong outliers,
depending on the construction of the respective scenarios.

Further research should focus more on the role of lower
and upper distribution functions in the context of p-boxes
[see 3, 4], describing a whole set of scenarios and on
decision procedures relying on the whole induced credal
set. Thus, for a future project, it would be interesting
how a construction of a less clear scenario would affect
the clustering performance. Another point that could be
discussed, is how to improve the sampling procedure
underlying the simulation, in order to use simulations
closer to the idea of truly interval-valued probability, but
this is a general topic that clearly goes far beyond the scope
of this paper.

Regarding the dependence structure, one could further
determine the influence of the used copula families
using vine copulas, especially in a distorted setting. As
a further step, it would also be of interest to look at the
defined scenarios with the help of imprecise copulas [see 7].

Concerning the application of the obtained results, one
imaginable conclusion of this simulation study would
be whether it might be worth to calibrate measuring
instruments further down or being more precise in the
higher value range of count data. As extreme outliers often
occur during the measurement of single-cell RNA gene
data, it is not a surprise, that this tends to have an impact
on the clustering result. Our tool might help to analyze the
consequences of distorted measurements and might help
to give assessments of how distorted measurements could
affect the quality of the classification result. In addition,
with a more precise investigation of the impact of outliers
on the classification results it can be studied whether these
outliers are useful for classification or not.

In accordance with our classification results, measuring a
tendency of lower read counts than reality does not result in
worse clustering performance at least in a low dimensional
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context. So, the current state-of-the-art, which tends to miss
low read counts, has a lower impact than misspecifying
high read counts. Based on our new findings, we question
the current approach of calibrating measuring instruments
in the low sequencing ranges and demand further analyses
that also take distortions in the higher measuring range into
account.
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Discriminative Power Lasso – Incorporating
Discriminative Power of Genes into

Regularization-Based Variable Selection
Cornelia Fuetterer+∗, Malte Nalenz+∗, and Thomas Augustin+

Abstract—In precision medicine, it is known that specific genes
are decisive for the development of different cell types. In drug
development it is therefore of high relevance to identify biomark-
ers that allow to distinguish cell-subtypes that are connected to a
disease. The main goal is to find a sparse set of genes that can
be used for prediction. For standard classification methods the high
dimensionality of gene expression data poses a severe challenge.
Common approaches address this problem by excluding genes during
preprocessing. As an alternative, L1-regularized regression (Lasso)
can be used in order to identify the most impactful genes.
We argue to use an adaptive penalization scheme, based on the
biological insight that decisive genes are expressed differently among
the cell types. The differences in gene expression are measured as
their discriminitive power (DP), which is based on the univariate
compactness within classes and separation between classes. ANOVA
based measures, as well as measures coming from clustering theory,
are applied to construct the covariate specific DP.
The resulting model, that we call Discriminative Power Lasso (DP-
Lasso), incorporates the DP as covariate specific penalization into the
Lasso. Genes with a higher DP are penalized less heavily and have a
higher chance for being part of the final model. With that the model
can be guided towards more promising and trustworthy genes, while
the coefficients of uninformative genes can be shrunken to zero more
reliably.
We test our method on single-cell RNA-sequencing data as well
as on simulated data. On average, DP-Lasso leads to significantly
sparser solutions compared to competing Lasso-based regularization
approaches, while it is competitive in terms of accuracy.

Keywords—Penalized Regression, Variable Selection, Clustering
validation metrics, scRNA-sequencing data.

I. INTRODUCTION

In personalized medicine, it is important to identify genes,
which can be used to accurately predict the individual
outcomes. For the development of biomarkers, a lower
number of covariates means less effort in its subsequent
clinical testing. As in high-dimensional settings many genes
are often noise, the challenge is to select only the covariates
that are relevant in terms of prognostic, predictive or biological
impact on the drug or the disease [19]. In case of non-small
cell lung cancer (NSCLC), the detection of the biomarker
EML4-ALK fusion gene [27] led to the development of
the drug crizotinib, which is used for patients carrying an
ALK-fusion. In contrast to the earlier low response, crizotinib
dramatically raised the response rate in NSCLC [19].

+Ludwig-Maximilians-University, Munich. Department of Statistics.
*These authors contributed equally to this work.

In general, the transition of healthy cells into cancerous
cells affects changes in gene expression that can be measured.
It is therefore common practice to investigate single-cell RNA
sequencing data, introduced by [30], which allows insights
into the different types of single cells. In the case of a cell
cycle, the cell passes from the DNA synthesis (S-phase) to
the mitosis (M-phase), including the gap phases (G1 and G2)
in between. These different phases can be distinguished by its
measured gene expression of a synchronized cell population.
For example, a high score at the G2M checkpoint can be an
indicator of a metastasis tumor [21]. Testing whether genes
are differentially expressed among different cell types might
therefore lead to valuable insights.

From a biological point of view, it is therefore of relevance
to extract a sparse set of genes that can be used to classify
and characterize the subpopulations [11]. One common
approach is to use penalized regression models, such as
the Lasso [31] that find a trade-off between model fit and
model complexity. The advantage of the Lasso is that it
provides variable selection, by setting coefficients exactly to
zero. An extension is the adaptive Lasso [36] which uses
covariate specific penalization terms. The penalization terms
are inversely proportional to the ordinary least square (OLS)
estimates from a multivariate regression model.

In this article, we combine the concepts of regularized
regression with the biological background of differentially
expressed genes. Genes that differ univariately with respect
to the target, should be penalized less heavily.
We therefore introduce the term discriminative power (DP),
which allows a covariate specific evaluation of compactness
and separation with regard to the outcome. Discriminative
power is measured by means of clustering indices [3],
as well as by the classic concept of analysis of variance
(ANOVA) [12].

The discriminative power is directly incorporated into the
adaptive Lasso as covariate specific penalization, resulting in
our approach Discriminative Power Lasso (DP-Lasso). Using
the DP as penalization weights in a L1-regularized model can
be seen as a soft filtering as we do not exclude any covariates
before performing regression, but favour genes with good
univariate properties. The idea is to give a higher penalty to
covariates with low univariate DP and a reduced penalty to
the more promising covariates.
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This paper is structured as follows. In Section II we
introduce notations and give an overview over commonly
used regularization based methods. Section III introduces
the DP-Lasso model. In Section IV and Section V we test
the performance of DP-Lasso on scRNA-sequencing datasets
as benchmark datasets, and on simulated data. Section VI
concludes and provides an outlook.

II. METHODS

In supervised learning, the goal is to estimate the under-
lying function that maps the p-dimensional covariate space
to the outcome. As training data, we are given a matrix X ,
composed of p covariate vectors each containing the values
of the N observations. This leads to the covariate matrix
X = (x1, · · · , xp), j = 1, · · · , p, and the vector y containing
the N outcomes. xij denotes the value of observation i for
covariate j, xj the N values of covariate j, and xi· the p
dimensional observation vector for observation i. Given that
the outcome is continuous, a common approach is to estimate
the linear model

ŷi = β0 +

p∑

j=1

βjxij , (1)

where β is the p-dimensional vector of regression coefficients.
In the following, categorical outcomes y ∈ {1, · · · ,K} are
considered. In this case a generalized linear model (glm) is
appropriate, which uses a linear structure as in Equation (1)
and connects it to the target through a link function [10].
Thus, for binary outcomes y ∈ {0, 1} logistic regression is
used and for K > 2 classes the multinomial-logit model.
However, for ease of notation in the following the linear
model is used to describe the methods.

In high dimensional data and especially p >> N generalized
linear models can not be estimated reliably, due to the
problems of multicollinearity and perfect separation [1, 14].
Also glms can not deal efficiently with irrelevant predictors,
as no variable selection is performed. It is therefore common
practice to reduce the number of genes before analysis.

For this purpose, the univariate filtering approach selects
covariates based on (adjusted) p-values of univariate tests or
biological reasoning. The final result highly depends on the
researcher’s choice, because a threshold or number of genes
kept for the analysis has to be specified.

Alternatively, one can use regularized regression models, that
find a trade-off between model fit and model complexity for
parameter estimation. Regularized regression models also
lead to more stable solutions for β coefficients in p >> N ,
as extreme behavior is penalized [15]. This allows to find a
unique solution in situations where glms might fail, such as
perfect separability and multicollinearity.

In regularized regression models, the overall loss function is
decomposed into the discrepancy of the observed target and

the model prediction and a penalty term that controls the
complexity of the model. In case of the classical Lasso, the
penalty is equal to the L1-norm of the coefficients β, leading
to the overall loss function [31]

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2

︸ ︷︷ ︸
SSE

+λ

p∑

j=1

|βj |
︸ ︷︷ ︸
Penalty Term

, (2)

for linear regression. The degree of shrinkage and sparsity
is controlled by a global shrinkage parameter λ, which is
usually chosen via cross-validation.

Lasso regression allows to exactly shrink coefficients to
zero, which leads to a covariate selection. Lasso has
efficient solvers available, making it a good choice for high
dimensional datasets. However, the Lasso has the known
deficiency of over-shrinkage: To remove a large number of
uninformative covariates, a high penalty parameter needs to
be chosen. This in return will also shrink the coefficients
of informative predictors to some extent. To counteract, the
Lasso will take in correlated predictors, to substitute for
the over-shrinkage [35]. This makes the interpretation of
covariates left in the final model somewhat dubious, as it
is unclear if the covariate itself is important or just as a
substitute for the overshrinkage of another covariate.

If predictive performance is the primary objective, Ridge
regression (L2-penalty) is a popular alternative. L2-penalty
limits the influence of individual covariates, by penalizing
high β’s strongly, but shrinks no coefficient exactly to
zero [15].

The Elastic Net [37] uses a mixture of the L1-norm
(Lasso) and the L2-norm (Ridge). The loss function of the
Elastic Net can be written as

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2 + α

p∑

j=1

λj |βj |+

(1− α)

p∑

j=1

λjβ
2
j , (3)

where α is a mixing parameter that controls the proportion
of L1 and L2-penalty that is put on the coefficients.
Elastic Net often shows better predictive performance than
Lasso, while also being able to set coefficients exactly to zero.

To reduce the amount of over-shrinkage and improve
variable selection consistency, the adaptive Lasso [36] was
proposed. Instead of using the same global shrinkage λ on
every coefficient, the adaptive Lasso uses a covariate specific
shrinkage parameter λj , which allows a separate penalty for
each covariate. This leads to the loss function of the adaptive
Lasso [36]

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2 +

p∑

j

λj |βj |, (4)
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where λj = λwj is the covariate specific penalty and wj

are discount factors that increase or decrease the amount
of penalization for covariate j. In the original adaptive
Lasso, wj is calculated as the inverse of the parameter
estimates of the ordinary least squares (OLS) regression,
hence wj = 1/β̂

(OLS)
j . For this approach it can be shown

that it improves the model selection consistency under
certain assumptions [36]. More concretely this results in less
penalization of important covariates with high β̂

(OLS)
j , which

allows the final coefficients to become large, mitigating the
over-shrinkage effect. In case of p >> N , the covariate
specific weighting can be obtained by a ridge regression
instead of the OLS estimates.

Several other extensions of the Lasso have been proposed,
such as the fused Lasso [32], group Lasso [20], Bayesian
Lasso [22] and Bayesian shrinkage priors [2].

Another commonly used approach for gene selection is
the usage of tree ensembles, such as random forests [8].
Random forests [4], that combine several decision trees,
are a popular choice for genetic classification data, as they
have a strong predictive performance and do not require
further assumptions. Measures, such as (unbiased) variable
importance [29] and SHAP values [17] can be used to assess
the importance of individual covariates, to rank covariates
and to identify the most impactful genes.

III. DISCRIMINATIVE POWER LASSO

In p >> N situations, in which the number of covariates
exceeds the number of observations, there always exists an
infinite amount of solutions for the regression hyperplane
defined by the regression coefficients. While regularization
helps to promote sparsity and limits extreme behavior,
we argue that additional information can guide the model
towards more robust and reliable solutions. In contrast to
the original adaptive Lasso, we want to limit the impact
of covariates that only work well in a multivariate model,
but are not discriminative univariately. If enough data is
available, such interplay between different covariates can
be reliably estimated. However, with limited training data,
the chance of over-fitting on spurious relationships is high
when learning multivariate models. Therefore, we suggest to
promote instead genes that decompose the data into ‘natural’
groups, measured by the univariate discriminative power
based on the conditional distribution f(Xj |Y ), j = 1, ..., p.

The construction of the DP can be motivated by the
concept of analysis of variance that measures the impact of a
grouping variable on a numeric outcome by the differences of
the group means. Therefore, for the construction of the DP
we use the dependent variable y as independent variable that
we condition on to explain the differences in X . This change
in perspective adds new information that is unavailable in
a purely supervised regression approach. Secondly, cluster
validation measures that have been developed in unsupervised
clustering theory can be applied. Instead of using the

outputted cluster labels as groups, as it is usually done in
unsupervised learning, we directly use the target labels y as
grouping. The discriminative power therefore measures how
well a covariate decomposes the underlying groups in terms
of compactness and separation.

A. Target Adaptive Regularization

We implement the preference towards covariates with high
discriminative power by discounting their penalty, similar to
the adaptive Lasso. The overall loss function of DP-Lasso can
be written as

L(y,X, β, λ, w) = E(ŷ, y, β) +
p∑

j=1

λj |βj |, (5)

where E is an appropriate loss function measuring the
deviation of the fitted response vector ŷ form the true values
y, using a suitable link function. For logistic regression
deviance or log-loss are common choices for E . In case of
a linear model the model takes the form of Equation (4).
We propose to choose the covariate-specific penalty as
λ
(DP )
j := λw

(DP )
j and w

(DP )
j = 1/DPj , where DPj is the

discriminative power of gene j. This gives the model a gentle
push towards covariates that appear more natural and reliable,
based on their DP. Note that both the calculation of DP and
the following regularized regression model are based on N
observations of the training data.

Combining the DP with the supervised approach enriches
the regression model with new information. Covariates with
high DP are more likely to be selected in the final model,
whereas covariates, that only work well in a multivariate
model, but have a low individual DP are more likely to be
removed. The adaptive shrinkage parameter also counteracts
the over-shrinkage. Coefficients of covariates that work well
in the multivariate model and also appear as good candidates,
based on their DP , will be penalized less heavily and will
be allowed to become large. On the other hand, clearly
uninformative covariates with a low DP will receive an
even higher penalty and can be removed more easily in the
regularization step. Lastly, if several solutions to Equation (5)
are similarly good, our approach gives a gentle push towards
covariates that appear more trustworthy.

B. Characterization of natural groupings

This section motivates the construction of our DP mea-
sures. In general, we assume covariates Xj as more promising
for which the underlying groups y are homogeneous and well
separated from the other groups . This reflects the idea that
relevant genes should express differently among the K classes.
Figure 1 shows the distribution of two example genes from the
below used single-cell RNA-sequencing dataset EMTAB2805
of [5]. For the gene on the left side, we can see that the two
underlying classes show clear differences in their distribution.
Also the two groups are relatively compact and their group-
means well separated. For the gene on the right side, the two
groups show a stronger overlap, and they are less separated.
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Fig. 1. Univariate distributions of two genes. The colors indicate the two
groups. Left side: the two classes show clear differences in their distribution.
Right side: the distributions are strongly overlapping with no clear difference.
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Fig. 2. Univariate distributions of two genes. The colors indicate the three
groups. Left side: the three classes show clear differences in their distribution.
Right side: the distributions are strongly overlapping with no clear difference.

Therefore, the gene on the left side appears to be a more
natural candidate for a decisive gene and should have a higher
chance of being selected. The same rationale can be used for
K > 2. Figure 2 shows the univariate distributions for three
classes on the same genes, which can be used to assess the
compactness and separation.
Therefore, the idea of DP-Lasso is to prefer genes that
decompose nicely into the underlying classes with regard to
compactness and separation. We call this concept of ‘natural
grouping’ the discriminative power DP . Genes with a high
discriminative power will be favored in the regularization step
(see Section III-A).

When using for example a logistic regression model, com-
pactness of the groups (as an indication of naturality of
the group) is not directly evaluated. The same goes for the
distance between groups (or their means): As long as the
groups are perfectly separable by a hyperplane, as is the
case in p >> N , the margin to the discrimination plane is
typically not considered in the loss function. Figure 3 shows
two simulated covariates with a similar slope from a logistic
regression model. While the two classes can be separated
similarly good in both covariates, we would intuitively prefer
the covariate shown at the right side, due to its distribution.
Here the two classes express differently and the two groups are
both compact and well separated, whereas the distribution at
the left side appears more likely to be random. These descrip-
tive illustrations aim to motivate the inclusion of additional
information into the penalization by the discriminative power,
which is described in the following.

The natural decomposition can be formalized by the con-
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Fig. 3. The graph shows simulated genes, that can similarly well discrimi-
nated by a logistic regression. Left side: the clusters appear unnatural. Right
side: compact groups with well separated group means.

cepts of compactness and separation with respect to the
response.

C. Measures of discriminative power (DP)
In the following we describe three interesting options to

measure the discriminative power. The goal is to capture
information about the compactness and separation between
classes in each gene. The discriminative power is therefore
calculated univariately over each covariate j using the target
variable y as grouping. In the following

x
(k)
j = {xij : yi = k}Ni=1 (6)

denotes the set of values of covariate j that belong to
observations with the target class k, and x

(k)
hj denotes the

covariate values of the h’th observation in class k.
There exist a large number of quality criteria that are
commonly used in unsupervised learning to evaluate
clustering solutions. Also the idea of discriminative power
can be interpreted as a classical test problem. The following
describes three ways to measure DP , based on these
principles.

1) ANOVA-approach: One classical way to test for
differences in group means is the analysis of variance
(ANOVA) [12]. Intuitively, the ANOVA expresses how much
of the sample variance can be explained by the grouping. More
concretely, the ANOVA tests whether there is a difference in
the means of K groups based on its F-statistic.
Let x̄(k)

j = 1
nk

∑nk

h=1 x
(k)
hj denote the class mean of covariate

j in target class k, where nk is the number of observations
belonging to class k and x̄j denotes the overall mean over
N observations. The according test statistic Fj measures the
ratio of between-group variability and within-group variablity
of covariate j via

Fj =
(N −K)

(K − 1)

∑K
k=1 nk(x̄

(k)
j − x̄j)

2

∑K
k=1

∑nk

h=1(x
(k)
hj − x̄

(k)
j )2

. (7)

The value of the F-statistic is large in case that the dis-
tances between the groups are considerably higher than the
distances within the groups. The higher the F-statistic, the
higher the proportion of variance explained by the grouping,
indicating significant differences in class means. We thus use
the value of the F-statistic as one possibility for the mea-
surement of discriminative power and determine the discount
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factor w(DP )
j for the penalization in the subsequent step with

w
(ANOV A)
j = 1/Fj . As 1/Fj can become quite large we use

a logarithmic transform to attenuate the differences in DP
between the genes and to avoid numerical instabilities.

2) Davies-Bouldin Index: The Davies-Bouldin index DB
was developed for validating the clustering quality based on
compactness and separation of the clusters [6]. As mentioned
before, instead of evaluating a cluster solution, the K classes
are evaluated. The DB index relates the compactness within the
groups to the separation between the classes. The compactness
of class k is measured by the root mean square error of
observations from class k to the class mean x̄

(k)
j of class k in

covariate j, leading to

∆DB
j (k) =

√√√√ 1

nk

nk∑

h=1

(x
(k)
hj − x̄

(k)
j )2,

which in the univariate case simplifies to the standard deviation
of observations in group k. The separation between the groups
k and l is measured via the Euclidian distance of their
respective class means x̄

(k)
j and x̄

(l)
j , which in the univariate

case simplifies to

δDB
j (k, l) = |x̄(k)

j − x̄
(l)
j |.

The overall DB index is then given as

DBj =
1

K

K∑

k=1

max
l ̸=k

{
∆DB

j (k) + ∆DB
j (l)

δDB
j (k, l)

}
, (8)

which compares each class to its closest class, as a more
pessimistic measure. The better the groups are separated and
compact, the lower the DB index and as a consequence this
covariate should be less penalized. Therefore, the discount
factor is taken as w

(DB)
j = DBj .

3) Silhouette Index: The silhouette index Sj [24] considers
the compactness and separation evaluated on the individual
level. For the construction of the ‘silhouette width’ sij the
closeness of observation i to all observations within its group
k = yi is measured via

∆Sil
j (i, k) =

1

(nk − 1)

∑

h:yh=k,h ̸=i

|xij − x
(k)
hj |, (9)

which is similar to the compactness measure in the DB
index. However, ∆Sil

j takes the closeness to each individual
observation into account, instead of measuring the deviation
from the mean.
Separation between the groups is measured via,

δSil
j (i, k) = min

l ̸=k

{
1

nl

nl∑

h=1

|xij − x
(l)
hj |

}
, (10)

which takes the minimum average distance to the members of
any other class. The silhouette width sij combines compact-
ness and separation which leads to

sij =
δSil
j (i, k)−∆Sil

j (i, k)

max{∆Sil
j (i, k), δSil

j (i, k)} . (11)

As a last step, the silhouette index Sj is calculated by
averaging over the silhouette width sij of all N individuals,

Sj =
1

N

N∑

i=1

sij ∈ [−1, 1]. (12)

Sj which can be used as a global measure of clustering quality
given the covariate j and the target classes.
The absolute silhouette index takes values close to 1, if
all observations are compact within their groups and well
separated from the other groups. The more the silhouette index
Sj approaches 0, the less compact the observations are within
their groups and the less separated among covariate j. In this
case the groupings are not nicely decomposed, and therefore
this covariate is considered as less decisive.
The higher the absolute value of the silhouette index of
covariate j, the better the distinction of the two underlying
groups. Covariates with a high absolute silhouette index should
be penalized less, therefore we set w(Sil)

j = 1/|Sj |.

IV. EMPIRICAL COMPARISON

In this section we first present the scRNA-sequencing
benchmark data and test the performance of DP-Lasso with
different choices of the DP against competing methods. For
both the binary classification, described in Section IV-C and
the multiclass classification, described in Section IV-D, we
perform a 5−times repeated 10−fold cross validation. In
contrast to unsupervised clustering models we can only predict
the number of underlying classes that are part of the training
data set as the supervised model is based on the classes present
in the training data.

A. Single-cell RNA-sequencing data (ScRNA-Seq data)

Based on the paper of [28], we use the same single-cell
RNA-sequencing datasets as [16]. As proposed by [28], we
only include genes into our analysis with read counts higher
than 1 transcript per million mapped reads (TPM) in more
than 25% of the considered cells. This leads to a differing
number of covariates p in case of the binary classification
and the multiclass classification task, as shown in Table I. For
the choice of cell types, we use the same selection as [16].
In case of the binary response, two selected cell types will
be analyzed (left side of Table I). In case of the multiclass
classification task (right side of Table I), we analyze K cell
populations. The underlying numbers of cells in case of the
binary response (K = 2) are N1 and N2, and for the multiclass
response (K > 2) the respective cell populations are denoted
with N1, · · · , NK .
In accordance with the paper of [16], we consider their
proposed binary classification tasks. However, instead of their
approach of all pairwise combinations, we use a multinomial
model for the K > 2 cases, which means one model per
dataset. In the following, the cell types of the analyzed single-
cell RNA-sequencing datasets are described. The EMTAB2805
data of [5] contain the cell cycle stages G1, S, G2M of
the mouse embryonic stem cell (mESC). For the dataset
GSE45719 [7] we include the different states of transition
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TABLE I
BENCHMARK DATA, SHOWING THE NUMBER OF COVARIATES p, NUMBER OF OBSERVATIONS N , AND THE OBSERVATIONS PER CLASS N1 VS. N2 IN THE

BINARY CLASSIFICATION TASK AND N1 VS. N2 VS. · · · VS. NK IN THE MULTICLASS CLASSIFICATION TASK

Binary Response Multiclass Response

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

p 13,110 10,851 7,987 6,748 12,849 11,065 7,831 7,329

Subpopulation 1 G1 mid blastocyst BMDC 1h LPS NKT0 G1 mid blastocyst BMDC 1h LPS NKT0
N1 96 60 96 45 96 60 96 45

Subpopulation 2 G2M 16-cell stage embryo BMDC 4h LPS NKT17 G2M 16-cell stage embryo BMDC 4h LPS NKT17
N2 96 50 191 44 96 50 191 44

Subpopulation 3 - - - - S 8-cell stage embryo BMDC 6h LPS NKT1
N3 - - - - 96 37 191 46

Subpopulation 4 - - - - - - NKT2
N4 - - - - - - - 68

of mid blastocyst, 8-cell stage embryo as well 16-cell stage
embryo. In case of the single-cell RNA-sequencing data of
GSE48968 bone marrow-derived dendritic cells (BMDCs)
were stimulated with three different pathogenic components,
analyzing the different responses for the dataset [25]. We will
analyze only the component Lipopolysaccharides (LPS) at
different timepoints (1h, 4h, 6h) after incubation. The data
set GSE74596 contains different types of Natural killer T
(NKT) cells extracted from the thymus. The cell types NKT1,
NKT2 and NKT17 are subtypes of the helper T cells [9]. The
objective is to determine a supervised model that can classify
the different cell types, given the expression profiles in these
datasets. Also, as a second objective it is important to find a
sparse solution to focus on the most important genes.

B. Competing Methods

The L1-regularized regression is carried out with the
R package glmnet [13]. The λ values are found via the
internal 10-fold CV approach and chosen as the value λ
leading to the smallest estimated generalization error. For
adaptive Lasso, the covariate specific penalty weights are
determined with ridge regression wj = 1/β̂Ridge

j due to the
p >> N situation. We also compare our methods to the
Elastic Net, as a baseline for good predictive performance.
The Elastic Net is fit using glmnet and α = 0.5, leading
to an equal mixture of L1 and L2-penalization (cf. Section II).

For DP-Lasso the ANOVA based DP weights are implemented
with the R package stats [23]. The Silhouette index is
calculated with the R package cluster [18] and the Davies-
Bouldin index with the package clusterSim [34]. The final
DP-Lasso model is again fit using the glmnet procedure, with
the covariate specific penalty weights derived from the DP .

C. Binary classification

In this section the results for the experiments on binary
classification tasks are presented and analyzed.

1) Accuracy – Binary: Accuracy is measured in terms
of the misclassfication rate, averaged over all folds. The
results of the empirical comparison can be found in Table II.

Overall, the Elastic Net shows the lowest misclassification
rate, however the difference to the DP-Lasso models and the
normal Lasso is only marginal. The only exception is the
adaptive Lasso, which performs clearly worse compared to
the other methods. This is likely due to the strong correlation
present in the data.
The three proposed DP-Lasso models show only minor
differences in terms of misclassification rate, with a slight
advantage for DP-LANOV A. We conclude, that the accuracy
of DP-Lasso is comparable to the competitors regardless of
the choice of the discriminative power.

2) Number of Coefficients – Binary: If the primary objec-
tive is to identify biomarkers, it is very important to find sparse
solutions, as the cost of follow up studies can be high. Next,
we therefore analyze the number of covariates selected by each
method, which is the number of non-zero coefficients left in
the regularized model. Of all methods, the Elastic Net (Enet),
as expected selects the highest number of covariates due to its
use of the L2-penalty.
In all binary classification tasks, all DP-Lasso models select
significantly fewer covariates than the competing methods. Of-
ten the difference is quite large. For example on the GSE74596
dataset DP-LANOV A selects only 4 covariates, whereas Lasso
selects 18. A likely explanation is the over-shrinkage effect
in Lasso regression, which takes in irrelevant predictors (cf.
Section II). On the other hand, DP-LANOV A is able to reduce
the penalty on the important covariates and reaches a very
sparse solution.
From the class of DP-Lasso models, DP-LANOV A is the most
selective and finds the sparsest solutions. However, DP-LDB

and DP-LSil also produce smaller model sizes compared to
the competing methods on all binary classification tasks.

D. Multiclass Classification

DP-Lasso can also be applied to multiclass (K > 2)
classification. Note, that in case of K > 2 and the
multinomial-logit model K − 1 coefficient vectors β are fit
for the different categories, whereas one category is used
as reference category. For each covariate, DP is measured
as before leading to an equal penalization for each of the
outcome categories.
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TABLE II
THE MISCLASSIFICATION RATE AND ITS STANDARD DEVIATION IN BRACKETS FOR BINARY AND MULTICLASS CLASSIFICATION ON THE FOUR

BENCHMARK DATASETS. THE BEST RESULT ON EACH DATASET (LOWEST NUMBER) IS MARKED IN BOLD.

Binary Multiclass

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

Lasso 0.05 (0.006) 0.01 (0.000) 0.02 (0.003) 0.00 (0.000) 0.06 (0.010) 0.03 (0.009) 0.19 (0.100) 0.01 (0.003)
Elastic Net 0.04 (0.006) 0.01 (0.000) 0.02 (0.000) 0.00 (0.000) 0.06 (0.007) 0.02 (0.005) 0.18 (0.008) 0.01 (0.004)
adaptive Lasso 0.11 (0.008) 0.02 (0.000) 0.07 (0.007) 0.15 (0.031) 0.17 (0.006) 0.10 (0.013) 0.26 (0.010) 0.28 (0.015)
DP-LANOV A 0.05 (0.006) 0.01 (0.000) 0.02 (0.004) 0.00 (0.000) 0.06 (0.009) 0.11 (0.017) 0.17 (0.009) 0.03 (0.006)
DP-LDB 0.05 (0.009) 0.01 (0.000) 0.02 (0.004) 0.01 (0.001) 0.08 (0.007) 0.07 (0.016) 0.20 (0.014) 0.03 (0.006)
DP-LSil 0.04 (0.006) 0.01 (0.000) 0.04 (0.004) 0.00 (0.006) 0.18 (0.018) 0.06 (0.008) 0.24 (0.011) 0.06 (0.013)

TABLE III
THE NUMBER OF SELECTED COEFFICIENTS AND ITS STANDARD DEVIATION IN BRACKETS FOR BINARY AND MULTICLASS CLASSIFICATION ON THE FOUR

BENCHMARK DATASETS. THE BEST RESULT (LOWEST NUMBER) ON EACH DATASET IS MARKED IN BOLD.

Binary Multiclass

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

Lasso 58 (1.9) 20 (0.4) 55 (0.9) 18 (0.6) 127 (3.5) 67 (1.0) 163 (5.5) 72(1.7)
Elastic Net 142 (1.8) 103 (1.1) 125 (1.2) 66 (0.5) 250 (13.1) 199 (1.5) 276 (10.2) 197 (1.9)
adaptive Lasso 38 (2.1) 13 (0.6) 48 (0.8) 27 (0.7) 65 (1.6) 36 (0.3) 84 (4.8) 52 (3.0)
DP-LANOV A 17 (0.4) 5 (0.1) 19 (0.4) 4 (0.2) 45 (0.6) 23 (1.2) 70 (1.1) 17 (0.5)
DP-LDB 25 (0.9) 9 (0.1) 30 (0.3) 7 (0.1) 71 (1.3) 39 (0.8) 125 (1.6) 37 (0.3)
DP-LSil 22 (0.5) 9 (0.3) 36 (0.6) 8 (0.4) 181 (2.2) 32 (0.8) 172 (1.8) 90 (3.3)

In contrast to the binary case, the adaptive Lasso uses a
different penalization weight for each covariate and outcome
category again resulting from the ridge estimator.

1) Accuracy – Multiclass: Accuracy is again measured as
misclassification rate. The results can be found in Table II.
Of all methods the Elastic Net shows the strongest predictive
performance, followed by the Lasso. The adaptive Lasso
again performs clearly worse on all datasets in terms of
accuracy.
From the DP-Lasso models, DP-LDB is competitive on most
datasets, and DP-LANOV A remains competitive on three
of the datasets showing significantly worse performance on
the GSE45719 data. DP-LSil performs worse overall in the
multinomial setting, but still notably better than the adaptive
Lasso.

2) Number of Coefficients – Multiclass: In terms of model
size, DP-LANOV A again uniformly produces the sparsest
solutions on all datasets. Lasso and Elastic Net keep around
3 to 10 times more non-zero coefficients in the respective
models.
DP-LDB also produces relatively small models, on par with
the adaptive Lasso, whereas DP-LSil clearly struggles on the
EMTAB2805, GSE48968 and GSE74596 datasets.

E. Empirical Results Summary

The empirical comparison on benchmark data indicates that
DP-Lasso is able to maintain a high accuracy. At the same time
DP-Lasso finds significantly smaller models, often by a factor
of 3 to 10 compared to Lasso and Elastic Net. This is due

to the incorporation of the DP into the penalization scheme,
which helps to remove uninformative genes and focus instead
on the relevant ones.
To summarise, DP-Lasso and especially DP-LANOV A pro-
duces significantly smaller model sizes, while being able to
maintain accuracy on par with current state-of-the-art regular-
ized regression approaches.

V. SIMULATION STUDY

In this section, we test our method on simulated data. The
setup is as follows. X1, ..., X10 are drawn from a normal
distribution N (−1, σ), for observations of class 1, and from
N (1, σ) for observations of class 2. This reflects the assump-
tion that relevant genes express differently between the target
groups. All additional covariates X11, ..., Xp are drawn from
N (0, σ) and can therefore be considered as irrelevant. We
test the values p ∈ {100, 1000, 5000} and σ2 ∈ {1, 2, 3} and
draw N = 100 observations in each setting. With increasing σ
the groups become more overlapping and we expect learning
to become increasingly difficult. Note that the covariates are
drawn independently, implying X ∼ Np(µ, σ

2Ip), where I
is the identity matrix, making it an ideal situation for all
methods. Each experiment is repeated 10 times and the results
are averaged.
As in this experiment the relevant covariates are known, we
measure the method’s capabilities to identify the decisive
covariates. To this end, we measure the Precision as

Precision =
||β̂true||0
||β̂||0

, (13)
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TABLE IV
THE PRECISION AND RECALL ON THE DIFFERENT SIMULATION SETTINGS, AVERAGED OVER 10 RUNS. RESULTS ARE PRESENTED AS PRECISION /

RECALL. FOR EACH SETTING THE METHOD WITH THE HIGHEST PRECISION IS MARKED IN BOLD.

σ2 = 1 σ2 = 2 σ2 = 3

p = 100 p = 1000 p = 5000 p = 100 p = 1000 p = 5000 p = 100 p = 1000 p = 5000

Lasso 0.86 / 0.99 0.60 / 0.99 0.53 / 0.98 0.45 / 0.96 0.32 / 0.96 0.23 / 0.93 0.48 / 0.95 0.37 / 0.84 0.28 / 0.84
Elastic Net 0.55 / 1.00 0.27 / 1.00 0.20 / 1.00 0.29 / 1.00 0.15 / 1.00 0.10 / 0.98 0.37 / 0.99 0.20 / 0.96 0.14 / 0.91
adaptive Lasso 0.99 / 0.97 0.97 / 0.98 0.94 / 0.95 0.88 / 0.98 0.58 / 0.96 0.37 / 0.91 0.71 / 0.93 0.35 / 0.82 0.28 / 0.85
DP-LANOV A 1.00 / 0.87 1.00 / 0.92 1.00 / 0.85 0.99 / 0.95 0.88 / 0.93 0.80 / 0.91 0.82 / 0.87 0.50 / 0.83 0.38 / 0.85
DP-LDB 1.00 / 0.95 1.00 / 0.94 1.00 / 0.92 0.92 / 0.98 0.77 / 0.94 0.50 / 0.91 0.71 / 0.94 0.35 / 0.85 0.28 / 0.84
DP-LSil 1.00 / 0.94 1.00 / 0.94 1.00 / 0.91 0.96 / 0.98 0.76 / 0.93 0.67 / 0.90 0.63 / 0.88 0.41 / 0.79 0.31 / 0.81

where ||·||0 specifies the 0-norm, which counts up the non-zero
entries and β̂true denotes the first ten entries of the coefficient
vector, which by design we know to be the correct effects.
β̂ denotes all coefficients obtained by the regularized model.
This measure is useful as the number of potential covariates is
high. However, if the model has a high Precision, the identified
genes can be trusted.
Secondly, we measure the Recall

Recall =
||β̂true||0

10
, (14)

as the fraction of the relevant covariates that was discovered
by the model.
The results are shown in Table IV. We can see that the DP-
Lasso models show significantly higher Precision compared
to Lasso and Elastic Net. The adaptive Lasso performs better
than the Lasso in this ideal setting, in contrast to the results on
the real data from the previous section. Overall DP-LDB and
DP-LANOV A show the highest Precision, even in very difficult
data situations. For instance, with N = 100, p = 5000, σ = 1,
DP-LANOV A , DP-LDB and DP-LSil are able to maintain a
100% Precision and thus are very selective and able to find
the correct covariates. DP-LANOV A has the highest Precision
in every setting.
It is also important to compare the Recall, as it reflects the
fraction of true effects that are found by a model. Elastic Net
shows the highest Recall, which is a result of the large number
of coefficients that were kept in the model. On the other hand,
all DP-Lasso models show a Recall which is typically slightly
lower but still competitive with Lasso and adaptive Lasso. This
again is due to the very selective nature of DP-Lasso.
Overall, we conclude that the non-zero coefficients found by
the DP-Lasso can be trusted more to reflect true mechanisms,
compared to its competitors. At the same time DP-Lasso is
capable to maintain a competitive Recall.
It is reassuring to note that on average the accuracy of the
methods measured by the area under the curve AUC is very
similar, with a slight edge for the DP-LDB , DP-LANOV A and
the Elastic Net.

VI. CONCLUSION

With DP-Lasso, we propose a novel regularization
based approach for covariate selection in the context of
gene expression data. Incorporating univariate measures
of discriminative power that are based on the principles

of separation and compactness enriches the model with
additional information. Our approach can also be interpreted
as soft filtering: instead of removing genes a-priori, more
promising genes are simply promoted, freeing the modeller
from ad-hoc choices, such as selecting the correct number
of genes to remove. In a broader context we argue therefore
that soft filtering instead of hard filtering also enhances
reproducibility, as it reduces the ‘researchers degrees of
freedom’ [26] involved in a study.

Empirically, we show that DP-Lasso is on par with the
popular methods Lasso and Elastic Net in terms of accuracy,
while it chooses significantly less genes. With a simulation
study we confirm that DP-Lasso is capable of ignoring a
large number of irrelevant predictors and instead focusses on
the truly relevant ones – due to the double criteria of being
relevant both univariately and in the multivariate model.
This selectiveness is very desirable in the context of gene
expression data, as both the number of candidate genes is
high and follow-up studies are costly. Therefore, a short
but confident list of very promising genes, as given by the
DP-Lasso model, is preferred in this context.

As currently the discriminative power is calculated
univariately, it does not explicitly take the correlation
structure of the covariates into account. An interesting
direction for future work would therefore be to extend the
DP-Lasso approach by considering the correlation structure
between covariates and adjust the penalization accordingly,
similar to the approach in [33].

In this article, we focused on the application for genetic
classification data, however DP-Lasso can also be applied in
other domains. As long as the classes are expected to show
differences in the univariate distribution of covariates, we
expect DP-Lasso to deliver a good predictive performance
coupled with a low number of selected covariates.
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