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Notation

If not specified otherwise, the following notation is used for core concepts in this disserta-
tion.

y scalar

y vector

Y matrix or higher-dimensional tensor

ŷ estimate of y

Y > transpose of Y

{a, b, c} discrete, unordered set containing elements a, b, c

(a, b, c) sequence, tuple (ordered list of elements a, b, c)

[a, b, c] three-dimensional vector containing elements a, b, c

R the set of real numbers

f(x,θ)

function of x that is parameterized by the set of parameters
θ. Note that the symbol f will be used to denote any
function irrespective of whether the function takes as an
input and produces as an output a scalar, vector, matrix, or
tensor.

∂y
∂x

partial derivative of y with respect to x

∇xf(x) gradient of f(x) with respect to x



xiv Notation

D = (d1, . . . , di, . . . , dN) a collection of N observational units. In the context of NLP,
di is typically called a document and D is called a corpus.

y = [y1, . . . , yi, . . . , yN ]> vector of output values for N training instances

xi = [xi1, . . . , xiu, . . . , xiU ] vector that represents instance di across U features

X = [x1| . . . |xi| . . . |xN ]>
N ×U matrix that represents each unit di as a row vector xi
across U features. If the di are documents, X is typically
called a document-feature matrix.

Dtrain = (xi, yi)Ni=1 training data set

p(x, y) unknown joint distribution over data representation input x
and output y

f
true systematic relation between inputs and outputs for data
points drawn from p(x, y)

f̃
candidate function f̃ . f̃ is an element of the hypothesis
space H that a given machine learning algorithm can learn.

f̂

model; result of the training process; function that a
machine learning algorithm has learned on the basis of the
training data with the aim to approximate f

L(yi, f̃(xi))
loss function that captures the discrepancy between the true
value yi and the value predicted by f̃(xi)

Dtest = (x∗m, y∗m)Mm=1 test data set

f(θ)

parametric machine learning method that is characterized by
a set of parameters θ. The notation f(θ) is used if it is to be
particularly emphasized that the text refers to a parametric
machine learning method.

θ̃; θ̂ candidate parameter values; estimated parameter values
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di = (a1, . . . , at, . . . , aTi
) ith document which is an ordered sequence of Ti tokens

Z = {z1, . . . , zu, . . . , zU}
vocabulary Z consisting of U unique features. Each token at
is an instance of one of the unique features in the vocabulary.

zu ∈ RK K-dimensional real-valued vector representation of feature zu

z[at] ∈ RK K-dimensional real-valued vector representation of the
feature corresponding to token at

hl ∈ RKl Kl-dimensional real-valued vector representation in the
lth hidden layer

Wl ∈ RKl×Kl−1 Kl ×Kl−1 weight matrix in the lth hidden layer

bl ∈ RKl Kl-dimensional bias vector in the lth hidden layer

σ nonlinear activation function

X feature space

Y label space

D domain

T task





Summary

Text data emerge as natural (by-)products of political life. They allow political scientists
to unobtrusively observe political actors and also provide rich information on political
processes, institutions, occurrences, and concepts. Hence, text data are a highly valuable
data source for political scientists.

Consequently, the analysis of text data is extensively practiced in political science. Yet
the applied text analysis methods are not always the most suitable or the most effective
for the given research objectives.

• Most prominently, fundamental methods and developments from the fields of machine
learning and natural language processing (NLP) (especially deep neural networks and
transfer learning) are not frequently applied and arrive only slowly in political science.

• When it comes to identifying relevant documents from larger corpora, political sci-
entists tend to use keyword lists. Keyword lists, however, have a relatively high risk
of producing (substantial) selection biases.

• For the text-based measurement of continuous concepts, researchers in political science—
but also in NLP itself—use methods that require comprehensive, context-specific
information or (probably unattainably) large amounts of resources.

This dissertation introduces, presents, compares, and evaluates methods that address these
issues—and thereby contributes to advancing the quantitative study of text data in political
science. The dissertation consists of an introductory chapter and three articles. The
introductory chapter provides a review of core concepts as well as advanced methods from
the fields of machine learning and NLP. It also motivates each of the articles and embeds
each article in its research context. Furthermore, the introductory chapter discusses one
core limitation of this dissertation’s articles— which also is a limitation of NLP research in
general. In the following, the contexts and contributions of the three articles are outlined.
Moreover, the discussion on limitations is summarized.
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Introduction to Neural Transfer Learning with Transformers for Social
Science Text Analysis

When analyzing texts, political scientists frequently apply methods from machine learning
and NLP. Political scientists employ supervised learning techniques on text data to measure
concepts that are already clearly conceptualized and defined (see Sections 1.1.1.6 and 1.2.4).
Unsupervised learning (especially topic models and ideal point estimation techniques) is
frequently put to use in political science to detect latent structures from texts and to
organize units along these detected structures (see Section 1.1.2).

In this dissertation’s article Introduction to neural transfer learning with Transformers for
social science text analysis (Chapter 2) the focus is on situations in which a researcher
wishes to measure a concept from text, where the concept has already been conceptualized
and there is a training data set that encodes the operationalization of the concept. Hence,
the focus is on supervised learning.

If a supervised learning algorithm is applied for the measurement of concepts from texts, the
learning algorithm can be regarded as a measurement instrument that assigns values to the
units under study. One central quality criterion of a measurement instrument is its validity.
Humans are regarded to be the best available tools for understanding and interpreting the
content of text (Benoit 2020, p. 470). Thus, political scientists that employ supervised
learning to measure concepts from texts should seek to have a model that as accurately as
possible imitates human codings (Grimmer & Stewart, 2013, p. 270, 279).

In practice, political scientists typically combine bag-of-word-based representations with
conventional supervised machine learning algorithms (see Section 1.2.4). This approach is
not fundamentally wrong and can lead to acceptable prediction performances, but the field
of NLP applies more complex and advanced methods that are likely to yield more accurate
predictions—and thus more valid measures. Specifically, political science research practice
so far has not yet widely taken up methods that have been developed or have been ubiqui-
tously applied in the field of NLP during the last one and a half decades (most prominently
deep neural networks, transfer learning, and the Transformer architecture).

In contrast to conventional algorithms, deep neural networks not only learn a mapping
between data representations and outputs but also learn representations of data inputs
(Goodfellow et al., 2016, p. 5; Sections 1.2.3.1 and 2.2.2). Especially as deep neural net-
works can learn multi-layered (i.e. deep) and contextualized representations of textual
inputs, they are often likely to be more suitable for the processing of text. The Trans-
former is a deep neural network architecture developed by Vaswani et al. (2017). The
Transformer is composed of (self-)attention mechanisms that enable the Transformer to
learn contextualized token representations that can capture information from other tokens
in a sequence regardless of the distance between the tokens (Vaswani et al., 2017, p. 5998;
Sections 1.2.3.7 and 2.4). Transfer learning is a mode of learning in which information that
has been acquired by training on a source task in a source domain is utilized for the train-
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ing process on the target task in the target domain (Pan & Yang, 2010, p. 1347; Ruder,
2019, p. 42-44; Sections 1.2.3.8 and 2.3). Transfer learning tends to enhance efficiency and
performance (Howard & Ruder, 2018; Ruder, 2019).

Pointing out the gap between political science research and modern NLP techniques, the
article Introduction to neural transfer learning with Transformers for social science text
analysis provides an introduction to deep learning for text data, explains the advantages
of deep contextualized representations, presents the Transformer, and introduces transfer
learning. The article then compares Transformer-based models for transfer learning with
conventional machine learning algorithms on the basis of three supervised learning tasks.
The results suggest that Transformer-based models that are used in a transfer learning
setting are better than conventional methods in learning the operationalization encoded
in the training data and hence yield more accurate measures of concepts from texts (see
Section 2.6.6).

A Comparison of Approaches for Imbalanced Classification Problems
in the Context of Retrieving Relevant Documents for an Analysis

The article A comparison of approaches for imbalanced classification problems in the context
of retrieving relevant documents for an analysis (Chapter 3) focuses on one of the first steps
of many text-based analyses: the retrieval of the population of documents that are relevant
for an analysis from a larger corpus of otherwise irrelevant documents. One example in
this regard would be a research project that seeks to estimate the attitudes that have been
expressed toward a political candidate in tweets during a given time period. One of the first
steps of such a study would be to identify those tweets that refer to the political candidate
from the larger collection of tweets that have been posted during the given period.

The separation of relevant from irrelevant documents is often an imbalanced classification
problem (Manning et al., 2008, p. 155). Any method that is applied to the identification
of relevant documents can induce a selection bias, meaning that the question of whether a
document is predicted to be relevant or not is correlated with the value of the document
on a variable of interest.

So far, political scientists typically employ a list of usually human-created keywords to
address the task of separating relevant from irrelevant documents (see Table 3.2). But
keyword lists that are created by humans tend to be highly variable and incomplete (King
et al., 2017, p. 973-975). The usage of human-generated keyword lists thus bears a relatively
high risk of bringing forth a (large) selection bias.

Addressing this issue, the article A comparison of approaches for imbalanced classification
problems in the context of retrieving relevant documents for an analysis describes, com-
pares, and evaluates methods that have the potential to more accurately identify relevant
documents. A higher prediction performance does not preclude the occurrence of a se-
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lection bias. Yet the higher the share of relevant documents that a method can identify
among the set of all relevant documents (i.e. the higher recall), the smaller the size that the
induced selection bias can maximally have (see Figure 1.2). The evaluated methods are (1)
query expansion techniques, (2) topic model-based classification rules, and (3 & 4) active as
well as passive supervised learning. The results suggest that active learning techniques can
separate relevant from irrelevant documents much more accurately than keyword lists and
the other evaluated approaches (see Section 3.4.3). Therefore, active learning constitutes
a learning strategy that political scientists can use to decrease the potential magnitude of
the selection bias that can result from imperfectly identifying relevant documents.

How to Estimate Continuous Sentiments from Texts Using Binary
Training Data

The starting point for this dissertation’s article How to estimate continuous sentiments
from texts using binary training data (Chapter 4) is the conceptualization of attitudes.
In social psychology, an attitude is conceptualized as a latent continuous summarizing
evaluation of an entity (Eagly & Chaiken, 1993, p. 1; Cacioppo et al., 1997, p. 10, 13).
The psychological definition of an attitude very well encapsulates the descriptions in the
NLP literature on the concept of sentiment (Liu, 2015, p. 2). Therefore, sentiments here
are conceived of as attitudes.

In contrast to analyses that merely assess the tone expressed in a document, NLP tasks
such as targeted sentiment analysis or stance detection capture important aspects that are
implied by the definition of attitudes. However, the conceptualization of an attitude as a
continuous concept is often ignored in practice: Sentiment analysis typically is conducted
as a classification task in which documents are assigned to sentiment categories (e.g. Pang
et al., 2002; Turney, 2002; Nakov et al., 2013; Socher et al., 2013; Pontiki et al., 2015;
Patwa et al., 2020). Moreover, in those cases in which a correspondence between the
conceptualization and the measurement of attitudes exists and attitudes are measured as
continuous concepts, lexicon-based approaches or regression approaches are applied (Gatti
et al., 2016; Mohammad et al., 2018). Lexicon-based and regression approaches, however,
either rely on complete and accurate information about context-specific meanings and the
compositionality of meaning in text, or they rely on highly detailed—and thus potentially
prohibitively costly to create—training information.

Against this background, the article How to estimate continuous sentiments from texts
using binary training data develops a method (named classifier-based beta mixed modeling
(CBMM)) that allows measuring attitudes from texts in a way that corresponds with the
conceptualization of attitudes and merely requires binary labels for the training data.

CBMM is a three-step procedure. First, binary training data have to be created. For each
training document, the assigned label should signify whether the document is closer to the
positive or the negative side of the latent continuous attitude variable. In the second step,
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an ensemble of classifiers is trained on the binary training data. Each classifier then is
applied on test data documents to produce for each test document a predicted probability
to belong to the positive category. Finally, a beta mixed model with document random
intercepts and classifier random intercepts is applied to the set of predicted probabilities
that the classifiers have generated for each document. The estimated document-specific
intercepts are taken to be the continuous attitude estimates. An analysis based on four
datasets (see Section 4.4.4) indicates that CBMM’s continuous estimates are relatively
close to true sentiment values and have a similar or only slightly lower performance than
continuous sentiment estimates that result from regression approaches that can use fine-
grained training data.

CBMM thus allows measuring attitudes based on text data in correspondence with the
conceptualization of attitudes without requiring highly detailed information or highly fine-
grained training annotations. CBMM’s core contribution is that it generates continuous
estimates based on binary training labels. The CBMM procedure can be applied beyond
sentiment analysis whenever it is desirable to measure a continuous concept from text with
mere binary training input.

Limitations and Further Research

Section 1.4 of the introductory chapter discusses limitations of this dissertation’s articles
and of NLP research in general. The central point made in this section is that NLP as a
science seeks to make inferences about the performance effects that result from applying
one method (compared to another method) in the processing of natural language. Yet
NLP research in practice usually does not achieve this goal: In NLP research articles,
typically only a few models are compared. Each model results from a specific procedural
pipeline (here named processing system) that is composed of a specific collection of methods
that are used in preprocessing, pretraining, hyperparameter tuning, and training on the
target task. To make generalizing inferences about the performance effect that is caused
by applying some method A vs. another method B, it is not sufficient to compare a few
specific models that are produced by a few specific (probably incomparable) processing
systems. Rather, the following procedure would allow drawing inferences about methods’
performance effects:

• A population of processing systems that researchers seek to infer to has to be defined.

• A random sample of processing systems from this population is drawn. (The drawn
processing systems in the sample will vary with regard to the methods they apply
along their procedural pipelines and also will vary regarding the compositions of their
training and test data sets used for training and evaluation.)

• Each processing system is applied once with method A and once with method B.

• Based on the sample of applied processing systems, the expected generalization errors
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of method A and method B are approximated.

• The difference between the expected generalization errors of method A and method
B is the estimated average treatment effect due to applying method A compared to
method B in the population of processing systems.

The reason why this described procedure (or an equally adequate procedure) is not applied
in practice is that research resources are finite. Even the implementation of a single pro-
cessing system that then will produce a single model can absorb large amounts of resources.
Due to these practical limitations, the articles in this dissertation implement research pro-
cedures that are closer to typical NLP practices rather than the ideal procedure outlined
here. Nevertheless, the available amounts of resources in this dissertation could have been
allocated better—for example by not implementing resampling techniques during hyperpa-
rameter tuning and evaluating each processing system on more train-test set compositions
instead.

Section 1.4, furthermore, emphasizes that future research in political science is likely to
benefit from (1) continuously monitoring and exploring developments in the field of NLP,
as well as (2) devising and applying methods to handle prediction errors that arise when
measuring concepts from texts.



Zusammenfassung
gemäß §9 Abs. 3 Satz 3 der Promotionsordnung der Sozialwissenschaftlichen
Fakultät der Ludwig-Maximilians-Universität vom 18. März 2016

Textdaten entstehen als natürliche (Neben-)Produkte des politischen Lebens. Sie er-
möglichen eine nicht-teilnehmende Beobachtung politischer Akteure und liefern reichhaltige
Informationen zu politischen Prozessen, Institutionen, Ereignissen und Konzepten. Daher
sind Textdaten für Politikwissenschaftler*innen eine äußerst wertvolle Datenquelle.

Folglich wird die Analyse von Textdaten in der Politikwissenschaft ausgiebig praktiziert.
Allerdings sind die hierbei angewandten Textanalysemethoden nicht immer die am geeignet-
sten oder effektivsten für das jeweilige Forschungsziel.

• So werden in der Politikwissenschaft wichtige Entwicklungen und Methoden aus den
Bereichen machine learning und natural language processing (NLP) (insbesondere
deep learning und transfer learning) bisher kaum oder nur langsam übernommen.

• Wenn es um die Identifikation relevanter Dokumente aus größeren Korpora geht,
tendieren Politikwissenschaftler*innen dazu, Suchwortlisten zu verwenden. Such-
wortlisten sind einfache und kostengünstige Methoden, die jedoch ein relativ hohes
Risiko haben, einen (substanziellen) selection bias zu generieren.

• Zur textbasierten Messung von kontinuierlichen Konzepten werden in der Politikwis-
senschaft – aber auch im Feld NLP selbst – Methoden eingesetzt, die umfassende,
kontextspezifische Informationen oder eine (möglicherweise nicht aufbringbar) große
Mengen an Ressourcen benötigen.

Die vorliegende Dissertation präsentiert, vergleicht, und evaluiert Methoden, die diese As-
pekte adressieren, und leistet somit einen Beitrag zur Weiterentwicklung textbasierter poli-
tikwissenschaftlicher Forschungspraxis. Die Dissertation besteht aus einem einführenden
Kapitel und drei Artikeln. Das Einführungskapitel gibt einen Überblick über zentrale
Konzepte sowie fortgeschrittene Methoden aus den Bereichen machine learning und NLP.
Das einführende Kapitel motiviert zudem jeden der Artikel und bettet jeden Artikel in
seinen Forschungskontext ein. Darüber hinaus wird eine zentrale Limitation aller Ar-
tikel dieser Dissertation diskutiert (die eine Limitation der NLP-Forschung im Allgemeinen
ist). Im Folgenden werden die Kontexte und Forschungsbeiträge der drei Artikel skizziert.
Außerdem wird die Diskussion zu den Limitationen zusammengefasst.
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Introduction to Neural Transfer Learning with Transformers for Social
Science Text Analysis

Bei der Analyse von Texten wenden Politikwissenschaftler*innen häufig Methoden aus
den Bereichen machine learning und NLP an. Techniken des supervised learning werden
eingesetzt, um Konzepte zu messen, die bereits klar konzeptualisiert und definiert sind
(siehe Abschnitte 1.1.1.6 und 1.2.4). Unsupervised learning (insbesondere topic models
und ideal point estimation) wird genutzt, um latente Strukturen in Texten zu entdecken
und Untersuchungseinheiten entlang dieser Strukturen zu organisieren (siehe Abschnitt
1.1.2).

Im Artikel Introduction to neural transfer learning with Transformers for social science
text analysis (Kapitel 2) stehen Situationen im Fokus, in denen ein*e Forscher*in ein
Konzept anhand von Texten messen möchte – wobei das Konzept bereits konzeptualisiert
wurde und zudem auch ein Trainingsdatensatz vorliegt, der die Operationalisierung des
Konzeptes kodiert. Der Fokus liegt also auf supervised learning.

Wird ein supervised learning-Algorithmus zur Messung von Konzepten aus Texten einge-
setzt, so kann der Algorithmus als ein Messinstrument betrachtet werden, das den Un-
tersuchungseinheiten Werte zuweist. Ein zentrales Qualitätskriterium eines jeden Messin-
strumentes ist die Validität. Da Menschen als das ‘beste verfügbare Werkzeug’ gelten,
um Textinhalte zu verstehen und zu interpretieren (Benoit, 2020, p. 470), sollten Poli-
tikwissenschaftler*innen, die supervised learning zur Messung von Konzepten aus Texten
einsetzen, anstreben, ein Modell zu trainieren, das menschliche Kodierungen so genau wie
möglich imitiert (Grimmer & Stewart, 2013, p. 270, 279).

In der Regel repräsentieren Politikwissenschaftler*innen Dokumente als bag-of-words und
kombinieren diese Repräsentationsform mit konventionellen Lernalgorithmen (siehe Ab-
schnitt 1.2.4). Dieser Ansatz ist nicht grundsätzlich falsch und kann zu einem akzeptablen
Niveau an Vorhersagegenauigkeit führen. NLP-Forscher*innen wenden jedoch komplexere
und fortschrittlichere Methoden an, die üblicherweise auch zu einer höheren Vorhersage-
genauigkeit – und damit zu valideren Messungen – führen. Insbesondere werden in der
politikwissenschaftlichen Forschungspraxis bisher noch nicht in größerem Umfang NLP-
Methoden angewandt, die in den letzten eineinhalb Jahrzehnten entwickelt wurden und
dort allgegenwärtig sind (vor allem: das Lernen mit tiefen neuronalen Netzen, transfer
learning und die Transformer-Architektur).

Im Gegensatz zu konventionellen Algorithmen lernen tiefe neuronale Netze nicht nur eine
Funktion, die den Zusammenhang zwischen Datenrepräsentationen (Inputs) und Out-
puts abbildet, sondern lernen auch Repräsentationen von Daten-Inputs (Goodfellow et
al., 2016, S. 5; Abschnitte 1.2.3.1 und 2.2.2). Insbesondere da tiefe neuronale Netze
mehrschichtige (d. h. tiefe) und kontextualisierte Repräsentationen von textuellen Inputs
lernen können, sind sie häufig besser für die Verarbeitung von Textdaten geeignet als
bag-of-words-Repräsentationen in Kombination mit konventionellen Lernalgorithmen. Der
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Transformer ist eine tiefes neuronales Netz, das von Vaswani et al. (2017) entwickelt wurde.
Der Transformer basiert auf (self-)attention Mechanismen, die es ermöglichen, kontextu-
alisierte Repräsentationen für textuelle token zu lernen, die Informationen von anderen
token in einer Textsequenz erfassen können – und zwar unabhängig von der Entfernung
zwischen den token (Vaswani et al., 2017, p. 5998; Abschnitte 1.2.3.7 und 2.4). Transfer
learning ist eine Lernform, bei der Informationen, die durch das Training auf einer Quel-
laufgabe in einer Quelldomäne erworben wurden, für den Trainingsprozess der eigentlich
interessierenden Zielaufgabe in der Zieldomäne genutzt werden (Pan & Yang, 2010, p. 1347;
Ruder, 2019, p. 42-44; Abschnitte 1.2.3.8 und 2.3). Transfer learning führt tendenziell zu
einer Steigerung der Effizienz und Vorhersagegenauigkeit (Howard & Ruder, 2018; Ruder,
2019).

Der Artikel Introduction to neural transfer learning with Transformers for social science
text analysis weist auf die Diskrepanz zwischen politikwissenschaftlicher Forschung und
modernen NLP-Verfahren hin, bietet eine Einführung in das deep learning, erläutert die
Vorteile tiefer kontextualisierter Repräsentationen, stellt den Transformer vor und führt in
das transfer learning ein. Anschließend vergleicht der Artikel Transformer-basierte Mod-
elle, die in einem transfer learning-Kontext trainiert werden, mit konventionellen Algorith-
men anhand von drei Lernaufgaben. Die Ergebnisse deuten darauf hin, dass Transformer-
basierte Modelle die in den Trainingsdaten kodierte Operationalisierung von Konzepten
besser erlernen und somit genauere Messungen für Konzepte aus Texten liefern können als
konventionelle Methoden (siehe Abschnitt 2.6.6).

A Comparison of Approaches for Imbalanced Classification Problems
in the Context of Retrieving Relevant Documents for an Analysis

Der Artikel A comparison of approaches for imbalanced classification problems in the con-
text of retrieving relevant documents for an analysis (Kapitel 3) nimmt einen der ersten
Schritte vieler textbasierter Analysen in den Blick: das Identifizieren der für eine Analyse
relevanten Dokumentenpopulation aus einem größeren Korpus von ansonsten irrelevanten
Dokumenten. Ein Beispiel hierfür ist ein Forschungsprojekt, in dem es darum geht, die
während eines bestimmten Zeitraumes in Tweets zum Ausdruck gebrachten Einstellungen
gegenüber einem politischen Kandidaten zu messen. Einer der ersten analytischen Schritte
in einer solchen Studie besteht darin, die Tweets, die sich auf den politischen Kandidaten
beziehen, aus der großen Anzahl an Tweets zu identifizieren, die in dem gegebenen Zeitraum
gepostet wurden.

Die Trennung von relevanten und irrelevanten Dokumenten ist häufig ein imbalanced clas-
sification problem (Manning et al., 2008, p. 155). Jede Methode, die für die Identifikation
relevanter Dokumente eingesetzt wird, kann potenziell einen selection bias hervorrufen.
Dies bedeutet, dass die Frage, ob eine Methode ein Dokument als relevant oder nicht
relevant ansieht, mit dem Wert des Dokumentes auf einer interessierenden Variablen kor-
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reliert.

Bislang verwenden Politikwissenschaftler*innen in der Regel oftmals von Menschen erstellte
Listen an Suchwörtern um relevante von irrelevanten Dokumenten zu trennen (siehe Tabelle
3.2). Von Menschen erstellte Suchwortlisten sind jedoch üblicherweise höchst variabel
und unvollständig (King et al., 2017, p. 973-975). Die Verwendung menschlich erstellter
Suchwortlisten birgt daher ein relativ hohes Risiko, einen (erheblichen) selection bias zu
produzieren.

Der Artikel A comparison of approaches for imbalanced classification problems in the con-
text of retrieving relevant documents for an analysis beschreibt, vergleicht und bewertet
Methoden, die das Potenzial haben, relevante Dokumente genauer zu identifizieren als
Suchwortlisten. Eine höhere Vorhersagegenauigkeit schließt das Auftreten eines selection
bias nicht aus, aber je höher der Anteil der identifizierten relevanten Dokumente an der
Menge aller relevanten Dokumente ist (d. h. je höher der recall), desto geringer ist das
Ausmaß, das der selection bias maximal annehmen kann (siehe Abbildung 1.2). Bei den
evaluierten Methoden handelt es sich um (1) query expansion-Techniken aus dem Bere-
ich des information retrieval, (2) auf topic models basierende Klassifikationsregeln, die in
der Kommunikationswissenschaft entwickelt wurden, sowie (3 & 4) die machine learning-
Verfahren des active learning und passive learning. Die Ergebnisse weisen darauf hin, dass
active learning-Verfahren relevante von irrelevanten Dokumenten wesentlich genauer tren-
nen können als Suchwortlisten und die anderen evaluierten Ansätze (siehe Abschnitt 3.4.3).
Active learning stellt daher eine Lernstrategie dar, die Politikwissenschaftler*innen nutzen
können, um das potenzielle Ausmaß des selection bias zu verringern.

How to Estimate Continuous Sentiments from Texts Using Binary
Training Data

Der Ausgangspunkt für den Artikel How to estimate continuous sentiments from texts using
binary training data (Kapitel 4) ist die Konzeptualisierung von Einstellungen (attitudes).
In der Sozialpsychologie wird eine Einstellung als eine latente, kontinuierliche, zusammen-
fassende Bewertung einer Entität konzeptualisiert (Eagly & Chaiken, 1993, p. 1; Cacioppo
et al., 1997, p. 10, 13). Die sozialpsychologische Definition einer Einstellung deckt sich
sehr gut mit den Beschreibungen in der NLP-Literatur zum Konzept der Sentiments (Liu,
2015, p. 2). Daher werden Sentiments hier als Einstellungen aufgefasst.

Im Gegensatz zu Analysen, die lediglich den in einem Dokument ausgedrückten Tonfall
bewerten, werden in der targeted sentiment analysis oder der stance detection wichtige As-
pekte der Definition von Einstellungen erfasst. Die Konzeptualisierung einer Einstellung als
kontinuierliches Konzept wird in der Forschungspraxis jedoch oft ignoriert: Eine Sentimen-
tanalyse wird typischerweise als Klassifikationsaufgabe durchgeführt, bei der Dokumente
in Sentimentkategorien eingeordnet werden (z. B. Pang et al., 2002; Turney, 2002; Nakov
et al., 2013; Socher et al., 2013; Pontiki et al., 2015; Patwa et al., 2020). Darüber hin-
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aus werden in den Fällen, in denen eine Korrespondenz zwischen der Konzeptualisierung
und der Messung von Einstellungen besteht und Einstellungen als kontinuierliche Konzepte
gemessen werden, lexikonbasierte Ansätze oder Regressionsansätze verwendet (Gatti et al.,
2016; Mohammad et al., 2018). Diese Ansätze benötigen jedoch entweder umfassende
Informationen über kontextspezifische Wortbedeutungen und die Entstehung von Bedeu-
tungsinhalten in Texten, oder sie benötigen sehr detaillierte Trainingsinformationen, deren
Erstellung äußerst kostenintensiv ist.

Vor diesem Hintergrund wird in dem Artikel How to estimate continuous sentiments from
texts using binary training data eine Methode (genannt classifier-based betamixedmodeling
(CBMM)) entwickelt, die es ermöglicht, Einstellungen aus Texten in einer Weise zu messen,
die der Konzeptualisierung von Einstellungen entspricht und gleichzeitig lediglich binäre
Label für die Trainingsdaten benötigt. CBMM ist ein dreistufiges Verfahren. Der er-
ste Schritt ist die Erstellung binärer Trainingsdaten. Für jedes Trainingsdokument soll
das zugewiesene Label angeben, ob das Dokument eher auf der positiven oder der nega-
tiven Seite der latenten kontinuierlichen Einstellungsvariablen liegt. Im nächsten Schritt
wird ein Ensemble an Klassifikationsalgorithmen auf den binären Trainingsdaten trainiert.
Jeder Klassifikator wird dann auf die Testdaten angewandt, um für jedes Testdokument
eine Vorhersage über die Wahrscheinlichkeit der Zugehörigkeit zur positiven Kategorie zu
erstellen. Schließlich wird ein beta mixed model mit document random intercepts und clas-
sifier random intercepts auf den vorhergesagten Wahrscheinlichkeiten geschätzt, die von
den Klassifikatoren für jedes Dokument erzeugt wurden. Die geschätzten document ran-
dom intercepts werden als kontinuierliche Schätzer der Einstellungswerte betrachtet. Eine
Analyse auf der Grundlage von vier Datensätzen (siehe Abschnitt 4.4.4) zeigt, dass die kon-
tinuierlichen Schätzwerte von CBMM relativ nahe an den wahren Werten liegen und eine
ähnliche oder nur geringfügig niedrigere Vorhersagegenauigkeit aufweisen als kontinuier-
liche Schätzwerte, die mit Regressionsansätzen, die höchst detaillierte Trainingsdaten ver-
wenden, erzeugt wurden.

CBMM ermöglicht somit die Messung von Einstellungen auf der Grundlage von Textdaten
in Übereinstimmung mit der Konzeptualisierung von Einstellungen ohne höchst detail-
lierte Informationen oder Trainingsdaten zu benötigen. Der zentrale Forschungsbeitrag
von CBMM besteht darin, kontinuierliche Schätzwerte auf der Grundlage von binären
Trainingsdaten zu erzeugen. Das CBMM-Verfahren kann über die Sentimentanalyse hinaus
immer dann angewendet werden, wenn ein kontinuierliches Konzept anhand von Textdaten
mit rein binären Trainingsdaten gemessen werden soll.

Limitations and Further Research

In Abschnitt 1.4 des einführenden Kapitels werden die Limitationen der Artikel dieser
Dissertation und der NLP-Forschung im Allgemeinen diskutiert. Der zentrale Punkt in
diesem Abschnitt ist, dass NLP als Wissenschaft das Ziel hat, Aussagen über den kausalen
Effekt der Anwendung einer bestimmten Methode (im Vergleich zu einer anderen Meth-
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ode) auf die Vorhersagegenauigkeit bei der Verarbeitung natürlicher Sprache zu treffen.
Aufgrund der NLP-Forschungspraktiken wird dies jedoch in der Regel nicht erreicht: In
NLP-Forschungsartikeln werden in der Regel nur einige wenige Modelle verglichen. Jedes
Modell resultiert hierbei aus einer Sequenz an methodischen Verfahren. (Eine Sequenz
solcher Verfahren wird hier als Verarbeitungssystem bezeichnet.) Um verallgemeinernde
Schlüsse über Effekte auf die Vorhersagegenauigkeit zu ziehen, die durch die Anwendung
einer Methode A im Vergleich zu einer anderen Methode B verursacht werden, reicht
es jedoch nicht aus, einige spezifische Modelle zu vergleichen, die von einigen spezifischen
(möglicherweise nicht vergleichbaren) Verarbeitungssystemen erzeugt wurden. Dies könnte
vielmehr mit dem folgenden Verfahren erreicht werden:

• Zunächst muss eine Population an Verarbeitungssystemen definiert werden, auf die
die Forscher*innen Rückschlüsse ziehen wollen.

• Aus dieser Population wird eine Zufallsstichprobe an Verarbeitungssystemen gezogen.
(Die Verarbeitungssysteme in der Stichprobe werden sich sowohl in Bezug auf die
Methoden unterscheiden, die sie entlang ihrer Verfahrenssequenz anwenden, als auch
in Bezug auf die Aufteilung der Daten in Trainings- und Testdatensätze.)

• Jedes Verarbeitungssystem wird einmal mit Methode A und einmal mit Methode B
implementiert.

• Auf der Grundlage der Stichprobe der implementierten Verarbeitungssysteme werden
die erwarteten Generalisierungsfehler von Methode A und Methode B approximiert.

• Die Differenz zwischen den erwarteten Generalisierungsfehlern von Methode A und
Methode B ist der geschätzte durchschnittliche kausale Effekt durch die Anwendung
von Methode A im Vergleich zu Methode B in der Population der Verarbeitungssys-
teme.

Der Grund, warum dieses beschriebene Verfahren (oder ein ebenso adäquates Verfahren)
in der Praxis nicht angewendet wird, ist, dass Forschungsressourcen nicht unendlich sind.
Bereits die Implementierung eines einzelnen Verarbeitungssystems, das dann ein einzelnes
Modell erzeugt, kann große Mengen an Ressourcen benötigen. Aufgrund dieser praktis-
chen Ressourcenbeschränkungen werden auch in den Artikeln dieser Dissertation Verfahren
implementiert, die eher der typischen NLP-Praxis als dem hier skizzierten Idealverfahren
entsprechen. Dennoch hätten die verfügbaren Ressourcen in dieser Dissertation besser
eingesetzt werden können – zum Beispiel indem auf resampling-Techniken im hyperpa-
rameter tuning verzichtet worden wäre und stattdessen einzelnen Verarbeitungssysteme
anhand einer größeren Anzahl von unterschiedlichen Zusammensetzungen der Trainings-
und Testdatensätze evaluiert worden wären.

In Abschnitt 1.4 wird außerdem betont, dass die künftige politikwissenschaftliche Forschung
davon profitieren wird, (1) die Entwicklungen im Bereich NLP kontinuierlich zu beobachten
sowie (2) Methoden zu entwickeln und anzuwenden, um Vorhersagefehler zu verarbeiten,
die bei der Messung von Konzepten aus Texten entstehen.
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Chapter 1

Background and Motivation: A Review
of Core Concepts and Advanced
Methods in Machine Learning, Natural
Language Processing, and Text-Based
Political Science Research

Daily, constantly, and continuously, political processes and political behavior manifest
themselves in textual form.1 Politicians—whether competing in an election or already be-
ing elected—address political issues and state their policy positions via social media, press
releases, on their websites, and in speeches (Druckman et al., 2009; Grimmer, 2010; Quinn
et al., 2010; Lauderdale & Herzog, 2016; Barberá et al., 2019; Fowler et al., 2021). Parties
set out their goals in election manifestos (Laver et al., 2003; Slapin & Proksch, 2008). Leg-
islators debate policies and then finally pass laws (Schwarz et al., 2017; Anastasopoulos &
Bertelli, 2020; Slapin & Kirkland, 2020). Meetings of councils and committees are recorded
(Sanders et al., 2018; Baerg & Lowe, 2020). Interest groups and non-governmental orga-
nizations create reports and distribute statements informing about their policy positions
(Klüver, 2009; Kim, 2017; Park et al., 2020). Courts provide judicial opinions (Clark &
Lauderdale, 2010). Governments record their beliefs and actions in writing, for example by
formulating coalition agreements (Klüver & Bäck, 2019), producing reports assessing polit-
ical situations (Bagozzi & Berliner, 2018), and keeping track of diplomatic communication
(Katagiri & Min, 2019). News articles report about and comment on daily political pro-

1The presentation of content in some parts of this chapter formed the basis for the submitted version
of the article Introduction to neural transfer learning with Transformers for social science text analysis.
The published version of the article is Wankmüller, S. (2022). Introduction to neural transfer learning
with Transformers for social science text analysis. Sociological Methods & Research, (p. 1–77). https:
//doi.org/10.1177/00491241221134527

https://doi.org/10.1177/00491241221134527
https://doi.org/10.1177/00491241221134527
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cesses and events (Amsalem et al., 2020; Alrababa’h & Blaydes, 2021; Sebők & Kacsuk,
2021). Wikipedia pages inform about political entities (Göbel & Munzert, 2018; Her-
rmann & Döring, 2021). Citizens communicate their own political positions and express
their views on politics and policies in posts on social media platforms (Ceron et al., 2014;
Mitts, 2019; Jungherr et al., 2022). Individuals also use these channels to report about
political incidents (Zhang & Pan, 2019; Muchlinski et al., 2021; Wu & Mebane, 2021) and
to pass on information about political action and protest (King et al., 2013; Barberá et al.,
2015b).

For political scientists, that seek to make inferences about politics, text data hence are
a valuable source of information. Text data are one important avenue to the processes,
occurrences, actors, systems, and concepts that political scientists seek to study. As texts
are often generated innately in political processes, they allow political scientists to make
unobtrusive observations. In contrast to other methods of inquiry, such as surveys and
experiments, in which the subjects are aware of being studied, the act of analyzing texts
that have been produced as natural (by-)products of political behavior cannot influence
the texts themselves.2 Moreover, texts can contain more information and more nuanced
information than other empirical measures such as voting behavior (Clark & Lauderdale,
2010; Herzog & Benoit, 2015; Schwarz et al., 2017).

During the last two decades, digitization processes caused more text data to be produced
and to be recorded in readily available electronic form. In addition, new forms of politi-
cal interaction and communication have emerged (that constitute new phenomena to be
studied). Simultaneously, developments in the fields of statistics, computer science, and
natural language processing (NLP) allow for textual data to be analyzed with increasing
levels of accuracy via increasingly complex models by utilizing increasing computational
capacities (LeCun & Bengio, 1995; Hochreiter & Schmidhuber, 1997; Bengio et al., 2003;
Mikolov et al., 2013a; Bahdanau et al., 2015; Vaswani et al., 2017; Devlin et al., 2019;
Brown et al., 2020).

Political scientists have leveraged the abundance of easily available text data and have
made use of respective methods for the quantitative analysis of texts to study old and
new research questions (Proksch & Slapin, 2010; Rheault et al., 2016; Barberá et al., 2019;
Rodman, 2020). Researchers in political science even developed their own text analysis
methods (Slapin & Proksch, 2008; Roberts et al., 2016).

Yet amongst all this progress there is still room for advancement. Especially: When
working with text data, political scientists currently do not tend to use the most suitable
or powerful tools from the available toolbox.3 The most noticeable issue is that political

2This is not to say that texts would be sincere statements revealing the true positions of political actors.
In addition to an assumed underlying true position, there is a large spectrum of factors that are likely to
affect a text’s content, for example social norms and strategic considerations (see Section 1.1.1.5 below).

3The statements made in this introductory chapter refer to political science. However, the statements
usually also apply to other disciplines in the field of social science, e.g. communication science and sociology.
The article Introduction to neural transfer learning with Transformers for social science text analysis and
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scientists so far do not widely apply and only slowly adopt key developments and methods
from the field of machine learning and NLP (especially: deep learning, transfer learning,
and more recently the Transformer architecture). And so, a 2020 book chapter on text as
data methods written for The SAGE Handbook of Research Methods in Political Science
and International Relations by Kenneth Benoit only contains a few references to methods
beyond what was already mentioned in a 2013 mapping of the field of quantitative text
analysis in political science by Grimmer & Stewart (compare Grimmer & Stewart 2013 to
Benoit 2020).

Moreover, for document retrieval tasks, political scientists still tend to implement keyword
lists. The implementation of keyword lists, however, comes with a relatively high risk of
drawing biased inferences. Furthermore, when it comes to the measurement of continuous
concepts from texts, in political science as well as in NLP, methods are applied that a priori
require highly detailed knowledge or (prohibitively) large amounts of resources.

This doctoral thesis presents, evaluates, and also develops methods that address these
issues. In doing so, this thesis contributes to the advancement of text-based political
science research. The overall aim is to improve and enlarge the set of tools that political
scientists use to analyze texts.

The thesis comprises three articles:

• Chapter 2: Wankmüller, S. (2022). Introduction to neural transfer learning with
Transformers for social science text analysis. Sociological Methods & Research, (p. 1–
77). https://doi.org/10.1177/00491241221134527

• Chapter 3: Wankmüller, S. (2022). A comparison of approaches for imbalanced
classification problems in the context of retrieving relevant documents for an analysis.
Journal of Computational Social Science, (p. 1–73). https://doi.org/10.1007/s42001
-022-00191-7

• Chapter 4: Wankmüller, S. & Heumann, C. (2021). How to estimate continuous
sentiments from texts using binary training data. In Evang, K., Kallmeyer, L.,
Osswald, R., Waszczuk, J., & Zesch, T. (Eds.), Proceedings of the 17th Conference
on Natural Language Processing (KONVENS 2021) (pp. 182–192). KONVENS 2021
Organizers. https://aclanthology.org/2021.konvens-1.16

Each of the three articles presents a set of methods that are likely to provide a concrete
improvement over specific current text analytic practices in political science. In order
to make this contribution, the doctoral thesis transfers and makes use of concepts and
developments from statistics, machine learning, and especially the field of NLP.

Since this work heavily draws on research from fields other than political science, this first
chapter of the thesis serves as an introduction in two respects. First, the introductory

the article A comparison of approaches for imbalanced classification problems in the context of retrieving
relevant documents for an analysis in this dissertation thus are addressing a larger social science audience.

https://doi.org/10.1177/00491241221134527
https://doi.org/10.1007/s42001-022-00191-7
https://doi.org/10.1007/s42001-022-00191-7
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chapter presents basic concepts in machine learning that are applied throughout the three
articles (Section 1.1). It also gives an overview of the field of NLP as a larger backdrop
for the thesis (Section 1.2). An additional special focus is given to the measurement of
attitudes from texts (Section 1.3). Second, this introduction embeds each of these three
articles in a larger background in order to work out the contribution of each article. This
is achieved by pointing out connections between the introduced concepts and issues on the
one hand and the articles and their research contributions on the other hand. Throughout
this introductory chapter (but especially at the ends of Sections 1.1, 1.2, and 1.3) it is
shown how the articles contribute to the issues raised. Finally, Section 1.4 points out one
central shortcoming of the articles presented here and elaborates on how more systematic,
inference-focused research procedures within the field of NLP would improve conclusions
drawn in NLP and thereby also benefit text-based political science research.

1.1 Machine Learning

Machine learning is a subfield of artificial intelligence (AI) (Chollet, 2021, ch. 1.1). In
machine learning, algorithms learn based on data (Goodfellow et al., 2016, p. 97). What
learning based on data means becomes clear when comparing machine learning with sym-
bolic AI—another subfield of AI (Chollet, 2021, ch. 1.1.1). In symbolic AI, a computing
system is provided with data, on the one hand, and with rules that are manually created
by humans and specify how the data are to be processed, on the other hand (Chollet, 2021,
ch. 1.1.2). The computing system then processes the data according to the specified rules
and provides the answer to a problem via an automated process (Chollet, 2021, ch. 1.1.2).
In machine learning, in contrast, computing systems are provided with data and—in su-
pervised machine learning—also with the respective answers (Chollet, 2021, ch. 1.1.2).
The machine learning algorithm then finds structure in data or learns the function that
maps from the data to the answers (Chollet, 2021, ch. 1.1.2). Hence, in machine learn-
ing, the processing functions are not explicitly provided but are learned (Chollet, 2021,
ch. 1.1.2).

Machine learning algorithms can be grouped into several categories. The largest and most
important distinction is between supervised and unsupervised learning.

1.1.1 Supervised Learning

Assume that there is a population of observational units (e.g. a group of people, a collection
of images, or a corpus of documents) on which some form of statistical learning process
is to occur. Assume also that a researcher assembles a set of units from this population,
denoted as D = (d1, . . . , di, . . . , dN), to form a training data set. In supervised learning,
the researcher knows the output values y = [y1, . . . , yi, . . . , yN ]> for the training data
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(Bishop, 2006, p. 3).4 Therefore, for each di, the corresponding response value yi is given:
(di, yi)Ni=1.

As a raw data unit (e.g. a raw text file) cannot be directly inputted into a machine learning
algorithm, the raw units first have to be made compatible for data analysis (Benoit, 2020,
p. 463-464). This is done by converting each instance di into a representation, which
is an abstraction of di (Benoit, 2020, p. 463-464). A frequently used way to generate
representations, is to transform each di into a feature vector xi = [xi1, . . . , xiu, . . . , xiU ].
Element xiu of the vector gives the value of example di on the uth feature. The features are
the variables on which the instances are measured. They are the variables via which the raw
data examples di are represented. Collectively, the training data instances’ representations
are given by an N × U matrix X = [x1| . . . |xi| . . . |xN ]>.

Given the units’ representationsX and the units’ output values y, the researcher applies a
machine learning algorithm to search the space of possible mappings between X and y to
find a function f̂ such that the estimated function’s predictions, ŷ = f̂(X), are maximally
close to the true values y (Chollet, 2021, ch. 1.1.5).

This general description of machine learning needs further elaboration with regard to two
aspects: First, note that each learning algorithm can (only) learn a certain space of possible
functions, f̃ ∈ H (Vapnik, 1991, p. 832). H is known as the hypothesis space (Chollet,
2021, ch. 1.1.3). Thus, when applying a machine learning algorithm, the search is over the
space of possible mappings between X and y that the given machine learning algorithm
can learn (Vapnik, 1991, p. 832-833).

Second, the discrepancy between the true value y of a given input x and the value predicted
by the candidate model f̃(x) is captured by a loss function L(y, f̃(x)) (Vapnik, 1991,
p. 832). The expected value of the loss, also called risk, is (Bishop, 2006, p. 46):

R(f̃) =
∫ ∫

L(y, f̃(x))p(x, y) dx dy (1.1)

p(x, y) is the unknown underlying joint distribution over data representation x and output
y (Goodfellow et al., 2016, p. 109). p(x, y) = p(y|x)p(x) describes the underlying data gen-
erating process that generates representation vectors, p(x), and then maps representation
vectors to output values, p(y|x) (Vapnik, 1991, p. 832).

Machine learning methods seek to minimize the risk R(f̃) over the space of functions that
a given machine learning algorithm is able to implement: arg minf̃∈HR(f̃) (Vapnik, 1991,
p. 832). The fundamental problem, however, is that p(x, y) is unknown (Vapnik, 1991,
p. 832). Yet information about p(x, y) is contained in the training set instances, (xi, yi)Ni=1,
that are assumed to have been independently generated from p(x, y) (Vapnik, 1991, p. 832).
Hence, the risk R(f̃) typically is approximated by the empirical risk, Remp(f̃), which is
computed as the mean of the observed losses over all training set instances (Vapnik, 1991,

4Here, the output yi is treated as a scalar. Yet the output also could be a vector yi.
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p. 832-833; Goodfellow et al., 2016, p. 272-273):

Remp(f̃) = 1
N

N∑
i=1
L(yi, f̃(xi)) (1.2)

Thus, when training a machine learning algorithm, the algorithm’s hypothesis space H is
searched in order to find the function f̂ that minimizes the empirical risk (Vapnik, 1991,
p. 832-833; Goodfellow et al., 2016, p. 272-273; Chollet, 2021, ch. 1.1.3):

f̂ = arg min
f̃∈H

1
N

N∑
i=1
L(yi, f̃(xi)) (1.3)

This procedure is known as empirical risk minimization (Vapnik, 1991, p. 832-833).

In machine learning terminology, the output of this training process, f̂ , is called a model
(Molnar, 2022, ch. 2.3).5 The trained model then can be applied to a set of new, yet
unseen data X∗ that have not been used in training (Bishop, 2006, p. 3; James et al.,
2013, p. 30). The ultimate goal in supervised machine learning is to train a model that
generalizes well (Bishop, 2006, p. 2; Goodfellow et al., 2016, p. 108). A well-generalizing
model makes accurate predictions for unseen data X∗ (Bishop, 2006, p. 2; Goodfellow
et al., 2016, p. 108).

How well a model generalizes is assessed via the generalization error, which is also known
as the test error GE (Goodfellow et al., 2016, p. 108). The generalization error is estimated
as the mean over the losses of the instances in a test set (Grosse, 2020c, p. 1-2):

ĜE(f̂) = 1
M

M∑
m=1
L(y∗m, f̂(x∗m)) (1.4)

The test set tuples (x∗m, y∗m)Mm=1 have not been involved in the training process and the
usual assumption is that the test set observations have been independently drawn from the
same joint distribution p(x, y) as the training instances (Goodfellow et al., 2016, p. 109).
Training and test data points are assumed to be i.i.d. (independent and identically dis-
tributed) (Goodfellow et al., 2016, p. 109).6 Both the training and test data points are
assumed to have been generated by the same data generating process that p(x, y) describes
(Goodfellow et al., 2016, p. 109).

5The terminology in machine learning differs in various respects from the terminology in statistics. In
machine learning terminology, a machine learning algorithm is a processing system that can be expressed
in mathematical terms (Brownlee, 2020a). An algorithm can learn a specific range of functions and thus
defines a hypothesis space (Vapnik, 1991, p. 832; Chollet, 2021, ch. 1.1.3). When a machine learning
algorithm learns from data, it learns a machine learning model (Brownlee, 2020a; Molnar, 2022). Hence,
an algorithm is a learning approach (e.g. logistic regression, deep neural network,...), whereas the term
model refers to the specific function with specific parameter values that results from training (Brownlee,
2020a; Molnar, 2022). The trained model can be used to make predictions (Brownlee, 2020a; Molnar,
2022).

6Note that in practice there are situations in which this assumption is deliberately not met. For example,
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Machine learning, therefore, can be understood as follows: Assume that for data points
generated from p(x, y) the true but unknown relationship between X and y is

y = f(X) + ε (1.5)

where function f(X) describes the systematic relation between X and y (James et al.,
2013, p. 16). ε is the random error term that captures inherent non-systematic randomness
and E(ε) = 0 (James et al., 2013, p. 16, 18-19). Machine learning seeks to learn a function
f̂ that approximates the true systematic relation f in the sense that f̂ provides an accurate
mapping between inputs and outputs for data points that have been generated from p(x, y)
(Bishop, 2006, p. 38; James et al., 2013, p. 16-18, 21). This is, the aim is to have yi ≈ f̂(xi)
for any data unit from p(x, y) (James et al., 2013, p. 21). Learning in supervised machine
learning thus essentially is function approximation (Vapnik, 1991, p. 832; James et al.,
2013, p. 16-17).

As p(x, y) is unknown, researchers make use of observed training data points in order
to approximate f (Goodfellow et al., 2016, p. 272-273). The empirical joint distribution
over training data, p̂(x, y), is used as a substitute for p(x, y) (Goodfellow et al., 2016,
p. 272-273). Although training is conducted on training data, the aim nevertheless is to
learn a model f̂ that provides an approximation of the general systematic relation f . The
actual goal in supervised machine learning is to have a well-generalizing model; a model
that has learned the systematic relationship between inputs and outputs among instances
with a shared data generating process; a model that—because it captures the general
systematic relationship rather than idiosyncrasies or inherent non-systematic randomness
in the training data—makes accurate predictions on previously unused data and therefore
has a low generalization error. In practice, however, several issues arise when searching for
such a model.

1.1.1.1 Overfitting and the Bias-Variance Trade-Off

A first issue that comes up when seeking to find a model that generalizes well to data
points for which the output values are not known (or not disclosed) is due to the fact that
approximating f only is possible on the training data X for which the target values y are
revealed. This carries the risk of overfitting on the training data set. Overfitting means
that an algorithm learns non-systematic, idiosyncratic patterns in the training data which
harms its generalization performance (James et al., 2013, p. 22, 32; Goodfellow et al., 2016,
p. 110).

in transfer learning (see Section 1.2.3.8) the data used in pretraining may come from a different data
generating process as the data of the target task (Ruder, 2019a, p. 42, 86). Moreover, active learning and
techniques for over- or undersampling are methods that intentionally alter the training data distribution
to reduce the costs of annotating training examples or to change the cost-sensitivity of an algorithm (see
this dissertation’s article A comparison of approaches for imbalanced classification problems in the context
of retrieving relevant documents for an analysis in Chapter 3).
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Overfitting is more likely to occur for learning algorithms that have a high capacity (Good-
fellow et al., 2016, p. 109-110). Learning algorithms with a high capacity have a large
hypothesis space H; they are flexible in the sense that they can approximate a large spec-
trum of various functional forms (James et al., 2013, p. 22, 32; Goodfellow et al., 2016,
p. 110, 116). Overfitting is indicated by the test error (see Equation 1.4) being substan-
tively higher than the training error (James et al., 2013, p. 32). (The training error is
Equation 1.4 computed on the training data (Grosse, 2020c, p. 1-2).) More specifically, a
learning algorithm is said to overfit on the training data if another learning algorithm with
a lower capacity would have had a lower test error (James et al., 2013, p. 32).

Applying a flexible learning algorithm thus can mean risking overfitting. Yet an algorithm
should also be flexible enough to adequately capture the systematic relationship between
inputs and outputs in a more complex data structure. A learning algorithm whose capacity
is too low given the complexity of the data structure is likely to underfit the training data
as it is unable to approximate the function mapping from X to y (Goodfellow et al., 2016,
p. 109-110). The tension between using a sufficiently flexible algorithm, on the one hand,
and the risk of overfitting, on the other hand, is a constant theme in machine learning and
is manifested in the bias-variance trade-off.

In general, the bias-variance trade-off refers to the trade-off between bias and variance—
which are two error sources influencing the expected generalization error (James et al.,
2013, p. 33-34). If one wanted to know the expected generalization error of one learning
algorithm, then one would train one model on each possible training data set Dtrain of size
N that can be drawn from the data generating distribution p(x, y) and one then would
average over these models’ predictions for an unused test data point. The bias is the
difference between the test data point’s true value and the average of the predicted values
(Bishop, 2006, p. 149). The bias is a systematic error that results from approximating
the true underlying function f with a learning algorithm whose encoded assumptions do
not quite apply to the given learning problem (James et al., 2013, p. 35). For example, a
learning algorithm that assumes the relationship between inputs and outputs to be linear
is likely to have a high bias if the true underlying function f is highly nonlinear (James
et al., 2013, p. 35). Variance, on the other hand, captures the amount by which the models’
predictions vary around the average of their predictions (Bishop, 2006, p. 149). Variance
thus indicates the variability in the learning algorithm’s predictions that results from the
learning algorithm being trained on differently composed training data sets (James et al.,
2013, p. 34-35).

To have an as small as possible expected generalization error, one seeks to have a learning
method with low bias and low variance (James et al., 2013, p. 36). Yet there is a trade-
off: A learning method with high capacity is likely to be able to closely approximate the
relationship between inputs and outputs (low bias) but, due to its flexibility, may too
strongly adapt to the training data and may estimate a quite different functional form for
another training data set (high variance) (James et al., 2013, p. 35-36). A method with low
capacity, in contrast, due to its restricted flexibility, is likely to be less volatile to changes
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Classification vs. Regression. Supervised learning can be used to model discrete
and continuous output variables. A supervised learning task in which the response
variable y is discrete, is called classification (James et al., 2013, p. 28). And—at odds
with the terminology in statistics—a supervised learning task in which the response
variable y is continuous, is called regression (James et al., 2013, p. 28). Note that
many machine learning algorithms can be used for classification and regression tasks
(e.g. K-nearest neighbors, tree-based algorithms, neural networks) (James et al.,
2013, p. 29). If the classification task is to assign each data instance to one out of
two mutually exclusive and exhaustive categories (where typically yi ∈ {0, 1}), this is
called binary classification (Bishop, 2006, p. 38; Grosse, 2020a, p. 1). A classification
task in which there are more than two mutually exclusive and exhaustive categories,
yi ∈ {G1, . . . ,Gc, . . . ,Gc}, is called multi-class classification (Grosse, 2020b, p. 8).
Multi-label classification, in contrast, refers to tasks in which the categories are not
mutually exclusive and each data instance can be assigned to more than one category
(Zhang & Zhou, 2014).

in the training data (low variance) but for the same reason may fail to produce an adequate
mapping between X and y (which then causes high bias) (James et al., 2013, p. 35-36).
Consequently, the goal is to have a learning algorithm that—given the complexity of the
data structure—is flexible enough to achieve an adequate approximation (resulting in low
bias) and at the same time is not so flexible that overfitting occurs (and thus variance stays
low) (James et al., 2013, p. 36).

Underfitting [overfitting] can be remedied by choosing a more [less] flexible learning algo-
rithm or by increasing [decreasing] the hypothesis space the given learning algorithm can
learn (Goodfellow et al., 2016, p. 110, 116-117; James et al., 2013, p. 31-32). An important
approach to address overfitting are regularization strategies which are presented in the
context of deep neural networks in Section 1.2.3.4.

1.1.1.2 Loss Functions

Another issue that arises in machine learning is that the loss function that is used in
the optimization process (i.e. the search process) is often not the same loss function that
is used for evaluating the model’s prediction performance on yet unseen test data. If
a loss function that a researcher wishes to use cannot be optimized in an efficient way,
the usage of a surrogate loss function is required to facilitate or enable the optimization
process (Goodfellow et al., 2016, p. 273). The loss function applied in the optimization
process (see Equation 1.3) then is a surrogate loss function for the loss function used for
model evaluation (see Equation 1.4)—the latter being the actual loss function of interest
(Goodfellow et al., 2016, p. 273).
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To illustrate, in a binary classification task, one might like to assess the performance of a
model via the 0–1 loss that assumes a value of 0 if the prediction is correct and assumes
a value of 1 if the prediction is incorrect. One then would want to search for a model f̂
that minimizes the empirical risk, where the loss is given by the 0–1 loss. Yet the 0–1
loss is a discontinuous step function whose derivative is 0 or undefined (Grosse, 2020b,
p. 2). Therefore, the 0–1 loss is an unsuitable function for the application of effective
optimization algorithms that make use of derivatives (e.g. gradient descent) (Grosse, 2020b,
p. 2). Hence, optimization typically is conducted on a surrogate loss function (in the case
of binary classification tasks often via the logistic loss) for which optimization is more
efficient (Goodfellow et al., 2016, p. 273).

A reduction of the surrogate loss on the training data set in expectation will yield a
reduction in the actual loss of interest (Goodfellow et al., 2016, p. 273). However, there
can be differences in the functions’ courses. For example, it can occur that the surrogate
loss on the training data set still is decreasing whilst the 0-1 loss evaluated on the training
set or the test set remains constant (Goodfellow et al., 2016, p. 274; Mosbach et al., 2021,
p. 8).

The loss function that is used as a measure of discrepancy between predictions and true
values in the process of training a machine learning algorithm (see Equation 1.3) funda-
mentally shapes how the training process can go about (e.g. whether the loss function
is convex or whether effective optimization algorithms, such as gradient descent, can be
applied) (Grosse, 2020b, p. 2, 9-10). The loss function that is used for assessing a model’s
prediction performance (see Equation 1.4) determines how the performance of a trained
model is measured. It defines how the discrepancies between predictions and true values
are finally evaluated.

In this dissertation, the application of deep neural networks to classification tasks plays
an important role. Deep neural networks are parametric machine learning methods and
their parameters are typically determined in a maximum likelihood framework (Bishop,
2006, p. 226; Goodfellow et al., 2016, p. 174).7 Therefore, the training of parametric
learning approaches in the maximum likelihood framework is outlined in the following.
While doing so, common loss functions that are used for optimization on classification
tasks are presented. Afterward, in Section 1.1.1.3, loss functions that are widely used
when evaluating a trained model’s prediction performance in classification settings are
introduced.

But first, a note on parametric methods:8 Parametric methods approximate the true un-
7But see, for example, Jospin et al. (2022) on Bayesian Neural Networks.
8Statistical learning procedures that aim at approximating a true underlying function f can be grouped

into parametric vs. non-parametric methods (James et al., 2013, p. 21): Parametric methods are explained
in the main text. A shortcoming of parametric methods is the possibility that the assumed functional form
may poorly match the true underlying function f (James et al., 2013, p. 22). Non-parametric methods
invoke few or no assumptions about the functional form of the mapping between inputs and outputs
(James et al., 2013, p. 23, 104). An example of a non-parametric method is K-nearest-neighbors regression
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derlying function f with a function f(θ) whose precise functional form is defined by a finite
set of parameters θ (Bishop, 2006, p. 68, 120). This is, parametric methods start with a
priori selecting a general functional form f that is to be used in approximating f (e.g. by
choosing to apply a linear model with yi = N (µi, σ2) and µi = xiβ) (James et al., 2013,
p. 21). Then, parametric approaches determine the precise mathematical relationship be-
tween inputs and outputs that f describes by estimating f’s parameters θ from the training
data (James et al., 2013, p. 21). (In the example here θ = {β, σ2}.) In doing so, parametric
methods narrow down the problem of approximating the true underlying function f to the
problem of estimating suitable values for a finite set of parameters θ (James et al., 2013,
p. 21-22). Parametric methods consequently aim at finding the set of parameter values in
the parameter space, θ̃ ∈ Θ, that minimizes the empirical risk Remp(θ̃) (Goodfellow et al.,
2016, p. 272-273):9

θ̂ = arg min
θ̃∈Θ

1
N

N∑
i=1
L(yi, f(xi, θ̃)) (1.6)

If empirical risk minimization is conducted in a maximum likelihood framework, then the
negative log-likelihood is used as the loss function (Goodfellow et al., 2016, p. 174): The
likelihood function, p(y|f(X, θ̃)), indicates how likely it is to observe data outputs y given
the parameter values θ̃ of f (Bishop, 2006, p. 22, 28-29). (To comply with common notation,
f is suppressed in the following and the likelihood function is expressed as p(y|X, θ̃) (King,
1998, p. 22; Bishop, 2006, p. 28).) In maximum likelihood estimation, the aim is to
find the set of parameters θ̂ that maximize the likelihood function (Bishop, 2006, p. 23).
If individual units are assumed to be i.i.d., then this aim is (Goodfellow et al., 2016,
p. 131)

θ̂ML = arg max
θ̃∈Θ

N∏
i=1

p(yi|xi, θ̃) (1.7)

This maximization problem can be turned into a minimization problem over the negative
log-likelihood (Goodfellow et al., 2016, p. 131, 174):

θ̂ML = arg min
θ̃∈Θ

−
N∑
i=1

log p(yi|xi, θ̃) (1.8)

in which the value predicted for test set unit x∗m is the average of the values of the K training units closest
to x∗m (James et al., 2013, p. 105). Because they make few assumptions about the function’s structure,
non-parametric methods are more flexible in the shapes they can approximate (James et al., 2013, p. 23).
In non-parametric methods, the number of parameters increases as a function of training data set size
(Ghahramani, 2015). In parametric methods, in contrast,—because they narrow down the problem of
approximating f to the problem of estimating a finite set of parameters—the number of parameters is
fixed irrespective of the available amount of data (Ghahramani, 2015).

9In contrast to the general formulation of empirical risk minimization in Equation 1.3, the empirical
risk now is a function of parameter values: Remp(θ̃). As the general functional form is set a priori, the
aim now is to find a finite set of parameters θ̂ that minimizes the empirical risk rather than to search for
an arbitrary functional form f̂ that minimizes the empirical risk.
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Machine learning methods that are optimized using maximum likelihood then simply take
the negative log-likelihood as the loss function (Goodfellow et al., 2016, p. 174). This is,
they define

L(yi, f(xi, θ̃)) = −log p(yi|xi, θ̃) (1.9)

Accordingly, the exact form of the loss function is determined by the function selected
for p(yi|xi, θ̃) (Goodfellow et al., 2016, p. 177). For real-valued output values, the mean
squared error is a commonly used loss function (Goodfellow et al., 2016, p. 177). In
binary classification tasks with yi ∈ {0, 1}, a typical choice is the Bernoulli distribution
(Goodfellow et al., 2016, p. 178). For a single observational unit −log p(yi|xi, θ̃) then
becomes

− log[πyi
i (1− πi)1−yi ] = −yi log(πi)− (1− yi) log(1− πi) (1.10)

Here, πi = p(yi = 1|xi, θ̃) is the probability that unit i falls into category 1. Equation 1.10
is known as the cross-entropy loss (Grosse, 2020b, p. 5). If πi is modeled to be generated
by the standard logistic function, also known as logistic sigmoid function, one obtains the
logistic loss (also known as log loss) (Brownlee, 2019; Grosse, 2020b, p. 6):

− yi log
[

exp(f(xi, θ̃))
1 + exp(f(xi, θ̃))

]
− (1− yi) log

[
exp(−f(xi, θ̃)

1 + exp(−f(xi, θ̃)

]
(1.11)

= yi log[1 + exp(−f(xi, θ̃))] + (1− yi) log[1 + exp(f(xi, θ̃))] (1.12)

In multi-class classification tasks, in which yi falls into one out of C categories, yi ∈
{G1, . . . ,Gc, . . . ,GC}, the negative log-likelihood for a single unit i is

−
C∑
c=1

1[yi=Gc] log πic (1.13)

where 1[yi=Gc] is 1 if yi = Gc and 0 otherwise (Grosse, 2020b, p. 8-9). πic = p(yi = Gc|xi, θ̃)
gives the probability predicted by the model that unit i falls into class Gc. To predict πic
for each class, the softmax function is used (Goodfellow et al., 2016, p. 181).

πic = exp(f(xi, θ̃)c)∑C
j=1 exp(f(xi, θ̃)j)

(1.14)

f(xi, θ̃)c denotes the cth element in a model’s C-dimensional output vector and can be
described as the score for the membership of unit i in class Gc. Accordingly, in a multi-
class classification problem with C categories, the softmax function takes as an input
a C-dimensional vector of scores (one for each class) and produces as an output a C-
dimensional vector (Goodfellow et al., 2016, p. 181). The cth element of the resulting
vector is πic, where πic ∈ [0, 1] and ∑C

c=1 πic = 1 and πic is interpreted as the probability
that yi = Gc (Goodfellow et al., 2016, p. 181).
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truly positive y = 1 truly negative y = 0

predicted
positive
ŷ = 1

True Positives
(TP )

False Positives
(FP )
Type I Error

Precision, Positive
Predictive Value:
TP

TP+FP

predicted
negative
ŷ = 0

False Negatives
(FN)
Type II Error

True Negatives
(TN)

Negative Predictive
Value: TN

TN+FN

Recall, Sensitivity,
True Positive Rate:

TP
TP+FN

Specificity, True
Negative Rate:
TN

TN+FP

Accuracy: TP+TN
N

Error Rate: FP+FN
N

Table 1.1: Confusion Matrix. The confusion matrix is a 2 × 2 contingency table that
maps the true values y (columns) against predicted values ŷ (rows). In the cells of the ta-
ble, the number of True Positives (TP), False Positives (FP), False Negatives (FN), and True
Negatives (TN) are given. Similar to the depiction of the confusion matrix in Wikipedia
(https://en.wikipedia.org/wiki/Confusion_matrix), at the margins of the table, it is shown how
common performance measures are computed.

1.1.1.3 Assessing Prediction Performance

Loss functions that are used for the evaluation of a trained model’s predictions (see Equa-
tion 1.4) are commonly known as performance measures or performance metrics.10 Many
widely used performance measures for classification tasks can be derived from the confusion
matrix which is a 2× 2 contingency table that maps true values y against predicted values
ŷ (Han et al., 2012, p. 366). In the case of a binary classification task with yi ∈ {0, 1},
the confusion matrix has the form of Table 1.1. If yi = 1 [yi = 0] then an instance is said
to belong to the positive [negative] class. In the cells of the confusion matrix the following
quantities are given (Han et al., 2012, p. 365-366):

• True Positives (TP ): The number of instances that truly belong to the positive class
and are correctly predicted to belong to the positive class.

• True Negatives (TN): The number of instances that truly belong to the negative
class and are correctly predicted to belong to the negative class.

10So far, the loss function L(yi, ŷi) has been introduced as a function that indicates the discrepancy
between true and predicted values. The smaller the loss value, L = L(yi, ŷi), the better. Yet, in the
context of evaluation, L(yi, ŷi) also can be a function that measures the agreement or closeness between
true and predicted values. If this is the case, then the higher the value returned by function L = L(yi, ŷi)
the better.
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• False Negatives (FN): The number of instances that truly belong to the positive
class but are incorrectly predicted to belong to the negative class.

• False Positives (FP ): The number of instances that truly belong to the negative class
but are incorrectly predicted to belong to the positive class.

If N is the number of all instances, then (Han et al., 2012, p. 365-366):

• Accuracy: TP+TN
N

• Error Rate: FP+FN
N

• Recall (also known as Sensitivity, True Positive Rate): TP
TP+FN

• Specificity (also known as True Negative Rate): TN
TN+FP

• Precision (also known as Positive Predictive Value): TP
TP+FP

• Negative Predictive Value: TN
TN+FN

Accuracy and the error rate are global performance measures. As such they are not appro-
priate when the distribution of true class labels is imbalanced (meaning that the propor-
tions of one class or several classes are substantively smaller than the proportion of other
classes in the data) (Manning et al., 2008, p. 155; Kuhn & Johnson, 2013, p. 419). In a
binary classification problem with imbalanced class labels a classifier that would assign all
instances to the majority class, would have a high accuracy and a small error rate (Man-
ning et al., 2008, p. 155). More adequate and widely used measures in such situations are
recall and precision (Manning et al., 2008, p. 154-156). Recall solely focuses on the truly
positive instances and gives the share of instances that have been correctly predicted to be
positive among all truly positive instances. Precision only takes into account all instances
that have been predicted to belong to the positive class and gives the share of truly positive
instances that correctly have been classified into this positive class. The relationship be-
tween precision and recall is characterized by a trade-off (Manning et al., 2008, p. 156): A
classification method that has a low [high] threshold for assigning instances to the positive
class, is likely to have a high [low] recall but low [high] precision.

The Fω-Score combines precision and recall into their weighted harmonic mean (Manning
et al., 2008, p. 156):

Fω = (ω2 + 1) · Precision ·Recall
ω2 · Precision+Recall

(1.15)

In many applications ω is set to 1 (Manning et al., 2008, p. 156-157). The resulting F1-Score
is the harmonic mean of precision and recall (Manning et al., 2008, p. 156):

F1 = 2 · Precision ·Recall
Precision+Recall

(1.16)

In a binary classification setting, the positive class is usually the class of interest and
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binary performance measures, such as precision, recall, and the F1-Score, are reported for
this positive class as presented here.

In the evaluation of multi-class classification tasks, the predictions for each class can be
regarded as a binary classification problem for this class vs. the rest of the classes (scikit-
learn Developers, 2021). Hence, the binary performance measures can be computed for
each class independently (scikit-learn Developers, 2021). For the cth class (denoted by Gc)
recall then gives the share of instances that have been predicted to belong to the cth class
among all instances that are truly in the cth class: RecallGc = TPGc

TPGc+FNGc
. Precision then

gives the share of instances that truly belong to the cth class among all instances that have
been predicted to fall into the cth class: PrecisionGc = TPGc

TPGc+FPGc
.

In a multi-class classification task with C categories and C separate performance scores
for each metric, there is the question of how to average the separate measures (scikit-learn
Developers, 2021). Three common ways of averaging the per-class scores are micro, macro,
and weighted (scikit-learn Developers, 2021):

• macro assigns the same weight to each class score (scikit-learn Developers, 2021):

∗ 1
C

∑C
c=1RecallGc

∗ 1
C

∑C
c=1 PrecisionGc

∗ 1
C

∑C
c=1 F1-ScoreGc

• weighted weights each class score according to the proportion of the class in the data
(scikit-learn Developers, 2021):

∗ ∑C
c=1

|Gc|∑C

c=1 |Gc|
RecallGc

∗ ∑C
c=1

|Gc|∑C

c=1 |Gc|
PrecisionGc

∗ ∑C
c=1

|Gc|∑C

c=1 |Gc|
F1-ScoreGc

• micro sums up the separate TPGc values into one global TP value that captures the
number of all true positive predictions across the classes and then does the same
for FNGc and FPGc . Afterward, recall, precision, and the F1-Score are computed as
described for the binary case above. Note that—because in multi-class classification
all wrongly predicted instances are False Negatives (FN) and False Positives (FP )—
the micro-averaged F1-Score has the same value as micro-averaged precision, micro-
averaged recall, and accuracy (Shmueli, 2019).

1.1.1.4 Resampling

When evaluating the performance of a learning method, one would actually like to know the
expected generalization error, EGE , which can be understood as the expectation of the loss
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function under the data generating distribution p(x, y) (Bischl et al., 2012, p. 251).11

EGE(f̂) =
∫ ∫

L(y, f̂(x))p(x, y) dx dy (1.17)

As p(x, y) is unknown, one uses observed data to approximate the expected generalization
error. An observed training data set, Dtrain = (xi, yi)Ni=1, can be used to train a model
and an observed test set, Dtest = (x∗m, y∗m)Mm=1, can be used for the evaluation of the
trained model’s performance.12 This is, one can compute an estimate of the generalization
error, that has been presented in Equation 1.4, and use it as an estimate of the expected
generalization error.

Note, however, that the estimate of the generalization error in Equation 1.4 is a measure
of the prediction error on a particular test set Dtest = (x∗m, y∗m)Mm=1 of a model that has
been trained on a particular training data set, Dtrain = (xi, yi)Ni=1 (Hastie et al., 2009,
p. 220). Each time a learning algorithm is trained on another training set, a slightly
different model with slightly different parameter values will be learned (Bishop, 2006,
p. 148). Consequently, each time the trained model will produce a different generalization
error on the test set (Bishop, 2006, p. 148). Thus, the value of the generalization error on
test set Dtest depends on the specific training data set an algorithm has been trained on
(Hastie et al., 2009, p. 220). To emphasize this dependency, one can write Equation 1.4 as
(Bischl & Molnar, 2018, Session 9, p. 16)

ĜEDtest(f̂Dtrain
) = 1
|Dtest|

∑
(x∗m,y∗m)∈Dtest

L(y∗m, f̂Dtrain
(x∗m)) (1.18)

The problem when using Equation 1.18 as an estimate of the expected generalization
error in Equation 1.17 is that the value computed in Equation 1.18 will depend on the
composition of the training set and the composition of the test set used (James et al.,
2013, p. 178). Another train-test set composition will yield another value (James et al.,
2013, p. 178). The value computed in Equation 1.18 can exhibit considerable variability
between different train-test set compositions (James et al., 2013, p. 178).

In order to achieve a better estimation of the expected generalization error, resampling
techniques can be applied (Bischl et al., 2012, p. 253). Resampling techniques estimate
the expected generalization error by (1) separating the entire set of available labeled data
D into a training set, Dk

train, and a test set, Dk
test, (2) training an algorithm on the training

set and estimating the trained model’s generalization error on the test set, (3) repeating
11Note that, for reasons of readability, the notation here does not explicitly indicate the set of parameter

values θ that a parametric function f is characterized by. Note also that the expected generalization error
here in Equation 1.17 is the same as the risk in Equation 1.1—except that the risk is the expectation of
the loss function used in optimization whereas the expected generalization error is the expectation of the
loss function used for evaluation.

12Note that here the assumption is always that all instances in the training set and the test set are
i.i.d. observations from p(x, y).
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this process K times, and then (4) estimating the expected generalization error as (Bischl
et al., 2012, p. 253; Bischl & Molnar, 2018, Session 10, p. 3)

ÊGE = 1
K

K∑
k=1
ĜEDk

test
(f̂Dk

train
) = 1

K

K∑
k=1

1
|Dk

test|
∑

(x∗m,y∗m)∈Dk
test

L(y∗m, f̂Dk
train

(x∗m)) (1.19)

A common resampling technique is K-fold cross-validation. Here the entire set of available
labeled data D are separated into K non-overlapping folds of equal size (Bischl et al., 2012,
p. 254). Then, for each fold k ∈ {1, . . . ,K}, the kth fold is set aside as a test set and an
algorithm is trained on all folds except the kth fold (James et al., 2013, p. 181). After
training, the generalization error on the kth fold is estimated (James et al., 2013, p. 181).
As soon as this process has been repeated for each of the K folds, an estimate of the
expected generalization error is calculated as the mean over the K obtained generalization
errors (just as in Equation 1.19 above) (Bischl et al., 2012, p. 253, 254).

Bootstrapping is another resampling strategy. Here, given an annotated data set D of size
N , K training sets are created by drawing randomly with replacement from D (Bischl et al.,
2012, p. 255). For each training set Dk

train, the test set is composed of those instances that
have not been sampled into Dk

train. This is, Dk
test = D \ Dk

train (Bischl et al., 2012, p. 255).
The expected generalization error then is estimated as in Equation 1.19 (Bischl et al., 2012,
p. 253).

Now, however, it is the case that one usually does not only want to estimate the expected
generalization error of a trained model, but that one also—in a previous step—wants to
select a type of algorithm or a hyperparameter setting that on the given task at hand
has the best generalization performance (Bischl et al., 2012, p. 250).13 Consequently, one
usually also wants to perform model selection and/or hyperparameter tuning besides model
evaluation (Bischl et al., 2012, p. 250). If one wants to assess and compare the estimated
expected generalization error of different learning algorithms and hyperparameter settings,
and then wants to additionally estimate the expected generalization error of a finally
selected model without re-using data for model evaluation that has already been used in
model selection or hyperparameter tuning, a nested resampling approach is required (Bischl
et al., 2012, p. 257-258). In nested resampling, there are inner and outer resampling loops.
The inner loops are used for model selection/hyperparameter tuning and the outer loops
are used for model evaluation (Bischl et al., 2012, p. 258-259). (For an illustration see
Bischl et al. (2012, p. 259).)

Resampling techniques imply that each candidate model is trained and evaluated several
times. Resampling thus can require substantial computational resources (James et al.,
2013, p. 175). In the field of NLP, it can be computationally costly to train a model even
once. Resampling techniques, let alone nested resampling approaches, are therefore not

13In the context of machine learning, a hyperparameter is a parameter that is set a priori by the researcher
and is not estimated from data (Brownlee, 2017).
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widely used in NLP. It is relatively common that a labeled data set is split into one training
set for training, one validation set for model selection and hyperparameter tuning, and one
test set for the evaluation of model performance (see e.g. Lai et al., 2017; Rajpurkar et al.,
2018; Wang et al., 2019). Hence, the presented model performances in NLP are often
estimates of the generalization error (and thus are based on a single train-test split as in
Equation 1.18) and are not estimates of the expected generalization error as in Equation
1.19.

1.1.1.5 Supervised Learning, Text Data, and Scientific Research

Supervised machine learning primarily focuses on making predictions ŷ for data inputsX.
In doing so, the aim is to approximate the true underlying function f (only) to the extent
that the mapping from inputs to outputs is as accurate as possible (Molnar, 2014, p. 7).14
Supervised machine learning thus is not concerned with adequately modeling the under-
lying data generating process or identifying causal relationships (Breiman, 2001b, p. 199;
Molnar, 2014, p. 7). The goal (merely) is to imitate f in order to have a well-generalizing
model that produces accurate predictions (Breiman, 2001b, p. 199). In unsupervised learn-
ing, the aim is to learn structures in the data. And again, this is usually not done in order
to understand the mechanisms of the data generating process. The aim (merely) is to
uncover interesting, useful patterns in data (Grimmer & Stewart, 2013, p. 269, 270).

The machine learning mindset thus contrasts with the mode of inquiry in other scientific
fields—such as political science—in which identifying and estimating causal effects is a
major goal (King et al., 1994, p. 8). Nevertheless, machine learning can make valuable
contributions to these scientific fields. One significant contribution is that machine learn-
ing can improve the conceptualization, operationalization, and measurement of concepts:
To empirically test hypotheses between theoretical concepts, the theoretical concepts must
be precisely defined and translated into empirically measurable variables (also named indi-
cators) (Kellstedt & Whitten, 2009, p. 9-10; Schnell et al., 2018, p. 111, 114). In political
science, this is often conducted in a deductive process (Ahlquist & Breunig, 2012, p. 94).
First, the theoretical concept—that often initially exists as a vague notion in mind—is de-
scribed, defined, and given a name (Ahlquist & Breunig, 2012, p. 94; Schnell et al., 2018,
p. 112-113). In this process of conceptualization, the dimensionality of the concept also
has to be determined (Schnell et al., 2018, p. 112-113). Second, after a concept and its
dimensionality have been defined, the operationalization follows. In the operationalization,
measurement instructions are set up that specify how the concept (and its dimensions) are
transformed into measurable indicators (Schnell et al., 2018, p. 113-114). Operationaliza-
tion specifies which variables are used to measure a theoretical concept and how the units
of inquiry are to be mapped to the variables’ values (Diekmann, 2007, p. 239; Schnell

14Note that the term accuracy in this section is used in its general meaning of being close (however
defined) to the true value. Accuracy here does not refer to the specific performance metric presented in
Section 1.1.1.3.
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et al., 2018, p. 113-114). Measurement is the actual process of quantification in which the
observational units are assigned to a variable’s values (Diekmann, 2007, p. 239; Schnell
et al., 2018, p. 113-114).15

In a situation in which a researcher follows this deductive process and has a clear conceptu-
alization and definition of a concept, supervised learning can be used in the measurement
process. For example: As has been established at the beginning of this introductory chap-
ter, text data are a highly important data source for political scientists because they are
habitually produced in a large range of political processes and thus offer the opportunity
to unobtrusively observe these processes. However, a manual evaluation of text data is
very resource intensive and therefore not applicable in many studies—unless a part of the
measurement process can be automated. Supervised machine learning exactly does this.
Starting from a set of labeled training data that defines how textual units represented by
x are to be assigned to the values of y, a supervised learning algorithm can be trained that
then assigns unlabeled textual units as accurately as possible to the values of the variable.
In general, the training data thus are observational units for which the assignments to val-
ues of a variable, that serves as an indicator of the concept under study, are known. The
training data set encodes the measurement instructions specified in the operationalization.
The learning algorithm then learns these measurement instructions from the training data
to then apply the learned mapping to yet unlabeled data.

Thus, whilst supervised learning itself is an inductive procedure (the function f̂ is learned
from training examples), supervised learning can play a role in the deductive top-down pro-
cess that moves from concept specification to operationalization to measurement. There-
fore, supervised learning techniques can be applied as measurement instruments for the
measurement of already conceptualized concepts.

In every measurement process, political scientists aim to have a reliable and valid measure-
ment instrument. Reliability can be understood as the degree to which the measurement
instrument—when repeatedly applied to the same unchanged object—will yield the same
result (Schnell et al., 2018, p. 132).16 Validity is the degree to which the measurement
instrument provides a measure of the concept that it is designed to measure (Schnell et al.,
2018, p. 135).

When a supervised learning algorithm serves as a measurement instrument, reliability
increases as the algorithm’s variance decreases.17 A learning approach whose predictions for

15A more precise definition of measurement arises “if one understands measurement to be a structure-
conformable mapping of a set of objects to a set of numbers. Structure-conformable means that the relations
existing between the objects are ‘reflected’ in [the relations between] the set of numbers” (Diekmann, 2007,
p. 279, translated from German). Thus, when here it is said that observational units are assigned to a
variable’s values, it is assumed that the variable allows for a structure-conformable mapping.

16More precisely, reliability is defined as the variance of the true values divided by the variance of the
measured values (Schnell et al., 2018, p. 132-133). It is that part of the variance of the measured values
that is due to the variance of the true values (Jackman, 2008, p. 123)

17Note that here the supervised learning approach and not the already trained model is considered to
be the measurement instrument.
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test data points are highly consistent in the sense that they do not vary much over different
training set compositions (low variance) constitutes a reliable measurement instrument.
For a supervised algorithm to be a valid measure, its bias has to be low: The algorithm’s
predictions for test data points have to be close to their true values. Moreover, for a
measurement instrument to be valid, it also has to be reliable: A learning approach that
produces very different predictions for the same test data point not only is unreliable but
also cannot be valid (Schnell et al., 2018, p. 136).18

When working with text data, humans are typically regarded as the ultimate provider of
validity (Benoit, 2020, p. 470; Song et al., 2020, p. 551). Humans are seen best equipped
for understanding and decoding the meaning of text and thus are seen as the best tools
for making conceptual judgments (e.g. deciding whether the sentiment expressed in a text
toward a specific entity is positive or negative, or deciding whether a text does or does
not fall into a specific conceptual category) (Krippendorff & Craggs, 2016, p. 181; Song
et al., 2020, p. 551). These human conceptual judgments can encode the meaning of
text by assigning textual units di to the values of the output variable y, such that one has
(di, yi)Ni=1 (Krippendorff & Craggs, 2016, p. 181). Consequently, the validity of a text-based
supervised learning approach is usually evaluated by assessing how accurately the trained
model’s predictions can replicate human coding (Grimmer & Stewart, 2013, p. 279).

As several studies show that humans are not necessarily reliable when coding text data (e.g.
Mikhaylov et al., 2012; Ennser-Jedenastik & Meyer, 2018), the question arises to what ex-
tent human assessments really can be considered valid (Song et al., 2020, p. 553). Research
on how the reliability of text-based human coding—and thus the potential for validity—
can be increased or established (Hayes & Krippendorff, 2007; Krippendorff, 2013; Pilny
et al., 2019) is important but not the subject of this dissertation. In this dissertation, it is
assumed—in consistency with the literature at large (see e.g. Benoit, 2020; Nelson et al.,
2021)—that the best available way to assess the validity of a text-based measurement in-
strument is to compare the results of the measurement instrument with human judgments.
Hence, a trained model’s prediction performance on a yet unused set of test data points for
which human codings are available is taken as an indicator of a supervised model’s validity.
The lower a model’s expected generalization error, the higher its validity.

The important point to understand here is this: The political scientist who uses a su-
pervised learning method for the purpose of obtaining a valid measure of a concept she
is interested in and the machine learning researcher who (just) wants a well-generalizing
model that makes accurate predictions for a given task both want the same thing: a low
expected generalization error. Political scientists are actually and ultimately interested
in explanation and causal inference. Yet making causal inferences implies translating con-
cepts into measurable indicators. And if political scientists make use of supervised learning
techniques in the measurement process, then—in this very instant, for this very purpose—
the goals of political scientists coincide with the goals of machine learning researchers: the
aim is to reach an as high as possible prediction performance.

18For a similar statement related to the variance and bias of an estimator see Jackman (2008, p. 121-123).
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Hence, in the context of applying a supervised learning method to get a valid measure for
an a priori-defined concept, the goal is not causal inference but prediction. This constitutes
a major deviation from the mindset political scientists are trained to have. Following their
trained ways of thinking, some political scientists advise researchers to “prefer model spec-
ification based on theory and isolating the effect of specific explanatory factors” (Benoit,
2020, p. 490) when working with text data and call for the preference of less complex, in-
terpretable models over more complex models even if this implies that prediction accuracy
is reduced (Benoit, 2020, p. 490). Yet when using supervised learning on text data for the
purpose of measurement, the aim is not to understand or identify the causal links that
map from textual elements to the values of the output variable. (For example, the aim is
not to make causal inferences about whether and in how far the occurrence of the term
‘good’ causes a text to express positive sentiment.19) The goal merely is to learn and to
imitate this mapping as closely as possible to make as accurate as possible predictions on
new data points (Grimmer & Stewart, 2013, p. 270, 279).

This dissertation—and especially the article Introduction to neural transfer learning with
Transformers for social science text analysis—seeks to contribute to this goal. It seeks to
contribute to the research endeavor of increasing the accuracy with which already defined
concepts are measured via supervised learning techniques from text data in political science.
The more accurately human codings for yet unused text data units can be emulated by
a supervised model, the higher the indicated validity of the model that one employs as a
measurement instrument. Thus, one could also say that the goal of this dissertation is to
increase the validity of text-based measurements in political science studies.

The articles in this dissertation apply supervised learning techniques on text data with
a focus to obtain as accurate as possible measures for a priori-defined concepts. When
political scientists use supervised learning on text data for the purpose of measurement as
part of a scientific research project, there are numerous issues regarding the data generating
process, inference, and analysis that need to be considered. These issues will be outlined
in the following.

Observing Textual Expressions. Typically, the concepts that political scientists seek to
measure from texts are latent characteristics of the texts (Egami et al., 2018, p. 4). And
frequently, the concept of interest is a latent characteristic of the (political) actor that has
generated the text (e.g. the topics political parties focus on in their election manifestos,
the sentiment a citizen expresses in a tweet, or the ideological position a legislator takes
in a set of speeches) (Egami et al., 2018, p. 4; Benoit, 2020, p. 465-466).

The first important point to note here is that textual data only allow making inferences
on the basis of what has been expressed in text, and what is expressed in textual form

19Note that there are studies that aim at making such inferences about language use (e.g. Slapin &
Kirkland, 2020). In such cases, it is indeed important to have a model that allows one to identify the
effects of single linguistic features. Studies that seek to make inferences about language are a separate
category from the studies that are discussed here that use supervised machine learning on text data for
the purpose of measurement.
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θi
value of the latent characteristic the actor
actually communicates

diobserved text

yi
value that human coders assign to the latent
characteristic after decoding the text

xi
representation of
the observed text

ψi
value of the latent characteristic the actor
intends to communicate

ηi true value of the actor’s latent characteristic

fcoding

fintention
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f̂

1

Figure 1.1: Process of Text Generation and Supervised Learning. This figure describes
the stochastic process of text generation and supervised learning. ηi is the true value of the ith actor’s
latent characteristic. By some process (here indicated by function fintention), the true value is mapped to
the value of the latent characteristic that the actor intends to communicate, denoted by ψi. By a further
process (indicated by function fexpression), the intended value ψi is mapped to the value of the latent
characteristic the actor actually communicates (which is θi) by means of producing the sequence of words
and symbols di. The observed text di is read by human coders that decode the text and assign value yi to
the latent characteristic (fcoding). Given a data set, (di, yi)N

i=1, a supervised machine learning algorithm
then can be applied to learn the mapping from observed text data (di)N

i=1 to values (yi)N
i=1. Here, each di

is converted to some representational form (denoted with xi).



1.1 Machine Learning 59

need not necessarily correspond with the true value of the latent characteristic under study
(Benoit et al., 2009, p. 497-499): Assume that the true attitude of a legislator toward a
policy issue is ηi. The legislator then may make strategic considerations or may take into
account social norms to then form an attitude position ψi that he intends to communicate
(Benoit et al., 2009, p. 497) (see Figure 1.1 that illustrates this process). ψi is likely to
be based on ηi. Yet the degree to which the intended ψi is informed by the true ηi can
vary from very strong to weak. Having formed an attitude position he intends to express,
the legislator then can go about expressing it. But how far ψi corresponds with the latent
attitude position θi that he actually expresses by means of using natural language also
depends on various factors (Benoit et al., 2009, p. 497). First, how closely θi matches ψi
will depend on the legislator’s general linguistic ability to express his intended position.
The legislator seeks to communicate ψi, but the words the legislator uses may convey a
slightly different position θi. Here, technical factors (such as length restrictions on tweets
or time limits on parliamentary speeches) may also come into play. Contextual factors
can also have an effect. For example, in an attempt to respond to what other actors in
the political discourse have stated so far, the legislator may put more emphasis on some
aspects and less on others, thereby possibly distorting what is expressed from the actually
intended ψi. And then, even if the same legislator with the same level of linguistic ability
tried to express the same intended position ψi via the same communication channel in the
same context a second time, a third time, and a fourth time, it is likely that the statement
he would make using natural language slightly differed each time because the usage of
natural language can be regarded as an inherently random process (Manning & Schütze,
1999, p. 15; Benoit et al., 2009, p. 497).

Let di = (a1, . . . , at, . . . aTi
) be the sequence of words and symbols the legislator uses.20 ηi

is mapped to di by some stochastic text generation process and the latent position that
the text di actually communicates is θi. Whereas ηi, ψi, and θi are latent quantities, di
constitutes manifest data. Researchers thus only observe di and di only conveys the latent
position θi. Hence, researchers—without making additional assumptions—can only infer
θi from di.

This is true beyond the example given. Observing di provides information on the latent
characteristic θi as expressed in text. The text’s latent property θi, however, may or may
not correspond with the political actor’s latent characteristics, ψi and ηi, that researchers
are commonly interested in (Benoit et al., 2009, p. 499). For example, the topic proportions
a political actor expresses in text do not necessarily have to closely resemble the political
actor’s true issue emphasis. Estimating θi from text thus does not allow researchers to
make inferences about ψi or ηi—unless additional assumptions are imposed (Benoit et al.,
2009, p. 499), for example, that the actor intends to communicate his true characteristic
and is perfectly able to do so such that ηi = ψi = θi.

20di either already is text or, if the legislator made a verbal statement, the verbal expression is assumed
to be mapped without error into textual form.
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Selection Mechanisms. A second point that political scientists should be aware of when
using text data is that the text data generating process and the text data collection process
are both subject to numerous selection mechanisms.21 Selection mechanisms that operate
during the text generation process and selection mechanisms that play a role during text
data collection can cause selection biases. Selection biases occur (1) if the mechanism
that selects observational units for an analysis from a larger population of units for which
inferences are to be made is correlated with the units’ values on the dependent variable, or
(2) if the assignment of units to the values of the explanatory variables is correlated with
the units’ values on the dependent variable (King et al., 1994, p. 115-116, 124-125).22 Here,
the focus is on the first mentioned type of selection bias. Thus, the following discussion
focuses on biases that arise when the question of whether or not a text is selected into the
sample of units to be analyzed correlates with a property of the text (or the text’s creator)
that serves as the outcome variable.23 First, it will be illustrated how biases can arise from
the text data generating process itself, and then it will be explicated how the researchers’
chosen data collection strategy can cause selection biases.

Selection biases caused by the text data generating process. Assume that an individual
has a true attitude position ηi toward a policy issue, but she does not form the intention
to communicate her position. The attitude may be toward a policy issue that is of little
importance to the individual, or the individual may decide that it would be strategically
best not to convey anything about ηi. In another scenario, assume that the individual has a
true attitude position ηi and there is also an intended position ψi she might communicate,
but she does not come across a situation in which she does communicate something about
her attitude toward the policy. Finally, assume that the individual has a true position ηi,
intends to reveal ψi and indeed does express some latent position θi, but she only expresses
θi in private conversations with friends. In the first two scenarios, no data would be
generated that researchers could observe. In the third setting, no data would be generated
that is recorded and available to researchers.

The thus far described selection mechanisms of text generation have the effect that only a
subset of existing latent positions is expressed in accessible textual format. If researchers
seek to make descriptive inferences about the distribution of true attitude positions ηi
toward a policy issue in a population by observing attitude expressions in a corpus of
text data, then the inferences drawn can be biased if the selection mechanisms of text

21Parts of the content on pages 60 to 67 has first been published by Springer Nature in Wankmüller,
S. (2022). A comparison of approaches for imbalanced classification problems in the context of retrieving
relevant documents for an analysis. Journal of Computational Social Science, (p. 1–73). https://doi.org/
10.1007/s42001-022-00191-7 and here is reproduced with permission from Springer Nature.

22Selection biases also occur if the selection rule or the assignment rule are correlated with the size of
the causal effect that units will experience (King et al., 1994, p. 138-139).

23If a study seeks to make descriptive rather than causal inferences, a selection bias is produced if the
rule for selecting observational units for analysis is correlated with the variable of interest (King et al.,
1994, p. 135). The following discussion points out sources for selection bias using illustrative studies whose
goal is descriptive rather than causal inference. Accordingly, when referring to the definition of selection
bias, here the expression ‘the outcome variable’ rather than ‘the dependent variable’ will be used.

https://doi.org/10.1007/s42001-022-00191-7
https://doi.org/10.1007/s42001-022-00191-7
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generation are such that the value of true attitude position ηi correlates with the question
of whether a text is produced at all or is accessible at all (King et al., 1994, p. 132). Such
systematic forms of (self-)censorship may occur in autocratic regimes. Such a situation,
however, also may occur if individuals that have a supportive position toward a given policy
are more likely to publicly state their position toward the policy, whereas individuals with
an opposing position toward the policy are more likely to remain silent (possibly because
their stakes are less high). Thus, when working with text data, researchers should be aware
that bias can arise if the availability of text data is correlated with the outcome variable
of interest (King et al., 1994, p. 132, 135).

Selection biases caused by data collection strategies. Besides such selection biases that
are induced by the text data generating process itself, selection biases also can be caused by
researchers’ data collection strategies (King et al., 1994, p. 132, 135). There are two sources
of bias to be mentioned here. First, the type of text data, that a researcher chooses to use
for analysis, causes the selection mechanisms of the text data generating process to come
into effect. For example: Assume that a political scientist seeks to estimate the distribution
of positions toward a policy issue in parliament and chooses to use parliamentary speeches
debating the issue as her text data source. By deciding to use speech data, the speech
generation-related selection mechanisms come into effect. These selection mechanisms
influence (1) which legislators are allowed to speak on the issue at all (and hence for which
legislators a text di can be observed at all) and (2) what the content of observed speeches
is (this is, which intended position ψi each legislator tries to convey) (Proksch & Slapin,
2012, p. 520). If the speeches are given in an institutional setting in which party unity plays
an important role, legislators whose position is more distant from their party leadership
are less likely to be given the opportunity to speak (Proksch & Slapin, 2012, p. 526-527,
533-534). Moreover, the position ψi that a legislator intends to communicate when giving
a speech, is more likely to be adjusted such that it is closer to the position of the party
leadership (Proksch & Slapin, 2012, p. 523, 526-527). In this case, the political scientist
that uses the observable speech data would estimate an incomplete distribution of policy
positions and would underestimate the variance in policy positions.

A second prominent example is the usage of text data from social media platforms in re-
search projects that aim at making inferences about a population that stretches beyond
social media users. If a team of researchers aims at estimating the distribution of attitudes
toward a political candidate among the voters in a country and they decide to do so by
observing attitude expressions in tweets, then the researchers cannot observe text data for
individuals in the population that do not use Twitter. Thus, by selecting tweets as a data
source, the selection mechanisms for this very data source (Who is using Twitter? Who
actively posts a tweet that expresses an attitude toward the candidate on Twitter?) are
kicking in. And if across the population an individual’s attitude toward the political can-
didate correlates with the question of whether the individual expresses the attitude toward
the candidate on Twitter, then estimates on the observed Twitter data are biased.
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Social Media. For political scientists, social media have several benefits as a
data source: Data from social media platforms allow political scientists to observe
ordinary individuals in an unobtrusive manner (Barberá & Steinert-Threlkeld,
2020, p. 405). There are two aspects here. First, social media data enable political
scientists to not only study political elites (on which data is usually available in
some form or another) but also allow studying voters and citizens. Second, voters
or citizens can be studied without having to conduct an expensive, time-consuming
survey, which has the added disadvantage of not being unobtrusive.

As soon as a researcher has acquired the skills of web data collection and has been
granted access to the data by the platform operators, data collection is fast and easy
(Munzert et al., 2015). Moreover, data collection can be conducted in real-time.
Phenomena of interest (for example protest movements) can be observed whilst
they emerge, go on, and perhaps finally cease (Barberá & Steinert-Threlkeld, 2020,
p. 406). This is advantageous compared to a situation in which a researcher has
to collect data afterward and has to deal with, for example, recall biases that can
occur if survey participants try to recollect past events.

A related advantage of social media data is that they allow for a temporally and
spatially more differentiated measurement (Barberá & Steinert-Threlkeld, 2020,
p. 406). For example, at the beginning of an election campaign, parties produce
election manifestos to lay out their political agenda and to state their positions on
policy issues. Election manifestos, however, provide no information on how this
agenda changes over the course of the campaign and later over the course of a
legislative period. An election manifesto also provides no information regarding how
issue emphasis and ideological positions vary among candidates that belong to the
same party. Statements that individual political candidates make in posts on social
media platforms constitute data that allow for such temporally more fine-grained
analyses and also allow for analyses of spatial within-party variation.a Similarly,
geolocated social media posts of citizens enable researchers to conduct a temporally
and spatially more differentiated study of public opinion than can be achieved with
survey research alone (Beauchamp, 2017).

Social media, moreover, not only provide more detailed information, but they also
are likely to provide more immediate information (Ceron et al., 2014, p. 344). As
social media posts are public, social norms and the social desirability of beliefs,
attitudes, and behaviors are likely to affect citizens and politicians when com-
municating their views via social media (Barberá & Steinert-Threlkeld, 2020, p. 405).

aI am grateful to Paul W. Thurner for pointing this out to me.
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Social Media (cont.). Yet, because expressions of beliefs and attitudes on social
media are likely to be more spontaneous and less constrained by formal institutional
rules, there might be a chance that on social media the position θi that an individual
actually expresses in text on average is a bit closer to the individual’s true position
ηi. Politicians, for example, can use social media to state their views directly
and spontaneously (instead of presenting their position in a deliberate, polished
speech in a probably formal setting). The low-threshold, low-cost nature of social
media furthermore produces immediate information on the importance of topics:
Politicians and citizens can freely choose the topic they want to address in a social
media post. Legislators that want to emphasize a topic are not dependent on
whether they get a chance to speak in parliament or a media outlet on the issue.
And an individual that cares about a specific topic can express her concern instantly
without having to engage in time-consuming (non-)electoral forms of political
participation—and without having to wait until a group of researchers asks her
to participate in a survey in which (because in the meantime the researchers have
realized that this could possibly be an important political topic) a question on the
topic is included.

Finally, the spread and usage of social media led to the emergence of new channels
for political information and political communication. It led to the creation of new
forms of political interaction. Hence, social media constitute a new field for political
research in their own right. Social media thus are not only a valuable data source
for political scientists, but they are the data source for the observation of new, social
media-related political phenomena. Moreover, because social media also transform
political processes, political scientists started to study the effects of social media on
the political sphere (Barberá & Steinert-Threlkeld, 2020, p. 411).

A major problem of social media as a data source for making inferences about
populations of ordinary citizens is selection.a Both the question of who uses social
media at all and the question of who makes political statements on social media
are subject to selection processes. Instead of the ideal setting in which researchers
select individuals from the population of interest through a randomized process,
individuals at their own behest choose to use or not to use social media. Then again,
among all those individuals that use a particular social media platform, selection
processes operate that cause some individuals to express their political position on
a particular topic and cause others not to do so.

aIf the aim is to make inferences about political elites, selection mechanisms are less likely to
be problematic, as a large share of political elites has social media profiles (Barberá & Steinert-
Threlkeld, 2020, p. 406).



64 1. Background and Motivation

Social Media (cont.). Hence, inferences beyond the set of social media users whose
posts have been analyzed in a study thus should be drawn with utmost care. If
the selection mechanisms and a study’s research design are such that the outcome
variable of interest correlates with the question of whether an individual uses or not
uses a specific social media platform and expresses or not expresses a position on
a particular topic during a given time period and thus is selected into the study or
not, then a selection bias occurs (Barberá & Steinert-Threlkeld, 2020, p. 406-407).

The second source for selection biases that is related to the data collection strategy is
particularly common when working with text data. The origin of this potential source of
bias is that the population of observational units on the basis of which inferences are to
be made cannot be clearly determined (King et al., 1994, p. 125). Assume that a political
scientist is interested in the attitudes that are expressed toward Hillary Clinton during a
given time period on Twitter. (No inferences beyond Twitter users are to be made in this
case. The unit of analysis here is a single tweet.) The problem that the political scientist
faces is that there is no list that comprehensively registers all tweets that communicated
an attitude toward Hillary Clinton in the given time period. Thus, it is initially unclear
which tweets from the entire stream of tweets that have been produced during the time
period belong to the population of tweets that is of interest to the study. Therefore, the
scientist in a first analytical step has to identify the tweets that belong to this population.
If in this first analytical step the question of whether the political scientist considers a
tweet to belong vs. not belong to the population is related to the value on the outcome
variable of interest (here the expressed attitude toward Hillary Clinton), then a bias will
be induced.

Assume that in order to address this task of separating the relevant tweets, that are part
of the population, from the irrelevant tweets, that are not, the political scientist uses a set
of keywords. A tweet that contains any of the keywords is considered relevant and then is
used as an observational unit in subsequent analytical steps for the estimation of attitudes.
A tweet that does not contain any of the keywords is not considered relevant and is not
used for the analysis of attitudes. Suppose that the set of used keywords is: ‘Hillary’,
‘Hillary Clinton’, and ‘@HillaryClinton’. The problem with this list of keywords is that it
is incomplete. The list, for instance, fails to identify tweets that contain derogative terms
that are sometimes used to refer to Hillary Clinton, e.g. ‘Nasty woman’ or ‘Hilliary’. The
incomplete keyword list will consequently miss a set of tweets that are likely to express a
negative attitude toward Hillary Clinton. Hence, in the given example, there is likely to
be a correlation between the attitude that a tweet expresses and the question of whether a
tweet is considered to be part or not part of the population of tweets that will be analyzed.
Therefore, the estimation of the distribution of expressed attitudes on the basis of the set
of tweets that are considered to be relevant by the keyword list is likely to be biased.

To keep these biasing effects as minimal as possible, it is very important that researchers
identify as accurately as possible the population of documents that they are interested in.
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It is essential that they separate as accurately as possible relevant documents that belong to
the population from all other documents that do not. Separating as accurately as possible
is no guarantee that selection bias will not occur. Yet the smaller the share of documents
that belong to the population of interest but are not identified as being relevant, the smaller
the capacity for strongly biasing effects due to the missing out of relevant documents. Or
to put it another way: The higher recall, the smaller the size the bias due to false negatives
can maximally assume. (For a more detailed description of this relationship between recall
and the potential size of bias see Figure 1.2.) Moreover, the smaller the share of documents
that are considered to be relevant although they do not belong to the population of interest
(this is, the higher precision), the more an analysis is based on documents for which the
analysis actually wants to make inferences. Consequently, the higher precision, the less
the degree to which estimated values can be biased by documents that are not actually of
interest.

This dissertation’s article A comparison of approaches for imbalanced classification prob-
lems in the context of retrieving relevant documents for an analysis seeks to contribute to
addressing this task of as accurately as possible identifying the population of documents
that are of interest in an analysis. When conducting this first analytical step of trying to
retrieve the share of documents that are relevant for the analysis at hand from a corpus of
otherwise irrelevant documents, then the share of relevant documents is typically very small
compared to the share of irrelevant documents that make up the rest of a usually very large
corpus. Thus, researchers often face an imbalanced classification problem when seeking to
identify the population of relevant documents. So far, political scientists usually approach
this imbalanced classification task by applying a list of keywords. This is a fast, easy, and
inexpensive procedure. Yet research indicates that the human creation of keyword lists is
unreliable and incomplete (King et al., 2017, p. 973-975). Hence, as has been illustrated
above, there is the risk of selection bias. Addressing this issue, the article presents and
evaluates methods for the retrieval of relevant documents that are more complex and more
expensive than keyword lists but have the potential to yield higher retrieval performances
and thus might reduce the potential size of selection bias. The evaluated methods are (1)
query expansion techniques from the field of information retrieval, (2) topic model-based

aThe effect of precision on the size and direction of bias likely depends on the (distribution of) char-
acteristics of the truly irrelevant documents that are erroneously predicted to be relevant vis-à-vis the
(distribution of) characteristics of the truly relevant documents as well as the processing of these charac-
teristics by the learning algorithm.

bThus, the simulation can also be understood as a sampling from the set of 1,000 truly relevant doc-
uments, where the proportions sampled from positive vs. negative attitude expressing documents can
differ from the proportions of positive vs. negative documents in the population of 1,000 truly relevant
documents. Many thanks to Christian Heumann for pointing this out to me.

cNote that the relationship between recall and the size of this form of bias also holds if the true
proportion of positive vs. negative documents is different from 1:1. If among the truly relevant documents
there are substantively more positive than negative documents (or the other way around), the precise
functional form of this relationship between recall of positive documents, recall of negative documents,
and bias is different than the function in the presented plot, but the general relationship between recall
and bias remains the same.
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Figure 1.2: Recall and the Maximum Size of Bias. This plot is generated from a simulation that
assumes the following scenario: Among a large corpus of documents, 1,000 documents are relevant for an analysis. Among
these 1,000 relevant documents, 500 documents express a positive attitude toward a political candidate and 500 documents
express a negative attitude toward the candidate. The true attitude value of all positive attitude expressing documents is
1 and the true value of all negative documents is 0. Hence, the true mean attitude value in this population of documents
is 0.5. Now it is assumed that researchers in a study first apply a selection rule via which they try to identify the relevant
documents from the corpus. In a second step, the researchers then compute an estimate for the mean attitude value based
on those documents that the selection rule identified as being relevant. These two steps are repeated several times, each
time applying a different selection rule. The question addressed in this simulation is the effect that recall (i.e. the share
of the 1,000 truly relevant documents that a selection rule correctly predicts to be relevant) has on the size of bias in the
estimation of quantities (here the mean attitude value) from documents that are predicted to be relevant. In order to examine
the effect of recall on bias in isolation from other possible biasing effects, that can arise if truly irrelevant documents are
erroneously predicted to be relevant, the assumption here is that for all selection rules precision is 1 (such that actually
irrelevant documents are not selected into the study).a b Furthermore, it is assumed that the researchers are perfectly able
to determine the true attitude value of a document. For example, if a selection rule identifies 50 positive and 200 negative
attitude expressing documents, then the researchers will conclude that the 50 positive documents have an attitude value of
1 and the 200 negative documents have an attitude value of 0 and hence they estimate the mean attitude value to be 0.2.
The difference between such an estimated value and the true mean value of 0.5 here is called bias. The plot shows how this
bias depends upon the recall of relevant documents that express a positive attitude (x-axis), the recall of relevant documents
that express a negative attitude (y-axis), and the overall recall of relevant documents (indicated by the color of the dots).
The plot demonstrates that an increase in overall recall does not necessarily imply that the bias in the estimator decreases.
An increase in the overall recall rate can even mean that the bias increases. Note that selection bias arises if the recall of
positive relevant documents is higher or lower than the recall rate of negative relevant documents. If an overall increase in
recall implies that this imbalance in the recall rates increases further, then an increase in recall causes an increase in bias. Yet
the size that this bias can maximally assume decreases with an increasing overall recall: As the color of the dots moves from
blue (low overall recall) to red (high overall recall), the maximum magnitude that this bias can reach decreases. If a selection
strategy yields high overall recall, selection bias still can occur if the recall rates vary with the value of the outcome variable
of interest. But the higher recall, the less strong this biasing effect can be.c The footnotes a to c are given on the previous
page. This figure first has been published by Springer Nature in Wankmüller, S. (2022). A comparison of approaches for
imbalanced classification problems in the context of retrieving relevant documents for an analysis. Journal of Computational
Social Science, (p. 1–73). https://doi.org/10.1007/s42001-022-00191-7

https://doi.org/10.1007/s42001-022-00191-7
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classification rules that have been developed in communication science, and (3) the ma-
chine learning techniques of active and passive supervised learning. The results show that
whereas query expansion techniques and topic model-based classification rules do not tend
to improve upon lists of empirically predictive keywords, active learning—if applied with
a not too small labeling budget—yields considerably higher retrieval performances than
keyword lists. Hence, the article points out that active learning is a method that political
scientists could use to approach retrieval tasks better than they do so far. This is important
because a more accurate retrieval method reduces the maximal magnitude of the selection
bias that can be caused by the very process of separating documents that belong to the
population of interest from those that do not.24

Interpretability. Although the utilization of supervised learning for prediction purposes
discussed here does not aim at causal inference, it nevertheless aims at “making inferences
that go beyond the particular observations collected” (King et al., 1994, p. 8). The aim
in supervised learning is to approximate the systematic relationship that f describes (see
again Equation 1.5) in order to make generalizing inferences beyond the training data
points for yet unused data points. The aim, however, is not to learn about the causal
effects underlying the data generating process that has produced the outputs y from X.
The aim is to imitate the systematic relationship f for the purpose of generalization without
necessarily understanding f .

This is not to say that it might not be important to use tools for interpreting a supervised
machine learning method. To investigate why a model made the predictions it has made, to
examine what a model has learned, or to assess the importance of specific features for the
model’s predictions are important issues that can increase a researcher’s trust in the applied
model (Doshi-Velez & Kim, 2017, p. 2; Molnar, 2022, ch. 3.1). Interpretability tools, for
example, can increase a researcher’s confidence that the model picks up the systematic
relationship between inputs X and outputs y and consequently does react to meaningful
perturbations in the data but does not react strongly to non-meaningful perturbations
(Doshi-Velez & Kim, 2017, p. 2; Ribeiro et al., 2020; Molnar, 2022, ch. 3.1). A general
introduction to interpretability in machine learning is provided by Molnar (2022). An
overview of approaches for the interpretation of deep neural networks is given by Belinkov
& Glass (2019).

Traceability and Replicability. If supervised learning is used in the context of scientific
research, then all the conducted processes involved in training and applying a supervised
learning technique have to be explicitly and publicly reported such that the processes can
be fully traced and the analysis is, as far as possible, reproducible (King et al., 1994, p. 26).

24Note that even if a method were perfectly able to separate documents that belong to the population
of interest from those that do not and thus one would have a complete census of observational units,
selection biases could still arise from selection mechanisms of the data generating process as described
above. Therefore, the article A comparison of approaches for imbalanced classification problems in the
context of retrieving relevant documents for an analysis makes an important contribution, but its focus is
only on one out of many sources for selection bias.
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This might concern, for example, the procedures used in collecting the data; rules for human
coding; the separation into training, validation, and test sets; the type of learning technique
used; the procedure used for hyperparameter tuning; and the settings in the optimization
process. If research procedures and results cannot be intersubjectively traced, they cannot
be considered scientific (King et al., 1994, p. 8, 26-27). Here, for supervised learning, the
same rules and standards apply as in studies that aim at estimating causal effects.

With regard to the field of NLP there is one point worth emphasizing: In NLP, it is common
that large models comprising many parameters are pretrained on massive amounts of data
utilizing considerable amounts of computational resources. The aim in pretraining is to
get a highly general language representation model that then can be used as an input for
further training on the actual target task of interest (Ruder, 2019a, p. 64) (see Section
1.2.3.8 on sequential transfer learning). To the extent that the data and procedures used
in the pretraining process are public and thus pretraining is retraceable and (given certain
amounts of resources and an identical computing environment) also potentially replicable,
there is no reason why political scientists should not use these pretrained models as an
input for the training processes on their supervised learning tasks.

In fact, the articles of this dissertation make ample use of pretrained language models
whose pretraining corpora are (not entirely but in large parts) accessible (Aßenmacher
& Heumann, 2020, p. 4), whose architecture and pretraining procedures are reasonably
satisfactorily described (Devlin et al., 2019; Liu et al., 2019b; Beltagy et al., 2020), whose
source code is available25, and for which the resulting pretrained models are freely accessible
from an open source library (Wolf et al., 2020). Yet the larger the share of pretraining
data that is not accessible, the higher the extent to which pretraining procedures are not
explicitly reported and the source code is not publicly disclosed, the less the criterion of
traceability is met. Political scientists should refrain from applying models for which levels
of traceability are low (for example the GPT-3 model by Brown et al., 2020). The same
applies to models from private providers, where it is unclear which learning approaches
they apply and which data they have been trained on.

1.1.1.6 Text-Based Supervised Learning in Political Science

Supervised machine learning can be applied in the process of measuring (dimensions of) an
a priori-defined concept. This section is designed to provide an overview of the spectrum
of concepts that are relevant to political science and that researchers have measured by
means of applying supervised learning on text data. A systematic overview that focuses
on the supervised learning methods used in text-based political science research articles is
given in Section 1.2.4.

25The source code for the pretrained language representation model BERT by Devlin et al. (2019)
is available at https://github.com/google-research/bert. For RoBERTa (Liu et al., 2019b) the source
code is released at https://github.com/pytorch/fairseq, and for the Longformer (Beltagy et al., 2020) at
https://github.com/allenai/longformer.
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Attitudes. While attitudes are traditionally measured via surveys, supervised machine
learning (in combination with the digitization of communication processes) has made it
possible for political scientists to use new indicators for the measurement of attitudes
toward political actors or issues: There are several studies that employ supervised learning
tools to measure attitudes based on social media data. Ceron et al. (2014), for example,
use supervised learning on tweets to predict public opinions toward leading political figures
in Italy. In a later study, they use the same method to predict voting intentions during the
2012 US presidential election campaign (Ceron et al., 2015). Amador et al. (2017) apply
supervised learning techniques to measure support for the Leave vs. Remain campaigns
prior to the 2016 UK Brexit referendum on the basis of tweets. King et al. (2013) use a
supervised learning technique to estimate the share of posts that are supportive vs. critical
of the Chinese state among censored and uncensored Chinese social media posts. And
Mitts (2019) trains supervised classifiers to detect support for the Islamic State on several
dimensions from tweets.

Events. In further applications, the concept under study is an event, and supervised
learning algorithms are trained to detect the occurrences of events from large pools of data.
D’Orazio et al. (2014), for example, use supervised machine learning to detect militarized
interstate disputes from newspaper articles. Zhang & Pan (2019) apply supervised learning
to identify collective action events in China from social media data. Muchlinski et al. (2021)
utilize supervised learning techniques to recognize reports about occurrences of electoral
violence in tweets. Wu & Mebane (2021) train a supervised learning method on text and
image data to detect reports on several types of election incidents in the context of the
2016 US national elections.

Concepts in Category Systems. Supervised learning algorithms can also play an im-
portant role in data collection projects. Here, trained supervised models can serve as
substitutes for coders filling the entries in a database and thereby can make data collection
processes more efficient or allow them to be conducted on a larger, more comprehensive
scale (D’Orazio et al., 2014). Olsson et al. (2020), for example, train different supervised
learning algorithms to assign news articles into the category system of the Uppsala Con-
flict Data Program database—a task usually done by human coders. Koh & Boey (2021)
use supervised learning to classify quasi-sentences from English election manifestos into
the seven major policy domain categories as well as the 57 fine-grained categories of the
Manifesto Project.26 Glavaš et al. (2017) make a similar attempt to supplant human cod-
ing in the Manifesto Project: They seek to predict the seven major policy domains for
manifestos written in four different languages. Moreover, Meidinger & Aßenmacher (2021)
apply supervised learning to emulate human coding on a carefully designed coding scheme
for open-ended survey questions from the 2008 American National Elections Studies.

26The Manifesto Project (Volkens et al., 2021a) is a highly important but also a very resource-intensive
political science data collection project in which coders hand-code quasi-sentences from election manifestos
into a fine-grained category system. The project has been going on for decades (its origins dating back to
the 1970s) and so far 4739 manifestos from 56 countries are covered (Volkens et al., 2021b, p. 2).
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Taken together, these research projects indicate that supervised machine learning can be
used for extensive data collection purposes, but that the accuracy of predicted assignments
can vary considerably—for example as a function of the number of training data that is
available for a given coding category or coding task (Koh & Boey, 2021, p. 7; Meidinger
& Aßenmacher, 2021, p. 870-871).

Other. Supervised learning furthermore is applied for the measurement of a large spectrum
of various other concepts: Ramey et al. (2019) make use of supervised learning to obtain
measures of the personalities of US Congress members based on speech data. Barberá
et al. (2021) apply supervised learning to assess the tone in newspaper articles about
the US economy. Rudkowsky et al. (2018) capture the level of negativity expressed in
speeches held in the Austrian parliament. Haim & Hoven (2022) measure different forms
of hate speech, for example, in a data set of tweets that were written by or addressed to
members of German state parliaments. And seeking to study the nature of delegation in
EU legislation, Anastasopoulos & Bertelli (2020) train a supervised learner to predict for
each article in EU law between 1958 and 2017 whether it grants authority to an agency or
specifies constraints for the agency.

1.1.2 Unsupervised Learning

Whereas in supervised learning a researcher has to have a clear conceptualization of the
output variable that is operationalized in the form of the output values y, no such a priori
conceptualizations and operationalizations exist in unsupervised learning. In unsupervised
learning, no target variable y and only the dataX are given (Bishop, 2006, p. 3). The aim
is to discover, describe, and extract patterns or structures among the data (Hastie et al.,
2009, p. xi).

A very common goal in unsupervised learning is to group the data instances into ho-
mogeneous clusters (clustering) (Bishop, 2006, p. 3). Clustering procedures vary widely
regarding the techniques they use to detect clusters. The clusters that a technique dis-
covers tend to mirror the characteristics of the applied clustering technique. For example,
distance-based hierarchical clustering techniques and partitioning methods (e.g. K-means)
tend to separate the data into clusters with spherical convex shapes (Han et al., 2012,
p. 448-449). Density-based clustering methods, in contrast, operate on the density of data
points within a certain region and are able to find clusters of arbitrary shape (Han et al.,
2012, p. 450). Probabilistic model-based clustering procedures model the observed data
points as a mixture of underlying distributions (Ahlquist & Breunig, 2012, p. 96-97; Han
et al., 2012, p. 501-503). The distributions represent latent clusters that are assumed to
have generated the observed data (Han et al., 2012, p. 502).

Unsupervised learning also comprises techniques to estimate the underlying distribution of
the data (density estimation) and methods that project the data into a lower-dimensional
continuous space (e.g. principal component analysis, factor analysis) (Bishop, 2006, p. 3,
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mode of learning

supervised unsupervised

predicted or
learned output

discrete classification clustering

continuous regression
projections into
lower-dimensional
continuous space

Table 1.2: Categorization of Machine Learning Approaches. This table categorizes
machine learning approaches according to the mode of learning and the nature of the predicted
or learned output using terminology from machine learning.

Self-Supervised Learning. An important further branch of machine learning, that
plays a central role in NLP, is self-supervised learning. In self-supervised learning, the
supervising signal comes from the data itself (Chollet, 2021, ch. 4.1.3). For example,
in language modeling, a learning algorithm learns to predict the next word given the
sequence of preceding words (Bengio et al., 2003, p. 1138). An algorithm is trained
to do so by applying it to existing text data (Bengio et al., 2003, p. 1141-1142). At
each prediction step, the supervising information comes from the true next word in
the given text (Bengio et al., 2003, p. 1141-1142).

559-560). Thus, just as in supervised learning where predictions can be made for dis-
crete outputs (classification) and continuous outputs (regression), unsupervised learning
approaches can learn structures of a discrete (clustering) and a continuous nature (see
Table 1.2).

Unsupervised Learning and Scientific Research. When applying supervised learning, a
clear conceptualization of the concept under study and the encoding of the operational-
ization in a training data set are a requirement. Supervised learning thus is part of a
deductive process in which a concept and the way it is measured are defined a priori and
then objects are assigned to a variable’s values accordingly (Ahlquist & Breunig, 2012,
p. 94-95).

Unsupervised learning, in contrast, can be a tool in an inductive process (Ahlquist &
Breunig, 2012, p. 94-95). In unsupervised learning, a set of objects is measured on a set
of variables and then a structure discovering algorithm is applied to find structures in the
data—and the detected structures depend on the set of objects, the set of variables, and
the specific algorithm used (Ahlquist & Breunig, 2012, p. 94-95).

Unsupervised learning thus is useful in settings in which the aim is to discover a latent
structure that maps and organizes the units under study, but the precise content of the
latent structure is yet to be explored. As such, unsupervised learning approaches can help
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to develop, refine, or even test theory-based conceptualizations: Csereklyei et al. (2017),
for example, apply model-based clustering to country-year data on the energy mix of the
member states of the EU. Csereklyei et al. (2017) then inspect how the detected clustering
relates to the energy ladder hypothesis. Ahlquist & Breunig (2012) reveal that theoretical
expectations of how countries would group into types of a well-known typology do not
consistently coincide with the country clusters produced via model-based clustering. (For
a similar study see Magyar, 2022.)

Among political science research articles that use unsupervised learning for latent structure
estimation there are two large groups: One group of studies aims at ideal point estimation,
the other at topic modeling.

Ideal Point Estimation. The first group of studies aims at the estimation of ideological
positions of political actors (parties, legislators) or entire populations on latent continuous
policy dimensions. In political science, this is also sometimes referred to as scaling (Grim-
mer & Stewart, 2013, p. 269). Ideal point estimation has a long history in political science
since spatial models of politics are central to many theoretical frameworks and empirical
analyses.

While there are also approaches for ideal point estimation in which the contents of the
policy dimensions are defined a priori (e.g. the Wordscores method developed by Laver
et al., 2003), many approaches and applications follow an inductive approach (e.g. Gabel
& Huber, 2000; Slapin & Proksch, 2008; Barberá, 2015; Däubler & Benoit, 2021; Rheault
& Cochrane, 2020; Herrmann & Döring, 2021). Inductive approaches start by simply
assuming that there is a small finite number of latent continuous dimensions along which
the policy space can be structured (Däubler & Benoit, 2017, p. 2). Then, a learning
technique is applied on provided data to find “the best-fitting empirical representation
of the policy space under investigation, [...] to infer latent policy dimensions” (Benoit &
Laver, 2006, p. 59). What the contents of the inferred latent dimensions are, is determined a
posteriori (Benoit & Laver, 2006, p. 59). Proponents of this inductive a posteriori approach
argue that the substantive meaning of the latent policy dimensions can vary over space and
time and thus the dimensions’ content cannot, and should not, be defined a priori (Gabel
& Huber, 2000, p. 96; Däubler & Benoit, 2017, p. 5-6). According to this line of argument,
the application of unsupervised learning approaches is required.

The methods developed for unsupervised ideal point estimation vary regarding the types of
data they use and the kinds of actors for which they seek to estimate ideological positions.
Notwithstanding this variation, the methods all have in common that they describe the
policy dimensions as a low-dimensional reconstruction of the input space. Most often the
dimensions are latent variables that generate the observed data (see e.g. Clinton et al.,
2004; Slapin & Proksch, 2008; Barberá, 2015; Däubler & Benoit, 2021).

At first, inductive approaches estimated ideal positions based on roll call votes (Poole &
Rosenthal, 1985, 1991; Clinton et al., 2004; Hix et al., 2006; Hare & Poole, 2014; Bräuninger
et al., 2016). Then, over time, techniques for the estimation based on other data types such
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as text data (Slapin & Proksch, 2008; Proksch & Slapin, 2010; Lauderdale & Herzog, 2016;
Lo et al., 2016; Rheault & Cochrane, 2020), social network data (Barberá, 2015; Barberá
et al., 2015a), annotations of election manifestos (Däubler & Benoit, 2021), and parties’
Wikipedia pages (Herrmann & Döring, 2021) have been added.

A central model for estimating positions on a continuous latent dimension based on text
is the Wordfish model (Slapin & Proksch, 2008). If xiu is the observed frequency with
which unique vocabulary term zu occurs in document di, the Wordfish model assumes that
(Slapin & Proksch, 2008, p. 709; Grimmer & Stewart, 2013, p. 293)

xiu ∼ Poisson(λiu) (1.20)

log(λiu) = αi + ξu + βuθi (1.21)

This is, each xiu is assumed to be drawn independently from a Poisson distribution with
parameter λiu (Grimmer & Stewart, 2013, p. 292-293; Lowe & Benoit, 2013, p. 301). λiu,
in turn, is a function of a document fixed effect αi, term fixed effect ξu, term discrimination
parameter βu, and ideological position θi (Slapin & Proksch, 2008, p. 709). αi controls for
document length, ξu accounts for the fact that independent of a document’s ideological
position some terms are used much more frequently than other terms, and βu is the term
weight that indicates how strongly term zu discriminates between documents on the un-
derlying dimension (Slapin & Proksch, 2008, p. 709). The quantity of interest is θi that
gives the position of document di on the continuous latent dimension (Slapin & Proksch,
2008, p. 709).27

Wordfish is a widely known model in political science and has been used in various applica-
tions (Klüver, 2009; Proksch & Slapin, 2009, 2010; Lauderdale & Herzog, 2016; Nanni et al.,
2016; Schwarz et al., 2017). The significance of the Wordfish model, however, also is due
to the fact that the ideas it encodes are reflected in many other text-based scaling models.
This is especially true for its rooting in item response theory (IRT).28 Core notions from
IRT not only form the basis for Wordfish but also for many later developed scaling models
(e.g. Elff, 2013; Barberá, 2015; Däubler & Benoit, 2021; Herrmann & Döring, 2021).

IRT models are measurement models that have been intensely employed and developed in
the field of educational and psychological testing (Hambleton et al., 1991, p. ix). In the
typical IRT setting, a set of question items that are assumed to measure a single latent
variable (often: an ability) are applied to a set of subjects whose value on the latent variable

27The parameters αi, ξu, βu, θi are all unobserved and have to be estimated. In the original paper this
is done via expectation maximization (Slapin & Proksch, 2008, p. 709-710). The model here is identified
by setting α1 = 0, mean(θ) = 0, and V ar(θ) = 1 (Slapin & Proksch, 2008, p. 710). Wordfish assumes
that there is a single latent dimension, the observed term counts are conditionally independent given λiu,
and that the observed word counts follow a Poisson process (Lowe & Benoit, 2013, p. 301-302). The latter
of these strong, simplifying assumptions has been addressed in Lo et al. (2016). The model furthermore
could be easily extended to more than one dimension (see Däubler & Benoit, 2021, p. 7).

28Wordfish effectively is an IRT model with a Poisson link function (Grimmer & Stewart, 2013, p. 292-
293; Däubler & Benoit, 2017, p. 11).
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is to be determined (Hambleton et al., 1991, p. 7-11). For each subject, a response to each
item is obtained. The aim then is to infer the subjects’ values on the latent variable from
their observed response patterns to the question items (Moosbrugger, 2012, p. 228-229).
In doing so, each individual’s manifest response is modeled as a function of the individual’s
latent ability and item characteristics (Hambleton et al., 1991, p. 9).

When political scientists apply IRT models to text data, the documents are treated as the
subjects whose latent continuous positions are to be estimated (see e.g. Däubler & Benoit,
2017, p. 8). What is considered an item and which observed responses are made use of
depends on the specific scaling method. Thus far, word counts (Slapin & Proksch, 2008),
coding scheme category counts (Elff, 2013; Däubler & Benoit, 2021), the (not) following of
Twitter users (Barberá, 2015), and tag assignments on parties’ Wikipedia pages (Herrmann
& Döring, 2021) served as manifest responses.

IRT also influences the method of CBMM that is introduced in this dissertation’s article
How to estimate continuous sentiments from texts using binary training data. Here, the aim
is to obtain estimates for documents’ positions on a latent continuous variable using binary
training data. In the chosen setting, the latent variable of interest is sentiment rather than
political ideology or a policy dimension, but the CBMM method can be applied on any
latent variable. In contrast to the political science methods presented so far, the primary
goal of CBMM is to generate continuous estimates based on binary training data. Thus,
the approach starts with supervised learning and makes use of a training data set that—
by means of defining for each training document whether it is positioned on the positive
or the negative side of the latent sentiment variable—encodes a definition of the latent
dimension. The training data set in fact provides anchor points for the latent dimension.
Then, a set of classifiers is trained on the training documents to learn the mapping from
text data to the positive and negative sentiment anchor points. The trained classifiers
now can be viewed as items that have been designed to measure a particular ability (here:
sentiment orientation). Subsequently, the trained set of classifiers is applied to a set of
test set documents (just as a set of items is applied to a set of subjects). Then, each
classifier predicts for each test set document the probability to belong to the positive
class. These predictions are the utilized manifest information on the basis of which the
test set documents’ latent continuous positions are estimated. In accordance with the
modeling procedures in IRT, the observed predicted probability to belong to the positive
class is a function of a document’s latent continuous sentiment position as well as classifier
characteristics.

Topic Modeling. Topic models are probabilistic model-based clustering procedures for text
data. They are applied to detect a latent topic structure in a corpus of text documents. The
set of topic models that are applied in political science are hierarchical mixed membership
models (Blei & Lafferty, 2007, p. 18; Roberts et al., 2016, p. 988). Here, each word in
each document is modeled as a mixture of topics, where each topic is a probability mass
function over the terms in the vocabulary (Blei et al., 2003, p. 997-998; Blei & Lafferty,
2007, p. 17). The Latent Dirichlet Allocation (LDA) is the most basic and best-known
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topic model (Blei et al., 2003; Blei, 2012).

Assume that there is a corpus of N documents in which each document di is observed
as a sequence of Ti words, di = (ai1, . . . , ait, . . . , aiTi

). Note that words are instances of
unique vocabulary terms and that a vocabulary composed of U unique terms is denoted
as Z = {z1, . . . , zu, . . . , zU}. The LDA operates on a bag-of-words-based representation of
documents in which each document is represented as a vector of dimensionality U in which
the uth element counts the number of times that term zu occurs in document di (Blei
et al., 2003, p. 994, 998; Zhao et al., 2021, p. 4714). Given these observed frequencies of
terms in documents, LDA estimates a latent topic structure with K topics by postulating
the following data generating process (Blei et al., 2003, p. 996-997; Roberts et al., 2016,
p. 988-989):

• A topic, βk = [βk1, . . . , βku, . . . , βkU ], is a probability mass function over the U terms
in the vocabulary. For each term in the vocabulary, zu ∈ {z1, . . . , zU}, βk specifies
the probability of term zu occurring in the kth topic.29

• Each document di is considered to be characterized by a distribution over topics. For
each document di, a vector of topic proportions θi = [θi1, . . . , θik, . . . , θiK ] is drawn
from a Dirichlet distribution which is defined by K-dimensional parameter vector α:

θi ∼ DirK(α) (1.22)

The element θik in vector θi gives the expected proportion assigned to topic βk in
document di. Then—given a document’s topic proportion vector θi—for each word
ait in document di, a specific topic assignment git is sampled by drawing once from
a Multinomial distribution with parameter θi:

git ∼MultinomialK(θi) (1.23)

Given git (which is a K-dimensional vector indicating the topic of word ait in docu-
ment di) a specific term for word ait is chosen by drawing once from a Multinomial
with β[git]:

wit ∼MultinomialU(β[git]) (1.24)

where wit indicates which of the U terms in the vocabulary, word ait has materialized
into.

The Correlated Topic Model (CTM) (Blei & Lafferty, 2007), a well-known variant of the
LDA, assumes that the documents’ topic proportion vectors θi are not drawn from a
Dirichlet as in Equation 1.22 but are generated from a logistic normal (Blei & Lafferty,
2007, p. 20; Roberts et al., 2016, p. 991):

θi ∼ LogisticNormalK−1(µ,Σ) (1.25)
29Griffiths & Steyvers (2004, p. 5229) assume that each topic’s term distribution βk is sampled from a

Dirichlet distribution with parameter δ of order U : βk ∼ DirU (δ).
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The logistic normal implies that

ηi ∼ NormalK−1(µ,Σ) (1.26)

and
θik = exp(ηik)∑K

j=1 exp(ηij)
where ηiK = 0 (1.27)

Whereas the Dirichlet distribution used in the LDA assumes near independence between
topic proportions, the CTM allows for correlations between topics by means of inducing
covariances via Σ (Blei & Lafferty, 2007, p. 19-21).30

The widely used Structural Topic Model (STM) (Roberts et al., 2016), in turn, extends the
CTM by allowing observed document-level variables to affect the topic proportions within
a document (topic prevalence) or to affect the probabilities of terms within a topic (topical
content) (Roberts et al., 2016, p. 988-990). In the topic prevalence model, the vector
of topic proportions θi is generated from a logistic normal with parameters µi and Σ
(similar to Equation 1.25) (Roberts et al., 2016, p. 991). Yet, in contrast to the CTM, the
document-specific vector µi is a linear function of Q-dimensional document-level vector
xi that gives the values observed for document di on Q variables (Roberts et al., 2016,
p. 991):

θi ∼ LogisticNormalK−1(µi = Γ>x>i ,Σ) (1.28)

Γ is a Q×K − 1 matrix containing coefficients.

Note that all presented topic models estimate a latent topic structure characterized by
N × K document-topic matrix Θ = [θ1| . . . |θi| . . . |θN ]> and K × U topic-term matrix
B = [β1| . . . |βk| . . . |βK ]>. Studies that apply topic models typically use these matrices in
their analyses.

Besides the LDA, the CTM, and the STM, there exists a wide spectrum of topic models
that are specified as Bayesian hierarchical mixed membership models. In some cases, these
models were even developed by political scientists. There is, for example, the Expressed
Agenda Model (Grimmer, 2010), the Dynamic Multitopic Model (Quinn et al., 2010), the
Geographic Topic Model (Eisenstein et al., 2010), and the Keyword Assisted Topic Model
(Eshima et al., 2021). Furthermore, Schulze et al. (2021) present two improvements over the
standard STM procedure of using an OLS regression for modeling the relationship between
document-level covariates and the estimated latent topic structure: a beta regression in a
frequentist framework and a Bayesian beta regression.

Neural Topic Models (NTMs) constitute another branch of topic models that make use of
deep neural networks (often variational autoencoders (Kingma & Welling, 2014)) in the

30As the topic proportions θik have to sum up to 1 such that
∑K

k=1 θik = 1, there is some dependence
between the proportions θik (Schulze & Wiegrebe, 2020, p. 6). However, vector θi that arises from a
Dirichlet with θi ∼ DirK(α) is a completely neutral vector as each θik has no influence on the relative
sizes of the remaining proportions (θij)K

j=k+1 (Connor & Mosimann, 1969, p. 195-196, 200).
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estimation of topics in order to facilitate estimation and enhance the performance and
flexibility of topic models (Miao et al., 2016; Zhao et al., 2021, p. 4713). (For an overview
see Zhao et al., 2021.) So far, NTMs have hardly found their way into political science.
However, there are applications with social science data. For example, Card et al. (2018)
apply NTMs to a corpus of newspaper articles on immigration.

Topic models can be used for exploring and describing the content and proportions of topics
within corpora (Blei, 2012). In political science, topic models furthermore are often applied
as measurement tools in empirical analyses (e.g. Barberá et al., 2019; Dietrich et al., 2019;
Martin & McCrain, 2019; Baerg & Lowe, 2020). In such studies, the documents’ estimated
topic shares for one specific topic (or a small set of specific topics), serve as a measure
for the dependent or an independent variable. For example, in a study that seeks to
identify the causal effect of changes in the ownership of local TV stations on the coverage
of local vs. national politics, Martin & McCrain (2019) apply an LDA on transcripts of
the local TV stations’ news broadcasts in order to create their dependent variable: the
proportions assigned to local vs. national topics. Baerg & Lowe (2020) apply a topic
model on meeting transcripts of the US Federal Open Market Committee to then obtain a
measure for each of the committee’s members’ preferences based on the relative emphasis
each member puts on the topics inflation vs. economic output and unemployment. Barberá
et al. (2019) employ an LDA for the identification of political topics expressed in tweets by
US Congress members and further Twitter users to then study the relationship between
the issue attention of legislators and the issue attention of (subpopulations of) the general
public over time.

The STM is frequently employed to explore the effects of document-level variables on the
estimated latent topic structure (e.g. Roberts et al., 2014; Lucas et al., 2015; Kim, 2017;
Bagozzi & Berliner, 2018; Blaydes et al., 2018). Lucas et al. (2015), for instance, apply
an STM on texts written in Arabic by Muslim clerics to inspect the topical prevalences in
texts that were written by Jihadist vs. non-Jihadist clerics. Roberts et al. (2014) examine
in how far exposure to different treatment conditions affects the topical prevalence and the
topical content expressed in open-ended survey questions. And Bagozzi & Berliner (2018)
apply an STM on human rights reports from the US State Department in order to analyze
the effects of domestic political factors as well as characteristics of bilateral relations on
the topics covered in these reports.

Furthermore, topic models are also used to retrieve documents that are about topics that
are relevant for an analysis from large corpora of documents that otherwise primarily cover
topics that are irrelevant for the analysis at hand (Baden et al., 2020).

When inspecting these various applications of topic models closely, one finds that (political)
scientists apply topic models even if they are a priori interested in a specific set of topics
(e.g. Dietrich et al., 2019; Martin & McCrain, 2019; Baden et al., 2020; Baerg & Lowe,
2020) and therefore employing a supervised classifier would actually be appropriate. One
reason why topic models are nevertheless applied is of a practical nature: Barberá et al.
(2019, p. 889), for example, explain their use of a topic model by stating that “Despite the
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existence of well-known categories of political issues, training an accurate classifier would
be an incredibly arduous task, given the large number of categories, making unsupervised
models a preferable option.” In other cases, there is an imbalanced classification problem
in which the corpus under study is immensely large whilst only a small proportion of
documents fall into the relevant topic category (e.g. Baden et al., 2020). In a supervised
learning setting, in both cases, it is important to have enough training data such that
the supervised algorithm can learn to accurately recognize documents also from small
categories. The costs of generating an adequate amount of training data thus are one
reason why researchers resort to unsupervised learning approaches although they conduct
a deductive process in which the definition of a concept is followed by operationalization
and measurement, and hence supervised learning would be the adequate learning approach
to use.

The costs of creating training data play a role in all three articles of this dissertation.
Especially the article A comparison of approaches for imbalanced classification problems in
the context of retrieving relevant documents for an analysis takes up the issues raised here
by evaluating an unsupervised topic model-based approach as well as supervised approaches
in the context of identifying the small share of relevant documents from larger collections
of documents.

1.2 Natural Language Processing

Natural language processing (NLP) refers to the computational processing of natural lan-
guage (Smith, 2011, p. xiv). Natural languages are languages that have developed naturally
and are used as a means of communication by human beings (Kumar, 2011, p. 1). Natural
language can be expressed via speaking, writing, or signing. In this dissertation, the focus
is on the analysis of natural language in the form of text.

In the following, an overview of the varied tasks that NLP research addresses will be given
(Section 1.2.1). Then, the historic development of the field will be outlined (Section 1.2.2).
Afterward, an introduction to deep learning, transfer learning, and language representation
learning is provided (Section 1.2.3). Finally, against the background of the presented
historically informed overview of NLP methods, the techniques used in text-based political
science research are mapped (Section 1.2.4).

As a start, concepts (along with notation) are introduced that are useful when treating
natural language in a computational and statistical context: Texts are discrete sequential
data (Smith, 2011, p. 2). They are sequences of symbols (characters, punctuation, spaces,
etc.) (Smith, 2011, p. 2). These symbols—either on their own or when glued together into
meaningful sequences (e.g. words)—form textual tokens (Manning et al., 2008, p. 22). A
sequence of tokens that is an observational unit in an analysis here is called a document.
A document thus could be, for example, a phrase, a sentence, the context of a word, a
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paragraph, a text in its entirety, or even a concatenation of texts. A collection of documents
is called a corpus (Manning et al., 2008, p. 4). A corpus with N documents is denoted
as D = (d1, . . . , di, . . . , dN). The ith document in this corpus is a sequence of tokens:
di = (a1, . . . , at, . . . , aTi

). The textual token at is the token at the tth position within
document di.31 A token is an instance of a class of identical tokens, called type (Manning
et al., 2008, p. 22). A (possibly normalized or annotated version of a) type that enters the
analysis is named term or feature (Manning et al., 2008, p. 22). The set of unique features
is the vocabulary (Manning et al., 2008, p. 6, 22). A vocabulary with U unique features is
denoted as Z = {z1, . . . , zu, . . . , zU}.

1.2.1 Natural Language Processing Tasks

NLP comprises a large spectrum of tasks and thus the types of outputs produced by NLP
systems vary widely. One set of NLP tasks focuses on analyzing texts at the linguistic
level. Tasks in this group, for example, are

• sequence segmentation: the separation of texts into segments (e.g. tokenization)
(Smith, 2011, p. 4)

• language modeling: the prediction of the next textual token given a sequence of
preceding tokens (Bengio et al., 2003)

• lemmatization: the mapping of inflectional word forms to their canonical base form,
their lemma; stemming: the transformation of inflectional and derived word forms
into simpler forms via heuristic algorithms (Manning et al., 2008, p. 32-33).

• part-of-speech (POS) tagging: the identification of each word’s POS.32

• syntactic parsing: the syntactic analysis of sentences, e.g. by analyzing syntactic
dependencies between tokens (dependency parsing) (Smith, 2011, p. 10-11)

Another set of NLP tasks tries to capture the meaning of (elements of) texts (Smith, 2011,
p. 11, 13). These tasks involve an analysis at the semantic level and are considered to
be natural language understanding tasks (MacCartney, 2014). Examples of tasks in this
group are

• word sense disambiguation: the identification of the context-dependent meaning of a
word, e.g. identifying the sense the word ‘party’ has in a given text (Raganato et al.,
2017)

• coreference resolution: the identification of which textual expressions refer to which
entities, e.g. identifying which entity ‘it’ refers to in the sentence ‘The party group

31Note that document lengths may differ as indicated by the subscript i at the last token position index
T : aTi

.
32The POS is a category of words that play similar syntactic roles, e.g. noun, verb,... (Smith, 2011,

p. 5)).
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submitted a bill and it was not adopted.’ (Pradhan et al., 2012)

• information extraction: “[...] the automatic extraction of structured information [...]
from unstructured sources” (Sarawagi, 2007, p. 263). Information extraction, for
example, comprises the identification of named entities (named entity recognition),
the extraction of relationships between entities (relationship extraction), or event
extraction (Walker et al., 2006; Sarawagi, 2007, p. 269-271).

• semantic parsing: the mapping of text to a formal machine-readable representation of
meaning, e.g. mapping a sentence to a graph in the Abstract Meaning Representation
format (Knight et al., 2020)

• text summarization: the extensive or abstractive summarization of one or several
documents (Rush et al., 2015; Nallapati et al., 2016)

• topic modeling: the identification of underlying themes within a corpus (Chang et al.,
2009)

• sentiment analysis: the identification of sentiment that is expressed in text. More
precisely, sentiment analysis seeks to identify which attitude holder expresses which
sentiment toward which (aspect of which) entity at what point in time (Liu, 2015,
p. 22-23).

• natural language inference: inferring whether a statement (the hypothesis) is entailed
in, contradicts, or is neutral toward a provided premise (Bowman et al., 2015)

• conversing in a dialogue. This implies, amongst others, keeping track of the user’s
wishes (Henderson et al., 2014) and selecting adequate responses (Henderson et al.,
2019).

• question answering. Question answering can take various forms. A common task—
typically referred to as reading comprehension—is to pose a question on a provided
text passage. The task for the NLP model then is to provide the text span from
the passage that answers the question (Rajpurkar et al., 2016), to answer a multiple
choice question relating to the passage (Lai et al., 2017), or to provide a free-form
answer (Kočiský et al., 2018). Other types of question answering tasks may require
the NLP system to use not provided general knowledge (Clark et al., 2018), and
may require reasoning (Levesque et al., 2012), common sense (Zellers et al., 2018,
2019), and the ability to apply learned knowledge (Hendrycks et al., 2020). Moreover,
question answering tasks can require considerable conversational ability: Providing
the answer to a question, for example, may involve having to generate follow-up
questions (Saeidi et al., 2018) or keeping track of the conversation history (Reddy
et al., 2019).

The complement to natural language understanding is natural language generation, which
means producing as an output understandable natural language text (Gatt & Krahmer,
2018, p. 68). Two groups of natural language generation tasks can be distinguished:



1.2 Natural Language Processing 81

• In text-to-text generation tasks, natural language output is generated based on lin-
guistic input (Gatt & Krahmer, 2018, p. 65). Examples are text summarization and
machine translation (Gatt & Krahmer, 2018, p. 66). In machine translation, a se-
quence of tokens in one language is translated to another language (Smith, 2011,
p. 18).

• In data-to-text generation tasks, natural language output is generated based on non-
linguistic input (Gatt & Krahmer, 2018, p. 66). Examples are the generation of news
reports from data tables (Wiseman et al., 2017) as well as image captioning and video
captioning (Gatt & Krahmer, 2018, p. 66-68). The task in image or video captioning
is to produce text that describes the content of images or videos (Zhou et al., 2017;
Agrawal et al., 2019)

Image and video captioning also are instances of multimodal tasks that combine the pro-
cessing of textual data with the processing of audio, video, or images. Other multimodal
tasks, for example, are the answering of natural language questions referring to images
(visual question answering) (Goyal et al., 2017) and the classification of multimodal inputs
into predefined categories (as e.g. in multimodal sentiment analysis or multimodal emotion
recognition (Busso et al., 2008)).

Machine learning techniques and NLP methods are also used for information retrieval tasks
(Manning et al., 2008). Information retrieval is a field closely related to NLP. The starting
point in information retrieval is a large collection of unstructured items (often a collection
of documents, but it could also be a collection of images or videos) and an information
need that is typically explicitly expressed in the form of a user query (Manning et al.,
2008, p. xxxiv, 1, 5). The standard information retrieval task then is to rank the items
according to how relevant they are to the query (Manning et al., 2008, p. 1, 16). When
addressing this task, information retrieval systems usually make use of machine learning
and NLP tools such as clustering, or representation learning with various neural network
architectures (Manning et al., 2008; Huang et al., 2020a).

A final aspect to be mentioned here is that in the field of NLP the to be predicted output
often is not a single value (i.e. a class label as in classification tasks or a real-valued
scalar as in regression) but rather consists of several elements that are related to each
other (Goldberg, 2016, p. 381). This is called structured output prediction. In dependency
parsing, for example, the task is to predict an entire parse tree over the input sequence
(Smith, 2011, p. 11). Another example is sequence tagging. In sequence tagging tasks, for
each token in a sequence a tag is to be predicted. POS tagging is a standard example in this
regard (Goldberg, 2016, p. 381). Named entity recognition (NER) can also be formulated
as a sequence tagging task (Tjong Kim Sang & De Meulder, 2003). In NER, the task is to
identify sub-sequences of tokens that refer to named entities and then to assign appropriate
labels to the identified sub-sequences of tokens (e.g. to predict whether an identified named
entity is an organization, person, or location) (Tjong Kim Sang & De Meulder, 2003;
Smith, 2011, p. 11). For each token, a tag can be predicted independently as in a multi-
class classification task (Lample et al., 2016, p. 261). But tags may not be independent of
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each other. There are several factors (e.g. logical constraints of the task) that can cause
dependencies between tags (Lample et al., 2016, p. 261). For example, predicting one
token to be part of a named entity of type <PERSON> and then predicting the next token to
belong to the same named entity but this time predicting the named entity to be of type
<LOCATION>, would be a logical inconsistency (Lample et al., 2016, p. 261).33

This overview of NLP tasks is not exhaustive and many of the mentioned tasks comprise
several subtasks or variants. Furthermore, time and again new tasks are created. A recently
developed group of tasks, for example, seeks to identify statements and beliefs in texts that
are implied rather than stated explicitly (e.g. Habernal et al., 2018; Sap et al., 2020).

1.2.2 A History of Natural Language Processing

The current state of NLP research is the product and the continuation of preceding decades
of research. This section gives a historical overview of the field:

In the early phase of NLP (from the 1950s up until and including the 1980s), a majority of
researchers sought to automate NLP tasks via hard-coded, hand-crafted rules and thus mir-
rored the symbolic approach that was taken in the larger field of AI at the time (Manning
& Schütze, 1999, p. 4-5; Chollet, 2021, ch. 1.1.1).34 In this symbolic approach to NLP re-
searchers aimed at making machines intelligent by a priori determining the rules and mech-
anisms via which the machines were to process the provided inputs (Manning & Schütze,
1999, p. 4-5; Chollet, 2021, ch. 1.1.1). For example, in the famous 1954 Georgetown-IBM
experiment, a team of researchers managed to automatically translate more than 60 sen-
tences from Russian to English via a dictionary and six prespecified rules (Hutchins, 2004).
The experiment stirred hopes that high-quality, automated machine translation was soon
in reach (Hutchins, 2004, p. 113). These hopes, however, were not met as the system that
had been tailored for the occasion did not generalize well (Hutchins, 2004, p. 113). Another
strong influence in this early phase of NLP was Noam Chomsky (1957, 1965) who theo-
rized that already at birth humans possess structural linguistic knowledge, meaning that
rules for processing language exist in the human brain prior to sensory input (Manning &
Schütze, 1999, p. 4-5; Chomsky, 2017). In line with this theory, research from this time
can be viewed as an attempt to equip machines with these rules in order to give machines
the same starting position as the human brain (Manning & Schütze, 1999, p. 5).

Then, starting at the end of the 1980s, the field of NLP underwent a substantive change
with the adoption of statistical machine learning methods (Louis, 2020). Statistical NLP
became the dominant approach (Manning & Schütze, 1999). The shift from symbolic to
statistical NLP implied a shift from the focus on innate linguistic knowledge to a treatment

33On procedures for handling structured output prediction tasks see Goldberg (2016, p. 381-385) and
Deshwal et al. (2019). For recent research see for example the Workshop on Structured Prediction for NLP
(Kozareva et al., 2021).

34Manning & Schütze (1999, p. 4-5) see this phase lasting from the 1960s to the end of the 1990s.
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of natural language as an empirical phenomenon whose generation underlies a probabilistic
process (Manning & Schütze, 1999, p. 6). Instead of providing inputs and hand-crafted pro-
cessing rules and letting the outputs be generated automatically, now supervised machine
learning algorithms were fed with inputs and corresponding outputs and then learned the
processing rules (Chollet, 2021). Common learning methods that were applied for super-
vised text classification tasks were support vector machines (SVMs), naive Bayes, logistic
regression, and tree-based algorithms (Sebastiani, 2002; Manning et al., 2008). For unsu-
pervised text clustering tasks, flat partitioning algorithms (e.g. K-means) and hierarchical
clustering algorithms were used (Manning & Schütze, 1999; Liu & Croft, 2004). Moreover,
the best known probabilistic topic model, the LDA (Blei et al., 2003), and its variants
and extensions (e.g. Blei & Lafferty, 2007; Roberts et al., 2016) were developed. For NLP
tasks that were framed as sequence tagging tasks hidden Markov models and conditional
random fields (Lafferty et al., 2001) were applied (Manning & Schütze, 1999; McCallum &
Li, 2003; Jin & Ho, 2009; Mitchell et al., 2013).

Many conventional machine learning methods (such as SVMs, naive Bayes, logistic regres-
sion, tree-based algorithms, or LDA) require as an input anN×U matrixX that represents
each of the N instances by a single feature vector of dimensionality U . Each of the U fea-
tures defines one dimension of the feature space, and the feature vector of an instance
positions the instance within this space. During the training process, the parameters of
a model that operates within this space are learned. The elements of the feature vectors
themselves, however, are not updated during training. This implies that when applying a
conventional machine learning method, researchers have to provide it with prefabricated
representations.

For NLP researchers to use these conventional machine learning methods, vector space
models (Salton, 1971) were developed that represent entities (e.g. documents) as vectors
in feature space (Turney & Pantel, 2010, p. 141). The traditional way to create such
a feature space in which documents can be represented as vectors is to represent each
textual feature by a one-hot encoded vector. For example, if there were 1,000 unique
features, then each feature would be represented by a 1,000-dimensional vector in which
999 elements assumed a value of 0 and one element (indicating the index of the feature)
assumed a value of 1 (Pilehvar & Camacho-Collados, 2020, p. 4). The utilization of one-
hot representations implies that each feature is represented as a unique dimension that is
independent of the other textual features (Goldberg, 2016, p. 349). A document then is
represented by a feature vector whose dimensionality corresponds to the number of textual
features. For document di, the feature vector is denoted as xi = [xi1, . . . , xiu, . . . , xiU ],
where element xiu is some function of the (weighted) number of times the uth textual
feature appears in document di (Turney & Pantel, 2010, p. 143, 147). The document-
feature matrix X = [x1| . . . |xi| . . . |xN ]>, that comprises all document feature vectors,
then is the input to the machine learning method.

Thus, what all these conventional machine learning methods had in common, was that
these methods were provided with high-dimensional, one-hot encoded representations of
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linguistic features that had to be created in a manually controlled process (Goldberg, 2016,
p. 345, 349-354). Whilst processing rules were no longer explicitly coded but learned,
representations of linguistic features and documents still had to be crafted.

There is a large number of diverse operations that can be used when defining textual
features and when transforming a set of text documents into a set of feature vectors. Typ-
ically, several operations are implemented sequentially in a whole preprocessing pipeline.
Such a preprocessing pipeline can involve (Sebastiani, 2002, p. 10-18; Turney & Pantel,
2010, p. 153 ff.; Sarkar, 2016, ch. 3; Denny & Spirling, 2018, p. 170-172)

• tokenization operations (i.e. the separation of a textual sequence into segments that
build the basic textual features, e.g. characters, words, n-grams, collocations)35

• feature exclusion operations (e.g. the removal of punctuation, symbols, numbers,
emoticons, stopwords, or the removal of terms with a very low or a very high docu-
ment frequency),

• normalization operations (e.g. lowercasing, stemming, lemmatization, spelling cor-
rection, clustering of features),

• the annotation of textual features with additional information (e.g. adding POS tags,
adding NER tags, including the features’ sentiment values, including information
from dependency parsing),

• mathematical operations on the elements xiu of the document-feature matrix. Origi-
nally xiu denotes the absolute frequency with which the uth textual feature is present
within document di. Instead of recording the absolute frequency, xiu could, for exam-
ple, be transformed to a relative frequency by adjusting for the length of document
di, it could merely indicate the presence (1) vs. absence (0) of a feature, or it could
give the term frequency-inverse document frequency (tf-idf) (Salton & Buckley, 1988)
of the uth feature in document di.

Which preprocessing operations are conducted in which order and are combined in which
way then defines the documents’ feature vector representations (Denny & Spirling, 2018).
The set of features in the document-feature matrix, in turn, defines the feature space the
machine learning method operates in—and thus, the set of features that are selected or
created in preprocessing affect how well a supervised machine learning method performs
and what an unsupervised model can learn (Goodfellow et al., 2016, p. 3). Therefore, when
applying conventional algorithms, the question of which features are used and how they
are created is an important and often extensive part of a research article (see e.g. Koo
et al., 2008, p. 597-598).

Due to the highly varied nature of language, the document-feature matrix typically is highly
sparse (Grimmer & Stewart, 2013, p. 273). This is especially the case when no major feature

35n-grams are features that comprise n tokens that occur in a sequence. Often, bigrams or trigrams are
used.
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exclusion or normalization operations are applied. Thus, during preprocessing, researchers
would seek to reduce the dimensionality of the feature space (via feature exclusion and
normalization) but at the same time also ensure that features that are informative for
the machine learning task at hand are kept—or even additionally added, e.g by including
n-grams, collocations or conducting annotation operations.

Some of the preprocessing operations can be automated (e.g. the clustering of features),
but the entire process of deciding which operations are performed (and which are not), how
the operations are performed, and in which order is manually guided by the researcher. In
general, it can be highly difficult to predict in advance which sets of features are informative
for the task at hand and which are not (Goodfellow et al., 2016, p. 3-4). Even after years of
research, a community of experts, who know the texts, the task, and the machine learning
algorithms they apply, may still struggle to find a set of well-performing features (see e.g.
Chen & Manning, 2014, p. 740).

Besides the requirement to create prefabricated representations, the usage of a document-
feature matrix in which each selected or generated feature constitutes its own separate
dimension of the feature space has three further consequences: The first implication is
that each feature is independent of each other feature and hence word features as ‘happy’
and ‘joyful’ are considered as distant from one another as ‘happy’ and ‘angry’ (Goldberg,
2016, p. 350-351).

The second consequence is that the dimensionality of the feature space equals the usually
very large number of distinct textual features, which gives rise to generalization problems
due to the curse of dimensionality (Goldberg, 2016, p. 349): The curse of dimensionality is
a common problem in machine learning (Goodfellow et al., 2016, p. 152). As the number
of features increases, the number of possible combinations of the features’ values grows
exponentially—such that in high-dimensional feature spaces there are usually many more
possible combinations than training instances (Goodfellow et al., 2016, p. 152-153). In
such settings in which the observed training data points are highly sparse, there is the
question of how to generalize to parts of the feature space not covered by the training data
(Goodfellow et al., 2016, p. 153).

The curse of dimensionality is particularly prominent in NLP. Given a vocabulary of 10, 000
unique words, a document containing 10 words (e.g. a sentence) is just one materialization
out of more than 2.76 × 1033 possible 10-word combinations (for a similar example see
Bengio et al., 2003, p. 1137).36 If each term in the vocabulary is represented as a one-hot
encoded feature, each document is a point in a high-dimensional feature space. Especially
as the vocabulary size (i.e. the dimensionality of the space) increases, each document is
likely to have a high distance from each other document (Bengio et al., 2003, p. 1137-1138).
Moreover, it is likely that most of the yet unseen test documents are word sequences that
differ from the word sequences included in the training data. In this case, it is very difficult

36Note that the order of words here is not taken into account as document-feature matrices do not
capture word order information.
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to generalize from what is known about the training set documents to new, yet unseen,
and likely very distant documents (Bengio et al., 2003, p. 1137-1138). For example, the
sentences: ‘The Democratic candidate delivered a thrilling speech.’, ‘One Republican senator
gave an exciting talk.’, and ‘This new governor’s inaugural address was dull.’ do not share
a single term. Hence, if features are treated as independent dimensions of a feature space,
knowing that the first sentence expresses a positive sentiment toward a political speech and
the last sentence is labeled as expressing a negative sentiment toward a political speech,
provides no information on the label of the second sentence.

The third implication of document-feature matrix-based representations is that documents
are represented as a multiset of textual features, meaning that a document is represented
as an unordered collection of textual features, where the same textual feature can occur
multiple times (Turney & Pantel, 2010, p. 147). As a multiset is also named a bag,
documents are said to be represented as a bag-of-words (Turney & Pantel, 2010, p. 147).
A bag-of-words representation contains information on the frequency with which textual
features occur in a document but it does not encode sequential information on the order
of textual tokens within a document (Turney & Pantel, 2010, p. 147).37 By representing
a document as a bag-of-words, one makes the assumption of the exchangeability of the
textual features within a document (Blei et al., 2003, p. 994). In some applications (for
example if the aim is to get an approximation of the topics in a document), a bag-of-words
representation may be sufficient (Turney & Pantel, 2010, p. 147). Yet if the NLP task
requires capturing the meaning of text as it emanates from syntactic dependency structures
and context-specific semantics, the representation of a document as an unordered bag-of-
words does not tend to be particularly well suited (Nakagawa et al., 2010; Socher et al.,
2013).

These difficulties and inadequacies were alleviated with the introduction of (deep) neural
networks to the field of NLP. This process started in the 2000s (see Bengio et al., 2003;
Collobert & Weston, 2007, 2008), but the development really took off in the 2010s (major
milestones and notable early applications being Mikolov et al., 2013a,b; Socher et al., 2013;
Kalchbrenner et al., 2014; Kim, 2014). The move from the application of conventional
machine learning methods in the era of statistical NLP to the application of deep neural
networks in the era of neural NLP implies that

• features are represented as real-valued vectors embedded in a Euclidean space rather
than as unique dimensions defining the feature space (Goldberg, 2016, p. 349). More
formally, the uth unique textual feature zu does not constitute a dimension of the
feature space but rather is represented as a real-valued vector in a K-dimensional Eu-
clidean space: zu ∈ RK (see Figure 1.3). (As the representation vector elements are
real-valued and thus are continuous, the Euclidean space in the following is referred
to with the term continuous space.) zu is called an embedding. For each feature
zu, the values of the elements of its embedding vector zu are learned during the
training process just like any other parameter of the model (Goldberg, 2016, p. 349).

37An exception is if n-grams are used as features. n-grams contain information on short token sequences.
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Figure 1.3: Feature Representations. (3a) In a document-feature matrix, features are dimen-
sions that define the feature space. In this illustrative, exemplary plot, the word features ‘happy’, ‘joyful’,
and ‘angry’ define a three-dimensional feature space. (3b) The features ‘happy’, ‘joyful’, and ‘angry’ now
are represented as real-valued vectors (named embeddings) that are positioned in a three-dimensional
continuous space. The embedding vectors are such that semantically similar features are close in space.

Semantically or syntactically similar textual features now are likely to have similar
embeddings and thus are likely to be close in space (Mikolov et al., 2013c, p. 746).
For example, the terms ‘happy’ and ‘joyful’ are likely to have similar embedding vec-
tors and thus are likely to be positioned close in space. Moreover, their embedding
vector representations are likely to be distant from the embedding for ‘angry’.

• the dimensionality of the feature space is defined by the dimensionality of the embed-
ding vectors K rather than the typically much larger number U of distinct textual
features that have been selected and created during preprocessing (Goldberg, 2016,
p. 350-351). As usually K << U and because the real-valued elements of embed-
ding vectors are learned, representations of textual features now are low-dimensional
and dense rather than high-dimensional and sparse (Goldberg, 2016, p. 350-351).
The generalization to yet unseen sequences of textual features via local smoothness
assumptions thus is greatly facilitated (Bengio et al., 2003, p. 1137-1140): For ex-
ample, the sentences ‘The Democratic candidate delivered a thrilling speech.’ and
‘One Republican senator gave an exciting talk.’ do not share a single term, but they
are composed of syntactically and/or semantically similar terms: (‘One’, ‘The’);
(‘Democratic’, ‘Republican’); (‘delivered’, ‘gave’); (‘an’, ‘a’); (‘thrilling’, ‘exciting’);
(‘speech’, ‘talk’) (for a similar example see Bengio et al., 2003, p. 1139-1140). As
the real-valued vector representation for similar terms are likely to be close and the
sentences share a similar syntactic structure, the representations of the entire sen-
tences also are likely to be close. The function that maps from continuous sentence
representations to the probability of expressing a positive vs. negative sentiment will
be a smooth function over the representational space and thus a small difference in a
sentence representation will cause only a small difference in the predicted probability
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(Bengio et al., 2003, p. 1140). Hence, knowing that the first sentence expresses a posi-
tive sentiment toward a political speech allows generalization to yet unseen sentences
that (such as the second sentence) have similar constituent features and a similar
syntactic structure and thus are likely to have a similar representation (Bengio et al.,
2003, p. 1137, 1140).

• representations for textual features and documents no longer have to be prefabri-
cated in a manually guided process but are automatically learned during the training
process. As explicated above, in a bag-of-words framework, the representation for
a document is usually generated by the researcher in a process that involves select-
ing and defining core features (via tokenization, feature exclusion, and normalization
operations), combining core features into more complex feature combinations (for ex-
ample via adding POS tags to word features), and mathematically preprocessing the
document-term matrix (for example via weighting the matrix’ elements) (see Turney
& Pantel 2010 p. 153-158 and see again page 84). In a deep learning framework, in
contrast, a researcher only has to define core features (Goldberg, 2016, p. 353). The
core features’ embedding representation vectors and parameters of functions, that
define how feature representations are transformed into updated versions of these
representations in deeper layers and define how core feature representations com-
bine and interact to generate document representations, are learned during training.
Thus, when applying deep neural networks, much less preprocessing is involved and
representations are learned rather than being defined a priori. A researcher may, for
example, merely tokenize each lowercased training text document into subwords and
then feed each document (along with a corresponding output label) as an input to
the neural network (see e.g. Devlin et al., 2019, p. 4174-4175).

• there are neural network architectures that can process texts as sequential data, that
can account for dependencies between tokens, and that can construct contextualized
representations of textual entities (see Section 1.2.3.6 on recurrent neural networks
(RNNs), Section 1.2.3.7 on attention and the Transformer, and Section 1.2.3.9 on
representations).

• representation learning models can be transferred across thematic domains, lan-
guages, or tasks, thereby leveraging potentially useful knowledge across learning
processes (Ruder, 2019a) (see Section 1.2.3.8 on transfer learning).

1.2.3 Introduction to Deep Learning in the Context of Natural Lan-
guage Processing

In the following, deep learning is introduced in an NLP context. In doing so, concepts and
methods are explicated that are applied throughout the dissertation. Whilst subsections
1.2.3.1 to 1.2.3.8 introduce concepts and methods, subsection 1.2.3.9 assembles various of
the presented aspects into an overall picture. Thereby, a mapping of the foundations of
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Deep Learning. Deep learning is a subfield of machine learning in which deep
neural networks, that learn layered representations of data, are applied (Goodfellow
et al., 2016, p. 1-10; Chollet, 2021, ch. 1.1). Only if a neural network is deep
(meaning that it comprises several hidden layers), it is considered a deep learning
model (Kavlakoglu, 2020).

current methods in advanced NLP is provided. Against this background, Section 1.2.4
finally provides an overview of the supervised learning methods that are used in text-based
political science research.

1.2.3.1 Deep Learning

The aim in supervised machine learning is to learn the true underlying function f that
maps from data inputs (here: a corpus of documents D = (d1, . . . , di, . . . , dN)) to respective
outputs y = [y1, . . . , yi, . . . , yN ]>. In conventional machine learning approaches, the process
of approximating f can be regarded as a two-step process (Goodfellow et al., 2016, p. 10):
In the first step, representations X of raw textual inputs D are created, and then, in
the second step, a supervised learning algorithm is applied to learn the mapping between
representations X and outputs y.

Because conventional supervised learning algorithms require prefabricated representations
as an input that remain fixed during the training process, the mapping from the corpus
of raw documents D to document representations X (which typically take the form of
a document-feature matrix) is done manually by the researcher. When depicting this
manual process in mathematical terms (though, of course, no parameters of a function are
estimated in the usual sense), then for a single document di, this process can be represented
as

xi = fl(di, θ̂l) (1.29)
Subsequently, the mapping from input representations X to the respective outputs y is
learned by a machine learning algorithm. After training the algorithm, the whole mapping
for a single document can be described as

ŷi = f(di, θ̂) = fo(fl(di, θ̂l), θ̂o) (1.30)

In contrast to conventional machine learning methods, deep neural networks not only learn
a function that relates the data representations to the outputs but also learn representations
of the textual inputs. They thereby alleviate the problems related to the manually guided
process of representation creation.

On an abstract level, many deep learning structures can be described as a set of stacked
(most often nonlinear) functions (Goodfellow et al., 2016, p. 164-165):

f(di, θ̂) = fo(. . . fl3(fl2(fl1(di, θ̂l1), θ̂l2), θ̂l3) . . . , θ̂o) (1.31)
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Deep neural networks require the inputs, that they take in and then process, to take the
form of vectors (Goldberg, 2016, p. 360). Then, deep neural networks apply a chain of func-
tions (fl1 , fl2 , fl3 , . . . ) to the input vectors and in that way produce layers of representations
(in the form of sets of vectors). Each function maps from the representation in one layer to
the representation in the next layer (Goodfellow et al., 2016, p. 164-165). The model as a
whole thereby generates a complex, layered representation of the inputs (Goodfellow et al.,
2016, p. 5). The elements of the representation vectors in the input layer are learned like
any other parameter during the optimization process (Goldberg, 2016, p. 349). Moreover,
the model parameters, whose values are learned in training, determine how representations
from one layer are mapped to representations in the next layer. Hence, representations are
learned rather than being preconstructed and fixed.

As they are composed of nested layers of functions, deep learning models are called deep
(Goodfellow et al., 2016, p. 164-165). The representation layers are named hidden layers
(Goodfellow et al., 2016, p. 165). The dimensionality of the hidden layer vectors is a
model’s width and the number of hidden layers is the depth of a model (Goodfellow et al.,
2016, p. 8, 165). There, however, is no agreement on how many hidden layers there have
to be for a model to be considered deep (Goodfellow et al., 2016, p. 8).

Note that it is not that deep neural networks directly would take a raw document di as an
input. An initial transformation from di to a data format that the deep neural network
can operate on is still required. In NLP, a document di = (a1, . . . , at, . . . , aT ) is commonly
represented as a sequence of embedding vectors (z[a1], . . . ,z[at], . . . ,z[aT ]). Yet, in contrast
to the elaborate text preprocessing procedures that are usually conducted when applying
conventional machine learning methods, here preprocessing is limited to the definition
of core input features (Goldberg, 2016, p. 349-350). This usually involves a few simple
steps: primarily tokenization, sometimes lowercasing, and then the initialization of each
feature’s embedding vector (Goldberg, 2016, p. 349). Moreover, the central difference is
that whereas in conventional machine learning representations are typically not learned
on the basis of data (though they sometimes may result from unsupervised dimension
reduction techniques), in deep learning the model parameters that create representations
are learned during the optimization process on the training data (Goodfellow et al., 2016,
p. 10; Goldberg, 2016, p. 349).

1.2.3.2 Feedforward Neural Networks

A feedforward neural network (FNN)—also known as multilayer perceptron—is the most
basic deep learning model (Goodfellow et al., 2016, p. 164). In an FNN, the input is
processed forward through the functions of the network without loops (Goodfellow et al.,
2016, p. 164). Figure 1.4 and Equations 1.32 to 1.35 describe an FNN with L hidden layers,
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vector input x and vector output y:38

h1 = σl(W1x+ b1) (1.32)

h2 = σl(W2h1 + b2) (1.33)

. . .

hl = σl(Wlhl−1 + bl) (1.34)

. . .

y = σo(WohL + bo) (1.35)

h1 ∈ RK1 ,h2 ∈ RK2 , . . . ,hl ∈ RKl , . . . ,hL ∈ RKL are the data representations in the
hidden layers. Equation 1.35 describes the operations in the output layer. W1 to Wo are
weight matrices, b1 to bo are bias vectors, σl is the nonlinear activation function in the
hidden layers and σo is the activation function in the output layer.

FNNs can be understood as a stack of nonlinear, vector-valued functions that are combined
with linear transformations (Goodfellow et al., 2016, p. 164-165; Ruder, 2019a, p. 31): Each
layer takes as an input the representation from the previous hidden layer, hl−1, then an
affine function followed by a nonlinear activation function is applied to produce a new
representation hl. The network as a whole thereby generates a layered representation of
the data, (h1, . . . ,hl, . . . ,hL) (Goodfellow et al., 2016, p. 164-165).

As a stack of linear functions can be represented by another linear function, the fact
that FNNs (and neural networks in general) are a stack of nonlinear activation functions
(alternated with linear transformations) is the central building block that gives neural
networks their high capacity to approximate a large spectrum of complex relationships
between inputs and outputs (Goodfellow et al., 2016, p. 168; Ruder, 2019a, p. 31).

Hidden layer activation functions are usually applied per element (Goodfellow et al., 2016,
p. 171). Accordingly, if the affine function in the lth hidden layer is q = Wlhl−1 + bl
and if q is a K-dimensional vector, q = [q1, . . . , qk, . . . , qK ]>, then an activation function is
applied on each element qk. A widely known activation function is the Rectified Linear Unit
(ReLU) (Nair & Hinton, 2010). ReLU is defined as (Goodfellow et al., 2016, p. 171)

σl(q)k = max{0, qk} (1.36)

σl(q)k then is the kth element of hidden representation vector hl. (For a visualization see
Figure 1.5a.) Another activation function that, for example, is used in Transformer-based
language representation models that are applied in this dissertation, is the Gaussian Error
Linear Unit (GELU) (Hendrycks & Gimpel, 2016). In GELU, each input qk is weighted

38In correspondence with the notation common in the deep learning literature (Goldberg, 2016, p. 346),
vectors in the following are treated as column vectors.
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Feedforward neural network (FNN):

x h1 h2 hl hL y
W1 W2 . . . . . . Wo

FNN depicted at the level of single neurons:

x1 h12 h22 hl2 hL2 y1

h11 h21 hl1 hL1

x2 h13 h23 hl3 hL3 y2

h14 h24 hl4 hL4

1

Figure 1.4: Feedforward Neural Network. This figure depicts an FNN with L hidden layers
and output vector y. Inputs are given in green, hidden representations in blue, and outputs in orange.
The connecting lines indicate the transformations from one representation to the next. The illustration at
the top depicts each vector as a single box. The illustration below depicts each element of each vector as
a single box. A single vector element, e.g. h21, is the output from a single operational unit in the network,
that is called neuron (or simply: unit) (Goodfellow et al., 2016, p. 170; Goldberg, 2016, p. 354-355). h21 is
the output from the neuron that conducts the following operation: h21 = σl(w>h1 + b1) (Goldberg, 2016,
p. 354-355). The lines connecting the representation vector elements indicate the transformations that are
encoded in each weight matrix. A weight matrix linearly maps the representation from the previous layer
into a new representation (Goodfellow et al., 2016, p. 168). (Not explicitly shown here are the bias terms
and the nonlinear activation functions.)
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Figure 1.5: Activation Functions. (5a) ReLU activation function. (5b) GELU activation
function. (5c) Logistic sigmoid function.
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by its value on the cumulative distribution function of the standard normal distribution
(Hendrycks & Gimpel, 2016, p. 2) (see Figure 1.5b):

σl(q)k = qk Φ(qk) (1.37)

In general, the functional form of an activation function affects the gradient-based learning
process. For example, if an activation function saturates, gradients may vanish (Li et al.,
2020a). A vanishing gradient impedes the flow of signaling gradients through the network
and implies that hardly any training takes place on affected units (Hansen, 2019). (For
detailed information on how activation functions affect optimization via gradient descent
with backpropagation see Section 1.2.3.3 below)

The output layer activation function σo has to map from the last hidden layer representation
hL to the output y whose dimensionality is task-specific. In binary classification tasks with
y ∈ {0, 1}, the logistic sigmoid function is typically employed (Goodfellow et al., 2016,
p. 179-180). In this case, the affine function in the output layer in Equation 1.35 would be
made to produce a scalar output: q = wohL+bo. Then, the logistic sigmoid function

σo(q) = exp(q)
1 + exp(q) (1.38)

maps q to a value in the range (0, 1). This value is interpreted as the probability that
y = 1. (The logistic sigmoid function is depicted in Figure 1.5c.)39

In multi-cass classification tasks with y ∈ {G1, . . . ,Gc, . . . ,GC}, a common choice for σo
is the softmax function (Goodfellow et al., 2016, p. 180-181). In this case, the affine
transformation in the output layer in Equation 1.35 would be designed to produce a C-
dimensional vector: q = WohL + bo, where q = (q1, . . . , qc, . . . , qC). Then, the softmax
function is

σo(q)c = exp(qc)∑C
j=1 exp(qj)

(1.39)

σo(q)c is the cth element of the C-dimensional softmax function output and gives the
probability that y = Gc.40

39Note here the connection to the logistic loss outlined in Equation 1.11. In the more general
formulation in Equation 1.11, the input to the logistic sigmoid function is the output from a su-
pervised learning algorithm f that is parameterized by parameter set θ̃. In the more specific case
here, q is the output produced by a neural network which is parameterized by parameter set θ =
{W1, . . . ,Wl, . . . ,WL,wo, b1, . . . , bl, . . . , bL, bo}.

40Note here the connection to Equation 1.14. In the more general formulation in Equation 1.14, the
input to the softmax function is the output from a supervised learning algorithm f that is parameterized
by parameter set θ̃. In the more specific case here, qc is the output produced by a neural network which
is parameterized by parameter set θ = {W1, . . . ,Wl, . . . ,WL,Wo, b1, . . . , bl, . . . , bL, bo}.
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1.2.3.3 Gradient Descent and Backpropagation

In supervised learning, a researcher passes the training data tuples (xi, yi)Ni=1 to the neu-
ral network. Hence, the input xi and the corresponding output label yi are being given
and fixed for each training instance. All other elements, the weights and biases, are pa-
rameters whose values are learned in the optimization process (Goodfellow et al., 2016,
p. 165). For the FNN described in Equations 1.32 to 1.35 the parameter set hence is:
θ = {W1, . . . ,Wl, . . . ,WL,Wo, b1, . . . , bl, . . . , bL, bo}. As each Wl is a Kl ×Kl−1 matrix
of to be estimated parameters and each bl is a Kl-dimensional vector of parameters, deep
neural networks usually have a very large number of parameters (typically significantly
more parameters than conventional machine learning methods). In order to effectively
train deep neural networks one therefore needs substantive computational resources and a
large number of training data.

Gradient Descent. When training neural networks, variants of the gradient descent al-
gorithm are typically implemented (Goodfellow et al., 2016, p. 173). Gradient descent is
an optimization algorithm designed to find the local minimum of a function g (Goodfel-
low et al., 2016, p. 80-81). The algorithm makes use of the gradient, which is a vector
of partial derivatives: If a function g maps the values of H variables into a single value,
e.g. g : RH → R, then the derivative of g at point θ = [θ1, . . . , θh, . . . , θH ]> is an H-
dimensional vector, called the gradient (Johnson, 2017, p. 2). The gradient is commonly
denoted as ∇θg(θ). If y = g(θ), the gradient is also denoted as ∂y

∂θ
(Johnson, 2017,

p. 2).
∂y

∂θ
=
 ∂y
∂θ1

, . . . ,
∂y

∂θh
, . . . ,

∂y

∂θH

> (1.40)

The hth component of the gradient, ∂y
∂θh

, is the partial derivative of g with respect to θh
(Johnson, 2017, p. 2). It tells how y changes given an infinitesimally small change in θh
(Moore & Siegel, 2013, p. 359).41 The gradient of function g at point θ indicates the
direction in which function g is increasing fastest (Moore & Siegel, 2013, p. 362) and the
direction of the negative gradient gives the direction of the steepest descent (Goodfellow
et al., 2016, p. 83).

Gradient descent is an iterative algorithm that makes use of this directional information
contained in the gradient. At each iteration, the gradient descent algorithm calculates the
gradient of g at current point θj and then updates θj by moving into the direction given

41Just as the gradient is the generalization of a partial derivative in the sense that it is a vector of partial
derivatives, there is a generalization of the gradient to matrix form: If function g maps the values taken
by H variables into a vector of size K, g : RH → RK , then the derivative of g at θ is a K ×H matrix of
partial derivatives known as the Jacobian (Johnson, 2017, p. 3). The Jacobian gives the partial derivative
of each of the K outputs with respect to each of the H inputs. The Jacobian can be generalized to a
tensor (Johnson, 2017, p. 4). In the following, as is often done in the literature, the term gradient will be
used irrespective of the dimensionality of the partial derivatives in question and thus may denote a scalar,
vector, matrix, or tensor of partial derivatives.
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by the negative gradient (Goodfellow et al., 2016, p. 83-84):

θj+1 = θj − η∇θj
g(θj) (1.41)

η ∈ R+ is the learning rate. The hope is that by iteratively computing the gradient and then
moving into the direction of the negative gradient with an adequately small learning rate
η, the algorithm will approach a local minimum (Goldberg, 2016, p. 369-371; Goodfellow
et al., 2016, p. 173).42

In the context of training neural networks, function g is the empirical risk Remp. The
empirical risk is defined as

Remp(θ̃) = 1
N

N∑
i=1
L(yi, f(xi, θ̃)) (1.42)

(see again Section 1.1.1 as well as Equations 1.2 and 1.6) (Vapnik, 1991, p. 832-833;
Goodfellow et al., 2016, p. 272-273). This is, when training neural networks the gradient
descent algorithm is employed to find the set of parameter values that minimizes the mean
of the training set instances’ losses (Goldberg, 2016, p. 369). To compute the gradients, the
backpropagation algorithm (Rumelhart et al., 1986) is used (Goldberg, 2016, p. 371).

Gradient descent with backpropagtion starts with initializing the set of parameters θ̃ of a
neural network f (Goodfellow et al., 2016, p. 291). Then, the following steps are repeated
as long as the stopping criteria are not met (Goldberg, 2016, p. 370):

1. For each of N training set instances (xi, yi),

(a) the input xi is propagated forward through the layers of the network to obtain
the network’s prediction ŷi = f(xi, θ̃j) (Han et al., 2012, p. 401)

(b) the loss L = L(yi, ŷi) is determined and the chain rule is applied in a backward
manner to compute the gradient on all parameters (Li et al., 2020c). (Details
on this backward propagation step are given below.)

2. The parameters are updated via gradient descent

θ̃j+1 = θ̃j − η∇θ̃j
Remp(θ̃j) (1.43)

where the gradient is the mean of the gradients over all N training instances (Good-
fellow et al., 2016, p. 275, 291):

∇θ̃j
Remp(θ̃j) = 1

N

N∑
i=1
∇θ̃j
L(yi, f(xi, θ̃j)) (1.44)

42If applied on a convex function, all local minima are global minima and thus gradient descent with
an adequately small learning rate η will converge to a global minimum (Goldberg, 2016, p. 371; Thomas,
2018, p. 32). If the function is nonconvex, there is no guarantee that gradient descent will converge to
the global minimum (Goldberg, 2016, p. 371). The non-linearity of neural networks implies that most loss
functions are nonconvex (Goodfellow et al., 2016, p. 173). Hence, there is no global convergence guarantee
and gradient-based learning will move toward a low value (Goldberg, 2016, p. 371; Goodfellow et al., 2016,
p. 173).
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This outlined procedure, known as batch gradient descent, in which for every single update
of parameter values the gradient is computed based on all N training instances, is highly
expensive (Goodfellow et al., 2016, p. 275). The usually applied approach thus is to
compute the gradient on the basis of a small random sample of S training set instances
(Goodfellow et al., 2016, p. 275-276, 291):

∇θ̃j
Remp(θ̃j) = 1

S

S∑
s=1
∇θ̃j
L(ys, f(xs, θ̃j)) (1.45)

This procedure is called mini-batch stochastic gradient descent (Goodfellow et al., 2016,
p. 275-276, 291). The gradient computed on a mini-batch of training samples typically
provides a good approximation of the gradient computed on the entire training set (Good-
fellow et al., 2016, p. 275). S usually is set to a value in the range from two to a few
hundred (Ruder, 2019a, p. 25).

The mini-batch size S and the learning rate η are hyperparameters that are watchfully
tuned when training neural networks (Li et al., 2020b). If η is too high, the loss values may
oscillate considerably (Goodfellow et al., 2016, p. 291). A too small η, in contrast, causes
the learning process to be slow (Goodfellow et al., 2016, p. 291). Usually, the learning rate
is not kept constant but altered throughout the optimization process according to a learning
rate schedule (Goodfellow et al., 2016, p. 290-291). Moreover, there are modifications of
gradient descent, such as AdaGrad (Duchi et al., 2011), RMSProp (Hinton et al., 2012),
and Adam (Kingma & Ba, 2015), that adapt the learning rate for each individual parameter
(Goodfellow et al., 2016, p. 303-305).

Backpropagation. This section explains in more detail the computation of the gradients.
The following small neural network with a single hidden layer that contains a single neuron
serves as an illustrative example:

q1 = w1x+ b1 (1.46)
h1 = σ1(q1) (1.47)
ŷ = w2h1 (1.48)

Here x serves as the input to an affine function, that in turn is fed to a nonlinear activation
function, σ1, computing hidden state h1. The hidden state then is the input for the next
layer which here is the output layer that computes prediction ŷ. Given the predicted ŷ and
the true y, the loss L = L(y, ŷ) as well as the gradient of the loss function with respect
to output ŷ, ∂L

∂ŷ
, can be computed. The gradient ∂L

∂ŷ
tells how the loss L changes given an

infinitesimally small change in the predicted output ŷ.

The aim in optimization is to find the set of parameter values that minimize the mean
across the losses of individual training instances (Vapnik, 1991, p. 832-833). To do so,
for each sampled training instance, gradient descent computes the negative gradient, that
tells in which direction the loss function decreases fastest (Goldberg, 2016, p. 371). Then
the mean across the sampled training instances’ negative gradients is computed and the
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Chain Rule. The chain rule is a computational rule that allows one to compute the
derivatives in composite functions (Moore & Siegel, 2013, p. 119). For example, if
y = f(x) and z = g(y) and thus the corresponding computation graph is (Johnson,
2017, p. 1-2):

x
f−→ y

g−→ z

then to know how z changes given a small change in x, one would have to compute
the derivative of z with respect to x, denoted as ∂z

∂x
. The chain rule states that

∂z

∂x
= ∂z

∂y

∂y

∂x

This is, in order to know how an infinitesimal change in x affects z, one computes
the derivative of y with respect to x (that gives the change in y due to a change
in x) and multiplies this expression with the derivative of z with respect to y (that
informs about the change in z due to a change in y). Since neural networks can
be described as a set of composite functions (see Equation 1.31), the chain rule is
required to compute the gradients.

parameter values are moved into the direction of this negative gradient (Goldberg, 2016,
p. 371). To compute the gradients, the chain rule is applied (Goldberg, 2016, p. 371).

x ×

w1

+

b1

q1 σ1 h1 ×

w2

ŷ L

y

L

Figure 1.6: Computation Graph. Computation graph describing the neural network laid
out in Equations 1.46 to 1.48.

With the help of Figure 1.6 that visualizes the computation graph of the neural network
described in Equations 1.46 to 1.48, it can be established that in the jth iteration of the
algorithm the gradients for the weights and biases in the given example are:

∂Lj
∂w2j

= ∂Lj
∂ŷj

∂ŷj
∂w2j

(1.49)

∂Lj
∂w1j

= ∂Lj
∂ŷj

∂ŷj
∂h1j

∂h1j

∂q1j

∂q1i

∂w1i
(1.50)
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∂Lj
∂b1j

= ∂Lj
∂ŷj

∂ŷj
∂h1j

∂h1j

∂q1j

∂q1j

∂b1j
(1.51)

To finally update the parameters from iteration j to j + 1, the value of each parameter is
made to move into the direction of its negative gradient at j with step size η:

w2,j+1 = w2j − η
∂Lj
∂w2j

(1.52)

w1,j+1 = w1j − η
∂Lj
∂w1j

(1.53)

b1,j+1 = b1j − η
∂Lj
∂b1j

(1.54)

This illustration emphasizes that in order to compute the gradient for a particular param-
eter, the gradients of all elements that depend on operations resulting from this parameter
have to be known (Ruder, 2019a, p. 36). This illustration also makes clear that backprop-
agation of gradients can be viewed as a way via which for each parameter it is computed
how a change in the parameter affects the loss function—and thus in which direction to
change the parameter value to decrease the loss (Li et al., 2020c). The gradients hereby
can be seen as a signal that runs backwards through the network telling each parameter
to increase or decrease its value for the overall loss to decrease (Li et al., 2020c).

Moreover, the backpropagation illustration also helps to outline the effects of specific ac-
tivation functions: Historically, the sigmoid function (see Equation 1.38 and Figure 1.5c)
frequently has been used as an activation function in neural networks (Li et al., 2020a).
Due to its property to saturate and its first derivative to approach a value of 0 for large
positive and large negative input values, the sigmoid activation function may cause the
gradients to vanish (i.e. to assume a value close to 0) if the input provided by the affine
function assumes a large positive or negative value (Hansen, 2019; Li et al., 2020a). Be-
cause the gradients are multiplied with each other in the backpropagation process (see
Equations 1.49 to 1.51), vanishingly small gradients can mute the traveling of signaling
gradients through the network (Li et al., 2020a). If this vanishing gradient behavior occurs
across many units in a large network, there will be hardly any training (Hansen, 2019). To
illustrate, if σ1 in Equation 1.47 were the sigmoid activation function and if in iteration j
the output from the affine function q1j would assume a large positive value, then ∂h1j

∂q1j
in

Equation 1.50 would become close to zero and thereby make the gradient ∂Lj

∂w1j
also assume

a very small value (Hansen, 2019). The parameter update for weight w1j (see Equation
1.53) consequently also would be extremely small (Hansen, 2019).

The ReLU activation function (see Equation 1.36 and Figure 1.5a) also is not free of
shortcomings: As the first derivative of the ReLU function is 1 for qk > 0, the gradients
for qk > 0 will not vanish but stay distinguishable from 0 (Hansen, 2019). For qk < 0,
however, the gradient becomes 0, thereby causing all parameters that depend on a unit
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with a gradient of 0 to not update at all (Hansen, 2019). If σ1 in Equation 1.47 would be
the ReLU function, and if in the jth iteration q1j < 0, then ∂h1j

∂q1j
would be 0 and therefore

also ∂Lj

∂w1j
= 0. Consequently there would be no update for the weight w1 as Equation

1.53 would reduce to w1,j+1 = w1j. This is known as the dying ReLU problem (Li et al.,
2020a).

1.2.3.4 Regularization

Due to their layered architecture and their use of nonlinear activation functions, neural
networks have a high capacity, meaning that they can approximate a large range of complex
functions (Goodfellow et al., 2016, p. 5, 110, 168).43 The wider and deeper a neural network,
the higher its capacity (Li et al., 2020a). The capacity of neural networks tends to be higher
than that of conventional machine learning algorithms that operate without hidden layers
and are often linear learners (Goodfellow et al., 2016, p. 194; Goldberg, 2016, p. 345,
355).

In general, depending on the complexity of the data structure and a machine learning
algorithm’s capacity, underfitting or overfitting can occur (Goodfellow et al., 2016, p. 109-
110). An algorithm with reduced capacity may underfit the training data in the sense that
it is not able to reach an acceptably low error rate on the training data set (Goodfellow
et al., 2016, p. 109-110). A learning algorithm with a too high capacity, in contrast, may
overfit on the training data and therefore have a reduced generalization performance on
yet unused test data (James et al., 2013, p. 32; Goodfellow et al., 2016, p. 110).

Text data emerge from very complex data generating processes (Goodfellow et al., 2016,
p. 225). And the functions to be approximated in NLP tasks (e.g. the mapping from a
sequence of text to discrete class labels) are also highly complex. The empirically su-
perior prediction accuracy of deep learning models over conventional models (Goldberg,
2016, p. 347-348) indicates that the high expressivity of deep learning models is central to
approximating the complex functions involved in NLP tasks.

When applying neural networks in practice, it has been found that the highest general-
ization performances tend to be achieved by larger and deeper neural networks in which
overfitting is controlled via regularization strategies (Goodfellow et al., 2016, p. 225; Li

43According to the universal approximation theorem, an FNN with a single hidden layer of high enough
dimensionality can represent any continuous function defined on a compact subset of RN (Goodfellow
et al., 2016, p. 194). Hence, a large enough neural network can in theory approximate any continuous
function f with desired accuracy (Goodfellow et al., 2016, p. 194-195). In practice, however, it is unclear
how large a network has to be to achieve a satisfactory approximation to a given function f (Goodfellow
et al., 2016, p. 195). And it may very well be the case that the unknown required size is infeasibly large
(Goodfellow et al., 2016, p. 195). In general, deeper networks with more hidden layers but fewer units per
layer provide more efficient approximations and thus seem preferable over shallow networks with many
units per layer (Goodfellow et al., 2016, p. 195-197).
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et al., 2020a). Regularization strategies are procedures that aim at reducing an algo-
rithm’s generalization error as estimated on the test set (Goodfellow et al., 2016, p. 224).
In doing so, regularization strategies potentially cause an increase of the training error
(Goodfellow et al., 2016, p. 224).

A very common regularization strategy, that is also used for neural networks, is weight
decay. Here, a regularization term is added to the empirical risk in order to restrain the
capacity of a learning algorithm (Goodfellow et al., 2016, p. 226). The regularized empirical
risk, Remp,reg(θ̃), then is

Remp,reg(θ̃) = 1
N

N∑
i=1
L(yi, f(xi, θ̃)) + λΩ(θ̃) (1.55)

where Ω(θ̃) is a parameter norm penalty serving as the regularization term and λ ∈ [0,∞)
is a hyperparameter that balances the relative weight given to the penalty vs. the mean
training loss (Goodfellow et al., 2016, p. 226). In the case of L2 weight decay (also known
as L2 regularization or ridge regression) Ω(θ̃) = 1

2 θ̃
>θ̃ (Goodfellow et al., 2016, p. 227).

As 1
2 θ̃
>θ̃ is smaller for smaller values of the parameters, the penalty moves the parameter

values closer to 0 (James et al., 2013, p. 215; Goodfellow et al., 2016, p. 227).44

Another regularization strategy frequently used in deep learning is dropout (Srivastava
et al., 2014). In dropout, a random sample of neural units and their connections are
dropped during the training process (Srivastava et al., 2014, p. 1929). More specifically,
each time a training example is presented, each unit and its corresponding connections
in the neural network are dropped from the network with probability 1 − p (Srivastava
et al., 2014, p. 1930).45 Thereby, a thinned network is sampled from the original network
(Srivastava et al., 2014, p. 1931). Stochastic gradient descent then is applied on the
thinned network (Srivastava et al., 2014, p. 1934). As for each training instance a new
thinned network is sampled by randomly dropping units, dropout trains a collection of
thinned networks (Srivastava et al., 2014, p. 1931). When making a prediction for a test
instance after training, the original network without dropout is used and the weights for
each unit are multiplied with the probability p of not being dropped (Srivastava et al.,
2014, p. 1931).

44As λ increases, a smaller value of
√
θ̃>θ̃ (which is the L2 norm of the parameter vector) is preferred

(James et al., 2013, p. 216). Increasing λ in L2 regularization thus has the effect of decreasing the combined
parameter values (their L2 norm) (James et al., 2013, p. 216). Single parameter values, however, may
increase while λ is set to a higher value (James et al., 2013, p. 216). Note furthermore that typically
only the weights, {W1,W2, . . . }, of neural networks but not the bias terms, {b1, b2, . . . }, are regularized
(Goodfellow et al., 2016, p. 226).

45If hl−1 = [hl−1,1, . . . , hl−1,k, . . . , hl−1,K ]> is the K-dimensional hidden state vector that has been
produced as an output by the (l − 1)th hidden layer (see Equation 1.34), then each element hl−1,k of
this vector is independently multiplied with a Bernoulli random variable that assumes a value of 1 with
probability p and a value of 0 with probability 1 − p (Srivastava et al., 2014, p. 1933-1934). Hence, only
units that survive dropout (as they have been multiplied with 1 rather than 0), pass on information to the
next layer (Srivastava et al., 2014, p. 1933-1934).
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Dropout thus can be viewed as a model averaging procedure in which regularization is
achieved via averaging over the predictions of several models (here: many sampled thinned
networks) that make different errors on the test set (Srivastava et al., 2014, p. 1941; Good-
fellow et al., 2016, p. 253, 255). A second reason why dropout works as a regularization
strategy is that by randomly dropping units, the procedure hinders the individual units
from adapting too much to each other (Srivastava et al., 2014, p. 1932, 1943). This means
that each unit cannot rely on the presence of other units to counteract its errors but has
to generate useful representations across various contexts by itself (Srivastava et al., 2014,
p. 1932, 1943).

1.2.3.5 Convolutional Neural Networks

FNNs that only contain fully connected layers (as does the network described in Equations
1.32 to 1.35) are rarely used as a standalone architecture in NLP. Yet they are frequently
incorporated as elements within other architectures (see e.g. Vaswani et al., 2017). Further-
more, they form the basis of more complex architectures: Convolutional neural networks
(CNNs) (LeCun & Bengio, 1995) are FNNs that in at least one layer—rather than having
a fully connected layer with a matrix-vector multiplication as in Equations 1.32 to 1.35—
conduct a convolution operation (Goodfellow et al., 2016, p. 326). Convolution layers are
usually followed by pooling layers (Goodfellow et al., 2016, p. 326). A visualization of a
convolution and pooling operation is given in Figure 1.7.

In a convolution layer, a filter of a given window size V slides over a document’s sequence
of tokens (Goldberg, 2016, p. 386). Step by step, the filter (which typically is a function
that applies first a linear and then a nonlinear transformation and is characterized by
trainable weights W , bias terms b, and nonlinear activation function σ) is applied to
the concatenated embeddings of those V tokens covered by the filter window (Goldberg,
2016, p. 386). By doing so, for each of the S windows in a document that comprise V
tokens, a single representation vector hs is produced (Goldberg, 2016, p. 386). If zs =
[z[as]; z[as+1]; . . . ; z[as+V−1]]> is the column vector of concatenated representations of tokens
in the sth window, then the operation is (Goldberg, 2016, p. 386):

hs = σ(Wzs + b) (1.56)

The filter’s weight matrix W and bias vector b are parameters to be learned (Collobert
et al., 2011, p. 2502). Each window representation is of dimensionK: hs = [hs1, . . . , hsk, . . . , hsK ]>.

In the pooling layer, the information encoded in the S window representations (hs)Ss=1 is
aggregated. A frequently used pooling operation is max pooling (Goldberg, 2016, p. 389).
Here, at each of the K vector elements, only the maximum value across the S window
representations is retained such that a single vector hpool of dimensionality K is obtained
(Collobert et al., 2011, p. 2504; Goldberg, 2016, p. 387):

hpool,k = max
1<s≤S

hs,k (1.57)
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z[a1] z[a2] z[a3] z[a4]

[z[a1]; z[a2]]

[z[a2]; z[a3]]
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W

W

W

Figure 1.7: Convolution and Pooling. This figure illustrates the convolution operation
followed by max pooling. Here, a convolution filter of size V = 2 slides over a sequence of four
tokens, that are given by four representation vectors (z[a1], . . . ,z[a4]). At each step, V = 2 vectors
are concatenated and the filter is applied, thereby generating at each step aK-dimensional window
representation vector hs. (Here K = 3 and thus h1 = [h1,1, h1,2, h1,3].) The filter of size V = 2
applied across the sequence of four tokens yields S = 3 window representation vectors, (hs)3

s=1.
Then in max pooling, for each of the K = 3 elements of the window representation vectors, the
maximum value across the S = 3 window representation vectors is extracted to form the K = 3-
dimensional pooled vector hpool = [hpool,1, hpool,2, hpool,3]. This figure is adapted from “A primer
on neural network models for natural language processing,” by Y. Goldberg, 2016, Journal of
Artificial Intelligence Research, 57 (1), p. 387. Copyright 2016 by the AI Access Foundation.
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Note that it is common for a convolution layer to have several filters with different window
sizes (Kim, 2014, p. 1747). The obtained representations then typically serve as inputs to
further layers (e.g. a fully connected FNN) to at some point enter an output layer that
generates a prediction (Kim, 2014, p. 1747). Given the CNN’s prediction and the true
value, the loss is computed and the gradients are obtained via backpropagation through all
layers (including the pooling and the convolution layers) (Goldberg, 2016, p. 387).

CNNs capture the local information that is most predictive for a task (e.g. token sequences
that are most important for a sentiment classification task) (Goldberg, 2016, p. 385-386).
In their seminal works, Collobert & Weston (2008) and Collobert et al. (2011) were the
first to use CNNs for the processing of text data. Other important implementations of
CNNs in the field of NLP are Kalchbrenner et al. (2014), Kim (2014), and Zhang et al.
(2015b). CNNs, however, play a more central role in the field of computer vision where
they are applied, for example, for the recognition of objects in images (Krizhevsky et al.,
2012).46

1.2.3.6 Recurrent and Recursive Neural Networks

CNNs identify local predictive elements in a sequence, but in doing so information on the
structure and order of textual tokens is largely only retained for local sequences (Goldberg,
2016, p. 348, 389). Recurrent neural networks (RNNs) (Elman, 1990), in contrast, can
capture information across a document’s entire token sequence. In an RNN, each token in
a sequence (a1, . . . , at, . . . , aT ) is processed one step at a time, and at each step the hidden
state ht is updated based on the previous hidden state ht−1 and the embedding vector z[at]
of new input token at (Goldberg, 2016, p. 389-390). Moreover, at each time step, an output
vector yt is produced from the current hidden state ht (Goldberg, 2016, p. 389-390). A
basic formulation of an RNN is (Amidi & Amidi, 2019):

ht = σh(Whhht−1 +Whaz[at] + bh) (1.58)

yt = σy(Wyhht + by) (1.59)
where Whh is the “recurrent connection”(Graves, 2014, p. 4) that connects previous to
current hidden states. Wha links the input to the hidden layer, and Wyh relates the
hidden state to the output (Graves, 2014, p. 4).47 (For a visualization of an RNN that
is depicted across time steps see Figure 1.8.) An RNN can be conceived as a network in
which the hidden state is updated sequentially such that at a given time step t the hidden
state ht captures the information from the entire history of tokens from a1 up until at
(Goldberg, 2016, p. 391). By having one hidden layer representation per input, an RNN
is a network that stretches deep in time (Goldberg, 2016, p. 391-392).

46In computer vision, usually a two-dimensional convolution is applied over a two-dimensional data
representation (Goldberg, 2016, p. 386).

47Note that at each time step, the same set of parameters, {Whh,Wha, bh,Wyh, by}, are applied (Gold-
berg, 2016, p. 391).
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h1h0 h2 ht−1 ht ht+1 hT
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Figure 1.8: Recurrent Neural Network. This figure depicts a simple RNN as described in
Equations 1.58 and 1.59 across T time steps.

In supervised learning, there are different ways how to impose the supervising information
on the network (Goldberg, 2016, p. 392). First, if there is a document of T tokens, d =
(a1, . . . , at, . . . , aT ), with a corresponding true label y, then the prediction reached by the
RNN for the last token ŷT can be compared against the true label y such that the loss
L is L(y, ŷT ) (Goldberg, 2016, p. 392). For example, if the task is multi-class sentiment
classification, then σy is a softmax function and ŷT is a vector of predicted probabilities
that serves as the RNN’s sentiment prediction for the entire sentence which is compared to
the true sentiment y (for a similar application see Wang et al., 2015, p. 1345-1346).

Second, RNNs can be used as encoders whose last hidden representation vector hT captures
the information from the entire sequence (Goldberg, 2016, p. 392, 394). hT , in turn, then
can enter further model components (Goldberg, 2016, p. 392, 394). A prominent case
here are encoder-decoder structures (Goldberg, 2016, p. 394). Sutskever et al. (2014) and
Cho et al. (2014), for example, use an RNN-based encoder-decoder structure for machine
translation. Here, an RNN encoder sequentially encodes the information from the input
sequence in some language A to produce the last hidden state hT (Cho et al., 2014, p. 1725;
Sutskever et al., 2014, p. 3106). hT then is the input to the RNN-based decoder that
translates the input sequence token by token to another language O (Cho et al., 2014,
p. 1725; Sutskever et al., 2014, p. 3106).

Third, in tasks in which the model is to produce an output for each token (e.g. sequence
tagging tasks), there are true labels for each input token against which the RNN’s predic-
tions produced across the time steps (ŷ1, . . . , ŷt, . . . , ŷT ) are compared against (Goldberg,
2016, p. 393). The overall loss is the (weighted) sum of the losses at each of the time steps:
L = ∑T

t=1 L(yt, ŷt) (Goldberg, 2016, p. 393).

In RNNs, the parameters are learned by backpropagating the gradients through the time
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steps (Goodfellow et al., 2016, p. 378-380). This is known as backpropagation through
time (BPTT) (Goldberg, 2016, p. 392). Because the gradients are multiplied with each
other in the backpropagation process (see again Equations 1.49 to 1.51), and in RNNs
the multiplication of the gradients can go over many time steps, the gradients can vanish
(i.e. assume values close to 0) or explode (i.e. assume very large values) (Pascanu et al.,
2013, p. 1311).48 Exploding gradients can be easily handled by clipping techniques (Pas-
canu et al., 2013, p. 1315). Vanishingly small gradients make it difficult for learning signals
to travel over long distances in time (Bengio et al., 1994, p. 161), which is why the simple
RNNs presented in Equations 1.58 and 1.59 in practice fail to transmit information over
sequences longer than 10 or 20 tokens (Goodfellow et al., 2016, p. 399).

To address this problem, special recurrent architectures, e.g. the long short-term memory
(LSTM) model (Hochreiter & Schmidhuber, 1997) and the Gated Recurrent Unit (GRU)
(Cho et al., 2014), have been developed (Goldberg, 2016, p. 378). These architectures
direct the flow of gradients such that the vanishing gradient problem is mitigated and
signals can travel over longer distances (Goldberg, 2016, p. 399-401). Instead of a single
hidden operation (as in Equation 1.58), LSTMs have a memory cell that is composed of
several operations (Goldberg, 2016, p. 399-400). LSTMs make use of gating mechanisms
that regulate in how far incoming information updates the memory cell state that flows
through the time steps and can keep information across longer token sequences (Goldberg,
2016, p. 399-400). GRUs also make use of gates but have a simpler architecture (Cho et al.,
2014, p. 1726; Goldberg, 2016, p. 401).

Irrespective of whether the RNN architecture is a simple RNN as described in Equations
1.58 and 1.59 or whether the hidden units are more complex as in GRUs or LSTMs, RNNs
can be stacked to form deep RNNs that have a multi-layered representation for each input
(Graves, 2014, p. 3). In deep RNNs, the first RNN takes as an input z[at] and produces h1

t

(Graves, 2014, p. 3-4). h1
t , in turn, serves as the input to the second RNN (Graves, 2014,

p. 3-4). The hidden state of the lth RNN (with l > 1) at the tth time step then is (Graves,
2014, p. 4)49

hlt = σh(Whlhlhlt−1 +Whlhl−1hl−1
t + blh) (1.60)

Furthermore, recurrent architectures are relatively frequently applied in bidirectional form
(Schuster & Paliwal, 1997; Graves, 2008; Goldberg, 2016, p. 395-396), and then are named
biRNNs or biLSTMs respectively. In bidirectional recurrent models, there is one forward
chain in which the hidden states are updated in a sequential manner from the first token

48If the activation function σ is the identity function, then the condition that the largest eigenvalue of
Whh < 1, is a sufficient condition for the vanishing of the gradients as time steps t→∞ (Pascanu et al.,
2013, p. 1311). It is necessary for the largest eigenvalue of Whh to be > 1 for the gradients to explode as
t → ∞ (Pascanu et al., 2013, p. 1311). For nonlinear activation functions σ, one can say that vanishing
gradients can be observed if the largest singular value of Whh is small, and if the largest singular value of
Whh is large, gradients may explode (Pascanu et al., 2013, p. 1311-1312).

49Note that skip connections, that provide direct links between the inputs and the hidden states, can
be additionally introduced such that hl

t = σh(Whlhlhl
t−1 +Whlhl−1hl−1

t +Whlaz[at] + bl
h) (Graves, 2014,

p. 4).



1.2 Natural Language Processing 107

in a document’s sequence, a1, to the last token in the sequence, aT (Goldberg, 2016,
p. 396). And there is a separate and independent backward chain in which the hidden
states are updated sequentially from the last token, aT , to the first token, a1 (Goldberg,
2016, p. 396). Thus, at each time step t, there is a forward state −→ht and a backward state
←−
ht (Goldberg, 2016, p. 396). Whereas the forward hidden state −→ht encodes the information
accumulated from the past history of tokens a1 to at, the backward hidden state←−ht encodes
the information from the backward sequence of future tokens aT to at (Goldberg, 2016,
p. 395-396). −→ht and ←−ht then are typically concatenated to obtain a single hidden state
vector for time step t (Goldberg, 2016, p. 396):

ht = [−→ht;
←−
ht] (1.61)

ht captures signals from the forward and the backward sequence. This can be advantageous
compared to having information from only one direction (Graves, 2008, p. 22-23).50

Recurrent architectures have been frequently used as the backbone of NLP models across
many NLP tasks (e.g. Mikolov et al., 2010; İrsoy & Cardie, 2014; Sutskever et al., 2014;
Cho et al., 2014; Wang et al., 2015; Bahdanau et al., 2015; Lample et al., 2016; Peters
et al., 2018a). In recent years, Transformer-based models (which are introduced in the
next section) have been increasingly applied. Yet recurrent architectures still are used as
model components in NLP (e.g. Liu et al., 2019a; Lei, 2021).

Recursive neural networks (RecNNs) can be conceived as a generalization of RNNs for tree
structures (Goldberg, 2016, p. 402). An example of a tree structure that RecNNs operate
on are parse trees (Goldberg, 2016, p. 402). A parse tree depicts the syntactic structure
of a sentence (Smith, 2011, p. 9-11). For each node S in a parse tree, a representation
hs is learned (Goldberg, 2016, p. 402-404). hs results as a function of the representation
vectors for the children of node S (here named Q and R). For example (Socher et al., 2011,
p. 153):

hs = σ(W [hq;hr] + b) (1.62)

where [hq;hr] is the concatenation of the representations for children nodes Q and R, σ
is a nonlinear activation function, b is the bias vector, and W is a matrix of weights that
linearly transforms the concatenation of hq and hr (Socher et al., 2011, p. 153). W may
be the same in the entire network or it can be specific to the combination of labels assigned
to nodes Q and R (Goldberg, 2016, p. 405). hs thus encodes the information in the entire
subtree over which node S resides (Goldberg, 2016, p. 404).

Widely known applications of RecNNs are Socher et al. (2011, 2013) and Iyyer et al. (2014).
Socher et al. (2013), for example, apply a variant of RecNNs to sentiment analysis with
movie reviews. They first parse each sentence and then learn for each node in each parse

50Note that
−→
ht and

←−
ht are generated in separate, independent processes. Thus ht contains information

from both directions, but the information from
−→
ht and

←−
ht are not combined or integrated in the sense that

they influence each other. The vectors are simply concatenated.
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tree a representation hs that encodes the sentiment of the sub-sentence (Socher et al.,
2013, p. 1631, 1634-1636).

1.2.3.7 Attention and the Transformer

Given a sequence of input tokens, (a1, . . . , at∗ , . . . , aT ∗), that are represented by a set of
vectors, (v1, . . . ,vt∗ , . . . ,vT ∗), the attention mechanism computes a representation for a
token at (this representation of at here is being denoted as ct) as the weighted sum of
the input token representation vectors (Bahdanau et al., 2015, p. 3; Vaswani et al., 2017,
p. 6000-6001):

ct =
T ∗∑
t∗=1

αt,t∗vt∗ (1.63)

The attention weight αt,t∗ governs in how far the representation ct incorporates information
from (i.e. attends to) the representation of the t∗th input token vt∗ . The core of the
attention mechanism is the computation of αt,t∗ which is typically obtained as

αt,t∗ = exp(score(qt,kt∗))∑T ∗
t∗=1 exp(score(qt,kt∗))

(1.64)

(Vaswani et al., 2017, p. 6000-6001), where

• kt∗ is a representation of the t∗th input token at∗ (Vaswani et al., 2017, p. 6002;
Galassi et al., 2021, p. 4294). (In some implementations of the attention mechanism,
vt∗ and kt∗ are two different representations of the same input token, in other im-
plementations vt∗ and kt∗ are the same vector representation (Galassi et al., 2021,
p. 4294).)

• qt is the initial, pre-update representation of token at (Vaswani et al., 2017, p. 6002;
Kobayashi et al., 2020, p. 7058).

• score is a function that produces as an output an indicator of the similarity between
the t∗th input token representation kt∗ and token at’s initial representation qt (Bah-
danau et al., 2015, p. 3; Luong et al., 2015, p. 1414). There is a vast set of scoring
functions that can be applied (for an overview see Galassi et al., 2021, p. 4298). A
common scoring function used is the scaled dot product: (q>t kt∗)/

√
|kt∗| (Vaswani

et al., 2017, p. 6001). The higher the similarity between the input token represen-
tation vector kt∗ with at’s initial representation vector qt, the higher the attention
weight αt,t∗ .

vt∗ , kt∗ , and qt are often named value, key, and query vector respectively (Vaswani et al.,
2017, p. 6000-6001; Galassi et al., 2021, p. 4294).51

51Note that different implementations of the attention mechanism differ with regard to how key, query,
and value vectors are obtained. Bahdanau et al. (2015) apply encoder-decoder attention in a recurrent
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When the attention mechanism was introduced to NLP in the context of neural machine
translation (NMT), it was incorporated within an encoder-decoder structure (Bahdanau
et al., 2015). In general, an encoder-decoder operates as follows: Given a set of original
data inputs, an encoder converts the inputs into a hidden representation and the decoder
takes the representation and decodes data output from it. In NMT, a variable length
sequence of tokens in language A, (a1, . . . , at∗ , . . . , aT ∗), constitutes the data input (Cho
et al., 2014, p. 1724-1725). The encoder encodes the input into representation vectors and
the decoder, based on the encoding provided by the encoder, produces a variable-length
output of tokens in language O, (o1, . . . , ot, . . . , oT ) (Cho et al., 2014, p. 1724-1725).52 In
doing so, the decoder proceeds in an autoregressive manner (Vaswani et al., 2017, p. 5999).
This is, when generating the prediction for the tth output token, the decoder not only
processes the representation vectors, that have been produced by the encoder, but also
processes the previous output tokens o<t (Bahdanau et al., 2015, p. 3; Vaswani et al.,
2017, p. 5999).

Within this encoder-decoder structure, the attention mechanism can enable the decoder to
attend to all input token representations produced by the encoder. This is, the input tokens
(a1, . . . , at∗ , . . . , aT ∗) are encoded by the encoder into representations (v1, . . . ,vt∗ , . . . ,vT ∗)
and the decoder then generates the representation ct of output token ot as a weighted
sum over the encoder-generated representations (v1, . . . ,vt∗ , . . . ,vT ∗) (see Figure 1.9 and
Bahdanau et al., 2015, p. 3).

Another form of attention is self-attention. Here, the input tokens attend to themselves. If
(a1, . . . , at, . . . , aT ) is a sequence of tokens that is being processed and if (v1, . . . ,vt, . . . ,vT )
are the respective token representations, then for each token at in this sequence, a new
representation ct can be learned that captures information encoded in the representations
of the tokens that are in the same sequence as at (see Figure 1.10 and Vaswani et al., 2017,
p. 6001-6002).

The attention mechanism generates a contextualized token representation. This is, ct is
a representation of a token at (and not a term zu) (Pilehvar & Camacho-Collados, 2020,

architecture and use the previous hidden state ht−1 as an initial representation of token at. Accordingly,
qt here is ht−1. The value vectors (v1, . . . ,vt∗ , . . . ,vT ∗) are the sequence of hidden states produced
by a recurrent encoder (Bahdanau et al., 2015, p. 3). Bahdanau et al. (2015) furthermore make no
distinction between key and value vectors. In the self-attention mechanism as implemented by Vaswani
et al. (2017), key, query, and value vectors are linear transformations of input vectors: If a sequence of
tokens (a1, . . . , at, . . . , aT ) is represented as (z1, . . . ,zt, . . . ,zT ) (e.g. as a sequence of word embeddings
or a sequence of already updated token representations), then for each token at, the corresponding input
embedding zt is transformed into a key vector kt, a query vector qt, and value vector vt via (Vaswani
et al., 2017, p. 6002):

kt = Wkzt qt = Wqzt vt = Wvzt (1.65)

52Note that the length of the input and output sequences may differ: ‘He is giving a speech.’ translated
to German is ‘Er hält eine Rede.’. The task of machine translation thus is one of sequence-to-sequence
modeling, where the sequences are of variable length (Cho et al., 2014, p. 1724-1725).
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v1k1 kt∗ vt∗ kT∗ vT∗

a1 at∗ aT∗

qt

o1aT∗

ct
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αt,t∗

αt,T∗

tttttttttttttttxhbclkadsjkbjfdbdbfdsah︸ ︷︷ ︸
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ttttttttttdksajbdkfbicbuzd︸ ︷︷ ︸
Decoder

Figure 1.9: Attention Within an Encoder-Decoder Structure. This figure depicts the
attention mechanism incorporated within an encoder-decoder structure. The input tokens (a1, at∗ , aT ∗)
are encoded by the encoder into value vectors (v1,vt∗ ,vT ∗) and key vectors (k1,kt∗ ,kT ∗) (Vaswani et al.,
2017, p. 6002). When the decoder is making a prediction for the tth output token ot, vector ct (on
which the prediction for output token ot will be based on) is computed via the attention mechanism as a
weighted sum over the encoder-generated representations (v1,vt∗ ,vT ∗) (see also Equation 1.63) (Bahdanau
et al., 2015, p. 3; Vaswani et al., 2017, p. 6000-6002). The weight αt,t∗ results from a function assessing the
similarity between key vector kt∗ and query vector qt (see also Equation 1.64) (Bahdanau et al., 2015, p. 3-
4). qt is the initial, pre-update representation of output token ot (Vaswani et al., 2017, p. 6002; Kobayashi
et al., 2020, p. 7058). When making a prediction, an autoregressive decoder takes as an additional input
the sequence of preceding output tokens (Vaswani et al., 2017, p. 5999). The pre-update vector qt thus
typically incorporates information from so far predicted output tokens (see e.g. Bahdanau et al., 2015, p. 3;
Vaswani et al., 2017, p. 6000). The previous output tokens here are (aT ∗ , o1), which is why qt is depicted
to result from (aT ∗ , o1). (The last token of an input sequence, aT ∗ , usually is an end-of-sequence symbol
< EOS >, that signals to the encoder the end of the sequence (Sutskever et al., 2014, p. 3106). Such an
end-of-sequence symbol (or some other symbol that not only can be used to indicate the end but also the
start of a sequence) then is used as a first input to the decoder (see e.g. Sutskever et al., 2014, p. 3105).
This is why aT ∗ here serves as an input to the decoder.)
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v1k1 q1 kt−1 vt−1 qt−1 kt vt qt kt+1 vt+1 qt+1 kT vT qT

c1 ct−1 ct ct+1 cT

a1 at−1 at at+1 aT

αt,1
αt,t−1

αt,t
αt,t+1 αt,T

Figure 1.10: Self-Attention. This figure depicts the self-attention mechanism. Each token in
the input sequence (a1, at−1, at, at+1, aT ) is transformed into a key vector, a value vector, and a
query vector (Vaswani et al., 2017, p. 6002). Then, for each token in the sequence, an updated
representation is created via the self-attention mechanism (see also Equation 1.63). Here, the
self-attention mechanism is visualized for token at. Each attention weight results from a function
that indicates the degree of similarity between an input token’s key vector and at’s query vector qt
(see also Equation 1.64) (Vaswani et al., 2017, p. 6001). qt serves as a pre-update representation
of at (Vaswani et al., 2017, p. 6002; Kobayashi et al., 2020, p. 7058).



112 1. Background and Motivation

p. 82). ct is contextualized in the sense that it is a function of input token representa-
tions (v1, . . . ,vt∗ , . . . ,vT ∗) (Pilehvar & Camacho-Collados, 2020, p. 82). This implies that
each time token at occurs within another textual sequence, it obtains another represen-
tation vector. The contextualized nature of the representation ct allows for ct to encode
the context-dependent meaning of token at (i.e. the meaning that arises from the textual
context token at is embedded in) and allows for ct to encode syntactic or semantic de-
pendencies between token at and input tokens (a1, . . . , at∗ , . . . , aT ∗) (Jawahar et al., 2019;
Reif et al., 2019; Tenney et al., 2019; Kobayashi et al., 2020). Because the attention mech-
anism computes ct as a weighted sum over all input token representation vectors—and
thus how each input token representation vector vt∗ can contribute to ct is independent
of its position within the sequence—, the attention mechanism can capture information
on syntactic or semantic dependencies regardless of the distance between tokens (Vaswani
et al., 2017, p. 5999). This stands in contrast to recurrent architectures that have problems
transmitting information over longer token sequences (see Section 1.2.3.6).

Early research articles that applied the attention mechanism for NMT used RNNs as
their encoder and decoder (Bahdanau et al., 2015; Luong et al., 2015). In search of a
computationally more efficient architecture in which the tokens of one sequence can be
processed in parallel rather than one after another, Vaswani et al. (2017) invented the
Transformer. This invention had a large impact on the field of NLP. Whilst until then
recurrent architectures were in many circumstances regarded as the most adequate tool
for the processing of natural language, now Transformer-based models constituted an even
more effective tool (Pilehvar & Camacho-Collados, 2020, p. 23).

The Transformer is comprised of a stack of several encoders followed by a stack of several
decoders (Vaswani et al., 2017, p. 6000). (In the original article there are six encoders and
six decoders (Vaswani et al., 2017, p. 6000).) The first encoder takes as an input a sequence
of positional word embeddings, conducts self-attention, and then feeds the updated token
representations into an FNN that then passes the again updated representations to the next
encoder (Vaswani et al., 2017, p. 6000, 6002). The next encoder applies the same operations
(self-attention followed by an FNN), passes the newly updated token representations to
the next encoder, and so on (Vaswani et al., 2017, p. 6000). Each decoder comprises a
self-attention layer, followed by encoder-decoder attention, followed by an FNN (Vaswani
et al., 2017, p. 6000, 6002). To make sure that the decoders work in an autoregressive
manner, masking is performed in the self-attention mechanisms of the decoders (Vaswani
et al., 2017, p. 6002). This is, when computing vector ct for output token ot, ct can only
attend to (and thus can only integrate information from) previous output tokens o<t but
not from following output tokens o>t (Vaswani et al., 2017, p. 6000, 6002).53

The Transformer with its encoder-decoder structure has been developed for the sequence-

53Several details of the Transformer architecture (such as residual learning, layer normalization, and
multi-head attention) are not mentioned here. A more thorough and detailed introduction to the Trans-
former is given in this dissertation’s article Introduction to neural transfer learning with Transformers for
social science text analysis.
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to-sequence modeling task of machine translation. Today, a huge spectrum of models that
make use of elements of the Transformer architecture and are applied to all sorts of NLP
tasks exist. Transformer encoders are often used as the architectural basis in autoencoding
models, that tend to perform well on natural language understanding tasks (see e.g. Devlin
et al., 2019; Liu et al., 2019b; Lan et al., 2020). Transformer decoders can be the backbone
of autoregressive models, which are naturally suited for natural language generation tasks
(Radford et al., 2018, 2019). The full Transformer encoder-decoder structure is made use
of in sequence-to-sequence models that are applied to sequence-to-sequence tasks such as
translation or text summarization (Lewis et al., 2020; Raffel et al., 2020). (For a more
detailed introduction to the Transformer and the concepts mentioned here see the article
Introduction to neural transfer learning with Transformers for social science text analysis
in this dissertation.)

1.2.3.8 Transfer Learning

In their survey on transfer learning, Pan & Yang (2010, p. 1346-1347) make the following
definitions:54

“a domain D consists of two components: a feature space X and a marginal
probability distribution p(X), where X = (x1, . . . ,xN) ∈ X . For example,
if our learning task is document classification, and each term is taken as a
binary feature, then X is the space of all term vectors, xi is the ith term vector
corresponding to some document, and X is a particular learning sample. [...]
Given a specific domain, D = {X , p(X)}, a task consists of two components:
a label space Y and an objective predictive function f(·) (denoted by T =
{Y , f(·)}), which is not observed but can be learned from the training data,
which consist of pairs (xi, yi), where xi ∈X and yi ∈ Y”.

Furthermore, the distinction is made between the source task TS and the source domain
DS, on the one hand, and the target task TT and the target domain DT, on the other hand,
(Pan & Yang, 2010, p. 1346-1347). A researcher is actually interested in conducting the
target task in the target domain (Pan & Yang, 2010, p. 1346). In doing so, a researcher
may make use of information from a source task in a source domain (Pan & Yang, 2010,
p. 1346-1347).

Given these definitions, transfer learning can be defined as a learning procedure in which
knowledge from a source task TS and source domain DS is used with the aim to better
approximate the target task function fT in the target domain DT, where either TS 6= TT or
DS 6= DT (Pan & Yang, 2010, p. 1347).

In the usual supervised learning setting, for each task in each domain, a new model is
trained based on a new training data set—and the training set instances are (assumed

54The notation used in Pan & Yang (2010, p. 1346-1347) has been adapted to match the notation in
this dissertation.
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to be) i.i.d. observations from p(x, y) (Ruder, 2019a, p. 42). This learning procedure,
however, runs into problems if for a given target task or target domain of interest there
are too few labeled training instances available to train a model whose predictions are
reliable and satisfyingly accurate (Ruder, 2019a, p. 3, 42). The idea of transfer learning
then is to take the knowledge that has been acquired from another task or another domain
and to use this knowledge in the learning process of the target task in the target domain
(Ruder, 2019a, p. 42-44). The expectation is that the transferred knowledge (e.g. because
it comprises information that captures general aspects and thus travels well beyond the
source task and domain) is useful for the target task and domain and hence a model that
is trained via transfer learning has a better generalization performance than models that
are trained on data from the target task and domain alone (Ruder, 2019a, p. 3). In NLP,
the knowledge that is transferred from source task or domain to target task or domain are
typically learned model parameters of a trained model (Ruder, 2019a, p. 43).

Ideas, motivations, and procedures for transfer learning have been around for decades
within the machine learning community (Caruana, 1993; Pan & Yang, 2010, p. 1346). In
the field of NLP, Collobert & Weston (2008) applied transfer learning in their notable 2008
paper. Moreover, the NLP procedure of utilizing word embeddings that have been trained
on large general corpora (Mikolov et al., 2013a,c; Pennington et al., 2014) for downstream
target tasks also constitutes a form of transfer learning (Ruder, 2019a, p. 3). Yet only dur-
ing the last few years transfer learning became an essential and nearly ubiquitous learning
practice in NLP (Bommasani et al., 2021, p. 5). What is more, in the whole field of AI
research, transfer learning has emerged as an important core learning procedure (Bom-
masani et al., 2021, p. 5). It is even considered to constitute a new “paradigm for building
artificial intelligence (AI) systems” (Bommasani et al., 2021, p. 3).

In his Ph.D. thesis on Introduction to neural transfer learning for natural language pro-
cessing Ruder (2019a) distinguishes four types of transfer learning:

• Sequential transfer learning. In sequential transfer learning, source and target tasks
differ (Ruder, 2019a, p. 45). The tasks differ in the sense that the space of values the
output variable can take in the source task is not the same space of values the output
variable can take in the target task; i.e. YS 6= YT (Ruder, 2019a, p. 45). For example,
the source task could be language modeling, and then at each step the source task
would be to predict the next textual token out of a vocabulary of U features given
the sequence of previous tokens such that at each step yi ∈ {z1, . . . , zu, . . . , zU}. The
target task, in contrast, could be a binary classification task in which the set of values
for the output variable would be yi ∈ {0, 1}. As YS 6= YT consequently also fS 6= fT

(Ruder, 2019a, p. 45).

The learning procedure in sequential transfer learning is such that a model first is
trained on the source task (pretraining phase) and then the trained model (including
its learned parameters) is used as an input for training on the target task (adaptation
phase) (Ruder, 2019a, p. 64). The general idea is to choose a source task that
is suitable for learning a model that functions as a very general, almost universal
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language representation tool in order to then use this hopefully well-generalizing
model as an effective basis for the learning process on the target task (Ruder, 2019a,
p. 64). A once pretrained source model can be used as an input to not only one but
various different target tasks (Ruder, 2019a, p. 63-64).

In order to train such a highly general language representation model, a large number
of training examples and a suitable pretraining task are required (Ruder, 2019a,
p. 65). In NLP, many language representation source models have been pretrained
in a self-supervised fashion via (masked) language modeling tasks on sets of large
corpora (such as the English Wikipedia, the BooksCorpus Dataset (Zhu et al., 2015),
or web document-based corpora) (e.g. Radford et al., 2018; Devlin et al., 2019; Liu
et al., 2019b; Radford et al., 2019; Beltagy et al., 2020).

Whilst the process of pretraining requires vast amounts of training data and con-
sumes considerable amounts of computational and time resources (for a comparative
overview see Aßenmacher & Heumann, 2020, p. 6), the adaptation to a target task
requires comparatively few resources (Ruder, 2019a, p. 63, 64). In the adaptation
phase, a very common procedure in NLP is to fine-tune a pretrained language rep-
resentation model to the target task (Ruder, 2021b).55 Fine-tuning typically implies
that the pretrained model is retained and simply added an output layer that matches
the target task (Ruder, 2019a, p. 77). Then, the pretrained model with the target-
task specific output layer is trained on the target task training data. During train-
ing the gradients are allowed to backpropagate through the layers of the pretrained
model, thereby adapting the pretrained parameters to the target task (Ruder, 2019a,
p. 77-79).

When applying sequential transfer learning, the same prediction performance on the
target task can be achieved with a substantively lower proportion of training ex-
amples than when conducting the usual supervised learning procedure, in which no
knowledge is transferred and a model is trained from scratch using only the target
task training data (Howard & Ruder, 2018, p. 334). In settings in which only a limited
number of labeled target task training set instances is available, transfer learning—by
leveraging information acquired in pretraining—allows researchers to obtain higher
generalization performances than when not using transfer learning (Howard & Ruder,
2018, p. 334-335). Across various NLP tasks, sequential transfer learning with pre-
trained models (many of which are based on the Transformer architecture) has led
to substantive enhancements in the prediction performances that NLP models are
able to reach (Ruder, 2019a, p. 75; Bommasani et al., 2021, p. 22-23). Transformer-
based models that are used in a sequential transfer learning setting are presented

55An alternative yet meanwhile less frequently used procedure is feature extraction (Ruder, 2019a, p. 77).
Here, the pretrained model parameters are extracted from the source model to function as the input to
a second, independent model which is trained on the target task in the adaptation phase (Ruder, 2019a,
p. 77). In contrast to fine-tuning, in feature extraction, the pretrained parameters remain unchanged
during adaptation (Ruder, 2019a, p. 77, 79).



116 1. Background and Motivation

and applied in this dissertation’s article Introduction to neural transfer learning with
Transformers for social science text analysis.

• Multitask learning. In multitask learning (Caruana, 1993, 1997), source and target
tasks differ in the same way as they differ in sequential transfer learning (i.e. YS 6= YT),
but source and target tasks are learned simultaneously rather than sequentially
(Ruder, 2019a, p. 44-45). (As learning is conducted simultaneously, in the context
of multitask learning, the source tasks are also called auxiliary tasks.) There are
two main ways of how multitask learning is implemented with deep neural networks
in practice: hard vs. soft parameter sharing (Ruder, 2019a, p. 48). In hard param-
eter sharing, a single deep neural network is trained that has one separate output
layer for each task (Ruder, 2019a, p. 48). This implies that the target task and
the auxiliary tasks share the same set of hidden layers (Ruder, 2019a, p. 48). The
hidden layer representations thus form the basis for not only one but several tasks
and thereby are forced to be more general rather than task-specific (Ruder, 2019a,
p. 48). This makes overfitting less likely and tends to improve generalization (Ruder,
2019a, p. 48). In soft parameter sharing, a separate model is trained for each task,
but the parameters of each model are regularized to become not too different from
each other (e.g. by adding to the loss function the L2 norm between parameters as a
regularizing component) (Duong et al., 2015, p. 846; Ruder, 2019a, p. 49).

• Domain adaptation. In domain adaptation, source and target domains are charac-
terized by different distributions over the space of textual features and output labels
(Kouw & Loog, 2019, p. 3; Ruder, 2019a, p. 44-45). This is, source and target do-
mains share the same feature-label space X × Y but are characterized by different
distributions over this shared feature-label space, i.e. pS(x, y) 6= pT(x, y) (Kouw &
Loog, 2019, p. 3; Ruder, 2019a, p. 44-45). For example, documents in the source and
target domains could be about different topics and thus have different distributions
over the feature space (Ruder, 2019a, p. 44-45). Or, the type of documents used for
the source task could be different from those of the target task and hence source and
target documents could exhibit different linguistic styles (which in turn are reflected
in different distributions). The goal in domain adaptation is to leverage knowledge in
the training data of the source domain for the learning process in the target domain
in which none (or only a small set of) the data are labeled (Ruder, 2019a, p. 86). In
NLP, domain adaptation has been addressed by (1) approaches that operate on the
basis of the feature distributions (and e.g. try to learn representations in a united
lower-dimensional space) (Ruder, 2019a, p. 87-93), (2) approaches that weight or
select instances from the source domain based on the degree to which they are con-
sidered relevant for the target domain (Ruder, 2019a, p. 93-96), and (3) approaches
that employ self-training or multi-view training (see Ruder, 2019a, p. 96-99).

Several times in this dissertation, random oversampling is employed. In random
oversampling, training documents that belong to classes that make up a small share
within the training data are randomly sampled with replacement and appended to
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the training data set such that the distribution of class labels within the training data
is transformed into a more balanced distribution (Brownlee, 2020b). Oversampling
can be regarded as one technique to address domain adaptation (Jiang, 2008, p. 4):
In domain adaptation, the aim is to minimize the expected loss in the target domain
(that has underlying joint distribution pT(x, y)) (Jiang, 2008, p. 3). Hence, the aim
is to minimize

RT(f̃) =
∫ ∫

L(y, f̃(x))pT(x, y) dx dy (1.66)

(see also Equation 1.1). But pT(x, y) is unknown and training data are only available
for the source domain with underlying joint distribution pS(x, y) (Jiang, 2008, p. 3).
The following re-formulations show that—under the assumption that the conditional
distribution of x given class label y is the same in the source and the target domain,
i.e. pS(x|y) = pT(x|y)—weighting instances from the source training data with pT(y)

pS(y)
during training allows for domain adaptation from source to target domain (see Jiang,
2008, p. 3-4; Kouw & Loog, 2019, p. 4-5, 7): Multiplying and dividing Equation 1.66
by pS(x, y) gives

RT(f̃) =
∫ ∫
L(y, f̃(x))pT(x, y)

pS(x, y)pS(x, y) dx dy (1.67)

RT(f̃) =
∫ ∫

L(y, f̃(x))pT(x|y)pT(y)
pS(x|y)pS(y)pS(x, y) dx dy (1.68)

and assuming that pS(x|y) = pT(x|y) gives

RW(f̃) =
∫ ∫
L(y, f̃(x))pT(y)

pS(y)pS(x, y) dx dy (1.69)

(Jiang, 2008, p. 3-4; Kouw & Loog, 2019, p. 4-5, 7). Thus, when approximating the
risk RT(f̃) with the empirical risk RW,emp(f̃) on the basis of training data instances
drawn from source domain distribution pS(x, y) (see again Equation 1.2), then adap-
tation to the target domain can be achieved by weighting each training instance from
the source domain with pT(y)

pS(y) (Jiang, 2008, p. 4; Kouw & Loog, 2019, p. 7).

The connection between domain adaptation via instance weighting and random over-
sampling is as follows: Random oversampling alters the marginal distribution of y
in the data. The marginal distribution pT(y) in the oversampled training data no
longer equals pS(y) in the source training data. Yet it can be safely assumed that
pS(x|y) = pT(x|y). Oversampling thus has a similar effect as weighting each instance
with pT(y)

pS(y) (Kouw & Loog, 2019, p. 7).

• Cross-lingual learning. In cross-lingual learning, source and target domains also
differ, but this time source and target domains do not share the same feature space
because they come from different languages (i.e. XS 6= XT) (Ruder, 2019a, p. 44-
45). Cross-lingual learning is highly important to address the discrepancies that



118 1. Background and Motivation

exist between low- and high-resource languages regarding the availability and per-
formance of NLP technologies (Ruder, 2019b). High-resources languages are a small
number of languages for which large amounts of labeled and unlabeled text data
are available (Joshi et al., 2020, p. 6282-6285). For low-resource languages, which
constitute the large majority of languages spoken in the world, only small amounts
of labeled and unlabeled text data exist (Joshi et al., 2020, p. 6282-6285). As the
usage of vast amounts of text data during (pre)training is key to the generaliza-
tion performance of NLP models, speakers of high-resource languages benefit from
various high-performing NLP technologies, whereas for low-resource languages these
technologies either are not available or only in mediocre quality (Ruder, 2019b; Joshi
et al., 2020, p. 6282). The NLP community is becoming aware of this problem, yet
so far the primary focus of NLP researchers has been on engineering methods for the
processing of spoken and written English (Ruder, 2020).56

Given a (possibly high-resource) language A in which labeled and unlabeled data
relevant for a given task exist and given a second (possibly low-resource) language
B in which only unlabeled data are accessible, one way for cross-lingual transfer
learning is to proceed as follows (Ruder, 2019b): First, cross-lingual representations
are learned. Second, the cross-lingual representations serve as the backbone of a
model that is trained on the labeled training data in language A in order to learn
parameters that are functional in solving the task. Finally, the entire trained model
comprising the cross-lingual representations and the task-functional parameters is
applied without further adaptation on unlabeled data instances in language B to
generate predictions for these instances in language B.57

1.2.3.9 Representations

After this overview of deep learning architectures and transfer learning, this subsection in
more detail focuses on the real-valued vector representations that deep neural networks
operate on and produce. In doing so, this subsection fits many aspects that have been
mentioned up to this point into an overall picture.

Neural networks internally represent entities as real-valued vectors (see, for example, Equa-
tions 1.32 to 1.35 that describe the FNN). In NLP, the represented entities can be the terms
in a vocabulary (then called word embeddings) (Pilehvar & Camacho-Collados, 2020, p. 5).
But the entities also, for example, can be single characters (Akbik et al., 2018), subwords

56This narrow focus on the English language (and perhaps a few other high-resource languages such as
Spanish and German) is not only problematic because of the availability of NLP technologies for practical
use but also from a machine learning perspective: Model architectures and modeling procedures that have
been identified as performing better than others are not necessarily language agnostic and thus need not
be suitable for languages with substantively different structural properties than English (Ruder, 2020).

57This last step is referred to as zero-shot cross-lingual transfer (Ruder, 2019b; Wu & Dredze, 2019;
Nozza et al., 2020).
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(Bojanowski et al., 2017), word senses and synsets (Rothe & Schütze, 2015; Kumar et al.,
2019),58 the nodes in a network (Kipf & Welling, 2017), sentences, documents (Le &
Mikolov, 2014; Reimers & Gurevych, 2019), or tokens (McCann et al., 2018; Peters et al.,
2018a).

The representation vectors position the entities within a continuous space and thereby
encode some information about the entities. For example, when working with word em-
beddings, researchers usually seek to have representation vectors that encode the terms’
meanings such that the continuous space is a semantic space and the relative positioning
of terms within the semantic continuous space reflects the semantic similarity of terms (see
again Figure 1.3b) (Pilehvar & Camacho-Collados, 2020, p. 4-6).

To give a formal expression: Given a set of U entities (e.g. a set of U vocabulary terms) de-
noted by {z1, . . . , zu, . . . , zU}, each entity zu is represented by a vector zu of dimensionality
K whose elements are real-valued: zu ∈ RK . The set of entities thus are represented by a
set of vectors {z1, . . . ,zu, . . . ,zU} that position the entities in a K-dimensional Euclidean
space (which here is referred to as continuous space).

In Section 1.2.2 it was pointed out that when researchers apply conventional machine
learning methods, each feature constitutes a dimension of the representational space and
is represented as a one-hot encoded vector (Goldberg, 2016, p. 349-351). As the number
of textual features in any NLP application (even after feature exclusion and normalization
operations) is usually very high, the usage of one-hot encodings implies that feature repre-
sentations are sparse and have a high dimensionality (Goldberg, 2016, p. 349-351). Deep
learning models, in contrast, operate on features that are represented as vectors within a
continuous representational space of dimensionality K (where K is typically much smaller
than the number of textual features U) (Goldberg, 2016, p. 349-351).59 The representa-
tion of features as vectors in a continuous space implies low-dimensional and dense feature
representations (Goldberg, 2016, p. 349-351). Low-dimensional, dense representations fa-
cilitate generalization (Goldberg, 2016, p. 351). Moreover, the values of the elements of
the representation vectors are computed from model parameters that are learned during
training (Goldberg, 2016, p. 349). Hence, neural networks learn representations.

In NLP, early representation learning efforts were directed at learning real-valued vector
representations for vocabulary terms, known as word embeddings (see Bengio et al., 2003).
Seminal early model architectures to learn word embeddings are Global Vectors (GloVe)
(Pennington et al., 2014) and word2vec (which comprises two distinct but related models
named continuous bag-of-words (CBOW) and Skip-gram (Mikolov et al., 2013a)). All of

58Synsets are the building blocks of the WordNet database (Miller, 1995). In WordNet, “[n]ouns, verbs,
adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct
concept” (Princeton University, 2010).

59Depending on the model architecture, the embedding dimension (i.e. the dimensionality of the rep-
resentation vectors) currently can be expected to range between 100 (Mikolov et al., 2013a; Pennington
et al., 2014) and 1600 (Radford et al., 2019; Li et al., 2020d). Yet in the extreme case of the GPT-3 model
(Brown et al., 2020) the embedding dimension is as large as 12,288.
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these procedures learn an embedding for a vocabulary term zu, that corresponds to target
word at, by making use of context words that occur in a window around at (Pennington
et al., 2014, p. 1533-1535). By choosing to use word contexts for learning word embeddings,
these procedures employ the distributional hypothesis (Firth, 1957) which states that a
term’s meaning can be learned from the context of words it typically co-occurs with and
semantically similar terms tend to occur in similar contexts—which is why the embedding
vectors of semantically similar terms are expected to be similar (Goldberg, 2016, p. 365;
Spirling & Rodriguez, 2020, p. 4).

CBOW and Skip-gram. The CBOW and Skip-gram architectures train a model to
predict a word given a symmetric window of its surrounding words (CBOW) or to
predict a set of words surrounding the input word (Skip-gram) (Mikolov et al., 2013a,
p. 4-5). Given training data consisting of a sequence of T words (a1, . . . , at, . . . , aT ),
the Skip-gram model seeks to minimize the following negative log-likelihood (Mikolov
et al., 2013b, p. 3112):

LSkip−gram = − 1
T

T∑
t=1

∑
−C≤j≤C,j 6=0

log p(at+j|at) (1.70)

where C is the number of context words to the left and right of input word at for
which predictions are to be made. p(at+j|at) is the probability of context word at+j
to occur given input word at and is modeled asa

p(at+j|at) =
exp(z̃>[at+j ]z[at])∑U
u=1 exp(z̃>u z[at])

(1.71)

z[at] is the embedding for the term corresponding to word at, z̃[at+j ] is the embedding
corresponding to context word at+j, U is the size of the vocabulary, and z̃u is the
embedding of context term zu (Mikolov et al., 2013b, p. 3113).

GloVe. GloVe minimizes the objective

LGloV e =
U∑
u=1

U∑
j=1

f(cuj)(z>u z̃j + bu + b̃j − log cuj)2 (1.72)

where again U is the number of unique terms in the vocabulary, zu is the embedding
of term zu, z̃j is the embedding of context term zj, bu and b̃j are bias terms, and cuj
is the number of times that term zj is present in the context of term zu (Pennington
et al., 2014, p. 1535).

aDue to the high costs involved in computing the softmax function in Equation 1.71, Mikolov
et al. (2013b, p. 3113-3114) in practice approximate the softmax via negative sampling.
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GloVe. (cont.) The size of the context window for which term co-occurrences
are recorded may, for example, comprise 10 words to the left and right of each
word (Pennington et al., 2014, p. 1538). Context windows can be chosen to be
symmetric or asymmetric (Pennington et al., 2014, p. 1538). When computing
the co-occurrence count cuj, Pennington et al. (2014, p. 1538) furthermore use
decreasing weights such that a context term zj that is q positions away from a
target term zu, increases cuj by 1/q. f(cuj) is a weighting function that seeks to
ensure that term pairs that co-occur rarely and term pairs that co-occur frequently
do not get overweighted (Pennington et al., 2014, p. 1535).

Therefore, GloVe effectively is a weighted least squares regression model (Pennington
et al., 2014, p. 1535). GloVe seeks to find real-valued vector representations for term
zu and context term zj such that the squared difference between the dot product of
these representations, z>u z̃j, and the log of the number of times zu and zj co-occur
in a context, log cuj, is minimized (Pennington et al., 2014, p. 1535; Ruder, 2019a,
p. 73).

Note that for each term zu in the vocabulary, GloVe learns two separate embeddings:
an embedding when zu is the target term, zu, and an embedding when zu is a
context term, z̃u. If the context window is chosen to be symmetric, zu and z̃u should
only differ due to slightly different random initializations (Pennington et al., 2014,
p. 1538). To reduce variance and increase generalization performance, Pennington
et al. (2014, p. 1538-1539) compute the final GloVe embedding vector for a term zu
as zu + z̃u.

The central shortcoming of these early procedures for learning embeddings is that for
each feature a single embedding vector, zu ∈ RK , is learned. There are two consequences
that result from representing each feature by a single vector. First, it implies that the
features are mapped into one representational space that encodes one information about
the features (Ruder, 2019a, p. 74). The representational space may, for example, primarily
encode the syntactic relatedness between features but not very well capture their semantic
similarity (Mikolov et al., 2013a, p. 7). Or, the encoded information may be a combination
of semantic and syntactic aspects that, however, are fused into one representational space
(Mikolov et al., 2013a, p. 7). In recent years, deep learning models have been utilized
to learn deep representations in which each entity is represented by one vector at each
hidden layer (Peters et al., 2018a, p. 2228-2230; Ruder, 2019a, p. 74). For example, when
pretraining a deep biLSTM with two hidden layers on a language modeling task, one obtains
for the tth token at one vector representation from each hidden layer such that at is not
only represented by the input embedding z[at] but also by h1

t and h2
t (see again Equations

1.58 and 1.60) (Peters et al., 2018a, p. 2229). By using deep neural networks, a hierarchy
of feature representations is learned in which higher-level representations draw from lower-
level representations (Ruder, 2019a, p. 74). This allows for learning different types of
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information at different levels and for learning complex, abstract, task-specific higher-level
representations that can make use of information encoded at lower levels (Ruder, 2019a,
p. 74; Tenney et al., 2019).

Which specific type of information is encoded at which layer will depend on the model
architecture and the task a model is trained on. Research that inspects the information
captured by deep neural networks that have been trained on (variants of) language mod-
eling tasks suggests that core information on textual building blocks (e.g. morphological
information, or information about the presence or absence of words) tends to be encoded
at lower layers, syntactic information at middle layers, and semantic information at higher
layers (Peters et al., 2018a,b; Jawahar et al., 2019; Tenney et al., 2019). Moreover, deeper
layers seem crucial for learning long-range syntactic or semantic dependencies (Peters et al.,
2018b; Jawahar et al., 2019; Tenney et al., 2019). Empirical evidence indicates that many
NLP tasks benefit from models that operate on deep hierarchical representations rather
than on shallow one-layer representations (Peters et al., 2018a, p. 2232-2234).

The second consequence of representing each feature by a single vector is that different
meanings of the same feature are subsumed into one representation (Pilehvar & Camacho-
Collados, 2020, p. 60). This phenomenon is called meaning conflation deficiency (Pilehvar
& Camacho-Collados, 2020, p. 60). To illustrate, according to the WordNet database
(Miller, 1995), the term ‘party’ denotes several different concepts (synsets). Two of these
synsets are (1) “an organization to gain political power” (Princeton University, 2010) and
(2) “an occasion on which people can assemble for social interaction and entertainment”
(Princeton University, 2010). When representing the term ‘party’ with a single vector, the
vector representation will pool these two meanings. Hence, in a single continuous semantic
representational space, the vector for ‘party’ will be placed somewhere between vectors of
terms that are semantically close to the first synset (e.g. ‘politics’, ‘policy’) and vectors of
terms that are semantically close to the second synset (e.g. ‘festivity’, ‘celebration’) (see
Figure 1.11) (Schütze, 1998, p. 102).60

The meaning conflation deficiency results from the fact that word embedding models learn
one representation for each feature (Neelakantan et al., 2014, p. 1059). This is, for each
class of tokens, that are composed of an identical sequence of characters and symbols,
one representation is learned. This procedure, however, ignores that terms that have the
same spelling can have multiple meanings (Neelakantan et al., 2014, p. 1059). There are
homonyms: terms that have the same spelling but are conceptually distinct and hence
have a different meaning (e.g. ‘suit’ : lawsuit vs. garment) (Manning & Schütze, 1999,
p. 110). And there are polysemes: terms that have the same spelling and different but

60Moreover, the meaning conflation deficiency can have negative consequences for the entire semantic
space: Semantically unrelated terms that are semantically similar to different senses of a third polysemous
term are likely to be drawn together in space (Neelakantan et al., 2014, p. 1059). For example, due
to their similarity to the polysemous term ‘mouse’ the terms ‘rat’ and ‘computer’ are drawn closer in
semantic space as would be appropriate given their level of semantic dissimilarity (Neelakantan et al.,
2014, p. 1059-1060; Pilehvar & Camacho-Collados, 2020, p. 61).
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Figure 1.11: Meaning Conflation Deficiency. The term ‘party’ is a homonym. It has several
distinct meanings. Two of them are (1) “an organization to gain political power” (Princeton Univer-
sity, 2010) and (2) “an occasion on which people can assemble for social interaction and entertainment”
(Princeton University, 2010). When the term ‘party’ is represented by a single vector, the vector fuses
these distinct meanings and is positioned somewhere between vector representations of terms that are
semantically close to the first concept (e.g. ‘politics’, ‘policy’) and vector representations of terms that are
semantically close to the second synset (e.g. ‘festivity’, ‘celebration’).

related meanings (e.g. ‘branch’ : the branch of a plant vs. the branch of an organization)
(Manning & Schütze, 1999, p. 110).

One approach to address the meaning conflation deficiency is to learn representations
not for individual terms but for individual meanings (i.e. senses) of terms (Camacho-
Collados & Pilehvar, 2018, p. 748). The idea of sense representations is to have one
representation per sense rather than one representation per term (Camacho-Collados &
Pilehvar, 2018, p. 748). Methods for learning sense representations can be roughly grouped
into (1) unsupervised approaches in which the differentiation between distinct senses of
a term, as well as representations for the different senses, are learned in an unsupervised
fashion directly from text corpora (e.g. Schütze, 1998) and (2) knowledge-based approaches
that use sense inventories such as WordNet to learn sense representations (e.g. Rothe &
Schütze, 2015) (Camacho-Collados & Pilehvar, 2018, p. 744, 749).61

After having learned sense representations, a word sense disambiguation algorithm can
be applied to a sequence of tokens that is to be processed by an NLP model (Pilehvar &
Camacho-Collados, 2020, p. 76). The word sense disambiguation algorithm can identify the
senses of ambiguous tokens in the sequence such that then the respective sense embeddings
(rather than the word embeddings) are used to represent the tokens (Pilehvar & Camacho-
Collados, 2020, p. 76). Although such a procedure helps in incorporating information about
senses of terms, word sense disambiguation is not without error and introduces additional

61For a detailed overview of sense representation learning techniques see Camacho-Collados & Pilehvar
(2018).
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noise (Pilehvar & Camacho-Collados, 2020, p. 76).

At present, the predominantly used approach to overcome the meaning conflation defi-
ciency and to acquire representations that capture contextualized meanings is to learn
contextualized embeddings (Pilehvar & Camacho-Collados, 2020, p. 74). Word embeddings
are static in the sense that regardless of a feature’s context—and hence regardless of the
context-specific meaning of a feature—there is one representation for each feature (Pilehvar
& Camacho-Collados, 2020, p. 74). Contextualized embeddings, in contrast, are adaptive:
There is one representation per token rather than one representation per feature (Pilehvar
& Camacho-Collados, 2020, p. 82). The embedding for a token at is a function of the
embeddings of those tokens that are positioned before and/or after token at (Pilehvar &
Camacho-Collados, 2020, p. 82). Hence, the embedding for token at is a function of at’s
context, which is different for each token in each sequence (Pilehvar & Camacho-Collados,
2020, p. 82).

How are these context-specific token representations learned? Contextualized embeddings
simply are the hidden representations in deep neural networks (Pilehvar & Camacho-
Collados, 2020, p. 85). In an RNN, for example, the hidden representation for the tth
token, ht, is obtained by sequentially processing all tokens up until the tth token (see
again Section 1.2.3.6 and Equation 1.58). ht hence is not only a function of the static
input word embedding z[at], it is also a function of the sequence of its preceding tokens
and thus provides a contextualized representation of the tth token. Similarly, the repre-
sentation for the tth token produced as the output from a Transformer encoder (which is
an updated version of ct in Equation 1.63) results from the self-attention mechanism that
is specifically designed to let the representation for the tth token incorporate information
from surrounding tokens (see again Section 1.2.3.7 and Equation 1.63). Consequently, if
two tokens consist of the same character string but are surrounded by a different set of
tokens, their hidden representations will be different. The different token representations
may reflect the tokens’ (slightly) different meanings that are invoked by the contexts in
which they are embedded in (Reif et al., 2019). The different representations, however,
also may reflect the tokens’ different syntactic properties or their semantic or syntactic
relations to other tokens in the sequence (Clark et al., 2019; Hewitt & Manning, 2019;
Tenney et al., 2019).

The utilization of representations that are deep and contextualized (e.g. in ELMo by Peters
et al., 2018a) introduced major advancements within the field of NLP. Moreover, combin-
ing research on sequential transfer learning, on the one hand, with deep contextualized
representations, on the other hand, it became a common practice within NLP to use deep
neural networks in pretraining in order to learn model parameters that are functional in
producing contextualized representations and then to take the entire pretrained model (in-
cluding the pretrained model parameters) for fine-tuning on the target task (Pilehvar &
Camacho-Collados, 2020, p. 85; Ruder, 2021b).62 The idea in sequential transfer learning

62Because in deep neural networks, that are used for generating deep contextualized token representa-
tions, the representation of token at will be different each time at occurs with another sequence of tokens,
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is to pretrain, transfer, and make use of model architectures with model parameters that
are effective in creating representations that are applicable across a wide spectrum of tasks.
Deep contextualized token representations are context-specific, but their representational
form—and the model architecture with pretrained model parameters that are involved in
creating them—can be a highly general, well-generalizing tool.

This dissertation presents and applies several deep learning architectures that are used
in a transfer learning setting and produce deep contextualized representations (see this
dissertation’s article Introduction to neural transfer learning with Transformers for social
science text analysis).

1.2.4 Supervised Learning in Text-Based Political Science Research

Section 1.2 has mapped the fundamentals of modern NLP techniques. Against this back-
ground, there is the question of which methods political scientists use when measuring
concepts from texts. How do political scientists represent textual entities (words, docu-
ments, ...), and which supervised learning algorithms do they apply? In order to answer
these questions based on a systematic review (instead of relying on single examples) the
following procedure was conducted:

1. In Political Analysis—which arguably still is the leading method-focused political
science journal—all articles that were published in issues 01/2020 to 02/2022 as
well as all articles that were listed on April 6th, 2022 as recently published online
FirstView articles were collected. Among these 113 collected articles, those articles
that contained any of the following keywords within their full text were retained
for further inspection: “machine learning”, “text analysis”, “text data”, “natural
language processing”, “deep learning”, “neural network”.

2. For each of the 36 articles that resulted from the search in step 1, it was inspected
whether the article applied supervised machine learning on text data. For each of the
14 articles that did, it was recorded separately for each presented application (i.e. for
each target task)

• which type of text was used,

• which concept was measured,

• how documents were represented, and

• which learning algorithms were used for training on the target task.

a token representation is not a static representation that can be learned once in pretraining and then can
be transferred. Rather, a token representation is dynamically created and is specific to a token sequence.
Hence, in transfer learning, it is not that token representations themselves are transferred but rather the
model architecture with pretrained model parameters (weight matrices, bias terms), that are functional in
producing token representations, are transferred.
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The results of this literature search are presented in Table 1.3.63 In all applications of
supervised learning on text data that have been identified with this literature search pro-
cedure, documents are represented as feature vectors in a document-feature matrix. The
document-feature matrix hereby often result from a very basic preprocessing process (see
e.g. Di Cocco & Monechi, 2021, p. 5; Osnabrügge et al., 2021, p. 6). Most articles combine
document-feature matrix representations with conventional machine learning algorithms.
SVMs, generalized linear models (GLMs) (mostly: logistic regression), and random forests
are particularly frequently applied.64 In some applications, researchers also experiment
with other representational forms. In these instances, a document is represented as the
(weighted) mean across pretrained word embeddings, as a vector representation obtained
via the Paragraph Vector method (Le & Mikolov, 2014), or as a lower-dimensional repre-
sentation obtained from a topic model.

Neural networks are applied less frequently than conventional machine learning algorithms.
And if deep neural networks are used as learning algorithms, then they are not always used
in ways that are likely to yield desired performance effects: Di Cocco & Monechi (2021)
and Erlich et al. (2021), for example, employ very small neural networks (e.g. an FNN with
two hidden layers (Di Cocco & Monechi, 2021, Appendix p. 6), or a CNN with one convo-
lution layer and embedding dimension 32 (Erlich et al., 2021, Appendix p. 15)). Moreover,
no pretraining is employed in these cases. Only Chang & Masterson (2020) present an
adequate application of LSTMs—and then empirically also observe performance enhance-
ments. There is no application that employs Transformer-based models for supervised
learning.65

Hence, in the major method-focused journal for political science research, scientists pri-
marily apply methods for supervised learning on text data that stem from the past era
of statistical NLP and not the era of neural NLP (see again Section 1.2.2). The liter-
ature search conducted here does not uncover a single application of Transformer-based
models (let alone Transformers plus sequential transfer learning with fine-tuning) for the
purpose of measuring concepts from text. The article Introduction to neural transfer learn-
ing with Transformers for social science text analysis seeks to close this gap by providing
an introduction to deep learning, sequential transfer learning, and the Transformer archi-
tecture.

63Note that the literature search procedure only focuses on applications of supervised learning on text
data. Table 1.3 hence does not list articles that exclusively apply self-supervised learning or unsupervised
learning on text data (Bussell, 2020; Rheault & Cochrane, 2020; Enamorado et al., 2021; Ying et al., 2021,
e.g.). Table 1.3 also does not present information on articles that apply supervised learning on data other
than text (e.g. Torres & Cantu, 2022), or articles that use text data but do not apply supervised learning
(e.g. Kim & Kunisky, 2021). Two notable articles within this group of not listed articles are Torres &
Cantu (2022) and Porter & Velez (2021). Torres & Cantu (2022) introduce the processing of image data
with CNNs to a political science audience. Porter & Velez (2021) use the Transformer-based GPT-2 model
for natural language generation to construct placebo texts for survey experiments.

64A random forest is a tree-based bagging algorithm (see Breiman, 2001a).
65Note, however, that Porter & Velez (2021) utilize the natural language generation-abilities of the

Transformer-based GPT-2 to generate texts that are then used as placebos in survey experiments.
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1.3 Measuring Attitudes from Texts

So far, core concepts and methods in machine learning and NLP have been introduced. The
article A comparison of approaches for imbalanced classification problems in the context of
retrieving relevant documents for an analysis has been motivated on pages 65 to 67 whilst
discussing selection processes. The article Introduction to neural transfer learning with
Transformers for social science text analysis has been motivated in Section 1.2.4 by showing
that text-based supervised analyses in political science do not widely use current NLP
methods. This section now motivates the article How to estimate continuous sentiments
from texts using binary training data by more closely inspecting a specific concept and the
ways in which this concept is usually measured from text.

1.3.1 Defining Attitudes

In the computer science and NLP literature, sentiment is a loosely defined concept. Con-
cepts that relate to affect (e.g. emotion/feelings) as well as concepts that relate to cognition
(e.g. opinion) are seen as components of sentiment or are handled as if they were the same
as sentiment (Pang & Lee, 2008, p. 5-6; Liu, 2015, p. 1-2, 20-21; Mohammad et al., 2017,
p. 2). When viewing these vague definitions together, however, they correspond very well
with the concept of an attitude as used in social psychology (Liu, 2015, p. 2). Hence, here
sentiments are taken to be attitudes.

Across all attitude definitions that have been brought up in social psychology, the consistent
core notion is that an attitude is an evaluation of an entity (Banaji & Heiphetz, 2010, p. 352;
Albarracin et al., 2019, p. 3). A widely used definition reflecting this core notion is given
by Eagly & Chaiken (1993, p. 1) in which an attitude is conceptualized as “a psychological
tendency that is expressed by evaluating a particular entity with some degree of favour or
disfavour”.

According to this definition, an attitude is an inner latent tendency that can find expression
aParagraph Vector embeddings have been introduced by Le & Mikolov (2014).
bReadMe refers to the supervised learning procedure described in Hopkins & King (2010). ReadMe2 is

presented in Jerzak et al. (2022).
cBustikova et al. (2020, p. 50) use “a gradient descent approach known as SLEP”. In fact, this approach

is regularized logistic regression optimized via a gradient descent algorithm (Liu et al., 2009).
dChang & Masterson (2020) apply the extra-trees classifier that is related to the random forest classifier

(see Chang & Masterson, 2020, p. 402).
eHuang et al. (2020b) apply a specifically developed learning method that is related to multinomial

naive Bayes (see Huang et al., 2020b, p. 420).
fMiller et al. (2020) apply the perceptron classifier, which is a linear algorithm for binary classification

(Bishop, 2006, p. 192-193). In contrast to a multilayer perceptron (also known as FNN), the perceptron
classifier has a single layer and no hidden layers.

gJerzak et al. (2022) apply eight further classifiers for quantification that are not listed here but are
presented in Firat (2016).
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in an evaluative response (Eagly & Chaiken, 2007, p. 585-587). It is important to differ-
entiate between the attitude itself and an evaluative response toward an entity (Eagly &
Chaiken, 2007, p. 586-587; Fabringar et al., 2019, p. 111). Attitudes can give rise to evalua-
tive responses, but there are additional influencing situational cues and contextual factors
that have an effect on what evaluative judgment is expressed (Eagly & Chaiken, 2007,
p. 587). Researchers can only observe manifested responses but not the latent attitudes
themselves (Eagly & Chaiken, 2007, p. 584-585).

Attitudes, furthermore, are considered to be learned structures that are stored in memory
and can be accessed from there (Fabringar et al., 2019, p. 110-111).66 An attitude emanates
from various attitude-relevant information bases that can be of an affective, cognitive, and
behavioral nature (Fabringar et al., 2019, p. 112). When expressed in mathematical terms,
an attitude is a continuous variable resulting from a function that maps from various input
variables (the information bases) to a single continuous output (the attitude value) (see
Figure 1.12) (Cacioppo et al., 1997, p. 10, 13). The input variables (the information bases)
can be, for example, affective feelings toward the entity, beliefs about the entity, or past
behavioral responses toward the entity (Albarracin et al., 2019, p. 9; Fabringar et al.,
2019, p. 112). Here, ambivalences may arise: A person may have positive and negative
feelings toward an entity or may associate a positive emotion with the entity but at the
same time may have unfavorable thoughts toward the entity (Fabringar et al., 2019, p. 115-
116). Attitudes are the aggregated summary evaluation of these various attitude-relevant
information bases.

Attitudes are of high importance for social scientists because attitudes are among the most
central factors that influence what behavioral intentions humans form and which actions
they undertake (Ajzen, 1991). Attitudes, for example, define the values individuals attach
to outcomes. By comparing the attitude toward an outcome with the attitude toward
another outcome and the attitude toward yet another outcome, ranked preferences over
a set of outcomes emerge (Druckman & Lupia, 2000, p. 4). From economics to social
psychology, several theories combine the subjective value an individual attaches to an
outcome with an individual’s beliefs about self-efficacy and action-outcome relationships
to explain individual behavior (see e.g. the expected utility hypothesis in rational choice
theory, or the theory of planned behavior) (Ajzen, 1991; Shepsle & Bonchek, 2010).

66Note that the here outlined conceptualization of attitudes follows the prevailing view among social
psychologists studying attitudes (Fabringar et al., 2019, p. 110-111). In the opposing constructivist view,
attitudes are not learned structures in memory but rather are regarded to be constructions that are made
on-the-spot and arise from the situational context and readily accessible information (Banaji & Heiphetz,
2010, p. 352). The prevailing view, which is adopted in this dissertation, argues that evaluative reactions
indeed are constructed in a given situation from various influencing factors (one of which is attitudes), but
attitudes themselves are not on-the-spot creations but rather already existing, learned tendencies (Eagly
& Chaiken, 2007, p. 585, 587). Attitudes here are seen as “mental residues of past experience with the
attitude object” (Eagly & Chaiken, 2007, p. 587). As such repositories, attitudes are more or less enduring.
They can change over time due to ongoing experiences with the attitude entity (Fabringar et al., 2019,
p. 111).
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Figure 1.12: Attitude as a Continuous Concept. In social psychology, an attitude is con-
ceptualized as a continuous variable whose value is a function of the activation of positive and negative
information bases associated with the attitude entity (Cacioppo et al., 1997, p. 10, 13; Fabringar et al.,
2019, p. 112). The level of activation of positive and negative information bases here runs from low to high.
This figure is adapted from “Relationship between attitudes and evaluative space: A critical review, with
emphasis on the separability of positive and negative substrates,” by J. T. Cacioppo and G. G. Berntson,
1994, Psychological Bulletin,115 (3), p. 412. Copyright 1994 by the American Psychological Association.
Cacioppo & Berntson (1994, p. 412) note that the attitudes in the middle of the value range depicted here
can result from a low activation of positive and negative information bases (neutrality) or from a high
activation of positive and negative information bases (ambivalence).
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Through the aggregation of individual actions, attitudes also affect the social level. The
distribution of voters’ attitudes toward political parties may materialize in election results.
Moreover, policy-makers are likely to sense the direction in which a population’s attitudes
toward a policy issue are heading and, to improve their re-election chances, may adapt
their political decisions accordingly (Stimson et al., 1995, p. 544-545). Hence, attitudes
are central for individual action and aggregate social outcomes.

Traditionally, the measurement of attitudes is conducted via self-reports (e.g. in surveys or
as part of experiments) or via implicit measures (e.g. in implicit association tests). In the
latter, attitude values are deduced from the speed or accuracy with which humans conduct
tasks when being exposed to different attitude objects and value-laden stimuli (Gawronski
& Brannon, 2019, p. 158ff.). Especially if the texts are not produced for the purpose of
being studied but rather in a real-life social context as a means of communication, the
measurement of attitude expressions from texts—in contrast to self-reports—constitutes
an unobtrusive method of observation. In contrast to implicit measures employed in lab
experiments, the textual analysis of attitudes allows for studying attitude expressions di-
rectly in the contexts in which they emerge and the contexts they may have an effect upon
(e.g. via processes of social influence). For social scientists, the identification of attitudes
on the basis of textual data therefore is an interesting method for the measurement of
attitudes, and it also is a significant one: As large amounts of communication, social in-
teraction, and discourse take place in digital settings, text data that contain expressions
of attitudes are abundant. Being able to identify expressed attitudes in data from these
digital sources allows researchers to gain insights into these prominent contexts of human
interaction.

1.3.2 Measuring Attitudes

The outlined conceptualization of attitudes has four consequences on the measurement
of evaluative responses from texts. First, an attitude is devised as a latent concept (a
tendency) that then can be expressed in some form. Texts thus do not contain attitudes
themselves. Texts only can be expressions of attitudes—or rather evaluative responses
affected by attitudes but also other factors. This implies that an evaluation expressed
in a text need not necessarily correspond to the true overall evaluation captured by the
underlying attitude. In a given situation and prompted with given stimuli and cues, only
parts of the attitude that draws from multifaceted attitude-relevant information may be
activated such that only parts of the attitude are revealed (Eagly & Chaiken, 2007, p. 595-
598). There also may be a strategic mismatch between what is conveyed and the true
position of the person writing the text. That a textually expressed attitude may not equal
the true underlying attitude is one of several steps in the data generating process and
the following data selection process that may induce uncertainty or bias when trying to
infer attitudes from texts (Benoit et al., 2009, p. 497-498) (see also pages 57 to 59 in this
thesis).
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Second, in social psychology, an attitude is defined as an evaluation of a specific target
entity (Eagly & Chaiken, 2007, p. 583). In the computer science and NLP literature,
sentiment is also defined to refer to an entity (Liu, 2015, p. 17-18). Entities can be abstract
(e.g. an idea expressed in an election manifesto) or tangible (e.g. a political candidate)
(Eagly & Chaiken, 2007, p. 583). They can be highly specific (e.g. the remark expressed
by candidate A on issueX in an interview given yesterday) or very general (e.g. the political
system) (Albarracin et al., 2019, p. 5), but there is always a target entity (Eagly & Chaiken,
2007, p. 583-584). Attitude expressions are not targetless expressions of moods (Eagly &
Chaiken, 2007, p. 583-584). Hence, textual analyses of sentiment expressions have to be
oriented toward a specific target.

In practice, however, this is not always the case. Sentiment analysis sometimes simply
means assessing the general tone of a document—which comes down to analyzing a doc-
ument’s polarity as revealed by the positivity vs. negativity of the used language (Nakov
et al., 2016; Mohammad et al., 2017; Patwa et al., 2020). In cases in which the analysis of
expressed sentiments implies assessing the expressed sentiments toward given targets, the
NLP literature differentiates between target-based sentiment analysis and stance detection
(Küçük & Can, 2020, p. 6). In target-based sentiment analysis, the aim is to estimate
the sentiment toward a prespecified target, that is typically explicitly mentioned in the
text, based on information revealed in the text (Küçük & Can, 2020, p. 6; ALDayel &
Magdy, 2021, p. 5). In stance detection, in contrast, the target entity is not necessarily
referred to explicitly, and determining the position toward a target may involve moving
beyond the information provided in the text (Mohammad et al., 2017, p. 2; Küçük & Can,
2020, p. 6; ALDayel & Magdy, 2021, p. 5). Table 1.4 illustrates the different conclusions
that untargeted sentiment analysis, target-based sentiment analysis, and stance detection
might draw from identical texts. Table 1.4 points out that attitude expressing statements
are embedded in larger knowledge structures, can be made within conversational contexts,
and can be implied rather than being stated explicitly (e.g. by making comparisons). For
example, understanding that the second statement expresses a negative attitude toward
Donald Trump requires the knowledge that the statement was made within the context
of the 2016 presidential election in which Jeb Bush was one of the candidates competing
in the Republican presidential primaries alongside Donald Trump. This highly varied and
strongly contextual nature of linguistic expressions of sentiment is accounted for in stance
detection but not in the other presented types of sentiment analysis tasks.

The third aspect in the outlined conceptualization of attitudes, that has an effect on the
textual measurement of attitude expressions, is that an attitude is linked to and is derived
from a multi-dimensional structure of attitude-relevant information. Studies that examine
these structures make use of the fact that humans can report a single overall evaluative
attitude toward an entity but also can report the underlying attitude-relevant information
(see e.g. Wood, 1982). In textual evaluations of entities, humans—even if not explicitly
asked to do so—occasionally present underlying information that they feel causes them to
hold the attitude. In product reviews, for example, attributes of the product are assessed
and different experiences are reported that then form an overall evaluation. In political
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Text Target Untargeted
Sentiment

Target-
Based
Sentiment

Stance

I cannot believe there are
still people in this century
who are opposed to women
having rights over their own
bodies! #disgusted
#repealthe8th

Legalization
of Abortion − + +

Jeb Bush is the only sane
candidate in this republican
lineup.

Donald
Trump 0 N/A −

Table 1.4: Sentiment and Stance. This table illustrates the differences between untargeted
sentiment analysis, target-based sentiment analysis, and stance detection. The first text is a
tweet adapted from the Stance Dataset provided by Mohammad et al. (2017). The second text
is directly taken from Mohammad et al. (2017, p. 2). The first statement expresses a favorable
position toward the legalization of abortion and also explicitly mentions this target in the form
of the hashtag #repealthe8th. Yet it uses negative language which is why untargeted sentiment
analysis would predict a negative polarity. The language used in the second statement is neither
particularly positive nor negative. If Donald Trump were the prespecified target, a target-based
sentiment analysis would conclude that the statement does not express a sentiment toward the
target, whereas in stance detection the prediction should be that the statement reveals a negative
stance toward the target.
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speeches, an overall attitude toward a political issue can be expressed together with beliefs
and attitude-relevant experiences from which the policy position is derived from.

The subfield of sentiment analysis that seeks to extract evaluative attitude-relevant in-
formation from texts is aspect-based sentiment analysis. Whereas target-based sentiment
analysis focuses on the overall sentiment expressed toward a monolithic entity, aspect-based
sentiment analysis seeks to identify attitudes toward aspects of an entity from text (Liu,
2015, p. 22). Aspects can be parts or attributes of an entity (Liu, 2015, p. 22). In addition
to the subtasks that have to be addressed in sentiment analysis, aspect-based sentiment
analysis also has to identify textual expressions that mention an aspect, has to group aspect
expressions referring to the same aspect together, resolve which aspect belongs to which
entity, and determine the respective sentiments (Liu, 2015, p. 26-28; Pontiki et al., 2014,
2015). By analyzing sentiments not only towards an entity as a whole but also towards
the aspects of an entity, aspect-based sentiment analysis draws a more nuanced picture. It
can reveal the positive and negative evaluative processes relating to parts of an entity that
contribute to the overall evaluative assessment of that entity.67

Another NLP task to be mentioned here is argument mining. In argument mining, the aim
is not only to identify the position68 that a person expresses in a text but also to extract
the provided line of reasoning (Lawrence & Reed, 2020, p. 765-766). Argument mining
involves the identification of the textual components of an argument, the identification
of each component’s properties and function, and the mapping of relations between the
components (Lawrence & Reed, 2020, p. 766, 787, 791).69

Target-based sentiment analysis, stance detection, aspect-based sentiment analysis, and
argument mining are approaches that do much more justice to the conceptualization of
attitudes and their underpinnings than the untargeted analyses of sentiments. Especially
stance detection is of high importance because it aims at a comprehensive extraction of all
sentiments toward a prespecified target—no matter whether the sentiments are expressed
in explicit or implicit form. A comprehensive identification of all sentiments expressed
toward an entity, in turn, is a prerequisite for making valid inferences, e.g. about how
expressed sentiments toward an entity are distributed in a given population.

There is, however, a fourth aspect that results from the conceptualization of attitudes that
67Aspect-based sentiment analysis tasks every now and then are included as evaluation tasks in the

International Workshop on Semantic Evaluation (Pontiki et al., 2014, 2015, 2016).
68A position expressed in a text could be an attitude toward an entity (which is why argument mining

is mentioned here). A position could, however, also be a belief. A belief “is a mental state that has as
its proposition that X” (Leitgeb, 2017, p. 2; emphasis in the original). This is, a belief is an individual’s
internal representation of the world (Leitgeb, 2017, p. 3). An individual, for example, can hold the belief
that Angela Merkel is a pragmatic woman or that CO2-emissions cause global warming. Beliefs do not
have to be correct, yet beliefs contain what individuals assume the world to be, i.e. what individuals hold
to be true (Leitgeb, 2017, p. 3).

69An early important work is Moens et al. (2007). A recent survey of argument mining is given by
Lawrence & Reed (2020). Current research, for example, is regularly presented in the Workshop on
Argument Mining (Stein & Wachsmuth, 2019; Cabrio & Villata, 2020).
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these advanced approaches do not address and that so far is not widely considered in the
NLP literature: In their definition of attitudes Eagly & Chaiken (1993, p. 1) refer to the
notion of degree. In mathematical treatments of attitudes, attitudes are conceptualized
to have a continuous character (see again Figure 1.12) (Cacioppo et al., 1997). They are
assumed to be continuous variables. In the NLP literature, correspondingly, a sentiment
is seen as having a certain level of intensity (Liu, 2015, p. 20-21).

Despite this conceptualization of sentiment as a continuous quantity, sentiment analysis
is treated as a classification task in a vast majority of studies. In binary sentiment clas-
sification tasks, the aim is to predict whether a document falls into the positive vs. the
negative sentiment category (e.g. Pang et al., 2002; Turney, 2002). Often, a third neutral
category is added, thereby turning sentiment analysis into a multi-class classification task
(e.g. Nakov et al., 2013; Pontiki et al., 2015; Zhang et al., 2015a; Patwa et al., 2020). At
times, sentiment analysis also is treated as an ordinal classification problem, where typi-
cally three or five discrete and ordered sentiment categories are distinguished (e.g. Pang &
Lee, 2005; Socher et al., 2013; Cheang et al., 2020)

Predicting discrete sentiment labels rather than generating continuous sentiment estimates
not only disregards the conceptualization of sentiments but also implies a loss of informa-
tion. In the extreme, researchers that only have discrete sentiment categorizations can-
not differentiate between several possible but substantively entirely different underlying
continuous sentiment distributions (e.g. a unimodal vs. a bimodal distribution of senti-
ments).

Nevertheless, there are methods that produce continuous sentiment estimates for texts,
namely lexicon-based approaches and regression approaches. Lexicon-based approaches,
however, rely on access to an extensive sentiment lexicon that matches the specific context
it is applied to and also rely on an accurate modeling of the compositional process via which
sentiment is constructed in texts. Regression approaches require (possibly prohibitively)
costly to create training labels that are so fine-grained that they can be treated as if they
were continuous. Hence, there is a need for a method that generates continuous sentiment
estimates with less information or resources. The article How to estimate continuous
sentiments from texts using binary training data of this doctoral thesis addresses this aspect
and seeks to close this gap.

The article presents the classifier-based beta mixed modeling procedure (CBMM for short)
that I have developed together with Christian Heumann. CBMM estimates continuous,
real-valued positions of text documents on a unidimensional latent variable from mere
binary training labels and consists of three steps: First, binary training labels are obtained
for the training set documents. Each binary training label should indicate whether the
document’s position on the latent sentiment variable is closer to the positive or the negative
extreme. Second, a set of classifiers is trained on the binary training data, and then each
classifier produces for each test set document a predicted probability for the document to
belong to the positive class. Third, given the predicted probabilities, a beta mixed model
with document and classifier random intercepts is estimated. The random intercepts for
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Wordscores. Political scientists also have developed supervised methods that gener-
ate continuous estimates for text documents. The best known method is Wordscores
(Laver et al., 2003). In Wordscores, the training set documents (called reference
texts) have to be mapped to continuous values that specify their position on the
latent variable (Laver et al., 2003, p. 315). Based on these values assigned to the
reference texts and the frequency of word type occurrences across the reference texts,
for each word type that occurs at least once in the reference texts, a wordscore is
computed (Laver et al., 2003, p. 316, 319). Subsequently, these wordscores are used
to estimate the positions of the test documents (called virgin texts) (Laver et al.,
2003, p. 316). The Wordscores approach (Laver et al., 2003) thus is only useful for
applications in which continuous values can be easily assigned to training documents.

A related alternative method, the Class Affinity Model (Perry & Benoit, 2017),
requires the reference texts to be archetype documents positioned at the extreme
points of the latent variable of interest (Perry & Benoit, 2017, p. 3-4, 13). In this
approach, the required information is not continuous but still highly detailed. The
training data cannot be a random sample from the population of documents under
study but are required to be “clearly polar examples of each reference class” (Perry
& Benoit, 2017, p. 13). The training documents have to be selected in such a way
that they not only conceptually but also linguistically represent the extremes of the
latent variable (Perry & Benoit, 2017, p. 13). In applications with a large corpus,
this is likely to be a difficult to unsolvable task. Wordscores and the Class Affinity
Model thus share the disadvantages of regression-based approaches when it comes
to producing continuous estimates for texts.

the documents serve as the estimates of the documents’ continuous sentiment values. An
evaluation across four data sets shows that the continuous sentiment estimates generated by
CBMM are passably close to the true sentiment values and perform similarly to (or only
slightly less well than) continuous sentiment estimates that are produced by regression
approaches that operate on fine-grained training data. Hence, researchers that lack the
resources to create highly fine-grained training labels but are able to produce a binary
labeling of training documents, can apply CBMM and are likely to get continuous sentiment
estimates that are not far from the estimates they would have obtained with fine-grained
labels.

Whereas the other articles of this thesis seek to advance text-based political science re-
search by increasing the accuracy with which supervised classification tasks are conducted,
the article on CBMM aims at solving a problem by creating a new method. The major con-
tribution of CBMM is its ability to generate continuous estimates based on binary training
data. The article not only emphasizes that sentiments are continuous concepts but also
provides a resource-efficient way to produce continuous estimates for textual sentiment
expressions.
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CBMM can also be used as a plug-in for classification components within more complex
NLP model architectures developed for target-based sentiment analysis, aspect-based sen-
timent analysis, or stance detection: CBMM assumes that one text sequence expresses one
evaluative statement towards one already known entity. Whenever more complex model
architectures apply a classification module to a text sequence that already has been identi-
fied to express a single attitude toward an already identified (aspect of an) entity, CBMM
can be used instead.70 For example, Hu et al. (2019) conduct open-domain targeted sen-
timent analysis. In a first step, they identify text spans that refer to target entities (Hu
et al., 2019, p. 539-540). In a second step, based on the representations of the identified
spans, they use the attention mechanism and an FNN to classify the expressed sentiment
(Hu et al., 2019, p. 539-540). Instead of classification, CBMM could be applied in the
second step.

CBMM not only contributes to the field of NLP but also to political science: It is likely
that there will be political science research projects that, on the one hand, seek to ob-
tain estimates on a continuous latent variable from texts but, on the other hand, lack
large amounts of annotation resources. Moreover, whereas the starting point for CBMM is
sentiment analysis, CBMM can be applied in any study that aims to produce continuous
estimates from binary training labels. Examples of application contexts beyond sentiment
analysis are the measurement of actors’ ideological positions on an a priori-defined ideolog-
ical dimension or the text-based measurement of the degree to which people hold certain
beliefs.

1.4 Limitations and Further Research

This section comprises two subsections.71 Subsection 1.4.1 works out one central limita-
tion of this thesis and NLP research in general: shortcomings regarding the drawing of
inferences about the performance effects of methods. Subsequently, subsection 1.4.2 points
out important directions for future text-based political science research.

1.4.1 Inference

At the beginning of this introductory chapter on page 39 the contribution of this disserta-
tion was stated as follows: “Each of the three articles presents a set of methods that are
likely to provide a concrete improvement over specific current text analytic practices in
political science.” This is what this dissertation does. This dissertation, however, does not

70CBMM can be used in these cases—provided that resources for training an ensemble of classifiers are
available.

71Large parts of this section are published in Wankmüller, Sandra. 2022. Drawing Causal Inferences
About Performance Effects in NLP. arXiv. https://arxiv.org/abs/2209.06790

https://arxiv.org/abs/2209.06790
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(and arguably cannot) fully reach a larger underlying goal that goes beyond the presen-
tation of methods that “are likely to” constitute an improvement. This larger underlying
goal is inference.

1.4.1.1 Drawing Inferences in NLP

The actual goal in NLP is to infer how well one method (compared to another method)
performs in solving a certain NLP task.72 Yet, due to the usual research procedures in
NLP, this goal is often not achieved. The common approach in NLP is as follows (Reimers
& Gurevych, 2018, p. 1-3):

1. The available annotated data are separated into one training, one validation, and
one test set.

2. For each method that is to be compared, a small set of models are trained on the
training set and are evaluated on the validation set.

3. For each method, the model that performs best on the validation set subsequently is
evaluated on the test set and the model’s performance on the test set is reported.

The described NLP research procedure has two problems: First, the fact that training is
typically conducted on one specific training data set and evaluation is typically conducted
on one specific test data set implies that the reported performance values are estimates of
the test error (see Equation 1.18) and not estimates of the expected generalization error
(see Equations 1.17 and 1.19).

The aim of a task in supervised machine learning is to approximate the true underlying
function f which describes the mapping from inputs x to outputs y for units drawn from
joint distribution p(x, y) (see again Section 1.1). When evaluating how well a learning
method is able to approximate function f , researchers ideally would want to know the
expected generalization error that is the expectation of the loss function used for evaluation
under the data generating distribution p(x, y) (see also Equation 1.17):73

EGE(f̂) =
∫ ∫

L(y, f̂(x))p(x, y) dx dy (1.73)

72Often the aim is not only to make inferences with regard to one task but across a range of tasks. But
in the following, in order to reduce complexity, the focus will be on one task.

73Note that for reasons of readability, the notation here does not include parameter values θ. Note
furthermore that the term loss function L(yi, ŷi) typically denotes a function that measures the discrepancy
between true and predicted values. If this is the case, then the loss function really captures an error and
the smaller the loss value, L = L(yi, ŷi), the better. However, in the context of evaluation, L(yi, ŷi) is
often a function that measures the agreement or closeness between true and predicted values. If this is
the case, then the higher the value returned by the function, L = L(yi, ŷi), the better. To consider all
loss functions in a consistent framework, in the following, the terms loss or error are used even if the loss
function also can indicate agreement or closeness.



1.4 Limitations and Further Research 139

As p(x, y) is unknown, the expected generalization error has to be approximated on the
basis of observed data (Bischl et al., 2012, p. 251-252). In practice, a researcher only has
at her disposal a single annotated data set of finite size. She can use one part of the
observed data to train a model and then can use another part of the data (then named
the test set) to estimate the generalization error of the trained model. The generalization
error estimate produced from one such train-test split of the annotated data can be used
as an estimate of the expected generalization error. This estimate of the expected gener-
alization error, however, always will depend on the particular composition of the training
set and the test set employed (James et al., 2013, p. 178). In order to produce an esti-
mate of the expected generalization error that takes into account the variability of the loss
function value that arises from different train-test set compositions, resampling techniques
(e.g. cross-validation, bootstrapping) can be applied (see Section 1.1.1.4) (Bischl et al.,
2012, p. 352). Since resampling techniques are rarely used in NLP, statements about NLP
model performances are often based on single train-test splits, and thus are likely to be
influenced by idiosyncrasies of the train-test split.

Note that this does not imply that statistical hypothesis tests are generally not conducted
when comparing the performances of models in NLP: In some research articles and for
some benchmark tasks, statistical hypothesis tests are carried out (Reimers & Gurevych,
2018, p. 1-2). Typically, the null hypothesis is that the performance of two models A and B
is equal in the population and the alternative hypothesis is that model performances differ
(Reimers & Gurevych, 2018, p. 3). One common way in NLP to implement a statistical
hypothesis test is by means of making use of the bootstrap (Reimers & Gurevych, 2018,
p. 4). Here, for a given test set Dtest of sizeM , the difference in the prediction performance
score of model A on Dtest and the prediction performance score of model B on Dtest is
recorded (Riezler & Maxwell, 2005, p. 61). This difference here is indicated by δ(Dtest).
Then, K bootstrap samples of size M are drawn at random with replacement from Dtest

(Efron & Tibshirani, 1993, p. 45). On each of the K bootstrap test sets, the prediction
performance of model A and model B is determined and their performance difference
δ(Dk

test) is calculated (Riezler & Maxwell, 2005, p. 61). Hence, one obtains a distribution
of the differences in prediction performance values. This bootstrap sampling distribution
then is shifted such that it is centered at zero and thus can be used to approximate the
distribution of performance differences under the null hypothesis (which assumes that the
expectation of performance differences in the population is zero) (Riezler & Maxwell, 2005,
p. 61-62). The shifted δ(Dk

test) here is indicated by δ(Dk∗
test). The null hypothesis is rejected

if the share of bootstrap test sets for which δ(Dk∗
test) ≥ δ(Dtest) is smaller than a prespecified

significance level (e.g. α = 0.05) (Riezler & Maxwell, 2005, p. 61).74

This and similar hypothesis tests take into account that the test set is finite. Yet these tests
do not take into account that for one test set data point x∗m the same method when trained
on another training set will yield a (slightly) different prediction for x∗m. Bootstrapping on

74For a general introduction to the bootstrap for hypothesis testing see Efron & Tibshirani, 1993 chapter
16.
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the test set thus is not a proper resampling procedure. The bootstrap sampling distribution
of the differences in prediction performance values is not a distribution of the expected
generalization error of the learning method. To obtain an adequate estimate of the expected
generalization error, a resampling technique in which the method is repeatedly trained on
different compositions of the training set and is evaluated on different compositions of the
test set is required.

This first problem of NLP research procedures can be viewed as a specific instance of the
more general second problem. The second problem is that in NLP inference-like state-
ments are often made about methods although models (and not methods) are compared in
analyses. This second problem is explicated in the following before the connection between
the two problems will be elucidated.

In NLP shared task challenges, the aim is to build a processing system that learns the
systematic mapping f from inputs x to outputs y on the basis of a training data set and
then makes as accurate as possible predictions for instances in a test set. Therefore, in an
NLP challenge, the aim is to build the best performing processing system. But NLP as a
science seeks to develop—or improve upon—the components of such processing systems.
Consequently, NLP as a science seeks to infer how one method (vs. another method) affects
prediction performance.

A processing system is not just a learning algorithm, it rather is a procedural pipeline
that, for example, may start with pretraining, move on to preprocessing of the target task
training documents, and then implement hyperparameter tuning before finally conducting
the training process on the target task. A whole collection of methods is involved in
implementing such a pipeline. A processing system thus here is conceived of as an object
under study that is composed of several methods.

A method can be defined at several levels of granularity. Methods that NLP researchers
seek to make inferences about can be general and varied entities such as, for example, a
learning approach (e.g. Collobert et al., 2011), a model architecture (e.g. Vaswani et al.,
2017), or a set of pretraining resources (e.g. Liu et al., 2019b), but methods also can be
more specific processing elements such as, for example, a pretraining objective (e.g. Devlin
et al., 2019; Yang et al., 2019), or a hyperparameter setting in fine-tuning (e.g. Mosbach
et al., 2021).

When implemented, a processing system produces a trained model f̂ that (more or less well)
approximates the true underlying function f . Based on an independent test set, function
L(y, f̂(x)) measures the discrepancy or agreement between the true values y and the values
ŷ = f̂(x) that are predicted by the trained model. A trained model and its prediction
performance as measured by L(y, f̂(x)) thus can be understood as the materialized output
of a processing system.

Given a population of processing systems of interest, the goal now is to infer the expected
value of the effect that using method A compared to method B has on the prediction per-
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formance of processing systems in the population. Just as other researchers want to make
inferences about the effect of treatment A versus control B in a population of individuals,
NLP researchers seek to draw inferences about the effect of treatment method A versus
control method B in a population of processing systems. While individuals are charac-
terized by their values on variables, processing systems are characterized by the specific
methods they consist of.

In the simple case, a method indeed is like a value on a variable: A processing system
consists of numerous elements and each of these elements can be conceived of as a variable
v whose values are drawn from a set of methods, e.g. v ∈ {methodA,methodB}. For
example: One element of a processing system is the pretraining objective. The pretraining
objective can be conceived of as a variable that can take on values from a set of methods,
which here could be for example {language modeling, masked language modeling}.

Even though a whole processing system, that is composed of various methods, is involved
in approximating function f , the goal in NLP is to make inferences regarding the effect that
one of these methods (compared to another method) has on the performance of the system.
In a resource-rich world in which resources are plentiful but not unlimited, the drawing of in-
ferences regarding the performance of one method compared to another method on a given
task, could proceed as follows:75 Two versions of one processing system are constructed.
The versions are composed of identical methods, except at one point, where the first ver-
sion applies method A and the second version implements method B. These two versions
can be viewed as one individual processing system s that is once observed in the treatment
group (method A) and once in the control group (method B). Let Ex,y[L(y, f̂As (x))] be
the expectation of the performance of processing system s when implementing method A
(where the expectation is with respect to the population of data points that are drawn from
p(x, y)). And let Ex,y[L(y, f̂Bs (x))] be the expectation of the performance of processing
system s when implementing method B. Ex,y[L(y, f̂As (x))]−Ex,y[L(y, f̂Bs (x))] then is the
individual treatment effect (Holland, 1986, p. 947). The individual treatment effect gives
the effect on the expected performance that the treatment of applying method A compared
to method B has for individual processing system s (Holland, 1986, p. 947). (The funda-
mental problem of causal inference states that it is not possible to assess Ex,y[L(y, f̂As (x))]
and Ex,y[L(y, f̂Bs (x))] on the same entity s at the same point in time (Holland, 1986, p. 947).
There are several strategies that—when paired with specific assumptions—constitute ways
via which the fundamental problem of causal inference can be overcome and inferences can
be drawn (Holland, 1986, p. 947). With regard to the individual treatment effect, infer-
ence is possible under the assumptions of temporal stability and causal transience (Holland,
1986, p. 947), which here can be assumed to hold: The values of Ex,y[L(y, f̂As (x))] and
Ex,y[L(y, f̂Bs (x))] do not depend on the particular point in time at which the treatment
method A or the control method B are applied. Ex,y[L(y, f̂As (x))]−Ex,y[L(y, f̂Bs (x))] thus
will be constant over time (temporal stability). Moreover, if the two processing system

75In a world with unlimited resources, drawing inferences about the population would no longer be
necessary because the entire population could be analyzed.
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versions are implemented independently of each other without information (e.g. learned
parameters) being able to pass from one system to the other, then the expected perfor-
mance of processing system s when applied with treatment method A will not be affected
by previously measuring the expectation of the performance of processing system s when
applied with method B (causal transience). Hence, Ex,y[L(y, f̂As (x))] − Ex,y[L(y, f̂Bs (x))]
here can be regarded as the causal effect on processing system s’s expected performance
due to the application of treatment method A compared to control method B.)

Overall, however, researchers are not interested in the individual treatment effect a method
has on a particular processing system s. Instead, researchers are interested in the average
treatment effect of the method in the population of processing systems that a researcher
seeks to infer to.76 This is, NLP researchers do not seek to make statements like: ‘For
this particular processing system (i.e. with this particular configuration of methods in pre-
training, preprocessing, hyperparameter tuning, and training) method A yields a better
expected performance on task T than method B by Ex,y[L(y, f̂As (x))]−Ex,y[L(y, f̂Bs (x))]’.
Rather, NLP researchers seek to make statements like: ‘On average method A yields a bet-
ter expected performance on task T than methodB byEs[Ex,y[L(y, f̂As (x))]−Ex,y[L(y, f̂Bs (x))]]’
(where the expectation is not only with respect to a population of data points but also a
population of processing systems) (see also Reimers & Gurevych, 2018, p. 1-2). This is,
in NLP the aim is to draw inferences about methods as tools, that can be plugged into
a larger population of processing systems that is of interest when approaching some task.
The aim is not to draw inferences about methods as parts of a single, concrete processing
system.

As the size of the effect that method A vs. method B has on the performance is unlikely to
be the same across different processing systems in the population (i.e. there is no unit ho-
mogeneity), the individual treatment effect Ex,y[L(y, f̂As (x))]−Ex,y[L(y, f̂Bs (x))] is not an
indicator of the average treatment effect in the population of processing systems (Holland,
1986, p. 948).77 Thus, making inferences regarding the performance of one method vs. an-
other method in a resource-rich world would imply drawing a random sample of processing
systems from the population of processing systems and then applying each processing sys-
tem once with method A and once with method B. The difference between the expectation
of the expected value of the performance of the processing systems with method A and the
expectation of the expected value of the performance of processing systems with method B,
Es[Ex,y[L(y, f̂As (x))]] − Es[Ex,y[L(y, f̂Bs (x))]] = Es[Ex,y[L(y, f̂As (x))] − Ex,y[L(y, f̂Bs (x))]],
then gives an estimate of the average treatment effect in the population (Holland, 1986,

76All units in the population potentially have to be exposable to both compared methods (Holland, 1986,
p. 946). For example, if method A is discriminative fine-tuning in which the global learning rate during
fine-tuning is different for each layer and if in method B the global learning rate is the same for each layer,
then the population of processing systems cannot include conventional machine learning methods that do
not have a layered architecture like deep neural networks and thus cannot be exposed to methods A and
B.

77Aßenmacher et al. (2021, p. 4), for example, show that the performance effect of increasing a model’s
depth or width is different for different model architectures.
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p. 947). Subsequently, one could then conduct a hypothesis test with the null hypothesis
being that Es[Ex,y[L(y, f̂As (x))] − Ex,y[L(y, f̂Bs (x))]] = 0 in the population. Because each
processing system is observed once in the treatment and once in the control group, this is
a two-dependent-samples problem (Heumann et al., 2016, p. 210).

An alternative way would be to observe each individual processing system only under
method A or under method B instead of in both states. If the processing systems are
randomly assigned to the treatment or control group (and thus the assignment to method
A or B is independent of other implemented methods of a processing system), then the
difference between the average performance value of the processing systems in the treatment
group, Es[Ex,y[L(y, f̂As (x))]], and the average performance value of the processing systems
in the control group, Er[Ex,y[L(y, fBr (x))]], can be used as an estimate of the average
treatment effect in the population (Holland, 1986, p. 948-949). In this case one would have
a two-independent samples problem (Heumann et al., 2016, p. 210).

In a resource-rich world, the procedure described so far could be implemented to draw
inferences about the performance of method A vs. method B in the population. In the real
world with limited resources, the actually implemented NLP research procedures usually
differ from what has been described here because of one or both of the following practices.

• Two processing systems are compared that not only differ with regard to whether
method A or method B is applied but differ with regard to several methods (Aßen-
macher & Heumann, 2020). Therefore, comparability is not given and it is unclear
to which variation of a method a change in performance can be attributed to (Aßen-
macher & Heumann, 2020).

• The comparison of applying method A vs. method B is conducted by incorporating
one vs. the other method in only one (or a few) specific processing systems. Neverthe-
less, inferences are drawn about the performance of method A vs. B as general tools
within an entire population of processing systems (Reimers & Gurevych, 2018). For
example: Assume that a processing system is applied once with method A and once
with method B. Furthermore assume that the performance of the processing system
with method A is found to exhibit a higher performance than the processing system
with method B and assume that the null hypothesis stating that the performance
difference equals zero in the population is rejected on the basis of a hypothesis test
that utilizes bootstrapping on the test set. The problematic aspect in NLP research
now is that in such a setting the inference is drawn that method A in general (and
not only when embedded in this particular processing system) will yield a higher
performance than method B (Reimers & Gurevych, 2018).

When both of these problematic practices are combined in a research procedure, this is as
if one would expose one individual to treatment A and would expose another individual,
that differs from the first individual with regard to various relevant characteristics, to
control B and then would conclude that the higher performance observed for the first
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individual compared to the second is caused by the treatment of A vs. B and that thus,
in the population in general, applying A compared to B will yield higher performance
values.

Up to this point, two problems of NLP research practices have been identified. The first
problem is that training and evaluation is often conducted on a single train-test split.
Thus, reported performance measures are estimates of the generalization error instead of
the expected generalization error. The second problem is that based on the comparison of a
few models (that arise from probably incomparable processing systems) conclusions about
the causal effect of methods in a larger population of processing systems are drawn.

Above it was stated that the first problem is an instance of the second more general problem
(see page 140). Why is this the case? The question of how a training and a test set is
created from a provided annotated data set and thus which data instances the training and
the test set are composed of can be regarded as one method within a processing system.
The train-test set composition is a characterizing element of a processing system. The
processing systems in the population vary regarding the methods that they apply and
they vary regarding the train-test set composition they use for training and evaluation. If
one processing system were one individual that is observed across a set of variables and
if the train-test set composition were one of these variables, then a researcher would like
to know what the causal effect of treatment A vs. control B is not just for an individual
with a particular value on the train-test set composition variable. The researcher would
like to know what the average effect of treatment A vs. control B is in a population of
individuals, where individuals in this population vary with respect to their values on the
observed variables (including the variable of train-test set composition). The problem is
that often exactly this knowledge about the population is not generated, because training
and evaluation are often conducted on the basis of a single train-test set composition.

One can also pull this up from the other direction: So far, the expected generalization
error

EGE(f̂) =
∫ ∫

L(y, f̂(x))p(x, y) dx dy (1.74)

(see also Equation 1.17) has been defined to be the expectation of the loss function of a
learning method in a population of data points that are drawn from the data generating
distribution p(x, y). Applying the terminology that is used in this subsection, this definition
can be changed as follows: The expected generalization error is the expectation of the loss
function of a processing system in a population of data points that are drawn from the data
generating distribution p(x, y). Thus, the expected generalization error generalizes over a
population of data points (which is what one wants here), but it still is the expected error
of a specific processing system that is specific to the specific methods that it is composed
of. To emphasize this, one can write f̂ in Equation 1.74 as a specific processing system
that results from applying a set of specific methods.

For this purpose, the following assumptions are introduced here: Assume that all pro-
cessing systems in a population of interest can be described as g(v1, v2, v3, v4,Dtrain, dtest).
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The processing systems in the population consist of four processing elements v1, v2, v3, v4,
where each element is a variable that can take on values over a set of methods, e.g. v1 ∈
{A,B}; v2 ∈ {C,G,H}; v3 ∈ {D, I}; v4 ∈ {F, J,Q, U}. The variables here are assumed to
be independent and thus the joint probability of a specific method combination, e.g. p(v1 =
A, v2 = C, v3 = D, v4 = F ), is p(v1 = A)p(v2 = C)p(v3 = D)p(v4 = F ). Also,
each variable is assumed to take on each of its methods with equal probability. Thus,
e.g. p(v1 = A) = p(v1 = B) and p(v1 = A) + p(v1 = B) = 1. The joint distribu-
tion p(v1, v2, v3, v4) hence assigns equal probability to each possible combination of meth-
ods.

Moreover, the processing systems operate on data. A single processing system s in this
population of processing systems hence is not only characterized by the specific methods
it applies but also by the specific data it uses. A processing system can be described
as a specific combination of methods and data, e.g. g(v1 = A, v2 = C, v3 = D, v4 =
F,Ds

train,Ds
test). The input to a processing system s is a training set of raw data, Ds

train =
(di, yi)Ns

i=1, with a given composition and a given size Ns. The methods of a processing
system (e.g. {A,C,D, F}) process and use the raw training data to produce a trained
model f̂s. f̂s then can make predictions for instances in the test set, Ds

test = (d∗m, y∗m)Ms
m=1,

that likewise has a given composition and size Ms. The instances in the training and test
set are assumed to be i.i.d. samples from p(d, y), which is the joint distribution over raw
data d and output values y. The performance of the processing system is evaluated by
the loss function L that compares the true values for the instances in the test set with the
values predicted by the system’s trained model.

Note that a processing system thus has a data input and a method input. The assumption
here is that these input components are mutually independent. (This implies, for example,
that whether v1 = A or v1 = B will not affect the composition and/or size of Ds

train and
Ds
test.) The methods can be conceived of as functions that process the data and the data can

be regarded as the inputs that are being processed.78 The input variables to a processing
system, {v1, v2, v3, v4,Dtrain,Dtest}, can take values independently without influencing each
other. As Ds

train and Ds
test are i.i.d. samples from p(d, y), the joint distribution over input

components of processing systems in the population can be described as p(v1, v2, v3, v4, d, y).
The expectation of the loss function in the population of processing systems of interest
under raw data distribution p(d, y) thus can be described as79

∑
v4

∑
v3

∑
v2

∑
v1

∫ ∫
L(y, g(v1, v2, v3, v4, d, y))p(v1, v2, v3, v4, d, y) dd dy (1.75)

Whereas Equation 1.75 is the expectation of the loss over data and methods, Equation
78Once the system’s methods have begun to process the data, independence is no longer given: The

parameters and the data representations that the system learns arise as a function of data and methods.
But the inputs to the system, so the assumption here, are independent.

79The representation logic in Equation 1.75 here is as close as possible to the representation logic of
Equation 1.74, which is known in the literature.

∑
v1

here means the sum over all possible values that v1
can take.
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1.74, that is used in the machine learning literature, describes the expected generalization
error of an individual processing system that generalizes over data p(d, y) but is specific to
the specific combination of methods that it applies. Using the framework introduced here,
Equation 1.74 can be written as:80

EGE(g(v1 = A, v2 = C, v3 = D, v4 = F )) =∫ ∫
L(y, g(v1 = A, v2 = C, v3 = D, v4 = F, d, y))p(d, y) dd dy (1.76)

For NLP researchers, that aim at making inferences about the performance effects of single
methods (rather than specific processing systems), the conditional expectation in Equation
1.76 is not particularly useful. Researchers that seek to estimate the expected loss of
applying method A not only in a population of data points but also across a population of
processing systems wish to have an estimate for

EGE(g(A)) =
∑
v4

∑
v3

∑
v2

∫ ∫
L(y, g(v1 = A, v2, v3, v4, d, y))p(v2, v3, v4, d, y) dd dy (1.77)

which is the expected generalization error of a method A within a population of processing
systems that are trained and evaluated on data points from data generating distribution
p(d, y). In contrast to the expected generalization error of a specific processing system
presented in Equations 1.74 and 1.76, here all method components (except for method A)
are averaged over.

The expected generalization error of method A in Equation 1.77 can be approximated via
sampling methods (Bishop, 2006, p. 524): A sample of S processing systems is drawn inde-
pendently from p(v2, v3, v4, d, y). The sampled processing systems vary with regard to the
train-test set compositions they operate on and vary with regard to methods {v2, v3, v4}
that they apply along their procedural pipeline. All processing systems, however, have in
common that they apply method A. Each sampled processing system is implemented
to produce a trained model that then generates predictions for instances in the test
set. Then, for each sampled processing system, the loss function value is computed. If
L(y∗m, g(A, vs

2, v
s
3, v

s
4,Ds

train, d
∗
m)) denotes the value of the loss function for the sth sampled

processing system on an individual data point from the test set of processing system s,
i.e. (d∗m, y∗m) ∈ Ds

test, then Equation 1.77 can be approximated as

ÊGE(g(A)) = 1
S

S∑
s=1

1
|Ds

test|
∑

(d∗m,y∗m)∈Ds
test

L(y∗m, g(A, vs
2, v

s
3, v

s
4,Ds

train, d
∗
m)) (1.78)

As described on pages 141 to 143 above,81 given ÊGE(A) one can then estimate the causal
80Equation 1.74 uses p(x, y) whereas here—in order to emphasize that it is the processing system that

transforms raw data into representations—p(d, y) is used. Equation 1.76 is the expected generalization
error of a processing system with the following combination of methods: v1 = A, v2 = C, v3 = D, v4 = F .

81What has been denoted as Es[Ex,y[L(y, f̂A
s (x))]] on page 143 above, here is estimated via Equation

1.78.
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effect in the population that is due to using method A rather than method B by also ap-
plying all sampled processing systems (1, . . . , s, . . . , S) with method B and then estimating
the expected generalization error of method B as

ÊGE(g(B)) = 1
S

S∑
s=1

1
|Ds

test|
∑

(d∗m,y∗m)∈Ds
test

L(y∗m, g(B, vs
2, v

s
3, v

s
4,Ds

train, d
∗
m)) (1.79)

For an individual sampled processing system s

1
|Ds

test|
∑

(d∗m,y∗m)∈Ds
test

L(y∗m, g(A, vs
2, v

s
3, v

s
4,Ds

train, d
∗
m))

− 1
|Ds

test|
∑

(d∗m,y∗m)∈Ds
test

L(y∗m, g(B, vs
2, v

s
3, v

s
4,Ds

train, d
∗
m)) (1.80)

gives an estimate of the individual treatment effect. The difference

ÊGE(g(A))− ÊGE(g(B)) (1.81)

gives an estimate of the average treatment effect in the population.

Alternatively, an estimate of the average treatment effect can be obtained by drawing an
i.i.d. sample of S processing systems from p(v2, v3, v4, d, y) and then randomly assigning
each processing system in the sample to either treatment method A or control method B.
Subsequently, ÊGE(g(A)) is computed as in Equation 1.78 on the basis of those processing
systems that have been assigned to treatment method A and ÊGE(g(B)) is computed as in
Equation 1.79 using the processing systems assigned to control method B. Equation 1.81
then gives an estimate of the average treatment effect. This time, however, ÊGE(g(B))
and ÊGE(g(A)) come from two independent (rather than two dependent) samples.

Thus far, a situation has been described in which researchers seek to draw inferences
about the performance effects of a single, fixed method. There are, however, situations
in which researchers want to make inferences about methods in the sense of general and
varied entities (e.g. learning approaches, model architectures, pretraining procedures). In
this case, things get a bit more complicated. A method in this context is not a concrete
value of a variable. A method in this context is a set of variables. A method in this
more general broader sense can be described as A = {Av1 ,Av2 , . . . }, where Av1 ,Av2 , . . .
are variables and the values of each variable are drawn from a set of concrete method
components, e.g. Av1 ∈ {A,B},Av2 ∈ {C,G,H}. Another method B can be denoted by
B = {Bv1 ,Bv2 , . . . }, where e.g. Bv1 ∈ {D, I},Bv2 ∈ {F,Q}. Hence, the variables in B as
well as the sets from which the variables in B draw, need not necessarily be the same as for
A. For example, if A were transfer learning with Transformers and B were conventional
machine learning, then one may have something as A = {Av1 = pretraining objective,
Av2 = pretraining corpus, Av3 = Transformer architecture,. . . } and e.g. Av1 = pretraining
objective = {language modeling, masked language modeling} . . . whereas for B this could
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be B = {Bv1 = lowercasing, Bv2 = weighting of elements in document-feature matrix, Bv3 =
learning algorithm,. . . } and e.g. Bv1 = lowercasing = {yes, no} . . . Note that there is a set of
possible method component combinations for each method. As = {Av1 = A,Av2 = G, . . . }
here denotes one possible combination of method components under approach A.

If the population of processing systems of interest is g(V , v3, v4,Dtrain,Dtest), where V can be
methodA or B, i.e. V ∈ {A,B}, and ifAs is a specific combination of method components
under approach A, then the estimation of the expected generalization error of applying
method A in a population of processing systems under p(d, y) can be achieved by drawing
a sample of S processing systems from p(A, v3, v4, d, y) and then computing

ÊGE(g(A)) = 1
S

S∑
s=1

1
|Ds

test|
∑

(d∗m,y∗m)∈Ds
test

L(y∗m, g(As, vs
3, v

s
4,Ds

train, d
∗
m)) (1.82)

Hence it is sampled from all possible method component combinations that arise under
method A and then it is averaged also over these combinations.82 The same procedure
can be repeated under method B and then ÊGE(g(A))− ÊGE(g(B)) gives an estimate of
the average treatment effect of implementing method A vs. B in the population.

The outlined research procedures would allow drawing inferences about the performance
effect of method A (or A) compared to method B (or B) in some population of processing
systems for some task T . One reason why in the field of NLP these outlined procedures
are not implemented and instead rather problematic research practices (that have been
described on page 143) are used, is that resources are limited. The procedures described
here require the training of a sample of processing systems, and the sample should have an
appropriate size. But already the implementation of one pretraining run usually consumes
considerable amounts of resources (see Aßenmacher & Heumann, 2020, p. 6). And also
the training process on the target task can (depending on the model architecture, the data
set size, and document lengths) take a substantive amount of time and computational
resources (see p. 53 in this dissertation’s article Introduction to neural transfer learning
with Transformers for social science text analysis).

1.4.1.2 Research Procedures in This Thesis

Because of resource constraints, the procedures implemented in this dissertation are much
closer to the usual NLP research practices than to the procedures described here. The
following paragraphs give an overview of the research procedures used in this dissertation.
A tabular summary is given in Table 1.5.

82Note that the assumption here is that each combination of method components As has equal proba-
bility.
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The article Introduction to neural transfer learning with Transformers for social science
text analysis compares conventional machine learning methods to transfer learning with
Transformer-based models. Thus, here the aim is not to compare a single method A
to a single method B but to compare a larger strand of methods A to a larger strand
of methods B. Especially with regard to pretraining and text preprocessing, processing
systems that apply conventional machine learning have a fundamentally different structure
than processing systems using deep learning in a transfer learning setting. In each of
the three applications reported in the article, two processing systems with Transformers
and transfer learning are compared to four processing systems with conventional learning
methods. Hence, there are six processing systems, each with a specific pretraining method
(if any), a specific text preprocessing method, followed by a specific hyperparameter tuning
procedure, and a specific method for training. None of these six processing systems are
sampled from a distribution over processing systems. (Defining such a distribution would
be highly difficult and would raise numerous additional questions.) Rather, the method
components of each processing system are selected deliberately on the basis of various
motives such as, for example,

• personal experience (A binary weighting of the elements in the document-feature
matrix had proven to perform quite well across various classification tasks in the
past.)

• the goal to demonstrate the basics of transfer learning and Transformers (Hence,
the seminal Transformer-based BERT model (Devlin et al., 2019) within a common
sequential transfer learning setting is applied.)

• practical reasons (The Longformer (Beltagy et al., 2020) was one of the few pretrained
Transformer models that was able to process more than 512 tokens and was available
at Hugging Face’s Transformer library (Wolf et al., 2020) at that time. Therefore,
the Longformer is applied.)

• the intention to connect with the literature (GloVe word embeddings rather than
word2vec embeddings are used because GloVe tends to be more frequently employed
in social science (Rodriguez & Spirling, 2022, p. 104). The search over hyperparam-
eter values is conducted within ranges that are common in the NLP literature.)

In the Ethos and Legalization of Abortion applications in the article Introduction to neural
transfer learning with Transformers for social science text analysis

1. the available annotated data came with a predefined division into a training data set
and a test data set. This single train-test set split is maintained.

2. Hyperparameter tuning is conducted via five-fold cross-validation on the training
data set.

3. The processing system with the best performing hyperparameter setting is selected
and trained once on the entire training data set. The trained model then is evalu-
ated on the test set. The trained model’s prediction performance on the test set is
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reported.

Even if the here implemented five-fold cross-validation is likely to be a more reliable method
for hyperparameter tuning than merely using a single division into one training and one
validation set as is typically done in NLP, the core elements of the procedures applied here
follow the research practices in NLP (see again page 138). Hence, each reported perfor-
mance value is an estimate of the generalization error of a specific model that has been
trained on a single specific training set, is evaluated on a specific test set, and results from
applying a processing system of specific methods. Based on the small number of six delib-
erately selected processing systems operating on a single train-test split, inferences cannot
be drawn about the general performance of Transformer-based models for transfer learning
vs. conventional methods for the population of data points from p(d, y). Statements can
only be made for the specific processing systems compared and the specific training-test
set composition used.

The research procedure applied in the Wikipedia Toxic Comment application of the article
Introduction to neural transfer learning with Transformers for social science text analysis
allows for slightly more far-reaching statements to be made. Here, five training-test set
compositions are drawn uniform at random from the set of all available labeled data. For
each of the six processing systems compared in the article, training and evaluation thus
are conducted five times, each time on a differently composed training and test set. For
each of the six processing systems, the mean of the performance values across the five
train-test set pairs is reported. Even though the number of five train-test set compositions
is not particularly high, the reported mean value still gives an estimate of the expected
generalization error of a processing system as in Equation 1.76. Conclusions that can be
drawn here are still specific to the specific methods that a processing system is built from,
but they are no longer specific to a specific train-test set composition.

To additionally inspect the effect that differently sized training data sets have on prediction
performance, four increasingly smaller training data sets are randomly sampled from each
of the five originally sampled training data sets. For each of the six processing systems,
training and evaluation thus is conducted on 5× 5 = 25 different train-test set pairs that
vary in composition and size. This procedure, in which training set sizes and compositions
are taken into account, already differs substantively from usual NLP practices and is one
step closer to the more adequate research procedures outlined above.

Closer to the usual NLP practices is the procedure taken in the article How to estimate
continuous sentiments from texts using binary training data. The article first introduces
CBMM and then empirically assesses the performance of CBMM in producing continu-
ous sentiment estimates across three applications. CBMM is compared to lexicon-based
approaches and is compared to regression approaches that are fed with fine-grained data
in training. Hence, the article likewise does not compare individual, specific methods but
larger method compositions (approaches A = CBMM, B = lexicon-based, and C = regres-
sion). However, this comparison of approaches is conducted on the basis of a few specific
processing systems (two systems for CBMM, two systems for lexicon-based approaches,
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and two systems for regression approaches) whose components are deliberately chosen.
Therefore, the processing systems that are applied and evaluated in the article are not
randomly drawn from a population of processing systems. Moreover, the comparison for
all three applications is based on a single train-test split of the available labeled data.
Consequently, the reported performances are estimates of generalization errors of specific
processing systems that are based on specific train-test set compositions.

Nevertheless, several individual treatment effects can be observed in the article. For exam-
ple, an individual CBMM processing system is implemented once with and once without
a dispersion formula.83 Because all other elements of the CBMM processing system are
held constant, the observed performance difference between the CBMM processing system
with and without a dispersion formula is the individual treatment effect of the dispersion
formula on the processing system’s performance. Moreover, when comparing CBMM with
regression approaches, care is taken to ensure that for one processing system all method
components that can be the same for CBMM and regression approaches indeed are the
same. For example, for CBMM as well as for regression approaches, the pretrained rep-
resentation model RoBERTa (Liu et al., 2019b) is used as an input for fine-tuning on the
sentiment prediction target task.84 Therefore, since all components of a processing sys-
tem are the same across CBMM and regression approaches (except for those components
that necessarily have to be different), the performance difference observed between CBMM
and regression can be understood as the individual treatment effect of applying CBMM
vs. regression on the performance of the applied processing system.

The article A comparison of approaches for imbalanced classification problems in the con-
text of retrieving relevant documents for an analysis aims at comparing the retrieval per-
formances of different approaches: keyword lists, query expansion techniques, topic model-
based classification rules, and active as well as passive supervised learning. Hence, again
the aim is to compare not single specific methods but larger categories of methods (here
called approaches A,B,C,D,E). In the article, considerable efforts are made to have
not only one processing system per approach but to have several processing systems per
approach. This is, efforts are made to have not only one single processing system that
implements one specific combination of method components As as a representation for one
approach A but to have several processing systems with varied method component combi-
nations {As}S

s=1 as a representation for one approach A. In each of its three applications,
the article compares the performances of 100 different keyword lists with the performances
of 1,800 query expansion results, 1,706,900 different topic model-based classification rules,
300 models obtained via passive supervised learning, and 300 models obtained via active
supervised learning.85 With regard to active and passive supervised learning, for example,

83The dispersion formula is a part of the mixed model that is estimated on the basis of the classifiers’
predictions.

84Moreover, in both cases the predictions from the RoBERTa models for the test set documents are
aggregated via a mixed model. However, in order to use adequate models, a beta mixed model is estimated
for CBMM and a linear mixed model is estimated for regression approaches.

85In the application based on the Reuters-21578 corpus (Lewis, 1997), 150 rather than 300 models trained
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two different learning algorithms (SVM and BERT) are applied on ten differently com-
posed tests sets and initial training sets.86 For each of the ten initial training sets, a model
is trained on the initially sampled training data set and then generates predictions for the
pool of data instances that neither belong to the test nor the training set. Given these pre-
dictions, additional instances from the pool are either selected randomly (passive learning)
or by uncertainty sampling (active learning) to be added to the training set. This process
is repeated 15 times, and the training set increases with each iteration.

Again, the processing systems are not drawn from an a priori, clearly defined population
of processing systems. Within one approach, some method components are made to vary
over a predefined range of values while other method components are held constant. For
practical reasons, components for which it is easier to let them vary (because letting them
vary consumes few resources), are allowed to vary over a larger range of values than method
components for which letting them vary is more resource intensive. A good example of the
approach taken in the article is the procedure implemented with regard to topic model-
based classification rules: Let A = {Av1,Av2,Av3,Av4} indicate the approach of applying
topic model-based classification rules, where Av1 ∈ {LDA, CTM, STM,. . . } is the type of
topic model, Av2 ∈ {1, 2, 3, 4, . . . } is the topic model’s number of topics, Av3 ∈ {{Topic
1}, {Topic 1, Topic 2}, {Topic 1, Topic 3}, . . . } is the set of topics that are considered
relevant, and Av4 ∈ [0, 1] is the threshold value that indicates the minimum share of a
document that has to be assigned to the topics in the relevant set for the document to
be categorized as relevant. The procedure in the article selects for each variable a set
of values—namely: Av1 = {CTM}, Av2 ∈ {5, 15, 30, 50, 70, 90, 110}, Av3 ∈ {all sets of
one, two, and three topics that can be drawn from Av2 topics }, Av4 ∈ {0.1, 0.3, 0.5, 0.7}—
and then inspects the retrieval performance for each combination of these values. Thus,
there is no random sampling from the entire population of processing systems of inter-
est. Rather, all possible method combinations over sets of predefined ranges of values are
applied and evaluated. The procedure described here is similar for the other approaches
that the article A comparison of approaches for imbalanced classification problems in the
context of retrieving relevant documents for an analysis compares. This procedure makes
it possible to compare the approaches based on ranges of method combinations. (And thus
there is a substantively broader comparison basis than if only one processing system per
approach were applied). Yet the comparison is only possible with respect to the selected
method combination ranges. Reported mean performances are not an estimate of Equation
1.82.

To conclude: In all of this dissertation’s articles, larger strands of methods (approaches
A,B,C, . . . ) are compared against each other. In each article, at least one of the ap-
proaches (in the following denoted with A) is one that is not yet widely used in political
science and could valuably extend the toolbox that is employed in text-based political

by passive and active supervised learning are compared.
86In the application based on the Reuters-21578 corpus five rather than ten differently composed tests

sets and initial training sets are applied.
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science research. Using the available amount of resources, efforts were made to compare
methodA to the other more established methods B,C, . . . in a way that would allow mak-
ing useful comparative statements. The results of these efforts are as follows: On the basis
of the reported performance values in the article How to estimate continuous sentiments
from texts using binary training data individual treatment effects can be computed. With
regard to the Wikipedia Toxic Comment application of the article Introduction to neural
transfer learning with Transformers for social science text analysis estimates of expected
generalization errors that generalize over train-test set compositions are presented. And
the article A comparison of approaches for imbalanced classification problems in the context
of retrieving relevant documents for an analysis implements a broad comparative approach.
The research procedures applied in this dissertation thus partly go beyond research prac-
tices in NLP. However, none of the articles fully applies the research procedures described
above, which would allow drawing inferences about the causal effect on performance of
applying method A in comparison to method B,C, . . . within the population of processing
systems of interest.

What could have been done better in the dissertation articles with the given limited re-
sources? The available resources could have been distributed better. For example, in each
article whenever a supervised learning algorithm is employed, a grid search across hyper-
parameter value combinations is implemented via five-fold cross-validation on the training
set to determine the best performing hyperparameter setting. Since this combination of
grid search and cross-validation involves training the algorithm five times for each explored
combination of hyperparameter values on a portion of the training data set, this step re-
quires substantial resources. Moreover, the usefulness of this step is questionable, since
there are often small performance differences within certain hyperparameter value ranges.
Additionally, from a scientific point of view, knowing the mean performance of a method
across ranges of hyperparameter values is arguably more of interest than knowing the per-
formance of a method with the best performing hyperparameter setting. The resources
used for hyperparameter tuning could therefore have been employed more efficiently. This
is especially the case with regard to those applications in which hyperparameter tuning
is followed by training and evaluation on a single train-test split of the labeled data. In-
stead of training a processing system with tuned hyperparameter values once on a specific
training data set and evaluating it once on a specific test data set, it would have been
more insightful for a processing system (with fixed, non-tuned hyperparameter values) to
be trained and evaluated on different train-test set compositions because then an estimate
of the expected generalization error of the processing system (see Equation 1.76) could
have been computed. Future research projects thus should apply provided resources such
that the broadest possible scientific inferences can be drawn.
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1.4.1.3 NLP as a Science

In general, the field of NLP would benefit if it perceived itself as a science and would move
away from engineering the best performing processing system for a task and move toward
applying scientific research procedures that allow drawing inferences about the performance
effects of methods. Studies that make processing systems comparable and then examine
individual treatment effects of single method components (e.g. Aßenmacher et al., 2021)
are an important first step in this direction. A further step then would be to apply the
research procedures described here in order to estimate average treatment effects. For this
purpose, NLP researchers have to (begin to) see themselves as scientists. They first have
to discuss

• what advances it could bring to the field if they saw themselves as scientists (on the
benefits of scientific engineering see e.g. Montgomery, 2012, p. 1-5),

• what their scientific research interest is (namely drawing causal inferences about the
performance effects of methods), and

• how to operate as scientists (i.e. what research procedures to use such that causal
inferences can be drawn).

This discussion process has begun already: In a recent, award-winning article, Ulmer
et al. (2022) summarize suggestions for the improvement and adoption of scientific research
practices in NLP.

Once this discussion process is over, new research practices are established, and respective
studies are planned, a difficulty will be to define populations of processing systems from
which the sampling methods draw and that the resulting inferences refer to. Against the
background of limited resources, it might be helpful in a concrete application to first define
a smaller population than the one actually of interest, and then—as outlined above—to
sample from this somewhat smaller population and estimate an average treatment effect
accordingly. This would then allow drawing causal inferences at least with respect to a
smaller population.87

87For example: The CBMM approach introduced in the article How to estimate continuous sentiments
from texts using binary training data can be conceived of as a general category of processing systemsA that
produces continuous estimates based on binary training data. When estimating the expected generalization
error of this approachA (as in Equation 1.82), then one would first have to define a population of processing
systems with A from which to sample from. This population is very large: In its second step, the CBMM
procedure trains and applies an ensemble of classifiers and in the article it says: “The classifiers in the
ensemble may differ regarding the type of algorithm, hyperparameter settings, or merely the seed values
initializing the optimization process.” (p. 185). Additionally, the number of classifiers that are employed
in the ensemble can vary across a vast (potentially infinite) range of positive integer values {2, 3, 4, . . . }
and in the third step of CBMM the mixed model can be applied with or without a dispersion formula.
The population of interest furthermore is characterized by p(d, y). Drawing and applying an appropriately
sized sample of processing systems from this population, is likely to be prohibitively costly. A feasible
option, however, would be to define a subpopulation of this population such that a manageable number
of processing systems can be randomly sampled and applied. The mean across the sampled processing
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Why are all these mentioned aspects also important for political science? The goal of
this dissertation is to present and explain methods that are not yet widely used (or are
just beginning to be used) in text-based political science research such that political sci-
entists understand these methods and the political science research toolbox is extended
and improved. This is an important contribution. Yet it is equally important for political
scientists to not only have an extended toolbox, but also to know which elements in this
toolbox are likely to show which performance with regard to which task. If political scien-
tists apply methods from NLP for the purpose of measuring a priori-defined concepts from
texts, then the primary goal is to reach as high as possible prediction performances. Con-
sequently, political scientists rely on valid inferences about the causal performance effects
of NLP tools.

1.4.2 Future Research in Political Science

For political scientists there are two further future research activities: First, political sci-
entists should ensure that concepts and methods continuously travel from NLP to political
science. There is exchange between the field of political science and the field of NLP, but
this exchange does not reach far enough within political science. Big, important NLP con-
ferences such as ACL, EMNLP, or NAACL have sessions on computational social science
and every now and then political scientists (often in collaboration with computer scien-
tists) participate and apply current NLP methods (e.g. Kim et al., 2021; Rehbein et al.,
2021b,c). Furthermore, there are tutorials and workshops that explicitly aim at promoting
the exchange between political scientists and the NLP community (Glavaš et al., 2019;
Rehbein et al., 2021a). The larger part of text-based political science researchers, how-
ever, seems disconnected from the continuing stream of developments within NLP. One
likely reason for this disconnect is that the importance of different publication formats is
weighted differently in NLP and political science. In NLP, publication at prestigious con-
ferences plays an all-important role. In political science, publication in prestigious journals
is considered most important. For political science—which is an interdisciplinary discipline
par excellence and relies on theories and methods from other scientific fields—it would be
very important not to disregard NLP publications only because they come in the form of
conference papers.

A continuous exchange between political science and NLP is especially important for polit-
ical scientists in order not to lose touch with the concepts and methods that are developed

system’s performance values then is an estimate of the expected generalization error of CBMM within the
defined subpopulation. In a concrete, exemplary case, the joint distribution of a subpopulation could be
p(A = CBMM , d, y) where CBMM = {type of classifiers, number of classifiers, seed values, dispersion
formula} and where type of classifiers ∈ {BERT, RoBERTa, BART}, number of classifiers ∈ {5, 10, 20},
seed values ∈ {1111, . . . , 9999}, dispersion formula ∈ {yes, no}. Moreover, the underlying data distribution
p(d, y) in practice is approximated via concrete pairs of training and test data sets, (Dtrain,Dtest). Here,
for example, (Dtrain,Dtest) ∈ {all possible train-test set pairs that can be drawn from the available data of
size N , where |Dtrain| = 0.8×N and |Dtest| = N − |Dtrain|.
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and applied in NLP. This doctoral thesis attempts to fill a gap that has emerged: NLP
had moved from using conventional machine learning methods to employing deep neural
networks and transfer learning, but these changes had not yet fully reached political sci-
ence. The specific methods presented in this dissertation very soon will be out of date.
The underlying concepts and methods presented in this dissertation (deep learning, con-
textualized representations, transfer learning, ...) are likely to be longer in use and are
likely to be the basis from which new methods in NLP will (and already do) arise. But,
eventually, new fundamental developments of methods will come and new gaps between
the state-of-the-art in NLP and research practice in political science will emerge. Insofar
as political science research benefits from advancements in NLP (e.g. because the invented
methods facilitate the empirical analysis of political science research questions), political
scientists should take care not to be left behind by the progress in NLP.

Recent developments within NLP and related fields (Ruder, 2021a, 2022) that this disser-
tation has not addressed (or not addressed extensively) but that could be further valuable
tools in the political science toolbox are

• multimodal models (covering modalities such as text and speech (Bapna et al., 2021),
text and image (Radford et al., 2021), or text and video (Fu et al., 2021)),

• speech representation models (Baevski et al., 2020; Liu et al., 2020; Babu et al.,
2021),

• cross-lingual learning and multilingual models (Devlin, 2019; Conneau et al., 2020;
Xue et al., 2021),

• in general: better and/or more efficient ways to learn language representations and
to process natural language, e.g. via

– more efficient Transformer architectures (Tay et al., 2021),

– few-shot learning, zero-shot learning, and in-context-learning (Yin et al., 2019;
Brown et al., 2020; Gao et al., 2021; Schick & Schütze, 2021; Wei et al., 2022),

– the increased application of multitask learning (Brown et al., 2020; Wei et al.,
2022; Aribandi et al., 2022),

– new neural network architectures that extend or move beyond the Transformer
(Jaegle et al., 2021, 2022),

– token-free models that directly take in raw text and do not require textual inputs
to be separately processed by tokenization algorithms (Tay et al., 2022; Clark
et al., 2022; Xue et al., 2022).

The second issue that political science research has to address is the handling of prediction
error (as well as other forms of measurement error) that can occur when applying a learning
algorithm for the purpose of measuring an a priori-specified concept from text: Assume
that a political scientist seeks to estimate the average causal effect that a latent individual
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property H has on some outcome Γ in a population of observational units. The scientist
observes an i.i.d. sample of observational units (1, . . . , v, . . . , V ) from the population. She
records the value that each unit in the sample assumes on variable Z (which serves as an
indicator of outcome Γ). (η1, . . . , ηv, . . . , ηV ) are the realized but unobserved values of the
units on latent property H. In order to measure the latent property, the researcher makes
use of text data. Each observational unit in the sample is the author of one text document
dv. (Note here that for the vth unit, dv does not directly reflect ηv but θv. Whereas ηv is the
true value of unit v’s latent characteristic, θv is the value of the latent characteristic that
unit v communicates in text dv (see pages 57 to 59 and Figure 1.1).) The researcher reads
a subsample of documents (di)Ni=1 (the training set) and assigns to each di in the training
set a value yi. yi is the value of the latent characteristic of i that the researcher assigns
by means of trying to decode θi from di while reading. Given (di, yi)Ni=1, the researcher
trains a supervised learning algorithm. Then, she uses the trained model f̂ to generate
predictions. These predictions, however, will not be without error. The discrepancies
between the predictions ŷ and the true assigned values y for units in the training set is the
training error. Due to overfitting, these discrepancies are likely to be larger in the entire
population as captured by the expected generalization error. If the political scientist now
takes the trained model’s predictions ŷ as her indicator of latent concept H and uses the
predictions in her subsequent analysis of the effect of H on Γ without adjustments, then
there are two problematic aspects here:

First, the political scientist does not take into account the uncertainty in the machine
learning model’s predictions. In doing so, she is not alone: In political science research
practice, it is usually the case that predictions from trained machine learning models are
included in regression models without considering the prediction error (e.g. Theocharis
et al., 2016; Katagiri & Min, 2019; Mitts, 2019; Fowler et al., 2021).88 Ignoring prediction
error, however, can bias the substantive conclusions drawn in an analysis (Fong & Tyler,
2021, p. 480-481). Techniques that account for this form of measurement error are discussed
and presented in political science (e.g. Fong & Tyler, 2021). (And closely related here is the
research field on missing data and imputation methods (Little & Rubin, 2002; Toutenburg
et al., 2004).) But there are still open questions. With regard to the method proposed in
Fong & Tyler (2021), for example, it is unclear how best to proceed if the units’ values on
the dependent variable (rather than an independent variable) are produced by a prediction
model or how to apply their method to the case of nonlinear regression. The task of
future research, therefore, is to develop, refine, and apply techniques that account for the
prediction error from machine learning models.

Second, the political scientist in the example furthermore should be aware that prediction
error is not the only source of measurement error here. It is not only that the predicted
values ŷ may deviate from true assigned values y but that the y themselves arise from
a stochastic process. This process maps an individual unit’s true latent characteristic ηv
into a value of the characteristic that unit v seeks to communicate, ψv, and then maps

88This is also true beyond political science.
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ψv into the value that the unit actually communicates, θv, by means of producing text dv
(see pages 57 to 59 and Figure 1.1 above). yv then is the result of a stochastic coding
process in which a human while reading dv seeks to decode θv from dv. So far, this aspect
has received little attention in political science. There are very few studies that (1) have
devised methods that take into account stochastic elements of this process that maps ηv
into yv and/or (2) demonstrate the problems for inferences drawn if these elements are not
accounted for (Benoit et al., 2009; Hopkins & King, 2010; Mikhaylov et al., 2012). Further
research is needed to develop methods by which to account for this process from ηv to
yv.
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Introduction to Neural Transfer Learning with
Transformers for Social Science Text Analysis

Abstract. Transformer-based models for transfer learning have the potential to achieve
high prediction accuracies on text-based supervised learning tasks with relatively few train-
ing data instances. These models thus are likely to benefit social scientists that seek to
have as accurate as possible text-based measures and probably have only limited resources
for annotating training data. To enable social scientists to leverage these potential benefits
for their research, this paper explains how these methods work, why they might be ad-
vantageous, and what their limitations are. Additionally, three Transformer-based models
for transfer learning, BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and the
Longformer (Beltagy et al., 2020), are compared to conventional machine learning algo-
rithms on three applications. Across all evaluated tasks, textual styles, and training data
set sizes, the conventional models are consistently outperformed by transfer learning with
Transformers, thereby demonstrating the benefits these models can bring to text-based
social science research.

Keywords. Natural language processing, deep learning, neural networks, transfer learn-
ing, Transformer, BERT
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2.1 Introduction: Why Neural Transfer Learning with Trans-
formers?

Social scientists have at their disposal a wide spectrum of text analysis tools (Grimmer &
Stewart, 2013; Benoit, 2020). And different tools are suitable to achieve different goals.
Social scientists use unsupervised learning methods to detect latent topic structures (e.g.
Roberts et al., 2016) and to estimate positions of texts on uncovered continuous latent
dimensions (e.g. Slapin & Proksch, 2008). Whilst unsupervised learning is essential for
exploring, discovering, and mapping yet unknown (and possibly theoretically informative)
underlying properties of texts, supervised learning methods are important in situations
in which a researcher has a clearly defined concept and seeks to measure the concept by
means of using textual data in an automated process (Ahlquist & Breunig, 2012, p. 94-
95; Grimmer & Stewart, 2013, p. 268, 270). Supervised learning techniques have been
employed to measure a vast range of application-specific (and often complex, latent, and
multidimensional) concepts from texts, such as e.g. tonality (Rudkowsky et al., 2018; Bar-
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berá et al., 2021; Fowler et al., 2021), inequality (Nelson et al., 2021), populism (Di Cocco
& Monechi, 2021), attitudes (Ceron et al., 2014; Mitts, 2019), policy topics (Osnabrügge
et al., 2021; Sebők & Kacsuk, 2021), and events (D’Orazio et al., 2014; Zhang & Pan, 2019;
Muchlinski et al., 2021). In such supervised learning settings, the training data encode how
the concept (e.g. attitude, inequality, event) is to be operationalized and the text analysis
method is the measurement method that is deployed to assign the textual units to the
values of the variable.

If a researcher is applying a supervised learning method on text data for the purpose of
measuring an a priori-specified concept, her aim—as in any measurement process—will
be to have a valid measure that captures the concept it is devised to measure. And
consequently—because when working with text data humans are usually seen as the “the
ultimate arbiter of the ‘validity’ of any research exercise” (Benoit, 2020, p. 470)—the aim
for the researcher is to have a supervised learning technique that as closely as possible can
imitate human codings (Grimmer & Stewart, 2013, p. 270, 279).1 After having trained a
model on human annotated training data, the researcher thus will hope that the trained
model as accurately as possible predicts human codings on data that have not been used
in training (Grimmer & Stewart, 2013, p. 271, 279). If this is the case and hence the model
can be said to generalize well, this indicates that the model’s predictions will provide a
valid measure of the concept under study (Grimmer & Stewart, 2013, p. 271, 279).

This focus on prediction performance is a major deviation from the usual social science
focus on making causal inferences. In a causal inference setting, modeling is theory-based
and interpretable models are used to identify the effects of single independent variables.
But in order to test hypotheses about causal relations between concepts, the concepts have
to be translated into measurable variables that constitute valid measures of the concepts
under study. And if for the process of measurement a supervised learning method is used,
then the goal is to as closely as possible replicate human coding as this indicates validity
(Grimmer & Stewart, 2013, p. 271, 279). So here, for the very purpose of measurement,
the aim is not causal inference but precise prediction. Therefore, the focus is less on
interpretable models that allow identifying the effects of single features.2 Rather, the focus
is on models that as closely as possible can approximate the often very complex functions
that map from input text data to the respective human coded outputs (Breiman, 2001,
p. 199).

In the field of natural language processing (NLP), the usage of deep learning models (as
compared to conventional machine learning algorithms) has enabled researchers to learn

1Benoit (2020, p. 470) points out that research indicates that humans are not very reliable coders of
text data (see also e.g. Mikhaylov et al., 2012; Ennser-Jedenastik & Meyer, 2018). This, in turn, raises
the question of how valid human judgments can be (Song et al., 2020, p. 553). Nevertheless, in this
study—and in concordance with the literature (Benoit, 2020, p. 470; Nelson et al., 2021, p. 232)—the
comparison of human codings to the predictions of a supervised learning method is considered the best
available procedure for validation.

2In studies that apply supervised learning approaches for purposes other than the one discussed here
interpretability can be essential (see e.g. Slapin & Kirkland, 2020).
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better generalizing mappings from textual inputs to task-specific outputs and hence has
enabled researchers to more accurately perform a wide spectrum of tasks such as text
classification, machine translation, or reading comprehension (Goldberg, 2016, p. 347-348;
Ruder, 2020). Despite the fact that deep learning techniques tend to exhibit higher pre-
diction accuracies in text-based supervised learning tasks compared to traditional machine
learning algorithms (Socher et al., 2013; Iyyer et al., 2014; Budhwar et al., 2018; Ruder,
2020), they are not yet a standard tool for social science researchers that use supervised
learning for text analysis. Although there are exceptions (e.g. Rudkowsky et al., 2018;
Zhang & Pan, 2019; Amsalem et al., 2020; Chang & Masterson, 2020; Muchlinski et al.,
2021; Wu & Mebane, 2021), for the implementation of supervised learning tasks, social
scientists typically resort to bag-of-words-based representations of texts that serve as an
input to conventional machine learning models such as support vector machines (SVMs),
naive Bayes, random forests, boosting algorithms, or regression with regularization (see
e.g. Diermeier et al., 2011; Colleoni et al., 2014; D’Orazio et al., 2014; Ceron et al., 2015;
Theocharis et al., 2016; Welbers et al., 2017; Kwon et al., 2018; Greene et al., 2019; Kata-
giri & Min, 2019; Mitts, 2019; Pilny et al., 2019; Ramey et al., 2019; Rona-Tas et al., 2019;
Anastasopoulos & Bertelli, 2020; Miller et al., 2020; Park et al., 2020; Barberá et al., 2021;
Di Cocco & Monechi, 2021; Fowler et al., 2021; Osnabrügge et al., 2021; Sebők & Kacsuk,
2021).3

One among several likely reasons why deep learning methods so far have not been widely
used for text-based supervised learning tasks by social scientists might be that training
deep learning models is resource intensive. Deep learning models have considerably more
parameters to be learned in training than classic machine learning models. Consequently,
deep learning models are computationally highly intensive and require substantially larger
numbers of training examples. Goodfellow et al. (2016, p. 20) stated that “As of 2016,
a rough rule of thumb is that a supervised deep learning algorithm will generally achieve
acceptable performance with around 5,000 labeled examples per category”.4 For research

3This is not to say that social scientists would not have started to leverage the foundations of deep
learning approaches in NLP: During the last years, the use of real-valued vector representations of terms,
known as word embeddings, enabled social scientists to explore new research questions or to study old
research questions by new means (e.g. Rheault et al., 2016; Han et al., 2018; Kozlowski et al., 2019; Rheault
& Cochrane, 2020; Rodman, 2020; Watanabe, 2021). Moreover, there is a small but increasing number
of publications in social science journals that apply deep neural networks to texts (e.g. Rudkowsky et al.,
2018; Zhang & Pan, 2019; Amsalem et al., 2020; Chang & Masterson, 2020; Muchlinski et al., 2021; Wu
& Mebane, 2021). Yet applications of deep neural networks (let alone deep neural networks plus transfer
learning) are not widely used by social scientists. And thus, implementations of deep neural networks
and modern NLP techniques on texts that are relevant for social science research up til now are mostly
conducted by research teams that are not primarily social science trained (see e.g. Iyyer et al., 2014;
Zarrella & Marsh, 2016; Glavaš et al., 2017; Budhwar et al., 2018; Meidinger & Aßenmacher, 2021) and/or
are published via platforms and venues (e.g. important NLP conferences such as the EMNLP, ACL, or
NAACL) that social scientists typically do not closely monitor (e.g. Kim et al., 2021; Rehbein et al.,
2021a,b).

4Yet how much training data instances are really needed depends on the width and depth of the
deep neural network, the task, and training data quality. Thus, precise numbers on the amounts of
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questions relating to domains in which it is difficult to access or label large enough numbers
of training data instances, deep learning becomes infeasible or prohibitively costly.

What kind of NLP tasks are there? In the field of NLP, a large spectrum of di-
verse tasks are addressed. There are NLP tasks that operate at the linguistic level
(e.g. part-of-speech (POS) tagging, syntactic parsing) (Smith, 2011, p. 4-11), and
there are tasks that operate at the semantic level and focus on natural language
understanding (e.g. information extraction, sentiment analysis, or question answer-
ing) (MacCartney, 2014). Furthermore, there are natural language generation tasks
(e.g. machine translation, text summarization) (Gatt & Krahmer, 2018), and there
are multimodal tasks in which the inputs to be processed can be of different modal-
ities (e.g. text plus image, audio, or video). Additionally, these tasks can be ap-
proached in different formats. Sentiment analysis, for example, can be conducted as
a document classification task (Pang et al., 2002), a sequence tagging task (Mitchell
et al., 2013), or a span extraction task (Hu et al., 2019). Especially with regard to
natural language understanding, however, many NLP tasks can be framed as binary
or multi-class classification tasks in which the model’s task is to assign one out of
two or one out of several class labels to each text input (see e.g. Wang et al., 2019).
This matches well with text-based research in social science where the measurement
of an a priori-defined concept via supervised learning is very frequently implemented
as a text classification task.a

aThis is not to say that all supervised learning in social science is classification. Especially in
political science, supervised techniques that estimate values for documents on latent continuous
dimensions have been developed (Laver et al., 2003; Perry & Benoit, 2017). For a new technique
see Wankmüller & Heumann (2021).

Recent developments within NLP on transfer learning alleviate this problem. Transfer
learning is a set of learning procedures in which knowledge that has been learned from
training on a source task in a source domain is used to improve learning on the target
task in the target domain (where the target task is the task of interest that a researcher
actually seeks to conduct) (Pan & Yang, 2010, p. 1347). In sequential transfer learning—
which is one common type of transfer learning—the aim when training on a source task
is to acquire a highly general, close to universal language representation model (Ruder,
2019a, p. 64). The pretrained general-purpose representation model then can be used as
an input to a target task of interest (Ruder, 2019a, p. 63-64). This practice of using a
pretrained language model as an initialization for training on a target task has been shown
to improve the prediction performances on a large variety of NLP target tasks (Ruder,
2020; Bommasani et al., 2021, p. 22-23). Moreover, adapting a pretrained language model

parameters and required training examples cannot be specified. To nevertheless put the sizes in relation,
note that an SVM with a linear kernel that learns to construct a hyperplane in a 3,000-dimensional feature
space which separates instances into two categories based on 1,000 support vectors has around 3 million
parameters. The Transformer-based models presented in this article, in contrast, have well above 100
million parameters.



204 2. Neural Transfer Learning with Transformers

to a target task requires fewer target training examples than when not using transfer
learning and training the model from scratch on the target task (Howard & Ruder, 2018,
p. 334).

In addition to the efficiency and performance gains from research on transfer learning, the
introduction of the attention mechanism (Bahdanau et al., 2015) and the self-attention
mechanism (Vaswani et al., 2017) has significantly improved the ability of deep learning
NLP models to capture contextual information from texts. (Self-)attention mechanisms
learn a token representation by capturing information from other tokens, and thereby en-
code textual dependencies and context-dependent meanings. (Self-)attention mechanisms
constitute the core building blocks of the Transformer—a type of deep learning model that
has been presented by Vaswani et al. in 2017. During the last years, several Transformer-
based models that are used in a transfer learning setting have been introduced (e.g. Devlin
et al., 2019; Liu et al., 2019; Yang et al., 2019). These models substantively outperform pre-
vious state-of-the-art models across a large variety of NLP tasks (Ruder, 2020; Bommasani
et al., 2021, p. 22-23).

Due to the likely increases in prediction accuracy, as well as the efficient and less resourceful
adaptation phase, transfer learning with deep (e.g. Transformer-based) language represen-
tation models seems promising to social science researchers. It seems especially promising
to researchers that seek to have as accurate as possible text-based measures but lack the
resources to annotate large amounts of data or are interested in specific domains in which
only small corpora and few training instances exist. In order to equip social scientists to
use the potential of transfer learning with Transformer-based models for their research, this
paper provides an introduction to transfer learning and the Transformer. Hence, the con-
tribution of this paper is to present learning techniques that might enable social scientists
to obtain more valid text-based measures for concepts they seek to measure.

The following Section 2.2 compares conventional machine learning to deep learning by fo-
cusing on the question of how textual features (e.g. characters, terms, symbols) and larger
textual units (e.g. sentences, paragraphs, tweets, comments, speeches, ... here named:
documents) tend to be represented in conventional vs. deep learning approaches. The
subsequent Section 2.3 on transfer learning provides an answer to the question of what
transfer learning is and explains in more detail in what ways transfer learning might be
beneficial. The then following Section 2.4 introduces the attention mechanism and the
Transformer and elaborates on how the Transformer has advanced the study of text. Af-
terward, an overview of Transformer-based models for transfer learning is provided (Section
2.5). Here, a special focus will be given to the seminal Transformer-based language rep-
resentation model BERT (standing for Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019). Additionally, the changes in NLP and artificial intelligence
(AI) research, that these models have caused, are outlined and problematic aspects are
discussed. Finally, three Transformer-based models for transfer learning, BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and the Longformer (Beltagy et al., 2020), are
compared to traditional learning algorithms based on three classification tasks using data
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from speeches in the UK parliament (Duthie & Budzynska, 2018), tweets regarding the
legalization of abortion (Mohammad et al., 2017), and comments from Wikipedia Talk
pages (Jigsaw/Conversation AI, 2018) (Section 2.6). The final Section 2.7 concludes with
a discussion on task-specific factors and research goals for which neural transfer learning
with Transformers is highly beneficial vs. rather limited.

Throughout the paper, it is assumed that readers know core elements of neural network ar-
chitectures, and are also familiar with recurrent neural networks (RNNs) as well as with op-
timization via stochastic gradient descent with backpropagation. For readers that feel not
sufficiently acquainted with these deep learning concepts see Appendix 2.A. Also note that
a document is an ordered sequence of tokens and here is denoted as di = (a1, . . . , at, . . . , aT ).
A token at is an instance of a type, which is the set of all tokens that are made up of the
same string of characters (Manning et al., 2008, p. 22). A type that is used for analysis
is named term or feature and here is given as zu. The set of features that are used in an
analysis is {z1, . . . , zu . . . , zU}.

2.2 Conventional Machine Learning vs. Deep Learning

2.2.1 Conventional Machine Learning

Given raw input data D = (d1, . . . , di, . . . , dN) (e.g. a corpus comprising N raw text files)
and a corresponding output variable y = [y1, . . . , yi, . . . , yN ]> (e.g. class labels), the aim in
supervised machine learning is to find the parameters θ of a function f that captures the
general systematic relation between D and y such that the trained model will generalize
well and generate accurate predictions for new, yet unseen data Dtest (James et al., 2013,
p. 30; Chollet, 2021, ch. 1.1.3).

When applying a machine learning algorithm in order to learn a function that as accurately
as possible maps from text data inputs to provided outputs, the algorithm, however, will
not take as an input raw text documents. The raw text units first have to be converted
into a format that is suitable for data analysis (Benoit, 2020, p. 463-464). This is achieved
by transforming each raw data unit di into an abstracted representation of di (Benoit,
2020, p. 463-464). Learning in supervised machine learning hence essentially is a two-step
process (Goodfellow et al., 2016, p. 10): The first step is to create or learn representations
of the data, and the second step is to learn mappings from these representations of the
data to the output. For a single document di, the first step of being transformed into a
representation can be described as fl(di, θ̂l) and the entire process as

ŷi = f(di, θ̂) = fo(fl(di, θ̂l), θ̂o) (2.1)

where the subscript l indicates the mapping from raw data to a representation and the
subscript o indicates the mapping from the representation to the output. Conventional
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machine learning algorithms cover the second step: They learn a function mapping data
representations to the output. This in turn implies that the first step falls to the researcher
who has to (manually) generate representations of the data herself.

Document 1 The party soon will update its manifesto.

Document 2 The party host turned off the music.

Document 3 He was attacked by the party leader.

Document 4 The party turned wild.

… …

the party soon will …

Document 1 1 1 1 1 …

Document 2 1 1 0 0 …

Document 3 1 1 0 0 …

Document 4 1 1 0 0 …

… … … … … …

1

0

1

0

…

! " #
raw	data																																																																																													representations	of	the	data																																																					output
e.g. corpus																																																																																									e.g. document-feature	matrix

preprocessing
*!

model
*"

Figure 2.1: Learning as a Two-Step Process. In text-based applications of conventional
machine learning approaches, the raw data D first are (manually) preprocessed such that each
example is represented as a feature vector in the document-feature matrix X. Second, these
representations of the data are fed as inputs to a traditional machine learning algorithm that
learns a mapping between data representations X and outputs y.

When working with texts, the raw data D are typically a corpus of text documents. A
very common approach in the social sciences is to transform the raw text files via multiple
preprocessing procedures into a document-feature matrix X = [x1| . . . |xi| . . . |xN ]> (see
Figure 2.1) (Benoit, 2020, p. 464). In a document-feature matrix, each document is rep-
resented as a feature vector xi = [xi1, . . . , xiu, . . . , xiU ] (Turney & Pantel, 2010, p. 147).
Element xiu in this vector gives the value of the ith document on the uth textual feature—
and typically is the (weighted) number of times that the uth feature occurs in the ith
document (Turney & Pantel, 2010, p. 143, 147). To conduct the second learning step,
the researcher then commonly applies a conventional machine learning algorithm on the
document-feature matrix to learn the relation between the document-feature representation
of the data X and the provided response values y.

There are three difficulties with this approach. The first is that it may be hard for the
researcher to a priori know which features are useful for the task at hand (Goodfellow
et al., 2016, p. 3-5). The performance of a supervised learning algorithm will depend on
the representation of the data in the document-feature matrix (Goodfellow et al., 2016, p. 3-
4). In a classification task, features that capture observed linguistic variation that helps
in assigning the texts into the correct categories are more informative and will lead to a
better classification performance than features that capture variation that is not helpful
in distinguishing between the classes (Goodfellow et al., 2016, p. 3-5). Yet determining
which sets of possibly highly abstract and complex features are informative (and which
are not) is highly difficult (Goodfellow et al., 2016, p. 3-5). A researcher can choose
from a multitude of possible preprocessing steps such as stemming, lowercasing, removing
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stopwords, adding POS tags, or applying a sentiment lexicon.5 Social scientists may be
able to use some of their domain knowledge in deciding upon a few specific preprocessing
decisions (e.g. whether it is likely that excluding a predefined list of stopwords will be
beneficial because it reduces dimensionality or will harm performance because the stopword
list includes terms that are important). Domain knowledge, however, is most unlikely to
guide researchers regarding all possible permutations of preprocessing steps. Simply trying
out each possible preprocessing permutation in order to select the best performing one for
a supervised task is not possible given the massive number of permutations and limited
researcher resources.

Second, the document-feature matrix defines a representational space in which each feature
constitutes one separate and independent dimension of the space (Goldberg, 2016, p. 349-
350). Accordingly, if there are U features, {z1, . . . , zu, . . . , zU}, then each feature zu defines
one dimension of the representational space. This implies that each feature is represented
to be as distant (and thus as dissimilar) to one feature as to each other feature (Goldberg,
2016, p. 351). The terms ‘excellent’ and ‘outstanding’ are treated as (dis)similar to each
other as the terms ‘excellent’ and ‘terrible’. The representational setting of the document-
feature matrix furthermore implies that the number of features (here denoted with U)
defines the dimensionality of the representational space (Goldberg, 2016, p. 349). As—
even after feature exclusion and feature normalization—the number of features in any
text-based analysis typically tends to be high, the document representation vectors xi
tend to be high-dimensional and sparse. (This is, xi is likely to be a vector with a large
number of elements, most of which will be zero.) By defining such a high-dimensional and
sparse feature space, a document-feature matrix brings about the curse of dimensionality:
There are much more combinations of feature values than can be covered by the training
data, therefore making it difficult to generalize to regions of the space for which no or only
few training data are observed (Bengio et al., 2003, p. 1137-1138; Goodfellow et al., 2016,
p. 351).

The third problem is that in a document-feature matrix each document is represented
as a bag-of-words (Turney & Pantel, 2010, p. 147). Bag-of-words-based representations
disregard word order and syntactic or semantic dependencies between words in a sequence
(Turney & Pantel, 2010, p. 147).6 Yet text is contextual and sequential by nature. Word
order carries meaning. And the context, in which a word is embedded in, is essential in
determining the meaning of a word. When represented as a bag-of-words, the sentence

5For a more detailed list of possible steps see Turney & Pantel (2010, p. 153 ff.) and Denny & Spirling
(2018, p. 170-172). Note that not only the set of selected preprocessing steps but also the order in which
they are implemented define the way in which the texts at hand are represented and thus affect the research
findings (Denny & Spirling, 2018).

6By counting the occurrence of word sequences of length N , N -gram models extend unigram-based
bag-of-words models and allow for capturing information from small contexts around words. However, by
including N -grams as features, the dimensionality of the feature space increases, thereby increasing the
problem of high dimensionality and sparsity. Moreover, texts often exhibit dependencies between words
that are positioned much farther apart than what could be captured with N -gram models (Chang &
Masterson, 2020, p. 395).



208 2. Neural Transfer Learning with Transformers

‘The opposition party leader attacked the prime minister.’ cannot be distinguished from
the sentence ‘The prime minister attacked the opposition party leader.’. Moreover, the fact
that the word ‘party’ here refers to a political party rather than a festive social gathering
only becomes clear from the context.

2.2.2 Deep Learning and Embeddings

These stated problems are overcome by deep neural networks and the real-valued vector
representations, known as embeddings, that typically accompany deep neural networks
(Goldberg, 2016; Goodfellow et al., 2016). In contrast to conventional machine learning
algorithms, deep learning models can be considered to conduct both learning steps: They
learn representations of the data and a function mapping data representations to the
output. In deep learning models, an abstract representation of the data is learned by
applying the data to a stack of several simple (typically nonlinear) functions (Goodfellow
et al., 2016, p. 5, 164-165). Each function takes as an input the representation of the data
created by (the sequence of) previous functions and generates a new representation:

f(di, θ̂) = fo(. . . fl3(fl2(fl1(di, θ̂l1), θ̂l2), θ̂l3) . . . , θ̂o) (2.2)

Deep learning models thus are characterized by providing a layered representation of the
data in which each layer of representation is based on previous data representations (Good-
fellow et al., 2016, p. 5, 8). Hereby, complex and abstract representations are learned from
less abstract, more simple ones (Goodfellow et al., 2016, p. 5, 8).

Nevertheless, when applying deep neural networks to text-based applications, deep neural
networks do not take as an input the raw text documents. They still have to be fed
with a data format they can read. Neural networks usually operate on real-valued vector
representations of entities, named embeddings (Goldberg, 2016, p. 349-351). Frequently,
the embedded entities are unique vocabulary terms (Pilehvar & Camacho-Collados, 2020,
p. 5). (In this case, embeddings are referred to as word embeddings.) Yet embeddings also
can be learned for smaller textual units (e.g. characters (Akbik et al., 2018) and subwords
(Bojanowski et al., 2017)), larger textual units such as sentences or documents (Le &
Mikolov, 2014; Reimers & Gurevych, 2019), and even for entities of a different nature,
e.g. word senses (Rothe & Schütze, 2015) or the nodes in a network (Kipf & Welling,
2017).

When working with text data and having a set of U textual features (e.g. U vocabulary
terms in a corpus), which are given by {z1, . . . , zu, . . . , zU}, then each feature zu can be
represented as an embedding—a K-dimensional real-valued vector zu ∈ RK . Whereas in
a document-feature matrix representation zu is a dimension of a U -dimensional feature
space, now zu is represented as a dense vector zu that is embedded in a K-dimensional
continuous space (where typically K << U) (Goldberg, 2016, p. 350-351). The positioning
of the embedding vectors within this K-dimensional space reflects the information that
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the embeddings encode about the features. For example, if the embeddings encode the
feature’s semantics, then features that are semantically similar are likely to have close
embedding vectors and thus are likely to be positioned close in space (Pilehvar & Camacho-
Collados, 2020, p. 4-5, 39). (The terms ‘excellent’ and ‘outstanding’ then are likely to be
close together and far from ‘terrible’.) Learning real-valued vector representations for
textual features and documents implies that one obtains relatively low-dimensional and
dense (rather than high-dimensional and sparse) representations (Goldberg, 2016, p. 349-
351). This, in turn, much facilitates generalization via the employment of local smoothness
assumptions (Bengio et al., 2003, p. 1137-1140).

In text-based applications, the feature representation vectors can be collectively kept in an
embedding matrix E, which is a U ×K matrix that stores for each of the U unique fea-
tures its K-dimensional embedding zu (Goldberg, 2016, p. 360). Therefore, if a researcher
wants to feed a text document, di = (a1, . . . , at, . . . , aT ), to a neural network, then for each
token at, the respective feature embedding z[at] is retrieved from the embedding matrix E
(Goldberg, 2016, p. 360). In the end, the document (a1, . . . , at, . . . , aT ) is mapped to a se-
quence of embeddings (z[a1], . . . ,z[at], . . . ,z[aT ]) which is the input representation entering
the network (Ruder, 2019a, p. 33). The values of the elements of the embedding vector
zu of each feature are treated as usual parameters and are learned jointly with the other
model parameters in the optimization process (Goldberg, 2016, p. 349, 361). A researcher
that has a corpus of raw text documents at his disposal thus merely has to extract fea-
tures {z1, . . . , zu, . . . , zU} for which vector representations will be learned (Goldberg, 2016,
p. 349-353). In practice, this typically involves tokenization and sometimes normalization
(e.g. lowercasing).7 Other than that, no text preprocessing steps are required. The rep-
resentation zu for each extracted feature is learned when training the model. It does not
have to be manually prefabricated by the researcher.

Nevertheless, it is common practice to initialize the representation vectors zu with pre-
trained embeddings (Goldberg, 2016, p. 365). Continuous bag-of-words (CBOW) (Mikolov
et al., 2013a), Skip-gram (Mikolov et al., 2013a,b), and Global Vectors (GloVe) (Penning-
ton et al., 2014), are early seminal models that learn (pretrained) word embeddings. In
these models, the embedding for a target term zu is learned on the basis of words that occur
in a context window surrounding instances of term zu (Pennington et al., 2014, p. 1533-
1535). In CBOW, for example, the self-supervised learning task is to predict a word given
its context words (Mikolov et al., 2013a, p. 4-5). In Skip-gram, surrounding context words
are predicted given a target word (Mikolov et al., 2013a, p. 4-5). And GloVe seeks to find a
representation for term zu and context term zj such that the dot product of their represen-
tation vectors, z>u z̃j, has a minimal squared difference to the logged number of times that
zj occurs in a context window around zu (Pennington et al., 2014, p. 1535). By utilizing
the contexts of a term to learn a representation for this term, these models implement the

7For example, a researcher may decide to tokenize each document into words and then lowercase all
words such that each document (a1, . . . , at, . . . , aT ) is given as a sequence of lowercased words. The set of
features {z1, . . . , zu, . . . , zU} consequently comprises all unique lowercased word tokens in the corpus.
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distributional hypothesis (Firth, 1957) according to which the meaning of a term can be
inferred from its context (Goldberg, 2016, p. 365; Spirling & Rodriguez, 2020, p. 4). Sim-
ilar terms are expected to be observed in similar contexts and, consequently, semantically
or syntactically similar terms are expected to be positioned close in the embedding space
(Goldberg, 2016, p. 365; Pilehvar & Camacho-Collados, 2020, p. 27).

Representations learned by these early word embedding models such as CBOW and GloVe,
however, have two shortcomings. First, these models learn for each feature zu a single vector
representation zu ∈ RK that encodes one information (Ruder, 2019a, p. 74). For models to
deduce complex meanings from sequences of tokens, however, several different information
types that build on top of each other are likely to be required (e.g. morphological, syntactic,
and semantic information) (Peters et al., 2018b; Tenney et al., 2019a). In NLP, therefore,
deep neural networks are now being used to learn deep (i.e. multi-layered) representations
(Peters et al., 2018a, p. 2233-2234; Ruder, 2019a, p. 74). In deep neural networks, each
layer learns one vector representation for a feature (Peters et al., 2018a, p. 2228). Hence,
a single feature is represented by several vectors—one vector from each layer. Although
it cannot be specified a priori which information is encoded in which hidden layer in a
specific model trained on a specific task, research suggests that information encoded in
lower layers is less complex and more general whereas information encoded in higher layers
is more complex and more task-specific (Yosinski et al., 2014; Tenney et al., 2019a). The
representations learned by a deep neural language model thus may, for example, encode
morphological information about core textual elements at lower layers, syntactic aspects
at middle layers, and semantic information in higher layers (Peters et al., 2018b; Jawahar
et al., 2019; Tenney et al., 2019a).

While previously often only the first embedding layer E of a deep neural network had been
initialized with pretrained word embeddings (e.g. from Skip-gram or GloVe), the standard
procedure in NLP now is to pretrain an entire deep neural network in order to learn model
parameters on the basis of which representation vectors’ elements can be computed through
the layers (Pilehvar & Camacho-Collados, 2020, p. 74-75; Ruder, 2019a, p. 74).Then, the
model (including its pretrained parameters) is used as the starting point for training on
the target task of interest (Ruder, 2019a, p. 64, 77). In general, this procedure, in which
pretrained models are transferred from a source pretraining task to the target task of
interest is called sequential transfer learning (Ruder, 2019a, p. 45) and will be introduced
in more detail in Section 2.3 below.

The second issue with the early word embedding models is that by representing each feature
zu with a single vector zu, distinct meanings of one feature are fused into one represen-
tation vector (Pilehvar & Camacho-Collados, 2020, p. 60). This is known as the meaning
conflation deficiency (Pilehvar & Camacho-Collados, 2020, p. 60). For example, the term
‘class’ can denote a group of people with a similar status but also a course taken at an
educational institution (Princeton University, 2010). A single vector is likely to blend these
two meanings (having the effect that the vector will be located somewhere between the
two different meanings in space) (Schütze, 1998, p. 102). In recent years, this issue has
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been addressed in NLP by learning contextualized representations (Pilehvar & Camacho-
Collados, 2020, p. 74). Contextualized representations account for the observation that
the (exact) meaning of a token arises from its context (Pilehvar & Camacho-Collados,
2020, p. 82). A contextualized representation is a representation of a token at (not a fea-
ture zu) and is a function of the tokens that precede and/or proceed token at (Pilehvar
& Camacho-Collados, 2020, p. 82). Hence, two identical tokens that occur in different
contexts, will have a different representation. As contextualized representations capture
information from surrounding tokens, they also allow encoding information on syntactic
or semantic dependencies between tokens (Pilehvar & Camacho-Collados, 2020, p. 74).
The representation for the token ‘it’ in the sentence ‘The party leader made a suggestion
and it was immediately adopted.’ hence can encode its reference to ‘suggestion’ (Alam-
mar, 2018a). Deep and contextualized representations are learned by deep RNNs (Elman,
1990) (and derived architectures such as deep long short-term memory (LSTM) models
(Hochreiter & Schmidhuber, 1997)) and the Transformer (Vaswani et al., 2017). Cur-
rently, especially Transformer-based models are widely used to learn deep contextualized
representations.

To wrap up and to sum up: Because they are composed of a stack of nonlinear func-
tions that map from one vector representation to the next, deep learning models tend to
have a high capacity (Goodfellow et al., 2016, p. 5, 168). This is, they can approximate
a large variety of complex functions (Goodfellow et al., 2016, p. 110). On less complex
data structures, large deep learning models may risk overfitting and conventional machine
learning approaches with lower expressivity may be more suitable. The ability to express
complicated functions, the ability to automatically learn multi-layered representations, and
the ability to encode information on dependencies between tokens and to encode context-
dependent meanings of tokens, however, seem important when working with text data: In
most areas of NLP, bag-of-words-based representations coupled with conventional machine
learning does not constitute the state-of-the-art for some time now (Goldberg, 2016). More-
over, models that learn deep and contextualized representations tend to generalize better
across a wide spectrum of specific target tasks compared to the one-layer representations
from early word embedding architectures (see e.g. McCann et al., 2018). Consequently,
over the last two decades, the field of NLP moved from sparse, high-dimensional repre-
sentations of single textual features and documents to dense, relatively low-dimensional,
deep, and contextualized representations. Today, models that can learn deep contextu-
alized representations and that can be transferred (and then put to use) across learning
tasks and domains are at the heart of many modern NLP approaches (Bommasani et al.,
2021). How and why models are transferred across tasks and domains is described in the
next section.
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2.3 Transfer Learning

The classic approach in supervised learning is to have a training data set containing a
large number of annotated instances, (xi, yi)Ni=1, that are provided to a model that learns a
function relating the xi to the yi (Ruder, 2019a, p. 2). If the train and test data instances
have been drawn from the same distribution over the feature space, the trained model
can be expected to make accurate predictions for the test data, i.e. to generalize well
(Ruder, 2019a, p. 42). Given another task (i.e. another set of labels to learn and thus
another function f to approximate) or another domain (e.g. another set of documents
with a different thematic focus and thus another distribution over the feature space), the
standard supervised learning procedure would be to sample and create a new training data
set for this new task and domain (Ruder, 2019a, p. 42). This is, for each new task and
domain, a new model is trained from the start (Ruder, 2019a, p. 42). There is no transferal
of already existing, potentially relevant, and useful information from other domains or tasks
to the task at hand (Ruder, 2019a, p. 2). Trained supervised learning models thus are not
good at generalizing to data exhibiting characteristics different from the data they have
been trained on (Ruder, 2019a, p. 2). Moreover, the (manual) labeling of thousands to
millions of training instances for each new task makes supervised learning highly resource
intensive and prohibitively costly to be applied for all potentially useful and interesting
tasks (Ruder, 2019a, p. 2-3). In situations in which the number of annotated training
examples is restricted or the researcher lacks the resources to label a sufficiently large
number of training instances classic supervised learning fails (Ruder, 2019a, p. 2-3). This
is where transfer learning comes in. Transfer learning refers to a set of learning procedures
in which knowledge, that has been obtained by training on a source task in a source domain,
is transferred to the learning process of the target task in a task domain, where either the
target task is not the same task as the source task or the target domain is not the same
as the source domain (Pan & Yang, 2010, p. 1347; Ruder, 2019a, p. 42-43).

2.3.1 A Taxonomy of Transfer Learning

Ruder (2019a, p. 44-46) provides a taxonomy of transfer learning scenarios in NLP: In
transductive transfer learning, source and target domains differ, and annotated training
examples are typically only available for the source domain (Ruder, 2019a, p. 46). Here,
knowledge is transferred across domains (domain adaptation); or—if source and target
documents are from different domains in the sense that they are from different languages—
knowledge is transferred across languages (cross-lingual learning) (Ruder, 2019a, p. 46). In
inductive transfer learning, source and target tasks differ, but the researcher has at least
some labeled training samples of the target task (Ruder, 2019a, p. 46). In this setting,
tasks can be learned simultaneously (multitask learning) or sequentially (sequential transfer
learning) (Ruder, 2019a, p. 46).
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2.3.2 Sequential Transfer Learning

In this article, the focus is on sequential transfer learning, which is a frequently employed
type of transfer learning. In sequential transfer learning, the source task differs from the
target task, and training is conducted in a sequential manner (Ruder, 2019a, p. 63). Two
stages are distinguished: First, a model is pretrained on a source task (pretraining phase)
(Ruder, 2019a, p. 64). Subsequently, the knowledge gained in the pretraining phase is
transferred to the learning process on the target task (adaptation phase) (Ruder, 2019a,
p. 64). In NLP, the knowledge that is transferred are typically the parameter values learned
during training the source model (Ruder, 2019a, p. 43). The model parameters define how
token representations are computed from inputs and define how token representations are
transformed into updated versions of token representations in deeper layers.

The common procedure in sequential transfer learning in NLP is to select a source task
that is likely to learn a model that constitutes a widely applicable language representation
tool and thus is likely to provide an effective input for a large spectrum of specific target
tasks (Ruder, 2019a, p. 64). Because many training instances are required to learn such a
general model, training a source model in the sequential transfer learning setting is highly
expensive (Ruder, 2019a, p. 64). Yet adapting a once pretrained model to a target task
is often fast and cheap as transfer learning procedures require only a small proportion of
the annotated target data required by standard supervised learning procedures in order
to achieve the same level of performance (Howard & Ruder, 2018, p. 334). In Howard
& Ruder (2018, p. 334), for example, training the deep learning model ULMFiT from
scratch on the target task requires 5 to 20 times more labeled training examples to reach
the same error rate than when adapting a pretrained ULMFiT model to the target task.
Thus, the common sequential transfer learning procedure in applied research projects is to
take a model that has already been pretrained and then to adapt it to the target task of
interest.

When a model whose parameter values have been learned by training on a suitable task and
data set is used as a pretrained input to the training process on a target task, this is likely
to increase the prediction performance on the target task—even if only few target training
instances are used (Howard & Ruder, 2018, p. 334-335; Ruder, 2019a, p. 65).8 Note that
the smaller the target task training data set size, the more salient the pretrained model
parameters become. When decreasing the number of target task training set instances,
the prediction performance of deep neural networks that are trained from scratch on the
target task declines (Howard & Ruder, 2018, p. 334). For models that are used in a transfer
learning setting and are pretrained on a source task before being trained on the target task,
prediction performance levels also decline; yet performance levels decrease more slowly and
more slightly (Howard & Ruder, 2018, p. 334). Hence, for medium-sized or small training
data sets, the prediction performance increase achieved by transfer learning is likely to be

8Suitable here means that the task and data set are conducive to learning a well-generalizing language
representation model. (See Section 2.3.3 below.)
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larger than for very large training data sets (Howard & Ruder, 2018, p. 334-335).

2.3.3 Pretraining

In order to learn a general, all-purpose language representation model, that is relevant
for a wide spectrum of tasks within an entire discipline, two things are required: (1) a
pretraining data set that contains a large number of training samples and is representative
of the feature distribution studied across the discipline and (2) a suitable pretraining task
(Ruder, 2018; Ruder, 2019a, p. 65).

The most fundamental pretraining approaches in NLP are self-supervised (Ruder, 2019a,
p. 68). Among these, a very common pretraining task is language modeling (Bengio et al.,
2003). A language model assigns a probability to the next token given the sequence of
previous tokens (Bengio et al., 2003, p. 1138). As the probability for a sequence of T
tokens, P (a1, . . . , at, . . . , aT ), can be computed as

P (a1, . . . , at, . . . , aT ) =
T∏
t=1

P (at|a1, . . . , at−1) (2.3)

or as

P (a1, . . . , at, . . . , aT ) =
1∏

t=T
P (at|aT , . . . , at+1) (2.4)

language modeling involves predicting the conditional probability of token at given all its
preceding tokens, P (at|a1, . . . , at−1), or implicates predicting the conditional probability of
token at given all its succeeding tokens, P (at|aT , . . . , at+1) (Bengio et al., 2003, p. 1138;
Peters et al., 2018a, p. 2229). A forward language model models the probability in Equa-
tion 2.3, a backward language model computes the probability in Equation 2.4 (Peters
et al., 2018a, p. 2228-2229). When being trained on a forward and/or backward language
modeling task in pretraining, a model learns general structures and aspects of language,
such as long-range dependencies, compositional structures, semantics, and sentiment, that
are relevant for a wide spectrum of possible target tasks (Howard & Ruder, 2018; Peters
et al., 2018b; Ruder, 2018). Hence, language modeling can be considered a well-suited
pretraining task (Howard & Ruder, 2018, p. 329-330).9

9The text corpora that are employed for pretraining vary widely regarding the number of tokens they
contain as well as their accessibility (Aßenmacher & Heumann, 2020, p. 3-4). (A detailed and systematic
overview of these data sets is provided by Aßenmacher & Heumann (2020).) Most models are trained on
a combination of different corpora. Several models (e.g. Devlin et al., 2019; Yang et al., 2019; Lan et al.,
2020; Liu et al., 2019) use the English Wikipedia and the BooksCorpus Dataset (Zhu et al., 2015). Many
models (e.g. Liu et al., 2019; Radford et al., 2019; Yang et al., 2019; Brown et al., 2020) additionally also
use pretraining corpora made up of web documents obtained from crawling the web.
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2.3.4 Adaptation: Feature Extraction vs. Fine-Tuning

There are two basic ways how to implement the adaptation phase in transfer learning: fea-
ture extraction vs. fine-tuning (Ruder, 2019a, p. 77). In a feature extraction approach, the
parameters learned in the pretraining phase are frozen and not altered during adaptation
(Ruder, 2019a, p. 77). In fine-tuning, on the other hand, the pretrained parameters are
updated in the adaptation phase (Ruder, 2019a, p. 77).

An example of a feature extraction approach is ELMo (Peters et al., 2018a). After pretrain-
ing, ELMo is applied without further adaptations on each target task sequence to produce
for each token in each sequence three layers of representation vectors (Peters et al., 2018a,
p. 2229-2230). For each token, the representation vectors then are extracted to serve as
the input for a new target task-specific model that learns a linear combination of the three
layers of representation vectors (Peters et al., 2018a, p. 2229-2230). Here, only the weights
of the linear model but not the parameters extracted from the pretrained model are trained
(Peters et al., 2018a, p. 2229-2230).

In fine-tuning—which now is the standard adaptation procedure in sequential transfer
learning (Ruder, 2021)—typically the same model architecture used in pretraining is also
used for adaptation (Peters et al., 2019, p. 8). Merely a task-specific output layer is added
to the model (Peters et al., 2019, p. 8). The parameters learned in the pretraining phase
serve as initializations for the model in the adaptation phase (Ruder, 2019a, p. 77). When
training the model on the target task, the gradients are allowed to backpropagate to the
pretrained parameters and thus induce changes on these pretrained parameters (Ruder,
2019a, p. 77). In contrast to the feature extraction approach, the pretrained parameters
hence are allowed to be fine-tuned to capture task-specific adjustments (Ruder, 2019a,
p. 77). When fine-tuning BERT on a target task, for example, a target task-specific
output layer is put on top of the pretraining architecture (Devlin et al., 2019, p. 4173).
Then the entire architecture is trained, meaning that all parameters are updated (Devlin
et al., 2019, p. 4173).10

Note that both ELMo and BERT learn deep and contextualized representations. In ELMo
there are three layers of representations and in BERT there are 12 or 24 layers depending
on the selected model size (Peters et al., 2018a, p. 2230; Devlin et al., 2019, p. 4173). The
representations are contextualized because the neural network architectures, that ELMo
and BERT are based on, learn representations for tokens that encode information from
the textual context a token is embedded in. ELMo is based on a deep bidirectional LSTM

10A central parameter in fine-tuning is the learning rate η with which the gradients are updated during
training on the target task (see Equation 2.22 in Appendix 2.A). Too much fine-tuning (i.e. a too high
learning rate) can lead to catastrophic forgetting—a situation in which the parameters learned during
pretraining are overwritten and therefore forgotten when fine-tuning the model (Kirkpatrick et al., 2017;
Howard & Ruder, 2018, p. 330-332). A too careful fine-tuning scheme (i.e. a too low learning rate), in
contrast, may lead to a very slow convergence process (Howard & Ruder, 2018, p. 330-332). In general,
it is recommended that the learning rate should be lower than the learning rate used in pretraining such
that the parameters learned during pretraining are not altered too much (Ruder, 2019a, p. 78).
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and BERT is based on elements from the Transformer architecture (which is introduced in
Section 2.4) (Peters et al., 2018a, p. 2228-2230; Devlin et al., 2019, p. 4173).

2.3.5 Cross-Lingual Learning

One reason for having only a limited amount of target task training data (or limited re-
sources for labeling target task training data) could be that the target task texts are in a
language other than English.11 In this case, transfer learning offers two solutions. One solu-
tion is to implement sequential transfer learning with a model that has been pretrained on a
monolingual corpus in the target language. Examples of non-English pretrained language
representation models are, for example, the French CamemBERT (Martin et al., 2020),
the Vietnamese PhoBERT (Nguyen & Tuan Nguyen, 2020), or German (dbmdz 2021) and
Chinese BERT models (Devlin, 2019). An overview of language-specific pretrained models
is provided by the website https://bertlang.unibocconi.it/ which is introduced in Nozza
et al. (2020).

If, however, no monolingual pretrained model exists for the target language and/or no
labeled target task training data in the language of interest are available, then another
type of transfer learning—namely cross-lingual learning—provides a possible solution. In
cross-lingual learning, source and target domains differ in the sense that source and target
documents come from different languages (Ruder, 2019a, p. 45). Moreover, labeled training
data are usually only available for the source language but not the target language (Ruder,
2019b).

Cross-lingual learning involves the learning of cross-lingual representations that allow the
transferal of information across languages (Ruder, 2019b). This can be achieved by pre-
training a model on text data from multiple languages (see e.g. the pretraining processes
of the multilingual models mBERT (Devlin, 2019), XLM-R (Conneau et al., 2020), and
mT5 (Xue et al., 2021)).

If only unlabeled but no labeled data in the target language are available, one way to con-
duct cross-lingual learning is as follows: (1) Cross-lingual representations are learned. (2)
The labeled training examples in the source language are used to learn task-specific param-
eters that map from the cross-lingual representations to the task-specific outputs. (3) The
pretrained model (containing cross-lingual representations plus task-specific parameters)
is directly applied—without any further adaptation step—on data in the target language
to make predictions for target language data (Ruder, 2019b).12 So far, research suggests
that the prediction performance of pretrained monolingual models on downstream target
tasks tends to exceed the performance of multilingual models (Rust et al., 2021). But if

11I am grateful to one of the reviewers for pointing this out to me.
12Although this last predictive step does not match the definition of zero-shot learning given in Section

2.3.6 below, it is often called zero-shot cross-lingual transfer (see e.g. Ruder, 2019b; Wu & Dredze, 2019;
Nozza et al., 2020).
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the multilingual pretraining corpus contains substantial amounts of text in the target task
language and if target language-adapted tokenizers are used, the performance differences
between monolingual and multilingual models can become small (Rust et al., 2021). For
more information on cross-lingual learning see Ruder (2019b).

2.3.6 Zero-Shot Learning

A further strand of research within NLP aims at the development and pretraining of models
that are able to make accurate predictions for a wide range of different target tasks without
having been explicitly fine-tuned on those target tasks (Radford et al., 2019; Yin et al.,
2019; Brown et al., 2020). The aim is to have a model that performs well on a task it has
not conducted before (Davison, 2020b). This general idea is often referred to as zero-shot
learning (but the precise definition of the term varies across research papers) (Davison,
2020b). Here, following the Definition-Wild of Yin et al. (2019, p. 3915) zero-shot learning
is considered a setting in which a model makes predictions for target task texts without
having seen task-specific pairs (xi, yi) and without having seen the space of task-specific
labels (e.g. Y = {positive, negative}) during training.13 One work in this context that has
generated attention far beyond the boundaries of the field of NLP is the GPT-3 model
(Brown et al., 2020). (For a note on GPT-3 see Appendix 2.B.) Zero-shot learning partly
can achieve surprisingly high prediction performances on target tasks. Thus far, however,
performance levels tend to be lower compared to state-of-the-art fine-tuned models (see
e.g. the zero-shot GPT-3 in Brown et al., 2020).

2.4 (Self-)Attention and the Transformer

As the family of RNNs is made to process sequential input data, they seem the natural
models of choice for processing sequences of textual tokens. The problem of recurrent ar-
chitectures, however, is that they model dependencies by sequentially propagating through
the positions of the input sequence. Thus, the longer the distance between the tokens,
the less well the dependency tends to be learned (Goodfellow et al., 2016, p. 396-399).
A solution to this problem is provided by the attention mechanism, which first has been
introduced for Neural Machine Translation (NMT) by Bahdanau et al. (2015) and was
refined by Luong et al. (2015). The attention mechanism allows to model dependencies
between tokens irrespective of the distance between them (Vaswani et al., 2017, p. 5999).
The Transformer is a deep learning architecture that is based on attention mechanisms
(Vaswani et al., 2017, p. 5999). This section first explains the attention mechanism and
then introduces the Transformer.

13In in-context-learning, no adaptation to the target task in the form of gradient updates is performed,
but the model is presented with task examples and instructions in natural language (Brown et al., 2020,
p. 4).
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2.4.1 The Attention Mechanism

The common task encountered in NMT is to translate a sequence of T tokens in lan-
guage A, (a1, . . . , at, . . . , aT ), to a sequence of S tokens in language O, (o1, . . . , os, . . . , oS)
(Sutskever et al., 2014, p. 3106). The classic architecture to solve this task is an encoder-
decoder structure (see Figure 2.2) (Sutskever et al., 2014, p. 3106). In general, an encoder
transforms input data into a representation and a decoder conducts the reverse operation:
The decoder produces data output from an encoded representation. In the early NMT ar-
ticles, the encoder maps the input tokens (a1, . . . , at, . . . , aT ) into a single context vector c
of fixed dimensionality that is then provided to the decoder that generates the sequence of
translated output tokens (o1, . . . , os, . . . , oS) from c (Sutskever et al., 2014, p. 3106).

Another characteristic of early NMT articles is that encoder and decoder are recurrent
models (Sutskever et al., 2014, p. 3106) (on recurrent models see Appendix 2.A.3). Hence,
the encoder processes each input embedding z[at] step by step. The hidden state at time
step t, ht, is a nonlinear function (here denoted by σ) of the previous hidden state, ht−1,
and input embedding z[at] (Cho et al., 2014, p. 1725):

ht = σ(ht−1, z[at]) (2.5)

The last encoder hidden state, hT , corresponds to context vector c that then is passed
on to the decoder which—given the information encoded in c—produces a variable-length
sequence output (o1, . . . , os, . . . , oS) (Cho et al., 2014, p. 1725). The decoder also operates
in a recurrent manner: Based on the current decoder hidden state hs, one output token
os is predicted at one time step (Cho et al., 2014, p. 1725).14 In contrast to the encoder,
the hidden state of the decoder at time step s, hs, is not only a function of the previous
hidden state hs−1 but also the embedding of the previous output token z[os−1], and context
vector c (see also Figure 2.2) (Cho et al., 2014, p. 1725):

hs = σ(hs−1, z[os−1], c) (2.6)

A problem with this traditional encoder-decoder structure is that all the information about
the input sequence—regardless of the length of the input sequence—is captured in a single
context vector c (Bahdanau et al., 2015, p. 1).

The attention mechanism resolves this problem. In the attention mechanism, at each time
step, the decoder can attend to, and thus derive information from, all encoder-produced
input hidden states when computing its hidden state hs (see Figure 2.3). More precisely,
the decoder hidden state at time point s, hs, is a function of the initial decoder hidden
state h̃s, the previous output token z[os−1], and an output token-specific context vector cs

14More precisely, in Cho et al. (2014, p. 1725), the decoder’s prediction for the next output token is a
function of the current decoder hidden state hs, the embedding of the previous output token z[os−1], and
context vector c. The decoder produces a probability distribution over the vocabulary signifying the next
predicted output token: P (os|o1, . . . , os−1, c) = σo(hs, z[os−1], c) (Cho et al., 2014, p. 1725).
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Figure 2.2: Encoder-Decoder Architecture. Encoder-decoder structure in neural machine
translation. In this example, the six token input sentence (He, is, giving, a, speech, [EOS]) is
translated to German: (Er, hält, eine, Rede, [EOS]). The end-of-sentence symbol [EOS] is used
to signal to the model the end of a sentence. The recurrent encoder processes one input embedding
z[at] at a time and updates the input hidden state ht at each time step. The last encoder hidden
state h6 serves as context vector c that captures all the information from the input sequence.
The decoder generates one translated output token at a time. Each output hidden state hs is
a function of the preceding hidden state hs−1, the preceding predicted output token embedding
z[os−1], and context vector c.

(Luong et al., 2015, p. 1414).15

hs = σ(h̃s, z[os−1], cs) (2.7)

Note that now at each time step there is a context vector cs that is specific to the sth output
token (Bahdanau et al., 2015, p. 3). The attention mechanism rests in the computation of
cs, which is a weighted sum over the input hidden states (h1, . . . ,ht, . . . ,hT ) (Bahdanau
et al., 2015, p. 3):

cs =
T∑
t=1

αs,tht (2.8)

The weight αs,t is computed as

αs,t = exp(score(h̃s,ht))∑T ∗
t∗=1 exp(score(h̃s,ht∗))

(2.9)

15Note that Equation 2.7 blends the specifications of Luong et al. (2015, p. 1414) and Bahdanau et al.
(2015, p. 3). Luong et al. (2015, p. 1414) do not include z[os−1]. Luong et al. (2015) also do not explicitly
state how they compute h̃s. Bahdanau et al. (2015, p. 3) use hs−1 instead of h̃s to represent the state of
the decoder at s (or rather at the moment just before producing the sth output token).
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Figure 2.3: Attention in an Encoder-Decoder Architecture. Visualization of the
attention mechanism in an encoder-decoder structure at time step s. In the attention mechanism,
at each time step, i.e. for each output token, there is a token-specific context vector cs. cs
is computed as the weighted sum over all input hidden states (h1, . . . ,h6). The weights are
(αs,1, . . . , αs,6). αs,1 results from a scoring function that captures the similarity between the sth
output token, as represented by the initial output hidden state h̃s, and input token hidden state
h1.

where score is a scoring function assessing the compatibility between output token repre-
sentation h̃s and input token representation ht (Luong et al., 2015, p. 1414). score could
be, for example, the dot product of h̃s and ht (Luong et al., 2015, p. 1414). The attention
weight αs,t is a measure of the degree of alignment of the tth input token, represented by ht,
with the sth output token, represented as h̃s (Bahdanau et al., 2015, p. 3-4). Input hidden
states that do not match with output token representation h̃s receive a small weight such
that their contribution vanishes, whereas input hidden states that are relevant to output
token h̃s receive high weights, thereby increasing their contribution (Alammar, 2018c).
Hence, cs considers all input hidden states and especially attends to those input hidden
states that match with the current output token. As context vector cs is constructed for
each output token based on a weighted sum of all input hidden states, the attention ar-
chitecture allows for modeling dependencies between tokens irrespective of their distance
(Vaswani et al., 2017, p. 5999).

2.4.2 The Transformer

The original articles on attention use recurrent architectures in the encoder and decoder.
The sequential nature of recurrent models implies that within each training example se-
quence each token has to be processed one after another—a computationally not efficient
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Figure 2.4: Transformer Architecture. In the original article by Vaswani et al. (2017), the
Transformer is made up of a stack of six encoders proceeded by a stack of six decoders. In contrast
to recurrent architectures where each input token is handled one after another, a Transformer encoder
processes the entire set of input token representations in parallel (Vaswani et al., 2017, p. 5999). Here, the
input embeddings are (z[a1], . . . ,z[a6]). The sixth encoder passes the key and query vectors of the input
tokens, (k1, q1, . . . ,k6, q6), to each of the decoders. These key and query vectors from the last encoder
are processed in each decoder’s encoder-decoder attention layer (Vaswani et al., 2017, p. 6002). The
Transformer decoders operate in an autoregressive manner, meaning that the stack of decoders processes
as an additional input the sequence of previous output tokens (Vaswani et al., 2017, p. 6002). In the
visualization here, output tokens are denoted with (o1, o2, . . . ) and the decoder predicts output token o2
given the previous tokens (a6, o1) (where a6 is an end-of-sentence symbol). To predict the tth output token,
the hidden state of the last decoder is processed through a linear layer and a softmax layer to produce a
probability distribution over the terms in the vocabulary (Vaswani et al., 2017, p. 6002).
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strategy (Vaswani et al., 2017, p. 5999). To overcome this inefficiency and to enable paral-
lel processing within training sequences, Vaswani et al. (2017) introduced the Transformer
architecture that is built from attention mechanisms. The Transformer consists of a se-
quence of six encoders followed by a stack of six decoders (see Figure 2.4) (Vaswani et al.,
2017, p. 6000).16 Each encoder consists of two components: a multi-head self-attention
layer (to be explained below) and a feedforward neural network (Vaswani et al., 2017,
p. 6000). Each decoder also has a multi-head self-attention layer followed by a multi-head
encoder-decoder attention layer and a feedforward neural network (Vaswani et al., 2017,
p. 6000). Instead of processing each token of each training example one after another, the
Transformer encoder takes as an input the whole set of T embeddings for one training
example and processes this set of embeddings, (z[a1], . . . ,z[at], . . . ,z[aT ]), in parallel (Alam-
mar, 2018b). The T embeddings entering the first encoder are position-aware embeddings
(see bottom of Figure 2.5 that provides a visualization of the first Transformer encoder)
(Vaswani et al., 2017, p. 6002-6003). A position-aware embedding is the sum of a pure
embedding vector and a positional encoding vector (Vaswani et al., 2017, p. 6003). The
positional encoding vector contains information on the position of the tth token within the
input sequence, thereby making the model aware of token positions (Vaswani et al., 2017,
p. 6002-6003).

The first element in a Transformer encoder is the multi-head self-attention layer. In the
self-attention layer, the provided input sequence (z[a1], . . . ,z[at], . . . ,z[aT ]) attends to itself.
Instead of improving the representation of an output token by attending to tokens in the
input sequence, the idea of self-attention is to improve the representation of a token at by
attending to the tokens in the same sequence in which at is embedded in (Alammar, 2018b).
For example, if ‘The company is issuing a statement as it is bankrupt.’ were a sentence to
be processed, then the embedding for the token ‘it’ that enters the Transformer would not
contain any information regarding which other token in the sentence ‘it’ is referring to.
Is it the company or the statement? In the self-attention mechanism, the representation
for ‘it’ is updated by attending to—and incorporating information from—other tokens in
this sentence (Alammar, 2018b). It, therefore, is to be expected that after passing through
the self-attention layers, the representation of ‘it’ absorbed some of the representation
for ‘company’ and so encodes information on the dependency between ‘it’ and ‘company’
(Alammar, 2018b).

The first operation within a self-attention layer is that each input embedding z[at] is trans-
formed into three separate vectors, called key kt, query qt, and value vt (see Figure 2.5).
The key, query, and value vectors are three different projections of the input embedding
z[at] (Alammar, 2018b). They are generated by matrix multiplication of z[at] with three

16Note that the number of encoders and decoders, as well as the dimensionality of the input embeddings
and the key, query and value vectors (introduced in the following), are Transformer hyperparameters that
are simply set by the authors to specific values. Other suitable values could be used instead.
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Figure 2.5: Transformer Encoder Architecture. This visualization details the processes in
the first Transformer encoder. The encoder comprises a multi-head self-attention layer and a feedforward
neural network, each followed by residual learning and layer normalization. The first encoder takes as an
input position-aware embeddings, (z[a1], . . . ,z[a6]), that are transformed into eight sets of key, query and
value vectors. One set is (k1, q1,v1, . . . ,k6, q6,v6). These are processed in the multi-head self-attention
layer to produce eight sets of context vectors (one set being (c1, . . . , c6)). The sets then are concatenated
and transformed linearly to become the updated representations (u1, . . . ,u6). After residual learning
and layer normalization, (u∗

1 , . . . ,u
∗
6) enter the feedforward neural network, whose output—after residual

learning and layer normalization—are the updated representations produced by the first Transformer
encoder: (h∗

1 , . . . ,h
∗
6). The representations (h∗

1 , . . . ,h
∗
6) constitute the input to the next encoder, where

they are first transformed to sets of key, query and value vectors.
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different weight matrices, Wk, Wq, and Wv (Vaswani et al., 2017, p. 6002):17

kt = z[at]Wk qt = z[at]Wq vt = z[at]Wv (2.10)

Then, for each token at, an updated representation (named context vector ct) is computed
as a weighted sum over the value vectors of all tokens that are in the same sequence as
token at (Vaswani et al., 2017, p. 6000-6002):

ct =
T ∗∑
t∗=1

αt,t∗vt∗ (2.11)

The attention weight αt,t∗ is a function of the similarity between token at, represented by
qt, and token at∗ , that is represented as kt∗ :

αt,t∗ = exp(score(qt,kt∗))∑T ∗
t∗=1 exp(score(qt,kt∗))

(2.12)

where score is (qtk>t∗)/
√
|kt∗| (Vaswani et al., 2017, p. 6001). αt,t∗ indicates the contribution

of token at∗ for the representation of token at.18 Thus, attention vector ct is calculated
as in a basic attention mechanism (see Equations 2.8 and 2.9)—except that the attention
now is with respect to the value vectors of the tokens that are part of the same sequence
as at (see also Figure 2.6).

The self-attention mechanism outlined so far is conducted eight times in parallel (Vaswani
et al., 2017, p. 6001-6002). Hence, for each token at, eight different sets of query, key
and value vectors are generated and there will be not one but eight attention vectors
{ct,1, . . . , ct,8} (Vaswani et al., 2017, p. 6001-6002). In doing so, each attention vector
can attend to different tokens in each of the eight different representation spaces (Vaswani
et al., 2017, p. 6002). For example, in one representation space the attention vector for
token at may learn syntactic structures and in another representation space the attention
vector may attend to semantic connections (Vaswani et al., 2017, p. 6004; Clark et al.,
2019). In the example sentence from above, the first attention vector for the token ‘it’,
c8,1, may have a high attention weight for ‘company’, whereas another attention vector,
say c8,3, may more strongly attend to ‘bankrupt’ (Alammar, 2018b). Because the self-
attention mechanism is implemented eight times in parallel and generates eight attention
vectors (or heads), the procedure is called multi-head self-attention (Vaswani et al., 2017,
p. 6001). The eight attention vectors subsequently are concatenated into a single vector,

17Note that in order to follow the notation in Vaswani et al. (2017), vectors (which are indicated by bold
letters) are treated as row vectors in the following.

18Kobayashi et al. (2020, p. 7057) emphasize that because the attention mechanism is composed of a
“weighted sum of linearly transformed vectors”, the raw attention weight αt,t∗ is not an all-encompassing
indicator of the contribution that the t∗th input token has on the representation of the tth token. To
capture attention patterns more comprehensively, they propose norm-based analysis in which not only the
attention weight sizes but also the magnitudes of the linearly transformed input vectors are taken into
account (Kobayashi et al., 2020).
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Figure 2.6: Attention Mechanism in the Transformer. Illustration of the attention
mechanism in the first Transformer encoder for the 8th token (‘it’) in the example sentence ‘The
company is issuing a statement as it is bankrupt.’. The arrows pointing from the value vectors
(v1, . . . ,v11) to context vector c8 are the weights (α8,1, . . . , α8,t∗ , . . . , α8,11). A single weight α8,t∗

indicates the contribution of token t∗ to the representation of token 8, c8. The larger α8,t∗ is
assumed to be in this example, the thicker the arrow and the darker the corresponding value
vector. The dotted lines symbolize the computation of the weights (α8,1, . . . , α8,t∗ , . . . , α8,11).

ct = [ct,1; . . . ; ct,8], and multiplied with a corresponding weight matrix W0 to produce
vector ut (Vaswani et al., 2017, p. 6002): ut = ctW0. Afterward, ut is added to z[at],
thereby allowing for residual learning (He et al., 2015).19 Then, layer normalization as
suggested in Ba et al. (2016) is conducted (Vaswani et al., 2017, p. 6000).20

u∗t = LayerNorm(ut + z[at]) (2.13)

u∗t then enters the feedforward neural network with a Rectified Linear Unit (ReLU) acti-
vation function (Vaswani et al., 2017, p. 6002)

ht = max(0,u∗tW1 + b1)W2 + b2 (2.14)
19In residual learning, instead of leaning a new representation in each layer, merely the residual change

is learned (He et al., 2015). Here ut can be conceived of as the residual on the original representation z[at].
Residual learning has been shown to facilitate the optimization of very deep neural networks (He et al.,
2015).

20In layer normalization, for each training instance, the values of the hidden units within a layer are
standardized by using the mean and standard deviation of the layer’s hidden units (Ba et al., 2016). Layer
normalization reduces training time and enhances generalization performance due to its regularizing effects
(Ba et al., 2016).
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followed by a residual connection with layer normalization (Vaswani et al., 2017, p. 6000):

h∗t = LayerNorm(ht + u∗t ) (2.15)

h∗t finally is the representation of token at produced by the encoder. It constitutes an
updated representation of input embedding z[at]. Due to the self-attention mechanism, h∗t
is a function of the other tokens in the same sequence and thus captures context-dependent
information. Hence, h∗t is a contextualized representation of token at. The same token in
another sequence would obtain another token representation vector.

The entire sequence of representations, (h∗1, . . . ,h∗t , . . . ,h∗T ), that is produced as the en-
coder output, serves as the input for the next encoder that generates eight sets of query,
key, and value vectors from each representation h∗t to implement multi-head self attention
and to finally produce an updated set of representations, (h∗1, . . . ,h∗t , . . . ,h∗T )∗, that are
passed to the next encoder and so on. The last encoder from the stack of encoders passes
the key and value vectors from its produced sequence of updated representations to each
encoder-decoder multi-head attention layer in each decoder (see Figure 2.4) (Vaswani et al.,
2017, p. 6002).

Except for the encoder-decoder attention layer in which the decoder pays attention to the
encoder input, the architecture of each decoder is largely the same as those of the encoders
(Vaswani et al., 2017, p. 6000). Note, however, that the stack of decoders operates in an
autoregressive manner (Vaswani et al., 2017, p. 5999). This is, when making the prediction
for the next output token os, the decoders have access to and process the sequence of
previous output tokens, (aT , os, . . . , os−1), as additional inputs (see Figure 2.4) (Vaswani
et al., 2017, p. 5999). In order to ensure that the decoders are autoregressive, self-attention
in each decoder is masked, meaning that the attention vector for output token os can only
attend to output tokens preceding token os (Vaswani et al., 2017, p. 6000). To predict an
output token, the hidden state of the last decoder is handed to a linear and softmax layer to
produce a probability distribution over the vocabulary (Vaswani et al., 2017, p. 6002).

2.5 Transfer Learning with Transformer-Based Models

Taken together, the Transformer architecture in combination with transfer learning literally
transformed the field of NLP (Bommasani et al., 2021, p. 5). After the introduction of the
Transformer by Vaswani et al. (2017), several models for transfer learning that included
elements of the Transformer were developed (e.g. Radford et al., 2018; Devlin et al., 2019;
Liu et al., 2019; Yang et al., 2019; Clark et al., 2020; Lan et al., 2020; Raffel et al., 2020).
These models and their derivatives significantly outperformed previous state-of-the-art
models.

An important step within these developments was the introduction of BERT (Devlin et al.,
2019). By establishing new state-of-the-art performance levels for eleven NLP tasks, BERT
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demonstrated the power of transfer learning (Bommasani et al., 2021, p. 5). The introduc-
tion of BERT finally paved the way to a new transfer learning-based mode of learning in
which it is common to use an already pretrained language model and adapt it to a specific
target task as needed (Alammar, 2018a; Bommasani et al., 2021, p. 5). Simultaneously
with and independently of BERT, a wide spectrum of Transformer-based models for trans-
fer learning have been developed. This section first introduces BERT and then provides
an overview of further models.

2.5.1 BERT

BERT consists of a stack of Transformer encoders and comes in two different model sizes
(Devlin et al., 2019, p. 4173): BERTBASE consists of 12 stacked Transformer encoders.
In each encoder, there are 12 attention heads in the multi-head self-attention layer. The
dimensionality of the input embeddings and the updated hidden vector representations
is 768. BERTLARGE has 24 Transformer encoders with 16 attention heads and a hidden
vector size of 1024.21 As in the original Transformer, the first BERT encoder takes as an
input a sequence of embedded tokens, (z[a1], . . . ,z[at], . . . ,z[aT ]), processes the embeddings
in parallel through the self-attention layer and the feedforward neural network to generate
a set of updated token representations, (h∗1, . . . ,h∗t , . . . ,h∗T ), that are then passed to the
next encoder that also generates updated representations to be passed to the next encoder
and so on until the representations finally enter output layers for prediction (Alammar,
2018a).

The authors inventing BERT sought to tackle a disadvantage of the classic language mod-
eling pretraining task (see Equations 2.3 and 2.4), namely that it is strictly unidirectional
(Devlin et al., 2019, p. 4171). A forward language model predicts the probability for the
next token at given the so far predicted tokens, P (at|a1, . . . , at−1). Here, the model can
only access information from the preceding tokens (a1, . . . , at−1) but not from the following
tokens (at+1, . . . , aT ).22 The same is true for a backward language model in which the next
token is predicted given all its following tokens, P (at|aT , . . . , at+1). A backward language
model can only operate on, and capture information from, succeeding tokens (Yang et al.,
2019, p. 5753). Assuming that a representation of token at from a bidirectional model that
simultaneously can attend to preceding and succeeding tokens may constitute a better
representation of token at than a representation stemming from a unidirectional language
model, the authors of BERT invented an adapted variant of the traditional language mod-
eling pretraining task, named masked language modeling, to learn deep contextualized

21In the feedforward neural networks, Devlin et al. (2019, p. 4183) employ the Gaussian Error Linear
Unit (GELU) (Hendrycks & Gimpel, 2016) instead of the ReLU activation function used in the original
Transformer. This change in the activation function has also been used for the OpenAI GPT (Radford
et al., 2018). BERTBASE has 110 million parameters. BERTLARGE has 340 million parameters.

22In a self-attention mechanism this means that the context vector for token at can merely attend to,
and hence can only incorporate information from, the representations of preceding but not from succeeding
tokens (Devlin et al., 2019, p. 4171).
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representations that are bidirectional (Devlin et al., 2019, p. 4171-4172).23

To conduct the masked language modeling task in the pretraining process of BERT, in each
input sequence, 15% of the input embeddings are selected at random (Devlin et al., 2019,
p. 4174, 4183). The selected tokens are indexed as (1, . . . , q, . . . , Q) here. 80% of the Q
selected tokens will be replaced by the ‘[MASK]’ token (Devlin et al., 2019, p. 4174). 10% of
the selected tokens are supplanted with another random token, and 10% of selected tokens
remain unchanged (Devlin et al., 2019, p. 4174). The task then is to correctly predict all
Q tokens sampled for the task based on their respective input token representation (for an
illustration see Figure 2.7) (Devlin et al., 2019, p. 4173-4174). In doing so, self-attention
is possible with regard to all—instead of only preceding or only succeeding—tokens in
the same sequence, and thus the learned representations for all tokens in the sequence
can capture encoded information from bidirectional contexts (Devlin et al., 2019, p. 4174,
4182).

In addition to the masked language modeling task, BERT is also pretrained on a next
sentence prediction task in which the model has to predict whether the second of two
text segments it is presented with succeeds the first (Devlin et al., 2019, p. 4172, 4174).
The second pretraining task is hypothesized to serve the purpose of making BERT also
a well-generalizing pretrained model for NLP target tasks that require an understanding
of the association between two text segments (e.g. question answering or natural language
inference) (Devlin et al., 2019, p. 4172, 4174).

To accommodate for the pretraining tasks and to prepare for a wide spectrum of down-
stream target tasks, the input format accepted by BERT consists of the following ele-
ments (see Figure 2.7) (Devlin et al., 2018, p. 3-5; Devlin et al., 2019, p. 4174-4175,
4182-4183):

• Each sequence of tokens (a1, . . . , at, . . . , aT ) is set to start with the classification token
‘[CLS]’. After fine-tuning, the ‘[CLS]’ token functions as an aggregate representation
of the entire sequence and is used as an input for single sequence classification target
tasks such as sentence sentiment analysis.

• The separation token ‘[SEP]’ is used to separate different segments.

• Each token at is represented by the sum of its input embedding with a positional
embedding and a segment embedding.24

23The concatenation of representations learned by a forward language model with the representations
of a backward language model does not generate representations that genuinely draw from left and right
contexts (Devlin et al., 2019, p. 4172). The reason is that the forward and backward representations are
learned separately and each representation captures information only from a unidirectional context (Yang
et al., 2019, p. 5753).

24BERT employs the WordPiece tokenizer and uses a vocabulary of 30,000 features (Wu et al., 2016).
WordPiece (Schuster & Nakajima, 2012) is a variant of the Byte-Pair Encoding (BPE) subword tok-
enization algorithm. (For more information on subword tokenization algorithms see Appendix 2.C.) The
segment embeddings allow the model to distinguish segments. All tokens belonging to the same segment
have the same segment embedding.
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Figure 2.7: Pretraining BERT. Architecture of BERT in pretraining. Assume that in the
lowercased example sequence consisting of the segment pair ‘he starts to speak. the nervous
crowd is watch-ing him.’ the tokens ‘speak’ and ‘nervous’ were sampled to be masked. ‘speak’
is replaced by the ‘[MASK]’ token and ‘nervous’ is replaced by the random token ‘that’. The
model’s task is to predict the tokens ‘speak’ and ‘nervous’ from the representation vectors it
learns at the positions of the input embeddings of ‘[MASK]’ and ‘that’. P (BfollowsA) is the
next sentence prediction task. FNN stands for feedforward neural network.

• In practical software-based implementations, BERT-like models typically require all
input sequences to have the same length (Hugging Face, 2020a). To meet this require-
ment, the text sequences are tailored to the same length by padding or truncation
(Hugging Face, 2020a). Truncation is typically employed if text sequences exceed the
maximum accepted sequence length. Truncation implies that excess tokens are re-
moved. In padding, a padding token (‘[PAD]’) is repeatedly added to a sequence until
the desired length is reached (McCormick & Ryan, 2019). Note that due to memory
restrictions, the maximum sequence length that BERT can process is limited to 512
tokens.

BERT is pretrained with the masked language modeling and the next sentence prediction
task. As pretraining corpora the BooksCorpus (Zhu et al., 2015) and the English Wikipedia
are used (Devlin et al., 2019, p. 4175). Taken together the pretraining corpus consists of
3.3 billion tokens (Devlin et al., 2019, p. 4175). (For details on pretraining BERT see
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Figure 2.8: Fine-Tuning BERT. Architecture of BERT during fine-tuning on a single se-
quence classification task.

Appendix 2.D.)

Token representations that are produced from a pretrained BERT model afterward can be
extracted and taken as an input for a target task-specific architecture as in a classic feature
extraction approach (Devlin et al., 2019, p. 4179). The more common way to use BERT,
however, is to fine-tune BERT on the target task. Here, merely the output layer from
pretraining is exchanged with an output layer tailored for the target task (Devlin et al.,
2019, p. 4173, 4184). Other than that, the same model architecture is used in pretraining
and fine-tuning (compare Figures 2.7 and 2.8) (Devlin et al., 2019, p. 4173, 4184). If the
target task is to classify single input sequences into a set of predefined categories (see
Figure 2.8), the hidden state vector generated by the last Transformer encoder for the
[CLS] token, h∗1, enters the following output layer to generate output vector y (Hugging
Face, 2018):

y = softmax(tanh(h∗1W1 + b1)W2 + b2) (2.16)

y’s dimensionality corresponds to C—the number of categories in the target classification
task. The cth element of vector y gives the predicted probability of the input sequence
belonging to the cth class. Note that during fine-tuning not only weight matrices W1
and W2 in Equation 2.16 but all parameters of BERT are updated (Devlin et al., 2018,
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p. 6).25

2.5.2 More Transformer-Based Pretrained Models

A helpful way to describe and categorize the various Transformer-based models for transfer
learning is to differentiate them according to their pretraining objective and their model
architecture (Hugging Face, 2020b). The major groups of models in this categorization
scheme are autoencoding models, autoregressive models, and sequence-to-sequence models
(Hugging Face, 2020b).

2.5.2.1 Autoencoding Models

In their pretraining task, autoencoding models are presented with input sequences that are
altered at some positions (Yang et al., 2019, p. 5753-5755). The task is to correctly predict
the uncorrupted sequence (Yang et al., 2019, p. 5753-5755). The models’ architecture is
typically composed of the encoders of the Transformer which implies that autoencoding
models can access the entire set of input sequence tokens and can learn bidirectional token
representations (Hugging Face, 2020b). Autoencoding models tend to be especially high
performing in sequence or token classification target tasks (Hugging Face, 2020b). BERT
with its masked language modeling pretraining task is a typical autoencoding model (Yang
et al., 2019, p. 5753).

Among the various extensions of BERT that have been developed since its introduction,
RoBERTa (Liu et al., 2019) is widely known. RoBERTa makes changes in the pretraining
and hyperparameter settings of BERT. For example, RoBERTa is only pretrained on the
masked language modeling and not the next sentence prediction task (Liu et al., 2019,
p. 4-6). Masking is performed dynamically each time before a sequence is presented to the
model instead of being conducted once in data preprocessing (Liu et al., 2019, p. 4, 6).
Moreover, RoBERTa is pretrained on more data and more heterogeneous data (e.g. also
on web corpora) (Liu et al., 2019, p. 5-6). On ALBERT (Lan et al., 2020) and ELECTRA
(Clark et al., 2020), two further well-known autoencoding models, see Appendix 2.E.

One major disadvantage of pretrained models that are based on the self-attention mecha-
nism in the Transformer is that currently available hardware does not allow Transformer-
based models to process long text sequences (Beltagy et al., 2020, p. 1). The reason is
that the memory and time required increase quadratically with sequence length (Beltagy
et al., 2020, p. 1). Long text sequences thereby quickly exceed memory limits of presently
existing graphics processing units (GPUs) (Beltagy et al., 2020, p. 1). Transformer-based

25Based on their experiences with adapting BERT on various target tasks, the authors recommend to
use for fine-tuning a mini-batch size of 16 or 32 sequences and a global Adam learning rate of 5e-5, 3e-5,
or 2e-5 (Devlin et al., 2019, p. 4183-4184). They also suggest to set the number of epochs to 2, 3 or 4
(Devlin et al., 2019, p. 4184).
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pretrained models therefore typically induce a maximum sequence length. For BERT and
related models this maximum length usually is 512 tokens. Simple workarounds for process-
ing sequences longer than 512 tokens (e.g. truncating texts or processing them in chunks)
lead to information loss and potential errors (Beltagy et al., 2020, p. 2-3). To solve this
problem, various works present procedures for altering the Transformer architecture such
that longer text documents can be processed (Child et al., 2019; Dai et al., 2019; Beltagy
et al., 2020; Kitaev et al., 2020; Wang et al., 2020; Zaheer et al., 2020).

Here, one of these models, the Longformer (Beltagy et al., 2020), is presented in more de-
tail. The Longformer introduces a new variant of the attention mechanism such that time
and memory complexity does not scale quadratically but linearly with sequence length and
thus longer texts can be processed (Beltagy et al., 2020, p. 3). The attention mechanism
in the Longformer is composed of a sliding window as well as global attention mechanisms
for specific preselected tokens (Beltagy et al., 2020, p. 3-4). In the sliding window, each
input token at—instead of attending to all tokens in the sequence—attends only to a fixed
number of tokens to the left and right of at (Beltagy et al., 2020, p. 3). In order to learn
representations better adapted to specific NLP tasks, the authors use global attention for
specific tokens on specific tasks (e.g. for the ‘[CLS]’ token in sequence classification tasks)
(Beltagy et al., 2020, p. 3-4). These preselected tokens directly attend to all tokens in the
sequence and enter the computation of the attention vectors of all other tokens (Beltagy
et al., 2020, p. 3-4). The position embeddings of the Longformer allow processing text se-
quences of up to 4,096 tokens (Beltagy et al., 2020, p. 6). This Longformer-specific attention
mechanism can be used as a plug-in replacement of the original attention mechanism in any
Transformer-based model (Beltagy et al., 2020, p. 6). Beltagy et al. (2020, p. 2) insert the
Longformer attention mechanism into the RoBERTa architecture. The Longformer then is
pretrained by continuing to pretrain RoBERTa with the Longformer attention mechanism
on the masked language modeling task (Beltagy et al., 2020, p. 2).

2.5.2.2 Autoregressive Models

Autoregressive models are pretrained on the classic language modeling task (see Equations
2.3 and 2.4) (Yang et al., 2019, p. 5753-5755). They learn a forward language model
in which they are trained to predict the next token given all the preceding tokens in
the sequence, P (at|a1, . . . , at−1), and/or a backward language model in which the next
token is predicted given all its succeeding tokens, P (at|aT , . . . , at+1) (Yang et al., 2019,
p. 5753). Hence, autoregressive models are not capable of learning genuine bidirectional
representations that draw from left and right contexts (Yang et al., 2019, p. 5753). In
correspondence with this pretraining objective, their architecture is typically based only
on the decoders of the Transformer (without encoder-decoder attention) (Hugging Face,
2020b). To ensure that an autoregressive model only consumes previously predicted output
tokens, the self-attention layer of its decoders are masked such that the model only can
attend to the preceding but not the proceeding tokens (Hugging Face, 2020b).
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Due to their decoder-based architecture and the characteristics of their pretraining task,
autoregressive models are typically very good at target tasks in which they have to generate
text (Hugging Face, 2020b). Autoregressive models, however, can be successfully fine-
tuned to a large variety of downstream tasks (Hugging Face, 2020b). An elementary
autoregressive model, which is based on the Transformer decoder, is the GPT (Radford
et al., 2018). Its successors GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020;
Hugging Face, 2020b) are well-known and also play a role in the context of zero-shot
learning (see Appendix 2.B). In a recent, ingenious article, Porter & Velez (2021) apply
the GPT-2 to generate placebos texts in social science survey experiments. Another model
using the autoregressive language modeling framework in pretraining is the XLNet (Yang
et al., 2019). (On the XLNet see Appendix 2.F.)

2.5.2.3 Sequence-to-Sequence Models

The architecture of sequence-to-sequence models contains Transformer encoders and de-
coders (Hugging Face, 2020b). They tend to be pretrained on sequence-to-sequence tasks
(e.g. translation) and, consequently, are especially suited for sequence-to-sequence-like
downstream tasks such as translating or summarizing input sequences (Hugging Face,
2020b). The Transformer itself is a sequence-to-sequence model for translation tasks.
BART (Lewis et al., 2020) and the T5 (Raffel et al., 2020) are further well-known sequence-
to-sequence models applicable to a large variety of target tasks (Hugging Face, 2020b). (On
the T5 and BART see Appendix 2.G.)

2.5.3 Foundation Models: Concept, Limitations, and Issues

Transfer learning, as well as the Transformer architecture, is at the heart of fundamental
changes within the entire field of NLP and beyond: In a recent article written by a large
group of researchers and students at the Stanford Institute for Human-Centered Artificial
Intelligence, it is stated that

“[...] there was a sociological inflection point around the introduction of BERT.
Before 2019, self-supervised learning with language models was essentially a
subarea in NLP, which progressed in parallel to other developments in NLP.
After 2019, self-supervised learning with language models became more of a
substrate of NLP [...]” (Bommasani et al., 2021, p. 5)

Bommasani et al. (2021) call deep neural networks that are pretrained in a self-supervised
fashion on large amounts of data and then can be adapted to a wide spectrum of target
tasks foundation models. The mode of learning, that they refer to, in which one pretrained
model serves as the foundation for various different tasks, not only has taken hold in
NLP but across the field of AI research (Bommasani et al., 2021). Transfer learning with
(Transformer-based) neural networks is not only applied to text data but also, for example,
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to images (Dosovitskiy et al., 2021; Goyal et al., 2021), videos (Sun et al., 2019a), audio
data (Baevski et al., 2020), protein sequences (Rives et al., 2021), and data in tabular
form (Yin et al., 2020). Moreover, an increasing number of models are multimodal (Lu
et al., 2019; Bapna et al., 2021; Fu et al., 2021; Radford et al., 2021; Ramesh et al., 2021,
e.g.).

AI research previously had moved from classic machine learning (in which a function be-
tween representations of data and outputs are learned but representations still have to be
engineered) to the era of deep learning (in which deep neural networks learn representations
of data but still typically one model is trained for one specific task) (Bommasani et al.,
2021, p. 3-4). Now, AI research seems to move toward highly general all-purpose models
(Bommasani et al., 2021, p. 3-6). Summarizing current developments, the emerging mode
of learning is characterized by the implementation of a deep neural network that

• is frequently based on the Transformer architecture. (Due to its self-attention mech-
anisms, the Transformer is more flexible and general than convolutional or recurrent
neural networks (Bommasani et al., 2021, p. 75-76). The Transformer, however, is
not a defining feature of foundation models and at some point may be superseded by
new neural network architectures (Jaegle et al., 2021, 2022).)

• has been pretrained—typically in self-supervised learning mode—on massive amounts
of data from various sources and domains. (Pretraining does not have to be con-
strained to one pretraining task conducted on one type of data in one language.
Rather, increasingly general models are developed by pretraining on multiple tasks
(Wei et al., 2022; Aribandi et al., 2022), pretraining on data in multiple languages
(Conneau et al., 2020; Babu et al., 2021), or pretraining on data from multiple modes
(Luo et al., 2020; Bapna et al., 2021; Radford et al., 2021).)

• can process—and learn representations for—these data inputs (probably across do-
mains, languages, and modes) (Tenney et al., 2019a; Radford et al., 2021),

• after adaptation can be applied to a wide spectrum of tasks, for example, various
language understanding tasks (e.g. sentiment analysis, question answering) (Devlin
et al., 2019; Liu et al., 2019), different language understanding plus language genera-
tion tasks (Lewis et al., 2020; Wei et al., 2022), or tasks related to the understanding
and/or generation of data in multiple modes (Luo et al., 2020; Fu et al., 2021; Ramesh
et al., 2021).26

The application of deep neural networks and—in particular—the use of (Transformer-
based) neural networks with transfer learning has triggered significant performance en-
hancements across NLP. Still, there are substantive limitations and problematic issues—
that are also relevant to social scientists that seek to apply these models for their research
purposes. In the following, several of these aspects will be outlined. For an elaborate
discussion see Bommasani et al. (2021).

26Note that the step of adaptation to a specific target task is skipped in zero-shot learning.
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• One major concern is that the amounts of resources required in pretraining (especially
in terms of data and compute) are so massively large that academic institutions and
the scientific research community struggle (or are not able) to pretrain the largest
foundation models (but see https://bigscience.huggingface.co/) (Bommasani et al.,
2021, p. 11). Moreover, the data used in pretraining and the model source code are
not always publicly available (Aßenmacher & Heumann, 2020, p. 4; Riedl, 2020).
This raises deep concerns regarding accessibility and traceability.

• Another problematic aspect is that these models reflect the representational biases
(e.g. stereotypes, underrepresentations) encoded in the data they have been pre-
trained on (Bommasani et al., 2021, p. 129-131). As soon as a model is adapted to
some target task, these biases materialize with serious negative consequences (Bom-
masani et al., 2021, p. 130).

• A further problem is the fixed (typically relatively small) maximum sequence length
that Transformer-based models can process. Whatever the given current compu-
tational restrictions, efficient modifications of the self-attention mechanism, as for
example presented by the Longformer (Beltagy et al., 2020), allow for longer se-
quences to be processed than with the original Transformer and thereby constitute
important steps toward alleviating this major drawback. (For an evaluative overview
of efficient Transformer-based models see Tay et al. (2021).)

• Further research is required regarding the theoretical underpinnings of foundation
models. Exactly why, and in which circumstances, pretraining on a pretraining data
distribution helps in reducing the loss on various target task data distributions so far
is not well understood (Bommasani et al., 2021, p. 117-121).

Besides these issues related to large pretrained representation models, the mere application
of deep neural networks is likely to pose further difficulties for social science researchers.
One issue is interpretability: If a researcher applies a learning method to measure an a
priori-defined concept from text, the ability to as closely as possible imitate human codings
on yet unseen test data is arguably the most important goal because this ability indicates
the measure’s validity. In this very context, a model’s prediction performance thus is
considered more important than a model’s interpretability (see argumentation in Section
2.1). Yet interpretability (i.e. the human-understandable and accurate representation of
a model’s decision process) can be highly important (Miller, 2019; Jacovi & Goldberg,
2020). Interpretability makes a model’s predictions more transparent and more human-
retraceable. If a researcher can understand why a model made predictions in a particular
way and if a researcher can estimate the effect of input features for a model’s predictions,
this can enhance the researcher’s trust in the model she applies (Doshi-Velez & Kim, 2017,
p. 2; Molnar, 2022, ch. 3.1).

For some conventional machine learning methods (such as linear regression, logistic regres-
sion, or decision trees) it is straightforward to assess the effect or importance of specific
features on a model’s predictions (Molnar, 2022, ch. 5). Furthermore, there is a large spec-
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trum of model-agnostic interpretation tools that can be applied to any machine learning
model (for an overview see Molnar (2022, ch. 6)). But because deep neural networks do
not operate on a priori-defined, human-engineered features but have a layered architecture
that enables them to learn complex representations of textual inputs, interpretation of deep
neural networks is less straightforward and neural network-specific interpretation methods
tend to be used (Belinkov & Glass, 2019, p. 49; Molnar, 2022, ch. 10).

For social scientists that apply deep neural networks the open-source library Captum
(https://captum.ai/) is likely to be a useful interpretability tool. Captum implements
several attribution algorithms that allow researchers to examine how predicted outputs
relate to input features (Kokhlikyan et al., 2020, p. 3). Captum furthermore provides tools
for analyzing attention patterns (see the tutorial at https://captum.ai/tutorials/Bert
_SQUAD_Interpret2). (For an overview of common methods to make neural networks
interpretable see Appendix 2.H.)

Another issue is reproducibility: As for conventional models, reproducibility issues with
deep neural networks typically arise from random elements that are used during optimiza-
tion and/or when sampling data (e.g. in cross-validation, or batch allocation). In both
cases, sources of randomness usually can be controlled. Yet in practice, this often proves
to be more difficult for deep neural networks than for conventional models. Note, fur-
thermore, that full reproducibility across different computing platforms and environments
cannot be ensured (Freidank, 2020; Torch Contributors, 2021).

2.6 Applications

Researchers who wish to apply sequential transfer learning can pretrain a model on a suit-
able source task by themselves and then finetune the pretrained model to their target task
of interest. (Researchers that seek to pretrain a model by themselves may find reading
the paper by Aßenmacher et al. (2021) useful as it provides a consistent comparison of
different pretraining objectives and settings.) Because pretraining tends to be very expen-
sive, however, the much more convenient, cost-effective, and common approach for applied
researchers is to make use of an already pretrained model and then to merely adapt the
pretrained model to the target task. Hence, to fully leverage the power of neural transfer
learning, researchers require access to already pretrained models that they can fine-tune on
their specific tasks. Such access is provided by Hugging Face’s Transformers (Wolf et al.,
2020) which is an open-source library that contains thousands of pretrained NLP models
ready to download and use: https://huggingface.co/. The Hugging Face library contains
pretrained versions of the models discussed here and a great many models more. Most
of the available pretrained models in the Hugging Face library have been pretrained on
English texts, yet there are numerous monolingual models pretrained in other languages.
Moreover, the library also comprises several models for cross-lingual learning that have
been pretrained on text in several languages. The pretrained models can be accessed via

https://captum.ai/tutorials/Bert_SQUAD_Interpret2
https://captum.ai/tutorials/Bert_SQUAD_Interpret2
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the respective Transformers Python package that also provides compatibility with Py-
Torch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2016). For basic guidance on
deep learning and transfer learning in practice see Appendix 2.I.

In the applications presented in the following neural transfer learning is conducted in
Python 3 (van Rossum & Drake, 2009) making use of PyTorch (Paszke et al., 2019) and
Hugging Face’s Transformers (Wolf et al., 2020). The code is executed in Google Colab.27
Whenever a GPU is used, an NVIDIA Tesla T4 is employed. The source code for this study
is openly available in figshare at https://doi.org/10.6084/m9.figshare.14394173. Especially
the shared Colab Notebooks serve as templates that other researchers can easily adapt for
their NLP tasks.28

2.6.1 Models, Data Sets, and Tasks

The aim of this applied section is to explore the use of transfer learning with Transformer-
based models for text analyses in social science contexts. To do so, the prediction per-
formances of BERT, RoBERTa, and the Longformer are compared to the performances of
two conventional machine learning algorithms: Support vector machines (SVMs) (Boser
et al., 1992; Cortes & Vapnik, 1995) and the gradient tree boosting algorithm XGBoost
(Chen & Guestrin, 2016). SVMs have been widely used in social science text applications
(e.g. Diermeier et al., 2011; D’Orazio et al., 2014; Ramey et al., 2019; Miller et al., 2020;
Sebők & Kacsuk, 2021). As a tree-based (boosting) method XGBoost represents a type of
algorithm also commonly utilized (e.g. Katagiri & Min, 2019; Anastasopoulos & Bertelli,
2020; Park et al., 2020). The comparisons are conducted on the basis of three different
data sets of varying sizes and textual styles:

1. The Ethos Dataset (Duthie & Budzynska, 2018) is a corpus of 3,644 sentences from
debates in the UK parliament (train: 2,440; test: 1,204). Duthie & Budzynska (2018)
gathered 90 debate transcripts from the period Margaret Thatcher served as Prime Minister
(1979-1990). In each debate, they recorded for each spoken sentence whether the sentence
refers to the ethos (i.e. the character) of another politician or party, and if so whether
the other’s ethos is supported or attacked (Duthie & Budzynska, 2018, p. 4042). The task
associated with this data set thus is to as precisely as possible measure the concept of ethos
from text. Though not conducted here, this measurement of ethos from text could be the

27https://colab.research.google.com/notebooks/intro.ipynb
28More specifically, bag-of-words and word vector-based text preprocessing is implemented in R (R

Core Team, 2020) using the packages quanteda (Benoit et al., 2018), stringr (Wickham, 2019), text2vec
(Selivanov et al., 2020), and rstudioapi (Ushey et al., 2020). Training and evaluating the pretrained
Transformer models and the conventional machine learning algorithms is conducted in Python 3 (van
Rossum & Drake, 2009) employing the modules and packages gdown (Kentaro, 2020), imbalanced-learn
(Lemaître et al., 2017), matplotlib (Hunter, 2007), NumPy (Oliphant, 2006), pandas (McKinney, 2010),
seaborn (Michael Waskom and Team, 2020), scikit-learn (Pedregosa et al., 2011), PyTorch (Paszke et al.,
2019), watermark (Raschka, 2020), Hugging Face’s Transformers (Wolf et al., 2020), and the XGBoost
Python package (Chen & Guestrin, 2016).
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first step in a larger analysis of the network of ethotic expressions between politicians. With
82.5% of the sentences being non-ethotic, 12.9% attacking and 4.6% supporting another’s
ethos, the data are quite imbalanced.

2. The Legalization of Abortion Dataset comprises 933 tweets (train: 653; test: 280).
The data set is a subset of the Stance Dataset (Mohammad et al., 2017) that was used
for detecting the attitude toward five different targets from tweets. Mohammad et al.
(2017) collected the tweets via hashtags and let CrowdFlower workers annotate the tweets
regarding whether the tweeter is in favor, against, or neutral toward the target of interest
(Mohammad et al., 2017, p. 4-7). The Legalization of Abortion Dataset used here contains
those tweets that refer to the target ‘legalization of abortion’. The task associated with
this data set thus is to measure attitudes toward a policy issue from text. 58.3% of the
tweets express an opposing and 17.9% a favorable position toward legalization of abortion
whilst 23.8% express a neutral or no position.

3. The Wikipedia Toxic Comment Dataset (Jigsaw/Conversation AI, 2018) contains
159,571 comments from Wikipedia Talk pages that were annotated by human raters for
their toxicity. On Wikipedia Talk pages contributors discuss changes to Wikipedia pages
and articles.29 Toxic comments are comments that are obscene, threatening, insulting,
express hatred toward social groups, and identities, “are rude, disrespectful, or otherwise
likely to make people leave the discussion” (Dixon, 2017). Whereas the tasks associated
with the Ethos and the Legalization of Abortion Datasets are multi-class classification
tasks, the task here is a simple binary classification task in which the aim is to separate
toxic from non-toxic comments. Tasks in which the aim is to separate documents in which
a concept (here: toxicity) occurs from documents in which the concept does not occur are
common in text-based social science applications. Such tasks often constitute a first step
in a text analysis in which documents that refer to concepts or entities that are of interest
to the analysis have to be singled out from a large heterogeneous corpus (King et al., 2017,
p. 971). Often, such tasks are imbalanced classification problems (Manning et al., 2008,
p. 155). And also here, only 9.6% of comments in the data are labeled as being toxic.

In this work, the Wikipedia Toxic Comment Dataset is used to assess in how far the
algorithms’ performances vary with training set size. To do so, five training data sets of
sizes 10,000, 5,000, 2,000, 1,000, and 500 and a test set comprising 1,000 comments are
sampled uniformly at random from the 159,571 comments in the Wikipedia Toxic Comment
Dataset. To account for the uncertainty induced by operating on samples of training sets,
five iterations are performed. This is, the sampling is repeated five times, such that in the
end there are five sets comprising five training data sets of varying sizes.30

29https://en.wikipedia.org/wiki/Help:Talk_pages
30More precisely: To get five differently sized training data sets evaluated on the same test set, the

following steps are conducted:

1. A set of 11,000 comments is sampled uniformly at random from the 159,571 comments in the
Wikipedia Toxic Comment Dataset.

2. A random sample of 1,000 comments is drawn from the set of 11,000 comments to become the test
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The three applications—Ethos, Abortion, and Toxic—are selected so that the methods
are applied on text data that, on the one hand, represent types of texts that are often
used within social science and, on the other hand, vary regarding core characteristics (for
a comparison see also Figures 2.9a to 2.9i). Across the three applications, textual style
ranges from the formal, rule-based, courteous language of parliamentary speeches over the
short, statement-like nature of tweets to informal, interrelating (and at times disrespectful)
comments from online discussions (to get an impression see the most frequent trigrams in
Figures 2.9c, 2.9f, 2.9i). The tasks associated with the applications vary with regard to
the number of class labels (binary vs. three-class classification) and the distribution over
these labels (see Figures 2.9a, 2.9d, 2.9g). The data sets are furthermore characterized by
different document lengths (see Figures 2.9b, 2.9e, 2.9h) and vary with regard to their sizes
(and hence the number of data available for training). The fewer training data, the more
class labels, and the more imbalanced the distribution over class labels, the more difficult
the task is likely to be. Especially with regard to imbalanced classification problems when
there are few training instances in the minority class, it can be difficult to have enough
training data to train an adequately performing deep neural network from scratch. As
transfer learning reduces the number of required training data instances, transfer learning
is likely to facilitate the training of neural networks in such situations of imbalance.

2.6.2 Text Preprocessing for the Conventional Models

Two types of preprocessing procedures are employed on the raw texts to provide data
representation inputs for the conventional models SVM and XGBoost:

1. Basic BOW: The texts are tokenized into unigrams. Punctuation, numbers, and
symbols are removed in the Ethos application but kept in the other applications. Afterward,
the tokens are lowercased and stemmed. Then, tokens occurring in less than a tiny share of
documents (e.g. 0.1% in the Ethos application) and more than a large share of documents
(e.g. 33% in the Ethos application) are excluded. Finally, the elements in the document-
feature matrix are weighted such that the mere presence (1) vs. absence (0) of each feature
within each document is recorded.

2. GloVe Representation: For each unigram that occurs at least 3 (Ethos, Abortion) or 5
(Toxic) times in the respective corpus, the 300-dimensional pretrained GloVe word vector
is identified (Pennington et al., 2014).31 Each document then is represented by the mean

data set. The remaining 10,000 comments constitute the first training data set.

3. From the training set of 10,000 comments, a subset of 5,000 comments is randomly drawn to become
the second training set. From this subset again a smaller training subset of 2,000 texts is sampled
from which a subset of 1,000 and then 500 comments are drawn.

4. To account for the induced uncertainty, steps (a) to (c) are repeated five times.

31GloVe embeddings are pretrained based on a web data corpus from CommonCrawl comprising 42
billion tokens (Pennington et al., 2014, p. 1538).
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Figure 2.9: Description of the Corpora. Figures 9a-9c: Ethos Datatset. Figures 9d-9f:
Legalization of Abortion Dataset. Figures 9g-9i: Sample of 11,000 comments from the Wikipedia
Toxic Comment Dataset. Figures 9a-9g: Class label distributions. Figures 9b-9h: Boxplots
visualizing the distribution of the number of tokens per document. Figures 9c-9i: Most frequent
trigrams. If possible and reasonable, the figures’ axes have the same scale.
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over its unigrams’ GloVe word vectors. Note that due to making use of pretrained feature
representations that are not updated during training, GloVe Representation constitutes a
transfer learning approach with feature extraction. By averaging over the unigrams’ word
embeddings, the word order, however, is not taken into account.

2.6.3 Text Preprocessing and Fine-Tuning Settings for the Transformer-
Based Models

The Transformer-based models are applied after the documents have been transformed to
the required input format. In each document, the tokens are lowercased and the special
‘[CLS]’ and ‘[SEP]’ tokens are added. Then, each token is converted to an index identifying
its input embedding and is associated with an index identifying its segment embedding.
Additionally, each document is padded to the same length. In the Ethos and Legalization
of Abortion corpora, this length corresponds to the maximum document length among
the training set documents, which is 139 and 54 tokens respectively. The comments from
Wikipedia Talk pages pose a problem here: An inspection of the distribution of sequence
lengths in the sampled subsets of the Wikipedia Toxic Comment Dataset (see Figure 2.9h)
shows that the vast majority of comments are shorter than the maximum number of 512
tokens that BERT and RoBERTa can distinguish—but there is a long tail of comments
exceeding 512 tokens. To address this issue, two different approaches are explored: For
BERT, following the best strategy identified by Sun et al. (2019b), in each comment that
is longer than 512 tokens, only the first 128 and the last 382 tokens are kept while the
tokens positioned in the middle are removed. RoBERTa, in contrast, is replaced with
the Longformer in the Toxic application. For the Longformer the sequence length is set to
2∗512 = 1,024 tokens. This ensures that in each run only a small one- or two-digit number
of sequences that are longer than 1,024 tokens are truncated by removing tokens from the
middle whilst padding the texts to a shared length that still can be processed with given
memory restrictions.32

When adapting the pretrained Transformer-based models to the target tasks, the Adam
algorithm as introduced by Loshchilov & Hutter (2019) with a linearly decaying global
learning rate, no warmup, and no weight decay is employed. Dropout is set to 0.1. To
fine-tune the models within the memory resources provided by Colab, small batch sizes
are used. In the Ethos and Abortion applications, a batch size of 16 is selected. A batch
in the Toxic application comprises 8 (and for the Longformer 4) text instances. Note
that when selecting a small batch size (e.g. because of memory restrictions) this is not a
disadvantage but rather the opposite: Research suggests that smaller batch sizes not only
require less memory but also have better generalization performances (Keskar et al., 2017;
Masters & Luschi, 2018). To ensure that the learning process with small batch sizes does

32Except for the removal of tokens positioned in the middle of overlong input documents, all described
formatting steps for the Transformer-based models are implemented in Hugging Face’s Transformers library
and therefore can be easily applied.
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not get too volatile, one merely has to account for the fact that smaller batch sizes require
correspondingly smaller learning rates (Brownlee, 2019).

Moreover, for the pretrained models, the base size of the model architecture is used in-
stead of the large or extra large model versions. So, for example, BERTBASE instead of
BERTLARGE is applied. Larger models are likely to lead to higher performances. Yet,
because they have more parameters, it takes more computing resources to fine-tune them
and—especially for small data sets—fine-tuning might lead to results that vary more no-
ticeably across random restarts (Devlin et al., 2019, p. 4176).

2.6.4 Random Oversampling

To handle the class imbalances in the Ethos and Wikipedia Toxic Comment Datasets,
the training data are randomly oversampled. In random oversampling, instances of the
minority classes are randomly sampled with replacement and added as identical copies to
the training data such that the training data become more balanced (Brownlee, 2020). The
presence of multiple minority class copies in the training data increases the loss caused by
misclassifying minority class instances and hence induces the algorithm to put a stronger
focus on correctly classifying minority class examples. To balance the Ethos and Wikipedia
Toxic Comment Datasets but also to prevent too strong overfitting on the training data,
the minority classes are moderately oversampled such that the size of the minority classes
is 1/4th the size of the majority class.

2.6.5 Hyperparameter Tuning

For each evaluated combination of an algorithm and a preprocessing procedure, a grid
search across sets of hyperparameter values is performed via five-fold cross-validation on the
training set. For the Transformer-based models, the hyperparameter grid search explores
model performances across combinations of different learning rates and epoch numbers.
Accounting for the fact that in the optimization process the gradient updates are conducted
based on small batches, relatively small global Adam learning rates {1e-05, 2e-05, 3e-05}
are inspected. The number of epochs explored is {2, 3, 4}.33

At the end of hyperparameter tuning, the best performing set of hyperparameters according
to the macro-averaged F1-Score and overfitting considerations is selected. Then the model

33Note that for the Longformer (for which a batch size of 4 is used) the learning rate is set to 1e-05 and
the number of epochs explored is {2, 3}. Hyperparameter tuning for the SVMs compares a linear kernel
and a Radial Basis Function kernel. The explored values are {0.1, 1.0, 10.0} for penalty weight C, and—in
the case of the Radial Basis Function kernel—values of {0.001, 0.01, 0.1} are inspected for parameter γ,
that specifies the radius of influence for single training examples. Regarding the XGBoost algorithms, the
grid search explores 50 vs. 250 trees, each with a maximum depth of 5 vs. 8, and XGBoost learning rates
of 0.001, 0.01, and 0.1. For details on SVM and XGBoost hyperparameters see also scikit-learn Developers
(2020a,c) and xgboost Developers (2020).
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with the chosen hyperparameter setting is trained on the entire training data set and
evaluated on the test set via the macro-averaged F1-Score.

2.6.6 Results

The results for the Ethos, Abortion, and Toxic classification tasks are presented in Table
2.1. Figure 2.10 additionally visualizes the results for the Toxic application.

Ethos Abortion Toxic0.5K Toxic1K Toxic2K Toxic5K Toxic10K

SVM BOW 0.566 0.526 0.711 0.754 0.782 0.802 0.817

SVM GloVe 0.585 0.545 0.739 0.786 0.789 0.822 0.840

XGBoost BOW 0.563 0.540 0.709 0.734 0.742 0.775 0.777

XGBoost GloVe 0.513 0.506 0.710 0.753 0.774 0.804 0.823

BERT 0.695 0.593 0.832 0.857 0.888 0.905 0.901

RoBERTa/Longf. 0.747 0.617 0.849 0.875 0.884 0.890 0.906

Table 2.1: Macro-Averaged F1-Scores. Macro-averaged F1-Scores of the evaluated models
for the Ethos, Abortion and Toxic classification tasks. If there are C classes such that yi ∈
{G1, . . . ,Gc, . . . ,GC}, the F1-Score for a particular class Gc is the harmonic mean of precision and
recall for this class (Manning et al., 2008, p. 156). Recall indicates what proportion of instances
that truly belong to class Gc have been correctly classified as being in Gc. Precision informs about
what share of instances that have been predicted to be in class Gc truly belong to class Gc. The
F1-Score can range from 0 to 1 with 1 being the highest value signifying perfect classification.
The macro-averaged F1-Score is the unweighted mean of the F1-Scores of each class (scikit-learn
Developers, 2020b). By not weighting the F1-Scores according to class sizes, algorithms that are
bad at predicting the minority classes are penalized more severely (scikit-learn Developers, 2020b).
In the Toxic application, for each tested training data set size, {500, 1,000, 2,000, 5,000, 10,000},
the mean of the macro-averaged F1-Scores across the five iterations is shown. The column labeled
Toxic0.5K gives the mean of the macro-averaged F1-Scores for the Toxic classification task with
a training set size of 500 instances. SVM BOW and XGBoost BOW denote SVM and XGBoost
with bag-of-words preprocessing. SVM GloVe and XGBoost GloVe refer to SVM and XGBoost
with GloVe representations. In RoBERTa/Longf., RoBERTa is applied for the Ethos and the
Abortion target tasks whereas the Longformer is used for the Toxic comment classification tasks.
Gray colored cells highlight the best performing model for the task.

Across all evaluated classification tasks and training data set sizes, the Transformer-based
models for transfer learning tend to achieve higher macro-averaged F1-Scores than the con-
ventional machine learning algorithms SVM and XGBoost. As has been observed before,
the classic machine learning algorithms produce acceptable results given the relatively sim-
ple representations of text they are applied on. However, when compared on the basis of
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Figure 2.10: Performances on Toxic Application with Varying Training Data Set
Sizes. For each training data set size and each model, the plotted dots indicate the mean of the
test set macro-averaged F1-Scores across the five iterations. The shaded areas range from the
minimum to the maximum macro-averaged F1-Score obtained across the five iterations.

the (mean) macro-averaged F1-Scores presented in Table 2.1, BERT, RoBERTa, and the
Longformer consistently outperform the best performing conventional model by a margin of
at minimum 0.05 to 0.11. These moderate to considerably higher prediction performances
across all evaluated textual styles, sequence lengths, and especially the smaller training
data set sizes, demonstrate the potential benefits that neural transfer learning with Trans-
formers can bring to analyses in which a researcher aims at having a valid text-based
measure of a concept and thus seeks to replicate human codings as accurately as possible.
Even if only a small to medium-sized training data set is available, social scientists that
apply Transformer-based models in a transfer learning setting are likely to obtain more
valid measures for concepts that they measure from texts.

A detailed examination of the macro-averaged F1-Scores reveals further findings:

• Averaged GloVe representations partly, though not consistently, produce a slight ad-
vantage over basic BOW preprocessing. This emphasizes that employing transfer
learning on conventional machine learning algorithms by extracting pretrained fea-
tures (here: GloVe embeddings) and taking them as the data representation input
might be beneficial—even if averaging over the embeddings erases information on
word order and dependencies.
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• For the Ethos and Abortion applications, RoBERTa outperforms BERT to a small
extent. This finding is consistent with previous research (Liu et al., 2019, p. 7). In
general, it is difficult to disentangle the effects of single modifications of the original
BERT architecture and pretraining settings that BERT-extensions as RoBERTa im-
plement (Aßenmacher & Heumann, 2020). It is likely, however, that one important
contribution is the longer pretraining on more and more varied data. Whereas BERT
is pretrained on a corpus of books and Wikipedia articles, RoBERTa is additionally
pretrained on three more large data sets that are based on text passages from the
web (Liu et al., 2019, p. 5-6). The larger and more heterogeneous pretraining corpus
is likely to enable RoBERTa to produce representations that better generalize across
a diverse set of target task corpora as inspected here.

• In the Ethos application, BERT and RoBERTa do not only exceed the performances
of the other evaluated models but also the best performing model developed by Duthie
& Budzynska (2018). To differentiate non-ethotic from positive and from negative
ethotic sentences, Duthie & Budzynska (2018) had created an elaborate NLP pipeline
including a POS tagger, dependency parsing, anaphora resolution, entity extraction,
sentiment classification, and a deep RNN. Duthie & Budzynska (2018, p. 4045) report
a macro-averaged F1-Score of 0.65 for their best model. BERT and RoBERTa here
surpass this performance. As the pretrained BERT and ROBERTa models are simply
fine-tuned to the Ethos classification target task without implementing (and having
to come up with) an extensive and complex preprocessing pipeline, this demonstrates
the efficiency and power of transfer learning.

• With all models achieving only mediocre performances, the Abortion classification
task, for which only 653 short Tweets are available as training instances, seems to
be especially difficult. BERT and RoBERTa still surpass SVM and XGBoost but
with a slightly smaller margin. By applying an SVM with a linear kernel based on
word and character n-gram feature representations, Mohammad et al. (2017, p. 13)
reach classification performance levels that are higher than the ones reached by the
models presented here.34 The Abortion classification task with short tweets in which
the mere N -grams tend to be indicative of the stance toward the issue (Mohammad
et al., 2017, p. 13), seems to be an example of a task in which deep learning models
only produce a moderate advantage or—if it is easy to select BOW representations
that very well capture linguistic variation that helps in discriminating the texts into
the categories—even no advantage over traditional machine learning algorithms.

• Across all evaluated training data set sizes, the Transformer-based models with trans-
fer learning tend to be better at solving the Toxic comment classification task com-
pared to the conventional algorithms (see Figure 2.10). As is to be expected, the per-

34Mohammad et al. (2017) merely compute the F1-Score for the favorable and opposing categories leaving
out the neutral position. They report a score of 0.664 for their N -gram based SVM classifier (Mohammad
et al., 2017, p. 13). Here the corresponding score values are 0.633 for BERT, 0.648 for RoBERTa as well
as 0.616 for the best performing conventional model SVM GloVe.
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formance levels for all models decrease with decreasing training data set sizes. Yet al-
though the neural models have much more parameters to learn, their macro-averaged
F1-Scores do not decrease more sharply than those of the traditional machine learn-
ing algorithms. Especially as training data sets become small, the effectiveness of
representations from pretrained models becomes salient. Here, the pretrained models
seem to function as a quite effective input to the target task.

• Whereas the Longformer processes text sequences of 1,024 tokens, the input sequences
for BERT were truncated at 512 tokens for the Toxic application. Despite this large
difference in sequence lengths, BERT only slightly underperforms compared to the
Longformer—and matches the Longformer for larger training data set sizes. As only
a small share of comments in the Wikipedia Toxic Comment Dataset are longer than
512 tokens (see again Figure 2.9h), the Longformer’s advantage of being able to
process longer text sequences does not materialize here. Removing tokens from the
middle of comments that exceed 512 tokens does not harm BERT’s prediction per-
formance and is an effective workaround in this application. For applications based
on corpora in which the mass of the sequence length distribution is above 512 tokens,
however, the Longformer’s ability to process and capture the information contained
in these longer documents, is likely to be important for prediction performance.

• Note that the time consumed during training differs substantively between the con-
ventional and the Transformer models. Larger training data sets and smaller batch
sizes increase the time required for fine-tuning the pretrained Transformer models.
Across the applications presented here, the absolute training time varies between 1
and 276 seconds for SVM BOW, between 32 and 2,272 seconds for BERT and 31
to 9,707 seconds for RoBERTa/Longformer. Applying Transformer-based models re-
quires higher computational resources not only regarding memory but also regarding
time.

• An additional analysis that explores the effectiveness of zero-shot learning is con-
ducted (see Appendix 2.J). Across all applications, across both employed pretrained
models (RoBERTa and BART), and across all explored hypothesis formulations35,
the macro-averaged F1-Scores are mediocre and substantially lower than for the fine-
tuned models. The highest macro averaged F1-Scores from zero-shot learning are
0.200 (Ethos), 0.455 (Abortion), and 0.470 (Toxic). Even if the prediction perfor-
mances of the here implemented zero-shot learning framework are not sufficiently high
in order to be applied in research projects in which researchers seek to as accurately
as possible measure a priori-defined concepts from texts, this analysis nevertheless
demonstrates what can be achieved with representations from pretrained models
alone.

35A hypothesis formulation is an additional textual input required in the employed natural language
inference (NLI) framework for zero-shot learning (see Appendix 2.J).
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2.7 Discussion

Advances in NLP research on transfer learning and the attention mechanism, that is in-
corporated in the Transformer, have paved the way to a new mode of learning in which
researchers can hope to achieve higher prediction performances by taking a readily avail-
able pretrained model and fine-tuning it, with a manageable amount of resources, to their
NLP task of interest (Bommasani et al., 2021). These advances are of interest to social
scientists that attempt to have valid measures of concepts from text data but may have
limited amounts of training data and resources. To use the potential advantages for social
science text analysis, this study has presented and applied Transformer-based models for
transfer learning. In the supervised classification tasks evaluated in this study, transfer
learning with Transformer models outperformed traditional machine learning across all
tasks and data set sizes.

Employing transfer learning with Transformer-based models, however, will not always per-
form better compared to other machine learning algorithms and is not the most adequate
strategy for each and every text-based research question. As the attention mechanism is
specialized in capturing dependencies and contextual meanings, these models are likely to
generate more accurate predictions if contextual information and long-range dependencies
between tokens are relevant for the task at hand. They are less likely to provide much of
an advantage if the function to be learned between textual inputs and desired outputs is
less complex—for example because single N -grams are strongly indicative of class labels
(see e.g. the Abortion application).

Transformer-based models for transfer learning furthermore are useful for supervised clas-
sification tasks in which the aim is to achieve an as high as possible prediction performance
rather than having an interpretable model. Social scientists whose primary goal is to have
as precise as possible text-based measures for concepts they employ may find Transformer-
based models for transfer learning highly useful, whereas researchers whose primary goal
is to know which textual features are most important in discriminating between class la-
beled documents (e.g. Slapin & Kirkland, 2020) are likely to be better served with directly
interpretable models.

Moreover, due to the sequence length limitations of Transformer-based models, the applica-
bility of these models is currently restricted to NLP tasks that operate on only moderately
long text sequences. Research that seeks to reduce the memory resources consumed by
the attention mechanism and thus allows for processing longer text sequences (e.g. Belt-
agy et al., 2020; Wang et al., 2020) is highly important. Further research progress in this
direction would open up the potential of transfer learning with Transformers for a wider
range of social science text analyses.

As neural transfer learning with Transformers is the basis of larger developments within
AI research (Bommasani et al., 2021), it is important that social scientists understand
these new learning modes and models—such that these learning modes and models can be
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correctly and fruitfully applied and their risks critically assessed.

Data Availability Statement. The code of this study is openly available in figshare at
https://doi.org/10.6084/m9.figshare.14394173.



Appendix to Introduction to Neural
Transfer Learning with Transformers for
Social Science Text Analysis

2.A Introduction to Deep Learning

This section provides an introduction to the basics of deep learning. First, based on the
example of feedforward neural networks the core elements of neural network architectures
are explicated. Then, the optimization process via stochastic gradient descent with back-
propagation (Rumelhart et al., 1986) will be presented. Subsequently, the architecture of
recurrent neural networks (RNNs) (Elman, 1990) is outlined.

2.A.1 Feedforward Neural Network

The most elementary deep learning model is a feedforward neural network (Goodfellow
et al., 2016, p. 164). A feedforward neural network with L hidden layers, vector input x, and
a scalar output y can be visualized as in Figure 2.A.1 and be described as follows:36

h1 = σ1(W1x+ b1) (2.17)

h2 = σ2(W2h1 + b2) (2.18)
. . .

hl = σl(Wlhl−1 + bl) (2.19)
. . .

y = σo(wohL + bo) (2.20)

The input to the neural network is the K0-dimensional vector x (see Equation 2.17).
x enters an affine function characterized by weight matrix W1 and bias vector b1, where

36Note that here, in accordance with standard notation in machine learning and NLP (Goldberg, 2016,
p. 346), column vectors are used.
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W1 ∈ RK1×K0 , and b1 ∈ RK1 . σ1 is a nonlinear activation function and h1 ∈ RK1 is the K1-
dimensional representation of the data in the first hidden layer. This is, the neural networks
takes the input data x and via combining an affine function with a nonlinear activation
function generates a new, transformed representation of the original input: h1. The hidden
state h1 in turn serves as the input for the next layer that produces representation h2 ∈
RK2 . This continues through the layers until the last hidden representation, hL ∈ RKL ,
enters the output layer (see Equation 2.20).
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Figure 2.A.1: A Feedforward Neural Network. Feedforward neural network with L
hidden layers, four units per hidden layer and scalar output y. The solid lines indicate the linear
transformations of weight matrix W1. The dotted lines indicate the connections between several
consecutive hidden layers.

The activation functions in neural networks are typically chosen to be nonlinear (Goodfel-
low et al., 2016, p. 168). The reason is that if the activation functions were set to be linear,
the output of the neural network would merely be a linear function of x (Goodfellow et al.,
2016, p. 168). Hence, the use of nonlinear activation functions is essential for the capacity
of neural networks to approximate a wide range of functions and highly complex functions
(Ruder, 2019a, p. 31).

In the hidden layers, the Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) is often used
as an activation function σl (Goodfellow et al., 2016, p. 171). If q = [q1, . . . , qk, . . . , qK ] is
the K-dimensional vector resulting from the affine transformation in the lth hidden layer,
q = Wlhl−1 + bl (see Equation 2.19), then ReLU is applied on each element qk:

σl(q)k = max{0, qk} (2.21)
σl(q)k then is the kth element of hidden state vector hl.37

37Activation functions that are similar to ReLU are the Exponential Linear Unit (ELU) (Clevert et al.,
2016), Leaky ReLU and the Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016). The latter
is used in BERT (Devlin et al., 2019).
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In the output layer, the activation function σo is selected so as to produce an output
that matches the task-specific type of output values. In binary classification tasks with
yi ∈ {0, 1} the standard logistic function, often simply referred to as the sigmoid function,
is a common choice (Goodfellow et al., 2016, p. 179-180). For a single observational unit i,
the sigmoid function’s scalar output value gives the probability that yi = 1. If yi, however,
can assume one out of C unordered response category values, yi ∈ {G1, . . . ,Gc, . . . ,GC},
then the softmax function (which is a generalization of the sigmoid function that takes as
an input and produces as an output a vector of length C) is typically employed (Goodfellow
et al., 2016, p. 180-181). For the ith example, the cth element of the softmax output vector
gives the predicted probability that unit i falls into the cth class.

2.A.2 Optimization: Gradient Descent with Backpropagation

In supervised learning tasks, a neural network is provided with input xi and corresponding
output yi for each training example. All the weights and bias terms are parameters to
be learned in the process of optimization (Goodfellow et al., 2016, p. 165). The set of
parameters hence is θ = {W1, . . . ,Wl, . . . ,WL,Wo, b1, . . . , bl, . . . , bL, bo}.

For a single training example i, the loss function L(yi, f(xi, θ̃)) measures the discrepancy
between the value predicted for unit i by model f(xi, θ̃), that is characterized by the
estimated parameter set θ̃, and the true value yi (Vapnik, 1991, p. 832). In the optimization
process, the aim is to find the set of values for the weights and biases that minimizes the
average of the observed losses over all training set instances, also known as the empirical
risk: Remp(θ̃) = 1

N

∑N
i=1 L(yi, f(xi, θ̃)) (Goodfellow et al., 2016, p. 272-273).

Neural networks commonly employ variants of gradient descent with backpropagation in
the optimization process (Goodfellow et al., 2016, p. 173). To approach the local minimum
of the empirical risk function, the gradient descent algorithm makes use of the fact that the
direction of the negative gradient of function Remp at current point θ̃j gives the direction in
which Remp is decreasing fastest—the direction of the steepest descent (Goodfellow et al.,
2016, p. 83). The gradient is a vector of partial derivatives. It is the derivative of Remp at
point θ̃j and is denoted as ∇θ̃j

Remp(θ̃j) (Johnson, 2017, p. 2).

In the jth iteration, the gradient descent algorithm computes the negative gradient ofRemp

at current point θ̃j and then changes its position from θ̃j into the direction of the negative
gradient (Goodfellow et al., 2016, p. 83-84):

θ̃j+1 = θ̃j − η∇θ̃j
Remp(θ̃j) (2.22)

where η ∈ R+ is the learning rate. If η is small enough, then Remp(θ̃j) ≥ Remp(θ̃j+1) ≥
Remp(θ̃j+2) ≥ . . . . This is, repeatedly updating into the direction of the negative gradient
with a suitably small learning rate η, will generate a sequence moving toward the local
minimum (Li et al., 2020a).
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In each iteration, the gradients for all parameters are computed via the backpropagation
algorithm (Rumelhart et al., 1986).38 A very frequently employed approach, known as
mini-batch stochastic gradient descent, is to compute the gradients based on a random
sample, a mini-batch, of S training set observations (Goodfellow et al., 2016, p. 275-276,
291):

∇θ̃j
Remp(θ̃j) = 1

S

S∑
s=1
∇θ̃j
L(ys, f(xs, θ̃j)) (2.23)

The learning rate η and the size of the mini-batch S are hyperparameters in training neural
networks. Especially the learning rate is often attended to carefully (Li et al., 2020a). A
too high learning rate leads to large fluctuations in the loss function values, whereas a
too low learning rate implies slow convergence and risks that the learning process does
not move away from a non-optimal region with a high loss value (Goodfellow et al., 2016,
p. 291). Commonly, the learning rate is set to vary over the course of the training process
(Goodfellow et al., 2016, p. 290-291). Furthermore, there are variants of stochastic gradient
descent, e.g. AdaGrad (Duchi et al., 2011), RMSProp (Hinton et al., 2012), and Adam
(Kingma & Ba, 2015), that have a different learning rate for each parameter (Goodfellow
et al., 2016, p. 303-305).

2.A.3 Recurrent Neural Networks

The recurrent neural network (RNN) (Elman, 1990) is the most basic neural network to
process sequential input data of variable length such as texts (Goodfellow et al., 2016,
p. 367). Given an input sequence of T input embeddings (z[a1], . . . ,z[at], . . . ,z[aT ]), RNNs
sequentially process each token. Here, one input embedding z[at] corresponds to one time
step t and the hidden state ht is updated at each time step. At each step t, the hidden
state ht is a function of the hidden state generated in the previous time step, ht−1, and
new input data, z[at] (see Figure 2.A.2) (Elman, 1990; Amidi & Amidi, 2019).

The hidden states ht, that are passed on and transformed through time, serve as the
model’s memory (Elman, 1990, p. 182; Ruder, 2019a, p. 32). They capture the information
of the sequence that entered until t (Goldberg, 2016, p. 391). Due to this sequential
architecture, RNNs theoretically can model dependencies over the entire range of an input
sequence (Amidi & Amidi, 2019). But in practice, recurrent models have problems learning
dependencies that extend beyond sequences of 10 or 20 tokens (Goodfellow et al., 2016,
p. 396-399). The reason is that when backpropagating the gradients through the time
steps (Backpropagation Through Time (BPTT)), the gradients may vanish and thus fail
to transmit a signal over long ranges (Goodfellow et al., 2016, p. 396-399).

38The backpropagation algorithm makes use of the chain rule to compute the gradients. Helpful intro-
ductions to the backpropagation algorithm can be found in Li et al. (2020a), Li et al. (2020b) and Hansen
(2019).
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Figure 2.A.2: A Recurrent Neural Network. Architecture of a basic RNN unfolded
through time. At time step t, the hidden state ht is a function of the previous hidden state, ht−1,
and current input embedding z[at]. yt is the output produced at t.

The long short-term memory (LSTM) model (Hochreiter & Schmidhuber, 1997) extends
the RNN with input, output, and forget gates that enable the model to accumulate, remem-
ber, and forget provided information (Goldberg, 2016, p. 399-400). This makes LSTMs
better suited than the basic RNNs to model dependencies stretching over long time spans
(Goldberg, 2016, p. 399-400).

2.B Zero-Shot Learning and the GPT-3

Ultimately the aim of the strand of NLP research focusing on zero-shot learning is to have
a model that generalizes well to a wide spectrum of target tasks without being explicitly
trained on the target tasks (Radford et al., 2019; Brown et al., 2020; Davison, 2020b). The
work on the series of GPT models—OpenAI GPT (Radford et al., 2018), GPT-2 (Radford
et al., 2019), and especially GPT-3 (Brown et al., 2020)—has demonstrated that large
models that are pretrained on language modeling tasks on excessively large corpora can
sometimes come close to achieving acceptable prediction performances without fine-tuning
(i.e. without gradient updates) on target task-specific examples (Brown et al., 2020, p. 4).
So far, the key to increasing the zero-shot no-fine-tuning learning performances seems to
be an increase in the models’ capacity to learn complex functions as determined by the
number of model parameters (Brown et al., 2020, p. 4). (Whilst the original OpenAI GPT
comprises 117 million parameters, GPT-2 has 1, 542 million (Radford et al., 2019, p. 4)
and GPT-3 has 175,000 million parameters (Brown et al., 2020, p. 1, 8).) Additionally,
and in correspondence with an increase in model parameters, the size of the employed
training corpora increases rapidly as well (Radford et al., 2019, p. 3; Brown et al., 2020,
p. 5). Yet given its sheer size, re-training the GPT-3 is prohibitively expensive (Brown
et al., 2020, p. 9; Riedl, 2020). Moreover, whereas typically the source code of pretrained
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language models is open sourced by the companies (e.g. Google, Facebook, Microsoft) that
developed these models, OpenAI decided not to share the code on GPT-3 and instead
allows using GPT-3 for downstream tasks via an API, thereby raising questions regarding
accessibility and replicability of pretrained language models for research (Brockman et al.,
2020; Riedl, 2020).

2.C Subword Tokenization Algorithms

Subword tokenization algorithms try to find a balance between word-level tokenization
(which tends to result in a large vocabulary—and hence a large embedding matrix that
consumes a lot of memory) and character-level tokenization (which generates a small and
flexible vocabulary but does not yield as well-performing representations of text) (Radford
et al., 2019, p. 4; Hugging Face, 2020c). Subword tokenization algorithms typically result
in vocabularies in which frequently occurring character sequences are merged to form words
whereas less common character sequences become subwords or remain separated as single
characters (Radford et al., 2019, p. 4; Hugging Face, 2020c). The Byte-Pair Encoding
(BPE) algorithm and variants thereof are subword tokenization algorithms employed in
many Transformer-based models (e.g. Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019). The base BPE algorithm starts with a list of all the unique characters in a corpus
and then learns to merge the characters into longer character sequences (eventually form-
ing subwords and words) until the desired vocabulary size is reached (Sennrich et al., 2016,
p. 1717-1718). In the WordPiece variant of BPE, the algorithm merges at each step the
character pair that, when merged, results in the highest increase in the likelihood of the
training corpus compared to all other pairs (Schuster & Nakajima, 2012, p. 5150).

2.D Pretraining BERT

In the masked language modeling pretraining task, for each token q, that has been sampled
for prediction, the updated token representation produced by the last encoder h∗q is fed
into a single-layer feedforward neural network with a softmax output layer to generate a
probability distribution over the terms in the vocabulary predicting the term corresponding
to q (see Figure 2.7 in the main article) (Alammar, 2018a; Devlin et al., 2019, p. 4174). For
the next sentence prediction task, the representation for the [CLS] token, h∗1, is processed
via a single-layer feedforward neural network with a softmax output to give the predicted
probability of the second segment succeeding the first segment (see Figure 2.7 in the main
article) (Alammar, 2018a; Devlin et al., 2019, p. 4174). The loss function in pretraining is
the sum of the average loss from the masked language modeling task and the average loss
from next sentence prediction (Devlin et al., 2019, p. 4183).



2.E Additional Examples for Autoencoding Models: ALBERT and ELECTRA 255

In order to learn the parameters in pretraining, the authors use the Adam algorithm, a
variant of stochastic gradient descent, in which at the jth iteration for each individual
parameter the estimate of the gradient’s average for this parameter is updated based on a
parameter-specific learning rate (Kingma & Ba, 2015; Devlin et al., 2019, p. 4183).39 They
use a learning rate schedule in which the global Adam learning rate (that is individually
adapted per parameter) linearly increases during the first 10,000 iterations (the warmup) to
reach a maximum value of 1e-4 and then is linearly decaying (Devlin et al., 2019, p. 4183).
They furthermore regularize by employing an L2 weight decay (Goodfellow et al., 2016,
p. 226; Devlin et al., 2019, p. 4183). As an additional regularization strategy they use
dropout (Srivastava et al., 2014) with dropout probability p = 0.1 (Devlin et al., 2019,
p. 4183). In dropout, units and their corresponding connections are randomly dropped
during training (Srivastava et al., 2014, p. 1929). Devlin et al. (2019, p. 4183) select a
mini-batch size of 256 sequences and conduct 1,000,000 iterations, which implies that they
train the model for around 40 epochs; i.e. they make around 40 passes over the entire 3.3
billion token pretraining data set.

2.E Additional Examples for Autoencoding Models: AL-
BERT and ELECTRA

ALBERT (Lan et al., 2020) aims at a parameter efficient design. By decoupling the
size of the input embedding layers from the size of the hidden layers and by sharing
parameters across all layers, ALBERT substantially reduces the number of parameters to
be learned (e.g. by a factor of 18 comparing ALBERT-Large to BERTLARGE) (Lan et al.,
2020, p. 2, 4, 6). Parameter reduction has regularizing effects, and—because it saves
computational resources—allows to construct a deeper model with more and/or larger
hidden layers whose increased capacity benefits performance on target tasks while still
comprising fewer parameters than the original BERTLARGE (Lan et al., 2020, p. 2, 7).

Whereas BERT, RoBERTa, and ALBERT make use of the masked language modeling
task, ELECTRA introduces a new, more resource-efficient pretraining objective, named
replaced token detection (Clark et al., 2020, p. 1). ELECTRA addresses the issue that
in masked language modeling for each input sequence predictions are made only for those
15% of tokens that have been sampled for the task, thereby reducing the amount of what
could be learned from each training sequence (Clark & Luong, 2020). In pretraining,
ELECTRA has to predict for each input token in each sequence whether the token comes

39Here the individual learning rate is inversely proportional to the average of the squared gradient—such
that the learning rate is smaller for large gradients and higher for smaller gradients (Goodfellow et al.,
2016, p. 303-306). The gradient’s average and the squared gradient’s average are exponentially weighted
moving averages with decay rates β1, β2 ∈ [0, 1) to assign an exponentially decaying weight to gradients
from long ago iterations (Kingma & Ba, 2015, p. 2; Goodfellow et al., 2016, p. 303-306). Devlin et al.
(2019, p. 4183) set β1 to 0.9 and β2 to 0.999.
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from the original sequence or has been replaced by a plausible fake token (Clark & Luong,
2020; Clark et al., 2020, p. 1, 3). Thus, ELECTRA (the discriminator) solves a binary
classification task for each token and is much more efficient in pretraining requiring fewer
computational resources (Clark & Luong, 2020; Clark et al., 2020, p. 3). The plausible
fake tokens come from a generator that is trained on a masked language modeling task
together with the ELECTRA discriminator (Clark et al., 2020, p. 3). After pretraining,
the generator is removed and only the ELECTRA discriminator is used for fine-tuning
(Clark & Luong, 2020).

2.F Additional Example for an Autoregressive Model: The
XLNet

Strictly speaking, XLNet (Yang et al., 2019) is not an autoregressive model (Hugging Face,
2020b). Yet the permutation language modeling objective that it introduces builds on the
autoregressive language modeling framework (Yang et al., 2019, p. 5756). The authors
of XLNet seek a pretraining objective that learns bidirectional representations as in au-
toencoding models whilst overcoming problems of autoencoding representations: first, the
pretrain-finetune discrepancy that results from the fact that ‘[MASK]’ tokens only occur
in pretraining, and, second, the assumption that the tokens selected for the masked lan-
guage modeling task in one sequence are independent of each other (Yang et al., 2019,
p. 5754-5755). Given a sequence whose tokens are indexed (1, . . . , T ), the permutation
language modeling objective makes use of the permutations of the token index (1, . . . , T )
(Yang et al., 2019, p. 5756). For each possible permutation of (1, . . . , T ), the task is to
predict the next token in the permutation order given the previous tokens in the permuta-
tion (Yang et al., 2019, p. 5756). In doing so, the learned token representations can access
information from left and right contexts whilst the autoregressive nature of the modeling
objective avoids the pretrain-finetune discrepancy and the independence assumption (Yang
et al., 2019, p. 5756).

2.G Examples for Sequence-to-Sequence Models: The T5
and BART

The T5 (Raffel et al., 2020) is very close to the original Transformer encoder-decoder
architecture. It is based on the idea to consider all NLP tasks as text-to-text problems
(Raffel et al., 2020, p. 2-3). To achieve this, each input sequence that is fed to the model
is preceded by a task-specific prefix, that instructs the model what to do. For example
(Raffel et al., 2020, p. 47ff.): A translation task in this scheme has the input ‘translate from
English to German: I love this movie.’ and the model is trained to output ‘Ich liebe diesen
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Film.’. For a sentiment classification task on the SST-2 Dataset (Socher et al., 2013), the
input would be: ‘sst2 sentence: I love this movie.’ and the model is trained to predict
one of ‘positive’ or ‘negative’. The fact that there is a shared scheme for all NLP tasks,
allows the T5 to be pretrained on a multitude of different NLP tasks before being fine-
tuned on a specific target task (Raffel et al., 2020, p. 30-33). In the multitask pretraining
mode, T5 is trained on a self-supervised objective similar to the masked language modeling
task in BERT as well as various different supervised tasks (such as translation or natural
language inference) (Raffel et al., 2020, p. 37). With this multitask pretraining setting,
in which the parameters learned in pretraining are shared across different tasks, the T5,
rather than being a standard sequential transfer learning model, implements a softened
version of multitask learning (Raffel et al., 2020, p. 30).

BART (Lewis et al., 2020)—another well-known sequence-to-sequence model—is composed
of an encoder and a decoder. Just as an autoencoding model, BART in pretraining is pre-
sented with a corrupted sequence and has to predict the original uncorrupted sequence
(Lewis et al., 2020, p. 2). In pretraining, BART allows a wide range of different types of
corrupting operations to be applied to the documents (Lewis et al., 2020, p. 2-3). Due
to this autoencoding-style pretraining task, BART can be considered a BERT-like bidi-
rectional encoder followed by an autoregressive unidirectional decoder (Lewis et al., 2020,
p. 1-2). Because of the decoder, that learns to predict output tokens in an autoregressive
manner, BART is better suited to perform text generation tasks than regular autoencoding
models (Lewis et al., 2020, p. 1, 6). Additionally, BART performs similarly to RoBERTa
on discriminative natural language understanding tasks (Lewis et al., 2020, p. 1, 6).

2.H Interpretability

One common method to make neural networks more interpretable is probing (also known
as auxiliary prediction tasks) (Belinkov & Glass, 2019, p. 51). In probing, an element
of a trained neural network (e.g. a set of contextualized token embeddings) is extracted,
fixed, and fed into a simple classifier and then is applied to some task (e.g. POS tagging,
coreference resolution) (Belinkov & Glass, 2019, p. 51; Tenney et al., 2019b, p. 1-3). If the
prediction performance on the task is high, then this is taken as an indication that infor-
mation required to address the task (e.g. syntactic information for POS tagging, semantic
information for coreference resolution) is encoded in the tested element of the network
(Belinkov & Glass, 2019, p. 51; Tenney et al., 2019b, p. 2). Accordingly, probing is one
way to inspect what information a neural network has learned and which elements capture
which information.

Another important aspect of interpretability is to assess the importance of input features
for predicted outputs. The open-source library Captum (https://captum.ai/) implements
several attribution algorithms that allow just that (Kokhlikyan et al., 2020, p. 3). Ad-
ditionally, algorithms for attributing outputs to a hidden layer, as well as algorithms for
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attributing hidden layer values to feature inputs, are also provided (Kokhlikyan et al.,
2020, p. 3).

Most attribution algorithms can be considered as either being gradient-based or perturbation-
based (Agarwal et al., 2021, p. 110). Perturbation-based algorithms make use of removed
or altered input features to learn about the importance of input features (Ancona et al.,
2018, p. 2; Agarwal et al., 2021, p. 110). Gradient-based algorithms make use of the gra-
dient of the predicted output with regard to input features (Ancona et al., 2018, p. 2-3;
Agarwal et al., 2021, p. 110).

For models that incorporate attention mechanisms, the analysis of patterns in atten-
tion weights αt,t∗ and the probing of attention heads is another interpretability-related
research area (see e.g. Clark et al., 2019; Kobayashi et al., 2020).Tools for interpret-
ing attention matrices are also provided by Captum (see, for example, the tutorial at
https://captum.ai/tutorials/Bert_SQUAD_Interpret2).

Another set of methods related to interpretability is behavioral testing and the construction
of adversarial examples (Belinkov & Glass, 2019, p. 54-58).40 Here, the goal is to inspect
a trained model’s behavior when confronted with a challenging set of inputs or adversar-
ial examples. In an award-winning paper, Ribeiro et al. (2020) present a methodology
for behavioral testing. Their research findings emphasize that whilst the performance of
NLP models as evaluated via accuracy measures on held-out test sets has risen substan-
tially during the last years (see also e.g. Wang et al., 2019, p. 2), when evaluating the
models via behavioral testing, it is revealed that accuracy-based performances on com-
mon benchmark data sets overestimate the models’ linguistic and language understanding
capabilities. BERT, for example, is found to have high failure rates for simple negation
tests (e.g. classifying 84.4% of positive or neutral tweets in which a negative sentiment
expression is negated into the negative category) (Ribeiro et al., 2020, p. 4905-4907).

2.I Deep Learning and Transfer Learning in Practice

To practically implement deep learning models, it is advisable to have access to a graphics
processing unit (GPU). In contrast to a central processing unit (CPU), a GPU comprises
many more cores and can conduct thousands of operations in parallel (Caulfield, 2009).
GPUs thus handle tasks that can be broken down into smaller, simultaneously executable
subtasks much more efficiently than CPUs (Caulfield, 2009). When training a neural
network via stochastic gradient descent, every single hidden unit within a layer usually can
be updated independently of the other hidden units in the same layer (Goodfellow et al.,
2016, p. 440). Hence, neural networks lend themselves to parallel processing.

40In NLP, an adversarial example is a text sequence d∗i that is close to a sequence di but has a different
class label than di (Belinkov & Glass, 2019, p. 56).
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A major route to access and use GPUs is via NVIDIA’s CUDA framework (Goodfellow
et al., 2016, p. 440-441). But instead of additionally learning how to write CUDA code, re-
searchers use libraries that enable CUDA GPU processing (Goodfellow et al., 2016, p. 441).
As of today, PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2016) are the most
commonly used libraries that allow training neural networks via CUDA-enabled GPUs.
Both libraries have Python interfaces. Therefore, to efficiently train deep learning mod-
els via GPU acceleration, researchers can use a programming language they are familiar
with.

Another obstacle is having a GPU at hand that can be used for computation. The comput-
ing infrastructures of universities and research institutes typically provide their members
access to GPU facilities. Free GPU usage also is available via Google Colaboratory (or
Colab for short): https://colab.research.google.com/notebooks/intro.ipynb. Colab is a
computing service that allows its user to run Python code via the browser (Google Co-
laboratory, 2020). Here, GPUs can be used free of cost. The free resources, however,
are not guaranteed and there may be usage limits. One issue researchers have to keep
in mind when using Colab is that at each session another type of GPU may be assigned.
Documenting the used computing environment hence is vital to ensure traceability. Note,
that full reproducibility across different computing platforms and across different versions
of PyTorch and TensorFlow cannot be guaranteed (Freidank, 2020; Torch Contributors,
2021). However, there are measures that researchers can undertake to minimize nondeter-
ministic elements (e.g. not using nondeterministic algorithms where possible and ensuring
that batch allocation is reproducible) (see Torch Contributors, 2021).

2.J Application: Zero-Shot Learning

To explore how pretrained Transformer-based models would perform in a zero-shot learning
setting, the approach of Yin et al. (2019) is followed. Yin et al. (2019, p. 3918-3919) frame
zero-shot text classification as a natural language inference (NLI) task. In NLI, a model is
presented with a premise and a hypothesis and then has to decide whether the hypothesis
is true given the premise (entailment), whether the hypothesis is false given the premise
(contradiction), or whether the hypothesis is neither true nor false given the premise
(neutral) (see Table 2.J.1) (Williams et al., 2018, p. 1112-1113).

In the zero-shot classification framework of Yin et al. (2019), a model is presented with the
input text (taking the role of the premise) and a hypothesis that asks whether the input
text belongs to a particular class. The model then has to predict whether this is the case
or not. The model that Yin et al. (2019) use for zero-shot learning is a BERT model that
has been trained on three different NLI data sets (Yin et al., 2019, p. 3919). (The NLI
data sets are, of course, unrelated to the target tasks Yin et al. (2019) use for zero-shot
learning evaluation.)
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Here, in a similar approach, two pretrained Transformer-based models—RoBERTa (Liu
et al., 2019) and BART (Lewis et al., 2020)—that have been further trained on the Multi-
Genre Natural Language Inference (MNLI) data set (Williams et al., 2018) are used as
models for zero-shot learning. The models are accessed from Hugging Face’s Transformers
and then are used in a zero-shot-classification pipeline that is based on an NLI-framework
(see Davison, 2020a). For an illustration see Table 2.J.1.

[CLS] ... Premise ... [SEP] ... Hypothesis ... [SEP] predict one
out of

NLI [CLS] I am a lacto-vegetarian. [SEP] I eat one egg per week. [SEP]

entailment,
contra-
dict.,
neutral

ZSL

[CLS] Ok, I see what you mean. [SEP] This comment is toxic. [SEP]

entailment,
contra-
dict.,
neutral

[CLS] Ok, I see what you mean. [SEP] This comment is not toxic. [SEP]

entailment,
contra-
dict.,
neutral

Table 2.J.1: Scheme in Natural Language Inference (NLI) and Zero-Shot Learn-
ing (ZSL). In NLI, the model is provided with a premise followed by a hypothesis and has
to decide whether the hypothesis is true (entailment), false (contradiction), or neutral
(neutral) given the premise. In ZSL, the sequence for which a prediction is to be made consti-
tutes the premise. Each class label is presented to the model as a separate hypothesis. Here, the
input sequence is “Ok, I see what you mean.” and there are C = 2 class labels, namely: {toxic,
not toxic}. For each sequence-hypothesis pair, the model has to predict one out of {entailment,
contradiction, neutral}.

An important point to note is that the zero-shot performance will also depend on the
textual formulation of the hypothesis the model is presented with (Yin et al., 2019, p. 3921-
3922). (The model takes as an input the text sequence for which a prediction is to be made
followed by the hypothesis and thus the model learns representations for the input sequence
and the hypothesis and will generate a prediction based on (the compatibility) of both
inputs (Davison, 2020b).) Here, to explore the effect of different hypothesis formulations,
two different hypothesis formulations are tried in each application (see Tables 2.J.2 and
2.J.3).
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Ethos

Model Hypothesis Formulation Class Labels F1 (macro)

RoBERTa The statement {} the ethos of another
politician or party.

{attacks,

does not refer to, 0.200

supports}

RoBERTa
The statement expresses {} sentiment
toward the character of another
politician or party.

{negative,

0.188no,

positive}

BART The statement {} the ethos of another
politician or party.

{attacks,

0.184does not refer to,

supports}

BART
The statement expresses {} sentiment
toward the character of another
politician or party.

{negative,

0.181no,

positive}

Abortion

Model Hypothesis Formulation Class Labels F1 (macro)

RoBERTa The text is {} legalization of abortion.

{in favor of,

neutral toward, 0.344

against}

RoBERTa The text expresses a {} stance toward
legalization of abortion.

{positive,

neutral, 0.362

negative}

BART The text is {} legalization of abortion.

{in favor of,

neutral toward, 0.455

against}

BART The text expresses a {} stance toward
legalization of abortion.

{positive,

neutral, 0.368

negative}

Table 2.J.2: ZSL Results I. Macro-averaged F1-Scores obtained via zero-shot learning for
the test sets of the Ethos and Abortion classification tasks. In each application, two pretrained
models (RoBERTa and BART both trained on the MNLI) and two hypothesis formulations are
explored. Gray colored numbers highlight the best performing model-hypothesis formulation
combination for the task.
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Toxic

Model Hypothesis Formul. Class Labels F1 (macro)

RoBERTa This comment is {}. {not toxic, toxic} 0.470

RoBERTa This comment is {}.

{{neither obscene, nor threatening,
nor insulting, and does not
expresses hatred toward social
groups and identities}, {obscene, or
threatening, or insulting, or
expresses hatred toward social
groups and identities}}

0.213

BART This comment is {}. {not toxic, toxic} 0.378

BART This comment is {}.

{{neither obscene, nor threatening,
nor insulting, and does not
expresses hatred toward social
groups and identities}, {obscene, or
threatening, or insulting, or
expresses hatred toward social
groups and identities}}

0.178

Table 2.J.3: ZSL Results II.Macro-averaged F1-Scores obtained via zero-shot learning for one
sampled test set (N = 1,000) of the Toxic classification task. Two pretrained models (RoBERTa
and BART both trained on the MNLI) and two hypothesis formulations are explored. Gray
colored numbers highlight the best performing model-hypothesis formulation combination for the
task.

Moreover, note that if one has a target task with C class labels such that yi ∈ {G1, . . . ,Gc, . . . ,GC},
then each class label is presented to the model as one separate hypothesis (Davison, 2020a).
Consequently, if there are, for example, C = 4 labels, the model will be fed with C = 4
different sequence-hypothesis pairs for each sequence. In the implementation in Hugging
Face’s zero-shot-classification pipeline, the model generates for each of the C sequence-
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hypothesis pairs a prediction to belong to one of {entailment, contradiction, neu-
tral} (Davison, 2020a). Then, in order to aggregate the C separate predictions into
a single one, the predicted score for entailment is extracted for each hypothesis. To-
gether, the C entailment scores serve as the input to a softmax function that returns a
C-dimensional vector of predicted probabilities (which sum to one) and the cth element
gives the probability that the sequence belongs to the cth class (Davison, 2020a).

The zero-shot classification results are presented in Tables 2.J.2 and 2.J.3. For each appli-
cation, for each combination of an employed pretrained model and an explored hypothesis
formulation, the macro-averaged F1-Score for the test set is reported. Across applica-
tions, models, and hypothesis formulations, the achieved performance levels are mediocre
compared to the macro-averaged F1-Scores reached by the fine-tuned models (which are
presented in Table 2.1 in the main article). Interestingly, the smallest reduction in perfor-
mance compared to the fine-tuned models can be observed for the Abortion application.
In contrast to the other two applications, that seek to measure concepts from text that are
relatively difficult to adequately describe in words (ethos, toxicity), hypothesis formulation
in the legalization of abortion application is relatively straightforward.

Data Availability Statement. Just as for the other analyses presented in this pa-
per, the code for this zero-shot learning implementation is openly available in figshare at
https://doi.org/10.6084/m9.figshare.14394173.
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A Comparison of Approaches for Imbalanced Clas-
sification Problems in the Context of Retrieving
Relevant Documents for an Analysis

Abstract. One of the first steps in many text-based social science studies is to retrieve
documents that are relevant for the analysis from large corpora of otherwise irrelevant
documents. The conventional approach in social science to address this retrieval task is to
apply a set of keywords and to consider those documents to be relevant that contain at
least one of the keywords. But the application of incomplete keyword lists risks drawing
biased inferences. More complex and costly methods, such as query expansion techniques,
topic model-based classification rules, and active as well as passive supervised learning,
could have the potential to more accurately separate relevant from irrelevant documents
and thereby reduce the potential size of bias. Whether applying these more expensive
approaches increases retrieval performance compared to keyword lists at all, and if so, by
how much, is unclear as a comparison of these approaches is lacking. This study closes
this gap by comparing these methods across three retrieval tasks associated with a data
set of German tweets (Linder, 2017), the Social Bias Inference Corpus (SBIC) (Sap et al.,
2020), and the Reuters-21578 corpus (Lewis, 1997). Results show that query expansion
techniques and topic model-based classification rules in most studied settings tend to de-
crease rather than increase retrieval performance. Active supervised learning, however, if
applied on a not too small set of labeled training instances (e.g. 1,000 documents), reaches
a substantially higher retrieval performance than keyword lists.

Keywords. Imbalanced classification, Boolean query, keyword lists, query expansion,
topic models, active learning
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3.1 Introduction

When conducting a study on the basis of text data, at the very start of an analysis re-
searchers are often confronted with a difficulty: Online platforms and other sources from
which text data are generated usually cover multiple topics and hence tend to contain
textual references toward a huge number of various entities. Social scientists, however,
are typically interested in text elements referring to a single entity, e.g. a specific person,
organization, object, event, or issue.

Imagine, for example, that a study seeks to examine how rape incidents are framed in
newspaper articles (Baum et al., 2018), or that a study seeks to detect electoral violence
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based on social media data (Muchlinski et al., 2021), or that a study seeks to measure
attitudes expressed towards further European integration in speeches of political elites
(Rauh et al., 2020). In all these studies, one of the first steps is to extract documents
that refer to the entity of interest from a large, multi-thematic corpus of documents.1 This
is, researchers have to separate the relevant documents that refer to the entity of interest
from the documents that focus on entities irrelevant for the analysis at hand. Newspaper
articles that report about rape incidents have to be parted from those articles that do
not. Tweets relating to electoral violence have to be extracted from the stream of all other
tweets. And speech elements about the European integration have to be separated from
elements in which the speaker talks about other entities.

Given a corpus comprising many diverse topics, it is likely that only a small proportion
of documents relate to the entity of interest. Hence, the proportion of relevant documents
is usually substantively smaller than the proportion of irrelevant documents in the data,
and the task of separating relevant from irrelevant documents turns into an imbalanced
classification problem (Manning et al., 2008, p. 155). How researchers address this imbal-
anced classification problem is highly important as the selection of documents affects the
inferences drawn. More precisely: If there is a systematic bias in the selection of docu-
ments such that the value on a variable of interest is related to the question of whether a
document is selected for analysis or not, the inferences that are made on the basis of the
documents that have been selected for analysis are likely to be biased. Selection biases can
be induced when the corpus is collected in the first place.2 And selection biases can be
induced when documents that refer to relevant entities are selected for analysis from the
already collected corpus. This work focuses on the second step. The more accurately a
method can separate relevant from irrelevant documents, the smaller the potential size of
the bias resulting from this second selection step.

Despite the relevance of this problem, the question of how best to retrieve documents from
large, heterogenous corpora so far has received little attention in social science research.
In many applications researchers have relied on applying human-created sets of keywords
and regard those documents as relevant that comprise at least one of the keywords (see e.g.
Burnap et al., 2016; Jungherr et al., 2016; Beauchamp, 2017; Baum et al., 2018; Stier et al.,
2018; Fogel-Dror et al., 2019; Rauh et al., 2020; Watanabe, 2021; Muchlinski et al., 2021).
Yet research indicates that humans are not good at generating comprehensive keyword lists
and are highly unreliable at the task (King et al., 2017, p. 973-975). This is, the keyword
list generated by one human is likely to contain only a small amount of the universe of terms
one could use to refer to a given entity of interest (King et al., 2017, p. 973-975). Moreover,
the list of keywords that one human comes up with is likely to show little overlap with the
keyword list generated by another human (King et al., 2017, p. 973-975). Joining forces

1A corpus is a set of documents. A document is the unit of observation. A document can be a very
short to a very long text (e.g. a sentence, a speech, a newspaper article). Here, the term corpus refers to
the set of documents a researcher has collected and from which he or she then seeks to retrieve the relevant
documents.

2I thank Christian Heumann for pointing this out to me.
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by combining keyword lists that researchers have created independently may alleviate the
problem somewhat. But still, the conventional approach of using keywords to identify
relevant documents is likely to be unreliable and thus is likely to lead to very different
(and potentially biased) conclusions depending on which set of keywords the researchers
have used (King et al., 2017, p. 974-976).

Other approaches for identifying relevant documents—such as passive and active supervised
learning, query expansion techniques, or the construction of topic model-based classifica-
tion rules—are less frequently employed in social science applications. These approaches
also require human input, but they detect patterns or keywords the researchers do not have
to know beforehand. Except for query expansion, these methods require the researchers
to recognize documents or terms related to the entity of interest rather than requiring the
researchers to recall such information a priori (King et al., 2017, p. 972). This does not
preclude these techniques from generating selection biases. A supervised learning algo-
rithm, for example, may systematically misclassify some documents as not being relevant
based on features whose occurrence could be correlated with a main variable of the analy-
sis. Yet as these approaches have the potential to extract patterns beyond what a team of
researchers may come up with, these methods have the potential to more precisely sepa-
rate relevant from non-relevant documents. And the higher the retrieval performance of a
method, the smaller the maximum size of the selection bias induced by retrieving relevant
documents.

These other techniques, however, also have a disadvantage: They are much more resource
intensive to implement. Supervised learning algorithms require labeled training documents,
query expansion techniques depend on a data source to operate on, and topic model-based
classification rules require the estimation of a topic model. As the identification of relevant
documents from a large heterogeneous corpus is likely to only constitute an early small step
of an elaborate text analysis, considerations regarding the costs and benefits of a retrieval
method have to be taken into account.

Hence, an ideal procedure reliably achieves a high retrieval performance such that it reduces
the risk of incurring large selection biases and, simultaneously, is cost-effective enough to be
conducted as a single step of an extensive study. In practice, the performance and the cost-
effectiveness of a procedure are likely to depend on the characteristics of an application
(such as the type of the entity of interest, or the heterogeneity vs. homogeneity of the
documents in the corpus). If the entity of interest is a person or organization and there
is only a small set of expressions that are usually used to refer to this entity, then a list
of keywords may lead to a similar performance than the resource-intensive application of
a supervised learning algorithm. If, on the other hand, the entity of interest is not easily
denominated, then an acceptable retrieval performance may only be achieved by training
a supervised learning algorithm.

Up to now, however, a systematic comparison of the performances of these different retrieval
methods across social science applications is lacking. Thus, it is unclear what, if anything,
could be gained in terms of retrieval performance by applying a more elaborate procedure.
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This study seeks to answer this question by comparing the retrieval performance of a small
set of predictive keywords to (1) query expansion techniques extending this initial set, (2)
topic model-based classification rules, and (3) active as well as passive supervised learning.
The procedures are compared on the basis of three retrieval tasks: (1) the identification
of tweets referring to refugees, refugee policies, and the refugee crisis from a data set of
24,420 German tweets (Linder, 2017), (2) the retrieval of posts that are offensive toward
mentally or physically disabled people from the Social Bias Inference Corpus (SBIC) (Sap
et al., 2020) that covers 44,671 potentially toxic and offensive posts from various social
media platforms, and (3) the extraction of newspaper articles referring to crude oil from
the Reuters-21578 corpus (Lewis, 1997) that comprises economically focused newspaper
articles of which 10,377 are assigned to a topic.

The results show that—with the model settings studied here—query expansion techniques
as well as topic-model-based classification rules tend to decrease rather than increase re-
trieval performance compared to sets of predictive keywords. They only yield minimal
improvements or acceptable results in specific settings. By contrast, active supervised
learning—if implemented with a not too small number of labeled training documents—
achieves relatively high retrieval performances across contexts. Moreover, in each appli-
cation, active learning substantively improves upon the mediocre to acceptable results
reached by the best performing lists of predictive keywords. The observed differences of
the mean F1-Scores achieved by active learning with 1,000 labeled training documents to
the maximum F1-Scores of keyword lists range between 0.218 and 0.295. Although active
learning is designed to reduce the number of training documents that have to be anno-
tated by human coders, it nevertheless is particularly resource-intensive. Yet the achieved
performance enhancements are so considerable (and the consequences of selection biases
potentially so severe) that researchers should consider spending more of their available
resources on the step of separating relevant from irrelevant documents.

In the following Section 3.2, basic concepts relevant for discussing imbalanced classification
problems in retrieval contexts are introduced. Afterward, the benefits and disadvantages
of the usage of keyword lists, query expansion techniques, topic model-based classifica-
tion rules, and passive as well as active supervised learning techniques in the context of
identifying documents relevant for further analyses are discussed (Section 3.3). Then the
procedures are applied to the data sets and their retrieval performances are inspected (Sec-
tion 3.4). The final discussion in Section 3.5 summarizes what has been learned and points
toward aspects that merit further study.

Before continuing, note that the vocabulary used in this study often makes use of the
term retrieval. As this study focuses on contexts in which the task is to retrieve relevant
documents from corpora of otherwise irrelevant documents, the usage of the term retrieval
seems adequate. The task examined in this study, however, is different from the task that
is typically examined in document retrieval. Document retrieval is a subfield of information
retrieval in which the usual task is to rank documents according to their relevance for an
explicitly stated user query (Manning et al., 2008, p. 14, 16). In this study, in contrast, the
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truly positive truly negative

predicted positive True Positives (TP ) False Positives (FP ) TP + FP

predicted negative False Negatives (FN) True Negatives (TN) FN + TN

TP + FN FP + TN N

Table 3.1: The Confusion Matrix.

aim is to classify—rather than rank—documents as being relevant vs. not relevant. More-
over, not all of the approaches evaluated here require the query, that states the information
need, to be expressed explicitly in the form of keywords or phrases.

3.2 Imbalanced Classification, Precision, Recall

Imbalanced classification problems are common in information retrieval tasks (Manning
et al., 2008, p. 155). They are characterized by an imbalance in the proportions made up by
one vs. the other category. When retrieving relevant documents from large corpora typically
only a small fraction of documents fall into the positive relevant category whereas an
overwhelming majority of documents are part of the negative irrelevant category (Manning
et al., 2008, p. 155).

When evaluating the performance of a method in a situation of imbalance, the accuracy
measure that gives the share of correctly classified documents is not adequate (Manning
et al., 2008, p. 155). The reason is that a method that would assign all documents to the
negative irrelevant category would get a very high accuracy value (Manning et al., 2008,
p. 155) Thus, evaluation metrics that allow for a refined view, such as precision and recall,
should be employed (Manning et al., 2008, p. 155). Precision and recall are defined as

Precision = TP

TP + FP
(3.1)

Recall = TP

TP + FN
(3.2)

TP , FP and FN are defined in Table 3.1. Precision and recall are in the range [0, 1].
However, if none of the documents is predicted to be positive, then TP + FP = 0, and
precision is undefined. If there are no truly positive documents in the corpus, then TP +
FN = 0, and recall is undefined. The higher precision and recall, the better.

Precision exclusively takes into account all documents that have been assigned to the
positive category by the classification method and informs about the share of truly positive
documents among all documents that are predicted to fall into the positive category. Recall,
on the other hand, exclusively focuses on the truly relevant documents and informs about
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the share of documents that have been identified as relevant among all truly relevant
documents.

There is a trade-off between precision and recall (Manning et al., 2008, p. 156). A keyword
list comprising many terms or a classification algorithm that is lenient in considering docu-
ments to be relevant will likely identify many of the truly relevant documents (high recall).
Yet as the hurdle for being considered relevant is low, they will also classify many truly
irrelevant documents into the relevant category (low precision). A keyword list consisting
of a few specific terms or a classification algorithm with a high threshold for assigning doc-
uments to the relevant class will likely miss many relevant instances (low recall), but among
those considered relevant many are likely to indeed be relevant (high precision).

In this study’s context of identifying relevant documents to be used for further analyses,
recall and precision should be as high as possible, but recall is the slightly more important
metric: Recall operates on the set of all truly relevant documents and focuses on the in-
clusion vs. exclusion of relevant documents into the analysis—the analytic step at which
selection biases may arise. If there is a correlation between the documents identified as rel-
evant vs. not relevant and the value of the variable of interest, a selection bias is generated.
This is, if truly relevant documents are systematically misclassified in the sense that the
higher (or lower) the value on the variable of interest, the higher (or lower) the probability
of being assigned to the negative irrelevant category, inferences that are made based on
the set of instances classified into the positive category are biased. High recall values do
not guarantee that there are no systematic misclassifications. But the higher recall, the
smaller the maximum size of the selection bias that arises from systematic misclassifications
of truly relevant documents.

Because of its exclusive focus on true and false positives, precision provides no information
on the potential of selection bias due to the missing out of truly relevant documents. Nev-
ertheless, precision should also be high. The lower precision, the fewer documents among
those considered to be relevant by the classification method are indeed relevant. A con-
siderable share of false positives among the set of documents classified to be relevant also
has the potential to severely bias the inferences drawn or can impede the researcher from
conducting any analysis at all because the retrieved documents are not those documents
he or she seeks to analyze. Yet whereas low precision can be handled by a researcher in
subsequent steps, low recall implies that a substantial proportion of truly relevant docu-
ments are never to be considered for analysis. Hence, falsely classifying a truly relevant
document as irrelevant can be considered to be more severe than falsely predicting an
irrelevant document to be relevant.

The trade-off between precision and recall is incorporated in the Fω-measure, which is the
weighted harmonic mean of precision and recall (Manning et al., 2008, p. 156):

Fω = (ω2 + 1) · Precision ·Recall
ω2 · Precision+Recall

(3.3)
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The Fω-measure also is in the range [0, 1]. ω is a real-valued factor balancing the importance
of precision vs. recall (Manning et al., 2008, p. 156). For ω > 1 recall, is considered more
important than precision, and if ω < 1, precision is weighted more than recall (Manning
et al., 2008, p. 156). A very common choice for ω is 1 (Manning et al., 2008, p. 156).
In this case, the F1-measure (or synonymously: F1-Score) is the harmonic mean between
precision and recall (Manning et al., 2008, p. 156).

F1 = 2 · Precision ·Recall
Precision+Recall

(3.4)

The F1-Score is a widely used measure to evaluate the performance of classification tasks.
Although recall here is considered the slightly more important measure, the F1-Score—
because it is the measure nearly always reported—will be employed to assess the perfor-
mances of the retrieval approaches evaluated in the following. Nevertheless, recall and
precision values will be reported in the Appendix.

3.3 Retrieval Approaches

3.3.1 Keyword Lists

In social science, a very widely used approach to identify documents on relevant entities
is to set up a set of keywords and to consider those documents as relevant that contain at
least one of the keywords (see for example the studies listed in Table 3.2). This procedure,
in fact, is a keyword-based Boolean query in which the keywords are connected with the
OR operator (Manning et al., 2008, p. 4). Slightly more advanced are Boolean queries in
which in addition to the OR operator also the AND operator is used. Using the AND
operator is important in situations in which expressions denoting the entity of interest are
composed of more than a single term (e.g. ‘United States’).

The ways in which the authors come up with a set of keywords range from simply using the
most obvious terms (e.g. Baum et al., 2018), to collecting a set of typical denominations
for the entity of interest (e.g. Burnap et al., 2016; Jungherr et al., 2016; Beauchamp,
2017), to carefully thinking about, testing, and revising sets of keywords (e.g. Stier et al.,
2018; Abdul Reda et al., 2021; Gessler & Hunger, 2021), to collecting keywords empirically
based on word-usage in texts known to be about the entity (e.g. Zhang & Pan, 2019).
Though these approaches vary in their complexity and costs, they are all still very cheap
and relatively fast procedures. Another advantage of the usage of keyword lists for the
extraction of relevant documents is that a researcher has full control over the terms that
are included—and not included—as keywords.

Nevertheless, research suggests that the human construction of keyword lists is not reliable
(King et al., 2017, p. 973-975). If a researcher generates a keyword list, then another
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Study Number of
keywords

How are the
keywords selected?

Operators in
Boolean
query

Puglisi & Snyder (2011) 11+ likely by the authors OR, AND

King et al. (2013) unspecified likely by the authors unclear

Burnap et al. (2016) 33 likely by the authors OR

Jungherr et al. (2016) 86 by the authors OR

Beauchamp (2017) 36 likely by the authors OR

van Atteveldt et al. (2017) 1 by the authors -

Baum et al. (2018) 2 likely by the authors OR

Stier et al. (2018) 218 by the authors OR

Fogel-Dror et al. (2019) 27-170 by the authors OR

Katagiri & Min (2019) unspecified from COPDAB data bank OR, AND

Zhang & Pan (2019) 50 empirically; frequency-based OR

Rauh et al. (2020) 14 likely by the authors OR

Uyheng & Carley (2020) 1 likely by the authors -

Abdul Reda et al. (2021) 57 by the authors OR, AND

Gessler &
Hunger (2021) 94 by the authors;

re-usage of lists created
by other authors

OR

Muchlinski et al. (2021) 30-38 by the authors OR

Watanabe (2021) 2-4 by the authors OR

Table 3.2: Social Science Studies Applying Keyword Lists. This table exemplary lists
social science studies that employ lists of keywords to retrieve documents or text elements that are relevant
for (a part of) their analysis. A similar but older list of studies can be found in Linder (2017, p. 5). Note
that the column ‘Number of keywords’ gives the number of keywords the authors in the listed studies use
to extract documents relating to one entity of interest. If the authors are interested in several entities,
then typically several keyword lists are applied which is why here for some articles a range rather than a
single number is given. Note also that Katagiri & Min (2019, p. 161) state that the keywords they use
come from the Conflict and Peace Data Bank (COPDAB) (Azar, 2009). They do not specify how they
extract keywords from this data bank.
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researcher or the same researcher at another point in time is likely to construct a very
different set of keywords. This is problematic: Depending on which human-generated set
of search terms is used to identify relevant documents, inferences drawn can vary greatly
(King et al., 2017, p. 974-976).

Moreover, this conventional procedure of human keyword list generation might lead to
biased inferences if the terms that are used to denote an entity correlate with the values of
the variable of interest. To illustrate: Imagine that a researcher is interested in attitudes
toward Joe Biden as expressed in comments on an online platform during a given time
period. The researcher analyzes the sentiments of all comments that contain the search
term ‘Biden’. The obtained results can be biased if the attitudes expressed in comments
that refer to Joe Biden as ‘Biden’ or ‘Joe Biden’ differ from the attitudes in comments that
refer to him as ‘Sleepy Joe’. For keyword-based approaches to avoid such types of selection
bias, a researcher thus has to set up a set of keywords that fully captures the universe of
terms and expressions that are used to refer to the entity of interest in the given corpus.3
But humans tend to perform very poorly when it comes to constructing an extensive set
of search terms (King et al., 2017, p. 973-975).

There are several likely reasons for the problems human researchers encounter when trying
to set up an extensive list of keywords. First, language is highly varied (Durrell, 2008).
There are numerous ways to refer to the same entity—and entities also can be referred to
indirectly without the usage of proper names or well-defined denominations (Baden et al.,
2020, p. 167). Especially if the entity of interest is abstract and/or not easily denominated,
the universe of terms and expressions referring to the entity is likely to be large and not
easily captured (Baden et al., 2020, p. 167). Such entities are abundant in social science.
Typical entities of interest, for example, are policies (e.g. the policies implemented to
address the COVID-19 pandemic), concepts (e.g. European integration or homophobia),
and occurrences (e.g. the 2015 European refugee crisis or the 2021 United States Capitol
riot).

A second likely reason for the human inability to come up with a comprehensive keyword list
is the effect of inhibitory processes (Bäuml, 2007; King et al., 2017, p. 974). After a set of
concepts has been retrieved from memory, inhibitory processes suppress the representation
of related, non-retrieved concepts in memory and thereby reduce the probability of those
concepts being recovered (Bäuml, 2007). One approach that has the potential to alleviate
this second aspect is the utilization of query expansion methods, which are discussed
next.

3Such a comprehensive list of keywords implies low precision and thus would come with another problem:
a large share of false positives. Nevertheless, a comprehensive list would imply perfect recall and thus would
preclude selection bias due to false negatives.
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3.3.2 Query Expansion

By being able to move beyond keywords that researchers are able to recall a priori, query
expansion methods can be employed to create a more comprehensive set of search terms.
Query expansion techniques expand the original query (i.e. the original set of keywords)
by appending related terms (Azad & Deepak, 2019, p. 1699-1700). Here, the focus is on
similarity-based automatic query expansion methods, that add new terms automatically—
i.e. without interactive relevance feedback from the user—and make use of the similarity
between the set of query terms and potential expansion terms (Azad & Deepak, 2019,
p. 1700, 1706). The underlying hypothesis used here is the association hypothesis formu-
lated by van Rijsbergen stating that “[i]f one index term is good at discriminating relevant
from non-relevant documents, then any closely associated index term is also likely to be
good at this” (van Rijsbergen, 2000, p. 11). The specific methods differ regarding

• the data source to extract candidate terms for the expansion,

• how candidate terms from this data source are ranked (such that the ranks reflect
the relatedness to the original query), and

• how (many) additional terms are selected and integrated into the original query

(Azad & Deepak, 2019, p. 1701). Data sources from which expansion terms are identi-
fied can be the corpus from which relevant documents are to be retrieved, the documents
retrieved by the initial query, human-created thesauri such as WordNet, knowledge bases
such as Wikipedia, external corpora (such as a global collection of web texts), or a com-
bination of these (Azad & Deepak, 2019, p. 1701-1704). If thesauri such as WordNet are
employed as a data source, terms the thesaurus encodes to be related to the query terms
can be considered candidate terms for expansion (Azad & Deepak, 2019, p. 1702). Path
lengths between the synsets (word senses) in a thesaurus can be used to compute a simi-
larity score between a query term and potential expansion terms (Azad & Deepak, 2019,
p. 1705). In Wikipedia, the network of hyperlinks between articles can be used to extract
articles about concepts related to the query terms (ALMasri et al., 2013). A similarity
score, for example, can be computed based on shared ingoing and outgoing hyperlinks
between articles (ALMasri et al., 2013, p. 6). If the data source for query expansion is
the local corpus from which documents are to be retrieved or if the data source is an
external global corpus, then the similarity between terms can be assessed via similarity
measures that are computed based on the terms’ vector representations (Azad & Deepak,
2019, p. 1706). A frequently used measure is cosine similarity:

simcos(a1, a2) = cos(θ) = z[a1] · z[a2]

||z[a1]|| ||z[a2]||
(3.5)

where z[a1] and z[a2] are the vector representations of terms a1 and a2 respectively, ||z[a1]||
and ||z[a2]|| is the length of these vectors as computed by the Euclidean norm, and θ is
the angle between the vectors. Cosine similarity gives the cosine of the angle between
the term representation vectors z[a1] and z[a2] (Manning et al., 2008, p. 122). If the angle
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between the vectors equals 0◦, meaning that the vectors have the exact same orientation,
the cosine is 1 (Moore & Siegel, 2013, p. 281). If the angle is 90◦, meaning that the vectors
are orthogonal to each other, then cos(θ) = 0 (Moore & Siegel, 2013, p. 281).4

Frequently used term representations are word embeddings (see e.g. Diaz et al., 2016;
Kuzi et al., 2016; Silva & Mendoza, 2020). A word embedding is a real-valued vector
representation of a term. Important model architectures to learn word embeddings are the
continuous bag-of-words (CBOW) and the Skip-gram models (Mikolov et al., 2013a) as well
as Global Vectors (GloVe) (Pennington et al., 2014) and fastText (Bojanowski et al., 2017).
In learning the word embedding for a target term at, these architectures make use of words
occurring in a context window around at (Mikolov et al., 2013a, p. 4; Pennington et al.,
2014, p. 1533-1535). In doing so, these procedures for learning word embeddings implicitly
draw on the distributional hypothesis (Firth, 1957), which states that the meaning of a
word can be deduced from the words it typically co-occurs with (Rodriguez & Spirling,
2022, p. 102). This in turn implies that syntactically or semantically similar terms are
likely to have similar word embedding vectors that point into a similar direction (Bengio
et al., 2003, p. 1139-1140; Mikolov et al., 2013b).

In similarity-based query expansion techniques, terms that are closest to the query terms
are used as query expansion terms. The number of terms added varies from approach
to approach between five to a few hundred (Azad & Deepak, 2019, p. 1714). In Silva &
Mendoza (2020), for example, the original query is represented by a single vector that
is computed by taking the weighted average of the word embeddings of all terms in the
original query. Then the five terms whose embeddings have the highest cosine similarity
with the embedding of the query are selected for expansion.

To sum up, researchers that implement query expansion methods require a data source for
expansion, a way to compute a measure that captures the relatedness between terms, and a
procedure that determines which and how many terms are added via which process. If they
plan to represent terms as word embeddings, then either pretrained word embeddings are
required or the embeddings have to be learned. Consequently, considerable resources and
expertise is needed. Yet whereas individuals due to inhibitory processes may fail to create a
comprehensive list of search terms, query expansion methods can uncover terms that denote
the entity of interest and are used in the corpus at hand. As query expansion techniques
have the potential to expand the initial query with synonymous and related terms, recall
is likely to increase (Manning et al., 2008, p. 193). Precision, however, may decrease—
especially if the added terms are homonyms or polysemes (i.e. terms that have different
meanings that are conceptually distinct (homonyms) or related (polysemes)) (Manning &
Schütze, 1999, p. 110; Manning et al., 2008, p. 193). It thus may be advantageous to use

4If the elements of the term vectors are non-negative, e.g. because they indicate the (weighted) frequency
with which a term occurs across the documents in the corpus, then the angle between the vectors will be
in the range [0◦, 90◦] and cosine similarity will be in the range [0, 1]. If, on the other hand, elements of
term representation vectors can become negative, then the vectors can also point into opposing directions.
In the extreme, if the vectors point into diametrically opposing directions, then cos(θ) = −1.
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as a data source for query expansion a corpus or thesaurus that is specific to the domain
of the retrieval task rather than a global corpus or a general thesaurus (Manning et al.,
2008, p. 193). Moreover, query expansion techniques require researchers to a priori come
up with an initial set of query terms (which will encode the researchers’ assumptions),
and there is no guarantee that the expansion starting from the initial set will capture
all different denominations of the entity. For example, there is no guarantee that query
expansion will succeed in moving from ‘Biden’ to ‘Sleepy Joe’. Finally, if the entity of
interest is also referred to with multi-term expressions (e.g. ‘United States’), then these
only can be extracted if the term representations used by the expansion procedure also
cover multi-term expressions. Word embeddings would have to be learned or be available
also for bigrams and trigrams. This increases the methods’ complexity, the computational
resources required, and limits the availability of word embeddings that already have been
pretrained on external global corpora.5

3.3.3 Topic Model-Based Classification Rules

Recently, Baden et al. (2020) have proposed a procedure in which documents are cate-
gorized based on classification rules that are built by researchers on the basis of topics
estimated by a topic model. Baden et al. (2020) call their procedure Hybrid Content Anal-
ysis. The idea is to assign those documents to a pre-defined category that are estimated to
be comprised to a considerable degree of topics that the researchers deem to be related to
the category (Baden et al., 2020). Whilst Baden et al. (2020) formulate their method for
multi-class or multi-label classification tasks in a descriptive manner, here the procedure is
presented with precise mathematical expressions and the focus is exclusively on the binary
classification task of retrieving relevant documents.

The family of topic models most widely applied in social science are Bayesian hierarchical
mixed membership models that estimate a latent topic structure based on observed word
frequencies in text documents (Blei et al., 2003, p. 993, 995-997; Blei & Lafferty, 2007,
p. 18; Roberts et al., 2016a, p. 988; Zhao et al., 2021, p. 4713-4714). These topic models
(which are here simply referred to as topic models) assume that each topic is a distribution
over the terms in the corpus and each document is characterized by a distribution over
topics (Blei et al., 2003, p. 995-997; Blei & Lafferty, 2007, p. 18). Given a corpus of N
documents, topic models estimate a latent topic structure defined by N × K document-
topic matrix Θ and K × U topic-term matrix B (see Figure 3.1). Topic-term matrix
B = [β1| . . . |βk| . . . |βK ]> gives for each topic, k ∈ {1, . . . , K}, the estimated probability
mass function across the U unique terms in the vocabulary: βk = [βk1, . . . , βku, . . . , βkU ],
where βku is the probability for the uth term to occur given topic k. Document-topic

5Note that besides the similarity-based automatic query expansion approaches discussed so far, there
are further expansion methods. Most prominently there are query language modeling and operations based
on relevance feedback from the user or pseudo-relevant feedback (Lavrenko & Croft, 2001; Manning et al.,
2008, p. 177-188; Azad & Deepak, 2019, p. 1709-1713).
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matrix Θ = [θ1| . . . |θi| . . . |θN ]> contains for each document di the estimated proportion
assigned to each of K latent topics: θi = [θi1, . . . , θik, . . . , θiK ], with θik being the estimated
share of document di assigned to topic k.

Given the estimated latent topic structure characterized by K × U topic-term matrix B
and N × K document-topic matrix Θ, the topic model-based classification rule building
procedure proceeds as follows (see Figure 3.1) (Baden et al., 2020, p. 171-174):

1. Based on K×U topic-term matrix B, the researcher inspects for each topic the most
characteristic terms, e.g. the terms that are most likely to occur in a topic and the
terms that are the most exclusive for a topic.6 Given these terms that inform about
the content of each topic, the researcher determines which topics refer to the entity
of interest. The researcher then creates relevance matrix C of size K × 1 whose
elements are 1 if the topic is considered relevant and are 0 otherwise.

2. Then N × K document-topic matrix Θ is multiplied with C. The resulting vector
r = [r1, . . . , ri, . . . , rN ]> gives for each document the sum over those topic shares that
refer to relevant topics. ri can be interpreted as the share of words in document di
that come from relevant topics.

3. A threshold value ξ ∈ [0, 1] is set. All documents for which ri >= ξ are considered
to be relevant.

The procedure utilizes a topic model as an unsupervised tool to uncover information about
the latent topic structure of a corpus. Leveraging this information for the retrieval of rel-
evant documents allows researchers to operate without a set of explicit keywords. Rather
than having to come up with information about to be retrieved documents a priori, re-
searchers merely have to recognize topics that refer to relevant entities. As topic models
are well known and frequently developed and applied in social science (e.g. Quinn et al.,
2010; Grimmer, 2013; Roberts et al., 2014; Bauer et al., 2017; Maier et al., 2018; Baerg &
Lowe, 2020; Eshima et al., 2021; Schulze et al., 2021) and furthermore are implemented in
corresponding software packages (e.g. Grün & Hornik, 2011; Roberts et al., 2019), the pro-
cedure of building classification rules based on topic models seems to be easily accessible
to the social science community.

Nevertheless, estimating a topic model in the first place induces costs. Especially the
number of topics K has to be set a priori. To set a useful value for K typically several
topic models with varying K are estimated and after a manual inspection of the most likely
and most exclusive terms for a topic as well as the computation of performance metrics
(e.g. held-out likelihood), researchers decide on a topic number (Roberts et al., 2016b,
p. 60-62). Moreover, as topic models are unsupervised there is no way for researchers—
beyond setting parameters as K—to guide the estimation process such that the results

6The most likely terms are the terms with the highest occurrence probabilities, βku, for a given topic k.
The most exclusive terms refer to highly discriminating terms whose probability to occur is high for topic
k but low for all or most other topics. Exclusivity can be measured as: exclusivityku = βku/

∑K
j=1 βju

(see for example Roberts et al., 2019, p. 12).
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Figure 3.1: Building Topic Model-Based Classification Rules. Classification rules can
be built from any topic model that on the basis of a corpus comprising N documents estimates a latent
topic structure characterized by two matrices: N × K document-topic matrix Θ and K × U topic-term
matrix B. βku is the estimated probability for the uth term to occur given topic k. θik is the estimated
share assigned to topic k in the ith document. The topic model-based classification rule procedure proceeds
as follows: Step 1: Researchers inspect matrix B, determine which topics are relevant, and create K × 1
relevance matrix C. Step 2: Matrix multiplication of Θ with C yields the resulting vector r. Step 3 (not
shown): Documents with ri >= threshold ξ ∈ [0, 1] are retrieved.
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are related to the concepts of interest. Ideally one would like to have a topic model that
produces one or several topics that refer to the entity of interest and are characterized by
high semantic coherence as well as exclusivity. A coherent topic referring to the entity of
interest would have high occurrence probabilities for frequently co-occurring terms that
refer to the entity (Roberts et al., 2014, p. 1069; Roberts et al., 2019, p. 10). It would
be clearly about the entity of interest rather than being a fuzzy topic without a nameable
content. An exclusive topic would solely refer to the entity of interest and would not refer
to any other entities.

It is not guaranteed, however, that there is a topic that distinctly covers the relevant entity.
Additionally, topic models can generate topics that relate to several entities rather than a
single entity. By selecting each topic that refers to the relevant entity but also relates to
several non-relevant entities, a researcher will construct a topic model-based classification
rule that will be characterized by high recall but low precision. For this reason, Baden
et al. (2020, p. 173) suggest setting K to a rather high value such that topics are fine-
grained. But whether this will work out in a given application is unclear as the latent
topic structure uncovered by the topic model cannot be forced to neatly separate topics
referring to relevant entities from topics referring to non-relevant entities.

3.3.4 Passive and Active Supervised Learning

Supervised learning algorithms are trained on the basis of a training data set. The training
data set contains a set of documents with corresponding class labels or values. In the
context of retrieving relevant documents, a training set document is assigned to the relevant
class if it refers to the entity of interest and is assigned to the irrelevant class otherwise.
Central to the supervised learning process is the loss function. The loss function returns
a cost-signifying value which is a function of the discrepancy between the predicted and
the true values of the training set documents. In an optimization process, the parameters
of the supervised learning algorithm are moved toward values for which the loss function
reaches a (local) minimum.

Supervised learning methods have the advantage that they come with supervision: The
separation between relevant and irrelevant documents is encoded in the training data set
and then learned by the model. This is a considerable advantage over automatic query
expansion methods and topic model-based approaches. In the former, researchers cannot
be entirely sure that the expansion really will include terms related to the initial query
terms, and in the latter, it is unclear whether there will be coherent and exclusive topics
referring to the entity of interest.

Moreover, as the true class assignments for the training set documents are known, su-
pervised learning approaches allow researchers to use resampling techniques (e.g. cross-
validation) in order to assess how well the retrieval of relevant documents works. The
values for precision and recall not only provide information about the performance of the
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retrieval method but also indicate the nature of the (mis)classifications. (Is the model
lenient in assigning documents to the positive relevant class and therefore most of the rel-
evant documents are retrieved (high recall) but there are many false positives among the
retrieved documents (low precision), or is it rather the other way round?)

Furthermore, just as the topic model-based approach, supervised learning techniques de-
pend on recognizing rather than recalling: When creating the training data set, coders read
the training documents and assign them to the relevant vs. irrelevant class as specified in
coding instructions. Hence, supervised learning techniques require the coders to merely
recognize relevant documents rather than creating information on relevant documents from
scratch.

Supervised learning methods, however, also come with disadvantages. First, the labeling
of training documents by human coders is extremely costly. Precise coding instructions
have to be formulated, the coders have to be trained and paid, and the intercoder re-
liability (e.g. measured by Krippendorff’s α (Krippendorff, 2013, p. 277-294)) has to be
assessed. Reading an adequately large sample of documents and labeling each as relevant
vs. irrelevant (or having this being done by trained coders) takes time.

Second, in the context of retrieving relevant documents, it is likely that the share of
relevant documents is small, and thus further problems arise: If the training set documents
are randomly sampled from the entire corpus from which relevant documents are to be
identified and only a small share of documents refer to the entity of interest, then a large
number of training documents have to be sampled, read, and coded such that the training
data set contains a sufficiently large number of documents falling into the positive relevant
class for the supervised method to effectively learn the distinctions between the relevant
and the irrelevant class. If, for example, 3% of documents are relevant, then after coding
1,000 randomly sampled training documents only about 30 documents will be assigned to
the relevant category.7

What is more: If no adjustments are made, then each training set document has the
same weight in the calculation of the value of the loss function. This is, the optimization
algorithm attaches the same importance to the correct classification of each training set
document. Yet in a retrieval situation characterized by imbalance, researchers typically
care more about the correct classification of relevant training documents than irrelevant
documents (see also argumentation in Section 3.2 above) (Branco et al., 2016, p. 2-4).
Or put differently, missing a truly relevant document (false negative) is considered more
problematic than falsely predicting an irrelevant document to be relevant (false positive)
(Brownlee, 2020). Thus, there is the question of what to do to make the supervised learning
algorithm focus on correctly detecting relevant documents.

The statistical learning community has devised a large spectrum of approaches to deal
7Note that research suggests that it is rather the number of training examples in the positive relevant

class than the number of all documents in the training set that affects the amount of information provided
to the learning method (Wang, 2020).
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with imbalanced classification problems (for an overview see Branco et al., 2016). Among
the most common and most easily applicable procedures that are employed to make the
optimization algorithm put more weight on the correct classification of instances that are
part of the relevant minority class are techniques that adjust the distribution of training
set instances (Branco et al., 2016, p. 7-15, 21-27). This set of techniques comprises pro-
cedures such as random oversampling, random undersampling, and the synthetic minority
oversampling technique (SMOTE) (Chawla et al., 2002) (Branco et al., 2016, p. 22).8 In
random oversampling, minority class instances are randomly resampled with replacement
and appended as exact replicas to the training data set (Wang, 2020, p. 9833). In random
undersampling, randomly selected instances of the majority class are removed from the
training set (Wang, 2020, p. 9831). Both resampling techniques are typically applied until
a user-specified distribution of class labels is reached (e.g. until the minority class contains
as many instances as the majority class) (Brownlee, 2021a). Thereby, both resampling
strategies make the training set more balanced and thus put more weight on the minority
class than in the original training set distribution. As random oversampling implies that
resampled minority instances are added as exact duplicates, random oversampling can lead
to overfitting on the training data and reduced generalization performance on the test data
(Branco et al., 2016, p. 22). Moreover, oversampling implies higher computational costs
(Branco et al., 2016, p. 22). In random undersampling, on the other hand, information
from removed majority class instances is lost (Brownlee, 2021a).9

In addition to these techniques that adjust the training set distribution, a second set
of methods to address imbalanced classification problems is the usage of cost-sensitive
algorithms (Branco et al., 2016, p. 27 ff.). There are specifically developed modifications
of algorithms that allow for incorporating higher costs for misclassifying instances of the
minority class (for an overview of these special-purpose methods see Branco et al., 2016,
p. 27-29). A more general method, however, is to set up a cost matrix that specifies which
cell in the confusion matrix (see Table 3.1 in Section 3.2) is associated with which cost
(Elkan, 2001; Brownlee, 2020). During training, the loss of each training instance takes
into account the respective cost depending on which cell the instance is in (Elkan, 2001,

8SMOTE (Chawla et al., 2002) is a well-known technique in which the minority class is enlarged by
adding synthetically generated minority class training examples. A synthetic training instance is created
by the following process: For each feature, a feature value is randomly drawn from the line joining the
feature value of a randomly sampled minority class instance and the feature value of one of its Q nearest
neighbors (Chawla et al., 2002, p. 328-329). This implies that SMOTE is “operating in ‘feature space’
rather than ‘data space”’ (Chawla et al., 2002, p. 328) of data that are represented in tabular form
(Brownlee, 2021b). (Thus, SMOTE can be applied on a bag-of-words-based document-feature matrix but
not original sequential text data.) In contrast to a simple random oversampling procedure, SMOTE adds
new instances rather than exact copies to the training data and thereby reduces the risk of overfitting
(Chawla, 2005, p. 860). (Note that typically SMOTE is combined with random undersampling (Chawla
et al., 2002, p. 330). There are various modifications of SMOTE or combinations of SMOTE with other
techniques and models (Branco et al., 2016, p. 25-26).)

9Besides these random resampling techniques mentioned here, there are methods that perform over-
sampling or undersampling in an informed way; e.g. based on distance criteria (see Branco et al., 2016,
p. 23-24).
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p. 973). In this way, higher costs can be specified for false negatives than for false positives
and be directly incorporated into the training process.

The idea of the cost matrix also underlies the techniques that modify the distribution of
training instances (Elkan, 2001, p. 975). The undersampling rates for the majority class
or the oversampling rates for the minority class ideally should reflect the cost induced
by misclassifying an instance from the respective class (Brownlee, 2020). For example, if
falsely predicting an instance from the positive minority class to be negative is considered
10 times more costly than falsely predicting an instance from the negative majority class to
be positive, then the cost of a false negative is 10, and the cost for a false positive 1 (and true
positives and true negatives induce no costs) (Branco et al., 2016, p. 36). Positive minority
class instances then could be randomly oversampled such that their number increases by a
factor of 10, or the majority class instances could be undersampled such that their number
decreases by a factor of 1/10 (Branco et al., 2016, p. 36).10

In practice, however, all discussed techniques suffer from the problem that researchers
often cannot specify precise values for misclassification costs (Brownlee, 2020). In the
context of the task of retrieving relevant documents, researchers may be able to say that
false negatives are more costly than false positives but how much so is likely to be highly
difficult to specify (Branco et al., 2016, p. 3; Brownlee, 2020).

The focus of the so far mentioned methods for imbalanced classification problems has
been on the difference in the misclassification costs associated with instances from the
positive minority vs. negative majority class. Yet there are other types of costs that
also should be considered: As elaborated above, the annotation of training documents
is costly due to the resources required. And in the context of imbalanced classification
problems annotating a random sample of documents is inefficient as a disproportionately
large number of documents has to be annotated until an acceptable number of instances
from the minority class is labeled. These training set annotation costs are the focus of
active learning strategies.

Active learning refers to learning techniques in which the learning algorithm itself indicates
which training instances should be labeled next (Settles, 2010, p. 4). The idea is to let
the learning algorithm select instances for labeling that are likely to be informative for the
learning process (Settles, 2010, p. 5). Such instances could be, for example, those instances
whose prediction the learner is most uncertain about (Settles, 2010, p. 5). The underlying

10Note that the outlined relationship between cost ratios and over- or undersampling rates only holds
if the threshold at which the classifier considers an instance to fall into the positive rather than the
negative class is at p = 0.5 (Elkan, 2001, p. 975). Note furthermore that although it would be good
practice for resampling rates to reflect an underlying distribution of misclassification costs as specified in
the cost matrix, resampling with rates reflecting misclassification costs will not yield the same results as
incorporating misclassification costs into the learning process (Branco et al., 2016, p. 36). One reason, for
example, is that in random undersampling instances are removed entirely (Branco et al., 2016, p. 36). For
information on the relationship between oversampling/undersampling, cost-sensitive learning, and domain
adaptation see Kouw & Loog (2019, p. 4-5, 7).
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hypothesis is that by letting the learner actively select the instances from which it seeks
to learn, an as high as possible prediction accuracy can be achieved with an as small as
possible number of annotated training instances (Settles, 2010, p. 4, 5). Active learning
stands in contrast to the usual supervised learning procedure in which the training set
instances are being randomly sampled, annotated, and then handed over to the learning
algorithm. When juxtaposing active learning to this usual supervised learning procedure,
the latter sometimes is called passive learning (Miller et al., 2020, p. 534).

Active learning is useful in situations in which unlabeled training instances are abundant
but the labeling process is costly (Settles, 2010, p. 4). There are several different scenarios
in which active learning can be applied (see Settles, 2010, p. 8-12). In this study, the
focus is on pool-based sampling. In pool-based sampling, a large collection of instances
has been collected from some data distribution in one step (Settles, 2010, p. 11). At the
start of the learning algorithm, labels are obtained only for a very small set of instances,
denoted I, whilst the other instances are part of the large pool of unlabeled instances U
(Settles, 2010, p. 11). In each iteration of the active learning algorithm, the algorithm is
trained on instances in the labeled set I and makes predictions for all instances in pool U
(Lewis & Gale, 1994, p. 4; Settles, 2010, p. 6, 11). The instances in pool U then are ranked
according to how much information the learner would gather from an instance if it were
labeled (Settles, 2010, p. 11-12). Then the most informative instances in U are selected
and labeled (e.g. by human coders) (Settles, 2010, p. 6). The newly labeled instances are
added to set I and a new iteration starts (Settles, 2010, p. 6).11

In the active learning community, several different strategies of how the informativeness
of an instance is defined and how the most informative instances are selected have been
developed (for an overview see Settles, 2010, p. 12 ff.). These strategies are termed query
strategies (Settles, 2010, p. 12). Here, the “[p]erhaps [...] simplest and most commonly used
query framework” (Settles, 2010, p. 12) will be presented: uncertainty sampling (Lewis
& Gale, 1994). In uncertainty sampling, those instances are considered to be the most
informative about which the learning algorithm expresses the highest uncertainty (Lewis
& Gale, 1994, p. 4). In the context of the binary document retrieval classification task, the
uncertainty could be said to be highest for instances for which the predicted probability
to belong to the relevant class is closest to 0.5 (Lewis & Gale, 1994, p. 4).12 The usage of
such a definition of uncertainty and informativeness is only possible for learning methods
that return predicted probabilities (Settles, 2010, p. 12). For methods that do not, other

11Ideally, a single instance is selected and labeled in each iteration (Lewis & Gale, 1994, p. 4). Yet
re-training a model is often costly and time-consuming. An economic alternative is batch-mode active
learning (Settles, 2010, p. 35). Here a batch of instances is selected and labeled in each iteration (Settles,
2010, p. 35). When selecting a batch of instances, there is the question of which instances to select.
Selecting the K most informative instances is one strategy that, however, ignores the homogeneity of the
selected instances (Settles, 2010, p. 35). Alternative approaches that seek to increase the heterogeneity
among the selected instances have been developed (see Settles, 2010, p. 35).

12Note that in multi-class classification tasks, it is less straightforward to operationalize uncertainty.
Here one can distinguish between least confident sampling, margin sampling, and entropy-based sampling
(for precise definitions see Settles, 2010, p. 12-13).
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uncertainty-based sampling strategies have been developed (see Settles, 2010, p. 14-15).
With regard to SVMs, Tong & Koller (2001) have introduced three theoretically motivated
query strategies. In their Simple Margin strategy, the data point that is closest to the
hyperplane is selected to be labeled next (Tong & Koller, 2001, p. 53-54).

One important aspect to be kept in mind when applying active learning techniques is that
because the training instances are not sampled randomly from the underlying corpus but
are purposefully selected, the distribution of the class labels in training data set I and in
unlabeled pool U is different from the distribution of labels in the entire corpus (Miller
et al., 2020, p. 539). If the expected generalization error is to be estimated, then one option
is to randomly sample a set of instances from the corpus at the very start of the analysis
(Tong & Koller, 2001, p. 57; Miller et al., 2020, p. 539, 541). This set then is annotated
and set aside such that it neither can become part of set I nor set U (Tong & Koller, 2001,
p. 57; Miller et al., 2020, p. 539, 541). After each learning iteration or a fixed number of
iterations, the performance of the active learning algorithm then can be evaluated on this
independent test set (Tong & Koller, 2001, p. 57; Miller et al., 2020, p. 539, 541).

Empirically, one can say that in a majority of published works active learning reaches the
same level of prediction accuracy with fewer training instances than supervised learning
with random sampling of training instances (passive learning) (Lewis & Gale, 1994; Tong
& Koller, 2001; Ertekin et al., 2007; Settles, 2010; Miller et al., 2020). This is especially the
case if data sets are imbalanced (Ertekin et al., 2007, p. 131; Ein-Dor et al., 2020, p. 7954;
Miller et al., 2020, p. 543-544). Closer inspections show that during the learning process,
the training set I, which is selected by the active learning algorithm, is more balanced (or
over the course of active learning iterations becomes more balanced) than the original data
distribution (Ertekin et al., 2007, p. 133-134; Miller et al., 2020, p. 545). One likely reason
for this observation is that active learning algorithms tend to pick instances for labeling
from the uncertain region between the classes, and in this region of the feature space,
the class distribution tends to be more balanced (Ertekin et al., 2007, p. 129, 133-134). A
more balanced distribution implies that more weight is given to the minority class instances.
Another likely reason for the superior performance and efficiency of active compared to
passive learning is that because active learning algorithms tend to pick instances close to
the boundary between the classes, they are able to learn the class boundary with a smaller
number of training instances (Settles, 2010, p. 28).

3.4 Comparison

In the following section, retrieving documents via keyword lists is compared to a query
expansion technique, topic model-based classification rules and active as well as passive
supervised learning on the basis of three retrieval tasks. The source code of this analysis can
be accessed via figshare at https://doi.org/10.6084/m9.figshare.19699840. The analysis is
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conducted in R (R Core Team, 2020) and Python (van Rossum & Drake, 2009).13

3.4.1 Data

Twitter: The first inspected retrieval task operates on a corpus comprising 24,420 German
tweets. These tweets are a random sample of all tweets in German language in a larger
collection of tweets that has been collected by Barberá (2016). Linder (2017) sampled
24,420 German tweets and used CrowdFlower workers to label the sampled tweets. For
each tweet, the label indicates whether the tweet refers to refugees, refugee policies, and
the refugee crisis and thus is considered relevant or not (Linder, 2017, p. 23-24). The task
of retrieving the relevant tweets from this corpus indeed is an imbalanced classification
problem as only 727 out of the 24,420 tweets (2.98%) are labeled to be about the refugee
topic.

SBIC: The aim of the second retrieval task is to extract all posts from the Social Bias
Inference Corpus (SBIC) (Sap et al., 2020) that have been labeled to be offensive toward
mentally or physically disabled people. The SBIC includes 44,671 potentially toxic and
offensive posts from Reddit, Twitter, and three websites of online hate communities (Sap
et al., 2020, p. 5480).14 The SBIC was collected with the aim of studying implied—rather
than explicitly stated—social biases (Sap et al., 2020, p. 5477). The subreddits and websites
selected to be included in the SBIC constitute intentionally offensive online communities
(Sap et al., 2020, p. 5480). The additionally included Reddit comments and tweet data sets
were collected such that there is an increased likelihood that the content of the collected
posts is offensive (e.g. by selecting tweets that include hashtags known to be racist or
sexist) (Sap et al., 2020, p. 5480). Sap et al. (2020) used Amazon Mechanical Turk for the
annotation of the posts. For each post, the coder indicated, amongst others, whether the
post is offensive and if so, whether the target is an individual (meaning that the post is
a personal insult) or a group (implying that the post offends a social group, e.g. women,
people of color) (Sap et al., 2020, p. 5479-5480). If one or several groups were targeted,
the coders were asked to name the targeted group or groups (Sap et al., 2020, p. 5479-
5480). The authors merge the 1,414 targeted groups into seven larger group categories
(Sap et al., 2020, p. 5481). One of these group categories is mentally or physically disabled

13For the analyses pertaining to active and passive supervised learning with the pretrained language
representation model BERT, the Python code is run in Google Colab (Google Colaboratory, 2020) in
order to have access to a GPU. The employed R packages are data.table (Dowle & Srinivasan, 2020), dplyr
(Wickham et al., 2021), facetscales (Oller Moreno, 2021), ggplot2 (Wickham, 2016), lsa (Wild, 2020),
plot3D (Soetaert, 2019), quanteda (Benoit et al., 2018), RcppParallel (Allaire et al., 2020), rstudioapi
(Ushey et al., 2020), stm (Roberts et al., 2019), stringr (Wickham, 2019), text2vec (Selivanov et al., 2020),
and xtable (Dahl et al., 2019). The used Python packages and libraries are Beautiful Soup (Richardson,
2020), gdown (Kentaro, 2020), imbalanced-learn (Lemaître et al., 2017), matplotlib (Hunter, 2007), NumPy
(Oliphant, 2006), pandas (McKinney, 2010), seaborn (Michael Waskom and Team, 2020), scikit-learn
(Pedregosa et al., 2011), PyTorch (Paszke et al., 2019), watermark (Raschka, 2020), and Hugging Face’s
Transformers (Wolf et al., 2020). If a GPU was used, an NVIDIA Tesla P100-PCIE-16GB was employed.

14For a detailed elaboration about the exact composition of the SBIC see Sap et al. (2020, p. 5480)
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people. 2.15% of the 44,671 posts are annotated as being offensive toward the disabled.15
The category of disabled people is selected as the focus of this study because this group
category is the most coherent capturing a well-defined group of people.

Reuters: The third retrieval task is to identify all newspaper articles in the Reuters-
21578 corpus (Lewis, 1997) that refer to the topic surrounding crude oil. Reuters-21578
(Lewis, 1997) is a widely used corpus for evaluating retrieval approaches (Tong & Koller,
2001; Ertekin et al., 2007; Hugging Face, 2021). The corpus contains 21,578 newspaper
articles that were published on the Reuters financial newswire service in 1987 (Lewis, 1997;
Hugging Face, 2021). 10,377 articles are assigned to one or several out of 135 economic
subject categories called topics (Lewis, 1997). These categories are e.g. ‘gold’, ‘grain’,
‘cotton’. Here, the 10,377 topic-annotated articles are used for the analysis. The aim
is to identify the 566 (5.45%) newspaper articles that are labeled to be about the crude
oil topic. The topic is the fourth largest. It is large enough to possibly contain enough
documents for the algorithms to learn from and at the same time is small enough such
that the identification of crude oil articles can be considered an imbalanced classification
problem.

The three data sets employed here are selected with the aim to achieve and represent vari-
ous types of retrieval tasks common in social science. Tweets, posts from online platforms,
and newspaper articles are types of documents that are often analyzed in social science and
whose analysis typically involves some preliminary retrieval step (see e.g. King et al., 2013;
Beauchamp, 2017; Baum et al., 2018; Stier et al., 2018; Fogel-Dror et al., 2019; Zhang &
Pan, 2019; Watanabe, 2021; Muchlinski et al., 2021). The entities of interest in social sci-
ence studies vary widely with regard to their nature and their level of abstraction. Zhang
& Pan (2019) study collective action events; Baum et al. (2018) focus on rape incidents;
Puglisi & Snyder (2011) retrieve information on persons involved in political scandals; Uy-
heng & Carley (2020) extract tweets referring to the COVID-19 pandemic; Jungherr et al.
(2016) examine parties, candidates, and campaign events during an election campaign; and
the entities of interest for Fogel-Dror et al. (2019) are Israel and the Palestinian Authority.
In this study, the entities of interest include a multi-dimensional topic that covers abstract
policies, occurrences as well as a social group (refugee policies, refugee crisis, refugees), a
one-dimensional topic about a single economic product (crude oil), and a specific social
group (disabled people) that is referred to in a specific (namely: offending) way. Moreover,
the corpora from which documents are retrieved in social science can be thematically highly
heterogeneous (as is the case with the corpus of German tweets here and with the Weibo
posts studied by Zhang & Pan (2019)). Corpora, however, also can be more homogeneous
with regard to topics, linguistic style, or attitudes (see e.g. the corpus of speeches from
leaders of EU institutions and member states employed by Rauh et al. (2020) and the SBIC
corpus here). Note also that the task of retrieving posts that offend disabled people in-

15Note that each post was annotated by three independent coders and that the data shared by Sap et al.
(2020) lists each annotation separately. Here the SBIC is preprocessed such that the post is considered
to be offensive toward a group category if at least one annotator indicated that a group falling into this
category was targeted.
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volves retrieving posts that are of a specific kind (namely: offending) and refer to a specific
entity (disabled people). Such a retrieval task is a common first step in sentiment analyses
in which the aim is to extract documents that express an attitude toward a specific entity.
The documents to be identified in such cases are required not only to refer to the entity of
interest but also to be of a specific kind (namely: attitude expressing in contrast to being
objective or fact-based).

3.4.2 Implementation of Approaches

3.4.2.1 Keyword Lists

In order to compare the retrieval performance of keyword lists with the other discussed
methods, keyword lists have to be generated for each of the three retrieval tasks. Due
to what is known from research on the human construction of keyword lists, however,
the keyword lists created by humans are likely to overlap very little and thus are likely
to be unreliable (King et al., 2017, p. 973-975). This poses a problem for the planned
comparison because it would be best to have a challenging and reliable basis against which
the other approaches can be compared to. To address this problem, the keyword lists are
not constructed by humans but rather from the set of the most predictive keywords for the
positive relevant class.

To identify predictive keywords, for each of the three studied corpora, the documents are
preprocessed into a document-feature matrix.16 Then, logistic regression with regular-
ization is applied. The regularization is introduced via the least absolute shrinkage and
selection operator (LASSO; L1 penalty) or ridge regression (L2 penalty) depending on the
outcome of hyperparameter tuning. The model is trained on the entire data set and then
the 50 most predictive terms (i.e. the terms with the highest coefficients) are extracted.
The extracted terms are listed in Tables 3.A.1 to 3.A.3 in Appendix 3.A. From the set
of 50 most predictive terms, 10 keywords are randomly sampled, where the probability of
drawing a term is proportional to the relative size of the term’s coefficient. The 10 sampled
keywords constitute one keyword list. The sampling of keywords from the set of predictive
terms is repeated 100 times such that, for each evaluated corpus, there are 100 keyword
lists of length 10 that serve as a basis for evaluation and comparison.17

16The documents are preprocessed by tokenization into unigrams, lowercasing, removing terms that
occur in less than 5 documents or less than 5 times throughout the corpus, and applying a Boolean
weighting on the entries of the document-feature matrix such that a 1 signals the occurrence of a term in
a document and a 0 indicates the absence of the term in a document.

17Note that the keyword lists comprising empirically highly predictive terms are not only applied on the
corpora to evaluate the retrieval performance of keyword lists, but also form the basis for query expansion
(see Section 3.4.2.2). The query expansion technique makes use of GloVe word embeddings (Pennington
et al., 2014) trained on the local corpora at hand and also makes use of externally obtained GloVe word
embeddings trained on large global corpora. In the case of the locally trained word embeddings, there is
a learned word embedding for each predictive term. Thus, the set of extracted highly predictive terms
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In contrast to human-constructed keyword lists for which it would be difficult to judge
whether the lists perform on the higher or lower end of all lists that humans could possibly
generate for the posed retrieval tasks, the here constructed keyword lists mark the situa-
tion of a good start in which the selected keywords are highly indicative for the relevant
class.

3.4.2.2 Query Expansion

The keyword lists serve as the starting point for query expansion. Each keyword list is
expanded via the following procedure:

1. Take a set of trained word embeddings, here denoted by {z1, . . . ,zu, . . . ,zU}.18

2. For each keyword sv in the keyword list {s1, . . . , sV }:

(a) Get the word embedding of the keyword: z[sv ]

(b) Compute the cosine similarity between z[sv ] and each word embedding zu in the
set {z1, . . . ,zu, . . . ,zU}:

simcos(sv, zu) = z[sv ] · zu
||z[sv ]|| ||zu||

(3.6)

(c) Take the M terms that are not keyword sv itself and have the highest cosine
similarity with keyword sv. Add these M terms to the keyword list.

This query expansion strategy makes use of word embedding representations and the cosine
similarity as has been done in previous studies (e.g. Kuzi et al., 2016; Silva & Mendoza,
2020). By not merging the keyword list into a single word vector representation but rather
expanding the keyword list for each keyword separately, this expansion method allows
moving into a different direction for each keyword. This might help in extracting a more
varied range of linguistic denominations for the entity of interest and might be especially
useful if the entity is abstract or combines several dimensions (such as e.g. is the case with
the refugee topic that combines policies, occurrences, and a group of people). A similar
procedure for query expansion has been studied by Kuzi et al. (2016).

can be directly used as starting terms for query expansion. In the case of the globally pretrained word
embeddings, however, not all of the highly predictive terms have a corresponding global word embedding.
Hence, for the globally pretrained embeddings, the 50 most predictive terms for which a globally pretrained
word embedding is available are extracted. If a predictive term has no corresponding global embedding,
the set of extracted predictive terms is enlarged with the next most predictive term until there are 50
extracted terms. Consequently, in Tables 3.A.1 to 3.A.3 in Appendix 3.A, for each corpus two lists of the
most predictive features are shown. Moreover, for the evaluation of the initial keyword lists of 10 predictive
keywords, the local keyword lists have to be used because the global keyword lists have been adapted for
the purpose of query expansion on the global word embedding space.

18If necessary, the set of word embeddings is reduced to those embeddings whose terms occur in the
corpus of interest and in the keyword list.
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For each evaluated retrieval task, two different sets of word embeddings are used: em-
beddings that have been externally pretrained on large global corpora and embeddings
trained locally on the corpus from which documents are to be retrieved. With regard to
the globally pretrained embeddings, for the English SBIC and the Reuters corpus, GloVe
embeddings with 300 dimensions that have been trained on CommonCrawl data are made
use of (Pennington et al., 2014).19 For the German Twitter data set, 300-dimensional
GloVe embeddings trained on the German Wikipedia are employed.20

To get locally trained embeddings, on each corpus examined here, a GloVe embedding
model is trained. GloVe embeddings with 300 dimensions are obtained for all unigram
features that occur at least 5 times in the corpus. In training, a symmetric context win-
dow size of six tokens on either side of the target feature as well as a decreasing weighting
function is used (such that a token that is q tokens away from the target feature counts
1/q to the co-occurrence count) (Pennington et al., 2014). After training, following the
approach in Pennington et al. (2014), the word embedding matrix and the context word
embedding matrix are summed to yield the finally applied embedding matrix. Note that
in an analysis of a large spectrum of settings for training word embeddings, Rodriguez &
Spirling (2022) found that the here used popular setting of using 300-dimensional embed-
dings with a symmetric window size of six tokens tends to be a setting that yields good
performances whilst at the same time being cost-effective.

The number of expansion terms M is set to increase from 1 to 9 such that after the
expansion the lists of originally 10 keywords then comprise between 20 and 100 keywords.
The original and the expanded keyword lists are applied on the lowercased documents.
Following the logic of a Boolean query with the OR operator, a document is predicted
to belong to the positive relevant class if it contains at least one of the keywords in the
keyword list.

3.4.2.3 Topic Model-Based Classification Rules

When constructing topic model-based classification rules, there are three steps at which
researchers have to make decisions that are likely to substantively affect the results. First,
after having selected a specific type of topic model that is to be used, the number of to
be estimated topics K has to be set. Second, for the construction of a topic model-based
classification rule, a researcher has to determine how many and which of the estimated
topics are considered to be about the entity of interest. Finally, threshold value ξ ∈ [0, 1]
has to be set. If the sum of topic shares relating to relevant topics in a document is ≥ ξ,
the document is predicted to be relevant. In each of these decision steps, a researcher may

19The embeddings can be downloaded from https://nlp.stanford.edu/projects/glove/. GloVe embed-
dings here are used because they tend to be frequently employed in social science (Rodriguez & Spirling,
2022, p. 104).

20The embeddings can be downloaded from https://deepset.ai/german-word-embeddings.
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be guided by expertise and/or an exploration of the results that are caused by deciding on
one or another option.

Whilst in practice a researcher has to finally settle for one of the options in each step such
that a single classification rule is produced, here the aim rather is to comprehensively eval-
uate topic model-based classification rules and also to inspect how well topic model-based
classification rules can perform if optimal decisions (w.r.t. retrieval performance) are made.
Consequently, specific values for the number of topics, the number of relevant topics, and
threshold values are set within reasonable ranges a priori. Then, the retrieval performance
for all combinations of these values is evaluated. More precisely: On each corpus, seven
topic models—each with a different number of topics K ∈ {5, 15, 30, 50, 70, 90, 110}—are
estimated. Then, for each estimated topic model with a specific topic number, initially,
only one topic is considered relevant, then two topics, and then three. For each number
of topics considered to be relevant, all possible combinations regarding the question which
topics are considered relevant are evaluated. This implies that all ways of choosing one,
two, and three relevant topics (irrespective of the order in which they are selected) from
the overall sets of 5, 15, 30, 50, 70, 90, and 110 topics are determined and evaluated. This
amounts to 426,725 combinations—all of which are evaluated here.21

Finally, for each of the 426,725 combinations, four different threshold values ξ are inspected:
0.1, 0.3, 0.5, and 0.7. Whereas ξ = 0.7 only considers those documents to be relevant that
have 70% of the words they contain estimated to be generated by relevant topics, ξ = 0.1
is the most lenient solution in which all documents are classified to be relevant that have
10% of their words assigned to relevant topics. As ξ increases, recall is likely to decrease
and precision is likely to increase.

The type of topic model estimated here is a Correlated Topic Model (CTM) (Blei &
Lafferty, 2007). CTM extends the basic Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) by allowing topic proportions to be correlated. For more details on the CTM see
Blei & Lafferty (2007).22

21For example, in a topic model with K = 15 topics, there are 15 ways to select one relevant topic from
15 topics (namely: the first, the second, ..., and the 15th); and there are

(15
2
)

= 105 ways of choosing two
relevant topics from the set of 15 topics, and there are

(15
3
)

= 455 ways to pick three topics from 15 topics.
22The CTM is estimated via the stm R-package (Roberts et al., 2019) that is originally designed to

estimate the Structural Topic Model (STM) (Roberts et al., 2016a). If no document-level variables are
specified in the STM (as is done here), the STM reduces to the CTM (Roberts et al., 2016a, p. 991).
In estimation, the approximate variational expectation-maximization algorithm as described in Roberts
et al. (2016a, p. 992-993) is employed. This estimation procedure tends to be faster and tends to produce
higher held-out log-likelihood values than the original variational approximation algorithm for the CTM
presented in Blei & Lafferty (2007) (Roberts et al., 2019, p. 29-30). The model is initialized via spectral
initialization (Arora et al., 2013; Roberts et al., 2016b, p. 82-85; Roberts et al., 2019, p. 11). The model
is considered to have converged if the relative change in the approximate lower bound on the marginal
likelihood from one step to the next is smaller than 1e-04 (Roberts et al., 2016a, p. 992; Roberts et al.,
2019, p. 10, 28).
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3.4.2.4 Active and Passive Supervised Learning

Two types of supervised learning methods are employed. First, support vector machines
(SVMs) (Boser et al., 1992; Cortes & Vapnik, 1995), and second, BERT (standing for
Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019).

SVMs have been applied frequently and relatively successfully to text classification tasks
in social science (Diermeier et al., 2011; D’Orazio et al., 2014; Baum et al., 2018; Pilny
et al., 2019; Sebők & Kacsuk, 2021; Erlich et al., 2021). They also have been applied in
active learning settings (Miller et al., 2020). An SVM operates on a document-feature
matrixX. In a document-feature matrix, each document is represented as a feature vector
of length U : xi = [xi1, . . . , xiu, . . . , xiU ]. The information contained in the vector’s entries,
xiu, is typically based on the frequency with which each of the U textual features occurs in
the ith document (Turney & Pantel, 2010, p. 147). Given the document feature vectors,
(xi)Ni=1, and corresponding binary class labels, (yi)Ni=1, where yi ∈ {−1,+1}, an SVM tries
to find a hyperplane, that separates the training documents as well as possible into the
two classes (Cortes & Vapnik, 1995).23

The document-feature matrix regards each document as a bag of words (Turney & Pan-
tel, 2010, p. 147). A bag-of-words-based representation only encodes information on the
weighted frequency with which the terms occur in documents but disregards word order,
contextual information, and dependencies between the tokens in a document (Turney &
Pantel, 2010, p. 147). But a document is a sequence—not a bag—of tokens among which
dependencies exist. Moreover, the meaning of a word often depends on the context of other
words in which it is embedded in. (Take, for instance, the homonyms ‘bank‘ or ‘party’.) In
order to also use a supervised learning method that processes a document as a sequence

23To create the required vector representation for each document, here the following text preprocessing
steps are applied: The documents are tokenized into unigram tokens. Punctuation, symbols, numbers, and
URLs are removed. The tokens are lowercased and stemmed. Subsequently, terms whose mean tf-idf value
across all documents in which they occur belongs to the lowest 0.1% (Twitter, SBIC) or 0.2% (Reuters) of
mean tf-idf values of all terms in the corpus are discarded. Also, terms that occur in only one (Twitter)
or two (SBIC, Reuters) documents are removed. Finally, a Boolean weighting scheme, in which only the
absence (0) vs. presence (1) of a term in a corpus is recorded, is applied on the document-feature matrix.
To determine the hyperparameter values for the SVMs, hyperparameter tuning via a grid search across
sets of hyperparameter values is conducted in a stratified 5-fold cross-validation setting on one fold of the
training data. A linear kernel and a Radial Basis Function (RBF) kernel are tried. Moreover, for the inverse
regularization parameter C, that governs the trade-off between the slack variables and the training error,
the values {0.1, 1.0, 10.0, 100.0} (linear) and {0.1, 1.0, 10.0} (RBF) are inspected. Additionally, for the
RBF’s parameter γ, which governs the training example’s radius of influence, the values {0.001, 0.01, 0.1}
are evaluated. (On the precise definition of C and γ see scikit-learn Developers (2020b) and scikit-learn
Developers (2020a).) The folds are stratified such that the share of instances falling into the relevant
minority class is the same across all folds. In each cross-validation iteration, in the folds used for training,
random oversampling of the minority class is conducted such that the number of relevant minority class
examples increases by a factor of 5. Among the inspected hyperparameter settings, the setting that achieves
the highest F1-Score regarding the prediction of the relevant minority class and does not exhibit excessive
overfitting is selected.
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of tokens and captures dependencies between tokens as well as context-dependent mean-
ings of tokens, the Transformer-based language representation model BERT is additionally
employed here.

BERT is a deep neural network based on the Transformer architecture (Vaswani et al.,
2017). The central element of the Transformer architecture is the (self-)attention mecha-
nism (Bahdanau et al., 2015; Vaswani et al., 2017). This mechanism allows the representa-
tion of each token to include information from the representations of other tokens (in the
same sequence) (Vaswani et al., 2017, p. 6001-6002); thereby enabling the model to produce
token representations that encode contextual information and token dependencies.

Typically, BERT is applied in a sequential transfer learning setting (Devlin et al., 2019,
p. 4175, 4179). In sequential transfer learning, a model first is pretrained on a source task
(Ruder, 2019, p. 64). In pretraining, the aim is to learn model parameters such that the
model can function as a well-generalizing input to a large range of different target tasks
(Ruder, 2019, p. 64). Then, in the following adaptation phase, the pretrained model (with
its pretrained parameters) serves as the input for the training process on the target task
(Ruder, 2019, p. 64). The transferral of information (in the form of pretrained model
parameters) to the learning process of a target task tends to reduce the number of train-
ing instances required to reach the same level of prediction performance than when not
applying transfer learning and training the model from scratch (Howard & Ruder, 2018,
p. 334).

This characteristic of pretrained deep language representation models to reduce the num-
ber of required training instances is highly important for the application of deep neural
networks in practice: In text classification tasks, deep neural networks tend to outperform
conventional machine learning methods (such as SVMs) that are often applied on bag-of-
words representations (Socher et al., 2013; Ruder, 2020). But deep neural networks have
a much higher number of parameters to learn than conventional models and thus require
much more training instances. In situations in which the annotation of training instances
is expensive or inefficient—such as in the context of retrieval with a strong imbalance
between the relevant vs. irrelevant class—applying a deep neural network from scratch
may become prohibitively expensive. In a transfer learning setting, however, an already
pretrained deep language representation model merely has to be fine-tuned to the target
task at hand. If the pretrained model generalizes well, the number of training instances
required to reach the same level of performance as a deep neural network that is not used
in a transfer learning setting is reduced by several times (Howard & Ruder, 2018, p. 334).
This allows deep neural networks to be applied to natural language processing tasks for
which only relatively few training instances are available. Moreover, Ein-Dor et al. (2020)
show that especially in imbalanced classification settings active learning strategies can fur-
ther improve the prediction performance of BERT such that even fewer training instances
are needed for the same performance levels.24

24For an introduction to transfer learning with Transformer-based language representation models such
as BERT see Wankmüller (2021).
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There are two limiting factors when applying BERT: First, due to memory limitations,
BERT cannot process text sequences that are longer than 512 tokens (Devlin et al., 2019,
p. 4183). This poses no problem for the Twitter corpus which has a maximum sequence
length of 73 tokens. In the Reuters news corpus, however, whilst the largest share of
articles is shorter than 512 tokens, there is a long tail of longer articles comprising up to
around 1,500 tokens.25 Following the procedure by Sun et al. (2019), Reuters news stories
that exceed 512 tokens are reduced to the maximum accepted token length by keeping the
first 128 and keeping the last 382 tokens whilst discarding the remaining tokens in the
middle.26 The maximum sequence length recorded for the SBIC is 354 tokens. In order to
reduce the required memory capacities, the few posts that are longer than 250 tokens are
shortened to 250 tokens by keeping the first 100 and the last 150 tokens.

The second limiting factor is that the prediction performance achieved by BERT after
fine-tuning on the target task can vary considerably—even if the same training data set is
used for fine-tuning and only the random seeds, that initialize the optimization process and
set the order of the training data, differ (Devlin et al., 2019, p. 4176; Phang et al., 2019,
p. 5-7; Dodge et al., 2020). Especially when the training data set is small (e.g. smaller than
10,000 or 5,000 documents), fine-tuning with BERT has been observed to yield unstable
prediction performances (Devlin et al., 2019, p. 4176; Phang et al., 2019, p. 5-7). Recently,
Mosbach et al. (2021) established that the variance in the prediction performance of BERT
models, that have been fine-tuned on the same training data set with different seeds, to
a large extent is likely due to vanishing gradients in the fine-tuning optimization process.
Mosbach et al. (2021, p. 5) also note that it is not that small training data sets per se
yield unstable performances, but rather that if small data sets are fine-tuned for the same
number of epochs than larger data sets (typically for 3 epochs), then this implies that
smaller data sets are fine-tuned for a substantively smaller number of training iterations—
which in turn negatively affects the learning rate schedule and the generalization ability
(Mosbach et al., 2021, p. 4-5). Finally, Mosbach et al. (2021, p. 2, 8-9) show that fine-tuning
with a small learning rate (in the paper: 2e-05), with warmup, bias correction, and a large
number of epochs (in the paper: 20) not only tends to increase prediction performances
but also significantly decreases the performance instability in fine-tuning. Here, the advice
of Mosbach et al. (2021) is followed. For BERT, the AdamW algorithm (Loshchilov &
Hutter, 2019) with bias correction, a warmup period lasting 10% of the training steps, and
a global learning rate of 2e-05 is used. Training is conducted for 20 epochs. Dropout is set
to 0.1. The batch size is set to 16.

For all applications, the pretrained BERT models are taken from Hugging Face’s Trans-
formers open source library (Wolf et al., 2020). The BERT model, which here is used as a
pretrained input for the English applications based on the SBIC and the Reuters corpus,
has been pretrained on the English Wikipedia and the BooksCorpus (Zhu et al., 2015).

25There is a single outlier article that is as long as 3,797 tokens.
26Note that to meet the input format required by BERT in single sequence text classification tasks, two

additional special tokens, ‘[CLS]‘ and ‘[SEP]‘, have to be added (Devlin et al., 2019, p. 4174).
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For the data set of German tweets, a German BERT model pretrained on, amongst oth-
ers, Wikipedia and CommonCrawl data by the digital library team at the Bavarian State
Library is used (Münchener Digitalisierungszentrum der Bayerischen Staatsbibliothek (db-
mdz), 2021). All BERT models are employed in the base (rather than the large) model
version and operate on lowercased (rather than cased) tokens.

For both models, SVM and BERT, an active and a passive supervised learning procedure
is implemented. The procedures consist of the following steps: (If the procedures differ
between the active and the passive learning setting, it will be explicitly pointed out.)

• The data are randomly separated into 10 (SBIC, Twitter) or 5 (Reuters) equally sized
folds.

• Then, for each fold g of the 10 (SBIC, Twitter) or 5 (Reuters) folds the data have
been separated into, the following steps are conducted:

1. Fold g is set aside as a test set.

2. From the remaining folds, 250 instances are randomly sampled to form the initial
set of labeled instances I. The other instances constitute the pool of unlabeled
instances U .

3. The model is trained on the instances in set I and afterward makes predictions
for all instances in pool U and the set aside test fold g. Recall, precision, and
the F1-Score for the predictions made for pool U and test fold g are separately
recorded. During training in the passive learning setting, random oversampling
of the instances falling into the positive relevant class is conducted such that
the number of positive relevant instances increases by a factor of 5—thereby
reflecting a cost matrix in which the cost of a false negative prediction is set to
5 and the cost of a false positive prediction is set to 1. In the active learning
setting, no random oversampling is conducted.

4. A batch of 50 instances from pool U is added to the set of labeled instances in
set I. In passive learning, these 50 instances are randomly sampled from pool
U . In active learning, the following query strategies are applied: In the active
learning setting with BERT, the 50 instances whose predicted probability to
fall into the positive relevant class is closest to 0.5 are selected. When applying
an SVM for active learning, the 50 instances with the smallest perpendicular
distance to the hyperplane are retrieved and added to I.

5. Steps 3 and 4 are repeated for 15 iterations, i.e. until set I comprises 1,000
labeled instances.

Hence, passive supervised learning with random oversampling and pool-based active learn-
ing with uncertainty sampling are applied. As the described learning procedures are re-
peated for 10 (SBIC, Twitter) or 5 (Reuters) times and are evaluated on each of the 10
(SBIC, Twitter) or 5 (Reuters) folds the data have been separated into, this allows taking
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the mean of the F1-Scores across the 10 (SBIC, Twitter) or 5 (Reuters) test folds as an
estimate of the expected generalization error of the applied models.

3.4.3 Results

The results are presented in Figures 3.2 to 3.9 and Tables 3.3 to 3.6.

3.4.3.1 Keyword Lists and Query Expansion

Figure 3.2 visualizes for each of the three studied retrieval tasks (Twitter, SBIC, Reuters)
the F1-Scores resulting from the application of the 100 keyword lists of 10 highly predictive
terms as well as the evolution of the F1-Scores across the query expansion procedure based
on locally trained GloVe embeddings (top row) and globally trained GloVe embeddings
(bottom row).

In general, the retrieval performances of the initial keyword lists of 10 predictive keywords
are mediocre. Only the initial keyword lists for the Reuters corpus achieve what could
be called acceptable performance levels. The maximum F1-Scores reached by the initial
lists of 10 predictive keywords are 0.417 (Twitter), 0.404 (SBIC), and 0.645 (Reuters).27
Moreover, also with the here used empirically driven procedure for the construction of key-
word lists, the variation in the initial keyword lists’ retrieval performances is considerable.
The difference between the maximum and the minimum F1-Scores is 0.267 (Twitter), 0.270
(SBIC), and 0.381 (Reuters).

Interestingly, the applied query expansion technique tends to decrease rather than increase
the F1-Score and only shows some improvement of the F1-Score for the Twitter and SBIC
data sets—and only if operating on the basis of word embeddings that are trained on large
global external corpora rather than the local corpus at hand.

There are several factors that are likely to play a role here. First, when retrieving those
terms that have the highest cosine similarity with an initial starting term, the terms re-
trieved from the global embedding space seem semantically or syntactically related to the
initial term, whereas this is not the case for the local word embeddings (as an example see
Table 3.3). One reason why the local embedding space does not yield word embeddings
that position related terms closely together could be that the three corpora used here are
relatively small. The information provided by the context window-based co-occurrence
counts of terms thus could be too little for the embeddings to be effectively trained.

Second, in the global embedding space, terms with high cosine similarities seem to be
closely related to the initial query term (see again Table 3.3). Adding these related terms

27Note that the local lists of 10 predictive keywords have to be used for evaluating the retrieval perfor-
mance of keyword lists as the global keyword lists have been adapted for the purpose of query expansion
on the global word embedding space (see Footnote 17).
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nevertheless decreases the retrieval performance (as measured by the F1-Score) for the
Reuters corpus. In the case of the Twitter and SBIC corpora, adding these terms with the
highest cosine similarities for some iterations at some points (especially at the beginning)
slightly increases the F1-Score, whereas at other points there are decreasing or no visible
effects. Here, a second factor comes into play: As is to be expected, query expansion
increases recall and decreases precision (see Figures 3.B.2 and 3.B.1 in Appendix 3.B).
Hence, in general, query expansion is only worthwhile if—and as long as—the increase in
recall outweighs the decrease in precision. Applying the initial set of 10 highly predictive
keywords on the Twitter and SBIC data sets, yields a retrieval result that is characterized
by low recall and high precision, whereas applying the initial set of 10 highly predictive
keywords on the Reuters corpus, leads to very high (sometimes even perfect) recall and low
precision (see Figures 3.B.2 and 3.B.1 in Appendix 3.B). Whereas in the second situation,
there is no room for query expansion to further improve the retrieval performance via
increasing recall (and thus the F1-Score for the Reuters corpus is moving downward), in
the low-recall-high-precision situation of the Twitter and SBIC data sets there is at least
the potential for query expansion to increase recall without causing a too strong decrease
in precision. This potential is realized in some iterations at some expansion sets, but the
decrease in precision more often than not tends to outweigh the increase in recall.

A further reason why query expansion does not perform very well also for global embeddings
is the meaning conflation deficiency (Pilehvar & Camacho-Collados, 2020, p. 60): Because
word embedding models such as GloVe represent one term by a single embedding vector,
a polyseme or homonym is likely to have the various meanings that it refers to encoded
within its single representation vector (Neelakantan et al., 2014, p. 1059). The meanings
get subsumed into one representation (Schütze, 1998, p. 102). Here, it seems that the
conflation of meanings for the GloVe embeddings that have been pretrained on large, global
corpora proceeds unequally: The global embedding space tends to position polysemous or
homonymous terms close to terms that are semantically or syntactically related to the most
common and general meaning of the polysemous or homonymous term (see for example
the term ‘vegetables’ in Table 3.3). Query expansion in the global embedding space thus
fails if an initial query term is a polyseme or homonym and its intended meaning is highly
context-specific.

3.4.3.2 Topic Model-Based Classification Rules

Figure 3.3 presents the F1-Scores reached by topic model-based classification rules. The
most notable aspect is that the retrieval performance of topic model-based classification
rules is low for the Twitter and SBIC corpora and relatively high for the Reuters corpus.
The highest F1-Score reached in the Twitter retrieval task is 0.253 and regarding the SBIC
is 0.175, whereas on the Reuters corpus a score of 0.685 is achieved.

To better understand this result, the terms with the highest occurrence probabilities and
the terms with the highest FREX-Score are inspected. The FREX metric is the weighted
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Embed-
dings

Initial
term

Terms with the highest cosine similarity to the initial term

local retard anymore, blend, float, sex, arguments, college, 93, meanjokes, fever

local vegetables 100,000, name, U+1f407, knew, combination, traveled, pulled, strip, developed

local epileptic oj, blond, include, tactics, crown, tampons, demands, prostitutes, newspapers

global retard retards, retarded, dumbass, moron, idiot, faggot, fuckin, stfu, stupid

global vegetables veggies, fruits, vegetable, potatoes, carrots, tomatoes, meats, onions, cooked

global epileptic seizures, seizure, psychotic, schizophrenic, epileptics, fainting, migraine,
spasms, disorder

Table 3.3: Example SBIC Expansion Terms. This table gives for each of the highly predictive
terms ‘retard’, ‘vegetables’, and ‘epileptic’ the nine terms with the highest cosine similarity in the local
and global embedding spaces.

harmonic mean of a term’s occurrence probability βku and a term’s exclusivity (which is
given by βku/

∑K
j=1 βju) (Roberts et al., 2016a, p. 993):

FREXku =
 ω

ECDF (βku/
∑K
j=1 βju)

+ 1− ω
ECDF (βku)

)
−1

(3.7)

where ECDF stands for empirical cumulative distribution function and ω is the weight
balancing the two measures. Here ω is set to 0.5.

This inspection (see Tables 3.4, 3.5, and 3.6) reveals that whether and in how far there
are exclusive and coherent topics that relate to the entity of interest likely determines
whether a topic model-based classification rule can effectively retrieve relevant documents
or not.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Prob. @therealliont alt zeit klein ne

facebook stund seid zwei woch
lass los scheiss #pegida nach

FREX gepostet fertig zeit #pegida wert
facebook cool #emabiggestfans1d #nopegida passt
monday-giveaway wahrschein gonn setz woch

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
Prob. toll fall best the eigent

richtig nochmal nacht of sonntag
dabei h onlin hatt eig

FREX toll nochmal schulmobel team eigent
wenigst fall videos artikel lag
manchmal #breslau onlin #techjob sonntag

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
Prob. wurd xd sich gern @youtube-playlist

viel mensch suss sammelt hinzugefugt
lohnt frag vielleicht kind @youtub

FREX bordelldatenbank.eu wunderschon reinhard_4711 sammelt #younow
erforscht frag mallorcamagazin zeig nightcor
publiziert geil sich glucklich vs

Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
Prob. #iphonegam #iphon weiss lang oh

fahrt steh welt veranstalt schnell
hotel gruss end event nix

FREX antalya #iphon kompakt lkr mag
erendiz #blondin deintraum veranstalt aufgeregt
sightseeing #blondinenwitz haus event sing

Topic 21 Topic 22 Topic 23 Topic 24 Topic 25
Prob. endlich bitt folg beim war

gross abgeschloss warum spass grad
brauch frau #votesami seit sowas

FREX #immortalis mission erfullt abonni geschlecht
immortalis bitt belohn total mutt
pvp-gefecht aufgab international herzlich star

Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
Prob. #kca komm find retweet halt

twitt steht voll leut zuruck
#votedagi klar mach bett uhr

FREX gezuchtet #hamburg wahr @ischtaris anschau
ratselhaft geplant find bett zuruck
#votedagi hamburg zeigt #kca uberhaupt

Table 3.4: Twitter: Terms with the Highest Probability and the Highest FREX-
Score. For each topic in the CTM with 30 topics estimated on the Twitter corpus, this table presents the
3 terms with the highest probability (Prob.) and the 3 terms with the highest FREX-Score (FREX). See
Topic 4 for the here only moderately coherent Pegida topic. Note that German umlauts here are removed as
the preprocessing procedure for the CTM involved stemming—which here also implied removing umlauts.

The entity of interest in the Twitter data set is multi-dimensional. It includes refugees as
a social group, refugee policies, and occurrences revolving around the refugee crisis. When
examining the most likely and exclusive terms for topic models estimated on the Twitter
corpus, it becomes clear that not each aspect of this multi-dimensional refugee topic is
captured in a coherent and exclusive topic (see for example Table 3.4). In each model for
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K ≥ 30 there is one relatively coherent topic on Pegida, an anti-Islam and anti-immigration
movement that held many demonstrations in the context of the refugee crisis. In addition
to this topic, there are further more or less integrated topics that touch refugees and refugee
policies without, however, being exclusively about these entities. Thus, the topic models
do not offer a set of topics that, taken together, cover all dimensions of the refugee topic
in an exclusive manner.

Regarding the SBIC, the situation is even more disadvantageous for the application of topic
model-based classification rules. Across all CTMs estimated on the SBIC, there is no topic
that identifiably relates to disabled people in a disrespectful way (as an example see Table
3.5). The CTMs with higher topic numbers include some topics that very slightly touch
disabilities, but these topics are not coherent. Applying topic model-based classification
rules in this situation is futile. Among all evaluated 426,725 × 4 = 1,706,900 settings, an
F1-Score of 0.175 is as good as it maximally gets.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
Prob. U+1F602 go now more sinc as time bitch

rt we right take move year back got
bad out left doe fire had actual hoe

FREX U+1F602 go #releasethememo mani season ago comput U+1F612
U+1F62D let now take U+1F643 best hitler these
bad tonight hillari wors move almost finish retard

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
Prob. her day by there don’t dark man guy

she today children eat know movi into gay
make play hit lot women an ask posit

FREX girlfriend april = hide sexist chees bar gay
her fool bottl eat women prostitut walk fag
cri humid mosquito space don’t humor into straight

Topic 17 Topic 18 Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24
Prob. well love hate your our black muslim he

made shit who will white call ‘ was
friend i’m r their us between red his

FREX oh dirti reason your immigr pizza ‘ kid
god love crime peac russia black rose dad
^ yo asshol educ nation common ice father

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
Prob. look tri off see > would

good start im here < one
incel stori done post s can

FREX hair case piss post > would
look ethiopia youtub see < never
normal touch im pictur number one

Table 3.5: SBIC: Terms with the Highest Probability and the Highest FREX-
Score. For each topic in the CTM with 30 topics estimated on the SBIC, this table presents the 3 terms
with the highest probability (Prob.) and the 3 terms with the highest FREX-Score (FREX). See Topic 8
for a non-coherent and non-exclusive topic that slightly touches disrespectful posts about disabled people.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
Prob. cts profit pct share export bank ec unit

avg oper growth pct nil rate european subsidiari
shrs gain rise stock coffe pct communiti agreement

FREX shrs profit gnp smc seamen 9-13 ec mhi
avg pretax economi ucpb prev bank communiti cetus
cts extraordinari growth calmat ibc 9-7 ecus squibb

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
Prob. pct vs trade franc gulf oil offer dollar

billion loss u. french ship price share rate
januari rev japan group u. gas sharehold currenc

FREX unadjust rev lyng ferruzzi missil opec caesar louvr
januari vs chip cgct warship herrington sosnoff miyazawa
fell mths miti cpc tehran bpd cyacq poehl

Topic 17 Topic 18 Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24
Prob. share billion tonn ltd price food analyst canadian

stock trade wheat plc contract beef earn canada
dividend reserv export pct cent philippin market credit

FREX dividend fed beet csr octan satur analyst card
payabl surplus cane transcanada kwacha diseas ibm canadian
payout taiwan rapese monier sulphur nppc rumor nova

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
Prob. quarter price chemic court gold debt

first produc u. file mine payment
earn stock busi general ton loan

FREX fourth cocoa gaf gencorp assay debt
quarter buffer hanson afg uranium payment
earn icco borg-

warn
court gold repay

Table 3.6: Reuters: Terms with the Highest Probability and the Highest FREX-
Score. For each topic in the CTM with 30 topics estimated on the Reuters corpus, this table presents
the 3 terms with the highest probability (Prob.) and the 3 terms with the highest FREX-Score (FREX).
See Topic 14 for the crude oil topic and see Topic 13 for the military topic that, at times, touches crude
oil.

The situation is entirely different for the crude oil topic. For K ≥ 30 each estimated
topic model contains at least one coherent topic that clearly refers to aspects of crude oil
(e.g. ‘opec’, ‘bpd’, ‘oil’ ; see Table 3.6). These coherent crude oil topics are not completely
but relatively exclusive. Some of the crude oil topics also cover another energy source
(namely: ‘gas’) and there is one reappearing conflict topic that refers to military aspects
but also touches crude oil (‘gulf’, ‘missil’, ‘warship’, ‘oil’). Other than that, no other
entities are substantially covered by crude oil topics. Building topic model-based classifi-
cation rules on the basis of these crude oil topics yields relatively high recall and precision
values.

Hence, topic model-based classification rules can be a useful tool—but only if the estimated
topics coherently and exclusively cover the entity of interest in all its aspects.

In all three applications, and as is to be expected, high recall and low precision values
tend to be achieved for topic models with smaller number of topics and lower values for
threshold ξ, whereas low recall and high precision values tend to result from topic models
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with a higher number of topics and higher values for ξ (see Figure 3.C.1 in Appendix
3.C).28 Classification rules that use topic models with a higher topic number and lower
threshold ξ neither tend to exhibit the highest recall nor the highest precision values, but
they tend to strike the best balance between recall and precision and achieve the highest
F1-Scores (see Figure 3.3 here and Figure 3.C.1 in Appendix 3.C).

3.4.3.3 Active and Passive Supervised Learning

For each of the three studied retrieval tasks (Twitter, SBIC, Reuters), for each employed
supervised learning model (BERT and SVM), for each applied learning setting (passive
learning with random oversampling as well as pool-based active learning with uncertainty
sampling), and for each of the 10 (Twitter, SBIC) or 5 (Reuters) conducted iterations,
Figure 3.4 depicts the F1-Score achieved on the set aside test set (fold g) as the number
of labeled training documents in set I increases from 250 to 1,000. Passive supervised
learning results are visualized by blue lines, active learning results are given in red. The
thick and dark lines give the mean F1-Scores across the iterations. They visualize the
estimate of the expected generalization error.29

Across all three applications and for BERT as well as SVM, active learning with uncer-
tainty sampling tends to dominate passive learning with random oversampling. Passive
learning with random oversampling on average only shows a similar or higher F1-Score for
the first learning iteration (i.e. at the start when training is conducted on the randomly
sampled training set of 250 labeled instances). Then, however, the active learning retrieval
performance strongly increases such that for the same number of labeled training instances
active learning, on average, produces a higher F1-Score than passive learning.

One likely reason for this difference between passive and active learning is revealed in
Figure 3.5 that contains the same information as Figure 3.4, except that on the y-axis not
the F1-Score but the share of documents from the positive relevant class in the training set
is shown. The black dashed line visualizes the share of relevant documents in the entire
corpus and thus would be the expected share of relevant documents in a randomly sampled
training set if neither random oversampling nor active learning were conducted. In passive
learning with random oversampling (shown in blue) the 50 training instances, that are
added in each step to the set of labeled training instances I, are randomly sampled from
pool U . Then, the relevant instances in set I are randomly oversampled by a factor of 5.

28A too high ξ, however, at times may lead to a classification rule in which none of the documents
is assigned to the positive relevant class—thereby producing an undefined value for precision and the
F1-Score (here visualized by 0).

29Note that the x-axis denotes the number of unique labeled instances in set I. As in passive learning
with random oversampling the documents from the relevant minority class in set I are randomly resampled
with replacement to then form the training set on which the model is trained, in passive learning the size of
the training set is larger than the size of set I. Yet the size of I indicates the number of unique documents
on which training is performed and—as only unique documents have to be annotated—it indicates the
annotation costs.
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Figure 3.4: Retrieving Relevant Documents with Active and Passive Supervised
Learning. F1-Scores achieved on the set aside test set as the number of unique labeled documents in
set I increases from 250 to 1,000. Passive supervised learning results are visualized by blue lines, active
learning results are given in red. For each of the 10 (Twitter, SBIC) or 5 (Reuters) conducted iterations,
one light colored line is plotted. The thick and dark lines give the means across the iterations. If a trained
model assigns none of the documents to the positive relevant class, then it has a recall value of 0 and an
undefined value for precision and the F1-Score. Undefined values here are visualized by the value 0.
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Figure 3.5: Share of Relevant Documents in the Training Set. Share of documents
in the training set that fall into the positive relevant class as the number of unique labeled documents in
set I increases from 250 to 1,000. Passive supervised learning shares are visualized by blue lines, active
learning shares are given in red. For each of the 10 (Twitter, SBIC) or 5 (Reuters) conducted iterations,
one light colored line is plotted. The thick and dark lines give the means across the iterations. The black
dashed line visualizes the share of relevant documents in the entire corpus.
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For this reason, the share of positive training instances in the passive learning setting is
higher than in the corpus (black dashed line) but remains relatively constant across the
training steps. In active learning (shown in red), no random oversampling is conducted—
which is why at the beginning the share of relevant documents at about equals the share
of relevant documents in the corpus. Then, however, active learning at each step selects
the 50 instances the algorithm is most uncertain about. As has been observed in other
studies before (Ertekin et al., 2007, p. 133-134; Miller et al., 2020, p. 545), this implies that
disproportionately many instances from the relevant minority class are selected into set I.
The share of positive training instances increases substantively—which in turn tends to
increase generalization performance on the test set as shown in Figure 3.4.

When decomposing the F1-Score into recall and precision (see Figure 3.D.1 in Appendix
3.D), it is revealed that the supervised models’ recall values gradually improve as the
number of training instances increases. The precision values early reach higher levels and
exhibit a more volatile path. The observed retrieval performance enhancements hence
seem to be caused by the fact that the models from step to step are becoming better at
identifying a larger share of the truly relevant documents from the corpora. Models trained
in active rather than passive learning mode tend to yield higher recall values.

Yet there is the question of whether active learning exhibits superior performance to passive
learning with random oversampling simply because after a certain number of training steps
the share of training instances is higher for active than for passive learning or whether
active learning dominates passive learning (also) because active learning, due to focusing
on the uncertain region between the classes and due to operating on unique—rather than
duplicated—positive training instances, learns a better generalizing class boundary with
fewer training instances (Settles, 2010, p. 28). To inspect this question, for the SVMs,
passive learning with random oversampling is repeated and positive relevant documents
are randomly oversampled such that their number increases by a factor of 10 (Reuters),
17 (Twitter), or 20 (SBIC) (instead of by a factor of 5 as before). This results in higher
shares of relevant documents in the training set for passive learning (see the right column
in Figure 3.6). However, the prediction performance on the test set as measured by the F1-
Score either does not or does only minimally increase compared to the situation of random
oversampling by a factor of 5 (see the left column in Figure 3.6). Moreover, although
the share of relevant documents in the stronger oversampled passive learning training
data sets is similar to those of active learning, active learning still yields considerably
higher F1-Scores. This indicates that from a certain point, merely duplicating positive
instances by random oversampling has no or only a small effect on the class boundary
learned by the SVM. The finding also indicates that active learning improves upon passive
learning because it is effectively able to select a large share of truly positive documents
for training that are not duplicated but unique and because its selection of uncertain
documents provides crucial information on the class boundary.

When applying SVMs to imbalanced data sets, the problem, in general, is that the learned
hyperplane tends to be positioned too close to the positive minority class instances (Akbani
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Figure 3.6: SVM: Comparing Passive Learning with Two Oversampling Factors
to Active Learning. Left column: F1-Scores achieved by the SVMs on the set aside test set as
the number of unique labeled documents in set I increases from 250 to 1,000. Undefined values here are
visualized by the value 0. Right column: Share of documents in the training set that falls into the
positive relevant class as the number of unique labeled documents in set I increases from 250 to 1,000.
The black dashed line visualizes the share of relevant documents in the entire corpus. Both columns:
The results are presented for passive learning with a random oversampling factor of 5 (blue lines), passive
learning with random oversampling factors of 17 (Twitter), 20 (SBIC), and 10 (Reuters) (golden lines), as
well as pool-based active learning with uncertainty sampling (red lines). The thick and dark lines give the
means across the iterations.
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et al., 2004, p. 40-44). The reason is that whereas the many negative training instances
occur across the entire area belonging to the negative class, the few positive instances only
occur at a few points within the area belonging to the positive class (Akbani et al., 2004,
p. 40-44). Hence, the boundary of the negative area is well represented in the training
data whereas the boundary of the positive area is not (for an illustration see Akbani et al.,
2004, p. 43-44). The hyperplane can be moved toward the negative side by giving more
weight to positive instances, e.g. by duplicating them via random oversampling or by
introducing different costs for misclassifying positive vs. negative instances (Veropoulos
et al., 1999). A problem that often arises when doing so, however, is that the hyperplane
tends to overfit on the positive instances. Its orientation and shape too strongly tends to
reflect the positions of positive instances (Akbani et al., 2004, p. 46). In active learning,
in contrast, the training instances the learning algorithm requests to be labeled and added
next are unique—which has a positive effect on generalization performance.

Another important observation concerns the performances’ variability (see again Figure
3.4): For all models and learning modes, given a fixed number of labeled training instances,
the F1-Scores on the set aside test sets can vary considerably between iterations. Which
set of documents is randomly sampled to form the (initial) training set and which set aside
test fold is used for evaluation thus can have a profound effect on the measured retrieval
performance.

A further observation is that BERT on average tends to outperform SVM (see also Figure
3.E.1 in Appendix 3.E). Hence, applying the Transformer-based pretrained language rep-
resentation model BERT with its ability to learn context-dependent meanings of tokens
and with the information acquired in the pretraining phase, here tends to be better able
to identify the few relevant documents, than an SVM operating on bag-of-words repre-
sentations. That BERT only can process sequences of a maximum of 512 tokens is not
a particularly limiting or performance reducing factor here. The performance difference
between the two learning methods is distinct and relatively consistent with regard to the
Twitter and Reuters retrieval tasks. It is less clear-cut for the SBIC. This is rather sur-
prising as in the SBIC the disrespectful remarks toward disabled people are implied rather
than stated explicitly.

Note also that, with regard to the Twitter and SBIC retrieval tasks, BERT exhibits a high
level of instability from one learning step to the next as the number of labeled training
instances I increases by a batch of 50 documents (see Figure 3.E.2 in Appendix 3.E). After
adding a new batch of 50 labeled training instances and fine-tuning BERT on this new,
slightly expanded training data set, the F1-Score achieved by BERT on the test set may
not only increase but also decrease considerably. The strongest de- and increases can be
observed for active learning on the Twitter data set where drops and rises of the F1-Score
by a value of about 0.85 occur.

As noted in Section 3.4.2.4 above, BERT’s prediction performance can exhibit consider-
able variance across random initializations—even if trained on the exact same training
data set. Here, to make predictions and performances more stable, precautions have been
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taken by choosing a small learning rate of 2e-05 and setting the number of epochs to 20
such that many training iterations are conducted. To evaluate how the level and the sta-
bility of BERT’s prediction performance changes if the hyperparameters are set to more
conventional values (e.g. combining a learning rate of 2e-05 or 3e-05 with 3 or 4 epochs),
BERT is also trained using hyperparameter values in these common ranges. Figure 3.F.1
in Appendix 3.F visualizes the F1-Scores of these models. The instability of the learning
paths is only slightly to moderately higher (see Figure 3.F.2 in Appendix 3.F). Yet for
the Twitter and SBIC tasks and especially as the training data sets are very small, the
F1-Scores of BERT models with common hyperparameter values are substantively lower
than the F1-Scores of BERT models that have been trained for 20 epochs. In the Twitter
application, for example, the mean F1-Score of active learning with a BERT model that
is trained for 20 epochs on a set of 500 labeled training instances is 0.568 higher than
active learning with a BERT model trained for 3 epochs on 500 training instances. Hence,
although training over 20 epochs takes proportionally more computing time than training
over 3 or 4 epochs,30 when applying BERT to small data sets—a scenario which is likely
in the retrieval settings focused on here—training for many epochs (and thus presenting
each document in the small training data set many times to the model) seems important
to enhance performance.

Nevertheless, because BERT tends to exhibit a relatively high degree of variability in
its performance even if training is conducted for a larger number of epochs, monitoring
retrieval performance with a set aside test set seems important for researchers to detect
situations in which (likely due to vanishing gradients) retrieval performance drops to low
values. Such situations can be easily fixed by, for example, choosing another random seed
for initialization.

To conclude, if a team of researchers has the resources to retrieve documents referring to
their entity of interest via supervised learning and they have a fixed number of training
instances they can maximally label, then active learning is likely to yield better results
than passive learning. Moreover, if none or only a small share of documents exceeds
the maximum number of tokens that Transformer-based language representation models
as BERT can process, then applying a BERT-like model that is trained with a small
learning rate for a large number of epochs is likely to achieve better results than applying
conventional supervised machine learning methods (such as SVM) on bag-of-words-based
representations.31 But the predictions made by BERT (and hence also BERT’s retrieval
performance) is prone to considerable variation depending on the initializing random seed,
the initial training data set, and the changes to the training data set from one learning step
to the next. This problem, however, is mitigated by the fact that mediocre performances
can be easily detected if performance is monitored with a set aside test set.

30For example, training BERT for 20 epochs on 1,000 tweets takes on average 172 seconds, whereas
training BERT on 1,000 tweets for 3 epochs takes on average 26 seconds.

31If a large share of documents in the corpus at hand are longer than the 512 tokens that can be processed
by BERT, Transformer-based models that can process longer sequences of tokens, e.g. the Longformer
(Beltagy et al., 2020), can be applied.
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3.4.3.4 Comparison Across Approaches

The central question this study seeks to answer is as follows: What, if anything, can
be gained by applying more costly retrieval approaches such as query expansion, topic
model-based classification rules, or supervised learning instead of the relatively simple and
inexpensive usage of a Boolean query with a keyword list? In order to finally answer this
question and compare the approaches against each other, Figures 3.7, 3.8, and 3.9 summa-
rize the retrieval performance—as measured by the F1-Score—of the evaluated approaches
on the retrieval tasks associated with the Twitter corpus (Figure 3.7), the SBIC (Figure
3.8), and the Reuters-21578 corpus (Figure 3.9). In each figure, the left panel gives the
F1-Scores for the lists of 10 predictive keywords that then are expanded in the local and
global embedding spaces. The middle panel shows the F1-Scores of topic model-based
classification rules with different values for threshold ξ. The right panel visualizes the
F1-Scores for active as well as passive supervised learning with SVM and BERT.

In general, the direct comparison shows that—when taking keyword lists comprising 10
empirically predictive terms as the baseline—the application of more complex and more
expensive retrieval techniques does not guarantee better retrieval results.

Query expansion techniques here rather decrease than increase the F1-Score. Minimal
improvements only occur sporadically in the embedding space trained on external global
corpora if the increase in recall outweighs the decrease in precision. The farther the ex-
pansion, the worse the results tend to become.

In general, it seems that the identification of newspaper articles referring to crude oil from
the Reuters corpus is a more simple task than the retrieval of tweets relating to the multi-
dimensional refugee topic or the extraction of posts that refer to an entity (disabled people)
and are of a particular kind (here: disrespectful). All approaches show higher F1-Scores
on the Reuters corpus, and lower scores for the other two evaluated retrieval tasks.

Topic model-based classification rules work relatively well for the Reuters corpus but not
the other corpora. Hence, if there are no coherent and exclusive topics that cover the
entity of interest in all its aspects, topic model-based classification rules exhibit rather
poor retrieval performances. In the Twitter and SBIC data sets, the F1-Score reached by
the topic model-based classification rules are in the lower range of the values achieved by
the lists of predictive keywords. If, on the other hand, coherent and exclusive topics relating
to the entity of interest exist (as is the case for the Reuters corpus), acceptable retrieval
results are possible. Here, gains over the best performing keyword lists are achieved for
combinations with larger topic numbers and smaller values for threshold ξ. The best-
performing topic model-based classification rule on the Reuters corpus is based on a CTM
with 70 topics that considers two topics to be relevant and predicts documents to be
relevant that have 10% of their words assigned to these two relevant topics. This topic
model-based classification rule reaches an F1-Score of 0.685, which is 0.04 higher than the
F1-Score of the best performing keyword list.
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Whereas query expansion techniques and topic model-based classification rules show no
or small improvements, supervised learning—especially if conducted in an active learning
mode—has the potential to yield a substantively higher retrieval performance than a list
of 10 predictive keywords. The prerequisite for this, however, is that not too few training
instances are used. The larger the number of training instances, the higher the F1-Score
tends to be. Yet, as has been established above, especially for BERT this relationship is not
monotonic and can exhibit considerable variability. What number of training documents is
required to produce acceptable retrieval results that are better than what could be achieved
with a keyword list, depends on the specifics of the retrieval task at hand and the employed
learning mode and model. In the Twitter application, for example, it is likely to achieve an
acceptable to good retrieval performance that improves upon keyword lists when applying
active learning with BERT using ≥ 350 training documents or applying passive learning
with BERT on ≥ 800 unique training documents (see again Figure 3.4).

In general, active learning is to be preferred over passive learning, as across applications
and learning models, active learning tends to reach a higher retrieval performance than
passive learning with the same number of training documents. Moreover, the pretrained
deep neural network BERT tends to yield a higher F1-Score compared to an SVM operating
on bag-of-words-based document representations. BERT produces more unstable results,
but this behavior can be monitored with a set aside test set.

Across applications, applying active learning with BERT until 1,000 training instances have
been labeled here produces a good separation of relevant and irrelevant documents that
considerably improves upon the separation achieved by applying a keyword list. The mean
F1-Scores of BERT applied in an active learning mode with a training budget of 1,000
labeled instances are 0.712 (Twitter), 0.622 (SBIC), and 0.908 (Reuters), whereas the
maximum F1-Scores reached by the empirically constructed initial keyword lists are 0.417
(Twitter), 0.404 (SBIC), and 0.645 (Reuters). Hence, the improvements in the F1-Scores
that are achieved by applying active learning with BERT rather than the best performing
keyword list are 0.295 (Twitter), 0.218 (SBIC), and 0.263 (Reuters). Active learning with
a conventional machine learning model as an SVM still is a good and viable alternative.
The mean F1-Scores of active learning with SVM trained with 1,000 labeled documents
are 0.538 (Twitter), 0.475 (SBIC), and 0.849 (Reuters). This still yields enhancements of
the F1-Score by 0.121 (Twitter), 0.071 (SBIC), and 0.204 (Reuters).

Note that the performance enhancements of active learning here are observed across appli-
cations. Irrespective of document length, textual style, the type of the entity of interest, and
the homogeneity or heterogeneity of the corpus from which the documents are retrieved,
active learning with 1,000 training documents shows superior performance to keyword lists
and the other approaches.
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3.5 Conclusion

In text-based analyses, researchers are typically interested to study documents referring
to a particular entity. Yet textual references to specific entities are often contained within
multi-thematic corpora. In consequence, documents that contain references to the entities
of interest have to be separated from those that do not.

A very common approach in social science to retrieve relevant documents is to apply a list
of keywords. Keyword lists are inexpensive and easy to apply, but they can result in bi-
ased inferences if they systematically fail to identify relevant documents. Query expansion
techniques, topic model-based classification rules, and active as well as passive supervised
learning constitute alternative, more expensive, more complex, and in social science rarely
applied procedures for the retrieval of relevant documents. These more complex procedures
theoretically have the potential to reach a higher retrieval performance than keyword lists
and thus could reduce the potential size of selection biases. So far, a systematic comparison
of these approaches was lacking and therefore it was unclear, whether the employment of
any of these more expensive methods would yield any improvements of retrieval perfor-
mance, and, if they did, how large and consistent across contexts the improvement would
be.

This study closed this gap. The comparison of the approaches on the basis of retrieval
tasks associated with a data set of German tweets (Linder, 2017), the Social Bias Inference
Corpus (SBIC) (Sap et al., 2020), and the Reuters-21578 corpus (Lewis, 1997) shows that
neither of the applied more complex approaches necessarily enhances the retrieval perfor-
mance, as measured by the F1-Score, over the application of a keyword list containing
10 empirically predictive terms. However, whereas across all settings and combinations
evaluated for query expansion techniques and topic model-based classification rules at the
very best small increases in the F1-Score can be observed, active supervised learning with
the Transformer-based language representation model BERT increases the F1-Scores across
application contexts substantively if the number of labeled training documents used in the
active learning process is not too small.

Thus, in terms of retrieval performance, supervised learning in an active learning mode—
preferably with a pretrained deep neural network—is the procedure to be preferred to all
other approaches. However, this procedure is also the most expensive of the evaluated
methods. Supervised learning implies human, financial, and time resources for annotating
the training documents. A training data set comprising 1,000 instances is very small for
usual supervised learning settings, but the coding process also has to be monitored and
coordinated. Moreover, active learning involves a dynamic labeling process in which after
each iteration those documents are annotated for which a label is requested by the model.
While active learning reduces the overall number of training instances for which a label is
required, the dynamic labeling process may increase coordination costs or the time coders
spend on coding as they wait for the model to request the next labels.
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The precise separation of documents that refer to the entity of interest and thus are rel-
evant for the planned study at hand from documents that are irrelevant is an essential
analytic step. This step defines the set of documents on which all the following analyses
are conducted. Selection biases induced by the applied retrieval method ultimately bias the
study’s results. Therefore, attention and care should be taken when it comes to extracting
relevant documents. Compared to the creation of a set of keywords, active learning requires
substantive amounts of additional resources. But given the observed considerably higher
retrieval performances achieved by active learning compared to keyword lists, spending
these resources is likely to be worthwhile for the quality of the study.

The aim of this study was to compare different learning approaches: keyword lists, query
expansion techniques, topic model-based classification rules, and active as well as passive
supervised learning. One problem that naturally arises if one seeks to compare learn-
ing approaches is that different approaches can only be compared on the basis of specific
models that follow specific procedures (e.g. for query expansion), that have specific hyper-
parameter settings, that are trained on a specific finite set of training documents, that are
evaluated on a specific finite set of test set documents, and that are initialized by specific
random seed values (Reimers & Gurevych, 2018). Here, care was taken to have a broad
range of several specific models with different settings for each approach. With regard to
keyword lists and query expansion, 100 different keyword lists were expanded in local as
well as global embedding spaces (where the number of expansion terms was varied from
1 to 9). For topic-model-based classification rules, four different values for threshold ξ for
each of 426,725 combinations were evaluated. With regard to active and passive supervised
learning, two different types of models (SVM and BERT) were applied 10 or 5 times with
different random initializations. In each of the 10 or 5 runs, a different initial training
set was used that then was enlarged by passive random sampling or active selection in 15
iterations. This broad evaluation setting makes it more likely that the conclusions drawn
here on the set of models evaluated for each approach hold and that active learning indeed
is superior to keyword lists for the studied tasks.

Nevertheless, future studies might inspect the effect of the chosen model settings of the
evaluated approaches on the obtained results: Here, for each of the evaluated approaches,
the most simple setting or version was used. For query expansion, GloVe embeddings that
represent each term by a single vector were employed and a simple Boolean query using
the OR operator was conducted. More complex procedures from the field of information
retrieval that make use of contextualized embeddings and pseudo-relevant feedback (e.g.
Zheng et al., 2020) were not applied. For the estimation of the topics, the CTM rather than,
for example, a neural topic model was used (for an overview of neural topic models see Zhao
et al., 2021). For passive supervised learning, simple random oversampling was employed,
and for active learning, uncertainty sampling was applied as a query strategy rather than
more complex procedures such as query-by-committee or expected model change (see e.g.
Settles, 2010). These simplest versions applied here present the core idea of each approach
often most clearly and also are most easy to implement for scientists that seek to use one of
the approaches as a first step in their analysis. Nevertheless, future studies might explore
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whether applying more complex procedures changes the substantive conclusions reached
here.

Finally, there is the question of in how far the conclusions drawn here on the basis of three
applications travel to further contexts. The selected data sets and tasks differ with regard
to textual length and style, the heterogeneity of the corpora, the characteristics of the
entities of interest, and the share of relevant documents in the corpora. The finding that
active supervised learning—if applied with a not too small number of training instances—
considerably increases the F1-Score compared to keyword lists holds across these applica-
tions’ differences. But further studies could look more closely at which contextual factors
lead to which effects on retrieval performance for which procedures.



Appendix to A Comparison of
Approaches for Imbalanced
Classification Problems in the
Context of Retrieving Relevant
Documents for an Analysis

3.A Most Predictive Terms

Note on Tables 3.A.1 to 3.A.3: The keyword lists comprising empirically highly predictive
terms are not only applied on the corpora to evaluate the retrieval performance of keyword
lists but also form the basis for query expansion (see Section 3.4.2.2). The query expan-
sion technique makes use of GloVe word embeddings (Pennington et al., 2014) trained on
the local corpora at hand and also makes use of externally obtained GloVe word embed-
dings trained on large global corpora. In the case of the locally trained word embeddings,
there is a learned word embedding for each predictive term. Thus, the set of extracted
highly predictive terms can be directly used as starting terms for query expansion. In the
case of the globally pretrained word embeddings, however, not all of the highly predictive
terms have a corresponding global word embedding. Hence, for the globally pretrained
embeddings, the 50 most predictive terms for which a globally pretrained word embedding
is available are extracted. If a predictive term has no corresponding global embedding,
the set of extracted predictive terms is enlarged with the next most predictive term until
there are 50 extracted terms. In consequence, below for each corpus two lists of the most
predictive features are shown.
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A B
#flüchtlinge migranten
migranten asylanten
#refugeeswelcome flüchtlingen
#refugee asylrecht
asylanten asylunterkunft
flüchtlingen asyl
asylrecht flüchtlinge
#migration asylbewerber
#fluechtlinge ausländer
asylunterkunft flüchtlingsheim
asyl refugees
flüchtlinge flüchtling
migrationshintergrund asylpolitik
asylbewerber ungarn
ausländer refugee
flüchtlingsheim mittelmeer
flüchtlingsheime kritisiert
flüchtlingskrise syrer
#schauhin syrischen
refugees bamberg
flüchtling brandanschlag
asylpolitik behandelt
ungarn merkels
#refugeecamp ermittelt
#bloggerfuerfluechtlinge zusammenhang
#refugees innenminister
#flüchtlingen kundgebung
flüchtlingsheimen pegida
#asyl welcome
refugee unterbringung
mittelmeer migration
kritisiert benötigt
syrer erfahrungen
proasyl sollen
syrischen heimat
bamberg tja
brandanschlag balkanroute
behandelt rechte
merkels dort
ermittelt bürger
zusammenhang merkel
innenminister demo
kundgebung mehrheit
pegida letztes
welcome geplante
#deutschland recht
refugeeswlcm_le hilfe
unterbringung europa
ndaktuell afghanistan
migration islam

Table 3.A.1: Most Predictive Features in the Twitter Data Set. A: This is a list of
the 50 terms that are extracted as the most predictive features for the relevant class of documents that
refer to the refugee topic (most predictive term at the top). From this list of terms, 100 samples of 10
keywords are sampled to construct initial keyword lists that then are extended via query expansion using
the locally trained GloVe word embeddings. B: This is a list of the 50 terms for which a globally pretrained
GloVe word embedding is available that are extracted as the most predictive features for the relevant class
of documents that refer to the refugee topic (most predictive term at the top). From this list of terms, 100
samples of 10 keywords are sampled to construct initial keyword lists that then are extended via query
expansion using the globally trained GloVe word embeddings.
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A B
retard retard
retards retards
retarded retarded
quadriplegic quadriplegic
autistic autistic
paralyzed paralyzed
schizophrenic schizophrenic
vegetables vegetables
wheelchair wheelchair
epileptic epileptic
parkinson’s disabled
disabled anorexic
anorexic stevie
stevie cripples
cripples paralympics
paralympics adhd
adhd paraplegic
paraplegic syndrome
syndrome paralysed
paralysed midget
midget leper
leper amputee
amputee cripple
cripple tons
tons handicapped
handicapped bipolar
bipolar wheelchairs
wheelchairs dyslexic
dyslexic chromosome
chromosome blind
blind suicidal
suicidal crippled
crippled chromosomes
chromosomes vegetable
vegetable challenged
alzheimer’s special
challenged veggie
special cancer
veggie spade
cancer helen
spade jenga
helen autism
jenga medication
autism deaf
medication logan
deaf depressed
logan christopher
depressed mentally
christopher potato
mentally shouted

Table 3.A.2: Most Predictive Features in the SBIC. A: This is a list of the 50 terms that
are extracted as the most predictive features for the relevant class of documents that are offensive toward
disabled people (most predictive term at the top). From this list of terms, 100 samples of 10 keywords
are sampled to construct initial keyword lists that then are extended via query expansion using the locally
trained GloVe word embeddings. B: This is a list of the 50 terms for which a globally pretrained GloVe
word embedding is available that are extracted as the most predictive features for the relevant class of
documents that are offensive toward disabled people (most predictive term at the top). From this list of
terms, 100 samples of 10 keywords are sampled to construct initial keyword lists that then are extended
via query expansion using the globally trained GloVe word embeddings.
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A B
oil oil
crude crude
barrels barrels
barrel barrel
exploration exploration
energy energy
petroleum petroleum
production production
drilling drilling
bpd bpd
refinery refinery
opec opec
gulf gulf
tanker tanker
texas texas
offshore offshore
canada canada
resources resources
sea sea
rigs rigs
out out
petrobras petrobras
rig rig
refineries refineries
agency agency
along along
depressed depressed
conoco conoco
raise raise
shelf shelf
iranian iranian
platform platform
day day
maintain maintain
drill drill
total total
well well
deal deal
16 16
fiscal fiscal
upon upon
postings postings
light light
blocks blocks
tuesday tuesday
about about
meters meters
daily daily
future future
equivalent equivalent

Table 3.A.3: Most Predictive Features in Reuters-21578 Corpus. A: This is a list of
the 50 terms that are extracted as the most predictive features for the relevant class of documents that
are about the crude oil topic (most predictive term at the top). From this list of terms, 100 samples of 10
keywords are sampled to construct initial keyword lists that then are extended via query expansion using
the locally trained GloVe word embeddings. B: This is a list of the 50 terms for which a globally pretrained
GloVe word embedding is available that are extracted as the most predictive features for the relevant class
of documents that are about the crude oil topic (most predictive term at the top). From this list of terms,
100 samples of 10 keywords are sampled to construct initial keyword lists that then are extended via query
expansion using the globally trained GloVe word embeddings.
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Figure 3.B.1: Recall and Precision for Retrieving Relevant Documents with Key-
word Lists and Global Query Expansion. This plot shows recall and precision scores resulting from
the application of the keyword lists of 10 highly predictive terms as well as the evolution of the recall and precision scores
across the query expansion procedure based on globally trained GloVe embeddings. For each of the sampled 100 keyword
lists that then are expanded, one light blue line is plotted. The thick dark blue line gives the mean over the 100 lists.
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Figure 3.B.2: Recall and Precision for Retrieving Relevant Documents with Key-
word Lists and Local Query Expansion. This plot shows recall and precision scores resulting from
the application of the keyword lists of 10 highly predictive terms as well as the evolution of the recall and precision scores
across the query expansion procedure based on locally trained GloVe embeddings. For each of the sampled 100 keyword lists
that then are expanded, one light blue line is plotted. The thick dark blue line gives the mean over the 100 lists. Note that
the strong increase in recall for some keyword lists in the Twitter data set is due to the fact that the textual feature with the
highest cosine similarity to the highly predictive initial term ‘flüchtlinge’ (translation: ‘refugees‘) is the colon ‘:’.



3.C Recall and Precision of Topic Model-Based Classification Rules 347

3.C Recall and Precision of Topic Model-Based Classifi-
cation Rules

Twitter-Recall Twitter-Precision

Threshold

Combination

R
ecall

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−3

30−2

15−1

15−2
5−1

5−2

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−30.7
30−2

15−1

15−2
5−1

5−2

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−30.7
30−2

15−1

15−2
5−1

5−2

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−30.7
30−2

15−1

15−2
5−1

5−2

Threshold

Combination

P
recision

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−3

30−2

15−1

15−2
5−1

5−2

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−30.7
30−2

15−1

15−2
5−1

5−2

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−30.7
30−2

15−1

15−2
5−1

5−2

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

110−3

110−3

90−2

90−3

70−3

70−3

50−2

50−3

30−30.7
30−2

15−1

15−2
5−1

5−2

SBIC-Recall SBIC-Precision

Threshold

Combination

R
ecall

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−2

30−3

15−3

15−3
5−2

5−3

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−20.7
30−3

15−3

15−3
5−2

5−3

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−20.7
30−3

15−3

15−3
5−2

5−3

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−20.7
30−3

15−3

15−3
5−2

5−3

Threshold

Combination

P
recision

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−2

30−3

15−3

15−3
5−2

5−3

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−20.7
30−3

15−3

15−3
5−2

5−3

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−20.7
30−3

15−3

15−3
5−2

5−3

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

110−3

110−3

90−2

90−3

70−3

70−2

50−3

50−3

30−20.7
30−3

15−3

15−3
5−2

5−3

Reuters-Recall Reuters-Precision

Threshold

Combination

R
ecall

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−2

30−1

15−2

15−1
5−2

5−1

0.1

0.3

0.5

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−20.7
30−1

15−2

15−1
5−2

5−1

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−20.7
30−1

15−2

15−1
5−2

5−1

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−20.7
30−1

15−2

15−1
5−2

5−1

Threshold

Combination

P
recision

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−2

30−1

15−2

15−1
5−2

5−1

0.1

0.3

0.5

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−20.7
30−1

15−2

15−1
5−2

5−1

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−20.7
30−1

15−2

15−1
5−2

5−1

0.0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1.0

0.1

0.3

0.5 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

110−3

110−3

90−3

90−3

70−3

70−2

50−3

50−2

30−20.7
30−1

15−2

15−1
5−2

5−1

Figure 3.C.1: Recall and Precision of Topic Model-Based Classification Rules.
The height of a bar indicates the recall values (left column) and precision values (right column) resulting from the application
of a topic model-based classification rule. For each number of topics K ∈ {5, 15, 30, 50, 70, 90, 110}, those two combinations
out of all explored combinations regarding the question how many and which topics are considered relevant are shown that
reach the highest F1-Score for the given topic number. For each combination, recall and precision values for each threshold
value ξ ∈ {0.1, 0.3, 0.5, 0.7} is given. Classification rules that assign none of the documents to the positive class have a recall
value of 0 and an undefined value for precision and the F1-Score. Undefined values here are visualized by the value 0.
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Figure 3.D.1: Recall and Precision of Active and Passive Supervised Learning.
Recall values (left column) and precision values (right column) achieved on the set aside test set as the number of unique
labeled documents in set I increases from 250 to 1,000. Passive supervised learning results are visualized by blue lines, active
learning results are given in red. For each of the 10 (Twitter, SBIC) or 5 (Reuters) conducted iterations, one light colored line
is plotted. The thick and dark lines give the means across the iterations. If a trained model assigns none of the documents
to the positive relevant class, then it has a recall value of 0 and an undefined value for precision and the F1-Score. Undefined
values here are visualized by the value 0.
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Figure 3.E.1: Comparing BERT and SVM for Active and Passive Supervised
Learning I. F1-Scores achieved on the set aside test set as the number of unique labeled documents in set I increases
from 250 to 1,000. Active learning results are visualized in the left panels, passive learning results are given in the right
panels. F1-Scores of the SVMs are visualized by blue lines, BERT performances are given in red. For each of the 10 (Twitter,
SBIC) or 5 (Reuters) conducted iterations, one light colored line is plotted. The thick and dark lines give the mean across
the iterations. If a trained model assigns none of the documents to the positive relevant class, then it has a recall value of 0
and an undefined value for precision and the F1-Score. Undefined values here are visualized by the value 0.
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3.F Comparing BERT with Different Hyperparameter Val-
ues

The hyperparameter values for BERT models trained with hyperparameter values in con-
ventional value ranges are determined via hyperparameter tuning. As for the SVMs, a
grid search across sets of hyperparameter values is implemented via stratified 5-fold cross-
validation using one of the folds of the data. The AdamW algorithm (Loshchilov & Hutter,
2019) with a warmup period lasting 6% of the training steps is used. Dropout is set to 0.1.
The batch size is set to 16. The inspected hyperparameter values for the global learning
rate are {2e-05, 3e-05}, and for the number of epochs are {2, 3, 4, 5}. Stratification ensures
that the share of training instances of the relevant minority class is the same across all
folds. Moreover, random oversampling of the minority class is performed to increase the
number of relevant minority class documents by a factor of 5. The evaluated hyperpa-
rameter setting that has the highest F1-Score and does not display extreme overfitting is
selected.
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Figure 3.F.1: Comparing BERT with Different Hyperparameter Values I. F1-Scores
achieved by BERT models on the set aside test set as the number of unique labeled documents in set I
increases from 250 to 1,000. Active learning results are visualized in the left panels, passive learning
results are given in the right panels. F1-Scores of BERT models trained with a global learning rate of
2e-05 for 20 epochs are given in red, performances of BERT models trained with hyperparameter values
in conventional value ranges are visualized by blue lines. The precise values for the number of epochs and
the learning rates are specified in the legends beside the plots. The thick and dark lines give the means
across the iterations. If a trained model assigns none of the documents to the positive relevant class, then
it has a recall value of 0 and an undefined value for precision and the F1-Score. Undefined values here are
visualized by the value 0.
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Abstract

Although sentiment is conceptualized as a con-
tinuous variable, most text-based sentiment
analyses categorize texts into discrete senti-
ment categories. Compared to discrete catego-
rizations, continuous sentiment estimates pro-
vide much more detailed information which
can be used for more fine-grained analyses by
researchers and practitioners alike. Yet, exist-
ing approaches that estimate continuous senti-
ments either require detailed knowledge about
context and compositionality effects or require
granular training labels, that are created in re-
source intensive annotation processes. Thus,
existing approaches are too costly to be ap-
plied for each potentially interesting applica-
tion. To overcome this problem, this work in-
troduces CBMM (standing for classifier-based
beta mixed modeling procedure). CBMM ag-
gregates the predicted probabilities of an en-
semble of binary classifiers via a beta mixed
model and thereby generates continuous, real-
valued output based on mere binary training in-
put. CBMM is evaluated on the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), the
V-reg data set (Mohammad et al., 2018), and
data from the 2008 American National Elec-
tion Studies (ANES) (The American National
Election Studies, 2015). The results show that
CBMM produces continuous sentiment esti-
mates that are acceptably close to the truth and
not far from what could be obtained if highly
fine-grained training data were available.

1 Introduction

In natural language processing and computer sci-
ence, the term sentiment typically refers to a loosely
defined, broad umbrella concept: Feeling, emotion,
judgement, evaluation, and opinion all fall under
the term sentiment or are used synonymously with
it (Pang and Lee, 2008; Liu, 2015). Interestingly,
the broad notion of sentiment is very well cap-
tured by the psychological concept of an attitude

(Liu, 2015). In psychology, scholars agree that an
attitude is a summary evaluation of an entity (Ba-
naji and Heiphetz, 2010; Albarracin et al., 2019).
An attitude is the aggregated evaluative response
resulting from a multitude of different (and po-
tentially conflicting) information bases relating to
the attitude entity (Fabringar et al., 2019). When
putting the definition of an attitude as an evaluative
summary into mathematical terms, an attitude is a
unidimensional, continuous variable ranging from
highly negative to highly positive (Cacioppo et al.,
1997). This notion that attitudes are continuous is
also mirrored in the sentiment analysis literature in
which sentiments are devised to vary in their levels
of intensity (Liu, 2015).

Despite this conceptualization, in an overwhelm-
ing majority of studies textual sentiment expres-
sions are measured as instances of discrete classes.
Sentiment analysis often implies a binary or multi-
class classification task in which texts are assigned
into two or three classes, thereby distinguishing
positive from negative sentiments and sometimes a
third neutral category (e.g. Pang et al., 2002; Tur-
ney, 2002; Maas et al., 2011). Other studies pursue
ordinal sentiment classification (e.g. Pang and Lee,
2005; Thelwall et al., 2010; Socher et al., 2013;
Kim, 2014; Zhang et al., 2015; Cheang et al., 2020).
Here, texts fall into one out of several discrete and
ordered categories.

If researchers would generate continuous—
rather than discrete—sentiment estimates, this
would not only align the theoretical conceptual-
ization of sentiment with the way it is measured
but also would provide much more detailed infor-
mation that in turn can be used by researchers and
practitioners for more fine-grained analyses and
more fine-tuned responses.

For example, in the plot on the right hand side
in Figure 1, the distribution of the binarized senti-
ment values of the tweets in the V-reg data set (Mo-
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hammad et al., 2018) is shown. If researchers and
practitioners would operate only on this discrete
sentiment categorization, the shape of the under-
lying continuous sentiment distribution would be
unknown. In fact, all distributions shown on the
left hand side in Figure 1 produce the plot on the
right hand side in Figure 1 if the sentiment values
are binarized in such way that tweets with a sen-
timent value of ≥ 0.5 are assigned to the positive
class and otherwise are assigned to the negative
class. Imagine that a team of researchers would be
interested in the sentiments expressed toward a pol-
icy issue and they would only know the binarized
sentiment values on the right hand side in Figure
1. The researchers would not be able to conclude
whether the expressions toward the policy issue are
polarized into a supporting and an opposing side,
whether a large share of sentiment expressions is
positioned in the neutral middle, or whether the
sentiments are evenly spread out. Knowing the
continuous sentiment values, however, would al-
low them to differentiate between these scenarios.

As will be elaborated in Section 2, existing ap-
proaches that estimate continuous sentiment values
for texts rely on (1) the availability of a compre-
hensive, context-matching sentiment lexicon and
the researcher’s knowledge regarding how to accu-
rately model compositionality effects, or (2) highly
costly processes to create fine-grained training data.

Sentiment analysis thus would benefit from a
technique that generates continuous sentiment pre-
dictions for texts and is less demanding concerning
the required information or resources. To meet
this need, this work explores in how far the here
proposed classifier-based beta mixed modeling ap-
proach (CBMM) can produce valid continuous
(i.e. real-valued) sentiment estimates on the basis of
mere binary training data. The method comprises
three steps. First, for each training set document a
binary class label indicating whether the document
is closer to the negative or the positive extreme of
the sentiment variable has to be created or acquired.
Second, an ensemble of J classifiers is trained on
the binary class labels to produce for each ofN test
set documents J predicted probabilities to belong
to the positive class. Third, a beta mixed model
with N document random intercepts and J classi-
fier random intercepts is estimated on the predicted
probabilities. The N document random intercepts
are the documents’ continuous sentiment estimates.

In the following section, existing approaches

 

  

 

 

 

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
Sentiment

Fr
eq
ue
nc
y

0

20

40

60

80

−0.25 0.00 0.25 0.50 0.75 1.00 1.25
Sentiment

Fr
eq
ue
nc
y

1223
1344

0

200

400

600

800

1000

1200

1400

Negative Positive
Binarized Sentiment Values

Fr
eq

ue
nc

y

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
Sentiment

Fr
eq
ue
nc
y

Figure 1: Continuous and Discrete Sentiment Distribu-
tions. Right plot: Binarized sentiment values of the
tweets in the V-reg data set (Mohammad et al., 2018).
Left plots: Histograms and kernel density estimates for
three continuous distributions of sentiments that pro-
duce the plot on the right hand side if the continuous
sentiment values are binarized such that tweets with
values of ≥ 0.5 are assigned to the positive class and
otherwise are assigned to the negative class. The uni-
modal distribution at the top is the true distribution of
sentiment values but the other two distributions would
generate the same binary separation of tweets into pos-
itive and negative.

that generate continuous sentiments are reviewed
(Section 2). Then, CBMM is introduced in detail
(Section 3) before it is evaluated on the basis of
the Stanford Sentiment Treebank (SST) (Socher
et al., 2013), the V-reg data set (Mohammad et al.,
2018), and data from the 2008 American National
Election Studies (ANES) (The American National
Election Studies, 2015) (Section 4). A concluding
discussion follows in Section 5.

2 Related Work

This work is concerned with the estimation of con-
tinuous values for texts in applications in which
the underlying, unidimensional, continuous vari-
able (e.g. sentiment) is well defined and the re-
searcher seeks to position the texts along exactly
this variable. Hence, this work does not consider
unsupervised approaches (e.g. Slapin and Proksch,
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2008) and only considers methods in which infor-
mation on the definition of the underlying variable
explicitly enters the estimation of the texts’ val-
ues. Among these methods, one can distinguish
two major approaches: lexicon-based procedures
and regression models that operate on fine-grained
training data.1

2.1 Lexicon-Based Approaches

An ideal sentiment lexicon covers all features in
the corpus of an application and precisely assigns
each feature to the sentiment value the feature has
in the thematic context of the application (Grim-
mer and Stewart, 2013; Gatti et al., 2016). A major
difficulty of lexicon-based approaches, however,
is that even such an ideal sentiment lexicon will
not guarantee highly accurate sentiment estimates.
The reason is that sentiment builds up through com-
plex compositional effects (Socher et al., 2013).
These compositional effects either can be mod-
eled via human-created rules or can be learned
by supervised machine learning algorithms. Ap-
proaches that try to model compositionality via
human-created rules range from simple formulas
(e.g. Paltoglou et al., 2013; Gatti et al., 2016) to
elaborate procedures (e.g. Moilanen and Pulman,
2007; Thet et al., 2010). Human-coded composi-
tionality rules, however, tend to be outperformed
by supervised machine learning algorithms (com-
pare e.g. Gatti et al., 2016, Table 12 and Socher
et al., 2013, Table 1). In the latter case, sentiment
lexicons serve the purpose of creating the feature
inputs to regression approaches—which are dis-
cussed next.

2.2 Regression Approaches

The second major set of approaches that gener-
ate real-valued sentiment estimates makes use of
highly granular training data (e.g. as in the SST
data set where each text is assigned to one out
of 25 distinct values (Socher et al., 2013)). In
these approaches, the fine-grained annotations are
treated as if they were continuous and a regression
model is applied.2 Typically, the mean squared er-

1Techniques for estimating continuous document positions
on an a priori defined unidimensional latent variable also have
been developed in political science. These methods either are
at their core lexicon-based approaches (Watanabe, 2021) or
require continuous values for the training documents (Laver
et al., 2003)—and thus have the same shortcomings as either
lexicon-based or regression approaches.

2Note that here, in correspondence with machine learn-
ing terminology, regression refers to statistical models and

ror (MSE) between the true granular labels and the
real-valued predictions from the regression model
is minimized. Regression approaches have shown
to be able to generate continuous sentiment predic-
tions that are quite close to the true fine-grained
labels (Mohammad et al., 2018; Wang et al., 2018).
Yet, the prerequisite for implementing such an ap-
proach is that fine-grained labels for the training
data are available. Generating such granular an-
notations, however, is difficult and costly: Catego-
rizing a training text into few ordinal categories is
arguably a more easy task than assigning a text into
one out of a large number of ordered values or even
rating a text on a real-valued scale. As the number
of distinct values increases, the number of inter-
and intra-rater disagreements is likely to increase
(Krippendorff, 2004). Hence, to produce reliable
text annotations, it is advantageous to have each
document rated several times by independent raters.
The independent ratings then can be aggregated by
taking the median or the mean of the ratings to
obtain the final value (see e.g. Kiritchenko and Mo-
hammad, 2017). The larger the number of raters
for a document, the more reliable the final value as-
signed to the document. For this reason, generating
reliable fine-grained labels for training documents
via rating scale annotations requires a resource in-
tensive annotation process.

The best-worst scaling (BWS) method in which
coders have to identify the most positive and the
most negative document among tuples of doc-
uments (typically 4-tuples), alleviates the prob-
lems of inter- and intra-rater inconsistencies (Kir-
itchenko and Mohammad, 2017). Yet, in order for
the rankings among document tuples to generate
valid real-valued ratings via the counting procedure
implemented in BWS, it is essential that each doc-
ument occurs in many different tuples such that
each document is compared to many different other
documents. This implies that a substantive number
of unique tuples have to be annotated—which, in
turn, demands respective human coding resources.

An alternative to the labeling of texts by human
coders is the usage of already available information
(e.g. if product reviews additionally come with nu-
merical star ratings). The problem here, however,
is that such information—if available at all—often
comes in the form of discrete variables with only
few distinct values (e.g. 5-star rating systems).

algorithms that model a real-valued response variable—which
typically is assumed to follow a normal distribution.
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To conclude, it is difficult and resource intensive
to create or acquire fine-grained training data that
is so detailed that it can be treated as if it were
continuous. Not each team of researchers or prac-
titioners will have the resources to create detailed
training annotations and thus regression models
cannot be applied to each substantive application
of interest. Hence, the question that this work ad-
dresses is: Can one generate continuous sentiments
with fewer costs in a setting where inter- and intra-
rater inconsistencies are likely to be small? For
example based on a simple binary coding of the
training data?

3 Procedure

In the following, the three steps of the proposed
CBMM procedure—(1) generating binary class
labels, (2) training and applying an ensemble of
classifiers, as well as (3) estimating a beta mixed
model—are explicated. CBMM assumes that the
documents to be analyzed are positioned on a latent,
unidimensional, continuous sentiment variable.
The aim is to estimate the test set documents’ real-
valued sentiment positions. The test set documents
are indexed as i ∈ {1 . . . N} and their sentiment
positions are denoted as θ = [θ1 . . . θi . . . θN ]

>.

3.1 Generating Binary Class Labels

The CBMM procedure starts by generating binary
class labels for the training set documents, e.g. via
human coding. The coders classify the training
documents into two classes such that the binary
class label of each training set document indicates
whether the document is closer to the negative (0)
or the positive (1) extreme of the sentiment variable.
Alternatively to human coding, binarized external
information (such as star ratings associated with
texts) can be used as class label indicators.

3.2 Training and Applying an Ensemble of
Classifiers

In the second step, an ensemble of classification
algorithms, indexed as j ∈ {1 . . . J}, is trained on
the binary training data. The classifiers in the en-
semble may differ regarding the type of algorithm,
hyperparameter settings, or merely the seed values
initializing the optimization process. After training,
each classifier produces predictions for the N doc-
uments in the test set and each classifier’s predicted
probabilities for the test set documents to belong to
the positive class are extracted. Thus, for each doc-

ument i, a predicted probability to belong to class
1 is obtained from each classifier j, such that there
are J predicted probabilities for each document:
ŷi = [ŷi1 . . . ŷij . . . ŷiJ ]; whereby ŷij is classifier
j’s predicted probability for document i to belong
to class 1.

3.3 Estimating a Beta Mixed Model

In step three, the aim is to infer the unobserved doc-
uments’ continuous values on the latent sentiment
variable from the observed predicted probabilities
that have been generated by the set of classifiers.
The approach taken here is similar to item response
theory (IRT) in which unobserved subjects’ values
on a latent variable of interest (e.g. intelligence) are
inferred from the observed subjects’ responses to a
set of question items (Hambleton et al., 1991). Cen-
tral to IRT is the assumption that a subject’s value
on the latent variable of interest affects the subject’s
responses to the set of question items (Hambleton
et al., 1991). For example, a subject’s level of
intelligence is postulated to influence his/her an-
swers in an intelligence test. In correspondence
with this assumption, the consistent mathematical
element across all types of IRT models is that the
observed subjects’ responses are regressed on the
unobserved subjects’ latent levels of ability.

Here, there are documents rather than subjects
and classifiers rather than question items. Yet, the
aim is the same: to infer unobserved latent posi-
tions from what is observed. As in IRT, the idea
here is that a document’s value on the latent senti-
ment variable affects the predicted probabilities the
document obtains from the classifiers. For exam-
ple, a document with a highly positive sentiment is
assumed to get rather high predicted probabilities
from the classifiers. Consequently, the predicted
probabilities are regressed on the documents’ latent
sentiment positions.

In doing so, it has to be accounted for that the
predicted probabilities are grouped in a crossed
non-nested design: In step 2, for each of theN doc-
uments, J predicted probabilities (one from each
classifier) are produced such that there are N × J
predicted probabilities. These predicted probabili-
ties cannot be assumed to be independent. The J
predicted probabilities for one document are likely
to be correlated because they are repeated measure-
ments on the same document. Additionally, the N
predicted probabilities produced by one classifier
also are generated by a common source. They come
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from the same classifier that might systematically
differ from the others, e.g. produce systematically
lower predicted probabilities.

Moreover, the data generating process is such
that the documents are drawn from a larger popula-
tion of documents. The population distribution of
the probability to belong to class 1 might inform
the probabilities obtained by individual documents.
Similarly, the classifiers are sampled from a popu-
lation of classifiers with a population distribution
in the generated predicted probabilities that may
inform an individual classifier’s predicted probabil-
ities. To account for this data generating process, a
mixed model with N document random intercepts
and J classifier random intercepts seems the ade-
quate model of choice. (On mixed models see for
example Fahrmeir et al. (2013, chapter 7)).

As the predicted probabilities, ŷij , are in the unit
interval [0,1], it is assumed that the ŷij are beta
distributed. Following the parameterization of the
beta density employed by Ferrari and Cribari-Neto
(2004) the beta mixed model is:

ŷij ∼ B(µij , φ) (1)

g(µij) = β0 + θi + γj (2)

θi ∼ N(0, τ2θ ) (3)

γj ∼ N(0, τ2γ ) (4)

In the model described here, ŷij (the probability
for document i to belong to class 1 as predicted by
classifier j) is assumed to be drawn from a beta dis-
tribution with conditional mean µij . µij assumes
values in the range (0,1) and φ > 0 is a precision
parameter (Cribari-Neto and Zeileis, 2010). µij is
determined by the fixed global population intercept
β0, the document-specific deviation θi from this
population intercept, and the classifier-specific de-
viation γj from the population intercept. As the
documents are assumed to be sampled from a larger
population, the document-specific θi are modeled
to be drawn from a shared distribution (see equa-
tion 3).3 The same is true for the classifier-specific
γj . To ensure that the results from the linear pre-
dictor in equation 2 are kept between 0 and 1, the
logit link is chosen as the link function g(·).4

Note that in the beta distribution V ar(ŷij) =
µij(1 − µij)/(1 + φ) (Cribari-Neto and Zeileis,

3Note that the usually employed assumption is that the
random effects are independent and identically distributed
according to a normal distribution (Fahrmeir et al., 2013).

4Thus, equation 2 is log(µij/(1− µij)) = β0 + θi + γj .

2010). This means that the variance of ŷij not only
depends on precision parameter φ but also depends
on µij , which implies that the model naturally ex-
hibits heteroscedasticity (Cribari-Neto and Zeileis,
2010). In the given data structure, documents that
express very positive (or very negative) sentiments
are likely to be easy cases for the classifiers and it
is likely that all classifiers will predict very high
(or very low) values. Documents that express less
extreme sentiments, in contrast, are likely to be
more difficult cases and the classifiers are likely to
differ more in their predicted probabilities. This is,
predicted probabilities are likely to exhibit a higher
variance for documents positioned in the middle of
the sentiment value range. To additionally account
for this effect, the beta mixed model described in
equations 1 to 4 can be extended with a dispersion
formula describing the precision parameter φ as a
function of document-specific fixed effects:5

h(φi) = δi (5)

To keep φi > 0, h(·) here is the log link (Brooks
et al., 2017).6 In the following, CBMM is imple-
mented with and without the dispersion formula in
equation 5. The variant of CBMM that includes
equation 5 is denoted CBMMd.

With or without a dispersion formula, the θi de-
scribe the document-specific deviations from the
fixed population mean β0. Hence, the θi —in linear
relation to β0—position the documents on the real
line and thus are taken as the CBMM and CBMMd
estimates for the continuous sentiment values.

4 Applications

4.1 Data
The effectiveness of CBMM in generating continu-
ous sentiments using binary training data is evalu-
ated on the basis of four data sets:

The Stanford Sentiment Treebank (SST) (Socher
et al., 2013) contains sentiment labels for 11,855
sentences [train: 9,645; test: 2,210] taken from
movie reviews. Each of the sentences was assigned
one out of 25 sentiment score values ranging from
highly negative (0) to highly positive (1) by three
independent human annotators.

5Note that the document-specific δi are fixed effects that
are not modeled to be sampled from a shared population distri-
bution. The reason is that current software implementations of
mixed models that use maximum likelihood estimation only
allow for inserting fixed effects but no random effects in the
dispersion model formula (Brooks et al., 2017).

6Thus, equation 5 here is log(φi) = δi.
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The V-reg data set from the SemEval-2018 Task
1 on “Affect in Tweets” (Mohammad et al., 2018)
contains 2,567 tweets [train: 1,630; test: 937] that
are likely to be rich in emotion. The tweets’ real-
valued valence scores are in the range (0,1) and
were generated via BWS, whereby each 4-tuple
was ranked by four independent coders.

Furthermore, two data sets from the 2008 Ameri-
can National Election Studies (ANES) (The Amer-
ican National Election Studies, 2015) are used.
The feeling thermometer question, in which par-
ticipants have to rate on an integer scale ranging
from 0 to 100 in how far they feel favorable and
warm vs. unfavorable and cold toward parties, is
posed regularly in ANES surveys. In the 2008
pre-election survey, participants were additionally
asked in open-ended questions to specify what they
specifically like and dislike about the Democratic
and the Republican Party.7 Here, the aim is to
generate continuous estimates of the sentiments
expressed in the answers based on the binarized
feeling thermometer scores. For the Democrats
there are 1,646 answers [train: 1,097; test: 549].
This data set is named ANES-D. For the Repub-
licans there are 1,523 answers [train: 1,015; test:
508] that make up data set ANES-R. For compari-
son with the other applications, the true scores from
ANES are rescaled by min-max normalization from
range [0,100] to [0,1].

To create binary training labels for the CBMM
procedure, in all training data sets the fine-grained
sentiment values are dichotomized such that the
class label for a document is 1 if its score is ≥
0.5 and is 0 otherwise. CBMM’s continuous sen-
timent estimates for the test set documents then
are compared to the original fine-grained values.
Note that these four data sets are selected for eval-
uation precisely because they provide fine-grained
sentiment scores against which the CBMM esti-
mates can be compared to. In each of the four
data sets, the detailed training annotations are the
result of resourceful coding processes or—in the
case of ANES—lucky coincidences. For exam-
ple, around 50,000 annotations were made for the
V-reg data set that comprises 2,567 tweets (Moham-
mad et al., 2018). Such resources or coincidences,
however, are unlikely to be available for each po-
tentially interesting research question. Thus, whilst

7The survey contains one question asking what the partici-
pant likes and a separate question asking what the participant
dislikes about a party. For each respondent, the answers to
these two questions are concatenated into a single answer.

these data sets are selected because they come with
fine-grained labels that can be used for evaluating
CBMM, the settings in which CBMM will be espe-
cially valuable are those in which external informa-
tion that may serve as a granular training input is
unavailable and the available amounts of resources
are not sufficient for a granular coding of texts.

4.2 Generating Continuous Sentiment
Estimates via CBMM

Step 2 of the CBMM procedure consists in train-
ing an ensemble of classifiers on the binary train-
ing data to then obtain predicted probabilities for
the test set documents. Here, for all four applica-
tions, a set of 10 pretrained language representa-
tion models with the RoBERTa architecture (Liu
et al., 2019) are fine-tuned to the binary classifi-
cation task. The 10 models within one ensemble
merely differ regarding their seed value that ini-
tializes the optimization process and governs batch
allocation.8 As the seed values are randomly gen-
erated, this neatly fits with the assumption encoded
in the specified mixed models that classifiers are
randomly sampled from a larger population of clas-
sifiers. As a Transformer-based model for transfer
learning, RoBERTa is likely to yield relatively high
prediction performances in text-based supervised
learning tasks also if—as is the case for the selected
applications—training data sets are small.

In step 3 of CBMM, two different beta mixed
models as presented in equations 1 to 5—one
model with and the other without a dispersion
formula—are estimated. In each mixed model, the
estimate for θi is taken as the sentiment value pre-
dicted for document i.

Steps 1 and 3 of the CBMM procedure are
conducted in R (R Core Team, 2020). The beta
mixed models are estimated with the R package
glmmTMB (Brooks et al., 2017). In step 2, fine-
tuning is conducted in Python 3 (Van Rossum
and Drake, 2009) making use of PyTorch (Paszke
et al., 2019). Pretrained RoBERTa models are ac-
cessed via the open-source library provided by Hug-
gingFace’s Transformers (Wolf et al., 2020). The
source code to replicate the findings is available at
https://doi.org/10.6084/m9.figshare.14381825.v1.

8The 10 models applied for one application also have the
same hyperparameter settings. In all four applications, a grid
search across sets of different values for the batch size, the
learning rate and the number of epochs is conducted via a 5-
fold cross-validation. The hyperparameter setting that exhibits
the lowest mean loss across the validation folds and does not
suffer from too strong overfitting is selected.
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4.3 Evaluation

4.3.1 Comparisons to Other Methods
The sentiment estimates from CBMM and CBMMd
are compared to the following methods.

Mean of Predicted Probabilities [Pred-Prob-
Mean]. For each document, this procedure simply
takes the mean of the predicted probabilities across
the ensemble of classifiers: θ̂i = 1

J

∑J
j=1 ŷij .

Lexicon-Based Approaches. Two lexicons are
made use of. First, the SST provides for each tex-
tual feature in the SST corpus a fine-grained hu-
man annotated sentiment value that indicates the
feature’s sentiment in the context of movie reviews.
Hence, the SST constitutes an all-encompassing
and perfectly tailored lexicon for the SST applica-
tion and is employed as a lexicon here. Second,
the SentiWords lexicon (Gatti et al., 2016), that
is based on SentiWordNet (Esuli and Sebastiani,
2006) and contains prior polarity sentiment values
for around 155,287 English lemmas, is used. For
the SST and the SentiWords lexicons, the sentiment
value estimates are generated by computing the
arithmetic mean of a document’s matched features’
values. The procedures here are named SST-Mean
and SentiWords-Mean.

Regression approaches, that make use of the
true fine-grained sentiment values rather than the
binary training data, are also applied. Note that
the evaluation results for the regression-based pro-
cedures signify the levels of performance that can
be achieved if one is in the ideal situation and pos-
sesses fine-grained training annotations. Hence, the
regression approaches constitute a reference point
against which the other approaches’ performances
can be related to.

Here, in all four applications, J = 10 RoBERTa
regression models are trained on the training set
and then make real-valued predictions for the doc-
uments in the test set such that there are J =
10 predictions for each test set document: ẑi =
[ẑi1 . . . ẑij . . . ẑiJ ]; whereby ẑij is the real-valued
prediction of regression model j for document i.
To have a fair comparison to CBMM, the same
procedures for aggregating the predicted values are
explored. Thus, there are three different aggrega-
tion methods. First, the mean of the 10 models’
predictions is taken such that the sentiment esti-
mate is: θ̂i = 1

J

∑J
j=1 ẑij [Regr-Mean]. Second

and third, a mixed model with and without a dis-
persion formula is estimated on the basis of the ẑij .
The estimates for the θi are extracted as the contin-

uous sentiment predictions. Yet, to account for the
data generating process of the ẑij , a linear mixed
model (LMM)—instead of a beta mixed model—is
estimated:

ẑij ∼ N(µij , σ
2) (6)

µij = β0 + θi + γj (7)

θi ∼ N(0, τ2θ ) (8)

γj ∼ N(0, τ2γ ) (9)

This approach is named Regr-LMM. The LMM
with a dispersion formula, Regr-LMMd, addition-
ally has: h(σ2i ) = δi; with h(·) being the log link.

4.3.2 Evaluation Metrics
The generated continuous sentiment estimates are
evaluated by comparing them to the original granu-
lar sentiment labels. Three evaluation metrics are
used: the mean absolute error (MAE), the Pearson
correlation coefficient r, and Spearman’s rank cor-
relation coefficient ρ. The evaluation metrics are
selected such that there is a measure of the average
absolute distance (MAE) as well as a measure of
the linear correlation (r) between the original true
sentiment values and the estimated values. Note
that Spearman’s ρ assesses the correlation between
the ranks of the true and the ranks of the estimated
values and thus evaluates in how far the order of
documents from negative to positive sentiment as
produced by the evaluated approaches reflects the
order of documents according to the true scores.

4.4 Results
Table 1 presents the evaluation results across all
applied data sets. Figure 2 visualizes distributions
of the true and estimated sentiment values for the
SST data. Across the four employed data sets (each
with a different shape of the to be approximated
distribution of the true sentiment values) the perfor-
mance levels vary for all approaches. Yet, the main
result remains consistent: the continuous sentiment
estimates generated by CBMM correlate similarly
with the truth and get only slightly less closer to
the truth as the predictions generated by regression
approaches that operate on fine-grained training
data. At times, CBMM estimates even slightly out-
perform regression predictions. Hence, researchers
that seek to get continuous sentiment estimates but
do not have the resources to produce highly de-
tailed training annotations can apply CBMM on
binary training labels and thereby obtain estimated
continuous sentiments whose performance is likely
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SST
MAE r ρ

SST-Mean 0.190 0.554 0.574
SentiWords-Mean 0.201 0.428 0.429
Regr-Mean 0.099 0.892 0.876
Regr-LMM 0.099 0.892 0.876
Regr-LMMd 0.099 0.892 0.876
Pred-Prob-Mean 0.216 0.859 0.856
CBMM 0.161 0.874 0.856
CBMMd 0.137 0.877 0.856

V-reg
MAE r ρ

0.171 0.437 0.487
0.177 0.429 0.475
0.090 0.871 0.869
0.090 0.871 0.869
0.090 0.872 0.870
0.198 0.804 0.844
0.164 0.819 0.842
0.133 0.835 0.844

ANES-D
MAE r ρ

0.242 −0.013 −0.033
0.254 −0.067 −0.079
0.195 −0.655 −0.653
0.195 −0.655 −0.653
0.195 −0.655 −0.653
0.202 −0.646 −0.649
0.191 −0.667 −0.648
0.200 −0.668 −0.649

ANES-R
MAE r ρ

0.252 −0.059 0.058
0.289 −0.009 0.005
0.191 −0.618 0.627
0.191 −0.618 0.627
0.192 −0.618 0.627
0.218 −0.624 0.613
0.207 −0.621 0.613
0.205 −0.620 0.612

Table 1: Evaluation Results. For the SST, V-reg, ANES-D, and ANES-R test data sets, the mean absolute error
(MAE), the Pearson correlation coefficient r, and Spearman’s rank correlation coefficient ρ between the true and
the estimated sentiment values are presented. The shading of the cells is a linear function of the approaches’ level
of performance. The darker the shading, the higher the performance. For computing the MAE, the predicted
sentiment values are rescaled via min-max normalization to the range of the true sentiment values.

Frequency

Tr
ue

 S
en

tim
en

t S
co

re
s

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Sentiment Scores

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimates from Regr−Mean

Tr
ue

 S
en

tim
en

t S
co

re
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimates from CBMMd

Tr
ue

 S
en

tim
en

t S
co

re
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimates from Pred−Prob−Mean

Tr
ue

 S
en

tim
en

t S
co

re
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimates from SST−Mean

Tr
ue

 S
en

tim
en

t S
co

re
s

Estimates from Regr−Mean

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Estimates from CBMMd

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Estimates from Pred−Prob−Mean

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
30

0
50

0

Estimates from SST−Mean

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
12

0

Figure 2: True and Estimated Sentiment Values for the SST Data. First column: Histograms of the true sentiment
scores. Remaining columns, top row: Estimates from Regr-Mean, CBMMd, Pred-Prob-Mean, and SST-Mean
plotted against the true sentiment values. Remaining columns, bottom row: Histograms of the estimates from
Regr-Mean, CBMMd, Pred-Prob-Mean, and SST-Mean.

to be only slightly lower compared to predictions
from regression models. Beside this main finding,
the following aspects are revealed:

Lexicon-based approaches do not perform very
well. The predicted sentiments are centered in the
middle of the sentiment value range and changes in
a document’s sentiment are not strongly reflected
in changes in the sentiment values predicted by the
lexicons. (As an example see the most right column
of Figure 2.) Consequently, the lexicon generated
sentiment estimates exhibit relatively low levels of
correlation with the true sentiment values. Espe-
cially the case of the SST lexicon for the SST data
shows that it is not sufficient to have a lexicon that
has a coverage of 100% and is perfectly tailored
to the context it is applied to. In order to get valid
sentiment estimates, one requires an aggregation

procedure that accounts for the complex building
up of sentiment in texts.

Regression Approaches. The continuous sen-
timent predictions generated by regression ap-
proaches tend to have the smallest distances to and
the highest correlations with the true sentiment
scores. Hence, the results demonstrate that if one
has detailed training annotations available that can
be treated as if they were continuous, regression
approaches constitute an effective way to bring sen-
timent estimates as close as possible to the true
sentiment values.

Across applications, the estimates obtained from
Regr-Mean, Regr-LMM, and Regr-LMMd are
highly similar. The reason is that the variance
for the document-specific intercepts, τ2θ , is high
relative to the error variance σ2, and the classifier-
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specific variance τ2γ .9 Thus, the LMM estimator
is close to a fully unpooled solution in which a
separate model for each document is estimated
(Fahrmeir et al., 2013, p. 355-356). The sentiment
predictions from Regr-LMM are therefore highly
correlated with Regr-Mean that computes a sepa-
rate mean for each document. Furthermore, adding
a dispersion formula does not strongly affect the
predictions from Regr-LMM.

Pred-Prob-Mean leads to acceptable results. Yet,
the estimates from Pred-Prob-Mean still strongly
mirror the binary coding structure (see the fourth
column of Figure 2). Moreover, MAE tends to
decrease and r tends to increase further if the pre-
dicted probabilities are aggregated via beta mixed
models in CBMM.

CBMM produces continuous sentiment estimates
that exhibit performance levels that are relatively
close to those of the regression-based procedures.
When considering the MAE and r, CBMMd tends
to slightly outperform CBMM. As the predicted
probabilities across all four data sets are character-
ized by a high degree of heteroskedasticity10 addi-
tionally accounting for heteroskedasticity via the
dispersion formula thus tends to further improve
the estimates.

Interestingly, across the three approaches
based on predicted probabilities (Pred-Prob-Mean,
CBMM, CBMMd) Spearman’s ρ nearly remains
unchanged. This implies that the predicted order
of documents on the latent sentiment variable is
largely determined by the predicted probabilities
from the ensemble of classifiers. Thus, whilst Pred-
Prob-Mean, CBMM and CBMMd operate on the
same order of documents,11 it is the aggregation of
the predicted probabilities by a beta mixed model—
and the accounting for heteroskedasticity—that en-
ables CBMM and CBMMd to alter the distances
between the documents’ positions on the sentiment
variable such that the distribution of true sentiment
values can be approximated more closely. (Com-
pare the histograms of the values predicted by CB-

9Yet, across all evaluated data sets, a Restricted Likelihood-
Ratio-Test (based on the approximation presented by Scheipl
et al. (2008) as implemented in the RLRsim R-package) testing
the null hypothesis that τ2γ = 0, reveals that this null hypothesis
can be rejected at a significance level of 0.01.

10To assess heteroskedasticity, Breusch-Pagan Tests
(Breusch and Pagan, 1979) are conducted. For all applications
and tested linear models, the Breusch-Pagan Test suggests that
the null hypothesis of homoskedasticity can be rejected at a
significance level of 0.01.

11Spearman’s ρ between the estimates from Pred-Prob-
Mean and CBMMd equals 0.999 across all applications.

MMd and Pred-Prob-Mean in Figure 2.)

5 Conclusion

This work introduced CBMM—a classifier-based
beta mixed modeling technique that generates con-
tinuous estimates for texts by estimating a beta
mixed model based on predicted probabilities from
a set of classifiers. CBMM’s central contribution
is that it produces continuous output based on bi-
nary training input, thereby dispensing the require-
ment of regression approaches to have (possibly
prohibitively costly to create) fine-grained training
data. Evaluation results demonstrate that CBMM’s
continuous estimates perform well and are not far
from regression predictions.

CBMM here is applied in the context of senti-
ment analysis. Yet, it can be applied to any context
in which the aim is to have continuous predictions
but the resources only allow for creating binary
training annotations.
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