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Summary

As energy is released in the event of a strong earthquake, tectonic stress redistributes in the sur-
roundings of the initial rupture and typically results in further aftershocks. Studies have shown
that these aftershocks can substantially increase damage in buildings and infrastructure due to
prior destabilization of the structure through the mainshock. This has implications to a wide
range of disciplines such as seismic engineering, emergency response management and insurance
loss models. The main interest is typically in the strongest aftershock of a sequence.
Thus, the focus of this dissertation is on the statistical analysis and modeling of so-called earth-
quake doublets, which are generally defined as a pair of two similarly strong earthquakes, occurring
in temporal and spatial proximity to each other. The goal is to develop statistical models that
predict the long-term occurrence probabilities of doublets, forecast the spatio-temporal evolution
of triggered sequences and explain the main drivers and geophysical conditions that favor the
occurrence of such multi-mainshock sequences.
To date, the literature only provides a starting point for an understanding of earthquake doublets,
based on non-consistent definitions and regional studies. In particular, no parametric distribution
of the magnitude difference ∆M between the mainshock and its strongest aftershocks has been
proposed so far. This dissertation aims to close this gap by suggesting two comprehensive, para-
metric approaches for modeling and predicting earthquake doublet probabilities worldwide.
In the first approach, I develop two advanced versions of the so-called Epidemic Type Aftershock
Sequence (ETAS) model, which describes the spatio-temporal evolution and self-exciting nature
of earthquake sequences as a special case of a Hawkes process. The ETAS-Anisotropic model
generalizes the spatial aftershock distribution, conventionally assumed to be isotropic, to more
adequately reflect the observed anisotropic shape of aftershock clouds. The ETAS-Incomplete
model additionally accounts for typically short-term incomplete aftershock records, and therefore
solves three major ETAS model biases at once.
In the second approach, I propose the innovation of adapting survival models, originally developed
for medical applications, in order to estimate the fully parametric distribution of the magnitude
differences ∆M . The observations of ∆M are partially right-censored, as the exact value is un-
known if the largest aftershock was not recorded due to the magnitude completeness threshold
of the underlying catalog. A simulation model demonstrates the leverage effect of the two main
drivers, aftershock productivity and frequency-magnitude distribution, on ∆M . The variation of
aftershock counts is analyzed by a generalized additive model (GAM).
Results indicate that approximately 20% of the global M ≥ 6 mainshocks trigger doublets. The
preferred ETAS-Incomplete model substantially improves both doublet frequency predictions and
spatio-temporal sequence forecasts, while the conventional ETAS model provides poor estimates
due to its assumptional biases. The survival model approach suggests that ∆M is best modeled
by a Gompertz distribution. Earthquakes at larger depths tend to trigger less aftershocks and
have larger ∆M observations. Additionally, the GAM results suggest that triggered events may
produce two to three times more aftershocks than background events, which would substantially
increase cluster sizes and doublet occurrence probabilities.
Future research should further investigate the latter observation and analyze the impact of the
frequency-magnitude distribution of triggered events on ∆M . In particular, potential magnitude
correlations between the mainshock and aftershocks may have a substantial impact on doublet
occurrence chances.





Zusammenfassung

Beim Auftreten eines starken Erdbebens wird Energie freigesetzt, die sich in Form von tektonis-
chem Stress in der Umgebung des Erdbeben-Bruchs verteilt und typischerweise zu weiteren Nach-
beben führt. Studien haben gezeigt, dass diese Nachbeben die Schäden an Gebäuden und In-
frastruktur erheblich verstärken können. Dies hat Auswirkungen auf eine Vielzahl seismologie-
bezogener Disziplinen wie Seismic Engineering, Emergency Response Management und Insurance
Loss Modeling. Das Hauptinteresse gilt typischerweise dem stärksten Nachbeben einer Sequenz.
Der Fokus dieser Dissertation liegt daher auf der statistischen Analyse und Modellierung soge-
nannter Erdbeben-Dubletten, die allgemein definiert werden als ein Paar von zwei ähnlich starken
Erdbeben, die in zeitlicher und räumlicher Nähe zueinander auftreten. Ziel ist es, statistische
Modelle zu entwickeln, die die langfristigen Auftrittswahrscheinlichkeiten von Dubletten sowie die
räumlich-zeitliche Entwicklung getriggerter Sequenzen vorhersagen und die geophysikalischen Be-
dingungen erklären, die das Auftreten solcher Multi-Beben-Sequenzen begünstigen.
Bisher bietet die Literatur nur einen Ausgangspunkt für das Verständnis von Erdbeben-Dubletten,
basierend auf uneinheitlichen Definitionen und regionalen Studien. Insbesondere wurde bisher
keine parametrische Verteilung der Magnitudendifferenz ∆M zwischen dem Hauptbeben und
seinen stärksten Nachbeben vorgeschlagen. Diese Dissertation zielt darauf ab, diese Lücke zu
schließen, indem sie zwei umfassende, parametrische Ansätze zur Modellierung und Vorhersage
der Wahrscheinlichkeit von Erdbeben-Dubletten weltweit vorschlägt.
Im ersten Ansatz entwickle ich zwei erweiterte Versionen des sogenannten Epidemic Type After-
shock Sequence (ETAS)-Modells, das die räumlich-zeitliche Entwicklung von Erdbebensequenzen
über mehrere Trigger-Generationen als Spezialfall eines Hawkes-Prozess beschreibt. Das ETAS-
Anisotropic-Modell verallgemeinert die im konventionellen Modell isotrope räumliche Nachbeben-
verteilung durch eine anisotrope Form, die beobachtete Erdbeben-Cluster realistischer wider-
spiegelt. Das ETAS-Incomplete-Modell berücksichtigt zusätzlich die typischerweise unvollständi-
gen Nachbebenaufzeichnungen kurz nach einem Hauptbeben und behebt damit die drei wichtigsten
Verzerrungen im konventionellen ETAS-Modell mit einem Ansatz.
Im zweiten Ansatz schlage ich die Innovation vor, die parametrische Verteilung der Magnitu-
dendifferenzen ∆M mittels Survival-Modellen zu schätzen. Die Beobachtungen von ∆M sind
teilweise rechtszensiert, da der genaue Wert unbekannt ist, wenn das größte Nachbeben aufgrund
der unteren Magnituden-Schwelle des zugrunde liegenden Katalogs nicht aufgezeichnet wurde.
Ein Simulationsmodell demonstriert die Hebelwirkung der Nachbebenproduktivität sowie der
Magnituden-Verteilung mit Bezug auf ∆M . Die Nachbebenproduktivität wird zusätzlich durch
ein generalisiertes additives Modell (GAM) analysiert.
Die Ergebnisse zeigen, dass ungefähr 20% der globalen Hauptbeben Dubletten auslösen. Ver-
glichen mit dem konventionellen Modell liefert das ETAS-Incomplete-Modell deutlich verbesserte
Frequenzvorhersagen sowie räumlich-zeitliche Vorhersagen von Erdbeben-Sequenzen. Der
Survival-Modell-Ansatz legt nahe, dass ∆M am besten durch eine Gompertz-Verteilung mod-
elliert wird. Tiefe Erdbeben neigen dazu, weniger Nachbeben zu triggern und haben tendenziell
größere ∆M . Darüber hinaus deuten die GAM-Ergebnisse darauf hin, dass getriggerte Beben zwei-
bis dreimal mehr Nachbeben erzeugen als sogenannte Background-Beben, was die Clustergröße
und somit die Wahrscheinlichkeit des Auftretens von Dubletten erheblich erhöhen würde.
Zukünftige Forschungsarbeiten sollten die letztgenannte Beobachtung weiter untersuchen und den
Einfluss der Magnituden-Verteilung auf ∆M analysieren. Insbesondere potenzielle Korrelationen
zwischen der Nachbeben- und Hauptbeben-Magnitude können einen erheblichen Einfluss auf die
Wahrscheinlichkeit des Auftretens von Dubletten haben.
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Part I.

Introduction





1. Motivation and Scope

1.1. Basics of Earthquake Clustering

Earthquake Sequences As energy is released in the event of a strong earthquake, tectonic stress
redistributes in the surroundings of the initial rupture and typically results in further earthquakes,
so-called aftershocks (Utsu et al., 1995).
The cascade of aftershocks is commonly referred to as an earthquake sequence, and the strongest
event of the sequence is called the mainshock. Typically, events that occurred shortly before
the mainshock, so-called foreshocks, are included in the sequence since they are believed to be
physically related to the upcoming major earthquake (e.g. Helmstetter and Sornette, 2003). The
dependent occurrence behavior of earthquakes is hereafter referred to as earthquake clustering.

Spatio-Temporal Clustering Strong earthquakes are usually observed to cause a pronounced
spatio-temporal pattern of aftershocks. According to the Omori-Utsu Law (Utsu et al., 1995), the
temporal aftershock rate is subject to a power law decrease with time after the triggering event,
i.e., the aftershock sequence is dominated by events occurring shortly after the mainshock.
The observed spatial patterns of aftershock sequences stem from their tendency to occur on or close
to the mainshock rupture plane (Marsan and Lengliné, 2008). The larger the length-to-width ratio
of this plane gets, the more elongate the typical aftershock region becomes. In addition, a higher
dip angle reduces the width of the 3D-to-2D projection of the rupture plain to the earth’s surface
and therefore results in a scatter of two-dimensional aftershock epicenters that can be increasingly
well approximated by a line segment. For instance, the prevailing continental tectonic regime
in southern California with typically steep, strike-slip faulting favors such elongated aftershock
patterns in this region (Marsan and Ross, 2021).

1.2. Relevance for Insurance Loss Models

Earthquake sequences have the potential to increase the risk of both human fatalities and eco-
nomic loss induced by a major earthquake. This applies in particular to the strongest aftershocks,
which will therefore be the focus of this dissertation. Studies have shown that strong aftershocks
can substantially increase damage in buildings and infrastructure due to prior destabilization of
the structure through the mainshock. Similarly, foreshocks can set the stage for more severe
mainshock damage (Abdelnaby, 2012; Kagermanov and Gee, 2019; Papadopoulos et al., 2020).
Therefore, a better understanding and predictability of the spatio-temporal pattern and the largest
expected aftershock (or foreshock) of an earthquake sequence is relevant to a wide range of dis-
ciplines and applications related to seismic hazard, including seismic engineering, emergency re-
sponse management and insurance loss models.

3



1. Motivation and Scope

Here I give a short, compact overview of insurance loss models for earthquake risks, which provided
the main motivation and inspiration for this dissertation. The summary is based on Mitchell-
Wallace et al. (2017) (especially Section 3.7). Earthquake risk models are typically based on the
following three model

• The hazard model analyses the seismic hazard, including statistics of the frequency, sever-
ity and spatial distribution of earthquakes in the modelled region. The result of the hazard
analysis is a so-called event table, that lists a large amount of synthetic earthquakes and
provides an annual occurrence rate estimate for each of them. Additionally, a so-called
ground motion footprint is computed for each earthquake, specifying the estimated severity
of ground shaking as a function of the distance to the presumed earthquake location, the
earthquake’s magnitude and the local soil condition.

• The vulnerability model translates the footprints, evaluated at the various locations of
insured objects, into a damage estimate. The event loss, which is the aggregate of the
financial loss to all insured buildings due to a single event, is then added to the event table,
hereafter referred to as event loss table.

• Finally, the financial model applies (re-)insurance contract terms such as the event excess
of loss (EventXL), that applies a retention and a limit to the aggregated loss of an earthquake
event. Formally, an ”event” is typically defined as the mainshock, including all aftershocks
occurring within typically 72 hours, which consequently count toward the mainshock loss.
Conversely, later aftershocks are counted as new loss events to which the EventXL term is
reapplied. In practice, however, it usually takes several weeks to few months to quantify the
losses of a major mainshock, which makes it almost impossible to distinguish between the
damage caused by later aftershocks and the mainhock.

Status Quo For reasons of simplicity and computational efficiency, earthquake risk models
typically rely on the probabilistic seismic hazard analysis (PSHA) approach (Cornell, 1968), which
builds upon declustered earthquake catalogs and therefore only accounts for the mainshock hazard.
Mainshock occurrences are often modeled by an independent Poisson process (e.g. McGuire, 2008)
or a Brownian passage time model (e.g. Zöller, 2018) for earthquake recurrence probabilities.
In doing so, traditional PSHA neglects the additional hazard due to aftershock sequences and
underestimates the risk of multiple strong earthquakes hitting the same region within short time.

Including Earthquake Clustering Accounting for earthquake clustering in insurance loss
models may affect all of the three abovementioned model components.

• When accounting for earthquake clustering in the hazard model, earthquake occurrences
could no longer be modeled independently of each other. A possible approach, which is
demonstrated in the case study in Subsection 2.6, is to model mainshock events according
to PSHA, and then to add simulated aftershock sequences for each of the mainshocks.

• In the vulnerability model, building damage induced by a simulated aftershock would need
to be modeled depending on the pre-existing damage induced by the former mainshock. A
possible approach are so-called damage state-dependent fragility curves (Papadopoulos et al.,
2021). In Subsection 2.6, I will apply a much simplified assumption. A relevant factor for
damage correlations is the distance of both events to the affected location, highlighting the
importance of an adequate model for the spatial aftershock distribution.
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1.3 Definition of Earthquake Doublets

• For the financial model, the relevant criterion is the inter-event time between the mainshock
and the aftershock, highlighting the importance of an adequate model for the temporal
aftershock distribution.

1.3. Definition of Earthquake Doublets

Section 1.2 highlighted the relevance of a suitable model for both the expected number and severity
of aftershocks as well as their spatio-temporal distribution in an on-going earthquake sequence.
In nearly all risk-related contexts, the main interest is in the strongest aftershock (or foreshock) of
the sequence. Therefore, the focus of this dissertation is on the statistical analysis and modeling
of so-called earthquake doublets, which are generally defined as (e.g. Felzer et al., 2004; Kagan and
Jackson, 1999; Gibowicz and Lasocki, 2005; Lay and Kanamori, 1980)

• a pair of two similarly strong earthquakes,

• occurring in temporal and

• spatial proximity to each other.

Unfortunately, there is no uniform specification of the terms ”similarly strong” and ”temporal
and spatial proximity” in the literature. Kagan and Jackson (1999) defined doublets as pairs
of earthquakes with magnitude Mw ≥ 7.5, that are no more than one rupture size apart and
whose inter-event time is less than their recurrence time derived from plate motion, which is
typically in the range of decades to centuries. In contrast, Felzer et al. (2004) specified multiplets
(generalization of doublets) as a mainshock together with two or more aftershocks within 0.4
magnitude units, occurring on a much shorter time scale of two days, and within a spatial box
centered in the mainshock’s epicenter. The distance of the mainshock’s epicenter to the sides of
the box is 2.5 times the estimated fault length. Gibowicz and Lasocki (2005) interpreted doublets
as a pair of earthquakes with no more than 0.25 magnitude units difference, applying magnitude-
dependent stepwise spatial and temporal constraints of 40-90 kilometers and 200-450 days.

Definition in this Dissertation In the first contribution to this dissertation (Grimm et al.,
2021), I defined earthquake doublets as a pair of events with a magnitude difference of no more
than 0.4 units, occurring within 365 days and within a circular radius of 2.5 times the estimated
rupture length of the earlier event. The temporal constraint of one year is derived from the
typically modeled time span in a (re-)insurance loss model.
Hereafter, I use the term multi-mainshock sequence synonymously for earthquake doublets.

1.4. Research Questions

The goal of this dissertation is to contribute to a better understanding of the occurrence frequencies
and driving forces of worldwide earthquake doublets. The main research questions addressed in
this dissertation are:

1. How frequent are earthquake doublets worldwide?

2. In which tectonic regions, and under which geophysical conditions, are doublets most likely
to occur?

5



1. Motivation and Scope

3. Which are the main drivers of earthquake doublet occurrences?

4. Can we develop an adequate model to predict long-term occurrence probabilities of doublets?

5. Can we develop an adequate model to forecast the spatio-temporal evolution of a particular
earthquake sequence?

1.5. Literature Review

To date, the literature only provides a starting point for an understanding of earthquake doublets.
Kagan and Jackson (1999) found that approximately 22% of the M > 7.5 earthquakes worldwide
occurred accompanied by another M > 7.5 event within a distance of one rupture length. Felzer
et al. (2004) demonstrated statistical evidence that foreshocks, aftershocks, and doublets occur
due to the same physical triggering mechanism and that the number of times that doublets occur
increases linearly with the number of aftershocks observed. They inferred that certain regions in
the world, such as the Solomon Islands, show an increased doublet rate due to higher aftershock
rates and earthquake density, rather than unique seismic fault structures that support the occur-
rence of doublets. Gibowicz and Lasocki (2005) analyzed the occurrence frequency of earthquake
doublets in the Fiji-Tonga-Kermadec region and found that 36% of all shallow, 14% of all inter-
mediate, and 27% of all deep events were associated with a doublet. Note that these results are
not directly comparable due to the varying doublet definitions (see Section 1.3).

A more general statement on the expected magnitude difference between a mainshock and its
strongest aftershock is made by the well-established Bath’s law (Bath, 1965). It states that the
average difference is roughly 1.2, independently of the size of the mainshock. The main challenge in
calculating this value is the bias introduced by missing data, if no aftershock was observed above
the cut-off magnitude Mc of the catalog and therefore ∆M cannot be computed. Ignoring missing
values leads to a systematic error, because the data points removed are those with particularly
large magnitude differences ∆M . Several authors found that the statistics is robust, if we restrict
the sample to mainshocks at least two magnitude units above Mc, but then the sample size
is strongly reduced (e.g. Tahir et al., 2012; Zakharova et al., 2013). Another workaround was
suggested by Zakharova et al. (2013), who modeled the seismic moment ratio between aftershocks
and the mainshock, rather than ∆M , approximating the ratio by zero if no aftershocks were
recorded.

Note that Bath’s law only makes a statement about the average value of the ∆M , but not
about their distribution (and its parameters) or any important quantiles in the lower tail of
the distribution. Similarly, the available literature on earthquake doublets only delivers regional
estimates of doublet frequencies based on different thresholds for ∆M , but does not provide a
parametric and globally applicable concept to predict doublet probabilities. This dissertation aims
to close this gap and to create a comprehensive approach to modeling and predicting earthquake
doublet probabilities.

Further literature on earthquake cluster models and the analysis of the variation of aftershock
productivity is highlighted in the discussion sections 2.7 and 3.4, respectively.

6



1.6 Approaches and Outline

1.6. Approaches and Outline

This dissertation comprises three contributions made through papers published in or submitted to
peer-reviewed journals. The papers analyze clustered seismicity for different tectonic settings in
Japan, New Zealand and Southern California. The aforementioned research questions (see Section
1.4) and goals are tackled by two distinct approaches, which are outlined here in short.

Approach 1 - Epidemic Type Aftershock Sequence Model
The first and second contribution (Grimm et al., 2021, 2022a) aim to further develop the so-called
Epidemic Type Aftershock Sequence (ETAS) model, which describes the spatio-temporal evolution
and self-exciting nature of earthquake sequences as a special case of a Hawkes process. Innovations
include two enhanced versions of the conventional model by applying more realistic, anisotropic
and locally restricted spatial aftershock distributions and accounting for typically observed short-
term incomplete aftershock records that may otherwise lead to substantial bias in the estimation
results. The model is used to predict long-term occurrence probabilities of doublets and to forecast
the spatio-temporal evolution of a local earthquake sequence.

Approach 2 - Statistical Regression Models
The third contribution (Grimm et al., 2022b) presents an innovative approach for modelling the
magnitude difference ∆M between a mainshock and the second strongest event in the sequence,
by adapting methods for time-to-event data, which often suffers from incomplete observation
(censoring). The model is applied to a global set of earthquake clusters to identify in which tectonic
regions, and under which geophysical conditions, ∆M may tend to be decreased. Additionally,
this contribution investigates the main drivers of doublet occurrences and applies a generalized
additive model to analyze the variation in aftershock productivity.

Structure of this Dissertation
This dissertation is structured as follows. Part I gives an overview of the research and contribu-
tions to this dissertation. Within this Part, there are four chapters. The current chapter 1 gives
an introduction and motivation to the research topic. Chapter 2 expands on the first approach,
providing a thorough introduction to the conventional ETAS model and defining the advanced
model versions suggested in the first and second contribution (Grimm et al., 2021, 2022a). Then,
chapter 3 summarizes the third contribution (Grimm et al., 2022b) and gives an overview of the
statistical regression models for the second approach. Finally, chapter 4 provides a short, overar-
ching conclusion and gives answers to the research questions posed in Section 1.4.
Part II lists the published papers underlying the first approach (Grimm et al., 2021, 2022a). Part
III provides the manuscript of the third contribution (Grimm et al., 2022b), which is currently un-
der revision in a peer-reviewed journal. Finally, the Part IV (Appendix) provides a non-published
ETAS formulary with derivations of formulas and derivatives needed to implement a gradient
based optimization method for various ETAS model versions.
In the spirit of open science and to ensure full reproducibility, the Matlab (Matlab, 2019) source
code for ETAS model estimations and simulations, as performed in the contributions Grimm et al.
(2021, 2022a), is made publically available in a Github repository.
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2. Approach 1: Epidemic Type Aftershock
Sequence (ETAS) Model

This chapter summarizes the first and second contribution, in which I developed advanced versions
of the ETAS model in order to improve long-term predictions of earthquake doublet frequencies
(Grimm et al., 2021) and enhanced spatio-temporal forecasts of the local 2019 Ridgecrest after-
shock sequence (Grimm et al., 2022a). The numerical code was implemented using the software
Matlab (Matlab, 2019).
Section 2.1 lays the methodological foundation, first introducing Hawkes processes, then giving a
thorough formulation of the conventional ETAS model as a special case of the latter, and finally
explaining the three major biases of this conventional model. In Section 2.2, I rigorously explain
the advanced ETAS-Anisotropic and ETAS-Incomplete model versions, that aim to solve the ma-
jor model biases of the conventional model. Sections 2.3 and 2.4 summarize selected results and
conclusions of the first (Grimm et al., 2021) and second contribution (Grimm et al., 2022a). Next,
Section 2.5 briefly describes the computational efficiency of the code, and Section 2.6 shows an
illustrative case study that demonstrates the impact of earthquake clustering on the annual loss
curve of an insurance. Finally, Section 2.7 discusses alternative approaches.

2.1. Statistical Model

2.1.1. Hawkes Processes

Model formulation The ETAS model is a special case of a Hawkes process that models the
spatio-temporal occurrence rate of earthquakes as a self-exciting Poisson point process with a four-
dimensional, space-time-magnitude mark (Jalilian, 2019; Daley and Vere-Jones, 2003). Hawkes
processes go back to their pioneer Alan Hawkes (1971) and were originally developed for modeling
epidemics. The process describes the event rate at time t as a function of the occurrence history
of events before that time, Ht = {ti ∈ R+ : ti < t}. The intensity function is specified as

λ(t|Ht) = µ(t) +
∑

ti:ti<t

λtrig(t − ti), t > 0, (2.1)

where µ(t) is the baseline event rate (independent of previous occurrences) and λtrig(t − ti) is the
additional event rate at time t, triggered by the previous event i at time ti. The infinitesimal
probability of an event occurring in the time window [t, t + dt) is λ(t|Ht) dt. Given the current
example of the Corona pandemic, the self-exciting nature of the point process modeling contagion
times can be interpreted as a chain of infection, where an infected individual spreads the virus
and therefore (temporarily) increases the risk of triggering new cases.

Applications Both the baseline and triggered event rate functions of the Hawkes process can
assume various shapes tailored to the problem at hand. For that reason, Hawkes processes are
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2. Approach 1: Epidemic Type Aftershock Sequence (ETAS) Model

applicable in any other field where an event occurrence temporarily increases the chance of a
subsequent event, such as in mathematical finance (e.g. trading orders Hawkes, 2018), military
and terrorism (Tench et al., 2016) or earthquake triggering (Ogata, 1988, 1998; Jalilian, 2019). In
the latter, as briefly outlined in Section 1.1, the occurrence of an earthquake redistributes stress
in the surroundings of the fault, typically triggering numerous further events close in time and
space.

2.1.2. Conventional ETAS Model

The ETAS model was first introduced by Ogata (1988, 1998) and expands the temporal Hawkes
intensity function (2.1) by a two-dimensional space component (x, y) and a magnitude-size
component m (Daley and Vere-Jones, 2003). In the following, I introduce the conventional ETAS
model as described and implemented in the R package ETAS by Jalilian (2019), but use notation
similar to the one in my second contribution (Grimm et al., 2022a). In the following, let Mc be
the cut-off magnitude of the analyzed earthquake catalog.

Model Formulation In the conventional ETAS model approach, the occurrence rate of an
earthquake with magnitude m, occurring at time t and at location (x, y) is modeled by an inho-
mogeneous Poisson process with a time-space-magnitude dependent intensity function

λ(t, x, y, m|Ht) = f0(m) R0(t, x, y|Ht), (2.2)

where Ht = {(ti, xi, yi, mi) : ti < t} is the history of events prior to time t,

f0(m) = β e−β(m−Mc), β > 0, m ≥ Mc, (2.3)

is the probability density function (pdf) of the frequency-magnitude distribution (FMD) with b-
value equal to β/ln(10) above lower cut-off magnitude Mc (Gutenberg and Richter, 1944), and

R0(t, x, y|Ht) = µ u(x, y) +
∑

i:ti<t

Rtrigg
0 (t, x, y, i) (2.4)

is the occurrence rate of events with magnitude m ≥ Mc, at time t and at location (x, y). This
event rate is modeled by a superposition of the time-invariant seismic background rate µ u(x, y),
where µ > 0 is the total rate of background events and u(x, y) is a non-parametrical spatial pdf,
and the sum of the trigger rate contributions Rtrigg

0 (t, x, y, i) of all events i that occurred prior to
time t.

Trigger Rate Contributions The trigger rate contribution of event i is computed as the prod-
uct of the aftershock productivity of event i and the pdfs of the temporal and spatial aftershock
distributions evaluated at time t and location (x, y),

Rtrigg
0 (t, x, y, i) = kA,α(mi) gc,p(t − ti) hD,γ,q(ri, mi, li). (2.5)

The aftershock productivity function

κA,α(mi) = A exp(α(mi − Mc)), mi ≥ Mc; A, α > 0 (2.6)
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2.1 Statistical Model

describes the expected number of direct aftershocks triggered by event i with magnitude mi. Such
an exponential growth of the productivity is in good agreement with observations (see e.g. the
summary provided by Hainzl and Marsan (2008)).

The temporal trigger function gc,p(t − ti) is based on the well-known empirical Omori-Utsu law

g̃c,p(t − ti) = (t − ti + c)−p, t ≥ ti; c, p > 0, (2.7)

describing the power-law decay of aftershock rates with increasing time t after the occurrence time
ti of the triggering event i (Utsu et al., 1995). To ensure that gc,p(t − ti) is a pdf, the Omori-Utsu
law g̃c,p(t − ti) is normalized by the integral of aftershock rates in the time window t − ti ∈ [0, T ],
where T is the assumed maximum duration of aftershock triggering (in days; e.g. T = 365). The
c-value defines the delay of the onset of the power-law decay (typically a few minutes to hours).
It is likely related to short-time incompleteness of earthquake catalogs after mainshocks (Hainzl,
2016b). The p-value is in the range 0.8–1.2 in most cases (Utsu et al., 1995).

The spatial kernel hD,γ,q(ri, mi, li) models the 2D-distribution of aftershocks locations. In conven-
tional ETAS model approaches, the triggering event is assumed to be a point source, distributing
its offsprings isotropically around its epicenter. A classical definition of an isotropic kernel (see
also Ogata, 1998) is

hiso
D,γ,q(ri(x, y), mi) := q − 1

D exp(γ(mi − Mc))

(
1 + π ri(x, y)2

D exp(γ(mi − Mc))

)−q

(2.8)

where ri(x, y) denotes the point-to-point distance between a potential aftershock location (x, y)
and the coordinates (xi, yi) of the triggering event i, and mi is the magnitude of the event i. The
kernel is constrained by the parameters D and γ that control the magnitude-dependent width of
the kernel, and parameter q that describes the exponential decay of the function with growing
spatial distance.

Numerical Optimization Following the implementation in the R package ETAS, the parameter
vector θ = {µ, A, α, c, p, D, γ, q} is optimized by maximizing the log-likelihood function

LL =
∑

j

ln (R0(tj , xj , yj)) −
∫
T

∫∫
S

R0(t, x, y|Ht) dx dy dt. (2.9)

where T and S denote the target time and space window over which the model is fitted. The
parameters are optimized by the iterative, gradient-based Davidson-Fletcher-Powell algorithm.

2.1.3. Three Major Model Biases

Within the limits of being a non-physical model, the ETAS approach delivers overall convincing
representations of earthquake clustering, and has substantially contributed to analyze and
compare seismic clustering behavior, e.g. comparing different tectonic regions of the world (Chu
et al., 2011). Nevertheless, the Standard ETAS model as described in Subsection 2.1.2 is built
upon three simplifying assumptions that can lead to significant biases in the model estimation
results.
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Figure 2.1.: Illustration of ETAS model biases for the example of the 2019 Ridgecrest Mw7.1 af-
tershock sequence. (a) Aftershock locations, showing a pronounced anisotropic shape
of the spatial distribution; (b) Aftershock magnitudes vs. logarithmic event times,
demonstrating short-term incomplete aftershock records for several hours.

Bias 1: Isotropic spatial distribution The spatial kernel defined in Equation (2.8) reflects
the common assumption in ETAS models that aftershock locations are distributed isotropically
around the triggering event, which is assumed to be a point source. This assumption is named as a
shortcoming in many publications because it contradicts the observation that aftershocks tend to
occur close to the typically elongate rupture plane of the triggering event (Ogata, 1998, 2011; Ogata
and Zhuang, 2006; Hainzl et al., 2008, 2013; Seif et al., 2017; Zhang et al., 2018). The assumption
of isotropy is reasonably valid for weak earthquakes with small rupture extensions, but becomes
problematic for larger magnitudes, e.g. see the spatial pattern of the 2019 Ridgecrest sequence
in Fig. 2.1(a). It has been shown that inadequate spatial models can lead to an underestimation
of the productivity parameter α (Equation 2.6) because the numerous small events take over the
role of mimicking the ”true” anisotropic distribution (Hainzl et al., 2008, 2013).

Bias 2: Infinite spatial kernel In my first contribution (Grimm et al., 2021) I showed that,
under the usual definition of an infinite range spatial kernel, aftershock triggering is disproportion-
ately associated with the more numerous small events, that can more flexibly mimic anisotropic
event alignments than the few strong mainshocks. This can lead to unrealistically far trigger im-
pact of small magnitudes and thus to a substantial underestimation of the aftershock productivity
of strong earthquakes (small α), resulting in a smoothing of temporal event occurrences.

Bias 3: Short-term aftershock incompleteness Strong earthquakes typically cause incom-
plete aftershock records immediately after their occurrence, mainly due to an overlap of coda
waves (Hainzl, 2016b; de Arcangelis et al., 2018). Fig. 2.1(b) demonstrates this phenomenon for
the aftershock sequence of the 2019 Ridgecrest M7.1 mainshock. Apparently, records of smaller
sized aftershocks are missing in the first minutes to hours, somewhat foiling the power law decay
of event rates expected from the Omori-Utsu law (Equation 2.7). The short-term incomplete
event records can therefore hide to a large extent both the ”true” Omori Law decay and the
”true” aftershock productivity of the trigger event (Equation 2.6) and lead to an overestimation
of Omori parameter c and an underestimation of productivity parameter α (Hainzl, 2021, 2016a;
Page et al., 2016; Seif et al., 2017).
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Further Uncertainties As every statistical model, the ETAS model relies on a sufficient sample
size and quality of input data. The required input to an ETAS model is a so-called earthquake
catalog, which is a list of earthquakes recorded in a specified region and time window and should
minimally contain the occurrence time (accurate down to minutes or seconds), event location (in
geographical coordinates) and magnitude.
While event times can typically be determined very precisely, location uncertainties are in the
range of a few kilometers, depending on the quality and density of the network of seismic stations
in the modeled area. Magnitudes may be specified in different scales and should be homogeneized.
An in-depth discussion of ETAS model uncertainties, including a discussion of the assumption of
a time-invariant seismic background, is given in Harte (2013, 2016); Seif et al. (2017).

2.2. Model Advancements

In the contributions Grimm et al. (2021, 2022a), I developed two advanced versions of the ETAS
model to solve the estimation biases introduced above. Subsection 2.2.1 defines the ETAS-
Anisotropic model with a generalized anisotropic, locally restricted spatial kernel. Then, subsec-
tion 2.2.2 introduced the formulation of the ETAS-Incomplete model that additionally accounts
for short-term incomplete aftershock records.

2.2.1. ETAS-Anisotropic Model

Anisotropic Spatial Kernel In the contribution Grimm et al. (2021), I introduced an
anisotropic generalization of the isotropic spatial kernel (Equation 2.8),

hD,γ,q(ri(x, y), mi, li) := q − 1
D exp(γ(mi − Mc))

(
1 + 2 li ri(x, y) + π ri(x, y)2

D exp(γ(mi − Mc))

)−q

. (2.10)

In this spatial model, the distance term ri(x, y) denotes the point-to-line distance between the
potential aftershock location (x, y) and the estimated rupture line segment of triggering event i
with length li. Fig. 2.2 illustrates the different shapes of the two spatial kernels.

Note that
hD,γ,q(ri(x, y), mi, 0) = hiso

D,γ,q(ri(x, y), mi),

i.e. the anisotropic kernel collapses to the isotropic model if the triggering location is assumed
to be a point source with rupture extension li = 0. Therefore, the generalized spatial kernel
(2.10) allows for mixed approaches, modeling larger earthquakes anisotropically, but weaker events
isotropically. The rupture length scaling relationship for anisotropic events is taken from the
estimate of subsurface ruptures, provided in Wells and Coppersmith (1994).

Locally Restricted Spatial Kernel Both the conventional isotropic and the generalized
anisotropic spatial kernel are defined in terms of a pdf over infinite space. Realistically, however,
small earthquakes should exert only a locally restricted trigger influence.
A manual analysis of the spatial aftershock patterns of the six largest Californian mainshocks
since 1987 (see Hainzl, 2021) shows that the cloud of potential aftershocks typically lies within
one estimated rupture length from the epicenter. Acknowledging the particularly steep faulting
systems prevailing in California, globally I suggest a radius of 2.5 rupture lengths, consistent with
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2. Approach 1: Epidemic Type Aftershock Sequence (ETAS) Model

Figure 2.2.: Locally restricted (a) isotropic (Equation 2.8) and (b) anisotropic (Equation 2.10)
spatial kernel.

Felzer et al. (2004). Given an arbitrary local restriction Ri > 0, the spatial kernel for event i is
then only defined in the restricted area

Si(Ri) := {(x, y) ∈ R2|ri(x, y) ≤ Ri}

and set to 0 outside of it. Note that the restricted area Si(Ri) can assume isotropic and anisotropic
shapes, depending on the point-to-point or point-to-line definition of the distance term ri(x, y).
In order to retain the property of a pdf, we need to rescale the kernel within the restricted area
by its analytical integral (for a derivation, see the ETAS formulary in the Appendix)

HD,γ,q(Ri, mi, li) :=
∫∫

Si(Ri)
hD,γ,q(ri(x, y), mi, li) dx dy = 1 −

(
1 + 2 li Ri + π R2

i

D exp(γ(mi − Mc))

)1−q

.

The integral term holds true for both isotropic (li = 0) and anisotropic triggers (li > 0). We
obtain the generalized, restricted and anisotropic spatial kernel

hrestr
D,γ,q(ri(x, y), mi, li) =


hrestr

D,γ,q(ri(x,y),mi,li)
HD,γ,q(Ri,mi,li) , if ri(x, y) ≤ Ri,

0, if ri(x, y) > Ri.
(2.11)

2.2.2. ETAS-Incomplete Model

Rate-Dependent Incompleteness The concept of rate-dependent earthquake record incom-
pleteness assumes that the ”true” (i.e. physical) relationships underlying f0(m) and R0(t, x, y) are
not accurately identifiable in available earthquake catalogs because especially small magnitudes
are detected with lower probability in periods of high seismic activity. In these periods, the de-
tection ability is limited typically due to overlapping seismic waves (Hainzl, 2016b, 2021).
Fitting the ”true” relationships to incomplete data records may therefore lead to significantly
biased parameter estimates (Hainzl, 2016b,a; Page et al., 2016; Seif et al., 2017; Hainzl, 2021).

Model Formulation The working assumption of the ETAS-Incomplete model is that an earth-
quake with magnitude m, occurring at time t, can only be detected by the operating seismic
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network if no event of equal or larger magnitude occurred within the blind time [t − Tb, t], where
Tb is typically in the range of some seconds to few minutes (Hainzl, 2021). Similar assumptions
have formerly been formulated by Lippiello et al. (2016), de Arcangelis et al. (2018) and Hainzl
(2016b).
Let N0(t) be the expected number of events occurring within the entire spatial window S during
blind time [t − Tb, t],

N0(t) =
∫ t

t−Tb

∫∫
S

R0(t, x, y)dx dy dt ≈ Tb

∫∫
S

R0(t, x, y) dx dy,

where the approximation holds under the assumption that event rates are approximately constant
during the blind time (Hainzl, 2021). According to the ”true” FMD (Equation 2.3), each of
the N0(t) events has a probability of e−β (m−Mc) to exceed magnitude m. Then, the detection
probability pd(m, t) of an earthquake at time t with magnitude m is the probability that no equal
or larger event occurred during blind time Tb, i.e.

pd(m, t) = e−N0(t) e−β (m−Mc)
.

Following the derivations in Hainzl (2016a, 2021), we obtain the ”apparent”, incompleteness-biased
FMD

f(m, t) : = f0(m) N0(t) pd(m, t)
1 − e−N0(t)

and the ”apparent” event rate

R(t, x, y) := R0(t, x, y)
N0(t)

(
1 − e−N0(t)

)
.

The term ”apparent” signalizes that the functions f and R do not represent the ”true”, but
the observable relationships that are possibly distorted by short-term aftershock incompleteness.
In periods of high seismic activity, the ”apparent” FMD exhibits a larger relative frequency of
strong events (because they are more likely to be detected) and an event rate lowered by detection
capacity. We obtain the ETAS-Incomplete intensity function

λ(t, x, y, m) = f(m, t) R(t, x, y) = f0(m) R0(t, x, y) pd(m, t)

The log-likelihood function of the ETAS-Incomplete model has the form

LL =
∑

j

ln ( f0(mj) R0(tj , xj , yj) pd(mj , t) ) − T2 − T1
Tb

− 1
Tb

∫ T2

T1
e−Tb

∫∫
S R0(t,x,y) dx dydt

where the second term is an approximation of the integral of λ over the entire magnitude-space-
time model space [Mc, ∞) × [T1, T2] × S.

The two underlying, simplifying assumptions in the ETAS-Incomplete model are that (1) the
blind time Tb is magnitude-independent, which Hainzl (2021) justifies by typically shorter source
durations than travel times of coda waves, and (2) that the seismic network is equally occupied
for blind time Tb by any event in the entire investigated spatial window. The second assumption
is reasonable for a small spatial window, e.g. when analyzing an isolated sequence. When fitting
the ETAS-Incomplete model over a larger region, it needs to be checked that relevant clusters do
not evolve at the same time but at distinct locations as they would be assumed to simultaneously
occupy the entire seismic network. A reasonable approach to prevent undesired biases is to choose
a larger cut-off magnitude.
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Figure 2.3.: (a) Comparison of doublet probability predictions predicted by the ETAS-Anisotropic
model (red line) and the conventional ETAS model (blue line). The shaded range
represents the 80% confidence interval for the anisotropic model. Observed doublet
frequencies in a local and global catalog are shown by black solid and dashed lines,
respectively. Mainshock magnitudes are grouped in intervals due to relatively small
sample sizes in the benchmark catalogs. (b) Comparison of monthly event occurrences
between the observed Japan catalog (black line) and the event rates predicted by the
ETAS-Anisotropic model, given the observed event history at any time (red line).

2.3. Contribution 1: Improving Doublet Frequency Predictions

In the first contribution (Grimm et al., 2021), I developed the ETAS-Anisotropic model accounting
for anisotropic and locally restricted aftershock distributions (see Subsection 2.2.1). The model
was fitted to local earthquake catalogs for Japan and Southern California. Then, we used the
estimated parameters to forward simulate 10,000 synthetic catalogs and statistically analyzed how
well the models reproduce the spatio-temporal clustering of the original catalogs, respectively.
In particular, we compared the simulated probabilities that a mainshock triggers an earthquake
doublet, with observations from the corresponding local and a global benchmark catalog. We used
the doublet definition provided in Section 1.3.

Fig. 2.3(a) shows the predicted probabilities that a mainshock of a given magnitude interval
triggers an earthquake doublet. The ETAS-Anisotropic model (red line) estimates that roughly
14% of the M ≥ 6 mainshocks trigger a doublet. Despite an improvement compared to the
conventional ETAS model (10%, blue line), it still underestimates the relative frequency of about
20% observed in the local and global benchmark catalogs.
The reason for this may be found in underestimated cluster sizes of strong mainshocks. As
Fig. 2.3(b) shows, the ETAS-Anisotropic model underestimates the number of events in peak
periods, but overestimates event rates in quiet periods. In other words, the model smooths out
the temporal distribution of events.

Results indicate that the novel spatial kernel promotes more realistic estimates of cluster sizes
by reducing the bias of inadequate spatial fits. Nevertheless, this contribution highlights the
need to account for short-term aftershock incompleteness as the remaining major bias of ETAS
estimations.
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2.4. Contribution 2: Improving Forecasts of the 2019 Ridgecrest
Sequence

In the second contribution (Grimm et al., 2022a), we developed the ETAS-Incomplete model (see
Subsection 2.2.2) and combined it with the anisotropic spatial kernel of the ETAS-Anisotropic
model (Subsection 2.2.1). The resulting model was fitted to a long-term earthquake catalog for
Southern California. Then, we used the estimated parameters to perform 10,000 forecasts of the
aftershock sequences of both the 2019 Ridgecrest M6.4 foreshock (July 4) and the M7.1 mainshock
(July 6, see spatio-temporal pattern in Fig. 2.1).

Figure 2.4(a) depicts the empirical cumulative distribution functions of the number of aftershocks
of the M6.4 foreshock event, for simulations based on the conventional ETAS (black line), the
ETAS-Anisotropic (red line) and the preferred ETAS-Incomplete model (blue line), compared
to the observed value (vertical gray line: 633 events). The conventional model provides entirely
inappropriate estimates, and the ETAS-Anisotropic model underestimates the size of the sequence
in more than 96% of the simulation runs. Only the ETAS-Incomplete model provides a very good
prediction. This indicates that the ETAS-Incomplete model may solve the underestimation of
cluster sizes by the ETAS model, observed in the first contribution (Grimm et al., 2021).

Fig. 2.4(b) shows the kernel density estimators for the simulated largest aftershock magnitude of
the M6.4 event. It reveals that none of the models is capable to forecast the following M7.1 main-
shock, that occurred 34 hours after the M6.4 foreshock. The reason is that, while the simulations
were based on a magnitude distribution (see Equation 2.3) with b = 1.01, as estimated from the
long-term California catalog, the M6.4 aftershock sequence was characterized by a particularly
low b-value of 0.79, favoring the occurrence of stronger aftershocks.

Fig. 2.4(c) and (d) show the predicted spatial aftershock distributions of the M6.4 event, averaged
over the 10,000 simulation runs of (c) the conventional, isotropic ETAS and (d) the anisotropic
ETAS-Incomplete model. We overlaid the observed event locations (black scatter points) to the
logarithmic heat map of predicted probabilities on a 1 km × 1 km grid. The M6.4 foreshock is a
special case of anisotropic triggering in the sense that it simultaneously ruptured two almost or-
thogonal faults, leading to a double pattern of separate linearly elongate aftershock clouds (Marsan
and Ross, 2021). Therefore, we further generalized the anisotropic spatial kernel (Equation 2.10)
to allow for an equally weighted superposition of two rupture segments. The figures demonstrate
that an anisotropic spatial kernel substantially improves the spatial forecast of the M6.4 sequence.
Fig. 2.4(e) and (f) confirm this conclusion for the aftershocks of the M7.1 mainshock.

In summary, the ETAS-Incomplete provides a better understanding of the spatio-temporal evolu-
tion of earthquake sequences solves three major biases of the conventional ETAS model at once.
Particularly, it leads to better forecasts of the size of a sequence and the spatial distribution of
aftershocks. These improvements may be of major interest for short-term risk assessment during
an on-going aftershock sequence, particularly for assessing the risk of a second, damaging earth-
quake. The anisotropic spatial forecast of aftershock locations enables desaster response managers
to take actions in areas at risk where particularly high aftershock activity is expected.
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Figure 2.4.: (a) Predicted cumulative distribution functions of the number of aftershocks of the
Ridgecrest M6.4 earthquake. (b) Kernel density estimators of the largest aftershock
magnitude triggered by the Ridgecrest M6.4 earthquake. (c-d) Predicted spatial event
distributions of the Ridgecrest M6.4 aftershock sequence, simulated by (c) the con-
ventional ETAS model and (d) the ETAS-Incomplete model with anisotropic kernel.
The color bar indicates the predicted, logarithmic probability that an event occurs at
the respective grid point. (e-f) Same as (c-d), but for simulations of the Ridgecrest
M7.1 event.
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2.5. Computational Efficiency and Code

I made the corresponding ETAS estimation and simulation source code publically available in
the Github repository https://github.com/ChrGrimm/ETASanisotropic. The code package is
implemented in the software Matlab and enables the estimation of ETAS model parameters with
very flexible, user-defined input settings, e.g.

• with (or without) ETAS-Incomplete functionality,

• with (or without) anisotropic spatial kernel

• anisotropy can be assumed for earthquakes above a user-defined magnitude threshold

• with a user-defined local restriction of the spatial kernel

• with a user-defined temporal restriction of triggering

The proposed local restriction of the spatial kernel avoids the computation of trigger rate contri-
butions between distant events, thereby breaking the quadratic growth of runtime with increasing
catalog size. In consequence, the code is computationally very efficient and can compute an
ETAS model (without ETAS-Incomplete functionality) for a catalog of more than 10,000 events
within only few minutes. The ETAS-Incomplete model is numerically more challenging, since
the temporal integral cannot be calculated analytically and needs to be approximated. Still, an
ETAS-Incomplete model estimation of a similarly sized catalog can be performed in a convenient
time like an hour.
The Appendix of this dissertation (see Chapter 8) provides an ETAS model formulary, including a
comprehensive summary of formulas and derivations of all partial derivatives needed to implement
a gradient-based optimization process for various ETAS models.

2.6. Case Study: Earthquake Clustering in Insurance Loss Model

In this case study, I demonstrate the impact of earthquake clustering on the annual exceedance
probability (AEP) curve which is one of the central results of an insurance loss model (see Section
1.2). Forward simulations of earthquake sequences are based on a fit of the ETAS-Incomplete
model to a local earthquake catalog for Japan.

Algorithm to compute the AEP Curve:

1. Simulate 12,500 annual periods of independent mainshocks as a Poisson process

2. Simulate an aftershock sequence for each mainshock using the ETAS-Incomplete model

3. Determine event losses for mainshocks and aftershocks

4. For each period, compute the annual insurance loss as the sum of the individual event losses

5. Sort the periods by descending annual losses and determine the corresponding return periods:
The i-th largest annual loss is exceeded i times in 12,500 simulated annual periods. The
corresponding exceedance probability is i/12, 500, and the expected return period 12, 500/i.

6. Plot the annual insurance loss as a function of the return period.
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Figure 2.5.: Annual exceedance probability curves estimated from the case study. The various lines
represent different assumptions on the contribution of aftershock losses (see text). The
y axis is linear and shows annual losses. Labels are hidden for data protection reasons.

Determine Aftershock Losses Event losses of the simulated mainshocks are directly taken
from the event loss table (ELT). The loss values provided by the ELT are based on historical loss
data, seismic engineering models and expert opinion (Mitchell-Wallace et al., 2017).
At one extreme, we could similarly add event losses for all simulated aftershocks. However, this
approach would be based on the assumption that the loss values in the ELT provide clean loss
estimates for single events. In practice, damage from multiple events occurring within a short
period of time in the same region can hardly be distinguished from one another and is therefore
typically fully counted towards the mainshock event. Therefore, it is likely that the loss statistics
in the ELT is biased by implicit clustering of losses.
To account for that, we only added losses of aftershocks that occurred more than three days after
the mainshock or outside of its ”damage region”, which is defined as the area where the footprint
of the mainshock predicts a peak ground acceleration larger than 1 m

s2 . The time criterion is
inspired by the typical 72 hours clause in the definition of an earthquake ”event” in the financial
(re-)insurance terms (see Section 1.2). A stricter time criterion is 60 days, which represents the
expected time that loss adjusters may need to quantify the damage of the mainshock.

Fig. 2.5 shows the resulting AEP curves. For data protection reasons, the curves are based on
a randomized ELT and the (linear) y axis is hidden. The black solid line represents the annual
insurance loss expected from mainshocks only. If adding all aftershock losses (dashed black line),
the annual losses are 7-10% larger at return periods smaller than 200. In the less frequent scenarios,
the additional loss through aftershocks would increase substantially. If we add aftershocks only
after a three days waiting time, the effect is dampened to less than 5% for return periods smaller
than 1000. If applying the stricter criterion of 60 days, the increase of annual losses is limited to
about 2-3% across all return periods.
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2.7. Alternative Approaches

Alternatives for modeling earthquake clustering include purely statistical or geophysical as well as
mixed models. Statistical approaches include Markovian arrival processes (Bountzis et al., 2021;
Bountzis and Tsaklidis, 2021; Bountzis et al., 2022) and hidden Markov models (Wu, 2010; Yip
et al., 2018). Geophysical models typically consider stress changes induced by seismicity. For
instance, Pope and Mooney (2020) investigated Coulomb stress changes for the 2019 Ridgecrest
sequence, which was under statistical consideration in my second contribution (Grimm et al.,
2022a). The Third Uniform California Earthquake Rupture Forecast (UCERF3) ETAS model,
developed by the United States Geological Survey (USGS), combines the statistical ETAS model
with regional, geophysical knowledge such as fault locations and interactions (Field et al., 2017).
Long-term recurrence intervals of strong earthquakes, excluding short-term triggering, are often
modeled by Brownian passage time distributions (e.g. Zöller, 2018).

Different ETAS model estimation approaches are possible. Instead of using the conventional maxi-
mum likelihood based optimization, parameters can be estimated by the expectation maximization
algorithm of Veen and Schoenberg (2008), which is said to be more robust with respect to poor
choices of initial parameters. However, in the context of my contributions, various sensitivity tests
confirmed stable parameter estimation results for different starting values, using the maximum
likelihood approach. Molkenthin et al. (2022) and Schneider (2021) proposed Bayesian inference
procedures, which are less dependent on initial values, allow to account for prior knowledge of the
spatio-temporal clustering behavior and provide stable estimates of parameter uncertainties. The
Bayesian approach seems particularly attractive when fitting the model to a local sequence in a
region which has been analyzed by a long-term clustering model before.

A few alternative approaches to model anisotropic spatial aftershock triggering have been proposed
by other authors. Zhang et al. (2018) pursued an approach that assumed constant trigger rate in
the entire rupture plane, with power-law decay outside of it. Different versions of elliptic Gaussian
distributions were introduced and discussed by Ogata (1998, 2011) and Ogata and Zhuang (2006).
The latter approaches successfully modeled spatial aftershock patterns, however, they require a
new set of parameters and are therefore not flexibly combinable with the conventional, isotropic
functionality. In contrast, the generalized spatial kernel suggested in the contributions to this
dissertation allows for simultaneous anisotropic modeling of some events (e.g. above a certain
magnitude threshold) and isotropic modeling of the rest. In order to address the abovementioned
particularity of the M6.4 Ridgecrest foreshock, rupturing two almost orthogonal faults, the kernel
can additionally reflect a weighted superposition of two distinct rupture line segments.

In recent years, there has been growing research interest in how to account for short-term in-
complete datasets. For instance, Zhuang et al. (2017) developed a replenishment algorithm to fill
up likely incomplete time intervals by simulated events, in order to obtain artificially complete
pseudo-records. A rather simple workaround approach is to remove likely incomplete time periods
from the fitted time interval using empirical completeness functions, such as performed in Hainzl
et al. (2013). Other authors, particularly mentionable Omi et al. (2013, 2014), Lippiello et al.
(2016), de Arcangelis et al. (2018), Mizrahi et al. (2021) and Hainzl (2021), tried to incorporate af-
tershock incompleteness directly into the ETAS model fit. For simplicity, Hainzl (2021) neglected
the space dimension in his model. As my second contribution Grimm et al. (2022a) combines the
ETAS-Incomplete time model of Hainzl (2021) with an adequate, anisotropic spatial kernel, it can
be seen as the space-including extension of the latter.
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3. Approach 2: Statistical Regression Models

This chapter summarizes the third contribution (Grimm et al., 2022b), which consists of two
studies. First, I presented the innovative approach of adapting survival regression models to
analyze the magnitude difference between a mainshock and the second strongest event of an
earthquake sequence. Additionally, I fitted a generalized additive model (GAM) to investigate
the aftershock productivity in a subduction region in New Zealand. All statistical analyses were
performed with the open source software R (R Core Team, 2021).
Section 3.1 provides a compact introduction to the statistical models. In Section 3.2, I summarize
the data compilation, model formulation and selected results of the survival model for magnitude
differences. Section 3.3 gives an overview of the GAM for the aftershock productivity. Finally,
Section 3.4 discusses alternative approaches in the literature. In this chapter, I use the terms
sequence and cluster synonymously.

3.1. Statistical Models

3.1.1. Parametric Survival Models

This compact overview of the main types of survival model approaches is based on Klein and
Moeschberger (2003). For a more complete overview, I refer the reader to the aforementioned
book.
Survival models are a class of regression models that account for data with a censored (or trun-
cated) response variable. As the term ”survival” suggests, these models were originally developed
in applications where the response represents the non-negative lifetime of a patient in medical
studies or the lifetime of a device in engineering contexts (so-called failure time analysis). The
above applications have in common that the exact value of the response is unknown, if the event
has not occurred until the end of the study period. This is called right-censoring.

Non-Parametric Models Non-parametric models make no assumption about the exact shape
of the distribution of the response. They include descriptive statistics such as the Kaplan Meier,
life table or Nelson-Aalen estimators, for instance to analyze the median and other quantiles of
lifetime based on a single categorical factor of interest. However, they do not provide effect size
estimates and are limited to univariate models.

Semi-Parametric Models The most commonly used semi-parametric approach is the Cox
Proportional Hazard model. Let S(t) = P (T > t) denote the survival function of the lifetime T ,
and f(t) be the probability density function (pdf), then the Cox model describes the event hazard
function h(t) = f(t)/S(t) by

h(t|X) = h0(t) exp(Xβ) = h0(t) exp(β1X1 + β2X2 + ... + βpXp)
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3. Approach 2: Statistical Regression Models

where X is the covariate matrix and p > 0 is the number of covariates. The baseline hazard h0(t) is
modeled non-parametrically, i.e., no particular assumption is made for the statistical distribution
of survival times. The proportional hazards assumption means that covariate effects scale the
entire hazard function up or down by the same factor time-independently. Testing approaches
for this central assumption comprise Kaplan-Meier survival curve estimates or an analysis of
Schoenfeld residuals against time.

Fully-Parametric Models In fully parametric models, the baseline hazard in the hazard
function is specified, which requires the additional assumption on a specific statistical distribution
of the lifetime T . Let the pdf of this distribution be given by

f(t|µ(X), α(X)), t ≥ 0,

with scale parameter µ and shape parameters α = (α1, ..., αR). Both scale and ancilliary param-
eters can be flexibly modeled depending on the scalar covariate matrix X by

g0(µ(X)) = β0 +
K∑

k=1
fk0(Xk), (3.1)

gr(αr(X)) = βr +
K∑

k=1
fkr(Xk), (3.2)

where β0, β1, ..., βR are the intercept coefficients, g0(·), ..., gR(·) are link functions and
fk0(·), ..., fkR(·) denote functions that specify the effect structure of the k-th covariate Xk (Jack-
son, 2016).

The fully parametric approach provides a more informative model, for instance enabling the use for
predicting hazard rates as well as mean and median survival times. If the parametric distribution is
correctly specified, parametric models have more power than semi-parametric approaches and lead
to smaller standard errors. However, they are sensitive to miss-specifications of the distribution.

3.1.2. Generalized Additive Models

GAMs are an extension of generalized linear model approaches, allowing for flexible nonlinear
covariate effects (Hastie and Tibshirani, 1990). The following short overview is based on the com-
prehensive works of Wood (2017) and Fahrmeir et al. (2013), section 5.2.
Let the conditional scalar response Yi|Xi be distributed according to an exponential family dis-
tribution F (µi, ν), where µi = E(Yi|Xi) is the conditional mean and ν denotes further parameters
of the distribution, given the scalar covariate matrix X and observation index i.
Then, given the link function g(·), the GAM estimates an intercept β0 and potentially smooth
functions fk(·) for the k-th covariate Xk according to

g(µi) = β0 +
K∑

k=1
fk(Xki), i = 1, ..., N (3.3)

where N is the sample size. The unspecified smooth functions are typically modeled by penalized
splines based on a basic spline basis (P-Splines), penalizing the second-order differences between
coefficients of adjacent basis functions. (Fahrmeir et al., 2013, section 8.1).
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3.2. Contribution 3a: Survival Models for Magnitude Differences

In the first study of the third contribution (Grimm et al., 2022b), I presented the approach of using
a survival regression model to estimate the parametric distribution of the magnitude differences
∆M between a mainshock and its strongest aftershock (or foreshock).

3.2.1. Data Compilation

The underlying dataset for this study was extracted from a global earthquake catalog, with events
between 1973 and 2021, cut-off magnitude Mc = 5.0 and depths D ≤ 70 km, that occurred close
to a tectonic plate boundary. We declustered this catalog using a window method (see e.g. van
Stiphout et al., 2012; Uhrhammer, 1986; Gardner and Knopoff, 1974) with a time window of 100
days and a magnitude-dependent spatial radius of R(m) = 2.5 L(m), where L(m) is the expected
earthquake rupture length according to Wells and Coppersmith (1994). In doing so, we obtained
a set of 2,933 independent earthquake sequences (clusters) with mainshock magnitudes M > 6.0.
Foreshocks and aftershocks are complete down to Mc.
For each cluster, we computed the magnitude difference ∆M between the mainshock and the
second-strongest event and defined it as the response variable. Additionally, we enriched the
cluster dataset by additional geophysical site information such as a classification of plate boundary
types as well as an estimation of the relative plate velocity, the sea floor age (all from Bird, 2003)
and the heat flow (Bird et al., 2008).

3.2.2. Why Using a Survival Model for Magnitude Differences?

The magnitude difference ∆M of a cluster is only known, if at least one foreshock or aftershock
was observed and assigned to the mainshock. Indeed, 1,180 out of 2,933 clusters are single-event
sequences, i.e., no associated event was found in the corresponding time-space window. Based on
seismological reasoning we can assume that these mainshocks actually triggered aftershocks, but
that those had magnitudes smaller than Mc and were not recorded. For these clusters, we have
the partial information that ∆Mi > Mi − Mc, where Mi is the magnitude of mainshock i, i.e., the
observations are right-censored (Klein and Moeschberger, 2003, section 3.2).
Our data meets the necessary requirements of a survival model, as it has non-negative (∆M ≥
0) and independent responses (declustered catalog) and the censoring is non-informative, i.e.,
censored clusters are not suspected to deviate structurally in their ∆M -distribution from non-
censored clusters. Classical statistical models would substantially underestimate ∆M due to the
large proportion of censored observations.

3.2.3. Choice of Distribution

The magnitude of the strongest aftershock can be interpreted as the largest order statistics from
the sample of magnitudes in the aftershock sequence. Consequently, the main drivers of the mag-
nitude difference ∆M between the mainshock and the second strongest event are (1) the number
of aftershocks (hereafter called aftershock productivity) and (2) the frequency-magnitude distribu-
tion (FMD) of the triggered events. A simple simulation experiment shall illustrate the effect of
both drivers on the distribution of ∆M .
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Figure 3.1.: (a) Fits of a Gompertz, Weibull and Generalized Gamma distribution to simulated
magnitude differences ∆M , represented by the kernel density estimator (black curve).
(b) Comparison of survival curves estimated from a Gompertz model and a non-
parametric Kaplan-Meier estimator, stratified for plate boundary classes c.

Assume an initial mainshock of magnitude M = 8. For simplicity, let the number of aftershocks
be Poisson distributed with a magnitude-dependent parameter λ(M), being specified by the after-
shock productivity function λ(M) = A eα (M−Mc) (see Equation 2.6). Additionally, let the FMD
of aftershocks be an exponential distribution with pdf f(M) = β e−β(M−Mc) (see Equation 2.3),
where the Gutenberg-Richter b-value is b = β/ln(10) (Gutenberg and Richter, 1944).
If we assume realistic parameters A = 0.13, α = 2.0 and b = 1.0, we can simulate earthquake
sequences including secondary triggering and derive a sampled distribution of the ∆M with a
mean of 1.2, i.e. consistent with Bath’s Law. Fig. 3.1(a) shows the fits of a Gompertz, Weibull
and Generalized Gamma distribution to the kernel density estimator of the simulated magnitude
differences. The Gompertz distribution clearly provides the best fit to the moderately negatively-
skewed data. The distribution assumption is supported based on the actual dataset by fitting a
univariable Gompertz survival model for the categorical variable plate boundary class, and compar-
ing the predicted survival curves to those provided by the non-parametric Kaplan-Meier estimator
(Klein and Moeschberger, 2003, ch. 4). Fig. 3.1(b) shows generally good agreement between the
two approaches.

3.2.4. Model Formulation and Software

The Gompertz distribution is defined on (0, ∞). Therefore, data points with ∆M = 0 were
substituted by the value 0.01. In the R package flexsurv (Jackson, 2016), the Gompertz distribution
is parameterized by its probability density function

f(x|a, b) = beax exp
(

− b

a
(eax − 1)

)
with shape parameter a ∈ R and scale parameter b > 0. We regressed the scale parameter b by
all variables. Effects of plate boundary classes are linear, and the effects of the metric covariates

26



3.3 Contribution 3b: Modeling Aftershock Productivity

(mainshock magnitude, depth, relative plate velocity, heat flow and sea floor age) are modeled by
penalized spline functions. The shape parameter a was additionally modeled only depending on
the linear effects of the plate boundary class.
In this work, we fitted models using the function flexsurvreg from the flexsurv package, which
estimates parameters by optimizing a parametric likelihood adapted for censored data (Jackson,
2016). To model flexible non-linear effects, we chose penalized B-splines using the function pspline
from the R package survival (Therneau, 2016), consistenly specifying df = 2 degrees of freedom
and n = 2.5 × df splines in the basis (Eilers and Marx, 1996; Hurvich et al., 1998).

3.2.5. Selected Results

The regression results show that larger ∆M are expected at higher depths and areas with large
heat flow and young sea floor age, which are typically found in oceanic spreading ridges and
transform faults. These observations may be an indication that aftershock productivity is a
relevant driver of ∆M , as under these conditions lower aftershock productivity is expected due
to reduced seismic coupling (Hainzl et al., 2019). The mainshock magnitude shows no structural
effect, which confirms the hypothesis of the Bath’s Law that the average magnitude difference is
independent of the absolute size of the mainshock. After consideration of the heat flow and sea
floor age effect, plate boundary classes show no further particularities.
In summary, the model suggests effects that explain increased magnitude differences, but it is
not capable in adequately predicting the occurrence of particularly small ∆M such as earthquake
doublets (∆M ≤ 0.4). For future research, I therefore suggest to include more local, high resolution
covariates or compile event-specific properties such as stress drop or the size of the rupture.

3.3. Contribution 3b: Modeling Aftershock Productivity

In the second study of the third contribution (Grimm et al., 2022b), I used a GAM to analyze
the variation of aftershock productivity, estimated from a local catalog declustered by the ETAS-
Incomplete model (see Section 2.2 and Grimm et al., 2022a).

3.3.1. Data Compilation

For this study, we chose a local earthquake catalog for the Hikurangi subduction zone in New
Zealand, comprising 11,091 events between 1987 and the end of 2020, at depths down to 80 km
and above cut-off magnitude Mc = 3.5.
For the regression of aftershock counts, we cannot use the window declustering method, as it
does not distinguish direct from secondary aftershocks. Instead, we used the ETAS model based
stochastic declustering approach, introduced by Zhuang et al. (2002). From Equation (2.4), they
concluded that the probability, that the event j at time tj and location (xj , yj) was an aftershock
of the prior event i, is

Pj,i = Rtrig
0 (tj , xj , yj , i)

R0(tj , xj , yj |Ht)
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Similarly, the probability that event j is an independent seismic background event is

Pj,backgr = 1 −
∑

i:ti<t Rtrigg
0 (t, x, y, i)

R0(tj , xj , yj |Ht)
= µ u(x, y)

R0(tj , xj , yj |Ht)
.

We defined the response variable as the estimated number of direct aftershocks for each event i in
the catalog. We did this by counting the number of subsequent events j for which i is the most
probable trigger event, i.e. Pj,i > Pj,k ∀ k ̸= i, and that are more likely triggered by i than being
a background event, i.e. Pj,i > Pj,backgr. In order to estimate the probabilistic trigger relations,
we used the ETAS-Incomplete model from the second contribution (Grimm et al., 2022a), see
also Section 2.2. By accounting for short-term incomplete aftershock records, this model avoids a
substantial bias on the estimation of our response variable.

Covariate data includes the magnitude and depth of the triggering earthquake, a classification of
events into tectonic region categories as well as an estimation of the slip types based on available
local focal mechanism data. Additionally, if the triggering event i was itself already triggered
by a previous event, we traced back the trigger sequence and identified the largest magnitude in
the cluster, that occurred before event i. This covariate tests whether a triggered earthquake is
itself more or less productive than an independent background event, and whether its aftershock
productivity is influenced by the previous mainshock magnitude.

3.3.2. Model Formulation and Software

For modeling the aftershock count data, we tested a Poisson, Quasi-Poisson and Negative Binomial
distribution as well as zero-inflated approaches to fit the data. According to Equation (3.3), we
modeled the corresponding expected value with linear effects for the categorical variables tectonic
region and slip type, as well as unspecified smooth effects for the magnitude and depth of the
triggering event and the prior mainshock magnitude, if the triggering event was triggered itself.

To fit the model, we used the function gam from the R package mgcv (Wood, 2017), using a loga-
rithmic link function and the restricted maximum likelihood estimator (REML) for the smoothing
parameter estimation. We used function s from the mgcv package to setup the smooth terms based
on P-splines, choosing k = 5 and k = 8 (for depth) as the dimensions of the basic spline basis.

3.3.3. Selected Results

The results confirm that aftershock counts can be better modelled by a Negative Binomial dis-
tribution (with dispersion parameter 2.3) rather than a Poisson distribution, as has already been
suggested by Kagan (2017) and Shebalin et al. (2018). Alternative approaches such as a Quasi-
Poisson or a zero-inflated model did not stand out substantially from the respective basic models.
From a substantive point of view, there seems to be no causal reason for ”excess zeros” that would
suggest zero-inflation.

Crustal events show an almost doubled aftershock productivity. A possible explanation for this
effect is the rather dense network of faults in the modeled crustal region, that could be brought
closer to failure by a change in stress conditions due to mainshock earthquakes. Slip types show
no structural effects on the aftershock productivity.
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Figure 3.2.: Exponential, multiplicative effects of the metric covariates (a) magnitude (y axis is
log2-transformed) and (b) depth of the triggering event as well as (c) mainshock mag-
nitude, given that the triggering event was already part of a triggered sequence. Rug
lines on the x axis visualize the marginal distributions of the corresponding covariate.

Fig. 3.2(a) shows that the number of expected aftershocks grows exponentially with the triggering
magnitude. However, this effect is anyways enforced by the declustering approach that applies the
exponential aftershock productivity function (2.6) in the ETAS parameter optimization procedure.
The aftershock productivity decreases substantially for events deeper than approximately 45 km
(see Fig. 3.2(b)), which supports the argumentation in the discussion of the ∆M regression results,
that increasing magnitude differences may be related to reduced aftershock productivity at higher
depths.
Finally, Fig. 3.2(c) shows that, independently of the mainshock size, triggered events appear to
be generally two to three times more productive than a comparable background event. This
finding has two possible explanations. On the one hand, it may be an indicator that the ETAS
based declustering does not properly disentangle trigger chains in the catalog, and incorrectly
overestimates secondary aftershock triggering at the cost of the mainshock. Such a rearrangement
of trigger relations would have a strongly distorting effect on our model.
On the other hand, Zhuang et al. (2004) proposed that triggered events are more productive
than background events, based on a similar study. It seems reasonable that during an on-going
sequence the aftershock productivity could temporarily increase due to a higher level of energy
prevalent in the tectonic system. A doubling of the productivity parameter A in the simulation
model in Subsection 3.2.3, applied only to secondary triggering, would lead to a reduction of the
expected magnitude difference ∆M from 1.2 to below 0.9 due to the increasing cluster sizes. This
additional ”boost” in triggering illustrates the relevance of the observed effect. The finding may
also contribute to an explanation as to why the ETAS model tends to underestimate cluster sizes
and doublet probabilities in forward simulations, as observed in my first contribution (Grimm
et al., 2021). Further research is recommended to evaluate this finding.
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3.4. Alternative Approaches

This work consists of two regression studies. The focus is on the innovate approach to estimate a
fully parametric distribution of ∆M , using survival models that take into account right-censored
data. To my knowledge, no similar approach has been made in literature so far. The chosen
covariates represent rather large-scale regional effects. Attempts to consider small-scale variations
of these covariates or to include further event specific data are out of the scope of this dissertation,
but are recommended for future research.

Extensive research has been done on analyzing the variation of aftershock productivity. Kagan
(2017) and Shebalin et al. (2018) showed that aftershock counts are best modeled by the Negative
Binomial distribution due to their large variance. This assumption was confirmed by the results
in this contribution. Page et al. (2016) found that aftershock productivity may regionally vary by
a factor of almost 10, which would explain the variation in ∆M to large extent. To account for
variation during on-going sequences, they suggested a Bayesian updating approach for sequence
forecasts. Marsan and Helmstetter (2017) found that 40-80% of the aftershock variability may be
related to variation in the mainshock stress drop. Dascher-Cousineau et al. (2020) investigated a
large number of source and site effects on aftershock productivity using various machine learning
algorithms and confirmed individual correlations of stress drop and rupture dimension with the
number of aftershocks. Wetzler et al. (2016) suggested a larger productivity in subduction zones
of the western circum-Pacific, compared to the eastern side. Based on an ETAS model approach,
Zhuang et al. (2004) proposed that triggered events produce more aftershocks than comparable
background events.
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4. Overarching Conclusions

This dissertation contributes to a better understanding of earthquake doublets and the spatio-
temporal evolution of earthquake sequences by two innovative approaches. In my contributions
Grimm et al. (2021, 2022a), I developed advanced versions of the ETAS model. The ETAS-
Anisotropic model (see Subsection 2.2.1) generalizes the spatial aftershock distribution, conven-
tionally assumed to be isotropic, to more adequately reflect the observed elongate shape of after-
shock clouds by applying an anisotropic, locally restricted spatial kernel. The ETAS-Incomplete
model (Subsection 2.2.2) additionally accounts for typically short-term incomplete aftershock
records, and therefore solves three of the major ETAS model biases at once.
In the third contribution, I proposed the innovative approach of using survival regression to model
the right-censored observations of the magnitude differences ∆M between the mainshock and the
second strongest event of the sequence. A generalized additive model was fitted to estimated
aftershock counts, suggesting a substantially increased aftershock productivity of triggered earth-
quakes.

The contributions provide the following answers to the research questions stated in Section 1.4:

1. How frequent are earthquake doublets worldwide?
The contribution Grimm et al. (2021) shows that roughly 20% of the global M ≥ 6 main-
shocks trigger earthquake doublets. In Japan, it tend to be slightly more. Despite being
based on different definitions of a doublet, these values are consistent with Kagan and Jack-
son (1999) who found that approximately 22% of the global M ≥ 7.5 earthquakes occurred
in doublets.

2. In which tectonic regions, and under which geophysical conditions, are doublets most likely
to occur?
This question cannot be answered conclusively. The regression study in the contribution
Grimm et al. (2022b) shows that deep earthquakes and events in oceanic spreading ridges
or transform faults typically have larger ∆M . The contribution could not indicate variables
that could explain particularly small ∆M .

3. Which are the main drivers of earthquake doublet occurrences?
The contributions Grimm et al. (2021, 2022b) interpret the strongest aftershock as the
largest order statistics of a sample of N aftershocks with magnitudes sampled from a com-
mon frequency-magnitude distribution (FMD). Thus, the main drivers of ∆M are the af-
tershock productivity and the b-value governing the Gutenberg-Richter type FMD. Con-
tribution Grimm et al. (2022a) showed that an overestimation of b lead to a substantial
underestimation of the largest magnitude triggered by the 2019 Ridgecrest M6.4 sequence.
Contribution Grimm et al. (2022b) demonstrated that a doubled aftershock productivity
decreases the expected ∆M from 1.2 to below 0.9.
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4. Can we develop an adequate model to predict long-term occurrence probabilities of doublets?
Yes, the advanced ETAS-Anisotropic and ETAS-Incomplete versions proposed in this dis-
sertation can be used to estimate clustering in a catalog, to forward simulate synthetic
clustered catalogs and to analyze and predict doublet occurrence probabilities. The conven-
tional ETAS model provides poor estimates, mainly due to its assumptional biases that are
solved by my suggested versions.

5. Can we develop an adequate model to forecast the spatio-temporal evolution of a particular
earthquake sequence?
Yes, the advanced ETAS-Anisotropic and ETAS-Incomplete versions can be used to forecast
local sequences, as shown on the 2019 Ridgecrest sequence in the contribution Grimm et al.
(2022a). Especially, the spatial forecasts show good agreement with observations, which
may be of major interest for short-term risk assessment by desaster response managers.

Future Research This dissertation has focused on the impact of aftershock productivity on
the occurrence of earthquake doublets. Future work should investigate the impact of the FMD by
exploring potential correlations between the magnitudes of an aftershock and its mother event,
as have been proposed by Gulia et al. (2018) and Nandan et al. (2019). Positively correlated
magnitudes would increase the chance of a doublet occurrence after a strong mainshock.
Based on such an analysis, it would be interesting to identify whether small magnitude differences
∆M are typically characterized rather by above-average aftershock productivity or by magnitude
size distributions favoring large aftershocks. To do so, one could compile a sufficiently large set
of global earthquake sequences and analyze the correlation of their ∆M with estimates of the
aftershock productivity and FMD.
Additionally, the finding in the contribution Grimm et al. (2022b), that triggered earthquakes
have a substantially larger aftershock productivity than background events and therefore provide
a ”boost” to the cluster evolution, should be verified based on alternative declustering methods.
Forward simulations could then show the impact on ∆M expectations.
Finally, an extension of the ∆M survival regression model using small-scale covariate data could
certainly contribute to shed more light on the question which geophysical conditions favor doublet
occurrences.
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Improving Earthquake Doublet Frequency
Predictions by Modified Spatial Trigger Kernels in
the Epidemic-Type Aftershock Sequence (ETAS)

Model
Christian Grimm*1 , Martin Käser2,3, Sebastian Hainzl4 , Marco Pagani5 , and Helmut Küchenhoff1

ABSTRACT
Earthquake sequences add a substantial hazard beyond the solely declustered perspective
of common probabilistic seismic hazard analysis. A particularly strong driver for both social
and economic losses are so-called earthquake doublets (more generally multiplets), that is,
sequences of two (or more) comparatively large events in spatial and temporal proximity.
Without differentiating between foreshocks and aftershocks, we hypothesize three main
influencing factors of doublet occurrence: (1) the number of direct and secondary after-
shocks triggered by an earthquake; (2) the occurrence of independent clusters and seismic
background events in the same time–space window; and (3) the magnitude size distribu-
tion of triggered events (in contrast to independent events). We tested synthetic catalogs
simulated by a standard epidemic-type aftershock sequence (ETAS) model for both Japan
and southern California. Our findings show that the common ETAS approach significantly
underestimates doublet frequencies compared with observations in historical catalogs. In
combination with that the simulated catalogs show a smoother spatiotemporal clustering
compared with the observed counterparts. Focusing on the impact on direct aftershock
productivity and total cluster sizes, we propose two modifications of the ETAS spatial ker-
nel to improve doublet rate predictions: (a) a restriction of the spatial function to a maxi-
mum distance of 2.5 estimated rupture lengths and (b) an anisotropic function with
contour lines constructed by a box with two semicircular ends around the estimated rup-
ture segment. These modifications shift the triggering potential from weaker to stronger
events and consequently improve doublet rate predictions for larger events, despite still
underestimating historic doublet occurrence rates. Besides, the results for the restricted
spatial functions fulfill better the empirical Båth’s law for the maximum aftershock mag-
nitude. The tested clustering properties of strong events are not sufficiently incorporated
in typically used global catalog scale measures, such as log-likelihood values, which would
favor the conventional, unrestricted models.

KEY POINTS
• Relative to its importance for hazard, strong event cluster-

ing is underrepresented in ETAS model fit measures.
• The ETAS model underrates doublet occurrences by

assigning too low trigger productivity to strong events.
• Doublet occurrence rate predictions should be considered

as a quality measure for seismic hazard models.

INTRODUCTION
Sequences of strong earthquakes within a relatively narrow time–
space window can cause dramatic social and economic damage
to our society. The financial losses produced by such multiplets

are of particular interest to the risk assessment of governments
and in the insurance industry. Recent examples of short-term
clusters containing several strong, damaging earthquakes are
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the Kumamoto (Japan, 2016) sequence with a magnitude
MJMA 7.3 mainshock (i.e., MA refers to Japanese Meteorological
Agency.) preceded by MJMA 6.4 and 6.5 foreshocks within 28 hr
(Zhuang et al., 2017), and the Ridgecrest (California, 2019)
sequence with a mainshockMw 7.1 preceded by anMw 6.4 event
about 34 hr earlier (Hauksson et al., 2020).

Most typically, sequences of strong and destructive fore-
shocks, mainshocks, and aftershocks occur within several
hours or few days and can therefore be assumed to be con-
trolled by a physical triggering mechanism. However, it is well
known that aftershock sequences can increase seismicity
locally for years or even decades. In case that two strong events
occur in spatial proximity but months apart, the second event
may be an offspring of the ongoing sequence of the first or may
have happened coincidentally due to independent background
seismicity or as a part of an unrelated sequence.

However, from a risk management perspective, the question
of physical causality and the particular interevent time seems
rather irrelevant. In both cases, the repeated destruction may
affect the same governmental budgets and (re)insurance con-
tracts within a relatively short time, and thus presents a com-
parably severe risk. Reliable predictions of the likelihood of any
strong event cluster, both triggered and coincidental, are there-
fore an important task for risk managers in governments and
the insurance industry.

A suitable term for strong event clusters is given by so-called
earthquake doublets, sometimes more generally referred to as
multiplets. Although exact specifications are highly inconsistent
in the literature, they are generally defined as pairs (doublets) or
sets (multiplets) of similarly strong earthquakes in spatiotempo-
ral proximity (Lay and Kanamori, 1980; Kagan and Jackson,
1999; Felzer et al., 2004; Gibowicz and Lasocki, 2005).

Kagan and Jackson (1999) defined doublets as pairs of
earthquakes with magnitude Mw ≥ 7:5 that are no more than
one rupture size apart and for which interevent time is less
than their recurrence time derived from plate motion. They
found that approximately 22% of worldwide events withMw ≥
7:5 occur in doublets, with a maximum interevent time of dou-
blet pairs of almost 17 yr.

In contrast, Felzer et al. (2004) specified multiplets as a
potential mainshock together with all aftershocks within 0.4
magnitude units, occurring during the following two days
and within a spatial box centered in the mainshock’s epicenter.
The distance of the mainshock’s epicenter to the sides of the box
is set to 2.5 times the estimated fault length, which is justified by
the hypothesis that aftershocks are generally expected to occur
within two fault lengths, with an extra half a length accounting
for location uncertainty. They demonstrated statistical evidence
that foreshocks, aftershocks, and multiplets occur due to the
same physical triggering mechanism, and that the number of
times that multiplets occur increases linearly with the number
of aftershocks observed. Felzer et al. (2004) infer that certain
regions in the world, such as Solomon Islands, show an

increased multiplet rate due to higher aftershock rates and
earthquake density, rather than unique seismic fault structures
that support the occurrence of multiplets.

Gibowicz and Lasocki (2005) defined doublets as a pair of
trigger-related earthquakes with no more than 0.25 magnitude
units difference, applying magnitude-dependent stepwise spa-
tial and temporal constraints of 40–90 km and 200–450 days.

Although the concept of earthquake triggering is well known
and the potential of additional damage due to ongoing seismic
sequences has been shown in recent studies (Abdelnaby, 2012;
Kagermanov and Gee, 2019; Papadopoulos et al., 2020), seismic
hazard is typically computed considering only independent (i.e.,
mainshock) earthquakes, for example, in probabilistic seismic
hazard analysis (PSHA) approaches (Cornell, 1968; McGuire,
2008). PSHA traditionally not only neglects contributions to
hazard from supposedly triggered sequences and therefore
underestimates chances of doublet and multiplet occurrences,
but it is also based on the highly subjective and influential selec-
tion of a declustering method (van Stiphout et al., 2011;
Marzocchi et al., 2014; Zhang et al., 2018).

A prominent and extensively studied method to analyze
earthquake sequences is the epidemic-type aftershock sequence
(ETAS) model (Ogata, 1988, 1998). ETAS accounts for earth-
quake clustering in terms of a branching process, and models
the number of aftershocks as well as their spatial and temporal
distribution depending on the magnitude of the trigger. The
spatiotemporal event rate is formed by the sum of a triggered
rate and a time-independent seismic background rate contri-
bution (Zhuang et al., 2002; Kagan et al., 2010; Chu et al., 2011;
Jalilian, 2019). ETAS model estimations can be used for both
short-term aftershock forecasts and the simulation of long-
term synthetic catalogs.

The goodness of ETAS model fits is typically assessed by the
log-likelihood function (LLF), Akaike’s information criterion
(AIC), or the degree of spatial clustering, expressed by Ripley’s
K-function (Veen, 2006; Chu et al., 2011). Besides, visual tools
such as spatial plots of the estimated conditional intensity and a
comparison of the ETAS triggering function with observed after-
shock rates in the historic catalog can be used (Chu et al., 2011).
All previously mentioned have in common that they assess the
model fit on a global catalog scale, that is, they test whether the
synthetic catalogs sufficiently well represent the observed spatio-
temporal clustering behavior in the full magnitude range.

The log-likelihood and AIC measures are related to the joint
probability of all earthquakes, and thus mainly determined by
the fit to the more numerous smaller magnitude events. This
might be problematic concerning earthquake risk, which is
mainly related to large events. For example, Hainzl et al.
(2008, 2013) showed that the common ETAS assumption of
isotropic aftershock triggering leads to a biased magnitude
scaling of the aftershock productivity in which the trigger
potential of small magnitudes is overestimated to better adapt
to realistic anisotropic aftershock distributions. Therefore, it is
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also desirable to assess synthetic ETAS catalogs on their
capability to predict realistic occurrence rates of large-
magnitude doublets and multiplets.

In this article, we present a new concept of assessing the qual-
ity of synthetic catalogs generated by ETAS with respect to dou-
blet and multiplet rates. We introduce three novel and more
realistic designs of the ETAS spatial kernel that improve predic-
tions of the respective rates: (1) an anisotropic spatial distribu-
tion, (2) an isotropic but finite spatial distribution, and (3) a
finite anisotropic spatial distribution. We then test our new
model approaches for 24 and 39 yr lasting earthquake catalogs
recorded in Japan and southern California, respectively.

In the following section, we derive a doublet and multiplet
definition that is used in this article, and comprehensively dis-
cuss the main influencing factors for doublet and multiplet
occurrences. Next, we briefly describe the utilized earthquake
catalogs. We then describe the common ETAS model, define
the tested variants of the spatial kernel, and introduce the qual-
ity measures applied in our analysis of model fits and simula-
tion results. Finally, we present and discuss the results of all
four studied ETAS model versions, and we interpret the find-
ings related to the initial motivation in the Conclusion section.

EARTHQUAKE DOUBLETS
Definition
For the sake of simplicity, in this work, we waive the term
multiplet and define an earthquake doublet more generally
as a pair or set of events with a magnitude difference of less
than 0.4, occurring within 1 yr (starting from the occurrence
time of the earlier event) and within a circular radius of 2.5
times the estimated rupture length of the earlier event.

The temporal constraint of 1 yr is derived from the typical
length of a (risk) budget period or reinsurance contract. We
limit our investigation to strong events with magnitude
Mw ≥ 5:9, therefore allowing for doublet and multiplet partner
events down to Mw ≥ 5:5.

Doublets may either occur within a supposed triggered
sequence (mainshock and aftershock) or among independent
clusters. To avoid doublets built by two aftershocks, being both
related to a stronger mainshock prior to them, we only count
doublets in which the earlier event is not contained in the
time–space domain of a previous, stronger event. This is consis-
tent with our motivation drawn from a risk management
perspective, because the damage caused by an aftershock–after-
shock doublet is likely to be overshadowed by the mainshock.

Main influencing factors
Assuming equal physical triggering mechanisms of foreshocks
and aftershocks (Felzer et al., 2004), we propose the following
three main factors for doublet occurrences:

1. the aftershock productivity, that is, the number of direct and
secondary offsprings triggered by an earthquake,

2. the number of independent events in the same time–space
window, that is, the occurrence of clustered and background
events that are unrelated to the triggering of the event under
consideration, and

3. the magnitude size distribution of triggered and indepen-
dent background events.

It is evident that a higher amount of earthquakes within the
time–space window of an investigated event increases the
probability of a doublet occurrence. Therefore, an increased
aftershock productivity and background activity (the first
two factors mentioned before), increase the likelihood that a
doublet partner is found. Clearly, the aftershock productivity
has a much stronger effect than the time-homogeneous seismic
background rate, because it directly increases the local and
short-term cluster size. It is important to mention that trig-
gered and background seismicity are interacting like compet-
ing contributors to event rates in ETAS, so an increase of
aftershock productivity is generally going along with a decrease
of background seismicity and vice versa. The overlapping of
the considered event sequence by a second, unrelated cluster
evolving in the same time–space window increases the doublet
probability substantially if the second cluster is approximately
equal or larger.

Regarding the magnitude size distribution (the third
factor mentioned before), it is still controversially debated
in the literature whether the magnitude size distribution
of a triggered event depends on the magnitude of its trigger.
Although Felzer et al. (2004) assume that the magnitude
size distribution of a triggered event follows a constant
Gutenberg–Richter relationship and therefore is indepen-
dent of the trigger’s magnitude, Nandan et al. (2019) find
triggered magnitudes clustering around the triggering mag-
nitude by a kinked magnitude size distribution, which would
mean that the triggering event tends to reproduce similar
magnitudes with increased probability. In contrast to that,
based on a stacking-approach analysis of Mw ≥ 5:9, therefore
allowing for doublet and multiplet partner events down to
Mw ≥ 5:5, Gulia et al. (2018) argue that the b-value on aver-
age shows a temporal 20%–30% increase compared with the
premainshock time, with more significant increases for
stronger events nearby the mainshock epicenter location.
We point out that the kinked magnitude size distribution
by Nandan et al. (2019) would increase chances of doublet
and multiplet occurrence, whereas the temporal b-value
increase suggested by Gulia et al. (2018) significantly lowers
their likelihood.

In this article, however, we assume a unique magnitude
size distribution for all events according to the Gutenberg–
Richter relationship (Gutenberg and Richter, 1944) as done
so in the vast majority of ETAS studies. Instead, we are focus-
ing our study on the impact of the aftershock productivity in
ETAS on doublet and multiplet occurrence rates.
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SELECTION OF EARTHQUAKE CATALOGS
We perform our study in two regions with distinct tectonic
environments and faulting types—Japan and southern
California. The seismicity in Japan is complex, hosting
reverse-faulting subduction zone events (particularly along
the coast) with relatively flat dips and broader, more isotropi-
cally shaped spatial distributions of aftershock epicenters, as
well as in-slab normal-faulting earthquakes and crustal events
with varying depths and mechanisms. Southern California has
mostly steep faults with strike-slip rupturing mechanisms in a
continental tectonic regime, promoting narrower, elongate dis-
tributions of epicenters.

Regional catalogs
In the following, we describe the regional earthquake catalogs
used for the estimations of the ETAS model. For each dataset,
we define a time–space target window, which is constructed by
a time span and a geographical polygon. This window com-
prises the so-called target events that are used to fit the model.
The additional complementary window is built by the preced-
ing six months and a 1° bounding box around the polygon in
the geographic coordinate system. The so-called complemen-
tary events are not fitted by the ETAS model estimations but
may contribute to the estimated trigger rate of events in the
target domain.

We downloaded the Japan earthquake catalog from the
National Research Institute for Earth Science and Disaster

Resilience (NIED; see Data and
Resources; Kubo et al., 2002).
The catalog provides both
moment tensor magnitudes and
JMA scale magnitudes. For our
study, we chose the moment
magnitude data, which are com-
plete from Mc � 4:0 according
to the fit of the model of
Ogata and Katsura (1993). We
define the time–space target
window from 1 July 1997 to
31 October 2020, and for a lon-
gitude–latitude range from 129°
to 144° E and from 28° to 44° N,
respectively. Figure 1a shows the
selected event locations with the
corresponding boundaries of the
spatial polygon.

The focal mechanism catalog
for southern California was
obtained from the Southern
California Earthquake Data
Center (See Data and Resources;
Hauksson et al., 2012; Yang
et al., 2012). Magnitudes are

provided in moment magnitude scale. The completeness magni-
tude is estimated to be Mc � 2:8 using the Ogata and Katsura
(1993) model. We defined the target window from 1 July 1981 to
31 December 2019 and by a hexagonal polygon (Hutton et al.,
2010), which is depicted in Figure 1b together with all event
locations.

Both catalogs provide nodal-plane solutions for each event.
Because the accuracy of focal mechanisms cannot be guaran-
teed, especially for smaller magnitude events, we used the given
sets only as additional candidates in our algorithm to deter-
mine the strike angle needed for the anisotropic ETAS model
version (See the ETAS Model section.).

Short-term incompleteness
Short-term incompleteness in earthquake catalogs can be
defined as the deficiency of events above the general com-
pleteness level Mc for a limited time after a relatively large
event. The phenomenon appears to mainly result from the
overlap of seismic records that are dominated by the coda
waves of the preceding strong event, and therefore let sub-
sequent, weaker events remain undetected (de Arcangelis
et al., 2018).

Short-term incompleteness in the underlying earthquake
catalogs has been identified as a major source of bias in the
ETAS estimation process (Kagan, 2004; Hainzl, 2016a,b;
Page et al., 2016; Seif et al., 2017). For M ≥ 6 earthquakes
in southern California, Helmstetter et al. (2006) estimated

Figure 1. Event locations in the two utilized earthquake catalogs, including both target and complementary events.
Red polygons represent the respective spatial target window. (a) Events in National Research Institute for Earth
Science and Disaster Resilience (NIED) catalog for Japan, Mw ≥ 4:0, target period from 1 July 1997 to 31 October
2020, complementary period from 1 January 1997 to 30 June 1997. (b) Events in Southern California Earthquake
Data Center (SCEDC) catalog for southern California, Mw ≥ 2:8, target period from 1 July 1981 until 31 December
2019, complementary period from 1 January 1981 to 30 June 1981. The color version of this figure is available only
in the electronic edition.
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the duration of temporary catalog incompleteness (in days)
above a given magnitude threshold Mc as

EQ-TARGET;temp:intralink-;df1;41;718t � 10�m−4:5−Mc�=0:75: �1�

For instance, it means that a catalog with cutoff magnitude
Mc is incomplete for about one day after an event with mag-
nitudem � Mc � 4:5. The duration of incompleteness exceeds
one minute for magnitudes m ≥ Mc � 2:2.

In our study, we assume that relation (1) is approximately
valid for the region of Japan as well. Events occurred during peri-
ods of temporary incompleteness are not used for the maximum-
likelihood ETAS fit, but still contribute to the ETAS event rates of
future target events, which means, technically speaking, that they
are downgraded from target to complementary events. To avoid
excessive fragmentation of the target time window, we applied
short-term incompleteness only to events with magnitudes
Mc ≥ 6:2 for Japan andMc ≥ 5:0 for southern California, which
is 2.2 magnitude units above the respective catalog thresholds.

Global ISC-GEM catalog
For the comparison with more long-term regional and global
doublet occurrence rates, we utilize the International
Seismological Centre–Global Earthquake Model (ISC-GEM)
Global Instrumental Earthquake Catalogue with events from 1
January 1904 (See Data and Resources; Storchak et al., 2015;
Di Giacomo et al., 2018). Magnitudes are provided in moment
magnitude scale. According to the catalog description and Di
Giacomo et al. (2018), the ISC-GEM catalog is stepwise complete
from Mc � 7:5 (before 1918), Mc � 6:25 (from 1918 to 1959),
and Mc � 5:5 (since 1960). Significant continental earthquakes
with magnitude 6.5 or larger are included before 1918.

ETAS MODEL
The initial ETAS model implemented in this study is based on
the R package ETAS, as presented by Jalilian (2019) (See Data
and Resources.). It estimates the model parameters using a
maximum-likelihood approach and the stochastic declustering
method introduced by Zhuang et al. (2002).

In ETAS, the occurrence rate of an earthquake at a given time
t and location (x, y) corresponds to the sum of two overlaying
components: (a) the coincidental, time-independent background
seismicity rate and (b) the sum of dynamic trigger rate contri-
butions from all events occurred before time t (i.e., the event
historyHt). The combined occurrence rate is, therefore, modeled
by a nonhomogeneous Poisson process with intensity function:

EQ-TARGET;temp:intralink-;df2;41;146λ�t; x; yjHt� � μh�x; y� �
X
i:ti<t

κA;α�mi�gc;p�t − ti�f D;γ;q�x; y; i�;

�2�
in which μ is the total rate of m ≥ Mc background events in the
whole region, and h�x; y� denotes the spatial probability
density function (pdf) of the background seismicity.

The term within the sum describes the trigger rate
contribution of an event i, occurred at time ti < t and
location �xi; yi� with magnitude mi, to the rate of m ≥ Mc

events at time t and location (x; y).
The aftershock productivity function

EQ-TARGET;temp:intralink-;df3;308;679κA;α�mi� � A exp�α�mi −Mc�� �mi ≥ Mc;A; α > 0�; �3�

describes the average number of direct aftershocks (offsprings)
triggered by an event i with magnitudemi. Such an exponential
growth of the productivity is in good agreement with observa-
tions (see, e.g., the summary provided by Hainzl and Marsan,
2008).

The temporal trigger function

EQ-TARGET;temp:intralink-;df4;308;563gc;p�t − ti� � �t − ti � c�−p �t ≥ ti; c; p > 0�; �4�

is the well-known empirical Omori–Utsu law for the decay of
aftershock rates with increasing time t after the occurrence
time ti of the triggering event i (Utsu et al., 1995). The c-value
defines the delay of the onset of the power-law decay and is
typically much less than one day. It is likely related to
short-time incompleteness of earthquake catalogs after main-
shocks (Hainzl, 2016a). The p-value is in the 0.8–1.2 range in
the most cases (Utsu et al., 1995).

Finally, the spatial trigger function f D;γ;q�x; y; i� is conven-
tionally designed as an isotropic pdf and models the decay of
aftershock rates depending on the distance of (x, y) to the epi-
center of the triggering event �xi; yi�. The ETAS model with an
isotropic spatial kernel is the hereinafter called isotropic refer-
ence model M0.

However, the assumption of an isotropic distribution is con-
sidered to be a weak point in many publications throughout the
literature (Ogata, 1998, 2011; Ogata and Zhuang, 2006; Hainzl
et al., 2008, 2013; Bach and Hainzl, 2012; Seif et al., 2017;
Zakharova et al., 2017; Zhang et al., 2018, 2020). To name a
few, Zhang et al. (2018) emphasize that isotropy may be specifi-
cally unsuitable for subduction zone events above a magnitude of
approximately Mw 7.5, because estimated rupture lengths and
widths are diverging increasingly. They suggest a uniform spatial
density in the rupture area with power-law decay outside.
Moreover, because ETAS usually neglects the depth dimension,
increasing dip angles can already lead to a clearly elongate and
thus anisotropic projection shapes of the rupture plane for even
smaller events. Another prominent design is the elliptic Gaussian
distribution introduced by Ogata (1998) and further studied by
Ogata and Zhuang (2006) and Ogata (2011).

In the previous references, anisotropic models are generally
found to lead to more accurate ETAS model estimates. In
particular, Hainzl et al. (2008, 2013) emphasize that the
assumption of isotropy can lead to an underestimation of
the aftershock productivity parameter α, resulting in underpre-
dicted cluster sizes of stronger events. Given our particular
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interest in strong events, this gives the motivation to apply an
anisotropic alternative in this study.

Besides, in preliminary analyses of a standard ETAS model,
we observed that small events are typically assigned a much
wider reach of spatial triggering relative to their estimated rup-
ture size than large events. We hypothesize that this might sim-
ilarly promote disproportionate triggering of smaller events,
because it might be easier for the ETAS algorithm to model
unique spatial cluster patterns by the overlapping spatial ker-
nels of a large number of smaller events than by the rather
inflexible spatial shapes of fewer, but stronger events.

Therefore, in this article, we propose two modifications of
the conventional, isotropic reference modelM0: First, we apply
an anisotropic spatial kernel constructed around the surface
projection of the estimated rupture segment, which is assumed
to be parallel to the strike and passing through the epicenter.
Second, we introduce a magnitude-dependent spatial restric-
tion threshold to the spatial kernel that prevents events from
triggering outside of the specified surrounding area.

In the following, we introduce the finite and infinite iso-
tropic and anisotropic kernels. Next, we present the algorithm
to estimate the rupture length as well as the strike angle and
epicenter position along the rupture line in the anisotropic
model case. Then, we define the set of four models that were
tested in this study. Ultimately, we account for a rescaling of
the aftershock productivity.

Isotropic versus anisotropic spatial kernel
Consider a triggering event i with magnitude mi and epicenter
location (x, y). Furthermore, in the isotropic case, let ri�x; y� be
the point-to-point distance of a point (x, y) to the epicenter
location of event i. We define the standard isotropic spatial
kernel following Jalilian (2019) by

EQ-TARGET;temp:intralink-;df5;53;315f D;γ;q�x;y; i� :�
q−1

Dexp�γ�mi −Mc��

�
1� πri�x;y�2

Dexp�γ�mi −Mc��

�
−q
;

�5�

with spatial parameters q > 1 and D, γ > 0. The characteristic
length of the power-law decay,

��������������������������������������������
D exp�γ�mi −Mc��=π

p
, scales

with the trigger magnitude, which accounts for the observed
exponential increase of the rupture dimensions with earth-
quake magnitude (Wells and Coppersmith, 1994).

For the anisotropic case, let li be the estimated rupture length
of event i and ri�x; y� denote the nearest point-to-segment dis-
tance of a point (x, y) to the estimated rupture segment of event i.
Then, we construct the anisotropic spatial kernel by

EQ-TARGET;temp:intralink-;df6;53;132

f D;γ;q�x; y; i� :�
q − 1

D exp�γ�mi −Mc���
1� 2l�mi�ri�x; y� � πri�x; y�2

D exp�γ�mi −Mc��

�
−q
; �6�

with the same parameter constraints q > 1 and D, γ > 0. The
anisotropic kernel (equation 6) is a generalisation of the isotropic
kernel (equation 5) for rupture lengths l�mi� > 0. In contrast to
the isotropic function, the contour lines of the anisotropic kernel
are not centered around the epicenter but constructed as a box
with two semicircular ends around the estimated rupture line of
the triggering event. Both kernels are pdfs over infinite space.

Spatial restriction
We can restrict the spatial extent of both the isotropic and
anisotropic spatial kernel by setting f D;γ;q equal to 0, if the
respective distance term exceeds a certain magnitude-
dependent threshold r̃�mi�, that is,

EQ-TARGET;temp:intralink-;df7;320;575f̃ D;γ;q�x; y; i� �
� f D;γ;q�x;y;i�

FD;γ;q�mi� if ri�x; y� ≤ r̃�mi�
0 otherwise

; �7�

in which f̃ D;γ;q�x; y; i� is normalized by the integral of
f D;γ;q�x; y; i� over the area up to the cutoff distance r̃�mi� to
retain a pdf:

EQ-TARGET;temp:intralink-;;320;484 FD;γ;q�mi��
8<
:
1−

�
1� πr̃�mi�2

Dexp�γ�mi−Mc��
�
1−q �isotropic model�

1−
�
1�2l�mi�r̃�mi��πr̃�mi�2

Dexp�γ�mi−Mc��
�
1−q �anisotropic model�

:

In this study, we use a threshold that is proportional to the
magnitude-dependent rupture length l�mi� of event i, that is,
r̃�mi� � kl�mi�, to correlate the spatial trigger extent to the
estimated rupture dimension. Figure 2 visualizes the shapes
of isotropic and anisotropic spatial kernels, restricted to a
distance of r̃�mi� � 2:5l�mi�, for the exemplary magnitudes
Mc 5.0 and 7.5, using initial spatial parameter guesses
D � 2:0, γ � 2:1, and q � 1:5.

Estimation of rupture length, strike, and position of
rupture line
The anisotropic spatial kernel defined in equation (6) requires
an estimation of the ruptured segment, in particular, its central
location, the length, and the strike angle to locate the rupture
line segment of an earthquake. To obtain magnitude-
dependent estimates of the subsurface rupture lengths l of all
events, we use the scaling relations:

EQ-TARGET;temp:intralink-;df8;320;210 log10�l�m�� �
�
−2:37� 0:57m reverse  faulting
−2:57� 0:62m strike-slip  faulting ; �8�

in which, for the sake of simplicity, we selected the reverse-
faulting scaling relations for subduction environments, pro-
vided by Blaser et al. (2010), for all events in the Japan catalog
and the strike-slip faulting equations for continental regimes,
given by Wells and Coppersmith (1994), for all southern
Californian events.

The strike angles are selected such that the corresponding
rupture line fits well to the cloud of potential aftershocks.
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Therefore, we test the given focal mechanism data in the earth-
quake catalogs and compute the summed trigger rates for the
subsequent events like in equation (2), assuming initial param-
eter guesses:

EQ-TARGET;temp:intralink-;;41;301 �A0; α0; c0; p0;D0; γ0; q0� � �0:02; 1:6; 0:02; 1:0; 2:0; 2:1; 1:5�:

In addition, we go through all strikes from 0° to 175° in 5°
steps and compute the initial trigger rates accordingly. From all
candidates, we choose the one that leads to the maximum sum
of occurrence rate contributions to future events and, therefore,
is in best agreement with presumed offsprings. Because we do
not consider the rupture’s dip, strikes above 180° coincide with
the tested set of angles. Once we have optimized the strikes via
the earlier approach, we additionally test five different positions
of the rupture line relative to the corresponding epicenter loca-
tion of the trigger event. Thus, we allow the epicenter to lie either
right at the start, center, or end of the rupture line, or a quarter
or three quarters along the rupture line. The aforementioned
selection algorithm clearly represents a manipulation of the ini-
tial model conditions. In fact, the so-selected strike angles show
only moderate agreement with the originally provided strikes.
Compared to using only nodal-plane solutions given in the

catalogs, we observed negligible effects for Japan and moderately
increasing estimates of the aftershock productivity in southern
California, where potential aftershocks were more likely to scat-
ter along a clearly identifiable line. In any case, the impact of
optimized strike selection was much smaller than the effect
of the introduced spatial restrictions or the anisotropic shape
of the spatial kernel itself.

Mismodeling of the spatial aftershock distribution leads to
biased model estimates (Hainzl et al., 2008). To minimize this
problem, we refrained from directly using the strike values pro-
vided in the catalogs due to the large uncertainties in the source
inversions. Instead, the optimized selection of strike angles
assures that the event’s rupture line passes through the cloud
of its potential aftershocks, which we visually confirmed for
individual sequences.

Figure 2. Visualization of the spatial kernels restricted to a distance of
r̃�mi� � 2:5l�mi�: (a) isotropic kernel for magnitude Mc 5.0, (b) aniso-
tropic kernel for magnitude Mc 5.0, (c) isotropic kernel for magnitude
Mc 7.5, and (d) anisotropic kernel for magnitude Mc 7.5. The 3D probability
density functions (pdfs) result from equation (7), using the initial parameter
guesses D � 2:0, γ � 2:1, and q � 1:5. The color version of this figure is
available only in the electronic edition.
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Choice of four model designs
In this article, we analyze four different variants of the ETAS
model regarding their ability to predict realistic doublet and
multiplet rates. Table 1 lists the model design specifications
made for each approach.

The reference model M0 represents the standard isotropic
design in equation (5) with event-specific spatial restriction:

EQ-TARGET;temp:intralink-;;53;535 r̃0�mi� � 100l�mi�:

The restriction r̃0�mi� is only of technical nature and has
negligible impact on results, while considerably improving
code performance by avoiding the computation of extremely
distant interevent triggering relations over the entire catalog
size. Hereinafter, we will therefore refer to models with spatial
extent r̃0�mi� as unrestricted.

Using the same isotropic kernel (equation 5), in model M1,
we test the spatial restriction:

EQ-TARGET;temp:intralink-;;53;393 r̃1�mi� � minf2:5l�mi�; 1g;

in which the lower limit of one kilometer guarantees a mini-
mum spatial extent to the smallest events in the catalog. The
goal of the restricted extent of the spatial kernel is to avoid
wrong associations of distant events as aftershocks. It gives
more triggering power to the stronger events (which may trig-
ger in a larger area) and takes away triggering potential from
the weaker events. The metric of 2.5 rupture lengths goes back
to the assumption in Felzer et al. (2004) that aftershocks are
expected to mainly occur within this distance, including a
buffer of half a rupture length for location uncertainties.

ModelM2 builds upon the anisotropic spatial kernel (equa-
tion 6) with optimized strikes and relative rupture locations
and is unrestricted (r̃0�mi�).

Finally, model M3 tests the anisotropic spatial kernel with
restriction r̃1�mi�.

For the sake of consistency, we applied the anisotropic spa-
tial kernels to all events disregarding their magnitude in mod-
elsM1 andM3. For small rupture lengths, however, the shape is
similar to an isotropic kernel.

Subsequent rescaling of ETAS functions
The temporal trigger function (equation 4) is not a pdf, because
its integral over infinite time typically amounts to a number

larger than 1 (for p > 1) or infinity (for p < 1). Therefore,
the excessive density in equation (4) downscales the estimates
of parameter A in the productivity function (equation 3).

In favor of better interpretability of the model results, it is
useful to cut off the temporal trigger function (equation 4) at
the length of the entire catalog T (in days) and normalize it by
the integral over the time range from 0 to T , that is,

EQ-TARGET;temp:intralink-;;320;535 Gc;p�T� �
1

1 − p
��T � c�1−p − c1−p�:

Accordingly, we rescale the absolute aftershock productivity
parameter A by

EQ-TARGET;temp:intralink-;df9;320;471Ã � AGc;p�T�: �9�

QUALITY MEASURES
In this section, we introduce the quality measures used to assess
and compare the goodness of the selected models. We start with
a short description of the log-likelihood value and branching
ratio, designed to assess the goodness of fit and the detected trig-
ger portion on a global catalog scale. These properties are widely
used in ETAS analysis but have the disadvantage that they do not
provide any detailed information on how well the model repre-
sents the critical triggering behavior of particularly strong earth-
quakes, which is of interest in this study.

Therefore, we add tools to more specifically evaluate the
models’ capability of representing strong event clusters. First,
the expected, magnitude-dependent cluster size is derived.
Next, we outline the ETAS forward simulation procedure for
both single sequences and synthetic catalogs based on the
model estimates. Then, we suggest visual and semiquantitative
measures (e.g., Båth’s law, degree of temporal and spatial clus-
tering) that help understand clustering properties in the simu-
lated catalogs. Finally, we describe the evaluation of doublet
probabilities from simulated catalogs and sequences.

LLF and integrated event rate
The set of ETAS parameters, θ � �μ;A; α; c; p;D; γ; q�, is
optimized by maximizing the LLF:

EQ-TARGET;temp:intralink-;df10;320;106l�θjHT� �
XN
j�1

ln�λθ�tj; xj; yjjHtj�� − Λθ�T; SjHT�; �10�

TABLE 1
Overview of the Specifications of the Four Epidemic-Type Aftershock Sequence (ETAS) Model Variants Tested in This Article

Model Spatial Design Restriction Factor Strike Estimation Epicenter Location

M0 Isotropic 100 — —

M1 Anisotropic 100 Optimized Optimized
M2 Isotropic 2.5 — —

M3 Anisotropic 2.5 Optimized Optimized
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in which the first term sums up the logarithmic event rates
(equation 2) at the exact times tj and locations �xj; yj� of
the N target events that occurred in the time–space window
specified for each catalog. The second term

EQ-TARGET;temp:intralink-;df11;41;692Λθ�T; SjHT� �
Z
T

ZZ
S
λθ�t; x; yjHt�dxdydt; �11�

represents the total event rate integrated over the (stepwise)
target time window T and the target space window S based
on the estimated background seismicity rate and the trigger-
ing-induced rate resulting from contributions of both target
and complementary events in the original catalog. In other
words, Λθ�T; SjHT� represents the expected total number of
events to occur within the modeled target time–space domain
(Ogata, 1988, 1998; Jalilian, 2019).

In general, a larger LLF value l�θjHT� implies a better fit to
the event occurrence in the original catalog. The LLF value is
comparable only for identical data inputs, that is, model runs
for Japan and southern California cannot be cross compared.
Because all model approaches are based on the same number of
free parameters, the information from the AIC criterion is
redundant and therefore not shown.

Branching ratio
Wemodeled the magnitude size distribution by the pdf derived
from the Gutenberg–Richter relationship, that is,

EQ-TARGET;temp:intralink-;df12;41;393ρ�m� �
�
β exp�−β�m −Mc�� if m ≥ Mc

0 otherwise;
�12�

thus assumingMmax � ∞ as the maximummagnitude for each
region. The maximum-likelihood estimator for parameter β is

EQ-TARGET;temp:intralink-;;41;316 β̂ � NP
N
i�1�mi −Mc�

;

in which N is the number of fitted events, and mi denotes the
respective event magnitudes (Jalilian, 2019). Applied to the
magnitudes of all target events in our regional catalogs, we
obtained β̂JPN � 2:36 for Japan and β̂CAL � 2:73 for southern
California.

The branching ratio measures the mean direct aftershock
productivity of an arbitrary event, averaged over the entire
magnitude range. It is computed by the integral of the esti-
mated aftershock productivity with parameters α and rescaled
Ã weighted by the pdf of the magnitude size distribution ρ�m�,
that is (Seif et al., 2017; Jalilian, 2019)

EQ-TARGET;temp:intralink-;df13;41;119νbranch �
Z

∞

Mc

Ãeα�m−Mc�ρ�m�dm � Ãβ
β − α

; �13�

for α < β.

Cluster size
Based on the estimates of the (direct) aftershock productivity
function (equation 3) and the branching ratio (equation 13),
we obtain the expected cluster size:

EQ-TARGET;temp:intralink-;df14;308;692

bNc�m� � Ãeα�m−Mc�

1 − νbranch
; �14�

including secondary triggering by use of the geometric series
(Helmstetter and Sornette, 2003).

ETAS forward simulation process
For every model and region, we used the fitted ETAS param-
eters to forward-simulate both single synthetic sequences and
entire catalogs. We generated single trigger sequences to study
the results without the impact of background seismicity and
independent clusters. Each of these sequences is initiated by a
mainshock of varying magnitude, starting from Mw 5.5 and
incrementally increasing in tenths of a magnitude unit. For
each region and model, a set of 5000 sequences was simulated
for each mainshock magnitude.

In addition, we simulated 10,000 realizations of an entire
synthetic catalog, including background seismicity and simul-
taneously evolving trigger sequences. As a time–space window
for the simulations, we chose the identical constraints for
which the ETAS models were fitted (See the Selection of
Earthquake Catalogs section.), including the semiyear comple-
mentary time window as an initialization period of pre-existing
seismicity. The background seismicity rate is distributed over
the spatial window by a superposition of bivariate, isotropic
Gaussian kernels, centered in the original event occurrences
(Jalilian, 2019).

In both types of simulations, the number of offsprings is
drawn from a Poisson distribution with an expected value
equal to the magnitude-dependent aftershock productivity
estimate. We used the inversion method to sample the spatial
and temporal distance of an offspring to the trigger, and then
sampled uniformly from the respective contour line of the
spatial distribution. The magnitudes of both triggered and
independent events were sampled from the Gutenberg–
Richter distribution (equation 12), with β as estimated for the
respective region.

Because the original Japan catalog contains the extreme
Tohoku earthquake (11 March 2011; according to the catalog
Mw 8.7) that is very unlikely to be sampled from the
Gutenberg–Richter distribution, we manually added the
Tohoku event to all synthetic catalogs for Japan.

Båth’s law
An important property of an earthquake cluster is the magni-
tude difference between the mainshock and the strongest after-
shock, as it can serve as an indicator of how much hazard is
added by the ongoing triggering of a sequence.
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Historical observations show that this magnitude difference
is, on average, approximately 1.2 magnitude units independ-
ently of the absolute magnitude of the trigger event, which
is referred to as Båth’s Law (Vere-Jones, 1969; Helmstetter
and Sornette, 2003; Shearer, 2012).

For observed and synthetic catalogs, we approximate the
magnitude difference by applying the time–space constraints
of our doublet definition to any event under consideration,
and computing the magnitude difference between the consid-
ered event and the strongest of all events that occurred in the
specified time–space domain. Clearly, this selection can
include independent background events or events occurred
in unrelated clusters. To constrain the Båth law statistics to
mainshocks, we skip earthquakes that are supposed aftershocks
(i.e., which are contained in the time–space range of a previous,
stronger event) or foreshocks (i.e., which contain a stronger
event in their own time–space domain).

For synthetic sequences, we apply the same filtering algo-
rithm to each simulated sequence with its known initiating
magnitude.

Coefficient of variation
We measure the degree of temporal clustering of event occur-
rences by decomposing the time domain into a monthly grid
and computing the variation of the numbers of events falling
into the time intervals. To account for varying overall catalog
sizes, we use the coefficient of variation (CV), which is a mea-
sure of the relative dispersion of a random distribution sample

X standardized by its mean. It is computed as CV �
�����������
Var�X�

p
Mean�X� ,

in which Var�X� denotes the variance of the sample X.

Ripley’s K
The degree of spatial clustering of the event locations can be
expressed by Ripley’s K-function (Ripley, 1976; Veen, 2006).
The K-function computes the average number of additional
event locations within a distance h of any given event, normal-
ized by the overall number of events per space unit N=A, that is,

EQ-TARGET;temp:intralink-;df15;53;250K�h� � A
N2

X
i

X
j≠i

1�r�i; j� ≤ h�; �15�

in which 1 is the indicator function.
If the investigated catalog was produced by a homogeneous

Poisson process with no spatial clustering inherent, K�h� would
be asymptotically normal with K�h� ∼ N�πh2; 2πh2AN2 � (Chu et al.,
2011). The more K�h� exceeds πh2, the more clustered the event
locations are. Values of K�h� < πh2 signify inhibition.

Doublets probability
The most important measure for our study’s purpose is the
probability that an event is part of an earthquake doublet,
according to our definition. Similar to the Båth law evaluation,

we searched all events within the specified time–space window
spanned by the earthquake under consideration in the syn-
thetic catalogs. We counted the earthquake as a doublet event
if any of the potential partners fulfill the magnitude criterion.

Similarly, for synthetic sequences, we applied the previously
mentioned algorithm to the known sequence initiating events.

RESULTS AND DISCUSSION
In the following, we discuss the results obtained from the four
tested models. We start by comparing the ETAS estimation
results on a global catalog and model scale by looking at
the log-likelihood values, the branching ratios, the general
shapes of the fitted spatial kernels, and the average cluster sizes
depending on the trigger magnitude. Then, we move on to the
analysis of the synthetic results from simulated sequences and
catalogs. Herein, we first analyze the consistency of simulation
results with Båth’s law and observed magnitude differences in
the original catalogs, respectively. We continue with an analy-
sis of the degree of temporal and spatial clustering in simulated
catalogs compared with the original event sets. Finally, we
evaluate doublet frequencies in simulated catalogs and com-
pare them with historical observations.

Model fit
Table 2 lists the results from models M0, M1, M2, and M3 for
both regions—Japan and southern California, including the
LLF values and the branching ratios.

Regarding the log-likelihood values l�θjHT�, in both regions,
we observe the order M1 > M3 > M0 > M2. According to the
log-likelihood measure, we can conclude that the anisotropic
shape of the spatial kernel leads to an improved performance,
whereas the spatial restriction detracts the quality of the
model fits.

One reason for the better performance of the anisotropic
models can be found in the optimization process used to define
the strike. In fact, the advantage of the anisotropic over the
isotropic models was moderately reduced when we ran the
models with the originally provided strike angles rather than
the optimized ones. However, also in the case of original
strikes, the anistropic models were superior with regard to
the log-likelihood value.

On the other hand, more generally, the anisotropic shape of
the spatial kernel leads to an improved adaptation to the after-
shock clouds for the most events. For two exemplary magni-
tudes Mc 5.0 and 7.5, Figure 3a,b depicts the cumulative
distribution functions of the spatial kernels against the normal-
ized distance to the event location (for isotropic models) or
rupture segment (for anisotropic models). In both the regions,
we can see that the anisotropic models show a significantly
narrower shape, which suggests that the estimated rupture seg-
ments fit the potential aftershock clouds better than the iso-
tropic point sources and, therefore, tend to bring possible
offsprings closer to the trigger source. Although in the
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Japan models, this narrowing effect is characterized by the
dramatic decrease of parameter D, in the southern California
results it is modeled by the increase of parameter q.

The characteristic length of the power-law decay,��������������������������������������������
D exp�γ�mi −Mc��=π

p
, has unit km2, so it really has the

dimension of an area. Therefore, its exponential increase does
not fully compensate for the faster exponential growth of the
1D rupture length estimates in equation (8). Consequently,
especially the anisotropic spatial distributions tend to get nar-
rower relative to the rupture length with increasing trigger
magnitude, as observable in Figure 3b. We conclude from this
that the anisotropic kernel gains relevance in the upper mag-
nitude ranges. Moreover, we observe that southern Californian
models generally fit narrower shapes than Japan’s models. This
agrees with the predominant faulting style. In California,
strike-slip events on approximately vertical faults dominate,
whereas shallow-dipping mechanisms are common in Japan,
widening the epicentral aftershock distributions.

The generally inferior log-likelihood values of the restricted
models can be explained by the additional constraint imposed
to the model by the limitation of the extent of the spatial
kernels. Any decline of flexibility inevitably leads to a lesser
(or equal) overall model performance.

In this context, we observe that the parameter estimates of Ã,
which represent the average number of aftershocks triggered by
an event with threshold magnitude m � Mc, are substantially
lower, in Japan even more than halved, when comparing a
restricted model with the according unrestricted model. On

TABLE 2
Overview of Model Fit Results for Japan and Southern California

Japan Southern California

Outcomes M0 M1 M2 M3 M0 M1 M2 M3

l�θjHT � −21,063 −18,626 −22,684 −19,814 28,444 30,266 27,144 30,003
νbranch 0.52 0.52 0.45 0.45 0.60 0.57 0.54 0.53
μ�day−1� 0.51 0.54 0.61 0.64 0.18 0.19 0.21 0.21
Ã 0.26 0.24 0.12 0.11 0.34 0.27 0.25 0.22
α�mag−1� 1.21 1.28 1.78 1.84 1.18 1.41 1.48 1.59
c (days) 0.015 0.017 0.013 0.014 0.011 0.012 0.013 0.012
p 1.02 1.05 1.00 1.03 1.07 1.08 1.08 1.09
DM�4:0�km2� 2.274 0.194 2.466 0.117 0.441 0.584 0.403 0.849
γ�mag−1� 1.72 1.73 2.05 2.48 1.37 1.78 1.86 1.95
q 1.43 1.20 1.60 1.21 1.48 1.71 1.19 1.95

The parameter D has been scaled to DM�4:0 � D exp�γ�4:0 −Mc�� to make results cross-comparable among regions (for Japan DM�4:0 � D since Mc � 4:0).

Figure 3. Cumulative distribution functions (cdf) of spatial kernels for trigger
magnitudes (a) Mc 5.0 and (b) Mc 7.5. Solid lines show Japan (JPN) models.
Dashed lines represent southern California (CAL) models. The x axis is
defined as the distance to the point source location (for isotropic models M0

and M2) or rupture line (for anisotropic models M1 and M3), normalized by
the rupture length estimate for the respective region. The color version of
this figure is available only in the electronic edition.
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the other hand, the restricted models lead to highly increased
estimates for parameter α signifying an acceleration of the expo-
nential increase of aftershock productivity with growing trigger
magnitudes. Figure 4 displays the exponential relation of the
expected cluster sizes according to equation (14), that is, includ-
ing direct and secondary aftershocks to the initiating mainshock
magnitude on a logarithmic scale. Although the restricted mod-
els start at a lower base, they cross the lines of unrestricted mod-
els at about magnitude Mcross � 5:6 for Japan models and
Mcross � 4:4 for southern California models. In other words,
on average, events with m ≥ Mcross are expected to trigger more
aftershocks in restricted models than in unrestricted models.

Because the vast majority of events in the original catalogs
have magnitudes m < Mcross, we may expect that the observed
shift of aftershock productivity from small to large events leads
to, in total, fewer identified trigger relations in restricted
models. Indeed, the restricted models reveal smaller branching
ratios and, contrarily, larger background rates. Therefore, we
may conclude that the spatial restriction eliminates some trig-
ger relations between more distant events with relatively small
magnitudes that are consequently either associated with the
background seismicity or with the another stronger trigger
event with larger spatial extent. In particular, the latter case
provides an explanation for the greater estimates of parameter
α. Furthermore, under the realistic assumption that there were
more trigger relations in reality than identified in the models,
the absolute loss of identified trigger relations to background
seismicity would explain the inferior log-likelihood values.

We further notice in Figure 4 and Table 2 that in southern
California models the anisotropy of the spatial kernels has far
more impact on expected cluster sizes than in Japan models.
Cross-comparisons of cluster sizes between the two regions
are only valid if the cluster sizes of southern California are
downscaled by exp�−1:2α�, accounting for the difference of
1.2 of the magnitude thresholds. The clustering is on a gener-
ally comparable level, despite we note a more gradual growth
due to smaller α estimates for restricted models in southern
California.

Båth’s law
Figure 5 depicts the mean magnitude differences between an
earthquake and the strongest event following in the specified
time–space domain in simulated catalogs in comparison with
those in the respective original catalog. The corresponding
algorithm is outlined in the Quality Measures section.
Figure 5a presents the results for the unrestricted models
M0 and M1 in Japan. Both models appear to estimate almost
identical magnitude differences, with a significant slope for
increasing reference magnitudes of the triggering event. On
average, the simulated catalogs seem to continuously overesti-
mate the magnitude difference for magnitudes Mc > 6:8 com-
pared with the original dataset, with some data points located
even outside of the 10%–90% confidence interval for model
M1. The divergence between the results of the simulated cata-
logs and sequences can be explained by the impact of indepen-
dent events that are not contained in the pure sequences. The
effect intensifies with increasing magnitudes due to the expo-
nential growth of the spatial window size.

According to Figure 5b, Japan’s restricted models show a
better agreement with the original catalog. There are no data
points for magnitudes Mc ≥ 6:8 outside of the 10%–90% con-
fidence interval for model M3. The slope of the curves is
smaller, which suggests better accordance with Båth’s law
hypothesis that the magnitude difference is independent of the
trigger magnitude. The smaller divergence between catalog and
simulation results emphasizes that the improvement is caused
by the increase of the average cluster sizes for the investigated
magnitude ranges, as shown in Figure 4. This increases the
chance of strong aftershocks, and it reduces the relative impact
of independent events in the considered time–space domain, at
the same time.

The results for southern California, depicted in Figure 5c,d,
show similar trends. Approximately half of the historic events
have magnitude differences outside of the 10%–90% confi-
dence interval in both the models. In general, southern
California models estimate considerably larger and faster-
growing magnitude differences than Japan models, reaching
up to two magnitude units for the maximum magnitude
Mw 7.5. This observation can be explained by the more mod-
erate increase of cluster sizes due to smaller estimates of α.
Comparing the two regions, we conclude that the restricted

Figure 4. Expected cluster sizes according to equation (14). The x axis states
the magnitude of the sequence-initiating mainshock event. The y axis is on
logarithmic scale and denotes the average number of cluster members. Solid
lines show Japan (JPN) models, starting from catalog cutoff magnitude
Mc � 4:0. Dashed lines represent southern California (CAL) models,
starting from catalog cutoff magnitude Mc � 2:8 and ending at the
assumed maximum magnitude Mc 7.5. The color version of this figure is
available only in the electronic edition.
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models work better and lead to more pronounced improve-
ments in Japan than in California.

Spatial and temporal clustering
Figure 6 analyzes the degree of temporal and spatial clustering
in synthetic catalogs compared with the respective original
catalog. For these plots only, we generated the synthetic cata-
logs with magnitudes sampled from the empirical magnitude
distribution observed in the respective original catalogs,
instead of using the Gutenberg–Richter distribution (equa-
tion 12) with estimated parameter β.

The reason is that, using magnitudes sampled from equa-
tion (12), we observed a deficiency of extremely strong events
in the synthetic catalogs compared with the original catalogs,
which suggests that equation (12) tends to underestimate the
tail of the empirical magnitude size distribution in the obser-
vational data. Consequently, the synthetic catalogs would lack
some influential trigger events that would otherwise cause

sporadic peaks in the spatiotemporal distribution of event
occurrences.

Figure 6a depicts boxplots of the CV of event occurrence
numbers in monthly time intervals of synthetic catalogs for

Figure 5. Approximations of the average magnitude difference between a
considered mainshock event and the strongest event following in the
specified time–space window, for (a) unrestricted models M0 and M1 in
Japan (JPN), (b) restricted models M2 andM3 in JPN, (c) unrestricted models
M0 and M1 in southern California (CAL), and (d) restricted models M2 and
M3 in CAL. Solid lines show catalog simulations, and dashed lines represent
sequence simulations. The shaded range visualizes the 10%–90% confi-
dence interval of the respective catalog simulation. Black dots represent
observations in the underlying original catalogs and are sized according to
the number of points stacked. The horizontal dotted line is consistent with
the Båth’s law prediction of a magnitude difference of 1.2 units independent
of the absolute size of the trigger magnitude. The color version of this figure
is available only in the electronic edition.
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Japan. We observe that, on average, the variance of monthly
event occurrences in simulations is by factors smaller than
in the original catalog, displayed by the horizontal black line.
However, the restricted models tend to produce considerably
more temporal variation, with some pronounced outliers, than
the unrestricted models. The same observation is made for
southern California in Figure 6b. Furthermore, the CVs seem
to correlate with the expected cluster sizes of strong events, as
shown in Figure 4. For instance, the anisotropy of the spatial
kernel leads to a stronger increase of both productivity param-
eter α and the temporal clustering in southern California than
in Japan.

Figure 6c demonstrates that the observed smoothing of tem-
poral event occurrences is not a pure side effect of catalog sim-
ulations. Exemplary for modelM3 in Japan, we plotted the curve
of monthly event occurrences in the original catalog against the
expected number of event occurrences predicted by the ETAS
event rate. More precisely, the latter is computed as the total
ETAS event rate (seeΛθ�T; SjHT� in equation 11), stepwise inte-
grated over the monthly intervals instead of the entire target time

window T, which provides us an estimate of the expected num-
ber of events occurring in the considered month. This monthly
forecast is thus purely based on the fit of the model parameters
and the original, nonsimulated history of events.

Figure 6. Boxplot representation of the coefficients of variation (CV) of
monthly numbers of event occurrences in the simulated catalogs, based
on the four estimated models, for (a) Japan and (b) southern California. The
black horizontal line represents the CV of the respective original earthquake
catalog. The red plus symbols represent outliers. (c) Comparison of monthly
event occurrences between the original Japan catalog (black line) and the
epidemic-type aftershock sequence (ETAS) rate for Japan’s model M3,
integrated piecewise for the monthly integrals, based on trigger contri-
butions of the original history of events (red line). (d) Analysis of the degree
of spatial clustering by Riley’s K-function. Solid lines represent results for
synthetic catalogs, generated by model M3 for Japan (JPN) and southern
California (CAL). Dashed lines show results for the respective original
earthquake catalogs. The dotted black line represents Riley’s K-function
values for a homogeneous Poisson process. Values above indicate clus-
tering, values below signify inhibition. The color version of this figure is
available only in the electronic edition.

14 • Bulletin of the Seismological Society of America www.bssaonline.org Volume XX Number XX – 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120210097/5398317/bssa-2021097.1.pdf
by Ludwig-Maximilians-University  user
on 23 September 2021

49



On the one hand, the integrated rate clearly underpredicts
event occurrences in peak months, whereas, on the other hand,
it overrates the seismicity in relatively calm months. This con-
trast is an immediate consequence of the log-likelihood-based
model estimation algorithm, which requires that for the opti-
mal set of parameters, the ETAS rate, integrated over the entire
time–space target window, equalizes the exact number of target
events. Thus, once underestimating the pronounced peaks in
the most active months, the rate needs to compensate for this
inaccuracy by predicting larger occurrence rates in rather inac-
tive months, which ultimately leads to a clear smoothing of the
temporal occurrence curve. We hypothesize that this compen-
sation is caused by an overprediction of both the background
seismicity and the triggering potential of small events and an
underprediction of the triggering power of strong events.

Figure 6d sheds light on the degree of spatial clustering, mea-
sured by Ripley’s K-function (equation 15). For the sake of
clearer visualization, we only present the spatially most strongly
clustered models M3 in both the regions. Nevertheless, we
observe that spatial clustering is underestimated compared with
the respective original catalogs in both the regions. In general,
event occurrences in southern Californian seem less intensely
clustered in space than in Japan. The kink in the curves, which
in the case of southern California even suggests inhibition, is a
boundary effect due to the limited polygon areas.

Earthquake doublets
Finally, Figure 7 analyzes the occurrence rates of doublets in
the simulated catalogs and sequences. Figure 7a compares the
percentage that an event finds a doublet partner depending on
its magnitude for the four models and both simulated sequen-
ces and catalogs in Japan. For the sake of clarity, the data are
smoothed by aggregating magnitude intervals.

We observe that the restricted models show substantially
larger doublet chances than the unrestricted models, which
is consistent with our previous findings regarding the larger
cluster sizes, the larger degree of temporal and spatial cluster-
ing, and the lower average magnitude differences to the strong-
est event in the time–space domain spanned by an event. Also,
doublet percentages decrease with growing magnitudes, which
accompanies the earlier observation of increasing the Båth law
magnitude differences.

It is also worth mentioning that the proportion of events
that find a doublet partner is considerably larger within a simu-
lated catalog than in a synthetic sequence. This implies that
independent seismic background events or unrelated clusters
generate a nonnegligible fraction of doublets.

Figure 7b shows this aspect in more detail for models M0

and M3 in Japan. Conditional on realized doublet pairs, it
shows the inverse proportions of doublets consisting of
two events from the same cluster and doublets composed
by two independent events. The corresponding triggering
relationship is known in simulations. For small triggering

magnitudes, in-cluster doublets make up a much larger
proportion. The share declines with increasing trigger magni-
tude, however, much stronger for model M0 than for model
M3. In the case of model M0, independent doublets get even
more likely than in-cluster doublets for triggering magnitudes
larger than Mw 7.6.

These observations can be explained by the more rapid
exponential growth of the area of the spatial window than the
aftershock productivity and expected cluster sizes. According
to the scaling relations (equation 8), the area of the spatial win-
dow covering the surrounding of two and a half rupture
lengths is π�2:510−2:37�0:57m�2. Consequently, the area grows
by factor �100:57�2 � 101:14 ≈ 13:8, which is faster than the
magnitude-dependent growth of aftershock productivity and
expected cluster sizes, exp�α�, for all α < 2:62. Following this
line of argument, we can explain the growing impact of inde-
pendent and unrelated events with increasing trigger magni-
tudes. The curves for model M3 are more robust compared
with M0, because the larger aftershock productivity and
expected cluster sizes resulting from greater estimates of
parameter α better balance out the growth of the spatial
window.

Figure 7c,d compares the doublet rate predictions for the
Japan models M0 and M3 with analogously measured doublet
percentages in historic catalogs. As benchmarks, we use the
original NIED Japan catalog used for the ETAS model estima-
tion, as well as a regional and a global extract from the ISC-
GEM catalog. Respecting the stepwise completeness levels in
the ISC-GEM catalog, we counted doublets for events with
magnitudes Mw ≥ 5:9 from the year 1960 and for events with
magnitudesMw ≥ 6:7 starting in 1918. In particular, this allows
for a reliable search of doublet partners with a maximum mag-
nitude difference of Mw 0.4 units. Because of the relatively
small sample sizes in historical data, we grouped the events
in the four magnitude intervals [5.9,6.0], [6.1,6.2], [6.3,6.6],
and �6:7;∞�. Because of its limited time (24 yr), the regional
NIED catalog provides only between 18 and 37 events in
the respective magnitude intervals and, therefore, has limited
statistical significance, especially in the higher magnitude
ranges. Furthermore, we obtained 70–105 events in the
regional extract for Japan of the ISC-GEM catalog from
1918 and 1362 to 2219 events in the entire ISC-GEM dataset.
In the simulated catalogs, we isolated all events with magnitude
Mw 8.7 from the last interval, because they would dominate the
statistic due to the manual sampling of the Tohoku event.

Figure 7c demonstrates that model M0 tends to under-
estimate the doublet occurrence probabilities observed in
the three benchmark catalogs. The simulations accurately fit
two out of four data points of the original NIED catalog, which,
however, is an uncertain statistic due to its small sample size.
The more stable curves of the long-term Japan and global
benchmark catalogs are mostly located outside of the 10%–
90% confidence interval.
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Model M3, shown in Figure 7d, moves considerably closer
to the long-term benchmark catalog curves and appears to
provide a rather adequate prediction of doublet probabilities
compared with the original NIED event set. The 10%–90%
confidence interval covers all data points of the global catalog
and two out of four samples from the long-term Japan dataset.

Both models show a downtrend of doublet rates with
increasing magnitudes, which reveals itself particularly in the
small fraction of doublets initiated by the sampling of the
Tohoku event. In contrast, the probability of doublet occur-
rences seems magnitude-independent, at least in the lower
three magnitude ranges, for the ISC-GEM catalog extracts,
which reminds us of the self-similarity of earthquake clustering
observed according to Båth’s law. The comparison, however, is
unavoidably biased due to the subjective specification of our
time–space domain in the doublet definition and because of
the fact that we do not prohibit doublets produced by indepen-
dent events not belonging to the same triggered sequence.

The historical observations for southern California do not
provide a sufficient database for benchmarking. We only
observed seven events in the overall magnitude range from

Figure 7. (a) Percentages of doublet occurrences, depending on the consid-
ered event magnitude, for the four model variants in Japan. Solid lines
represent simulated catalogs. Dashed lines show simulated sequences.
Magnitudes are aggregated in 0.2 magnitude unit steps fromMw 5.9 to 7.1,
then in 0.3 unit steps up to Mw 8.0, followed by one interval for all
magnitudes above. (b) Proportions of doublet pairs generated by
(1) independent seismic background events or unrelated clusters (dashed-
dotted lines), or (2) events of the same cluster (solid lines). Results are
presented for models M0 and M3 in Japan. (c,d) Comparison of the doublet
occurrence frequencies in synthetic catalogs (blue lines) to historic catalogs
(black lines), for (c) modelM0 and (d) modelM3, both Japan. Shaded ranges
represent 10%–90% confidence interval (CI) of the synthetic catalogs.
Events are aggregated in the magnitude intervals labeled on the x axis.
Tohoku events are extracted in simulated catalogs. The color version of this
figure is available only in the electronic edition.
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Mw ≥ 5:9 in the original catalog, with two of them being a
doublet (both in magnitude range [6.1,6.2]). In the regional
extract of the ISC-GEM catalog since 1918, we found an overall
number of 15 events, with one of them being doublets (in the
third magnitude range). In the latter, this would signify a chance
of 6.7% that an event finds a doublet partner, which is less than
half of the global percentages shown in Figure 7c,d. However,
the Californian models predict a chance of only 3% (model
M3) or even 1.6% (model M0) for doublet occurrences.

Sensitivity of results
The results described previously, especially the estimated dou-
blet probabilities, are clearly dependent on the rather subjective
definition of the temporal and spatial constraints of 365 days
and 2.5 rupture lengths as well as the magnitude window of
Mw 0.4 units. In accordance with intuition, sensitivity tests
have shown that a decrease of one of the three criteria led
to lower doublet probabilities in both the simulated and his-
torical data, and vice versa. However, the relative behavior of
the four models under consideration, among each other and in
comparison with historical catalogs, and therefore the central
conclusions, remain the same.

SUMMARY AND CONCLUSION
We compared seismicity generated with four variants of the
ETAS model to earthquake catalogs for Japan and southern
California. More precisely, we tested isotropic and anisotropic
as well as unrestricted and restricted spatial kernels. The central
objective of this study was to find out which of the four models
the best describes the clustering of particularly strong events and
leads to the most realistic predictions of the occurrence proba-
bilities of earthquake doublets. Rather subjectively, we defined a
doublet as a pair of an earthquake with any other event occurring
during the next 365 days and within a distance of 2.5 rupture
lengths to the considered event, with a magnitude difference
of no more than 0.4 units. By assuming an identical magnitude
size distribution for triggered and independent events, we ana-
lyze the impact of aftershock productivity and cluster sizes on
cluster properties and doublet occurrences.

The results indicate that the conventional, unrestricted iso-
tropic model poorly represents clusters triggered by particularly
large-magnitude earthquakes.We found that this model estimates
too large-magnitude differences between a strong earthquake and
the largest event in the specified time–space window that it tends
to highly underestimate the degree of temporal and spatial clus-
tering by smoothing out the occurrence times and locations, and
that it tends to underestimate the chances of doublet occurrence.
This stands in contrast to the global catalog scale measures such
as the log-likelihood value, which do not incorporate these weak-
nesses and would attest a relatively high quality to the conven-
tional model.

The anisotropic spatial kernel improves the overall fit of
the model but cannot noticeably alleviate the weaknesses of

the unrestricted model variants. Perhaps, it shows its strengths
primarily in combination with Uniform California Earthquake
Rupture Forecast–ETAS models in which crustal fault struc-
tures, subduction zones, and multisegment ruptures are incor-
porated on a detailed level (Field et al., 2017).

By shifting triggering potential from smaller to larger events
and therefore increasing cluster sizes of strong trigger events,
the restriction of the spatial kernel to 2.5 rupture lengths pro-
motes more realistic estimations of the magnitude difference to
the strongest following event and of the doublet probability,
compared with historical observations. The temporal and spa-
tial variability of event occurrences rises, additionally indicat-
ing more pronounced clustering. However, the improvements
in the representation of strong earthquake clusters are at the
expense of a decline of the log-likelihood value, because trigger
relations in the smallest magnitude ranges get lost.

Again, the anisotropic model variant improves the overall
fit of the model but has negligible impact on the temporal and
spatial clustering and the doublet’s occurrence.

We conclude that global catalog scale measures such as the
log-likelihood value or the AIC criterion are not an adequate
tool for evaluating ETAS model fits if the representation of
strong event clusters is of particular interest. It is in the nature
of these measures that they show better performance when
more trigger relations are detected. Consequently, a model that
is given more freedom, such as the unrestricted variants, will
always outperform the more conditioned variants, such as the
restricted variants in our study. However, this may lead to trig-
ger relations between events that are, from a standpoint of rea-
son, improbable. In other words, the conventional model does
a good job in identifying triggered events, but it does a rela-
tively poor job in assigning the aftershocks to their most real-
istic triggers, which goes to the benefit of the smaller events.

Certainly, this deficiency can be partly explained by the well-
known and extensively studied biases in the use of the ETAS
model, such as earthquake location uncertainty, the catalog cut-
off magnitude, and short-term incompleteness. In our study, we
have accounted for the latter by applying blind periods after
strong events according to Helmstetter et al. (2006).

The spatial restriction tested in our models, however, dem-
onstrates that we can improve aftershock to trigger assignments
and, therefore, strengthen the aftershock productivity of strong
events by giving the ETAS model more guidance in terms of
conditions. Given the assumption of an identical magnitude size
distribution for triggered and independent events, aftershock
productivity becomes the dominant driver for cluster properties.
The larger the size of a cluster, the smaller the magnitude differ-
ence to the strongest following event and the larger the chance of
a doublet to occur. At the same time, a larger cluster size
decreases the relative relevance of independent seismicity in
the considered time–space window around an earthquake.

Even the restricted models reveal a persistent underestimation
of the cluster properties of large earthquakes. We hypothesize
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that, in reality, the exponential growth of the aftershock
productivity with increasing trigger magnitudes should be even
larger. This would also increase the underrepresented clustering
of events both in time and space.

Future work should emphasize the importance of a correct
representation of strong event clusters by the ETAS model.
Using only goodness-of-fit measures operating on a global
catalog scale provides an inherent risk that a poor representa-
tion of extreme clusters remains undetected.

This work has analyzed the impact of aftershock productiv-
ity and cluster sizes on the occurrence of earthquake doublets.
It has, however, neglected the influence of potentially varying
magnitude size distributions that may lead to a correlation of
triggering and triggered magnitudes (Gulia et al., 2018;
Nandan et al., 2019) and may, therefore, result in modified
doublet occurrence probabilities. Positively correlated magni-
tudes could, therefore, contribute to closing the gap between
simulated and observed doublet frequencies. Another, however
more profound, research topic is the further evaluation of the
impact of faulting types, event characteristics (e.g., dip, rake,
depth, and so forth), and local geophysical parameters (e.g.,
strain rates, heat flow, tectonic plate velocities, and so forth)
on the aftershock productivity and ultimately strong event
clustering. This could also close the current gap in the most
seismic hazard models and lead to a better risk assessment
by considering modeled damage based on more realistic, syn-
thetic catalogs, including increased earthquake clustering and
doublet occurrences.

DATA AND RESOURCES
The National Research Institute for Earth Science and Disaster
Resilience (NIED) earthquake mechanism catalog for Japan (Kubo et al.,
2002) was downloaded from www.fnet.bosai.go.jp/event/search.php?
LANG=en. The Southern California Earthquake Data Center
(SCEDC) focal mechanism (Hauksson et al., 2012) was searched using
scedc.caltech.edu/data/alt-2011-yang-hauksson-shearer.html. Global
earthquake data were obtained from the International Seismological
Centre–Global Earthquake Model (ISC-GEM) Global Instrumental
Earthquake Catalogue (Di Giacomo et al., 2018) at www.isc.ac.uk/
iscgem/download.php. The epidemic-type aftershock sequence
(ETAS) model code used for this research was initially based on the
CRAN R package repository ETAS (Jalilian, 2019), available at
https://CRAN.R-project.org/package=ETAS. The package is based on
the original Fortran implementation etas8p, available at http://
bemlar.ism.ac.jp/zhuang/software.html. All websites were last accessed
in January 2021.

DECLARATION OF COMPETING INTERESTS
The authors acknowledge that there are no conflicts of interest
recorded.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their helpful and
constructive feedback that has significantly improved the work.

Financial support for this work was provided by Munich Re through
a scholarship granted to the first author and by the Department of
Statistics at Ludwig Maximilian University of Munich.

REFERENCES
Abdelnaby, A. E. (2012). Multiple earthquake effects on degrading

reinforced concrete structures, Ph.D. Thesis, University of
Illinois at Urbana-Champaign.

Bach, C., and S. Hainzl (2012). Improving empirical aftershock mod-
eling based on additional source information, J. Geophys. Res. 117,
no. B04312, doi: 10.1029/2011JB008901.

Blaser, L., F. Krüger, M. Ohrnberger, and F. Scherbaum (2010).
Scaling relations of earthquake source parameter estimates with
special focus on subduction environment, Bull. Seismol. Soc.
Am. 100, no. 6, 2914–2926, doi: 10.1785/0120100111.

Chu, A., F. P. Schoenberg, P. Bird, D. D. Jackson, and Y. Y. Kagan
(2011). Comparison of ETAS parameter estimates across different
global tectonic zones, Bull. Seismol. Soc. Am. 101, no. 5, 2323–
2339, doi: 10.1785/0120100115.

Cornell, C. A. (1968). Engineering seismic risk analysis, Bull. Seismol.
Soc. Am. 58, no. 5, 1583–1606.

de Arcangelis, L., C. Godano, and E. Lippiello (2018). The overlap of
aftershock coda waves and short-term postseismic forecasting, J.
Geophys. Res. 123, 5661–5674, doi: 10.1029/2018JB015518.

Di Giacomo, D., E. R. Engdahl, and D. A. Storchak (2018). The ISC-
GEM earthquake catalogue (1904-2014): Status after the extension
project, Earth Syst. Sci. Data 10, 1877–1899, doi: 10.5194/essd-10-
1877-2018.

Felzer, K. R., R. E. Abercrombie, and G. Ekström (2004). A common
origin for aftershocks, foreshocks, and multiplets, Bull. Seismol.
Soc. Am. 94, no. 1, 88–98, doi: 10.1785/0120030069.

Field, E. H., K. R. Milner, J. L. Hardebeck, M. T. Page, N. van der Elst,
T. H. Jordan, A. J. Michael, B. E. Shaw, and M. J. Werner (2017). A
spatiotemporal clustering model for the third Uniform California
Earthquake Rupture Forecast (UCERF3-ETAS): Toward an opera-
tional earthquake forecast, Bull. Seismol. Soc. Am. 107, no. 3, 1049–
1081, doi: 10.1785/0120160173.

Gibowicz, S. J., and S. Lasocki (2005). Earthquake doublets and mul-
tiplets in the Fiji-Tonga-Kermadec region, Acta Geophys. Pol. 53,
no. 3, 239–274.

Gulia, L., A. P. Rinaldi, T. Tormann, G. Vannucci, B. Enescu, and S.
Wiemer (2018). The effect of a mainshock on the size distribution
of the aftershocks, Geophys. Res. Lett. 45, no. 24, 13,277–13,287,
doi: 10.1029/2018GL080619.

Gutenberg, B., and C. F. Richter (1944). Frequency of earthquakes in
California, Bull. Seismol. Soc. Am. 34, 185–188, doi: 10.1038/
156371a0.

Hainzl, S. (2016a). Rate-dependent incompleteness of earthquake cat-
alogs, Seismol. Res. Lett. 87, no. 2A, 337–344, doi: 10.1785/
0220150211.

Hainzl, S. (2016b). Apparent triggering function of aftershocks
resulting from rate-dependent incompleteness of earthquake cat-
alogs, J. Geophys. Res. 121, no. 9, 6499–6509, doi: 10.1002/
2016JB013319.

Hainzl, S., and D. Marsan (2008). Dependence of the Omori-Utsu law
parameters on main shock magnitude: Observations and model-
ing, J. Geophys. Res. 113, no. B10309, doi: 10.1029/2007JB005492.

18 • Bulletin of the Seismological Society of America www.bssaonline.org Volume XX Number XX – 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120210097/5398317/bssa-2021097.1.pdf
by Ludwig-Maximilians-University  user
on 23 September 2021

53



Hainzl, S., A. Christophersen, and B. Enescu (2008). Impact of
earthquake rupture extensions on parameter estimations of
point-process models, Bull. Seismol. Soc. Am. 98, no. 4, 2066–
2072, doi: 10.1785/0120070256.

Hainzl, S., O. Zakharova, and D. Marsan (2013). Impact of aseismic
transients on the estimation of aftershock productivity parameters,
Bull. Seismol. Soc. Am. 103, no. 3, 1723–1732, doi: 10.1785/
0120120247.

Hauksson, E., W. Yang, and P. M. Shearer (2012). Waveform relo-
cated earthquake catalog for Southern California (1981 to June
2011), Bull. Seismol. Soc. Am. 102, no. 5, 2239–2244, doi:
10.1785/0120120010.

Hauksson, E., C. Yoon, E. Yu, J. R. Andrews, M. Alvarez, R. Bhadha,
and V. Thomas (2020). Caltech/USGS Southern California
Seismic Network (SCSN) and Southern California Earthquake
Data Center (SCEDC): Data availability for the 2019
Ridgecrest sequence, Seismol. Res. Lett. 91, no. 4, 1961–1970,
doi: 10.1785/0220190290.

Helmstetter, A., and D. Sornette (2003). Båth’s law derived from the
Gutenberg-Richter law and from aftershock properties, Geophys.
Res. Lett. 30, no. 20, 2069, doi: 10.1029/2003GL018186.

Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006). Comparison
of short-term and time-dependent earthquake forecast models for
Southern California, Bull. Seismol. Soc. Am. 96, no. 1, 90–106, doi:
10.1785/0120050067.

Hutton, K., J. Woessner, and E. Hauksson (2010). Earthquake monitor-
ing in Southern California for seventy-seven years (1932-2008), Bull.
Seismol. Soc. Am. 100, no. 2, 423–446, doi: 10.1785/0120090130.

Jalilian, A. (2019). ETAS: An R package for fitting the space-time
ETAS model to earthquake data, J. Stat. Softw. 88, no. 1, 1–39,
doi: 10.18637/jss.v088.c01.

Kagan, Y. Y. (2004). Short-term properties of earthquake catalogs and
models of earthquake source, Bull. Seismol. Soc. Am. 94, no. 4,
1207–1228, doi: 10.1785/012003098.

Kagan, Y. Y., and D. D. Jackson (1999). Worldwide doublets of large
shallow earthquakes, Bull. Seismol. Soc. Am. 89, no. 5, 1147–1155.

Kagan, Y. Y., P. Bird, and D. D. Jackson (2010). Earthquake patterns
in diverse tectonic zones of the globe, Pure Appl. Geophys. 167,
no. 6, 721–741, doi: 10.1007/s00024-010-0075-3.

Kagermanov, A., and R. Gee (2019). Cyclic pushover method for seis-
mic assessment under multiple earthquakes, Earthq. Spectra 35,
no. 4, 1541–1558, doi: 10.1193/010518EQS001M.

Kubo, A., E. Fukuyama, H. Kawai, and K. Nonomura (2002). NIED
seismic moment tensor catalogue for regional earthquakes around
Japan: Quality test and application, Tectonophysics 356, 23–48,
doi: 10.1016/S0040-1951(02)00375-X.

Lay, T., and H. Kanamori (1980). Earthquake doublets in the Solomon
Islands, Phys. Earth Planet. In. 21, 283–304.

Marzocchi, W., A. M. Lombardi, and E. Casarotti (2014). The estab-
lishment of an operational earthquake forecasting system in Italy,
Seismol. Res. Lett. 85, no. 5, 961–969, doi: 10.1785/0220130219.

McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early his-
tory, Earthq. Eng. Struct. Dynam. 37, 329–338, doi: 10.1002/
eqe.765.

Nandan, S., G. Ouillon, and D. Sornette (2019). Magnitude of earth-
quakes controls the size distribution of their triggered events, J.
Geophys. Res. 124, no. 3, 2762–2780, doi: 10.1029/2018JB017118.

Ogata, Y. (1988). Statistical models for earthquake occurrences and
residual analysis for point processes, J. Am. Stat. Assoc. 83,
no. 401, 9–27.

Ogata, Y. (1998). Space-time point-process models for earthquake
occurrences, Ann. Inst. Stat. Math. 50, no. 2, 379–402.

Ogata, Y. (2011). Significant improvements of the space-time ETAS
model for forecasting of accurate baseline seismicity, Earth Planets
Space 63, no. 3, 217–229, doi: 10.5047/eps.2010.09.001.

Ogata, Y., and K. Katsura (1993). Analysis of temporal and spatial
heterogeneity of magnitude frequency distribution inferred from
earthquake catalogues, Geophys. J. Int. 113, no. 3, 727–738.

Ogata, Y., and J. Zhuang (2006). Space-time ETAS models and an
improved extension, Tectonophysics 413, nos. 1/2, 13–23, doi:
10.1016/j.tecto.2005.10.016.

Page, M. T., N. van Der Elst, J. Hardebeck, K. Felzer, and A. J. Michael
(2016). Three ingredients for improved global aftershock forecasts:
Tectonic region, time-dependent catalog incompleteness, and
intersequence variability, Bull. Seismol. Soc. Am. 106, no. 5,
2290–2301, doi: 10.1785/0120160073.

Papadopoulos, A. N., P. Bazzurro, and W. Marzocchi (2020).
Exploring probabilistic seismic risk assessment accounting for seis-
micity clustering and damage accumulation: Part I. Hazard analy-
sis, Earthq. Spectra 37, doi: 10.1177/8755293020957338.

Ripley, B. D. (1976). The second-order analysis of stationary point
processes, J. Appl. Probab. 13, no. 2, 255–266.

Seif, S., A. Mignan, J. D. Zechar, M. J. Werner, and S. Wiemer (2017).
Estimating ETAS: The effects of truncation, missing data, and
model assumptions, J. Geophys. Res. 122, no. 1, 449–469, doi:
10.1002/2016JB012809.

Shearer, P. M. (2012). Self-similar earthquake triggering, Bath’s law,
and foreshock/aftershock magnitudes: Simulations, theory, and
results for southern California, J. Geophys. Res. 117,
no. B06310, doi: 10.1029/2011JB008957.

Storchak, D. A., D. Di Giacomo, E. R. Engdahl, J. Harris, I. Bondár, W.
H. Lee, P. Bormann, and A. Villaseñor (2015). The ISC-GEM global
instrumental earthquake catalogue (1900-2009): Introduction, Phys.
Earth Planet. In. 239, 48–63, doi: 10.1016/j.pepi.2014.06.009.

Utsu, T., Y. Ogata, and R. S. Matsu’ura (1995). The centenary of the
Omori formula for a decay law of aftershock activity, J. Phys. Earth
43, 1–33.

van Stiphout, T., D. Schorlemmer, and S. Wiemer (2011). The effect of
uncertainties on estimates of background seismicity rate, Bull.
Seismol. Soc. Am. 101, no. 2, 482–494, doi: 10.1785/0120090143.

Veen, A. (2006). Some methods of assessing and estimating point
processes models for earthquake occurrences, Ph.D. Thesis,
University of California, Los Angeles.

Vere-Jones, D. (1969). A note on the statistical interpretation of Bath’s
law, Bull. Seismol. Soc. Am. 59, no. 4, 1535–1541.

Wells, D. L., and K. J. Coppersmith (1994). New empirical relationships
among magnitude, rupture length, rupture width, rupture area, and
surface displacements, Bull. Seismol. Soc. Am. 84, no. 4, 974–1002.

Yang, W., E. Hauksson, and P. M. Shearer (2012). Computing a large
refined catalog of focal mechanisms for Southern California (1981-
2010): Temporal stability of the style of faulting, Bull. Seismol. Soc.
Am. 102, no. 3, 1179–1194, doi: 10.1785/0120110311.

Zakharova, O., S. Hainzl, D. Lange, and B. Enescu (2017). Spatial
variations of aftershock parameters and their relation to geodetic

Volume XX Number XX – 2021 www.bssaonline.org Bulletin of the Seismological Society of America • 19

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120210097/5398317/bssa-2021097.1.pdf
by Ludwig-Maximilians-University  user
on 23 September 2021

5. Improving Earthquake Doublet Frequency Predictions by Modified Spatial Trigger Kernels in
the Epidemic-Type Aftershock Sequence (ETAS) Model

54



slip models for the 2010 Mw 8.8 Maule and the 2011 Mw 9.0
Tohoku-oki earthquakes, Pure Appl. Geophys. 174, 77–102, doi:
10.1007/s00024-016-1408-7.

Zhang, L., M. J. Werner, and K. Goda (2018). Spatiotemporal seismic
hazard and risk assessment of aftershocks of M 9 megathrust
earthquakes, Bull. Seismol. Soc. Am. 108, no. 6, 3313–3335, doi:
10.1785/0120180126.

Zhang, L., M. J. Werner, and K. Goda (2020). Variability of ETAS
parameters in global subduction zones and applications to main-
shock–aftershock hazard assessment, Bull. Seismol. Soc. Am. 110,
191–212, doi: 10.1785/0120190121.

Zhuang, J., Y. Ogata, and D. Vere-Jones (2002). Stochastic declustering
of space-time earthquake occurrences, J. Am. Stat. Assoc. 97,
no. 458, 369–380, doi: 10.1198/016214502760046925.

Zhuang, J., Y. Ogata, and T. Wang (2017). Data completeness of the
Kumamoto earthquake sequence in the JMA catalog and its influ-
ence on the estimation of the ETAS parameters, Earth Planets
Space 69, no. 36, doi: 10.1186/s40623-017-0614-6.

Manuscript received 31 March 2021

Published online 7 September 2021

20 • Bulletin of the Seismological Society of America www.bssaonline.org Volume XX Number XX – 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120210097/5398317/bssa-2021097.1.pdf
by Ludwig-Maximilians-University  user
on 23 September 2021

55





6. Solving three major biases of the ETAS
model to improve forecasts of the 2019
Ridgecrest sequence

Contributing article
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Abstract
Strong earthquakes cause aftershock sequences that are clustered in time according to a power decay law, and in space

along their extended rupture, shaping a typically elongate pattern of aftershock locations. A widely used approach to model

earthquake clustering, the Epidemic Type Aftershock Sequence (ETAS) model, shows three major biases. First, the

conventional ETAS approach assumes isotropic spatial triggering, which stands in conflict with observations and geo-

physical arguments for strong earthquakes. Second, the spatial kernel has unlimited extent, allowing smaller events to exert

disproportionate trigger potential over an unrealistically large area. Third, the ETAS model assumes complete event

records and neglects inevitable short-term aftershock incompleteness as a consequence of overlapping coda waves. These

three aspects can substantially bias the parameter estimation and lead to underestimated cluster sizes. In this article, we

combine the approach of Grimm et al. (Bulletin of the Seismological Society of America, 2021), who introduced a

generalized anisotropic and locally restricted spatial kernel, with the ETAS-Incomplete (ETASI) time model of Hainzl

(Bulletin of the Seismological Society of America, 2021), to define an ETASI space-time model with flexible spatial kernel

that solves the abovementioned shortcomings. We apply different model versions to a triad of forecasting experiments of

the 2019 Ridgecrest sequence, and evaluate the prediction quality with respect to cluster size, largest aftershock magnitude

and spatial distribution. The new model provides the potential of more realistic simulations of on-going aftershock activity,

e.g. allowing better predictions of the probability and location of a strong, damaging aftershock, which might be beneficial

for short term risk assessment and disaster response.

Keywords ETAS � Short-term incompleteness � Anisotropic spatial kernel � Ridgecrest

1 Introduction

Strong earthquakes are usually observed to cause a pro-

nounced spatio-temporal pattern of aftershocks. More

precisely, according to the Omori-Utsu Law (Utsu et al.

1995), the temporal aftershock rate is subject to a power

law decrease with time t � tmain after the main triggering

event, that is,

gðt � tmainÞ ¼ ðt � tmain þ cÞ�p ð1Þ
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with the delay parameter c[ 0 (usually a few minutes to

hours) and the exponent p (usually in the range between

0:8� 1:2). It means that the temporal pattern of after-

shocks is dominated by events occurring within short time

after the mainshock. Figure 1a demonstrates this temporal

behavior for the Ridgecrest sequence in California, which

produced an M6.4 foreshock on July 4, 2019, followed by

an M7.1 mainshock within 34 hours on July 6, 2019.

The observed spatial patterns of aftershock sequences

stem from their tendency to occur on or close to the

mainshock rupture plane (Marsan and Lengliné 2008). The

larger the length-to-width ratio of this plane gets, the more

elongate the typical aftershock region becomes. In addi-

tion, a higher dip angle reduces the width of the 3D-to-2D

projection of the rupture plain to the earth’s surface and

therefore results in a scatter of two-dimensional aftershock

epicenters that can be increasingly well approximated by a

line segment.

The prevailing continental tectonic regime in southern

California with typically steep, strike-slip faulting favors

such elongated aftershock patterns in this region. With the

exception of the M6.7 1994 Northridge earthquake, all of

the most prominent mainshock-aftershock sequences of the

last 40 years (M6.6 1987 Superstition Hill, M7.3 1992

Landers, M7.1 1999 Hector Mine, M7.2 2010 Baja Cali-

fornia, M7.1 2019 Ridgecrest) demonstrate distinct linearly

elongate scattering of aftershock locations (Hainzl 2021).

In this context, the Ridgecrest sequence is a special case

as the M6.4 foreshock simultaneously ruptured two almost

orthogonal faults, leading to a double pattern of separate

linearly elongate aftershock clouds (Marsan and Ross

2021). Fig. 1b shows that the triggering M6.4 event (yel-

low pentagram) is located close to the intersection of the

two ruptured faults. In contrast, the M7.1 mainshock

(yellow hexagram) ruptured only one fault which appears

to be the extension of one of the faults activated by the

foreshock.

Analyzing and forecasting clustered seismicity is an

established discipline in seismological research. Its goal is

to understand the evolution of large aftershock sequences

and to predict their size, largest aftershock magnitude,

spatial distribution etc. A prominent approach to model

clustered seismicity is the so-called Epidemic Type After-

shock Sequence (ETAS) model, which describes earthquake

records as a superposition of independent background

seismicity and triggered earthquake sequences (Ogata

1988, 1998). The earthquake triggering component is

designed in terms of a branching process and characterized

by the triad of (1) trigger-magnitude dependent aftershock

productivity, (2) a temporal distribution of aftershock times

typically derived from the Omori Law (see Eq. 1), and (3)

an usually isotropic spatial distribution of aftershock

locations (e.g. Zhuang et al. 2002; Jalilian 2019). Particu-

larly, the aftershock productivity (i.e. expected number of

offsprings) for a trigger event with magnitude m is

kA;aðmÞ ¼ A expða ðm�McÞÞ; ð2Þ

where parameters A[ 0 and a[ 0 control the exponential

growth of the trigger potential and Mc is the cut-off mag-

nitude of the analyzed earthquake catalog.

Despite generally producing successful and insightful

estimation and forecast results, ETAS models are known to

be limited by a number of potential biases. In this article,

we present an approach that combines solutions for three

main short-comings of the conventional ETAS model, (1)

the isotropic spatial aftershock distribution, (2) the infinite

extent of the spatial kernel and (3) the short-term incom-

pleteness of earthquake records after strong triggering

events.

1.1 Bias 1: isotropic spatial distribution

The common assumption in ETAS models is that spatial

aftershock locations are distributed isotropically around the

triggering event. It is named as a shortcoming in many

publications because it stands in conflict with the above-

mentioned observation that aftershocks tend to occur close

to the (elongate) rupture plane of the triggering event

(Ogata 1998, 2011; Ogata and Zhuang 2006; Hainzl et al.

2008, 2013; Seif et al. 2017; Zhang et al. 2018). The

assumption of isotropy is reasonably valid for weak

earthquakes with small rupture extensions, but becomes

problematic for larger magnitudes, e.g. see the spatial

pattern of the Ridgecrest sequence in Fig. 1b. It has been

shown that inadequate spatial models can lead to an

underestimation of the productivity parameter a (Eq. 2)

because the numerous small events take over the role of

mimicking the ’’true’’ anisotropic distribution (Hainzl et al.

2008, 2013; Grimm et al. 2021).

1.2 Bias 2: infinite spatial extent

Under the common definition of an inifinite spatial kernel,

aftershock triggering is disproportionately associated with

the more numerous small events, that can more flexibly

mimic anisotropic event alignments than the few strong

mainshocks. This can lead to unrealistically far trigger

impact of small magnitudes and to a substantial underes-

timation of the direct aftershock productivity of strong

events, resulting in a smoothing of temporal event distri-

butions (Grimm et al. 2021).
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1.3 Bias 3: short-term aftershock incompleteness
(STAI)

Strong earthquakes typically cause incomplete aftershock

records immediately after their occurrence, mainly due to

an overlap of coda waves (Hainzl 2016a; de Arcangelis

et al. 2018). Figure 1c and (d) confirms this phenomenon

for the aftershock sequences of the M6.4 and M7.1

Ridgecrest events, respectively. Apparently, records of

smaller sized aftershocks are missing in the first minutes to

hours, somewhat foiling the power law decay of event rates

expected from the Omori-Utsu law (Eq. 1). The short-term

incomplete event records can therefore hide to a large

extent both the ’’true’’ Omori Law decay (Eq. 1) and the

’’true’’ aftershock productivity of the trigger event (Eq. 2)

and lead to an overestimation of Omori parameter c and an

underestimation of productivity parameter a (Hainzl

2021, 2016b; Page et al. 2016; Seif et al. 2017).

Data-driven uncertainties of event locations and cut-off

magnitude as well as the assumption of a time-invariant

seismic background may lead to further inaccuracies in the

parameter estimation (Harte 2013, 2016; Seif et al. 2017).

However, they can be neglected in our study because they

are either expected to be small in southern California

datasets (e.g. location and magnitude uncertainty) or do not

apply in an isolated sequence analysis (background miss-

specification).

1.4 Scope of this article

In this article, we combine an ETAS approach accounting

for short-term incomplete event records with the applica-

tion of a generalized, anisotropic spatial model that

restricts the spatial kernel to the local surrounding of the

trigger source. We demonstrate the functionality and

superiority of our approaches over the conventional,

Fig. 1 a Magnitudes versus event times of Ridgecrest Mw6.4 (red

dots) and Mw7.1 (blue dots) aftershock sequences. Event times are

denoted in days before/after Mw7.1 mainshock, the dashed black line

represents the time origin (M7.1 event time). Light blue and light red

dots mark aftershocks with magnitudes larger than 5. Yellow

pentagram symbolizes the Mw6.4 foreshock, and yellow hexagram

marks the Mw7.1 mainshock. b Aftershock locations of the

Ridgecrest Mw6.4 and Mw7.1 sequences. Legend as in a. c
Magnitudes versus logarithmic event times of Ridgecrest Mw6.4

sequence. The dashed red line represents a manually fitted estimate of

the empirical completeness function McðtÞ. d Magnitudes versus

logarithmic event times of Ridgecrest Mw7.1 sequence. The dashed

red line represents a manually fitted estimate of the empirical

completeness function McðtÞ
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isotropic ETAS model by means of forecasting experi-

ments for the Ridgecrest sequence.

We utilize the generalized anisotropic and locally

restricted spatial kernel suggested by Grimm et al. (2021),

which assumes uniform trigger density along an estimated

rupture line segment, with power-law decay to the sides

and at the end points of the rupture. Zhang et al. (2018)

pursued an even more detailed approach, which assumed

constant trigger rate in the entire rupture plane, with

power-law decay outside of it. Different versions of elliptic

Gaussian distributions were introduced and discussed by

Ogata (1998, 2011) and Ogata and Zhuang (2006). The

latter approaches successfully modeled spatial aftershock

patterns, however, they require a new set of parameters and

are therefore not flexibly combinable with the conven-

tional, isotropic functionality. In contrast, the kernel of

Grimm et al. (2021) represents a generalization of the

isotropic function and therefore allows simultaneous ani-

sotropic modeling of some events (e.g. above a certain

magnitude threshold) and isotropic modeling of the rest. In

order to address the abovementioned particularity of the

M6.4 Ridgecrest foreshock, rupturing two almost orthog-

onal faults, we further generalize the approach by allowing

a spatial kernel composed by a weighted superposition of

two distinct rupture line segments.

Additionally, we accounts for STAI by applying an

ETAS model version that incorporates rate-dependent

incompleteness of event records. Recognizing alternative

approaches that will be briefly described in the Methods

section, we choose for the ETAS-Incomplete (ETASI)

model as recently suggested by Hainzl (2021). For sim-

plicity and to sharpen its focus on the incompleteness

detection, Hainzl (2021) neglected the space dimension in

his model. As this article combines the ETASI time model

of Hainzl (2021) with an adequate, anisotropic spatial

kernel it can be seen as the space-including extension of the

latter. The focus of this study, however, is on the benefit of

modeling the spatial aftershock distribution by a general-

ized anisotropic spatial kernel, rather than the benefit of the

ETASI model.

This article is structured as follows. In the Methods

section, we introduce the conventional ETAS model and its

ETASI extension and define the anisotropic, locally

restricted spatial kernel. This section includes a description

of the estimation procedures for strikes and rupture posi-

tions and the spatial integral over anisotropic kernels. Next,

the Application section explains the three forecasting

experiments, introducing the data and time-space windows

for the parameter estimation and forward simulations.

Finally, we interpret and discuss our forecasting results and

draw our conclusions. Source codes for model estimation

and simulation are freely available in a Github repository

(see Data and resources).

2 Methods

The ETAS model, first introduced by Ogata (1988, 1998),

is a branching-tree type model which describes clustered

earthquake occurrences by consecutive triggering evolving

over multiple parent-child generations (i.e. allowing sec-

ondary aftershocks). The triggered seismicity is overlaying

a time-invariant background process.

In this section, we will first introduce the conventional,

isotropic ETAS model approach. Next, we will extend the

model to obtain a time-space version of the ETASI model

suggested by Hainzl (2021), which involves STAI into

parameter estimation. Mostly, notations are consistent with

Hainzl (2021). We will then define the anisotropic gener-

alization of the spatial kernel, which is compatible with

both the ETAS and ETASI model, and introduce the local

restriction of the kernel. Finally, we explain the fitting

algorithm for the strike angle and rupture position of ani-

sotropic trigger events and the methods for spatial integral

estimation.

2.1 ETAS-model

In the conventional ETAS model approach, the occurrence

rate of an earthquake with magnitude m, occurring at time t

and at location (x, y) is modeled by an inhomogeneous

Poisson process with a time-space-magnitude dependent

intensity function

kðt; x; y;mÞ ¼ f0ðmÞR0ðt; x; yÞ

where

f0ðmÞ ¼ b e�bðm�McÞ ð3Þ

is the ’’true’’ probability density function (pdf) of the fre-

quency-magnitude distribution (FMD) with Gutenberg-

Richter parameter b ¼ b=lnð10Þ (Gutenberg and Richter

1944), and

R0ðt; x; yÞ ¼ l uðx; yÞ

þ
X

i:ti\t

kA;aðmiÞ gc;pðt � tiÞ hD;c;qðriðx; yÞ;mi; liÞ ð4Þ

is the ’’true’’ occurrence rate of events with magnitude

m�Mc, at time t and at location (x, y). The ’’true’’ event

rate is modeled by a superposition of the time-invariant

seismic background rate l uðx; yÞ with parameter l[ 0

and a sum of the trigger rate contributions of all events i

that occurred prior to current time t. kA;aðmiÞ and gc;pðt �
tiÞ denote the aftershock productivity and Omori-Utsu Law

decay functions as defined in Eqs. (1) and (2), respectively.

hD;c;qðriðx; yÞ;mi; liÞ models distribution of aftershock

locations triggered by event i, with parameters D; c and
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q. The precise inputs and shape of the spatial kernel are

discussed later.

The term ’’true’’ means that the (physical) relationships

are expected to be observed with perfect earthquake

records. The main assumption of the conventional ETAS

model is that STAI does not significantly distort the ‘‘true’’

magnitude distribution and the ‘‘true’’ event rates.

2.2 ETASI model

2.2.1 Rate-dependent iIncompleteness

The concept of rate-dependent earthquake record incom-

pleteness assumes that the ’’true’’ relationships underlying

f0ðmÞ and R0ðt; x; yÞ are not accurately identifiable in

available earthquake catalogs because especially events

with small magnitudes are detected with lower probability

in periods of high seismic activity. In these periods, the

detection ability is limited typically due to overlapping

seismic waves (Hainzl 2016a, 2021).

Fitting the ’’true’’ relationships to incomplete data

records may therefore lead to significantly biased param-

eter estimates (Hainzl 2016a, b; Page et al. 2016; Seif et al.

2017; Hainzl 2021).

In recent years, there has been growing research interest

in how to account for short-term incomplete datasets. For

instance, Zhuang et al. (2017) developed a replenishment

algorithm to fill up likely incomplete time intervals by

simulated events, in order to obtain artificially complete

pseudo-records. Other authors, particularly mentionable

Omi et al. (2013, 2014), Lippiello et al. (2016),

de Arcangelis et al. (2018), Mizrahi et al. (2021) and

Hainzl (2021), tried to incorporate STAI directly into the

ETAS model fit. A rather simple workaround approach is

to remove likely incomplete time periods from the fitted

time interval using empirical completeness functions, such

as performed in Hainzl et al. (2013) and Grimm et al.

(2021). A comprehensive discussion and comparison of

various ETASI models is not in the scope of this article.

The choice for the ETASI model proposed by Hainzl

(2021) was made for rather practical reasons, mainly

because of its compatibility with existing code.

2.2.2 Model formulation

The working assumption of the ETASI model described

here is that an earthquake with magnitude m and occurring

at time t can only be detected by the operating seismic

network if no event of equal or larger magnitude occurred

within the blind time ½t � Tb; t�, where Tb is typically in the

range of some seconds to few minutes (Hainzl 2021).

Similar assumptions have formerly been formulated by

Lippiello et al. (2016), de Arcangelis et al. (2018) and

Hainzl (2016a).

Let N0ðtÞ be the expected number of events occurring

within the entire spatial window S during blind time

½t � Tb; t�,

N0ðtÞ ¼
Z t

t�Tb

ZZ

S

R0ðt; x; yÞdx dy dt � Tb

ZZ

S

R0ðt; x; yÞ dx dy;

where the approximation holds under the assumption that

event rates are approximately constant during the blind

time (Hainzl 2021). According to the ’’true’’ FMD (Eq. 3),

each of the N0ðtÞ events has a probability of e�b ðm�McÞ to
exceed magnitude m. We define the detection probability

pdðm; tÞ of an earthquake at time t with magnitude m as the

probability that no equal or larger event occurred during

blind time Tb, i.e.

pdðm; tÞ ¼ e�N0ðtÞ e�b ðm�McÞ
:

Following the derivations in Hainzl (2016b, 2021), we

obtain the ’’apparent’’, incompleteness-biased FMD

f ðm; tÞ : ¼ f0ðmÞN0ðtÞ
pdðm; tÞ

1� e�N0ðtÞ

and the ’’apparent’’ event rate

Rðt; x; yÞ :¼ R0ðt; x; yÞ
N0ðtÞ

1� e�N0ðtÞ
� �

:

The term ’’apparent’’ signalizes that the functions f and R

do not represent the ’’true’’, but the observable relation-

ships that are possibly distorted by rate-dependent record

incompleteness. In periods of high seismic activity, the

’’apparent’’ FMD exhibits a larger relative frequency of

strong events (because they are more likely to be detected)

and an event rate lowered by detection capacity. We obtain

the ETASI intensity function

kðt; x; y;mÞ ¼ f ðm; tÞRðt; x; yÞ

¼ f0ðmÞR0ðt; x; yÞ pdðm; tÞ

The two underlying, simplifying assumptions in the ETASI

model are that (1) the blind time Tb is magnitude-inde-

pendent, which Hainzl (2021) justifies by typically shorter

source durations than travel times of coda waves, and (2)

that the seismic network is equally occupied for blind time

Tb by any event in the entire investigated spatial window.

The second assumption is reasonable for a small spatial

window, e.g. when analyzing an isolated sequence. When

fitting the ETASI model over a larger region, it needs to be

checked that relevant clusters do not evolve at the same

time but at distinct locations as they would be assumed to
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simultaneously occupy the entire seismic network. A rea-

sonable approach to prevent undesired biases is to choose a

larger cut-off magnitude.

2.2.3 Log-likelihood optimization

The parameter vector h ¼ fl;A; a; c; p;D; c; q; b; Tbg of

the ETASI model is estimated by maximizing its log-

likelihood function LL ¼ LL1 � LL2 with

LL1 ¼
X

events j

ln f0ðmjÞR0ðtj; xj; yjÞ pdðmj; tÞ
� �

;

LL2 ¼
Z 1

Mc

Z T2

T1

ZZ

S

kðt; x; y;mÞ dx dy dt dm

� T2 � T1
Tb

� 1

Tb

Z T2

T1

e
�Tb
RR

S
R0ðt;x;yÞ dx dydt

ð5Þ

where the sum in LL1 goes over all target events in the

magnitude-time-space window ½Mc;1Þ � ½T1; T2� � S and

LL2 integrates over this model space. In our study we

optimized the parameter vector h using the gradient-based

Davidson-Fletcher-Powell algorithm (Ogata 1998; Zhuang

et al. 2002; Jalilian 2019).

2.3 Generalized anisotropic spatial kernel

2.3.1 Conventional isotropic kernel

The spatial kernel hD;c;qðri;mi; liÞ in Eq. (4) models the 2D-

distribution of aftershocks locations. In conventional ETAS

model approaches, the triggering event is assumed to be a

point source, distributing its offsprings isotropically around

its epicenter. A classical definition of an isotropic kernel

(see Ogata 1998; Grimm et al. 2021; Jalilian 2019) is

hisoD;c;qðriðx; yÞ;miÞ :¼
q� 1

D expðcðmi �McÞÞ

1þ p riðx; yÞ2

D expðcðmi �McÞÞ

 !�q

where riðx; yÞ denotes the point-to-point distance between a
potential aftershock location (x, y) and the coordinates

ðxi; yiÞ of the triggering event i, and mi is the magnitude of

the event i. The kernel is constrained by the parameters D

and c that control the magnitude-dependent width of the

kernel, and parameter q that describes the exponential

decay of the function with growing spatial distance.

2.3.2 Anisotropic generalization

Here we use the anisotropic generalization of the spatial

kernel that was first introduced by Grimm et al. (2021),

hD;c;qðriðx; yÞ;mi; liÞ :¼
q� 1

D expðcðmi �McÞÞ

1þ 2 li riðx; yÞ þ p riðx; yÞ2

D expðcðmi �McÞÞ

 !�q

:

In this spatial model, the distance term riðx; yÞ denotes the
point-to-line distance between the potential aftershock

location (x, y) and the estimated rupture segment of trig-

gering event i with length li. That is, the kernel assigns

constant density along the rupture line segment, with a

power-law decay to the sides. Note that

hD;c;qðriðx; yÞ;mi; 0Þ ¼ hisoD;c;qðriðx; yÞ;miÞ;

i.e. the anisotropic kernel is a generalization and collapses

to the isotropic model if the triggering location is assumed

to be a point source with rupture extension li ¼ 0. There-

fore, the generalized spatial model can be used for mixing

approaches of both kernels, e.g. applying anisotropy to

events i with magnitudes mi �Maniso:

li ¼
0; for mi\Maniso; (isotropic trigger)

10�2:57þ0:62mi ; for mi �Maniso; (anisotropic trigger)

�

ð6Þ

The scaling relationship for anisotropic events is taken

from the estimate of subsurface rupture lengths for strike-

slip faulting events, provided in Wells and Coppersmith

(1994). Alternative relationships can be applied, too, but

are not expected to impact results.

2.3.3 Local spatial restriction

Both the conventional isotropic and the generalized ani-

sotropic kernels are defined in terms of a probability den-

sity function (pdf) over infinite space. Realistically,

however, small earthquakes should exert only a locally

restricted trigger influence. Grimm et al. (2021) showed

that an infinite spatial extent may lead to an underestima-

tion of the aftershock productivity parameter a because it

overestimates the triggering power of smaller events at the

cost of the larger events. A manual analysis of the spatial

aftershock patterns of the six Californian mainshocks

named in the introduction shows that the cloud of potential

aftershocks typically lies within one estimated rupture

length (by Wells and Coppersmith 1994) from the epi-

center. In case of an anisotropic shape of the kernel, the

area of half a rupture length around the extended rupture

segment seems sufficient. According to this observation,

we choose a spatial restriction Ri for event i according to

Ri :¼
10�2:57þ0:62mi ; for mi\Maniso; (isotropic trigger)

0:5 � 10�2:57þ0:62mi ; for mi �Maniso; (anisotropic trigger)

�

ð7Þ
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where again we use the strike-slip faulting subsurface

rupture length scaling from Wells and Coppersmith (1994).

In other words, the spatial kernel for event i is only

defined in the restricted area

SiðRiÞ :¼ fðx; yÞ 2 R2jriðx; yÞ�Rig

and set to 0 outside of it. Note that the restricted area SiðRiÞ
can assume isotropic and anisotropic shapes, depending on

the point-to-point or point-to-line definition of the distance

term riðx; yÞ. In order to retain the property of a pdf, we

need to rescale the kernel within the restricted area by its

analytical integral

HD;c;qðRi;mi; liÞ : ¼
ZZ

SiðRiÞ
hD;c;qðriðx; yÞ;mi; liÞ dx dy

¼ 1� 1þ 2 li Ri þ pR2
i

D expðcðmi �McÞÞ

� �1�q

:

ð8Þ

The integral term holds true for both isotropic (li ¼ 0) and

anisotropic triggers (li [ 0). We obtain the generalized,

restricted and anisotropic spatial kernel

hrestrD;c;qðriðx; yÞ;mi; liÞ ¼
hrestrD;c;qðriðx; yÞ;mi; liÞ
HD;c;qðRi;mi; liÞ

; if riðx; yÞ�Ri;

0; if riðx; yÞ[Ri:

8
><

>:

ð9Þ

2.4 Estimation of strike and epicenter location

The restricted, anisotropic spatial kernel in Eq. (9) requires

a strike angle to define the orientation of the extended

rupture for anisotropic triggers with li [ 0. In retrospect,

the strike angle could be taken from one of the numerous

publications about the Ridgecrest sequence or from focal

mechanism datasets such as the Global Moment Tensor

Catalog, the ISC-GEM Global Instrumental Earthquake

Catalog or from local datasets of the Southern California

Earthquake Data Center (SCEDC). In order to perform a

realistic forecasting test case, however, we should build

upon instantaneous strike estimates such as from local

agencies (e.g. the United States Geological Survey), which

are typically available within several minutes to hours.

Here, we used the strike estimation algorithm proposed

by Grimm et al. (2021), that optimally fits the rupture

segment through the cloud of early aftershock locations by

maximizing the contributed spatial rate under initial spatial

parameter guesses. To be more precise, we ran through

possible strikes in 1	 steps (i.e. f1	; :::; 180	g where we can
neglect all strikes larger than 180	 because we do not

account for dip direction in our model). We also moved the

rupture along each strike angle in order to test different

positions of the rupture segment relative to the fix epi-

center. Here, we go through possible relative positions in

0.01-steps (i.e. f0; 0:01; 0:02; :::; 0:99; 1g), where 0 and 1

means that one of the ends of the rupture segment coincides

with the epicenter, and 0.5 denotes the situation where the

rupture embeds the epicenter directly in its center. Among

all combinations, we searched the orientation and rupture

position that maximizes the forward trigger contribution of

the anisotropic event i to subsequent events j within a fixed

duration Dt ¼ 1 hour, i.e. with ti\tj\ti þ Dt. The for-

ward trigger contribution of event i is computed as
X

t:ti\tj\tiþDt

hrestD;c;qðriðxj; yjÞ;mi; liÞ: ð10Þ

In order to avoid that the rupture orientation and position is

dominated by single events that occurred very close to the

segment candidate, we applied a minimum distance of 0.2

kilometers.

Here, we use the initial spatial parameters D ¼ 0:0025,

c ¼ 1:78 and q ¼ 1:71 derived from the results of an iso-

tropic ETAS model for a long-term California dataset,

locally restricted to R ¼ 2:5 rupture lengths, by Grimm

et al. (2021). Tests have shown that modified initial

parameters changed the level of the sum of forward rate

contributions, but led to similar strike and epicenter loca-

tion estimates. We also tested multiple durations Dt up to

30 hours and found that the estimation procedure provided

very similar estimates for strike and rupture position. It

shows that the rupture orientation and position can be

appropriately identified soon after the trigger event

occurred.

In the Application section we present the strike and

rupture position estimation for the example of the M6.4

and M7.1 Ridgecrest events.

2.5 Estimation of spatial integral

The computation of the log-likelihood function in Eq. (5)

requires the estimation of the spatial integral of R0 and

therefore hrestrD;c;q.

In the isotropic case, the integral can be estimated semi-

analytically by the radial partitioning method suggested by

Ogata (1998) and applied in the R package ETAS (Jalilian

2019). It uses the property, that the isotropic spatial kernel

can be integrated analytically over circular areas SiðRÞ,
according to Eq. (8). As Fig. 2a illustrates, the polygon

defining the spatial window S is partitioned into a fine grid,

with two neighboring boundary grid points having

approximately equal distances ~R to the point source coor-

dinate of event i. The integral of hrestrD;c;q over each of these

thin segments of a circle can then be approximated by the

analytical full integral, weighted by the ratio of the circle
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segment /=360	, where / is the angle enclosed by the

circle segment (Jalilian 2019; Ogata 1998).

Similarly, an anisotropic spatial kernel can be integrated

analytically over an anisotropic region Sið ~RÞ with maxi-

mum distance ~R to the extended rupture. Due to the non-

circular shape of region SiðRÞ for anisotropic triggers,

radial partitioning can be only performed at both ends of

the rupture segment. As Fig. 2b illustrates, in a similar way

we use ’’bin partitioning’’ in the space orthogonal to the

rupture. Unfortunately, in the anisotropic case, the weights

/=360	 of the circle segments at both ends of the rupture

only relate to the part of the integral that is estimated by

radial partitioning. Similarly, the weight of a bin of size D l

is D l
2 li

relative to only the orthogonal space on both sides of

the rupture segment. In each iteration of the parameter

estimation, the shares of the radial and the orthogonal

integral parts change and need to be determined numeri-

cally before each iteration. This comes at the computa-

tional cost of approximately doubled run-time, given that

only the minority of strong earthquakes with magnitude

M�Maniso are modelled anisotropically.

3 Application

We carry out three forecasting experiments to check the

quality of the previously defined models in predicting the

observed Ridgecrest M6.4 and M7.1 sequences. Each

forecasting experiment consists of three main steps, rep-

resented as blue boxes in Fig. 3:

• Parameter Estimation: Estimate model parameters for

a specified event sub-set of southern Californian

earthquake data

• Forward Simulation: Use the fitted model parameters

to conduct 10,000 forward simulations of the Ridge-

crest M6.4 or M7.1 sequence, respectively.

• Evaluation: Analyze simulated sequences and compare

to the observation.

In the following, we first introduce the basic earthquake

event set for California underlying this study, and define

the time-space windows used to obtain the event sub-sets

applied for parameter estimation. Next, we describe the

three forecasting experiments, rigorously defining the

magnitude-time-space windows applied for parameter

estimation and forward simulations. Each forecasting

experiment is repeated for five versions of the models

introduced in the Methods section, which are defined in

detail. Finally, we specify the forward simulation process

and attributes and measures to assess the quality of the

forecasts. Here, we also give an example of the estimation

of strike angles and rupture positions for the Ridgecrest

M6.4 and M7.1 events.

3.1 Data

As our basic event set, we downloaded the earthquake

catalog from the Southern California Earthquake Data

Center (SCEDC, Hauksson et al. 2012). The entire dataset

comprises 699,175 event occurrences between January 1,

1981, and December 31, 2019. Because magnitudes seem

to be clustered at values with one decimal, we round all

Fig. 2 Visualization of the spatial integral estimation needed for

computing the log-likelihood function (Eq. 5) for a isotropic triggers

and b anisotropic triggers. The box represents the boundary of the

spatial target region (polygon), gridded into small intervals. Red

crosses symbolize the epicenters of the triggering events. In a, the red

circle around the event represents the contour lines of an isotropic

spatial kernel and the shaded segments illustrate the radial partition-

ing method. In (b), the red box and semi-circles symbolize the contour

lines of the anisotropic spatial kernel, and the shaded segments

illustrate the radial and bin partitioning method
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magnitudes to one decimal and use the cut-off magnitude

Mc ¼ 2:05 (Hutton et al. 2010; Hainzl 2021). We remove

events at depths larger than 40 km to avoid completeness

issues.

3.2 Forecasting experiments

Here, we describe in detail the design of the forecasting

experiments, summarized in Fig. 3.

3.2.1 Experiment 1

We estimate generic, long-term California model parame-

ters within the hexagonal polygon of southern California

defined in Hutton et al. (2010). In order to mitigate com-

putational costs, we restrict the time window to the period

between January 1, 1987, and December 31, 2018,

including the five prominent earthquake sequences before

Ridgecrest as named in the Introduction section, and

choose the larger cut-off magnitudeMc ¼ 2:95. The cut-off

magnitude is a trade-off between too large and too small

event record sizes that ensures reasonable run-time and

statistical robustness of parameter estimates. Additionally,

it avoids potentially biased estimates of the blind time

parameter Tb in large spatial areas due to simultaneous

clustering. The magnitude-time-space window contains

7,215 fitted target events. We account for external trig-

gering impact by including complementary events that

occurred after January 1, 1986, and in the surrounding of

0.5	 geographical degrees of the fitted area.

The estimated models are then applied to forecast the

Ridgecrest M6.4 foreshock sequence above cut-off

Table 1 Overview of the model

variants tested in this paper
Name Model version Maniso Ri Ri

(isotropic triggers) (anisotropic triggers)

ETAS conventional ETAS - 1 -

ETAS iso-r ETAS - 1RLi -

ETAS aniso-r ETAS 6.0 1RLi 0:5RLi

ETASI iso-r ETASI - 1RLi -

ETASI aniso-r ETASI 6.0 1RLi 0:5RLi

Non applicable cases are filled with ’’-’’. Spatial restrictions Ri of event i are denoted in terms of the

estimate rupture length (RLi)

Fig. 3 Summary of the forecasting experiments (from left to right):

The five model versions, listed in Table 1, are fitted to a long-term

California event sub-set (Experiments 1 and 2) and to the local M6.4

Ridgecrest sequence (Experiment 3). The estimated parameters are

applied to forward simulations of the Ridgecrest M6.4 sequence

(Experiment 1) and the Ridgecrest M7.1 sequence (Experiments 2 and
3). The predicted sequences are compared to the observed ones with

respect to three attributes, further described in the Attributes and
Measures section
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magnitude Mc ¼ 2:05, within a circular polygon with

radius 40 km centered in the M6.4 event location. The

simulated time window starts in the moment of the M6.4

event (July 4, 2019) and ends at the M7.1 mainshock event

time (July 6, 2019), thus it has a duration of approximately

34 hours. We initialize triggering seismicity by the event

history from June 1, 2019.

3.2.2 Experiment 2

In the second experiment, we use the same set of generic,

long-term California parameters, but apply it in a forecast

of the Ridgecrest M7.1 mainshock sequence above cut-off

magnitude Mc ¼ 2:95, starting at the M7.1 event time for a

duration of ten days. The spatial simulation window is

defined by a disk with radius of 75 km, centered in the

M7.1 event location. Again, we initialize triggering seis-

micity by the event history from June 1, 2019, here until

the M7.1 event time.

3.2.3 Experiment 3

In the third experiment, we simulate Ridgecrest M7.1

sequences with the same settings as for Experiment 2, but

based on parameter estimates fitted over the immediately

preceding M6.4 foreshock sequence. For the parameter

estimation, we use the same magnitude-time-space target

window as for the M6.4 sequence simulations in Experi-

ment 1. We account for external triggering by including

complementary events that occurred after June 1, 2019, and

within a disk with increased radius of 50 km.

3.3 Fitted models

Each forecasting experiment is carried out for five different

versions of the model introduced in the Methods section,

summarized in Table 1. The ’’ETAS conventional’’ model

serves as our benchmark and uses the most standard set-up

of an ETAS model (e.g. Ogata 1998; Zhuang et al. 2002;

Jalilian 2019). It applies an isotropic spatial kernel with

infinite spatial extent to all triggers. The ’’ETAS iso-r’’

model applies an isotropic kernel, but restricts the spatial

extent to one rupture length for all events, according to

Eq. (7). In the ’’ETAS aniso-r’’ model, all events with

magnitudes mi �Maniso ¼ 6:0 are modeled as an aniso-

tropic trigger source with a spatial restriction to half a

rupture length (Eqs. 6 and 7). The other events are modeled

as isotropic triggers, restricted to one rupture length. The

’’ETASI iso-r’’ and ’’ETASI aniso-r’’ models combine the

spatial kernel settings of the latter models with the ETASI

approach accounting for STAI.

3.4 Simulation process

For each forecasting experiment and model version, we

carry out 10,000 realizations of synthetic sequences to

obtain statistically stable results. At the beginning of each

simulation, we distribute the Poisson-sampled number of

background events, scaled by the size of the spatial area,

uniformly over space and time. The assumption of an

uniform spatio-temporal background event distribution

appears plausible within the short and small space-time

simulation windows.

Next, we sample the numbers of offsprings for the ini-

tiating event history and the background events. The

number of offsprings, depending on trigger magnitude m, is

drawn from a Poisson distribution with expected value

NðmÞ ¼ kðmÞ 1

1� p
ðT þ cÞ1�p � c1�p
� �

: ð11Þ

where k(m) is the aftershock productivity function in

Eq. (2) and the latter term is the integral from t ¼ 0 to a

maximum trigger duration t ¼ T (in days) over the Omori-

Utsu function in Eq. (1). We need to rescale the aftershock

productivity to obtain the expected number of offsprings

within T days, because the Omori-Utsu law is not nor-

malized (no pdf) and, therefore, typically does not integrate

to one. Thus, it interacts with the scaling parameter A of the

productivity function.

Each triggered event is then assigned an event time and

location according to inversion sampling from the

(rescaled) Omori-Utsu law and the spatial kernel. The

magnitude is sampled by the inversion method from the

estimated FMD in Eq. (3), applying a maximum magnitude

of 7.5 for California. The aftershock sampling routine is

repeated for every newly triggered event in the simulated

time-space window until no more events are sampled.

In order to make fair comparisons of simulated

sequences with the observed ones, we need to consider the

implications of STAI in the forecasts. The ETASI models

account for incomplete records in the parameter estimation

and therefore forecast the ’’true’’, i.e. complete, aftershock

sequence. According to its definition of event detectability,

we would need to delete all events that occurred within the

blind time Tb of an earlier event with larger magnitude.

For the sake of transparency and consistency with the

observations, we used an alternative approach and manu-

ally fitted empirical magnitude completeness functions

McðtÞ ¼
�1:4 log10ðtÞ þM �Mc � 4:75; (Ridgecrest M6.4);

�0:99 log10ðtÞ þM �Mc � 3:75; (Ridgecrest M7.1):

�

ð12Þ

to the logarithmic event time-magnitude scatter data of the

observed Ridgecrest M6.4 and Ridgecrest M7.1 sequences

in Fig. 1c and d.
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In the forecasts generated by the ETASI iso-r and aniso-

r models, we delete all events that fall in the supposedly

undetected range below the line of the simulated sequence.

In contrast, ETAS models estimate STAI-biased aftershock

productivities and therefore lead to predictions of the

incomplete, rather than the ’’true’’ size of the sequence.

Therefore, in forecasts generated by these models we do

not delete events.

3.4.1 Attributes and measures

For each model version and experiment, we want to assess

the quality of the forecasts with respect to three attributes,

in comparison with the observed sequence evaluated over

the same magnitude-time-space window.

We compute the predicted cumulative distribution

function (cdf) of the number of aftershocks and the pre-

dicted pdf of the largest aftershock magnitude out of the

10,000 forecasted sequences. As a quantitative measure of

the fit, we determine the exceedance probability that the

predicted distribution would forecast a larger or the

observed value. Extreme exceedance probabilities, either

close to 0 or 1, indicate an inadequate prediction of the

attribute.

To test the spatial distribution of aftershock locations,

we define a 1km � 1km spatial grid over the spatial sim-

ulation window of the forecasting experiment and count the

number of aftershocks in each simulation run, that occurred

closest to the respective grid points. We determine the

spatial distribution Dij of the i-th simulation run by divid-

ing the number of events occurred at each grid point j, Nij,

by the number of events in the i-th simulation run, Ni, i.e.

Dij ¼ Nij=Ni:

By repeating the same procedure for each simulation run,

we obtain 10,000 simulated spatial distributions Dij for

each model version. Finally, we average the individual

simulated distributions to obtain the predicted probability

Pj that an event occurs at grid point j.

The more events of the observed sequence have occur-

red at grid points with high predicted probabilities Pj, the

better is the forecast. Therefore, we quantify the goodness

of the spatial fit with the likelihood Lspace ¼
Q

grid points j P
Nobs
j

j where Nobs
j is the number of observed

events at grid point j with corresponding log-likelihood

LLspace ¼
X

grid points j

Nobs
j lnðPjÞ:

We compute the information gain of the models’ spatial

predictions relative to the ETAS conventional model by

IG ¼
LLspace � LL0space

Nobs

where LL0space is the benchmark result for the ETAS con-

ventional model (Hainzl 2021; Rhoades et al. 2014).

3.4.2 Strike and rupture position estimates

For anisotropic models, both the parameter estimation and

the forward simulations of the Ridgecrest M6.4 and M7.1

sequences require estimates of the strike angle and rupture

position of all events with magnitude M[ 6:0.

Figure 4a demonstrates the methodology, described in

the Methods section, for the Ridgecrest M6.4 foreshock.

The forward trigger rate contribution (y axis) from Eq. (10)

is plotted against the strike sample (x axis) and the sample

of relative rupture positions (red lines). The curves clearly

show a bi-modal shape, with peaks at strikes 34	 and 132	

and relative rupture positions 0.76 and 0.77. Fig. 4c visu-

alizes the optimized rupture orientation and position as a fit

through the cloud of potential aftershocks within the first

hour (red) or within 30 hours (yellow). It confirms the

earlier mentioned particularity of two almost orthogonally

ruptured faults. The strike 34	 rupture segment does not

perfectly fit the aftershock alignment, as segment must go

through the fixed M6.4 epicenter location which seems to

be slightly off the ruptured fault. Apparently, later after-

shocks have a very similar spatial distribution as the events

occurred within the first hour. For larger Dt, the M6.4 strike

estimates would vary by only 1	 or 2	, respectively.
Figure 4b shows the analogous analysis for the M7.1

Ridgecrest mainshock. Here, the maximizing properties are

strike 142	 and a relatively central rupture position 0.55.

The M7.1 event ruptured a single fault, resulting in an uni-

modal shape of the forward trigger contribution curves.

4 Results and discussion

In this section, we analyze and discuss the results of the

three forecasting experiments, summarized in Fig. 3. We

use the attributes and measures presented in the Applica-

tion section to evaluate the quality of the forecasts, com-

pared to the observed sequences. The model parameter

estimation results of both the generic California and the

Ridgecrest M6.4 sequence parameter fits are listed in

Table 2 and will help us to understand and explain features

in the forecasts. After a rigorous discussion of the fore-

casting results, we will mention some sensitivity tests that

we applied to check the robustness of our findings.
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4.1 Forecasting experiment 1

In the first forecasting experiment, we simulated the

Ridgecrest M6.4 sequence, starting at the time of the M6.4

earthquake occurrence, based on generic parameters, fitted

on a long-term and spacious Californian event set. The

simulation period covers the 34 hours until (but non-in-

cluding) the occurrence of the M7.1 mainshock.

4.1.1 Predicted aftershock productivity

Figure 5a shows the predicted cdfs of the number of

aftershocks for each model, compared to the observed

M6.4 sequence, which produced 633 events in the same

time-space window. Evidently, the ETAS conventional

model (with isotropic, unlimited spatial kernel) provides a

very inappropriate estimate, as it does not reach the

observed number in any of the 10,000 simulations.

According to the ETAS iso-r and ETAS aniso-r models, the

observed number of events would be a possible, but rather

unlikely scenario, with approximately 2.4 and 3.7% prob-

ability to exceed the observed value. The ETASI models

tend to only moderately (ETASI iso-r) or slightly (ETASI

aniso-r) underestimate the observed number.

To explain this observation, we consider that the size of

this relatively short sequence is predominantly influenced

by the amount of direct aftershocks of the initial M6.4

trigger event. According to the model parameter estimates

in Table 2 and Eq. (11), the M6.4 trigger event would only

produce approximately 17 direct aftershocks in the ETAS

conventional model, compared to 46 (ETAS iso-r), 49

(ETAS aniso-r), 66 (ETASI iso-r) and 74 (ETASI aniso-r)

Fig. 4 Strike and relative rupture position optimization using initial

ETAS parameter guesses D ¼ 0:0025; c ¼ 1:78; q ¼ 1:71. a, b: Sum
of forward trigger rate contributions to events within one hour against

strike sample (x axis) and relative rupture position sample (curves) for

a the M6.4 Ridgecrest foreshock and b the M7.1 Ridgecrest

mainshock. Text boxes show strike and relative rupture position

estimates at the curve maxima. c, d: Fitted rupture segments through

cloud of aftershocks after c the M6.4 Ridgecrest foreshock and d the

M7.1 Ridgecrest mainshock. Darker red and blue points represent

aftershocks within the first hour after the respective trigger event,

yellow and lighter blue points represent aftershocks within the first 30

hours. Yellow pentagram symbolizes Mw6.4 foreshock, and yellow

hexagram marks Mw7.1 mainshock. Thick black lines represent

estimated rupture locations according to the strikes and relative

rupture positions estimated in a and b.
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in the other models. The larger the parameter a, the more

direct aftershocks are expected for the M6.4 event.

As argued in the Methods section, the local restriction of

the spatial kernels prevents a disproportionate triggering

power of small events and in return increases the direct

aftershock productivity of the stronger events, character-

ized by a considerable increase of the parameter a in the

non-conventional models (Grimm et al. 2021). Besides, the

application of the ETASI model accounts for missing

aftershock records after strong trigger events and corrects

for the biased, underestimated aftershock productivity,

leading to an additional increase of a (Hainzl 2021).

Finally, we note that the majority of the M[ 6 mainshocks

included in the estimation time window from 1987 until

2018, are characterized by anisotropic aftershock patterns.

Consequently, more events are associated as direct after-

shocks of the strong mainshocks when we estimate the

parameters with the ETAS aniso-r or the ETASI aniso-r

model.

4.1.2 Predicted largest aftershock magnitude

Figure 5b shows the predicted pdfs of the largest after-

shock magnitude in the synthetic sequences, assuming that

the Gutenberg-Richter distribution holds over the entire

magnitude range up to the largest values. For each of the

five models, a kernel density function was computed for the

10,000 largest magnitude samples. In all models, the

observed M7.1 event would have been an extremely rare

case, with exceedance probabilities

Pðlargest magnitude� 7:1Þ� 0:43%. Even the second

largest, observed aftershock magnitude (M ¼ 5:4) was not

reached in approximately 75% of the simulations of the

best model (ETASI aniso-r).

To interpret this result, think of the largest aftershock

magnitude as the largest order statistic of the sample of

simulated events in a simulation run. Then, the expected

value of the sample maximum (i.e. the largest aftershock)

increases if (1) the sequence size becomes larger or (2) if

the magnitudes in the sample are distributed in a way that

they favor high values.

The underestimations of the observed sequence size,

shown in Fig. 5a and discussed earlier, cannot sufficiently

explain the miss-match of the predicted largest aftershock

magnitudes. Even the observed sample size (633 events)

would produce a M7.1 event with a probability of less than

1%, given the generic California estimates for the FMD

with b ¼ 0:98 (ETAS models) or b ¼ 1:01 (ETASI models;

see Table 2). If b ¼ 1, then each magnitude increment by 1

leads to a 10 times smaller probability of occurrence.

Therefore, one M7.1 event is only obtained, on average, for

a sequence with 100,000 aftershocks.

According to the results in Table 2, all models estimated

significantly smaller values b\0:8 for the observed

Ridgecrest M6.4 sequence, which favors the occurrence of

strong events. Note that the b estimates of the three ETAS

models are biased, because they are fitted for the ’’true’’

FMD using the evidently short-term incomplete M6.4

sequence event record (see Fig. 1c). The ETASI models

account for the missing smaller magnitudes and therefore

lead to corrected, larger b values.

If we would simulate the Ridgecrest M6.4 sequence

using its own estimation results (note that this is not a valid

forecasting experiment, but used for illustration purposes),

Table 2 Overview of model

results for generic (long-term)

California and Ridgecrest M6.4

parameter estimation

Parameter Generic California Estimates Ridgecrest M6.4 Estimates

ETAS ETASI ETAS ETASI

conv iso-r aniso-r iso-r aniso-r conv iso-r aniso-r iso-r aniso-r

l 1
days

0.16 0.21 0.21 0.21 0.21 0.11 0.30 0.29 0.18 0.30

A 0.027 0.012 0.011 0.010 0.009 0.052 0.024 0.022 0.022 0.019

a 1
mags

1.30 1.87 1.92 1.98 2.05 1.13 1.71 1.75 1.76 1.83

c 1
days

0.004 0.010 0.010 0.005 0.005 0.008 0.015 0.014 0.010 0.007

p 1.06 1.08 1.08 1.09 1.09 1.16 1.09 1.06 1.07 1.04

D Km2 0.085 0.037 0.110 0.037 0.107 0.135 0.085 0.469 0.080 0.399

c 1
mag

1.60 1.86 2.09 1.88 2.10 1.15 1.43 1.55 1.44 1.57

q 1.51 1.03 2.14 1.07 2.20 1.93 1.73 8.98 1.72 8.79

Tb sec 112.8 114.0 18.1 21.1

b 0.98 0.98 0.98 1.01 1.01 0.72 0.72 0.72 0.77 0.79

LL 20,806 17,478 18,209 16,321 17,107 6524 6322 6433 6013 6131

mbranch 0.73 0.60 0.59 0.61 0.60 1.38 1.76 1.89 1.54 1.52
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we would obtain an M� 7:1 event with 10.0% (ETAS

conventional), 25.9% (ETAS iso-r), 53.7% (ETAS aniso-r),

15.6% (ETASI iso-r) and 25.3% (ETASI aniso-r) chance.

4.1.3 Criticality

The branching ratios mbranch, i.e. the average number of

direct aftershocks per event, clearly exceed 1 in each model

Fig. 5 Predicted cdfs of the number of aftershocks (a, c, e) and

predicted pdfs of the largest aftershock magnitude (b, d, f) for

Experiment 1 (a, b), Experiment 2 (c, d) and Experiment 3 (e, f). Each
predicted distribution is based on 10,000 simulated forecasts of the

Ridgecrest M6.4 sequence (a, b) and the Ridgecrest M7.1 sequence

(c–f), using the models indicated in the legend in the top left figure.

Vertical gray lines show the value of the observed sequence
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(see Table 2). According to these models, an earthquake

would trigger more than one direct aftershock on average,

which would cause the sequence to be unstable, with

exponentially increasing activity. The large branching

ratios are mainly driven by the small b values, which

substantially increase the occurrence probability of the

more productive, strong earthquakes.

The instability of the M6.4 sequence could be inter-

preted as an indication of an imminent, strong mainshock.

On the other hand, it is unlikely that the instability is based

on a model error, e.g. due to a substantial misfit of the

b-value due to few magnitude outliers. First, the FMD is

estimated accounting for all earthquakes at equal weights,

regardless of their magnitude. Therefore, the b value

Fig. 6 Predicted spatial event distributions for Experiment 1 (a, b),
Experiment 2 (c, d) and Experiment 3 (e, f). Each predicted

distribution is averaged over 10,000 simulated forecasts of the

Ridgecrest M6.4 sequence (a, b) and the Ridgecrest M7.1 sequence

(c–f), based on the ETASI iso-r model (a, c, e) and the ETASI aniso-r

model (b, d, f) . The color bar indicates the predicted, logarithmic

probability that an event occurs at the respective grid point
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estimate is primarily controlled by the more numerous,

small magnitudes. Secondly, the M7.1 event magnitude

was not included in the b value estimation.

In summary, the generic California parameters are fitted

to a long-term catalog mainly consisting of

stable earthquake sequences and seismically quiet periods.

Therefore, it cannot adequately predict the magnitude

distribution of the M6.4 foreshock sequence, which is

characterized by instability due to a particularly flat FMD.

4.1.4 Spatial distribution

Figure 6a and b show the predicted spatial event distribu-

tions, averaged over the 10,000 simulation runs and eval-

uated on the 1 km � 1 km grid described in the Application

section, for the ETASI iso-r model (in (a)) and the ETASI

aniso-r model (in (b)). We overlay the observed event

locations to the logarithmic heat map of grid cell proba-

bilities. At first glance, the anisotropic spatial forecast in

(b) fits the observed, and clearly non-isotropical event

distribution much better than the isotropic counterpart in

(a).

In the isotropic model, all direct aftershocks are dis-

tributed point-symmetrically around the M6.4 trigger

event. Subsequent secondary triggering then takes place

around the new initiators. In the anisotropic model, the

direct aftershocks are distributed around the fitted rupture

segments of the two orthogonal faults (see Fig. 4). Sub-

sequent trigger generations then spread isotropically (if

M\Maniso) or anisotropically (if M�Maniso) around their

new initiators. In both plots, we can see a pronounced

boundary from green to blue color, indicating the spatial

restriction to one rupture length (isotropic model) and half

a rupture length (anisotropic model) around the trigger

source, according to Eq. (7). Spatial grid cells outside of

this boundary can only be activated by secondary trigger-

ing or background seismicity.

To quantify the quality of the spatial forecasts, we

computed the information gains relative to the ETAS

conventional model as described in the Application sec-

tion. Figure 7c shows the results for Experiment 1 in the

left group of bars. Both anisotropic models lead to a pro-

nounced improvement, which confirms the visual impres-

sion in Fig. 6a and b. The ETAS and ETASI iso-r models,

which differ from the conventional approach in terms of

the local spatial restriction, show a small information gain.

As we can see in Fig. 6a, none of the observed events

occurred outside of the spatial restriction. Therefore, the

restriction leads to a slightly more pronounced accumula-

tion of simulated event locations closer to the M6.4 trigger,

which coincides better with the observation.

4.2 Forecasting experiment 2

In the second forecasting experiment, we simulated the

Ridgecrest M7.1 sequence for a duration of 10 days based

on the same generic California parameters as used for

Experiment 1.

4.2.1 Predicted aftershock productivity

Figure 5c compares the number of aftershocks, predicted

by the five models, to the observed number of 3,273 events.

The forecasts show a very similar setup of curves as in

Experiment 1 (see Fig. 5a). The ETAS conventional model

clearly underestimates the observed number of events. The

ETAS iso-r and aniso-r models reach the observation in

Fig. 7 Summary plots of forecasting results. Predicted probabilities

per model that a the number of aftershocks exceeds the observation

(633 for Ridgecrest M6.4; 3,273 for Ridgecrest M7.1) and b the

largest aftershock magnitude exceeds the observation (7.1 for

Ridgecrest M6.4; 5.5 for Ridgecrest M7.1). Dashed horizontal lines

represent 2:5% and 97:5% quantiles. c Spatial information gains

relative to the ETAS conventional model prediction for the same

experiment. Legend in a holds for all plots
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about 6.5 and 14.1% of the simulation runs. Again, the

ETASI models provide the best approximations.

According to Eq. (11), the M7.1 trigger event would on

average trigger only roughly 53 direct aftershocks in the

ETAS conventional model, compared to 219 in the ETAS

iso-r, 242 in the ETAS aniso-r, 328 in the ETASI iso-r and

387 in the ETASI aniso-r model. As explained in detail for

Experiment 1, the reason is found in the parameter estimate

for a.

4.2.2 Predicted largest aftershock magnitude

Figure 5d shows the predicted pdfs for the largest after-

shock magnitude of the Ridgecrest M7.1 sequence. In

contrast to Experiment 1, all but the conventional model

provide very good forecasts, indicating that the generic,

long-term California estimates of the FMD with b � 1

coincide well with the FMD of the Ridgecrest M7.1

sequence and the instability of the sequence ended with the

occurrence of the M7.1 mainshock. The moderate under-

estimation by the ETAS conventional model can be

explained by the underestimated sequence size, which

substantially reduces the sample size of event magnitudes.

4.2.3 Spatial distribution

Figure 6c and d show the predicted spatial distributions of

aftershock locations, again for the ETASI iso-r and aniso-r

model. The visual impression, that the anisotropic model

provides a substantially better forecast, is confirmed by the

bar plot in Fig. 7c. The information gain by the anisotropic

models is more pronounced for the Ridgecrest M7.1

sequence, because it has a longer rupture extension

(
 68km by Wells and Coppersmith 1994) than the M6.4

event and it did not rupture two orthogonal faults, which

can be approximated more easily by an isotropic kernel.

4.3 Forecasting experiment 3

In the third forecasting experiment, we simulated the 10-

days Ridgecrest M7.1 sequence based on the parameters

fitted to the local Ridgecrest M6.4 foreshock sequence.

Since the instability of the sequence would lead to

exploding forecasts, we assumed the long-term estimated

FMD with b ¼ 1.

4.3.1 Predicted aftershock productivity

Figure 5e shows that the number of aftershocks is predicted

much more similarly by the five models than in Experi-

ments 1 and 2. It suggests that the particular features of the

model versions play a smaller role in the estimation over a

closed, local sequence than in the generic fit over a long-

term catalog with several sequences and seismically quiet

periods in between. The ETAS conventional model reaches

the observation in 4.4% of the simulation runs, the ETASI

aniso-r even overestimates the size of the sequence in

94.1% of the simulations. The other models show very

good predictions.

4.3.2 Predicted largest aftershock magnitude

According to Fig. 5f, our manual choice of b ¼ 1 led to

very realistic predictions of the largest aftershock magni-

tude. Together with the results for the number of after-

shocks, it shows that the Ridgecrest left the unstable state

after the M7.1 event by returning to the generic FMD,

while retaining a similar structure of aftershock

productivity.

4.3.3 Spatial distribution

Finally, Fig. 6e and f suggests that, compared to Experi-

ment 2, the spatial kernels fitted over the Ridgecrest M6.4

sequence are much narrower than those coming from the

generic, long-term model fit. This is confirmed by the

larger estimates of q and the smaller estimates of c in

Table 2. Figure 7c shows that the narrower spatial distri-

bution leads to a more pronounced information gain by the

local restriction and the anisotropy, relative to the ETAS

conventional model.

Note that, to some extent, the predicted spatial distri-

butions show traces of late or secondary aftershocks trig-

gered along the orthogonal M6.4 Ridgecrest fault, in

contrast to very few observed events in that area. This

might be an indication of an underestimated Omori

parameter p or an overestimated c, favoring pronounced

triggering over a longer time period.

4.4 Summary of forecast quality

Figure 7 shows a summary of the quality measures for the

three experiments, with respect to the predicted number of

aftershocks in Fig. 7a, largest aftershock magnitude in

Fig. 7b and spatial aftershock distribution in Fig. 7c. The

conventional model scores worst in each category. It con-

firms the results in Grimm et al. (2021), who argued that

the isotropic and unlimited spatial kernel assumes an

implausibly far trigger reach and leads to underestimated

cluster sizes.

According to Fig. 7a, the ETASI models seem to pre-

dominantly estimate more realistic aftershock productivties

than the ETAS models when fitted over the long-term

Californian catalog (see Experiments 1 and 2). When fitted

over the specific Ridgcrest M6.4 sequence, the bias of an

underestimated aftershock productivity seems to be
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balanced out by not cutting out undetected events. Aniso-

tropic models always lead to larger predicted sequence

sizes, in the case of Experiment 3 even to a substantial

overestimation.

The predictions of the largest aftershock magnitude,

shown in Fig. 7b, are reasonable for all but Experiment 1.

Apparently, the short-term incompleteness bias in the

ETAS models is of much less consequence for the FMD

than for the aftershock productivity.

According to Fig. 7c, as expected, the anisotropic

models predict more realistic spatial event distributions.

The spatial restriction leads to a much smaller

improvement.

4.5 Sensitivity of results

As a sensitivity study, we forecasted the Ridgecrest M7.1

sequence over a duration of 50 days. In a longer time

window, direct aftershock productivity has less dominance,

and is being displaced more and more by secondary trig-

gering. The underestimation of direct aftershock produc-

tivity (e.g. in the ETAS conventional model) typically goes

along with more pronounced secondary triggering, char-

acterized by larger estimates of the productivity constant A,

see Table 2. Therefore, we observed that the ETAS con-

ventional model caught up the missing events over time.

On the other hand, this indicates a temporal distribution of

aftershocks which is not in agreement with the observa-

tions. Other sensitivity tests, such as the model estimation

with varying cut-off magnitudes Mc or different time

windows for the generic California estimates showed

generally stable results.

5 Conclusion

In this article, we combined an ETAS approach with

generalized anisotropic and locally restricted spatial ker-

nels (Grimm et al. 2021) with the ETASI time model of

Hainzl (2021). The new features have the objective to solve

the three major biases of the conventional ETAS model,

which are the isotropic and spatially unlimited kernel as

well as the neglection of short-term incompleteness in the

fitted event records.

We estimated five different versions of the new ETASI

time-space model to a generic, long-term Californian event

set and to the specific Ridgecrest M6.4 foreshock sequence.

Then, we applied the fitted model parameters to generate

synthetic forecasts of the Ridgecrest M6.4 and the M7.1

sequences, which we analyzed regarding the predicted size

of the sequence, largest aftershock magnitude and spatial

aftershock distribution.

The results indicate that the ETAS conventional model

leads to a substantial underestimation of the number of

aftershocks due to its disproportionately small estimates of

the direct aftershock productivity for the M6.4 and M7.1

trigger events. The locally restricted ETAS models without

ETASI-extension provide more realistic, but still underes-

timated predictions, as they are affected by the bias of

short-term incomplete event sequences in the fitted event

set. The combination of ETASI model with locally

restricted spatial kernel seems to solve the bias and pro-

vides the most robust predictions in the forecasting

experiments. The anisotropy of the spatial kernel has a

positive impact on the model estimation, however, shows

its strength more clearly in the prediction of the spatial

event distribution of aftershocks.

More as a by-product, we find that the Ridgecrest M6.4

foreshock sequence showed instable behavior, favoring

strong aftershocks by a small Gutenberg-Richter parameter

b\0:8. The instability of the foreshock sequence can be

interpreted as an indication of an imminent strong main-

shock. In consequence, models fitted on the long-term,

stable Californian event records cannot adequately predict

the magnitude distribution of this sequence.

The new model provides a better understanding of

spatio-temporal earthquake clustering and solves three

major biases of the conventional ETAS model at once.

Particularly, it leads to better estimates of the aftershock

productivity and to improved forecasts of the size of a

sequence and the spatial distribution of aftershocks. These

improvements may be of major interest for short-term risk

assessment during an on-going aftershock sequence, par-

ticularly for the risk of a second, damaging earthquake

following the initial trigger event. The anisotropic spatial

forecast of aftershock locations enables desaster response

managers to take actions in areas at risk where particularly

high aftershock activity is expected.

Future work should test the forecast quality for other

earthquake sequences. It would be interesting to address

the question whether the ETASI time-space model can be

used to reliably detect the instability of a live sequence,

which could have positive impacts on emergency man-

agement during on-going sequences. An evaluation of the

goodness of fit for the temporal event distribution should

be included into such analyses.

6 Data and resources

The earthquake event set for California has been down-

loaded from the Southern California Earthquake Data

Center (https://scedc.caltech.edu/data/alt-2011-dd-hauks

son-yang-shearer.html, last accessed on October 25, 2021).

Results and figures were produced using Matlab

Stochastic Environmental Research and Risk Assessment

123

75



software. The source code for model estimation and sim-

ulation is made freely available by the first author in

the Github repository https://github.com/ChrGrimm/

ETASanisotropic.
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(2022b). New Statistical Perspectives on Bath’s Law and Aftershock Productivity. Manuscript
submitted for publication.

Author contributions

Survival model: Christian Grimm (CG) brought up the main idea to model magnitude differences
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Abstract. The well-established Bath’s law states that the average magnitude difference between a mainshock and

its strongest aftershock is roughly 1.2, independently of the size of the mainshock. The main challenge in calculating

this value is the bias introduced by missing data points when the strongest aftershock is below the observed cut-

off magnitude. Ignoring missing values leads to a systematic error, because the data points removed are those with

particularly large magnitude differences ∆M . The error is minimized, if we restrict the statistics to mainshocks

at least two magnitude units above the cut-off, but then the sample size is strongly reduced. This work provides

an innovative approach for modelling ∆M by adapting methods for time-to-event data, which often suffers from

incomplete observation (censoring). In doing so, we adequately account for unobserved values and estimate a fully

parametric distribution of the magnitude differences ∆M for M ą 6 mainshocks. Results show that magnitude

differences are best modeled by the Gompertz distribution, and that larger ∆M are expected at increasing depths and

higher heat flows. A simulation experiment suggests that ∆M is mainly driven by the number and the magnitude

distribution of aftershocks. Therefore, in a second study, we modelled the variation of aftershock productivity in

a stochastically declustered local catalog for New Zealand, using a generalized additive model approach. Results

confirm that aftershock counts can be better modelled by a Negative Binomial than a Poisson distribution. Interestingly,

there is indication that triggered earthquakes trigger themselves two to three times more aftershocks than comparable
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background events. This effect can either be an indicator for incorrect trigger pair assignments as a result of the

declustering approach, or it may represent an actual effect due to a higher prevalent energy level in the tectonic system

during on-going earthquake sequences. If confirmed, this effect must be carefully considered in forward simulations

of earthquake sequences, as otherwise there is a risk of substantially underestimating cluster sizes and consequently

overestimating ∆M .

Keywords: Bath’s law, survival models, aftershock productivity, generalized additive models.

Main author contact information: Christian.Grimm@stat.uni-muenchen.de

1 Introduction

As energy is released in the event of a strong earthquake, tectonic stress redistributes in the sur-
roundings of the initial rupture and typically results in further earthquakes, so-called aftershocks
(Utsu et al., 1995). The cascade of aftershocks is commonly referred to as an earthquake se-
quence, and the strongest event of the sequence is called the mainshock. Typically, events that
occurred shortly before the mainshock, so-called foreshocks, are included in the sequence since
they are believed to be physically related to the upcoming major earthquake (e.g. Helmstetter and
Sornette, 2003).
Extensive research has been carried out to analyze and model the spatio-temporal properties of
earthquake sequences, e.g. through the Epidemic Type Aftershock Sequence (ETAS) model (Ogata,
1988, 1998; Zhuang et al., 2002). Studies found a well-established power-law decay of aftershock
rates as a function of the time after the mainshock (Omori, 1895), while the spatial cluster is typi-
cally elongated rather than isotropic around the mainshock’s rupture plane (e.g. Grimm et al., 2022,
2021; Hainzl et al., 2008; Ogata, 2011; Ogata and Zhuang, 2006; Zhang et al., 2018).
Aftershocks are a relevant risk driver since even moderate events can substantially increase dam-
age in buildings and infrastructure destabilized by a prior mainshock. Similarly, foreshocks can
set the stage for more severe mainshock damage (Abdelnaby, 2012; Kagermanov and Gee, 2019;
Papadopoulos et al., 2020). Therefore, one of the central questions for emergency and risk man-
agement purposes is: What is the second strongest magnitude to be expected in a sequence?
To date, the literature only provides a starting point for answers to this question. The well-
established Bath’s law states that the average magnitude difference ∆M between a mainshock and
its strongest aftershock is roughly 1.2, independently of the size of the mainshock (Bath, 1965).
The main challenge in calculating this value is the bias introduced by missing data, if no after-
shock was observed above the cut-off magnitude Mc of the catalog and therefore ∆M cannot be
computed. We cannot simply ignore missing values, as these are the ones with particularly large
magnitude differences ∆M . Therefore, leaving them out would lead to a systematic bias. Sev-
eral authors found that the statistics is robust, if we restrict the sample to mainshocks at least two
magnitude units above Mc, but then the sample size is strongly reduced (e.g. Tahir et al., 2012;
Zakharova et al., 2013). Another work around was suggested by Zakharova et al. (2013), who
modeled the seismic moment ratio between aftershocks and the mainshock, rather than ∆M , ap-
proximating the ratio by zero if no aftershocks were recorded.
In any case, Bath’s law only makes a statement about the average value of the ∆M , but not about
their distribution (and its parameters) or any important quantiles in the lower tail of the distribution.
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Another term that appears occasionally in the literature is that of an earthquake doublet. Doublets
are generally defined as a pair of two similarly strong earthquakes, occurring temporarly and spa-
tially close to each other (e.g. Felzer et al., 2004; Grimm et al., 2021; Kagan and Jackson, 1999).
Kagan and Jackson (1999) found that approximately 22% of the M ą 7.5 earthquakes worldwide
occurred accompanied by another M ą 7.5 event within a distance of one rupture length and with
an inter-event time of considerably less than their recurrence time estimated from plate motion.
Grimm et al. (2021) showed that roughly 17% of the global M ě 6 mainshocks and more than
20% of the mainshocks in Japan were part of an earthquake doublet, defining them as a pair of
earthquakes with no more than 0.4 magnitude units difference, occurring within 365 days and a
radius of 2.5 rupture lengths.

1.1 Survival Model Regression of ∆M

In the first part of this work, we propose an innovative approach that models the full, paramet-
ric distribution of ∆M by adapting so-called survival models, originally developed for medical
applications. Survival models are a class of regression models that account for data with a cen-
sored (or truncated) response variable (see e.g. Klein and Moeschberger (2003) for comprehensive
overviews). As the term ”survival” suggests, these models were originally developed in applica-
tions where the response represents the non-negative lifetime of a patient in medical studies or
the lifetime of a device in engineering contexts (so-called reliability or failure time analysis). The
above applications have in common that the exact value of the response is unknown, if the event
has not occurred until the end of the study period.
Replacing lifetimes by magnitude differences, we can therefore use survival models to account for
the missing ∆M values where we only have the partial information that ∆M ą M ´ Mc, given
mainshock magnitude M .
To do so, we decluster a global catalog using a window method, and compute the (partially right-
censored) ∆M between the mainshock and the second strongest event of each cluster. Note that
the latter may be a foreshock or an aftershock, as both are relevant in a risk management context.
Then, we enrich the cluster set by a plate boundary classification, relative plate velocities, sea
floor age and heat flow data, to investigate the regression effects of these large-scale geophysical
conditions on the distribution of ∆M .

1.2 Drivers of ∆M

The magnitude difference ∆M is controlled by the two drivers (Grimm et al., 2021)

1. number of aftershocks (hereafter called aftershock productivity) and

2. frequency-magnitude distribution (FMD) of triggered events.

A simple simulation shall demonstrate the effect of both factors. Assume an initial mainshock of
magnitude M “ 8. Let the expected aftershock productivity of an earthquake with magnitude M
be

kpMq “ A exppα pM ´ Mcqq, M ě Mc, (1)

and the FMD be the exponential distribution with probability density function (pdf)

fpMq “ β e´βpM´Mcq, β ą 0, M ě Mc, (2)
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where β is related to the Gutenberg-Richter b-value by b “ β{lnp10q (Gutenberg and Richter,
1944). If we assume the realistic parameters A “ 0.13, α “ 2.0 and b “ 1.0 and, for simplicity, a
Poisson distributed number of aftershocks with trigger-magnitude dependent parameter λ “ kpMq,
we can simulate a distribution of ∆M with a mean of 1.2, consistent with Bath’s Law.
A doubled aftershock productivity (i.e. A “ 0.26) would lead to a pronounced drop of the average
magnitude difference down to 0.66. If the increase of A does only apply to secondary triggering,
but the number of direct aftershocks of the M8 mainshock remains unchanged, the mean of ∆M
still decreases to below 0.9. A similar reduction of the average ∆M is achieved, if instead we
modify the FMD, sampling magnitudes according to b “ 0.85.

1.3 Regression of Aftershock Productivity

The simplified simulation experiment above illustrates the leverage of both aftershock productivity
and FMD on the magnitude differences ∆M . This gave motivation for a more in-depth analysis
of the variation in aftershock productivity in the second part of this study. To do so, we declus-
ter a local earthquake catalog for New Zealand and fit a generalized additive model (GAM) to
the estimated number of direct aftershocks per event, comparing a Poisson with a Negative Bi-
nomial distribution. Here, we use the stochastic declustering method introduced by Zhuang et al.
(2002), based on the ETAS-Incomplete model proposed by Grimm et al. (2022) that accounts for
anisotropic ruptures as well as short-term aftershock incompleteness to reduce estimation biases.
We enrich the local catalog by classifying the events to the main tectonic contexts in the surround-
ing of the Hikurangi fault, and by concluding the slip type from additional focal mechanism data.
Extensive research has been done on the variation of aftershock productivity. Kagan (2017) and
Shebalin et al. (2018) showed that aftershock counts are best modeled by the Negative Binomial
distribution due to their large variance. Page et al. (2016) found that aftershock productivity may
regionally vary by a factor of almost 10, which would explain the variation in ∆M to large extent.
Marsan and Helmstetter (2017) found that 40-80% of the aftershock variability may be related
to variation in the mainshock stress drop. Dascher-Cousineau et al. (2020) investigated a large
number of source and site effects on aftershock productivity and showed individual correlations of
stress drop and rupture dimension with the number of aftershocks. Wetzler et al. (2016) suggest
a larger productivity in subduction zones of the western circum-Pazific, compared to the eastern
side. Zhuang et al. (2004) proposed that triggered events produce more aftershocks than com-
parable background events, which would provide an additional boost in clustering and decrease
expected ∆M ’s.
Potential correlations of the FMD of triggered events with the magnitude of the direct ancestor or
the cluster mainshock were found by Zhuang et al. (2004), Gulia et al. (2018) and Nandan et al.
(2019), and may considerably increase the chance of small ∆M . However, they are out of the
scope of this work.

1.4 Scope and Outline

This work consists of two regression studies, the analysis of magnitude differences (hereafter called
∆M -regression), and the analysis of the aftershock productivity (referred to as productivity re-
gression). The focus is on the innovate approach to estimate a fully parametric distribution of
∆M , using survival models that take into account right-censored data rather than avoid it. To our
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knowledge, no similar approach has been pursued in the literature so far. Especially in the ∆M -
regression, covariates represent rather large-scale regional effects. Attempts to consider small-
scale variations of these covariates or to include further event specific data are out of the scope of
this paper.
Sections 2 and 3 introduce the utilized datasets, the declustering approaches and the compilation
of the covariate datasets for both regression studies, respectively. Next, Section 4 rigorously ex-
plains the survival model and GAM methodological approaches. Then, the results of the regression
studies are shown and discussed in Sections 5 (∆M -regression) and 6 (productivity regression).
Finally, conclusions are drawn from a joint interpretation and related future research topics are
recommended.

2 Data for ∆M -Regression

This section summarizes the compilation of the regression dataset for the analysis of global mag-
nitude differences between the mainshock and the second strongest event in the cluster. First,
we justify the choice of the underlying global earthquake catalog. Then, we outline the window
method to decluster the catalog, followed by the definition of the response variable. Finally, the
enrichment of further geophysical variables as regression covariates is explained.

2.1 Global Earthquake Catalog

The choice of an appropriate global earthquake catalog for the regression of magnitude differences
raises two requirements which, however, are not fully met by any currently available catalog and
therefore requires a trade-off. On the one hand, the catalog should ideally have homogeneous mag-
nitude scales, and be reliably complete in any part of the world, including far off-shore regions and
aftershocks occurring shortly after the mainshock. On the other hand, it should be complete to the
smallest possible magnitude level to assure a sufficient observable magnitude range of at least one
unit below the smallest mainshock magnitude of interest, M ą 6.0.
Despite not providing homogenized magnitude scales, we chose the U.S. Geological Survey Na-
tional Earthquake Information Center (USGS-NEIC) catalog. We extracted all events from 1973
until 2021 with depths smaller than 70 km that occurred at a maximum of 300 km distance to a tec-
tonic plate boundary according to the digital model by Bird (2003). The completeness magnitude
of this dataset is Mc “ 5.0 according to Kagan and Jackson (2010) and Tahir et al. (2012), which
allows us to apply the regression model to clusters with mainshock magnitude larger than 6.0.
To test the influence of inhomogeneous magnitude scales, we performed sensitivity analyzes using
the International Seismological Centre – Global Earthquake Model (ISC-GEM) instrumental cat-
alogue, which is a relocated global event set with homogenized magnitude scales (Bondár et al.,
2015; Di Giacomo et al., 2015a,b, 2018; Storchak et al., 2015). Due to its higher level of magni-
tude completeness, Mc “ 5.6 according to Di Giacomo et al. (2015b) and Mc “ 6.0 according to
Michael (2014) since 1964, we have to limit our statistical analysis to mainshocks with M ě 6.6.

2.2 Declustering of Global Catalog

In order to obtain a set of independent clusters, including the information about the magnitude
difference ∆M between the mainshock and the largest aftershock (or foreshock), we declustered
the global earthquake catalog using a rather simple window method (see e.g. Gardner and Knopoff,
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1974; Uhrhammer, 1986; van Stiphout et al., 2012). To do so, we first sorted the catalog in de-
scending magnitude order. Then, we consecutively searched aftershocks occurring within a time
window of T “ 100 days and a spatial radius of Rpmq “ 2.5Lpmq, where Lpmq “ 10´2.44`0.59m

is the expected rupture length of the mainshock, depending on its magnitude m, according to Wells
and Coppersmith (1994). Similar to Reasenberg (1985), we linked clusters if an event B is found
to trigger the potential aftershock A, but A is the mainshock of an already identified cluster and
therefore, due to prior re-ordering of the catalog, has the larger magnitude, mA ě mB. In this
case, event B is called a foreshock of A.
We conducted sensitivity studies that showed that the regression results are insensitive to varying
definitions such as T “ 365 days and Rpmq varying between 1.0Lpmq and 2.5Lpmq.

2.3 Response Variable

For each cluster, the magnitude difference ∆M is computed between the mainshock (i.e., the
strongest event of the cluster) and the second-strongest event, be it a foreshock or aftershock. In
total, we obtain 2,933 clusters with mainshock magnitudes M ą 6.0.
Note that 1,180 of these are single-event clusters, i.e., no associated foreshock or aftershock was
found in the corresponding time-space window. Based on seismological reasoning we can assume
that these mainshocks actually triggered aftershocks, but that these were simply too weak to be
recorded in the dataset, given its cut-off magnitude Mc. Therefore, if for a mainshock i with
magnitude Mi ě Mc no second event is listed, we have the partial information that the magnitude
difference is ∆Mi ą Mi´Mc. The single clusters are the reason why we need advanced regression
models that can deal with censored data.

2.4 Covariates

We enriched the declustered catalog by additional geophysical site information interpolated to the
mainshock locations by a nearest neighbor approach.
Using the digital plate boundary model of Bird (2003), we categorized each event into one of
seven plate boundary classes continental convergence boundary (CCB), continental transform fault
(CTF), continental rift boundary (CRB), oceanic spreading ridge (OSR), oceanic transform fault
(OTF), oceanic convergent boundary (OCB) and subduction zone (SUB). Fig. 1 shows the main-
shock locations of the declustered catalog, color-coded by the corresponding plate boundary class
assigned to them. Table 1 lists the number of clusters with censored and observed ∆M value per
boundary class, respectively. Note that almost half of the clusters are assigned to a subduction
zone, and that oceanic spreading ridges and transform faults host more censored than observed
data points.

From the same digital model, we assigned estimates of the relative plate velocity and sea
floor age from the next boundary segment point to the mainshock locations. Likewise, using a
nearest neighbor approach, we interpolated values from the scattered heat flow dataset of Bird
et al. (2008), provided to us by the author. Fig. 2 illustrates the marginal distributions of the
interpolated covariate data at the mainshock locations, grouped by the assigned plate boundary
class. Subduction zones show the largest relative plate velocities (values range between 0.4 and
262 mm/a, see Fig. 2(a)), while oceanic spreading ridges and transform faults provide the youngest
sea floor ages (between 0 and 262 Ma, see Fig. 2(b)) and the largest heat flows (between 0.025 and
0.3 Wm´2, see Fig. 2(b)).
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Fig 1: Locations of 2,933 global M ą 6 mainshocks between 1973 and 2020 after declustering
the USGS-NEIC catalog. Mainshocks are colour-coded according to their assignment to the plate
boundary classes continental convergence boundary (CCB), continental transform fault (CTF),
continental rift boundary (CRB), oceanic spreading ridge (OSR), oceanic transform fault (OTF),
oceanic convergent boundary (OCB) and subduction zone (SUB), introduced in the digital plate
model of Bird (2003).

Fig 2: Boxplots of (a) relative plate velocity, (b) sea floor age, and (c) heat flow values assigned to
cluster mainshocks by a nearest approach from original scatter data (Bird, 2003; Bird et al., 2008),
grouped by the plate boundary class. Acronyms of boundary classes are spelled out in the caption
of Fig. 1.
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Table 1: Number of censored and observed ∆M data points, grouped by plate boundary class.

Plate Boundary Number of Clusters

Class #censored #observed

CCB 71 148
CTF 82 157
CRB 69 114
OSR 108 73
OTF 322 194
OCB 59 83
SUB 474 989

3 Data for Productivity-Regression

This section summarizes the dataset compilation for the regression of aftershock productivity.
First, we briefly introduce the chosen local event set for New Zealand. Then, we rigorously
describe the stochastic declustering method which is applied in order to estimate the number of
aftershocks as the response variable. Finally, we describe the enrichment of the local event set by
further geophysical properties.

3.1 Local New Zealand Catalog

We limited this study to the Hikurangi subduction zone in New Zealand. A local event set was
provided by GNS Science as an input to the ongoing 2022 revision of the New Zealand National
Seismic Hazard Model. Using the algorithm of Stepp (1972), we computed that the catalog is
complete down to Mc “ 3.5 from 1982; however, to be conservative, we assumed Mc “ 3.5 from
1987, concurrent with an improvement to the seismic network. Fig. 3 shows the chosen extract of
11,091 events surrounding the Hikurangi fault, between 1987 and end of 2020, at depths down to
80 km.

3.2 Declustering of Local Catalog

For the regression of aftershock counts, we cannot use the window declustering method, as it does
not distinguish direct from secondary aftershocks. Instead, we used the stochastic declustering ap-
proach based on the Epidemic Type Aftershock Sequence (ETAS) model, as introduced by Zhuang
et al. (2002).
The ETAS model describes the spatio-temporal clustering behavior of the entire catalog, and mod-
els a dynamic event rate at time t and location px, yq, given the prior event history Ht, through two
overlapping processes,

Rpt, x, y|Htq “ upx, yq `
ÿ

i:tiăt

Rtrigpt, x, y, iq, (3)

where upx, yq denotes the time-invariant, aftershock-independent seismic background rate, andř
i:tiăt R

trigpt, x, y, iq is the sum of the trigger rate contributions by all events i that occurred prior
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Fig 3: Spatial extract (blue polygon) of the Hikurangi subduction region in New Zealand, chosen
for the aftershock productivity regression model. Black scatter points represent event locations of
earthquakes with magnitude M ě 3.5, depths ď 80 km, that occurred between 1987 and 2020.
The local event set was provided by GNS Science as an input to the ongoing 2022 revision of the
New Zealand National Seismic Hazard Model.
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to time t. For more details about the ETAS model, see e.g. Jalilian (2019); Ogata (1988, 1998);
Zhuang et al. (2002).
From Equation (3), Zhuang et al. (2002) concluded that the probability, that the event j at time tj
and location pxj, yjq was an aftershock of the prior event i, is

Pj,i “ Rtrigptj, xj, yj, iq
Rptj, xj, yj|Htq .

Similarly, the probability that event j is a seismic background event and therefore independent of
any prior trigger, is

Pj,backgr “ upx, yq
Rptj, xj, yj|Htq .

Thus, unlike the window method, the ETAS model provides probabilistic trigger associations be-
tween event pairs, and does not require the arbitrary choice of a fixed space-time window to search
aftershocks. Instead, it optimizes built-in parametric functions that model the expected number of
aftershocks (for trigger magnitude mi),

Kpmiq “ Aeα pmi´Mcq, A ą 0, α ą 0, (4)

the temporal decay of aftershock rates (e.g. Omori-Utsu power law, see Omori, 1895), and a typi-
cally isotropic spatial distribution of aftershocks.
In this work, we used the ETAS-Incomplete model version of Grimm et al. (2022), who introduced
a novel, anisotropic and locally restricted spatial kernel and accounted for incomplete records of
aftershock sequences. The estimation source code is available in a public github repository (see
Data and Resources). The new features solve the estimation biases due to the misfit of mostly
elongated aftershock clouds by an isotropic kernel, and an underestimation of the trigger poten-
tial of strong mainshocks as a consequence of missing aftershock data. Both biases were shown to
heavily affect our response variable, the aftershock productivity (Grimm et al., 2022, 2021; Hainzl,
2021; Hainzl et al., 2013; Page et al., 2016; Seif et al., 2017).

3.3 Response Variable

As the response variable of the regression model, we defined the estimated number of direct after-
shocks for each event i in the catalog. We did this by counting the number of subsequent events j,
for which i is the most probable trigger event, i.e. Pj,i ą Pj,k @ k ‰ i, and that are more likely
triggered by i than being a background event, i.e. Pj,i ą Pj,backgr.
Note that the response is inevitably affected by the short-term incomplete records of aftershock
sequences, as we can only count aftershocks that are recorded in the dataset. Nevertheless, the
ETAS-Incomplete model approach avoids a biased parameter estimation, that would lead to ma-
nipulated declustering probabilities.

3.4 Covariates

The local catalog provides us the magnitude and depth for each event as immediate covariates
for the regression model. Additionally, if the triggering event i was itself already triggered by a
previous event, we traced back the trigger sequence and identified the largest magnitude in the
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cluster, that occurred before event i. This covariate tests whether an event, that is a member
of a cluster, is more or less productive than an independent background event, and whether its
aftershock productivity is influenced by the previous mainshock.
A focal mechanism data set comprising 1,581 events of the chosen catalog extract was provided
by GNS Science. We used the nodal-plane.py function from the public GEMScienceTools/oq-
mbtk repository, based on the algorithm in Álvarez-Gómez (2019), to translate the given focal
mechanisms into the slip type categories normal (N), strike-slip (SS) and reverse (R) and mixed
categories.
We classified each earthquake in the catalogue to the main tectonic regions. These regions are
the shallow crust, subduction interface, subduction intraslab deep (within the subducting plate,
but deeper than the zone of contact between the subducting and overriding plate), and subduction
intraslab shallow (within the subducting plate, but in the shallow part of the plate beneath the
interface, e.g. Reyners et al., 2010). To do so, we used the methodology described by Pagani
et al. (2020), which classifies each earthquake based on its hypocentral position relative to surfaces
(with buffers) that demarcate the boundaries of these regions. The surface used to represent the
Hikurangi subduction interface and the top of the subducting plate was derived from a 3D model
provided by GNS Science. Earthquakes shallower than 40 km and within 5 km of this surface were
classified as interface; those shallower than 40 km and more than 5 km below the surface were
classified as shallow slab; and those deeper than 40 km and within 5 km above or 60 km below
this surface were classified as deep slab (the large below-slab buffer helps to capture earthquakes
with large depth errors). Earthquakes shallower than the Moho (depths defined by LITHO1.0,
Pasyanos et al., 2014) with a 10 km buffer were classified as crustal; crustal earthquakes were then
sub-classified as occurring within or outside of the surface projection of the subduction zone. If
an earthquake was classified into more than one tectonic region, then the following hierarchy was
applied: interface is more likely than shallow slab, which is more likely than deep slab, which is
more likely than shallow crustal. All other earthquakes were labelled as ”unclassified” and not
used in further analyses.

4 Regression Methods

In this section, we summarize the statistical models used in the two regression studies. Subsection
4.1 introduces survival regression models that can account for the censored ∆M response data
due to unobserved aftershocks. Subsection 4.2 explains the use of a generalized additive model
(GAM) for modeling aftershock counts in the local New Zealand catalog. All statistical analyses
were performed with the open source software R (R Core Team, 2021).

4.1 Survival Models

4.1.1 Why Using a Survival Model for Earthquakes?

The magnitude difference ∆M between the mainshock and the second-largest earthquake of a se-
quence is only known, if at least one foreshock or aftershock was observed and assigned to the
mainshock. Indeed, roughly 40% of the global clusters consist of a stand-alone mainshock. For
these clusters, we can conclude that the second strongest event must be smaller than the cut-off
magnitude Mc, i.e., that ∆Mi ą Mi ´ Mc, where Mi is the magnitude of mainshock i. In statis-
tics, data points which are capped by such an upper observable threshold are called right-censored
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(Klein and Moeschberger, 2003, section 3.2). Classical statistical models would substantially un-
derestimate ∆M due to the relevant proportion of censored observations.
Replacing lifetimes by magnitude differences, our data meets the necessary requirements of a sur-
vival model,

• non-negative responses (∆M ě 0)

• independent responses (mainshocks result from declustered catalog)

• non-informative censoring (i.e., conditional on covariates, censored clusters are not sus-
pected to deviate structurally in their ∆M -distribution from non-censored clusters).

4.1.2 Model Formulation and Software

In order to estimate both covariate effects and the entire distribution of magnitude differences ∆M ,
we need a fully parametric survival model approach. As will be shown in the results section, the
best model fits were achieved assuming a Gompertz distribution for the magnitude differences,
rather than other candidates such as Weibull or Generalized Gamma. The Gompertz distribution is
defined on p0,8q. Therefore data points with ∆M “ 0 were substituted by the value 0.01. In the
R package flexsurv (Jackson, 2016), the Gompertz distribution is parameterized by its probability
density function

fpx|a, bq “ beax exp

ˆ
´ b

a
peax ´ 1q

˙

with shape parameter a P R and scale parameter b ą 0. Besides the categorical plate boundary
class, we modeled the effects of the mainshock magnitude xmag and depth xdepth, as well as the
locally interpolated relative plate velocity xveloc, heat flow xheat and sea floor age xage. In the
resulting full Gompertz survival model, we regressed the scale parameter b through all covariates
for observation i by

logpbpxiqq “β0 ` β1 xclass“CCB,i ` ... ` β6 xclass“OTF,i `
fmagpxmag,iq ` fdepthpxdepth,iq ` fvelocpxveloc,iq ` fheatpxheat,iq ` fagepxage,iq,

where β0, β1, ..., β6 are the coefficients related to categorical variables, where boundary class
”SUB” is the reference category, represented by the intercept β0, and the f terms denote coef-
fiicients related to categorical variables. Similarly, we modeled the shape parameter a depending
on the linear effects of the plate boundary class, i.e.

logpapxqq “α0 ` α1 xclass“CCB ` ... ` α6 xclass“OTF .

In this work, we fitted models using the function flexsurvreg from the flexsurv package, which
estimates parameters by optimizing a parametric likelihood adapted for censored data (Jackson,
2016). To allow for flexible non-linear effects, all metric variables are modeled by the penalized
spline function pspline from the R package survival (Therneau, 2016), consistenly using df “ 2
degrees of freedom and n “ 2.5ˆdf basis functions (Eilers and Marx, 1996; Hurvich et al., 1998).
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4.2 Generalized Additive Count Models

In the second part of this study, we model the number of aftershocks Ni of each event i. The
starting point for modeling count data response variables are so-called generalized linear models.
Given covariate values xi1, ...,xik, the expected aftershock productivity of event i is modeled by
the log-linear relationship

ErNis “ exppηiq (5)

where ηi “ β0 ` β1 xi1 ` ... ` βk xik is the linear predictor and β0, β1, ..., βk are the estimated
coefficients. Note that the covariates have an exponentially multiplicative effect on the expected
number of aftershocks (see e.g. Fahrmeir et al., 2013, section 5.2).
In this work, we used a GAM approach and replaced the linear effects of all metric covariates
by potentially smooth functions that can more flexibly represent varying effects in different value
ranges of the covariates (e.g., see Fahrmeir et al., 2013, section 9.1). The full model is then
specified by the predictor

ηi “β0 `
5ÿ

k“1

βk IpxTR,i “ kq `
12ÿ

h“6

βh IpxSL,i “ hq ` ...

fmagpxmag,iq ` fdepthpxdepth,iq ` ...

fmainshMagpxmainshMag,iq IpxisBackground,i “ falseq,

(6)

where the β’s are the estimated coefficients for the linear categorical effects of the tectonic region
(TR, k “ 1, ..., 5) and slip type (SL, h “ 6, ..., 12), and β0 is the intercept representing the refer-
ence categories TR=crustal outside and SL=unknown. The functions fmag, fdepth and fmainshMag

represent the smooth effects of the magnitude and depth of the triggering event as well as of the
prior mainshock magnitude, and Ip...q is the indicator function that is 1 if the inside condition is
fulfilled, and 0 otherwise.
To fit the model, we used the function gam from the R package mgcv (Wood, 2017), using a loga-
rithmic link function and the restricted maximum likelihood estimator (REML) as the smoothing
parameter estimation method. Penalized splines based on a basic spline basis (P-Splines) were
used to model the unspecified smooth functions (e.g., see Fahrmeir et al., 2013, section 8.1). We
used the standard smooth term function of mgcv, choosing k “ 5 and k “ 8 (for depth) as the
dimensions of the basis.

5 Results of the ∆M -Regression

In this section, we show and discuss the results of a parametric survival model fitted to the global
declustered earthquake catalog in order to describe the magnitude difference ∆M between the
mainshock and the second strongest event in the cluster. First, we justify and validate the distribu-
tion assumption for the response variable. Then we show and interpret the effects of the modeled
covariates. Finally, we assess the explanatory power of the model using a response residual plot.

5.1 Choice of Distribution Family

Following the simple simulation model outlined in the section Introduction, with parameters b “ 1,
A “ 0.13 and α “ 2, we fitted a Weibull, a Gompertz and a Generalized Gamma distribution to
the simulated magnitude differences ∆M . Fig. 4(a) shows the fits of the three distributions to the
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Fig 4: (a) Fits of a Gompertz, Weibull and Generalized Gamma distribution to simulated magnitude
differences ∆M , represented by the kernel density estimator (black curve). (b) Comparison of
survival curves estimated from a Gompertz model and a non-parametric Kaplan-Meier estimator,
stratified for plate boundary classes (c).

kernel density estimator of the sampled data. The Gompertz distribution clearly provides the best
fit to the moderately negatively-skewed data.
In order to confirm this assumption based on the actual dataset, we fitted a Gompertz survival model
with only the scale parameter depending on the categorical plate boundary class, and compared the
predicted survival curves to those provided by the non-parametric Kaplan-Meier estimator, which
does not require a specific distribution assumption (Klein and Moeschberger, 2003, ch. 4). In
Fig. 4(b), the step functions colored according to the seven boundary classes, refer to the Kaplan-
Meier estimates. The Gompertz survival model survival curves are plotted on top by black lines,
showing generally good agreement.

5.2 Covariate Effects

Fig. 5 shows the covariate effects for the full parametric Gompertz survival model. The categorical
effects in Fig. 5(a) represent predictions of the response ∆M given the various boundary classes,
if the other covariates are held fixed at their median values (magnitude=6.4, depth=23 km, ve-
locity=66.5 mm/a, sea floor age=220 Ma, heat flow « 0.07 Wm´2). The effects of the metric
covariates in Fig. 5(b-f) are similarly predicted for a fine grid of values of the considered variable,
holding the other covariates fixed and assuming a subducting environment (i.e., boundary class
”SUB”). Gray shades represent the 95% confidence interval.

5.2.1 Effect of Boundary Class

Fig. 5(a) reveals no structural effects of specific boundary classes. If we were fitting the same
model, but leaving out sea floor age and heat flow, the boundary classes OSR and OTF would show
a substantial and OCB a moderate increase in magnitude differences. In other words, mainshocks
at oceanic, especially transform and divergent type boundaries, produce weaker second strongest
events than those in continental zones, which fits with the generally limited magnitude sizes in
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Fig 5: Covariate effects of the ∆M -Regression, by (a) plate boundary type (categorical), (b) main-
shock magnitude, (c) mainshock depth, (d) relative plate velocity, (e) heat flow and (f) sea floor
age on the magnitude difference between a mainshock and the second largest event of the cluster.
For linear effects (a), 95% confidence intervals are represented by bars. For smooth effects (b-f),
95% confidence intervals are depicted by gray shades. The effects are computed as predictions of
the response variable, fixing the other variables at their median values. Rug lines on the x axis
visualize the marginal distributions of the corresponding metric covariate.

these two boundary classes (Bird et al., 2002; Boettcher and Jordan, 2004). However, this effect
seems to be sufficiently represented by the added metric covariates.

5.2.2 Effect of Mainshock Magnitude

For values smaller than M “ 7.8, the mainshock magnitude effect depicted in Fig. 5(b) confirms
the well-established Bath’s law hypothesis that the average magnitude difference ∆M is roughly
1.2, independently of the mainshock magnitude. For larger magnitudes, there seems to be a ten-
dency toward smaller ∆M .
However, this effect is very uncertain for two reasons. First, the sample size of M ą 7.8 events
(41 data points) is very small compared to the lower magnitude ranges, leading to large standard
errors. Second, the mainshock magnitude controls the radius of the spatial window in the declus-
tering approach. Thus, larger mainshocks span an exponentially increasing area, in which potential
aftershocks are searched. To test, whether the observed effect of strong mainshocks may be an ar-
tifact of a too generous choice of the spatial window radius, we repeated the study for an event
set declustered with radius Rpmq “ KpmqLpmq, where the factor Kpmq gradually decreases
from 2.5 to 1.0 for magnitudes between 6.0 and 9.0. This sensitivity study confirmed the shape of
the effect curve, indicating that the second strongest event usually occurred relatively close to the
mainshock.
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5.2.3 Effect of Mainshock Depth

Fig. 5(c) shows that the effect of the mainshock depth is almost constant for depths smaller than 40
km. Between 40km und 50km, ∆M increases from roughly 1.2 to a new level of approximately
1.5. This effect is consistent with the observation of Hainzl et al. (2019), who showed that af-
tershock productivity decreases at higher depths due to reduced seismic coupling, i.e. the energy
discharges increasingly through seismic creep rather than through aftershocks. Given a constant
magnitude size distribution, this would immediately translate into higher magnitude differences
∆M . A connection with missing data at greater depths is unlikely, as we are only interested in the
largest aftershock rather than the entire sequence.

5.2.4 Effect of Relative Plate Velocity

Plate velocities play an important role for the duration of stress re-accumulation at a fault after
the occurrence of a large earthquake. However, recurrence intervals of so-called characteristic
earthquakes are typically in the range of multiple decades or even centuries. For the short-term
recurrence of strong aftershocks, Fig. 5(d) reveals no clear effect of the relative plate velocity. As
an alternative covariate representing the velocity of deformation in the tectonic system, we tested
global strain rate data (Kreemer et al., 2014), which similarly showed no structural effect.

5.3 Effect of Heat Flow

According to Fig. 5(e), regions with heat flow larger than 0.23W {m´2 show a substantial increase
of magnitude differences. Warmer rock is known to be more viscous, which discharges stress
through seismic creep rather than abrupt fractures, leading to the same aftershock productivity
argument as for higher depths. As Fig. 2 shows, high heat flow values are typically prevalent in
oceanic ridges and transform faults, which explains why the model predicts larger ∆M for the
plate boundary classes OSR and OTF if heat flow is left out as a covariate.

5.3.1 Effect of Sea Floor Age

Fig. 5(f) shows that magnitude differences are substantially larger in young compared to old
oceanic crusts. A potential causal reason for the effect of the plate age cannot be ruled out, but is
unknown to the authors. Note that young sea floor typically comes with large heat flows. Therefore,
the effects of the two variables are consistent. As new oceanic crust is formed at oceanic ridges,
the effect also coincides with the increased magnitude differences in the nested model without sea
floor age.
If we fit the full model to the subset of subduction zone mainshocks only, both heat flow and sea
floor age show no clear signal. Thus, it is likely that their effect is mainly driven by their tails at
oceanic ridges.

5.4 Response Residuals

Fig. 6 shows the response residuals (i.e., observed minus predicted values) plotted against pre-
dicted magnitude differences. Note that, as observations are censored, residuals are censored as
well. Therefore, we show only residuals for non-censored observations here. This explains the
superiority of negative residuals. The blue line represents the linear trend of the residuals.
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Fig 6: Response Residuals of the ∆M -regression for non-censored observations only, plotted
against predicted values. The blue line represents the linear trend of the residuals. The row ar-
rangement of the points is due to the rounding of the observed data to one decimal place. For
instance, the bottom row represents observations where ∆M “ 0.

The large variation of the residuals suggests a weak predictive power of the model. Residuals
of more than one magnitude unit are not rare, and can even reach up to almost two units. Small
observations are typically substantially overestimated, and vice versa. The root mean square er-
ror for predictions by the full model, 0.62, is only minimally better than by a Gompertz intercept
model, 0.63. However, these values only account for predictions of non-censored observations.
The majority of substantial covariate effects identified above explain increases of the expected
magnitude difference, which means that related observations (e.g. events with larger depth or heat
flow, or at younger sea floors) are considerably more likely to be censored and therefore left out of
the residuals statistics.
A similar argument holds for the negative linear trend of the residuals. For instance, the lowest
mainshock magnitude, M “ 6.1, can only have observed magnitude differences up to ∆MmaxObs “
M ´ Mc “ 1.1. Therefore, if the model predicts ∆M ą 1.1, only negative residuals will occur in
the statistic. As we move to larger predicted values on the x-axis, the selection bias affects even
larger mainshock magnitudes.
The censoring of observations and residuals hinder a rigorous diagnosis of the model. Despite
the covariates showing some relevant signals, it is evident that the model misses additional high-
resolution geophysical variables for local site effects or event-specific properties that can help
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explain a larger proportion of the variance in the data.

5.5 Sensitivity Studies

As partly mentioned above, we tested the influence of varying time windows (e.g. T “ 365 days)
and spatial windows (e.g. Rpmq “ Lpmq or Rpmq “ KpmqLpmq with gradually decreasing
Kpmq as described above) in the declustering approach on the regression results. The covariate
effects are very insensitive, indicating that the second strongest event typically occurs close to and
shortly after (or before) the mainshock. In other words, the contamination of the response variable
through background seismicity is negligible.

6 Results of Productivity-Regression

In this section, we present the results of the GAM regression of aftershock count data in New
Zealand. First, we justify and validate our choice of the Negative Binomial distribution instead
of the commonly used Poisson distribution for aftershock counts. Then we show and interpret the
effects of the modeled covariates. Finally, we illustrate the impact of the results in a simulation
experiment.

6.1 Choice of Distribution Family

Fig. 7(a) and (b) show the quantile-quantile (Q-Q) plots of the deviance residuals for the Poisson
distribution (a) and the Negative Binomial distribution (b). The latter fits the data better, as it
adjusts the variance independently of the mean and therefore allows for larger variation than the
Poisson distribution, resulting in a more adequate representation of the upper and lower tails of the
distribution. The dispersion parameter of the Negative Binomial fit is 2.3.

In Fig. 7(c) and (d), the corresponding model residuals are plotted against the linear predictors
ηi (see Equation 6) for the Poisson (c) and Negative Binomial distribution (d). The Negative
Binomial fit shows substantially less spread in the residuals than the Poisson fit, confirming that
aftershock count data is rather Negative Binomial distributed.
Note that, according to our simplified simulation model, a larger variance of aftershock counts
directly translates into a larger variance of ∆M . In other words, the Negative Binomial distribution
increases the likelihood of particularly small ∆M .
Alternative approaches such as a Quasi Poisson or a zero-inflated model were tested, but did not
stand out substantially from the respective basic models. Additionally, from a substantive point of
view, there seems to be no causal reason for ”excess zeros” that would suggest the use of zero-
inflated approaches.

6.2 Covariate Effects

Fig. 8 and 9 present the exponential, multiplicative effects of the categorical and metrical covariates
on the expected number of aftershocks according to the relationship in Equation (5). That is, if the
exponential effect of a category is larger than 1, it has a positive impact on aftershock counts, and
vice-versa. If the exponential effect is equal to 1, the model shows no effect of the respective
category.
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Fig 7: Top row: Quantile-Quantile plots of the deviance residuals for the (a) Poisson and the (b)
Negative Binomial regression of the aftershock productivity. Bottom row: Corresponding model
residuals plotted against the linear predictors ηi (see Equation 6) for the (c) Poisson and (d) Nega-
tive Binomial regression. The row arrangement of points is due to the count data structure of the
response.
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Fig 8: Exponential, multiplicative effects of the categorical covariates tectonic region and slip type
relative to their reference categories ”crustal outside” and ”unkown”, respectively, according to
Equation (5). Exponential effects larger than one signify a positive effect on aftershock productiv-
ity, and vice versa.

Fig 9: Exponential, multiplicative effects of the metric covariates magnitude and depth of the
triggering event as well as mainshock magnitude, given that the triggering event was already part
of a triggered sequence. Exponential effects larger than one signify a positive effect on aftershock
productivity, and vice versa. Rug lines on the x axis visualize the marginal distributions of the
corresponding covariate.
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6.2.1 Effects of Categorical Variables

Fig. 8 shows the effects of the categorical covariates Tectonic Region and Slip Type.
The effects of the tectonic region are presented relative to their reference category crustal outside.
Crustal events in the subduction zone show a substantially increased aftershock productivity. The
expected number of aftershocks is approximately 1.8 times larger than for crustal events outside
of the subduction zone. For interface and slab events, both shallow and deep, no clear signal is
found, as their confidence intervals overlap with the reference line at expp0q “ 1. Unclassified
events appear to have a slightly positive effect, but the uncertainty is large. Sensitivity tests with
different buffer sizes of the slab do not consistently confirm the effect for unclassified events. The
positive effect of crustal events on the aftershock productivity, compared to interface, might be
explained by reduced seismic coupling in subduction zones (Hainzl et al., 2019). On the interface,
a substantial part of the deformation is often aseismic (Lay et al., 2012).
A second possibility is that, in the proximity of the study region, the crust contains a dense network
of faults with a wide range of orientations, and therefore more structures that could be brought
closer to failure by a change in stress conditions due to mainshock earthquakes. Slip type effects
are depicted relatively to their reference category unknown. None of the focal mechanisms appears
to be substantially more or less productive. Additionally, there seems to be no selection effect in
the sense that events where the focal mechanism is known have a common effect on the aftershock
productivity.

6.2.2 Effects of Magnitude and Depth

Fig. 9(a) shows an exponential effect of the triggering magnitude on aftershock productivity. How-
ever, this effect is enforced by the declustering approach, as the ETAS model fits the exponential
aftershock productivity function (4) to optimize the aftershock trigger rates Rtrigpt, x, y, iq. There-
fore, the effect only has control character.
The effect of the depth, shown in Fig. 9(b), confirms the argumentation in the discussion of the
∆M regression results, that increasing magnitude differences may coincide with reduced after-
shock productivity at higher depths. The physical reason may again be reduced seismic coupling
along the subduction interface relative to the shallow crust (Hainzl et al., 2019; Lay et al., 2012).

6.2.3 Effect of Mainshock Magnitude

Fig. 9(c) shows no clear trend in the effect of varying mainshock magnitudes. However, indepen-
dently of the size of the mainshock, triggered events in general appear to be two to three times
more productive than a comparable background event.
This finding has two possible explanations. On the one hand, it may be an indicator that the ETAS
model based declustering approach does not adequately disentangle spatio-temporal clusters in
the catalog, and incorrectly assigns too much aftershock productivity to the smaller events, at the
cost of the mainshock productivity. In other words, in seismically active periods, small events
may be simply more likely to be assigned offsprings than in seismically quiet times, but in reality,
many of these aftershocks should perhaps be direct rather than secondary ones of the mainshock.
Such a rearrangement of trigger relationships would have a strongly distorting effect on our model,
in which we consider the number of direct aftershocks. Note, however, that we used here an
ETAS model approach that accounts for short-term aftershock incompleteness as well as locally
restricted, anisotropic spatial kernels and therefore already improves some of the major biases of
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common ETAS models (de Arcangelis et al., 2018; Grimm et al., 2022, 2021; Hainzl et al., 2008;
Hainzl, 2021; Seif et al., 2017).
On the other hand, Zhuang et al. (2004) proposed that triggered events are more productive than
background events, based on a similar study. It seems reasonable that during an on-going sequence
the aftershock productivity could temporarily increase due to a higher level of energy prevalent in
the tectonic system, compared to seismically quiet periods with occasional background activity. A
doubling of the productivity parameter A in the simulation model (see Introduction), applied only
to secondary triggering, led to a reduction of the expected magnitude difference ∆M from 1.2 to
below 0.9 due to the increasing cluster sizes. This additional ”boost” in triggering illustrates the
relevance of the observed effect. The finding may also contribute to an explanation as to why the
ETAS model tends to underestimate cluster sizes and doublet probabilities in forward simulations,
as observed in my first contribution (Grimm et al., 2021). Further research is recommended to
evaluate this finding.

7 Conclusions

We adapted a survival regression model approach from medical studies to estimate the parametric
distribution of the magnitude difference ∆M between the mainshock and its strongest foreshock or
aftershock. The highlight of this regression class is that it accounts for right-censored observations.
In our case, these are mainshocks for which no aftershock or foreshock is recorded above cut-off
magnitude Mc, and for which we therefore have only the partial information that ∆M ą M ´Mc,
where M is the mainshock magnitude.
We declustered a global earthquake catalog using a window method and computed ∆M for each
of the independent clusters. Then, we enriched the cluster dataset with a plate boundary classifi-
cation, relative plate velocities and sea floor ages obtained from the digital plate boundary model
of Bird (2003) and with heat flow from Bird et al. (2008). From a simplified simulation model, as-
suming an exponential aftershock productivity law and the Gutenberg-Richter type magnitude size
distribution, we concluded that the Gompertz distribution may be the better choice than Weibull or
Generalized Gamma.
The regression results show that larger ∆M are expected at higher depths and in younger ocean
crust. This may be an indication, that aftershock productivity is a relevant driver of ∆M , as in these
conditions lower aftershock productivity is expected due to reduced seismic coupling (Hainzl et al.,
2019).
In the second part of this study, we used the stochastic declustering method of Zhuang et al. (2002)
to estimate the aftershock productivity per event in a local catalog for New Zealand. To do so,
we used the anisotropic ETAS-Incomplete model (Grimm et al., 2022) to disentangle the trigger
relations between events. We further enriched the event set by a categorization of events in tectonic
regions and slip types and used a generalized additive regression approach to model the aftershock
productivity.
The results clearly confirm that aftershock counts follow a Negative Binomial rather than a Pois-
son distribution (Kagan, 2017; Shebalin et al., 2018). Also, aftershock productivity decreases with
increasing depth, supporting the reasoning regarding the depth effect on ∆M above. Furthermore,
results indicate that triggered earthquakes trigger themselves two to three times more aftershocks
than non-triggered ones. In other words, secondary aftershock triggering is substantially stronger
than direct triggering by background events. This effect may either be an indicator for wrongly

103



disentangled sequences in the sense that secondary triggering is overestimated at the cost of the
productivity of the mainshock, or it may represent an actual effect due to the temporarily higher
energy level after the occurrence of a strong mainshock. A causal effect, if confirmed, would have
an enormous impact on the expected cluster sizes (compare with Grimm et al., 2021) and could
explain some of the rather small ∆M observations in the first study.
Future research should identify whether small magnitude differences ∆M are typically character-
ized rather by above-average aftershock productivity or by magnitude size distributions favoring
large aftershocks. To do so, one could compile a sufficiently large set of earthquake sequences
and analyze the correlation of their ∆M with estimates of the aftershock productivity (Equation
4) and frequency-magnitude distribution (Equation 2). Additionally, it should be verified whether
triggered events indeed have a larger aftershock productivity, and how this effect impacts ∆M .
Similarly, potential correlations of aftershock magnitudes with their ancestors should be evaluated.
Finally, an extension of the ∆M -regression model using small-scale covariate data could certainly
contribute to a better understanding of magnitude differences in different geophysical settings.

Data and Resources

The U.S. Geological Survey National Earthquake Information Center (USGS-NEIC) catalog
has been downloaded from https://earthquake.usgs.gov/earthquakes/search/
(last accessed on March 30, 2022). Global covariate data has been downloaded from http://
peterbird.name/publications/2003_pb2002/2003_pb2002.htm (Bird, 2003,
last accessed on March 30, 2022) or has been made available by Peter Bird after personal con-
tact (heat flow data, Bird et al., 2008). The New Zealand event set and focal mechanism data
was provided by GNS Science as an input to the ongoing 2022 revision of the New Zealand Na-
tional Seismic Hazard Model. For the stochastic declustering, we used the ETAS-Incomplete
model source code available in the Github repository https://github.com/ChrGrimm/
ETASanisotropic (Grimm et al., 2022), implemented using the software Matlab. All statisti-
cal analyses were performed with the open source software R.
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Derivations for Gradient-Based

Optimization

Christian Grimm
(Christian.Grimm@stat.uni-muenchen.de)

May 16, 2022

Abstract

This document gives a comprehensive summary of formulas and derivations of
all partial derivatives needed to implement a gradient-based optimization pro-
cess for the conventional ETAS model (e.g. Jalilian, 2019) or, in particular,
for the ETAS-Anisotropic and ETAS-Incomplete model versions proposed in
Grimm et al. (2021) and Grimm et al. (2022), respectively.
Chapter 1 introduces the general notation of ETAS models. Then, Chapter 2 de-
rives the log-likelihood functions for the corresponding model versions. Finally,
Chapter 3 and 4 rigorously derive the derivatives of the log-likelihood function
by the corresponding model parameters, as needed for the implementation of a
gradient-based optimization method.
Note that I use the terms conventional and standard ETAS model synony-
mously.
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Chapter 1

Definition and Notation of
ETAS Models

In this chapter, two versions of the Epidemic Type Aftershock Sequence (ETAS)
model are introduced:

• the Conventional ETAS model introduced by Ogata (1988, 1998) and
implemented in the R package ”ETAS” (Jalilian, 2019) and

• the ETAS-Incomplete model as described by (Grimm et al., 2022).

We define both models and derive the corresponding log-likelihood (LL) func-
tions that are needed to optimize the model parameters by maximum likelihood
estimation (MLE). Derivatives of the LL-functions, necessary for gradient-based
optimization methods, are derived in later chapters.

Notations follow Jalilian (2019), Hainzl (2021) and Grimm et al. (2022).

1.1 Conventional ETAS Model

In the conventional ETAS approach, the occurrence rate of an earthquake

• with magnitude m,

• occurring at time t and

• at location (x, y)

is modeled by a non-homogeneous Poisson process with intensity function

λ(t, x, y,m) = f0(m)R0(t, x, y) (1.1)

where
f0(m) = β e−β(m−Mc) (1.2)
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is the probability density function (pdf) of the frequency-magnitude distribu-
tion (FMD) following the Gutenberg-Richter law with parameter β (Mc denotes
the pre-defined cut-off magnitude).

The overall event occurrence rate at time t and at location (x, y), denoted by
R0(t, x, y) in Equ. (1.1), is modeled by a superposition of the (time-invariant)
seismic background rate

µu(x, y)

and a sum of the trigger rate contributions Rtrig0 (t, x, y, i) of all events i that
occurred prior to current time t, i.e. with ti < t:

R0(t, x, y) = µu(x, y) +
∑

i:ti<t

Rtrig0 (t, x, y, i) (1.3)

More precisely, the trigger rate contribution of a past event i to the current
time t and location (x, y) is modeled by the product of the expected number of
offsprings (aftershock productivity) of event i,

Aeα(mi−Mc),

and the temporal and spatial trigger functions

gc,p(t− ti) and fD,γ,q(ri(x, y),mi, li),

modeling the distribution of (relative) occurrence times/ locations of aftershocks
triggered by event i. The precise inputs and shapes of the temporal and spatial
trigger functions can assume different forms, and are discussed in detail in later
chapters. The spatial seismic background rate u(x, y) has no functional form,
but rather is a set of values on a grid.
We obtain

Rtrig0 (t, x, y, i) := Aeα(mi−Mc) gc,p(t− ti) fD,γ,q(ri(x, y),mi, li).

to be plugged into Equ. 1.3. Thus, in total, the Standard ETAS model consists
of the eight parameters

• β (frequency-magnitude distribution),

• µ (seismic background distribution),

• A ,α (aftershock productivity),

• c , p (temporal trigger function) and

• D , γ , q (spatial trigger function).

8. ETAS Formulary - Derivations for Gradient-Based Optimization
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1.2 ETAS-Incomplete Model

The ETAS-Incomplete model is based on the same ”true” frequency-magnitude
distribution f0(m) and spatio-temporal event rate R0(t, x, y) as introduced for
the Standard ETAS model case.
However, the main idea of the incompleteness model is that these true (physical)
relationships are not accurately identifiable in observed earthquake records due
to missing events as a result of the bias of temporal record incompleteness. This
incompleteness typically stems from overlapping coda-waves after large main-
shock events (so-called short-term aftershock incompleteness, STAI ), but can
also be the result of intense seismic swarm activity.
Fitting the ”true” relationships to incomplete data records may therefore lead
to significantly biased parameter estimates.

Thus, the approach of the ETAS-Incomplete model is to adapt both the frequency-
magnitude distribution f and event rate R to account for record incompleteness
and fit these ”apparent” relationships to the earthquake catalogs.

Following the ETASI model of Hainzl (2021), we define the ”apparent”
temporal frequency-magnitude distribution

f(m, t) = f0(m)N0(t)
e−N0(t) e

−β(m−Mc)

1− e−N0(t)

= β e−β(m−Mc)N0(t)
e−N0(t) 10

−b(m−Mc)

1− e−N0(t)

and the ”apparent” spatio-temporal event occurrence rate

R(t, x, y) =
R0(t, x, y)

N0(t)

(
1− e−N0(t)

)
.

In both functions, N0(t) denotes the expected number of events occurring within
the small blind time window [t− Tb, t] in the entire target space, i.e.

N0(t) =

∫ t

t−Tb

∫∫

S

R0(t, x, y) dx dy dt ≈ Tb
∫∫

S

R0(t, x, y) dx dy.

The approximation holds under the assumption that the event rate is approxi-
mately constant during the blind time.

In contrast to the Standard ETAS model, the ETAS rate is defined as the
product of the apparent FMD and the apparent spatio-temporal event rate,
rather than their ”true” analogons. By canceling out terms, we obtain the
ETAS rate

λ(t, x, y,m) = f(m, t)R(t, x, y) ≈ β e−β(m−Mc) R0(t, x, y) e−N0(t) e
−β(m−Mc)
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1.3 Temporal trigger function

1.3.1 Design and Notation

The spatial trigger function gc,p(t− ti) models the distribution of the (relative)
occurrence times t− ti of direct aftershocks triggered by event i. In both ETAS
model versions, we use the Omori law to specify the temporal decay of aftershock
intensity by defining

gc,p(t− ti) = (t− ti + c)−p, t− ti > 0

with parameters c and p.

1.3.2 Temporal restriction T

We may want to restrict temporal triggering to a maximum number of days
after the mainshock. In that case, we would set the Omori law equal to 0 for
t− ti > T . Howevr, this functionality is currently not implemented.

1.3.3 Temporal integral
∫ T2
T1
gc,p(t− ti) dt

It holds

∫ T2

T1

gc,p(t− ti) dt =

∫ T2

T1

(t− ti + c)−p dt

=
1

1− p
[
(t− ti + c)1−p

]T2

T1

=
1

1− p
(
(T2 − ti + c)1−p − ((T1 − ti)≥0 + c)1−p

)
.

1.4 Spatial trigger function (Spatial Kernel)

1.4.1 Design and Notation

The spatial kernel fD,γ,q(ri,mi, li) models the distribution of the 2-dimensional
locations (x,y) at which direct aftershocks of event i occur. We introduce here a
novel design of the spatial kernel, that works in both the Standard and ETAS-
Incomplete model and that may generally assume two shapes,

fD,γ,q(ri(x, y),mi, li) :=





q−1
D exp(γ(mi−Mc))

(
1 + π ri(x,y)

2

D exp(γ(mi−Mc))

)−q
(isotropic)

q−1
D exp(γ(mi−Mc))

(
1 + 2 li ri(x,y)+π ri(x,y)

2

D exp(γ(mi−Mc))

)−q
(anisotropic).

(1.4)

Herein, the inputs of f are defined as follows:
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• ri(x, y) := dist(x, y, i) is the point-to-point distance between a potential
aftershock location (x, y) and the coordinates (xi, yi) of the triggering
event i (isotropic case) or the shortest point-to-line distance of (x, y) to
the estimated rupture segment of triggering event i (anisotropic case),

• mi is the magnitude of the triggering event i and

• li is the rupture length of the triggering event i (only needed in the
anisotropic case).

The kernel is constrained by the parametersD and γ that control the magnitude-
dependent width of the kernel, and parameter q that describes the exponential
decay of the function. The kernel is constructed in a way that they serve as a
pdf, with

∫ ∞

0

f(r,mi, li) dr =

∫ ∞

0

∫ ∞

0

fD,γ,q(ri(x, y),mi, li) dx dy = 1.

Note that the isotropic kernel is a special case of the anisotropic one, if rupture
length li = 0, i.e. if no extension of the rupture along a line segment is assumed.
Denoting

Eγ(mi) := exp(γ(mi −Mc)),

we can therefore work with the more general anisotropic function

f(ri(x, y),mi, li) =
q − 1

DEγ(mi)

(
1 +

2 li ri(x, y) + π ri(x, y)2

DEγ(mi)

)−q
.

1.4.2 Spatial restriction R

Following Grimm et al (2021), it may be useful to restrict the spatial kernel
to a maximum distance ri(x, y) ≤ R. In order to retain a pdf that integrates
to 1 over the restricted space, f(ri(x, y),mi, li) needs to be normalized by the
integral till distance R,

1−
(

1 +
2 liR + π R2

D exp(γ(mi −Mc))

)1−q
,

and we obtain the final kernel

fD,γ,q(ri(x, y),mi, li) =





q−1
DEγ(mi)

finnD,γ (ri(x,y),mi,li)
−q

1−finnD,γ (R,mi,li)
1−q (r ≤ R)

0 (r > R)

with the inner function

f innD,γ(ri(x, y),mi, li) = 1 +
2 li ri(x, y) + π ri(x, y)2

DEγ(mi)
.
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1.4.3 Spatial integral
∫∫

Si(r̃)
fD,γ,q(ri(x, y),mi, li) dx dy

Both ETAS model versions require the computation of the integral of the ”true”
event rate R0(t, x, y) over the target space region S,

∫∫

S

R0(t, x, y) dx dy = µ

∫∫

S

u(x, y) dx dy +
∑

i:ti<t

∫∫

S

Rtrig0 (t, x, y, i) dx dy

= µ

∫∫

S

u(x, y) dx dy +
∑

i:ti<t

Aeα(mi−Mc) gc,p(t− ti)
∫∫

S

fD,γ,q(ri(x, y),mi, li) dx dy

The integral of the spatial background,
∫∫
S
u(x, y) dx dy, is always computed

numerically, since u(x, y) has no functional expression.
The integral of the spatial kernel,

∫∫

S

fD,γ,q(ri(x, y),mi, li) dx dy,

can be computed analytically for specific spatial areas Si(r̃) covering all points
(x, y) ∈ R2 up to a fixed distance r̃ ≥ 0 to the point coordinates (xi, yi) (isotropic
case) or the rupture segment (anisotropic case) of a triggering event i:

Si(r̃) := {(x, y) ∈ R2 | ri(x, y) ≤ r̃}.

Note that this area describes a circle in the case of an isotropic spatial kernel,
and a box parallel to the rupture segment, closed by semi-circles on both sides,
in the case of the anisotropic spatial kernel.

Due to identical values of fD,γ,q(ri(x, y),mi, li) along the (isotropic or anisotropic)
contour lines with constant distance ri(x, y), one can convert the two-dimensional
integral into a one-dimensional one integrating over the distance:

∫∫

Si(r̃)

fD,γ,q(ri(x, y),mi, li) dx dy =

∫ r̃

0

(2π r + 2 li) fD,γ,q(r,mi, li) dr

where the factor 2π r + 2 li is the length of the isotropic (li = 0) or anisotropic
(li > 0; two sides parallel to rupture segment + two semi-circular closings) con-
tour lines for a given distance r to the trigger point source (isotropic case) or
triggering rupture segment (anisotropic case).

Using the substitution rule for integrals with

u := u(r) := finn(r,mi, li) = 1 +
2 li r + π r2

DEγ(mi)

d

d r
u(r) =

2π r + 2 li
DEγ(mi)
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in step (*) we obtain for the spatial integral (up to a distance smaller or equal
to the spatial restriction, i.e. r̃ ≤ R)

∫ r̃

0

(2π r + 2 li) fD,γ,q(r,mi, li) dr

=

∫ r̃

0

(q − 1) (2π r + 2 li)

DEγ(mi)

finn(ri,mi, li)
−q

1− finn(R,mi, li)1−q
dr

(∗)
=

∫ r̃

0

(q − 1) (2π r + 2 li)

DEγ(mi)

u−q

1− finn(R,mi, li)1−q
du

(2π r + 2 li) /(DEγ(mi))

=

∫ u(r̃)

u(0)

(q − 1)
u−q

1− finn(R,mi, li)1−q
du

=

[
q − 1

1− q
u1−q

1− finn(R,mi, li)1−q

]u(r̃)

u(0)

=

[
− finn(r,mi, li)

1−q

1− finn(R,mi, li)1−q

]r̃

0

= − finn(r̃,mi, li)
1−q − 1

1− finn(R,mi, li)1−q

=
1− finn(r̃,mi, li)

1−q

1− finn(R,mi, li)1−q
.

If we integrate up to the spatial restriction distance R, i.e. r̃ = 1, follows

∫∫

Si(R)

fD,γ,q(ri(x, y),mi, li) dx dy =
1− finn(R,mi, li)

1−q

1− finn(R,mi, li)1−q
= 1.

confirming that f is a pdf.

Please note:
For the rest of this manuscript, we will assume that all spatial inte-
grals can be solved analytically over the specific region Si(r̃) and will
use the simplified notation S for any spatial constraints.

For more general spatial windows S, the area can be partitioned into many
narrow pieces between any event and the target window boundary. The inte-
gral over each of these segments can be well approximated by the accordingly
weighted analytical integral as derived above. The according methodology is
called ”radial partitioning” and is described in more detail by Jalilian (2019).
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Chapter 2

Derivation of
Log-Likelihood Functions

2.1 Conventional ETAS Model

The expected number of events occurring in the entire space-time-magnitude
target window [T1, T2]× S × [Mc,∞) is

∫ ∞

Mc

∫ T2

T1

∫∫

S

λ(t, x, y,m) dx dy dt dm

=

∫ ∞

Mc

f0(m)dm

∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

=

∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

(2.1)

since
∫∞
Mc

f0(m)dm = 1 holds by construction of the PDF.

Thus, the probability of observing N = n events in the remaining space-time
target window, assuming a Poisson distribution with expected number

E(N) = λ[T1,T2]×S :=

∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

is

P (N = n) = e−λ[T1,T2]×S

(
λ[T1,T2]×S

)n

n!
.

Furthermore the probability density of a specific event i with (ti, xi, yi,mi) is

di =
λ(ti, xi, yi,mi)

λ[T1,T2]×S
.
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Due to independence of observations, and n! possible timely reorders of an
observed event sample Ẽ = {(ti, xi, yi,mi)|i = 1, ..., n}, the likelihood of getting
the very observed sample Ẽ is

L(θ) = n! P (n)

n∏

i=1

di

= n! e−λ[T1,T2]×S

(
λ[T1,T2]×S

)n

n!

n∏

i=1

λ(ti, xi, yi,mi)

λ[T1,T2]×S

= e−λ[T1,T2]×S
n∏

i=1

λ(ti, xi, yi,mi)

= e−
∫ T2
T1

∫∫
S
R0(t,x,y) dx dy dt

n∏

i=1

f0(mi)R0(ti, xi, yi).

with θ = {β, µ,A, α, c, p,D, γ, q}.

Given an earthquake catalog with N recorded events in the target time-space
window, the log-likelihood function evaluates to

LL(θ) = ln (L(θ)) =

N∑

j=1

ln (f0(mi)R0(ti, xi, yi))−
∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

= LL0(β) + LL1(θ)− LL2(θ)
(2.2)

with

LL0(β) =
N∑

j=1

ln (f0(mj))

LL1(θ) =

N∑

j=1

ln (R0(tj , xj , yj))

=

N∑

j=1

ln


µu(xj , yj) +

∑

i:ti<tj

Aeα(mi−Mc) gc,p(tj − ti) fD,γ,q(ri(xj , yj),mi, li)




LL2(θ) =

∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

= µ (T2 − T1)

∫∫

S

u(x, y) dx dy

+
∑

i:ti<t

Aeα(mi−Mc)

(
(T2 − ti + c)1−p − ((T1 − ti)≥0 + c)1−p

1− p

) (
1− finn(r̃,mi, li)

1−q

1− finn(R,mi, li)1−q

)

(2.3)
Note that, while the outer sum in LL0 and LL1 only includes target events

(i.e. events j = 1, ..., N with (tj , xj , yj ,mj) ∈ [t0, t1] × S × [m0,∞)), the sum
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within R0(t, x, y) may include trigger contributions from complementary events
outside of the space-time-magnitude target window.

The optimal set of model parameters θ is found by maximizing LL(θ). For
the use of gradient-based solvers, we need to know the derivatives of LL(θ) by
the respective parameters. Derivations are shown in later chapters.

2.2 ETAS-Incomplete Model

In the ETAS-Incomplete model, it is not as easily seen that we can waive the
magnitude part in the integral of the time-space-magnitude intensity function
λ(t, x, y,m) over the respective target ranges [T1, T2]× S × [Mc,∞) such as

∫ ∞

Mc

∫ T2

T1

∫∫

S

λ(t, x, y,m) dx dy dt dm =

∫ T2

T1

∫∫

S

R(t, x, y) dx dy dt.

Indeed, it holds

∫ ∞

Mc

∫ T2

T1

∫∫

S

λ(t, x, y,m) dx dy dt dm

=

∫ ∞

Mc

∫ T2

T1

∫∫

S

β e−β(m−Mc)R0(t, x, y) e−N0(t) e
−β(m−Mc)

dx dy dt dm

=

∫ T2

T1

(∫ ∞

Mc

β e−β(m−Mc) e−N0(t) e
−β(m−Mc)

dm

)(∫∫

S

R0(t, x, y) dx dy

)
dt

with

∫ ∞

Mc

β e−β(m−Mc) e−N0(t) e
−β(m−Mc)

dm =

[
e−N0(t) e

−β(m−Mc)

N0(t)

]∞

Mc

=
1− e−N0(t)

N0(t)

and consequently, using the aproximation

N0(t) =

∫ t

t−Tb

∫∫

S

R0(t̃, x, y) dx dy dt̃ ≈ Tb
∫∫

S

R0(t, x, y)dxdy

the integral evaluates to

∫ ∞

Mc

∫ T2

T1

∫∫

S

λ(t, x, y,m) dx dy dt dm =

∫ T2

T1

∫∫

S

R(t, x, y) dx dy dt

=

∫ T2

T1

1− e−N0(t)

N0(t)

∫∫

S

R0(t, x, y) dx dy dt

=

∫ T2

T1

1− e−Tb
∫∫
S
R0(t,x,y) dx dy

Tb
∫∫
S
R0(t, x, y) dx dy

∫∫

S

R0(t, x, y) dx dy dt

=

∫ T2

T1

1− e−Tb
∫∫
S
R0(t,x,y) dx dy

Tb
dt
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Analogously to the Standard ETAS model case, we therefore obtain the
likelihood function

L(θ) = e−
∫∞
Mc

∫ T2
T1

∫∫
S
λ(t,x,y,m) dx dy dt dm

n∏

i=1

λ(ti, xi, yi,mi)

and the log-likelihood function

LL(θ) = LL1(θ)− LL2(θ) (2.4)

with

LL1(θ) =

N∑

j=1

ln (f(mj , tj)R(tj , xj , yj))

=

N∑

j=1

ln
(
β e−β(mj−Mc)R0(tj , xj , yj) e

−N0(tj) e
−β(mj−Mc)

)

= N ln(β) +

N∑

j=1

(
ln(R0(tj , xj , yj))− β(mj −Mc)−N0(tj) e

−β(mj−Mc)
)

LL2(θ) =

∫ T2

T1

1− e−Tb
∫∫
S
R0(t,x,y) dx dy

Tb
dt

=
T2 − T1
Tb

− 1

Tb

∫ T2

T1

e−Tb
∫∫
S
R0(t,x,y) dx dydt

(2.5)
and

∫∫

S

R0(t, x, y) dx dy = µ

∫∫

S

u(x, y) dx dy

+
∑

i:ti<t

Aeα(mi−Mc) gc,p(t− ti)
∫∫

S

fD,γ,q(ri(x, y),mi, li) dx dy

Note that the parameter vector θ = {β, Tb, µ,A, α, c, p,D, γ, q} comprises
the additional parameter Tb. The sum in LL1 is again computed over all target
events (i.e. events j with (tj , xj , yj ,mj) ∈ [t0, t1] × S × [m0,∞)), whereas the
integral in LL2 may include trigger contributions from complementary events
outside of the space-time-magnitude target window.

The optimal set of model parameters θ is found by maximizing LL(θ).
Derivatives of LL(θ) by the respective parameters, as needed for the use of
gradient-based solvers, are derived in later chapters.
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Chapter 3

Derivatives of LL-Functions
(Conventional ETAS)

According to equations Equ. 2.2, 2.3, the LL-function of the Standard-ETAS
model is decomposed into the three summands

LL(θ) = LL0(β) + LL1(θ)− LL2(θ)

where

LL0(β) =

N∑

j=1

ln (f0(mj))

only depends on the Gutenberg-Richter parameter β and

LL1(θ) =

N∑

j=1

ln (R0(tj , xj , yj))

LL2(θ) =

∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

depend on the remaining eight parameters θ = {µ,A, α, c, p,D, γ, q}.

3.1 Analytical Estimator for β

The Gutenberg-Richter parameter β appears only separated from the other pa-
rameters in LL0(β) and can therefore be optimized analytically by maximizing

LL0(β) =

N∑

j=1

ln (f0(mj)) = N ln(β)− β
N∑

i=1

(mi −Mc).

Solving the derivative

d

dβ
LL0(β) =

N

β
−

N∑

i=1

(mi −Mc) = 0

8. ETAS Formulary - Derivations for Gradient-Based Optimization
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leads to the estimator

β =
N

∑N
i=1(mi −Mc)

.
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3.2 Derivatives of LL1(θ)

Via chain rule, any derivative of LL1(θ) has the form

dLL1(θ)

d θk
=

N∑

j=1

d
d θk

R0(tj , xj , yj)

R0(tj , xj , yj)

with θk ∈ θ (k = 1, ..., 8) and

d

d θk
R0(tj , xj , yj) =

d

d θk
µu(xj , yj) +

∑

i:ti<tj

d

d θk
Rtrig0 (tj , xj , yj , i)

Rtrig0 (tj , xj , yj , i) = Aeα(mi−Mc) gc,p(tj − ti) fD,γ,q(ri(xj , yj),mi, li)

3.2.1 By µ

It holds
d

dµ
R0(tj , xj , yj) = u(xj , yj).

3.2.2 By A

It holds
d

dA
R0(tj , xj , yj) =

∑

i:ti<tj

d

dA
Rtrig0 (tj , xj , yj , i)

=
∑

i:ti<tj

Rtrig0 (tj , xj , yj , i)

A

3.2.3 By α

It holds
d

dα
R0(tj , xj , yj) =

∑

i:ti<tj

d

dα
Rtrig0 (tj , xj , yj , i)

=
∑

i:ti<tj

(mi −Mc)R
trig
0 (tj , xj , yj , i)

3.2.4 By c

It holds
d

d c
g(tj − ti) =

d

d c
(c+ tj − ti)−p

= (−p) (c+ tj − ti)−p−1

=
−p

c+ tj − ti
g(tj − ti)
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and therefore

d

d c
R0(tj , xj , yj) =

∑

i:ti<tj

d

d c
Rtrig0 (tj , xj , yj , i)

=
∑

i:ti<tj

−p
c+ tj − ti

Rtrig0 (tj , xj , yj , i)

3.2.5 By p

It holds
d

d p
g(tj − ti) =

d

d p
(c+ tj − ti)−p

=
d

d p
eln((c+tj−ti)−p)

=
d

d p
e(−p) ln(c+tj−ti)

= −ln(c+ tj − ti) g(tj − ti)
and therefore

d

d p
R0(tj , xj , yj) =

∑

i:ti<tj

d

d p
Rtrig0 (tj , xj , yj , i)

=
∑

i:ti<tj

−ln(c+ tj − ti)Rtrig0 (tj , xj , yj , i)

3.2.6 Notations for Spatial Kernel

For better notation in long formula derivations, we decompose the spatial kernel

fD,γ,q(r,m, l) =
q − 1

DEγ(mi)

f innD,γ(r,m, l)−q

1− f innD,γ(R,m, l)1−q

into the numerator term

tnumer :=
q − 1

DEγ(m)
f innD,γ(r,m, l)−q

and the denominator term

tdenom := 1− f innD,γ(R,m, l)1−q,

i.e.

fD,γ,q(r,m, l) =
tnumer
tdenom

.

The derivative of fD,γ,q(r,m, l) by any of the three spatial parameters D, γ, q is
computed via the quotient rule

(fD,γ,q(r,m, l))
′

=
t′numer tdenom − tnumer t′denom

t2denom
.

133



Also, in any spatial derivative we assume a distance smaller or equal to the spa-
tial extent, i.e. ri(x, y) > R (otherwise the spatial kernel is 0, as its derivatives).

3.2.7 By D

Having the inner derivative

d

dD
f innD,γ(r,m, l) = − 1

D

πr2

DEγ(m)
= − 1

D

(
f innD,γ(r,m, l)− 1

)

we obtain by the use of product and chain rule in step (*)

d

dD
tnumer =

q − 1

Eγ(m)

d

dD

(
1

D
f innD,γ (r,m)

−q
)

(∗)
=

q − 1

Eγ(m)

[
− 1

D2
f innD,γ (r,m)

−q
+ ...

1

D
(−q) f innD,γ (r,m)

−q−1
(
− 1

D

) (
f innD,γ (r,m)− 1

) ]

=

[
q − 1

DEγ(m)
f innD,γ (r,m)

−q
]

1

D

(
−1 + q f innD,γ (r,m)

−1 (
f innD,γ (r,m)− 1

))

=

(
q − 1

DEγ(mi)
f innD,γ(ri,mi, li)

−q
)

1

D

(
q
(

1− f innD,γ (r,m)
−1
)
− 1
)

and by the use of chain rule for the normalization term

d

dD
tdenom = −(1− q) f innD,γ (R,m)

−q
(
− 1

D

) (
f innD,γ (R,m)− 1

)

=
1− q
D

f innD,γ (R,m)
−q (

f innD,γ (R,m)− 1
)
.

By quotient rule, we can now conclude

d

dD
fD,γ,q(x, y, i)

=

[
tnumer

1

D

(
q
(

1− f innD,γ (r,m)
−1
)
− 1
)
tdenom ...

− tnumer
1− q
D

f innD,γ (R,m)
−q (

f innD,γ (R,m)− 1
) ]

/ t2denom

=
tnumer
tdenom

1

D

[(
q
(

1− f innD,γ (r,m)
−1
)
− 1
)
−

(1− q)
(
f innD,γ (R,m)− 1

)

tdenom f innD,γ (R,m)
q

]

= fD,γ,q(x, y, i)
1

D

[(
q
(

1− f innD,γ (r,m)
−1
)
− 1
)
−

(1− q)
(
f innD,γ (R,m)− 1

)

tdenom f innD,γ (R,m)
q

]

Therefore, it holds

d

dD
R0(tj , xj , yj) =

∑

i:ti<tj

d

dD
Rtrig0 (tj , xj , yj , i) =

∑

i:ti<tj

1

D
hD R

trig
0 (tj , xj , yj , i)
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with

hD := q
(

1− f innD,γ (r,m)
−1
)
− 1−

(1− q)
(
f innD,γ (R,m)− 1

)

tdenom f innD,γ (R,m)
q .

3.2.8 By γ

Having the inner derivative

d

dγ
f innD,γ (r,m) = (−(m−m0))

πr2

DEγ(m)
= (−(m−m0))

(
f innD,γ (r,m)− 1

)

(3.1)

we obtain by the use of product and chain rule in step (*)

d

dγ
tnumer =

q − 1

D

d

dγ

(
1

Eγ(m)
f innD,γ (r,m)

−q
)

(∗)
=

q − 1

D

[−(m−m0)

Eγ(m)
f innD,γ (r,m)

−q
...

+
1

Eγ(m)
(−q) f innD,γ (r,m)

−q−1
(−(m−m0))

(
f innD,γ (r,m)− 1

) ]

=

[
q − 1

DEγ(m)
f innD,γ (r,m)

−q
]

(m−m0)
(
−1 + q f innD,γ (r,m)

−1 (
f innD,γ (r,m)− 1

))

= tnumer (m−m0)
(
q
(

1− f innD,γ (r,m)
−1
)
− 1
)

(3.2)

and by the use of chain rule

d

dγ
tdenom

(∗)
= −(1− q) f innD,γ (R,m)

−q
(−(m−m0))

(
f innD,γ (r,m)− 1

)

= (1− q) (m−m0) f innD,γ (R,m)
−q (

f innD,γ (R,m)− 1
)
. (3.3)

Comparing (3.2) and (??) with (??) and (??), we see that

d

dγ
tnumer = D (m−m0)

d

dD
tnumer,

d

dγ
tdenom = D (m−m0)

d

dD
tdenom.

Therefore it follows that

d

dγ
fD,γ,q(x, y, i) = D (m−m0)

d

dD
fD,γ,q(x, y, i)

and

d

d γ
R0(tj , xj , yj) =

∑

i:ti<tj

d

dD
Rtrig0 (tj , xj , yj , i) =

∑

i:ti<tj

(mi −m0)hD R
trig
0 (tj , xj , yj , i)

with hD as defined in the derivation of the derivative by D.
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3.2.9 By q

We obtain by the use of product rule in step (*)

d

dq
tnumer =

1

DEγ(m)

d

dq

(
(q − 1) f innD,γ (r,m)

−q
)

(∗)
=

1

DEγ(m)

[
f innD,γ (r,m)

−q
+ (q − 1)

(
−ln

(
f innD,γ (r,m)

))
f innD,γ (r,m)

−q
]

=

[
q − 1

DEγ(m)
f innD,γ (r,m)

−q
](

1

q − 1
− ln

(
f innD,γ (r,m)

))

= tnumer

(
1

q − 1
− ln

(
f innD,γ (r,m)

))

and by the use of chain rule

d

dq
tdenom = −

(
−ln

(
f innD,γ (R,m)

))
f innD,γ (R,m)

1−q

= ln
(
f innD,γ (R,m)

)
f innD,γ (R,m)

1−q

By quotient rule, we can now conclude

d

dq
fD,γ,q(x, y, i) =

d

dq

tnumer
tdenom

=

[
tnumer

(
1

q − 1
− ln

(
f innD,γ (r,m)

))
tdenom ...

− tnumer ln
(
f innD,γ (R,m)

)
f innD,γ (R,m)

1−q
]
/ t2denom

= fD,γ,q(x, y, i)

[
1

q − 1
− ln

(
f innD,γ (r,m)

)
−
ln
(
f innD,γ (R,m)

)

tdenom
f innD,γ (R,m)

1−q
]

Therefore, it holds

d

d q
R0(tj , xj , yj) =

∑

i:ti<tj

d

d q
Rtrig0 (tj , xj , yj , i) =

∑

i:ti<tj

hq R
trig
0 (tj , xj , yj , i)

with

hq :=
1

q − 1
− ln

(
f innD,γ (r,m)

)
−
ln
(
f innD,γ (R,m)

)

tdenom
f innD,γ (R,m)

1−q
.
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3.3 Derivatives of LL2(θ)

The second summand of the LL-function is

LL2(θ) =

∫ T2

T1

∫∫

S

R0(t, x, y) dx dy dt

= (T2 − T1)µ

∫∫

S

u(x, y) dx dy +

N∑

i=1

Aeα(mi−Mc)Gc,p(T1, T2, i)FD,γ,q(S, i)

with

Gc,p(T1, T2, i) : =

∫ T2

T1

g(t− ti) dt =
1

1− p
(
(T2 − ti + c)1−p − ((T1 − ti)≥0 + c)1−p

)
,

FD,γ,q(S, i) : =

∫∫

S

fD,γ,q(ri(x, y),mi, li) dx dy =
1−

(
1 + 2 li r̃+π r̃

2

DEγ(mi)

)1−q

1−
(

1 + 2 li R+π R2

DEγ(mi)

)1−q

We obtain the following derivatives.

3.3.1 By µ

It holds
d

dµ
LL2(θ) = (T2 − T1)

∫∫

S

u(x, y) dx dy.

3.3.2 By A

It holds

d

dA
LL2(θ) =

N∑

i=1

eα(mi−Mc)Gc,p(T1, T2, i)FD,γ,q(S, i)

3.3.3 By α

It holds

d

dA
LL2(θ) =

N∑

i=1

A (mi −Mc) e
α(mi−Mc)Gc,p(T1, T2, i)FD,γ,q(S, i)

3.3.4 By c

It holds

d

d c
LL2(θ) =

N∑

i=1

Aeα(mi−Mc)

(
d

d c
Gc,p(T1, T2, i)

)
FD,γ,q(S, i)
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with

d

d c
Gc,p(T1, T2, i) =

d

d c

1

1− p
(
(T2 − ti + c)1−p − ((T1 − ti)≥0 + c)1−p

)

= (T2 − ti + c)−p − ((T1 − ti)≥0 + c)−p.

3.3.5 By p

It holds
d

d p
x1−p =

d

d p
e(1−p) ln(x) = −ln(x)x1−p,

and via quotient rule

d

d p

x1−p

1− p =
−ln(x)x1−p (1− p)− x1−p (−1)

(1− p)2

= x1−p
1− ln(x) (1− p)

(1− p)2 .

Therefore we obtain

d

d p
LL2(θ) =

N∑

i=1

Aeα(mi−Mc)

(
d

d p
Gc,p(T1, T2, i)

)
FD,γ,q(S, i)

with

d

d p
Gc,p(T1, T2, i) =

d

d p

1

1− p
(
(T2 − ti + c)1−p − ((T1 − ti)≥0 + c)1−p

)

=
d

d p

(T2 − ti + c)1−p

1− p − ((T1 − ti)≥0 + c)1−p

1− p

= (T2 − ti + c)1−p
1− ln(T2 − ti + c) (1− p)

(1− p)2 ...

− ((T1 − ti)≥0 + c)1−p
1− ln((T1 − ti)≥0 + c) (1− p)

(1− p)2 .

3.3.6 Notations for Spatial Integral

Again, for better notation in long formula derivations, we decompose the spatial
integral

FD,γ,q(S, i) =

∫∫

S

fD,γ,q(ri(x, y),mi, li) dx dy =
1−

(
1 + 2 li r̃+π r̃

2

DEγ(mi)

)1−q

1−
(

1 + 2 li R+π R2

DEγ(mi)

)1−q

into the numerator term

tnumInteg := 1−
(
f innD,γ(r,m, l)

)1−q
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and the denominator term

tdenom := 1−
(
f innD,γ(R,m, l)

)1−q
,

i.e.

FD,γ,q(S, i) =
tnumInteg
tdenom

.

The derivative of fD,γ,q(r,m, l) by any of the three spatial parameters D, γ, q is
computed via the quotient rule

(FD,γ,q(S, i))
′

=
t′numInteg tdenom − tnumInteg t′denom

t2denom
.

Also, in any spatial derivative we assume a distance smaller or equal to the
spatial extent, i.e. ri(x, y) > R (otherwise the spatial integral has reached 1 and
the derivative is 0).

3.3.7 By D

From subsection 3.2.7 we obtain

d

dD
tnumInteg =

1− q
D

f innD,γ (r,m)
−q (

f innD,γ (r,m)− 1
)

d

dD
tscale =

1− q
D

f innD,γ (R,m)
−q (

f innD,γ (R,m)− 1
)

and consequently, via quotient rule,

d

dD
FD,γ,q(S, i)

=

[
1− q
D

f innD,γ (r,m)
−q (

f innD,γ (r,m)− 1
)
tscale ...

− tnumInteg
1− q
D

f innD,γ (R,m)
−q (

f innD,γ (R,m)− 1
) ]
/t2scale.

3.3.8 By γ

From subsection 3.2.8 we obtain

d

dγ
tnumInteg = D (m−m0)

d

dD
tnumInteg,

d

dγ
tscale = D (m−m0)

d

dD
tscale.

Therefore it follows that

d

dγ
FD,γ,q(S, i) = D (m−m0)

d

dD
FD,γ,q(S, i).
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3.3.9 By q

From subsection 3.2.9 we obtain

d

dq
tinteg = ln

(
f innD,γ (r,m)

)
f innD,γ (r,m)

1−q
(3.4)

d

dq
tscale = ln

(
f innD,γ (R,m)

)
f innD,γ (R,m)

1−q
(3.5)

and consequently, via quotient rule,

d

dq
FD,γ,q(r, x, y) =

[
ln
(
f innD,γ (r,m)

)
f innD,γ (r,m)

1−q
tscale ...

− tinteg ln
(
f innD,γ (R,m)

)
f innD,γ (R,m)

1−q
]
/t2scale. (3.6)
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Chapter 4

Derivatives of LL-Functions
(ETAS-Incomplete)

4.1 Derivatives of N(t)

In both LL-summands LL1(θ) and LL2(θ) occurs the term N(t) representing
the overall event rate at time t in the entire target space window,

N(t) ≈ Tb
∫∫

S

R0(t, x, y) dx dy

= Tb

(
µ

∫∫

S

u(x, y) dx dy +
∑

i:ti<t

Aeα(mi−Mc) gc,p(t− ti)FD,γ,q(S, i)
)
.

with

FD,γ,q(S, i) =

∫∫

S

fD,γ,q(ri(x, y),mi, li) dx dy =
1−

(
1 + 2 li r̃+π r̃

2

DEγ(mi)

)1−q

1−
(

1 + 2 li R+π R2

DEγ(mi)

)1−q .

4.1.1 By µ

It holds
d

dµ
N(t) = Tb

∫∫

S

u(x, y) dx dy.

4.1.2 By A

It holds
d

dA
N(t) = Tb

∑

i:ti<t

eα(mi−Mc) gc,p(t− ti)FD,γ,q(S, i).
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4.1.3 By α

It holds

d

dα
N(t) = Tb

∑

i:ti<t

A (mi −Mc) e
α(mi−Mc) gc,p(t− ti)FD,γ,q(S, i).

4.1.4 By c

By section 3.2, it holds

d

d c
N(t) = Tb

∑

i:ti<t

Aeα(mi−Mc)

(
d

d c
gc,p(t− ti)

)
FD,γ,q(S, i)

= Tb
∑

i:ti<t

Aeα(mi−Mc)
−p

c+ t− ti
gc,p(t− ti)FD,γ,q(S, i)

4.1.5 By p

By section 3.2, it holds

d

d p
N(t) = Tb

∑

i:ti<t

Aeα(mi−Mc)

(
d

d p
gc,p(t− ti)

)
FD,γ,q(S, i)

= Tb
∑

i:ti<t

Aeα(mi−Mc) (−ln(c+ t− ti)) gc,p(t− ti)FD,γ,q(S, i)

4.1.6 By D

It holds

d

dD
N(t) = Tb

∑

i:ti<t

Aeα(mi−Mc) gc,p(t− ti)
(

d

dD
FD,γ,q(S, i)

)

with d
dD FD,γ,q(S, i) as derived in section 3.3.

4.1.7 By γ

It holds

d

d γ
N(t) = Tb

∑

i:ti<t

Aeα(mi−Mc) gc,p(t− ti)
(
d

d γ
FD,γ,q(S, i)

)

with d
d γ FD,γ,q(S, i) as derived in section 3.3.
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4.1.8 By q

It holds

d

d q
N(t) = Tb

∑

i:ti<t

Aeα(mi−Mc) gc,p(t− ti)
(
d

d q
FD,γ,q(S, i)

)

with d
d q FD,γ,q(S, i) as derived in section 3.3.

4.1.9 By Tb

It holds

d

d Tb
N(t) =

N(t)

Tb
= µ

∫∫

S

u(x, y) dx dy+
∑

i:ti<t

Aeα(mi−Mc) gc,p(t−ti)FD,γ,q(S, i).

4.1.10 By β

The parameter β does not occur in N(t), i.e. d
d β N(t) = 0.
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4.2 Derivatives of LL1(θ)

For the ETAS-Incomplete model, derivatives of the first LL-summand LL1(θ)
are most easily computed starting from (see Equ. 2.5)

LL1(θ) = N ln(β) +

N∑

j=1

ln(R0(tj , xj , yj))− β(mj −Mc)−N(tj) e
−β(mj−Mc)

In this case, the Gutenberg-Richter parameter β is not isolated from the other
nine parameters and therefore the entire parameter set θ = {β, Tb, µ,A, α, c, p,D, γ, q}
needs to be optimized numerically. The following gradients serve for gradient-
based optimization methods.

4.2.1 By µ,A, α, c, p,D, γ, q

For any parameter other than β and Tb, we obtain the derivative by chain rule
as

d

d θk
LL1(θ) =

N∑

j=1

d
d θk

R0(tj , xj , yj)

R0(tj , xj , yj)
−
(

d

d θk
N(tj)

)
e−β(mj−Mc) (4.1)

with the inner derivatives d
d θk

R0(tj , xj , yj) and d
d θk

N(tj) from section section
3.2 and 4.1, respectively, and therefore:

d

dµ
LL1(θ) =

N∑

j=1

d
d µR0(tj , xj , yj)

R0(tj , xj , yj)
−
(
d

dµ
N(tj)

)
e−β(mj−Mc)

d

dA
LL1(θ) =

N∑

j=1

d
dAR0(tj , xj , yj)

R0(tj , xj , yj)
−
(

d

dA
N(tj)

)
e−β(mj−Mc)

d

dα
LL1(θ) =

N∑

j=1

d
dαR0(tj , xj , yj)

R0(tj , xj , yj)
−
(
d

dα
N(tj)

)
e−β(mj−Mc)

d

d c
LL1(θ) =

N∑

j=1

d
d cR0(tj , xj , yj)

R0(tj , xj , yj)
−
(
d

d c
N(tj)

)
e−β(mj−Mc)

d

d p
LL1(θ) =

N∑

j=1

d
d pR0(tj , xj , yj)

R0(tj , xj , yj)
−
(
d

d p
N(tj)

)
e−β(mj−Mc)

d

dD
LL1(θ) =

N∑

j=1

d
dDR0(tj , xj , yj)

R0(tj , xj , yj)
−
(

d

dD
N(tj)

)
e−β(mj−Mc)

d

d γ
LL1(θ) =

N∑

j=1

d
d γR0(tj , xj , yj)

R0(tj , xj , yj)
−
(
d

d γ
N(tj)

)
e−β(mj−Mc)

d

d q
LL1(θ) =

N∑

j=1

d
d qR0(tj , xj , yj)

R0(tj , xj , yj)
−
(
d

d q
N(tj)

)
e−β(mj−Mc)
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4.2.2 By Tb (Blind Time)

Having
d

d Tb
N(t) =

N(t)

Tb

from section 4.1 it holds

d

dTb
LL1(θ) =

N∑

j=1

−
(

d

d Tb
N(tj)

)
e−β(mj−Mc)

4.2.3 By β (Gutenberg-Richter)

It holds

d

dβ
LL1(θ) =

N

β
+

N∑

j=1

(mi −Mc)
(
N(tj) e

−β(mi−Mc) − 1
)
.
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4.3 Derivatives of LL2(θ)

The second summand of the LL-function is

LL2(θ) =
T2 − T1
Tb

− 1

Tb

∫ T2

T1

e−N0(t) dt

4.3.1 By µ,A, α, c, p,D, γ, q

For any parameter other than Tb, we obtain the derivative by chain rule as

d

d θk
LL2(θ) =

1

Tb

∫ T2

T1

(
d

d θk
N0(t)

)
e−N0(t) dt. (4.2)

with the inner derivatives d
d θk

N0(t) given in section 4.1:

d

dµ
LL2(θ) =

1

Tb

∫ T2

T1

(
d

dµ
N0(t)

)
e−N0(t) dt

d

dA
LL2(θ) =

1

Tb

∫ T2

T1

(
d

dA
N0(t)

)
e−N0(t) dt

d

dα
LL2(θ) =

1

Tb

∫ T2

T1

(
d

dα
N0(t)

)
e−N0(t) dt

d

d c
LL2(θ) =

1

Tb

∫ T2

T1

(
d

d c
N0(t)

)
e−N0(t) dt

d

d p
LL2(θ) =

1

Tb

∫ T2

T1

(
d

d p
N0(t)

)
e−N0(t) dt

d

dD
LL2(θ) =

1

Tb

∫ T2

T1

(
d

dD
N0(t)

)
e−N0(t) dt

d

d γ
LL2(θ) =

1

Tb

∫ T2

T1

(
d

d γ
N0(t)

)
e−N0(t) dt

d

d q
LL2(θ) =

1

Tb

∫ T2

T1

(
d

d q
N0(t)

)
e−N0(t) dt

4.3.2 By Tb (Blind Time)

It holds
d

d Tb

T2 − T1
Tb

= −T2 − T1
T 2
b

and, via quotient rule,

d

d Tb

e−N0(t)

Tb
=

(
− d
d Tb

N0(t)
)
e−N0(t) Tb − e−N0(t)

T 2
b

= −e
−N0(t)

T 2
b

(
Tb

(
d

d Tb
N0(t)

)
+ 1

)
.
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We obtain

d

d Tb
LL2(θ) = −T2 − T1

T 2
b

+
1

T 2
b

∫ T2

T1

(
Tb

(
d

d Tb
N0(t)

)
+ 1

)
e−N0(t) dt.

4.3.3 By β (Gutenberg-Richter)

The parameter β does not occur in LL2(θ), therefore

d

d β
LL2(θ) = 0.
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Grimm, C., Hainzl, S., Käser, M., and Küchenhoff, H. (2022a). Solving three major biases of the
ETAS model to improve forecasts of the 2019 Ridgecrest sequence. Stochastic Environmental
Research and Risk Assessment, 2.

Grimm, C., Käser, M., Hainzl, S., Pagani, M., and Küchenhoff, H. (2021). Improving Earthquake
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