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Zusammenfassung

In meiner Doktorarbeit befasse ich mich mit Ordnungsbildung und Mustern in Systemen aktiver Mate-
rie. Diese Systeme setzen sich aus einer Vielzahl einzelner, meist identischer, Konstituenten zusammen,
die sich individuell fortbewegen und auf lokaler Ebene wechselwirken. Durch ein Zusammenspiel
von Bewegung und Wechselwirkung auf Agentenebene kann sich aktive Materie selbst organisieren
und verschiedene Arten makroskopischer Ordnung und Mustern ausbilden. Nach einer Einleitung
präsentiere ich in den Kapiteln 2 bis 5 unsere Untersuchungen zu verschiedenen Aspekten dieser
Phänomene, in denen wir jeweils numerische Simulationen mit anderen theoretischen Ansätzen oder
mit Experimenten kombiniert haben.

Kapitel 2 - Emergenz von koexistierenden geordneten Zuständen in Systemen aktiver Materie
gemeinsam mit Lorenz Huber, Ryo Suzuki, Erwin Frey und Andreas Bausch.
In diesem Kapitel entwickeln wir eine neuartige Simulation des Actin Motility Assays, einem experi-
mentellenModellsystem aktiverMaterie. Wir kombinieren großskalige Simulationenmit Experimenten
und finden durch Kontrolle der mikroskopischen Interaktionen zwischen einzelnen Konstituenten
heraus, dass geordnete Muster polarer und nematischer Symmetrien in aktiven Systemen koexistieren
können. Somit zeigen wir, dass die Symmetrie der Ordnung in aktiver Materie nicht direkt durch die
mikroskopische Interaktion bestimmt wird, sondern selbst eine emergente Eigenschaft ist. Die Inhalte
dieses Kapitels wurden in [1] veröffentlicht.

Kapitel 3 - Mikrophasenseparation in aktiven Filamentsystemen wird durch zyklische Dynamik
der Clustergröße und -ordnung aufrechterhalten
gemeinsam mit Lorenz Huber und Erwin Frey.
In diesem Kapitel untersuchen wir den Entstehungsprozess und die Aufrechterhaltung polarer mi-
krophasenseparierter Muster in aktiven Systemen. In agentenbasierten Simulationen identifizieren
wir Teilchencluster verschiedener Ordnung und Größe und messen die Ströme zwischen diesen.
Auf Grundlage dieser Austauschprozesse entwickeln wir ein kinetisches Modell, das die Ergebnisse
der Simulationen reproduziert. Hierauf basierend zeigen wir, dass Ordnungsbildung durch Cluster-
selbstreplikation stattfindet und die Aufrechterhaltung des mikrophasenseparierten, polar geordneten
Zustands das Ergebnis einer zyklischen Dynamik in der Teilchenclustergröße und -ordnung ist. Die
Inhalte dieses Kapitels wurden in [2] veröffentlicht.

Kapitel 4 - Kondensierte topologische Defekte und filamentöse Bogenauswürfe in phasenge-
trennten schwach wechselwirkenden nematischen aktiven Systemen
gemeinsam mit Ivan Maryshev und Erwin Frey.
Wir finden in agentenbasierten Simulationen, dass auch in phasenseparierten nematischen Systemen
topologisch geladene Strukturen, insbesondere −1/2 Defekte, entstehen können. Wir messen den
Teilchenfluss durch Defekte, in deren Nähe die Dichte stark ansteigt, im Detail und bestimmen das
Auftreten der Strukturen in Abhängigkeit von globaler Dichte und Persistenzlänge. Wir entwickeln
ein Kontinuumsmodell, das dieselbe Phänomenologie und Parameterabhängigkeit aufweist wie die
Simulationen. Anhand dieses Modells zeigen wir, dass das Auftreten der topologisch geladenen
Strukturen eng mit der lateralen Bewegung von nematischen Bahnen verbunden ist.

Kapitel 5 - Polare Strömung gleitender Mikrotubuli, gelenkt durch passive nematische Defekte
gemeinsam mit Alfredo Sciortino, Lukas Neumann, Ivan Maryshev, Erwin Frey und Andreas Bausch.
In diesem Kapitel koppeln wir ein Mikrotubuli Gliding Assay an einen nematischen Flüssigkristall und
zeigen, dass dadurch polar strömende Muster erzeugt werden können. Mit Hilfe einer Kombination
aus numerischen Simulationen und einem heuristischen Ansatz bestätigen wir, dass alleine die
Ausrichtung der einzelnen Agenten an dem nematischen Hintergrund für die Entstehung der polaren
Muster verantwortlich ist. Wir zeigen, dass insbesondere die Orientierung und Struktur von +1/2
topologischen Defekten entscheidend für den Musterbildungsprozess ist.





Summary

In my PhD thesis I am investigating order formation and patterns in active matter systems. These
systems are composed of a large number of single, usually identical, constituents that move individually
and interact at the local level. Through an interplay of motion and interaction at the agent level,
active matter can self-organize and form various types of macroscopic order and patterns. After an
introduction, I present in chapters 2 to 5 our investigations of various aspects of these phenomena, in
each of which we have combined numerical simulations with other theoretical approaches or with
experiments.

Chapter 2 - Emergence of coexisting ordered states in active matter systems
with Lorenz Huber, Ryo Suzuki, Erwin Frey and Andreas Bausch.
In this chapter, we develop a novel simulation of the actin motility assay, an experimental model
system of active matter. We combine large-scale simulations with experiments and, by controlling
the microscopic interactions between individual constituents, find that ordered patterns of polar and
nematic symmetries can coexist in active systems. Thus, we show that the symmetry of order in active
matter is not directly determined by the microscopic interaction, but is itself an emergent property.
The contents of this chapter were published in [1].

Chapter 3 - Microphase separation in active filament systems is maintained by cyclic dynamics
of cluster size and order
with Lorenz Huber and Erwin Frey.
In this chapter, we investigate the formation process and maintenance of polar microphase-separated
patterns in active systems. In agent-based simulations, we identify particle clusters of different
size and order and measure the currents between them. Based on these exchange processes, we
develop a kinetic model that reproduces the results of the simulations. Based on this, we show that
order formation occurs through cluster self-replication and that the maintenance of the microphase-
separated, polar-ordered state is the result of a cyclic dynamics in particle cluster size and order. The
contents of this chapter were published in [2].

Chapter 4 - Condensed topological defects and filamentous arc ejections in phase-separated
weak active nematics
with Ivan Maryshev and Erwin Frey.
We find in agent-based simulations that topologically charged structures, in particular −1/2 defects,
can also emerge in phase-separated nematic systems. We measure in detail the particle flux through
defects in the vicinity of which the density increases sharply, and determine the occurrence of the
structures as a function of global density and persistence length. We develop a continuum model
that has the same phenomenology and parameter dependence as the simulations. Using this model,
we show that the occurrence of the topologically charged structures is closely related to the lateral
motion of nematic lanes.

Chapter 5 - Polar flow of gliding microtubules steered by passive nematic defects
with Alfredo Sciortino, Lukas Neumann, Ivan Maryshev, Erwin Frey and Andreas Bausch.
In this chapter, we couple a microtubule gliding assay to a nematic liquid crystal and show that
this can generate polarly flowing patterns. Using a combination of numerical simulations and a
heuristic approach, we confirm that the orientation of each agent on the nematic background alone
is responsible for the generation of the polar patterns. Moreover, we show that in particular the
orientation and structure of +1/2 topological defects is crucial for the pattern formation process.
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1 Introduction

1.1 Active ma�er, a definition

We want to start this thesis with a brief definition of its object of research, active
matter. Commonly, this term is used for systems that are composed of individual
constituents, that each has a propulsion or force-generating mechanism, and that
each can interact with other individuals of the system and possibly with their
environment. For some in-depth reviews on active matter, please see e.g. [3–9].
In active matter systems, there is a continuous, effective local energy input e.g.,
through the consumption of fuel available in the agents’ environment or through
the depletion of an energy store carried by each agent, rendering them inherently
non-equilibrium systems.

Due to its rather inclusive definition, “active matter” is an umbrella term for an
extremely wide range of different systems. An emblematic (but by no means ex-
haustive) list of systems naturally occurring or human-made, to which this definition
can be applied with different levels of rigor, includes examples from a broad range of
length scales: bacterial suspensions [10–14], driven biofilaments [1, 15–21], active
colloids [22–24], shaken granular particles [25–29], cytoskeletons [30–33], insects
[34–36], flocks of birds [37–41], schools of fish [42–45], and crowds of humans
[46, 47]. These examples show that active matter systems are mostly biological in
nature (or, if artificial, often biologically mimicked). Hence, research in this area
often takes place at the interface between biology and other disciplines.

What makes active systems particularly interesting is that they often exhibit an
emergent dynamical property such as collective motion and/or pattern formation
(an archetypical, but now almost clichéd, example is the multitude of formations
that starlings form when they fly in large groups). A strong motivation to study
active systems (apart, of course, from the spark of curiosity the awe-inspiring
emergent patterns cause) is that they often exhibit phenomena akin to things that are
familiar from other research fields, especially physics (hence one often sees also the
description “active matter physics”): For example, a drastically altered macroscopic
behavior under a change of parameter –very reminding of phase transitions– or
topological defects that have many similarities, but also some peculiar differences,
to their equilibrium counterparts [18, 48–51].

Moreover, it seems simply natural to extend the concepts and tools of other areas
of physics that often already deal with the large scale properties of many interacting
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particles (e.g. statistical physics, condensed matter physics etc.) to a situation that is,
like active matter, similar in some regards. This is not entirely unjustified, as some
aspects of certain phenomena occurring in active matter systems have already been
successfully described by theoretical frameworks that are extensions of approaches
known from other fields of physics (see also section 1.3).

There are several main motivations for studying active matter. Often at the fore-
front is the hope for a better understanding and identification of generic principles
of how living systems can organize themselves from a set of identical building blocks
into a complex whole. Hence active matter physics is generally viewed as an integral
part of the “physics of life”. Another, more from an engineering viewpoint, motiva-
tion is that one needs a thorough understanding of the relevant self-organization
processes in order to be able to construct useful active materials that are able to
perform predefined tasks in an adaptive manner. Those high level points are still
state of the art research questions and it is explored how active matter physics can
contribute to answering those [3–9].

In this work we particularly deal with active matter physics in the context of
driven filaments. In sections 1.2 and 1.3 we provide some further introduction into
active matter and how to study it. We then first will, in section 1.4 and chapter
2, examine interactions in the actin motility assay, an experimental active matter
model system. These we build in a large-scale computational model (that we will
use throughout most of this thesis). Using our simulations and experiments in the
motility assay, we show that nematic and polar structures can simultaneously coexist
with a disordered background. Second, in chapter 3, we in depth characterize the
formation process of polar patterns and investigate how they are maintained. Third,
in chapter 4, we discover that topological defects and other topological structures
can form in phase separated active nematics. Last, in chapter 5, we investigate
how active particles moving on a dense passive nematic background can form polar
lanes.

1.2 Di�erent types of active ma�er

After presenting a relatively broad list of active matter systems in the last section,
we will now present various classifications which can be used to categorize systems
that are composed of different building blocks but have similar properties or basic
requirements. This should give the reader an overview and help to contextualize
the research subjects of this thesis.

One often-used category is the classification into wet or dry systems [5–7, 9]. As
the name implies, in so-called wet systems, the long-range hydrodynamic coupling
that arises due to the surrounding medium is of importance. This is indispensable,
for example, for the description of microswimmers [52–56] or colloids [24, 57, 58].
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In dry systems, on the other hand, the long-range hydrodynamic coupling is either
absent or can be neglected due to strong coupling with a substrate which damps
momentum. For example, in the case of shaken granular media [25–28], or actin
motility assays [1, 15, 16, 19–21]. In this thesis, we will deal exclusively with dry
systems and therefore use the term active matter synonymously with dry active
matter in the following.

A further relevant distinction can be drawn between dilute systems and systems
in which density is high and spatially uniform (often they are also called compressible
and incompressible systems, respectively). In dense systems particles generally
possess a strong steric exclusion and are packed at a density that is mostly saturated
(and stays largely constant). Here, often phenomena like topological defects start
to play an important role [48–50, 59, 60]. On the other hand, dilute systems can
show marked separation into “phases” of different density (as well as symmetry)
and steric interactions are mostly weak [5, 7, 61–63]. Although we mainly study
systems that are dilute, we will discuss some aspects of dense systems again in
chapter 4 and 5.

In dry systems the interaction mostly takes place via a combination of repulsion
and alignment (see also section 1.4). One limiting case are systems in which the
particles exclusively interact via repulsion and any alignment is absent [64–68]
(also any effective alignment due to anisotropies in the shape of particles [69–72]).
These show an interesting phenomenon called motility induced phase separation
(MIPS), which has been studied extensively in recent years [73–76], yet is not in the
scope of this thesis. Our main focus, instead, will be on systems where interactions
are dominated by alignment.

While these classifications are the most relevant to contextualize this thesis, it
should not go unmentioned that they are not all-encompassing. A further number
of distinct cases exist which, under certain circumstances, may merit their own
category.1

Further, a fewwords of caution are worth noting at this point. First, the categories
above, while often unambiguous and useful, should not be understood as absolute.
Under certain circumstances, the boundaries between them are blurred (e.g., the
categorization into wet or dry of the actin motility assay, see [82] and chapter 2).
Also, an apriori classification can, at worst, be misguiding. It is, for example, a
common view that systems showing nematic or polar (see also section 1.3) patterns

1 To name just one particularly interesting example: in some animals, interaction has been observed
to be mostly independent of nearest neighbor distances [38], which led to the development
of computational model systems with so-called “topological interactions”. In these, only the
topological distance between agents is of importance and not the euclidean one, leading to some
seemingly distinct properties such as polar order formation without phase separation into polar
waves [77–79]; a finding that is still controversially discussed [80, 81].
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as strictly distinct classes [4, 5, 7, 83–90]. We discuss in chapter 2 why this is most
likely not justified.

1.3 Approaches to studying active ma�er

As written in the last section, in this thesis we will generally treat dry, mostly align-
ing, dilute active matter. Here we will try to summarize how and with which tools
one can go about this endeavor in general. After this introduction, we will then
proceed to present the specific agent based approach used in most parts of this
thesis in section 1.4.

To bring order into the high complexity involved in a real-world active matter
system, i.e., to even have a chance to identify essential features and underlying
principles how it organizes, reductionist and minimal models are the first logical step
to begin with. Or, to say it the other way round: even if it were possible to model
the daunting complexity of, e.g., animals and how they interact among each other,
it would not be clear which of the many details are essential for the organization
process. Although this approach feels very natural for a physicist, one big challenge
in this context is, of course, to find the right level of “reduction”.

Historically, one of the first steps that were made to study active matter systems
with aminimal model was the “Vicsek model”, which was introduced by its namesake,
Tamás Vicsek (along with several co-authors), in 1995 [91]. This publication sparked
immense interest in other scientists and is considered by some as the starting point
of active matter research in general [3, 7]. One of the motivations for the defining
feature of this model was the observation that animals in groups tend to move as
other individuals do in their vicinity [91], i.e., that they align their direction with
each other. At this point, it seems appropriate to mention that Vicsek et al. were
not the very first who computationally modeled animal group behavior; the Boids
model [92], very famous in the field of computer graphics, and other examples [93]
are even older.

Since the Vicsek model is still widely studied [7, 9, 94, 95] and because its
simplicity makes it a perfect example to illustrate in a straightforward manner how
one can investigate active systems with an agent based simulation, we will briefly
describe it here.

In the Vicsek model, one considers 𝑁 active agents, each modeled as a point
like particle moving on a two-dimensional plane with periodic boundary conditions.
Every agent 𝑖 ∈ {0, 1, ..., 𝑁−1} propagates with the same constant velocity 𝑣0 along
its individual direction 𝜃𝑡

𝑖
and is subject to some directional noise while moving.

Its position at time 𝑡 is denoted by r𝑡
𝑖
and the following equation of motion of the
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polar

nematic
Δt

(a)

polar

nematic
Δt

(b)

 θin<π/2

  θin>π/2

  θout = 0

  θout = 0

  θout = π

Figure 1.1 Schematic depiction of the Vicsek Model. Point-like particles with a certain
interaction radius (colored areas) move along their orientation (indicated by the solid
arrows). In every iteration of the simulation (dotted arrow), they propagate a constant step
size. (a) If after a displacement two particles collide with an angle (𝜃in) smaller than 𝜋

2
[(a), left box] in both the polar and nematic case particles perfectly and instantly align their
orientation [(a), right box]. (b) If after a displacement two particles collide with an angle
lager than 𝜋

2 [(b), left box] in the polar case they again perfectly and instantly align their
orientation [(b), right upper box] whereas in the nematic case they perfectly and instantly
anti-align their orientation [(b), right lower box].

position is assumed:

r𝑡+Δ𝑡𝑖 = r𝑡𝑖 + 𝑣0Δ𝑡
(
cos 𝜃𝑡+Δ𝑡

𝑖
sin 𝜃𝑡+Δ𝑡

𝑖

)
, (1.1)

where the time increment is generally chosen as Δ𝑡 = 1. The orientation of a particle,
𝜃𝑡
𝑖
, evolves according to

𝜃𝑡+1𝑖 = arg

[∑︁
𝑗∈R𝑖

𝑒
𝑖𝜃𝑡

𝑗

]
+ 𝜂𝜉𝑡𝑖 . (1.2)

Here the second term accounts for the directional noise each particle is assumed to
be subject to at each iteration. The intensity of this noise is set by 𝜂, which can be
fixed to values between 0 and 1; 𝜉𝑖 is a delta-correlated white noise (𝜉𝑖 ∈ [−𝜋, 𝜋]).
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The first part of Eq. (1.2) describes the interaction between agents. This is modeled
as follows: each particle possesses a circular interaction radius, generally set to
Δ𝑟 = 1.2 At every iteration the mean orientation of all particles inside the interaction
radius of particle 𝑖 (subsumed as R𝑖), is calculated (including 𝑖) and the direction of
𝑖 is perfectly aligned with the resulting mean orientation; see also Fig. 1.1. Generally,
this type of interaction, i.e., an interaction where agents tend to align their directions,
is called polar.

Despite its reductiveness, the model shows some very interesting behavior: at
high noise/low density, each particle moves almost independent on a persistent
random walk and the system is disordered, at low noise/high density, the system
exhibits collective motion and most particles propagate in the same direction. Hence
the symmetry of the system is spontaneously broken. Commonly, the degree of this
alignment can be measured with the global polar order parameter

P 𝑡 =
1
𝑁

����� 𝑁−1∑︁
𝑗=0

𝑒
𝑖𝜃𝑡

𝑗

����� , (1.3)

which takes values near 0 for disordered systems and near 1 for perfectly ordered
systems where all particles move in the same direction (note that this is the same as
the average velocity in the case of unit and constant 𝑣0).

At first it was thought that the transition between the disordered and ordered
state represents a continuous phase transition [3, 7, 91]. Yet, it was discovered
in 2004 that the onset of polar order in the agent-based Vicsek model is indeed
not continuous but discontinuous [96] with dense polarly moving waves as the
nonequilibrium steady state near the onset of order (cf. illustration in Fig 1.2(b)).
Although this discovery was challenged at first [97], it was soon confirmed to be
valid [85]. The continuous transition was found to be a finite size effect and only
above a large enough system size polar patterns can from [7, 63, 85, 96]. It is worth
noting that the patterned state is indeed micro-phase separated [63, 69, 94, 98].

Deeper in the ordered regime, i.e., at even lower noise/higher density, the system
ceases to exhibit a coexistence between polar patterns and disordered background
and, instead, exhibits a polarly ordered “liquid” in which the density is not phase
separated [7, 63, 85, 96]. Please note that we will discuss the onset andmaintenance
of polar patterns in more detail in section 1.5 and chapter 3.

Additionally to the modeling of polar systems where agents always tend to align
their direction while interacting, the Vicsek model was extended to cases where
constituents can also anti-align their direction [86, 87, 99, 100] if the impact angle
is larger than 𝜋/2. This nematic case in the Vicsek model is schematically depicted

2 It is worth to note that even with unitary Δ𝑡 and Δ𝑟, which set length- and time-scales, it was
found that relatively large values of 𝑣0 ∼ 0.5 are still sufficient to resolve the dynamics [85].
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Figure 1.2 Binary collision statistics and macroscopic patterns in the Vicsek model. (a)
and (c): Plot of the angle between the directors of two particles after an interaction, 𝜃out,
against the angle before the collision, 𝜃in, for the polar (red line in a) and nematic case
(blue line in c), respectively. The dashed line in both binary collision statistics corresponds
to the case of no interaction. (b) and (d): Schematic depiction of the macroscopic patterns
in the Vicsek model. In case of polar interacting particles, polar waves (b) form where
a high-density band of ordered particles (dark black) propagates through a disordered
low-density background (light grey). The direction of motion is depicted by the magenta
arrows. In the case of nematic interacting particles, nematic lanes (d) form (dark black), in
which particles move in both directions along the contour (magenta arrow). The lane is
embedded in a disordered low-density background (light grey).

in Fig. 1.1 and e.g. models the behavior of rod-shaped particles upon collision [25,
27, 71, 86, 101–106]. Here, instead of Eq. (1.2), the interaction between agents in
the Vicsek model is described as follows:

𝜃𝑡+1𝑖 = arg

[∑︁
𝑗∈R𝑖

sign[cos(𝜃𝑡𝑗 − 𝜃𝑡𝑖)]𝑒
𝑖𝜃𝑡

𝑗

]
+ 𝜂𝜉𝑡𝑖 . (1.4)
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A straightforward way to visualize the difference between polar and nematic
interactions are the binary collisions statistics, as shown schematically in Fig. 1.2(a)
and (c). Whereas in the polar case, the angle between two colliding particles is
always zero directly after the interaction, in the nematic case, this is only true
for acute incoming angles 𝜃in. For obtuse angles, the outgoing angle after the
interaction is always 𝜋.

A rather similar picture emerges regarding the phase separation process in this
case. Also, with nematic interactions the systems exhibit order and form patterns
near the onset of order, see Fig 1.2(d). As for the polar case, the ordered state seems
to reflect the symmetry of the microscopic interaction [7, 86, 87, 99, 100, 105]: at
high enough density/low enough noise, nematic lanes are formed, as depicted in
Fig 1.2(d). Deeper in the ordered phase, there is again a nematically ordered liquid.

Again an order parameter –the global nematic order parameter– can be used to
describe the degree of ordering in the system

N 𝑡 =
1
𝑁

����� 𝑁−1∑︁
𝑗=0

𝑒
𝑖2𝜃𝑡

𝑗

����� . (1.5)

The two presented cases of the Vicsek model, polar and nematic, reflect the most
widely considered symmetries that order in active matter can show [4, 5, 7, 88]
(see also chapter 2).

Although a number of other numerical models exist [101, 107–114], the Vicsek
model, despite its simplicity, exemplifies the generally used framework: agents of a
certain shape (or range of interaction) move on noisy trajectories and interact with
each other. This interplay at the local level, under the right condition, can lead to
the formation of collective motion and macroscopic order. For a discussion if and
how the microscopic details in these simulations matter and whether the symmetry
of the local interaction is always connected to the symmetry of the macroscopic
patterns, please refer to section 1.4 and chapter 2.

Another approach to studying active matter is continuum models. For example,
soon after the introduction of the Vicsek model, Toner and Tu developed a hy-
drodynamic theory [83] describing the not phase separated polar ordered state
observed in the simulations and used it to show that the order is indeed truly
long-ranged, although interactions have only a finite range.

Generally, these models consist out of an equation for the density, which is
coupled to an order field. They can be constructed by different means. One method
is to invoke symmetry arguments and collect terms that are allowed by these
considerations [83, 115]. The disadvantage, in this case, is that the resulting terms
contain coefficients that are not easy to connect with any microscopic details of the
active matter systems the model tries to emulate.
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Alternatively, one can incorporate the microscopic details of a model (often the
above described polar or nematic Vicsek model), into a derivation of hydrodynamic
equations via, e.g., a Fokker–Planck [116–124] or Boltzmann [84, 88, 89, 102, 125]
approach. Although taking different routes, it was shown that the two mentioned
methods can yield equivalent results [126]. In addition to these procedures, it
is also possible to directly numerically solve the Boltzmann equation [127–129].
While these mesoscopic approaches can be better connected to the investigated
systems, they still have to rely on heavy approximations like assuming that agents
decorrelate between collisions or that only binary interactions are of importance.
This reduces the chance to obtain any quantitative results [126].

Besides these theoretical approaches, one central pillar of active matter research
is, of course, to conduct experiments. We will present and employ one experimental
model system, the actin motility assay, in chapter 2 (see also section 1.4).

While this thesis has a focus on a novel agent-based simulation method (which
we will motivate in section 1.4), in no case we will rely on agent-based models
alone. In order to elucidate the same phenomenon resp. question from different
angles, we instead always combine it with a different methodology. In chapters 2
and 5 with experiments, in chapter 3 with a kinetic model focusing on assembly
and disassembly processes of clusters and in chapter 4 with a hydrodynamic model.

1.4 Interactions in active ma�er systems

As written in the last section, not only simulation models for active matter exist, but
also experimental ones. One of these is the actin motility assay [15, 16, 19–21]. In
essence, it relies on two main components: a surface (e.g., glass) on which heavy
meromyosin motors have been attached and actin filaments that are placed on
this artificially constructed “motor lawn”. In the presence of ATP, motors push the
filaments forward along their contour, which, driven by those continuously occurring
powerstrokes, perform a persistent random walk; see schematic depiction in Fig.
1.3 (a) (and please refer to chapter 2 for a detailed description of the actin motility
assay).

It was the first experiment to show polar waves [15], cf. Fig. 1.3(b), which are
similar to the ones that were predicted by theoretical models (see section 1.3) and
motility assays in general “are probably the best systems” [7] for the study of dry
mostly aligning active matter since they are controllable and have a large number
of agents.

The starting point of this thesis was the observation (made by our collaborator
Ryo Suzuki in the Bausch lab) that the patterns produced in the motility assay
can be altered by the addition of a depletion agent (see in-depth discussion of this
mechanism in chapter 2), towards nematic lanes, see Fig. 1.4(c).
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Figure 1.3 Motility assay schematics and polar patterns. (a) Schematic depiction of
the actin motility assay. Heavy meromyosin motors (HMM) are attached to a planar glass
surface. Actin filaments put on top of this “motor lawn” are pushed forward and perform a
persistent random walk. (b) At high enough density of actin filaments, polar waves form on
the motility assay. Scale bar: 100𝜇𝑚. Adapted from [1].

This observation was very remarkable in light of the microscopic interactions that
are observable between actin filaments. An exemplary time trace of the collision
of two actin filaments, cf. Fig. 1.4(a), shows that filaments can pass over each
other and that the alignment between them is only very weak. This can be further
quantified by recording a binary collision statistics, see Fig. 1.4(b), for both the case
in which the system exhibits polar patterns and the case of nematic lanes. The two
collision statistics reveal several things. First that the interactions are indeed very
weak, second that the difference between the nematic and polar case is not very
pronounced, and third that the curves do not possess a clear symmetry from which
one could try to unambiguously deduce the symmetry of the macroscopic patterns.
These observations can be further illustrated by contrasting it with the situation
in the Vicsek model, cf. Figs. 1.1 and 1.2, and can hardly be reconciled with the
rather prevalent assumption that the symmetry of the order in active systems is
mainly set by the symmetry of microscopic interactions [4, 5, 7, 83–90, 99]. The
fact that it was already shown for the interactions measured in the polar case that,
when they are incorporated into a kinetic Boltzmann approach (that has to rely on
the approximations mentioned in section 1.3), can not explain the production of
order [20], made this observation of a macroscopic change of patterns by a minute
change of microscopic interactions even more puzzling.

Can such weak and mixed interactions solely be responsible for the observed
patterns? And what would be the implications for the pattern formation process?
To answer these questions, we sought to simulate the motility assay with an agent-
based simulation. We aimed to account for the key features that seemed us to define
the characteristic motion of the filaments and their interaction with each other.
These are, first, that filaments can cross each other (i.e., they only possess a weak
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Figure 1.4 Filament interaction in the motility assay. (a) Time trace of the collision of
two polymers. Filaments are able to cross over each other and only a slight change in the
relative angle is observable. Scale bar: 2𝜇𝑚. (b) Binary collision statistics of interacting
filaments. Red curve corresponds to the motility assay without PEG. Blue curve to a system
with PEG added. (c) Addition of PEG leads to the formation of nematic lanes instead of
polar waves in the motility assay. Scale bar: 100𝜇𝑚. Adapted from [1].

steric exclusion) and align only very weakly. And, second, that any perpendicular
motion of the filament contour seems to be strongly suppressed due to anchoring
via motors; hence a change of direction or orientation (be it random or due to
interactions with other filaments) happens only at the tip of filaments, leading to
the characteristic “snaking” or “trailing” motion of the polymer tails that follow the
path taken by the tip; hence, noise and alignment interactions should act only on
the tip and interactions should be weak and their alignment symmetry controllable.
These requirements ruled out to adopt methods like the Vicsek model (see section
1.3) that is defined by strong interactions and point-like particles. But also other
approaches that may seem suitable for slender particles like actin filaments, yet rely
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on self-propelled rods [101, 107–110] or semiflexible polymers [112, 113, 130]
that move freely and interact mainly via a steric exclusion process, which can lead
to rotations and lateral movements of whole agents or even large groups of them
(the characteristic polar moving agglomerations of most of these models –slightly
reminiscent of “snow-plows”– seem not to be relevant for actin motility assays).

Acute angle

Obtuse angle

(b)

θin

θout

0 π/2 π
0

π/2

π

(a)

Figure 1.5 Agent-based simulation of the motility assay. (a) Schematic depiction of a
filament (solid black with green tip) interacting with the tail of another polymer (grey with
red tip). Two independently controllable alignment torques, a polar and a nematic one,
act on its tip. For obtuse impact angles larger 𝜋/2 (upper panel) the nematic and polar
torques (blue and red arrow) counteract each other, whereas for acute angles smaller 𝜋/2
they both align (lower panel). (b) By tuning the absolute strengths and relative ratio of
the two alignment torques, the strength and symmetry of the interaction can be controlled,
illustrated here by a schematic binary collision statistic of a weak and mixed interaction.

Therefore, we developed a new simulation method that met the requirements
stated above. Its main function principle is outlined in Fig. 1.5 (a detailed presenta-
tion of the model and its underlying simulation algorithm can be found in chapters
2 and 3).

In chapter 2 we use this simulation method to show that the weak interactions
observed in the actin motility assay seem to be indeed sufficient to account for
the observed patterns. We further discover that polar and nematic patterns can
simultaneously occur (together with a disordered background) at the same time in
the same system, thereby forming a novel three-phase coexistence. We subsequently
reproduced this observation experimentally in the actin motility assay.

This implies that the symmetry of order in active systems, other than often
assumed, does not seem to be uniquely “imprinted” by the microscopic interactions,
but rather to be an emergent and dynamic property. Other than in equilibrium,
microscopic details seem to matter in active systems.
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At this point, it may be worth noting that many aspects of our findings were
already replicated by others [71, 129] (see also conclusions and outlook in chapter
6).

We designed the simulation algorithm to be as performant as possible. Thanks to
this focus, we are capable to simulate large timescales on all relevant lengthscales,
from single filaments tomillions of polymers. Fig. 1.6 shows an exemplary simulation
in the coexisting parameter regime of a system consisting of over 2 million filaments.
We will further harness this power in chapter 3 and 4 of this thesis (for an outline
and motivation of the research questions treated in these chapters, please refer to
the next two sections).

Figure 1.6 Large-scale agent-based simulation. Nematic lanes (some indicated by green
double-headed arrows) and polar waves (some indicated by blue single-headed arrows)
coexisting with a disordered background in a large-scale agent-based simulation containing
2176000 filaments. Same parameters as Fig. 2.4(C) with four times larger area.
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1.5 Formation and maintenance of polar order

Other than the coexistence phase we presented in the last section, the parameter
regimes of active matter systems in which only one single type of order or pattern can
be observed have been extensively studied [5, 7, 131]. In the focus of many studies
has been the macroscopically observable outcome (i.e. macroscopic patterns or
global order) and how these phenomena change in dependence on parameters. More
specifically (and as already touched upon in section 1.3), it is for example known
that in polar flocking models the onset of order is discontinuous [84, 85, 96] and
that generally the ordering process seems to be akin to a phase separation scenario
[61–63]; cf. Fig. 1.7 for a pictorial illustration. In the region between disorder
and the homogeneously ordered state (between the binodals), polar patterns are
coexisting with a disordered background [63, 85, 96]. Near the boundaries between
binodal and spinodal, the adjacent homogeneous state was found to be metastable in
Vicsek and other types of models [61–63, 85]. In addition to that, the region where
polar patterns can form was discovered to be indeed microphase separated [15, 63,
69, 85], which has been further investigated by means of continuum models [63,
94, 98].

control parameter

disorder
disorder

metastable
hom. order
metastable

polar patterns

hom. order
binodal binodalspinodal spinodal

Figure 1.7 Phase separation in polar active matter. Schematic depiction of the prevailing
phase separation picture that illustrates the behavior observed in flocking models, in de-
pendence on a control parameter (like density or inverse noise strength). The disordered
state is separated from the homogeneously ordered one (polar “liquid”) by a coexistence
regime in which polar patterns coexist with a disordered background. On the two borders
of this regime, between the binodals and spiondals, the adjacent homogeneous phase is
metastable.

Yet, the situation on the level of mesoscopic and microscopic length scales is
different. The spontaneous formation of particle clusters are known to play an
important role for the onset of flocking [85, 96, 132], besides this, however, the
microscopic and mesoscopic processes and mechanisms that consitute the assembly
pathway from a disordered to the macroscopically ordered state, and how that
microphase separated ordered state is maintained, is not know.
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In chapter 3 we employ our agent-based simulation –which gives us access to
all length-scales, from microscopics to emergent phenomena– to investigate these
processes.

A careful look at the polar structures in our system shows that they are composed
of spatially separated clusters that are strongly ordered. Similar aggregations, yet
disordered ones, can also be found outside patterns; cf. pictorial illustration in Fig.
1.8. To understand their role for the whole pattern formation and maintenance
process we developed a tracking method to algorithmically and dynamically identify
all clusters, their internal degree of order, as well as particle flows (with single agent
resolution) between them. We employed this method to investigate the build-up
process of order and the subsequent micro-phase separated non-equilibrium steady
state; thereby identifying key exchange processes between clusters of different size
and order. We further verified that these kinetic processes are indeed sufficient to
explain the observed behavior by developing a kinetic model for a population of
disordered and ordered clusters, which we based on these processes (reminiscent
approaches have been used in previous works, yet only for a single cluster species
[101, 133, 134]).

Although being space independent, this model shows the same metastability,
micro-phase separation, and cyclic mass-flow dynamics as the agent-based model.
This strongly indicates that micro-phase separation –and potentially also other
phenomena like nematic laning or coexisting types of order (cf. section 1.3 and
chapters 2 and 4)– can be understood in the framework of mesoscopic kinetic
processes.

Figure 1.8 Cluster decomposition in agent-based simulations. The polar ordered patterns
and the disordered background observed in agent-based simulations can be decomposed
into clusters of different degrees of polar order. Pictorial illustration of disordered clusters
in the background (left panel, green shaded) and clusters with a high degree of internal
order (right panel, pink shaded) inside the patterns.
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1.6 Topological structures in phase-separated nematic
systems

Similar as for the polar case, also the phenomena in parameter regimes where
only nematic patterns can be observed have been extensively studied. In these
compressible active nematics, like, e.g., the nematic Vicsek model [86–88] (see also
sections 1.2 and 1.3), one observes a phase separation into dense nematic lanes [cf.
Fig. 1.2(d)] that are unstable with respect to bending undulations on very large
length and time-scales [7, 86, 99, 100, 124, 135, 136].3

In parameter regimes where our agent based simulation showed nematic lanes
only (i.e. for interactions that have small or no polar bias, see also chapter 2 and
section 1.4), we could precisely observe this expected behaviour; cf. Fig. 1.9(a) for
an example of an undulating nematic lane.

(a) (b) (c)

Figure 1.9 Dynamical nematic structures. (a) On large length and time scales nematic
bands exhibit bending undulations. Magenta arrows indicate the lateral direction of motion.
(b) High density −1/2 defects at the core of lane junctions. (c) Filamentous arc detaching
from a nematic lane.

Yet, we additionally saw previously unreported structures that seem to be linked
to these bending undulations. More specifically, we observed three-armed intersec-
tions of lanes, in the centers of which a −1/2 defect is located [Fig. 1.9(b)]. This is
peculiar since defects are commonly only associated with dense, not phase-separated
active nematics [18, 48–51]. Furthermore, the defects we observed are associated
with a strong increase in density of the nematic phase and do not possess a +1/2
defect-pair, but are surrounded by a positively charged region of space. In addition
to that, we observed another topologically charged structure, namely curved arcs

3 Under certain circumstances also another type of instability occurs where nematic lanes split up
transverse to their contour [100, 136], yet the conditions in the actin motility assay –the system
our agent-based simulations model– are believed to only facilitate bending undulations [100].
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that detach from large nematic lanes, cf. Fig. 1.9(c), which are accompanied by a
cloud of positive topological charge density on their concave side.

What causes these topological structures to emerge in a compressible active
nematics? How does their formation depend on external control parameters? To
answer these questions in chapter 4, we tracked particle trajectories through defect
arms in detail, thereby obtaining the precise velocity and flow structure which, e.g.,
enabled us to exclude any MIPS-like mechanism (see section 1.2) behind these
defects. We constructed a hydrodynamic model, based on previous works [124,
136], that showed the same phenomenology as the agent-based simulation and
exhibited the same topologically charged structures. This model gave us access to the
phase diagram structure of the occurrence of the various phenomena –the validity of
which we substantiated with large-scale sweeps of the agent-based simulation– and
enabled us to identify curvature-induced density fluxes as the mechanism behind
both the defects and arcs.

1.7 Active polar currents on passive nematic pa�erns

Besides the self-organization of active matter systems caused by agent-agent inter-
actions alone, as discussed in the above sections, an alternative approach to obtain
patterns or order in them is to influence their dynamics externally. One general
pathway to this end is the introduction of anisotropies in the space in which particles
move. For example, it was shown that active particles aggregate in the vicinity of
rigid boundaries [137] or that by introducing wedged-shaped obstacles into active
systems, agents can be trapped and up-concentrated in targeted areas [138, 139].
Further, it was found that in systems in which interactions do not depend on the
euclidean distance between agents (cf. section 1.2), randomly distributed obstacles
can induce the formation of polar patterns [81]. Alternatively to a collection of
isolated inhomogeneities, the behavior of active agents can be altered by embedding
them in a background that is patterned as a whole. More specifically, motile agents
coupled to a nematic liquid crystal exhibiting defects were shown to accumulate
their density inside +1/2 defects and deplete it in -1/2 ones [140, 141]. Further,
a liquid crystal pre-patterned to a bend-splay configuration was shown to funnel
active particles into polar streams [142].

Recent experiments by our collaborators in the Bausch lab showed that also the
behavior of microtubules in a gliding assay can be significantly altered when it is
coupled to a nematic background. More specifically, microtubule embedded in a
self-assembled actin nematic aligned to (and propagated along) the director of this
nematic background and concentrated into dense streams in which particles move
in a polar fashion into one direction (cf. Fig. 1.10(a)). Observations suggest that
these streams are channeled and strongly influenced by +1/2 topological defects.
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(a)

(b)

Figure 1.10 Polar trajectories on passive nematics. (a, left panel) Experimental trajector-
ies of microtubules coupled to actin nematics are concentrated in dense streams. (a, right
panel) Flow field of particle direction. Microtubules inside streams move in a polar fashion
into the same direction. (b, left pane) Simulated particles coupled to a nematic background
whose structure was extracted from the experimental actin nematic in the field of view of
panel (a) show a comparable accumulation into lanes. (b, right panel) Flow field of particle
direction in the simulation. Agents move in the same manner as in the experiment.

This emergence of polar patterns seemed peculiar since particle alignment to
the background happens in a nematic fashion and the actin nematic background
did not exhibit any intentionally induced polar symmetry. On the contrary, half-
integer defects that emerged during the self-assembly process of the passive actin
nematic background were located at random positions and with random orientations.
Further, this effect is observable for very low microtubule concentrations, rendering
inter-particle interactions unlikely to contribute to this ordering process.

Can alignment with the actin background, and hence the shape of the nematic
field, be solely responsible for the formation of polar streams? To test this hypothesis
in chapter 5 we developed an agent based simulation in which microtubules are
represented by self propelled circular particles that can nematically align to a nematic
background field with a pre-defined strength. Using nematic fields extracted from
microscopy images as the background field for the simulation, we found that results
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from experiments could be reproduced remarkably well. Despite its reductiveness,
agents in the simulation form qualitatively similar polar streams (cf. Fig. 1.10(b))
above a certain level of alignment strength to the background. It is worth noting
that these results were independent of particle-particle alignment being present
or not. By simulations with artificially generated nematic fields in which defect
orientations are controllable, we found that +1/2 defects and their orientation are
indeed crucially important for the formation and direction of polar streams.

We further probed this finding with another theoretical approach in which
trajectories are started near +1/2 defects at points that we deduce via a heuristic
algorithm from the configuration of the nematic field in the vicinity of the defects. By
subsequently simply following nematic field lines the same qualitative arrangement
of streams is obtained as in simulations and experiments, underlining the defining
role of +1/2 defects.





2 Emergence of coexisting ordered states in
active ma�er systems

The following chapter is based on research published in Science 361, 255-258 (2018)
[1] that I conducted together with Lorenz Huber, Ryo Suzuki, Erwin Frey and Andreas
R. Bausch and to which I, together with L.H. and R.S., contributed as one of the shared
first authors. Experiments were performed and designed by L.H., R.S., T.K. and A.R.B.
Simulations were performed and designed by L.H., T.K. and E.F. All authors participated
in interpreting the experimental and theoretical results.

Active systems can produce a far greater variety of ordered patterns than conven-
tional equilibrium systems. Especially, transitions between disorder and either polar-
or nematically-ordered phases have been predicted and observed in two-dimensional
active systems. However, coexistence between phases of different types of order
has not been reported. We demonstrate the emergence of dynamic coexistence
of ordered states with fluctuating nematic and polar symmetry in an actomyosin
motility assay. Combining experiments with agent-based simulations, we identify
sufficiently weak interactions that lack a clear alignment symmetry as a prerequisite
for coexistence. Thus, the symmetry of macroscopic order becomes an emergent
and dynamic property of the active system. These results provide a pathway in
which living systems can express different types of order by using identical building
blocks.

2.1 Introduction

The distinctive feature of active matter is the local supply of energy that is transduced
into mechanical motion. Examples include assemblies of self-propelled colloidal
particles [22–24, 143, 144], self-organising systems comprised of biopolymers and
molecular motors [15–17, 145], and layers of migrating cells [146, 147]. These
systems exhibit a rich phenomenology of collective phenomena and emergent prop-
erties, with features absent in passive, equilibrium systems. Self-propelled colloidal
particles interacting solely by steric repulsion have been predicted [148, 149] to
show phase separation into an ordered, solid-like phase with a disordered gas-like
phase, similar to experimental observations [22, 23, 144]. Active systems comprised
of rod-shaped particles, cytoskeletal filaments, or colloidal particles with velocity
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alignment interactions show an even broader range of collective behaviour including
polar clusters [15, 16, 24, 143], nematic lanes [145], and vortex patterns [17, 150],
which in all cases phase-separate with a dilute isotropic, disordered background.
Theoretical studies have shown that, in principle, alignment interactions can ex-
plain how these different types of orientational order and transitions between them
emerge based on either agent based [86, 87, 91, 96, 99, 128, 151] or mean-field
models [84, 99, 115, 118, 128, 152–155]. All these studies tacitly assume that, as
in systems in thermal equilibrium, the symmetry of the observed macroscopic order
is largely dictated by the symmetry of local alignment interactions. But to what
degree is the symmetry of the macroscopic order constrained by the symmetry of
the microscopic interactions? More broadly, can active systems depart from these
constraints and express a multitude of different ordering simultaneously, as is the
case for living systems like actin stress fibres and filopodia [30, 156]?

To study these fundamental questions, we employ the high-density actomyosin
motility assay [Fig. 2.1(A)], which is ideally suited to address the microscopic
processes that underlie pattern formation in active systems [15, 16, 19, 20, 157,
158]. By sensitively tuning the interactions between the myosin-driven filaments
with a depletion agent, we are able to observe the emergence of a phase in which
nematic and polar order stably coexist. The complete phase diagram is recovered
from agent-based simulations of self-propelled filaments, in which weak alignment
interactions quantitatively reproduce the experimentally determined microscopic
collision statistics. We show that sufficiently weak interactions generically lead to
dynamic coexistence of three phases (isotropic, nematic, and polar).

In the actomyosin motility assay, hydrolysis of adenosine triphosphate (ATP)
enables actin filaments to actively glide over a lawn of non-processive heavy meromy-
osin motor proteins [157, 158]. Previous studies have shown that increasing the
filament density beyond a critical value results in the emergence of polar clusters
and waves [15, 16] [Fig. 2.2(A)]. These patterns are produced by collisions in which
filaments may align in a polar or nematic fashion. The degree and symmetry of the
alignment depends on the change in the relative orientation of the interacting fila-
ments, Δ = 𝜃𝑜𝑢𝑡 − 𝜃𝑖𝑛, where 𝜃𝑖𝑛 and 𝜃𝑜𝑢𝑡 are the angles before and after a collision
event, respectively [Fig. 2.1(B)]. In theoretical studies [84, 86, 87, 91, 96, 99, 115,
118, 128, 151–155] these collisions have been idealized by assuming that filaments
either align in a strictly polar or strictly nematic fashion upon colliding [Fig. 2.1(C)].
However, in actual experimental active-matter systems [17, 20, 105, 145], the
degree of alignment caused by a single collision event is weak, i.e. the relative
change in filament orientation is small, |𝜃𝑜𝑢𝑡 −𝜃𝑖𝑛 | �𝜋 [Fig. 2.1(D)]. Moreover, the
resulting alignment exhibits neither perfectly nematic nor perfectly polar symmetry.
Instead, depending on the collision angle 𝜃𝑖𝑛, in the motility assay there is a weak
tendency to favor either alignment or anti-alignment of the filaments [Figs. 2.1(C,
D)]. How then can such weak interactions without a clear alignment symmetry on
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Figure 2.1 Interactions in the actomyosin assay. (A) Schematic of the actomyosin motility
assay. PEG acts as a depletion agent. (B) Illustration of different filament collision geometries
with an incoming angle 𝜃𝑖𝑛, and corresponding binary collision curves (C). While strong
polar or nematic collision rules lead to full alignment or anti-alignment, weak collisions
cause a gradual change of orientation and may exhibit both polar and nematic features
(purple line). The dashed line depicts neutral collisions (𝜃𝑜𝑢𝑡 = 𝜃𝑖𝑛). (D) Binary collision
statistics. Blue squares: PEG 3% (389 collisions). Red circles: no PEG (1113 collisions; data
from Ref. [20]). Error bars, ± SD. (E) Processivity increases with PEG concentration, as
indicated by the earlier saturation of normalized filament velocities as a function of motor
density. 𝑣0.1 is the velocity at 0.1𝑚𝑔/𝑚𝑙 non-processive heavy meromyosin. Inset: absolute
filament velocities.

a local scale lead to collective order at the system level, and what features of the
local interactions determine the global symmetry of the macroscopic state?

2.2 Results

2.2.1 Nematic lanes in the motility assay

To answer this question we tuned the local interactions between the filaments, by
adding polyethylene glycol (PEG, 35 kD), a depletion agent, at concentrations of
up to 3% (w/v) to the assay [Fig. 2.1(D), Fig. 2.5]. The observed change in the
binary collision statistics can be attributed to the excluded-volume effect of the
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Figure 2.2 Experimental phenomenology. (A) Polar actin clusters formed in the absence
of PEG, moving in the same direction as the filaments (the fraction of fluorescently labelled
filaments is 1:50, monomeric actin concentration 10 𝜇𝑀). (B) Large network of high-density
nematic lanes formed at a PEG concentration of 3% and 5 𝜇𝑀 actin. The image is an overlay
covering a period of 100 𝑠 to demonstrate that the structure is frozen and stable. Filaments
move along the lane contours in opposite directions (labelled filament fraction is 1:60). (C)
Probability density 𝑃(𝑣𝑥 , 𝑣𝑦) of instantaneous velocities shows the preferred bi-directional
motion of filaments within a lane. (D) Single filaments move inside lanes (bright region).
Two representative trajectories are shown (turquois and orange) at 10 𝜇𝑀 actin and 2%
PEG. Inset: overlay covering a period of 50 𝑠. Polar (A) and nematic (B) motion are depicted
by bi- and unidirectional arrows, respectively. Scale bars: 100 𝜇𝑚.

PEG molecules, which forces the filaments closer to the bottom surface covered
with motors, enabling each to interact with more motors on average, with a con-
comitant increase in motor processivity [Fig. 2.1(E)]. This reduces the incidence
of collisions where filaments just pass over each other [145], and increases the
likelihood that filaments will repel each other sterically, thus enhancing the tendency
to align nematically [cf. Fig. 2.1(D)and section 2.4]. This technique enabled us to
continuously modulate the symmetry of alignment interactions at the microscopic
level, and probe the robustness of pattern formation in the gliding assay at high
filament densities. Despite the rather minute changes in interaction characteristics
caused by adding PEG at a concentration of 3% [Fig. 2.1(D)], we found that polar
flocks no longer form. Instead, the moving filaments quickly, within a few minutes,
self-organize into a network of “ant trails” [Fig. 2.2(B), Movie S1 in [159]]. In
contrast to the unidirectional filament motion found within polar clusters, the fila-
ments that form these “lanes” move bi-directionally, as do many colonial ant species
[34]. Since the filaments move along these tracks in either direction with equal
probability [Fig. 2.2(C), Fig. 2.6], the overall order is nematic, not polar, and stable;
this is quantified by the local nematic order [Fig. 2.6(A)] and the autocorrelation
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function of the filament orientations [Figs. 2.6(D,E)]. Moreover, while polar clusters
propagate through the system at uniform speed, nematic lanes form static networks
with branches spanning up to several 100 µm in length [Fig. 2.2(B)]. Filaments
are also seen to continuously leave and enter the trails [Fig. 2.2(D), Movie S2 in
[159]], such that these branches remain fixed in orientation and slowly grow and
shrink at their ends [Fig. 2.6(F)]. These processes, operating on a timescale of
minutes, lead to a slow reorganization of network architecture, with new branches
forming (Movie S3 in [159]) while others contract (Movie S4 in [159]). Note that
these networks are isotropically oriented and that no significant actin bundling was
observed below 3% PEG.

2.2.2 Agent-based simulation

This fundamental qualitative change in macroscopic order, from propagating waves
of polar order to branched networks of stable lanes within which filaments move
bidirectionally, induced by relatively minor changes in interaction characteristics
at the microscopic scale, is puzzling. To reveal the underlying mechanism, we
developed an agent-based computational model that goes beyond simple collision
rules and faithfully reproduces the experimentally observed (microscopic) binary
collision statistics, and used it to predict the collective dynamics at large scales.
Propelled actin filaments are modeled as discrete, slender chains of length 𝐿 [cf.
Fig. 2.3(A), Fig. 2.7 and section 2.5]. Each filament is assumed to move at a constant
speed v with the body of the filament following the tip. The direction of motion
changes upon interaction with other filaments, as well as through interaction with
molecular motors. When the leading segment of a given filament collides with a
segment of another filament at a relative orientation 𝜃 , an alignment potential
𝑈 (𝜃) acts upon the tip. This potential is assumed to be the sum of terms with polar
and nematic symmetry, 𝑈 (𝜃) ∝𝜙𝑝 cos(𝜃) +𝜙𝑛 cos(2𝜃), where 𝜙𝑝 and 𝜙𝑛 represent
the respective mean change in orientation during a collision. We adjusted 𝜙𝑝 and
𝜙𝑛 such that the binary collision statistics of the computational model [Fig. 2.3(B)]
closely resemble those observed experimentally [Fig. 2.1(D)].

Having validated the computational model at the microscopic level, we asked
whether it captures the collective dynamics of the high-density actomyosin motility
assay. We first performed large-scale simulations for model parameters correspond-
ing to the absence of PEG. Starting from a random uniform distribution of filaments,
we observed that high-density wave fronts of polar ordered filaments rapidly form,
surrounded by disordered, low-density regions [Fig. 2.3(C), Movie S5 in [159]].
This matches the phenomenology observed in the motility assay. Next, we performed
simulations in a parameter regime corresponding to 3% PEG. Again, in agreement
with our experiments, we found networks of high-density nematic lanes surrounded
by disordered, low-density regions [Fig. 2.3(D)], reminiscent to chaotic structures
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Figure 2.3 Simulation model and phenomenology. (A) Illustration of the simulation
model: filaments (green) are propelled along their contour (solid black arrows). Upon
collision, the orientations of tips (gray arrows) are redirected in proportion to the polar
and nematic alignment strengths (red and blue arrows). (B) Binary collision data from
simulations for two selected curves with different 𝛼. Error bars, 1 standard deviation. (C,
D) Emergence of (C) polar waves (𝛼= 3) and a (D) network of nematic lanes (𝛼= 6.25) in
large-scale systems. Insets: filaments within a single pixel with local density 𝜌 and local
polar (C) or nematic (D) order. In both panels, 544,000 filaments were simulated in a box
of length 650.2𝐿, with a homogeneous density 𝜌0 = 1.29/𝐿2. Scale bars: 100𝐿. Uni- and
bidirectional arrows denote local polar and nematic filament motion. (E) Different steady
states for small simulation boxes, with 𝜌0 = 1.29/𝐿2: while 𝛼= 2.75 always produces polar
waves and 𝛼= 6 always nematic lanes, at 𝛼= 4 either waves or lanes can be obtained in
different realizations. Scale bars: 10𝐿. (F) Global order parameters during a hysteresis loop
in 𝛼. Black arrows denote the direction of the loop. Regions of non-zero 𝛿𝑃 (shaded in
green) exhibit multistable behavior. For (B-F), 𝜙𝑝 = 2.1◦.
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that were predicted for active nematics [99]. The overall network architecture
changed slowly, with trails extending or retracting from their ends, and some lanes
merging on longer time scales [Fig. 2.8(A), Movie S6 in [159]].

2.2.3 Coexistence of polar and nematic pa�erns

The model was then used to predict the dependence of nematic vs. polar order on the
filament density 𝜌0 and the ratio of nematic to polar alignment strength, 𝛼=𝜙𝑛/𝜙𝑝.
To facilitate simulations over a broad parameter range, we considered smaller
systems with a box size of 81.3 𝐿. We monitored the (global) polar and nematic
order parameters, 𝑃 = |〈exp(𝑖𝜃)〉| and 𝑁 = |〈exp(2𝑖𝜃)〉|, respectively, measured
over all filaments after the dynamics had become stationary [Fig. 2.8(B)]. In initial
parameter sweeps we observed that, within certain intervals of 𝛼, simulations
starting from different realizations of randomly distributed filaments, but with
identical parameter sets, sometimes resulted in polar and sometimes in nematic
patterns [Fig. 2.3(E), lower panel]. Similar observations were made in a Vicsek-type
model, but only if strong additional memory in the particle movement is included
[151]. The patterns in our simulation were stable within the simulation times and
no switching between them was observed, suggesting the existence of a regime
of interaction strengths in which the dynamics exhibit multistability. To probe
these initial observations further, we checked for hysteresis effects in the collective
dynamics [cf. Fig. 2.9 and section 2.5]. To this end, we initiated our simulations
in a parameter regime in which the system shows polar waves only [𝛼= 2.75,
Fig. 2.3(E), left panel], waited until the dynamics became stationary, and then
quasi-statically increased the value of 𝛼 (i.e. giving the system sufficient time to
equilibrate between successive adjustments of 𝛼), and monitored both nematic and
polar order parameters [Fig. 2.3(F), closed symbols]. After reaching a regime in
which the system gave rise to nematic lanes only [𝛼= 6, Fig. 2.3(E), right panel],
we reduced the value of 𝛼 quasi-statically [Fig. 2.3(F), open symbols]. While the
nematic order parameter remained essentially unchanged, we observed a hysteresis
loop in the polar order parameter 𝑃. As the relative strength of nematic to polar
alignment is increased, the degree of polar order (𝑃+) gradually declines until it
reaches zero at some critical value 𝛼+. Conversely, in the reverse direction, polar
order (𝑃−) remains negligible up to a different critical value 𝛼−, and then suddenly
jumps to a rather large value. The phase diagram in Fig. 2.4(A) was obtained using
𝛿𝑃 = 𝑃+ − 𝑃− to quantify the degree of multistability.

To test these predictions, we performed experiments over a broad range of
actin and PEG concentrations, and obtained a phase diagram [Fig. 2.4(B)] whose
topology closely resembles that obtained from the computational model [Fig. 2.4(A)].
In particular, upon varying the strength of interaction between the filaments by
changing the PEG level and thus 𝛼, we find a broad regime of non-equilibrium steady
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Figure 2.4 Phase diagrams and coexisting symmetries in experiment and simulation.
(A) Simulation phase diagrams for different filament densities 𝜌0 and relative alignment
strengths 𝛼. (B) Experimental phase diagram of emergent patterns for varying monomeric
actin and PEG concentrations. Gray crosses: disorder. Red triangles: polar clusters. Blue
squares: nematic lanes. Green diamonds: coexisting polar and nematic structures. Actin
concentrations were normalized with respect to the estimated critical concentration in the
absence of PEG (see section 2.4 for details). (C) Emergence of both polar waves and nematic
lanes in large-scale simulations (scale bar: 100𝐿) for 𝛼= 4 and a homogeneous density
𝜌0 = 1.29/𝐿2. (D) Coexistence of polar clusters and nematic lanes in the motility assay at 2%
PEG and 5 𝜇𝑀 actin. Scale bar: 100 𝜇𝑚. (E) Phase diagrams for different polar alignment
strengths 𝜙𝑝 and 𝜌0 = 1.29/𝐿2. The total strength of alignment increases with both 𝜙𝑝

and 𝛼. The shape of the phase diagram only slightly changes for larger system sizes [see
Fig. 2.11(A)]. (F) Scaling analysis of time scales at two different parameter sets (orange data:
𝜙𝑝 = 2.1◦, 𝛼= 4.17; purple data: 𝜙𝑝 = 3.3◦, 𝛼= 3.13). The average coexistence lifetime 𝑡 𝑓 𝑖𝑥
(solid lines) grows roughly linear with system size, while the average initial order time 𝑡0
(dashed lines) remains small and constant. Averages taken over 25 simulations per size,
error bars represent 15th and 85th percentiles (see section 2.5 and Fig. 2.11 for details).
(A,E) Phase diagrams were obtained by hysteresis analysis in 𝛼, white dashed lines depict
the domain boundaries of the observed steady states. For (A,C), 𝜙𝑝 = 2.1◦.
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states where polar waves and nematic lanes coexist simultaneously. Moreover, both
simulations of large systems [Fig. 2.4(C), Movie S7 in [159]] and experiments
[Fig. 2.4(D), Movie S8 in [159]] consistently show that the equilibrium is highly
dynamic. Polar waves may invade regions containing nematic trails and thereby
disrupt their network structure [Fig. 2.10(A)]. After the passage of these waves,
nematic lane networks are observed to re-form locally, often close to their original
positions. The formation of nematic lanes was also observed at the left and right
edges of polar waves [Fig. 2.10(B), Movie S9 in [159]]. While in experiments, this
coexistence remained stable during the full experiment duration [Fig. 2.10(C)], in
simulations we performed a scaling analysis to probe the lifetime of coexistence 𝑡 𝑓 𝑖𝑥
as a function of the finite system size, at different points in the multistable parameter
region. We found that this lifetime grows linearly with the system size, while the
time of initial pattern formation 𝑡0 remains small and constant [cf. Figs. 2.4(F), 2.11
and section 2.5], implying a diverging time scale separation and stable coexistence
in the thermodynamic limit.

2.3 Discussion

These observations from experiment and theory imply that polar waves and nematic
lanes are both intrinsically stable structures, suggesting that the non-equilibrium
steady state represents a dynamic equilibrium between different patterns, which -
although they have conflicting polar and nematic symmetries - coexist in a dilute, dis-
ordered background. We attribute their coexistence to the weak interaction between
the active particles, which determines macroscopic order not at the microscopic level
but renders the symmetry of collective order itself to become an emergent property,
which is dynamic in space and time. If this picture is valid, then an increase in the
alignment strength at the binary level should eliminate the ambiguity in symmetry
and prevent the emergence of coexistence. To test this hypothesis, we performed
extensive numerical simulations by varying 𝛼 and 𝜙𝑝 [Fig. 2.4(E)] and looking for
multistability. Indeed, we find that as the total degree of alignment, i.e. both 𝜙𝑛 and
𝜙𝑝, is increased, the multistable region contracts and eventually vanishes completely.
In this limit there appears to be a sharp transition between a polar and nematic
phase, similar to previous findings in a Vicsek-type toy model [87]. We therefore
conclude that the coexistence of patterns with mutual polar and nematic symmetries
depends upon sufficiently weak alignment interactions between individual filaments.
Furthermore, it seems to be crucial that the computational model includes arbitrary
pairwise interactions and spatiotemporal correlations without relying on any ad hoc
truncation. This allows for coarsening dynamics, where many different mesoscale
filament configurations are explored until they take the form of either polar clusters
or nematic lanes. These patterns become local attractors of the dynamics, such that
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– despite their conflicting symmetries – they can exist in juxtaposition within the
same system. This indicates that the celebrated Gibbs phase rule - stating that in
thermal equilibrium, one-component systems a three-phase coexistence only occurs
at a singular point in parameter space - is invalid in active systems. Overcoming this
thermodynamic constraint may be an essential and simple prerequisite for biological
systems to produce heterogeneous, multitasking structures out of a single set of
constituents, like it is the case for the cellular actin network [30, 156] and migrating
cell layers [146, 147].

2.4 Appendix: Experimental system

2.4.1 Assay preparation

G-actin solutions were prepared by dissolving lyophilized G-actin obtained from
rabbit skeletal muscle [160, 161] in deionized water and dialyzing against fresh
G-buffer (2𝑚𝑀 Tris pH 7.5, 0.2𝑚𝑀 ATP, 0.2𝑚𝑀 CaCl2, 0.2𝑚𝑀 DTT and 0.005%
NaN3) overnight at 4 °C. Polymerization of actin was initiated by adding one volume
of tenfold concentrated F-buffer (20𝑚𝑀 Tris, 20𝑚𝑀 MgCl2, 2𝑚𝑀 DTT and 1𝑀 KCl)
to nine volumes of the G-actin sample. Heavy meromyosin (HMM) was prepared by
dialyzing rabbit skeletal muscle against myosin buffer (0.6𝑀 NaCl, 10𝑚𝑀 NaH2PO4,
2𝑚𝑀 DTT, 2𝑚𝑀 MgCl2, 0.05% NaN3) at 4 °C [162]. For fluorescence microscopy,
fluorescently labelled filaments stabilized with Alexa Fluor 488 phalloidin (Invit-
rogen) were used. Flow chambers were prepared by fixing coverslips (Carl Roth,
Germany) to microscope slides (Carl Roth, Germany) with parafilm. The coverslips
were coated with a 0.1% nitrocellulose solution, which was made by diluting a 2%
solution (Electron Microscopy Sciences, Hatfield, PA) in amylacetate (Roth), and
were left to dry overnight, prior to constructing the flow chambers. The chamber
is typically three orders of magnitude larger than the length of a single filament,
to avoid boundary effects. Prior to experiments, HMM was diluted in assay buffer
(25𝑚𝑀 imidazole hydrochloride pH 7.4, 25𝑚𝑀 KCl, 4𝑚𝑀 MgCl2, 1𝑚𝑀 EGTA and
1𝑚𝑀 DTT), and actin was added to assay buffer that had been premixed with PEG
35,000 (Sigma) to yield a final PEG concentration of 0-3% (w/v). The flow chamber
was briefly incubated with the HMM dilution and the surfaces were then passivated
with BSA (10𝑚𝑔/𝑚𝑙 BSA (Sigma) dissolved in assay buffer), prior to addition of
the actin solution. To initiate an experiment, 2𝑚𝑀 ATP dissolved in assay buffer
was injected into the flow chamber, together with a standard antioxidant buffer
supplement (GOC, containing 2𝑚𝑔 glucose oxidase (Sigma) and 0.5𝑚𝑔 catalase
(Fluka)) to prevent oxidation of the fluorophore. After all components had been
combined, the flow chamber was sealed with vacuum grease (Bayer Silicones).
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2.4.2 Assay concentrations

A list of all actin and PEG concentrations used for the figures and movies can be
found in table 2.1. Unless stated otherwise, the HMM concentration was fixed
at 0.1 𝑚𝑔/𝑚𝑙. Depending on the quality of the actin batch and the HMM motor
proteins, filaments vary in length. Hence, critical densities in terms of monomeric
actin concentrations vary between batches. Moreover, filament lengths appeared
to be sensitive to PEG level, perhaps owing to enhanced filament rupture due to
the increase in effective processivity. To obtain a reproducible, quantitative phase
diagram from the patterns observed for different actin and PEG concentrations, we
prepared a single actin batch (incubated at 10𝜇𝑀 monomeric actin), with which we
performed 39 experiments within 36ℎ, at final concentrations of between 0.8 and
10 𝜇𝑀 monomeric actin (the fraction of fluorescently labelled filaments was 1:25).
For every experiment, the assay buffer was freshly prepared with one or other of
seven different PEG premixes (0%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%). In Fig. 2.4(B)
every actin concentration was normalized with respect to an estimated critical actin
concentration of 1.75𝜇𝑀 (at zero PEG) for this specific actin batch. At this critical
concentration, the filament density was roughly 9.2 filaments 𝜇𝑚−2 and filament
lengths were exponentially distributed with a mean in the range of 0.5 − 0.7𝜇𝑚.

2.4.3 Image acquisition

A Leica DMI 6000B inverted microscope equipped with a 40x oil-immersion objective
(NA: 1.25) was used to acquire data. Images were captured at a resolution 1344 x
1024 pixels with a charge-coupled device (CCD) camera (C4742-95, Hamamatsu)
attached to a 0.35x or 1x camera mount. To track filament velocities, a TIRF
microscope (Leica DMI 6000B, 100x oil-immersion objective (NA: 1.47), Andor
iXon-Ultra-9369 camera with a resolution of 512 x 512 pixels) was used.

2.4.4 Experimental binary collision statistics

To study the binary collision statistics [20], the acquired images were first converted
into binary images and filaments were then identified by skeletonization using a
standard library “bwmorph” available in Matlab. The coordinates of the filament
contour were extracted by using a cubic spline fit to obtain 𝜃1, 𝜃2 and 𝜃′1, 𝜃

′
2 to

determine the incoming angle 𝜃𝑖𝑛 and outgoing angle 𝜃𝑜𝑢𝑡 [Fig. 2.5(A)]. Analysis
of a collision begins once the images of two filaments intersect. In Fig. 2.5(A), the
images that are framed by red boxes are representative of a detected collision event.
The incoming angle 𝜃𝑖𝑛 is obtained 1 frame (0.13 sec) before the detected collision
event, and the outgoing angle 𝜃𝑜𝑢𝑡 is taken 1 frame after the filaments cease to
intersect. Here, only binary collisions are studied and all collisions involving more
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Figure 2.5 Collision measurements. (A) Illustration of collision angles during a binary
collision. Scale bars: 2 𝜇𝑚. (B) Full binary collision statistics at a PEG concentration of 3%.
Error bars, ± SD.

than 3 filaments were discarded. Fig. 2.5(B) shows all recorded collision events for
a PEG concentration of 3%.

2.4.5 Processivity

To study the change in the filament-motor interaction as a function of the PEG
concentration, the degree to which filaments were forced onto the HMM motor
lawn as a result of the excluded-volume effect was evaluated by measuring the
effective processivity. Processivity is a measure of the ability of a single motor to
execute a power stroke continuously without releasing the filament. While HMM
is non-processive, i.e. always releases the actin filament after the power stroke,
an effective processivity at the single (actin) filament level can be assumed, since
many motors act simultaneously along a filament and also the number of active
motors should increase due to the filaments being pressed down onto the motor
lawn by the PEG. The effective processivity was evaluated by monitoring the change
in filament velocity as a function of changing the motor density; the absence of a
change in velocity with a decrease in HMM density demonstrates maximal effective
processivity, while decrease in velocity with decrease in HMM density indicates that
the interaction is effectively non-processive in nature [163].
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2.4.6 Velocity distribution and local order

Recording the nematic type of motion requires identification of single-filament
motion, since opposing filament fluxes cancel each other out on larger length
scales. For this reason, images were obtained by TIRF microscopy, which affords
higher contrast and high temporal resolution (cycle time Δ𝑡 = 0.0853𝑠), to track the
local motion of individual filaments between consecutive frames. We recorded a
nematic lane at 5𝜇𝑀 actin and 2% PEG concentration, and a polar cluster and a
disordered region at 10𝜇𝑀 actin and 1% PEG concentration [Figs. 2.6(A-C)]. We
then segmented the images into 8 x 8 local bins and used the Kanade-Lucas-Tomasi
feature-tracking algorithm in Mathematica 11.0.0.0, which is a robust estimator
of the optical flow velocity, by maximizing the local intensity gradient correlation
for each segment, in order to obtain a large number (∼ 𝑂(105)) of displacement
vectors of filaments between consecutive image frames over an acquisition time
of about a minute. From this we calculated smooth probability densities 𝑃(𝑣) of
filament velocities [lower left panels of Figs. 2.6(A-C)], as well as the local polar
and nematic order parameters 𝑃 = |〈exp(𝑖𝜃)〉ROI | and 𝑁 = |〈exp(2𝑖𝜃)〉ROI | at a given
time in the region of interest (ROI), respectively, over the acquisition time [lower
right panels of Figs. 2.6(A-C)]. To account for the shape of the lane structure, we
only included bins that covered the lane [Fig. 2.6(A)]. Note that for the polar and
nematic order parameters, the respective amplitudes are comparable to those from
simulations. Apart from the case of a polar cluster [Fig. 2.6(B)], which is inherently
not static within the fixed ROI, the order of a nematic lane [Fig. 2.6(A)] is stationary
over an interval corresponding to filaments crossing the ROI about 2 times.

2.4.7 Autocorrelation function

Using an image sequence of a lane (Movie S2 in [159]), we tracked 39 individual fila-
ments starting inside lanes by eye and extracted the orientations 𝛿𝜃(𝑡) = 𝜃(𝑡) − 𝜃(0)
out of the recorded path at different times [Fig. 2.2(D), Fig. 2.6(D)]. From this the
polar and nematic autocorrelation functions 〈cos[𝛿𝜃(𝑡)]〉 and 〈cos[2𝛿𝜃(𝑡)]〉 for
different filaments [Fig. 2.6(E)] were obtained and averaged over every time point.
As can be seen from the differences in decay times, polar order decays much faster
than nematic order.

2.4.8 Additional observations

At high concentrations of PEG and low actin concentration, the nematic lanes evolved
into a packed vortex-like arrangement of branches after long times (roughly 15 min
after the beginning of the experiment), indicating the emergence of additional types
of order in this parameter region [Fig. 2.10(D)]. For large concentrations of both
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Figure 2.6 Filament dynamics. (A-C) Local dynamics of filaments within nematic lanes
(A), polar clusters (B) and in disordered motion (C): Upper left panels are plain snapshots.
In (A), the yellow area denotes the subgrid in which filaments were tracked. Upper right
panels are time-averaged images over a time period indicated in the graphs to display the
average motion of structures. Lower left and right panels depict two-dimensional probability
densities 𝑃(𝑣) and evolution of corresponding polar (red line) and nematic (blue line) order
parameters during acquisition time, respectively. (D) Time evolution of cos[𝛿𝜃(𝑡)] and
cos[2𝛿𝜃(𝑡)] for two selected trajectories [yellow and pink traces in [Fig. 2.2(D)]. Reversal
events are manifested by jumps in the amplitude from 1 to -1 or back. (E) Autocorrelation
functions of filament orientation inside lanes (𝑛= 39); dashed gray lines are fits to guide
the eye. Error bars, ± SD. (F) Kymographs of lane structures, taken orthogonally to a lane
(lower left panel) and parallel to, and past the end of a lane (lower right panel). Dashed
yellow lines depict lane edges. Scale bars are 20 𝜇𝑚 in (A-C), 100 𝜇𝑚 in (F).

actin and PEG, we observed the occasional bulk formation of long actin bundles
[Fig. 2.10(E)] which attach to the motor lawn already shortly after experiment
initialization, indicating additional depletion forces in-plane of the motility assay
and suggesting a possible bundling transition for PEG concentrations above 3%.
Note that the presence of bundles did not affect the formation of nematic lanes.
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Experiment from Actin (𝜇M) PEG (%)
Fig. 2.2A 10.0 0.5
Fig. 2.2B, Movie S1 5.0 3.0
Fig. 2.2C, Fig. 2.6A 5.0 2.0
Fig. 2.2D, Fig. 2.6D,E, Movie S2 10.0 2.0
Fig. 2.4D, Movie S8 5.0 2.0
Fig. 2.6B 10.0 1.0
Fig. 2.6C 10.0 1.0
Fig. 2.6F 4.0 2.0
Fig. 2.10A-C, Movie S9 2.5 2.0
Fig. 2.10D 2.0 3.0
Fig. 2.10E 7.0 3.0
Movie S3 5.0 2.0
Movie S4 10.0 2.0

Table 2.1 List of actin (𝜇M) and PEG (w/v) concentrations used for figures and movies.

2.5 Appendix: Simulation system

2.5.1 Computational Model

Propelled actin filaments are modeled as discrete, slender chains of 𝑁 −1 cylindrical
segments of length 𝐿 and width 𝑎 (𝐿 � 𝑎), with the leading segment (tip) of
each filament moving at a speed 𝑣, and the body of the filament following the
tip. The direction 𝜃0 in which a filament tip is moving changes upon interaction
with other filaments, as well as through interaction with molecular motors. The
latter is described by a Gaussian white-noise process with a path persistence length
𝐿𝑝 > 𝐿. The body of the filament with index 𝑛 is pulled by its tip, parallel to its
backbone. Hence, the motion of a cylinder segment with director 𝒖(𝑛)

𝑖
is given by

𝒗(𝑛)
𝑖

= 𝐾𝑠(𝒖(𝑛)
𝑖−1+𝒖

(𝑛)
𝑖
)/2 [|𝒓(𝑛)

𝑖
−𝒓(𝑛)

𝑖−1 |−𝐿/(𝑁−1)], where the index 𝑖 ∈ {1, . . . , 𝑁−1}
represents the contour position, and 𝐾𝑠 is a sufficiently strong spring constant to
ensure cylinder length conservation. Note that the direction of propulsion of every
position 𝒓(𝑛)

𝑖
is the average of its’ neighboring cylinder orientations, to provide a

smooth lateral motion. When the leading segment of a given filament 𝑛 collides
with a segment of another filament 𝑚 at a relative segment orientation 𝜃, an align-
ment potential 𝑈 (𝜃) acts on the tip’s orientation; see figure 2.7(A). The alignment
potential is present within the area occupied by a filament of length 𝐿 and width 𝑎,
and acts on the tips of other filaments. To avoid artifacts such as surface roughness
caused by discontinuous jumps and potential superpositions of bent filaments, cyl-
inder potentials at inner bends are averaged, and at outer bends the cylinder gap is
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filled with a circular potential segment. In this way, local features of this potential
do not change significantly when the contour moves, and discretization effects are
small. Figure 2.7(A) depicts the geometry of filaments. The equations of motion
(with unitary friction) are then given by

𝜕

𝜕𝑡
𝒓(𝑛)0 = 𝑣𝒖(𝑛)

0 = 𝑣(cos
[
𝜃
(𝑛)
0

]
, sin

[
𝜃
(𝑛)
0

]
)𝑇 , (2.1)

𝜕
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𝒓(𝑛)
𝑖
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(
𝒖(𝑛)
𝑖−1 + 𝒖(𝑛)

𝑖

)
/2

(���𝒓(𝑛)𝑖
− 𝒓(𝑛)

𝑖−1

��� − 𝐿

𝑁 − 1

)
, for (2.2)

𝜕

𝜕𝑡
𝜃
(𝑛)
0 = −

𝛿𝐻
(𝑛)
0

𝛿𝜃
(𝑛)
0

+
√︃
2𝑣/𝐿𝑝𝜉(𝑛), (2.3)

where 𝜉(𝑛) is random white noise with zero mean and unit variance, and

𝐻
(𝑛)
0 =

∑︁
𝑚

∑︁
𝑗

𝑈
(𝑛)
𝑚, 𝑗

(2.4)

is the total alignment potential acting onto the direction of a given tip of a filament;
the sum runs over all overlapping filaments 𝑚 and all cylindrical segments 𝑗 of each
of those filaments. For the alignment potential, we assume

𝑈
(𝑛)
𝑚, 𝑗

= 𝐶
(���𝒓(𝑛)0 − 𝒓(𝑚)
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���
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𝜃
(𝑛)
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(𝑚)
𝑗

(𝒓(𝑛)0 )
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+ 𝐴𝑝

(
𝜃
(𝑛)
0 − 𝜃

(𝑚)
𝑗

(𝒓(𝑛)0 )
)]

,

𝐴𝑝 (𝜃) =
𝜑𝑝𝑣

𝑎
𝑐𝑜𝑠[𝜃], 𝐴𝑛 (𝜃) =

𝜑𝑛𝑣

𝑎
cos [2𝜃] , (2.5)

where 𝐴𝑝 and 𝐴𝑛 are the polar and nematic parts of the alignment potential, re-
spectively (Fig. 2.7(B)). The cutoff function 𝐶(𝑥) is zero for 𝑥 > 𝑎 and otherwise
(𝑎 − 𝑥)/𝑎. The argument of the cutoff function, |...|shDist, is the shortest distance
between the tip and the cylindrical segment with which it is interacting. The val-
ues of local orientations 𝜃(𝑚)

𝑗
(𝒓(𝑛)0 ) are determined by the direction tangent to the

potential at contour position 𝑗 of filament 𝑚 and the relative tip position of 𝒓(𝑛)0 .
The parameters 𝜑𝑝, 𝜑𝑛 give the scale of typical reorientations during a collision,
as can be easily seen by rescaling time in units of the collision time, i.e. 𝑡 → 𝑡 𝑎

𝑣
.

During a multiparticle simulation, these alignment potentials may gradually lead to
a maximal overlap of all contours at their centerline. Adding a weak repulsion force
with a small amplitude 𝑠(𝑠 � 𝑣) which acts on tips and is proportional to 𝐶(𝑥) did
not change the phenomenology, but avoided the unphysical and numerically very
costly case of hundreds of filaments overlapping simultaneously.
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2.5.2 Numerical implementation

For the time integration, we used an Euler scheme. To ensure maximal performance,
the code was implemented in C++ and designed to operate on a parallelized
architecture. Despite the sophisticated interaction geometry, which requires many
machine operations per iteration, we were able to realize large simulation times for
systems of many filaments, by exploiting the localized nature of filament interactions:
for each filament tip, a Verlet [164] list was used to store all filaments which were
located within a certain cutoff range. After a certain number of time steps a cell
list algorithm [164] was used to update the Verlet lists. The cutoff distance was
chosen such that no interaction occurring between consecutive updates could be
overlooked. The cell algorithm used for the update of the Verlet lists divides the
surface into squares of a sufficient size. Instead of calculating the distances to all
other filaments in the whole system, only the distance to filaments in the same
or in a neighboring cell must be checked. We further used OpenMP to parallelize
the code. To further increase performance, we applied an additional averaging
procedure by replacing the individual relative angles 𝜃 in the alignment potential
with the mean value over all interaction partners of a respective tip. This allows for
a better numerical convergence for larger temporal step sizes, while the properties
of the system remain the same.

2.5.3 Simulation parameters

For the simulations in the paper, we fixed the following filament parameters (length
units are given in filament lengths, i.e. 𝐿= 1): filament aspect ratio 𝐿/𝑎= 21,
persistence length 𝐿𝑝 = 31.75𝐿, velocity 𝑣= 1, and filaments were discretized into
𝑁 = 5 segments. In these units, 𝑡 = 𝐿/𝑣= 1 corresponds to the time in which a
filament travels a distance equal to its own length 𝐿. A fixed time increment of
𝛿𝑡 = 3.17 · 10−4 was sufficient to achieve minimal numerical errors. The range of
interaction strengths 𝜙𝑝, 𝜙𝑛 was set between 2.1◦ and 12.9◦, which is comparable
to the average amount of reorientation observed in the experiments (up to 14.6◦
for 3% PEG). The sensitivity of the onset and type of collective motion with respect
to other parameters like persistence length and aspect ratio will be the subject of a
subsequent study.

2.5.4 Computational binary collision statistics

Using a small system with two filaments and random initial conditions, the change in
polymer orientation (measured from front to back) during a collision was recorded.
A collision begins at the time when two filaments first touch, i.e. approach to within
a distance smaller than a, and ends when the distance between them becomes
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larger than 𝐿/4, or, when the filaments have nearly aligned, after propagating a
cutoff distance 2𝐿. The resulting scatter plot of incoming and outgoing angles is
then binned into intervals of different incoming angles and averaged to produce
the binary collision curve displayed in Fig. 2.3(B). Fig. 2.7(C) shows the continuous
variation of the average reorientation Δ = 〈𝜃𝑜𝑢𝑡〉 − 𝜃𝑖𝑛 as a function of 𝛼. Note that
angular fluctuations 𝜎=

√︁
𝑉𝑎𝑟[𝜃𝑜𝑢𝑡] for 𝐿𝑝 = 31.75𝐿 are of the same order as |Δ|,

similar as in the experiment [Fig. 2.1(D)]. Figs. 2.7(D,E) visualize the effect of noise
during binary collisions.

2.5.5 Macroscopic states in simulations

In large-scale simulations (𝐿𝑏𝑜𝑥 = 650.2𝐿, 544,000 filaments), stationarity was not
reached within feasible simulation times, but we observed a subsequent coarsening
dynamics of the emergent patterns (Movies S5-7 in [159]). We emphasize the strik-
ing similarity between the nematic lane network and the dynamics of its branches
[Fig. 2.8(A), Movie S6 in [159]] and the patterns seen in our experiments. To
visualize these simulations, the system was subdivided into a grid of 256 x 256
bins with well-defined local variables: Per bin, the local density 𝜌, polar order
𝑝= |〈exp(𝑖𝜃)〉𝑏𝑖𝑛 |/𝜌0, and nematic order 𝑛= |〈exp(2𝑖𝜃)〉𝑏𝑖𝑛 |/𝜌0 are calculated and
normalized by the average density 𝜌0 = 544, 000/𝐿2

𝑏𝑜𝑥
= 1.29/𝐿2.

For the smaller systems (box length 𝐿𝑏𝑜𝑥 = 81.3𝐿), stationarity was typically achieved
by 𝑡 < 1, 500 [Fig. 2.8(B)] and the states were characterized by the value of the
global order parameters 𝑃, 𝑁. The observed polar steady states appear to be very
similar to those already reported in Refs. [84, 85, 127, 165], in spite of the con-
ceptually different definitions of the underlying microscopic particles and their
interactions that rely on idealized alignment rules. In the nematic steady state, the
orientational autocorrelations resemble their experimental counterparts in exhibit-
ing non-vanishing nematic correlations [Fig. 2.8(C)]. Similar to the polar case, the
observed phase separation into a high-density nematic band and a low-density gas
resembles the patterns observed in Refs. [86, 88, 165], despite different interaction
schemes. Due to the periodic boundary conditions, horizontal/vertical orientations
predominate [Fig. 2.3(E)], but diagonal states were also found [Fig. 2.8(D)]. We
occasionally encountered the emergence of dual polar waves, which are locally
polar and collide head-on, such that the global order is (almost) nematic. These
states are predominantly located in the polar and multistable parameter regime,
especially for large densities [roughly 𝜌0 > 1.5/𝐿2, see Figs. 2.9(A-D)]. While they
are established by smectic decay of a nematic lane [Fig. 2.8(D)], it is not clear
whether these colliding waves represent a transient phase on the way to a purely
polar state or a stable solution of their own. We did not observe these patterns in
our experiments, but this can be explained by hydrodynamic effects that are present
in the actin motility assay [82]: large polar actin clusters induce a flow field in the
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Figure 2.7 Collisions in the simulation model. (A) Illustration and annotation of the
filament geometry. The collision occurs at the point marked by the pink region. (B) Nematic
(blue line) and polar (red line) alignment potential and the mixed symmetry of their
superposition (black line) plotted as a function of the relative orientation 𝜃. Inset: cutoff
potential 𝐶(𝑑). (C) Average reorientation Δ = 〈𝜃𝑜𝑢𝑡〉 − 𝜃𝑖𝑛 during binary collisions plotted
as a function of the incoming angle 𝜃𝑖𝑛 and the relative alignment strength 𝛼 (𝐿𝑝 =∞) . (D,
E) Binary collision statistics for 𝛼= 2.75 (D) and 𝛼= 6.25 (E) with different 𝐿𝑝 (𝜙𝑝 = 2.1◦)
The shaded area marks the regions within the standard deviation 𝜎 for 𝐿𝑝 = 31.7𝐿. Inset:
Dependence of the average standard deviation 𝜎= 〈𝜎〉𝜃𝑖𝑛 for different angles on 𝐿𝑝; the gray
triangle corresponds to a scaling of 𝐿−1/3𝑝 .

surrounding fluid, which suppresses any opposed local filament motion of large
amplitude (in contrast to low-amplitude nematic motion within lanes). For large
polar alignment strengths 𝜙𝑝, polar states did not evolve into smooth wave profiles
but persisted as a collection of erratically moving polar flocks [Fig. 2.8(E)]. In this
regime, the multistable region with respect to nematic lanes becomes elusive, sim-
ilar to the previously reported abrupt switch between polar and nematic symmetry
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Figure 2.8 Evolution of patterns in simulations. (A) Dynamics of large nematic networks
(𝜙𝑝 = 2.1◦, 𝛼= 6.25, 𝜌0 = 1.29/𝐿2, 𝐿𝑏𝑜𝑥 = 650.2𝐿). The panels depict the evolution of the
local density 𝜌 (left), nematic order 𝑛 (middle) and polar order 𝑝 (right). (B) Evolution
of global order parameters 𝑃, 𝑁 in systems with waves [solid lines, from the simulation of
Fig. 2.3(F), upper left panel] and lanes [dashed lines, from the simulation in Fig. 2.3(F),
upper right panel]. (C) Autocorrelation of filament orientations within a lane [from the
simulation in Fig. 2.3(F), upper right panel]. (D) Decay of a nematic lane (upper left panel)
towards colliding waves (upper right panel) along the diagonal axis of the system (𝜙𝑝 = 2.1◦,
𝛼= 4.5, 𝜌0 = 1.51/𝐿2). Note that the decay process does not involve large jumps in the
global order parameters (lower panel). (E) Irregular polar cluster. Inset: evolution of its
order parameters (𝜙𝑝 = 5.0◦, 𝛼= 2, 𝜌0 = 1.29/𝐿2). (F) Very narrow and dense polar wave
in a subcritical parameter region (𝜙𝑝 = 3.6◦, 𝛼= 0, 𝜌0 = 1.29/𝐿2). Inset: density profile of
the wave in x-direction. For (B-F), 𝐿𝑏𝑜𝑥 = 81.3𝐿.

in a Vicsek-like model with fully aligning interactions of stochastically switching
symmetry [87]. For both large polar and nematic alignment strengths, filaments
appear globally disordered but with some degree of local nematic order [upper right
region of Fig. 2.4(E)], which appear similar to turbulent nematic states reported
previously [166].

2.5.6 Hysteresis analysis

To quantify the multistable region, we used smaller system sizes in our simulations
(𝐿𝑏𝑜𝑥 = 81.3𝐿). We started our simulations in a strictly polar parameter regime
(𝛼= 0, 𝜙𝑝 ≠ 0) and waited until the dynamics had become stationary (“waiting” time
Δ𝑡 = 1, 587.3). We then incrementally increased 𝛼 by a small amount Δ𝛼 during
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Figure 2.9 Hysteresis analysis of global order parameters. Global order parameters
plotted as a function of the relative alignment strength 𝛼 for (A-D) different filament densities
𝜌0 (at 𝜙𝑝 = 2.1◦) and for (E-H) different polar alignment strengths 𝜙𝑝 (at 𝜌0 = 1.29/𝐿2).
The direction of increasing 𝛼 is depicted in (A, E) (𝑃+) and (B, F) (𝑁+), the decreasing
direction is given by (C, G) (𝑃−) and (D, H) (𝑁−). White dashed lines represent critical
values between domains of different patterns to guide the eye. The region 𝑁∗ in (C)
corresponds to states which were dominated by waves colliding head-on.

the simulation, measured 𝑃+, 𝑁+ (“+” for increasing direction), and reiterated
the procedure until 𝛼= 6.25 was reached. Then, we changed the direction and
progressively reduced 𝛼 while recording the values of 𝑃−, 𝑁− to complete the
hysteresis loop in 𝛼. We obtained two-dimensional phase diagrams by repeating the
hysteresis analysis for different filament densities 𝜌0 and different polar alignment
strengths𝜙𝑝 [Figs. 2.4(A,E)]. Figs. 2.9(A,B,E,F) show the corresponding global order
parameters in the “+” direction, Figs. 2.9(C,D,G,H) in the “-” direction, respectively.
For Fig. 2.4(A), and for 𝜌0 < 1.67/𝐿2 in Figs. 2.9(A-D), we used Δ𝛼= 0.175; for
all other data Δ𝛼= 0.25. Note that the multistable parameter region depends only
weakly on the system size: upon doubling 𝐿𝑏𝑜𝑥 = 162.5𝐿 the boundaries only shift
slightly in parameter space [Fig. 2.11(A)].
As can be seen in Fig. 2.3(F) the transition from a nematic lane into a polar wave
is rather discontinuous; a lane becomes completely destabilized by a randomly
emerging polar flock. The transition from polar waves to nematic lanes is quite
different: the global polar order amplitude seems to vanish smoothly, although
spatial structures change from a wave (orthogonal to particle motion) into a lane
(parallel to the particle motion). It should be noted that a single polar wave,
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Figure 2.10 Interplay and dynamics of macroscopic structures. (A) Time evolution
of polar clusters engulfing nematic lanes by running over them. (B) Time evolution of
a polar cluster that leaves nematic lanes trailing from its “wing-tips”. (C) Evolution of
coexisting patterns during an experiment, visualized by snapshots at different times after
ATP addition. Within a few minutes (roughly 2 min), both polar clusters and nematic lanes
are fully developed (middle panel). At the end of the experiment, coexistence is still present
(right panel). (D) Vortex-like mesh of nematic branches. (E) Lane network with occasional
dynamic actin bundles. Scale bars are 100 𝜇𝑚 in (A-C), and 50 𝜇𝑚 in (D, E). Uni- and
bi-directional arrows denote polar and nematic motion, respectively.

once formed, is very stable, even when 𝛼 is decreased in the minus direction far
below the onset of collective motion [see the lower left corners of Figs. 2.9(C,G)];
occupying almost all filaments, the wave profile becomes extremely dense and
ordered [Fig. 2.8(F)], which represents a limiting case of the model assumptions
(polar flocks do not stop to accumulate filaments for increasing density).

2.5.7 Time scale analysis of coexistence

To quantify and extrapolate the long-time behavior of coexisting polar and nematic
structures in the simulations, we analyzed different time scales of pattern form-
ation as a function of the (finite) system size. To this end, we tracked the evol-
ution of the local order parameters, which are reliable indicators of the nature
of the ordered state, and determined the fixation times 𝑡 𝑓 𝑖𝑥 upon which a sys-
tem adapted either a distinctly polar ordered or nematically ordered state, as
a function of the system size 𝐿𝑏𝑜𝑥 . The local order parameters are defined as
follows: any system of 𝑀 filaments can be decomposed into a set of clusters
of overlapping filaments, {𝑐}. A cluster 𝑐 has the following properties: cluster
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size 𝑚𝑐, cluster polar order 𝜋𝑐 = |∑𝑚𝑐

𝑗=1 exp(𝑖𝜃 𝑗) |/𝑚𝑐 − Δ(𝑚𝑐) , cluster nematic
order 𝜈𝑐 = |∑𝑚𝑐

𝑗=1 exp(2𝑖𝜃 𝑗) |/𝑚𝑐 − Δ(𝑚𝑐), where Δ(𝑙) = |∑𝑙
𝑗=1 exp(𝑖𝑈 𝑗) |/𝑙, {𝑈 𝑗} ∈

𝑈 (0, 2𝜋) is the expected random order of a finite-size cluster. Hence, the local
polar and nematic order 〈𝜋𝑐〉 =

∑
{𝑐} 𝜋𝑐𝑚𝑐/𝑀, 〈𝜈𝑐〉 =

∑
{𝑐} 𝜈𝑐𝑚𝑐/𝑀 are given by

the mean cluster orders, taken over the whole cluster population. Note that with
this definition, the local order parameters do not depend on the global orientation
and arrangement of the whole system.
Figs. 2.11(D,E) show the evolution of local order parameters 〈𝜋𝑐〉, 〈𝜈𝑐〉 with cor-
responding snapshots of the underlying simulations, for different initial conditions
but identical parameters. Note that an initial plateau value of 〈𝜋𝑐〉, 〈𝜈𝑐〉 is achieved
extremely fast, within a time scale 𝑡0 which we call the initial pattern formation
time as it corresponds to the emergence of local, polar clusters. Before the system
has reached a stationary state, which is either polar or nematic in nature, it ex-
hibits coexisting structures of both types, which is reflected in the behavior of the
local order parameters: when the system becomes fully polar [Fig. 2.11(D)], the
local polar order 〈𝜋𝑐〉 eventually approaches the local nematic order 〈𝜈𝑐〉 , at the
fixation time (or coexistence time) 𝑡 𝑓 𝑖𝑥 . When the system becomes fully nematic
[Fig. 2.11(E)], the local polar order 〈𝜋𝑐〉 drops to a value below its initial plateau
value and saturates at a lower (but finite) level at 𝑡 𝑓 𝑖𝑥 . Figs. 2.4(F), 2.11(B,C) show
the statistics of these time scales, which were obtained by fitting piecewise-linear
functions or crossing times of 〈𝜋𝑐〉, 〈𝜈𝑐〉 at any simulation, and for two different sets
of 𝛼, 𝜙𝑝 in the multistable parameter region. Note that the linear dependence of 𝑡 𝑓 𝑖𝑥
on 𝐿𝑏𝑜𝑥 has a very large amplitude (𝑡 𝑓 𝑖𝑥/𝑡0 ≈ 100 for 𝐿𝑏𝑜𝑥 = 325.1𝐿), and that there
are strong variations towards very large fixation times. Unexpectedly, neither 𝑡0, nor
𝑡 𝑓 𝑖𝑥 seem to not depend much on the overall strength of filament interaction (given
the different parameter sets 𝛼, 𝜙𝑝), and hence on the exact position in multistable
parameter domain.
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Figure 2.11 System size dependence of dynamics observed in simulations. (A)
Multistable parameter region obtained by hysteresis analysis, with doubled system size
𝐿𝑏𝑜𝑥 = 162.5𝐿 as compared to Figs. 2.4(E), 2.9(E-H) with otherwise identical parameters.
White dashed lines denote the approximate stability domain boundaries of half-sized systems
which are already shown in Figs. 2.4(E), 2.9(E-H). (B, C) System size scaling analysis at (B)
𝜙𝑝 = 2.1◦, 𝛼= 4.17 and (C) 𝜙𝑝 = 3.3◦, 𝛼= 3.13. Open purple triangles and open orange
circles denote individual 𝑡 𝑓 𝑖𝑥 events, full symbols depict 𝑡0, respectively. Black lines and
arrow bars are average values and 15𝑡ℎ/85𝑡ℎ percentiles [as in Fig. 2.4(F)]. (D, E) Examples
of time evolutions of local (〈𝜋𝑐〉: green line; 〈𝜈𝑐〉: red line) and global (𝑃: light blue line; 𝑁:
light orange line) order parameters, fixating in either a polar wave (D) or a nematic lane (E).
Vertical lines denote respective time scales upon which local order emerges (𝑡0, short-dashed
line) and finally fixates at a distinct type of order (𝑡 𝑓 𝑖𝑥: long-dashed line). Note that panels
(D, E) share identical parameters: 𝜙𝑝 = 2.1◦, 𝛼= 4.17, 𝜌0 = 1.29/𝐿2, 𝐿𝑏𝑜𝑥 , = 162.5𝐿.



3 Microphase separation in active filament
systems is maintained by cyclic dynamics
of cluster size and order

The following chapter is based on research published in Phys. Rev. Research 3, 013280
[2] (under a CC BY 4.0 licence) that I conducted together with Lorenz Huber and Erwin
Frey and to which I, together with L.H., contributed as one of the shared first authors.

The onset of polar flocking in active matter is discontinuous, akin to gas-liquid
phase transitions, except that the steady state exhibits microphase separation into
polar clusters. While these features have been observed in theoretical models
and experiments, little is known about the underlying mesoscopic processes at
the cluster level. Here we show that emergence and maintenance of polar order
are governed by the interplay between the assembly and disassembly dynamics of
clusters with varying size and degree of polar order. Using agent-based simulations
of propelled filaments in a parameter regime relevant for actomyosin motility assays,
we monitor the temporal evolution of cluster statistics and the transport processes
of filaments between clusters. We find that, over a broad parameter range, the
emergence of order is determined by nucleation and growth of polar clusters, where
the nucleation threshold depends not only on the cluster size but also on its polar
moment. Growth involves cluster self-replication, and polar order is established by
cluster growth and fragmentation. Maintenance of the microphase-separated, polar-
ordered state results from a cyclic dynamics in cluster size and order, driven by an
interplay between cluster nucleation, coagulation, fragmentation and evaporation of
single filaments. These findings are corroborated by a kinetic model for the cluster
dynamics that includes these elementary cluster-level processes. It consistently
reproduces the cluster statistics as well as the cyclic turnover from disordered to
ordered clusters and back. Such cyclic kinetic processes could represent a general
mechanism for the maintenance of order in active matter systems.

3.1 Introduction
Polar flocking in active matter marks the onset of collective particle motion and
has been observed in many experiments, ranging from biopolymer systems [15,

https://creativecommons.org/licenses/by/4.0/
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Figure 3.1 a) Schematic of a typical bifurcation scenario for a flocking transition. Control
parameters are, for example, particle density or interaction strength. Between binodal and
spinodal, flocking is triggered by spontaneous nucleation events (blue line). (b) Illustration
of clustering of active polymers in the polar, phase-separated state. Locally, both ordered
(pink shading) and disordered (green shading) clusters are observed.

16, 19–21] to colloids [24, 167] and discs [28, 143, 168, 169], as well as in
theoretical studies using hydrodynamic descriptions [5, 84, 89, 94, 98, 120, 123,
125, 155, 170–172] and particle based simulations [61, 63, 85, 96]. The associated
nonequilibrium phase transition is in general discontinuous [84, 85, 96, 173] and
exhibits a subcritical parameter regime of polar patterns [20, 61, 63, 98, 127,
174], as illustrated in Fig. 3.1(a). While some aspects of flocking are akin to
phase separation in thermal equilibrium systems [62, 63], there are also marked
differences. In particular, both agent-based simulations and experiments have shown
that active filament systems exhibit microphase separation into dense polar-ordered
regions and dilute disordered regions [15, 63, 69, 85]. How these steady-state
patterns depend on the macroscopic control parameters (e.g. particle density, noise,
or interaction strength) is well described at the level of hydrodynamic theories [63,
94, 98]. The basic fact that spontaneous nucleation of particle clusters is vital
for the initial stages of flocking is also well established [85, 96, 132]. However,
the mechanisms underlying the formation and maintenance of a macroscopically
ordered phase, which shows microphase separation into polar ordered clusters and
a disordered background, is still unclear.

In the present work, we show that an interplay between cluster assembly and
disassembly governs the emergence of polar order and microphase separation. We
find that particles self-organize into a heterogeneous population of clusters with
a characteristic distribution of sizes and degree of polar order. By analyzing the
temporal evolution of clusters using agent-based simulations of weakly aligning
self-propelled polymers (WASPs) [1], we show that polar order and microphase
separation in the flocking state are maintained by a continuous exchange of mass
between coexisting populations of ordered and disordered clusters. To rationalize
the underlying mechanism, we introduce a kinetic model consisting of two distinct
cluster species, disordered and polar ordered, and study the ensuing assembly-
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disassembly dynamics. We find that the kinetic model shows the same cluster
statistics, mass-exchange dynamics, and bifurcation scenario as the agent-based
system, even though it contains no information on the spatial dynamics. This theory
explains the presence of microphase separation in the ordered state in terms of
cyclic probability currents in a phase space spanned by cluster size and order.

3.2 Results

3.2.1 Simulation setup and observables

We consider agent-based simulations of a system with 𝑀 polymer filaments of fixed
length 𝐿 on a two-dimensional substrate with periodic boundary conditions; for
details see Ref. [1] as well as Appendix 3.4.1 and 3.4.2. Motivated by experiments
using in vitro assays of gliding polymers [15–21, 157], each filament is assumed to
consist of a head that performs a persistent random walk with persistence length
𝐿𝑝 and constant speed 𝑣, and a tail that passively follows it. Interactions between
filaments are assumed to be weak and dominated by aligning interactions [1, 20]:
upon local contact with adjacent filament contours, a polar and a nematic torque
proportional to 𝜑𝑝 cos 𝜃 and 𝜑𝑛 cos 2𝜃, respectively (𝜃 being the impact angle),
are exerted on the filament head. These active filament systems were shown to
reproduce local collision statistics and collective phenomena—polar and nematic
patterns—on large scales (𝑀 =O(106)) [1], with filament density 𝜌 and relative
alignment strength 𝛼=𝜑𝑛/𝜑𝑝 as experimentally motivated control parameters.
Here, we focus on the formation of large polar fronts as illustrated in Fig. 3.1(b). In
the flocking state, one observes that filaments are locally organized into clusters of
different sizes and, on closer inspection, also of different degree of internal ordering
[Fig. 3.1(b)]: filament clusters in a polar front are highly ordered flocks while
clusters elsewhere are much less structured.

To investigate the role of clusters of different sizes and order in the emergence
and maintenance of order in a system of WASPs, we monitor the size and degree
of order of each filament cluster. We decompose the system of filaments, { 𝑓 𝑗}
with 𝑗 ∈ {1, 2, . . . , 𝑀}, into a set of clusters {𝑐𝛼}: filaments are assumed to be-
long to a specific cluster 𝑐𝛼 if they lie closer to filaments in that cluster than a
cutoff distance 𝛾 with 𝛾� 𝐿, as described in more detail in Appendix 3.4.3. Every
cluster can be assigned a cluster size, the number 𝑘 of filaments, and a cluster po-
lar order, 𝑝𝑘 := 1

𝑘
|∑𝑘

𝑗=1 exp(𝑖𝜃 𝑗) |. In the following it will turn out to be useful to
also define the polar moment of a cluster, 𝑆𝑘 = 𝑘 𝑝𝑘, which measures the effective
number of ordered filaments within a cluster. Since even clusters made up of fila-
ments with randomly chosen orientations have on average a nonzero polar order
Δ𝑘 = (7 + 1

𝑘
)/(8

√
𝑘) + O(𝑘−5/2) [Appendix 3.4.3], we define the net polar order
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of a cluster by 𝜋𝑘 := 𝑝𝑘 − Δ𝑘. Hence, the global polar order of the clusters is given
by an average of the net polar order 𝜋𝑘 weighted by the respective cluster size:
Ω𝑝 := 1

𝑀

∑
{𝑐} 𝜋

(𝑐)
𝑘
𝑘(𝑐) (cluster polar order parameter). In addition to this system-level

quantity, we also record the full statistics of cluster size and order, Ψ(𝑘, 𝑝). We choose
a normalization such that the marginalized distribution 𝜓(𝑘) =

´ 1
0 d𝑝Ψ(𝑘, 𝑝) satis-

fies
∑𝑀
𝑘=1 𝑘 𝜓(𝑘) = 1. This choice means that in a given realization (simulation run)

𝜓(𝑘) = 𝑛(𝑘)/𝑀 where 𝑛(𝑘) is the number of clusters of size 𝑘; hence, 𝜙(𝑘) = 𝑘 𝜓(𝑘)
gives the fraction of filaments contained in all clusters of size 𝑘. In the following we
will refer to 𝜓(𝑘) as the cluster-size distribution.

3.2.2 Polar order emerges through a hierarchical process

To begin with, we show representative simulation results for the agent-based system
in order to illustrate the dynamic processes that lead to the emergence of polar
order starting from random initial conditions (as specified in Appendix 3.4.2). If
not stated otherwise, we fixed the parameters 𝜑𝑝 = 0.036 and 𝜌= 1.51/𝐿2; for a
complete list of default parameters please refer to Appendix 3.4.1 and 3.4.2. Time
is given in units of correlation time 𝐿𝑝/𝑣 and length in units of filament length 𝐿.

Figure 3.2(a) depicts the time evolution of the cluster polar order parameter
Ω𝑝 for 𝛼= 2, where the WASPs exhibit the same collision statistics as observed
for actin filaments in the actomyosin motility assay slightly above the previously
reported onset of flocking [1]; for an illustration of the associated dynamic processes
please refer to Movie S1 [175]. We observe that generically within a relatively short
time 𝑡0 the system develops some but still rather weak polar order of the clusters
with Ω𝑝 ≈ 0.08. The system persists in this disordered state for an extended time
period until at some time 𝑡𝑑 cluster polar order suddenly and significantly increases
and then approaches a stationary plateau value Ω∗

𝑝 ≈ 0.7; this growth phase is
well described by an exponential law with the growth time 𝜏 [Fig. 3.2(a)]. Visual
inspection of the agent-based simulations suggests that the onset of polar order
at 𝑡𝑑 is marked by the nucleation of a sufficiently large and polar-ordered cluster
which triggers a cascade of cluster assembly and disassembly processes leading to
rapid exponential increase in polar order; cf. Movie S1 [175].

These qualitative observations are supported and quantified by the measured
statistics of cluster size and oder Ψ(𝑘, 𝑝). In the quasi-stationary, disordered regime
(𝑡 < 𝑡𝑑) the distribution of cluster sizes, 𝜓(𝑘), shows an exponential tail [Fig. 3.2(b)],
similar to that found in previous studies [101, 107, 112, 133, 134, 176–178].
Moreover, the full distribution of cluster size and order, Ψ(𝑘, 𝑝), is centered around
𝑝∼ Δ𝑘, indicating that typical clusters are only marginally more ordered than
randomly assembled clusters [Fig. 3.2(b,c)]. In contrast, in the stationary, polar-
ordered state (𝑡 > 𝑡𝑑), the distribution of cluster size is no longer exponential but
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Figure 3.2 a) Time evolution of the cluster polar order parameter Ω𝑝. We use units where
time is expressed in terms of the longest single-particle correlation time 𝜏𝑝 = 𝐿𝑝/𝑣, i.e. the
time over which the filament trajectories are approximately straight. The initial time scale 𝑡0
and the nucleation time 𝑡𝑑 are marked by long-dashed and short-dashed lines, respectively.
b) Cluster size distribution, 𝜓(𝑘), in the disordered regime (𝑡 < 𝑡𝑑; green) and in the polar
ordered steady state (𝑡 > 𝑡𝑑; purple). c) Heat plot (with color map shown in the graph)
of the full statistics of cluster size and order, 𝑘 · Ψ(𝑘, 𝑝), plotted as a function of 𝑘 and
𝑝, in the disordered regime (upper panel) and in the polar ordered steady state (lower
panel). The gray solid line depicts Δ𝑘, and the dashed line indicates the estimated nucleation
threshold 𝑆crit = 𝑝𝑐𝑘 ≈ 66 (see discussion later). d) Characteristic time scales 𝑡0, 𝑡𝑑 , and 𝜏
as a function of 𝛼. Solid lines denote average values, and error bars represent the 15th, and
85th percentiles taken over 100 realizations for each 𝛼. e) Time evolution of 〈𝑆 (1)〉 (blue
line) and 〈Ω𝑝〉 (orange line), as a function of 𝑡∗ = 𝑡 − 𝑡𝑑 , averaged over 892 independent
realizations. f) Scatter plot for the size 𝑘 and order 𝑝 of the cluster corresponding to the
largest cluster 𝑆 (1) for 892 independent realizations. The probability clouds at different
times 𝑡∗ are indicated in different colors in the graph. As time progresses the cloud of points
follows the trajectory indicated by the gray solid line, which depicts the average path of
〈𝑆 (1)〉 in 𝑘-𝑝 space. The red open circles mark the average 〈𝑆 (1)〉 at the indicated timepoints.
The dashed line indicates 𝑆crit ≈ 84. In panels a-c we used 𝛼= 2, and in panels e-f a value
of 𝛼= 1.67.
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exhibits a broad tail [Fig. 3.2(b)], and from the full statistics we infer that typical
clusters are highly ordered [Fig. 3.2(c)].

Our simulations show that the onset times 𝑡𝑑 of polar order are randomly distrib-
uted, suggesting that nucleation events are stochastic and require rare events that
initiate the formation of clusters of sufficiently large size and order. Figure 3.2(d)
shows the mean and the statistical variation of the characteristic time scales 𝑡0,
𝑡𝑑, and 𝜏 in the parameter range 𝛼 ∈ [1.5, 3.0]; how these times are measured is
detailed in Appendix 3.4.4. While the onset time 𝑡𝑑 of polar order increases strongly
with decreasing 𝛼, it remains finite even far below the previously reported onset of
order at 𝛼≈ 1.8 [1]. The onset times were found to be exponentially distributed
with a coefficient of variation

√︁
Var[𝑡𝑑]/〈𝑡𝑑〉 ≈ 1, similar as in classical nucleation

theory [179, 180]; for a detailed discussion of the observed variance in the onset
time 𝑡𝑑 please refer to Appendix 3.4.4.3. With increasing 𝛼, we find that the average
onset time 〈𝑡𝑑〉 decreases and eventually becomes comparable to the average values
〈𝑡0〉 and 〈𝜏〉, suggesting that the system instantly begins to develop polar order. For
even larger 𝛼, polar order emerges through a process akin to spinodal decomposition
(see discussion below and Movie S2 [175], which shows the dynamics for 𝛼= 3).

3.2.3 Nucleation barrier is determined by polar moment

To further characterize the processes underlying formation and growth of po-
lar clusters we monitored the time evolution of all filament clusters and rank-
ordered them according to the magnitude of their respective polar moments:
𝑆(1) ≥ 𝑆(2) ≥ 𝑆(3) ≥ . . . ≥ 𝑆(𝑛). Figure 3.2(e) compares the time evolution of the
cluster polar order parameter Ω𝑝 and the largest polar moment 𝑆(1) , averaged over
892 independent realizations and aligned in relation to the respective (stochastic)
onset times 𝑡𝑑. The observation that growth of the largest cluster starts (on aver-
age) prior to the onset of polar order suggests that precursor seeds initiate cluster
nucleation and growth. What then are their characteristic features?

The answer becomes evident upon inspection of the evolution of cluster size and
polar order, shown in Fig. 3.2(f) as a scatter plot for different time points indicated
in the graph; cf. Movie S3 [175]. Initially, before the onset time 𝑡𝑑, the probability
cloud is widely extended in 𝑘−𝑝 space and its center of mass hardly moves. As soon
as the cloud crosses a line of constant polar moment [dashed hyperbolic curve in
Fig. 3.2(f)], which occurs at a time that roughly coincides with the onset time 𝑡𝑑,
we observe qualitatively different dynamics; we will quantify the precise location
of this transition line below. The cloud then begins to contract and shows a clear
trend toward large cluster sizes 𝑘 and higher polar order 𝑝, i.e. increasing polar
moment 𝑆. From these observations we conclude that the polar moment 𝑆 is the
key quantity which determines the nucleation threshold.
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Figure 3.3 a) Time evolution of cluster polar order parameter Ω𝑝 for disordered systems
(𝛼= 1.25) perturbed by the addition of (fully polar) ordered cluster of polar moment 𝑆 at
time 𝑡 = 5 (green: 𝑆 = 80; pink: 𝑆 = 140). Thin lines correspond to single realizations, thick
curves to the corresponding mean over all realizations. b) Phase diagram as a function of
𝛼 and 𝜌. The regions shown in different shades of gray indicate regimes where the final
system is polar-ordered with Ω∗

𝑝 > 0.2. The gray scale corresponds to different values that
are proxies for 𝑆crit, as explained in the main text. The red line indicates the parameters
used in Fig. 3.2(d), and the blue star the parameters used in Fig. 3.2(a-c).

3.2.4 Nucleation and spontaneous emergence of polar order

In order to determine the parameter regimes where polar order emerges either
through a nucleation and growth process or spontaneously, we performed simula-
tions over a wide range of densities, 𝜌, and relative alignment strengths, 𝛼. The
black regime in Fig. 3.3(b) indicates the parameter range, within which we ob-
served onset times for polar order below 𝑡𝑑 = 50. We take this as a proxy for the
regime where polar order builds up spontaneously, cf. Movie S2 [175]. On the
other hand, to determine the nucleation and growth regime and the respective
threshold value of the polar moment (critical nucleus ‘size’), one would in principle
need to monitor the time evolution of all clusters and wait for the spontaneous
formation of a critical nucleus. While this is computationally feasible for parameter
regimes where 𝑡𝑑 is reasonably small, it becomes practically impossible if 𝑡𝑑 is large,
as is the case for small values of 𝛼; c.f. Fig. 3.2(d). Therefore, we took a different
approach and instead of waiting for a spontaneous nucleation event, we artificially
inserted perfectly ordered (𝑝= 1) clusters with different polar moments 𝑆 = 𝑘 into
a disordered system. While clusters with 𝑆 > 𝑆crit trigger a transition of the whole
system towards a globally ordered state, the system remains disordered for smaller
clusters, cf. an exemplary case in Fig. 3.3(a). The different gray scales in Fig. 3.3(b)
show parameter regimes where nucleation and growth occurred in our simulations
after insertion of a cluster of certain discrete size 𝑆nuc as indicated in the graph.
These values correspond to proxies of 𝑆crit in the respective parameter regimes; see
Appendix 3.4.5.1 for a more detailed analysis of 𝑆crit. For parameters where 𝑡𝑑 is
small, we have explicitly checked that the critical value 𝑆crit obtained by artificially
inserting a polar-ordered cluster and waiting for the spontaneous emergence of a
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critical nucleus agree quantitatively [Appendix 3.4.5.2]. On a qualitative level, this
becomes evident from Movie S3 [175]: The line given by 𝑝(𝑘) = 𝑆crit/𝑘 defines a
threshold curve in 𝑘−𝑝 space, above which nucleation occurs, cf. also dashed curves
in Fig. 3.2(f). Moreover, upon comparing the course of nucleation for artificially
triggered and spontaneous nucleation events in 𝑘−𝑝 space, we found that very
rapidly the emerging statistics for the largest cluster 𝑆(1) become indistinguishable
from each other; see Fig. 3.13 in Appendix 3.4.5.3.

In summary, the phase diagram in Fig. 3.3(b) exhibits two qualitatively dis-
tinct regimes. There is a regime where flocking is spontaneous akin to spinodal
decomposition in liquid-gas systems, especially at high densities and large 𝛼; cf.
Movie S2 [175]. In addition, there is a broad range of parameters within which the
transition to a polar ordered state proceeds by nucleation and growth. In contrast to
liquid-gas systems, the critical nucleus is not only characterized by a large enough
size but also by a sufficiently high polar order, such that 𝑆crit = 𝑘 · 𝑝.

3.2.5 Coarsening and anti-coarsening

Next, we wanted to gain further insight into the processes leading from the formation
of a critical nucleus to the assembly of (moving) polar clusters and ultimately the
polar-ordered, non-equilibrium steady state. To this end, we artificially inserted
seeds (fully ordered polar clusters) and observed their dynamics; for an illustration
please refer to Fig. 3.4(a) and Movie S4 [175]. One observes that immediately after
insertion the cluster begins to loose filaments. This loss is counteracted by a gain
of filaments due to annexation of disordered clusters (with low polar order) that
lie in its pathway of motion. Only when the size of the seed is large enough, as
discussed in the previous section, this gain is sufficient to overcome the filament loss
such that the cluster grows. These clusters, however, do not grow indefinitely, but
eventually replicate by splitting up into several parts, which in turn grow individually;
frequently they also merge again.

These qualitative observations can be quantified in terms of the rank-ordered
polar moments, whose averages sampled over 30 realizations are shown for 𝑆(1)
through 𝑆(10) in Fig. 3.4(b). After artificial insertion of a seed cluster (here of size
𝑆seed = 200), this seed forms the cluster with the largest polar moment 𝑆(1) which
then grows exponentially, while one after another clusters with the next largest
polar moment follow suit. This sequential process corresponds to the continuous
production of cluster fragments, which are created during splitting events and then
grow by themselves. The seed cluster spins off daughter clusters, as can be read
off from the decline in the number of filaments 𝐼 that originally formed the seed
cluster and are still part of the largest cluster 𝑆(1), cf. 𝐼(𝑡∗) in Fig. 3.4(b).

To further investigate the dynamics of clusters and the filament exchange
between them, we tracked the fate of particles that were part of a cluster at time 𝑡
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Figure 3.4 a) Snapshots of a perfectly ordered cluster added to a disordered system, taken
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are shown in magenta. After growing for some time, the cluster eventually splits up into
several distinct parts that can then grow on their own (shown in different colors). b) Time
evolution of the clusters with the ten largest polar moments 𝑆 (𝑖) , after an artificial nucleation
seed of size 𝑆seed = 200 was placed into the systems at 𝑡∗ = 0, averaged over 30 independent
realizations. 𝐼(𝑡∗) specifies the temporal evolution of the amount of filaments which were
originally part of the inserted cluster; cf. magenta filaments in panel a. c) Matrix of transition
probabilities, 𝑇 (𝑘′, 𝑡 + Δ𝑡 |𝑘, 𝑡), in color code as shown in the graph with Δ𝑡 = 0.0125. As
a guide to the eye, regions with dominant fragmentation or coalescence, incorporation
or evaporation are encircled. d) Steady-state (in the polar-ordered phase) particle fluxes
𝐽 [𝐷↔ 𝑃𝑘,𝑝] and 𝐽 [𝑃↔ 𝐷𝑘,𝑝] between ordered (𝑃) and disordered (𝐷) clusters in 𝑘−𝑝
space as obtained from numerical simulations of WASPs. The black zig-zag line depicts the
chosen partition of 𝑘−𝑝 space into a disordered (𝐷) and a polar (𝑃) compartment. The
arrows indicate the overall tendency in the flow between clusters of different size and polar
order. Inset: The fluxes 𝐽 [𝐷↔ 𝑃𝑘,𝑝] and 𝐽 [𝑃↔ 𝐷𝑘,𝑝] integrated over 𝑝 for comparison
with Fig. 3.5(e). In all panels we used 𝛼= 1.67.

and recorded their status after some time Δ𝑡. To this end, we define the transition
probabilities 𝑇 (𝑘′, 𝑡 + Δ𝑡 |𝑘, 𝑡) that quantify the likelihood that a filament which
is part of a cluster of size 𝑘 at time 𝑡 will scatter into a cluster of size 𝑘′ at some
later time 𝑡 + Δ𝑡, normalized such that

∑
𝑘′ 𝑇 (𝑘′, 𝑡 + Δ𝑡 |𝑘, 𝑡) = 1; how 𝑇 is inferred

from the simulation data is described in Appendix 3.4.7. For Δ𝑡→ 0, these trans-
ition probabilities become diagonal, 𝑇 (𝑘′, 𝑡 |𝑘, 𝑡) = 𝛿𝑘𝑘′, while for Δ𝑡→∞, as the



54 Microphase separation in active filament systems is maintained by
cyclic dynamics of cluster size and order

events become statistically independent, one obtains 𝑇 (𝑘′,∞|𝑘, 𝑡) = 𝑘′𝜓(𝑘′) [cf.
Fig. 3.15(a,d) in Appendix 3.5.3.1].

Figure 3.4(c) shows the matrix of these transition probabilities recorded for times
𝑡 in the stationary non-equilibrium steady state, and with the time increment chosen
as Δ𝑡 = 0.0125, a value corresponding to the time a filament takes to travel a distance
comparable to its own contour length. This choice gives each filament sufficient time
to escape from its previous cluster, but multi-scattering events are still unlikely. The
precise value of this time increment is not important [see Appendix 3.4.7]. From
Fig. 3.4(c) we infer that, while most clusters remain stable during this time increment
(diagonal), especially large polar clusters either frequently coalesce or fragment into
similarly sized clusters (bright off-diagonal matrix elements in the upper right of
Fig. 3.4(c)), or evaporate very small clusters or single filaments (bottom right matrix
elements in Fig. 3.4(c)). Clusters of smaller size, on the other hand, are frequently
incorporated into clusters of larger size (upper left part of the matrix in Fig. 3.4(c)).

Next, because of the qualitatively very different behaviour of strongly ordered
and disordered clusters, we classified them into two broad classes: disordered
(𝐷) and polar (𝑃) population. For that classification, we chose a heuristic division
line in 𝑘−𝑝 space [zig-zag line in Fig. 3.4(d); cf. Appendix 3.4.6. This is chosen
such that in the quasi-stationary disordered regime [Fig. 3.2(c), upper panel] most
clusters would be classified as being disordered. We monitored the net filament
fluxes between these two populations in steady state. Specifically, we measured
how many filaments transition per unit time between disordered/ordered clusters
(of all sizes and degree of order) and ordered/disordered clusters of a given size and
order, 𝐽 [𝐷↔ 𝑃𝑘,𝑝] and 𝐽 [𝑃↔ 𝐷𝑘,𝑝], respectively [Fig. 3.4(d)]. These fluxes show
that there is a cyclic flow of filaments between ordered and disordered clusters as
indicated by the arrows in Fig. 3.4(d): While large, ordered clusters show a net
gain from disordered clusters, small ordered clusters lose to disordered clusters
(black arrows). Since we are in steady state, i.e. particle numbers for each species
must remain constant on average, there must also be net intra-species currents:
(i) fragmentation of larger into smaller polar clusters (magenta arrow), and (ii)
enhanced ordering of disordered clusters (green arrow).

Taken together, the above analysis of the agent-based simulations suggests that
the following processes govern the emergence andmaintenance of the stationary non-
equilibrium steady state: In the quasi-stationary, disordered state the system consists
of mostly disordered clusters with a wide distribution of sizes 𝑘 [Fig. 3.2(b,c)].
Stochastically at time 𝑡𝑑, a critical nucleus (with polar moment of the order of
𝑆crit) forms spontaneously, and subsequently grows exponentially by continuously
incorporating more disordered clusters [Fig. 3.4(b,c)]. By eventually splitting up
[Fig. 3.4(a-c)] due to orientational splay, polar clusters effectively self-replicate,
which explains the exponential growth of the cluster polar order parameter Ω𝑝

observed in Fig. 3.2(a). In the final nonequilibrium steady state, there is a balance
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Figure 3.5 a) Illustration of the two-species kinetic model with a disordered cluster type A
(green) and an ordered type B (purple) and the various cluster assembly and disassembly
processes. b) Time evolution of the cluster-size distributions, 𝑎𝑘 and 𝑏𝑘, of species A (long-
dashed lines) and species B (short-dashed lines), respectively. The solid lines indicate the
total distribution of cluster sizes, 𝑛𝑘 = 𝑎𝑘 + 𝑏𝑘, at two different times (blue at 𝑡 = 216 and
orange at 𝑡 = 1, 200). c) Time evolution of the relative fraction 𝑓𝑘 = 𝑏𝑘/𝑛𝑘. The color gradient
depicts different times as quantified by the corresponding colour bar. d) Time evolution of
the mean net cluster order 〈𝜋(𝑘)〉𝑝 during nucleation in the agent-based simulations. e)
Steady-state particle fluxes 𝐽 [𝑏↔𝑎𝑘] and 𝐽 [𝑎↔𝑏𝑘] for both species as a function of cluster
size 𝑘. Arrows: schematic depiction of inter-species (solid) and intra-species (solid colored)
flux directions. For the data shown for the kinetic model we have used the parameters:
𝑀 = 400, 𝐴= 800, 𝑣= 𝛽0 = 𝜆0 = 1, 𝜇0 = 0.025, 𝜎𝑎𝑎 = 1.6, 𝜎𝑎𝑏 = 0.2, 𝜎𝑏𝑏 = 1 and 𝜔0 = 10−4.
For the data shown in panel d) we used 𝛼= 1.67.

between different cluster-level kinetic processes: Growth of polar-ordered clusters
through coagulation of polar-ordered clusters and incorporation of disordered
filaments is balanced by splitting (fragmentation) of clusters as well as evaporation
of smaller filament clusters back into the ‘pool’ of disordered clusters [Fig. 3.4(a,c)].
These processes drive the cyclical interconversion of the different types of cluster
species, as indicated by the arrows in Fig. 3.4(d).

3.2.6 Kinetic model for cluster assembly and disassembly

To determine whether these cluster assembly and disassembly processes constitute
the essential mechanisms underlying the emergence and maintenance of the polar-
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ordered non-equilibrium steady state, we introduce a simple kinetic model; cf.
Fig. 3.5(a). It reduces the dynamics of the spatially extended system to a set of
kinetic processes for two competing types of cluster species, a disordered type A and
an ordered type B, with respective cluster size distributions 𝑎𝑘 = (a)𝑘 and 𝑏𝑘 = (b)𝑘,
where x= (𝑥1, 𝑥2, ..., 𝑥𝑀). The time evolution is assumed to be given by a set of
coupled equations, 𝜕𝑡a= F(a, b) and 𝜕𝑡b=G(a, b) for the cluster size distributions,
an approach frequently used to study coagulation and fragmentation dynamics
in a broad class of systems [181–183]. The dynamics conserves the total number
of particles,

∑𝑀
𝑘=1 𝑘 (𝑎𝑘 + 𝑏𝑘) = 1. Such kinetic models have successfully been used

to describe the cluster statistics in a regime where polar order is absent [101,
133, 134]. Our kinetic model extends these studies to include a second species B
representing polar ordered clusters, and thereby enables us to study the assembly
and disassembly processes leading to the emergence of polar order.

The set of nonlinear functions F and G — for explicit forms see Appendix 3.5.1
— specify all the kinetic processes illustrated in Figure 3.5(a): (i) For the disordered
species A, cluster assembly occurs by coagulation of smaller clusters of sizes 𝑖 and 𝑗 at
a rate 𝛼𝑖 𝑗 := 𝜎𝑎𝑎 𝑋𝑎𝑎(𝑖, 𝑗) 𝑣/𝐴. Here 𝑣 is the cluster velocity, 𝐴 the area of the whole
system, and 𝑋𝑎𝑎(𝑖, 𝑗) a term dependent on the cluster sizes which characterizes
the likelihood of cluster collisions. Since disordered clusters are approximately
spherical in shape such that their diameter scales as

√
𝑖, we take 𝑋𝑎𝑎(𝑖, 𝑗) =

√
𝑖 +

√
𝑗.

The parameter 𝜎𝑎𝑎 is an amplitude measuring the strength of the coagulation process
of disordered clusters; in short: coagulation amplitude. (ii) Likewise, for the ordered
species B, there is a coagulation rate 𝜂𝑖 𝑗 := 𝜎𝑏𝑏 𝑋𝑏𝑏(𝑖, 𝑗) 𝑣/𝐴. The elongated shape of
ordered clusters suggests geometric factors that scale with their linear extension,
𝑋𝑏𝑏(𝑖, 𝑗) = 𝑖 + 𝑗. Similar as above, the parameter 𝜎𝑏𝑏 designates the coagulation
amplitude for ordered clusters. (iii) Ordered clusters of linear extension 𝑖 can
incorporate disordered ones of size 𝑗 at a rate 𝛾𝑖 𝑗 := 𝜎𝑎𝑏 𝑋𝑎𝑏(𝑖, 𝑗) 𝑣/𝐴, and thereby
form a larger ordered cluster. The geometric factor is now assumed to be 𝑋𝑎𝑏(𝑖, 𝑗) = 𝑖,
and 𝜎𝑎𝑏 is called the incorporation amplitude. (iv) Cluster disassembly occurs via split-
up (fragmentation) of ordered clusters at a constant rate 𝜇𝑖 𝑗 = 𝜇0, and evaporation
of single disordered particles from cluster species A and B at rates 𝛽𝑖 := 𝛽0 𝑌𝑎(𝑖)
and 𝜆 𝑖 := 𝜆0 𝑌𝑏(𝑖), respectively. The geometric factors read 𝑌𝑎(𝑖) =

√
𝑖 and 𝑌𝑏(𝑖) = 1,

where the latter accounts for the observation that ordered waves evaporate particles
mainly via its edges, i.e. there is no size dependence. (v) Finally, a disordered
cluster may spontaneously transform into an ordered cluster, at a rate 𝜔𝑖 :=𝜔0 𝑍(𝑖)
with 𝑍(𝑖) = 1/(1 + 𝑒−(𝑖−𝑚𝑐−1)/𝑣𝑐); this event effectively represents the nucleation of
an ordered cluster. The sigmoidal shape accounts for the observation that nucleation
only occurs above a certain threshold cluster size 𝑚𝑐. For specificity we choose
𝑚𝑐 = 100 and 𝑣𝑐 = 10 throughout our analysis. Variation of 𝑚𝑐 or 𝑣𝑐 results only in
a shift in the onset of the transition to polar order, without any qualitative effects
on the ordered state; cf. Appendix 3.5.1.
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The kinetic model is not an exact representation of the kinetics observed in
the agent-based model, but it emulates its core features. First, global polar order
in the system of WASPs is analogous to the mass fraction of the ordered species
𝜙𝑏 =

∑
𝑘 𝑘 𝑏𝑘 in the kinetic model. Second, while the parameter 𝛼 quantifies the

(relative) strength of the alignment interaction responsible for flocking of WASPs,
the corresponding analogs in the kinetic model are the amplitudes 𝜎𝑎𝑏 and 𝜎𝑏𝑏 that
quantify the strength of processes leading to an increase in polar order 𝜙𝑏. In the
following, we describe the influence of these parameters on the size distributions 𝑎𝑘
and 𝑏𝑘. For the coagulation amplitude 𝜎𝑎𝑎 of the disordered clusters we chose a fixed
value of 𝜎𝑎𝑎 = 1.6, such that — in the absence of an ordered species B — the size
distribution 𝑎𝑘 resembles the previously observed exponentially truncated power
law [101, 133, 134]; cf. Fig. 3.2(b). We integrated the set of kinetic equations to
find the time evolution of the distribution of cluster sizes, {𝑎𝑘(𝑡), 𝑏𝑘(𝑡)}, using a
simple Euler scheme, and starting from initial conditions where all particles were in
clusters of size 𝑘= 1: 𝑎1(0) = 1. If not stated otherwise, we used the parameters
specified in Fig. 3.5.

To begin with, we present the results for specific amplitudes: 𝜎𝑎𝑏 = 0.2 and
𝜎𝑏𝑏 = 1. In that case, the distribution of total cluster sizes, 𝑛𝑘 := 𝑎𝑘+𝑏𝑘, changes with
time from an exponentially truncated power-law form [blue solid line in Fig. 3.5(b)]
to a broad distribution with a distinct shoulder at intermediate 𝑘 [orange solid line
in Fig. 3.5(b)], similar to the results obtained for a system of WASPs [Fig. 3.2(b)].
How polar order emerges is also quite comparable, as can be inferred from the
time evolution of the fraction of ordered clusters, 𝑓𝑘 := 𝑏𝑘/𝑛𝑘, in the kinetic model
[Fig. 3.5(c)] and the mean net cluster order, 〈𝜋(𝑘)〉𝑝 :=

´ 1
0 d𝑝 𝜋𝑘Ψ(𝑘, 𝑝), in the

agent-based simulations [Fig. 3.5(d)]. In both instances, ordered clusters begin
to proliferate at intermediate sizes 𝑘, followed by a broadening of the distribution
towards smaller as well as larger cluster sizes.

Next, as in the case of the agent-based model [cf. Fig. 3.4(c,d)], we wanted
to learn how the various kinetic processes operating within species and between
ordered and disordered clusters balance to maintain a stationary polar-ordered
state, where 𝜕𝑡𝑎𝑘 = 0= 𝜕𝑡𝑏𝑘. For each species and each cluster size 𝑘, this requires a
strict balance between inter-species and intra-species currents. Moreover, note that
there is also a global balance such that the total number of particles remains constant.
Figure 3.5(e) shows the net inter-species currents 𝐽 [𝑎↔𝑏𝑘] (magenta) and 𝐽 [𝑏↔𝑎𝑘]
(green) for the ordered and disordered species, respectively; intra-species currents
are simply the opposite, e.g. for the ordered species: 𝐽 [𝑏↔𝑏𝑘] =− 𝐽 [𝑎↔𝑏𝑘]. For
the ordered clusters, 𝐽 [𝑎↔𝑏𝑘] < 0 for a wide range of cluster sizes, indicating
that there is an overall net loss of ordered clusters in favor of disordered clusters.
A more detailed analysis shows that this is largely due to evaporation of single
disordered particles [see Appendix 3.5.3]. At large cluster sizes, there is a net
gain (𝐽 [𝑎↔𝑏𝑘] > 0) in the number of ordered clusters, which can be attributed to
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the incorporation of disordered clusters by ordered clusters. The balance between
intra-species and inter-species processes requires that there is a net flux from
large to small ordered clusters, i.e. a surplus of cluster fragmentations relative to
cluster coagulation events. This is phenomenologically similar to our findings in
the agent-based simulations, cf. Fig. 3.4(d). There, we observed that large ordered
clusters gain from disordered clusters, and small ordered clusters loose filaments
to disordered clusters. This implies that there must be an intra-species current
within ordered clusters, presumably also mediated by splitting of large into smaller
ordered clusters. For the disordered clusters, we observe a net gain (𝐽 [𝑏↔𝑎𝑘] > 0)
of single disordered particles, which is due to evaporation events from ordered
clusters. On the other hand, there is a net loss (𝐽 [𝑏↔𝑎𝑘] < 0) of disordered clusters
at intermediate cluster sizes, which is due to incorporation of disordered clusters
into ordered clusters (and to smaller extent due to spontaneous transformation
of disordered into ordered clusters). As the inter-species processes with ordered
clusters create a surplus of single disordered particles, in steady state this must
be balanced by a corresponding intra-species flux from small to large disordered
clusters, which is facilitated by coagulation processes of disordered clusters.

In order to determine the phase diagram and the nature of the corresponding
phase transitions, we studied how the emergence of polar order in the kinetic model
depends on the strength of the various processes. We focused on the effects of
coagulation of ordered clusters and the incorporation of disordered clusters into
ordered clusters, varying the corresponding amplitudes 𝜎𝑏𝑏 and 𝜎𝑎𝑏, respectively.
Figure 3.6(a) shows the time evolution of the mass fraction 𝜙𝑏 of the ordered
B species for various values of the incorporation amplitude 𝜎𝑎𝑏. Like the cluster
polar order parameter Ω𝑝 [Fig. 3.2(a)] it exhibits a transient dwelling period before
(exponentially fast) approaching the polar-ordered states. Interestingly, the duration
of this dwelling time seems to be very sensitive to changes in the overall incorporation
rate 𝜎𝑎𝑏 [Fig. 3.6(a)]. In addition, in accordance with our agent-based simulations
[Fig. 3.3(b)] and as found in previous studies [20, 61, 63, 84, 85, 96, 98, 127, 173,
174], the order parameter 𝜙𝑏 shows a discontinuity and hysteresis as a function of a
control parameter [Fig. 3.1(a)], here the incorporation amplitude 𝜎𝑎𝑏 [Fig. 3.6(b)].
Varying both 𝜎𝑎𝑏 and 𝜎𝑏𝑏, we obtain the bifurcation diagram (for the stationary state)
shown in Fig. 3.6(c); please refer to Appendix 3.5.4 for a bifurcation diagram as a
function of density 𝜌kin and 𝜎𝑏𝑏. The effects of coagulation of ordered clusters and
incorporation of disordered clusters by ordered clusters on the emergence of polar
order are quite distinct. While the amplitude of the incorporation processes (𝜎𝑎𝑏)
appears to regulate the transition from a disordered to a polar-ordered state, the
amplitude of the coagulation processes of ordered clusters (𝜎𝑏𝑏) affects the character
of this phase transition. For small 𝜎𝑏𝑏 (weak propensity for coagulation of ordered
clusters), the transition is continuous, and becomes discontinuous only above a
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Figure 3.6 a) Evolution of the mass fraction 𝜙𝑏, for different values of 𝜎𝑎𝑏 (𝜎𝑏𝑏 = 1). b)
Hysteresis of the stationary mass fractions 𝜙𝑏 as a function of 𝜎𝑎𝑏. c) Bifurcation diagram
of stationary mass fractions 𝜙𝑏 as a function of 𝜎𝑎𝑏 and 𝜎𝑏𝑏. The dashed lines mark the
upper and lower boundaries of the bistable region, respectively. The coloured lines mark the
position of the data shown in b). d) Stationary total cluster distribution 𝑎𝑘 + 𝑏𝑘 as a function
of the system size 𝑀. e) Stationary mean cluster size 〈𝑘〉 as a function of the system size 𝑀.
In panels d-e we used 𝜎𝑎𝑎 = 1.4, 𝜎𝑎𝑏 = 0.2, 𝜎𝑏𝑏 = 0.8, 𝜇0 = 0.01 and 𝜔0 = 10−5.

certain threshold value, with the ensuing bistable parameter regime broadening as
𝜎𝑏𝑏 increases further.

Finally, we checked whether the kinetic model also exhibits microphase separ-
ation, as observed in other models [15, 63, 69, 85]. To this end, we increased 𝑀
(adapting the area 𝐴 to keep the density constant) and recorded its influence upon
the stationary total cluster distribution 𝑛𝑘 = 𝑎𝑘 + 𝑏𝑘, as well as the stationary mean
cluster size 〈𝑘〉 [Fig. 3.6(d,e)]. Notably, both become independent of system size
above a certain value of 𝑀. We conclude that the polar phase of the kinetic model
also exhibits arrested growth and hence microphase separation, like that observed
in polar active systems [15, 63, 69, 85]. This contrasts with the single-species model
of Peruani et al. [101, 133, 134] which exhibits a continuous order transition from
a state with microscopic clusters towards a macrophase separated state.
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3.3 Discussion

An intriguing phenomenon in polar active matter is not only the emergence of polar
ordered clusters, but also the fact that the ordered state exhibits microphase separ-
ation into dense, polar-ordered clusters and a gas-like disordered filament reservoir.
Here we asked how the kinetic processes of cluster assembly and disassembly might
reveal the underlying mechanism. To answer this question we used a two-pronged
approach based on agent-based simulations and a corresponding cluster-level kinetic
theory. Our main conclusion is that microphase separation in polar active matter is
a cyclic self-organizing process of particle clusters of different sizes and degrees of
polar order.

Using agent-based simulations we monitored the kinetic processes at both the
particle and the cluster level and thereby determined the time evolution of the
cluster statistics in terms of cluster size and degree of polar order. Moreover, these
simulations also allowed us to fully relate the mesoscopic cluster dynamics to the
underlying microscopic dynamics of individual filaments. Taken together, this
yielded the following key insights: First, we find two qualitatively distinct parameter
regimes, one where polar order emerges spontaneously and another which requires
the formation of a nucleus and its subsequent growth. Our simulations show that the
nucleation barrier is not determined by either cluster size 𝑘 or cluster order 𝑝𝑘 alone,
but by the polar moment 𝑆𝑘 = 𝑘 · 𝑝𝑘. Second, once a critical nucleus has formed,
an intricate dynamics of cluster assembly and disassembly processes is triggered
that leads to microphase separation between high-density, polar-ordered clusters
and a low-density, disordered background. It entails the growth of clusters by the
incorporation of disordered filaments, the breakup of larger into smaller sub-clusters
and their subsequent growth (cluster self-replication), coalescence of clusters and
evaporation of filaments from ordered clusters into the disordered background.
We have quantified these processes in terms of the probability currents between
clusters of different size 𝑘 and degree of polar order 𝑝. This analysis suggests that
the dynamics that maintains a non-equilibrium steady state is a cyclic dynamics in
(𝑘, 𝑝) phase space.

These results suggested that the dynamics of the active filament system can be
understood in terms of kinetic processes at the mesoscopic level of clusters, i.e. by
considering the assembly and disassembly of clusters with different size and degree
of order. To test this hypothesis we formulated a simple kinetic model that emulates
the key processes identified in the agent-based simulations and analyzed the same
or analogous observables. The kinetic model shows the same phenomenology as
the agent-based simulations, including similar probability flows in phase space
and the same topology of the bifurcation diagram. Most importantly, the kinetic
model exhibits arrested growth and hence microphase separation. That opens a
new perspective on this phenomenon: instead of focusing on a characterization of



3.3 Discussion 61

the spatio-temporal patterns we identify the relevant kinetic processes that govern
the probability flow in phase space.

We propose that the application of a similar methodology, namely the identific-
ation of key kinetic processes and their incorporation into a kinetic model, might
be able to capture the essential dynamics of other collective phenomena in active
systems, such as nematic laning [86, 88, 99], vortex formation [17, 128, 150] or
coexisting types of order [1, 71, 129]. In particular, the flow in a properly defined
phase space might reveal, as we show here, the mechanisms that underlie the
emergence and maintenance of the corresponding non-equilibrium steady states.
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3.4 Appendix: WASP simulations

In the following, we shortly discuss the implementation of the agent-based simula-
tions of weakly-aligning self-propelled polymers (WASP’s). For a detailed descrip-
tion please refer to the Supplemental Material of Ref. [1].

3.4.1 WASP simulation model

We consider a system of 𝑀 polymer filaments, each with a fixed length 𝐿 and a
width 𝑑. Individual polymers are modelled as discrete, slender chains consisting of
𝑁 − 1 identical cylindrical segments connected by 𝑁 identical spherical joints; for
an illustration see Fig. 3.7. In this way, each point along the polymer’s contour has
a well-defined, smooth surface and tangential direction, reducing artificial friction
effects due to the discretization present in bead-spring-like representations [108].

The polymers perform a trailing motion on a planar surface: as the head of
the polymer changes its direction the tail strictly follows the trajectory traced out
by the head. This resembles the typical situation observed in actomyosin motility
assays where in a planar geometry actin filaments are propelled along their contour
by immobilized molecular motors and where motion orthogonal to the filament
contour is suppressed [15, 20]. In these experimental setups, it is observed that the
head of each polymer performs a persistent random walk (with persistence length
𝐿𝑝), and, in addition, changes its direction due to local alignment interactions when
colliding with other polymers.

In order to model this dynamics, we describe each polymer 𝑛 by the positions
r(𝑛)
𝑗

of its spherical joints 𝑗, where 𝑛 ∈ {0, 1, . . . , 𝑀 − 1} and 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}
(with the head of a polymer denoted by 𝑗= 0); for an illustration see Fig. 3.7. We
assume that—given the direction u(𝑛)

0 of a polymer’s head—its equation of motion
reads:

𝜕𝑡r
(𝑛)
0 = 𝑣 u(𝑛)

0 − Frep = 𝑣

(
cos 𝜃(𝑛)0
sin 𝜃(𝑛)0

)
− Frep . (3.1)

Here 𝜃(𝑛)0 denotes the 𝑛th polymer’s orientation and 𝑣 the velocity of a free polymer.
Frep is a weak repulsive force (the exact definition of which we will give later in
Eq. (3.7)) which only acts when the filament head overlaps with the head or tail
of another polymer. The speed 𝑣(𝑛) of filament 𝑛 is given by the absolute value of
𝜕𝑡r

(𝑛)
0 .
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Figure 3.7 Illustration of interactions in the filament model. The head of a filament 𝑛
collides with the body (contour) of an adjacent filament 𝑚 between bead position r(𝑚)1 and
r(𝑚)2 . The impact angle between the two filaments is given by Δ𝜃𝑛𝑚 := 𝜃(𝑛)

0 − 𝜃(𝑚)
2 , where

𝜃
(𝑛)
0 and 𝜃(𝑚)

2 denote the orientation of the head of the 𝑛th polymer and the orientation of the
tangent to the body of the 𝑚th polymer where the collision happens. In the illustrated case
the latter is given by the orientation of the 2nd cylinder of the 𝑚th polymer (which in turn is
given by the orientation of the normalized bond vector, u(𝑚)

2 := (r(𝑚)1 − r(𝑚)2 )/|r(𝑚)1 − r(𝑚)2 |).
If the collision happens at the head of the 𝑚th filament, 𝜃(𝑚)

0 is given by the orientation of
its director u(𝑚)

0 . The distance vector (red arrow) Δr𝑛𝑚 = (r(𝑛)0 − r(𝑚) )shDist is the normal
vector to the center-line of filament 𝑚 between r(𝑚)1 and r(𝑚)2 , connecting to r(𝑛)0 .

The equation of motion for the orientation 𝜃(𝑛)0 of the 𝑛th polymer’s head is given
by

𝜕𝑡𝜃
(𝑛)
0 = −

𝛿𝐻
(𝑛)
0

𝛿𝜃
(𝑛)
0

+
√︄

2𝑣
𝐿𝑝

𝜉 , (3.2)

where the first term denotes the effect of other filaments on the orientation of
filament 𝑛, and 𝜉 is an angular random white noise with zero mean and unit
variance; the amplitude of the noise ensures that the value of the path persistence
length of a free polymer is given by 𝐿𝑝. The effective potential 𝐻 (𝑛)

0 acting on the
director of filament 𝑛, is given by a sum 𝐻

(𝑛)
0 =

∑
𝑚𝑈

(𝑛)
𝑚 over the alignment potentials
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𝑈
(𝑛)
𝑚 . These potentials describe the alignment interaction between filament 𝑚 and

the head of filament 𝑛, and will depend on both the relative distance and the relative
orientation of these filaments. To define these potentials we introduce the distance
vector [Fig. 3.7]

Δr𝑛𝑚 =

(
r(𝑛)0 − r(𝑚)

)
shDist

, (3.3)

which denotes the vector connecting the head of polymer 𝑛 with that part of the
body (contour) of an adjacent polymer 𝑚 that has the shortest possible distance
to the head [red arrow in Fig. 3.7]. We signify the segment 𝑗 on filament 𝑚 that
filament 𝑛 collides with as collision segment. The corresponding orientation of this
collision segment is denoted by 𝜃(𝑚)

𝑗
[Fig. 3.7]. With these definitions, we can now

define the alignment potential as

𝑈
(𝑛)
𝑚 = 𝐶 ( |Δr𝑛𝑚 |) ×

(
𝐴𝑝 (Δ𝜃𝑛𝑚) + 𝐴𝑛 (Δ𝜃𝑛𝑚)

)
, (3.4)

where Δ𝜃𝑛𝑚 = 𝜃
(𝑛)
0 −𝜃(𝑚)

𝑗
denotes the impact angle of the collision of the head

of polymer 𝑛 with the body of filament 𝑚. The first factor 𝐶 ( |Δr𝑛𝑚 |) accounts
for the spatial dependence of the potential. For simplicity, we assume a potential
that vanishes outside of an interaction radius 𝑑 and increases linearly for smaller
distances:

𝐶 ( |Δr𝑛𝑚 |) =
{

0 if |Δr𝑛𝑚 | >𝑑
(𝑑 − |Δr𝑛𝑚 |)/𝑑 else . (3.5)

The second factor is a sum of functions 𝐴𝑝/𝑛 that describe the polar/nematic
alignment-torques present during a collision. They are given by

𝐴𝑝(𝜙) = −
𝜑𝑝𝑣

(𝑛)

𝑑
cos𝜙 , (3.6a)

𝐴𝑛(𝜙) = −𝜑𝑛𝑣
(𝑛)

𝑑
cos 2𝜙 , (3.6b)

with the amplitudes 𝜑𝑝/𝑛 characterizing the typical angular displacement in a
single collision (see Supplemental Material of Ref. [1]). A variation of 𝜑𝑝/𝑛 allows to
independently and continuously vary the preferences for polar or nematic alignment.
As was shown in Ref. [1], the WASP simulation model shows the formation of both
polar and nematic patterns, depending primarily on the relative alignment strength
𝛼=𝜑𝑛/𝜑𝑝.

To prevent an unphysical aggregation of filaments—that can be triggered by
the alignment torques when too many filaments overlap at the same location—we
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added a very weak repulsion force Frep to Eq. (3.1). It is given by

Frep = −𝑠
∑︁
𝑚

𝐶 ( |Δr𝑛𝑚 |)
Δr𝑛𝑚
|Δr𝑛𝑚 |

, (3.7)

where 𝑠= 0.1 denotes the small amplitude.
In actomyosin motility assays [1, 15, 16, 19, 20] one observes that the polymer

tails follow the movement of their respective filament heads. In our agent-based
model, we emulate this trailing motion as follows: First, in order to assure tangential
motion, for a given filament 𝑛, each joint r(𝑛)

𝑗
in its tail ( 𝑗 > 0) is assumed to move

in the direction of 1
2 (u

(𝑛)
𝑗+1 +u(𝑛)

𝑗
), corresponding to the average of the segment’s

orientations adjacent to that joint [see Fig. 3.7]. Second, to also maintain an average
length 𝑏 of the cylindrical segments between the bonds we assume a linear (Hookian)
restoring force with spring coefficient 𝐾𝑠. Taken together, the equation of motion of
a tail joint 𝑗 is defined as

𝜕𝑡r
(𝑛)
𝑗

= 𝐾𝑠

(���r(𝑛)𝑗 −r(𝑛)
𝑗−1

��� − 𝑏
) 1
2

(
u(𝑛)
𝑗+1 + u(𝑛)

𝑗

)
. (3.8)

We chose 𝐾𝑠 = 200 sufficiently large to keep the cylinder length close to its average
value 𝑏.

In our simulations we observed that the performance of our algorithm signi-
ficantly depended on the number of times the alignment torques, Eq. (3.6), were
calculated. We, therefore, were searching for an averaging scheme that would
reduce the computation of the alignment torques to at most once per filament per
time step. The main idea put forward in Ref. [1]—and also shown there not to
affect the system’s dynamics—is to implement an averaging scheme as follows: One
replaces the sum in 𝐻 (𝑛)

0 by an averaged quantity 𝐻̃ (𝑛)
0 defined as

𝐻̃
(𝑛)
0 = 𝐴𝑝

(
Δ𝜃(𝑛)𝑝

)
|q𝑝 | + 𝐴𝑛

(
Δ𝜃(𝑛)𝑛

)
|Δẽ𝑛 | . (3.9)

The first term in Eq. (3.9) (polar interaction) is motivated as follows: Instead of
calculating the polar torques, Eq. (3.6a), for each adjacent polymer 𝑚 and then
summing over all these polymers with weights given by the repulsive linear potential
𝐶( |Δr𝑛𝑚 |), we determine the quantity

q𝑝 =
∑︁
𝑚

𝐶 ( |Δr𝑛𝑚 |)
𝑣(𝑚)

𝑣
𝑒
𝑖𝜃

(𝑚)
𝑗 . (3.10)

It defines the average in the velocities of all the collision segments 𝑗 over all filaments
𝑚 weighted by the strength of the impact, 𝐶 ( |Δr𝑛𝑚 |), of filament 𝑛 with them. In
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other words, this vector characterizes the weighted (by interaction strength) average
of the velocities of the collision segments. We then use the orientation 𝜃𝑝 = arg(q𝑝)
of the average velocity to calculate the average exerted torque, 𝐴𝑝

(
Δ𝜃(𝑛)𝑝

)
using the

average polar impact angle defined as Δ𝜃(𝑛)𝑝 = 𝜃
(𝑛)
0 − 𝜃𝑝. Note that the magnitude

of q𝑝 measures the average strength of all the polar impacts on filament 𝑛. Here
we have additionally introduced a velocity dependence (𝑣(𝑚)/𝑣 in Eq. (3.10)) to
emulate that polar alignment in the motility assay is mainly caused by friction
between filaments. With this, our agent based model can also be used in cases
where filament velocities are broadly distributed. Since the filament velocity in
the present study is constant and only very weakly influenced by Frep, this velocity
dependence can also be omitted without affecting the results.

The second term in Eq. (3.9) is motivated in a similar fashion as the first one:
Instead of calculating Eq. (3.6b) for each adjacent polymer 𝑚, we define a weighted
average direction of the connecting vector Δẽ𝑛

Δẽ𝑛 :=
∑︁
𝑚

𝐶 ( |Δr𝑛𝑚 |)
Δr𝑛𝑚
|Δr𝑛𝑚 |

. (3.11)

weighted, again, by the strength of the respective impact.
The overall magnitude of the repulsive potential to nematic alignment is given

by the absolute value of Δẽ𝑛.
Similarly as for the polar case, we used the orientation 𝜃𝑛 of the vector Δẽ𝑛

to define an average nematic impact angle as Δ𝜃(𝑛)𝑛 = 𝜃
(𝑛)
0 − 𝜃𝑛, which we used to

compute the average nematic alignment torque in Eq. (3.9). Note that the nematic
term in Eq. (3.9) reads

𝐴𝑛(𝜃) =
𝜑𝑛𝑣

(𝑛)

𝑑
cos 2𝜃, (3.12a)

since 𝜃𝑛 is derived from the normal vectors to the polymer contours (and not the
tangential vectors, as it was done before).

3.4.2 WASP implementation and parameters

Algorithmically, we integrate the dynamics by a straightforward Euler algorithm
with a time step of 2 × 10−3, which was implemented in C++ using a heavily
parallelized architecture in OpenMP [184]. Maximal performance of the simulation
was achieved by employing a cell algorithm and Verlet lists [164] that exploit the
fact that filament interactions are short-ranged. This implementation resulted in a
practically linear scaling of simulation times with 𝑀 (the number of filaments in the
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system). Throughout this work and if not stated otherwise, we fixed some of the
model parameters to values similar to those used in Ref. [1]: filament aspect ratio
𝐿/𝑑 = 21, discretization 𝑁 = 5, persistence length 𝐿𝑝 = 31.75𝐿, and velocity 𝑣= 1.
The polar alignment strength was fixed to 𝜑𝑝 = 0.036 ≈ 2.1◦ to obtain collision
statistics similar to those observed experimentally [20]. Moreover, we used a system
consisting of 104 filaments and a periodic simulation box of length 𝐿box = 81.3𝐿.
Simulations were started with random initial conditions, i.e. filaments were placed
at random positions and with random orientations in the simulation box. Time is
measured in units of the correlation time 𝐿𝑝/𝑣 and length measured in units of
filament length 𝐿.

3.4.3 Cluster polar order and other order parameters

As described in the main text, we decomposed the assembly of polymers into clusters
of close-by polymers. To that end, we define the distance between two polymers
𝑛 and 𝑚 as the length of the shortest one of the set of distance vectors r(𝑛)

𝑗
− r(𝑚)

𝑖

between their nodes 𝑗 and 𝑖. We calculated all distances between adjacent polymers,
and assigned polymers to the same cluster if their distance was smaller than the
bond length 𝑏.

Next, to properly define the degree of polar order for each of these clusters, we
defined the net polar order of a cluster (of size 𝑘) as 𝜋𝑘 := 𝑝𝑘 − Δ𝑘, where Δ𝑘 denotes
the expected nonzero polar order of clusters where the orientation of each filament
is chosen at random; the cluster polar order was defined as 𝑝𝑘 := 1

𝑘
|∑𝑘

𝑗=1 exp(𝑖𝜃 𝑗) |.
The quantity Δ𝑘 is obtained by calculating the mean polar order Δ𝑘 = 1

𝑘
〈|∑𝑘

𝑗=1 𝑒
𝑖𝑂 𝑗 |〉

with the filaments’ orientations 𝑂 𝑗 uniformly distributed in the interval [−𝜋;𝜋].
Explicitly writing out the absolute value, Δ𝑘 reads

Δ𝑘 =
1
𝑘

〈��� 𝑘∑︁
𝑗=1

𝑒𝑖𝑂 𝑗

���〉 =
1
𝑘

〈( 𝑘∑︁
𝑚,𝑛=1

𝑒𝑖(𝑂𝑚−𝑂𝑛)
)1/2〉

. (3.13)

By splitting up the double sums and introducing the shorthand notation 𝛿𝑛𝑚 =𝑂𝑚 −𝑂𝑛,
this can be further rewritten as

Δ𝑘 =
1
𝑘

〈( 𝑘∑︁
𝑚=𝑛

1 +
𝑘∑︁

𝑚=1

𝑘∑︁
𝑛=𝑚+1

𝑒𝑖𝛿
𝑛
𝑚 +

𝑘∑︁
𝑚=1

𝑚−1∑︁
𝑛=1

𝑒𝑖𝛿
𝑛
𝑚

)1/2〉
. (3.14)
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Evaluating the first sum and renaming the indices in the last sum, one obtains

Δ𝑘 =
1
𝑘

〈(
𝑘 +

𝑘∑︁
𝑚=1

𝑘∑︁
𝑛=𝑚+1

𝑒𝑖𝛿
𝑛
𝑚 +

𝑘∑︁
𝑚=1

𝑘∑︁
𝑛=𝑚+1

𝑒−𝑖𝛿
𝑛
𝑚

)1/2〉
. (3.15)

With the shorthand notation
∑𝑘
𝑚=1

∑𝑘
𝑛=𝑚+1 =:

∑
(𝑚,𝑛) this can be written as

Δ𝑘 =
1
𝑘

〈(
𝑘 + 2

∑︁
(𝑚,𝑛)

cos 𝛿𝑛𝑚
)1/2〉

. (3.16)

Finally, by expanding the square root in powers of cos 𝛿𝑛𝑚 one finds

Δ𝑘 =
1
𝑘

〈√
𝑘 + 1

√
𝑘

∑︁
(𝑚,𝑛)

cos 𝛿𝑛𝑚 − 1
2𝑘3/2

∑︁
(𝑚,𝑛)

cos2 𝛿𝑛𝑚

+ 1
2𝑘5/2

∑︁
(𝑚,𝑛)

cos3 𝛿𝑛𝑚 +O(𝑘−3/2)
〉
. (3.17)

Since 〈cos 𝑗 𝛿𝑛𝑚〉 = 0 for 𝑗 odd and 〈cos2 𝛿𝑛𝑚〉 = 1
2 , this can be further simplified (note

that, for 𝑛≠ 𝑢 or 𝑚≠ 𝑣, terms of the form 〈∑(𝑢,𝑣)
∑

(𝑚,𝑛) cos 𝛿𝑣𝑢 cos 𝛿𝑛𝑚〉 can be fac-
torized and thereby give no contribution in Eq. (3.17)). By evaluating the remaining
sum, one obtains

Δ𝑘 =
1
√
𝑘

(
1 − (𝑘 − 1)

8𝑘

)
+O(𝑘−5/2)

=
1
√
𝑘

(
7
8
+ 1
8𝑘

)
+O(𝑘−5/2). (3.18)

In the main text, we defined the cluster polar order parameter as an average of
the net order 𝜋𝑘 weighted by the respective cluster size 𝑘:

Ω𝑝 := 1
𝑀

∑︁
{𝑐}

𝜋
(𝑐)
𝑘
𝑘(𝑐) (3.19)

This has to be distinguished from the alternative definition of a global polar
order parameter

P =
1
𝑀

����� 𝑀−1∑︁
𝑗=0

𝑒𝑖𝜃
( 𝑗)
0

����� , (3.20)
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Figure 3.8 Global order parameters: Temporal evolution of the global polar order para-
meters Ω𝑝 and P , and the global nematic order parameters Ω𝑛 and N , as indicated in the
graph. Parameters: 𝛼= 2.

which is an average over all filament orientations independent of which clusters
they belong to. The temporal evolution of both of these global order parameters,
Ω𝑝 and P , is shown in Fig. 3.8. Although they are related quantities, there are clear
differences:

(i) In the disordered phase, Ω𝑝 still displays a nonzero value stemming from
the small average polar order of the clusters present in the system. In contrast, P
is almost zero in the disordered phase as it is averaged over all filaments in the
system, whose orientations cancel out. (ii) In the ordered phase, however, Ω𝑝 is
smaller than P as single ‘ordered’ clusters are not contained in the sum for Ω𝑝;
note that 𝜋(1) = 0. Throughout this work we prefer to use Ω𝑝, since it is more
sensitive to polar structures which form in independent parts of a system, but whose
orientations are not yet correlated. For example, two non-overlapping polar clusters
of the same size and order, but opposite orientations, would yield P = 0, whereas
their presence would be detected with Ω𝑝.

Similarly, one can define two distinct types of nematic order parameters, Ω𝑛 and
N , by simply replacing every angle 𝜃 with 2𝜃 in the above definitions; see Fig. 3.8
for an example. However, since in our study we only investigate polar structures
and in this case the nematic order parameter is slaved to the polar order, it is of
little importance for our analysis.

3.4.4 Time scale analysis

3.4.4.1 Measurement of 𝑡0, 𝑡𝑑 and 𝜏

To obtain the initial time scale 𝑡0, the dwell time 𝑡𝑑, and growth time 𝜏 from our
data, we analysed the temporal evolution of the cluster polar order parameter
Ω𝑝(𝑡) (Fig. 3.8). To this end, we looked for a fit function 𝑓 (𝑡) for Ω𝑝(𝑡), which



70 Microphase separation in active filament systems is maintained by
cyclic dynamics of cluster size and order

should capture the main features of its temporal evolution: (i) fast rise towards the
quasi-stationary, disordered regime (within a short time 𝑡0), (ii) plateau until 𝑡𝑑,
(iii) exponential growth starting at time 𝑡𝑑. In our analysis we decided to use the
following piecewise defined function

𝑓 (𝑡) =


𝑎
(
1 − 𝑒−𝑡/𝑡0

)
for 𝑡 < 𝑡𝑑

𝑎
(
1 − 𝑒−𝑡𝑑/𝑡0

)
𝑒(𝑡−𝑡𝑑)/𝜏 for 𝑡 > 𝑡𝑑 .

(3.21)

Here 𝑎 is a fit parameter that quantifies the small, yet nonzero value of Ω𝑝 during
the quasi-stationary, disordered regime before nucleation. The fit was made up to
the time point at which Ω𝑝(𝑡) > 0.5 for the first time, that is before Ω𝑝(𝑡) started
to saturate again.

3.4.4.2 System size dependence of 𝑡𝑑 and 𝜏

In the main text, we studied how the characteristic times 𝑡𝑑 and 𝜏 depend on the
relative alignment strength 𝛼 [Fig. 3.2(d)]. Here, we additionally investigate how
these quantities depend on the system size; see Fig. 3.9(a). We find that the expected
dwell time 〈𝑡𝑑〉 scales inversely with the area of the system, 𝐿2box. This indicates
that—for each given set of parameters—there is a constant probability per unit
of area to nucleate a cluster large enough to trigger the exponential increase of
order in the system. Hence, the formation of critical nuclei occurs independently in
different parts of the system.

We further observe that the growth time 𝜏 is approximately independent of
system size (𝜏 ≈ 4.5), although 𝐿box is increased by more than a factor of 3. This
is probably caused by the fact that on the one hand the mass of ordered clusters
growths (after a critical nucleus has formed) exponentially with time, but that on
the other hand the total filament mass of ordered clusters in an ordered system
(i.e. the mass that has to be incorporated into the ordered clusters during the
growth process) grows only approximately proportionally to the size of the system.
It therefore takes only a very short time for the additional filaments (introduced by
the increase in system size) to be incorporated into the ordered clusters. Hence, in
order to observe a significant change of 𝜏, one would have to increase the number of
filaments in the system (and thus 𝐿box) by far more than a small factor; this however
is beyond the numerically feasible limit.

3.4.4.3 Variance of the nucleation time

We also recorded the statistics of nucleation times 𝑝(𝑡𝑑) at one point in parameter
space and for a small value of 𝛼 (Fig. 3.9(b)). Similar as in classical nucleation
theory [179, 180], it exhibits an exponential distribution of times. This is also
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Figure 3.9 System size dependence and distribution of waiting times. (a) Waiting time
𝑡𝑑 and growth time 𝜏 as a function of the system size 𝐿box in units of the polymer length 𝐿.
Solid lines denote average values (taken over 90 − 100 independent simulations for each
system size); data are shown as triangles and circles for 𝑡𝑑 and 𝜏, respectively. The black
dashed line indicates a scaling law proportional to the area of the system. (b) Histogram of
waiting times 𝑡𝑑 taken over an ensemble of 1000 simulations. The black solid line shows an
exponential waiting time distribution 𝑃(𝑡𝑑) with mean 〈𝑡𝑑〉 = 156. Parameters: 𝜌𝐿2 = 1.51,
𝛼= 1.583 for (a) and 𝛼= 1.67, 𝐿box = 81.3𝐿 for (b).
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Figure 3.10 Coefficient of variation for the dwell time 𝑡𝑑 , 𝐶𝑉 =
√︁
Var[𝑡𝑑]/〈𝑡𝑑〉, as a function

of 𝛼. Parameters and data are identical to Fig. 3.2(d).
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reflected in the coefficient of variation 𝐶𝑉 =
√︁
Var[𝑡𝑑]/〈𝑡𝑑〉 ≈ 1, see Fig. 3.10. With

increasing 𝛼, however, we observe that the average dwell time 𝑡𝑑 shrinks until
eventually the system instantly starts to develop polar order [cf. Fig. 3.2(d)].

This decrease of 𝑡𝑑 is accompanied by a decrease of the coefficient of variation
[Fig. 3.10], indicating that the waiting times are no longer exponentially distributed.
Since 𝑡𝑑 would always be zero in the limit of an instantaneous nucleation (and would
also not fluctuate any more), this is in accordance with the above observation.

The subsequent increase of the coefficient of variation (after the minimum at
𝛼≈ 2.3) is an artefact. It can be attributed to an increased error of the fit used to
determine 𝑡𝑑; cf. Eq. (3.21). This increase in error is due to the fact that Ω𝑝 no
longer shows a clear plateau after reaching the metastable state but instead directly
continues to grow exponentially towards macroscopic order.

3.4.5 Cluster stability analysis

3.4.5.1 Critical polar moment

As discussed in the main text, we probed the stability of the disordered state by
inserting perfectly ordered clusters of size 𝑘 (and hence polar moment 𝑆 = 𝑘) into
systems at time points where they were still in the metastable disordered state.
Specifically, we chose the time point 𝑡 = 5 > 𝑡0, sufficiently later than the time
when the systems had reached the metastable state. To keep the overall filament
density constant, we extracted 𝑘 filaments at random and used them to construct the
clusters with which we probed the system. To this end, we stacked these filaments
in parallel, with a transversal distance 𝑑; see Fig. 3.4(a) for an illustration of such a
cluster. We inserted the so formed cluster at a randomly chosen position and with
random initial orientation.

We then monitored the temporal evolution of the cluster polar order parameter
Ω𝑝 until a given time point 𝑡 = 25, which we chose such that it is much larger than
𝜏. Figure 3.11 shows a scatter plot of 30 realizations for each set of parameters as
a function of 𝑆, for two different values of the relative alignment strength 𝛼. As
can be inferred from the statistical distribution of the observed cluster polar order
parameters Ω𝑝 (at times 𝑡 � 𝜏), there is no hard threshold for the cluster size above
which the system always develops polar order. Instead, the probability that insertion
of the artificial nucleation seed leads to order formation increases gradually with
𝑆 over some finite width. We define the critical value 𝑆crit as that value of 𝑆 which
leads to the emergence of polar order with probability 1

2 . To determine 𝑆crit from the
recorded data, we fitted the averaged polar order parameter (which is proportional
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Figure 3.11 Cluster stability analysis. Scatter plots of the cluster polar order parameter Ω𝑝

at 𝑡 = 25� 𝜏 (gray open circles) for different initial sizes 𝑆 of artificially inserted perfectly
ordered clusters; for each set of parameters we conducted 30 independent simulations
runs. The left and right panel show the results for relative alignment strengths 𝛼= 1.25
and for 𝛼= 1.67, respectively. The dashed black and solid red line indicate the average of
the polar order parameter and a sigmodial fit, respectively. Vertical orange lines indicate
the approximate values for the critical polar moment 𝑆crit.

to the nucleation probability) with a sigmoid function of the form

𝑓 (𝑆) = 𝑎 + 𝑏

1 + 𝑒−(𝑆−𝑆crit)/𝑐
, (3.22)

where 𝑎, 𝑏 and 𝑐 are fitting parameters (Fig. 3.11).
As an alternative to inserting artificial clusters to study nucleation in regions of

parameter space where 𝑆crit is large, it may be worth considering in future studies
an approach that facilitates the study of rare events through a strategy of cloning
trajectories and/or modifying the underlying dynamics [185]. This would enable
an investigation of spontaneous nucleation events even where 𝑡𝑑 is large. These
methods have recently been applied to study other active matter systems [186–188].

3.4.5.2 Critical polar moment and spontaneous nucleation

We have tested whether the value of 𝑆crit—as obtained by insertion of artificial
seeds—faithfully predicts the nucleation threshold for the spontaneous formation
of polar order. To this end, we performed simulations in a parameter range where
𝑡𝑑 is small; see Fig. 3.12(a) for a single simulation run for 𝛼= 1.67. As can be
inferred from this figure, the cluster with the largest polar moment 𝑆(1) needs
several ‘attempts’ before it finally succeeds in triggering the formation of polar
order in the system. Given a threshold value 𝑆crit, one expects that each time 𝑆(1)
exceeds this threshold it leads to polar order formation only with a certain success
probability 𝑝crit. This implies that—sampling over many realization—the number
of attempts 𝑛× needed to trigger formation of polar order is given by a geometric
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Figure 3.12 Spontaneous formation of critical nucleation clusters. (a) Temporal evolution
of the largest polar moment 𝑆 (1) in a single simulation run (blue solid line). The orange
line represents the value of the critical polar moment 𝑆crit ≈ 84 as obtained from Fig. 3.11
(right panel). Before the system eventually exhibits rapid formation of polar order, there
are three instances where it crosses that line but is not successful in developing polar order.
Parameters: 𝛼= 1.67, Δ𝑡 = 1.5. (b) Probability distribution 𝑃(𝑛×) of the number of times
𝑛× the largest polar moment 𝑆 (1) exceeds the threshold 𝑆crit before it finally succeeds in
forming polar order, obtained from the simulation data (orange and cyan line, for 𝛼= 1.67
and 𝛼= 1.8, respectively), in comparison with a geometric distribution (blue line) with
parameter 𝑝= 0.5. The dashed vertical orange and cyan line represent the mean value of the
simulation data (〈𝑛×〉 = 2.125 and 〈𝑛×〉 = 2.02), for 𝛼= 1.67 and 𝛼= 1.8, respectively. The
expectation value of the geometric distribution for 𝑝= 0.5 (E(𝑛×) = 2) is shown as a blue
vertical line. Data were obtained in 892 simulation runs for each 𝛼. For 𝛼= 1.8 𝑆crit ≈ 75
was obtained with the same method as shown in Fig. 3.11 (data not shown).

distribution,
𝑃(𝑛×) = 𝑝crit (1 − 𝑝crit)𝑛×−1 . (3.23)

We define the critical cluster size such that if a cluster with a polar moment 𝑆crit is
formed randomly it should—on average—in half of the cases lead to the formation
of polar order, i.e. the success probability should be 𝑝crit = 0.5.
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Figure 3.13 Scatter plot for the size 𝑘 and order 𝑝 of the clusters with the largest polar
moment 𝑆 (1) . At time point 𝑡∗ = 0, perfectly ordered clusters of size 𝑘= 140 are inserted
into the system and their temporal evolution is monitored for 431 independent realizations.
The ensuing probability clouds at different time points 𝑡∗ are indicated in the graph with
different color. As time progresses the cloud moves on average along a trajectory indicated
by the black solid line, which depicts the average path of 〈𝑆 (1)〉 in 𝑘-𝑝 space; for comparison
the average path from Fig. 3.2(f) is shown in gray. The red circles mark the average 〈𝑆 (1)〉
at equidistant timepoints (Δ𝑡 = 2, starting at 𝑡∗ = 0). The dashed line indicates 𝑆crit ≈ 84.
Same parameters as for Fig. 3.2(f).

Indeed, our simulations show that the success probability closely resembles a
geometric distribution [Fig. 3.12(b)]; for two values of 𝛼 we sampled over 892
realizations with different random initial conditions and the same threshold value as
found in the simulations using artificially inserted clusters. Moreover, the geometric
distribution and the histogram obtained from our simulation data show the same
mean value.

3.4.5.3 Course of nucleation in k-p space

As discussed in the main text and shown in Fig. 3.2(f) we monitored and sampled the
temporal evolution of clusters with the largest polar moment 𝑆(1) in 𝑘−𝑝 space for
a sample size of 892 independent realizations. We tested whether our agent-based
simulations take the same path towards polar order also if nucleation is triggered
by insertion of an artificial nucleation seed, instead of waiting for a spontaneous
nucleation and growth event to happen [Fig. 3.2(f))]. To this end, we inserted
perfectly ordered clusters of size 𝑘= 140 into 431 different systems at a time point
𝑡 = 5 where the system was still in a disordered state. As can be inferred from
Fig. 3.13, the probability cloud of 𝑆(1) values rapidly becomes indistinguishable
from the cloud shown in Fig. 3.2(f). Moreover, the center of mass follows, after
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Figure 3.14 Separation line between polar ordered and disordered regions. Illustration
of the heuristic choice for the Separation line between polar ordered and disordered regions
shown in Fig. 3.4(d). The figure shows the numerical values for the positions of the “steps”
of the heuristic division line. The value next to the 𝑘 (𝑝) denotes the position of the left
(lower) boundary of a step on the 𝑘-axis (𝑝-axis). The first step and the corresponding
numerical values are colored for illustration.

some initial transient, the same path as the center of mass of clusters in systems
where these clusters spontaneously emerged. Note that the linear spread of the
cloud at 𝑡∗ = 0 is due to an overlap of the perfectly ordered seeds (placed into the
system) with disordered clusters (already present in the system).

3.4.6 Steady-state flux of the flocking state
In order to obtain the steady state particle fluxes in cluster space shown in Fig. 3.4(d),
we have investigated the exchange of filaments between different cluster size-order
groups using agent-based simulations (WASP). Other than in the kinetic model,
clusters in the agent-based simulations can have any degree of polar order 𝑝𝑘. Thus,
for proper comparison, we ad hoc divided the phase space of cluster size and order
(short: 𝑘−𝑝–space) into two regions, a polar ordered and a disordered region; the
corresponding heuristic separation line is shown in Fig. 3.4(d). All clusters above
the dividing line are defined as polar for our analysis, and all clusters below as
disordered. The line was chosen such that for a system in a disordered state, most
cluster would be contained in the disordered region [cf. upper panel of Fig. 3.2(c)
for an example of the statistics of cluster size and order in a disordered system].
The exact numerical definition of this division line is shown in Fig. 3.14.
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To measure the particle currents, we initiated a set of simulations in a polar-
ordered state and recorded—in short time intervals of Δ𝑡—for each filament 𝑗
the temporal evolution of the size 𝑘(𝑡, 𝑗) and polar order 𝑝(𝑡, 𝑗) of the cluster
to which this filament 𝑗 belonged to. With that information at hand we were
able to record for any given point (𝑘, 𝑝) in the polar-ordered (disordered) region
the number Δ𝑛+(𝑘, 𝑝) of filaments transferred to this point from any point of
the disordered (polar-ordered) region. Likewise, Δ𝑛−(𝑘, 𝑝) counts the number of
filaments being transferred from this point (𝑘, 𝑝) towards any point in the disordered
(polar-ordered) region. The particle currents 𝐽 [𝐷 ↔ 𝑃𝑘,𝑝] (𝐽 [𝑃 ↔ 𝐷𝑘,𝑝]) are then
obtained as the difference of the counts Δ𝑛+(𝑘, 𝑝) and Δ𝑛−(𝑘, 𝑝) divided by the
duration of the simulation. For data shown in Fig. 3.4(d), the simulations were
performed in a steady polar-ordered state over a time period of 𝑡 = 50, and we used
Δ𝑡 = 0.0125; averages were performed over 30 statistically independent realizations.
Furthermore, we also determined

´
d𝑝 𝐽 [𝐷↔ 𝑃𝑘,𝑝] and

´
d𝑝 𝐽 [𝑃↔ 𝐷𝑘,𝑝] which

measure the respective currents irrespective of the specific value of cluster polar
order 𝑝 (inset of Fig. 3.4(d)).

The difference between the current into the disordered region in the agent based
simulations (

´
d𝑝 𝐽 [𝑃↔ 𝐷𝑘,𝑝]) in the inset of Fig. 3.4(d)) and in the kinetic model

(𝐽 [𝑏↔𝑎𝑘] in Fig. 3.5(e)) is likely caused by two different factors. First, in our agent-
based simulations, a classification of clusters into polar-ordered or disordered ones
can only be done on grounds of heuristic criteria [cf. Fig. 3.4(d)]. For instance, this
results in more cluster sizes to be only classified as disordered, when compared with
the kinetic model [cf. “Kinetic model equations” in the Section "Kinetic nucleation
model" below.]. Second, in the kinetic model only disordered clusters of size 𝑘 = 1
can gain mass from polar-ordered clusters [cf. the section “Dynamical and steady-
state properties” below], whereas in our agent-based simulations this happens also
for disordered clusters larger than 1 [cf. Fig. 3.4(d)].

3.4.7 Transition probability

As described in the main text, we measured the transition probabilities that a
filament which is in a cluster of size 𝑘 at time 𝑡 will be in a cluster of size 𝑘′ at a
later time 𝑡 + Δ𝑡.

To determine these transition probabilities, 𝑇 (𝑘′, 𝑡+Δ𝑡 |𝑘, 𝑡), we used an ensemble
of simulations that each was initialized in an ordered state. During each simulation
run we recorded—in time intervals of Δ𝑡 and for each filament 𝑗—the size 𝑘(𝑡, 𝑗)
of the cluster to which the respective filament belonged to. We monitored for each
filament all transition events from 𝑘(𝑡, 𝑗) to 𝑘(𝑡+Δ𝑡, 𝑗) and collected these data in a
histogrammatrix𝑇𝑀×𝑀 (𝑀 is the number of filaments in the system). By normalizing
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Figure 3.15 Transition probabilities. Matrix of transition probabilities, 𝑇 (𝑘′, 𝑡 + Δ𝑡 |𝑘, 𝑡),
in color code, for different values of the time increments Δ𝑡: a) Δ𝑡 = 0.000125, b) Δ𝑡 =
0.00625, c) Δ𝑡 = 0.025, d) Δ𝑡 = 10.0. In all panels we used 𝛼= 1.67.

its columns we obtained an approximation for the transition probabilities:

𝑇 (𝑘′, 𝑡 + Δ𝑡 |𝑘, 𝑡) ≈ 𝑇 (𝑘, 𝑘′)∑
𝑘′0
𝑇 (𝑘, 𝑘′0)

. (3.24)

For the data shown in Fig. 3.4(c) (Δ𝑡 = 0.0125) we averaged the results over five
simulations, which each ran for a timespan of 𝑇 = 50.

The time increment Δ𝑡 used in Fig. 3.4(c) is of the same order of magnitude
as the time a filament needs to travel a distance comparable to its contour length
(𝐿/𝑣= 0.0315). As discussed in the main text, the precise numerical value of this
increment is not important. For comparison, Fig. 3.15(b-c) shows the matrix of
transition probabilities for Δ𝑡 = 0.00625 and Δ𝑡 = 0.025, respectively. As can be
inferred from this figure, they differ only on a quantitative level from Fig. 3.4(c).
For the data shown in Fig. 3.15(b-c), we averaged the results over five simulations,
which each ran for a timespan of 𝑇 = 50. The data shown in Fig. 3.15 (a) and (d)
(Δ𝑡 = 0.000125 and Δ𝑡 = 10) is interpreted and referenced in the discussion of
the main text. We averaged the results for Δ𝑡 = 0.000125 over five simulation
runs, which each ran for 𝑇 = 50. The results for Δ𝑡 = 10 were averaged over 260
simulations which also ran for 𝑇 = 50.
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Figure 3.16 Influence of 𝑚𝑐 and 𝑣𝑐 on 𝑓𝑘. Time evolution of the relative fraction 𝑓𝑘 = 𝑏𝑘/𝑛𝑘
of ordered clusters, for different values of 𝑚𝑐 and 𝑣𝑐. The color gradient indicates different
times as quantified by the corresponding color bar. (a) 𝑚𝑐 = 25 and 𝑣𝑐 = 1 (b) 𝑚𝑐 = 200 and
𝑣𝑐 = 1 (c) 𝑚𝑐 = 25 and 𝑣𝑐 = 80 (d) 𝑚𝑐 = 200 and 𝑣𝑐 = 80.

Note that the apparent discontinuity at 𝑘′≈ 30 is caused by changing from
logarithmically arranged spacing of the binning for large cluster sizes to linear
arranged spacing for small cluster sizes. This is necessary because clusters can only
shrink or grow by integer values but a continuation of the logarithmic spacing would
result in successive bin-distances becoming smaller than one.

3.5 Appendix: Kinetic nucleation model

3.5.1 Kinetic model equations

The temporal evolution of the distributions for the disordered species 𝑎 and the
ordered species 𝑏 is given by:

𝜕𝑡a = F(a, b) , (3.25a)
𝜕𝑡b = G(a, b) , (3.25b)
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where F= (𝐹1, 𝐹2, ..., 𝐹𝑀)𝑇 and G= (𝐺1, 𝐺2, ..., 𝐺𝑀)𝑇 are currents that include all
possible reaction channels:

𝐹1 = 2𝛽2 𝑎2 +
𝑀∑︁
𝑖=3

𝛽𝑖 𝑎𝑖 −
𝑀−1∑︁
𝑖=1

𝛼𝑖,1 𝑎𝑖𝑎1

+ 𝜆
(
2𝑏2 +

𝑀∑︁
𝑖=3

𝑏𝑖

)
−

𝑀−1∑︁
𝑖=2

𝛾𝑖,1 𝑏𝑖𝑎1 ,

(3.26a)

𝐹𝑘 = 𝛽𝑘+1 𝑎𝑘+1 − 𝛽𝑘 𝑎𝑘 +
1
2

𝑘−1∑︁
𝑖=1

𝛼𝑖,𝑘−𝑖 𝑎𝑖𝑎𝑘−𝑖

−
𝑀−𝑘∑︁
𝑖=1

𝛼𝑖,𝑘 𝑎𝑖𝑎𝑘 −
𝑀−𝑘∑︁
𝑖=2

𝛾𝑖,𝑘 𝑏𝑖𝑎𝑘 − 𝜔𝑘 𝑎𝑘,

(3.26b)

and

𝐺1 = 0 , (3.27a)

𝐺𝑘 = 𝜆 (𝑏𝑘+1 − 𝑏𝑘) −
𝑀−𝑘∑︁
𝑖=2

𝜂𝑖,𝑘 𝑏𝑖𝑏𝑘 (3.27b)

+ 1
2

𝑘−2∑︁
𝑖=2

𝜂𝑖,𝑘−𝑖 𝑏𝑖𝑏𝑘−𝑖 + 𝜇0

(
𝑀−𝑘∑︁
𝑖=2

𝑏𝑖+𝑘 −
1
2

𝑘−2∑︁
𝑖=2

𝑏𝑘

)
+

𝑘−1∑︁
𝑖=2

𝛾𝑖,𝑘−𝑖 𝑏𝑖𝑎𝑘−𝑖 −
𝑀−𝑘∑︁
𝑖=1

𝛾𝑘,𝑖 𝑏𝑘𝑎𝑖 + 𝜔𝑘𝑎𝑘 ,

with 𝑘 ∈ {2, ..., 𝑀}. Note that by convention, all rates are equal to zero when the
indices for species 𝑎 are less than 1 and larger than 𝑀, or less than 2 and larger
than 𝑀 for the indices of species 𝑏. It can be straightforwardly checked that these
currents conserve particle mass

∑𝑀
𝑘=1 𝑘 (𝐹𝑘 + 𝐺𝑘) ≡ 0. Please refer to the main text

for the definitions and interpretations of the parameters 𝛽𝑖, 𝛼𝑖, 𝑗, 𝜆 𝑗, 𝛾𝑖, 𝑗, 𝜔 𝑗, 𝜇0 and
𝜂𝑖, 𝑗. Note that we have assumed that clusters of size 1 are always disordered, i.e.
𝑏1 = 𝜕𝑡𝑏1 = 0. As mentioned in the main text, we fixed the parameters of the kinetic
model to 𝑀 = 400, 𝐴= 800, 𝑣= 𝛽0 = 𝜆0 = 1, 𝜇0 = 0.025, 𝜎𝑎𝑎 = 1.6, 𝜎𝑎𝑏 = 0.2, 𝜎𝑏𝑏 = 1
and 𝜔0 = 10−4, if not stated otherwise.

As discussed by the authors of Ref [134], 𝜎𝑎𝑎, 𝛽0 and their ratio determine
the shape of the distribution 𝑎𝑘 in the absence of species 𝑏 and exhibits a critical
transition from a unimodal to a bimodal distribution. For our system, we took
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Figure 3.17 Temporal evolution of the cluster distributions. Temporal evolution from a
disordered towards an ordered state of the single and combined cluster species distributions.
The color gradient indicates different times as quantified by the corresponding color bar.
(a) disordered species 𝑎𝑘, (b) ordered species 𝑏𝑘, and (c) sum of both 𝑎𝑘 + 𝑏𝑘.

parameters such that they are always below this point to avoid structure formation
in this domain.

As noted in the main text, we have investigated how the choice of 𝑚𝑐 and 𝑣𝑐
in the expression for the transformation rate from disordered to ordered clusters
(𝑍(𝑖) = 1/(1+ 𝑒−(𝑖−𝑚𝑐−1)/𝑣𝑐)), influence the transition to polar order and the ordered
state itself. To this end we have performed the same kind of simulations as shown in
Fig. 3.5(c) but with different values for 𝑚𝑐 and 𝑣𝑐. As can be seen in Fig. 3.16, only
the course of the transition towards polar order changes slightly. The stationary
state, however, is identical to the one shown in Fig. 3.5(c). This illustrates that the
qualitative behaviour of the system is not sensitive to the exact choice of 𝑚𝑐 and 𝑣𝑐.

3.5.2 Kinetic model implementation

We integrated Eqs. (3.25a, 3.25b) using a straightforward Euler scheme in C++
with a time step of 3 × 10−2, which we found—for system sizes 𝑀 . 1000—to be
numerically faster than an adaptive time-step 4th-order Runge-Kutta algorithm. It is
furthermore simpler than implicit integration schemes, which we expect to be more
stable for larger 𝑀.
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Figure 3.18 Contributions to inter-species fluxes. Stationary inter-species particle fluxes
𝐽 [𝑎↔𝑏𝑘] (a) and 𝐽 [𝑏↔𝑎𝑘] (b) and individual rate contributions as a function of cluster
size 𝑘.

3.5.3 Dynamical and steady-state properties

3.5.3.1 Evolution of the cluster distributions

Figure 3.17 shows the temporal evolution of the polar-ordered and disordered
cluster distributions, 𝑎𝑘, 𝑏𝑘, for the parameters and data shown in Fig. 3.5 (𝜎𝑎𝑎 = 1.6,
𝜎𝑎𝑏 = 0.2). One observes that up to intermediate times (𝑡 ≈ 800) there is little change
of the cluster distributions. Once there is a significant fraction of 𝑏-clusters the
dynamics speeds up and their amount then increases strongly [cf. Fig. 3.17(b)].
This in turn leads to a substantial reduction of 𝑎-clusters [cf. Fig. 3.17(a)] and a
corresponding change of the sum of both distributions [cf. Fig. 3.17(c)].

3.5.3.2 Details of particle fluxes

The inter-species fluxes of the particle mass, 𝐽 [𝑏↔𝑎𝑘] and 𝐽 [𝑎↔𝑏𝑘], as depicted
in the main text in Fig. 3.5(e), are obtained by setting all species-internal rates in
Eq. (3.25a) and Eq. (3.25b) to zero. This leaves only inter-species contributions
to 𝑎𝑘 (resulting in 𝐽 [𝑏↔𝑎𝑘]) and inter-species contributions to 𝑏𝑘 (resulting in
𝐽 [𝑎↔𝑏𝑘]), respectively. One obtains the following equations:

𝐽 [𝑏↔𝑎1] = 𝜆 (2𝑏2 +
𝑀∑︁
𝑖=3

𝑏𝑖) −
𝑀−1∑︁
𝑖=2

𝛾𝑖,1𝑏𝑖𝑎1, (3.28a)

𝐽 [𝑏↔𝑎𝑘]
𝑘>1
= 𝑘 ·

(
−
𝑀−𝑘∑︁
𝑖=2

𝛾𝑖,𝑘𝑏𝑖𝑎𝑘 − 𝜔𝑘𝑎𝑘

)
, (3.28b)
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Figure 3.19 𝜌kin-𝜎𝑏𝑏 bifurcation diagram. Density plot of the stationary mass fraction 𝜙𝑏
as a function of 𝜎𝑏𝑏 and the density 𝜌kin with different initial conditions: (a) started with
mainly 𝑎 clusters present (𝑎𝑘 (𝑡=0) = 𝛿1,𝑘 and 𝑏𝑘 (𝑡=0) = 0), and (b) started with mainly 𝑏
clusters present (i.e. started in a state that is similar to the stationary state in Fig. 3.17).
Parameters: 𝜎𝑎𝑎 = 1.8, 𝜎𝑎𝑏 = 0.15, 𝜔0 = 10−3.

and

𝐽 [𝑎↔𝑏𝑘]
𝑘>1
= 𝑘 ·

(
𝜆 (𝑏𝑘+1 − 𝑏𝑘)

+
𝑘−1∑︁
𝑖=2

𝛾𝑖,𝑘−𝑖𝑏𝑖𝑎𝑘−𝑖 −
𝑀−𝑘∑︁
𝑖=1

𝛾𝑘,𝑖𝑏𝑘𝑎𝑖 + 𝜔𝑘𝑎𝑘

)
. (3.29)

Figure 3.18 illustrates the contribution of the individual currents proportional to
𝜆, 𝛾𝑖,𝑘, and 𝜔𝑘. This shows that species 𝑎 gains mass only by evaporation of single,
disordered filaments from ordered clusters. In contrast, species 𝑏 gains cluster mass
by coalescence of smaller ordered and disordered clusters (transferring mass to
larger cluster sizes) and by transformation of disordered into ordered clusters.

3.5.4 Parameter space and hysteresis

Besides the interaction strength, the particle density is another relevant control
parameter of active matter systems; e.g. in our agent-based simulations both control
parameters influence the phase behaviour of the system [cf. Fig. 3.3(b)]. For that
reason, we investigated whether the density plays a comparable role in the kinetic
model. To this end, we determined a bifurcation diagram as a function of 𝜌kin =𝑀/𝐴
and 𝜎𝑏𝑏 (analogous to the bifurcation diagram of stationary mass fractions 𝜙𝑏 as a
function of 𝜎𝑎𝑏 and 𝜎𝑏𝑏 [cf. Fig. 3.6(c)]).

Fig. 3.19(a)/(b) shows the disordered/ordered branch of the bifurcation (i.e.
the stationary state of the simulations which were started in a disordered/ordered
state). Here, too, there is a bistable region between the ordered and disordered
state, and, for varying the density, a discontinuity and hysteresis occurs (as it is
the case for varying 𝜎𝑎𝑏, see Fig. 3.6(b)). In addition to the 3D-representation
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Figure 3.20 𝜎𝑎𝑏-𝜎𝑏𝑏 bifurcation diagram. Density plot of the stationary mass fraction 𝜙𝑏 as
a function of 𝜎𝑎𝑏 and 𝜎𝑏𝑏 with different initial conditions: (a) started with mainly 𝑎 clusters
present (𝑎𝑘 (𝑡=0) = 𝛿1,𝑘 and 𝑏𝑘 (𝑡=0) = 0), and (b) started with mainly 𝑏 clusters present
(i.e. started in a state that is similar to the stationary state in Fig. 3.17). Parameters and
data identical to Fig. 3.6(b,c).

of the 𝜎𝑎𝑏-𝜎𝑏𝑏 bifurcation diagram in Fig. 3.6(c), and to facilitate a comparison
with Fig. 3.19, Fig. 3.20 shows the disordered/ordered branches of that bifurcation
separately.



4 Condensed topological defects and
filamentous arc ejections in
phase-separated weak active nematics

The following chapter is based on research I conducted together with Ivan Maryshev
and Erwin Frey and will soon be submitted to publication. I.M. and E.F. designed and
performed hydrodynamic approach. T.K. and E.F. designed and performed simulations.
All authors participated in interpreting the results.

Historically, topological defects with charges ±1/2 have been considered a
hallmark of homogeneous active nematics. Phase separated systems, in turn, have
been known for the formation of dense, typically unstable nematic bands, but so
far, half-integer defects have not been observed in them. In this paper, we use the
agent-based model for weakly-aligning self-propelled filaments and, for the first
time, demonstrate that phase-separated active nematics form −1/2 defects of a new
kind. In contrast to the well-studied homogeneous case, these new defects coincide
with density peaks, condense nematic fluxes, and coexist with bending bands. We
also observe filamentous arc ejections - formations of lateral arcuate structures
that separate from the band’s bulk and move in a transverse direction. We show
that the key control parameters defining the route from the topologically charged
structures to stable bands are the initial density of particles and their path persistence
length. We introduce a hydrodynamic theory qualitatively recapitulating all the
main features of the agent-based model and use it to show that the emergence of the
different topologically charged structures can be attributed to the same anisotropic
active fluxes. Finally, we speculate about experimental verification of the provided
model, its role in other phenomena, such as active foam, and potential applications.

4.1 Introduction
Active nematics are a broad class of active matter systems [5, 189–192] with the
order invariant under director reflection. Dense spatially uniform active nematics
have become a platform for studying pairs of half-integer topological defects with
opposite charge – namely their formation, dynamics, and annihilation [18, 48–51,
146, 193–199]. Dilute or weakly interacting systems, on the other hand, exhibit
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qualitatively quite different ordering behavior and dynamics [7]. One observes
phase separation into nematic bands with an intriguing complex dynamics [1, 7,
86–88, 99, 129, 135, 151, 200], but so far without the emergence of half-integer
topological defects.

Here we show that these two hitherto seemingly incompatible phenomena –
phase separation and topological defects – can actually be closely linked in weakly
interacting active nematics. In particular, we discover a new class of topological
defects that exhibit particle mass condensation and active particle currents near
their center. We show that these ‘defect condensates’ coexist with nematic bands
and are mainly formed by collisions of triplets of nematic lanes. We also observe
another topologically charged structure, filamentous arc ejections –elongated bow-
like density domains that detach from the nematic band and travel in the direction
perpendicular to its main axis– remotely resembling +1/2 defects behavior.

One of the principal experimental realizations of weak active nematics is the
actomyosin motility assay [1, 15, 16, 19–21]. In this two-dimensional model system,
hydrolysis of adenosine triphosphate (ATP) enables actin filaments to actively glide
over a lawn of nonprocessive heavy meromyosin motor proteins [157], so that they
perform a path-persistent random walk with relatively constant speed. A detailed
experimental characterization of the binary collision statistics between the filaments
has shown that they interact only weakly with each other and can slide over each
other relatively easily [1, 20, 21].

To explore the phenomenolgy of such weak nematics, we use an agent-based
model of “weakly-aligning self-propelled polymers” (WASP) which has been shown
to faithfully reproduce the full behavior of actomyosin motility assays on all relevant
length and timescales including the pattern formation processes and the topology of
the phase diagram [1, 2]. This allows us to leverage these agent-based simulations
as an in-silico experimental system to discover new phenomena. To gain access
to the mechanisms underlying these phenomena, we, in addition, introduce a
hydrodynamic theory, building on previously published models [124, 136].

Exploiting the respective strength of these two complementary theoretical ap-
proaches we investigate the dynamical and morphological properties of the obtained
structures. We further provide an explanation for the occurrence of the defects,
the arc ejections and the underlying flux. Moreover, we systematically explore the
“phase space” of the occurrence of condensed topological defects and filamentous
arc ejections and identify the control parameters defining the transition between
the structures.
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Figure 4.1 Nematic interaction between filaments and onset of order. (A) Schematic
depiction of two interacting polymers. Depending on the impact angle being smaller or
larger 𝜋

2 filament directions are either aligned (upper panel) or anti-aligned (lower panel).
(B) Illustration of the binary collision statistics corresponding to a weak nematic interaction
between polymers, which is point-symmetric with respect to the neutral line around 𝜋/2 (C)
Phase diagram of a weak active nematic with collision statistics shown in panel B. The blue
line shows the density corresponding to isotropic-nematic transition 〈𝜌〉𝑛 which is inversely
proportional to the persistence length 〈𝜌〉𝑛 ∝ 𝐿−1𝑝 . Please refer to section 4.5.2 for details
on this transition line. Inset: The same graph as a function of 〈𝜙〉 = 〈𝜌〉/〈𝜌〉𝑛 and 𝐿𝑝.

4.2 Results

4.2.1 Simulation setup

We use agent-based simulations that model the dynamics of weakly interacting
self-propelled polymers (WASP) of fixed length 𝐿 on two-dimensional surfaces
building on earlier work [1, 2]: please refer to section 4.5.1 for further details on
the algorithm. Each filament consists of a tail pulled by a tip that moves forward
on a trajectory corresponding to a persistent random walk with persistence length
𝐿𝑝. Upon collision of a filament tip with the contour of another polymer, a weak
alignment torque is assumed to act that changes its direction of motion (Fig. 4.1A).
Here we use a purely nematic alignment interaction (Fig. 4.1B) whose strength is
set by 𝛼𝑛.

Previous work on weak nematics has found phase transitions between disordered
states, polar patterns, and nematic patterns [1, 2, 7, 71, 86–88, 99, 105, 124, 129,
135, 136, 151, 200, 201], as well as phases exhibiting a dynamic coexistence
of ordered states with fluctuating nematic and polar symmetry [1, 2]. This rich
phenomenology of spatiotemporal patterns emerges from tuning the degree of polar
and nematic symmetry in binary collision statistics [1]. Here we are interested
in systems that have a collision statistics with nematic symmetry (Fig. 4.1B), i.e.,
nematically ordered states of active matter. Figure 4.1C shows the phase diagram of
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such a weak nematic as a function of the average filament density 〈𝜌〉𝐿2 and path
persistence length 𝐿𝑝. It exhibits an isotropic-nematic transition from a disordered
homogeneous phase to a nematically ordered phase. The phase boundary 〈𝜌〉𝑛(𝐿𝑝)
approximately scales as 𝐿−1𝑝 ; please refer to section 4.5.2 for further details on
this transition. Thus, when the phase diagram is redrawn as a function of 𝐿𝑝 and
the averaged normalized density 〈𝜙〉 = 〈𝜌〉/〈𝜌〉𝑛, the phase boundary essentially
becomes a horizontal line (inset of Fig. 4.1C).

4.2.2 Dense topological charged structures

As expected for nematically interacting systems, our simulations show isolated
nematic lanes that exhibit strong bending fluctuations on large length and time
scales caused by lateral instabilities [86, 88, 99, 124, 135, 136, 200].

Strikingly, in addition to these typical nematic lanes, our simulations also show
distinct types of topologically charged structures. In particular, we observe three-
armed filamentous structures containing a topological defect with charge −1/2
at their center; see examples shown in Fig. 4.2A. Mostly they are formed when
three curved nematic lanes — with their convex sides facing each other — meet
and condense into a topological defect with a high density core region (Fig. 4.2B).
Unlike defects in non-compressible active nematics, these condensed topological
defects (CTDs) do not have a directly corresponding positively charged pair. Rather,
they are surrounded by an extended topologically charged region with a dispersed
positive charge, as can be seen in Fig. 4.2A (lower right panel) depicting the
topological charge density [136, 202]. Moreover, the simulations show that the
active nematic flux is gradually compressed as the triple junction of the nematic lanes
(defect core) is approached (Fig. 4.2A, top right panel). This leads to a reduction
in lane width and a corresponding increase in density, which reaches a maximum
just before the core. On the concave sides of the junction, density drops. These
three-armed topological defects are dynamic structures that are constantly being
dissolved and reassembled.

The second type of structure we observe is lateral arcuate filamentous arcs that
separate from the bulk of a straight nematic band and eventually move in transverse
direction. A time trace of such a filamentous arc ejection (FAE) is shown in Fig. 4.2C.
These structures have similarities to +1/2 defects: they are “curved” and always
move antiparallel to the curvature vector. Moreover, they are accompanied by a
cloud of positive topological charge on their concave side, but do not exhibit a
singularity.

Having discovered these collective topological structures in our in-silico ex-
periments, we sought to explore how their emergence is affected by a change of
parameters. However, since lateral instabilities of nematic bands required for the
formation of CTDs occur only on very long time scales [7, 99], a systematic invest-
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Figure 4.2 Condensed defects and filamentous arc ejection. Left column (A to C) shows
results for agent based simulations, right column (D to F) for the hydrodynamic model.
(A and D, left panels) Spatial density distribution of a system simultaneously exhibiting
two condensed defects. A magnified view of one defect (rectangular marked region) is
shown in the upper right panels in (A) and (D). The lower right panel in (A) and (D) shows
the topological charge density 𝑞 of the magnified region. In both cases a −1

2 defect is
surrounded by positively charged regions of space. (B and E) Formation of a condensed
defect. Three convex bands meet and self-focus into a dense structure in the center of which
the topological charge that was previously on the outside of the bands is trapped. (C and F)
A filamentous arc ejection at different time points of its evolution. LTR: Before formation of
a partially separated arc, after arc formation and right before complete separation.

igation of a phase diagram in agent-based simulation is numerically prohibitively
demanding. Therefore, we sought an alternative way to explore the spatiotemporal
dynamics of the systems that would enable us to dissect and asses the processes
underlying the formation of CTDs and FAEs. As discussed next, we achieved this by
adopting a hydrodynamic approach that recapitulates all of the main features of
our agent-based simulations.

4.2.3 Hydrodynamic model provides access to the phase diagram

Our hydrodynamic model (in short HM) is formulated in terms of two variables of
space and time: the normalized density of filaments 𝜙 =

´
𝑃(𝜃)d𝜃/〈𝜌〉𝑛 and the

traceless and symmetric order parameter describing their coarse-grained nematic
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alignment 𝑄𝑖 𝑗 = 〈𝑛𝑖𝑛 𝑗 − 𝛿𝑖 𝑗/2〉 =
´
𝑃(𝜃) (𝑛𝑖𝑛 𝑗 − 𝛿𝑖 𝑗/2)d𝜃. Where n = (𝑛𝑥 , 𝑛𝑦) =

(cos 𝜃, sin 𝜃) denotes the unit vector of a particular filament, and 𝑃(𝜃) is the prob-
ability density function. The eigenvector associated with the larger eigenvalue of
𝑄-tensor can be treated as an average orientation of polymers. Here and below the
space and time dependencies are suppressed for brevity; 𝑖 and 𝑗 take the values
of the Cartesian components; and 𝛿𝑖 𝑗 represents Kronecker delta. We also imply
summation for repeating indices following the Einstein convention.

By analogy with passive Model C in Hohenberg-Halperin classification [203]
we introduce two coulped evolution equations for conserved 𝜙 and tensorial 𝑄𝑖 𝑗.
Our hydrodynamic model contains the terms, which in general can be obtained
via minimization of free energy functional, however some contributions imply
nonintegrable dynamics and are motivated by the derived models for active nematics.
Such terms in our active Model C drive the system out of equilibrium and are not
determined by the gradient descent on any free energy landscape, however, the
analogy with the passive case still can provide some intuition.

The mass-conserving equation for density [(4.1)] contains isotropic and aniso-
tropic fluxes controlled by 𝜇 and 𝜒 respectively:

𝜕𝑡𝜙 = 𝜕𝑖𝐽
iso
𝑖 + 𝜕𝑖𝐽aniso𝑖 = Δ(𝜇(𝜙)𝜙) + 𝜕𝑖𝜕 𝑗

(
𝜒(𝜙)𝑄𝑖 𝑗

)
, (4.1)

where Δ = 𝜕𝑖𝜕𝑖 denotes Laplace operator. Isotropic term plays the role of a chemical
potential similar to typical Model B [203]. It contains motility-induced contribution
to the effective diffusion, but also includes a quadratic part representing the steric
repulsion due to excluded volume interactions [119, 204, 205]: 𝜇 = 𝜆2 + 𝜇𝜙𝜙.
Parameter 𝜆 is proportional to 𝐿𝑝, that is why below we use it as a proxy for
persistence length, 𝜇𝜙 corresponds to 𝐹 in agent-based model. Second term in
Eq. (4.1) (anisotropic flux) leads to the phase separation since it condenses density
in the direction perpendicular axis of the orientational order. It also contains motility-
and interaction-induced parts: 𝜒 = 𝜆2 + 𝜒𝜙𝜙.

Our evolution equation for the orientational order partly can be obtained from
Landau-de Genne-like free energy functional [206], but it also includes density-
induced interfacial torques:

𝜕𝑡𝑄𝑖 𝑗 = − 1
𝛾

𝛿𝐹𝐿𝐺

𝛿𝑄𝑖 𝑗

+ interfacial torques (4.2)

=
[ (
(𝜙 − 1) − 𝛽𝑄2) 𝑄𝑖 𝑗 + Δ(𝜅(𝜙)𝑄𝑖 𝑗)

]
+

[
𝜕𝑖𝜕 𝑗(𝜔(𝜙)𝜙) + 𝜔𝑎2

(
𝜕𝑖𝜙𝜕 𝑗𝜙

) ] 𝑡𝑠
, (4.3)
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where [...]𝑡𝑠 indicates the symmetric and traceless part of the expression, 𝑄2 =
𝑄𝑘𝑙𝑄𝑘𝑙, rotational viscosity 𝛾 is set to unity, and

𝐹𝐿𝐺 =

ˆ
dr

[
(1 − 𝜙 + 𝛽

2
𝑄2)𝑄2 + (𝜕𝑝(𝜅𝑄𝑞𝑝))2

]
/2. (4.4)

The first expression in the (4.3) is responsible for standard isotropic-nematic trans-
ition. Analogues terms are characteristic of conventional Model A for tensors [203].
The linear term defines the distance from criticallity, whereas the saturating cubic
term determines the equilibrium value of 𝑄𝑖 𝑗 in a homogeneous nematic state.
The term with Laplacian operator plays the role of elasticity, and again contains
two contributions – one from motility of filaments, and the other one due to the
interactions: 𝜅 = 𝜆2/2 + 𝜅𝜙〈𝜙〉.

The last expression in (4.3), enclosed in square brackets, contains symmetric
and traceless part of the interfacial torques. It enables the coupling between density
gradients and nematic alignment occurring within inhomogeneous active systems.

The torque associated with 𝜔-term (𝜕𝑖𝜕 𝑗(...)) rotates the director at the nematic
– isotropic interface. It typically conflicts with 𝜒 related coupling term in Eq. (4.1)
leading to chaotic behaviour of bands known as dry "active turbulence". 𝜔 =

𝜆2 +𝜔𝜙𝜙, where 𝜆2 appears due to the self-propulsion, while the term proportional
to 𝜙 occurs in derived models for the interacting particles.

Finally, the term bilinear in the density gradients (𝜕𝑖𝜙𝜕 𝑗𝜙) is motivated by
coarse-grained microscopic models for active filaments [124]. It can be considered
as an effective liquid-crystalline “anchoring” to the density interface [136]. Since
we expect anchoring to be tangential, the parameter 𝜔𝑎 is negative, implying that
filaments tend to orient perpendicular to the density gradients. Or, in other words,
tangential anchoring ensures the parallel orientation of filaments to the boundary
of dense nematic band.

We want to stress that, unlike the majority of models, in our theory the coeffi-
cients 𝜇, 𝜒, 𝜅 and 𝜔 are functions of density. They contain not only terms occurring
due to self-propulsion [88, 89] but also the density dependant corrections due to
the binary interactions usually ignored for non-phase-separating “strong” active
nematics. We introduce 𝜇𝜙, 𝜒𝜙, 𝜅𝜙, 𝜔𝜙 and 𝜔𝑎 phenomenologically and vary them
arbitrarily.

Our model is capable of reproducing the results obtained in the agent-based
simulation to a very high degree of fidelity. It exhibits CTDs and FAEs whose
structure, topological charge, and formation process are very similar to the ones
observed in WASP; cf. Fig. 4.2D-F.
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4.2.4 From CTDs to FAEs and bands

Encouraged by the promising first results our hydrodynamic theory showed, we
leveraged the relative ease of obtaining long-time behavior with it and generated a
(𝜆, 〈𝜙〉) phase diagram (Fig.4.3A).

As can be seen, at low values of 𝜆 and 〈𝜙〉, CTD formation dominates, while in
areas of high 𝜆 and 〈𝜙〉 stable nematic lanes emerge. Between these regions lies a
band of parameters that cause the system to form mainly FAEs.

In order to check whether this relation determined in the hydrodynamic model
also holds in our agent based simulations, we obtained the propensity to form
CTDs in agent-based simulation along one-dimensional lines of the (𝐿𝑝, 〈𝜙〉) phase
space; one along a constant value of 〈𝜙〉 and one along a constant value of 𝐿𝑝. As
can be seen in Figs. 4.3C and D, the results for both agent based simulations and
hydrodynamic model are in good agreement.

We further checked the frequency of FAEs in the agent based simulations as
a function of 𝐿𝑝, again they qualitatively agree well with the results from the
hydrodynamic model Fig. 4.3B and E. (Please refer to section 4.5.3 for further
details on how this data was obtained).

Taken together, these results suggest that the simulations and the hydrodynamic
model not only exhibit the same patterns, but that their occurrence also shows the
same dependence on parameter changes.

It is further worth to note that in both approaches we observed that the formation
of condensed defects and filamentous arc ejections is inextricably linked to the
stability of the nematic lanes i.e. to their propensity to exhibit an undulating
instability [7, 86, 99, 124, 135, 136, 200]. For low 𝐿𝑝/𝜆 and 𝜙, nematic bands are
not stable and strong undulations occur (i.e. no spatial configuration of nematic
lanes remains stationary, not even transiently). This coincidence with the parameter
range in which the occurrence of CTDs is high (cf. Fig. 4.3A) can be well reconciled
with the observation of the defect formation process, see Figs. 4.2B and E. The
shorter the lanes are stable and the more the lanes are undulating, the more likely
it is that multiple lanes will “collide” and form defects.

When 𝐿𝑝 resp. 𝜙 are increased further, bands remain unstable for a certain span
of parameters, but, increasingly, some configurations–in particular only slightly
curved system spanning configurations of single bands–become transiently stable.
Often, elongated openings develop in these bands in their lateral regions, which
develop into filamentous arcs (cf. Fig. 4.2C and F). As no surprise, the parameter
regime where these transiently stable bands form, roughly coincides with the region
where the formation of FAEs is dominant (cf. orange stars in Fig. 4.3A).

Increasing 𝐿𝑝 even further, leads to ever more stable bands that eventually
stop to undergo undulation instabilities (for the investigated system size) and are
completely straight, coinciding with the drop in observed FAE frequency.
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The observed dependence of the undulating instability on the parameters (and
the concomitant change in the phenomena) can be further understood by the fol-
lowing considerations. In case of an increased 𝐿𝑝 (or 𝜆 in hydrodynamic model),
the Frank constant grows [207], and the effective elasticity (or collective rigidity of
filaments) starts to prevail over anisotropic density fluxes. Consequently, and as ob-
served (Fig. 4.3A, C), the bending instability becomes weaker. In the hydrodynamic
model we further observe that low elasticity favours CTD formation, while a large
elastic constant 𝜅 hinders the system to obtain topological distortions (not shown).

In case of an increased density 𝜙, a system spanning nematic band occupies a
growing fraction of space i.e. bands become broader, while the bulk density remains
mostly the same [cf. section 4.5.6]. Broader bands are less subject to a bending
instability, thus the increase of 〈𝜙〉 leads to a decay of defect formation (Fig. 4.3A,
D). Interestingly, for very small densities, close to the criticality, both models exhibit
a decay of the observed CTD number, presumably due to fewer mass being inside the
ordered phase and hence not enough mass present to form several curved bands.

4.2.5 Detailed structure of CTDs and FAEs

To better understand the structure of the condensed defects, we studied the filament
flows through them in detail. To this end, we tracked the motion of each filament as
it passed through a condensed defect. This allows us to distinguish between flows
from one particular arm of the defect to another particular arm, and to investigate
whether there is a relationship between the lateral position of individual filaments
and their eventual turning direction. As can be inferred from Fig. 4.4A-C and Movie
7, the flow in each defect arm is strongly compressed laterally. It then splits almost
exactly at the centerline of the lane before entering the defect and undergoing a
sharp change in direction. Only at a greater distance from the center of the defect
do the flows begin to mix again (Fig. 4.4A-C). This shows that the overall topology
often present at the birth of the defect (Fig. 4.2B and E), continues to survive in the
flow structure of the fully formed CTD as three almost nonmixing nematic fluxes.

In addition, we investigated whether the velocity of the filaments is affected
as they move through a CTD. As can be seen from Fig. 4.4E, their speed remains
almost unchanged and only a slowdown in the per mil range is observed. One can
see two insignificant velocity drops corresponding to regions with the maximal
density of polymers. Interestingly, in the immediate vicinity of the core of the defect,
the particle velocity briefly returns to the average value, corresponding to particles
inside the nematic band.

Further, we studied the temporal evolution of filamentous arc ejections. The
motion of a separating arc in WASP and hydrodynamic model, can be visualized
using the kymograph of the density projection shown in Fig. 4.3B. As can be inferred
from the bending of the lateral extrusions, the separation process of the arcs starts
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Figure 4.3 Occurrence of condensed defects and filamentous arc ejections in dependence
of parameters, in agent based simulations and hydrodynamic model. By increasing density
and/or persistence length resp. lambda (in WASP resp. hydrodynamic model) the mainly
occurring type of phenomena can be tuned from CTDs, to FAEs to straight lanes, in both
agent based simulations and hydrodynamic model. (A) Phase diagram as a function of
lambda and 〈𝜙〉 in hydrodynamic model. The occurrence of CTDs is indicated by blue dots,
of FAEs by orange stars and of straight lanes by green squares. (B) Illustration of a system
exhibiting several filamentous arc ejections in sequence in agent based simulations (B, upper
panel) and hydrodynamic model (B, lower panel). After formation of a straight lane, the
density is projected along the axis of the lane. The resulting 1-D slices are stacked into the
shown Kymograph. Each FAE can be recognized by an extrusion from the lane. The slight
bending of these extrusions towards a more vertical shape is a signature of the accelerated
motion of the ejection. (C) Mean number of CTDs present, in WASP resp. hydrodynamic
model, as a function of 𝐿𝑝 resp. 𝜆. (D) Mean number of CTDs present, in WASP resp.
hydrodynamic model, as a function of 〈𝜙〉. (E) Occurrence rate of FAEs, in WASP resp.
hydrodynamic model, as a function of 𝐿𝑝 resp. 𝜆.
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Figure 4.4 Details of filament fluxes through a condensed defect in agent based simulations.
(A) Schematic depiction of the filament flux density coming from one specific arm (source
arm) and going into the two other arms (target arm) in grey scale. Shown for the flux from
arm 1 and into arms 2 and 3 [cf. Movie 7]. Solid white lines depicts the center line of the
arms. Green dash-dotted line indicates the boundary of the total flux in the arms. Red
dashed line denotes the boundary of the flux into the target arms. From the observation
that the red dashed line does not coincide with the center line but is slightly shifted, it can
be inferred that the two currents into a source arm mix only in a small region near the
center line. (B) Simulation data visualizing the information shown in (A). All filaments
coming from one specific arm and going into another specific arm or vice versa are colored
in the same color. E.g. all filaments coming from or going into arm 1 and going into or
coming from arm 2 are colored in red. From the almost perfect separation of colors it can
be inferred that filament fluxes from or into one lane are divided near the center line and
diverted into the two other arms. The small mixing region of the different fluxes can be
identified by the additive color mixing occurring when streams overlap (e.g. overlapping red
and green fluxes lead to a yellow coloring of the flux-mixture). (C) Pictorial representation
of the colored simulation data. (D) Plot of the anisotropic active flux −𝜕 𝑗(𝜒𝑄𝑖 𝑗) in the
hydrodynamic model. The flux leads to a propagation in the indicated direction of bended
structures (left panel) and upconcentrates the density in a defect (right panel). (E) Average
relative velocity change 𝛿𝑣 of filaments as they pass through a CTD as a function of the
distance to the defect core 𝑑 (see inset for an illustration of the path). Only an almost
undetectable slowdown in the per mille range can be observed.

slowly and continues to accelerate until complete ejection and eventual dissolvement
of the arc.

Having characterized and established the existence of CTDs and FAEs in our
agent based in-silico experimental system and having successfully introduced a
hydrodynamic theory faithfully reproducing the results of the simulations as well
as providing access to the phase space of the observed pattern, we asked: why are
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these phenomena observed? What are the underlying mechanisms responsible for
their formation?

To answer this question we leveraged the capability of the hydrodynamic model
to provide access to single terms of its defining equations (Eqs. (4.1,4.3)). Doing
this, it becomes apparent that both the formation of dense defects and the movement
of arches have the same root cause, namely the anisotropic (“curvature-induced”)
density flux [5, 152, 189], described by −𝜕 𝑗(𝜒𝑄𝑖 𝑗) in Eq. (4.1) in the hydrodynamic
model. This can be understood by plotting −𝜕 𝑗(𝜒𝑄𝑖 𝑗) in the region of a FAE and
a CTD, see Fig. 4.4D left panel and right panel, respectively. As can be seen, on
different sides of the bent arc the amplitudes of the fluxes are distinct. An effective
“active force” acting on the concave side is greater than that one on the opposite
side, which leads to the movement of the bent band (or arc) in the corresponding
direction (Fig. 4.4D, left panel).

When tree lanes meet, the same curvature-dependent fluxes upconcentrate poly-
mers in the core of the obtained defect (Fig. 4.4D, right panel). This condensation is
eventually balanced by the isotropic part of (4.1) and particularly by steric repulsion
of polymers. To test this hypothesis, we set the excluded volume force 𝐹 (see section
4.5.1) to zero in our agent based simulations. Observations in this case indicate that
the formation of CTDs is reduced and that, if they are formed, the density begins
to diverge, leading to subsequent destruction of the defects. Thus, we infer that
formation of the dense defects are predominantly determined by interplay between
two counteracting processes: isotropic and anisotropic density fluxes.

4.3 Discussion

From Fig. 4.4E it is clear that CTDs are not related to the phenomenon called
motility–induced phase separation (MIPS) [74] – clusters formation associated with
the slowdown of self-propelled particles due to steric interactions. In this context it is
worth to note that the filamentous structure of WASP-filaments does not prevent the
condensation of density near defects, while it was shown that MIPS is interrupted
for anisotropically shaped aligning particles [208].

Unlike standard phase separation in “compressible” dry active matter [1, 7, 124,
129, 136, 200, 205], here we observe a hierarchy of condensation. Active agents
firstly concentrate themselves in the bulk of nematic lanes, but subsequently can
do a “next step” and reach even higher compressions around CTDs. This second
phenomenon further differentiates itself since high density clusters are localised in
very limited regions around the defects, making it a good candidate for a delivery
mechanism in cases where a highly localized density peak of active particles is
needed. Notably, unlike MIPS, this process produces a strong condensation without
impeding particle velocity.
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Linear (coming from advection) parts of coefficients in our HM (Eqs. (4.1,4.3))
are proportional to 𝐿2𝑝, while density dependant corrections occurring due to the in-
teractions are distinct. That leads to an additional degree of freedom and potentially
explains the fact that the CTDs presented here have not yet been detected in models
lacking density dependant corrections. It is further thinkable that the weak interac-
tions, filamentous nature, semi-flexibility, -in comparison with standard variations
of Viscek models- in our models further promote dense defect formation. However,
we expect that CTDs can be still can found in such approaches, but probably in a
smaller region of parameter space.

It is worth to mention that Eqs.(4.1, 4.3) are structurally similar to the active
Model C originally derived for non-self-propelled particles [124, 136]. The only
significant difference being that the thermal translational diffusion and the terms
quadratic in 𝑄 are neglected.

To conclude, we have provided a composite in silico approach combining agent
based simulations and hydrodynamic theories to investigate pattern formation in
phase separated nematic active matter systems. Two astounding features of nematic
activematter (formation of topological defects and phase separated nematic patterns)
previously considered as two separate phenomena, coexist and are related in the
investigated system. We observed the formation of these novel topological defects,
investigated them and underscore underlying mechanism of their formation. CTDs
can condesate the nematic fluxes and potentially play the role of capacitors of
negative topological charge: due to the lateral propagation of bent lanes in the
direction of their convex side, these lanes collide and self-compress into a highly
dense structure, thereby trapping the formally spread out negative charge.

Formation, mutual orientation and even decay of dense defects are distinct from
the ones of standard disclinations observed in homogeneous (“incompressible”)
active matter. We often see that the axis of two near-by CTDs are connected
by one streamline (Fig. 4.2A), whereas in incompressible active matter negative
half-strength disclination usually points towards the +1/2 defect. If bending of
all three arms has the same orientation (curvature of all either clockwise or anti-
clockwise with respect to center) then the defects disappear via rotation. Whereas in
homogeneous systems defect pairs of opposite charge annihilate each other. Finally,
dense −1/2 topological defects concentrate the filaments, while other active systems
on contrary, e.g. bacteria incorporated in liquid crystals [141] and cytoskeletal
suspensions at the interfaces [209] exhibit density depletion in −1/2 disclinations.

A promising extension of the provided model is the investigation of active foam
[136, 151]. In this state of active matter, receiving increasing attention recently,
dense ordered bands form junctions and constitutes actively reforming cellular
networks. For a small region of parameters, active foam can be realized in our
HM model - CTDs occur more often, are connected and exist for longer times. We
see no obstacles preventing formation of foams state in WASP, however rigorous
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exploration of the full phase space is numerically very challenging and will be left
to a future study.
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4.4 Materials and methods

4.4.1 WASP simulation method

We now describe the agent-based simulations of weakly-aligning self-propelled
polymers (WASP’s). Please also refer to section 4.5.1 and the Supplemental Materials
of Refs. [1, 2] for more details.

In our systems we simulate 𝑁 filaments, each of length 𝐿. Orientational diffusion
causes the tip of each filament to perform a persistent random walk. When colliding
with another polymer, local interaction causes the tip to gradually align its direction.
Attached to the polymer tips are tails that just follows the path that is outlined by
the tip. This dynamics mimics the behavior of actin filaments in actomyosin motility
assays [1, 2]. In these, polymers move in a snake-like fashion over a lawn of motor
proteins and orthogonal motion to the contour is suppressed [15, 20]. Here we
use purely nematic interactions between filaments which is primarily tuned by the
nematic alignment amplitude 𝛼𝑛 that allows for a continuous variation of the rate
of alignment.

4.4.2 Parameters

If not stated otherwise, we used the following model parameters: discretization
𝑁 = 5, filament aspect ratio 𝐿/𝑑 = 21, nematic alignment strength 𝛼𝑛 = 0.126 ≈ 7.2◦
and a periodic simulation box of length 𝐿box = 162.5𝐿. The velocity 𝑣(𝑛) of each
filament is randomly drawn from the interval [0.75, 1.]𝑣0. We started simulations
with random initial conditions, i.e. randomly oriented filaments were placed at
random positions in the simulation box. Time is measured in units of 𝐿/𝑣0.

4.4.3 Continuous theory

We numerically investigate equations Eqs.(4.1,4.3) under periodic boundary con-
ditions by using finite differences of second order [210] on a 300 × 300 grid with
the spatial resolution 𝛿𝑥 = 0.5. The time integration was performed via a second
order predictor-corrector scheme with time step 𝑑𝑡 = 10−2. We use the parameter
values 𝛽 = 0.05, 𝜅𝜌 = 0.2, 𝜔𝑎 = −0.5, 𝜒𝜌 = 0.2, 𝜇𝜌 = 1, 𝜔𝜌 = 0. Unless explicitly
stated, we are initialize simulations from an isotropic uniform state with a small
amount of noise. To make time and space dimensionless we rescale them by setting
the rotational diffusion coefficient and 𝜇𝜌 equal to unity.
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4.5 Appendix

4.5.1 WASP simulation method

In this section we will provide a brief summary of the agent based simulations. The
focus will be on the aspects most relevant for the current study. For a detailed de-
scription of the WASP simulation method, please refer to the supplemental materials
of Refs. [1, 2].

In the agent based simulations, we consider 𝑀 filaments moving in two dimen-
sions. Each polymer 𝑛 consist of 𝑁 spherical joints 𝑗 which are located at a position
r(𝑛)
𝑗

(with 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}, where the filament tip is denoted by 𝑗= 0).

The direction of a polymer’s tip is denoted by u(𝑛)
0 and its motion is described

by:

𝜕𝑡r
(𝑛)
0 = 𝑣(𝑛) u(𝑛)

0 − Frep = 𝑣(𝑛)
(
cos 𝜃(𝑛)0
sin 𝜃(𝑛)0

)
− Frep . (4.5)

Here Frep describes a weak repulsion force (see (4.11)) acting on a filament head
while in contact with the contour of another polymer. 𝜃(𝑛)0 denotes the orientation
of a filament and 𝑣(𝑛) its free speed. For this study, the speed of each polymer was
chosen at random from a continuous uniform distribution in the interval [0.75, 1]𝑣0,
where 𝑣0 denotes the maximal velocity of a free filament. With this, we avoided the
decay of nematic lanes towards colliding waves (see supplemental material of [1]).

The orientation of a polymer’s head evolves in time according to

𝜕𝑡𝜃
(𝑛)
0 = −

𝛿𝐻̃
(𝑛)
0

𝛿𝜃
(𝑛)
0

+

√︄
2𝑣(𝑛)

𝐿𝑝
𝜉 , (4.6)

where 𝜉 is random white noise with zero mean and unit variance. The prefactor
before 𝜉 causes free polymers to travel on a trajectory that has a path persistence
length of 𝐿𝑝. 𝐻̃

(𝑛)
0 sets the, in this study purely nematic, torque caused by interactions

with other filaments.
Before we come to a description of 𝐻̃ (𝑛)

0 , it will proof useful to introduce several
other quantities. The first is the distance vector

Δr𝑛𝑚 =

(
r(𝑛)0 − r(𝑚)

)
shDist

. (4.7)
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This vector connects the tip of a filament 𝑛with the position of an adjacent polymer’s
(denoted by 𝑚) contour that has the shortest possible distance. The local orientation
of the contour of the adjacent polymer 𝑚 is given by 𝜃(𝑚)

𝑗
, which corresponds to

the orientation of the filament segment 𝑗 of polymer 𝑛 to which Δr𝑛𝑚 connects.
Second, if a polymer is interacting with several filaments at a time, we define a

weighted average direction of the connecting vectors:

Δẽ𝑛 :=
∑︁
𝑚

𝐶 ( |Δr𝑛𝑚 |)
Δr𝑛𝑚
|Δr𝑛𝑚 |

. (4.8)

Here 𝐶 ( |Δr𝑛𝑚 |) is a weighting factor accounting for the assumption that a more
distant polymer contributes less to an interaction. It is given by

𝐶 ( |Δr𝑛𝑚 |) =
{

0 if |Δr𝑛𝑚 | >𝑑
(𝑑 − |Δr𝑛𝑚 |)/𝑑 else , (4.9)

where 𝑑 defines the interaction radius.
Using the orientation of the averaged connecting vector 𝜃𝑛, we define an averaged

nematic impact angle as Δ𝜃(𝑛)𝑛 = 𝜃
(𝑛)
0 − 𝜃𝑛.

We now can define the alignment potential as

𝐻̃
(𝑛)
0 :=

𝛼𝑛𝑣0

𝑑
cos(2Δ𝜃(𝑛)𝑛 ) |Δẽ𝑛 |, (4.10)

where the overall amplitude of the alignment is set by the absolute value of the
weighted connecting vector, combined with the nematic alignment strength 𝛼𝑛.

The repulsion force Frep in (4.5) is given by

Frep = −𝑠
∑︁
𝑚

𝐶 ( |Δr𝑛𝑚 |)
Δr𝑛𝑚
|Δr𝑛𝑚 |

, (4.11)

which is used to prevent unphysical aggregation of filaments. It is assumed to be
weak with 𝑠= 0.05.

Filaments in actomyosin motility assays are observed to conduct a trailing motion,
where the tail of a polymer follows the movement of the tip [1, 15, 16, 19, 20].

To emulate this behaviour, tail joints move according to

𝜕𝑡r
(𝑛)
𝑗

= 𝐾𝑠

(���r(𝑛)𝑗 −r(𝑛)
𝑗−1

��� − 𝑏
) 1
2

(
u(𝑛)
𝑗+1 + u(𝑛)

𝑗

)
. (4.12)

Here, the second part of the equation, 1
2 (u

(𝑛)
𝑗+1 + u(𝑛)

𝑗
), ensures the movement to be

in the direction of the average of the segment’s orientations that are adjacent to joint
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Figure 4.5 Phase space of nematic order. Agent based simulations yielding nematic patterns
are marked with blue stars. Simulations not exhibiting order are shown as red diamonds. A
fit of the functional form 𝑓𝜌(𝐿𝑝) = 𝑎/𝐿𝑝, where 𝑎 is the free fit parameter, to the ordered
datapoints with the lowest density is shown in solid blue.

𝑗. The rest of (4.12) corresponds to a linear (Hookian) restoring force with spring
coefficient 𝐾𝑠 = 200 that ensures an average length 𝑏 of the cylindrical segments
between bonds.

4.5.2 Onset of nematic pa�erns
To determine the density as a function of 𝐿𝑝 above which nematic patterns are
formed, we conducted exploratory simulations in the phase space spanned by global
filament density 〈𝜌〉𝐿2 and the persistence length 𝐿𝑝, see Fig. 4.5.

After finding several density values for all examined 𝐿𝑝 that exhibited patterns
after a certain simulation time of 15873, and several that did not, we fitted a
function 𝑓𝜌(𝐿𝑝) = 𝑎/𝐿𝑝 (with 𝑎 as the free fit parameter) to the data points with
the lowest density that still exhibited patterns [solid line in Fig. 4.5]. The functional
dependence ∼ 𝐿−1𝑝 is motivated by results of the hydrodynamic model.

We take the course of 𝑓𝜌(𝐿𝑝) as an approximation to the density corresponding
to the onset of nematic patterns, denoted by 〈𝜌〉𝑛, at the respective 𝐿𝑝.

To further validate if this is a sufficient approximation, we ran ten independent
simulations at a density corresponding to 〈𝜌〉𝑛 and further ten at a density of 90%
〈𝜌〉𝑛 for several different 𝐿𝑝 [cf. dots in Fig. 4.1C] for a time of 31746. All simulations
at 〈𝜌〉𝑛 formed ordered patterns, while none at 90% 〈𝜌〉𝑛 did, affirming that 𝑓𝜌(𝐿𝑝)
sufficiently approximates the position of the isotropic-nematic transition.



4.5 Appendix 103

4.5.3 Defect detection

To algorithmically detect −1/2 defects, we made use of the fact that inside a defect
core the topological charge density 𝑞, defined as [202]

𝑞 =
1
4𝜋

(
𝜕𝑥𝑄𝑥𝑎𝜕𝑦𝑄 𝑦𝑎 − 𝜕𝑥𝑄 𝑦𝑎𝜕𝑦𝑄𝑥𝑎

)
, (4.13)

has a very large negative value.
Hence, we define any contiguous region of space in which q falls below a certain

threshold value 𝑞thrs as one −1/2 defect.
To obtain 𝑞 in WASP simulations, we rasterized space onto a grid with a grid-

spacing of Δ𝑥. We used the orientations 𝜃(𝑛)0 of filament tips residing inside each
gridpoint at a given time to calculate a local value of 𝑞(r, 𝑡). To suppress noise, we
averaged the value of 𝑞(r, 𝑡) over a timespan of 15.87 in which 11 frames were
recorded.

Additionally, to avoid missclassifying small and short lived density peaks that
occur sporadically in the simulations as CTDs, we required the value of the charge
density to be above 𝑞thrs for at least two consecutive measurements of 𝑞(r, 𝑡) (which
were taken in intervals of Δ𝑡 = 159). For the simulations in this project, we used
Δ𝑥 = 0.317𝐿 and (𝑞thrs = 0.032). The total runtime of each simulation was 142857
from which we cutted an initial transient before starting the measurement, see sec-
tion 4.5.7. For each value of 𝐿𝑝/〈𝜙〉 we averaged over ten independent simulations.

Note that the main purpose of the data from the agent-based simulations in
Fig. 4.3C-E is to qualitatively confirm the trend observed in the hydrodynamic model.
To quantify the data with a high degree of precision would require averaging over
larger ensembles, which would be numerically prohibitively demanding given the
very long time scales on which the observed phenomena occur.

Similarly, we define topological defects in our hydrodynamic model. In particular,
the positions of −1/2 defects are defined as local minima of the function 𝑞 given by
the Eq. 4.13.

4.5.4 Flux measurement through defects

In the main text, we studied the mass flow through a defect as well as the speed
of particles during a CTD passage, see Fig. 4.4B and E, respectively. To that end,
we needed detailed information about the position and speed of particles as they
transition from one arm of a defect to another one.

For this, we leveraged the possibility offered by the agent based simulations to
access the position of each individual filament at any point in time.

Starting from a simulation that had reached a state in which it exhibited defects,
we partitioned the simulation box into several “filter-regions” (cf. Fig. 4.6 for an
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illustration), which we each assigned a unique identifier 𝑖𝑑. At every subsequent
iteration after the partitioning, we checked for every filament 𝑖 if its position coin-
cided with one of the “filter-regions”. If this was the case, filament 𝑖 was assigned
the identifier of the region and the time of assignment 𝑡assign was saved. If filament
𝑖 already had a different identifier 𝑖𝑑′ assigned (and hence also a different 𝑡′assign),
this meant that it had traveled from another “filter-region” into the current region
(without crossing a third region in the meantime). In such a case, we stored the
pairs of tuples (𝑖𝑑′, 𝑡′assign) and (𝑖𝑑, 𝑡assign), which allow (combined with with the
also saved information of the position and speed of every filament at every itera-
tion) to reconstruct the path filament 𝑖 has taken propagating from region 𝑖𝑑′ to 𝑖𝑑.
Subsequently, we replaced the assigned identifier and assignment time of filament 𝑖
with that of the current region and the current time and continued the simulation.
For the data in Fig. 4.4B and E, we placed filter regions above the three lanes that

Figure 4.6 Illustration of filter regions. Plot of the 91217 filaments in a simulation
exhibiting two condensed defects. Over each lane transitioning to the arms of one of the
defects a round filter region is placed (areas in which the filaments are colored blue).
Filaments far away from the defect (shown in orange) are pooled into one large filter region.
All black colored filaments do not belong to any filter region. Parameters: 𝐿𝑝 = 11.1𝐿,
simulation box size: 162.5𝐿.

transition into the three arms of a defect (cf. blue regions in Fig. 4.6), allowing to
identify every filament propagating through these lanes. Additionally, all parts of
the simulation box being further away from the defect core than a specific distance
was incorporated into a single large filter region (cf. orange region in Fig. 4.6),
allowing to identify filaments leaving the region of interest. Note that the black
colored area does not pertain to any filter region.
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A B

Figure 4.7 Counterpropagating polar waves. (A) Nematic lane in a simulation where all
agents travel with the same speed and mutually align via nematic alignment torques only
decays into counter-propagating locally polar waves. Orange arrows depict the direction of
motion of some of the waves. (Right snapshot taken at a later point in time. Time difference
between snapshots: 2397.) (B) Nematic lane in a simulation where the velocity of agents is
drawn from a distribution; no decay occurs. Parameters: 𝐿𝑝 = 20.6𝐿 and 〈𝜙〉 = 1.1. In
(A): 𝑣(𝑛) = 𝑣0 = const.

Recording transition events in such a configuration for a time span sufficiently
long enough that many particles can travel from one blue region to another blue
region (cf. Fig. 4.6), but short enough such that bending undulations do not change
the position of the individual lanes significantly, allows to record many trajectories
of particles passing through a defect from all directions.

4.5.5 Filament velocity

In chapter 2 it was observed that in systems where interactions have a mixed
symmetry, purely nematic patterns can decay into oppositely propagating polar
waves while retaining their nematic order globally (cf. Fig. 2.8D). In the current
work we are interested in the formation of nematic lanes only. Therefore, any decay
of nematic lanes (that we found to also occur when alignment interactions were
purely nematic, cf. Fig. 4.7) would be undesirable and we looked for a means to
prevent it.

In chapter 3 it was found that formation and growth of polar structures can be
described in terms of kinetic processes at the mesoscopic level. Hence, we speculated
that changing the effective rates in a way that inhibits the growth of polar structures
may be a successful approach that counteracts the formation of colliding polar
waves, although, with the restriction, that such an approach may not inhibit the
formation of nematic structures. When visually inspecting an ordered cluster over
its growth and propagation process (see chapter 3), it becomes clear that these
processes heavily rely on the coherence of the constituents of the clusters, i.e. in
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order for a polar structure to form and be stable, particles must have a very similar
velocity.

If single agents would not move with the same speed, an additional loss process
should set in, caused by fast particles overtaking themean velocity of the propagating
wave and being lost towards the front, whereas individual particles, which are slow,
are lost towards the back. At the same time, a spread in velocity should presumably
not affect the stability of nematic lanes, as nematic structures do not rely on a
coherence of density peaks along the direction of motion of particles. Indeed, we
found that drawing the assigned speed of filaments from a distribution (cf. Section
4.5.1), successfully prevented any decay into locally polar structures, while not
impeding the formation of nematic lanes (see Fig. 4.7).

To check whether particles that possess different free velocities behave differently
on the level of macroscopic structures –for example by causing an effective sorting
of particles into spatially separate populations, where only relatively fast/slow
particles form part of patterns– we obtained 〈𝑣(𝑛)〉, the local average of 𝑣(𝑛) , inside
a simulation exhibiting nematic lanes and CTDs. Any local accumulation of fast/slow
particles would lead to a different value of 〈𝑣(𝑛)〉 when compared to the global
average 〈𝑣(𝑛)〉glob.

- 0.875

- 0.75

- 1.0
<v(n)>/v0

Figure 4.8 Local averaged velocities. Locally averaged 𝑣(𝑛) of agents in a system exhibiting
nematic patterns and CTDs. No deviation of the global average (〈𝑣(𝑛)〉glob/𝑣0 = 0.875)
occurs, up to random fluctuations. The position of the patterns is still slightly perceivable
since fluctuations in the low density disordered background are less suppressed (due to the
lower number of filaments over which is being averaged) compared with the high density
nematic lanes. Same data as in Fig. 4.2A.
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As can be inferred from Fig. 4.8, this system is well mixed (up to random fluctu-
ations) with respect to filament velocities, suggesting that no particle, regardless of
its velocity, occupies a special role inside patterns.

4.5.6 Width of nematic lanes
As discussed in the main text, wemeasured the width of nematic lanes in dependence
of density 〈𝜙〉 in both the agent based simulations and the hydrodynamic model.
To this end, we started several simulations at different filament densities but at
a fixed persistence length (resp. several realizations of the hydrodynamic model
at different 〈𝜙〉 and fixed 𝜆). After these systems had reached a configuration in
which they exhibited a single straight lane, we measured the width of the band and
the average density 〈𝜙〉bg in the disordered background.

A B

Figure 4.9 Width of nematic lanes. (A) shows results for agents based simulations and (B)
for the hydrodynamic model. The width of stable nematic lanes grows with an increase of
the global density 〈𝜙〉 while the background density 〈𝜙〉bg stays constant (inset).
Parameters: 𝐿𝑝 = 20.6𝐿 for (A)

As shown in Fig. 4.9, the thickness of the lanes grows linearly with density in
both the agent-based simulations and hydrodynamic model, while the density of
the disordered background remains constant.

4.5.7 Pa�ern dynamics
Figure 4.10 illustrates in a pictorial way the behaviour of the systems over the
course of the parameter sweeps discussed in the main text. Whereas deep in the low-
stability regime (cf. Fig. 4.10 A) nematic bands are always unstable and potentially
CTDs are formed, deep in the high-stability regime a single, stable and straight
nematic band forms.
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CBA

Figure 4.10 Pictorial illustration of lane behaviour at different levels of stability. (A)
Systems in parameter regimes of low 𝐿𝑝/𝜆 resp. 〈𝜙〉 exhibit unstable nematic lanes with
a high level of activity. Red arrows indicate the direction in which the anisotropic fluxes
drive the lanes. Stochastically CTDs can be formed. (B) At intermediate values of 𝐿𝑝/𝜆
resp. 〈𝜙〉 system-spanning bands form. At their lateral sides FAE can eject (upper panel).
These bands are meta-stable only and stochastically decay (lower right panel) causing the
system to enter a phase of high activity (lower left panel). Eventually, by chance, a new
system spanning band forms and the circle starts a new. (C) With increasing values of 𝐿𝑝/𝜆
resp. 〈𝜙〉, decay events of system-spanning bands occur less frequently until they eventually
become stable. In parallel, the rate of FAE formation drops.

Between these extremes lies a parameter range in which the systems cycle
through qualitatively different states.

The first of these states is identical to the one observed deep in the low-stability re-
gime. Long curved lanes are unstable and dynamically evolve (Fig. 4.10B, lower left
panel). While in this state, a system spanning band can form by chance (Fig. 4.10B,
upper panel) transitioning the system to the other possible state. The formed band is
meta-stable and often slightly curved. From its side filamentous arcs are ejected with
some rate. Stochastically decay events occur during which this bands gets destroyed
(Fig. 4.10B, lower right panel) transitioning the system back to the dynamically
unstable state (Fig. 4.10B, lower left panel).

It is worth to note that agent based simulations started with random initial
conditions very frequently begin to form patterns in a dynamically evolving state
(also for parameters in the high-stability regime).

We measured the duration of this initial transient and found that in � 90% of
the cases it’s shorter than a time of 70000 (data not shown). We discarded this
initial timespan in the measurements of the CTD rate (cf. section 4.5.3) to rule out
any influence of the initial transient on the results.



4.5 Appendix 109

4.5.8 FAE rate measurement

As described in the main text, we measured the formation rate of FAEs at different
parameter regimes in the agent based simulation and the hydrodynamic model
(Fig. 4.3). For this we logged the formation of every FAE in the investigated systems.
We have found that the most reliable method for detecting FAEs is simple manual
inspection of simulation videos. To obtain the formation rate, we divided the
total number of FAEs found by the total time the individual runs were exhibiting
meta-stable system-spanning lanes (cf. Fig. 4.10B).

For every investigated 𝐿𝑝 in the agent based simulations, we averaged over ten
independent simulations, which each ran for a time of 142857.

4.5.9 Hydrodynamic model

To provide the motivation of our hydrodynamic model we start form the Boltzmann-
like equation for the probability distribution function 𝑃(r, 𝜃, 𝑡):

𝜕𝑡𝑃(𝜃) = − 𝐿𝑝𝜕𝑖(𝑛𝑖𝑃(𝜃)) + 𝜕2𝜙𝑃(𝜃) + Interactions. (4.14)

where n = (cos 𝜃, sin 𝜃) is director vector of particular polymer, 𝐿𝑝 = 𝑣/𝐷 is path
persistence length of filaments, and time is normalised by the diffusion coefficient.
Note, that we consider only rotational diffusion and neglect transnational one. Here
and below the space and time dependencies are suppressed for brevity.

We define the particle density, the polarity and nematic Q-tensor as the first
three moments of the probability distribution function:

𝜌 =

ˆ 2𝜋

0
d𝜃𝑃, 𝑝𝑖 =

ˆ 2𝜋

0
d𝜃𝑛𝑖𝑃, 𝑄𝑖 𝑗 =

ˆ 2𝜋

0
d𝜃

(
2𝑛𝑖𝑛 𝑗 − 𝛿𝑖 𝑗

)
𝑃. (4.15)

where 𝑖 and 𝑗 take the values of the Cartesian components; and 𝛿𝑖 𝑗 represents
Kronecker delta. According to their definitions, 𝜌 , 𝑝𝑖, and 𝑄𝑖 𝑗 can be expressed via
Fourier harmonics as follows:

𝜌 = 2𝜋𝑃0, (4.16)
𝑝𝑖 = 𝜋 ((𝑃1 + 𝑃−1), 𝑖(𝑃1 − 𝑃−1)) , (4.17)
𝑄𝑖 𝑗 = 𝜋 ((𝑃2 + 𝑃−2), 𝑖(𝑃2 − 𝑃−2)) . (4.18)

By introducing the projection onto 𝑚𝑡ℎ harmonics of 𝑃:

(. . .)𝑚 =
1
2𝜋

ˆ 2𝜋

0
𝑒−𝑖𝑚𝜃(. . .)𝑑𝜃, (4.19)
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we can obtain the following contributions from the advective and diffusive parts of
(4.14) to the evolution equations of 𝑃𝑚:

𝜕𝑡𝑃𝑚 = −𝑚2𝑃𝑚 − 𝐿𝑝𝜕𝑖(𝑛𝑖𝑃(r, 𝜃))
𝑚

= −𝑚2𝑃𝑚 − 𝐿𝑝
1
2

[
𝜕𝑥

∑︁
𝑘

𝑃𝑘(𝛿𝑘,𝑚−1 + 𝛿𝑘,𝑚+1) + 𝜕𝑦
∑︁
𝑘

𝑃𝑘(𝛿𝑘,𝑚−1 − 𝛿𝑘,𝑚+1)/𝑖
]
.

(4.20)

Being translated to the variables it reads:

𝜕𝑡𝜌 = − 𝐿𝑝𝜕𝑖𝑝𝑖,

𝜕𝑡 𝑝𝑖 = − 𝑝𝑖 −
𝐿𝑝

2
𝜕𝑖𝜌 +

𝐿𝑝

2
𝜕 𝑗𝑄𝑖 𝑗,

𝜕𝑡𝑄𝑖 𝑗 = − 4𝑄𝑖 𝑗 −
𝐿𝑝

2
[𝜕𝑖𝑝 𝑗 + 𝜕 𝑗𝑝𝑖 − 𝛿𝑖 𝑗𝜕𝑘𝑝𝑘]. (4.21)

Note, that we imply summation for repeating indices following the Einstein conven-
tion.

After the time rescaling, adiabatic elimination of polarity 𝑝𝑖, and the introduction
of parameter 𝜆 = 𝐿𝑝/(2

√
2), one obtains a simpler set of equations:

𝜕𝑡𝜌 =𝜆2Δ𝜌 + 𝜆2𝜕𝑖𝜕 𝑗𝑄𝑖 𝑗,

𝜕𝑡𝑄𝑖 𝑗 = − 𝑄𝑖 𝑗 +
𝜆2

2
Δ𝑄𝑖 𝑗 +

𝜆2

2
(2𝜕𝑖𝜕 𝑗𝜌)𝑠𝑡 . (4.22)

where Δ = 𝜕𝑖𝜕𝑖 denotes Laplace operator, and (...)st indicates the symmetric and
traceless part of the expression.

Inspired by Refs.[124, 136] we also introduce the following terms to describe
the nematic interactions of the polymers:

𝜕𝑡𝜌 = · · · + 𝜇Δ𝜌2 + 𝜒̃𝜕𝑖𝜕 𝑗(𝜌𝑄𝑖 𝑗),
𝜕𝑡𝑄𝑖 𝑗 = · · · + 𝛼̃𝜌𝑄𝑖 𝑗 − 𝛾𝑄2𝑄𝑖 𝑗 + 𝜅̃Δ(𝜌𝑄𝑖 𝑗) + 𝜔̃(2𝜕𝑖𝜕 𝑗𝜌2)𝑠𝑡 + 𝜔̃𝑎(2𝜕𝑖𝜌𝜕 𝑗𝜌)𝑠𝑡 .

(4.23)

Finally, to obtain the equations of motion presented in the main text we simply
combine (4.22) and (4.23) and re-normalize density by the critical one 𝜙 = 𝜌/𝜌𝑐𝑟.



5 Polar flow of gliding microtubules steered
by passive nematic defects

The following chapter is based on research I conducted together with Alfredo Sciortino,
Lukas Neumann, Ivan Maryshev, Erwin Frey and Andreas R. Bausch and will soon be
submitted to publication. A.R.B. and A.S. designed experiments. A.S. and L.N. carried
out experiments. I.M., T.K., A.S. and E.F. designed and performed simulations and the
heuristic approach.

5.1 Introduction

The macroscopic properties of materials can surprisingly depend on microscopic
impurities they contain. For instance, defects in the crystalline order of materials
can lead to unexpected transport properties and are at the base of semiconductor
physics [211, 212]. The art of controlling defects to manipulate materials is thus a
fundamental one, and it is starting to find applications in the field of soft matter
[213]. Active materials, whose building blocks are microscopic components able to
turn energy into motion, are similarly often characterized in terms of the presence
of defects and their dynamics [5, 32, 197, 214]. In this case, the scale of the defects
is not only the same as that of the building blocks of the material itself but also the
same scale at which energy is injected in the system. For example, in the case of
elongated active particles, defects in their relative alignment have been identified
in a plethora of different contexts [215] and have been found to play a role in
the cytoskeleton self-organization [49, 216–219], in cells‘ motion [147, 220–222]
and in development [223]. One promising way to control active matter thus is by
controlling the system’s boundary condition or topology in order to control defects
[49, 224–227]. In all of these cases however, defects are themselves part of the active
system and thereby move or spontaneously form and destroy. Only little control of
their position, number and dynamics is possible. A different strategy is to embed
the active system into a passive medium, taking advantage of our ability to control
traditional materials. Passive material properties and their defects have indeed
been shown to influence the emergence of collective structures [218, 228–230]. In
particular, confining swimming bacteria in a passive liquid crystal has shed light
on the interplay between active matter and passive defects, showing that defects
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can be used shape pattern formation [103, 142] or accumulate particles in space
[141]. Thus, nematic defects can induce distortions in a passive material that end
up shaping the behavior of the active system they contain in a non-trivial way [231].
However, most of these results lack microscopic resolution and are strongly affected
by long range hydrodynamic interactions that might hide the microscopic behavior.
In addition, to understand the potential of passive nematic materials to control
active systems, microscopic resolution of the interactions between the two is needed.
Here we steer the pattern formation process of an active system by the presence of
a passive liquid crystal. This is achieved by coupling a two-dimensional microtubule
gliding assay to a self-assembled actin nematic. Gliding filaments quickly assemble
into ordered, polar structures that would not emerge in the absence of the actin
layer. We are then able to observe with high resolution their emergence and to
pinpoint nematic distortions originating from defects as their source. Specifically,
-1/2 defects act by inducing long-range distortions in the material that affect the
active flow. Instead and more strikingly, the conformation of +1/2 defects is found
to be a fundamental funneling and polarity sorting element. Overall, this leads to
the emergence of polar active flow, despite the nematic symmetry of the passive layer.
We find that the formation of patterns and their shape are purely a consequence of
the shape of the nematic field and its defects, that impose a structure on an otherwise
disordered system. It is indeed the precise positioning in space of microscopic point
defects which organizes the active fluid flow on a mesoscopic scale, an observation
we can rationalize by simulations, which fully recapture the experimental results.

5.2 Formation of active polar lanes in passive nematic
layer

The experimental setup consists of binding streptavidin-functionalized kinesin
motors on a supported lipid bilayer (SLB) containing 1.25 % biotinylated lipids.
Successively, the desired concentration of short (≈ 2µm), GMP-CPP stabilized mi-
crotubules (MTs) is incubated for 2 minutes and washed, before the final addition of
1µM short phalloidin-stabilized actin filaments together with a 0.25 % methylcellu-
lose as a depletant and 2mM ATP as chemical fuel (see Methods). In this conditions,
the actin filaments quickly (5-15 minutes) form a 2-dimensional nematic layer
[232], featuring both +1/2 and -1/2 nematic defects (Fig. 5.1B, insets). Defects
are spontaneously assembled due to quenching of the filaments on the SLB. Because
of the planar geometry, we observe on average a total topological charge of 0 and
hence defects of opposite charge form in pairs. The SLB both acts as a cushion for the
sedimentation of actin filaments but also enforces steric interactions between gliding
filaments and passive ones [219, 233]. Hence microtubules are forced to glide inside
this nematic material and to locally align with actin filaments (Fig. 5.1A). After the
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Figure 5.1 Description of the system and formation of polar lane A) Schematic of the
system. Kinesin motors are bound to a SLB and propel short, stabilized microtubules. A
passive actin nematic is sedimented on top. B) The nematic quickly assembles and features
topological defects of half-charge. Microtubules glide into it. Over time, the system evolves
into dense polar lanes spanning the whole sample. Scale bar is 100 𝜇m. C) Lanes are found
to be locally polar, with microtubules mostly gliding in the same direction as shown by the
mean mass flow. Scale bar is 50𝜇m. D) An initial isotropic distribution of microtubules
evolves into lanes as the nematic sediments. The last picture on the right shows a time
projection of the last 10 minutes with an overlay of the final actin nematic director field,
showing how eventually formed lanes move along the nematic director field.

actin nematic is stabilized, at a MT surface concentration of 𝜎 = 0.08MTs/µm2, we
observe that over the course of 20 minutes the microtubules, initially isotropic in
space, aggregate in thick streams, much longer than the individual filaments, that
span the whole sample (Fig. 5.1B and D) and, strikingly, are composed of filaments
locally all moving in the same direction (Fig. 5.1C). The microtubule streams appear
to locally follow the local orientation of the actin nematic (Fig. 5.1D, right, Movie
1). Notably, in the absence of actin microtubules at a similar surface concentration
do not form stable polar patterns, simply moving in straight lines with a persistence
length of ∼ 100µm and a speed of ∼ 200− 300nm/s (Movie 3) and only transiently
aligning upon collision. Additionally, by varying the MC concentration such that
actin sediments without forming a stable nematic no formation of ordered structures
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Figure 5.2 Microscopic behavior of microtubules gliding in a passive actin nematic and
effect of distortions A) Individual microtubules glide into the nematic following its director.
Their trajectory projected over time (total: 7 minutes) is shown on the left, selected tracked
trajectories on the right together with the underlying nematic field B) By tracking individual
gliding filaments, we can confirm that microtubules cross regions of different local order
and that misalignment with the nematic leads to a re-orientation and a drop in speed. C)
The microtubules’ speed has a slight dependency on the local alignment with the nematic
𝑆𝑣, resulting in slower speed at low alignment. D) On average however, microtubules are
mostly aligned, with 𝑆𝑣 ≈ 1. E) Different microtubules (two in this case) end up gliding
along the same trajectories. Scale bars are 5 µm.

is observed, indicating that the nematic background is necessary for these effects to
arise (Movie 3).

5.3 Passive nematic field align active microtubules

We analyzed the behavior of the system at low microtubules’ density (𝜎 = 0.003
MTs/µm2) using TIRF microscopy, thus being able to both follow the trajectory of
individual microtubules (Fig. 5.2A) and to extract the local nematic orientation
𝒏(𝒓) of the actin filaments at any point 𝒓 of the image (see Methods). We perform
single-particle tracking (conditions are: 1 µM Actin, 0.03MTs/µm2) to extract both
the speed and orientation 𝒗 of microtubules. MTs are found to glide mostly in the
direction set by the nematic material and thus with a position-dependent velocity
𝒗 = 𝑣0𝒏, with a mean speed of 𝑣0 ≈ 100nm/s (Movie 1). We compute the order
parameter 𝑆𝑣 = 2(𝒗 · 𝒏/|𝒗|)2 − 1, which measures the alignment between gliding
microtubules and the passive actin nematic and is expected to be 1 if the filaments
are aligned with the nematic field and lower otherwise. The distribution of 𝑆𝑣 is
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found to be strongly peaked at 𝑆𝑣 ≈ 1 (Fig. 5.2D) indicating strong alignment
between the microtubules and the nematic director.

We measure a dependence of the filament’s speed on their local alignment
with the nematic, with microtubules poorly oriented moving slower (Fig. 5.2C).
Fig. 5.2B shows an example of a microtubules’ trajectory. It shows periods of high
and low speed, dependent on the local alignment with the nematic. As the MT
enters an area in which it is misaligned with the nematic director, it slows down and
progressively realigns. This shows that microtubules are able to reorient to resolve
local misalignments and escape obstacles, i.e., there is an effective torque due to
their misalignment that reorients them. Hence microtubules in general align with
the nematic director and follow its distortions.

Over time, individual microtubules, even at such low density, end up gliding
along the same main paths and mostly moving in the same direction (Fig. 5.2D).
This indicates that the nematic alignment field selects trajectories on which most
of the microtubules are directed. In a perfectly aligned nematic this would not be
possible due to the absence of distortions present. As in this system distortions in the
nematic director field always originate from defects and then propagate at longer
distances, we set out to determine their microscopic effect on the active system.

5.4 Distortions and Defects in the passive nematic
steer the active fluid

We then monitor the behavior of the filaments in the presence of different distortions
in the nematic, in particular on splay (high values of (∇ · n)2), bend (high values
of n𝑥∇𝑥n) and close to nematic defects’ cores. We observe the system both at low
(𝜎 = 0.003MTs/µm2) and higher MT density (𝜎 = 0.06−0.08MTs/µm2) to extract
information about both the individual and the average behavior of microtubules.
As expected, since MTs are forced to follow the nematic orientation, splay is the
source for convergence (divergence) of the microtubules flow, leading to an increase
(decrease) of the density (Fig. 5.3A, top). Since 𝑣 = ±𝑣0𝒏 then clearly the splay of
the velocity field is given by ∇ · v = ±𝑣0∇ · n thus being proportional to that of the
nematic director field. Splay additionally leads to different streams merging. In the
case of pure bend, instead, filaments just glide along the deformation, but no change
is density is present (Fig. 5.3B, bottom). We then turned to the behavior close to
defects’ cores. In the presence of -1/2 defects (Fig. 5.2B), individual filaments
simply turn around its core following the alignment of the nematic field and only
rarely cross it. Hence, they only modify the microtubules’ flow by bending their
direction with three-fold symmetry due to the bend deformations they induce in
their proximity (Fig. 5.3B top,C) Conversely and more strikingly, when gliding
filaments hit a +1/2 nematic defect, where no alignment is defined, they abruptly
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Figure 5.3 Behavior at distortions in the nematic A) In the presence of splay and bend
distortions, the microtubules’ flow is affected. Splay changes the concentration of filaments,
as shown by the intensity profile along the stream, whereas bend only their orientation.
B) At -1/2 defects (top), microtubules are simply redirected and usually do not reach the
core. At +1/2 defects (bottom), where no director is defined, microtubules get directed
towards the defect’s core and then are ejected in the nematic again, where they re-align. C)
Collectively, filaments at defects behave like individual ones do, bending at negative 1/2
defects and getting converged at positive ones.

reorient themselves. Indeed, microtubules are funneled directly to the defect’s core
by the defect’s induced local splay and get stuck in it, until able to realign with the
local field to escape the defect (Fig. 5.3B, bottom). After microtubules are ejected,
the actin nematic, while deforming when microtubules at high concentration glide
through it, gradually recovers its initial conformation over time. However, in the
present case, the defects are passive and stable in time and space and the active
particles do not simply get trapped but are able to escape it by realigning. The
behavior is seen to be the same at all observed densities (Fig. 5.3C), showing how
+1/2 defects converge and then deviate the average MT flow.

5.5 Defects-based formation of streams

We determine that positive-defect based funneling of microtubules is the main
mechanism of pattern formation. Zooming in from the beginning of the experiment
on the position at which a +1/2 defect will eventually form, it becomes clear that
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the initially disordered filaments are funneled, as soon as the nematic forms, into
ordered structures by the defect itself (Fig. 5.4A). Not only does the splay-dominated
part of the defect accumulate the microtubules toward its core, but due to their
conformation, defects can only be accessed by microtubules on one side, so that
they always and only exert a converging effect on the microtubules’ density. Thus
+1/2 defects allow to break the spatial symmetry. Additionally, if the nematic field
right after the defect’s core is oriented at a skewed angle with the defect’s axis, all
the ejected microtubules will preferentially turn in one direction, choosing the one
that minimizes their rotation (Fig. 5.4B, Movie 6). Positive +1/2 defects then are
the source of net polarity in the system, as they select a main direction. This results
in macroscopic polar streams (Fig. 5.3B, left). After the streams are formed, the
shape of the polar patterns are still tightly bound to the position and conformations
of defects present in the nematic. Trajectories of microtubules indeed follow defect-
induced distortions of the passive nematic (Fig. 5.4B-D). Plotting the position and
orientation of the topological defects on top of the MTs’ flow, it becomes clear how
they are having an effect in shaping the trajectories as the trajectories deform around
defects (Fig. 5.4C). Microtubules are deviated by distortions in the nematic field
and in addition they are funneled by +1/2 defects forming polar streams. After
they are formed, streams rarely cross +1/2 defects anymore but are surrounded by
them. This indicates that previously +1/2 defects have played a role in channeling
the MT flow on the final trajectories and setting their final polarity. We verify that
streams are polar by computing the mean flow along the lanes in different positions
of the sample, showing domains of polar orientation (Fig. 5.4C, right). We find
that multiple defects arranged in specific conformations further steer the polar flow.
For instance, conformations containing both a positive and a negative defect can
give rise to channeling of microtubules (Fig. 5.4D, bottom inset). The formation of
closed loops in the MTs’ trajectories is another feature of this system (Fig. 5.4D, top
inset,E). All observed loops have in common to be composed of N negative defects
and N+2 positive ones, as the total charge inside a loop has to equal +1 by the
definition of charge itself (Movie 7). As loops consist in microtubules following the
nematic field and ending up in the original position with the same orientation, they
are indeed only permitted if the nematic field allows a smooth, closed path, to which
n is tangential, enclosing a total topological charge of +1. While this constraint is
topological in origin, the precise shape of the loop is instead given by the particular
shape of the defects, in- and outside the loop, and their distortions (Fig. 5.3E), as
the microtubules still glide along the nematic director around the defects.

Overall, these results indicate that defects play a two-fold role in shaping the
microtubules flow: on the one hand, they produce deformations of the nematic field
that affect the microtubules’ flow even at a distance from the defect’s core. On the
other hand, +1/2 defects and their surroundings play a more direct role by both
funneling microtubules but also selecting one out of two possible directions.
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Figure 5.4 Formation of polar streams and role of defects A) Positive defects play a role
in the formation of lanes as the initially isotropic distribution is funneled by defects into
lanes (close ups from the same sample as in Fig. 5.1D). B) Positive defects not only converge
the flow but also break the orientational symmetry by ejecting microtubules preferentially
in one direction. C) This turns eventually into the formation of strongly polar lanes, as
shown by the average flux of microtubules. While the shape is given by deformations in
the actin nematic induced by defects, streams tend to be surrounded by positive defects
that funnel microtubules into them. D) The microtubules’ flow assembles into streams and
follow defect-induced deformations of the nematic field. Defects’ position and orientations
are marked in red. Close ups reveal how defects configurations can shape the microtubules’
flow, including channeling of the flow in specific directions or formation of closed loops. E)
Loops are polar and thus must enclose a total charge of +1, given by N negative and N+2
positive defects. The specific shape of the loop is due to the shape of the nematic field which
is influenced by defects inside and outside the loop.

5.6 Simulations and streams prediction

The formation of polar lanes and their morphology are seemingly only due to the
shape of the nematic field, and in particular to the presence of defects, coupled to the
fact that microtubules are self-propelled. To rationalize this observation, we extract
the field 𝒏(𝒓) from microscopy images (see SI) and use agent-based simulations to
predict the path the microtubules will follow. Additionally, we develop a heuristic
approach able to predict which trajectories are going to be amplified based entirely
on the conformation of the nematic field and its positive defects. Both approaches
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and the results are summarized in Fig. 5.5A. First, we implemented an agent-based
simulation mimicking the behavior of microtubules interacting with a nematic field.
For that, we initially use 𝑁 non interacting point-like particles that move persistently
in direction 𝒖 = (cos(𝜃), sin(𝜃)), with a constant speed 𝑣. Particles receive an
aligning torque by a nematic background field 𝒏 = (cos(𝜙), sin(𝜙)). We assume
the equations of motion, for a given particle 𝑖, to be

d𝒓𝑖

d𝑡
= 𝑣𝒖𝑖, (5.1)

d𝜃𝑖

d𝑡
= 𝐴 sin (2[𝜙(r𝑖) − 𝜃𝑖]) +

√︄
2𝑣
𝐿𝑝
𝜉 , (5.2)

where 𝜉 is random white noise and the pre-factor ensures a path persistence length
𝐿𝑝 (parameters and details are given in SI). The parameter 𝐴 is an alignment rate
that represents the strength of the coupling between the active particles and the
nematic field.

To test the influence of alignment with the nematic background field, we con-
ducted parameter sweeps over 𝐴, i.e. varying the strength of the coupling between
particles and the nematic field. Remarkably, as 𝐴 is increased above a nonzero
value, the system rapidly forms lanes that very closely those observed in the experi-
ments, see Fig. 5.5A(center), B. These lanes are polar and show the same structure
and local orientation as the experiments (Fig. 5.5E). After reaching a threshold of
about 𝐴 ∼ 0.01rad/s, a further increase in alignment strength does not change the
observed overall topology of the lanes and the systems continues to resemble the
experimentally observed patterns (Fig. 5.5C).

By further performing simulations on randomly-generated nematic fields (see
SI) several conformations observed in experiments (including loops enclosing a
total charge of +1) are observed, suggesting our observation is a general property
of defect-containing nematic materials.

Thus agent-based simulations confirm that the structure and polarity of the
observed patterns are purely due to the presence of a nematic field that fixes
the local orientation, but not the direction, of particles in space. The fact that
simulations, despite the simplicity of the model featuring shape-less, point-like
particles, still closely mimic the experimental results, suggests that the observed
structure formation is a general process for self-propelled agents, and does not
depend on the microscopic details of how microtubules move. The only necessary
assumptions are that particles must move persistently and, to some degree, align
with the nematic field. This is further confirmed by the fact that main trajectories
are amplified even at low MT density and that simulations including interaction
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show the same structures too (see SI), suggesting that interaction between filaments
is not a relevant parameter to predict the patterns.

Emerging patterns are thus more of a consequence of the conformation of
the field 𝒏 rather than of the microscopic dynamics. The observation that the
only points at which microtubules are strongly funneled and deviated are +1/2
defects indicates that positive defects and their surroundings are the fundamental
elements of the pattern formation process. They indeed mediate polar sorting by
ejecting microtubules preferentially in one direction and the fact that they choose
preferentially one direction is due to distortions in the nematic right after the defect’s
core.

We then develop a polar streamline heuristic prediction approach based only
on the characteristics of the nematic field in the vicinity of positive defects, in turn
summarized by the nematic tensor 𝑸 and its derivatives. It consists in identifying a)
starting points for trajectories right after defects; b) the preferred direction of such
trajectories based on the characteristics of the field 𝒏 (see SI for a full description).

First, we identify the positions 𝒓+1/2 of positive defects. Due to the continuous
self-propulsion of the microtubules we expect that the position of the streamline
starting point will be shifted with respect to the defects’ core along the defect’s
axis and end up in position 𝒓seed = 𝒓+1/2 + 𝑑𝒑+1/2, where 𝒑+1/2 is the defect’s axis
computed from the divergence of 𝑸 and 𝑑 ≈ 2.5µm (approximately one microtubule
length) is a phenomenological parameter summarizing the mean distance travelled
by a MT before realigning. We expect the best value of 𝑑 in general to be dependent
on the particles’ speed and shape, that modulate the effectiveness of alignment. The
position 𝒓seed will then act as a seed for the streamlines.

As a last step, to choose the direction of the streamlines, one can, again from
the divergence of the tensor Q, also obtain a polarity field 𝒑 = ∇ · 𝑸/|∇ · 𝑸 | able
to predict what direction MTs will follow after they cross a +1/2 defect. This
divergence indeed contains information about both splay and bend distortions
and encodes the main direction they enhance and is then tightly connected to
the mechanical properties of the passive nematic [231, 234, 235]. Microtubules
leaving a defect will feel such distortion and orient accordingly. From then on,
filaments will just follow the nematic streamlines of the field n in the predicted
direction. We thus impose that particles perfectly align with the nematic field
in the seeding position 𝒏(𝒓seed) and define the preferred direction of motion as
sign

(
−𝒏(𝒓seed) · (𝒑seed)

)
𝒏(𝒓seed) i.e., as the direction minimizing the scalar product

between 𝒏(𝒓seed) and the divergence of 𝑸 in the seeding position. This corresponds
to the fact that particles preferentially follow distortions in a direction that minimizes
the change in their direction. Streamlines are then evolved from the seeding position
in the chosen direction until they reach another +1/2 defect or one of the edges.
The approach is sketched in Fig. 5.5F, right side.
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Figure 5.5 Simulations and heuristic arguments describe the experimental results
well A) The experimental trajectories (top left) can be very well reproduced by different
approaches that start from the knowledge of only the nematic field. We can extract the
nematic field 𝒏, which in turn can be used as input for agent-based simulations (top center)
and a 𝑸-tensor based heuristic approach predicting streams (top right). Both approaches
are schematized on the bottom. Starting from the nematic field and a minimal set of rules,
we can thus reproduce the experimental trajectories. B) Both at low and high density,
simulations recover experimental trajectories. Simulations rely on a local torque acting on
the agents to align them with the field and allows to vary parameter such as alignment
strength, interaction, etc. C) As the alignment rate is increased to 𝐴 ≈ 0.01 simulations start
showing very good agreement with experimental trajectories, as quantified by the Pearson
correlation coefficient between experimental and simulated images. D) Regardless of the
particle-particle interaction parameter B, simulated particles all align with the nematic field
with the same efficiency, as quantified by the parameter 𝑆𝑢 E) Simulations also precisely
recover the polar flow of experiments (to be compared with Fig. 5.4C) indicating that the
information about the polarity is encoded in the field. F) To further confirm it, the 𝑸-tensor
approach instead focuses on the role of +1/2 defects. Defects are identified in the nematic
field and the morphology of their surrounding is used to identify the streamlines they
generate by converging the MTs’ flow. To each defect corresponds a color-coded streamline
(left) to be compared with experimental data (right). Only selected defects are shown. This
proves that +1/2 defects directly play a role in shaping the flow.
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This defect-based streams prediction again is able to predict, starting uniquely
from the experimentally extracted nematic field 𝒏 the trajectories ofMTs (Fig. 5.5A,F).
Additionally, however, it only uses information about the position and conformation
of +1/2 defects, underlining their role in shaping the flow’s directionality. Dif-
ferently from simulations, only trajectories starting right after a +1/2 defect are
allowed and yet experimental results are still confirmed, indicating that trajectories
indeed are funneled +1/2 defects. By simply knowing how defects are arranged in
space one can predict the formation of polar lanes. Both approaches confirm that it
is the field n that shapes the final patterns and that +1/2 defects are in this case
the fundamental polarity-sorting configurations.

Simulations suggest that the only relevant parameter is the coupling between the
nematic field and the particles’ orientation. The results is true for both high-density
and low-density experiments, suggesting that the formation of main paths is a
characteristic of the nematic field itself. This latter statement is confirmed by the 𝑸
tensor approach, which in addition underlines the role of +1/2 nematic defects in
sorting the polarity, while the following evolution of the system is solely dependent
on MTs staying aligned with the actin nematic.

5.7 Conclusion and discussion

We have shown that a passive nematic material containing defects can influence
the motion of active filaments and lead to the formation of polar structures on a
mesoscopic scale. Differently from recent results combining actin and microtubules
[234, 236] we separate the active component (microtubules) and the passive one
(actin). While formation of patterns induced by the presence of a nematic material
has already been observed in bacterial systems [142], in this case we are presented
with a purely 2D system which we can observe with high resolution to understand
the microscopic dynamics. In the presence of self-propulsion, passive defects lead
to the selection of specific oriented trajectories. Specifically, we confirm that the
emergence of ordered flow is due uniquely to the presence of defects and to their
conformation. A similar funneling of active particles accumulating in +1/2 defects
had already been observed in the case of bacteria [141] and was shown to cause
the formation of polar structures in the case of gliding filaments [219]. We extend
these results and find that the information about the morphology and direction of
the polar streams is embedded in the passive nematic only and its conformation, i.e.,
it is a general property which does not depend on fine details of the active system.

As gliding microtubules do not produce substantial flow and since the nematic is
stable over time, this system falls into the dry active matter category [7, 124]. The
absence of hydrodynamic interactions enhances the stability of the forming patterns
and allows defects to be fixed in space. Hence, as the positioning and orientation
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of defects govern the polar streams, they somewhat act as lenses would for light
beams, by focusing and re-directioning the flow. Similar to an optical path, the
arrangement of defects guide pattern formation. This suggests general strategies to
drive the flow of dry active matter which do not require macroscopic patterning of
the whole surface, as done instead for instance in [142], as only the position and
orientation of individual nematic defects needs to be controlled. Coupled with our
ability to control liquid crystals, we can envision the formation of mixed systems
in which a passive nematic material is controlled in order to direct active patterns,
similarly to how a microfluidic setup controls liquid flow [237]. This would lead to
a more targeted and energetically efficient manipulation of nematic materials in
order to tune macroscopic active flow.

A final straightforward outlook would be to extend this discussion in different
topologies, taking advantage of constraints on the alignment fixing the total charge
and the defects morphology to obtain diverse patterns. This would prove that
many of the observed active behavior under confinement, including breaking of
the chirality symmetry in non-dry systems, are due to fundamental properties of
nematic configurations [225, 238, 239]. Additionally, as filament-like structures are
ubiquitous in nature, with the most prominent example being the cell’s cytoskeleton,
we expect this sort of mechanism suggests strategies that biological system might
already be using to direct matter’s flow in one direction, using local nematic. For
example, nematic structures are fundamental in processes such as the development
of the organism hydra [223], the formation of bacterial biofilms and many more
biologically-related processes [192, 215, 240].
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5.8 Appendix

5.8.1 Simulation

In our agent-based model, we consider spherical self-propelled particles of diameter
𝛿 = 1 µ𝑚. The particles move with velocity 𝑣 = 0.1µ𝑚/𝑠 in the plane and their
positions can be described as:

d𝒓𝑖

d𝑡
= 𝑣𝒖𝑖, (5.3)

where 𝒖𝑖 = (cos(𝜃𝑖), sin(𝜃𝑖)) is the orientation of particle 𝑖.
The individual particle has a nematic alignment with an external field 𝒏(𝒓) =

(cos (𝜙(𝒓)), sin (𝜙(𝒓))), with the alignment rates 𝐴, and with neighbors within the
interaction radius 𝛿 = 1 µ𝑚, with the alignment rate 𝑆:

d𝜃𝑖

d𝑡
= 𝐴 sin (2[𝜙(r𝑖) − 𝜃𝑖]) + 𝑆

∑︁
𝑗≠𝑖,𝑟𝑖 𝑗<𝛿

sin
(
2[𝜃 𝑗 − 𝜃𝑖]

)
+

√︄
2𝑣
𝐿𝑝
𝜉 . (5.4)

where 𝜉 is random white noise with zero mean and unit variance with a pre-fractor
ensuring a path persistence length of 𝐿𝑝 = 100 µ𝑚.

If not stated otherwise, the simulation was configured as follows: The nematic
background fields had a resolution of 2008 × 2008, with a pixel edge-length of
64.5𝑛𝑚. The density of particles was set to be 0.029/µ𝑚2. Simulations were
initiated with random initial conditions (i.e. particles initially placed at random
positions and with a random orientation). To cut off initial transients, we let
the simulation proceed for 2000𝑠 before starting to obtain measures. These were
subsequently recorded in 800 frames, equally spaced over a time-window of 8000𝑠.

Measures in the experiments were taken with a microscopic field of view much
smaller than the whole experimental system, hence the nematic field on opposing
sides as well as particles exiting resp. entering the observed area of the system are
not correlated (see e.g. Fig. 5.2A). To account for this fact in the simulations, we
used “grand canonical” boundary conditions when simulating an experimentally
obtained field. Here, when particles cross a boundary, they are put at a random
position along one randomly chosen side of the simulation box with a randomly
chosen orientation. Otherwise we used periodic boundaries.

5.8.2 Heuristics

To address the formation of polar streams, we consider the behavior of particles on a
two-dimensional square periodic domain of the size 𝐿 with synthetically generated
nematic fields containing simple configurations of topological defects. We firstly con-
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Figure 5.6 Panels (A,C) show the results of agent-based simulations for symmetric (A)
and disturbed (C) nematic textures. (B) and (D) illustrate the heuristic predictions for (A)
and (C), respectively. (E) depicts the heuristic rule. Red tripods are for −1/2 defects, bold
blue dots corresponds to +1/2 defects, green lines represents the streams of particles, blue
arrows show the divergence of nematic field.

sider two pairs of symmetrically located ±1/2 defects, and introduce the following
director field: n = (cos(𝜙), sin(𝜙)), where 𝜙 =

∑
𝑖

𝑘𝑖tan−1((𝑦 − 𝑦0
𝑖
)/(𝑥 − 𝑥0

𝑖
)) +𝜙0.

Here 𝑘𝑖 and (𝑥0
𝑖
, 𝑦0

𝑖
) define topological charge and the core’s position of the 𝑖𝑡ℎ

defect, and 𝜙0 is initial angle. Particularly,

𝑘1 = −1/2, (𝑥01, 𝑦01 ) = (−𝑙, 𝑙) + (𝑥𝑐, 𝑦𝑐), (5.5)
𝑘2 = 1/2, (𝑥02, 𝑦02 ) = (𝑙,−𝑙) + (𝑥𝑐, 𝑦𝑐), (5.6)
𝑘3 = 1/2, (𝑥03, 𝑦03 ) = (−𝑙, 𝑙) + (𝑥𝑐, 𝑦𝑐), (5.7)

𝑘4 = −1/2, (𝑥04, 𝑦04 ) = (−𝑙,−𝑙) + (𝑥𝑐, 𝑦𝑐), (5.8)

where the (𝑥𝑐, 𝑦𝑐) = (𝐿/2, 𝐿/2) is the center of the domain, and 𝑙 ≈ 𝐿/4.
Running the simulations on the introduced director field, we observe that

particles form nematic lane, which passes in the vicinity of positive topological
defects, perpendicular to their axis (Fig.5.6A). That goes in line with the fact that
topological defects correspond to the maximal distortion of the nematic field: splay
deformation leads to the convergence of the nematic streamlines in +1/2 disclina-
tions (and divergence in −1/2 ones) [141]. Thus, positively charged defects play
the role of natural attractors, although the lane is shifted from the defect core by a
small distance along the defect’s axis.

However, if one introduces small perturbation n𝛿 = (0, cos(2𝜋𝑥/𝐿)), particles
moving in a distorted field n𝑑 = (n+n𝛿)/|(n+n𝛿) | form the polar stream (Fig.5.6C).
It illustrates that deviation of the field around the defect from a perfectly symmetric
one can lead to a symmetry breaking.

Armed with this knowledge, we can formulate our heuristic rule predicting polar
streamlines’ location. It consists of (i) identifying a starting point of the potential
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stream and (ii) determination of its direction. We first identify the positions 𝒓+1/2
𝑖

of positive defects as local maxima of the topological charge density 𝑞 [136, 202]
defined as:

𝑞 =
1
4𝜋

(
𝜕𝑥𝑄𝑥𝑖𝜕𝑦𝑄 𝑦𝑖 − 𝜕𝑥𝑄 𝑦𝑖𝜕𝑦𝑄𝑥𝑖

)
, (5.9)

where 𝑄𝑖 𝑗 - tracelesss and symmetric tensor describing an average alignment of
filaments disregarding their orientation. 𝑄𝑖 𝑗 = 〈𝑛 𝑗𝑛 𝑗 − 𝛿𝑖 𝑗/2〉 with 𝛿𝑖 𝑗 denoting
Kronecker delta.

From the symmetry grounds, the only source of the polarity coming from the
actin layer is the divergence of the nematic field. We define the local actin-induced
polarity (or just “polarity” hereafter) as 𝑝𝑖 = −𝜕 𝑗𝑄𝑖 𝑗/|𝜕 𝑗𝑄𝑖 𝑗 |. Accordingly, the
axis of +1/2 defect can be defined as averaged 𝑝𝑖 at the defect core: 𝑎𝑖 = 𝑝

+1/2
𝑖

[241]. Due to the continuing self-propulsion of the particles, we expect that position
of the streamline starting point (seed) is shifted in respect to the defect core:
𝑟
+1/2
𝑖

+ d 𝑎𝑖 where d is a small phenomenological parameter depending on the
allingment strength 𝐴. It can be explained both by the particles overshooting and
curvature-induced flux [152, 189]. Finally, preferred direction of motion can be
defined as 𝑛𝑖sign(−𝑛𝑘𝜕 𝑗𝑄𝑘 𝑗) at the stream line’s starting point. As one can see, if
topological defect is perfectly symmetric actin-induced polarity is normal to the local
director (𝑛𝑘𝜕 𝑗𝑄𝑘 𝑗 = 0), consequently no symmetry breaking can be observed and
the stream remains nematic. However, the symmetry breaks down when director
field departs from the ideal profile. Any imperfections (e.g. inherent “twist” [242],
or the influence of adjacent defect [241, 243]) can result in polar streams.

Our heuristic rule is pictorially illustrated in Fig. 5.6E; blue arrows correspond
to the polarity field (𝑝𝑖), grey segments are for the nematic alignment. When
a particle moves from left to right being funneled by wedge-shape form of +1/2
defect, it reaches defect core region (green dot) and overshoots by distance d keep
moving along the defect axis (𝑝+1/2

𝑖
). At this point (blue dot), the fate of particle

is determined by the projection of local polarity (𝑝𝑠𝑒𝑒𝑑
𝑖

) on the nematic director.
A smaller angle between polarity and ±𝑛𝑖 corresponds to a higher probability
for particles to turn to the corresponding direction (green arrow). The introduced
heuristics being applied to twomentioned director fields (Fig. 5.6 A, C) reproduce the
localization of particles and their orientation with a high level of fidelity (Fig. 5.6 B, D,
respectively).

It is worth mentioning, that divergence of Q-tensor contains both splay and bend
deformations: 𝜕 𝑗𝑄𝑖 𝑗 ∝ 𝑛𝑖𝜕 𝑗𝑛 𝑗 + (𝑛 𝑗𝜕 𝑗)𝑛𝑖. Splay deformation itself can concentrate
particles and lead to the formation of the polar streams [142] (see the results for
n = (cos(𝜋𝑦/𝐿),− sin(𝜋𝑦/𝐿)) in Fig. 5.7A). Bend deformation, on contrary, can
lead to the nematic stream (not shown). However, in the real passive nematics,
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these two types of distortion are typically localized around the defects, which is
often energetically beneficial.

Finally, to verify the existence of polar streams in the randomly oriented but
realistic defects we generate artificial nematic patterns by integrating the equation
for relaxational dynamics of passive nematics. Particularly we use the simplest form
of Landau-de Genne’s free energy 𝐹 with one-elastic-constant approximation:

𝜕𝑡𝑄𝑖 𝑗 = −1
𝛾

𝛿𝐹

𝛿𝑄𝑖 𝑗

= [𝛼 − 𝛽𝑄𝑘𝑙𝑄𝑘𝑙] 𝑄𝑖 𝑗 + 𝜅Δ𝑄𝑖 𝑗, (5.10)

where 𝛾 is rotational viscosity. Elasticity 𝜅 is Frank constant 𝐾 (normalized by 𝛾), 𝛼
and 𝛽 are standard Ginzburg-Landau coefficients. We stop the time evolution of
the field before the system reaches an equilibrium homogeneous state and use the
output as the pre-imposed director field for our agent-based simulation. In this case,
particles also form polar streams “touching” the +1/2 defects. Remarkably, for some
configurations of defects we even observe the polar rings discussed in the main text
(Fig. 5.7B).

A B

Figure 5.7 Polar lanes in agent-based simulations. (A) After agents have been randomly
placed in an artificial nematic field with very strong splay; they immediately concentrate
into polarly moving lanes. To visualize individual agents, we trace the trajectories of three
particles (with their starting position indicated by red crosses). (B) Agents form a dense
polar ring around three +1/2 defects c.f. Fig. 5.3C. (𝜅 = 0.1, 𝛼 = 0.4, 𝛽 = 0.05, field
resolution of 150 × 150, 𝐴 = 0.8 and 𝐿𝑝 = 100𝑛𝑚) (Directional color-code for both panels
on the upper right.)





6 Conclusion and outlook

In this thesis we had a strong focus on the investigation of patterns, order and
interactions in active matter systems. To this end we mainly applied numerical
models and simulations.

In chapter 2, we developed a novel agent-based algorithm for the numerical
simulation of the actin motility assay and combined large-scale simulations with
experiments. Consistently they showed that polar and nematic patterns are not
strictly distinct phenomena, but indeed can coexist in active systems. This finding
implies that other than commonly assumed, the symmetry of macroscopic patterns
in active matter is not uniquely set by the symmetry of microscopic interactions.

Several aspects of the coexistence between nematic and polar patterns we
described in chapter 2 have since been observed by others. Interestingly, this was
done both in agent-based simulations [71], where the authors used a different
agent-based simulation than ours and observed metastability between nematic and
polar patterns, and in kinetic Boltzmann resp. hydrodynamic approaches [129].
This indeed suggests that the three-phase coexistence does not depend on specific
details of our simulations or the motility assay, but could be a more general feature of
a wide range of active matter systems. To me, an open and worth pursuing question
in this context is what prerequisites the microscopic constituents in agent-based
systems that are dominated by alignment interactions (i.e. without significant steric
exclusion as present in e.g. Ref. [71]) really have to fulfil in order for a coexistence
of nematic and polar structures to be possible. In chapter 2 an interaction with
a slight polar bias was necessary to facilitate a coexistence. Yet, we already saw
some hints in this thesis that a polar bias may be entirely unnecessary to produce
structures that are, at least locally, polar; see discussion about colliding waves
produced by agents that align purely nematic in section 4.5.5 (it is worth to note
that in Ref. [129] similar decays of nematic lanes were found). This could be a hint
that even in agent based models in the limit of pure nematic alignment that exhibit
phase separation into nematic lanes –yet are microscopically composed of polar
moving particles with a constant speed– nematic structures are generally prone to
such a decay in certain parameter regimes. If true, this would imply that nematic
and polar structures are much more intertwined than it was long believed and that
the commonly assumed phase separation scenario for nematic systems [7] is more
complex than thought.

As just discussed, it seems that the three phase coexistence does not depend
on specific details of our model. We nevertheless believe, on an arguably more
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subjective and rather intuition-based level, that the investigation of the impact of
some specific details in active matter systems could potentially be more fruitful than
it may first appear. One example is the speed of particles. In order to suppress the
above-mentioned decay of nematic lanes into colliding waves, we had to introduce
a distribution of velocities instead of employing, as it is commonly done, the same
for every agent (see again section 4.5.5). Does a broad distribution of agents speed
maybe have other interesting consequences? It could, e.g., even lead to phenomena
like a “phase separation” into different structures respectively composed of sub-
populations of particles with different speeds.

Further, a close look at the details of collisions between agents in our simula-
tion, cf. chapters 2 and 3 as well as Fig. 1.5, reveals that interactions are mostly
non-reciprocal; a filament does not “feel” another one that is interacting with its
tail (only when two filament heads overlap they mutually align). This is different
than in most other models and could potentially have relevant consequences. It is
not ruled out to be a factor in the formation of the defects we observed in chapter 4
or it may lead to a stabilization of polar waves and therefore be a factor in the re-
lative ease with which we can observe the coexistence of polar and nematic patterns.

Besides their coexistence, we also in-depth investigated single types of patterns
in active systems. In chapter 3 in particular we concentrated on the formation
process of polar ordered structures and how they are maintained. By employing our
simulation method we identified and investigated the mesoscopic processes on the
level of particle clusters that drive the formation and maintenance of microphase
separated polar patterns. We used these processes as a basis for the construction
of a novel kinetic model, which showed the same cluster statistics, mass-exchange
dynamics, and bifurcation scenario as the agent-based system, even though it con-
tains no information on the spatial dynamics. This suggests that the presence of
microphase separation in the ordered state, and potentially also other types of
ordered patterns in different systems, can be understood by analyzing the flow in
a properly defined phase space. A concrete next step could be to investigate how
nematic structures form. How does the pattern formation proceeds on the level of
microscopic constituents in this case? It may also start from mesoscopic nematic
clusters analogous to the polar case. If so, there might be an interplay between
polar and nematic clusters on the mesoscopic level whose investigation could also
contribute to the understanding of interplay and coexistence of these patterns on
larger length scales.

In addition to polar ordered structures, we further focused on the investigation
of nematic patterns in chapter 4. More specifically, we discovered in our simulation
that in the nematic phase-separated state, previously unreported −1/2 defects can
form in triple junctions of lanes which are associated with a marked increase in
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density, as well as filamentous arcs which are remotely reminiscent of +1/2 defects.
We combined our agent-based analysis with a hydrodynamic model that exhibits
the same phenomenology and topologically charged structures. That way we char-
acterized how the occurrence of these structures depends on parameters and found
that they are both closely linked with the lateral instabilities of nematic lanes. Our
analysis implies that phase separation and topological defects – two hitherto seem-
ingly incompatible phenomena – can actually be closely linked in weakly interacting
active nematics. While it is as of yet unclear whether the emergence of these defects
can also be observed in other nematic models that exhibit phase separation, we
see at least no obvious reason why this should not be possible. So maybe even the
seemingly well-explored phase-separated states with only one type of pattern still
hold surprises that have been unnoticed so far.

Besides patterns and order that form self-organized due to particle-particle in-
teractions only, we also investigated in chapter 5 how active matter systems can be
externally controlled. More precisely, we focused on how polar patterns form in a
microtubules gliding assay that is coupled to a passive actin nematics. We developed
an agent-based model and a heuristic approach that consistently reproduced the
experimental results, thereby showing that alignment to the nematic background
is sufficient to obtain the observed polar streams. We identified +1/2 defects and
their orientation to be the defining factors for the formation and guidance of po-
lar patterns. Our results highlight the potential of controlling active particles via
coupling to a passive background. In particular, a targeted positioning and orienta-
tion of defects could open up a general pathway to control the flow of active particles.

All this being said, we want to close with a broader (and subjective) statement.
The starting point of this thesis was an experimental observation that we found hard
to reconcile with the existing theoretical results at that time. Without this “cue from
reality”, many of the findings of this thesis, especially the ones presented in chapter
2, would not have been made yet (most certainly not by us, at least). Together
with the rather uncommon experience of conducting experiments, although being a
theoretical physicist (for which we feel very lucky), makes us prone to believe that
close collaboration between experiment and theory was and is the best way forward.
Many of the design choices we made for our simulation were inspired by closely
examining the experiments and by a subsequent attempt to build the key defining
characteristics into a model that is as simple as possible but not too simplistic. We
think that most likely a similar feedback-loop between well-controlled experiments
and well-controlled simulations (resp. theory) will be crucial in uncovering the most
interesting findings that are still to be made in active matter.
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