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Zusammenfassung

In meiner Doktorarbeit befasse ich mich mit Ordnungsbildung und Mustern in Systemen aktiver Mate-
rie. Diese Systeme setzen sich aus einer Vielzahl einzelner, meist identischer, Konstituenten zusammen,
die sich individuell fortbewegen und auf lokaler Ebene wechselwirken. Durch ein Zusammenspiel
von Bewegung und Wechselwirkung auf Agentenebene kann sich aktive Materie selbst organisieren
und verschiedene Arten makroskopischer Ordnung und Mustern ausbilden. Nach einer Einleitung
prasentiere ich in den Kapiteln 2 bis 5 unsere Untersuchungen zu verschiedenen Aspekten dieser
Phidnomene, in denen wir jeweils numerische Simulationen mit anderen theoretischen Ansédtzen oder
mit Experimenten kombiniert haben.

Kapitel 2 - Emergenz von koexistierenden geordneten Zustdnden in Systemen aktiver Materie
gemeinsam mit Lorenz Huber; Ryo Suzuki, Erwin Frey und Andreas Bausch.

In diesem Kapitel entwickeln wir eine neuartige Simulation des Actin Motility Assays, einem experi-
mentellen Modellsystem aktiver Materie. Wir kombinieren grol3skalige Simulationen mit Experimenten
und finden durch Kontrolle der mikroskopischen Interaktionen zwischen einzelnen Konstituenten
heraus, dass geordnete Muster polarer und nematischer Symmetrien in aktiven Systemen koexistieren
konnen. Somit zeigen wir, dass die Symmetrie der Ordnung in aktiver Materie nicht direkt durch die
mikroskopische Interaktion bestimmt wird, sondern selbst eine emergente Eigenschaft ist. Die Inhalte
dieses Kapitels wurden in [1] veroffentlicht.

Kapitel 3 - Mikrophasenseparation in aktiven Filamentsystemen wird durch zyklische Dynamik
der Clustergrof3e und -ordnung aufrechterhalten

gemeinsam mit Lorenz Huber und Erwin Frey.

In diesem Kapitel untersuchen wir den Entstehungsprozess und die Aufrechterhaltung polarer mi-
krophasenseparierter Muster in aktiven Systemen. In agentenbasierten Simulationen identifizieren
wir Teilchencluster verschiedener Ordnung und Grof2e und messen die Strome zwischen diesen.
Auf Grundlage dieser Austauschprozesse entwickeln wir ein kinetisches Modell, das die Ergebnisse
der Simulationen reproduziert. Hierauf basierend zeigen wir, dass Ordnungsbildung durch Cluster-
selbstreplikation stattfindet und die Aufrechterhaltung des mikrophasenseparierten, polar geordneten
Zustands das Ergebnis einer zyklischen Dynamik in der Teilchenclustergrof3e und -ordnung ist. Die
Inhalte dieses Kapitels wurden in [2] veroffentlicht.

Kapitel 4 - Kondensierte topologische Defekte und filamentose Bogenauswiirfe in phasenge-
trennten schwach wechselwirkenden nematischen aktiven Systemen

gemeinsam mit Ivan Maryshev und Erwin Frey.

Wir finden in agentenbasierten Simulationen, dass auch in phasenseparierten nematischen Systemen
topologisch geladene Strukturen, insbesondere —1/2 Defekte, entstehen kénnen. Wir messen den
Teilchenfluss durch Defekte, in deren Néhe die Dichte stark ansteigt, im Detail und bestimmen das
Auftreten der Strukturen in Abhéngigkeit von globaler Dichte und Persistenzldnge. Wir entwickeln
ein Kontinuumsmodell, das dieselbe Phdnomenologie und Parameterabhingigkeit aufweist wie die
Simulationen. Anhand dieses Modells zeigen wir, dass das Auftreten der topologisch geladenen
Strukturen eng mit der lateralen Bewegung von nematischen Bahnen verbunden ist.

Kapitel 5 - Polare Stromung gleitender Mikrotubuli, gelenkt durch passive nematische Defekte
gemeinsam mit Alfredo Sciortino, Lukas Neumann, Ivan Maryshev, Erwin Frey und Andreas Bausch.

In diesem Kapitel koppeln wir ein Mikrotubuli Gliding Assay an einen nematischen Fliissigkristall und
zeigen, dass dadurch polar stromende Muster erzeugt werden kénnen. Mit Hilfe einer Kombination
aus numerischen Simulationen und einem heuristischen Ansatz bestdtigen wir, dass alleine die
Ausrichtung der einzelnen Agenten an dem nematischen Hintergrund fiir die Entstehung der polaren
Muster verantwortlich ist. Wir zeigen, dass insbesondere die Orientierung und Struktur von +1/2
topologischen Defekten entscheidend fiir den Musterbildungsprozess ist.






Summary

In my PhD thesis I am investigating order formation and patterns in active matter systems. These
systems are composed of a large number of single, usually identical, constituents that move individually
and interact at the local level. Through an interplay of motion and interaction at the agent level,
active matter can self-organize and form various types of macroscopic order and patterns. After an
introduction, I present in chapters 2 to 5 our investigations of various aspects of these phenomena, in
each of which we have combined numerical simulations with other theoretical approaches or with
experiments.

Chapter 2 - Emergence of coexisting ordered states in active matter systems

with Lorenz Huber, Ryo Suzuki, Erwin Frey and Andreas Bausch.

In this chapter, we develop a novel simulation of the actin motility assay, an experimental model
system of active matter. We combine large-scale simulations with experiments and, by controlling
the microscopic interactions between individual constituents, find that ordered patterns of polar and
nematic symmetries can coexist in active systems. Thus, we show that the symmetry of order in active
matter is not directly determined by the microscopic interaction, but is itself an emergent property.
The contents of this chapter were published in [1].

Chapter 3 - Microphase separation in active filament systems is maintained by cyclic dynamics
of cluster size and order

with Lorenz Huber and Erwin Frey.

In this chapter, we investigate the formation process and maintenance of polar microphase-separated
patterns in active systems. In agent-based simulations, we identify particle clusters of different
size and order and measure the currents between them. Based on these exchange processes, we
develop a kinetic model that reproduces the results of the simulations. Based on this, we show that
order formation occurs through cluster self-replication and that the maintenance of the microphase-
separated, polar-ordered state is the result of a cyclic dynamics in particle cluster size and order. The
contents of this chapter were published in [2].

Chapter 4 - Condensed topological defects and filamentous arc ejections in phase-separated
weak active nematics

with Ivan Maryshev and Erwin Frey.

We find in agent-based simulations that topologically charged structures, in particular —1/2 defects,
can also emerge in phase-separated nematic systems. We measure in detail the particle flux through
defects in the vicinity of which the density increases sharply, and determine the occurrence of the
structures as a function of global density and persistence length. We develop a continuum model
that has the same phenomenology and parameter dependence as the simulations. Using this model,
we show that the occurrence of the topologically charged structures is closely related to the lateral
motion of nematic lanes.

Chapter 5 - Polar flow of gliding microtubules steered by passive nematic defects

with Alfredo Sciortino, Lukas Neumann, Ivan Maryshev, Erwin Frey and Andreas Bausch.

In this chapter, we couple a microtubule gliding assay to a nematic liquid crystal and show that
this can generate polarly flowing patterns. Using a combination of numerical simulations and a
heuristic approach, we confirm that the orientation of each agent on the nematic background alone
is responsible for the generation of the polar patterns. Moreover, we show that in particular the
orientation and structure of +1/2 topological defects is crucial for the pattern formation process.
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1 Introduction

1.1 Active matter, a definition

We want to start this thesis with a brief definition of its object of research, active
matter. Commonly, this term is used for systems that are composed of individual
constituents, that each has a propulsion or force-generating mechanism, and that
each can interact with other individuals of the system and possibly with their
environment. For some in-depth reviews on active matter, please see e.g. [3-9].
In active matter systems, there is a continuous, effective local energy input e.g.,
through the consumption of fuel available in the agents’ environment or through
the depletion of an energy store carried by each agent, rendering them inherently
non-equilibrium systems.

Due to its rather inclusive definition, “active matter” is an umbrella term for an
extremely wide range of different systems. An emblematic (but by no means ex-
haustive) list of systems naturally occurring or human-made, to which this definition
can be applied with different levels of rigor, includes examples from a broad range of
length scales: bacterial suspensions [10-14], driven biofilaments [1, 15-21], active
colloids [22-24], shaken granular particles [25-29], cytoskeletons [30-33], insects
[34-36], flocks of birds [37-41], schools of fish [42—45], and crowds of humans
[46, 47]. These examples show that active matter systems are mostly biological in
nature (or, if artificial, often biologically mimicked). Hence, research in this area
often takes place at the interface between biology and other disciplines.

What makes active systems particularly interesting is that they often exhibit an
emergent dynamical property such as collective motion and/or pattern formation
(an archetypical, but now almost clichéd, example is the multitude of formations
that starlings form when they fly in large groups). A strong motivation to study
active systems (apart, of course, from the spark of curiosity the awe-inspiring
emergent patterns cause) is that they often exhibit phenomena akin to things that are
familiar from other research fields, especially physics (hence one often sees also the
description “active matter physics”): For example, a drastically altered macroscopic
behavior under a change of parameter —very reminding of phase transitions— or
topological defects that have many similarities, but also some peculiar differences,
to their equilibrium counterparts [18, 48-51].

Moreover, it seems simply natural to extend the concepts and tools of other areas
of physics that often already deal with the large scale properties of many interacting
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particles (e.g. statistical physics, condensed matter physics etc.) to a situation that is,
like active matter, similar in some regards. This is not entirely unjustified, as some
aspects of certain phenomena occurring in active matter systems have already been
successfully described by theoretical frameworks that are extensions of approaches
known from other fields of physics (see also section 1.3).

There are several main motivations for studying active matter. Often at the fore-
front is the hope for a better understanding and identification of generic principles
of how living systems can organize themselves from a set of identical building blocks
into a complex whole. Hence active matter physics is generally viewed as an integral
part of the “physics of life”. Another, more from an engineering viewpoint, motiva-
tion is that one needs a thorough understanding of the relevant self-organization
processes in order to be able to construct useful active materials that are able to
perform predefined tasks in an adaptive manner. Those high level points are still
state of the art research questions and it is explored how active matter physics can
contribute to answering those [3-9].

In this work we particularly deal with active matter physics in the context of
driven filaments. In sections 1.2 and 1.3 we provide some further introduction into
active matter and how to study it. We then first will, in section 1.4 and chapter
2, examine interactions in the actin motility assay, an experimental active matter
model system. These we build in a large-scale computational model (that we will
use throughout most of this thesis). Using our simulations and experiments in the
motility assay, we show that nematic and polar structures can simultaneously coexist
with a disordered background. Second, in chapter 3, we in depth characterize the
formation process of polar patterns and investigate how they are maintained. Third,
in chapter 4, we discover that topological defects and other topological structures
can form in phase separated active nematics. Last, in chapter 5, we investigate
how active particles moving on a dense passive nematic background can form polar
lanes.

1.2 Different types of active matter

After presenting a relatively broad list of active matter systems in the last section,
we will now present various classifications which can be used to categorize systems
that are composed of different building blocks but have similar properties or basic
requirements. This should give the reader an overview and help to contextualize
the research subjects of this thesis.

One often-used category is the classification into wet or dry systems [5-7, 9]. As
the name implies, in so-called wet systems, the long-range hydrodynamic coupling
that arises due to the surrounding medium is of importance. This is indispensable,
for example, for the description of microswimmers [52-56] or colloids [24, 57, 58].
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In dry systems, on the other hand, the long-range hydrodynamic coupling is either
absent or can be neglected due to strong coupling with a substrate which damps
momentum. For example, in the case of shaken granular media [25-28], or actin
motility assays [1, 15, 16, 19-21]. In this thesis, we will deal exclusively with dry
systems and therefore use the term active matter synonymously with dry active
matter in the following.

A further relevant distinction can be drawn between dilute systems and systems
in which density is high and spatially uniform (often they are also called compressible
and incompressible systems, respectively). In dense systems particles generally
possess a strong steric exclusion and are packed at a density that is mostly saturated
(and stays largely constant). Here, often phenomena like topological defects start
to play an important role [48-50, 59, 60]. On the other hand, dilute systems can
show marked separation into “phases” of different density (as well as symmetry)
and steric interactions are mostly weak [5, 7, 61-63]. Although we mainly study
systems that are dilute, we will discuss some aspects of dense systems again in
chapter 4 and 5.

In dry systems the interaction mostly takes place via a combination of repulsion
and alignment (see also section 1.4). One limiting case are systems in which the
particles exclusively interact via repulsion and any alignment is absent [64—68]
(also any effective alignment due to anisotropies in the shape of particles [69-72]).
These show an interesting phenomenon called motility induced phase separation
(MIPS), which has been studied extensively in recent years [73-76], yet is not in the
scope of this thesis. Our main focus, instead, will be on systems where interactions
are dominated by alignment.

While these classifications are the most relevant to contextualize this thesis, it
should not go unmentioned that they are not all-encompassing. A further number
of distinct cases exist which, under certain circumstances, may merit their own
category.!

Further, a few words of caution are worth noting at this point. First, the categories
above, while often unambiguous and useful, should not be understood as absolute.
Under certain circumstances, the boundaries between them are blurred (e.g., the
categorization into wet or dry of the actin motility assay, see [82] and chapter 2).
Also, an apriori classification can, at worst, be misguiding. It is, for example, a
common view that systems showing nematic or polar (see also section 1.3) patterns

1 To name just one particularly interesting example: in some animals, interaction has been observed
to be mostly independent of nearest neighbor distances [38], which led to the development
of computational model systems with so-called “topological interactions”. In these, only the
topological distance between agents is of importance and not the euclidean one, leading to some
seemingly distinct properties such as polar order formation without phase separation into polar
waves [77-79]; a finding that is still controversially discussed [80, 81].
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as strictly distinct classes [4, 5, 7, 83-90]. We discuss in chapter 2 why this is most
likely not justified.

1.3 Approaches to studying active matter

As written in the last section, in this thesis we will generally treat dry, mostly align-
ing, dilute active matter. Here we will try to summarize how and with which tools
one can go about this endeavor in general. After this introduction, we will then
proceed to present the specific agent based approach used in most parts of this
thesis in section 1.4.

To bring order into the high complexity involved in a real-world active matter
system, i.e., to even have a chance to identify essential features and underlying
principles how it organizes, reductionist and minimal models are the first logical step
to begin with. Or, to say it the other way round: even if it were possible to model
the daunting complexity of, e.g., animals and how they interact among each other,
it would not be clear which of the many details are essential for the organization
process. Although this approach feels very natural for a physicist, one big challenge
in this context is, of course, to find the right level of “reduction”.

Historically, one of the first steps that were made to study active matter systems
with a minimal model was the “Vicsek model”, which was introduced by its namesake,
Tamds Vicsek (along with several co-authors), in 1995 [91]. This publication sparked
immense interest in other scientists and is considered by some as the starting point
of active matter research in general [3, 7]. One of the motivations for the defining
feature of this model was the observation that animals in groups tend to move as
other individuals do in their vicinity [91], i.e., that they align their direction with
each other. At this point, it seems appropriate to mention that Vicsek et al. were
not the very first who computationally modeled animal group behavior; the Boids
model [92], very famous in the field of computer graphics, and other examples [93]
are even older.

Since the Vicsek model is still widely studied [7, 9, 94, 95] and because its
simplicity makes it a perfect example to illustrate in a straightforward manner how
one can investigate active systems with an agent based simulation, we will briefly
describe it here.

In the Vicsek model, one considers N active agents, each modeled as a point
like particle moving on a two-dimensional plane with periodic boundary conditions.
Every agenti € {0, 1, ..., N—1} propagates with the same constant velocity vy along
its individual direction 9; and is subject to some directional noise while moving.
Its position at time ¢t is denoted by rg and the following equation of motion of the
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Figure 1.1 Schematic depiction of the Vicsek Model. Point-like particles with a certain
interaction radius (colored areas) move along their orientation (indicated by the solid
arrows). In every iteration of the simulation (dotted arrow), they propagate a constant step
size. (a) If after a displacement two particles collide with an angle (0;,) smaller than %
[(@), left box] in both the polar and nematic case particles perfectly and instantly align their
orientation [(a), right box]. (b) If after a displacement two particles collide with an angle
lager than 7 [(b), left box] in the polar case they again perfectly and instantly align their
orientation [(b), right upper box] whereas in the nematic case they perfectly and instantly

anti-align their orientation [(b), right lower box].

position is assumed:

(1.1)

t+At
cos 6t
it =1l + voAt ( L ) ,

sin 9?“

where the time increment is generally chosen as At = 1. The orientation of a particle,
6:, evolves according to

0! = arg Z % + né:. (1.2)
JER;

Here the second term accounts for the directional noise each particle is assumed to
be subject to at each iteration. The intensity of this noise is set by n, which can be
fixed to values between 0 and 1; &; is a delta-correlated white noise (§; € [, ]).
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The first part of Eq. (1.2) describes the interaction between agents. This is modeled
as follows: each particle possesses a circular interaction radius, generally set to
Ar=1.2 At every iteration the mean orientation of all particles inside the interaction
radius of particle i (subsumed as R;), is calculated (including i) and the direction of
i is perfectly aligned with the resulting mean orientation; see also Fig. 1.1. Generally,
this type of interaction, i.e., an interaction where agents tend to align their directions,
is called polar.

Despite its reductiveness, the model shows some very interesting behavior: at
high noise/low density, each particle moves almost independent on a persistent
random walk and the system is disordered, at low noise/high density, the system
exhibits collective motion and most particles propagate in the same direction. Hence
the symmetry of the system is spontaneously broken. Commonly, the degree of this
alignment can be measured with the global polar order parameter

=
-

1|~ ot
) AN (1.3)

j

2
I

which takes values near O for disordered systems and near 1 for perfectly ordered
systems where all particles move in the same direction (note that this is the same as
the average velocity in the case of unit and constant vg).

At first it was thought that the transition between the disordered and ordered
state represents a continuous phase transition [3, 7, 91]. Yet, it was discovered
in 2004 that the onset of polar order in the agent-based Vicsek model is indeed
not continuous but discontinuous [96] with dense polarly moving waves as the
nonequilibrium steady state near the onset of order (cf. illustration in Fig 1.2(b)).
Although this discovery was challenged at first [97], it was soon confirmed to be
valid [85]. The continuous transition was found to be a finite size effect and only
above a large enough system size polar patterns can from [7, 63, 85, 96]. It is worth
noting that the patterned state is indeed micro-phase separated [63, 69, 94, 98].

Deeper in the ordered regime, i.e., at even lower noise/higher density, the system
ceases to exhibit a coexistence between polar patterns and disordered background
and, instead, exhibits a polarly ordered “liquid” in which the density is not phase
separated [7, 63, 85, 96]. Please note that we will discuss the onset and maintenance
of polar patterns in more detail in section 1.5 and chapter 3.

Additionally to the modeling of polar systems where agents always tend to align
their direction while interacting, the Vicsek model was extended to cases where
constituents can also anti-align their direction [86, 87, 99, 100] if the impact angle
is larger than /2. This nematic case in the Vicsek model is schematically depicted

2 It is worth to note that even with unitary At and Ar, which set length- and time-scales, it was
found that relatively large values of vy ~ 0.5 are still sufficient to resolve the dynamics [85].
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Figure 1.2 Binary collision statistics and macroscopic patterns in the Vicsek model. (a)
and (c): Plot of the angle between the directors of two particles after an interaction, By,
against the angle before the collision, 0;,, for the polar (red line in a) and nematic case
(blue line in ¢), respectively. The dashed line in both binary collision statistics corresponds
to the case of no interaction. (b) and (d): Schematic depiction of the macroscopic patterns
in the Vicsek model. In case of polar interacting particles, polar waves (b) form where
a high-density band of ordered particles (dark black) propagates through a disordered
low-density background (light grey). The direction of motion is depicted by the magenta
arrows. In the case of nematic interacting particles, nematic lanes (d) form (dark black), in
which particles move in both directions along the contour (magenta arrow). The lane is
embedded in a disordered low-density background (light grey).

in Fig. 1.1 and e.g. models the behavior of rod-shaped particles upon collision [25,
27,71, 86, 101-106]. Here, instead of Eq. (1.2), the interaction between agents in
the Vicsek model is described as follows:

6! = arg Z sign[cos(6; — 95)]6195 +nét. (1.4)
JER
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A straightforward way to visualize the difference between polar and nematic
interactions are the binary collisions statistics, as shown schematically in Fig. 1.2(a)
and (c). Whereas in the polar case, the angle between two colliding particles is
always zero directly after the interaction, in the nematic case, this is only true
for acute incoming angles 0;,. For obtuse angles, the outgoing angle after the
interaction is always .

A rather similar picture emerges regarding the phase separation process in this
case. Also, with nematic interactions the systems exhibit order and form patterns
near the onset of order, see Fig 1.2(d). As for the polar case, the ordered state seems
to reflect the symmetry of the microscopic interaction [7, 86, 87, 99, 100, 105]: at
high enough density/low enough noise, nematic lanes are formed, as depicted in
Fig 1.2(d). Deeper in the ordered phase, there is again a nematically ordered liquid.

Again an order parameter —the global nematic order parameter— can be used to
describe the degree of ordering in the system

t 1 = i20t
N == Ze i (1.5)

Jj=

The two presented cases of the Vicsek model, polar and nematic, reflect the most
widely considered symmetries that order in active matter can show [4, 5, 7, 88]
(see also chapter 2).

Although a number of other numerical models exist [101, 107-114], the Vicsek
model, despite its simplicity, exemplifies the generally used framework: agents of a
certain shape (or range of interaction) move on noisy trajectories and interact with
each other. This interplay at the local level, under the right condition, can lead to
the formation of collective motion and macroscopic order. For a discussion if and
how the microscopic details in these simulations matter and whether the symmetry
of the local interaction is always connected to the symmetry of the macroscopic
patterns, please refer to section 1.4 and chapter 2.

Another approach to studying active matter is continuum models. For example,
soon after the introduction of the Vicsek model, Toner and Tu developed a hy-
drodynamic theory [83] describing the not phase separated polar ordered state
observed in the simulations and used it to show that the order is indeed truly
long-ranged, although interactions have only a finite range.

Generally, these models consist out of an equation for the density, which is
coupled to an order field. They can be constructed by different means. One method
is to invoke symmetry arguments and collect terms that are allowed by these
considerations [83, 115]. The disadvantage, in this case, is that the resulting terms
contain coefficients that are not easy to connect with any microscopic details of the
active matter systems the model tries to emulate.
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Alternatively, one can incorporate the microscopic details of a model (often the
above described polar or nematic Vicsek model), into a derivation of hydrodynamic
equations via, e.g., a Fokker-Planck [116-124] or Boltzmann [84, 88, 89, 102, 125]
approach. Although taking different routes, it was shown that the two mentioned
methods can yield equivalent results [126]. In addition to these procedures, it
is also possible to directly numerically solve the Boltzmann equation [127-129].
While these mesoscopic approaches can be better connected to the investigated
systems, they still have to rely on heavy approximations like assuming that agents
decorrelate between collisions or that only binary interactions are of importance.
This reduces the chance to obtain any quantitative results [126].

Besides these theoretical approaches, one central pillar of active matter research
is, of course, to conduct experiments. We will present and employ one experimental
model system, the actin motility assay, in chapter 2 (see also section 1.4).

While this thesis has a focus on a novel agent-based simulation method (which
we will motivate in section 1.4), in no case we will rely on agent-based models
alone. In order to elucidate the same phenomenon resp. question from different
angles, we instead always combine it with a different methodology. In chapters 2
and 5 with experiments, in chapter 3 with a kinetic model focusing on assembly
and disassembly processes of clusters and in chapter 4 with a hydrodynamic model.

1.4 Interactions in active matter systems

As written in the last section, not only simulation models for active matter exist, but
also experimental ones. One of these is the actin motility assay [15, 16, 19-21]. In
essence, it relies on two main components: a surface (e.g., glass) on which heavy
meromyosin motors have been attached and actin filaments that are placed on
this artificially constructed “motor lawn”. In the presence of ATP, motors push the
filaments forward along their contour, which, driven by those continuously occurring
powerstrokes, perform a persistent random walk; see schematic depiction in Fig.
1.3 (a) (and please refer to chapter 2 for a detailed description of the actin motility
assay).

It was the first experiment to show polar waves [15], cf. Fig. 1.3(b), which are
similar to the ones that were predicted by theoretical models (see section 1.3) and
motility assays in general “are probably the best systems” [7] for the study of dry
mostly aligning active matter since they are controllable and have a large number
of agents.

The starting point of this thesis was the observation (made by our collaborator
Ryo Suzuki in the Bausch lab) that the patterns produced in the motility assay
can be altered by the addition of a depletion agent (see in-depth discussion of this
mechanism in chapter 2), towards nematic lanes, see Fig. 1.4(c).
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Figure 1.3 Motility assay schematics and polar patterns. (a) Schematic depiction of
the actin motility assay. Heavy meromyosin motors (HMM) are attached to a planar glass
surface. Actin filaments put on top of this “motor lawn” are pushed forward and perform a
persistent random walk. (b) At high enough density of actin filaments, polar waves form on
the motility assay. Scale bar: 100um. Adapted from [1].

This observation was very remarkable in light of the microscopic interactions that
are observable between actin filaments. An exemplary time trace of the collision
of two actin filaments, cf. Fig. 1.4(a), shows that filaments can pass over each
other and that the alignment between them is only very weak. This can be further
quantified by recording a binary collision statistics, see Fig. 1.4(b), for both the case
in which the system exhibits polar patterns and the case of nematic lanes. The two
collision statistics reveal several things. First that the interactions are indeed very
weak, second that the difference between the nematic and polar case is not very
pronounced, and third that the curves do not possess a clear symmetry from which
one could try to unambiguously deduce the symmetry of the macroscopic patterns.
These observations can be further illustrated by contrasting it with the situation
in the Vicsek model, cf. Figs. 1.1 and 1.2, and can hardly be reconciled with the
rather prevalent assumption that the symmetry of the order in active systems is
mainly set by the symmetry of microscopic interactions [4, 5, 7, 83-90, 99]. The
fact that it was already shown for the interactions measured in the polar case that,
when they are incorporated into a kinetic Boltzmann approach (that has to rely on
the approximations mentioned in section 1.3), can not explain the production of
order [20], made this observation of a macroscopic change of patterns by a minute
change of microscopic interactions even more puzzling.

Can such weak and mixed interactions solely be responsible for the observed
patterns? And what would be the implications for the pattern formation process?
To answer these questions, we sought to simulate the motility assay with an agent-
based simulation. We aimed to account for the key features that seemed us to define
the characteristic motion of the filaments and their interaction with each other.
These are, first, that filaments can cross each other (i.e., they only possess a weak
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Figure 1.4 Filament interaction in the motility assay. (a) Time trace of the collision of
two polymers. Filaments are able to cross over each other and only a slight change in the
relative angle is observable. Scale bar: 2um. (b) Binary collision statistics of interacting
filaments. Red curve corresponds to the motility assay without PEG. Blue curve to a system
with PEG added. (c) Addition of PEG leads to the formation of nematic lanes instead of
polar waves in the motility assay. Scale bar: 100um. Adapted from [1].

steric exclusion) and align only very weakly. And, second, that any perpendicular
motion of the filament contour seems to be strongly suppressed due to anchoring
via motors; hence a change of direction or orientation (be it random or due to
interactions with other filaments) happens only at the tip of filaments, leading to
the characteristic “snaking” or “trailing” motion of the polymer tails that follow the
path taken by the tip; hence, noise and alignment interactions should act only on
the tip and interactions should be weak and their alignment symmetry controllable.
These requirements ruled out to adopt methods like the Vicsek model (see section
1.3) that is defined by strong interactions and point-like particles. But also other
approaches that may seem suitable for slender particles like actin filaments, yet rely
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on self-propelled rods [101, 107-110] or semiflexible polymers [112, 113, 130]
that move freely and interact mainly via a steric exclusion process, which can lead
to rotations and lateral movements of whole agents or even large groups of them
(the characteristic polar moving agglomerations of most of these models —slightly
reminiscent of “snow-plows”- seem not to be relevant for actin motility assays).

(a) (b)

Obtuse angle

Acute angle /2

0 2 m™ 6

in

Figure 1.5 Agent-based simulation of the motility assay. (a) Schematic depiction of a
filament (solid black with green tip) interacting with the tail of another polymer (grey with
red tip). Two independently controllable alignment torques, a polar and a nematic one,
act on its tip. For obtuse impact angles larger /2 (upper panel) the nematic and polar
torques (blue and red arrow) counteract each other, whereas for acute angles smaller 7 /2
they both align (lower panel). (b) By tuning the absolute strengths and relative ratio of
the two alignment torques, the strength and symmetry of the interaction can be controlled,
illustrated here by a schematic binary collision statistic of a weak and mixed interaction.

Therefore, we developed a new simulation method that met the requirements
stated above. Its main function principle is outlined in Fig. 1.5 (a detailed presenta-
tion of the model and its underlying simulation algorithm can be found in chapters
2 and 3).

In chapter 2 we use this simulation method to show that the weak interactions
observed in the actin motility assay seem to be indeed sufficient to account for
the observed patterns. We further discover that polar and nematic patterns can
simultaneously occur (together with a disordered background) at the same time in
the same system, thereby forming a novel three-phase coexistence. We subsequently
reproduced this observation experimentally in the actin motility assay.

This implies that the symmetry of order in active systems, other than often
assumed, does not seem to be uniquely “imprinted” by the microscopic interactions,
but rather to be an emergent and dynamic property. Other than in equilibrium,
microscopic details seem to matter in active systems.
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At this point, it may be worth noting that many aspects of our findings were
already replicated by others [71, 129] (see also conclusions and outlook in chapter
6).

We designed the simulation algorithm to be as performant as possible. Thanks to
this focus, we are capable to simulate large timescales on all relevant lengthscales,
from single filaments to millions of polymers. Fig. 1.6 shows an exemplary simulation
in the coexisting parameter regime of a system consisting of over 2 million filaments.
We will further harness this power in chapter 3 and 4 of this thesis (for an outline
and motivation of the research questions treated in these chapters, please refer to
the next two sections).

Figure 1.6 Large-scale agent-based simulation. Nematic lanes (some indicated by green
double-headed arrows) and polar waves (some indicated by blue single-headed arrows)
coexisting with a disordered background in a large-scale agent-based simulation containing
2176000 filaments. Same parameters as Fig. 2.4(C) with four times larger area.
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1.5 Formation and maintenance of polar order

Other than the coexistence phase we presented in the last section, the parameter
regimes of active matter systems in which only one single type of order or pattern can
be observed have been extensively studied [5, 7, 131]. In the focus of many studies
has been the macroscopically observable outcome (i.e. macroscopic patterns or
global order) and how these phenomena change in dependence on parameters. More
specifically (and as already touched upon in section 1.3), it is for example known
that in polar flocking models the onset of order is discontinuous [84, 85, 96] and
that generally the ordering process seems to be akin to a phase separation scenario
[61-63]; cf. Fig. 1.7 for a pictorial illustration. In the region between disorder
and the homogeneously ordered state (between the binodals), polar patterns are
coexisting with a disordered background [63, 85, 96]. Near the boundaries between
binodal and spinodal, the adjacent homogeneous state was found to be metastable in
Vicsek and other types of models [61-63, 85]. In addition to that, the region where
polar patterns can form was discovered to be indeed microphase separated [15, 63,
69, 85], which has been further investigated by means of continuum models [63,
94, 98].

polar patterns
disorder hom. order
disorder ImetazstableE EmetastableI hom. order
binodal spinodal spinodal binodal

>
control parameter

Figure 1.7 Phase separation in polar active matter. Schematic depiction of the prevailing
phase separation picture that illustrates the behavior observed in flocking models, in de-
pendence on a control parameter (like density or inverse noise strength). The disordered
state is separated from the homogeneously ordered one (polar “liquid”) by a coexistence
regime in which polar patterns coexist with a disordered background. On the two borders
of this regime, between the binodals and spiondals, the adjacent homogeneous phase is
metastable.

Yet, the situation on the level of mesoscopic and microscopic length scales is
different. The spontaneous formation of particle clusters are known to play an
important role for the onset of flocking [85, 96, 132], besides this, however, the
microscopic and mesoscopic processes and mechanisms that consitute the assembly
pathway from a disordered to the macroscopically ordered state, and how that
microphase separated ordered state is maintained, is not know.
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In chapter 3 we employ our agent-based simulation —which gives us access to
all length-scales, from microscopics to emergent phenomena- to investigate these
processes.

A careful look at the polar structures in our system shows that they are composed
of spatially separated clusters that are strongly ordered. Similar aggregations, yet
disordered ones, can also be found outside patterns; cf. pictorial illustration in Fig.
1.8. To understand their role for the whole pattern formation and maintenance
process we developed a tracking method to algorithmically and dynamically identify
all clusters, their internal degree of order, as well as particle flows (with single agent
resolution) between them. We employed this method to investigate the build-up
process of order and the subsequent micro-phase separated non-equilibrium steady
state; thereby identifying key exchange processes between clusters of different size
and order. We further verified that these kinetic processes are indeed sufficient to
explain the observed behavior by developing a kinetic model for a population of
disordered and ordered clusters, which we based on these processes (reminiscent
approaches have been used in previous works, yet only for a single cluster species
[101, 133, 134]).

Although being space independent, this model shows the same metastability,
micro-phase separation, and cyclic mass-flow dynamics as the agent-based model.
This strongly indicates that micro-phase separation —and potentially also other
phenomena like nematic laning or coexisting types of order (cf. section 1.3 and
chapters 2 and 4)- can be understood in the framework of mesoscopic kinetic
processes.
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Figure 1.8 Cluster decomposition in agent-based simulations. The polar ordered patterns
and the disordered background observed in agent-based simulations can be decomposed
into clusters of different degrees of polar order. Pictorial illustration of disordered clusters
in the background (left panel, green shaded) and clusters with a high degree of internal
order (right panel, pink shaded) inside the patterns.
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1.6 Topological structures in phase-separated nematic
systems

Similar as for the polar case, also the phenomena in parameter regimes where
only nematic patterns can be observed have been extensively studied. In these
compressible active nematics, like, e.g., the nematic Vicsek model [86-88] (see also
sections 1.2 and 1.3), one observes a phase separation into dense nematic lanes [cf.
Fig. 1.2(d)] that are unstable with respect to bending undulations on very large
length and time-scales [7, 86, 99, 100, 124, 135, 136].3

In parameter regimes where our agent based simulation showed nematic lanes
only (i.e. for interactions that have small or no polar bias, see also chapter 2 and
section 1.4), we could precisely observe this expected behaviour; cf. Fig. 1.9(a) for
an example of an undulating nematic lane.

(@)

Figure 1.9 Dynamical nematic structures. (a) On large length and time scales nematic
bands exhibit bending undulations. Magenta arrows indicate the lateral direction of motion.
(b) High density —1/2 defects at the core of lane junctions. (c) Filamentous arc detaching
from a nematic lane.

Yet, we additionally saw previously unreported structures that seem to be linked
to these bending undulations. More specifically, we observed three-armed intersec-
tions of lanes, in the centers of which a —1/2 defect is located [Fig. 1.9(b)]. This is
peculiar since defects are commonly only associated with dense, not phase-separated
active nematics [18, 48-51]. Furthermore, the defects we observed are associated
with a strong increase in density of the nematic phase and do not possess a +1/2
defect-pair, but are surrounded by a positively charged region of space. In addition
to that, we observed another topologically charged structure, namely curved arcs

3 Under certain circumstances also another type of instability occurs where nematic lanes split up
transverse to their contour [100, 136], yet the conditions in the actin motility assay —the system
our agent-based simulations model- are believed to only facilitate bending undulations [100].
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that detach from large nematic lanes, cf. Fig. 1.9(c), which are accompanied by a
cloud of positive topological charge density on their concave side.

What causes these topological structures to emerge in a compressible active
nematics? How does their formation depend on external control parameters? To
answer these questions in chapter 4, we tracked particle trajectories through defect
arms in detail, thereby obtaining the precise velocity and flow structure which, e.g.,
enabled us to exclude any MIPS-like mechanism (see section 1.2) behind these
defects. We constructed a hydrodynamic model, based on previous works [124,
136], that showed the same phenomenology as the agent-based simulation and
exhibited the same topologically charged structures. This model gave us access to the
phase diagram structure of the occurrence of the various phenomena —the validity of
which we substantiated with large-scale sweeps of the agent-based simulation— and
enabled us to identify curvature-induced density fluxes as the mechanism behind
both the defects and arcs.

1.7 Active polar currents on passive nematic patterns

Besides the self-organization of active matter systems caused by agent-agent inter-
actions alone, as discussed in the above sections, an alternative approach to obtain
patterns or order in them is to influence their dynamics externally. One general
pathway to this end is the introduction of anisotropies in the space in which particles
move. For example, it was shown that active particles aggregate in the vicinity of
rigid boundaries [137] or that by introducing wedged-shaped obstacles into active
systems, agents can be trapped and up-concentrated in targeted areas [138, 139].
Further, it was found that in systems in which interactions do not depend on the
euclidean distance between agents (cf. section 1.2), randomly distributed obstacles
can induce the formation of polar patterns [81]. Alternatively to a collection of
isolated inhomogeneities, the behavior of active agents can be altered by embedding
them in a background that is patterned as a whole. More specifically, motile agents
coupled to a nematic liquid crystal exhibiting defects were shown to accumulate
their density inside +1/2 defects and deplete it in -1/2 ones [140, 141]. Further,
a liquid crystal pre-patterned to a bend-splay configuration was shown to funnel
active particles into polar streams [142].

Recent experiments by our collaborators in the Bausch lab showed that also the
behavior of microtubules in a gliding assay can be significantly altered when it is
coupled to a nematic background. More specifically, microtubule embedded in a
self-assembled actin nematic aligned to (and propagated along) the director of this
nematic background and concentrated into dense streams in which particles move
in a polar fashion into one direction (cf. Fig. 1.10(a)). Observations suggest that
these streams are channeled and strongly influenced by +1/2 topological defects.
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Figure 1.10 Polar trajectories on passive nematics. (a, left panel) Experimental trajector-
ies of microtubules coupled to actin nematics are concentrated in dense streams. (a, right
panel) Flow field of particle direction. Microtubules inside streams move in a polar fashion
into the same direction. (b, left pane) Simulated particles coupled to a nematic background
whose structure was extracted from the experimental actin nematic in the field of view of
panel (a) show a comparable accumulation into lanes. (b, right panel) Flow field of particle
direction in the simulation. Agents move in the same manner as in the experiment.

This emergence of polar patterns seemed peculiar since particle alignment to
the background happens in a nematic fashion and the actin nematic background
did not exhibit any intentionally induced polar symmetry. On the contrary, half-
integer defects that emerged during the self-assembly process of the passive actin
nematic background were located at random positions and with random orientations.
Further, this effect is observable for very low microtubule concentrations, rendering
inter-particle interactions unlikely to contribute to this ordering process.

Can alignment with the actin background, and hence the shape of the nematic
field, be solely responsible for the formation of polar streams? To test this hypothesis
in chapter 5 we developed an agent based simulation in which microtubules are
represented by self propelled circular particles that can nematically align to a nematic
background field with a pre-defined strength. Using nematic fields extracted from
microscopy images as the background field for the simulation, we found that results
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from experiments could be reproduced remarkably well. Despite its reductiveness,
agents in the simulation form qualitatively similar polar streams (cf. Fig. 1.10(b))
above a certain level of alignment strength to the background. It is worth noting
that these results were independent of particle-particle alignment being present
or not. By simulations with artificially generated nematic fields in which defect
orientations are controllable, we found that +1/2 defects and their orientation are
indeed crucially important for the formation and direction of polar streams.

We further probed this finding with another theoretical approach in which
trajectories are started near +1/2 defects at points that we deduce via a heuristic
algorithm from the configuration of the nematic field in the vicinity of the defects. By
subsequently simply following nematic field lines the same qualitative arrangement
of streams is obtained as in simulations and experiments, underlining the defining
role of +1/2 defects.






2 Emergence of coexisting ordered states in
active matter systems

The following chapter is based on research published in Science 361, 255-258 (2018)
[1] that I conducted together with Lorenz Huber, Ryo Suzuki, Erwin Frey and Andreas
R. Bausch and to which I, together with L.H. and R.S., contributed as one of the shared
first authors. Experiments were performed and designed by L.H., R.S., T K. and A.R.B.
Simulations were performed and designed by L.H., T.K. and E.F. All authors participated
in interpreting the experimental and theoretical results.

Active systems can produce a far greater variety of ordered patterns than conven-
tional equilibrium systems. Especially, transitions between disorder and either polar-
or nematically-ordered phases have been predicted and observed in two-dimensional
active systems. However, coexistence between phases of different types of order
has not been reported. We demonstrate the emergence of dynamic coexistence
of ordered states with fluctuating nematic and polar symmetry in an actomyosin
motility assay. Combining experiments with agent-based simulations, we identify
sufficiently weak interactions that lack a clear alignment symmetry as a prerequisite
for coexistence. Thus, the symmetry of macroscopic order becomes an emergent
and dynamic property of the active system. These results provide a pathway in
which living systems can express different types of order by using identical building
blocks.

2.1 Introduction

The distinctive feature of active matter is the local supply of energy that is transduced
into mechanical motion. Examples include assemblies of self-propelled colloidal
particles [22-24, 143, 144], self-organising systems comprised of biopolymers and
molecular motors [15-17, 145], and layers of migrating cells [146, 147]. These
systems exhibit a rich phenomenology of collective phenomena and emergent prop-
erties, with features absent in passive, equilibrium systems. Self-propelled colloidal
particles interacting solely by steric repulsion have been predicted [148, 149] to
show phase separation into an ordered, solid-like phase with a disordered gas-like
phase, similar to experimental observations [22, 23, 144]. Active systems comprised
of rod-shaped particles, cytoskeletal filaments, or colloidal particles with velocity
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alignment interactions show an even broader range of collective behaviour including
polar clusters [15, 16, 24, 143], nematic lanes [145], and vortex patterns [17, 150],
which in all cases phase-separate with a dilute isotropic, disordered background.
Theoretical studies have shown that, in principle, alignment interactions can ex-
plain how these different types of orientational order and transitions between them
emerge based on either agent based [86, 87, 91, 96, 99, 128, 151] or mean-field
models [84, 99, 115, 118, 128, 152-155]. All these studies tacitly assume that, as
in systems in thermal equilibrium, the symmetry of the observed macroscopic order
is largely dictated by the symmetry of local alignment interactions. But to what
degree is the symmetry of the macroscopic order constrained by the symmetry of
the microscopic interactions? More broadly, can active systems depart from these
constraints and express a multitude of different ordering simultaneously, as is the
case for living systems like actin stress fibres and filopodia [30, 156]?

To study these fundamental questions, we employ the high-density actomyosin
motility assay [Fig. 2.1(A)], which is ideally suited to address the microscopic
processes that underlie pattern formation in active systems [15, 16, 19, 20, 157,
158]. By sensitively tuning the interactions between the myosin-driven filaments
with a depletion agent, we are able to observe the emergence of a phase in which
nematic and polar order stably coexist. The complete phase diagram is recovered
from agent-based simulations of self-propelled filaments, in which weak alignment
interactions quantitatively reproduce the experimentally determined microscopic
collision statistics. We show that sufficiently weak interactions generically lead to
dynamic coexistence of three phases (isotropic, nematic, and polar).

In the actomyosin motility assay, hydrolysis of adenosine triphosphate (ATP)
enables actin filaments to actively glide over a lawn of non-processive heavy meromy-
osin motor proteins [157, 158]. Previous studies have shown that increasing the
filament density beyond a critical value results in the emergence of polar clusters
and waves [15, 16] [Fig. 2.2(A)]. These patterns are produced by collisions in which
filaments may align in a polar or nematic fashion. The degree and symmetry of the
alignment depends on the change in the relative orientation of the interacting fila-
ments, A =0, — 0, where 0;,, and 0,,; are the angles before and after a collision
event, respectively [Fig. 2.1(B)]. In theoretical studies [84, 86, 87, 91, 96, 99, 115,
118, 128, 151-155] these collisions have been idealized by assuming that filaments
either align in a strictly polar or strictly nematic fashion upon colliding [Fig. 2.1(C)].
However, in actual experimental active-matter systems [17, 20, 105, 145], the
degree of alignment caused by a single collision event is weak, i.e. the relative
change in filament orientation is small, |6y, — 6;,| < 7 [Fig. 2.1(D)]. Moreover, the
resulting alignment exhibits neither perfectly nematic nor perfectly polar symmetry.
Instead, depending on the collision angle 0;;, in the motility assay there is a weak
tendency to favor either alignment or anti-alignment of the filaments [Figs. 2.1(C,
D)]. How then can such weak interactions without a clear alignment symmetry on
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Figure 2.1 Interactions in the actomyosin assay. (A) Schematic of the actomyosin motility
assay. PEG acts as a depletion agent. (B) Illustration of different filament collision geometries
with an incoming angle 6;,, and corresponding binary collision curves (C). While strong
polar or nematic collision rules lead to full alignment or anti-alignment, weak collisions
cause a gradual change of orientation and may exhibit both polar and nematic features
(purple line). The dashed line depicts neutral collisions (0, = 6;,). (D) Binary collision
statistics. Blue squares: PEG 3% (389 collisions). Red circles: no PEG (1113 collisions; data
from Ref. [20]). Error bars, + SD. (E) Processivity increases with PEG concentration, as
indicated by the earlier saturation of normalized filament velocities as a function of motor
density. vg 1 is the velocity at 0.1 mg/ml non-processive heavy meromyosin. Inset: absolute

filament velocities.

a local scale lead to collective order at the system level, and what features of the
local interactions determine the global symmetry of the macroscopic state?

2.2 Results

2.2.1 Nematic lanes in the motility assay

To answer this question we tuned the local interactions between the filaments, by
adding polyethylene glycol (PEG, 35 kD), a depletion agent, at concentrations of
up to 3% (w/v) to the assay [Fig. 2.1(D), Fig. 2.5]. The observed change in the
binary collision statistics can be attributed to the excluded-volume effect of the
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Figure 2.2 Experimental phenomenology. (A) Polar actin clusters formed in the absence
of PEG, moving in the same direction as the filaments (the fraction of fluorescently labelled
filaments is 1:50, monomeric actin concentration 10 uM). (B) Large network of high-density
nematic lanes formed at a PEG concentration of 3% and 5 uM actin. The image is an overlay
covering a period of 100 s to demonstrate that the structure is frozen and stable. Filaments
move along the lane contours in opposite directions (labelled filament fraction is 1:60). (C)
Probability density P(vy, vy) of instantaneous velocities shows the preferred bi-directional
motion of filaments within a lane. (D) Single filaments move inside lanes (bright region).
Two representative trajectories are shown (turquois and orange) at 10 pM actin and 2%
PEG. Inset: overlay covering a period of 50 s. Polar (A) and nematic (B) motion are depicted
by bi- and unidirectional arrows, respectively. Scale bars: 100 pm.

PEG molecules, which forces the filaments closer to the bottom surface covered
with motors, enabling each to interact with more motors on average, with a con-
comitant increase in motor processivity [Fig. 2.1(E)]. This reduces the incidence
of collisions where filaments just pass over each other [145], and increases the
likelihood that filaments will repel each other sterically, thus enhancing the tendency
to align nematically [cf. Fig. 2.1(D)and section 2.4]. This technique enabled us to
continuously modulate the symmetry of alignment interactions at the microscopic
level, and probe the robustness of pattern formation in the gliding assay at high
filament densities. Despite the rather minute changes in interaction characteristics
caused by adding PEG at a concentration of 3% [Fig. 2.1(D)], we found that polar
flocks no longer form. Instead, the moving filaments quickly, within a few minutes,
self-organize into a network of “ant trails” [Fig. 2.2(B), Movie S1 in [159]]. In
contrast to the unidirectional filament motion found within polar clusters, the fila-
ments that form these “lanes” move bi-directionally, as do many colonial ant species
[34]. Since the filaments move along these tracks in either direction with equal
probability [Fig. 2.2(C), Fig. 2.6], the overall order is nematic, not polar, and stable;
this is quantified by the local nematic order [Fig. 2.6(A)] and the autocorrelation
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function of the filament orientations [Figs. 2.6(D,E)]. Moreover, while polar clusters
propagate through the system at uniform speed, nematic lanes form static networks
with branches spanning up to several 100 pm in length [Fig. 2.2(B)]. Filaments
are also seen to continuously leave and enter the trails [Fig. 2.2(D), Movie S2 in
[159]], such that these branches remain fixed in orientation and slowly grow and
shrink at their ends [Fig. 2.6(F)]. These processes, operating on a timescale of
minutes, lead to a slow reorganization of network architecture, with new branches
forming (Movie S3 in [159]) while others contract (Movie S4 in [159]). Note that
these networks are isotropically oriented and that no significant actin bundling was
observed below 3% PEG.

2.2.2 Agent-based simulation

This fundamental qualitative change in macroscopic order, from propagating waves
of polar order to branched networks of stable lanes within which filaments move
bidirectionally, induced by relatively minor changes in interaction characteristics
at the microscopic scale, is puzzling. To reveal the underlying mechanism, we
developed an agent-based computational model that goes beyond simple collision
rules and faithfully reproduces the experimentally observed (microscopic) binary
collision statistics, and used it to predict the collective dynamics at large scales.
Propelled actin filaments are modeled as discrete, slender chains of length L [cf.
Fig. 2.3(A), Fig. 2.7 and section 2.5]. Each filament is assumed to move at a constant
speed v with the body of the filament following the tip. The direction of motion
changes upon interaction with other filaments, as well as through interaction with
molecular motors. When the leading segment of a given filament collides with a
segment of another filament at a relative orientation 6 , an alignment potential
U(6) acts upon the tip. This potential is assumed to be the sum of terms with polar
and nematic symmetry, U(0) o« ¢, cos(0) + ¢, cos(20), where ¢, and ¢, represent
the respective mean change in orientation during a collision. We adjusted ¢, and
¢n such that the binary collision statistics of the computational model [Fig. 2.3(B)]
closely resemble those observed experimentally [Fig. 2.1(D)].

Having validated the computational model at the microscopic level, we asked
whether it captures the collective dynamics of the high-density actomyosin motility
assay. We first performed large-scale simulations for model parameters correspond-
ing to the absence of PEG. Starting from a random uniform distribution of filaments,
we observed that high-density wave fronts of polar ordered filaments rapidly form,
surrounded by disordered, low-density regions [Fig. 2.3(C), Movie S5 in [159]].
This matches the phenomenology observed in the motility assay. Next, we performed
simulations in a parameter regime corresponding to 3% PEG. Again, in agreement
with our experiments, we found networks of high-density nematic lanes surrounded
by disordered, low-density regions [Fig. 2.3(D)], reminiscent to chaotic structures
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Figure 2.3 Simulation model and phenomenology. (A) Illustration of the simulation
model: filaments (green) are propelled along their contour (solid black arrows). Upon
collision, the orientations of tips (gray arrows) are redirected in proportion to the polar
and nematic alignment strengths (red and blue arrows). (B) Binary collision data from
simulations for two selected curves with different a. Error bars, 1 standard deviation. (C,
D) Emergence of (C) polar waves (¢ =3) and a (D) network of nematic lanes (o = 6.25) in
large-scale systems. Insets: filaments within a single pixel with local density p and local
polar (C) or nematic (D) order. In both panels, 544,000 filaments were simulated in a box
of length 650.2L, with a homogeneous density po=1.29/L?. Scale bars: 100L. Uni- and
bidirectional arrows denote local polar and nematic filament motion. (E) Different steady
states for small simulation boxes, with po=1.29/L?: while a = 2.75 always produces polar
waves and a =6 always nematic lanes, at a =4 either waves or lanes can be obtained in
different realizations. Scale bars: 10L. (F) Global order parameters during a hysteresis loop
in a. Black arrows denote the direction of the loop. Regions of non-zero §P (shaded in
green) exhibit multistable behavior. For (B-F), ¢, =2.1°.
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that were predicted for active nematics [99]. The overall network architecture
changed slowly, with trails extending or retracting from their ends, and some lanes
merging on longer time scales [Fig. 2.8(A), Movie S6 in [159]].

2.2.3 Coexistence of polar and nematic patterns

The model was then used to predict the dependence of nematic vs. polar order on the
filament density po and the ratio of nematic to polar alignment strength, a = ¢, /.
To facilitate simulations over a broad parameter range, we considered smaller
systems with a box size of 81.3 L. We monitored the (global) polar and nematic
order parameters, P =|(exp(if))| and N =|{exp(2i60))|, respectively, measured
over all filaments after the dynamics had become stationary [Fig. 2.8(B)]. In initial
parameter sweeps we observed that, within certain intervals of a, simulations
starting from different realizations of randomly distributed filaments, but with
identical parameter sets, sometimes resulted in polar and sometimes in nematic
patterns [Fig. 2.3(E), lower panel]. Similar observations were made in a Vicsek-type
model, but only if strong additional memory in the particle movement is included
[151]. The patterns in our simulation were stable within the simulation times and
no switching between them was observed, suggesting the existence of a regime
of interaction strengths in which the dynamics exhibit multistability. To probe
these initial observations further, we checked for hysteresis effects in the collective
dynamics [cf. Fig. 2.9 and section 2.5]. To this end, we initiated our simulations
in a parameter regime in which the system shows polar waves only [a =2.75,
Fig. 2.3(E), left panel], waited until the dynamics became stationary, and then
quasi-statically increased the value of @ (i.e. giving the system sufficient time to
equilibrate between successive adjustments of ), and monitored both nematic and
polar order parameters [Fig. 2.3(F), closed symbols]. After reaching a regime in
which the system gave rise to nematic lanes only [a@ =6, Fig. 2.3(E), right panel],
we reduced the value of a quasi-statically [Fig. 2.3(F), open symbols]. While the
nematic order parameter remained essentially unchanged, we observed a hysteresis
loop in the polar order parameter P. As the relative strength of nematic to polar
alignment is increased, the degree of polar order (P,) gradually declines until it
reaches zero at some critical value a,. Conversely, in the reverse direction, polar
order (P_) remains negligible up to a different critical value a_, and then suddenly
jumps to a rather large value. The phase diagram in Fig. 2.4(A) was obtained using
6P =P, — P_ to quantify the degree of multistability.

To test these predictions, we performed experiments over a broad range of
actin and PEG concentrations, and obtained a phase diagram [Fig. 2.4(B)] whose
topology closely resembles that obtained from the computational model [Fig. 2.4(A)].
In particular, upon varying the strength of interaction between the filaments by
changing the PEG level and thus «, we find a broad regime of non-equilibrium steady
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Figure 2.4 Phase diagrams and coexisting symmetries in experiment and simulation.
(A) Simulation phase diagrams for different filament densities pg and relative alignment
strengths . (B) Experimental phase diagram of emergent patterns for varying monomeric
actin and PEG concentrations. Gray crosses: disorder. Red triangles: polar clusters. Blue
squares: nematic lanes. Green diamonds: coexisting polar and nematic structures. Actin
concentrations were normalized with respect to the estimated critical concentration in the
absence of PEG (see section 2.4 for details). (C) Emergence of both polar waves and nematic
lanes in large-scale simulations (scale bar: 100L) for « =4 and a homogeneous density
po=1.29/12. (D) Coexistence of polar clusters and nematic lanes in the motility assay at 2%
PEG and 5 pM actin. Scale bar: 100 pym. (E) Phase diagrams for different polar alignment
strengths ¢, and po=1.29/ L2. The total strength of alignment increases with both ®p
and «a. The shape of the phase diagram only slightly changes for larger system sizes [see
Fig. 2.11(A)]. (F) Scaling analysis of time scales at two different parameter sets (orange data:
¢p=2.1°, a =4.17; purple data: ¢, =3.3°, « =3.13). The average coexistence lifetime t;,
(solid lines) grows roughly linear with system size, while the average initial order time ¢ty
(dashed lines) remains small and constant. Averages taken over 25 simulations per size,
error bars represent 15" and 85" percentiles (see section 2.5 and Fig. 2.11 for details).
(A,E) Phase diagrams were obtained by hysteresis analysis in a, white dashed lines depict
the domain boundaries of the observed steady states. For (A,C), ¢, =2.1°.
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states where polar waves and nematic lanes coexist simultaneously. Moreover, both
simulations of large systems [Fig. 2.4(C), Movie S7 in [159]] and experiments
[Fig. 2.4(D), Movie S8 in [159]] consistently show that the equilibrium is highly
dynamic. Polar waves may invade regions containing nematic trails and thereby
disrupt their network structure [Fig. 2.10(A)]. After the passage of these waves,
nematic lane networks are observed to re-form locally, often close to their original
positions. The formation of nematic lanes was also observed at the left and right
edges of polar waves [Fig. 2.10(B), Movie S9 in [159]]. While in experiments, this
coexistence remained stable during the full experiment duration [Fig. 2.10(C)], in
simulations we performed a scaling analysis to probe the lifetime of coexistence tf;y
as a function of the finite system size, at different points in the multistable parameter
region. We found that this lifetime grows linearly with the system size, while the
time of initial pattern formation ty remains small and constant [cf. Figs. 2.4(F), 2.11
and section 2.5], implying a diverging time scale separation and stable coexistence
in the thermodynamic limit.

2.3 Discussion

These observations from experiment and theory imply that polar waves and nematic
lanes are both intrinsically stable structures, suggesting that the non-equilibrium
steady state represents a dynamic equilibrium between different patterns, which -
although they have conflicting polar and nematic symmetries - coexist in a dilute, dis-
ordered background. We attribute their coexistence to the weak interaction between
the active particles, which determines macroscopic order not at the microscopic level
but renders the symmetry of collective order itself to become an emergent property,
which is dynamic in space and time. If this picture is valid, then an increase in the
alignment strength at the binary level should eliminate the ambiguity in symmetry
and prevent the emergence of coexistence. To test this hypothesis, we performed
extensive numerical simulations by varying a and ¢, [Fig. 2.4(E)] and looking for
multistability. Indeed, we find that as the total degree of alignment, i.e. both ¢, and
¢, is increased, the multistable region contracts and eventually vanishes completely.
In this limit there appears to be a sharp transition between a polar and nematic
phase, similar to previous findings in a Vicsek-type toy model [87]. We therefore
conclude that the coexistence of patterns with mutual polar and nematic symmetries
depends upon sufficiently weak alignment interactions between individual filaments.
Furthermore, it seems to be crucial that the computational model includes arbitrary
pairwise interactions and spatiotemporal correlations without relying on any ad hoc
truncation. This allows for coarsening dynamics, where many different mesoscale
filament configurations are explored until they take the form of either polar clusters
or nematic lanes. These patterns become local attractors of the dynamics, such that
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— despite their conflicting symmetries — they can exist in juxtaposition within the
same system. This indicates that the celebrated Gibbs phase rule - stating that in
thermal equilibrium, one-component systems a three-phase coexistence only occurs
at a singular point in parameter space - is invalid in active systems. Overcoming this
thermodynamic constraint may be an essential and simple prerequisite for biological
systems to produce heterogeneous, multitasking structures out of a single set of
constituents, like it is the case for the cellular actin network [30, 156] and migrating
cell layers [146, 147].

2.4 Appendix: Experimental system

2.4.1 Assay preparation

G-actin solutions were prepared by dissolving lyophilized G-actin obtained from
rabbit skeletal muscle [160, 161] in deionized water and dialyzing against fresh
G-buffer (2mM Tris pH 7.5, 0.2mM ATP, 0.2mM CaCl,, 0.2mM DTT and 0.005%
NaN3) overnight at 4 °C. Polymerization of actin was initiated by adding one volume
of tenfold concentrated F-buffer (20mM Tris, 20mM MgCl,, 2mM DTT and 1M KCI)
to nine volumes of the G-actin sample. Heavy meromyosin (HMM) was prepared by
dialyzing rabbit skeletal muscle against myosin buffer (0.6M NaCl, 10mM NaH;POy,,
2mM DTT, 2mM MgCl,, 0.05% NaN3) at 4°C [162]. For fluorescence microscopy,
fluorescently labelled filaments stabilized with Alexa Fluor 488 phalloidin (Invit-
rogen) were used. Flow chambers were prepared by fixing coverslips (Carl Roth,
Germany) to microscope slides (Carl Roth, Germany) with parafilm. The coverslips
were coated with a 0.1% nitrocellulose solution, which was made by diluting a 2%
solution (Electron Microscopy Sciences, Hatfield, PA) in amylacetate (Roth), and
were left to dry overnight, prior to constructing the flow chambers. The chamber
is typically three orders of magnitude larger than the length of a single filament,
to avoid boundary effects. Prior to experiments, HMM was diluted in assay buffer
(25mM imidazole hydrochloride pH 7.4, 25mM KCl, 4mM MgCl,, 1mM EGTA and
1mM DTT), and actin was added to assay buffer that had been premixed with PEG
35,000 (Sigma) to yield a final PEG concentration of 0-3% (w/v). The flow chamber
was briefly incubated with the HMM dilution and the surfaces were then passivated
with BSA (10mg/ml BSA (Sigma) dissolved in assay buffer), prior to addition of
the actin solution. To initiate an experiment, 2mM ATP dissolved in assay buffer
was injected into the flow chamber, together with a standard antioxidant buffer
supplement (GOC, containing 2mg glucose oxidase (Sigma) and 0.5mg catalase
(Fluka)) to prevent oxidation of the fluorophore. After all components had been
combined, the flow chamber was sealed with vacuum grease (Bayer Silicones).
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2.4.2 Assay concentrations

A list of all actin and PEG concentrations used for the figures and movies can be
found in table 2.1. Unless stated otherwise, the HMM concentration was fixed
at 0.1 mg/ml. Depending on the quality of the actin batch and the HMM motor
proteins, filaments vary in length. Hence, critical densities in terms of monomeric
actin concentrations vary between batches. Moreover, filament lengths appeared
to be sensitive to PEG level, perhaps owing to enhanced filament rupture due to
the increase in effective processivity. To obtain a reproducible, quantitative phase
diagram from the patterns observed for different actin and PEG concentrations, we
prepared a single actin batch (incubated at 10zM monomeric actin), with which we
performed 39 experiments within 36h, at final concentrations of between 0.8 and
10 uM monomeric actin (the fraction of fluorescently labelled filaments was 1:25).
For every experiment, the assay buffer was freshly prepared with one or other of
seven different PEG premixes (0%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%). In Fig. 2.4(B)
every actin concentration was normalized with respect to an estimated critical actin
concentration of 1.75uM (at zero PEG) for this specific actin batch. At this critical
concentration, the filament density was roughly 9.2 filaments pm~2 and filament
lengths were exponentially distributed with a mean in the range of 0.5 — 0.7um.

2.4.3 Image acquisition

A Leica DMI 6000B inverted microscope equipped with a 40x oil-immersion objective
(NA: 1.25) was used to acquire data. Images were captured at a resolution 1344 x
1024 pixels with a charge-coupled device (CCD) camera (C4742-95, Hamamatsu)
attached to a 0.35x or 1x camera mount. To track filament velocities, a TIRF
microscope (Leica DMI 6000B, 100x oil-immersion objective (NA: 1.47), Andor
iXon-Ultra-9369 camera with a resolution of 512 x 512 pixels) was used.

2.4.4 Experimental binary collision statistics

To study the binary collision statistics [20], the acquired images were first converted
into binary images and filaments were then identified by skeletonization using a
standard library “bwmorph” available in Matlab. The coordinates of the filament
contour were extracted by using a cubic spline fit to obtain 6;, 65 and 6/, 0, to
determine the incoming angle 6;, and outgoing angle 0,,; [Fig. 2.5(A)]. Analysis
of a collision begins once the images of two filaments intersect. In Fig. 2.5(A), the
images that are framed by red boxes are representative of a detected collision event.
The incoming angle 0;, is obtained 1 frame (0.13 sec) before the detected collision
event, and the outgoing angle 6, is taken 1 frame after the filaments cease to
intersect. Here, only binary collisions are studied and all collisions involving more
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Figure 2.5 Collision measurements. (A) Illustration of collision angles during a binary
collision. Scale bars: 2 um. (B) Full binary collision statistics at a PEG concentration of 3%.
Error bars, + SD.

than 3 filaments were discarded. Fig. 2.5(B) shows all recorded collision events for
a PEG concentration of 3%.

2.4.5 Processivity

To study the change in the filament-motor interaction as a function of the PEG
concentration, the degree to which filaments were forced onto the HMM motor
lawn as a result of the excluded-volume effect was evaluated by measuring the
effective processivity. Processivity is a measure of the ability of a single motor to
execute a power stroke continuously without releasing the filament. While HMM
is non-processive, i.e. always releases the actin filament after the power stroke,
an effective processivity at the single (actin) filament level can be assumed, since
many motors act simultaneously along a filament and also the number of active
motors should increase due to the filaments being pressed down onto the motor
lawn by the PEG. The effective processivity was evaluated by monitoring the change
in filament velocity as a function of changing the motor density; the absence of a
change in velocity with a decrease in HMM density demonstrates maximal effective
processivity, while decrease in velocity with decrease in HMM density indicates that
the interaction is effectively non-processive in nature [163].



2.4 Appendix: Experimental system 33

2.4.6 Velocity distribution and local order

Recording the nematic type of motion requires identification of single-filament
motion, since opposing filament fluxes cancel each other out on larger length
scales. For this reason, images were obtained by TIRF microscopy, which affords
higher contrast and high temporal resolution (cycle time At =0.0853s), to track the
local motion of individual filaments between consecutive frames. We recorded a
nematic lane at 5uM actin and 2% PEG concentration, and a polar cluster and a
disordered region at 10uM actin and 1% PEG concentration [Figs. 2.6(A-C)]. We
then segmented the images into 8 x 8 local bins and used the Kanade-Lucas-Tomasi
feature-tracking algorithm in Mathematica 11.0.0.0, which is a robust estimator
of the optical flow velocity, by maximizing the local intensity gradient correlation
for each segment, in order to obtain a large number (~ O(105)) of displacement
vectors of filaments between consecutive image frames over an acquisition time
of about a minute. From this we calculated smooth probability densities P(v) of
filament velocities [lower left panels of Figs. 2.6(A-C)], as well as the local polar
and nematic order parameters P = |{exp(if))ro1| and N = |{exp(2i6))ro1]| at a given
time in the region of interest (ROI), respectively, over the acquisition time [lower
right panels of Figs. 2.6(A-C)]. To account for the shape of the lane structure, we
only included bins that covered the lane [Fig. 2.6(A)]. Note that for the polar and
nematic order parameters, the respective amplitudes are comparable to those from
simulations. Apart from the case of a polar cluster [Fig. 2.6(B)], which is inherently
not static within the fixed ROI, the order of a nematic lane [Fig. 2.6(A)] is stationary
over an interval corresponding to filaments crossing the ROI about 2 times.

2.4.7 Autocorrelation function

Using an image sequence of a lane (Movie S2 in [159]), we tracked 39 individual fila-
ments starting inside lanes by eye and extracted the orientations §0(t) = 6(t) — 6(0)
out of the recorded path at different times [Fig. 2.2(D), Fig. 2.6(D)]. From this the
polar and nematic autocorrelation functions {(cos[66(t)]) and {cos[250(t)]) for
different filaments [Fig. 2.6(E)] were obtained and averaged over every time point.
As can be seen from the differences in decay times, polar order decays much faster
than nematic order.

2.4.8 Additional observations

At high concentrations of PEG and low actin concentration, the nematic lanes evolved
into a packed vortex-like arrangement of branches after long times (roughly 15 min
after the beginning of the experiment), indicating the emergence of additional types
of order in this parameter region [Fig. 2.10(D)]. For large concentrations of both
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panels are time-averaged images over a time period indicated in the graphs to display the
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densities P(v) and evolution of corresponding polar (red line) and nematic (blue line) order
parameters during acquisition time, respectively. (D) Time evolution of cos[§6(t)] and
cos[280(t)] for two selected trajectories [yellow and pink traces in [Fig. 2.2(D)]. Reversal
events are manifested by jumps in the amplitude from 1 to -1 or back. (E) Autocorrelation
functions of filament orientation inside lanes (n =39); dashed gray lines are fits to guide
the eye. Error bars, + SD. (F) Kymographs of lane structures, taken orthogonally to a lane
(lower left panel) and parallel to, and past the end of a lane (lower right panel). Dashed
yellow lines depict lane edges. Scale bars are 20 pm in (A-C), 100 um in (F).

actin and PEG, we observed the occasional bulk formation of long actin bundles
[Fig. 2.10(E)] which attach to the motor lawn already shortly after experiment
initialization, indicating additional depletion forces in-plane of the motility assay
and suggesting a possible bundling transition for PEG concentrations above 3%.
Note that the presence of bundles did not affect the formation of nematic lanes.
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Experiment from Actin (uM) | PEG (%)
Fig. 2.2A 10.0 0.5
Fig. 2.2B, Movie S1 5.0 3.0
Fig. 2.2C, Fig. 2.6A 5.0 2.0
Fig. 2.2D, Fig. 2.6D,E, Movie S2 10.0 2.0
Fig. 2.4D, Movie S8 5.0 2.0
Fig. 2.6B 10.0 1.0
Fig. 2.6C 10.0 1.0
Fig. 2.6F 4.0 2.0
Fig. 2.10A-C, Movie S9 2.5 2.0
Fig. 2.10D 2.0 3.0
Fig. 2.10E 7.0 3.0
Movie S3 5.0 2.0
Movie S4 10.0 2.0

Table 2.1 List of actin (uM) and PEG (w/v) concentrations used for figures and movies.

2.5 Appendix: Simulation system

2.5.1 Computational Model

Propelled actin filaments are modeled as discrete, slender chains of N — 1 cylindrical
segments of length L and width a (L > a), with the leading segment (tip) of
each filament moving at a speed v, and the body of the filament following the
tip. The direction 6 in which a filament tip is moving changes upon interaction
with other filaments, as well as through interaction with molecular motors. The
latter is described by a Gaussian white-noise process with a path persistence length

L, > L. The body of the filament with index n is pulled by its tip, parallel to its

(n)

backbone. Hence, the motion of a cylinder segment with director u,"” is given by

vfn) = Ks(ul@1+ufn))/2 [|rfn)—r§f)1 —L/(N-1)], where theindexi € {1,...,N-1}
represents the contour position, and K; is a sufficiently strong spring constant to
ensure cylinder length conservation. Note that the direction of propulsion of every
position rl@ is the average of its’ neighboring cylinder orientations, to provide a
smooth lateral motion. When the leading segment of a given filament n collides
with a segment of another filament m at a relative segment orientation 6, an align-
ment potential U(6) acts on the tip’s orientation; see figure 2.7(A). The alignment
potential is present within the area occupied by a filament of length L and width a,
and acts on the tips of other filaments. To avoid artifacts such as surface roughness
caused by discontinuous jumps and potential superpositions of bent filaments, cyl-

inder potentials at inner bends are averaged, and at outer bends the cylinder gap is
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filled with a circular potential segment. In this way, local features of this potential
do not change significantly when the contour moves, and discretization effects are
small. Figure 2.7(A) depicts the geometry of filaments. The equations of motion
(with unitary friction) are then given by

0

o (()n) = vu(()n) = v(cos [Gén)], sin [Qén)])T, (2.1)
9 (n) _ (n) () _ ) L
Erl. = K; (u ) /2( l 1 m , for (2.2)

H
9 n
aeg ) = 59 ( ) + \20/L,E™, (2.3)

where £™ is random white noise with zero mean and unit variance, and
(n) _ (n)
H = > > U 2.4)

is the total alignment potential acting onto the direction of a given tip of a filament;
the sum runs over all overlapping filaments m and all cylindrical segments j of each
of those filaments. For the alignment potential, we assume

) 087 <esn>-e;m><rgn>>>] |

A, (0) = TCOS[Q] Ap (6)—

U(n)' -C ( r(n) _ r(m)
m,j 0 J

[26] , (2.5)

where A, and A, are the polar and nematic parts of the alignment potential, re-
spectively (Fig. 2.7(B)). The cutoff function C(x) is zero for x > a and otherwise
(a — x)/a. The argument of the cutoff function, |...|shpist, is the shortest distance
between the tip and the cylindrical segment with which it is interacting. The val-

ues of local orientations Q(m) (r(n)) are determined by the direction tangent to the

potential at contour position j of filament m and the relative tip position of r( ")
The parameters ¢,, @, give the scale of typical reorientations during a colhslon
as can be easily seen by rescaling time in units of the collision time, i.e. t — t7.
During a multiparticle simulation, these alignment potentials may gradually lead to
a maximal overlap of all contours at their centerline. Adding a weak repulsion force
with a small amplitude s(s < v) which acts on tips and is proportional to C(x) did
not change the phenomenology, but avoided the unphysical and numerically very
costly case of hundreds of filaments overlapping simultaneously.
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2.5.2 Numerical implementation

For the time integration, we used an Euler scheme. To ensure maximal performance,
the code was implemented in C++ and designed to operate on a parallelized
architecture. Despite the sophisticated interaction geometry, which requires many
machine operations per iteration, we were able to realize large simulation times for
systems of many filaments, by exploiting the localized nature of filament interactions:
for each filament tip, a Verlet [164] list was used to store all filaments which were
located within a certain cutoff range. After a certain number of time steps a cell
list algorithm [164] was used to update the Verlet lists. The cutoff distance was
chosen such that no interaction occurring between consecutive updates could be
overlooked. The cell algorithm used for the update of the Verlet lists divides the
surface into squares of a sufficient size. Instead of calculating the distances to all
other filaments in the whole system, only the distance to filaments in the same
or in a neighboring cell must be checked. We further used OpenMP to parallelize
the code. To further increase performance, we applied an additional averaging
procedure by replacing the individual relative angles 0 in the alignment potential
with the mean value over all interaction partners of a respective tip. This allows for
a better numerical convergence for larger temporal step sizes, while the properties
of the system remain the same.

2.5.3 Simulation parameters

For the simulations in the paper, we fixed the following filament parameters (length
units are given in filament lengths, i.e. L=1): filament aspect ratio L/a=21,
persistence length L, =31.75L, velocity v =1, and filaments were discretized into
N =5 segments. In these units, t=L/v=1 corresponds to the time in which a
filament travels a distance equal to its own length L. A fixed time increment of
8t=3.17 - 10~* was sufficient to achieve minimal numerical errors. The range of
interaction strengths ¢, ¢, was set between 2.1° and 12.9°, which is comparable
to the average amount of reorientation observed in the experiments (up to 14.6°
for 3% PEG). The sensitivity of the onset and type of collective motion with respect
to other parameters like persistence length and aspect ratio will be the subject of a
subsequent study.

2.5.4 Computational binary collision statistics

Using a small system with two filaments and random initial conditions, the change in
polymer orientation (measured from front to back) during a collision was recorded.
A collision begins at the time when two filaments first touch, i.e. approach to within
a distance smaller than a, and ends when the distance between them becomes
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larger than L/4, or, when the filaments have nearly aligned, after propagating a
cutoff distance 2L. The resulting scatter plot of incoming and outgoing angles is
then binned into intervals of different incoming angles and averaged to produce
the binary collision curve displayed in Fig. 2.3(B). Fig. 2.7(C) shows the continuous
variation of the average reorientation A = (6,,;) — 0;, as a function of a. Note that
angular fluctuations o =+/Var|[0,,] for L, =31.75L are of the same order as |A|,
similar as in the experiment [Fig. 2.1(D)]. Figs. 2.7(D,E) visualize the effect of noise
during binary collisions.

2.5.5 Macroscopic states in simulations

In large-scale simulations (Lp, = 650.2L, 544,000 filaments), stationarity was not
reached within feasible simulation times, but we observed a subsequent coarsening
dynamics of the emergent patterns (Movies S5-7 in [159]). We emphasize the strik-
ing similarity between the nematic lane network and the dynamics of its branches
[Fig. 2.8(A), Movie S6 in [159]] and the patterns seen in our experiments. To
visualize these simulations, the system was subdivided into a grid of 256 x 256
bins with well-defined local variables: Per bin, the local density p, polar order
p =1{exp(i0))pin|/po, and nematic order n = [{exp(2i0))pin|/po are calculated and
normalized by the average density po =544, 000/L7 =1.29/L*,

For the smaller systems (box length Ly, = 81.3L), stationarity was typically achieved
by t < 1,500 [Fig. 2.8(B)] and the states were characterized by the value of the
global order parameters P, N. The observed polar steady states appear to be very
similar to those already reported in Refs. [84, 85, 127, 165], in spite of the con-
ceptually different definitions of the underlying microscopic particles and their
interactions that rely on idealized alignment rules. In the nematic steady state, the
orientational autocorrelations resemble their experimental counterparts in exhibit-
ing non-vanishing nematic correlations [Fig. 2.8(C)]. Similar to the polar case, the
observed phase separation into a high-density nematic band and a low-density gas
resembles the patterns observed in Refs. [86, 88, 165], despite different interaction
schemes. Due to the periodic boundary conditions, horizontal/vertical orientations
predominate [Fig. 2.3(E)], but diagonal states were also found [Fig. 2.8(D)]. We
occasionally encountered the emergence of dual polar waves, which are locally
polar and collide head-on, such that the global order is (almost) nematic. These
states are predominantly located in the polar and multistable parameter regime,
especially for large densities [roughly po > 1.5/L2, see Figs. 2.9(A-D)]. While they
are established by smectic decay of a nematic lane [Fig. 2.8(D)], it is not clear
whether these colliding waves represent a transient phase on the way to a purely
polar state or a stable solution of their own. We did not observe these patterns in
our experiments, but this can be explained by hydrodynamic effects that are present
in the actin motility assay [82]: large polar actin clusters induce a flow field in the
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Figure 2.7 Collisions in the simulation model. (A) Illustration and annotation of the
filament geometry. The collision occurs at the point marked by the pink region. (B) Nematic
(blue line) and polar (red line) alignment potential and the mixed symmetry of their
superposition (black line) plotted as a function of the relative orientation 6. Inset: cutoff
potential C(d). (C) Average reorientation A = (8,,¢) — 0;, during binary collisions plotted
as a function of the incoming angle 0;, and the relative alignment strength o (L, =o0) . (D,
E) Binary collision statistics for a =2.75 (D) and a =6.25 (E) with different L, (¢, =2.1°)
The shaded area marks the regions within the standard deviation o for L, =31.7L. Inset:
Dependence of the average standard deviation 6 = (0)g,, for different angles on L,; the gray

triangle corresponds to a scaling of L;l/ 3,

surrounding fluid, which suppresses any opposed local filament motion of large
amplitude (in contrast to low-amplitude nematic motion within lanes). For large
polar alignment strengths ¢, polar states did not evolve into smooth wave profiles
but persisted as a collection of erratically moving polar flocks [Fig. 2.8(E)]. In this
regime, the multistable region with respect to nematic lanes becomes elusive, sim-
ilar to the previously reported abrupt switch between polar and nematic symmetry
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Figure 2.8 Evolution of patterns in simulations. (A) Dynamics of large nematic networks
(¢p=2.1°, a=6.25, po = 1.29/L?, Lpox = 650.2L). The panels depict the evolution of the
local density p (left), nematic order n (middle) and polar order p (right). (B) Evolution
of global order parameters P, N in systems with waves [solid lines, from the simulation of
Fig. 2.3(F), upper left panel] and lanes [dashed lines, from the simulation in Fig. 2.3 (F),
upper right panel]. (C) Autocorrelation of filament orientations within a lane [from the
simulation in Fig. 2.3(F), upper right panel]. (D) Decay of a nematic lane (upper left panel)
towards colliding waves (upper right panel) along the diagonal axis of the system (¢, =2.1°,
a=4.5, po=1.51/L?). Note that the decay process does not involve large jumps in the
global order parameters (lower panel). (E) Irregular polar cluster. Inset: evolution of its
order parameters (¢, =5.0°, a =2, pg=1.29/ L?). (F) Very narrow and dense polar wave
in a subcritical parameter region (¢, =3.6°, a=0, pg=1.29/ L?). Inset: density profile of
the wave in x-direction. For (B-F), Ly, =81.3L.

in a Vicsek-like model with fully aligning interactions of stochastically switching
symmetry [87]. For both large polar and nematic alignment strengths, filaments
appear globally disordered but with some degree of local nematic order [upper right
region of Fig. 2.4(E)], which appear similar to turbulent nematic states reported
previously [166].

2.5.6 Hysteresis analysis

To quantify the multistable region, we used smaller system sizes in our simulations
(Lpox =81.3L). We started our simulations in a strictly polar parameter regime
(a =0, ¢, # 0) and waited until the dynamics had become stationary (“waiting” time
At=1,587.3). We then incrementally increased a by a small amount Aa during
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Figure 2.9 Hysteresis analysis of global order parameters. Global order parameters
plotted as a function of the relative alignment strength « for (A-D) different filament densities
po (at ¢, =2.1°) and for (E-H) different polar alignment strengths ¢, (at po=1.29/ L?).
The direction of increasing « is depicted in (A, E) (P;) and (B, F) (N,), the decreasing
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values between domains of different patterns to guide the eye. The region N* in (C)
corresponds to states which were dominated by waves colliding head-on.

the simulation, measured P,, N, (“+” for increasing direction), and reiterated
the procedure until a =6.25 was reached. Then, we changed the direction and
progressively reduced a while recording the values of P_, N_ to complete the
hysteresis loop in @. We obtained two-dimensional phase diagrams by repeating the
hysteresis analysis for different filament densities py and different polar alignment
strengths ¢, [Figs. 2.4(A,E)]. Figs. 2.9(A,B,E,F) show the corresponding global order
parameters in the “+” direction, Figs. 2.9(C,D,G,H) in the “-” direction, respectively.
For Fig. 2.4(A), and for py < 1.67/L? in Figs. 2.9(A-D), we used Aa =0.175; for
all other data Aa =0.25. Note that the multistable parameter region depends only
weakly on the system size: upon doubling L., = 162.5L the boundaries only shift
slightly in parameter space [Fig. 2.11(A)].

As can be seen in Fig. 2.3(F) the transition from a nematic lane into a polar wave
is rather discontinuous; a lane becomes completely destabilized by a randomly
emerging polar flock. The transition from polar waves to nematic lanes is quite
different: the global polar order amplitude seems to vanish smoothly, although
spatial structures change from a wave (orthogonal to particle motion) into a lane
(parallel to the particle motion). It should be noted that a single polar wave,



42 Emergence of coexisting ordered states in active matter systems

0 40 time (s) 80

nematic
motion

A

nematic

<
nematic

nematic

¥
A
\4

0 75 time(s) 150

Figure 2.10 Interplay and dynamics of macroscopic structures. (A) Time evolution
of polar clusters engulfing nematic lanes by running over them. (B) Time evolution of
a polar cluster that leaves nematic lanes trailing from its “wing-tips”. (C) Evolution of
coexisting patterns during an experiment, visualized by snapshots at different times after
ATP addition. Within a few minutes (roughly 2 min), both polar clusters and nematic lanes
are fully developed (middle panel). At the end of the experiment, coexistence is still present
(right panel). (D) Vortex-like mesh of nematic branches. (E) Lane network with occasional
dynamic actin bundles. Scale bars are 100 uym in (A-C), and 50 pym in (D, E). Uni- and
bi-directional arrows denote polar and nematic motion, respectively.

once formed, is very stable, even when « is decreased in the minus direction far
below the onset of collective motion [see the lower left corners of Figs. 2.9(C,G)];
occupying almost all filaments, the wave profile becomes extremely dense and
ordered [Fig. 2.8(F)], which represents a limiting case of the model assumptions
(polar flocks do not stop to accumulate filaments for increasing density).

2.5.7 Time scale analysis of coexistence

To quantify and extrapolate the long-time behavior of coexisting polar and nematic
structures in the simulations, we analyzed different time scales of pattern form-
ation as a function of the (finite) system size. To this end, we tracked the evol-
ution of the local order parameters, which are reliable indicators of the nature
of the ordered state, and determined the fixation times tf;, upon which a sys-
tem adapted either a distinctly polar ordered or nematically ordered state, as
a function of the system size Lp,.. The local order parameters are defined as
follows: any system of M filaments can be decomposed into a set of clusters
of overlapping filaments, {c}. A cluster ¢ has the following properties: cluster
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size m¢, cluster polar order 7. =| Z;.n:cl exp(if;)|/m. — A(m.) , cluster nematic
order v, =| Z;.n:"’l exp(2i0;)|/m. — A(m.), where A(l) =| Z;Zl exp(iU;)|/L, {U;} €
U(0, 2m) is the expected random order of a finite-size cluster. Hence, the local
polar and nematic order (7.) = X Tcm/M, (v¢) = 2y Veme/M are given by
the mean cluster orders, taken over the whole cluster population. Note that with
this definition, the local order parameters do not depend on the global orientation
and arrangement of the whole system.

Figs. 2.11(D,E) show the evolution of local order parameters {7x.), (v.) with cor-
responding snapshots of the underlying simulations, for different initial conditions
but identical parameters. Note that an initial plateau value of {(7.), (v.) is achieved
extremely fast, within a time scale ty which we call the initial pattern formation
time as it corresponds to the emergence of local, polar clusters. Before the system
has reached a stationary state, which is either polar or nematic in nature, it ex-
hibits coexisting structures of both types, which is reflected in the behavior of the
local order parameters: when the system becomes fully polar [Fig. 2.11(D)], the
local polar order (x.) eventually approaches the local nematic order (v.) , at the
fixation time (or coexistence time) tr;,. When the system becomes fully nematic
[Fig. 2.11(E)], the local polar order (mz.) drops to a value below its initial plateau
value and saturates at a lower (but finite) level at t ;. Figs. 2.4(F), 2.11(B,C) show
the statistics of these time scales, which were obtained by fitting piecewise-linear
functions or crossing times of {7.), (V) at any simulation, and for two different sets
of @, ¢, in the multistable parameter region. Note that the linear dependence of ¢ ¢;,
on Lpoy has a very large amplitude (tf;y/to = 100 for Lp,, =325.1L), and that there
are strong variations towards very large fixation times. Unexpectedly, neither t,, nor
trix seem to not depend much on the overall strength of filament interaction (given
the different parameter sets a, ¢,), and hence on the exact position in multistable
parameter domain.
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Figure 2.11 System size dependence of dynamics observed in simulations. (A)
Multistable parameter region obtained by hysteresis analysis, with doubled system size
Lpox =162.5L as compared to Figs. 2.4(E), 2.9(E-H) with otherwise identical parameters.
White dashed lines denote the approximate stability domain boundaries of half-sized systems
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circles denote individual t;, events, full symbols depict to, respectively. Black lines and
arrow bars are average values and 15th/85th percentiles [as in Fig. 2.4(F)]. (D, E) Examples
of time evolutions of local ({7.): green line; (v.): red line) and global (P: light blue line; N
light orange line) order parameters, fixating in either a polar wave (D) or a nematic lane (E).
Vertical lines denote respective time scales upon which local order emerges (ty, short-dashed
line) and finally fixates at a distinct type of order (t;,: long-dashed line). Note that panels
(D, E) share identical parameters: ¢, =2.1°, a=4.17, po = 1.29/L2, Lpox, = 162.5L.



3 Microphase separation in active filament
systems is maintained by cyclic dynamics
of cluster size and order

The following chapter is based on research published in Phys. Rev. Research 3, 013280
[2] (under a CC BY 4.0 licence) that I conducted together with Lorenz Huber and Erwin
Frey and to which I, together with L.H., contributed as one of the shared first authors.

The onset of polar flocking in active matter is discontinuous, akin to gas-liquid
phase transitions, except that the steady state exhibits microphase separation into
polar clusters. While these features have been observed in theoretical models
and experiments, little is known about the underlying mesoscopic processes at
the cluster level. Here we show that emergence and maintenance of polar order
are governed by the interplay between the assembly and disassembly dynamics of
clusters with varying size and degree of polar order. Using agent-based simulations
of propelled filaments in a parameter regime relevant for actomyosin motility assays,
we monitor the temporal evolution of cluster statistics and the transport processes
of filaments between clusters. We find that, over a broad parameter range, the
emergence of order is determined by nucleation and growth of polar clusters, where
the nucleation threshold depends not only on the cluster size but also on its polar
moment. Growth involves cluster self-replication, and polar order is established by
cluster growth and fragmentation. Maintenance of the microphase-separated, polar-
ordered state results from a cyclic dynamics in cluster size and order, driven by an
interplay between cluster nucleation, coagulation, fragmentation and evaporation of
single filaments. These findings are corroborated by a kinetic model for the cluster
dynamics that includes these elementary cluster-level processes. It consistently
reproduces the cluster statistics as well as the cyclic turnover from disordered to
ordered clusters and back. Such cyclic kinetic processes could represent a general
mechanism for the maintenance of order in active matter systems.

3.1 Introduction

Polar flocking in active matter marks the onset of collective particle motion and
has been observed in many experiments, ranging from biopolymer systems [15,
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Figure 3.1 a) Schematic of a typical bifurcation scenario for a flocking transition. Control
parameters are, for example, particle density or interaction strength. Between binodal and
spinodal, flocking is triggered by spontaneous nucleation events (blue line). (b) Ilustration
of clustering of active polymers in the polar, phase-separated state. Locally, both ordered
(pink shading) and disordered (green shading) clusters are observed.

16, 19-21] to colloids [24, 167] and discs [28, 143, 168, 169], as well as in
theoretical studies using hydrodynamic descriptions [5, 84, 89, 94, 98, 120, 123,
125, 155, 170-172] and particle based simulations [61, 63, 85, 96]. The associated
nonequilibrium phase transition is in general discontinuous [84, 85, 96, 173] and
exhibits a subcritical parameter regime of polar patterns [20, 61, 63, 98, 127,
174], as illustrated in Fig. 3.1(a). While some aspects of flocking are akin to
phase separation in thermal equilibrium systems [62, 63], there are also marked
differences. In particular, both agent-based simulations and experiments have shown
that active filament systems exhibit microphase separation into dense polar-ordered
regions and dilute disordered regions [15, 63, 69, 85]. How these steady-state
patterns depend on the macroscopic control parameters (e.g. particle density, noise,
or interaction strength) is well described at the level of hydrodynamic theories [63,
94, 98]. The basic fact that spontaneous nucleation of particle clusters is vital
for the initial stages of flocking is also well established [85, 96, 132]. However,
the mechanisms underlying the formation and maintenance of a macroscopically
ordered phase, which shows microphase separation into polar ordered clusters and
a disordered background, is still unclear.

In the present work, we show that an interplay between cluster assembly and
disassembly governs the emergence of polar order and microphase separation. We
find that particles self-organize into a heterogeneous population of clusters with
a characteristic distribution of sizes and degree of polar order. By analyzing the
temporal evolution of clusters using agent-based simulations of weakly aligning
self-propelled polymers (WASPs) [1], we show that polar order and microphase
separation in the flocking state are maintained by a continuous exchange of mass
between coexisting populations of ordered and disordered clusters. To rationalize
the underlying mechanism, we introduce a kinetic model consisting of two distinct
cluster species, disordered and polar ordered, and study the ensuing assembly-
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disassembly dynamics. We find that the kinetic model shows the same cluster
statistics, mass-exchange dynamics, and bifurcation scenario as the agent-based
system, even though it contains no information on the spatial dynamics. This theory
explains the presence of microphase separation in the ordered state in terms of
cyclic probability currents in a phase space spanned by cluster size and order.

3.2 Results

3.2.1 Simulation setup and observables

We consider agent-based simulations of a system with M polymer filaments of fixed
length L on a two-dimensional substrate with periodic boundary conditions; for
details see Ref. [1] as well as Appendix 3.4.1 and 3.4.2. Motivated by experiments
using in vitro assays of gliding polymers [15-21, 157], each filament is assumed to
consist of a head that performs a persistent random walk with persistence length
L, and constant speed v, and a tail that passively follows it. Interactions between
filaments are assumed to be weak and dominated by aligning interactions [1, 20]:
upon local contact with adjacent filament contours, a polar and a nematic torque
proportional to ¢, cos @ and ¢, cos 20, respectively (0 being the impact angle),
are exerted on the filament head. These active filament systems were shown to
reproduce local collision statistics and collective phenomena—polar and nematic
patterns—on large scales (M = ©(10°)) [1], with filament density p and relative
alignment strength o =@, /¢, as experimentally motivated control parameters.
Here, we focus on the formation of large polar fronts as illustrated in Fig. 3.1(b). In
the flocking state, one observes that filaments are locally organized into clusters of
different sizes and, on closer inspection, also of different degree of internal ordering
[Fig. 3.1(b)]: filament clusters in a polar front are highly ordered flocks while
clusters elsewhere are much less structured.

To investigate the role of clusters of different sizes and order in the emergence
and maintenance of order in a system of WASPs, we monitor the size and degree
of order of each filament cluster. We decompose the system of filaments, {f;}
with je{1,2,..., M}, into a set of clusters {c,}: filaments are assumed to be-
long to a specific cluster c, if they lie closer to filaments in that cluster than a
cutoff distance y with y < L, as described in more detail in Appendix 3.4.3. Every
cluster can be assigned a cluster size, the number k of filaments, and a cluster po-
lar order, py := %| Z?:l exp(if;)|. In the following it will turn out to be useful to
also define the polar moment of a cluster, Sy = k px, which measures the effective
number of ordered filaments within a cluster. Since even clusters made up of fila-
ments with randomly chosen orientations have on average a nonzero polar order
Ax=(7+ %)/(8@) + O(k™>/?) [Appendix 3.4.3], we define the net polar order
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of a cluster by my := pr — Ax. Hence, the global polar order of the clusters is given
by an average of the net polar order m; weighted by the respective cluster size:

Qp:= % 2} nl(:) k© (cluster polar order parameter). In addition to this system-level
quantity, we also record the full statistics of cluster size and order, ¥ (k, p). We choose
a normalization such that the marginalized distribution (k) = f01 dp ¥ (k, p) satis-
fies Zﬁ/[: 1 kp(k) = 1. This choice means that in a given realization (simulation run)
(k) =n(k)/M where n(k) is the number of clusters of size k; hence, ¢ (k) =k (k)
gives the fraction of filaments contained in all clusters of size k. In the following we
will refer to (k) as the cluster-size distribution.

3.2.2 Polar order emerges through a hierarchical process

To begin with, we show representative simulation results for the agent-based system
in order to illustrate the dynamic processes that lead to the emergence of polar
order starting from random initial conditions (as specified in Appendix 3.4.2). If
not stated otherwise, we fixed the parameters ¢, =0.036 and p=1.51/ L?; for a
complete list of default parameters please refer to Appendix 3.4.1 and 3.4.2. Time
is given in units of correlation time L, /v and length in units of filament length L.

Figure 3.2(a) depicts the time evolution of the cluster polar order parameter
Q, for a =2, where the WASPs exhibit the same collision statistics as observed
for actin filaments in the actomyosin motility assay slightly above the previously
reported onset of flocking [1]; for an illustration of the associated dynamic processes
please refer to Movie S1 [175]. We observe that generically within a relatively short
time t( the system develops some but still rather weak polar order of the clusters
with Q, = 0.08. The system persists in this disordered state for an extended time
period until at some time t4 cluster polar order suddenly and significantly increases
and then approaches a stationary plateau value Q; ~ 0.7; this growth phase is
well described by an exponential law with the growth time 7 [Fig. 3.2(a)]. Visual
inspection of the agent-based simulations suggests that the onset of polar order
at tg is marked by the nucleation of a sufficiently large and polar-ordered cluster
which triggers a cascade of cluster assembly and disassembly processes leading to
rapid exponential increase in polar order; cf. Movie S1 [175].

These qualitative observations are supported and quantified by the measured
statistics of cluster size and oder W (k, p). In the quasi-stationary, disordered regime
(t < tq) the distribution of cluster sizes, (k), shows an exponential tail [Fig. 3.2(b)],
similar to that found in previous studies [101, 107, 112, 133, 134, 176-178].
Moreover, the full distribution of cluster size and order, ¥ (k, p), is centered around
p ~ A, indicating that typical clusters are only marginally more ordered than
randomly assembled clusters [Fig. 3.2(b,c)]. In contrast, in the stationary, polar-
ordered state (t > t4), the distribution of cluster size is no longer exponential but
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Figure 3.2 a) Time evolution of the cluster polar order parameter Q,. We use units where
time is expressed in terms of the longest single-particle correlation time 7, =L, /v, i.e. the
time over which the filament trajectories are approximately straight. The initial time scale tg
and the nucleation time t4 are marked by long-dashed and short-dashed lines, respectively.
b) Cluster size distribution, 1 (k), in the disordered regime (t < t4; green) and in the polar
ordered steady state (t > tq4; purple). c) Heat plot (with color map shown in the graph)
of the full statistics of cluster size and order, k - ¥(k, p), plotted as a function of k and
p, in the disordered regime (upper panel) and in the polar ordered steady state (lower
panel). The gray solid line depicts A, and the dashed line indicates the estimated nucleation
threshold S..i; = pck = 66 (see discussion later). d) Characteristic time scales tg, tg, and T
as a function of a. Solid lines denote average values, and error bars represent the 15th, and
85th percentiles taken over 100 realizations for each a. e) Time evolution of (S(l)) (blue
line) and (Q,) (orange line), as a function of t* =t —t4, averaged over 892 independent
realizations. f) Scatter plot for the size k and order p of the cluster corresponding to the
largest cluster SV for 892 independent realizations. The probability clouds at different
times t* are indicated in different colors in the graph. As time progresses the cloud of points
follows the trajectory indicated by the gray solid line, which depicts the average path of
(S in k-p space. The red open circles mark the average (S(!)) at the indicated timepoints.
The dashed line indicates S¢i; & 84. In panels a-c we used « =2, and in panels e-f a value
of a=1.67.
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exhibits a broad tail [Fig. 3.2(b)], and from the full statistics we infer that typical
clusters are highly ordered [Fig. 3.2(c)].

Our simulations show that the onset times t4 of polar order are randomly distrib-
uted, suggesting that nucleation events are stochastic and require rare events that
initiate the formation of clusters of sufficiently large size and order. Figure 3.2(d)
shows the mean and the statistical variation of the characteristic time scales tg,
tq4, and T in the parameter range « € [1.5, 3.0]; how these times are measured is
detailed in Appendix 3.4.4. While the onset time t4 of polar order increases strongly
with decreasing «, it remains finite even far below the previously reported onset of
order at @ = 1.8 [1]. The onset times were found to be exponentially distributed
with a coefficient of variation y/Var[tq]/{tq) = 1, similar as in classical nucleation
theory [179, 180]; for a detailed discussion of the observed variance in the onset
time t4 please refer to Appendix 3.4.4.3. With increasing a, we find that the average
onset time (ty) decreases and eventually becomes comparable to the average values
(to) and (T), suggesting that the system instantly begins to develop polar order. For
even larger «, polar order emerges through a process akin to spinodal decomposition
(see discussion below and Movie S2 [175], which shows the dynamics for a = 3).

3.2.3 Nucleation barrier is determined by polar moment

To further characterize the processes underlying formation and growth of po-
lar clusters we monitored the time evolution of all filament clusters and rank-
ordered them according to the magnitude of their respective polar moments:
sSM>52>50) > >5M Figure 3.2(e) compares the time evolution of the
cluster polar order parameter Q, and the largest polar moment S (1) averaged over
892 independent realizations and aligned in relation to the respective (stochastic)
onset times t4. The observation that growth of the largest cluster starts (on aver-
age) prior to the onset of polar order suggests that precursor seeds initiate cluster
nucleation and growth. What then are their characteristic features?

The answer becomes evident upon inspection of the evolution of cluster size and
polar order, shown in Fig. 3.2(f) as a scatter plot for different time points indicated
in the graph; cf. Movie S3 [175]. Initially, before the onset time t4, the probability
cloud is widely extended in k—p space and its center of mass hardly moves. As soon
as the cloud crosses a line of constant polar moment [dashed hyperbolic curve in
Fig. 3.2(f)], which occurs at a time that roughly coincides with the onset time tg4,
we observe qualitatively different dynamics; we will quantify the precise location
of this transition line below. The cloud then begins to contract and shows a clear
trend toward large cluster sizes k and higher polar order p, i.e. increasing polar
moment S. From these observations we conclude that the polar moment S is the
key quantity which determines the nucleation threshold.
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Figure 3.3 a) Time evolution of cluster polar order parameter Q,, for disordered systems
(a =1.25) perturbed by the addition of (fully polar) ordered cluster of polar moment S at
time t =5 (green: S =80; pink: S =140). Thin lines correspond to single realizations, thick
curves to the corresponding mean over all realizations. b) Phase diagram as a function of
a and p. The regions shown in different shades of gray indicate regimes where the final
system is polar-ordered with QI’; > 0.2. The gray scale corresponds to different values that
are proxies for S, as explained in the main text. The red line indicates the parameters
used in Fig. 3.2(d), and the blue star the parameters used in Fig. 3.2(a-c).

3.2.4 Nucleation and spontaneous emergence of polar order

In order to determine the parameter regimes where polar order emerges either
through a nucleation and growth process or spontaneously, we performed simula-
tions over a wide range of densities, p, and relative alignment strengths, a. The
black regime in Fig. 3.3(b) indicates the parameter range, within which we ob-
served onset times for polar order below t; =50. We take this as a proxy for the
regime where polar order builds up spontaneously, cf. Movie S2 [175]. On the
other hand, to determine the nucleation and growth regime and the respective
threshold value of the polar moment (critical nucleus ‘size’), one would in principle
need to monitor the time evolution of all clusters and wait for the spontaneous
formation of a critical nucleus. While this is computationally feasible for parameter
regimes where t,4 is reasonably small, it becomes practically impossible if t4 is large,
as is the case for small values of «; c.f. Fig. 3.2(d). Therefore, we took a different
approach and instead of waiting for a spontaneous nucleation event, we artificially
inserted perfectly ordered (p = 1) clusters with different polar moments S = k into
a disordered system. While clusters with S > S trigger a transition of the whole
system towards a globally ordered state, the system remains disordered for smaller
clusters, cf. an exemplary case in Fig. 3.3(a). The different gray scales in Fig. 3.3(b)
show parameter regimes where nucleation and growth occurred in our simulations
after insertion of a cluster of certain discrete size Spy. as indicated in the graph.
These values correspond to proxies of S in the respective parameter regimes; see
Appendix 3.4.5.1 for a more detailed analysis of S..;. For parameters where tg is
small, we have explicitly checked that the critical value S.,; obtained by artificially
inserting a polar-ordered cluster and waiting for the spontaneous emergence of a
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critical nucleus agree quantitatively [Appendix 3.4.5.2]. On a qualitative level, this
becomes evident from Movie S3 [175]: The line given by p(k) = S¢it/k defines a
threshold curve in k—p space, above which nucleation occurs, cf. also dashed curves
in Fig. 3.2(f). Moreover, upon comparing the course of nucleation for artificially
triggered and spontaneous nucleation events in k—p space, we found that very
rapidly the emerging statistics for the largest cluster S (1) become indistinguishable
from each other; see Fig. 3.13 in Appendix 3.4.5.3.

In summary, the phase diagram in Fig. 3.3(b) exhibits two qualitatively dis-
tinct regimes. There is a regime where flocking is spontaneous akin to spinodal
decomposition in liquid-gas systems, especially at high densities and large «; cf.
Movie S2 [175]. In addition, there is a broad range of parameters within which the
transition to a polar ordered state proceeds by nucleation and growth. In contrast to
liquid-gas systems, the critical nucleus is not only characterized by a large enough
size but also by a sufficiently high polar order, such that Sq;i =k - p.

3.2.5 Coarsening and anti-coarsening

Next, we wanted to gain further insight into the processes leading from the formation
of a critical nucleus to the assembly of (moving) polar clusters and ultimately the
polar-ordered, non-equilibrium steady state. To this end, we artificially inserted
seeds (fully ordered polar clusters) and observed their dynamics; for an illustration
please refer to Fig. 3.4(a) and Movie S4 [175]. One observes that immediately after
insertion the cluster begins to loose filaments. This loss is counteracted by a gain
of filaments due to annexation of disordered clusters (with low polar order) that
lie in its pathway of motion. Only when the size of the seed is large enough, as
discussed in the previous section, this gain is sufficient to overcome the filament loss
such that the cluster grows. These clusters, however, do not grow indefinitely, but
eventually replicate by splitting up into several parts, which in turn grow individually;
frequently they also merge again.

These qualitative observations can be quantified in terms of the rank-ordered
polar moments, whose averages sampled over 30 realizations are shown for $(!)
through S1'% in Fig. 3.4(b). After artificial insertion of a seed cluster (here of size
Sseed = 200), this seed forms the cluster with the largest polar moment S (1) which
then grows exponentially, while one after another clusters with the next largest
polar moment follow suit. This sequential process corresponds to the continuous
production of cluster fragments, which are created during splitting events and then
grow by themselves. The seed cluster spins off daughter clusters, as can be read
off from the decline in the number of filaments I that originally formed the seed
cluster and are still part of the largest cluster SV, cf. I(t*) in Fig. 3.4(b).

To further investigate the dynamics of clusters and the filament exchange
between them, we tracked the fate of particles that were part of a cluster at time t
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Figure 3.4 a) Snapshots of a perfectly ordered cluster added to a disordered system, taken
at different times t* after insertion (at t* =0). Filaments that are part of the original cluster
are shown in magenta. After growing for some time, the cluster eventually splits up into
several distinct parts that can then grow on their own (shown in different colors). b) Time
evolution of the clusters with the ten largest polar moments S after an artificial nucleation
seed of size Sgeeq = 200 was placed into the systems at t* =0, averaged over 30 independent
realizations. I(t*) specifies the temporal evolution of the amount of filaments which were
originally part of the inserted cluster; cf. magenta filaments in panel a. ¢) Matrix of transition
probabilities, T (k’, t + At|k, t), in color code as shown in the graph with At =0.0125. As
a guide to the eye, regions with dominant fragmentation or coalescence, incorporation
or evaporation are encircled. d) Steady-state (in the polar-ordered phase) particle fluxes
J[D < Py ] and J[P < Dy ,] between ordered (P) and disordered (D) clusters in k—p
space as obtained from numerical simulations of WASPs. The black zig-zag line depicts the
chosen partition of k—p space into a disordered (D) and a polar (P) compartment. The
arrows indicate the overall tendency in the flow between clusters of different size and polar
order. Inset: The fluxes J[D <> Py ] and J[P < Dy ,] integrated over p for comparison
with Fig. 3.5(¢). In all panels we used o =1.67.

and recorded their status after some time At. To this end, we define the transition
probabilities T (k’, t + At|k, t) that quantify the likelihood that a filament which
is part of a cluster of size k at time t will scatter into a cluster of size k’ at some
later time ¢ + At, normalized such that ), T(k’, t + At|k,t) =1; how T is inferred
from the simulation data is described in Appendix 3.4.7. For At — 0, these trans-
ition probabilities become diagonal, T (k’, t|k, t) = Sxk’, while for At — oo, as the
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events become statistically independent, one obtains T (k’, oo|k,t) =k’ (k) [cf.
Fig. 3.15(a,d) in Appendix 3.5.3.1].

Figure 3.4(c) shows the matrix of these transition probabilities recorded for times
t in the stationary non-equilibrium steady state, and with the time increment chosen
as At =0.0125, a value corresponding to the time a filament takes to travel a distance
comparable to its own contour length. This choice gives each filament sufficient time
to escape from its previous cluster, but multi-scattering events are still unlikely. The
precise value of this time increment is not important [see Appendix 3.4.7]. From
Fig. 3.4(c) we infer that, while most clusters remain stable during this time increment
(diagonal), especially large polar clusters either frequently coalesce or fragment into
similarly sized clusters (bright off-diagonal matrix elements in the upper right of
Fig. 3.4(c)), or evaporate very small clusters or single filaments (bottom right matrix
elements in Fig. 3.4(c)). Clusters of smaller size, on the other hand, are frequently
incorporated into clusters of larger size (upper left part of the matrix in Fig. 3.4(c)).

Next, because of the qualitatively very different behaviour of strongly ordered
and disordered clusters, we classified them into two broad classes: disordered
(D) and polar (P) population. For that classification, we chose a heuristic division
line in k—p space [zig-zag line in Fig. 3.4(d); cf. Appendix 3.4.6. This is chosen
such that in the quasi-stationary disordered regime [Fig. 3.2(c), upper panel] most
clusters would be classified as being disordered. We monitored the net filament
fluxes between these two populations in steady state. Specifically, we measured
how many filaments transition per unit time between disordered/ordered clusters
(of all sizes and degree of order) and ordered/disordered clusters of a given size and
order, J[D <> Py ] and J[P < Dy ,], respectively [Fig. 3.4(d)]. These fluxes show
that there is a cyclic flow of filaments between ordered and disordered clusters as
indicated by the arrows in Fig. 3.4(d): While large, ordered clusters show a net
gain from disordered clusters, small ordered clusters lose to disordered clusters
(black arrows). Since we are in steady state, i.e. particle numbers for each species
must remain constant on average, there must also be net intra-species currents:
(i) fragmentation of larger into smaller polar clusters (magenta arrow), and (ii)
enhanced ordering of disordered clusters (green arrow).

Taken together, the above analysis of the agent-based simulations suggests that
the following processes govern the emergence and maintenance of the stationary non-
equilibrium steady state: In the quasi-stationary, disordered state the system consists
of mostly disordered clusters with a wide distribution of sizes k [Fig. 3.2(b,c)].
Stochastically at time t4, a critical nucleus (with polar moment of the order of
Sqit) forms spontaneously, and subsequently grows exponentially by continuously
incorporating more disordered clusters [Fig. 3.4(b,c)]. By eventually splitting up
[Fig. 3.4(a-c)] due to orientational splay, polar clusters effectively self-replicate,
which explains the exponential growth of the cluster polar order parameter Q,
observed in Fig. 3.2(a). In the final nonequilibrium steady state, there is a balance
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Figure 3.5 a) Illustration of the two-species kinetic model with a disordered cluster type A
(green) and an ordered type B (purple) and the various cluster assembly and disassembly
processes. b) Time evolution of the cluster-size distributions, aj and by, of species A (long-
dashed lines) and species B (short-dashed lines), respectively. The solid lines indicate the
total distribution of cluster sizes, ny = ay + b, at two different times (blue at t =216 and
orange at t = 1, 200). c) Time evolution of the relative fraction f; = bx/nx. The color gradient
depicts different times as quantified by the corresponding colour bar. d) Time evolution of
the mean net cluster order (m(k)), during nucleation in the agent-based simulations. e)
Steady-state particle fluxes J[b<>ay] and J[a«>bi] for both species as a function of cluster
size k. Arrows: schematic depiction of inter-species (solid) and intra-species (solid colored)
flux directions. For the data shown for the kinetic model we have used the parameters:
M =400, A=800, v=Po=Ag=1, 110=0.025, 0qq = 1.6, 04 =0.2, 0pp = 1 and wo =10"*.
For the data shown in panel d) we used a =1.67.

between different cluster-level kinetic processes: Growth of polar-ordered clusters
through coagulation of polar-ordered clusters and incorporation of disordered
filaments is balanced by splitting (fragmentation) of clusters as well as evaporation
of smaller filament clusters back into the ‘pool’ of disordered clusters [Fig. 3.4(a,c)].
These processes drive the cyclical interconversion of the different types of cluster
species, as indicated by the arrows in Fig. 3.4(d).

3.2.6 Kinetic model for cluster assembly and disassembly

To determine whether these cluster assembly and disassembly processes constitute
the essential mechanisms underlying the emergence and maintenance of the polar-
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ordered non-equilibrium steady state, we introduce a simple kinetic model; cf.
Fig. 3.5(a). It reduces the dynamics of the spatially extended system to a set of
kinetic processes for two competing types of cluster species, a disordered type A and
an ordered type B, with respective cluster size distributions ay = (a)x and by = (b)x,
where x = (x1, X2, ..., Xy ). The time evolution is assumed to be given by a set of
coupled equations, d.a=F(a, b) and 3;:b =G(a, b) for the cluster size distributions,
an approach frequently used to study coagulation and fragmentation dynamics
in a broad class of systems [181-183]. The dynamics conserves the total number
of particles, 22/’: 1 k (ax +bx) =1. Such kinetic models have successfully been used
to describe the cluster statistics in a regime where polar order is absent [101,
133, 134]. Our kinetic model extends these studies to include a second species B
representing polar ordered clusters, and thereby enables us to study the assembly
and disassembly processes leading to the emergence of polar order.

The set of nonlinear functions F and G — for explicit forms see Appendix 3.5.1
— specify all the kinetic processes illustrated in Figure 3.5(a): (i) For the disordered
species A, cluster assembly occurs by coagulation of smaller clusters of sizes i and j at
a rate o;j := 0qq Xqqa (i, j) v/A. Here v is the cluster velocity, A the area of the whole
system, and X,,(i, j) a term dependent on the cluster sizes which characterizes
the likelihood of cluster collisions. Since disordered clusters are approximately
spherical in shape such that their diameter scales as Vi, we take Xqq (i, j) = Vi +V/j.
The parameter o, is an amplitude measuring the strength of the coagulation process
of disordered clusters; in short: coagulation amplitude. (ii) Likewise, for the ordered
species B, there is a coagulation rate n;; := opp Xpp (i, j) v/A. The elongated shape of
ordered clusters suggests geometric factors that scale with their linear extension,
Xpp(i,j) =i+ j. Similar as above, the parameter o3, designates the coagulation
amplitude for ordered clusters. (iii) Ordered clusters of linear extension i can
incorporate disordered ones of size j at a rate y;j := 04 Xap (i, j) v/A, and thereby
form a larger ordered cluster. The geometric factor is now assumed to be X (i, j) =1,
and oy is called the incorporation amplitude. (iv) Cluster disassembly occurs via split-
up (fragmentation) of ordered clusters at a constant rate p1;; = 1o, and evaporation
of single disordered particles from cluster species A and B at rates f3; := o Y, (1)
and A; := A Y3 (i), respectively. The geometric factors read Y, (i) = Vi and Y3 (i) = 1,
where the latter accounts for the observation that ordered waves evaporate particles
mainly via its edges, i.e. there is no size dependence. (v) Finally, a disordered
cluster may spontaneously transform into an ordered cluster, at a rate w; := wq Z (i)
with Z(i) =1/(1 + e~ (=mc=D/ve): this event effectively represents the nucleation of
an ordered cluster. The sigmoidal shape accounts for the observation that nucleation
only occurs above a certain threshold cluster size m.. For specificity we choose
m. =100 and v, = 10 throughout our analysis. Variation of m or v, results only in
a shift in the onset of the transition to polar order, without any qualitative effects
on the ordered state; cf. Appendix 3.5.1.
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The kinetic model is not an exact representation of the kinetics observed in
the agent-based model, but it emulates its core features. First, global polar order
in the system of WASPs is analogous to the mass fraction of the ordered species
¢» = i k by in the kinetic model. Second, while the parameter @ quantifies the
(relative) strength of the alignment interaction responsible for flocking of WASPs,
the corresponding analogs in the kinetic model are the amplitudes o, and oy that
quantify the strength of processes leading to an increase in polar order ¢y. In the
following, we describe the influence of these parameters on the size distributions ay
and by. For the coagulation amplitude o,, of the disordered clusters we chose a fixed
value of 0,, = 1.6, such that — in the absence of an ordered species B — the size
distribution ay resembles the previously observed exponentially truncated power
law [101, 133, 134]; cf. Fig. 3.2(b). We integrated the set of kinetic equations to
find the time evolution of the distribution of cluster sizes, {ax(t), bx(t)}, using a
simple Euler scheme, and starting from initial conditions where all particles were in
clusters of size k =1: a;(0) =1. If not stated otherwise, we used the parameters
specified in Fig. 3.5.

To begin with, we present the results for specific amplitudes: o, =0.2 and
opp = 1. In that case, the distribution of total cluster sizes, ny := ax + by, changes with
time from an exponentially truncated power-law form [blue solid line in Fig. 3.5(b)]
to a broad distribution with a distinct shoulder at intermediate k [orange solid line
in Fig. 3.5(b)], similar to the results obtained for a system of WASPs [Fig. 3.2(b)].
How polar order emerges is also quite comparable, as can be inferred from the
time evolution of the fraction of ordered clusters, fi := by /ng, in the kinetic model
[Fig. 3.5(c)] and the mean net cluster order, (7 (k)), := fol dp m ¥ (k, p), in the
agent-based simulations [Fig. 3.5(d)]. In both instances, ordered clusters begin
to proliferate at intermediate sizes k, followed by a broadening of the distribution
towards smaller as well as larger cluster sizes.

Next, as in the case of the agent-based model [cf. Fig. 3.4(c,d)], we wanted
to learn how the various kinetic processes operating within species and between
ordered and disordered clusters balance to maintain a stationary polar-ordered
state, where d.a; =0 = 9,bx. For each species and each cluster size k, this requires a
strict balance between inter-species and intra-species currents. Moreover, note that
there is also a global balance such that the total number of particles remains constant.
Figure 3.5(e) shows the net inter-species currents J [a<>by | (magenta) and J[b<>ay]
(green) for the ordered and disordered species, respectively; intra-species currents
are simply the opposite, e.g. for the ordered species: J[b«>by]| = — J[a<>bi]. For
the ordered clusters, J[a<>bi] <0 for a wide range of cluster sizes, indicating
that there is an overall net loss of ordered clusters in favor of disordered clusters.
A more detailed analysis shows that this is largely due to evaporation of single
disordered particles [see Appendix 3.5.3]. At large cluster sizes, there is a net
gain (J[a<>by] > 0) in the number of ordered clusters, which can be attributed to
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the incorporation of disordered clusters by ordered clusters. The balance between
intra-species and inter-species processes requires that there is a net flux from
large to small ordered clusters, i.e. a surplus of cluster fragmentations relative to
cluster coagulation events. This is phenomenologically similar to our findings in
the agent-based simulations, cf. Fig. 3.4(d). There, we observed that large ordered
clusters gain from disordered clusters, and small ordered clusters loose filaments
to disordered clusters. This implies that there must be an intra-species current
within ordered clusters, presumably also mediated by splitting of large into smaller
ordered clusters. For the disordered clusters, we observe a net gain (J[b<>ai] > 0)
of single disordered particles, which is due to evaporation events from ordered
clusters. On the other hand, there is a net loss (J[b<>ay] < 0) of disordered clusters
at intermediate cluster sizes, which is due to incorporation of disordered clusters
into ordered clusters (and to smaller extent due to spontaneous transformation
of disordered into ordered clusters). As the inter-species processes with ordered
clusters create a surplus of single disordered particles, in steady state this must
be balanced by a corresponding intra-species flux from small to large disordered
clusters, which is facilitated by coagulation processes of disordered clusters.

In order to determine the phase diagram and the nature of the corresponding
phase transitions, we studied how the emergence of polar order in the kinetic model
depends on the strength of the various processes. We focused on the effects of
coagulation of ordered clusters and the incorporation of disordered clusters into
ordered clusters, varying the corresponding amplitudes o3, and oy, respectively.
Figure 3.6(a) shows the time evolution of the mass fraction ¢ of the ordered
B species for various values of the incorporation amplitude og,. Like the cluster
polar order parameter Q,, [Fig. 3.2(a)] it exhibits a transient dwelling period before
(exponentially fast) approaching the polar-ordered states. Interestingly, the duration
of this dwelling time seems to be very sensitive to changes in the overall incorporation
rate oy, [Fig. 3.6(a)]. In addition, in accordance with our agent-based simulations
[Fig. 3.3(b)] and as found in previous studies [20, 61, 63, 84, 85, 96, 98, 127, 173,
174], the order parameter ¢, shows a discontinuity and hysteresis as a function of a
control parameter [Fig. 3.1(a)], here the incorporation amplitude o, [Fig. 3.6(b)].
Varying both o, and oy, we obtain the bifurcation diagram (for the stationary state)
shown in Fig. 3.6(c); please refer to Appendix 3.5.4 for a bifurcation diagram as a
function of density pyin, and opp. The effects of coagulation of ordered clusters and
incorporation of disordered clusters by ordered clusters on the emergence of polar
order are quite distinct. While the amplitude of the incorporation processes (o)
appears to regulate the transition from a disordered to a polar-ordered state, the
amplitude of the coagulation processes of ordered clusters (opp) affects the character
of this phase transition. For small oy, (weak propensity for coagulation of ordered
clusters), the transition is continuous, and becomes discontinuous only above a
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Figure 3.6 a) Evolution of the mass fraction ¢y, for different values of o4, (055 =1). b)
Hysteresis of the stationary mass fractions ¢ as a function of g,p. ¢) Bifurcation diagram
of stationary mass fractions ¢ as a function of o4 and op,. The dashed lines mark the
upper and lower boundaries of the bistable region, respectively. The coloured lines mark the
position of the data shown in b). d) Stationary total cluster distribution ay + by as a function
of the system size M. e) Stationary mean cluster size (k) as a function of the system size M.
In panels d-e we used 0qq = 1.4, 04 =0.2, 0y, =0.8, 119 =0.01 and wo = 107>,

certain threshold value, with the ensuing bistable parameter regime broadening as
opp increases further.

Finally, we checked whether the kinetic model also exhibits microphase separ-
ation, as observed in other models [15, 63, 69, 85]. To this end, we increased M
(adapting the area A to keep the density constant) and recorded its influence upon
the stationary total cluster distribution ny = ax + by, as well as the stationary mean
cluster size (k) [Fig. 3.6(d,e)]. Notably, both become independent of system size
above a certain value of M. We conclude that the polar phase of the kinetic model
also exhibits arrested growth and hence microphase separation, like that observed
in polar active systems [15, 63, 69, 85]. This contrasts with the single-species model
of Peruani et al. [101, 133, 134] which exhibits a continuous order transition from
a state with microscopic clusters towards a macrophase separated state.
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3.3 Discussion

An intriguing phenomenon in polar active matter is not only the emergence of polar
ordered clusters, but also the fact that the ordered state exhibits microphase separ-
ation into dense, polar-ordered clusters and a gas-like disordered filament reservoir.
Here we asked how the kinetic processes of cluster assembly and disassembly might
reveal the underlying mechanism. To answer this question we used a two-pronged
approach based on agent-based simulations and a corresponding cluster-level kinetic
theory. Our main conclusion is that microphase separation in polar active matter is
a cyclic self-organizing process of particle clusters of different sizes and degrees of
polar order.

Using agent-based simulations we monitored the kinetic processes at both the
particle and the cluster level and thereby determined the time evolution of the
cluster statistics in terms of cluster size and degree of polar order. Moreover, these
simulations also allowed us to fully relate the mesoscopic cluster dynamics to the
underlying microscopic dynamics of individual filaments. Taken together, this
yielded the following key insights: First, we find two qualitatively distinct parameter
regimes, one where polar order emerges spontaneously and another which requires
the formation of a nucleus and its subsequent growth. Our simulations show that the
nucleation barrier is not determined by either cluster size k or cluster order py alone,
but by the polar moment Sy =k - px. Second, once a critical nucleus has formed,
an intricate dynamics of cluster assembly and disassembly processes is triggered
that leads to microphase separation between high-density, polar-ordered clusters
and a low-density, disordered background. It entails the growth of clusters by the
incorporation of disordered filaments, the breakup of larger into smaller sub-clusters
and their subsequent growth (cluster self-replication), coalescence of clusters and
evaporation of filaments from ordered clusters into the disordered background.
We have quantified these processes in terms of the probability currents between
clusters of different size k and degree of polar order p. This analysis suggests that
the dynamics that maintains a non-equilibrium steady state is a cyclic dynamics in
(k, p) phase space.

These results suggested that the dynamics of the active filament system can be
understood in terms of kinetic processes at the mesoscopic level of clusters, i.e. by
considering the assembly and disassembly of clusters with different size and degree
of order. To test this hypothesis we formulated a simple kinetic model that emulates
the key processes identified in the agent-based simulations and analyzed the same
or analogous observables. The kinetic model shows the same phenomenology as
the agent-based simulations, including similar probability flows in phase space
and the same topology of the bifurcation diagram. Most importantly, the kinetic
model exhibits arrested growth and hence microphase separation. That opens a
new perspective on this phenomenon: instead of focusing on a characterization of
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the spatio-temporal patterns we identify the relevant kinetic processes that govern
the probability flow in phase space.

We propose that the application of a similar methodology, namely the identific-
ation of key kinetic processes and their incorporation into a kinetic model, might
be able to capture the essential dynamics of other collective phenomena in active
systems, such as nematic laning [86, 88, 99], vortex formation [17, 128, 150] or
coexisting types of order [1, 71, 129]. In particular, the flow in a properly defined
phase space might reveal, as we show here, the mechanisms that underlie the
emergence and maintenance of the corresponding non-equilibrium steady states.
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3.4 Appendix: WASP simulations

In the following, we shortly discuss the implementation of the agent-based simula-
tions of weakly-aligning self-propelled polymers (WASP’s). For a detailed descrip-
tion please refer to the Supplemental Material of Ref. [1].

3.4.1 WASP simulation model

We consider a system of M polymer filaments, each with a fixed length L and a
width d. Individual polymers are modelled as discrete, slender chains consisting of
N — 1 identical cylindrical segments connected by N identical spherical joints; for
an illustration see Fig. 3.7. In this way, each point along the polymer’s contour has
a well-defined, smooth surface and tangential direction, reducing artificial friction
effects due to the discretization present in bead-spring-like representations [108].

The polymers perform a trailing motion on a planar surface: as the head of
the polymer changes its direction the tail strictly follows the trajectory traced out
by the head. This resembles the typical situation observed in actomyosin motility
assays where in a planar geometry actin filaments are propelled along their contour
by immobilized molecular motors and where motion orthogonal to the filament
contour is suppressed [15, 20]. In these experimental setups, it is observed that the
head of each polymer performs a persistent random walk (with persistence length
Lp), and, in addition, changes its direction due to local alignment interactions when
colliding with other polymers.

In order to model this dynamics, we describe each polymer n by the positions
rgn) of its spherical joints j, where n€ {0,1,...,M -1} and j€{0,1,...,N—1}
(with the head of a polymer denoted by j=0); for an illustration see Fig. 3.7. We

(n)
0

assume that—given the direction u,, ’ of a polymer’s head—its equation of motion

reads:

(n)

cos 0

atr(()n) - Uu(()”) —Frep=v ( i an) ) — Frep - (3.1)
0

Here 9(()“) denotes the n' polymer’s orientation and v the velocity of a free polymer.
Frep is a weak repulsive force (the exact definition of which we will give later in
Eq. (3.7)) which only acts when the filament head overlaps with the head or tail
of another polymer. The speed v™ of filament n is given by the absolute value of

atrgn) .
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(rén)_r(m))shD\st

Figure 3.7 Illustration of interactions in the filament model. The head of a filament n
collides with the body (contour) of an adjacent filament m between bead position rgm) and
rgm). The impact angle between the two filaments is given by AB,, := 98”) - Qém), where
6(()") and Gém) denote the orientation of the head of the n™ polymer and the orientation of the

tangent to the body of the m™ polymer where the collision happens. In the illustrated case
the latter is given by the orientation of the 2™¢ cylinder of the m™ polymer (which in turn is

given by the orientation of the normalized bond vector, uém) = (rgm) — rém)) / |r§m) — rém) 1.
If the collision happens at the head of the m™ filament, Gém) is given by the orientation of
™ The distance vector (red arrow) Ary, = (rén) - r(m))ShDiSt is the normal

(m) (m) (n)
. andr, 0 -

(
0
vector to the center-line of filament m between r

its director u

, connecting to r

The equation of motion for the orientation 9(()") of the n® polymer’s head is given

by
86y = ——0= + e, (3.2)
86, Lp

where the first term denotes the effect of other filaments on the orientation of
filament n, and £ is an angular random white noise with zero mean and unit
variance; the amplitude of the noise ensures that the value of the path persistence

length of a free polymer is given by L,. The effective potential H(gn) acting on the
director of filament n, is given by a sum H(()n) =2m U,(nn) over the alignment potentials
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U,(nn). These potentials describe the alignment interaction between filament m and
the head of filament n, and will depend on both the relative distance and the relative
orientation of these filaments. To define these potentials we introduce the distance
vector [Fig. 3.7]

Aty = (r(()n) - r(m)) (3.3)

shDist
which denotes the vector connecting the head of polymer n with that part of the
body (contour) of an adjacent polymer m that has the shortest possible distance
to the head [red arrow in Fig. 3.7]. We signify the segment j on filament m that
filament n collides with as collision segment. The corresponding orientation of this
collision segment is denoted by 9](.m) [Fig. 3.7]. With these definitions, we can now
define the alignment potential as

U = C (1%an]) X (Ap (80um) + An (86mm) ) (3.4)

where AO,, = 9(()“) —Q](.m) denotes the impact angle of the collision of the head

of polymer n with the body of filament m. The first factor C (|Ar,,|) accounts
for the spatial dependence of the potential. For simplicity, we assume a potential
that vanishes outside of an interaction radius d and increases linearly for smaller
distances:

0 if |Arp,| >d

¢ (lAtun)) = { (d—|Araul)/d  else (3.5

The second factor is a sum of functions A,/, that describe the polar/nematic
alignment-torques present during a collision. They are given by

(n)

Ap(p) = _cp% cos ¢, (3.6a)
(n)

Ap(gp) = — PV~ cos 2¢, (3.6b)

with the amplitudes ¢,,, characterizing the typical angular displacement in a
single collision (see Supplemental Material of Ref. [1]). A variation of ¢/, allows to
independently and continuously vary the preferences for polar or nematic alignment.
As was shown in Ref. [1], the WASP simulation model shows the formation of both
polar and nematic patterns, depending primarily on the relative alignment strength
a=Qn/Pp.

To prevent an unphysical aggregation of filaments—that can be triggered by
the alignment torques when too many filaments overlap at the same location—we
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added a very weak repulsion force F¢, to Eq. (3.1). It is given by

Arpm
rep - Z C (lAran | (3-7)

Tom|

where s =0.1 denotes the small amplitude.
In actomyosin motility assays [1, 15, 16, 19, 20] one observes that the polymer
tails follow the movement of their respective filament heads. In our agent-based

model, we emulate this trailing motion as follows: First, in order to assure tangential

motion, for a given filament n, each joint rj "

(n) , () : ,
in the direction of 5 (u]. aty ), corresponding to the average of the segment’s

orientations adjacent to that joint [see Fig. 3.7]. Second, to also maintain an average
length b of the cylindrical segments between the bonds we assume a linear (Hookian)
restoring force with spring coefficient K;. Taken together, the equation of motion of
a tail joint j is defined as

in its tail (j > 0) is assumed to move

(n) _ (n)_ ORAC)
atr]. = K, (r]. i b) 2( u,, +u ) . (3.8)

We chose K =200 sufficiently large to keep the cylinder length close to its average
value b.

In our simulations we observed that the performance of our algorithm signi-
ficantly depended on the number of times the alignment torques, Eq. (3.6), were
calculated. We, therefore, were searching for an averaging scheme that would
reduce the computation of the alignment torques to at most once per filament per
time step. The main idea put forward in Ref. [1]—and also shown there not to
affect the system’s dynamics—is to implement an averaging scheme as follows: One

replaces the sum in Hén) by an averaged quantity I:I(()n) defined as

A = A,(86Y")1q, | + A, (861") A&, . (3.9)

The first term in Eq. (3.9) (polar interaction) is motivated as follows: Instead of
calculating the polar torques, Eq. (3.6a), for each adjacent polymer m and then
summing over all these polymers with weights given by the repulsive linear potential
C(|Arym|), we determine the quantity

le(m)

ZC(|Arnm|) RS (3.10)

It defines the average in the velocities of all the collision segments j over all filaments
m weighted by the strength of the impact, C (|Ar,,|), of filament n with them. In
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other words, this vector characterizes the weighted (by interaction strength) average
of the velocities of the collision segments. We then use the orientation 6, = arg(qp)

of the average velocity to calculate the average exerted torque, A, (AQI(,H)) using the

average polar impact angle defined as AGén) = 9(()") —0,. Note that the magnitude
of g, measures the average strength of all the polar impacts on filament n. Here

we have additionally introduced a velocity dependence (v™ /v in Eq. (3.10)) to
emulate that polar alignment in the motility assay is mainly caused by friction
between filaments. With this, our agent based model can also be used in cases
where filament velocities are broadly distributed. Since the filament velocity in
the present study is constant and only very weakly influenced by Fep, this velocity
dependence can also be omitted without affecting the results.

The second term in Eq. (3.9) is motivated in a similar fashion as the first one:
Instead of calculating Eq. (3.6b) for each adjacent polymer m, we define a weighted
average direction of the connecting vector Ae,

Arpm
|Atym|

AG, = Zc (|ATm]) (3.11)

weighted, again, by the strength of the respective impact.

The overall magnitude of the repulsive potential to nematic alignment is given
by the absolute value of Ae,,.

Similarly as for the polar case, we used the orientation 8, of the vector A€,
to define an average nematic impact angle as Aé,ﬂ”) = 9(()“) — 0,,, which we used to
compute the average nematic alignment torque in Eq. (3.9). Note that the nematic
term in Eq. (3.9) reads

@™
d

A (0) = cos 20, (3.12a)

since 0, is derived from the normal vectors to the polymer contours (and not the
tangential vectors, as it was done before).

3.4.2 WASP implementation and parameters

Algorithmically, we integrate the dynamics by a straightforward Euler algorithm
with a time step of 2 X 1073, which was implemented in C++ using a heavily
parallelized architecture in OpenMP [184]. Maximal performance of the simulation
was achieved by employing a cell algorithm and Verlet lists [164] that exploit the
fact that filament interactions are short-ranged. This implementation resulted in a
practically linear scaling of simulation times with M (the number of filaments in the
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system). Throughout this work and if not stated otherwise, we fixed some of the
model parameters to values similar to those used in Ref. [1]: filament aspect ratio
L/d =21, discretization N =5, persistence length L, =31.75L, and velocity v=1.
The polar alignment strength was fixed to ¢, =0.036 ~ 2.1° to obtain collision
statistics similar to those observed experimentally [20]. Moreover, we used a system
consisting of 10 filaments and a periodic simulation box of length Lp,x =81.3L.
Simulations were started with random initial conditions, i.e. filaments were placed
at random positions and with random orientations in the simulation box. Time is
measured in units of the correlation time L,/v and length measured in units of
filament length L.

3.4.3 Cluster polar order and other order parameters

As described in the main text, we decomposed the assembly of polymers into clusters
of close-by polymers. To that end, we define the distance between two polymers
(n) _ (m)
—r.
1

n and m as the length of the shortest one of the set of distance vectors r;

between their nodes j and i. We calculated all distances between adjacent polymers,
and assigned polymers to the same cluster if their distance was smaller than the
bond length b.

Next, to properly define the degree of polar order for each of these clusters, we
defined the net polar order of a cluster (of size k) as 7y := px — Ax, where Ay denotes
the expected nonzero polar order of clusters where the orientation of each filament
is chosen at random; the cluster polar order was defined as py := %| Z?:l exp(i0;)|.

The quantity Ay is obtained by calculating the mean polar order Ay = %(l Z?:l e'0i|)
with the filaments’ orientations O; uniformly distributed in the interval [-; 7].
Explicitly writing out the absolute value, Ay reads

s-fReef =M o)) e
j=1

m,n=
By splitting up the double sums and introducing the shorthand notation 8, = O;, — O,
this can be further rewritten as

18 < . 12
Ak:E<(Z“ZZel§m+Z e15m) > (3.14)
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Evaluating the first sum and renaming the indices in the last sum, one obtains

=%<(k+zk: Zk: i +Z Z —5”)1/2> (3.15)

m=1 n=m+1 m=1 n=m+1

With the shorthand notation Z -1 Zn m+1 = 2i(m,n) this can be written as

Ay = %<(k+2(mz’n) CoS 6;)1/2>. (3.16)

Finally, by expanding the square root in powers of cos &}, one finds

<\/_+— Z cos 8y, — k3/2 Z cos® 8"
(m,n)
L1
25/2

Z cos3 5n + O(k_3/2)> ) (3.17)
(m,n)

Since {cos’ 8%) =0 for j odd and (cos? 8" ) = %, this can be further simplified (note
that, for n # u or m # v, terms of the form (3, ;) 2 (m,n) €0s &, cos &;,) can be fac-
torized and thereby give no contribution in Eq. (3.17)). By evaluating the remaining
sum, one obtains

A= — (1 _ Sk 1)) +O(k™/?)

Vi 8k
_ (7.1 5/2
\/E (8 + Sk) + O(k™7%). (3.18)

In the main text, we defined the cluster polar order parameter as an average of
the net order ;. weighted by the respective cluster size k:

=1 Z gr]f)k@ (3.19)
{c}

This has to be distinguished from the alternative definition of a global polar

order parameter
M-

|_\

()
619

j=0

! (3.20)
= .
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Figure 3.8 Global order parameters: Temporal evolution of the global polar order para-
meters Q, and P, and the global nematic order parameters Q,, and V, as indicated in the
graph. Parameters: o = 2.

which is an average over all filament orientations independent of which clusters
they belong to. The temporal evolution of both of these global order parameters,
Qp and P, is shown in Fig. 3.8. Although they are related quantities, there are clear
differences:

(i) In the disordered phase, Q, still displays a nonzero value stemming from
the small average polar order of the clusters present in the system. In contrast, P
is almost zero in the disordered phase as it is averaged over all filaments in the
system, whose orientations cancel out. (ii) In the ordered phase, however, Q, is
smaller than P as single ‘ordered’ clusters are not contained in the sum for Q,;
note that 7 (1) =0. Throughout this work we prefer to use Q,, since it is more
sensitive to polar structures which form in independent parts of a system, but whose
orientations are not yet correlated. For example, two non-overlapping polar clusters
of the same size and order, but opposite orientations, would yield P =0, whereas
their presence would be detected with Q.

Similarly, one can define two distinct types of nematic order parameters, Q, and
N, by simply replacing every angle 6 with 20 in the above definitions; see Fig. 3.8
for an example. However, since in our study we only investigate polar structures
and in this case the nematic order parameter is slaved to the polar order, it is of
little importance for our analysis.

3.4.4 Time scale analysis
3.4.4.1 Measurement of to, t; and T

To obtain the initial time scale t(, the dwell time t4, and growth time T from our
data, we analysed the temporal evolution of the cluster polar order parameter
Q,(t) (Fig. 3.8). To this end, we looked for a fit function f(t) for Q,(t), which
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should capture the main features of its temporal evolution: (i) fast rise towards the
quasi-stationary, disordered regime (within a short time ty), (ii) plateau until t4,
(iii) exponential growth starting at time t4. In our analysis we decided to use the
following piecewise defined function

a (1 - e‘t/to) for t <ty

(3.21)
a (1 - e_td/to) et/T for ¢t > t4.

f() =

Here a is a fit parameter that quantifies the small, yet nonzero value of Q,, during
the quasi-stationary, disordered regime before nucleation. The fit was made up to
the time point at which Q,(t) > 0.5 for the first time, that is before Q,(t) started
to saturate again.

3.4.4.2 System size dependence of tg and T

In the main text, we studied how the characteristic times t; and T depend on the
relative alignment strength o [Fig. 3.2(d)]. Here, we additionally investigate how
these quantities depend on the system size; see Fig. 3.9(a). We find that the expected
dwell time (t;) scales inversely with the area of the system, Lﬁox. This indicates
that—for each given set of parameters—there is a constant probability per unit
of area to nucleate a cluster large enough to trigger the exponential increase of
order in the system. Hence, the formation of critical nuclei occurs independently in
different parts of the system.

We further observe that the growth time t is approximately independent of
system size (T = 4.5), although Ly is increased by more than a factor of 3. This
is probably caused by the fact that on the one hand the mass of ordered clusters
growths (after a critical nucleus has formed) exponentially with time, but that on
the other hand the total filament mass of ordered clusters in an ordered system
(i.e. the mass that has to be incorporated into the ordered clusters during the
growth process) grows only approximately proportionally to the size of the system.
It therefore takes only a very short time for the additional filaments (introduced by
the increase in system size) to be incorporated into the ordered clusters. Hence, in
order to observe a significant change of T, one would have to increase the number of
filaments in the system (and thus Lyox) by far more than a small factor; this however
is beyond the numerically feasible limit.

3.4.4.3 Variance of the nucleation time

We also recorded the statistics of nucleation times p(t4) at one point in parameter
space and for a small value of a (Fig. 3.9(b)). Similar as in classical nucleation
theory [179, 180], it exhibits an exponential distribution of times. This is also
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Figure 3.9 System size dependence and distribution of waiting times. (a) Waiting time
tq and growth time T as a function of the system size Lyox in units of the polymer length L.
Solid lines denote average values (taken over 90 