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Zusammenfassung

Seit seiner Entdeckung im Jahr 2004 ist das zweidimensionale Material Graphen Gegenstand vieler
theoretischer sowie experimenteller Studien, wobei aulergewdhnliche mechanische und
elektrische Eigenschaften entdeckt wurden. Im Vergleich zur Monolage zeichnet sich Bilagen
Graphen durch ahnlich herausragende Qualitdten aus, besitzt dabei aber noch groRere
Vielseitigkeit, beispielsweise durch eine variierbare Bandliicke. Zudem ist Bilagen Graphen, auf
Grund seiner unter gewissen Umstdnden nicht verschwindenden Zustandsdichte bei
Ladungsneutralitdat, besonders anfallig fir korrelierte Zustande. Diese treten durch Elektron-
Elektron Wechselwirkungen auf, wobei bestimmte Symmetrien des Systems gebrochen werden und
sich das Energiespektrum verandert. Theoretische Studien nennen beispielsweise fliinf verwandte
Quanten-Hall-Zustdnde, die durch Brechung der chiralen Symmetrie entstehen kénnen und bei
Ladungsneutralitat miteinander konkurrieren. Obwohl nach und nach einige dieser Zustdande durch
die immer besser werdende Qualitdt der Proben experimentell bestatigt werden konnten, gibt es
diesbezlglich noch viele offene Fragestellungen. Insbesondere konnte einer dieser Quanten-Hall-
Zustiande, die exotische ,ALL“-Phase, welche eine teilweise Polarisierung der zum Transport
beitragenden Ladungstrager in eine der Graphenlagen und ein orbitales magnetischen Moment
aufweist, bisher noch nicht eindeutig beobachtet werden. Des Weiteren ist bisher noch
weitestgehend unklar, welche der fiinf Quanten-Hall-Phasen der eigentliche Grundzustand von
Bilagen Graphen ist, da die bis zum jetzigen Zeitpunkt veréffentlichten Studien keine eindeutigen
experimentellen Beobachtungen liefern. Neben dem Auftreten von konkurrierenden Quanten-Hall-
Zustdanden konnte die Existenz von Fehlern in der Stapelfolge der zwei Graphenlagen eine mogliche
Erklarung fur die unterschiedlichen Signaturen in Quantentransportmessungen sein. Die Detektion
dieser Kristallfehler wurde erst vor Kurzem durch prazise Techniken, wie beispielsweise optische
Rasternahfeldmikroskopie, ermoglicht. Obwohl schon eindrucksvoll quantisierter Ladungstransport
entlang solcher Kristallfehler im Experiment gezeigt wurde, bleibt ihr Einfluss auf die bei
Ladungsneutralitdt auftretenden Quanten-Hall-Zustdande weitestgehend unerforscht.

Um die aufgefiihrten Fragestellungen genauer zu untersuchen, werden in dieser Arbeit
Quantentransportmessungen in Bilagen Graphen bei niedrigen Temperaturen prasentiert. Diese
wurden an Feldeffekttransistoren, bestehend aus ultrareinem, freischwebenden Bilagen Graphen,
dessen elektrische Eigenschaften durch zwei Gate-Elektroden manipulierbar sind, durchgefiihrt.
Besonderes Augenmerk wurde dabei auf die Existenz von Fehlern in der Stapelfolge innerhalb der

untersuchten Graphen Flocken gelegt. Sind diese nicht vorhanden, konnte die exotische , ALL“-



Phase bei niedrigen Magnetfeldern beobachtet werden, wobei der Zustand in achtfacher
Ausfiihrung in Form eines anomalen Quanten-Hall-Effekts mit einer Leitfahigkeit von +2 e2 h™!
(e ist dabei die Elementarladung und h das Plancksche Wirkungsquantum) auftritt. Die Entdeckung
stellt einen lberzeugenden Nachweis flrr orbitalen Magnetismus in Bilagen Graphen dar und
verdeutlicht, dass das vermeintlich triviale System einen anomalen Quanten-Hall-Effekt aufweist,
ohne dass die Realisierung eines fragilen Moiré-Gitters notwendig ist. Auerdem wurde der
Quantentransport entlang Fehlern in der Stapelfolge von Bilagen Graphen untersucht. Dabei wurde
ein komplexes Zusammenspiel zwischen topologisch geschiitztem Quantentransport entlang eines
Kristallfehlers und Quantentransport in Randkandlen, induziert durch den Quanten-Hall-Effekt,
entdeckt. Die Messungen zeigen den maligeblichen Einfluss der haufig vorkommenden Kristallfehler
und verdeutlichen, wie wichtig es ist, diesen in zukiinftigen Studien zu beachten. Zuletzt wurden die
Auswirkungen von Unordnung sowie Fehlern in der Stapelfolge auf den Grundzustand und auf
verschiedene Phaseniibergdnge zwischen Zustdnden mit gebrochener Symmetrie in Bilagen
Graphen untersucht. Die Ergebnisse helfen schwer erklarbare Signaturen in Quantentransport-
messungen aus der Literatur zu verstehen und tragen somit zur eindeutigen ldentifikation des
Grundzustands von Bilagen Graphen bei. Durch die hier prasentierten Ergebnisse wurden
bedeutende Fortschritte im Verstandnis komplexer physikalischer Phdnomene in Bilagen Graphen

erzielt, was zudem die Wichtigkeit weiterer experimenteller Studien an dem Material verdeutlicht.



Abstract

Since the discovery of graphene in 2004, the two-dimensional material has been subject of extensive
theoretical and experimental research revealing exceptional electronic and mechanical properties.
Bilayer graphene, while inheriting most advantages of its monolayer counterpart, provides even
more tunability, e.g. due to its tunable band gap. Moreover, as consequence of the non-vanishing
density of states near charge neutrality under certain circumstances, bilayer graphene is susceptible
to exotic interaction-driven broken-symmetry states that modify the energetic spectrum. For
example, theoretical studies propose the emergence of a family of five competing quantum Hall
states at charge neutrality owing to chiral symmetry breaking. Although some of the phases have
already been observed experimentally with an increasing level of device quality, bilayer graphene
retains many related unanswered questions. For instance, the exotic ALL phase, a quantum
anomalous Hall phase with partial layer polarization and substantial orbital moment, has not been
pinpointed clearly. Moreover, it is still under debate which of the five broken-symmetry phases is
the true ground state, as ambiguous experimental results have been reported from literature.
Besides the emergence of competing phases, a possible cause for distinct signatures in quantum
transport measurements could be the influence of stacking domain walls in bilayer graphene. Their
detection has only become possible recently using precise scanning techniques such as scattering-
type scanning near-field optical microscopy. Although quantum transport along such dislocations
has been shown, their impact on broken-symmetry states emerging within the zero energy Landau
level remains unclear.

To shed light on these unexplored aspects, low-temperature transport measurements on high-
quality dually gated freestanding bilayer graphene are presented in this thesis, with special attention
given to any stacking domain walls present within the bilayer graphene flakes. In their absence, the
exotic ALL phase, appearing as an octet of quantum anomalous Hall phases with a conductance of
+2 e2 h™1 (where e is the electronic charge and h is Planck’s constant), was tracked to low magnetic
fields, providing compelling evidence for orbital magnetism in bilayer graphene. The findings
demonstrate that the seemingly simple Bernal-stacked bilayer graphene exhibits the quantum
anomalous Hall effect without the need of fabricating delicate moiré heterostructures. In addition,
the quantum transport along stacking domain walls was investigated revealing an intriguing
interplay between topological valley and quantum Hall edge transport. The measurements highlight
the influence of the commonly occurring stacking domain walls and demonstrate that their impact
inevitably needs to be regarded in future experiments. Lastly, the role of disorder and stacking
domain walls on the emergence of the spontaneously gapped ground state and various phase



transitions between broken-symmetry states was examined. The results contribute to solving the
debate about the ground state of bilayer graphene and help to explain related ambiguous
observations in literature. All in all, the presented measurements provide major advances in
understanding the complex physical phenomena in the seemingly trivial Bernal-stacked bilayer

graphene and highlight the importance of continuous experimental effort.
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1 Introduction

Although subject of theoretical calculations already in 1947, two-dimensional (2D) materials were
long presumed to not exist freely in nature®. Hence, the first isolation and examination of graphene,
a single two-dimensional layer of carbon atoms arranged in a hexagonal lattice, by K.S. Novoselov
and A.K. Geim in 2004 was even more a surprise>. Rapidly, graphene gained more and more interest
owing to its exceptional electronic* and mechanical properties®. This development was further
fostered by its accessibility for experimental physics owing to the simple fabrication procedure using
mechanical exfoliation® as well as uncomplicated identification with conventional optical
microscopy®. Its discovery not only demonstrated that 2D crystals can naturally occur but in fact
initiated the exploration of a whole family of 2D materials’2. In less than two decades, a growing
diversity of materials and their respective characteristics have been revealed, ranging from

910 to molybdenum disulfide, a

exceptional insulators such as hexagonal boron nitride
semiconductors with a sizeable band gap! as well as extraordinary electrical properties?, and
tungsten ditelluride, a material with superconducting®® and topological insulating behavior!*. The
key for their in-plane stability are strong covalent bonds, however, weak van der Waals forces play
a crucial role in holding several layers vertically together’. It took not long to discover a technique

15-18 analogous to Lego blocks’. This recently developed method

of reliably stacking 2D materials
represents a further step towards creating devices with atomic precision. Especially for electronic
and optoelectronic applications, the possibility of combining the properties of individually stacked
2D materials into heterostructures provides a new level of freedom to material engineering and
device design®.

Despite these major advances and the almost unlimited possibilities arising from the diversity of 2D
materials, graphene-based systems have always been in the forefront in fundamental research
because of their exceptional physical properties. For instance, a monolayer of graphene provides
unexcelled electrical®®® as well as thermal conductivity?!, shows extraordinary mechanical
robustness® and has the ability to sustain extremely high current densities??. Adding an additional
layer yields the simplest van der Waals structure, bilayer graphene, which inherits most of these
advantages? but provides even more tunability>?*%, In contrast to the monolayer with its linear
dispersion at low energies*, bilayer graphene exhibits non-linear touching bands with massive chiral
quasiparticles?® and the possibility of opening a tunable band gap via gating?>?®. Moreover, the

stacking order of the two graphene layers provides yet another parameter to manipulate the



Chapter 1: Introduction

electronic properties. Recent advances?”?® demonstrated this by assembling two graphene sheets,
twisted by an angle of about 1.1 degree. As a result, flat bands arise in these delicate structures,
which foster the emergence of exotic correlated states including superconductivity?® and orbital
ferromagnetism?>3°, However, even the naturally occurring Bernal-stacked bilayer graphene can be
a playground for correlated physics. In fact, bilayer graphene has been predicted to be susceptible
to a wide range of correlated states that spontaneously break one or more symmetries of the

31-34

system* %, Indeed, by increasing the level of cleanliness and quality of bilayer graphene

flakes'®?235 humerous studies have revealed broken-symmetry states36*!

arising from many-body
interactions. Although bilayer graphene has been subject of extensive research for more than a
decade, it has retained many unanswered questions. For instance, at charge neutrality, where
electron-electron interactions are especially strong*?, a family of five competing quantum Hall states
caused by chiral symmetry breaking has been predicted®?33, Despite the fact that each of the states
possesses unique properties®, their identification by examining the resulting signatures in quantum
transport remains challenging. So far, evidence of some of the phases has been observed
experimentally, including the quantum valley Hall*®*%!, the layer antiferromagnetic®®* as well as the
quantum anomalous Hall phase3>#4, Yet, the most exotic out of the five states, the so-called ALL
phase, exhibiting substantial charge, spin and valley Hall conductivities of 2 e? h™ as well as a net
layer polarization and orbital moment33, has not been pinpointed clearly. So far, it is unclear if it
truly survives to zero magnetic field, which is especially interesting for a state exhibiting a quantum
anomalous Hall effect, as its persistence would provide quantized resistance in the absence of any
external magnetic field*. Moreover, it is still under debate which of the five broken-symmetry
phases is the true ground state since ambiguous experimental results are reported in literature.
Observations range from a vanishing*®™*! to a finite conductance®® at charge neutrality and zero
external electric as well as magnetic fields. In addition, it is unclear, if intrinsic effects such as
disorder can mask the ground state or, alternatively, drive the system into another phase®. In this
matter, a rather unexplored aspect is the influence of stacking domain walls, which are one-
dimensional lattice dislocations separating regions of AB and BA stacking in bilayer graphene*®*,
They alter the quantum transport drastically, as topological valley transport can occur along such

dislocations®®>3

, even though the bulk of the bilayer is gapped. Easily, they could be one of the major
causes® for discrepancies in experimental reports about quantum transport in bilayer graphene.
Moreover, their impact on the behavior of broken-symmetry quantum Hall states emerging within
the zero energy Landau levels is unknown. The main reason for their disregard is their challenging
detection, which has only recently been possible with the help of precise scanning techniques*®°,
For instance, scattering-type scanning near-field optical microscopy® offers a versatile and non-
destructive way of detecting and locating these stacking domain walls®>>%%7. Combining this
additional pre-characterization technique with devices of extraordinary quality allows for the
observation of correlated physics and the role of stacking domain walls in bilayer graphene.
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To pursue these open questions, low-temperature transport measurements on high-quality dually
gated freestanding bilayer graphene are presented within this thesis. Freestanding devices were
chosen since they excel in offering excellent quality and provide a low dielectric environment for
unimpeded electron-electron interactions. Moreover, special attention was given to any stacking
domain walls present within the bilayer graphene flakes. To this end, scattering-type scanning near-
field optical microscopy was used as additional characterization technique. Three different topics
were investigated: First, in the absence of any stacking domain walls, the ALL phase, one of the five
competing quantum Hall states, has been tracked for the first time to vanishing magnetic field.
Appearing as an octet of quantum anomalous Hall phases, it provides compelling evidence of orbital
magnetism in bilayer graphene. Second, quantum transport along stacking domain walls was
examined in the presence of broken-symmetry states within the zero energy Landau level. An
intriguing interplay between topological valley and quantum Hall edge transport was observed.
Lastly, the role of disorder and stacking domain walls on broken-symmetry states in bilayer
graphene was studied and compared in several devices. The suppression of the insulating layer
antiferromagnetic ground state could be correlated to broad phase transitions between different
broken-symmetry states. Hereby, electric field disorder inducing the spontaneous formation of
domains within the device were determined as common cause.

All in all, the presented investigations led to the experimental revelation of the most exotic of the
five predicted competing quantum Hall phases at charge neutrality and to major advances in
understanding the role of stacking domain walls and disorder in the presence of broken-symmetry
states. Although in recent years, the attention has moved towards twisted bilayer graphene?”%, the
observations unambiguously proof that the naturally occurring Bernal-stacked bilayer retains many
unexplored and intriguing physical phenomena. Very recent studies even revealed

superconductivity®® and new strongly correlated phases®®°

in Bernal-stacked bilayer graphene at
high electric fields, further highlighting that the material is worth to be subject of continuous

experimental effort.

The outline of the cumulative thesis is as follows: In Chapter 2, the theoretical background is
presented. After outlining the basic electronic properties of both mono- and bilayer graphene, the
guantum Hall effect in general and its characteristics in bilayer graphene are explained. Special
attention is laid on the competing ground phases and the role of electron-electron interactions in
the quantum Hall regime. Moreover, stacking domain walls and their impact on the electronic band
structure of bilayer graphene are explained. In the last two sections, the general concepts of near-
field optical microscopy and dually gated field effect transistors are given. In Chapter 3, the
experimental methods to fabricate and characterize dually gated freestanding bilayer graphene
devices are illustrated in sequential order. This includes the description of exfoliating and

preselecting suitable flakes as well as the investigation with near-field optical microscopy.
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Furthermore, the actual fabrication techniques and the electrical measurement setup as well as the
routine of device calibration are illustrated. Then, Chapter 4 summarizes the experimental findings
about the quantum anomalous Hall effect in bilayer graphene. In Appendix A.1 the corresponding
publications is attached in full. Chapter 5 is dedicated to the investigations on domain walls in bilayer
graphene and their impact on the quantum transport. Appendix A.2 and B.1 show the related
publication and supplementary information, respectively. Chapter 6 discusses the observations
made about the role of electric field disorder on the ground state and on phase transitions between
different broken-symmetry states in bilayer graphene. Here, the corresponding publication and
supplementary information are given in Appendix A.3 and B.2, respectively. Lastly, Chapter 7

concludes the thesis with a summary as well as a short outlook.



2 Theoretical Fundamentals

In this chapter, the theoretical fundamentals of this thesis are discussed. First, an introduction to 2D
materials and in particular to mono- and bilayer graphene is given. In the second part, the Hall effect
as well as its appearance in bilayer graphene is explained. Thirdly, the influence of electron-electron
interactions on quantum transport and the resulting emergence of broken-symmetry states in bilayer
graphene is described. In the fourth section, domain walls and their impact on the electronic
structure are discussed. Then, the principles of near-field microscopy and the underlying physical
mechanisms are briefly explained. The last section gives a short overview of the basic functionality
of a dually gated graphene field-effect transistor.

2.1 Two-Dimensional Materials

In the last decades, the family of 2D materials has both grown in variety and versatility, since more
and more two-dimensional systems’ as well as new astonishing properties”'#142661 haye been
revealed. Although the research field has extended far beyond simple carbon-based materials’,
graphene, since its first isolation and identification in 20043, has always been on the front line owing
to its exceptionally good mechanical® and electronic’®? characteristics. Stacking multiple layers of
graphene adds even more complexity, e.g. due to a tunable band structure?® and the emergence of
strongly  correlated states caused by an enhancement of electron-electron

27,28,32,36,38,

interactions 3962 1n the following, the crystal structure as well as the electronic structure

of mono- and bilayer graphene are discussed.

2.1.1 Monolayer Graphene

Graphene consists of carbon atoms arranged in a hexagonal crystal lattice, which form a two-
dimensional layer®® (see Figure 2.1a). The structure is a result from the sp? — hybridization of one
s and two p orbitals forming strong covalent ¢ — bonds between neighboring carbon atoms*®,
These in-plane bonds are responsible for the exceptional mechanical robustness of the crystalline
structure®. The remaining p, orbital, which is perpendicular to the graphene plane, forms  — bonds
with neighboring atoms*. These bonds give rise to a delocalized  — electronic system, which dictates
the electronic properties of graphene.

The hexagonal structure of graphene can be treated as a triangular lattice with a basis of two atoms

5
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a) b)

LY

E(k) ©

Figure 2.1 Crystal and band structure of monolayer graphene. a) The hexagonal lattice of
graphene with two atoms per unit cell. Atoms corresponding to sublattice A (B) are shown in
red (blue). The unit cell vectors a; and a, are illustrated by arrows. [Figure adapted from
Ref.?]. b) First Brillouin zone of graphene with high-symmetry points K and K' as well as other
important points I' and M highlighted. [Figure adapted from Ref.]. ¢) Band structure of
graphene calculated using a tight-binding approach. The energy is shown in units of the
nearest neighbor hopping energy t, and the momentum vectors k, and k,, in units of the
inverse lattice constant a. At the K and K' points, the conduction (blue) and valence band
(orange) touch and the dispersion is linear.

per unit cell®, resulting in two distinct sublattices A and B. The corresponding lattice vectors are
given by

a a
a;=5(33),  a=5(3-V3) (2.1)
with a ~ 1.42 A being the carbon-carbon distance®. The related reciprocal lattice is also
triangular®. The first Brillouin zone is illustrated in Figure 2.1b. Of peculiar relevance for low-energy

physics in graphene are the two inequivalent high-symmetry points K and K' at the positions

K_(Zn 2T ) K,_(Zn 21 ) (2.2)
"~ \3a’3v3d/’ ~\3a’ 3y3a .

in momentum space®®,

Using a tight-binding approach and considering only nearest- and next-nearest-neighbor hopping,

6



2.1 Two-Dimensional Materials

the Hamiltonian takes the following form*
— t T T
H=-t Z (aa,ibmj + H.c.) -t Z (ad'iaaj + ba'iba,j + H. c.), (2.3)
(iJj)'a- (iJj)’o-
where a,; (b, ;) annihilates and a;i (b;_i) creates an electron with spin ¢ =T,1 on site R; on

sublattice A (B). Moreover, t and t’ represent the nearest and next-nearest neighbor hopping

energies, respectively. The energy bands derived from the Hamiltonian are given by*

Eo(k) = 63+ FO) — t'f(K), (2.4)
with
f (k) = 2 cos(V3kya) + 4cos (? kya> cos (g kxa) , (2.5)

where + denotes the conduction and valence band, respectively. The full band structure is shown
in Figure 2.1c. Overall, it consists of two cosine-like energy bands, each can be attributed to one of
the sublattices®%4. The two energy bands intersect at the high-symmetry points K and K’, resulting
in a gapless dispersion. At the touching point of the conduction and valence band, electronic states
are a superposition of states of the two different sublattices?. The sublattice can be viewed as an
additional degree of freedom, called pseudospin®%, analogous to spin but with up/down referring
to sublattice A/B. By expanding the Hamiltonian Eq. (2.3) close to the high-symmetry position K, i.e.
k = K + q with |q| < |K]|, it takes the form*®3

(2.6)

Hy = th( (qx — iCIy)> ’

(ax + iqy) 0
with ¢ = (qy, qy) being the momentum relatively to the K point and vy = 3ta/2 the Fermivelocity.

Then, the energy eigenvalues result in a conical band structure #6365

Ei(q) =~ thvplq]. (2.7)

Rewriting the Hamiltonian near the K point using the Pauli vector o = (gy,0,) with the Pauli

matrices o, = (2 é) and o), = ((l) _Ol) as well as the replacements g, — —i:—x and g, — —i%

gives*®3

Hg = —ihvpo - V. (2.8)
Correspondingly, the result yields the transposed Hamiltonian Hgr = HKT for quasiparticles near
the K' point®3. Most strikingly, the Hamiltonian is analogous for massless Dirac fermions in two

dimensions, with the speed of light replaced by v;*¢3. Therefore, K and K’ are called Dirac points

or valleys. Lastly, the eigenfunctions of Eq. (2.8) can be derived:
0

_ibk 0
1 e 2 1 e 2
Y1 x(k) = NG +ei97k Wy (k) = NG +e_i67k , (2.9)
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Fex

with the polar angle in momentum space 6, = arctan (k ), and + denoting the conduction and
y

valence band, respectively.

The quasiparticles in graphene have several interesting characteristics worth noting. Quasiparticles
in the inequivalent K and K' valleys are described by distinct Hamiltonians and wavefunctions.
However, they are closely related by time-reversal symmetry®. In pristine graphene the two valleys
are decoupled®?, i.e. scattering between them is weak. This can be accounted for by adding a valley
degeneracy of two®. However, introducing valley scattering can lift this degeneracy.

Another interesting property of graphene results from the unique band structure and the
interconnection between electron and holes: For every electron state with energy +E and
momentum q there exists a hole state with energy —E and momentum —q within the same energy
branch (i.e. sublattice)>®*. In other words, the two quasiparticles share the same pseudospin but
move in opposite direction, i.e. the projection of the pseudospin on the direction of movement is
always positive for electrons and negative for holes®. This characteristic is called chiral, and the
symmetry between electron and holes is called chiral symmetry. Mathematically, chiral symmetry

can be described as follows®®: When (k) is an eigenstate of the Hamiltonian Hg with eigenenergy

E and Hg commutes with the Pauli matrix o, = (é _01

HKUzlp(k) = _O-ZHKll)(k) = _O-ZElp(k) = —EO'le)(k) , (2.10)

that means there exists an eigenstate g,y (k) of Hg with eigenenergy —E.

), i.e. [Hg,0,] = 0, then

Moreover, the nature of the band structure of graphene causes the following: In case a quasiparticle
moves along a closed orbit around K, which corresponds to a rotation of 8, by 2m, the wave function
changes sign, see Eq. (2.9). In other words, the quasiparticles acquire a phase of 74243, called Berry’s
phase. It is opposite for electron and holes as well as for the K and K’ valley*. Often Berry’s phase
is referred to the integral over the Berry curvature®’. Put simply, the Berry curvature can be seen as
in-built magnetic field, and Berry’s phase as the phase a charge particles acquires when encircling a
magnetic flux with a closed loop in this field®’. Overall, when considering the sum of the Berry
curvature over all bands, it is zero. The quantity becomes relevant for example in case an external
magnetic field is applied and the charge carriers move in cyclotron orbits, altering the appearance
of the quantum Hall effect in graphene compared to conventional two-dimensional systems without

Berry’s phase?.

2.1.2 Bilayer Graphene

Bilayer graphene consists of two monolayers on top of each other coupled by weak van der Waals

forces®. The energetically most stable configuration of the two layers is AB — or Bernal stacking

4,63

order*®?, where the top layer is shifted by the carbon-carbon distance a in a way that one of its

atoms sits directly in the middle of the honeycomb of the underlying layer (see Figure 2.2a).
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Figure 2.2 Crystal and band structure of bilayer graphene. a) Top view of the crystal structure
of Bernal-stacked bilayer graphene. The upper layer (black) is shifted relatively to the lower
layer (grey). [Figure adapted from Ref.?]. b) Side view of Bernal-stacked bilayer graphene with
the most important hopping parameters indicated in green. The sublattices A; (A;) and B; (B3)
correspond to the bottom (top) layer. [Figure adapted from Ref.?3]. ¢) Schematic band

structure of bilayer graphene without (left) and with a gate voltage applied (right). Er and A
label the Fermi energy and the non-zero band gap, respectively. [Figure taken from Ref.?].

In order to derive the band structure of bilayer graphene using a tight-binding approach hopping
between the two layers needs to be considered®. In Figure 2.2b, the most important hopping
parameters are schematically shown. Here, t is the intralayer hopping energy, t; describes interlayer
hopping between atoms sitting directly on top of each other, whereas t; and t, connect the same
(e.g. A1 to A;) or distinct (e.g. A1 to By) sublattices in different layers®. The Hamiltonian can be written

as’

H=—t Z (a6, obmjo + H.c.)—t; Z(aimazﬂr +H.c.)

(i.j)ma J.o (2.11)
T T T
—t4 Z(al,J,C"bZJ'U + aZ,j,O'bl.j,U + H.C.) - t3 Z(bl,j,abzljld + H.C. ),
j.o j.o

where a,, ; 5 (b, ; ) annihilates and ajn,i,a (brtl,i,a) creates an electron with spin o =T, ! on site R;,
in layer m = 1,2 and sublattice A (B). Notably, the interlayer hopping terms t; and t, are only

relevant under certain circumstances (e.g. when interaction effects are weak). In this special case,
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t; can for example lead to a more complex band structure*®®. The effect is called trigonal warping
and was experimentally observed in recent studies®® . However, when interaction effects are
dominant®, the approximation of considering only t and t; leads already to qualitatively good
results®®. The observations made in the course of this thesis are in particular well explained by this
assumption and therefore it is used in the following.

The wave function describing bilayer graphene is a four-component spinor?, accounting for the
inequivalent sublattices A and B in layer m = 1, 2. Calculating the eigenvalue yields four energy
bands?, however, two bands are gapped by 2|t;| (with t; = 0.4 eV®) and are consequently
irrelevant for low-energy physics®. Focusing only on the low-energy bands, an effective Hamiltonian
for bilayer graphene can be derived near the K point®, analogously to Eq. (2.6) for monolayer

graphene:

(2.12)

HK:

h? < V/2 (x — iqy)z)
2m*\(qy +iqy)*>  =V/2 )
with the effective mass m* = t;/(2vg?). Here, an interlayer bias V causing a shift in the
electrochemical potential between the two layers has been accounted for by addingatermV /2 o,
to the Hamiltonian*®, In case of VV = 0, the dispersion relation near the K and K' points® is given
by:

(2.13)

Notably, when ignoring the interlayer hopping terms t; and t,, Bernal-stacked bilayer graphene
exhibits parabolic bands touching at the Dirac points (see Figure 2.2c¢) with massive charge carriers.

Using the Pauli matrices and the same transformations as for monolayer graphene, the Hamiltonian

can be rewritten as?2%3
2 2
Hg = — ;:n* [0y - cos(20) + gy, * cos(20)] = — 21;1* o-n(d), (2.14)
with p = hiq and n(8) = (cos (20), sin (260)). The eigenstates are given by®
1 e—i9k 1 eiek
wi,K(k) = ﬁ(iei9k> :l/)i,K’(k) = ﬁ(ie_i9k> ’ (215)

describing also chiral quasiparticles but with a Berry’s phase of +27 instead of +m2%,

The shape of the band structure of bilayer can, however, be altered by breaking the equivalence of
the two layers, i.e. the inversion symmetry*. For example, by applying an electric field perpendicular
to the graphene plane®, i.e. V # 0, a gap opens in the energy spectrum®, since the dispersion of

the low-energy bands in the vicinity of the K and K’ points changes to*%3

V  Vh%vg? hvpt
Ei(q) ~ ir(—— g%+ — q“),
t,2V

2.16
2 t? (2.16)

assuming Avpq < V <« |t;|. The resulting dispersion has a minimum atq = V/(v/2hvg) with a band

10
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gap tunable by the interlayer bias*%3. Experimentally, an electric field can be implemented by
applying a gate voltage, however, this causes not only the opening of a band gap but also shifts the
Fermi level®® (see Figure 2.2c). To disentangle both mechanisms, a dually gated device is needed

(see Section 2.7).

2.2 Quantum Hall Effect

In 1980, Klaus v. Klitzing discovered that the Hall effect shows precisely quantized Hall resistance in
case the electrons are confined in a two-dimensional system and strong magnetic fields are applied
perpendicular to it at low temperatures®. Surprisingly, the so-called quantum Hall effect is solely
dependent on fundamental physical constants and independent of irregularities within the material.
Besides its emergence in two-dimensional electron gases in conventional semiconductors, the
discovery of two-dimensional materials revealed a new versatile platform to study quantum Hall
physics’. In the following, the classical Hall effect is briefly outlined. Then the quantum Hall effect
in general and its occurrence in bilayer graphene are discussed to lay a basis for the observations

made in the magnetotransport measurements.

2.2.1 Classical and Quantum Hall Effect

In case an electron current I, flows through a conductor with a magnetic field B perpendicular to it
(see Figure 2.3a), the charge carriers are deflected by the Lorentz force’. A voltage across the
conductor builds up until an equilibrium is reached, i.e. when the Lorentz force is exactly
compensated’?.

Assuming a constant drift velocity of the electrons along the x —and no current flow in z —direction,

the longitudinal oy, and transversal conductivity oy, are given by’

— nape teB/m* (2.17)
> B 1+ 12(eB/m*)? '
and
__ngpe 2(eB/m*)? (2.18)

Txy = B, 1+ 1%(eB/m*)?’

where nsp, is the number of charge carriers per volume, m* the effective mass and 7 the relaxation
time, i.e. the mean free time between two scattering events of the charge carrier’. Using the

relation between conductivity and resistivity tensors oy, = Pxx/(Pxe"'nyz) and oy, =

pxy/(pxxz + nyz) results in”?

(2.19)

and

11
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B
= ) (2.20)
Nn3zpeé

Pxy

for the longitudinal py, and transversal resistivity py,,. Most importantly, the former depends only
on intrinsic properties of the material, whereas the latter is linearly dependent on the magnetic
field.

The charge transport signatures change drastically in case the charge carriers are localized into a 2D
system at low temperatures and high magnetic fields’. When they can freely travel in for example
the xy — plane but are confined in z — direction in a thin sheet of thickness d, a quasi-two-
dimensional electron gas forms. Applying a magnetic field perpendicular to it, forces the electrons
to move in discrete cyclotron orbits’t. Consequently, the energy eigenstates Ey of the system are

quantized into the so-called Landau levels’*72;

1
Ey = Ey+ (N + E) hwe, N=0,1,2,.., (2.21)

where w; = eB/m” is the cyclotron frequency and E, accounts for the confinement in z —direction.
Since the density of states has to be conserved during the process, each Landau level possesses a
degeneracy of g = eB/h, i.e. for low temperatures each Landau level below the Fermi energy is
occupied by g electrons’*’2, Tuning B not only changes the energetic separation between two
neighboring Landau levels but also varies their degree of degeneracy’?. The transversal resistance
of the Nth — Landau level can then be calculated using the degeneracy and the classical formula of
Eqg. (2.20)"%7%

Py B B _h R
v

Rey == =—=—, v=012.., (2.22)

ne vge ve?
when the present charge carriers fill exactly v Landau levels, with v is called the filling factor. Here,
n denotes the charge carrier density in the quasi 2D electron gas and Ry the von Klitzing constant.
Most importantly, the resistance is quantized to a fraction of Rk in case a Landau level is completely
filled. Hence, the phenomenon is called quantum Hall effect.

Nonetheless, to fully understand the behavior of longitudinal R, and transversal resistance Ry,, the
impact of impurities on the Landau levels needs to be considered. The density of states
corresponding to the Landau levels does not exhibit discrete § — functions but broadened
distributions owing to localized states induced by residual disorder”® (Figure 2.3b). Only states in the
center of the Landau level are delocalized’, as indicated in Figure 2.3b. Moreover, closed cyclotron
orbits corresponding to the Landau levels are only possible in the bulk of the channel. At the edge
of the material, the additional spatial confinement leads to a drastic increase of the energy of the
Landau levels (see Figure 2.3c) as the charge carriers are elastically reflected. This gives rise to a net
charge transport along edge channels’72 (see Figure 2.3d). Even in case a charge carrier is scattered

from a defect, the Lorentz force redirects it in the forward direction’?. Furthermore, since edge

12
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Figure 2.3 Classical and quantum Hall effect. a) Conductor with an electron current I, flowing
in x — direction and a magnetic field B, applied in z — direction. The charge carriers are
deflected in y — direction due to the Lorentz force, building up a voltage across the voltage.
[Figure adapted from Ref.”}]. b) Density of states as a function of energy for a 2D electron gas
with some disorder present in a perpendicular magnetic field. The (de-) localized states for
each Landau level N are shown in solid (hatched) color. The green/blue lines indicate the Fermi
level with (un-) occupied states shown in black (grey). From the left to right panel, the
magnetic field is increased. [Figure adapted from Ref.”]. ¢) Energetic landscape of the Landau
levels shown over the spatial extend of the 2D electron gas in y — direction. At the border, the
energy of the Landau level is drastically increased due to the confinement. Residual disorder
in the device causes fluctuations in the energetic landscape. The green/blue lines indicate the
Fermi level, with (un-) occupied states shown in black (grey). The magnetic field is increased
from the left to right panel. The red dots indicate ballistic edge channels. [Figure adapted from
Ref.”!]. d) Schematic representation of electron trajectories in the quantum Hall effect. In the
bulk, the electrons move in closed cyclotron orbits, whereas at the edge skipping orbits lead
to edge channels, which are illustrated in red. [Figure adapted from Ref.”!]. e) Longitudinal
Ry (black) and transversal Ry, resistance (red) as a function of magnetic field measured in a
2D electron gas at low temperatures. The blue and green lines correspond to the position of
the Fermi level shown in (b) and (c). The top axis illustrates the filling factor. [Figure taken
from Ref.”?].

channels forming at either side of the channel are antiparallel, the forward and backward transport

is spatially separated’™’®. Hence, backscattering is highly suppressed resulting in a quasi-ballistic

13
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transport within the directional edge channels"2,

Finally, the behavior of Ry, and Ry, measured for a 2D electron gas at low temperatures (Figure
2.3e) can be explained. For low magnetic fields, the resistances behave as described in the classical
Hall effect. However, with increasing magnetic fields a step-like behavior of the R, appears,
whereas Ry, features oscillations. At certain magnetic fields, Ry, shows a plateau and R, vanishes
(blue line in Figure 2.3e). In this case, the Fermi energy lies within the localized states between two
Landau levels (blue line in Figure 2.3b). The localized states give rise to closed cyclotron orbits within
the bulk and consequently no conduction between the two edges of the sample is possible’.
However, owing to the additional spatial confinement at the edge of the material, a specific number
of ballistic edge channels emerge. Consequently, Ry, vanishes, whereas R, is quantized. Increasing
the magnetic field broadens the density of states of each Landau level and moves them towards
higher energies. When a Landau level reaches the Fermi energy (green line in Figure 2.3b),
delocalized states become available enabling transport between the two edges of the sample’?
Backscattering is possible, and consequently R, is finite but Ry, increases, since one Landau level
is depleted of charge carriers (green line in Figure 2.3e). Raising the magnetic field further repeats
the process, depleting the Landau levels one by one. Similar observations can be made when the
Fermi level instead of the magnetic field is tuned.

Whereas the section above discusses four-terminal measurements, in the course of this thesis
mostly two-terminal devices were examined. For a two-terminal configuration, the conductance of

a square-shaped device comparable to the ones used in this thesis (see Section 3.3.2) is given by’

— 2 2
Otwo—terminal = /Gxx +ny , (2.23)

or, with the relation between resistivity and conductance, by

1
Otwo—terminal — .
2 4 5 (2.24)
Pxx Pxy

Consequently, a two-terminal measurement exhibits, although only resolving a combination of

longitudinal and transverse conductance, the same plateaus as Ry.

2.2.2 Quantum Hall Effect in Bilayer Graphene

With a nearly parabolic energy dispersion at low energies in case trigonal warping is ignored (see
Section 2.1.2), the charge carriers in bilayer graphene resemble a regular 2D electron gas®.
However, its charge carriers are chiral with a Berry’s phase of 27. Although not distinguishable from
zero, the Berry’s phase causes an anomalous sequence of Landau levels to appear?*®>. A magnetic
field perpendicular to the graphene plane B = (0,0,—B) can be accounted for by the
transformation hq — —ihV + eA, with the vector potential A = V X B, in the effective Hamiltonian

of bilayer graphene, see Eq. (2.12)*%8, Then, the energy of the Landau levels is given by?32468

14
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Figure 2.4 Unconventional quantum Hall effect in bilayer graphene. o, (left) and py. (right)
as a function of charge carrier density measured at fixed B and T = 4 K. The quantum Hall
plateaus appear for oy, at integer values of 4 e* h™", but with a step of 8 e*> h™" across zero
density due to the degeneracy of the zero energy Landau levels. [Figure taken from Ref.?*].

EBL6 = +hw/N(N—1), N=0,1,2, ..., (2.25)

N is called orbital index and + refers to electron and holes states, respectively. The energy states
have a distinct behavior compared to monolayer graphene or conventional two-dimensional
electron systems?*%5, Most prominently, the ground state (N = 0) as well as the first excited state
(N = 1) are fixed at zero energy?*%>®® |eading to an unconventional quantum Hall effect in bilayer
graphene. The N = 0,1 Landau levels, lying at the border of electron and hole gases, provide an
eightfold degeneracy, when taking spin (T,1), valley (K, K') and the additional orbital degeneracy
(N = 0,1) into account. Contrarily, higher Landau levels with N = 2 move in energy for varying
magnetic field and have each a fourfold degeneracy, due to the spin and valley index*%, Notably,
electron and hole states behave symmetrically around zero energy.

As a consequence, the Hall conductance oy, measured in bilayer graphene exhibits quantized
plateaus at integer values of 4 e? h™1, but with a step of 8 e2 h™! across zero density due to the
additional orbital degeneracy of the zero energy Landau levels?®?*. Consistent with theory,
experimental data confirmed the unusual sequence? (see Figure 2.4). Worth to note is that the
sequence holds true only if interaction effects are neglected and any valley, spin or orbital splitting

is negligible compared to temperature and Landau level broadening?.

2.3 Competing Broken-Symmetry Ground Phases in Bilayer
Graphene

So far, the quantum Hall effect in bilayer graphene was explained in the absence of any many-body
effects. However, their consideration is important, since they can drastically alter the behavior of

23,41,44,65,75-78

the Landau levels and lead to the emergence of various broken-symmetry quantum Hall

phases317333639 |n particular, Coulomb interactions dominate in altering the spectrum?447>778,
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These electron-electron interactions are especially strong at low charge carrier densities, as their

strength is given by the ratio between Coulomb E, and kinetic energy Ey resulting in*7

E
s = oo 1/\/5 (2.26)
for bilayer graphene. Hence, at low density the Coulomb energy dominates over the kinetic energy

t*2. As a consequence, bilayer graphene — owing to

and interactions become increasingly importan
the non-zero density of states at charge neutrality in case trigonal warping is neglectable®, and a
substantial Berry phase of +2m —is susceptible to spontaneous symmetry breaking at zero external
fields®. This can be accounted for by adding a spontaneous mass term m to the Hamiltonian for the
low-energy bands in bilayer graphene®3°, see Eq. (2.14). Then, the Hamiltonian in the K valley

changes to3?
HI' = Hy + mo, (2.27)

where o(0y,dy,0;) is the Pauli vector. The question is whether the spontaneous mass term is
directed in-plate, i.e. m(ay, 0,,), or out-of-plane, expressed by ma,. An in-plane mass term would
break rotational symmetry giving rise to gapless nematic states33%%, In contrast, an out-of-plane
mass term breaks chiral symmetry, since [Hi*, ,] # 0, see Eq. (2.10). This results in the emergence
of a family of gapped quantum Hall phases®***® with a spontaneous energy gap of 2m at p = 0.
Experiments3¢-41%3 suggest that these gapped states corresponding to an out-of-plane mass term
are favored, hence the focus is laid on chiral symmetry breaking rather than on the emergence of
nematic states.

The sign of the out-of-plane mass term ma, can be dependent on the spin and valley index, i.e. its
implications need to be considered for all four species arising from the combinations of the valley
(K/K') and spin indices (T/l). In case of broken chiral symmetry, each of the four species
spontaneously polarizes in a specific layer, depending on the sign of the mass term32®3, Moreover,
the touching energy bands become gapped, resulting in a non-zero Berry curvature3, which is

related to
an) (p, 1, 5,) X —at,sgn(m), (2.28)

where 1, = *1 indicates the K and K’ valley, respectively, and @ = +(—) labels the conduction
(valence) band. Hence, it changes sign when the valley index 7,, the mass term or the band index a
is inverted. The consequence of a non-zero Berry curvature is that quasiparticles in an in-plane
electric field acquire an anomalous transverse velocity proportional to the Berry curvature. This
gives rise to a magnetic moment and an intrinsic Hall conductivity, with their sign specified for each
spin-valley flavor3. The orbital magnetic moment carried by a quasiparticle shows the following

dependence:

M,(p, T, S;) X —T,sgn(M)ug, (2.29)
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with the Bohr magneton pug. Analogously to the Berry curvature, the orbital magnetic moment
changes sign when the valley index 7, or the mass term changes sign, however, it is independent on
the band index a. Overall, considering the contributions from the four spin-valley flavors, a net
orbital magnetization can persist for specific mass terms33. The intrinsic Hall conductivity is given
by32,33
-1
af(,a) (t,,5,) = %TZ (m( m2 + 0’2#) - %66”) [ %TZ sgn(m), (2.30)

|m

where pp is the momentum of a quasiparticle at the Fermi level. When the Fermi level lies within

the spontaneous gap, each spin-valley flavor adds +e? h™1, where the sign of its contribution is
dependent on 7,, sgn(m) and the band index @*. Taking into account the sign of all four crf(,“) (72, 82)
terms for one band «, an effective charge Hall conductivity (€™ can be derived®:

CH
O'((a) ) = Z O'Isa)(‘fz, SZ). (2_31)

Tz:5z

Likewise, in case a valley and/or spin polarization is present, a net valley Hall conductivity
VH
0((0() ) = Z Uf(la)(rz =+1,s,) — Z Ulfla)(rz = -1,s,) (2.32)
Sz Sz

and/or spin Hall conductivity
e 2.33
U((a) )= Z Glga)(Tz; s, =+1) — Z O'Isa)('l'z, s, =—1) ( )
Tz Tz

can arise. Considering the dependence of the sign of the spontaneous mass term on the valley and
spin indices, a total of five broken chiral symmetry states can emerge, each with a specific mass term
and distinct charge, spin and valley dependent quantum Hall conductivities3?33; the quantum valley
Hall (QVH), the quantum anomalous Hall (QAH), the layer antiferromagnetic (LAF) and the ALL as
well as the quantum spin Hall (QSH) phase. These phases are schematically described in Figure 2.5.
Moreover, their respective spontaneous mass term as well as the corresponding layer polarization
of the four spin-valley species and the resulting Hall conductivities, following Egs. (2.31), (2.32) and
(2.33), are listed in Table 2.1. In addition, it is indicated whether the phases possess an overall layer
polarization and/or orbital magnetization, see Eq. (2.29).

In the following, the five phases are explained in more detail: Firstly, in the quantum valley Hall

3233 j.e. the phase is fully

phase (see Figure 2.5a) each spin-valley flavor polarizes in the same layer
layer polarized. It can be described by a spontaneous mass term of ma,. Since the K and K’ valley
contribute to the Hall conductivity and orbital magnetization with opposite sign, it shows zero
charge and spin Hall but a non-zero valley Hall conductivity of 4 e? h™1. Secondly, the quantum
anomalous Hall phase shows a polarization of the two valleys in different layers®® (see Figure 2.5b).
With the mass term taking the form mt,0,, all four Hall conductivity and orbital magnetization

contributions are of the same sign. Hence, the QAH phase exhibits a charge Hall conductivity of 4
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a)

Figure 2.5 Five competing broken-symmetry quantum Hall ground phases in bilayer
graphene. a) —e) Top: Schematic of the spontaneous quantum Hall effect for the five different
phases. Bottom: Layer polarization for the corresponding spin-valley flavors. T and B label the
top and bottom graphene layer, respectively. [Figure adapted from Refs.3*%3].

Spi e fi Hall conductivities ) Y Soont
pin-valley flavor ay. pol. pontaneous
Phase (e?2h™)
orb. magn. mass term
TK | LK |[TK'|LK' | gD | oG | (VI
QVH T T 0 4 yes / no mao,
QAH 4 0 0 no / yes mrt,o,
LAF T B 0 0 no/no ms,o,
1+7,
m( 2
ALL T T T B 2 2 2 yes / yes 1—+
+ > z SZ) o,
QSH T B B T 0 4 0 no/no mrt,s,0,

Table 2.1 Characteristics of the five competing broken-symmetry quantum Hall ground
phases in bilayer graphene. Summary of the layer polarization of the four spin-valley flavors
as well as the resulting charge o™, spin a1 and valley Hall conductivity c V¥ in units of
e? h™1 for each of the five quantum Hall ground phases. T and B relate to the top and bottom
graphene layer, respectively. Moreover, it is indicated if the phases possess any net layer
polarization and/or orbital magnetization. In addition, the corresponding spontaneous mass
term for each of the five quantum Hall phases is shown. Here, T, = +1 corresponds to valley
K/K' and s, = +1 to spin 1/l. [Table adapted from Refs.3>%3].

e? h™! and a substantial orbital magnetization® but the resulting spin and valley Hall conductivities
are zero. Thirdly, the layer antiferromagnetic phase appears when the two spin species
spontaneously polarize in opposite layers® (see Figure 2.5c). It can be seen as the two spin species
showing an opposite QVH effect and the two layers exhibiting an opposite spin polarization. The

corresponding spontaneous mass term is given by ms,o,. The resulting Hall conductivity
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contributions lead to all three charge, spin and valley conductivities being zero. The most exotic
out of the five states is the ALL phase, in which one spin-valley flavor polarizes in the opposite layer

as the other three3? (see Figure 2.5d). It can be understood in a way that one spin species shows a

QVH effect, whereas the other forms a QAH effect. The mass term is given by m (1?2 + 1_;2 SZ) 0y,

resulting in a net layer polarization and orbital magnetization. Intriguingly, the Hall conductivity
contributions of the four spin-valley flavors yield charge, spin and valley conductivities of 2 e? h™1.
Hence, its name is ‘ALL’ phase. Lastly, the quantum spin Hall phase has opposite QAH effects in the
two spin species®. With a spontaneous mass term of m1,s,0,, this phase possesses zero charge
and valley Hall conductivity but a substantial spin Hall conductivity of 4 e? h™1.

Since all five broken-symmetry quantum Hall phases compete at zero charge carrier density and
zero external fields, it is per se not clear which of these phases actually emerge. Importantly, since
three of the five phases are insulating, it is not sufficient to examine the charge Hall conductivity of
any appearing phases in experiments. Instead, they can only be distinguished when considering their
respective combination of charge, spin and valley Hall conductivities and related properties such as
orbital moment and layer polarization (see Table 2.1). So far, evidence has been found for four of
the five phases: Phases with a layer polarization (i.e. with substantial valley Hall conductivity) are
expected to be stabilized by an externally applied electric field, which breaks inversion symmetry.
Under this condition, the QVH phase with its full layer polarization has been observed
experimentally3*3%41, On the contrary, a perpendicular magnetic field strengthens phases with an
orbital moment since the latter couples to the magnetic field*3. With increasing magnetic field, these
phases exhibit — in contrast to the insulating phases — a slope in the n — B — space and eventually
evolve smoothly into quantum Hall states with a filling factor matching their charge Hall
conductivity®? (see Section 2.4). Therefore, the QAH phase, with its unique charge Hall conductivity
of 4 e2 h™1, has been revealed by tracking the v = +4 quantum Hall states towards zero magnetic
field®44, However, it is not clear if the phase survives to B = 0. In fact, experiments suggest that
the LAF phase is stabilized in this regime and is possibly the true ground state of bilayer graphene
for zero electric field*®*®, however, contradicting studies reporting a finite conductance state have
also been published®“¢. In the presence of a small magnetic field, it evolves into the canted
antiferromagnetic (CAF) phase, in which the spins are canted due to the applied magnetic field®*8%81,
A detailed investigation to solve the debate about the ground state was conducted in this thesis (see
Chapter 6). Lastly, the exotic ALL phase with its unique charge Hall conductance of 2 e h™!
combines both a partial layer polarization and a substantial orbital moment33. Hence, it is expected
to be stabilized by perpendicular magnetic and intermediately strong electric fields. Although
experiments revealed evidence for its emergence®?, the resulting orbital magnetism and its
appearance towards zero magnetic field was firstly revealed in the course of this thesis® (see
Chapter 4).
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2.4 Broken-Symmetry Quantum Hall States at Finite
Magnetic Field

Even for finite magnetic field, electron-electron interactions can drastically alter the appearance of
the Landau levels by lifting their fourfold (or eightfold when considering the N = 0, 1 zero energy
levels) degeneracy?¥4446575-78 giying rise to a multitude of quantum Hall states3*414475-77.8284 Gjnce
the energetic width of the Landau levels are limited by disorder, a high cleanliness of the material
further supports electron-electron interactions®>. With a sufficient high quality of bilayer graphene
and the applying of external fields3, it is possible to observe all integer filling factors, i.e. filling
factors in the range of —4 < v < 4 for the lowest octet of broken-symmetry states*’>77, A
simplistic Landau level diagram can help to describe the behavior of the different quantum Hall
states and their phase transitions**’>7, In the following picture, K/K' label the valleys and 0/1 as
well as T/l mark states of orbital index N = 0/1 and spin up/down, respectively. Experimental
effort has been made to derive the behaviors of the energy gaps related to the different symmetry
breakings on the magnetic and electric field’®. Valley imbalances breaking the valley degeneracy’>7®
are linear dependent on an externally applied electric field with a weak dependence on the magnetic
field’®, i.e. the valley splitting follows A, o« a,E + a,B, where a; and a, are constants’®. On the
contrary, the interaction-induced ordering of the spins is solely dependent on the magnetic field”>7®:
Ag o< azB, where a3 is constant’® with a; > a,. Lastly, Coulomb interactions as well as band
structure effects cause both weak electric and magnetic field dependencies of the energies of
different orbital index (i.e. N = 0and N = 1)7>768,

With this information, a schematic Landau level diagram has been derived (see Figure 2.6). Assuming
a finite magnetic field is applied to sufficiently clean bilayer graphene, at zero electric field the spin
degeneracy is lifted owing to the magnetic field but also states with distinct orbital index N = 0/1
differ energetically. Neglecting the weak dependence of the valley splitting on the magnetic field,
the valley degeneracy is still intact and only broken by increasing E. In addition, applying an electric
field affects the splitting of states with distinct orbital indices but not of states with opposite spins.
As a result, assuming the electric field direction favors states at the K’ valley, states in the K/K'
valley move upward/downward in energy, whereas distinct slopes of states corresponding to the
N = 0/1 orbital index are observed. This results in the emergence of broken-symmetry quantum
Hall phases with specific electric field behaviors and phase transitions. Experiments confirmed the
occurrence of the following states and their phase transitions with electric field: layer unpolarized
v = +4 states*"”> without any phase transition and layer polarized v = +3 states with a phase
transition around zero electric field®2®, Moreover, layer polarized v = +2 states at high electric
fields have been observed’>#28>8 yndergoing a phase transition at finite electric fields to layer

unpolarized phases®*88¢ which persist down to E = 0. Similarly, the layer polarized v = +1 states
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Figure 2.6 Schematic representation of the Landau level evolution with electric field and the
appearing quantum Hall states. Landau level behavior as a function of electric field at finite
magnetic field and sufficient high cleanliness of the device. The levels within the lowest Landau
level octet are coded and their corresponding orbital (0/1) and valley indices (K/K") as well
as spin (T/1) are indicated. The appearing quantum Hall states are labeled with numerals.
Moreover, it is assumed that the direction of the electric field favors states in the K' valley.
The color bars in the top of the graph illustrate the filling sequence from the v = —4 to the
v = 0 state as a function of electric field. [Figure adapted from Refs.”>”°].

for high electric fields exhibit a phase transition at finite electric fields®2®, yet they vanish around
E = 088 |n addition, layer polarized v = 0 phases for high electric fields and a layer unpolarized
v = 0 phase at low electric fields have been observed394%6287,

Overall, the simple Landau level schematic gives a good qualitative understanding of the appearing
quantum Hall phases and their phase transitions with electric field. Furthermore, it correctly
explains the complex filling sequence of the Landau levels of the lowest octet depending on the
electric field”®® (the sequence fromv = —4 tov = Oisillustrated in the top of Figure 2.6). However,
it certainly fails in other aspects. In particular, the picture does neither capture filling factor
dependent many-body screening effects’®, nor does it correctly predict the nature of all appearing
phases. As an example, it suggests a spin ferromagnet for the v = 0 phase’® for E = 0, but
experiments revealed a canted antiferromagnetic phase instead®. In the course of this thesis, the
model with the predicted states as well as their expected phase transitions was used to identify the

unique sequence of broken-symmetry quantum Hall states in bilayer graphene.

2.5 Domain Walls in Bilayer Graphene

As explained in Section 2.1.2, Bernal stacking is the most stable stacking order in bilayer graphene.
It can occur in two energetically equivalent forms*¥4°: AB and BA stacking, both appearing equally
frequently. They differ by the shift of one layer by a carbon-carbon distance along a certain direction
in respect to the adjacent layer*®°. Even a simultaneous occurrence of both stacking orders within

one bilayer graphene flake is possible. This requires the formations of domains, which are separated
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by one-dimensional dislocations®>%°788 At these so-called domain walls, the stacking order
transitions smoothly from AB to BA stacking (or vice versa) by either tensile or shear strain®°7:88 (see
Figure 2.7a and b). Due to the energetic equivalence of both stacking forms, no forces develop to
reduce the area of the stacking fault*, which results in an overall common occurrence of domain
walls in bilayer graphene*®>. Since they possess only a width of 6 — 11 nm*, domain walls can only
be detected by techniques with sufficient high-resolution, such as transition electron microscopy*®4°
or scattering-type scanning near-field optical microscopy®®°”#, The latter is explained in more detail
in Section 2.6.

Based on the common occurrence of domain walls in bilayer graphene flakes, it is essential to
consider the consequences of their presence and understand their remarkable electronic
properties. In case a perpendicular electric field is applied to bilayer graphene, a band gap opens
within the bulk of bilayer graphene?® (see Section 2.1.2), which can also be explained by the
emergence of the quantum valley Hall phase at zero charge carrier density*%2. However, in a
uniformly applied electric field, AB and BA domains show opposite valley polarization, since the
energetic favoring of the K or K’ valley is reversed at the dislocation®*®%%. As a consequence,
gapless states emerge at the stacking fault>®®°, as schematically shown in Figure 2.7c. The states are
chiral, hence electrons in the K and K’ valley are counterpropagating®®. Overall, since two states
(both doubly spin degenerate) emerge within each valley, four valley-projected, one-dimensional
channels are present. This results in a conductance of 4 e? h™! along the domain wall for each
direction®>*38 (see Figure 2.7d). In principle, intervalley scattering could lead to mixing of the
counterpropagating modes and hence a reduction in conductance. However, domain walls consist
of a defect free, smooth transition from AB to BA stacking over several hundred atoms. Hence,
backscattering caused by intervalley mixing, which would require a large momentum change, is
highly suppressed®®°!. As a consequence, ballistic transport along the dislocation is possible®.

An equivalent to these stacking domain walls are artificially created, electrostatically confined
channels between two bilayer regions with the same stacking order but with electric fields of
opposite polarity applied®>*8%2 These antiparallel electric fields lead to regions with inverse layer
(valley) polarization and hence to the emergence of chiral gapless modes®?, analogous to the ones
observed between domains of AB and BA stacking when applying a uniform electric field. These
artificial domain walls have been successfully demonstrated in experiments®! and even potential
applications such as valley polarizers and electron beam splitters have been realized®*%. Although
they exhibit an advantageous tunability, as they can be switched on and off via gate voltages®*%,
the presence of an electric field is inevitable for their emergence®3. On the contrary, stacking domain
walls are an actual deformation of the lattice and are consequently also present in the low electric
field regime. However, the question is whether the arising topologically protected states at the

stacking domain wall also persist in this regime, where a multitude of broken-symmetry states
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Figure 2.7 Stacking domain walls in bilayer graphene. a),b) Schematic top view of the crystal
structure of Bernal-stacked bilayer graphene with a tensile (a) and shear strain domain wall
(b). The green rectangle illustrates the domain wall region in which the AB stacking smoothly
transitions into a BA stacking domain. The upper (lower) graphene layer is shown in black
(grey) and the green arrows indicate the direction of the strain. [Figure adapted from Ref.*’].
¢) Electronic band structure of bilayer graphene for a non-zero electric field applied with a
domain wall present. Er. and A label the Fermi energy and the non-zero band gap, respectively.
The blue (red) lines indicate topologically protected, doubly spin degenerate chiral states at
the K(K')-valley. [Figure adapted from Ref.*°]. d) Schematic side view of an AB-BA domain
wall in bilayer graphene. Topological valley transport in the K and K' valley along the domain
boundary is shown in blue and red, respectively. [Figure adapted from Ref.*’].

emerges* 77782 So far, the quantum transport along stacking domain walls was mainly examined
for zero magnetic field*. Hence, in this thesis the focus was laid on revealing the interplay between

topological valley and quantum Hall edge transport® (see Chapter 5).

2.6 Near-Field Microscopy

In order to identify domain walls in bilayer graphene special techniques are necessary. This has
mainly two reasons: first, owing to their small width of 6 — 11 nm?, they escape the detectability of
conventional optical methods. And second, the stacking order transition happens only in the
graphene plane, hence domain walls are unobservable in purely topographic measurements. Here,

scattering-type scanning near-field optical microscopy®®°’# (s-SNOM) combines a reliable
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identification of domain walls in bilayer graphene with the advantage of being a non-destructive
technique®. In the course of this thesis, it has been used to detect stacking dislocations.
In conventional optical microscopy, the spatial resolution is limited by the diffraction limit, or Abbe
limit, which prevents resolving two individual points separated by roughly less than half of the
incident wavelength®. However, there are several possible ways of circumventing this limit to gain
information of a sample with even higher resolution. One possibility is to use scanning probe
microscopy techniques®. Hereby, a probe is brought into close proximity of the sample surface to
extract local properties of the sample. Then, by scanning the device, i.e. by moving either the sample
or the probe, images are created. One commonly used example for this technique is atomic force
microscopy (AFM)%. A sharp tip acts as the probe interacting with the underlying material by
attractive and repulsive forces, e.g. van der Waals force and Pauli repulsion®’. By fixing the probe-
sample distance and simultaneously monitoring the movement of the tip, information about the
sample topography can be gathered. In addition, it is possible to further extend this technique to
measure more device characteristics such as local optical properties: In scattering-type (or
apertureless) scanning near-field optical microscopy (s-SNOM)% the tip is metallic and side-
illuminated from a focused laser beam. Consequently, it acts as nano-antenna® to focus the incident
electric field onto the sample surface. A near- (or evanescent) field is created®®, modified by the
interaction with the surface of the sample. The interaction decays exponentially with the tip-surface
distance®. The back-scattered light, which can be detected in the far-field, carries information about
local optical parameters of the sample. Hence, optical and topography information are
simultaneously gained. Moreover, the resolution is no longer limited by the incoming wavelength,
which would be several microns for mid-infrared light, but only dependent on the apex of the tip®.
This process, schematically illustrated in Figure 2.8a, can be qualitatively explained with a simple
dipole model*>%. Assuming the incident light with wavelength A1 and electric field E;, is only
polarized parallel to the tip axis (any component orthogonal induces an inferior signal level®®) an
initial dipole

Po = aEjy (2.34)
is induced in the apex of the tip. Describing the tip as point dipole with radius R (with R < 4), its
dipole polarizability equals'®
&g —1
g+2’
with & being the dielectric constant of the tip. As a consequence, a mirror dipole is formed within

a = 4nR3 (2.35)

the sample with a strength of®
p' = Bpo, (2.36)
where B = (¢, — 1)/(&s + 1) is the dielectric surface response function®> and &g the dielectric

constant of the sample. The mirror image induces an additional dipole p; within the tip, leading to a
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Figure 2.8 Point-dipole model and surface plasmon polaritons in near-field optical
microscopy. a) A schematic illustration of the s-SNOM tip and the sample is shown. The
incident light E, induces a dipole p, (green arrow) in the tip (dielectric constant: €;), which is
modeled by a sphere with radius R. In the sample (dielectric constant: &) in close distance H
to it, a mirror dipole p' (dashed green arrow) is created interacting with the initial dipole in
the tip and changing it by p;. B and Es., are the dielectric surface response function and the
back scattered light, respectively. The interaction is schematically shown in purple. [Figure
adapted from Ref.>*]. b) Plasmons are launched from the tip with a circular wavefront (dark
blue). At a domain wall (red region) in bilayer graphene, they are partially transmitted and
reflected (light blue) causing standing-wave interference pattern. [Figure taken from Ref.*¢].

consecutive enhancement of dipole in the tip p = p, + p; and the sample p’ = B(p, + p;). Taking

these near-field interactions into account® leads to an effective polarizability
a
Teff = L af (2.37)
16m(R + H)3

of the tip, where H is the distance between tip and sample surface. Since the electric field scattered

at a point dipole E,, is directly proportional to its polarizability>
Esca ¢ QefeEin (2.38)

relative changes in the scattered light are caused by changes in the local dielectric constant of the
sample. Numerous extensions can been made to improve the model, such as considering a finite-
dipole model®? or taking light scattered at the surface of the sample into account'®?, Nonetheless,
the simple model already allows for intuitively understanding the mechanism between the scattered
light and optical properties of the sample. The technical details of the measuring process are
explained in Section 3.2.2.

In graphene, the complex dielectric function, or the optical conductivity directly related to it'%, is
dependent on layer number as well as stacking order!®® and, hence, the near-field signal changes
from e.g. mono- to bilayer graphene. Moreover, since the scattered light is confined at the
nanoscale to a much lower scale than the optical wavelength, the electric field strength and light-

matter interactions are highly enhanced?®>1%, At the interface between graphene and a dielectric,
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collective oscillations of free charge carriers, so called surface plasmon polaritons, can be
excited”1% These excitations, with a charge carrier density dependent plasmon wavelength'®’, are
launched from the apex of the tip. Owing to the isotropic conductivity tensor in graphenel®, they
form a circular wavefront and propagate in-plane up to several times of their wavelength even at
room temperaturel?”1%, At the edge of a graphene flake, standing wave patterns can be observed
due to back reflection and interference of plasmons?”1% Most importantly for this thesis, the same
phenomena can be observed at stacking domain walls in bilayer graphene>**¢°7, see Figure 2.8b.
Even though plasmon are reflected only partially at the defects, standing-wave interference
patterns can be observed®®®’, albeit weaker than at the edge of the flake. Consequently, the
dislocations are indirectly visible in the near-field microscope. Moreover, different types of
dislocations (i.e. shear or tensile stacking domain walls) induce different phase shifts for the
reflection®®>’. Empirically, effective phase shifts of = and /2 have been determined for tensile and
shear dislocations®, respectively. The consequences are distinguishable interference pattern

allowing for a differentiation with s-SNOM.

2.7 Dually Gated Bilayer Graphene Field-Effect Transistor

The field-effect is the modulation of the electrical conductivity of a material by applying an external
electric field, firstly demonstrated in experiment by J. Bardeen, W. Brattain and W. Shockley in
194772, The effect can be exploited in a field-effect transistor to reliably probe the electronic
properties of a material, which works also in graphene®'®, In the course of this thesis, a two-
terminal device geometry was used, in which the active graphene channel is connected to source-
drain contacts and its electronic properties are tuned via two gate electrodes. The dually gated
structure (see Figure 2.9a) provides significant advantages over a device with a single gate, since
both charge carrier density and electric field can be adjusted independently*!. This is of particular
importance in bilayer graphene as, in contrast to monolayer graphene, an electric field breaks the
inversion symmetry of the bilayer, which can significantly alter its transport properties?.

In a dually gated device, the net charge carrier density n is the sum of the components n; and n,,
induced by the top V; and bottom gate voltage V,,, respectively*'2¢:

Ce(Ve = V) + Cp(Vy = V) _C

n=(n;+np) = - = ?b(a(Vt —VO) +(V, = VD). (2.39)

Here, V2 and V0 indicate the effective offset voltages due to residual charge carrier doping, i.e.
charge neutrality at zero electric field is at V; = V,? and V,, = V;2. Moreover, a denotes the ratio
between top C; and bottom capacitance per unit area C;, of the respective gate electrode to the
graphene sheet, and e is the electron charge. In the freestanding devices fabricated in the course of

this thesis, the top gate is separated from the graphene by vacuum, whereas the bottom capacitor
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Figure 2.9 Dually gated bilayer graphene field effect transistor. a) Schematic cross section of
the finalized device. The bilayer graphene (green) is freestanding and attached to the source-
drain contacts (yellow). It is separated from the top gate (blue) by vacuum, and from the
bottom gate by a layer of vacuum and SiO; (light grey), with thicknesses of d¢¢cheq and ds;o,,
respectively. V, and V,, indicate the voltages applied to the top and bottom gate electrodes,
with the latter being highly doped silicon (grey). b),c) Schematic working principle of the dual-
gate structure. The same color-coding as in (a) is used. For a(V, — V?) = (Vb — Vé)), a net
charge carrier density is induced in the bilayer graphene, but no electric field is applied, as
illustrated in (b). In contrast, for a(V, — V) = —(Vb — Vl?), the total charge carrier density is
zero, whereas a non-zero electric field is applied, as shown in (c). [Figure adapted from Ref.*?].

consists partly of vacuum and partly of silicon dioxide, see Figure 2.9a. Hence, the latter can be

described by the sum of two in-series capacitances:

d g0, (dsio, — d -1
Cb = ¢, etched Sl02( Si0, etched) (2.40)

detchea — + &sio, (dsio, — detchea) ™" '

where &, denotes the vacuum permittivity, &g;o, is the permittivity of SiO,, dg;o, indicates the
overall thickness of the initially unetched SiO; layer and d,¢cpeq is the etching depth.

The perpendicular electric field E is the mean value of the electric field components E; and Ej

applied by the top and bottom gate?®:
E= l(Et +Ep) = ) (a(Vt -V - (v, - V,?)) . (2.41)
2 2&g

Figure 2.9b and c illustrate two special cases: when the relation a(V, — V;?) = (Vb — Vbo) is true,
n # 0and E = 0 hold, whereasn = 0 and E # 0 applies for a(V, — V;?) = —(V}, — V). However,
since n and E are linearly independent, any possible combination of charge carrier density and

electric field can be set by applying the corresponding V; and 1/, see Egs. (2.39) and (2.41).
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3 Device Fabrication and
Characterization Methods

In this chapter, the laboratory techniques for fabricating and examining the devices used in this thesis
are described. Mainly delicate dually gated, freestanding bilayer graphene devices were fabricated
and investigated using state-of-the-art procedures. At first, the process of exfoliation of high-quality
graphene is presented. Secondly, pre-characterization methods such as optical and near-field
microscopy are explained. Thirdly, the procedure of fabricating dually gated, freestanding bilayer
graphene field effect devices is demonstrated. Lastly, the setup of electrical measurement for
investigating the quantum transport is illustrated and the process of current annealing as well as
device calibration is explained.

3.1 Wafer Preparation and Graphene Exfoliation

As substrate for all devices commercial highly p-doped silicon wafers (Silicon Materials) with an
insulating layer of 300 nm Silicon dioxide (SiO;) on top were used. Since the underlying silicon acted
as bottom gate electrode during cryogenic measurements, the high doping level was necessary to
ensure that the silicon possessed low resistivity even at temperatures close to absolute zero.

Small 4x4 mm? pieces cut from the wafers were rinsed in acetone as well as isopropanol.
Subsequently, solvent residues were evaporated using dry air. Shortly prior to exfoliation, the
substrates were additionally cleaned using an oxygen plasma (PICO Plasma Cleaner, Diener) for
5 min at 50 W with an oxygen gas flow of 10 sccm. Directly afterwards, mechanical exfoliation?, a
very simple yet successful technique to obtain graphene flakes with excellent quality?®, was used to
fabricate bilayer graphene flakes from a highly oriented pyrolytic graphite block (Momentive
Performance Materials Inc.). As a first step, while the substrates were heated to 110 — 130 °C to
ensure the evaporation of any residual water, an adhesive tape (Magic Tape, Scotch) was slightly
pressed onto the graphite surface and subsequently peeled off. Hereby, thin layers of graphite stuck
to the tape by van der Waals force?. Secondly, using an additional piece of tape and placing it on the
section with graphite on the initial tape, the graphite is further thinned. The procedure was repeated
up to five times. Lastly, the tape with a desired graphite thickness was pressed onto the pre-heated

substrates for ten seconds and was then carefully removed. During this process, some of the flakes
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were randomly transferred to the substrates. After exfoliation, the substrates were cleaned again
in acetone as well as isopropanol and blow-dried with dry air to dissolve most of the glue residues

originating from the tape.

3.2 Optical and Near-Field Microscopy

In order to select suitable bilayer graphene flakes, two different microscopy techniques were
conducted before fabricating the actual dually gated devices. First, optical microscopy was used to
locate bilayer graphene flakes. Subsequently, the preselected flakes were investigated with
scattering-type scanning near-field optical microscopy. The obtained topography images provided
information about their homogeneity and cleanliness, whereas any stacking domain walls present
in the flakes were detected within the optical channel. In the following, the aforementioned

methods are presented in detail.

3.2.1 Optical Microscopy

After exfoliation, an optical microscope (LD EC Epiplan-Neofluar 100x, Zeiss) was used to locate and
preselect suitable bilayer graphene flakes. Under ideal conditions, the absorbance of monolayer
graphene is almost independent on the wavelength of the incident visible light and is given by ma =
2.3 %, with a being the fine structur constant®. In addition, for a low number of layers, it increases

linearly with additional graphene sheets*?

, which can be used to estimate the number of layers of
preselected flakes. To this end, optical images were taken, see Figure 3.1a. The optical contrast was
identified by measuring the value of the green channel divided by the background value, see Figure
3.1b. Although the optical contrast in a microscopy image is not solely dependent on the absorbance

but also on the used substrate!!°

as well as the wavelength of the incident light, the difference
between mono- and bilayer graphene is sufficient to determine the layer number (see Figure 3.1b).
The results were confirmed in quantum transport measurements with the unique sequence of
quantum Hall states in bilayer graphene (see Section 2.4).

Besides layer number, this technique provides a fast and easy way to gain information about
homogeneity and size of the flakes. Only rather isolated flakes with a homogenous looking surface
were selected to enable an easy contacting procedure. In addition, special care was taken on the
geometrical measures of the flakes for the following reasons: Firstly, freestanding graphene devices
allow only for a certain width to be stable during suspension, hence, bilayer graphene flakes with a
width of 0.5 — 3 um were chosen. Secondly, of importance are also the aspect ratio of the devices
(i.e. the ratio between channel length and width) as well as the ratio between channel length and
contact width, as discussed in Chapter 6. Hence, appropriate flakes suitable for the experiments
needed to be selected. Worth to note is that an additional etching step to shape flakes was avoided

in order to maintain the high quality of the edges for quantum transport®°.
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Figure 3.1 Optical microscopy. a) Background corrected optical microscope image of a
graphene flake on a SiO»(300nm)/Si substrate. Mono- (1L) and bilayer graphene (2L) parts of
it are labeled. The dashed line illustrates the position of the line trace shown in (b). Scale bar:
2 um. b) Line trace of the normalized optical contrast across the flake shown in (a). The red
lines are constant fits to the respective contrast levels of 1L and 2L graphene in the data. In
this example, the difference in absorbance of mono- and bilayer graphene compared to the
substrate is 2.1 % and 4.6 %, respectively. This is sufficient for a differentiation with optical
microscopy.

3.2.2 Scattering-Type Scanning Near-Field Optical Microscopy

After preselecting suitable bilayer graphene flakes, a customized scattering-type scanning near-field
optical microscope (neaSNOM, neaspec) was used to scan the topography of the flakes with high
resolution and simultaneously reveal any stacking defects. Essentially, the s-SNOM is an atomic force
microscope operating in tapping mode with an infrared laser source coupled to it>, see Section 2.6.
In Figure 3.2, the setup is illustrated schematically. Its basic functionality is explained in the
following.

An infrared laser (CO, Laser Merit G, Access Laser Company) beam with a tunable wavelength in the
range of 9.2 — 10.8 um goes through a neutral density filter, which allows for adapting the intensity
of the light. Subsequently, it is guided using multiple mirrors onto a beam splitter. In addition, a
green laser diode can be coupled in the same beam path for alignment purposes of the invisible
infrared laser. One part of the beam is focused with a parabolic mirror onto the metal-coated tip
(Pt/Ir, Arrrow NCPT-50, Nanoworld), which is oscillating with a frequency of Q = 250 — 270 kHz
and a tapping amplitude of 60 — 80 nm. After interacting with the sample surface (see Section 2.6),
the scattered light is collected and collimated by the same parabolic mirror. The second part of the
beam goes into a reference interferometer, called pseudo-heterodyne!!! (ps-het) module, which
consists of a mirror perpendicular to the incident beam oscillating with a frequency M causing an
interference pattern with the scattered light from the tip at the beam splitter. The combined signal

is then guided and focused onto a liquid nitrogen cooled HgCdTe detector using multiple standard
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Figure 3.2 Scattering-type scanning near-field optical microscopy setup. The CO; laser beam
goes through a neutral-density (ND-) filter and is focused with multiple mirrors onto a beam
splitter (blue). One part of the beam is focused with a parabolic mirror (green) onto the metal
coated tip, which oscillates with a frequency (). After interacting with the sample, the
scattered light is collected and collimated back to the beam splitter. The other part is guided
into the reference path (ps-het module) and gets back reflected at an oscillating mirror with
frequency M. The two parts get superposed at the beam splitter and are subsequently focused
onto the detector using multiple standard and one parabolic mirror. A data acquisition card
reads out the signal. A green laser diode shares the same beam path for alignment purposes.

and one parabolic mirror. This pseudo-heterodyne technique provides an almost background-free,

111

simultaneous detection of the near-field amplitude and phase'*'. Qualitatively, it works as follows.

The detector measures the intensity of the incoming signal*

2
I & |Escant + Escapg + Eref| (3.1)

which is related to the electric field components associated with the near-field interaction Egc, nf, @
large additive background signal Egc, b caused by elastic reflection from the tip shaft or sample
surface! and the reference signal E,¢s. Since the tip oscillates vertically with a frequency of Q =

111 On the contrary,

250 — 270 kHz, Egca nf and Ec, pg are modulated at (2 and its higher harmonics
in the pseudo-heterodyne module, the mirror oscillates with a much lower frequency M = 300 Hz
in the propagation direction of the laser beam leading to a phase modulation of E.of. Due to the

interference of both components, the spectrum of the superposition shows sidebands at {2 and its

111 f 111
L

n-th harmonic n(l at frequencies of f, ,, = n{l = mM, where mis aninteger*. According to Re
the background-free near-field amplitude s,, and phase contrast value ¢,, can then be obtained from

the detector signals u,, ; and u,, , measured at the first f, ; and second sideband f,, ,, respectively.

s, = 2.16k /un,12 + up 2 (3.2)

The quantities are given by

32



3.3 Dually Gated Freestanding Device Fabrication

and

u
@, = arctan <2.16k n’2> , (3.3)
Un,1

with k being a constant. The equations are only true for sufficient high harmonic ordern > 1. In the
course of this thesis, the signal was usually demodulated at the third or fourth harmonic of 2, which
was done by a data acquisition card connected to the detector.

The main goal for using the s-SNOM was to detect stacking domain walls within the preselected
bilayer graphene flakes. These defects are only indirectly visible owing to plasmon reflections at the
stacking domain boundaries (see Section 2.6). Since this effect is much weaker compared to
reflections at the edge of graphene, and the spatial extend of the interference patternis in the order

of a few hundred nanometers®’, excellent alignment and an impeccable quality of the tip are crucial.

3.3 Dually Gated Freestanding Device Fabrication

In the course of this thesis, a dually gated, freestanding device geometry was used to achieve high
quality, high tunable bilayer graphene samples free of any influence from the substrate. The
technique was first developed by K.I. Bolotin et al.*® and further improved by R.T. Weitz et al.*%, over
a decade ago. It involves multiple steps of electron-beam lithography and physical vapor deposition
as well as subsequently chemical wet etching with hydrofluoric acid, etching SiO, but leaving the

graphene and the metal contacts intact. The procedure is explained in the following in detail.

3.3.1 Contact and Top Gate Patterning

After the initial optical characterizations, the selected bilayer graphene flakes were contacted
directly with chromium/gold contacts using electron-beam lithography. The process is schematically
shown in Figure 3.3. Hereby, special attention was laid on domain walls detected in the flakes with
the near-field microscope. The contacts were designed in three different configurations: i) domain
walls were present in the channel and connected by source-drain contacts on both ends, ii) domain
walls were present in the channel but not connecting both contacts, and iii) domain walls were
completely absent. The devices were fabricated as follows. A positive resist polymethylmethacrylat
(PMMA) 950 k dissolved in anisole (AR-P 672.045, Allresist) in a 4.5 wt.% solution was spin coated
onto the devices (see Figure 3.3a) in a two-step process: at first, the sample rotated at 800 rpm for
1 s and immediately after at 4000 rpm for 30 s. The procedure resulted in a homogenous layer of
resist with roughly 230 nm thickness. Afterwards, a soft bake at 150 °C for 3 min was performed,
illustrated in Figure 3.3b. Subsequently, small (big) contact leads were exposed with an electron-
beam using an acceleration voltage of 10kV and a 10 (60) um aperture with a dose of
110 (170) uC cm (see Figure 3.3c). The width of the designed contact leads was designed to be not

smaller than 1 um to ensure mechanical robustness during suspension. Consecutively, the devices
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graphene PMMA resist T =150 °C m m
. Il IS b
Substrate
d) e) f)

Metal contact

Figure 3.3 Procedure of electron-beam lithography. a) PMMA resist (purple) is spin coated
onto the substrate (grey) with a preselected bilayer graphene flake (green). b) A softbake at T
= 150 °C is performed. c) Desired parts of the resist are exposed with an electron-beam. d)
Rinsing the device in a developer dissolves the exposed parts. e) Metals (yellow) are deposited
using electron-beam evaporation. f) The resist is dissolved using acetone and the metal
remains only at the previously exposed sections.

were developed in a 1:3 solution of methylisobutylketon (MIBK) and isopropanol for 2 min dissolving
the exposed PMMA sections, then immersed in isopropanol and blow-dried with dry air (see Figure
3.3d). Subsequently, metals were deposited using electron-beam physical vapor deposition (PVD) at
low pressure (< 3 X 10~7 mbar), as illustrated in Figure 3.3e. Successively, an adhesion layer of
5 nm chromium and a 100 nm gold layer were deposited with deposition rates of 0.1 — 0.2 A s* and
1.0-1.2 As?, respectively. Afterwards, the devices were rinsed in warm acetone to lift-off the
remaining resist, leaving only the designed contact patterns (see Figure 3.3f). Consecutively, the
devices were immersed in isopropanol and blow-dried with dry air.

After patterning the contact leads, two additional electron-beam lithography and PVD steps were
used to fabricate the top gate structure. First, a SiO, spacer was patterned. To this end, the
aforementioned procedure of electron-beam lithography was used again, however, to prevent
problems during lift-off owing to the greater thickness of the spacer than the contacts, both, the
spin coating of the PMMA resist and the consecutive soft bake were performed twice. After
exposure with unchanged parameters, an increased development time of 3:30 min was used. Then,
SiO, was deposited at a rate of 1.0 — 2.0 A s and the resist was lifted-off. Second, to fabricate the
top gate, the spin coating procedure was again conducted twice, and the desired structure was
patterned using an electron-beam. After 3:30 min of development, an adhesive layer of 5 nm
chromium and a 160 nm layer of gold were deposited with deposition rates of 0.1 -0.2 A s and
1.1-1.3 As, respectively. The subsequent lift-off revealed the processed but not yet freestanding

structure, as shown schematically in Figure 3.4a.
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Figure 3.4 Dually gated freestanding bilayer graphene device. a),b) Schematic cross section
of the device architecture prior (a) and after suspending the device (b). In the final state, the
bilayer graphene (green) is suspended and attached underneath the gold contacts (yellow)
with a freestanding top gate (blue) above. The SiO, and highly doped silicon substrate are
shown in light grey and grey, respectively. c) False-color scanning electron microscope image
of an exemplary dually gated freestanding device with multiple channels. The colors match
the ones used in (a) and (b). Scale bar: 1 um.

3.3.2 Wet Etching and Critical Point Drying

In order to finalize the devices and suspend both the bilayer graphene as well as the top gate, a wet
etching procedure was used. Figure 3.4a,b illustrates a schematic cross section of a device before
and after the process. The devices were immersed in a 1:7 buffered oxide etch based on hydrofluoric
acid for 100 s, which uniformly removed about 150 nm of SiO,. The latter happens even under the
flake due to a rapid propagation of the acid along the SiO,/graphene interface!. Consequently, the
bilayer graphene flake is suspended and only attached underneath the gold contacts. The parts of
SiO, masked by chromium/gold are impenetrable for the acid and are only etched horizontally.
Therefore, the contact leads do not collapse. In addition, the evaporated SiO, spacer between the
bilayer graphene and the top gate is also etched. This occurs almost instantaneously due to the low
quality of the deposited dielectric. As a result, the top gate is also suspended above the channel of
the device. After etching, the devices were immersed in water twice and subsequently three times
in ethanol without drying them in between.

As a last step, to prevent the collapse of the device during drying due the surface tension of the
liquid®®, the devices were placed directly from ethanol into a critical point dryer (K850, Quorum
Technologies). Within the pressure chamber of the dryer, the devices were cooled down in ethanol
to 12 °C. Then, the solvent was slowly replaced with liquid CO; during multiple rinsing cycles at
constant temperature. Afterwards, temperature and pressure within the chamber were raised to

approximately 35 °C and 80 bar, which ensured the surpassing of the critical point of CO,. By
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consecutively venting the chamber at constant temperature a phase transition between the liquid
and vapor phase was avoided. A false-color scanning electron microscopy image of a fully processed,

dually gated freestanding bilayer graphene device is shown in Figure 3.4c.

3.3.3 Bonding

Prior to loading the devices in the cryostat, they were glued onto a sample holder using conductive
silver paint. Gold pads connected to the top gate and contact leads were successively bonded to
pins attached to the sample holder using a wedge bonder (MEI 1204W, Marpet Enterprises). The
bonding was carefully performed using only low power ultrasonic pulses as well as proper grounding

to avoid a collapse of the fragile structures and any electrostatic discharge.

3.3.4 Current Annealing

Due to the involved electron-beam lithography, the suspended bilayer graphene devices were
exposed to lots of contaminants and usually exhibited high amounts of residues, e.g. of the PMMA
resist. Consequently, the quality and especially the quantum transport characteristics of the devices
were initially relatively poor. To overcome this problem, a current annealing technique®®?%4! was
used to greatly reduce the amount of residual dirt. The procedure was conducted at a temperature
of 1.6 K after loading the device into the cryostat. By ramping up a large d.c. source-drain voltage
V4., a high current I . runs through the two-terminal device. As a consequence, it heats up to very
high temperatures due to dissipation, which removes the contaminants?2. Successively after each
V4. ramp, the quality of the device was analyzed with a back gate voltage V;, sweep.

Figure 3.5 demonstrates the technique for an exemplary device, with several labeled annealing
cycles. After the initial step (1), which involved applying approximatively 4.5 V and a resulting
current of 0.5 mA (see Figure 3.5a), the resistance does not show any saturation (see Figure 3.5b).
Moreover, the device is still highly doped, as the resistance increases monotonically as a function of
Vi, and shows no charge neutrality point (see Figure 3.5c). A second cycle (2) with much more current
flowing (> 1 mA) reveals the begin of current saturation. Moreover, the charge neutrality point is
visible in the accessible back gate voltage range. However, to achieve a high quality of the device,
further cycles of current annealing were performed (3) — (5). Minimal higher currents can greatly
improve the characteristics, remarkable in the reduction of contact resistance (i.e. the resistance
offset for high back gate voltages) as well as in the narrowing of the resistance peak at charge
neutrality (see Figure 3.5c). The best results were achieved when a current of approximatively
0.35 mA per width of the channel (in um) and per layer number was flowing and a source-drain
voltage with an extra of 0.5 —2.0 V above the onset of the saturation was used. However, significant
higher currents (i.e. additional 150 — 250 % of current) were needed in devices with a low overall
resistance to achieve similar annealing temperatures and a comparable quality of the devices. In

particular, devices with a domain wall present connecting source and drain showed significant lower
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Figure 3.5 Current annealing technique. a),b) D.c. Current l4.. (a) and resistance Rq.. (b) as a
function of applied d.c. source-drain voltage V.. for five consecutive annealing cycles shown
in black, red, blue, green and purple. The cycles are additionally labeled with numerals. c) Rq..
versus bottom gate voltage Vi, subsequently measured after each annealing cycle. The colors
match the sequence shown in (a) and (b).

resistance and, hence, much higher current was needed in order to obtain similar results from the

annealing procedure.

3.4 Electrical Characterization

After annealing the devices, the quantum transport characteristics of the flakes were investigated.
All measurements were conducted in a cryogen-free dilution refrigerator measurement system
(Dilution Refrigerator BF-LD250, Bluefors) with a base temperature of 7 mK. Most measurements
were performed at base temperature, however, in some experiments, the temperature was raised
up to 10 K. In addition, a perpendicular magnetic field of up to 14 T could be applied. In-series low-
pass filters were used to minimize high-frequency noise. Due to the device geometry, only two-
terminal measurements were performed. However, to bypass in-series resistances originating from
the filters and wiring, four connections with two interconnected at the bonding pins were used to
measure the voltage drop relatively close to the actual device. Standard lock-in techniques were
used for all measurements, apart from the conducted d.c. measurements for current annealing and
the in-situ monitoring the device quality (see Section 3.3.4).

In Figure 2.6, the electrical measurement setup is illustrated. First, an a.c. reference signal Vpe¢
provided from a lock-in amplifier (SR830, Stanford Research Systems) was modulated onto an
optional d.c. bias V4. from a d.c. source (SMU GS610, Yokogawa) using a transformer. Second, a
high resistance Rg was used to convert the applied a.c.—d.c. voltage into a current signal, resulting
in an excitation current of Ioyc (ac) = 1 — 10 nA with a frequency of 78 Hz running through the
device (plus an optional d.c. current). 78 Hz was chosen to suppress any high frequency effects and
50 Hz noise. The a.c. voltage drop V. across the device was measured using a second lock-in
amplifier (SR865, Stanford Research Systems) linked via V¢ to the first one. To consider the actual
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Figure 3.6 Electrical measurement setup. Lock-in techniques were used in the setup to
measure the differential resistance as well as conductance. It included the following units: a
d.c. source, two lock-in amplifiers, a current amplifier as well as a multimeter and two source
measure units. In addition, a transformer was used to mix the a.c. and d.c. signals, and a
resistor to convert the applied source-drain voltages to current.

current flowing through the device, it was amplified by a current amplifier (Model 1211, DL
Instruments) and its a.c. [, . and d.c. component I . were measured using the first lock-in amplifier
as well as a multimeter (Multimeter 34461A, Keysight), respectively. With the measured 1}, . and
I, ., the differential resistance and conductance of the devices could be calculated. To manipulate
the gates, two source measure units (SourceMeter 2450, Keithley) were used to apply the top V;
and bottom gate voltages V}, and simultaneously measure the corresponding leakage currents, I;
and I,.

In order to control all electrical devices and specify their settings as well as to collect the data during

the electrical measurements, a software developed by Felix Winterer!'? was used.

3.5 Device Calibration

For each device, a set of calibration measurements were conducted to find its charge neutrality
point, to convert the top and bottom gate voltages into charge carrier density and electric field as
well as to calculate the contact resistance of the sample.

At first, a top and bottom gate voltage sweep was performed at zero magnetic field (see Figure 3.7a).
The line of highest resistance value R,,, ;. (V},) for each V, (dashed line in Figure 3.7a) indicates charge
neutrality. Moreover, the slope of the diagonal yields the gate coupling ratio «, see Section 2.7.
Second, Eqgs. (2.39) and (2.41) were used to define the dependence of n and E on the top and

bottom gate voltage:
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which were specified in the measurement software. Afterwards, precise charge carrier density and
electric field sweeps were conducted (see Figure 3.7b and c). Hereby, V,? as well as Vl? were initially
set to zero and only an estimate of the bottom capacitance C;, was used, calculated from the etching
time and following Eq. (2.40). Subsequently, Lorentzian functions were fitted to both data sets to
determine their respective offsets n,¢r and E,¢¢. Using Egs. (3.4) and (3.5), the position of the CNP
at E = 0 could be derived by

Moy + 260Eofr

Ve =
t 2aCb

(3.6)

and

_ enoff - ZEOEOff
2G, '
To obtain the correct value for C}, and hence a precise calibration of the n — and E — axis, a fan

Vl? = (3.7)

diagram was recorded (see Figure 3.7d). The appearing quantum Hall states could be linked to
integer filling factors v in sequential order. Subsequently, linear functions following B =
th(a(Vt -V + - Vl?))/(ezv) were plotted for each —4 < v < 4 state. The true C,, see
Eq. (2.40), could be determined by tuning dg;p, and descheq in @ way that the linear functions lie in
the center of the corresponding quantum Hall plateaus (dashed lines in Figure 3.7d).

Finally, in two-terminal transport measurements there always persists an in-series contact
resistance, and its calculation as well as subtraction are crucial. For this purpose, a density sweep
at B = 2Tand E = 20 mV nm™* was performed. Figure 3.7e shows the conductance for hole doping.
Note, that the case for electron doping behaves similarly. At this magnetic field, all integer quantum
Hall states are fully visible. The applied finite electric field ensures the emergence of layer polarized
states. The appearing quantum Hall states were compared to the unique Landau level diagram of
bilayer graphene (see Section 2.4) and linked to integer filling factors in sequential order. Then, a
constant fit to each plateau was conducted to obtain their respective conductance (or resistance)
values, which were subsequently plotted against the corresponding inverse filling factor (see Figure
3.7f). A linear fit to the data yields the contact resistance R, as its intercept and the von Klitzing
constant as its slope. The former was subtracted to all measurements, whereas the latter acted as

sanity check.
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Figure 3.7 Device calibration procedure. a) Resistance as a function of top and bottom gate
voltage. The directions of both charge carrier density and electric field are indicated. The
dashed line illustrates charge neutrality. b),c) Conductance as a function of charge carrier
density (b) and electric field (c) in the uncalibrated device. In both cases, a Lorentzian fit (in
red) to parts of the data and the respective offsets n,rr and E, ¢ are shown. d) Conductance
as a function of magnetic field and charge carrier density at zero electric field. The appearing
quantum Hall states can be linked to integer filling factors of sequential order. Linear fits
(dashed lines) to the appearing quantum Hall states help to calculate the correct Cy, and are
labeled with the corresponding filling factor. e) Conductance as a function of negative charge
carrier density (i.e. hole doping) for B = 2 Tand E = 20 mV nm™. To each appearing quantum
Hall plateau, a constant function is fitted (red lines). The states are labeled with their
respective filling factor. f) The resistance values obtained from the fits in (e) plotted versus the
corresponding inverse filling factor. A linear fit to the data (solid red line) allows for the
calculation of the contact resistance R, which is the intercept of curved red line. The dashed
red line is a guide to the eye.



4 Quantum Anomalous Hall Effect in
Bilayer Graphene

Part of the findings presented in this chapter have been published in Ref.%3. The full article can be
found in Appendix A.1.

4.1 Summary

The quantum anomalous Hall effect has only been observed in magnetically doped topological

45,113,114 29,30,115-117

insulators and precisely aligned moiré heterostructures . However, it has been
theoretically predicted to occur also in pure Bernal-stacked bilayer graphene333, In Ref.23, which is
part of this thesis, states with a conductance of +2 e? h™! were observed that survive down to
anomalously small magnetic fields as well as up to temperatures of 5 K and show a magnetic
hysteresis providing compelling evidence of orbital magnetism.

In the study, dually gated freestanding bilayer graphene devices were fabricated and current
annealing was used to obtain ultraclean samples. Near-field optical microscopy was used to ensure
the absence of any domain walls in the devices. The dual-gate structure was exploited to tune charge
carrier density and electric field independently. By varying n and B for various E, quantum Hall
states with a conductance of +2 e? h™! were tracked down to vanishing magnetic fields. Notably,
they appear only within a specific range of intermediately strong electric fields. Their emergence is
consistent with a theoretically reported octet of exotic ALL phases, which are quantum anomalous
Hall phases with a partial layer polarization as well as a substantial orbital moment*® (see Section
2.3). So far, evidence of this phase has only been found for magnetic fields of B > 1.2 T%, however,
as one of the competing quantum Hall ground phases in bilayer graphene, it is predicted to survive
down to zero magnetic field*. Moreover, owing to the substantial orbital moment and resulting
quantum anomalous Hall character, a magnetic hysteresis is expected. In Ref.23, exactly this behavior
was confirmed, with a hysteresis appearing only for a specific filling factor around v = +2 and,
again, intermediately strong electric fields, consistent with the properties of the ALL phase. In
addition, the temperature dependence of the v = +2 quantum anomalous Hall phase compared to

thev = 0, +4 states were examined at B = 0.5 T. The resulting activation energy gap of thev = —2
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state shows a specific electric field dependence consistent with its partial layer polarization. The
surprising robustness of the v = —2 state, which is on par to the one of the v = —4 state, illustrates
the coupling of electric and magnetic fields to the layer polarization and substantial orbital moment,
respectively.

Notably, the here observed QAH phase differs from the QAH effect in magnetically doped

45113118 n these materials, it arises from a combination of topological

topological insulators
properties (caused by spin-orbit coupling) and broken time-reversal symmetry (owing to magnetic
dopants), whereas in bilayer graphene it is ought to be of orbital nature due to a vanishing spin-
orbit coupling. Moreover, the ALL phase is caused by spontaneous chiral symmetry breaking®,

unlike in moiré heterostructures?®3011>-117

, in which the orbital magnetism is obtained by artificially
designing the band structure. Besides a quantized charge Hall conductivity, the QAH phase in bilayer
graphene possesses also spin, valley and spin-valley QAH effects3*33 (see Section 2.3), more unique

features which distinguish it from the QAH effects in other materials.

4.2 Outlook

The observation of the quantum anomalous Hall octet in bilayer graphene is only the first step
towards understanding its nature. Several aspects of it are worth future studies: first, a four-terminal
device geometry would greatly help to examine the ALL phases, since its implementation would
enable the independent determination of longitudinal and Hall resistance. One way would be to
fabricate heterostructures consisting of graphene and hexagonal boron nitride®. Processing
multiterminal devices is standard in this type of devices®?'!8, however, the strength of electron-
electron interactions, and hence the observation of the v = +2 quantum anomalous Hall octet,
could be affected by embedding the bilayer graphene in a material with high dielectric constant®?.,
Yet, even in freestanding devices the realization of a multiterminal device is possible and has been
successfully established previously in a cross-like geometry3>#3119120 Moreover, also a Hall bar
structure with several voltage probes and two current leads (see Figure 4.1a) could be possible.
Although the fabrication of such devices with a top gate is in principle feasible, the annealing of
multiterminal devices is very challenging, as the cleaning process seems to happen

inhomogenously'*

. This could hamper the observation of spontaneously broken-symmetry
states®®, All in all, if a sufficiently clean, multiterminal freestanding device can be realized, the
determination of the actual quantization of the Hall conductance should be the first goal. Moreover,
the full exploration of the magnetic hysteresis, one of the major aspects of the quantum anomalous
Hall effect, would be facilitated. In particular, properties such as the coercive magnetic field and its
temperature dependence could be measured properly. Both have been explored in moiré

29,30,115,116

systems and greatly helped to understand the underlying phenomena.
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Figure 4.1 Aspects of the quantum anomalous Hall octet in bilayer graphene suitable as
subjects for future studies. a) Optical microscopy image of a multiterminal bilayer graphene
device. The bilayer graphene flake (dashed, green) is contacted in a Hall bar geometry with
four voltage probes and two current leads. A designed but not realized top gate (dashed, blue)
is illustrated. The device is not yet freestanding. b) Schematic cube illustrating the tunability
of the quantum anomalous Hall octet. Each corner represents one of the eight ALL phases
(labeled with roman numerals) with a unique combination of polarities of n, E and B as well
as a charge Hall conductivity of either +2 e? h™! (red) or —2 e? h™! (blue). The phases are
tunable by n, E and B. [Figure adapted from Ref.#%]. ¢) Charge o ¢®), spin aS®), and valley
Hall conductivity oV®) in units of €2 h™1 for the ALL phase in ABC-like graphene multilayers
with a layer number of | > 2. [Figure adapted from Ref.*’].

A second intriguing aspect is the tunability of the phase. Since it shows a partial layer polarization,
the phase is not solely defined by the magnetic field and the sign of the filling factor (i.e. positive or
negative charge carrier density), but also by the direction of the electric field®?33, In fact, eight ALL
phases, each unique in its combination of polarities of n, E and B, form together a quantum
anomalous Hall octet (see Figure 4.1b). By tuning one of the three physical quantities, the system
can be switched into another ALL phase. Four of the phases are expected to show a conductance of
+2 e? h™1, whereas the other half exhibit a conductance of opposite sign. Although reversing the
direction of the electric field will not change the conductance but only the layer polarization,
inverting the charge carrier density or the magnetic field does switch it from +2e?h™! to
—2e? h™! (or vice versa). This tunability by charge carrier density could be exploited to control a
magnetic state electrically by gate voltages. Experimentally, this has been realized in moiré
heterostructures!®, Another possibility to control the magnetic state could be the application of a

d.c. bias current, which also has been demonstrated in moiré heterostructures®=°. It seems that a
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d.c. current can modify the magnetization of the quantum anomalous Hall phase, acting in a similar
way as an external magnetic field®>3°. Enabling the tunability of a magnetic state by either a gate
voltage or a d.c. current in such a simple system as bilayer graphene would be a great achievement.
In case the effect could be stabilized for higher temperatures, an application as a magnetic memory
in logic devices comes immediately in mind!*>. However, even for low temperatures interesting
applications are possible!>121,

Lastly, since the quantum anomalous Hall octet is not uniquely tied to bilayer graphene, but is
instead universal to ABC-like graphene stacks®>®3, it is well worth to examine the phases in
rhombohedral multilayer flakes with a layer number of [ > 3. Although the fabrication of devices
with rhombohedral stacking is more difficult due to its instability towards Bernal stacking during
processing'??, electron-electron interactions are expected to be enhanced for an increasing amount
of layers in ABC-like graphene stacks**”°, at least up to a certain number of layers3?33, In fact, the

ratio between Coulomb and kinetic energy follows”
re c n~-1/2 (4.1)

i.e. at charge neutrality it diverges faster for a high number of layers than in bilayer graphene. This
indicates even stronger electron-electron interactions in systems with more layers, up to a critical
value3?33, |t would be interesting to examine the ALL phases and in particular their parameters such
as critical temperature and coercive magnetic field as a function of [. Moreover, the charge, spin
and valley Hall conductivities of the quantum anomalous Hall octet depend on the layer number?,
see Figure 4.1c. Thus, adding layers to an ABC-like system provides a unique way to tune some of
the properties of the appearing ALL phases. In a first follow-up study, the quantum anomalous Hall
octet has been revealed in rhombohedral trilayer graphene!?. As expected, it exhibits a charge Hall
conductivity of +3 e? h~! and a magnetic hysteresis indicating the presence of orbital magnetism.
However, these observations are only the first step towards examining the evolution of the ALL

phases in ABC-like graphene stacks with increasing layer number.
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5 Topological Valley and Quantum Hall
Edge Transport

Part of the findings presented in this chapter have been published in Ref.>. The full publication can
be found in Appendix A.2 and the corresponding supplementary material in Appendix B.1.

5.1 Summary

The possibility to manipulate the valley degree of freedom in bilayer graphene to achieve valley-
polarized quantum transport has been predicted® and successfully realized in experiments by
locally inverting the direction of an applied electric field®>°2, An analogous effect emerges at stacking
domain walls in Bernal-stacked bilayer graphene. Here, topologically protected valley-helical states
emerge in case a uniform electric field is applied®®®12%, In Ref.®3, which is part of this thesis, the
robustness of these kink states is examined in the presence of various broken-symmetry states
within the manifold of the eight-fold degenerate zeroth Landau level. An intriguing interplay
between topological domain wall and quantum Hall edge transport is observed.

In the study, dually gated freestanding bilayer graphene devices were fabricated with two distinct
configurations: devices with a domain wall contacted on both ends and pristine devices without any
dislocation as reference. After current annealing the devices, the dual-gate structure was exploited
to tune charge carrier density and electric field independently. In a first set of measurements, the
behavior of the two-terminal resistance was examined under an electric field to confirm the
presence of gapless kink states (see Section 2.5), as observed in previous studies®**%%2, In fact, for
increasing electric field the resistance saturates at R = 8.5 kQ. With a device length of L = 0.7 um
and four valley-projected, one-dimensional channels (i.e., a theoretically expected conductance of
0o = 4 e? h™1) this results in a mean free path of 4,, ~ 2.2 um. Since A,, > L, ballistic charge
transport supported by the domain wall is confirmed. The long mean free path highlights the high
quality of the device comparable to previous studies®®°2, Then, the focus was laid on the behavior
of the kink states within certain broken-symmetry phases, which has not been examined so far due
to the following reasons: Investigations on artificially constructed domain walls can only be

conducted at non-zero applied electric field as a matter of principle®*°2, More specifically, as
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locally inverted electric fields are needed to realize the valley-polarized quantum transport in these
designed structures, the regime around zero electric field is inaccessible. Furthermore, the quantum
transport along stacking domain walls was mainly examined for zero magnetic field and in devices
with lower quality®°. To this end, a second set of measurements was conducted at various magnetic
fields. Measuring the conductance as a function of electric field and charge carrier density at low
magnetic fields reveals an almost constant value of approximately 4 e? h~1 within the eight-fold
degenerate zeroth Landau level of bilayer graphene. Starting at v = 0, for increasing filling factor
the initial four kink states per direction are successively traded for quantum Hall edge states with
higher quality. Hence, the conductance is decreasing only slightly. However, at stronger magnetic
fields, the domain wall conductance is suppressed owing to the formation of minigaps (for the case
of the v = 0 canted antiferromagnetic phase) or intervalley backscattering (for the case of the v =
+1,+2 quantum Hall states). Overall, a complex interplay between topological domain wall and
quantum Hall edge transport can be observed. Lastly, a set of temperature dependent
measurements confirm both a metallic behavior of the domain wall as well as its negligible impact

on the quantum transport within the v = +4 quantum Hall phases.

5.2 Outlook

Although the domain walls have recently gained a lot of interest owing to their ubiquity in magic-
angle twisted bilayer graphene!?>125, they are rather unexplored in various aspects: in addition to
the low electric field versus charge carrier density regime, which was examined in the present study,
the impact of domain walls on higher Landau levels is worth further investigations. Theoretical
calculation predict an influence of both stacking and artificial domain walls on the energetic
landscape of higher Landau levels®+'%4, The otherwise energetically flat Landau levels display ripples
and resonances caused by the presence of domain walls'?*. Under certain circumstances, they could
provide additional charge channels and alter the conductance of the quantum Hall states. However,
to resolve states with higher filling factors |[v| > 4 as a function of magnetic field, large charge
carrier densities need to be applied. Since the achievable electric field and charge carrier density
regime in freestanding devices is rather limited, the use of heterostructures consisting of bilayer
graphene and hexagonal boron nitride'® are inevitable to examine higher Landau levels’.

6287 in the presence of a

In addition, the v = 0 ferromagnetic phase at high in-plane magnetic fields
stacking domain wall is worth further investigations. In bilayer graphene, the v = 0 state at zero
charge carrier density and electric field transitions for increasing magnetic field from the layer
antiferromagnetic®*®! to the canted antiferromagnetic®*!?’ and finally to the ferromagnetic
phase®?8%8L127 The corresponding energetic edge gap is maximal for the LAF state, shows a smaller
value for the CAF phase, and vanishes in the FM phase, where gapless states with opposite spin

emerge®?8. This evolution is in stark contrast to the expected behavior of the kink states. In the
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present study it was revealed that chiral states are present in the layer antiferromagnetic phase, but
evidence of a minigap was found in case the spins are canted. However, stacking domain walls do
not necessarily correspond to a topological domain wall in the order parameter and the absence of
gapless states was predicted for thev = 0 FM phase. Future experiments investigating the evolution
of the chiral states at the kink alongside the transition of the v = 0 phase and its edge states is worth
considering. For this purpose, high in- and out-of-plane magnetic fields are needed®*’.

Moreover, domain walls provide a flexible platform to study correlated physics!?1%, As the charge
transport along the dislocations is one-dimensional, Coulomb interactions are expected to cause
strong perturbations and the quasiparticles should behave like a Luttinger liquid!?®13°, Experimental
consequences are for example a specific power-law dependence of the differential conductance?:

oxT*, foreVy. < kgT, (5.1)

and
o (Vyc)*, foreVy. » kgT, (5.2)

where kj is the Boltzmann constant and a a constant. This means, the behavior of the conductance
depends on the relation between applied d.c. voltage V,; . and temperature T. First steps towards
examining these dependencies have been conducted in this thesis. Figure 5.1a shows the
conductance as a function of d.c. current I; . along the domain wall measuredatn =E =B =0
for various temperatures on a log-log scale. As expected'®%3! the curves for different temperatures
collapse in a single curve in the high current (or voltage) regime and can be described by a power-
law function o « (I5.)* for eV >» kgT, with @ = 0.48. However, the true voltage dependency
could not be measured due to the usage of in-series resistors for low-pass filtering. Furthermore, an
excitation current rather than a voltage is applied in the setup (see Section 3.4). Moreover, to verify
the temperature dependence of the conductance in the eV; . K kgT regime, higher temperatures
than the T < 10 K used are needed. Thus, the measurement shown in Figure 5.1a are only a first
step and modifications to the electrical setup as well as detailed measurements at higher
temperatures are necessary to fully explore the expected Luttinger liquid in stacking domain walls
in bilayer graphene.

More exotically, in case a certain combination of electric field and out-of-plane as well as high in-
plane magnetic fields is applied, a so-called spin ladder has been proposed'®. Hereby, the spin of
the four chiral states on each side of the domain wall is locked to the direction of movement, i.e.
chiral quasiparticles with opposite charge have opposite spins'?®. Consequently, a two-leg spin
ladder forms on each side of the domain wall, weakly coupled to each other!®. In each leg, two
counterpropagating modes with opposite chirality are present but spin and direction of movement
are locked in the same way. Due to the spin-charge coupling, exotic correlated phases such as charge

density wave or super fluidic phases are theoretically proposed?®. Experimentally, the phases are
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Figure 5.1 Aspects of stacking domain walls in bilayer graphene interesting for future
studies. a) Log-log plot of the differential conductance as a function of applied d.c. current at
n = E = B = 0 for various temperatures. The data collapses in a single curve to which a
power-law function o < (I1;.)% is fitted (dotted line). b) Topography (left), s-SNOM amplitude
(mid) and phase (right) image of a bilayer graphene flake. A stacking domain wall is present,
visible in the amplitude and phase images. With sufficiently good alignment, regions with
shear and tensile strain transitions can be differentiated. Scale bars: 0.5 um.

expected to exhibit special temperature dependencies of the conductance and to be tunable by
electric and magnetic fields!?°.

Another interesting but unexplored aspect of dislocations in bilayer graphene is the influence of
their exact species. As explained in Section 2.5, the stacking order can change within a smooth,
defect-free transition region in two different ways: either by tensile or shear strain®’. Their
differentiation is possible with near-field optical microscopy®’**? (see Figure 5.1b), since the two
species result in distinct boundary conditions and hence interference pattern of the plasmons.
Usually, a shear domain wall features one main amplitude maxima and two secondary ones,
whereas a tensile strain transition shows two equally pronounced maxima. However, the patterns
are doping and gate-dependent®” and the overall procedure is challenging, since a perfect alignment
of the setup is needed to distinguish the different plasmon reflection patterns of tensile and shear
strain solitons. Previous studies differentiating the species focused on optical properties®” and
charge carrier transmission!3? and confirmed distinct behaviors. However, investigations regarding

the quantum transport are still missing and worth further effort.
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6 Electric Field Disorder in Ultraclean
Bilayer Graphene

Part of the findings presented in this chapter have been published in Ref.*33. The full publication can
be found in Appendix A.3 and the corresponding supplementary material in Appendix B.2.

6.1 Summary

Bilayer graphene, owing to its various internal degrees of freedom and non-vanishing density of
states at the charge neutrality point when trigonal warping® is neglected, exhibits a rich variety of
broken-symmetry states3¢*14662 Coherent experimental determination of the exchange-induced
ground state has up to now been challenging due to the interplay between interaction and disorder
effects?”. In Ref.!33, which is part of this thesis, the strength of the spontaneously gapped layer
antiferromagnetic ground state can be correlated to the behavior of phase transition between
various broken-symmetry states at finite magnetic field. Spatial variations in the interlayer potential
difference allowing for the spontaneous formation of domains of different broken-symmetry states
are determined as common cause.

In the study, dually gated freestanding bilayer graphene devices were fabricated, and special care
was taken on the presence of any stacking domain walls. Overall, eleven devices, two with stacking
domain walls within the channel but not connecting the two contacts, were investigated. After
current annealing the devices, bottom gate voltage sweeps at various fixed top gate voltages already
revealed major differences in the transport signatures at T = 1.5 K. Measurements at base
temperature (T < 10 mK) support this observation. In particular, some devices exhibit an insulating
phase at charge neutrality with a nonmonotonic behavior of the resistance for increasing electric
field. Contrarily, in other devices the spontaneously gapped phase is absent, and the resistance
increases monotonically for increasing electric field. The measurements reflect well the ambiguous
observations from literature, which report either a vanishing or a finite conductance at charge
neutrality®**4¢, However, considering the behavior of all examined devices, a continuous spectrum

of the resistance (or conductance) rather than a bimodal distribution® is observed.
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At first, the spontaneously gapped state at charge neutrality and zero electric field shows insulating
behavior with phase transitions appearing at |E| > 0. Hence, according to these signatures, it can
be identified as the interaction-driven layer antiferromagnetic state in bilayer graphene3249% (see
Section 2.3). Secondly, in case the LAF state is present, the conductance at charge neutrality ocyp
shows an activated T dependence and the width of the ground state in electric field AES? increases
for decreasing T. As both quantities correlate with the critical temperature T, for several devices,
they can be taken as measures of the strength of the LAF state. As a result, the spectrum of a-np
and AESP observed across all devices demonstrates a continuous weakening of the spontaneously
gapped state. As possible cause for this distribution, differences in the fabrication process or in the
residual charge disorder present can be excluded since no systematic dependencies can be
detected. Moreover, both devices with a stacking domain wall show an intermediately strong LAF
ground state, hence their presence cannot explain its weakening or absence, although their
presence has been made responsible for unusual transport signatures in the past®®!34, Furthermore,
the appearance of additional stacking domain walls owing to high current annealing as reported in
literature®* can be excluded by measurements prior and after the annealing procedure.
Nonetheless, AESP depends on the current density required to observe saturation during annealing.
The heat generated by the electric current during annealing leads to partial evaporation?? and most
likely to a redistribution of contaminants within each layer towards the cooler contacts, instead of
between the two layers. Thus, the process effectively removes lateral charge fluctuations producing
spatially varying in-plane electric fields'*® (i.e. residual charge disorder), yet charge imbalances
between the two layers creating spatially varying out-of-plane electric fields'*3¢ (i.e. electric field
disorder) remain. Hereby, devices with shorter channels exhibit higher shares of contaminated
regions near the contacts compared to devices with long channels. Moreover, the contacts act as
heat sink?, i.e. the wider the contacts the more likely the movement of contaminations towards
them. Hence, electric field disorder is expected to be primarily present in devices with short
channels and wide contacts. This can explain the observed dependency of AES? on the device
geometry, since the presence of electric field disorder allows for the formation of domains of
competing spontaneously gapped states other than a uniform LAF state®? within a device. Then, the
LAF state is effectively suppressed, which results in a smaller AES?. Spontaneous DWs separating
these domains, which are known to carry gapless edge modes>?, result in a finite acyp.

To find further proof of electric field disorder, the quantum Hall regime was investigated.
Conductance maps as a function of charge carrier density and electric field at B = 3 T reveal distinct
behaviors of the phase transitions between (partially) layer polarized v = +1, +2 broken-symmetry
states of opposite layer polarization around zero electric field, when comparing all devices. For
example, the width of the phase transition in electric field between the v = —2 state at E > 0 and

the one at E < 0, AEV="2, ranges from peak-like to a broad phase transition region with high
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conductance. Again, a continuous distribution of AEY="2 is observed. Since AEY=~2 correlates well
to AESP, electric field disorder as common cause seems likely. Moreover, a varying number of
spontaneously formed domains with states of opposite layer polarization present can again explain
the continuous distribution. The resulting spontaneous domain walls carry charge®*, which results
in the enhanced conductance at the transition regions. Similar findings are made when examining
the phase transition between the canted antiferromagnetic and fully layer polarized v = 0 phases.
To this end, conductance maps as a function of electric and magnetic field at zero charge carrier
density were recorded. Again, the extend of the phase transition in electric field ranged from peak-
like to broadened and correlates to AESP. Once more, the picture electric field disorder causing the
formation of multiple domains of CAF and FLP states in the transition region is plausible”.

Overall, the results provide a unique insight into the role of electric field disorder on broken-
symmetry states and contribute to solving the debate about the interaction-driven ground state of

ultraclean bilayer graphene.

6.2 Outlook

The measurements show that mainly electric field disorder determines the electric field dependence
of various broken-symmetry states. Although stacking DWs were present in some of the devices, it
seems they play only a minor role in e.g. suppressing the LAF ground state. In principle, stacking and
spontaneously arising DWSs should affect the quantum transport in a similar way, however, the
number of domains might be crucial. Presumably, the spontaneously emerging domain walls arise
in a complex network, whereas the examined devices with stacking fault possessed only a single
one, which might well be the reason why the quantum transport was not as strongly affected. In
fact, when increasing the number of dislocations, the consequences could be more drastic and
comparable to the case of spontaneously arising domains. To examine the influence of the number
of domains present within a device, graphene flakes with network-like structures of stacking DWs
could be used. Clearly, they can occur naturally*®>” and have also been found in the course of this
thesis (see Figure 6.1). One major difficulty might be, however, the mobility of stacking DWs.

133

Although single dislocations seem to be stable during processing and current annealing®?, in case

several are close to each other, they could possibly merge, as reported in literature®®,

Another interesting aspect worth further experimental effort is the magnetic field dependence of
the investigated phase transition regions. In the present study, phase transitions between distinct
(partially) layer polarized v = +1, +2 phases and between the canted antiferromagnetic and fully
layer polarized v = 0 phases were examined. The explanation for the increased conductance within
the transition regions is the formation of domains, as reported in literature®’>. However, in both
regimes, evidence for the emergence of new phases at high magnetic fields have been found:

Around zero electric field, where the (partially) layer polarized v = +1,+2 phases are unstable,
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Figure 6.1 Network of stacking domain walls in bilayer graphene. Topography (left) and s-
SNOM amplitude image (right) of a bilayer graphene flake with a network-like structure of
stacking domain walls present. Scale bars: 1 um.

layer unpolarized v = +1 and +2 phases appear®?®. Similarly, within the transition region of the
canted antiferromagnetic to the fully layer polarized phase, an intermediate phase has been
reported’®%, In both cases, the additional phases only occur for very high magnetic fields. Future
measurements could examine the emergence of these phases and how they are affected by
disorder. Presumably, spontaneously formed domains and/or the presence of stacking DWs have an
impact on the critical magnetic field needed for their emergence. Hence, investigating the magnetic
field dependence of the conductance within these regimes could be worth additional effort.
Measurements at very high magnetic fields would be needed on several devices with different
amounts of disorder present.

Moreover, an interesting subject for future studies is the influence of spontaneously forming
domains on the quantum transport in heterostructures consisting of hexagonal boron nitride and
bilayer graphene. The phase transitions between the canted antiferromagnetic and fully layer
polarized v = 0 phases show similarities to the ones observed in freestanding devices, since a peak-
like®27687 and an extended region of enhanced conductance in electric field® have been identified.
This suggests that an analogous, underlying phenomena controls the appearance of the phase
transitions in heterostructures. However, a major difference to freestanding devices lies of course
in the fabrication process. In particular, current annealing is redundant in heterostructures, as on
the one hand the bilayer graphene flakes are not exposed to PMMA or something alike during
processing®®, and on the other hand applying a current will hardly move any residues trapped within
the heterostructures. Still, examining the phase transition within hexagonal boron nitride/bilayer
graphene devices could be worth further effort. This hold true for phase transitions of higher Landau
levels, since they are mostly inaccessible when using freestanding devices owing to the limited
voltage and hence charge carrier density range applicable. Similar to the broken-symmetry states of
the zeroth Landau level, they exhibit multiple phase transitions in electric field”®, which might be

susceptible to the spontaneous formation of domains.
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7 Conclusion

In the course of this thesis, the quantum transport in ultraclean, freestanding Bernal-stacked bilayer
graphene was investigated. Special attention was given to any stacking domain walls present within
the examined bilayer graphene flakes. To this end, scattering-type scanning near-field optical
microscopy was conducted prior to contacting to detect any stacking faults present in the selected
flakes. Subsequently, dually gated field-effect transistors were fabricated. The dual-gate geometry
was exploited to independently tune charge carrier density and electric field in the bilayer graphene

during magnetotransport measurements at low temperatures.

In the first part, clean bilayer graphene devices without any domain wall present were used to
investigate the most exotic of the competing quantum Hall phases, which appear owing to
spontaneous chiral symmetry breaking close to charge neutrality towards zero electric and magnetic
field. To this end, quantum Hall states with a conductance of +2 e? h™! were tracked for decreasing
magnetic field. It was found that they survive down to anomalously small magnetic fields within a
certain range of electric fields. Moreover, a magnetic hysteresis of the conductance was observed,
only appearing at a specific filling factor of v = +2 and intermediately strong electric field. These
findings are consistent with the emergence of an octet of quantum anomalous Hall phases and can
be explained by the coupling of electric and magnetic field to the partial layer polarization and
substantial orbital moment of the appearing phases. Each of the phases is unique in its combination
of polarities of applied electric as well as magnetic field and charge carrier density. In addition,
temperature dependent investigations of the v = —2 QAH phase indicate a surprisingly high
stability, as its activation energy gap is comparable to the one observed for the robust v = —4 state.
The observed quantum anomalous Hall effect in Bernal-stacked bilayer graphene differs from the
one observed in magnetically doped topological insulators, as it is primarily of orbital nature due to
vanishing spin-orbit coupling. Moreover, it is caused by spontaneous chiral symmetry breaking,
unlike the quantum anomalous Hall effect appearing in the artificially designed band structure of
moiré heterostructures.

In the second part, devices with a stacking domain wall connecting the source-drain contacts were
examined and compared to defect-free samples. Tracking the resistance as a function of electric
field for zero magnetic field revealed a saturation at R =~ 8.5 kQ in case a stacking fault is present.

This observation confirms topologically valley transport along the domain wall separating AB and
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BA stacking regions, as reported in previous studies. With a mean free path of 4,, = 2.2 um, the
gapless kink states show a surprisingly high quality. By additionally applying a magnetic field, a
complex interplay between topological valley transport originating from the domain wall and
guantum Hall edge transport arising from the emerging broken-symmetry quantum Hall phases was
observed. More precisely, for low magnetic fields, the conductance remains almost constant at
approximately 4 e? h~! within the complete eight-fold degenerate zeroth Landau level, since the
initial four kink states per direction within the v = 0 state are successively traded with increasing
filling factor for quantum Hall edge states. However, the conductance originating from the kink
states decreases at high magnetic fields. Possible explanations are the formation of minigaps in the
case of the v = 0 canted antiferromagnetic phase and the occurrence of intervalley backscattering
for the v = +1,+2 quantum Hall states. Lastly, a set of temperature dependent measurements
confirmed both a metallic behavior of the domain wall as well as a negligible impact of the domain
wall on the quantum transport within the v = +4 quantum Hall states. Overall, the presence of
dislocations drastically alters the quantum transport in bilayer graphene, as both topological valley
and quantum Hall edge transport need to be considered in the vicinity of the eight-fold degenerate
zeroth Landau level.

In the third part, in total eleven devices, two of which exhibit a stacking domain wall but not
connecting source and drain, were fabricated to investigate the true interaction-driven ground state
of bilayer graphene. Comparing the transport signatures at charge neutrality for all devices revealed
major discrepancies ranging from the emergence of an insulating state to a finite conductance and
a resulting nonmonotonic or monotonic behavior of the resistance for increasing electric field,
respectively. In the former case, an activated temperature dependence of the conductance as well
as an expanding of the insulating phase in electric field with decreasing temperature was found. The
gapped phase could be attributed to the layer antiferromagnetic state, and the distribution of
behaviors across all devices to its continuous weakening. Any stacking domain walls present in a
device seem not to be the major cause for the weakening. Instead, the continuous behavior can be
explained by a variable amount of electric field disorder present, which seems uncorrelated to
residual charge disorder but rather depends on the device geometry. Its presence allows for the
spontaneous formation of domains of competing spontaneously gapped states other than a uniform
LAF state within a device. Further proof for the presence of electric field disorder was found in the
quantum Hall regime: Phase transitions between the broken-symmetry v = +1,+2 states of
opposite layer polarization arising around zero electric field as well as phase transitions between
the canted antiferromagnetic and the two fully layer polarized v = 0 phases show similar
distributions of behaviors when comparing several devices. The widths of the phase transitions in
electric field correlate well with the strength of the layer antiferromagnetic ground state,
highlighting their common cause. The observations provide a unique insight into the role of electric

field disorder on the appearance of broken-symmetry states and contribute to solving the debate
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about the interaction-driven ground state of bilayer graphene.

In summary, the results presented in this thesis give new insights into correlated physics in the
naturally occurring Bernal-stacked bilayer graphene, and proof that it retains many unexplored and
intriguing physical phenomena despite being subject of intensive research for more than a decade.
At first, the findings demonstrate that the seemingly simple system can exhibit exotic phases such
as the quantum anomalous Hall effect without the need of delicate moiré heterostructures. Here,
more effort on the fabrication of four-terminal devices is needed in the future to enable the
differentiation of longitudinal and Hall resistance. In addition, new discoveries on the quantum
anomalous Hall effect are expected since the observed phase is not uniquely tied to bilayer
graphene but is instead universal to its rhombohedral cousins. Secondly, the measurements on
structural domain walls show that they can greatly impact the quantum transport and emphasizes
the inevitable need to regard them in future studies. It might be worth to consider precise near-field
imaging, which would allow distinction between tensile and shear domain walls and their unique
impact on the quantum transport in bilayer graphene. Lastly, the extensive studies on eleven dually
gated devices help in solving the longstanding debate about the ground state in bilayer graphene
and explain the corresponding ambiguous observations from literature. Moreover, the observations
underline the importance of further investigations on the impact of electric field disorder in general,
as it should be universal to all two-dimensional materials.

Together, the results highlight bilayer graphene as a highly tunable platform to investigate
fundamental many-body phenomena and open the possibility for exciting developments in low-

dissipation electronics or quantum information science.
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driven by orbital magnetism in bilayer graphene, Nature, published 2021, Springer Nature.

Abstract

The quantum anomalous Hall (QAH) effect—a macroscopic manifestation of chiral band topology at
zero magnetic field—has been experimentally realized only by the magnetic doping of topological
insulators [1-3] and the delicate design of moiré heterostructures [4—8]. However, the seemingly
simple bilayer graphene without magnetic doping or moiré engineering has long been predicted to
host competing ordered states with QAH effects [9-11]. Here we explore states in bilayer graphene
with a conductance of 2 e2 h™1 (where e is the electronic charge and h is Planck’s constant) that not
only survive down to anomalously small magnetic fields and up to temperatures of five kelvin but
also exhibit magnetic hysteresis. Together, the experimental signatures provide compelling
evidence for orbital-magnetism-driven QAH behavior that is tunable via electric and magnetic fields
as well as carrier sign. The observed octet of QAH phases is distinct from previous observations
owing to its peculiar ferrimagnetic and ferrielectric order that is characterized by quantized

anomalous charge, spin, valley and spin—valley Hall behavior [9].
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The quantum anomalous Hall (QAH) effect—a macroscopic manifestation of chiral
band topology at zero magnetic field—has been experimentally realized only by the
magnetic doping of topological insulators' > and the delicate design of moiré

heterostructures*®, However, the seemingly simple bilayer graphene without
magnetic doping or moiré engineering has long been predicted to host competing
ordered states with QAH effects” . Here we explore states in bilayer graphene with a
conductance of 2 € h ' (where eis the electronic charge and h is Planck’s constant) that
notonly survive down to anomalously small magnetic fields and up to temperatures
of five kelvin but also exhibit magnetic hysteresis. Together, the experimental
signatures provide compelling evidence for orbital-magnetism-driven QAH
behaviour that is tunable via electricand magnetic fields as well as carrier sign. The
observed octet of QAH phases is distinct from previous observations owing to its
peculiar ferrimagnetic and ferrielectric order thatis characterized by quantized
anomalous charge, spin, valley and spin-valley Hall behaviour®.

Intricate interplay between single-particle effects such as the band
topology and many-body effects such as the electron-electroninterac-
tiondetermines the electronic ground states of many low-dimensional
systems. An especially interesting class are systems in which quasi-
particle Berry curvature gives rise to orbital instead of spin magnetic
moments, withthe consequence that effects usually requiring substan-
tial spin-orbit coupling and/or intentional magnetic doping can occur
spontaneously®. A prominent example is the quantum anomalous Hall
(QAH) phase that displays quantized Hall resistance at zero magnetic
field owing to the presence of orbital magnetic order. The QAH effect
is characterized by a finite number of topologically protected chiral
edge channels. So far, it has been experimentally realized in two dis-
tincttypesof systems. In magnetically doped topological insulators' ?,
topological properties and broken time-reversal symmetry (caused by
spin-orbitcoupling and aligned magnetic dopants, respectively) lead to
topologically non-trivial Chern bands'*®, In these spin Cherninsulators,
magnetism occurs mainly owing toordering of electron spin moments.
However, a Chern insulator can also emerge solely owing to a sponta-
neous polarization of the orbital magnetic moments®'**, as recently
observed in delicately designed moiré heterostructures*®, In these
orbital Cherninsulators, orbital magnetism arises because of spontane-
ous gap opening in the half-filled quasiparticle Dirac bands® """, Gapped
Dirac bands with non-trivial Berry-curvature-induced orbital mag-
netic moments have also been predicted®” and observed in naturally
occurring purely carbon-based systems such as bilayer graphene'®”
and its rhombohedral cousins'®. However, orbital magnetism® has not
been clearly pinpointed experimentally in such a simple system as
pure bilayer graphene, despite theoretical studies’ " predicting that
some of the competing ground states should exhibit non-vanishing

exchange-interaction-driven quantized Hall conductivities at zero
magnetic field.

Herewe report the observation of filling factor v=+2 states atanoma-
lously small magnetic fields of about 20 mT in suspended dually gated
bilayer graphene devices. In addition, we observe field tuning and mag-
netic hysteresis, which strongly evidences that the v=+2 statesare
ferrimagnetic, ferrielectric, QAH phases driven by orbital magnetism
in pure bilayer graphene. Using bilayer graphene flakes free of elec-
tronically active domain walls”®* and previously established process-
ing” (Methods, Extended DataFig.1), suspended dually gated bilayer
graphene devices were fabricated (Fig. 1a).

Sweepingboth topand bottom gate voltages, V,and V,, atzero mag-
netic field yields the well known map of the differential conductance,
including theinterlayer electric-field-induced insulating states as well
as the exchange-interaction-induced gapped phase near zero electric
field (Fig.1b)®%. The observation of the latter and the location of the
charge neutrality point at V, = V,, = 0 demonstrates the high quality of
the device (note thatsuch a spontaneous gapis universal for rhombo-
hedral few-layer and Bernal even-layer graphene®®?). The dual-gate
structure allows independent tunability of the charge carrier density n
and the perpendicular electric field £, (Methods). SweepingnatE, =0
reveals a residual charge density inhomogeneity of less than 10° cm ™
(Fig.1b, inset), underlining the high quality of the device” (Methods).

Varying bothnand £, while applying a perpendicular magnetic field
of B=3T (Fig. 1c) reveals the lowest quantum Hall plateaus in bilayer
graphene with the integer filling factors ranging fromv=-4tov=4
(refs.>?%732), resulting from the spontaneous symmetry breaking in the
anomalous N=0Landau levels. Asidentified previously, only thev=0
and v = +4 quantum Hall states are resolved at £, = 0 (Fig. 1c), whereas
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Fig.1| Exchange-interaction-driven quantum Hall states in dually gated,
ingbilayergraph a, False-colour scanning electron microscope
image of asuspended bilayer graphene device. Contacts, top gate and bilayer
grapheneareshowninyellow, blueandred, respectively. b, Conductance map
asafunction of top gate voltage and bottom gate voltage at B= 0 and 7<10 mK.
Inset: conductanceas afunction of charge carrier density at £, =0. Thered
linesarelinear fitsand the dashed red lines are guides to the eye, indicating the
residual charge carrierinhomogeneity in the device. ¢, d, Maps of the
conductanceasafunctionof £, andnatB=3T(c)andB=0.8 T (d). Theroman
numeralsindlabel the ‘ALL phases labelled by the same numeralsinf.

£
freest

thev=+1,v=+2andv=+3statesemerge only atalarger finite electric
field®*2%, Atalower magnetic field of B= 0.8 T (Fig. 1d), only the v=0,
v=1+2and v =+4 states emerge. Surprisingly, in contrast to the v=+4
states, the v=t2states are only stableinanintermediate range of elec-
tricfield (four greenregionsin Fig.1d), that is, both larger and smaller
electric fields can destabilize the v = +2 states.

QAH phasesin bilayer graphene

Althoughthe v = +2statesinbilayer graphene have been observed previ-
ously at B>1.2 T (refs. %), their exact nature—especially with lowering
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e,Schematicrepresentation of one ‘ALL’ QAH phase showing the classical
counterpart of its corresponding spontaneous quantum Hall effect forn, £,
B>0.TandBrefertothetopand bottom graphene layers, respectively. f, Top:
schematic of the eight different ‘ALL’ phases and their corresponding Hall
conductance o' and how they canbe accessed by tuning n, £, and/or B. The
table shows the properties of the QVH and QAH species of the ‘ALL octet: the
layer polarization and orbital magnetization as well as the valley and charge
Hall conductivities, 0" and 0" +/- indicates whether the observables are
even/odd under flipping n, £, or B. Bottom: schematics of the layer
polarizations of the four spin-valley species for four exemplary ‘ALL phases.

the magnetic field towards the B= 0 limit where one can expectintricate
QAH phases and phase transitions as function of electric field—has not
beenidentified previously. The order parameters of these states are
particularly interesting, as they can unveil the yet unclear ground state
of bilayer graphene in the B=0 limit” **, Owing to the quadratic band
touching and non-trivial winding numbers, the exchange interaction in
bilayer grapheneis peculiarly strong and produces non-trivial quasipar-
ticle topological properties'’; various symmetry-broken states have been
suggested as gapped competing ground states™ (Methods, Extended
Data Fig. 2, Table 1), with two families of QAH phases exhibiting orbital
magnetism’. One family manifestinga Hall conductance of4 € h™ (where
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eisthe electronic charge and his Planck’s constant), simply termed the
QAH phase, is a bilayer counterpart of the Haldane QAH state, in which
electrons fromdifferent valleys spontaneously polarize to different layers
resultinginaZ, orbital ferromagnetic order. The other family manifesting
Hallconductance of 2 €? h™', termed the ‘ALL’ phase’, is even more exotic;
as quasiparticles of one spin can choose either one of the two quantum
valley Hall (QVH) phases—electrons from both valleys polarize to the
same layer resulting in a Z, ferroelectric order—whereas quasiparticles
ofthe other spin can choose either one of the two aforementioned QAH
phases (Fig. 1e, Methods, Extended Data Fig. 2). In total, there are eight
different ALL phases forming an octet with Chern number C=+2or Hall
conductance o' = +2 ¢? i (Extended Data Fig. 3). Markedly, each ALL
phase exhibits quantized anomalous charge, spin, valley and spin-valley
Hall effects and hence the name®"°. Owing to its partial layer polarization,
each ALL phase can be stabilized with an interlayer electric field, which
fits well with our observations. At very high electric fields, the phase
vanishes again, losing stability againstafully layer-polarized QVH phase.
Furthermore, applying a perpendicular magnetic field should lower
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forvarious £,. Right: high-resolution measurements around zero magnetic
field. The schematicsindicate transconductance fluctuations corresponding
tothev=0,v=-2and v=—-4states thatareshownwith purple, blueandredlines,
respectively. Solid (dashed) linesindicate the slopes of the respective statesin
casethey are present (absent). Allmeasurements were takenat 7<10 mK.

its energy as the field can couple to the quasiparticle orbital magneti-
zation™. Therefore, switching the sign(s) of the applied n, £, and/or B
resultsinaquantum phase transition between two different ALL phases,
as sketched in Fig. 1f. By flipping £, and n, the layer polarization of the
QVH species and the orbital magnetization of the QAH species become
opposite, respectively. By flipping B, both the orbital magnetizationand
the spin of the QAH species become opposite. Comparing the measure-
mentatB=3T (Fig.1c) and B= 0.8 T (Fig. 1d), we find that the electric
field range at which the octetemerges at B =3 T expands towards higher
electric fields. This demonstrates the enhanced stability of the octet with
increasing magnetic field (see Extended Data Fig. 4 formore dataon the
evolution of these phases in magnetic field).

Tracing the v=+2QAH phasestoB=0

So far, we have examined the stability of the v=+2 QAH phases at small
but finite magnetic fields. As these phases are driven by the exchange-
interaction-induced orbital magnetism, they should, however, also
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Fig.3|Magnetic hysteresis observableinthe quantumanomalous Hall

v = -2inbilayer graphene. a, Two-terminal conductance hysteresis measured
forv=-2and F, =-17 mV nm . The hysteresis loop areais shaded for

clarity. The blue and red arrows indicate the forward and reverse sweep,
respectively. b, Magnetic field dependence of the conductance measured for
variable filling factor but fixed charge carrierdensityat £, =-17 mVnm™. The
forward sweep forn=-0.25x10"cm?,n=-0.5%10" cm2and

be stable towards B = 0. To this end, we have recorded multiple fan
diagrams around B = 0 at various electric fields (Fig. 2). From the fan
diagramat £, =-20 mV nm (Fig. 2a, b) we can see thatboth the v=+2
and v = +4 states emerge already at unusually small magnetic field. We
focus here onthe v =+2 QAH phases, as they previously escaped obser-
vation at suchlow magnetic fields*****, and because they are the most
exotic ones among the competing ground states of bilayer graphene
at B = 0:quasiparticles of one spin form a QVH phase whereas those of
the other spin formaQAH phase® " (Fig. 1e, Methods). Carefully exam-
ining the derivative of the conductance (Fig. 2b) to track fluctuations
near incompressible quantumstates provides more insight**¥, as the
traceable fluctuations are assignable to specific filling factors using
their slopes and can appear even before the corresponding quantum

Hall states emerge in conventional magneto-transport measurements.
Investigating the derivative of the differential conductance at various
electric fields (Fig. 2b, c) demonstrates thatboth the v=+2and v=+4
states already emerge at magnetic fields well below B =100 mT, but
that they differ in their electric field dependences. In contrast to the
number of fluctuations at finite B corresponding to the v = +4 states,

which decreases with increasing negative electric field (Fig. 2c, left),
the v=+2 states are prominent at £, =-15mV nm™ but disappear at
zero and very high negative electric fields. In addition, high-resolu-
tion scans around zero magnetic field (Fig. 2c, right) reveal that the
v=+2states are also present for B < 100 mT. In fact, they do persist to
B<20mT, which s even further than the v = +4 states. This provides
strong evidence that the QAH v=+2 phases are potential ground

states of bilayer graphene at B = O inaddition to the previously identi-

fied v= 0 layer antiferromagnet (LAF) and v = +4 QAH phases? 233,
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n=-1.0x10"cm?isshowninred, blue and green, respectively. Thereverse
sweepsareshowninblack. ¢, d, Hysteresis of the conductance as a function of
electric field at fixed v= -2 (c) and for various filling factors at fixed
E,=-17mV nm™(d). Note thatthevarying vind labels the v=-2 phase at
slightly different densities rather than different quantum Hall states. The
forward and reverse sweepsare showninblueandred, respectively, as
indicated by the arrows. Allmeasurements were takenat 7< 10 mK.

Theobservation that the v=+2states can be stabilized by acombination
of Band E, fields s consistent with their partial layer polarizations and
orbital magnetic characters. Finally, for very high electric fields, fluctua-
tionswithan infinite slope that trace the fully layer-polarized v=0QVH
phase dominate the fan diagram (see Extended Data Fig. 5 for more
data showing fan diagramsin electric fields).

Orbital-magnetism-driven hysteresis

Although the electric and magnetic field dependences and the stabil-
ity downto B=0 T support the presence of the QAH phases, we have
looked for more direct proof of the presence of their orbital magnet-
ism. Indeed, hysteretic behaviour indicative of magnetism is observ-
able in the samples, even though in our two-terminal measurements
the absolute contributions of both longitudinal and Hall resistances
are measured simultaneously (Methods). As can be seen in Fig 3a, by
sweeping the magnetic field at constantv=-2and £, =-17mVnm™,
we have recorded a magnetic hysteresis. Forward and reverse sweeps
are mirror symmetric with respect to the B = 0 line, with the hysteretic
behaviour starting at about B =+650 mT. In addition, the hysteresis
is highly reproducible upon repeated sweeps and we also observe it
inasecond device (Extended Data Fig. 6). Sweeping a smaller range
thanthat between B = +650 mT reduces the hysteresis (Extended Data
Fig. 7). This magnetic hysteresis provides consistent evidence for the
emergence of orbital magnetism in pure bilayer graphene; notably,
such hysteretic behaviour is rare for moiréless purely carbon-based
two-dimensional systems', Given the vanishing spin-orbit couplingin
bilayer graphene, the magnetism is primarily of orbital nature, which
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Fig.4|Temperature dependenceofthev = +2andv = +4 statesshow
distinctelectric field dependence. a-c, Conductanceasafunctionofn
measured for various temperatures for B= 0.5 Tand fixed electric fields of
E,=0mVnm™(a), £, =15mVnm™ (b)and £, = 50mV nm™ (c). The density
n(v=-2)=-0.25x10"cm?corresponding tov=-2at 8= 0.5 Tisindicated by
theverticallineineachplot.d, Arrhenius plots of the conductance (normalized

stems from the opposite mean-field gaps in the two valleys in one of
the two spin species’ (Fig. e, Methods).

The intimate relation of the orbital magnetism to the v=+2 QAH
phases can be further validated by a series of test measurements. First,
cyclic B sweeps for fixed n (and consequently varying v) do not show
hysteretic behaviour (Fig. 3b). These measurements were performed
atn=-0.25x10"cm™?,n=-0.5%10"cm?andn=-1.0 10" cmcorre-
sponding tothe quantum Hallstatesof v=-1,v=-2andv=—-4atB=1T,
respectively. This implies that when the magnetic field is swept towards
B=0,thesampleleaves the v=-2 QAH phase and reaches quantum Hall
states with higher filling factorsup tov=-12forn=-1.0 x 10" cm,
far away from the v=-2 QAH phase.

Asecond set of test measurements addresses the electric field depend-
enceintheregionwhere the v=-2QAH phaseis stable (Fig. 3c). Consist-
ently, at £, =0, we do not observe any hysteretic behaviourasav=-2
state is not observable here. At £, =-10 mV nm', in agreement with
the observations from the fan diagrams (Fig. 2), hysteretic behaviour
starts to emerge, and the hysteresis loop area reaches its maximum at

byitsvalueat 10 K) measured at n(v=-2) for £, =0 mV nm™ (black squares),

15 mV nm™(blue squares) and 50 mV nm™ (green squares) are shown. In
addition, thedataatn(v=-4)and £, =0 mV nm ' are shown with red triangles.
The coloured lines are linear fits to the corresponding datasets. e, Electric field
evolutionoftheactivationgapsinthev=0,v=-2and v=—-4states. Theerror
bars originate from the uncertainty from the linear fits.

E, =-17 mV nm™. Withincreasing negative electric field, the hysteresis
decreasesagain and vanishes completely at £, =-60 mV nm™, where the
fully layer-polarized v=0 QVH phase dominates. These observations
are consistent with the electric field dependence of the v=-2 state in
Fig.2and the partial layer polarization of the v=-2QAH phaseinFig.le,

Finally, the hysteretic behaviour vanishes at constant finite elec-
tric field if the filling factor is detuned substantially away from v=-2
(Fig. 3d). As the v=-1and v=-3 quantum Hall states do not emerge
at B<1T, all nominal fillings in the range of -1 < v < -3 correspond to
the v=-2state. Inthis range, we observe hysteresis with the loop area
reaching its maximum at v=-2.5. At higher or lower nominal filling,
for example, v=-1or v=-3, the hysteresis almost vanishes.

Activation gaps depending on electric field

As afinal test of the stability of the v=-2 QAH phase, we have investi-
gated its temperature dependence at various electric fieldsat B=0.5T
(Fig. 4); see Extended Data Fig. 8 for the full temperature-dependent
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transport data. Although a quantitative estimation of the bulk gap in
thev=-2stateviacalculation of itsactivation energy 4,_,is challenging
due to the potential presence of disorder, we use such estimates for
arelative judgement of the stability of the various observed phases.
Figure 4d shows an Arrhenius plot® of the conductance at n(v=-2)
and various electric fields. As the temperature dependence of the con-
ductance®follows g =< exp(-4,/(2k, 7)), where Tisthe temperature and
kyis Boltzmann constant, in the semi-log graph we can use a linear fit
to calculate the energy gap. At zero electric field (Fig. 4a), the v=-2
state does not persist to B= 0.5 T as we have seen in the fan diagrams,
and consequently the temperature dependence is very small, indi-
cating a vanishing energy gap. By contrast, at a finite electric field of
E,=15mVnm’, thereisanevident temperature dependence (Fig.4b)
withanenergygap of4,_ ,=(0.09 + 0.02) meV. Applying an even higher
electric field of E, =50 mV nm™ (Fig. 4¢), the v=-2state becomes less
stable withasmaller4,. ,=(0.039 + 0.001) meV, again consistent with
its predicted partial layer polarization. We point out that the gap ener-
gies measured by activation only give lower bounds for the real gaps
due to the presence of local disorder (Methods), but their absolute
magnitudes can be put into perspective by comparing them with
the gaps of the v=+4 and v= 0 states as functions of electric field, as
shown in Fig. 4e. The behaviour of the v = O state with a large gap of
A, o=3meV at zero electric field, a vanishing gap for an intermediate
electric field and a reappearance for a high electric field is consistent
with the observation of the phase transition from the interaction-driven
layer-balanced gapped LAF phase to the electric-field-induced fully
layer-polarized gapped QVH state®?. The activation gaps of the
v=—4and v = -2 states show very different electric field dependen-
cies but rather similar magnitudes, with4,__, = (0.08 + 0.04) meV at
E,=0mVnm™andA4,,=(0.09+0.02) meVat£, =15mVnm . This
observation is surprising, as in previous experiments 4,. ,>4,. , has
been found>®3*%, Whereas these previous measurements of the v=+2
and v = +4 states were performed at larger magnetic fields or without
anindependent control of £, and n, where the QAH v = +2 phases may
be unstable, the surprising robustness of the v= +2 states evidenced
by the larger activation gaps arises from the electric field coupling to
the layer polarization and the magnetic field coupling to the
orbital magnetization of the quasiparticles.

Outlook

Since the current measurements have been performed on two-terminal
devices, future measurements using a four-terminal geometry®*’ could
distinguish between longitudinal and Hall resistances and determine
possible switching mechanisms of the exotic ordering of such v=+2
QAH phases by using both magnetic and electric fields. Finally, applica-
tionsinlow-dissipation electronics or quantum information science*
could be exciting developments.
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Methods

Device fabrication

The graphene flakes were exfoliated from a highly ordered pyrolytic
graphite block onto silicon/silicon dioxide (Si/SiO,) substrates. Using
optical microscopy, suitable bilayer flakes were preselected by examin-
ing the optical contrast. The flakes were scanned with scanning near-
field optical microscopy to avoid any structural domainwalls within the
channel®? that might mask fragile quantum Hall phases. The electrodes
(Cr/Au, 5nm/100 nm), top gate (Cr/Au, 5 nm/160 nm) and spacer (5i0,,
140 nm) were fabricated by multiple steps of standard lithography tech-
niques and electron beam evaporation. To suspend both the top gates
and thebilayer graphene flakes, hydrofluoric acid was subsequently used
toetchabout150-200 nmoftheSiO,. Finally, the suspended dual-gated
bilayer graphene devices were loaded into a dilution refrigerator.

Electrical transport measurements

The two-terminal conductance measurements were carried outina
dilution refrigerator with a base temperature of 7 mK. Unless stated
otherwise, the measurements were performed with an a.c. bias cur-
rent of 0.1-10 nA at 78 Hz using Stanford Research Systems SR865A
and SR830 lock-inamplifiers at a temperature of T< 10 mK. Gate volt-
ageswere applied using multiple Keithley 2450 SourceMeters. Several
homebuilt low-pass resistor-capacitor (RC) filters were used in series
to reduce high-frequency noise.

Device annealing and characterization

Current annealing procedure. Before any measurements can be per-
formed, a current annealing procedure is used to clean the samples.
Multiple cycles of current annealing at 1.6 K are performed, during
which the d.c. resistance R, . of the sample is tracked (Extended Data
Fig.1a).Ingeneral, foranincreasing applied d.c. voltage V; ., the resist-
ance of the sample decreases. However, when a saturation of the drain
current is reached, R, . consequently increases again. The maximum
current flowing was approximately 0.35 mA pm™ per layer.

Measurement details. The dual-gate structure allows independent
tunability of the charge carrier density nand the perpendicular electric
field E,. We can define n and £, as a function of the top gate voltage V,
and the bottom gate voltage V, as follows™:

G

n ?(am W)

and

C
EL=ﬁ(aV; W),

where g,is the vacuum permittivity and a = g‘ istheratiobetween the
top gate capacitance C, and the bottom gate capacitance C,. Hence, by
changing V, and V, simultaneously, we can directly sweep nor £,. A
Lorentzian fit to a density sweep and a precise electric field sweep were
used to find the exact charge neutrality point.

For the hysteresis measurements, the filling factor reads

Lo Mh _ CylaVi+ Vh
e8| elB|

where hisPlanck’s constant and Bis the magnetic field. Hence, to sweep
the magnetic field while fixing the filling factor, V,, V, and Bneed to be
varied simultaneously.

Calculation of the contact resistance. As in two-terminal transport
measurements there always pertains a contact resistance, we calculated

and subtracted it in our data. This was done by recording a resistance
versus density sweepatB=2Tand £, =20 mV nm™, Appearing resist-
ance plateaus were assigned to a filling factor. Plotting the resistance
of the quantum Hall plateaus as a function of the inverse filling fac-
tor (Extended Data Fig. 1b) gives a linear behaviour. Using a linear fit
demonstrates that the slope per filling factor (25,604 + 712) Q fits
well to the von Klitzing constant, while giving a contact resistance of
R = (3,545 £ 161) Q1. For all measurements shown in this paper (except
Fig.1b), we subtracted R..

Quality of the device. Extended Data Fig. 1c shows the conductance
ofthe device as a function of charge carrier density for zero and finite
electric field. The narrow width and low conductance of the device at
E, =0 mVnm™"suggest a high quality of the device. Besides calculat-
ing the residual charge disorder (Fig. 1b, inset), we additionally have
calculated the electron/hole mobility .4, =120,000/130,000 cm?
(Vs)'atn=1+5x10° cm?, emphasizing the high quality of the device.

Theoretical fundamentals regarding the ALL QAH phases
Competing ground states in bilayer grapheneatn=E, =B=0.In
bilayergrapheneatn=E, =B=0,whenspinisignored only two differ-
ent types of competing ground states can be distinguished® ": one in
which the K and K’ valleys are layer-polarized in the opposite sense
producing a QAH phase with broken time-reversal symmetry (0), or-
bital magnetization and quantized charge Hall conductivity (+2&*h™!
without counting spin degeneracy), and one in which the two valleys
have the same sense of layer polarization producing a QVH phase with
broken inversion symmetry (P), net layer polarization and non-trivial
valley Hall conductivity. When spinis included, there are three addi-
tional types, namely the LAF phase, the ALL phase and the quantum
spin Hall phase®". The five distinct phases in the spinful case can be
obtained by each spin species choosing to be one of the two QVH phas-
es or one of the two QAH phases, as depicted in Extended Data Fig. 2.
These phases are distinguished®" by their charge, spin, valley and
spin-valley Hall conductivities, by their layer polarizations, by their
orbital magnetizations, and by their broken symmetries, as summarized
in Extended Data Table 1.

Quasiparticle orbital magnetism in bilayer graphene. In ABC-stacked
N-layer graphene, the presence of a spontaneous gap at the Brillouin
zone corners K and K’ produces non-trivial momentum-space Berry
curvature, and the Berry curvature givesrise to non-trivial orbitalmag-
netic moments of quasiparticles. The orbital magnetic moment of the
quasiparticle state in band a of spin s, valley 7, and momentum p

reads™
2
A (0h
m(ia)(p' rz'Sz) {_rzhtz(apl} mE}‘B'

where i = (2o p)¥ /YL b= (A7 + i)V2,y, = 0.4 eVis the nearest-neigh-
bourinterlayer coupling, m. is the electron mass, v, is the Fermi veloc-
ityinmonolayer graphene, Az, is the spontaneous gap termin Extended
Data Tablel, a=+denote the two low-energy bands and g is the Bohr
magneton, Notethatin the presence of a particle-hole symmetry, the
moments of the particle and hole states are the same; in other words,
the orbital magnetic moment does not depend on the band index a.
For AB bilayer graphene, the orbital magnetic moment reads

4Am [.'04_02

(ﬂ) _ €
m:(p,.,s)=| 55—, 5 U
z .75, |: zlz f 4 4B

WithaWannier function|W “(R)) = M2 3, [ *X(k))e* Rat the lattice

vector Rand an energy cutoffuyp =y, | A |, it follows that the total
orbital magnetization per unit area can be defined as
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where A, qicn isthe area of aunit cell and fiis the reduced Planck’s con-
stant. For a spontaneous gap of 10 meV,1 meV and 0.1 meV, the orbital
magnetization per unit cell for each spin-valley species is 8.0 muy,
1.3 my, and 0.18 my, respectively.

Eight possible ALL QAH phases in bilayer graphene. The ALL phase
in Extended Data Table 1 and Extended Data Fig. 2 can be viewed as
a phase in which one spin-valley species polarizes into one layer
whereas the other three species polarize into the opposite layer, or
alternatively as a phase in which one spin species is in one of the two
possible QVH phases (that have opposite layer polarization, for exam-
ple, Extended DataFig. 3a, b) whereas the other spinspeciesisinone
of the two possible QAH phases (that have opposite Chern numbers,
forexample, Extended DataFig. 3a, f). Based on either viewpoint, one
can find eight different ALL phases in total, as depicted in Extended
DataFig. 3.

Evolution ofthe v=t2state in electric and magnetic field
Here we show additional data on how the v =12 state behaves in an
electric and magnetic field. We have recorded multiple electric field
versus density conductance maps at various magnetic fields (Extended
DataFig.4a-h). Extended DataFig.4a-d shows the conductance map
forlower magneticfields 8=0.1T,8=0.2 Tand B=0.5 Taswellasamap
with a reversed field of B=-0.5T, respectively. Of the four domains
observed at B=0.8 T, only three show a quantized conductance of
2 ¢e* h'atlower fields. The domain at negative electric field and positive
density shows ahigher conductance, possibly due to residual disorder
providing additional channels for charge transport. Still, this domain
behaveslike the otherthree, aswe also see in the fan diagrams in Fig. 2.

Changing the direction of the magnetic field (Extended DataFig. 4c,
d) shows the other four ALL phases (see also Extended Data Fig. 3).

Furthermore, from the conductance map as a function of electric
fieldand density at different magnetic fields (Extended DataFig. 4a-h)
and the conductance mapas a function of electricand magnetic fields
ata fixed filling factor v=-2.25 (Extended Data Fig. 4i), we can see the
evolution of the ALL phases (for example, the v=-2 state) in electric
and magnetic fields. The required minimum and maximum electric
fields and the electric field range for the v = -2 state to emerge increase
slightly withincreasing the magnetic field. At a very low magnetic field,
thev=-2stateis onlystablein a very limited electric field range, as at
larger electric fields a fully layer-polarized v = 0 state dominates over
the partially layer polarized v = -2 state. However, as the magnetic field
increases, the v=-2 state becomes more and more stabilized, that is,
the electric field range increases.

Lastly, we turn to the relevant physics at high magnetic fields. The
v =+2states discussed in this current work appears near zero magnetic
field, whereas in previous studies higher magnetic fields were applied.
Infact, there are two types of v = +2 quantum Hall ferromagnetic state at
large magnetic fields: one without layer polarization (layer XY-like) that
appears near zero electric field and the other with layer polarization
(layer Ising-like) that requires afinite electric field. This was mentioned
in a theoretical study* and observed in dual-gated devices™***, The
ALL states adiabatically evolve into the layer-polarized v=+2 quantum
Hall ferromagnetic states with increasing magnetic field. Although
there is no transition, the required electric field range does evolve
with the magnetic field.

Additional fan diagrams showing a complete electric field series
Extended Data Fig. 5 shows additional fan diagrams, demonstrating
the behaviour of quantum Hall states towards zero magnetic field for
various electric fields. The strength of each Landau level is indicated
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by the number of coloured lines with the corresponding slope in the
top of each picture.

As the v =+4 state is a non-layer-polarized phase, itis less and less
pronounced forincreasingelectric field. Onthe contrary, as discussed
already in the main text, the v= +2 state is strongest for a finite range
ofelectric fields. However, it does notemerge at £, = 0 butappears for
increasing electric fields. For £, = -10 mV nm', it does finally emerge
for the complete magnetic field range shown here. The highest num-
ber of fluctuations corresponding to it appears at £, =-15mV nm™to
E, =-20mVnm, whereas for higher negative fields they disappear
again. Lastly, the v = 0 state is strong for low electric fields (canted
antiferromagnetic phase) and for very high electric fields, where it is
afully layer-polarized phase.

Evidence of the QAH effectin asecond device

Extended DataFig. 6 shows the quantum transport data measuredina
second device. Extended Data Fig. 6a, b shows the conductance map for
low magnetic fieldsof B=0.2 Tand B= 0.5 T, respectively. Although the
sampleis less clean than the one shown in the main text, we still see four
domains withaconductance of +2 & i (four green regions in Extended
Data Fig. 6a, b) even at these low magnetic fields. Furthermore, the
v =+2 states have the same behaviour when applying an electric field
and magnetic field. Extended Data Fig. 6¢ shows the conductance asa
function of electric and magnetic field for a fixed filling factor v=-2.
The v=-2state emerges for only intermediate applied electric fields
and the range at which it appears increases with increasing magnetic
field. Lastly, also in this device we see magnetic hysteresis (Extended
Data Fig. 6d) when sweeping B around zero while fixing v=-2 and
E, =-19 mV nm™. However, the hysteresis is less prominent and the
conductance breaks down for low magnetic fields, presumably due
to the lower quality of the device.

More details on the hysteresis

At first sight, the observation of magnetic hysteresis with
two-terminal measurements might be surprising, as only absolute
values are measured without resolving the two components, o, and
a,,.However, following the previous derivation of the two-terminal

conductance*
2 2
U[wr.\—[ermin;nlr"c Uxx +0xy

or, interms of the longitudinal p,, and Hall resistivity p,,,
B S
lpo 40"
one can observe a hysteresis if i e % ghooward . - Thisis true
around the coercive field, where a transition between two different
ALL phases occurs, that is, | p’"’“’““’ |#] p"“"‘w“d | and/or| p"”‘”‘“d l#
|,¢;t""°"""arﬁ |. Around zero magnetic field, the hysteresis vanishes in
two-terminal measurements, as plomvard  phackward _ g and pforvard=
pz"c““‘a’d even though opposite “orbital magnetizations (with
pxy—ih/ZQ ) are present and distinguishable in four-terminal
measurements®.

To further prove the presence of the magnetic hysteresis, we have
measured it for different ranges of magnetic fields, as shown in
Extended Data Fig. 7. The degree of the hysteresis increases with the
field range of the cycle. When the magnetic field is only sweptinasmall
range (-0.25 T < B< 0.25T), there is almost no hysteretic behaviour.
However, when the magnetic field is swept from alarger field towards
zero (—0.5T < B<0.5T), the hysteresis appears partially. The fact that
asufficiently large magnetic field is needed to observe a hysteresis
has been seen in twisted bilayer graphene®®. The maximum degree of
hysteresisis reached at|B| < 1T and thenremains nearly the same with
further increasing the magnetic field range.

_—
Otwo-terminal



Temperature-dependent transport data

Extended Data Fig. 8 shows maps of the conductance as a function of
electric field and density for various temperatures. The temperature-
dependent data shown in Fig. 4 are taken from these measurements,
with the position of the linecuts indicated by dashed lines in the top
leftimage. In general, we see that for T< 0.3 K, the maps are basically
the same, whereas for higher temperatures, thev=+2and = +4aswell
asthev=0states getlessandless well resolved, as fluctuations due to
increasing temperatures broaden all phase transitions. We point out
that gap energies measured by activation can only give lower bounds for
thereal gaps due to the presence of local disorder. As a consequence, in
some measurements (for example, Chen etal.®) activation gaps are—like
inour case—smaller than the temperature range they are measured in.
To give an estimate of thermodynamic gaps, direct measurements of
theinverse compressibility would be required (Martin etal.’®). Ourgap
energies should be thus understood as lower bounds and can give an
estimate to compare the strength of the different phases against one
another within the same sample and to get a feeling for the dependence
ofthe gap strength as function of applied perpendicular electric field.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.
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Extended DataFig.1| Current annealing, contact resistance and device
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Extended DataFig.2|Representatives of the five competing broken
symmetry groundstatesinbilayergrapheneatn=F, =B=0.a-e, Bottom
panel:layer polarizations of the four spin-valley species. Top-left and top-right
panels: bulk (classical) and edge (quantum) pictures of the corresponding
spontaneous quantum Hall effect. Note that the edge roughness can produce
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couplings between counter-propagating edge states (of the same spin but
differentvalleys) and thus gap them. Spin degeneracyisimplicitinaandb.
Seethetext for details. Tand Brefer to the top and bottom graphene layers,
respectively.
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Extended DataFig. 3| Possible'ALL quantum anomalous Hall phasesinbilayer graphene. a-h, Eight different 'ALL' phases that can be classified by the
layer polarizations of their two spin species, by which spin species being in which QAH or QVH phases, and by their charge Hall conductivities.
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Extended Data Table 1| Classification of the five competing broken symmetry ground states in bilayer grapheneatn=E =B=0
Broken
Phase K1 Kl K'T K'l Mass (At,) o€ 50 G(VH)  5(5VH)
symm,
QVH T T T T P ma, 0 0 2N 0
QAH T T B B ) mr,0, 2N 0 0 0
LAF T B T B 0,P,SUQ) ms,0, 0 0 0 2N
QSH T B B T SU(2) M1,5,0, 0 2N 0 0
“ALL” T T T B 6,PSURR) m (1 -;Tz + %sz) o, N N N N

These phases are distinguished by their spin-valley layer polarizations, by the symmetries they break, by their order parameters, and by their charge Hall (CH), spin Hall (SH), valley Hall (VH),
and spin-valley Hall (SVH) conductivities. The results are general for ABC-stacked N-layer graphene™ ™ and with N=2 for AB bilayer graphene.
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Abstract

An established way of realising topologically protected states in a two-dimensional electron gas is
by applying a perpendicular magnetic field thus creating quantum Hall edge channels. In
electrostatically gapped bilayer graphene intriguingly, even in the absence of a magnetic field,
topologically protected electronic states can emerge at naturally occurring stacking domain walls.
While individually both types of topologically protected states have been investigated, their
intriguing interplay remains poorly understood. Here, we focus on the interplay between topological
domain wall states and quantum Hall edge transport within the eight-fold degenerate zeroth Landau
level of high-quality suspended bilayer graphene. We find that the two-terminal conductance
remains approximately constant for low magnetic fields throughout the distinct quantum Hall states
since the conduction channels are traded between domain wall and device edges. For high magnetic
fields, however, we observe evidence of transport suppression at the domain wall, which can be
attributed to the emergence of spectral minigaps. This indicates that stacking domain walls

potentially do not correspond to a topological domain wall in the order parameter.

Contribution
| fabricated all devices, conducted all measurements, and performed the data analysis. The first
draft, apart from some theoretical sections, was written by me. Furthermore, | produced the final

version of the publication and designed all figures.
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An established way of realising topologically protected states in a two-dimensional electron
gas is by applying a perpendicular magnetic field thus creating quantum Hall edge channels.
In electrostatically gapped bilayer graphene intriguingly, even in the absence of a magnetic
field, topologically protected electronic states can emerge at naturally occurring stacking
domain walls. While individually both types of topologically protected states have been
investigated, their intriguing interplay remains poorly understood. Here, we focus on the
interplay between topological domain wall states and quantum Hall edge transport within the
eight-fold degenerate zeroth Landau level of high-quality suspended bilayer graphene. We
find that the two-terminal conductance remains approximately constant for low magnetic
fields throughout the distinct quantum Hall states since the conduction channels are traded
between domain wall and device edges. For high magnetic fields, however, we observe
evidence of transport suppression at the domain wall, which can be attributed to the
emergence of spectral minigaps. This indicates that stacking domain walls potentially do not
correspond to a topological domain wall in the order parameter.
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agonal materials typically occupy two or more distinct

electronic valleys. The valley index adds to the carrier’s
charge and spin, enabling additional channels for spontaneous
symmetry breaking at low temperatures, whereby valleys are
polarised independently or in combination with charge and spin
degrees of freedom!2. The most direct way to induce non-trivial
valley response is by breaking sublattice symmetry. This occurs
naturally in boron nitride, which makes it a quantum valley Hall
insulator®. In Bernal-stacked bilayer graphene, the same effect is
achieved by applying an interlayer bias®. Moreover, by spatially
varying its sign, topological domain walls can be created, which
exhibit one-dimensional (1D) electronic channels with quantised
conductance?, resilient to backscattering®. These electronic
domain-wall states provide a flexible platform to study 1D
transport5~# and correlated physics?~11. However, creating them
by electrostatic gating is technically challenging. Fortunately,
similar physics transpire at stacking domain walls (DWs) in
bilayer graphene, where the stacking arrangement of graphene
layers changes from AB to BA'2. Such domain walls are common
in naturally Bernal-stacked bilayer graphene!?-!° and even ubi-
quitous in twisted bilayer graphene!®!”, which is known for
hosting superconductivity at a certain twist angle!S, When a
uniform electric field is applied to a bilayer graphene flake with a
DW, topologically protected valley-helical states emerge along the
dislocation, surrounded by insulating bulk!2!419, Critically for
the present work, stacking domain walls can have much richer
interplay with spontaneous symmetry breaking in bilayer
graphene?0-27 compared to artificially created ones, as not being
forced by applied bias to have charge imbalance between layers.
The interplay between stacking domain walls and spontaneous
symmetry breaking is of peculiar interest in the presence of a
quantising magnetic field, since bilayer graphene exhibits a very
rich phase diagram owing to the eightfold degeneracy of the zero-
energy Landau levels?® 3" (coming from two valleys, two orbital
Landau level indices, and two spins - neglecting Zeeman split-
ting). Interactions lift the degeneracy by generating orderings,
leading to quantum Hall plateaus at all integer filling fractions
between —4 and 4242832 This complex and intriguing regime
shows a large variety of ways the internal symmetry can break
spontaneously in the absence of externally induced layer polar-
isation. Within this manifold, the valley, sublattice, and layer
index are rigidly locked. Since at the stacking domain wall the
roles of the layers are exchanged, any ordering that is not a valley
singlet is guaranteed to be affected.

In this work, the goal is to study this interplay by means of
transport measurements. It cannot be fully explored in the arti-
ficial electrostatic domain walls as a matter of principle. We chose
freestanding dually gated bilayer graphene devices as an ideal and
versatile platform, since on the one side—as indicated by our
measurements below—DW:s remain stable during processing and
suspension, and, on the other side, suspending enables the
investigation of quantum transport unaffected by surroundings.

Electmns near the Fermi surface of two-dimensional hex-

Results and discussion

Topological valley transport in the presence of an electric field
induced gap. At first, suitable bilayer graphene flakes were pre-
selected using optical microscopy and subsequently investigated
with scattering scanning near-field optical microscopy!®15-33,
Even though flakes show a smooth surface in the topography
(Fig. 1a), the corresponding near-field amplitude image (Fig. 1b)
can reveal stacking domain walls. Second, contacts were designed
in two different configurations, as schematically illustrated in
Fig. 1c. Either a DW was contacted on both ends (i.e. the DW
goes along the channel separating two distinct domains, one with
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AB and one with BA stacking), or, alternatively, no domain wall
was within the channel. Two devices are discussed exemplarily in
the following: D1-DW of the former and D2 (which has been also
investigated in ref. 27.) of the latter type. Data from additional
domain-wall containing devices are shown in the Supplementary
Information.

Using the dual-gate structure and sweeping the top V, and
bottom gate voltage V;, while tracking the resistance for the two
configurations reveals differences in their signatures (Fig. 1d, e).
Device D2 (Fig. 1e) shows, consistent with previous measurements,
the spontaneously gapped state at the charge neutrality point?0-24
and a phase transition to the insulating fully layer polarised state for
increasing electric field»*, The resistance in device D1-DW
(Fig. 1d) shows an overall similar behaviour, but with very different
values. This becomes more apparent when examining line traces (see
Fig. 1f, g). Although the resistance in both devices behaves non-
monotonically as a function of increasing V,, which indicates the
emergence of the layer antiferromagnetic (LAF) ground state with
opposite spins in two layers!**3> at charge neutrality and zero
electric field (at V, =~ V;, & 0), it remains low in device D1-DW.
As discussed below, this is caused by additional charge channels,
which mask the insulating phase. Moreover, consistent with
previous measurements” !4, the resistance saturates for an increasing
electric field (here at R = 8.5k€), which unambiguously demon-
strates the presence of zero-energy line modes®!1%1%. In other words,
although the perpendicular applied electric field induces a bandgap
within the system?, topologically-protected states at the K/K’ valleys
persist, giving rise to helical valley transport (see the insets of Fig. 1d,
e). The length-dependent conductance follows the Landau-Biittiker

-1
formula!® ¢ = 00(1 + AL) , which yields a mean free path of

Ay 22 22um with a channel length of L =0.7um and the
theoretical conductance of the domain wall of o, = 4¢* b~ (where
e is the electronic charge and h Planck’s constant). With A,, > L,
ballistic charge transport supported by the domain wall is confirmed,
highlighting the high quality of the device®!*. Worth to note, away
from charge neutrality both devices show low resistance. In this
regime, which is dominated by contact resistance, we expect no
influence of the domain wall.

Behaviour of the kink states in the presence of broken-
symmetry phases at low magnetic field. Whereas artificially
constructed domain walls can only be investigated in the presence
of a perpendicular electric field%"8 in a limited range of electric
fields and densities, quantum transport along stacking domain
walls have mostly been studied in zero magnetic field'*. Hence,
we focus here on the interplay of topological domain walls and
quantum Hall edge transport. Figure 2a, b shows the conductance
in the devices D1-DW and D2 as a function of charge carrier
density n and electric field E at a magnetic field of B = 3 T. In
both devices, the broken-symmetry states within the lowest
Landau level octet?®28-31 appear, however, with very different
conductance values (see Fig. 2c). The emerging quantum Hall
states in device D1-DW, although exhibiting unusual con-
ductance values, can unambiguously be identified by examining
their slope in fan diagrams (see Supplementary Fig. 1). Thus, the
stacking domain wall in device D1-DW contributes additional
charge transport channels in parallel to the quantum Hall edge
states altering the overall conductance of the device. In fact,
tracking the conductance of both devices as a function of density
(Fig. 2¢) reveals a conductance offset for most of the appearing
states. In device D1-DW, the = 0 state at zero electric field,
which has previously been identified as an insulating canted
antiferromagnetic (CAF) state®”3%, shows a rather high con-
ductance of 02 2.9¢2h™! (see Fig. 2d). CAF states have been
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Fig. 1 Topologically-protected states in bilayer graphene. a, b Atomic force microscopy image (a) and scattering-type scanning near-field microscopy
image (b) of a bilayer graphene flake, with high-resolution zoom-in scans on the right. The scale bars are 0.5 um. ¢ Freestanding dually gated bilayer
graphene devices schematically shown with (left) and without domain wall (right) connecting the contacts. Topological valley transport along the domain
wall is shown in blue and red in the K- and K'-valley, respectively. d, e Resistance map as a function of top and bottom gate voltage for device D1-DW
(d with domain wall) and D2 (e without domain wall). Insets: Electronic band structure of bilayer graphene with (d) and without a domain wall (e) for an
applied electric field. A is the electric field induced bandgap, Er the Fermi level and the blue (red) lines indicate topologically protected, doubly spin
degenerate chiral states in the K(I')-valley. f, g Trace of the resistance as a function of V,, for various V, with steps of 1V shown for device D1-DW (f) and
D2 (g). The dashed lines indicate the envelope of the resistance and are a guide to the eye.

observed to have low edge conductance, attributed to the opening
of a spectral minigap at the sample edges>3”-*. The observed
high conductance is thus consistent with the maximum possible
—four—kink states at the DW contributing to the charge trans-
port (with a finite A,, & 1.9 um), as is also the case in the layer
polarised (LP) »» = 0 phase (see Supplementary Fig. 2 for more
details) at high E. For an increasing filling factor, the conductance
changes to ¢ =~ 3.5,4.0 and 3.9¢*h™" for the v = —1, -2, and
—4 states (see Fig. 2d), respectively. This near constancy of
conductance can be naturally explained: In the simplest model
(see Fig. 2e), ignoring spin and orbital index for clarity, changing
the Fermi level for an applied electrical field leads to the topo-
logical domain-wall channels being traded for quantum Hall edge
channels. Changing the filling factor from the electron to the hole
side, exchanges the positions of the valley polarised channels.
More precisely (see Fig. 2f), when increasing the filling factor, a
domain-wall channel disappears whereas an additional quantum
Hall edge channel emerges. Hence, the conductance follows ¢ =
(4 = |vDopy + |vlogy for |v] <4, where opy is the con-
ductance supported by a single kink state, and 6 = ¢*h™" is
the conductance of a quantum Hall edge channel. A linear fit to
the data further supports this hypothesis (see Fig. 2d): for D2, it
shows the expected slope of 1.0 > h™" per filling factor as there
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are only quantum Hall edge states present. On the contrary, it
yields a slope of 0.23 &2 h™" per filling factor for device D1-DW.
Although in all || < 4 states four quantised channels contribute
in total to the charge transport, the non-zero slope corresponds to
the difference in conductance of the kink and edge states and
shows that for increasing filling factor kink states with a con-
ductance of @y 2 0.77¢*h™" are traded for higher-quality
quantum Hall edge states with o, = €* h~'. Discrepancies from
the linear behaviour of the conductance in device D1-DW could
indicate a distinct magnetic dependency of the conductance
within the |v| € 4 states, as shown below. The v = 14 states
seem to be free of the influence of the domain wall (see Fig. 2f). A
more detailed consideration of the band structure reveals that
stacking domain walls can affect even the higher Landau levels,
albeit more weakly (see Supplementary Fig. 3). In our free-
standing devices, these states are at higher magnetic field outside
the accessible density regime needed to observe the quantum Hall
states.

Emergence of a spectral minigap for high magnetic fields. A
more in-depth understanding of the intricate interplay between
the quantum Hall edge modes and domain walls can be gained by
investigating the charge transport at varying magnetic fields (see
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Fig. 2 Interplay between topological valley and quantum Hall edge transport at low fields. a, b Maps of the conductance in units of e h ' as a
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the position of the data shown in €. Certain filling factors are indicated. ¢ Line traces of the conductance as a function of n taken at constant E in device D1-
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Fig. 3 and Supplementary Fig. 4 for more data). Line traces of the
conductance as a function of filling factor measured in device D1-
DW at zero and finite electric field show the v = 0, +1, +2
states (see Fig. 3a). In addition, we plot the conductance as a
function of magnetic field for the individual states shown in
Fig. 3b. Note that the conductance was averaged over the electric
field range at which the respective state emerges, i.e. for the v =

0 CAF phase around zero electric fields, for the » = —1 and -2
at |[E| = 10mV nm~! and |E| = 15mV nm~!, respectively, and
for the v = —4 state at all electric fields.

Most prominently, we see a sharp dip to very low conductance
around zero charge carrier density within the v = 0 phase at
high magnetic fields of B = 8 T (marked with a cross in Fig. 3a),
which can also be tracked as function of magnetic field (see
Fig. 3b). The feature is reproducible upon repeated sweeps and
persists between different cooldowns of the device (see Supple-
mentary Fig. 5). Towards B = 0, the v = 0 state corresponds to
the layer antiferromagnetic phase with spin and valley indices
locked'-**35, In general, we find high conductance in this regime,
suggesting the presence of zero-energy line modes at the kink.
This observation would be consistent with the LAF order
parameter experiencing an order parameter reversal as illustrated
in Fig. 3c. The 1D modes persist within the gap because
counterpropagating states in the same valley have opposite spin,
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and hence scattering is suppressed. However, as the magnetic
field is increased, spins cant and the LAF phase evolves into the
canted antiferromagnetic phase”38, Then, the counterpropagat-
ing modes in the same valley become partially spin aligned and
can hybridise causing the emergence of a minigap. This is similar
to the effect at the device edge. However, in the latter case the
termination and backscattering off atomic scale defects can also
couple opposite valleys®, leading to further suppression of
conductance. Our experimental data are indeed consistent with
the opening of a gap and—when the Fermi level is located in this
gap—a decrease in conductance. Qutside of the gap, we expect a
finite conductance, with a value determined by a sequence of the
crossing bands and gap openings (see Fig. 3c). Since canting of
spins gets stronger with magnetic field, one can expect the size of
the minigap to grow with increasing B. This is consistent with our
experimental observations of decreasing conductance (see Fig. 3a,
b and Supplementary Fig. 4) and could be the reason why we can
only resolve the minigap at B = 8 T. Eventually, for an infinite
perpendicular or a finite in-plane magnetic field the CAF phase is
expected to evolve into the ferromagnetic phase®”3%, in which the
stacking domain wall has little or no effect on the Landau level
energy (see Fig. 3c), making the stacking domain wall effectively
invisible (this regime was not investigated experimentally in this
study).
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FM » = O phases. The blue (red) lines indicate the chiral states in the K(K')-valley. The cross indicates the spectral minigap emerging in the CAF phase.
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Notably, the conductance of the v = +1, +2 states also
decrease with increasing B (Fig. 3a, b), whereas device D2 shows
the expected constant values as a function of B for each QH state
(see Fig. 3b). These quantum Hall states occur in sufficiently large
electric field, and thus the valley polarisation is expected to
change sign across the domain wall. In contrast, the spin
polarisation remains constant across domain walls, pinned to the
direction of magnetic field (see Fig. 2f). Therefore, the counter-
propagating states at the domain wall belong to opposite valleys
but same spin and can only be destroyed by local defects that can
provide large momentum scattering. That is in contrast to the
CAF state at v = 0 and E = 0, where a minigap can open owing
to the hybridisation of states within the same valley and without
the need for short range scattering. The measurements indicate
that increasing the magnetic field increases the intervalley
scattering, although the exact mechanism at this point remains
unclear. One possible explanation could be the change in relative
spatial arrangement of the counterpropagating channels as a
function of magnetic field (see Fig. 3d). Clearly, increasing the
channel separation should suppress backscattering, and vice
versa. An effect of this type has already been observed at domain
walls, where application of magnetic field or change of the
chemical potential was found to affect the domain-wall
conductance”*?. Another possibility could be the that increasing
magnetic field pushes the system towards other broken-symmetry
states?%41, which would change the order parameter and hence
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the behaviour of the kink states. However, these states have been
observed only at very high magnetic fields and since we see no
evidence of phase transitions in sample D2 for the same
parameters, this possibility appears unlikely. Given that the
measurements were performed in a two-terminal configuration,
one should also make sure that the effect that we observe is not a
consequence of a magnetic field dependent contact resistance of
the kink states. However, we do not observe this behaviour for
quantum Hall edge states (see Fig. 3b), and it is likely that the
contact resistance of both types of one-dimensional channels
behaves similarly. Additional devices revealed similar behaviours
of the domain-wall conductance with increasing magnetic field
(see Supplementary Fig. 6).

Temperature dependence of the domain-wall states. As final
investigation to establish the interplay between edge and domain
walls, we have conducted temperature dependent measurements.
In Fig. 4, the conductance is shown as a function of temperature
measured in different phases: in the layer antiferromagnetic, the
canted antiferromagnetic as well as the layer polarised v = 0
phases and in the ¥ = —4 phase. In contrast to device D2, which
shows an activated temperature dependence of the conductance
in all phases, D1-DW exhibits a much weaker temperature
dependence and, most importantly, a finite conductance at low
temperatures for the insulating LAF, CAF, and LP phases (see

5| (2022)13:4187 | https://doi.org/10.1038,/s41467-022-31680-y | www.nature.com/naturecommunications 5



ARTICLE

-
o

—y

Conductance (e* h")

e
=

o

F E=43mVnm’ 1

Conductance (e* h")

0.01 0.1 1 10
Temperature (K)

e
=

10

Conductance (" h")
o

0.01
0.001
d v=—-4
E=0,
_ B=05T
= 10} 1
o
o
3]
c
[
©
3
k]
c
Q
o
0.01 0.1 1 10

Temperature (K)
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Fig. 4a-c, respectively). As the charge channels induced by the
stacking domain wall contribute in parallel to any edge channels,
we can subtract the data measured in both devices to reveal the
underlying temperature dependence of the domain-wall
OpwlT) = 045(T) = apy_pw(T) — 0p,(T), assuming that the
activated charge transport behaves similarly in both devices.
Notably, in all three v = 0 phases the difference crd,-ﬁ(T) shows
an approximately constant behaviour at low temperatures with
Oggp 7~ 2.5—3.5 ¢* =" and only a slight increase in the LAF and
CAF phases for T = 3 K. Overall, this weak temperature depen-
dence is expected for 1D charge transport and suggests weakly
localised metallic behaviour*?. On the contrary, the v = —4
phase (see Fig. 4d) shows the same activated temperature
dependence and very similar conductance values in both devices,
indicating that the domain wall has negligible influence on the
quantum transport in this phase.

In conclusion, we have investigated the impact of stacking
domain walls on the eightfold degenerate zero-energy Landau
level in bilayer graphene. For future measurements, high in-plane
magnetic fields would be beneficial to explore the behaviour of
domain walls within the v = 0 ferromagnetic phase’®, Moreover,
the usage of encapsulated devices is essential to investigate the
behaviour of domain walls in heterostructures** and their impact
on the energy landscape of correlated states in higher
Landau levels. Furthermore, having established that in the lowest
Landau level the edge states and domain-wall channels co-exist,
one can imagine investigating their mutual interaction® in
narrow samples. Lastly, a direct imaging®? of topological valley
and quantum Hall edge channels would be very illuminating.

6 ATURE COMMUNICATIO

Methods

Bilayer graphene was exfoliated from a highly ordered pyrolytic graphite (HOPG)
block onto Si/Si0, substrates and suitable flakes were preselected using optical
microscopy. Afterwards, infrared nano-imaging®® was performed in a scattering-
type scanning near-field microscope (s-SNOM, neaspec GmbH) in tapping mode
to detect any stacking domain walls. Hereby, an infrared CO, laser beam (with a
wavelength of 10.5 um) was focused onto a metal-coated atomic force microscopy
tips (Pt/Ir, Arrow NCPT-50, Nanoworld), which was oscillating with a frequency
and amplitude of 250-270 kHz and 50-80 nm, respectively. With this method, we
were able to obtain topographic and infrared nano-images simultaneously. Elec-
trodes (Cr/Au, 5/100 nm) in two distinct configurations, a top gate (Cr/Au, 5/
160 nm) as well as a spacer (8i0,, 140 nm) were fabricated using several steps of
standard lithography techniques and electron beam evaporation. Subsequently, the
devices were submersed in hydrofluoric acid to etch about 150-200 nm of the SiO;
and consequently suspend both the top gates and bilayer graphene flakes, After
loading the freestanding dually gated bilayer graphene devices into a dilution
refrigerator current annealing was performed at 1.6 K. In devices without domain
wall best results were obtained when using a current of about 0.35 mA pm~! per
layer. In devices with domain wall 150-250% more current was needed to achieve a
current saturation due to their lower resistance and shorter channels. All quantum
transport measurements were conducted at the base temperature of the cryostat
(T < 10 mK), if not noted differently. Moreover, an excitation a.c. bias current of
0.1-10 nA at 78 Hz and Stanford Research Systems SR865A and SR830 lock-in
amplifiers were used for the measurements, as well as Keithley 2450 SourceMeters
to apply the gate voltages. Low-pass filters were used in series to reduce high
frequency noise.

Data availability
All data supporting the findings of this study are available within the article, as well as the
Supplementary Information file, or available from the corresponding authors on request.
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Abstract

Bilayer graphene (BLG) has multiple internal degrees of freedom and a constant density of states
down to the charge neutrality point when trigonal warping is ignored. Consequently, it is susceptible
to various competing ground states. However, a coherent experimental determination of the
ground state has been challenging due to the interaction—disorder interplay. Here we present an
extensive transport study in a series of dually gated freestanding BLG devices and identify the layer-
antiferromagnet as the ground state with a continuous strength across all devices. This strength
correlates with the width of the state in the electric field. We systematically identify electric-field
disorder—spatial variations in the interlayer potential difference—as the main source responsible for
the observations. Our results pinpoint for the first time the importance of electric-field disorder on
spontaneous symmetry breaking in BLG and solve a long-standing debate on its ground state. The

electric-field disorder should be universal to all 2D materials.
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freedom and a constant density of states down to the charge neutrality
point when trigonal warping is ignored. Consequently, it is susceptible to
various competing ground states. However, a coherent experimental
determination of the ground state has been challenging due to the
interaction—disorder interplay. Here we present an extensive transport
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the layer-antiferromagnet as the ground state with a continuous strength
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spatial variations in the interlayer potential difference—as the main
source responsible for the observations. Our results pinpoint for the first time the importance of electric-field disorder on
spontaneous symmetry breaking in BLG and solve a long-standing debate on its ground state. The electric-field disorder should be

universal to all 2D materials.
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B ernal bilayer graphene (BLG) has quadratic band
touching at the charge neutrality point (CNP) and
constant density of states in the single-particle spectrum, when
trigonal warping' is ignored. This implies that BLG is
susceptible to exchange interaction-driven broken-symmetry
states.”'? Such exotic states have been observed at finite
magnetic field B*'*7'® and, more intriguingly, also in its
absence.”*™"* To clearly identify their underlying orders is,
however, a long-standing challenge. States at vanishing
magnetic field are especially intricate as they are degenerate
in mean-field theory”™'? despite their distinct spin-valley
orders. Experimentally, these competing ground states can be
characterized by the stability of their resistance against external
changes in charge carrier density and electromagnetic field.
However, while a vanishing conductance at the CNP
suggesting an insulating state””'" associated with the layer
antiferromagnetic (LAF) state™™'” was found in some devices,
finite conductance was seen in others.””*" Moreover, disparate
observations at finite magnetic fields were also reported; for
example, a recent study assigned a new quantum Hall state to
the transition region between the layer polarized and canted
antiferromagnetic v = 0 sta.tes,11 while others did not spot this
state.”

Evidently, at both zero and finite magnetic fields, there is no
consensus whether the different experimental signatures
originate from different interaction-driven states or from
disorder.'” Charge impurities from substrate or fabrication
are one source of disorder. It can be minimized by suspending
BLG above a substrate or by encapsulating BLG in hexagonal

@ 2022 American Chemical Society
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boron nitride. However, encapsulation embeds BLG in a
dielectric medium with & ~ 3—4, which substantially reduces
the interaction effects compared to the case of suspended
devices. Indeed, the spontaneously gapped states have so far
not been observed in encapsulated devices. In suspended
devices, disorder can be further minimized by current
annealing.”** Another source of disorder are domain walls
(DW) that can either naturally occur as stacking defects™ >
or emerge spontaneously due to the interplay between
exchange interaction and thermal fluctuation.”® The former,
as line defects between AB and BA stacking domains, is not
only common in BLG***” but universal to twisted BLG.>*~*"
Appealingly, these DWs can host topologically protected
states.”>***! The spontaneous DWs are expected to have
similar topological properties,” and they often bind to spatial
variation in the potential difference between layers and can
proliferate thermally;”® however, they are extremely difficult to
identify and control in experiment. Because of these challenges,
up to now the impact of DWs on the discussed interaction-
driven states and their phase transitions has not been studied
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experimentally, although they are expected to alter the
quantum transport characteristics in BLG."**

To reveal the origin of the experimental discrepancies in the
interaction-driven states at finite and vanishing magnetic fields
in BLG, we have carefully examined 11 dually gated suspended
BLG devices, of which a representative SEM image is shown in
Figure la. BLG flakes were first identified by their optical
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Figure 1. Resistance at charge neutrality in bilayer graphene. a, False-
color scanning electron microscope image of a typical suspended
bilayer graphene device. Scale bar, 1 um. b—d, Resistance as a
function of V}, measured for a series of V, at T = 1.6 K for three
different devices. The dashed lines indicate the envelope of the data as
a guide to the eye.

7379

contrast and subsequently imaged by scattering-type scanning
near-field optical microscopy”™”” (s-SNOM) to detect stacking
DWs within the flakes (Figure S1). Two out of the 11 devices
investigated show clearly pronounced DWs. After fabrication,
we performed multiple cycles of current annealing at a
temperature of T = 1.6 K in a dilution refrigerator until a
saturation of the current was visible (Figure S2).

We first focus on the comparison of different devices with
respect to their behavior at B = 0. After current annealing,
already at T = 1.6 K, bottom gate voltage V,, sweeps at various
fixed top gate voltages V, reveal differences in the transport
signature of the devices (Figure 1b—d). For example, the
resistance at the CNP can be very high (>150 kQ) and
decreases with increasing V, (Figure 1b), can be quite low
(<20 kQ) and increases with V, (Figure 1d), or can lie in
between these two extremes (Figure 1c). Similar behavior has
been described in the literature before®*™'"*" and led to a
lively debate on the competing ground states and concomitant
experimental signatures (e.g., the presence or absence of a gap
or edge states).

To gain more insight into the different experimental
signatures at the CNP, we mapped the full bottom and top
gate voltage range at the base temperature of our cryostat, T <
10 mK (Figure 2a). Notably, in 10 out of the 11 devices an
insulating state appears at the CNP, while only one device
remains metallic. In the following, we will discuss the two most
extreme devices, A and B, in which the insulating state is
dominant and absent, respectively. For further analysis, we
transform V}, and V| to the perpendicular electric field E and
the charge carrier density.n'” Figure 2b shows the E
dependence of the resistance at n = 0, where device A shows
the insulating state”®”"! with a resistance of several 100 kQ
around E = 0. According to its signatures, we identify the
insulating state as the interaction-driven LAF state®”'” (see
Supplementary Note). Examining the magnitude of the
conductance at the CNP, ocyp, and the width of the
spontaneously gapped state in the electric field, AE™, as
functions of the temperature reveals an activated T depend-
ence of ocyp and concomitantly an increase of AES with
decreasing T, as can be observed in device A (see Figure 2c).
Moreover, we can see that oo and AES correlate with the
critical temperature across four devices (see Figure S3). We
conclude that smaller o¢yp and larger AE®" indicate a more
pronounced LAF state and decreaging temperature strengthens
this spontaneously gapped state.”” On the contrary, in device
B the resistance monotonically increases with E (Figure 2b),
and no significant temperature dependence of o¢yp is observed
(Figure 2c). Hence, the spontaneously gapped state is absent,
even for T < 10 mK. (We note in passing that we also see a
nonmonotonic behavior in the magnetic field of the
conductance in device A, which could indicate the transition
from the LAF state at B = 0 to the canted antiferromagnetic
state at finite B and differences between their edge transport;*
see Figure 54). In the literature, distinct observations have
been made, such as an insulating state™* ™' associated with the
LAF state,” a finite conductance,”’ or even a bimodal
distribution of conductivities at charge neutrality.”” Across
our investigated devices, however, we observe continuous
distributions of ocyp and AE™ both at T < 10 mK and T = 1.6
K (Figure 2d), suggesting a continuous variation of the
strength of the LAF state. Our analysis in the remainder of the
manuscript is dedicated to deciphering the origin of these
distributions.

https://doi.org/10.1021/acs.nanolett.2c02119
Nano Lett. 2022, 22, 7378-7385
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Figure 2. Presence or absence of the spontaneously gapped LAF ground state in bilayer graphene. a, Conductance map as a function of top and
bottom gate voltages for devices A and B. b, Trace of the resistance at charge neutrality as a function of E for devices A (blue) and B (red). The
electric field range of the insulating spontaneous state is indicated by AE". ¢, Conductance at the charge neutrality point 6cyp (top) as well as AES”
(bottom) for various temperatures for devices A (blue) and B (red). d, 6¢xp measured at T < 10 mK (top) and T = 1.6 K (bottom) as a function of
AE® for all measured devices. Devices with (without) a stacking domain wall within the channel are shown with open (solid) squares. Device A
(B) is shown in blue (red).

A first possible cause for the observed distribution of o¢yp and even the formation of new stacking boundaries during
could be uncontrollable variations in sample fabrication. Such current annealing resulting in a finite or vanishing conductance
fluctuations of process contaminants are, however, very at the CNP has been reported.” To clarify the behavior of
unlikely since we processed all our devices in the same way. stacking DWs under processing and device cleaning, we have
Moreover, we have even found different types of gate conducted a set of test measurements. Since near-field
dependency when measuring two neighboring contact pairs microscopy is impossible to conduct for our dually gated

sharing the same flake, while we have identified similar
behavior for two independently processed flakes. A second
possible explanation could be the presence of uniaxial strain.
However, strain neither opens a spontaneous gap® nor
broadens quantum Hall transitions. In fact, to apply substantial
uniaxial strain, a special effort is often needed,”* which is not
our current case. A third possible reason could be the presence
of structural DWs. Such DWs have previously been held
responsible for unusual conduction behavior close to the
CNP.* Our experiments, however, demonstrate that DWs are
not the cause for suppressing the interaction-driven insulating
ground state, since the two devices with DWs show an

devices, the tests were made on BLG flakes on a substrate
without a top gate. At first, we examined the stability of
stacking DWs during the fabrication of contacts: in contrast to
multilayer graphene, they appeared stable and immobile in
BLG during processing, verified by their presence prior to and
after processing (see Figure SS). This observation is consistent
with the prediction that AB and BA stackings are energetically
equivalent™ and consequently—unlike DWs between ABC
and ABA stacks®**’—there should be no driving force for DW
movement by the strain induced during processing. Second,
contacted flakes with stacking DWs between the contacts were

intermediate strong LAF state, which is consistent with recent annealed at large currents and reinvestigated subsequently with
experiments revealing that even in the extreme case when a near-field microscopy (see Figure S6). We did not observe any
stacking DW directly connects the contacts, the LAF state can systematic movement of the stacking DWs or any development
still be present.’' The arguments hold only with the of new ones. We conclude that current annealing and
assumption that the DWs remain stable and do not move processing do not create, remove, or move stacking DWs
during current annealing. Recent literature, however, showed systematically. The observed stability implies that two of the
that such stacking DWs can be mobile at high temperatures,” investigated devices did indeed have a DW each, which neither

7380 https://doi.org/10.1021/acs.nanolett.2c02119
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Figure 3. Role of disorder and annealing on the emergence of the gapped LAF ground state in bilayer graphene. a, AES and oy at T < 10 mK
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systematically alters the conductivity of the ground state nor
explains the observed continuous spectrum of behavior.

Another possible explanation could be the residual charge
disorder in BLG devices. It is often assumed that disorder can
be removed via current annealing to a device-independent
minimum. Hence, we should be able to clean all devices such
that they have similarly low conductance. This is, however, at
odds with our experimental findings. Even though we can
identify that ocyp depends on the cleanliness of the device (i.e.,
the degree of current annealing) and can be changed by more
than 1 order of magnitude by further annealing, the overall
transport signature (ie, the monotonic or nonmonotonic
behavior of the E dependence of conductance that indicates
the absence or presence of the LAF state) does not change
once the CNP lies in the accessible V,, range (Figure S7). In
other words, the emergence of the spontaneously gapped
ground state is independent of the number of current
annealing cycles in our experiments. Moreover, in the cleanest
state accessible by current annealing (i.e, when a current
saturation is visible®™), AES" and 6ye do not systematically
depend on the residual charge disorder across all devices,
which is in general very low in all ultraclean devices (Figure
3a). Therefore, residual charge disorder cannot be the cause,
and current annealing itself does not have any effect on the
overall transport signatures (Figure 57).

Nonetheless, the current density required to observe
saturation during annealing, ], varies significantly in the
range of 1.4—2.9 X 10® A cm™* between devices. Moreover, the
strength of the spontaneously gapped state, AES", systemati-
cally depends on J,,. (Figure 3b). Specifically, when a high
current density is needed for current saturation, the device
shows a weaker (or no) gapped ground state. Intriguingly,
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besides residual charge disorder, there is a different type of
disorder:**" Whereas charge fluctuations produce spatially
varying in-plane electric fields that lead to charge puddles,®
ie, residual charge disorder, charge imbalance between the
two layers creates spatially varying out-of-plane electric fields,
ie, electric field disorder.’”* Moreover, the two types of
disorder are most likely uncorrelated.”

One may wonder from where the electric field disorder
originates and why it is not removed during annealing. During
the current annealing procedure, the heat generated by the
electric current leads to partial evaporation and redistribution
of contaminants to colder parts of the devices,*® which in our
experiments are the contacts. During fabrication the top layer
is exposed to a resist, whereas the bottom layer is in contact
with residues initially present on the SiO, surface. Hereby,
current annealing is more likely to redistribute contaminants
within each layer toward the contacts, instead of between the
two layers, and we expect the electric field disorder to depend
on the device geometry. This hypothesis is ready to be tested
by our large number of devices with varying geometries.
Indeed, AE™" scales with the ratio of channel length to contact
width, as shown in Figure 3c. Evidently, the shorter the
graphene channel and/or the wider the contacts, the less
effective the current annealing procedure, i.e., the more current
is needed to minimize residual charge disorder, and the more
electric field disorder is present. Specifically, devices with
shorter channels exhibit higher shares of contaminated regions
near the contacts compared to devices with longer channels.
Moreover, the contacts act as heat sinks,”® and their widths
determine the cooling effectiveness during current annealing,
i.e., the wider the contacts the more likely the movement of
contaminations toward them. Hence, electric field disorder is

https://doi.org/10.1021/acs.nanolett.2c02119
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Figure 4. Phase transition between broken-symmetry quantum Hall states and distinct v = 0 states in bilayer graphene. a, Maps of conductance as a
function of E and n at B = 3 T for devices A and B. b, Line traces of the conductance taken at B = 3 T and constant filling factors v = —1 and —2 as
a function of E for devices A (blue) and B (red). The width of the phase transition between v = —2 states of opposite layer polarization in electric
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squares. Device A (B) is shown in blue (red). f, AE*™ at B = 2 T as a function of AES” shown for several devices.

primarily present in devices with short channels and wide
contacts. Its presence allows for the formation of domains of
competing spontaneously gapped states other than a uniform
LAF state’® within a device. Spontaneous DWs separating
these domains are known to carry gapless edge modes.”® These
can explain the observation of finite 6cyp and small AESF.
An estimate of the upper bound of the electric field disorder
that completely suppresses the LAF state can be half of AE™" in
the cleanest device, namely, ~25 mV nm™". This corresponds
to a charge imbalance of about 1.4 X 10" cm™ in device B,
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which is surprisingly large given that the charge disorder is an
order of magnitude smaller (Figure 3a). However, the critical
disorder strength could be much weaker, as the domain walls
between LAF/FLP states are expected to proliferate at the
critical point (just like at the critical temperature*®). Moreover,
the two types of disorder are uncorrelated.””

To find more proof of electric field disorder, we have
conducted magneto-transport measurements, since the for-
mation of domains is expected to impact transitions between
broken-symmetry quantum Hall states.’* The conductance as a

https://doi.org/10.1021/acs.nanolett.2c02119
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function of n and E at B = 3 T for devices A and B are shown
in Figure 4a (see Figure S8 for data at 1.5 T). Although both
devices show the full splitting of the lowest Landau level octet,
major differences in the appearance of the v = +1 and +2
states arise. In particular, transitions to the layer polarized v =
+1 and +2 states around zero electric field can be identified as
regions of increased conductance (see Figure 4a,b), as
observed previously.”'”*' In general, if electric field disorder
is strong, around zero electric field, domains of states with
opposite layer polarization can be present. Moreover, DWs
separating these domains can host one-dimensional conducting
states,” > increasing the conductance. Whereas the transition
regions are narrow in electric field in device A, in device B they
are drastically extended and feature enhanced conductance,
consistent with many domains and consequently a network of
conducting DW states present. Generally, the more domains of
states with different layer polarization within a device occur,
the more DW states contribute to the charge transport and the
more electric field that is needed to uniformly favor a layer-
polarized state. On a broader basis, we take the extent of the
region of increased conductance in electric field for the v = -2
state (AE*"™%) as an indication for the density of conductive
DWs and plot it as a function of the width of the LAF ground
state in the electric field AE®" for several devices (Figure 4e).
Systematically, the devices with larger AE*="? also have weaker
LAF states at B = 0, consistent with the relevance of the
electric field disorder with a concomitant formation of domains
in both states. This correlation further corroborates our
findings and their explanation at zero magnetic field. Worth
mentioning is that these phase-transition regions vanish for
very high magnetic fields, since additional layer-balanced, spin-
polarized v = +1, + 2 states emerge around zero electric
feld 1718

Finally, we turn to another electric-field induced quantum
phase transition between two v = O states,” the canted
antiferromagnetic (CAF) phase at low electric fields and the
fully layer polarized (FLP) phase at high electric fields.
Conductance maps as functions of the applied electric and
magnetic fields at zero density are shown for devices A and B
in Figure 4c. We find the two v = 0 insulating states separated
by a region with increased conductance, as reported in the
literature,”**" This first order phase transition has a slope in
the E—B plane. By taking line traces along negative E at specific
B (Figure 4d), one can clearly reveal differences between
device A, which displays a sharper transition, and device B,
where the phase transition not only has a higher conductance
but also extends over a wider range of electric field AE*C.
Although a recent study attributed the broad transition to the
emergence of a new phase,”' our data is consistent with the
presence of electric field disorder causing the formation of
multiple domains of CAF and FLP phases in the transition
region.'> DWs separating the layer unpolarized CAF and the
FLP states host one-dimensional conducting states®* and
consequently cause an increase in conductance at the
transition. The step-like features likely indicate the switching
of individual domains (Figure 4d). To correlate this
observation with the strength of the spontaneously gapped
ground state at B = 0 (i.e., the LAF state), we plot the width of
the v = 0 transition at negative electric field AE** at B=2T
versus AES for six devices (Figure 4f). Again, devices with a
more pronounced spontaneous gap at B = 0 also exhibit a
narrower transition between the two v = 0 states, consistent
with the detrimental impact of the electric field disorder.
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B OUTLOOK

Having identified the electric field disorder as the source for
creating domains of different spontaneously gapped ground
states at zero magnetic field and broadening the electric field-
induced phase transitions both at zero magnetic field and in
the quantum Hall ferromagnetic regime in BLG poses
interesting questions for future investigations. How can one
fabricate noninvasive contacts in suspended devices beyond
the existing four-terminal ones?* How does the electric field
disorder impact the thermal proliferation of spontaneous
DWs™ in suspended devices? How does the electric field
disorder address the interplay between trigonal warping and
Coulomb interaction and the resu]tin_g cascade of correlated
phases, including fractional metals'**** and Wigner crys-
tals?'® Finally, we note that the existence of electric field
disorder should be universal to all 2D materials, and its unique
impacts await exploration.
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Supplementary Note 1:

Identifying the emerging broken-symmetry quantum Hall states in the presence of a

stacking domain wall

Since the conductance of the appearing quantum Hall states in device D1-DW differs quite
significantly from usually observed values as in device D2, we have additionally recorded fan
diagrams to examine the slope of transconductance fluctuations? (see Supplementary Fig. 1).
As some of the emerging phases show an electric field dependence, we have measured the
conductance at various applied fields (see Supplementary Fig. 1a — d). The slopes of the
appearing broken-symmetry states fit very well to the expected v = 0, 1, 2 and *4 states,
despite all having similar conductances of 3 -4 e? h~*. Thus, additional charge transport along
the domain wall in parallel to the quantum Hall edge states is unambiguously the cause for
the higher conductance in the different states. Whereas the v = 0 phase is most stable for
low and high electric field, consistent with a phase transition from the LAF/CAF to the LP
phase®*, the v = +4 is most stable for low electric field. Contrarily, the (partially) layer
polarised v = +1, +2 phases appear only at intermediate electric field at these low magnetic
field. Notably, since at n = E = B = 0 transconductance fluctuations with zero slope are
visible, the layer antiferromagnetic phase is indeed present but masked owing to the quantum

valley transport along the stacking domain wall.



|dc/8n| (arb. units)

Magnetic field (T)

Magpnetic field (T)

! 0o 1 1 o 1
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Supplementary Figure 1 | Fan diagrams measured at specific electric fields. a — d, Derivative
of the differential conductance da/dn as a function of magnetic field and charge carrier

density for various electric fields. The slopes of the individual broken-symmetry v =

0, +1, +2, +4 states are indicated with arrows.
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Supplementary Note 2:

Phase transition between the fully layer polarised and the canted antiferromagnetic v = 0

phase in the presence of a stacking domain wall

When sweeping E as a function of B for zero charge carrier density (Supplementary Fig. 2a,b),
the transition between the fully layer polarised and the canted antiferromagnetic phase
appears as region with increased conductance in both devices, consistent with previous
measurements®*, However, in device D2 both phases are insulating, whereas in D1-DW the
conductance remains finite at ¢ = 2.9 e h™! (see Supplementary Fig. 2c) due to the kink
states contributing to the charge transport. Within the CAF phase the conductance is slightly
decreasing for increasing magnetic field (Supplementary Fig. 2d), consistent with the increase
of canting and evolving energetic dispersion of the kink states (see main text). In
Supplementary Fig. 2e, the band structure of the CAF and LP phase in the presence of a domain
wall are schematically shown. In contrast to the minigap opening in the CAF phase owing to
the hybridising of same valley states, the valley-helical kink states in the LP phase remain

largely intact due to the suppression of intervalley scattering.
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Supplementary Figure 2 | Phase transition between the fully layer polarised and the canted
antiferromagnetic v = 0 phase. a,b, Conductance as a function of applied electric £ and
magnetic field B at zero charge carrier density for device D1-DW (a) and D2 (b). The first-order
phase transition between the two v = 0 phases, the CAF and the LP phase, is characterized
by a region with increased conductance. The dashed lines in (a) indicate the position of the
data shown in (c) and (d). ¢, Line traces of the conductance across the v = 0 phase transition
shown for sample D1-DW (black) and D2 (red) at B = 2 T. The dashed line marks the value
2.9 e? h™1. d, Conductance as a function of B for n = E = 0. The data of device D1-DW (D2) is
shown in black (red). e, Schematic band structure as a function of position around a stacking

domain wall shown for the CAF and LP phase.
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Supplementary Note 3:

Impact of domain walls on the band structure beyond the zero energy Landau level

Supplementary Fig. 3 shows the influence of the domain wall on higher Landau levels. To this
end, we have recorded a conductance map as a function of function of Eand natB=15T,
see Supplementary Fig. 3a. At this low magnetic field, we can observe the v = 48,112
quantum Hall states. While the conductance of the v = +8 states show the expected
conductance, the one of the v = +12 state seems to be lower than 12 e? h~1. Moreover, we
see an oscillating behaviour of the conductance when entering a new quantum Hall plateau
(see Supplementary Fig. 3a,b). One possible explanation for these oscillations could be the
rather low aspect ratio L/W = 0.5 of the device, with L and W being the length and width of
the device channel, respectively. It has been shown that the shape of a sample can non-

trivially affect the conductance at the quantum Hall transitions®.

However, theoretical calculations of Landau levels energies (see Supplementary Fig. 3c,d)
show that domain walls can cause the formation of ripples within higher Landau levels. For
the band structure calculation, we used a linearized model of graphene layers near K/K' valley,
with smoothly varying interlayer hybridisation across the domain wall; namely, hopping A1B2
gradually is being replaced by B1A2. The energies are calculated in a finite width strip, with
the domain wall in the middle. In Landau gauge, the translational invariance in the direction
of the strip is preserved, and the energies are plotted as a function of momentum along the
strip. The rescaled momentum also corresponds to the locations x of the centres of individual
states, when rescaled by c¢/(eR), with ¢ being the speed of light. Interestingly, if the expected
increase of A1A2 and B1B2 hybridisation at the domain wall is not included, the zero energy

Landau levels remain flat through the domain wall. In contrast, the higher Landau levels show



significant variations — “ripples” — near the domain wall. This could also be the possible reason

for the observed oscillations of conductance as a function of density.
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Supplementary Figure 3 | Influence of the domain wall on the energetic landscape of higher
Landau levels. a, Conductance as a function of £ and n at B = 1.5 T. The dashed line indicates
the position of the data shown in (b). b, Line trace of the conductance as a function of charge
carrier density for zero electric field. The dashed lines indicate multiples of 4 e? h™ 1. ¢,
Schematic Landau level band structure computed in the presence of a domain wall, smoothly
interpolating between AB and BA stacking. The horizontal axis is the momentum along the
domain wall. In Landau gauge used here, it is proportional to the location of the centre of a
given orbital, x. With zero interlayer bias, the zeroth Landau level is four-fold degenerate
(valley and orbital index), and higher Landau levels are doubly degenerate owing to valley
degeneracy (spin is ignored). Near the edges the Landau levels float away from zero energy.
The behaviour near the domain wall (x = 0) depends on the precise way that domain wall
interpolates between AB and BA stackings. Even when the zeroth Landau level is flat (when
A1A2 and B1B2 hopping near domain wall is ignored), the higher Landau levels are sensitive
to the presence of the stacking defect. d, same as in (c) but with a small uniform interlayer

bias. Notably, valley-helical modes emerge at the domain wall.
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Supplementary Note 4:

Full quantum transport data at low and high magnetic field in the presence of a stacking

domain wall

Supplementary Fig. 4a — e shows the full conductance maps as a function of E and n for various
magnetic fields in device D1-DW. Most prominently, the spectral minigap emerges for B = 8
T causing the conductance to drop, marked by the cross in Supplementary Fig. 4c — e and in
the line traces in Supplementary Fig. 4f — h. Additionally, the conductances of the v =
0, £1, £2 states are dropping for increasing magnetic field. This can also be observed in the
line traces shown in Supplementary Fig. 4f — h. For the v = 0 CAF phase, the decrease can be
explained by the emergence of a minigap due to the hybridising of partially spin aligned
counterpropagating modes in the same valley, as explained in the main manuscript. For the
v = 0,11, +2 states, we think the effect occurs owing to increased intervalley scattering, as

explained in the main manuscript.
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carrier density for various magnetic fields in device D1-DW. The cross indicates the

conductance dip caused by the appearing minigap. f — h, Line traces of the conductance as a
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function of filling factor for £ =0, 19 mV nm™ and 25 mV nm. The lower panels are zoom-ins

around small filling factors.
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Supplementary Note 5:

Persistence of the spectral minigap for a different cooldown

Supplementary Fig. 5a shows a fan diagram recorded as a function of back gate voltage in
device D1-DW. The graph shows the emergence of the spectral minigap within the v =0
phase at B = 8T, indicated by the cross. Moreover, its evolution for increasing magnetic field
can be seen in Supplementary Fig. 5b, which shows line traces of the conductance for various
high magnetic fields. The dip in conductance is increasing for increasing magnetic field, which

matches the observations shown in Fig. 3 in the main manuscript.

It is worth noting that the data shown in Supplementary Fig. 5 was recorded during a different
cooldown of the device than the data shown in the main manuscript. Most importantly, this
demonstrates the persistence of the spectral minigap over multiple cooldowns. Since each
cooldown involves a current annealing procedure, driving high currents through the device
seem also to not affect the emergence of the feature. Notably, the device D1-DW was not as
clean during the cooldown corresponding to Supplementary Fig. 5 as for the measurements
shown in the main manuscript (in terms of residual charge disorder and contact resistance),

which makes the direct comparison of absolute values of the conductance difficult.
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Supplementary Figure 5 | The emergence of a spectral minigap within the v = 0 phase for
high magnetic field. a, Fan diagram showing the conductance as a function of magnetic field
and bottom gate voltage. The cross indicates the conductance dip caused by the emergence
of the spectral minigap. Note that the data was recorded with device D1-DW but during a
different cooldown than the measurements shown in the main manuscript. b, Line traces of

the conductance as a function of back gate voltage at various magnetic fields. The data is taken

from the fan diagram shown in (a). The line cuts are offset for better visibility.
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Supplementary Note 6:

Quantum transport measured in additional devices

Supplementary Fig. 6 shows the data from three additional devices with domain wall.
Supplementary Fig. 6a — ¢ shows the conductance of the v = 0,—1, -2, —4 quantum Hall
states as a function of magnetic field measured in the devices D2-DW, D3-DW and D4-DW,
respectively. Note that the conductance was averaged over the regime at which the respective
state emerges, i.e. for the v = 0 CAF phase around zero electric field, for the v = —1 and -2
at|E| = 10 mVnmtand |E| = 15 mV nm™ and the v = —4 state at all electric fields. The full
conductance maps as a function of E and n for various magnetic fields are shown in

Supplementary Fig. 6d — f for the three devices.

Similar to device D1-DW, all three samples show a decrease of the conductance for the
quantum Hall states with increasing magnetic field. Although in device D2-DW
(Supplementary Fig. 6a) and D3-DW (Supplementary Fig. 6b) the decrease is very prominent,
sample D4-DW (Supplementary Fig. 6¢) shows only a slight decrease of conductance.
Moreover, a clear minigap can only be observed in device D2-DW (see Supplementary Fig.
6a,d). However, we have indications that the quality of the devices D3-DW and D4-DW is
significantly lower than that of D2-DW or even D1-DW. In device D4-DW, even at low magnetic
field, the conductances of the v = 0, —2, —4 states differ greatly. Evidently, the additional
conductance originating from the kink states is highly reduced due to a low quality of the
domain wall. In device D3-DW, the CAF phase can only be clearly observed for B = 3 T. Both
observations indicate an overall lower quality of the two devices. Hence, the minigap can

probably not be resolved due to disorder in both samples.
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Supplementary Figure 6 | Data from additional devices. a — ¢, Conductance of the v =

0,—1,—2,—4 QH states as a function of B for the devices D2-DW (a), D3-DW (b) and D4-DW



(c). For device D2-DW, also the conductance within the spectral minigap is shown. d - f, Maps

of the conductance as a function of E and n for various magnetic fields for the three devices.
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Methods:

Device fabrication:

Graphene flakes were exfoliated from a highly ordered pyrolytic graphite
(HOPG) block onto Si/SiO, substrates. Suitable bilayer graphene flakes were
preselected by examining their optical contrast under an optical microscope.
Afterwards, infrared nano-imaging' was performed using a commercial scattering-
type scanning near-field microscope (s-SNOM, neaspec GmbH) to detect stacking
DWs within the flakes. Hereby, an infrared CO, laser beam with a wavelength of about
10.5 um was focused onto a metal-coated atomic force microscopy tip (Pt/Ir, Arrow
NCPT-50, Nanoworld) in tapping mode, providing topographic and infrared nano-
images simultaneously. Oscillation frequency and amplitude of the tip were about 250
— 270 kHz and 50 - 80 nm, respectively. After fabricating the electrodes (Cr/Au, 5/100
nm), the top gate (Cr/Au, 5/160 nm) and a spacer (SiO,, 140 nm) with multiple steps
of standard electron-beam lithography and electron-beam evaporation, hydrofluoric
acid was used to etch about 150 — 200 nm of the SiO, to suspend both the top gate
and bilayer graphene flake. Subsequently, the suspended dually gated bilayer
graphene devices were loaded in a dilution refrigerator and several cycles of current
annealing at 1.6 K were performed. The devices were clean when a saturation of the
drain current was well visible.

Quantum transport measurements:

We performed two-terminal conductance measurements with an AC bias
current of 0.1 — 10 nA at 78 Hz using Stanford Research Systems SR865A and SR830
lock-in amplifiers. Keithley 2450 SourceMeters were used to apply the gate voltages.

2



Additionally, low-pass RC filters were used in series to reduce high frequency noise.
For each device, a contact resistance was calculated and subtracted using the

resistance of specific quantum Hall states®.
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Supplementary Note:

Discussion about the interaction-driven layer antiferromagnetic state in Bernal

stacked bilayer graphene

In the following, we discuss why the observed spontaneous insulating ground state is
the layer antiferromagnetic state in bilayer graphene: (i) Theoretically, all possible
electron-electron interaction-driven insulating ground states relevant to BLG and its
ABC variants at charge neutrality point have been classified®. (ii) As seen from Table |
of ref.?, the only two classes of states that do not have topologically protected edge
states (0" = ¢SH) = ) are the layer antiferromagnetic and the quantum valley Hall
states (i.e. the fully layer polarized states). Thus, in our two-terminal charge transport

measurements (the two-terminal conductance is given by Ouwo-terminal =

[o4? + Oxy?, With o, = 0 and oy, is given by 6™ or 6™ /2 in Table | in ref.%) these

two classes of states should exhibit insulating behavior with ceye < 1 €2 h™! below
their critical temperatures, while others should exhibit oene = 2 €2 h™1. (jii) Since we
observe an insulating state at £ = 0 and two separate phase transitions at £ > 0 and
E < 0 to distinct insulating states, we can uniquely identify the insulating state at £ =
0 as a layer antiferromagnetic state and the insulating states at £ = 0 as two fully layer

polarized states.



Supplementary Figures S1 - S8:

Eleven bilayer graphene devices scanned for stacking domain walls using

scattering-type scanning near-field optical microscopy

Prior to fabricating the dually gated freestanding devices, the preselected bilayer
graphene flakes were scanned for stacking domain walls using scattering-type
scanning near-field optical microscopy. Fig. S1a — h shows eight different flakes. For
each bilayer graphene flake, an atomic force microscopy (AFM) image as well as a s-
SNOM amplitude and/or phase image is shown. The subsequently designed contacts
are marked in blue, and the devices (one to three per flake) are labelled with letters or
numerals. Any domain walls visible in the s-SNOM images are additionally indicated
with yellow dashed lines in the corresponding topography images for greater visibility.
A and B are the devices shown in the main manuscript. Two devices (devices 7 and
8) exhibit domain walls within their channel. For device 7, the two domain walls close
to each other in the center of the channel presumably merged and annihilated, as we
could not see any indications of topological valley transport along the domain walls in
case an electric field is applied*”. Apparently, when multiple structural domain walls

are very close to each other, annihilation is possible.

119



Appendix B: Supplementary Material of the Publications

120

7 6 7
P pd > & > &
[} » » »
2 5 2 = 2 2 2
= o] = o) = o) z
_§ = _§ = _§ = g
) m o
3 3 3
H 3 < 3 S 3 E
o g ° g hel g 7]
2 & 2 5 2 § $
—_ o = o —_ @ D
=) v 2 v 3 v c
3 = 3 c 3 c <
1 m
0 0 0
4 3 3 -
pd o P & >
7} [72) @
2 5 2 5 2 2
g - g - g S
o o
< 3 g 3 g 3
o = o = o} o
s g s g 3 3
< Q < e <
g © . @ = 5
2 v 3 > 3 c
3 c 3 c 3 =
0 0 0
4 4
> & > &
» »
2 - 2 §
'8 = _8 =
® o
& 3 & 3
g £ g £
2 8 = 8
3 0 3 v
3 c 3 c
o] 0]

Supplementary Fig. S1 | AFM and s-SNOM images of the examined bilayer
graphene flakes. a — h, AFM, and s-SNOM amplitude/phase images for all measured
devices prior to processing. Subsequently designed contacts are highlighted in blue,

and any present stacking domain walls are indicated with dashed yellow lines.



Current annealing and the appearance of fractional quantum Hall states

Prior to any measurements, the devices were cleaned using a current annealing
procedure®. Multiple cycles of current annealing at 1.6 K were performed. During the
ramp up of the d.c. voltage Vy., the d.c. current /5. and resistance Ry were tracked
(Fig. S2a). In case the device is clean, the current shows a saturation. More Vg is
applied until the resistance has well increased.

After the current annealing process, we have looked for signs of fractional quantum
Hall states, since the observation of such fragile phases”® would indicate a high quality
of our devices. To this end, in Fig. S2b, the conductance as a function of density and
magnetic fields of B = 8 — 14 T is shown for one exemplary device. In the presented
density range, besides the v = =1 and *+2 states, we can observe additional plateaus
emerging for B = 10 T indicating the appearance of fractional quantum Hall states
(illustrated by the black arrows in Fig. S2b). The most obvious appearing fractional
states appear to be the 2/3 and 5/3 states, as reported in literature’. However, more
detailed measurements would be needed to unequivocally identify the nature of these

states. Nonetheless, these observations emphasize the high quality of our devices.
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Supplementary Fig. S2 | Current annealing and fractional quantum Hall states.
a, I and Ry, as a function of V,, demonstrating the saturation of the current during
annealing. b, Bottom: Fan diagram at £ = 20 mV nm™ for high magnetic fields. Top:
line traces of the conductance as a function of charge carrier density for various B.

The black arrows indicate emerging fractional quantum Hall states.
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The correlation between ocwe, AES® _and the critical temperature of the

spontaneously insulating ground state

As discussed in the main text, we use oy and AES® as measures for the strength of
the ground state. To support this, we show the resistance as a function of V, measured
for a series of V, for four different devices at T = 1.6 Kand T < 10 mK, as shown in
Fig. S3. From top to bottom in Fig. S3, both the resistance at the CNP Reye and AES”
consistently decrease. From the temperature dependent data in Fig. 2c in the main
text, we know that device A (Fig. S3a) has the critical temperature T in the range of 5
K- 10 K. For the device shown in Fig. S3b, we can assign T, > 1.6 K. For the device
shown in Fig. S3c, 10 mK < T, < 1.6 K, since it exhibits no spontaneously insulating
state at the CNP at T = 1.6 K but features one at T < 10 mK. Lastly, for device B (Fig.
S3d), we do not observe any insulating state even at T < 10 mK (see also the data in
Fig. 2ain the main text), and its T, should be below 10 mK. Therefore, we can conclude
that T, decreases from top to bottom in Fig. S3, which correlates with the decrease of

Rcne and AESF.

123



Appendix B: Supplementary Material of the Publications

a ;
5K<T,<10K
140 f . J‘—vﬁ.sv
V,=-15V
5120' T=16K 5400' Wzl T<10mk
=100 = —v=3v
= =300} 0 I
8 sof 8 I
8 L © 200
£ ,u J\
2ra0r i & 100 I
20+ I\ 1 J \
JIAL
O- 1 1 1 1 1 ] 0 1 L 1 1 1
-4 -2 0 2 4 -4 -2 0 2 4
Bottom gate voltage Bottom gate voltage
b
- . : . — T > 16K —
30fF [—V,=-3V
V,=-15V 100
—V,=0V
= E T=16K = T<10mK
g ol g eof
= 2} ' <
@ @
Bl
g o w)
[+ & | Q
20 8
@,
: 3
-4 B 0 2 4 -4 2 0 2 4 ~
c Bottom gate voltage (V) Bottom gate voltage (V) -
40 — — ——10mK<T, < 1.6K — &
—V, =3V I —v,=3Vv s
1. V,=-15V| g
(_‘7‘30“ =~ 6or 5:::5501 T <10mK Q
2 2 — V=15V B
@ @ —V,=3V 7,
o 20 o 40 o
= c
£ g
2 k7]
2 10} 2 20
o [+
0 or
-4 -2 0 2 4 -4 -2 0 2 4
d Bottom gate voltage (V) Bottom gate voltage (V)
’—‘
! . T, < 10mK - .
—V,=3V | —v,=3v
60 V,=-15V 1 120 V,=-15V|
—V,=0V I —V,=0V
= - - T=16K |l = B T<10mK
3 V,=15V V,=15V
g = —V =3V g 100 —v.j=;v
g 30r S e0f v
2 k7]
g 20T 8 40} -
© 10} 1% 2
5 A e | - N
4 2 0 2 4 4 2 0 2 4
Bottom gate voltage (V) Bottom gate voltage (V)

Supplementary Fig. S3 | Correlation between ocyve, AES® and T. of the
spontaneously insulating ground state. a - d, Resistance as a function of V,
measured for a series of V,at T = 1.6 K (left) and T < 10 mK (right) for four different

devices. Note that device A and B from the main text are shown in (a) and (d),
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respectively. For each device, the corresponding T. is indicated, and its respective

contact resistance has been taken into account.
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Behavior of the LAF phase with increasing magnetic field

After evaluating the data of eleven devices, it is reasonable to assume that the true
ground state is the layer antiferromagnetic (LAF) phase atn = E = B = 0. However,
an open question is still how the phase evolves into the canted antiferromagnetic
phase forn = E = 0 but finite B. In literature, only once a non-monotonic behavior of
the conductance for increasing magnetic field has been observed®. To investigate this
further, we have recorded conductance maps as a function of electric field and around
zero magnetic field for n = 0, see Fig. S4a,b. Most devices show (in case they exhibit
a spontaneous gap opening at low temperatures) a monotonic decrease of the
conductance for increasing magnetic field, see the data shown in Fig. S4b and the
corresponding line trace in Fig. S4c for device S. Nonetheless, devices with a
dominant LAF state (device A) show an indication of a non-monotonic behavior of the
conductance for increasing B, see Fig. S4a,c. The conductance behaves
asymmetrically around zero magnetic field at with maxima at +20 mT and -130 mT,
which is consistent over multiple measurements. In the case of actually sweeping the
magnetic field for constant E (see Fig. S4d,e) the two maxima of conductance appear
symmetrically at B = = 140 mT for low electric fields and rapidly shift towards zero
magnetic field for £ = -9.5 mV nm™. Possibly, this non-monotonic behavior comes
from the differences in the edge transport between the LAF and CAF phase'®, however

a phase transition, i.e. a closing of the bulk energy gap, is not expected.
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Supplementary Fig. S4 | Evolution of the LAF to the CAF phase. a,b, Maps of the
conductance in units of € h™ as a function of applied electric and small magnetic
fields at zero charge carrier density in devices A and S. ¢, Line traces of the
conductance along the magnetic field direction at E = 0 shown for device A (blue)
and S (black). d, Conductance as a function of E and B at zero charge carrier density
for device A. Here, the magnetic field was swept at various electric fields. e, Line traces

of the resistance along the magnetic field direction at various constant electric fields
shown for device A.
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Stability of stacking domain walls during processing

In multilayer graphene with a layer number of N > 2, mainly two stacking orders
(Bernal and rhombohedral stacking) occur. Domain walls separating regions with
different stacking can easily move due to the fabrication of contacts, since Bernal
stacking is favoured during the process''. On the contrary, bilayer graphene naturally
exhibits mainly Bernal stacking order. Stacking domain walls occurring in bilayer
graphene flakes separate regions with AB and BA stacking'?, which are energetically
equal'®. Consequently, they are more unlikely to move. In fact, we have tested several
devices without top gate, and could not observe any movement of the domain wall
during fabricating the source-drain contacts by electron-beam lithography.
Exemplarily, Fig. S5 shows AFM (a) and s-SNOM amplitude images (b) of a bilayer
graphene flake prior (left and top panels) and after fabricating contacts (bottom
panels). We can see that the domain wall remains at the exact same position.
However, in the extreme case of multiple structural domain walls very close to each
other, their annihilation seems still possible (see Fig. S1). We cannot conduct this test
after any further step in the fabrication of the device since applying the top gate

prevents the procedure.
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Supplementary Fig. S5 | Stability of stacking domain walls during processing.
a,b, Atomic force microscopy image (a) and s-SNOM amplitude image (b) of a bilayer
graphene flake. Left panels: bilayer graphene flake prior to processing. Top panels:
high-resolution zoom-in scans showing the region of the domain wall prior to
processing. Bottom panels: region of the domain wall after fabricating the source-

drain contacts. The scale bars are 0.5 um in all images.
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Stability of stacking domain walls during current annealing

To investigate the stability and any possible new formation™ of stacking domain walls
during current annealing, we have fabricated multiple bilayer graphene devices on a
SiO; substrate. The selected flakes each exhibited multiple stacking domain walls
prior to contacting, as the s-SNOM images reveal (see Fig. S6a,c.e). Subsequently,
the flakes were contacted and current annealing was performed at low temperatures
(T = 5 K). Very high current densities J..., were applied between neighboring or next-
neighboring contact pairs (even higher than in the suspended devices due to the
presence of substrate), as indicated in Fig. S6. After the annealing procedure, the
flakes were again scanned with near-field microscopy (Fig. S6b,d.f). Only one
stacking domain wall (in the top panel of Fig. S6b) could not be observed anymore.
However, it but might still be present but untraceable owing to residual dirt visible in
the corresponding topography image. Besides this exception, all other stacking
domain walls were still visible after current annealing and remained at the exact same
spot. Moreover, even a complex s-shaped domain wall as in the top panels of Fig. S6f
remained intact. Hence, stacking domain walls are very stable even when applying
very high currents and the formation of new stacking domain walls seems very

unlikely.
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Supplementary Fig. S6 | Tracking stacking domain walls prior and after current
annealing. a,c,e, Topography as well as s-SNOM amplitude/phase images of three
bilayer graphene flakes on SiO,. Each of the flakes exhibits multiple stacking domain
walls, visible in the s-SNOM images. In the topography images, subsequently
designed contacts are highlighted in blue and stacking domain walls present are
indicated with dashed yellow lines. b,d,f, Topography and s-SNOM images after
current annealing. For the flake in (d), the complete flake is shown, whereas (b) and
(f) show only zoomed-in images of the channel in between two contacts. The
maximum current density applied during the cleaning procedure Jn., in between two
contacts is indicated. Again, the stacking domain walls are indicated by dashed yellow

lines in the topography images for greater visibility.
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Stability of the quantum transport signatures during multiple current annealing

cycles

After multiple cleaning cycles, the charge neutrality point appears in the accessible V,
range, exemplarily shown for a device in Fig. S7a. Measuring conductance maps at B
= 0 as a function of V; and V,, (Fig. S7b) reveals that the device shows an intermediate
strong spontaneous phase. Additional measurements at B = 3 T in dependence of n
and E (Fig. S7c) as well as for n = 0 as a function of B and E (Fig. S7d) show medium-
sized transition regions between states of different layer polarization confirming that
the device has some disorder present. However, conductance fluctuations/spikes
show that the device is not perfectly clean and it displays a high contact resistance (>
20 kQ). Further annealing the device (about 3 % more d.c. current) drastically
improves both aspects (Fig. S7e — h). Subsequently, only very few fluctuations are
visible, and the contact resistance drops below 10 kQ. Nonetheless, the overall
transport signature has not changed. Therefore, the amount of disorder responsible
for the strength of the LAF ground state and the width of phase transitions between
different broken-symmetry states remains the same and is not changed by the

additional current annealing.
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Supplementary Fig. S7 | The impact of current annealing on the quantum
transport of a bilayer graphene device. a, Resistance as a function of V, measured

for certain V, at T = 1.6 K. The dashed line is a guide to the eye. b, Map of the
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conductance in units of e h”' as a function of V, and V,, for T < 10 mK. ¢, Conductance
as a function of E and n measured at B = 3 T. d, Map of the conductance as a function
of E and B at zero charge carrier density. The data shown in a — d was recorded after
several current annealing steps but with some residual dirt present. e - h, Same data
as in a — d but measured after additional current annealing steps, when the device

was fully cleaned and the current showed a clear saturation.
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Behavior of the quantum Hall statesatB =15T

Besides the data shown for B = 3 T in the main manuscript, we have also conducted
measurements at B = 1.5 T. Fig. S8a — b show maps of the conductance as a function
of Eand n at B = 1.5 T for device A and B. Similar to the observations in the main
manuscript (see Fig. 4), layer unpolarized states (i.e., v = =4) behave the same in
both devices, whereas the (partially) layer polarized v = =1, +2 states differ in their
electric field dependence, especially around zero electric field. Line traces of the
conductance in electric field shown for constant filling factors v = -2, -4 illustrate the
behaviors of the two devices, see Fig. S8c. In addition, at this low magnetic field, the
distinct v = 0 phases and the corresponding phase transitions can be observed (see
Fig. S8c). Their extend in electric field is distinct for the two devices, as discussed

already in Fig. 4 in the main manuscript.
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