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Zusammenfassung 

Seit seiner Entdeckung im Jahr 2004 ist das zweidimensionale Material Graphen Gegenstand vieler 

theoretischer sowie experimenteller Studien, wobei außergewöhnliche mechanische und 

elektrische Eigenschaften entdeckt wurden. Im Vergleich zur Monolage zeichnet sich Bilagen 

Graphen durch ähnlich herausragende Qualitäten aus, besitzt dabei aber noch größere 

Vielseitigkeit, beispielsweise durch eine variierbare Bandlücke. Zudem ist Bilagen Graphen, auf 

Grund seiner unter gewissen Umständen nicht verschwindenden Zustandsdichte bei 

Ladungsneutralität, besonders anfällig für korrelierte Zustände. Diese treten durch Elektron-

Elektron Wechselwirkungen auf, wobei bestimmte Symmetrien des Systems gebrochen werden und 

sich das Energiespektrum verändert. Theoretische Studien nennen beispielsweise fünf verwandte 

Quanten-Hall-Zustände, die durch Brechung der chiralen Symmetrie entstehen können und bei 

Ladungsneutralität miteinander konkurrieren. Obwohl nach und nach einige dieser Zustände durch 

die immer besser werdende Qualität der Proben experimentell bestätigt werden konnten, gibt es 

diesbezüglich noch viele offene Fragestellungen. Insbesondere konnte einer dieser Quanten-Hall-

Zustände, die exotische „ALL“-Phase, welche eine teilweise Polarisierung der zum Transport 

beitragenden Ladungsträger in eine der Graphenlagen und ein orbitales magnetischen Moment 

aufweist, bisher noch nicht eindeutig beobachtet werden. Des Weiteren ist bisher noch 

weitestgehend unklar, welche der fünf Quanten-Hall-Phasen der eigentliche Grundzustand von 

Bilagen Graphen ist, da die bis zum jetzigen Zeitpunkt veröffentlichten Studien keine eindeutigen 

experimentellen Beobachtungen liefern. Neben dem Auftreten von konkurrierenden Quanten-Hall-

Zuständen könnte die Existenz von Fehlern in der Stapelfolge der zwei Graphenlagen eine mögliche 

Erklärung für die unterschiedlichen Signaturen in Quantentransportmessungen sein. Die Detektion 

dieser Kristallfehler wurde erst vor Kurzem durch präzise Techniken, wie beispielsweise optische 

Rasternahfeldmikroskopie, ermöglicht. Obwohl schon eindrucksvoll quantisierter Ladungstransport 

entlang solcher Kristallfehler im Experiment gezeigt wurde, bleibt ihr Einfluss auf die bei 

Ladungsneutralität auftretenden Quanten-Hall-Zustände weitestgehend unerforscht.  

Um die aufgeführten Fragestellungen genauer zu untersuchen, werden in dieser Arbeit 

Quantentransportmessungen in Bilagen Graphen bei niedrigen Temperaturen präsentiert. Diese 

wurden an Feldeffekttransistoren, bestehend aus ultrareinem, freischwebenden Bilagen Graphen, 

dessen elektrische Eigenschaften durch zwei Gate-Elektroden manipulierbar sind, durchgeführt. 

Besonderes Augenmerk wurde dabei auf die Existenz von Fehlern in der Stapelfolge innerhalb der 

untersuchten Graphen Flocken gelegt. Sind diese nicht vorhanden, konnte die exotische „ALL“-
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Phase bei niedrigen Magnetfeldern beobachtet werden, wobei der Zustand in achtfacher 

Ausführung in Form eines anomalen Quanten-Hall-Effekts mit einer Leitfähigkeit von ±2 𝑒2 ℎ−1 

(𝑒 ist dabei die Elementarladung und ℎ das Plancksche Wirkungsquantum) auftritt. Die Entdeckung 

stellt einen überzeugenden Nachweis für orbitalen Magnetismus in Bilagen Graphen dar und 

verdeutlicht, dass das vermeintlich triviale System einen anomalen Quanten-Hall-Effekt aufweist, 

ohne dass die Realisierung eines fragilen Moiré-Gitters notwendig ist. Außerdem wurde der 

Quantentransport entlang Fehlern in der Stapelfolge von Bilagen Graphen untersucht. Dabei wurde 

ein komplexes Zusammenspiel zwischen topologisch geschütztem Quantentransport entlang eines 

Kristallfehlers und Quantentransport in Randkanälen, induziert durch den Quanten-Hall-Effekt, 

entdeckt. Die Messungen zeigen den maßgeblichen Einfluss der häufig vorkommenden Kristallfehler 

und verdeutlichen, wie wichtig es ist, diesen in zukünftigen Studien zu beachten. Zuletzt wurden die 

Auswirkungen von Unordnung sowie Fehlern in der Stapelfolge auf den Grundzustand und auf 

verschiedene Phasenübergänge zwischen Zuständen mit gebrochener Symmetrie in Bilagen 

Graphen untersucht. Die Ergebnisse helfen schwer erklärbare Signaturen in Quantentransport-

messungen aus der Literatur zu verstehen und tragen somit zur eindeutigen Identifikation des 

Grundzustands von Bilagen Graphen bei. Durch die hier präsentierten Ergebnisse wurden 

bedeutende Fortschritte im Verständnis komplexer physikalischer Phänomene in Bilagen Graphen 

erzielt, was zudem die Wichtigkeit weiterer experimenteller Studien an dem Material verdeutlicht.  
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Abstract 

Since the discovery of graphene in 2004, the two-dimensional material has been subject of extensive 

theoretical and experimental research revealing exceptional electronic and mechanical properties. 

Bilayer graphene, while inheriting most advantages of its monolayer counterpart, provides even 

more tunability, e.g. due to its tunable band gap. Moreover, as consequence of the non-vanishing 

density of states near charge neutrality under certain circumstances, bilayer graphene is susceptible 

to exotic interaction-driven broken-symmetry states that modify the energetic spectrum. For 

example, theoretical studies propose the emergence of a family of five competing quantum Hall 

states at charge neutrality owing to chiral symmetry breaking. Although some of the phases have 

already been observed experimentally with an increasing level of device quality, bilayer graphene 

retains many related unanswered questions. For instance, the exotic ALL phase, a quantum 

anomalous Hall phase with partial layer polarization and substantial orbital moment, has not been 

pinpointed clearly. Moreover, it is still under debate which of the five broken-symmetry phases is 

the true ground state, as ambiguous experimental results have been reported from literature. 

Besides the emergence of competing phases, a possible cause for distinct signatures in quantum 

transport measurements could be the influence of stacking domain walls in bilayer graphene. Their 

detection has only become possible recently using precise scanning techniques such as scattering-

type scanning near-field optical microscopy. Although quantum transport along such dislocations 

has been shown, their impact on broken-symmetry states emerging within the zero energy Landau 

level remains unclear. 

To shed light on these unexplored aspects, low-temperature transport measurements on high-

quality dually gated freestanding bilayer graphene are presented in this thesis, with special attention 

given to any stacking domain walls present within the bilayer graphene flakes. In their absence, the 

exotic ALL phase, appearing as an octet of quantum anomalous Hall phases with a conductance of 

±2 𝑒2 ℎ−1 (where 𝑒 is the electronic charge and ℎ is Planck’s constant), was tracked to low magnetic 

fields, providing compelling evidence for orbital magnetism in bilayer graphene. The findings 

demonstrate that the seemingly simple Bernal-stacked bilayer graphene exhibits the quantum 

anomalous Hall effect without the need of fabricating delicate moiré heterostructures. In addition, 

the quantum transport along stacking domain walls was investigated revealing an intriguing 

interplay between topological valley and quantum Hall edge transport. The measurements highlight 

the influence of the commonly occurring stacking domain walls and demonstrate that their impact 

inevitably needs to be regarded in future experiments. Lastly, the role of disorder and stacking 

domain walls on the emergence of the spontaneously gapped ground state and various phase 
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transitions between broken-symmetry states was examined. The results contribute to solving the 

debate about the ground state of bilayer graphene and help to explain related ambiguous 

observations in literature. All in all, the presented measurements provide major advances in 

understanding the complex physical phenomena in the seemingly trivial Bernal-stacked bilayer 

graphene and highlight the importance of continuous experimental effort. 
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1 Introduction 

Although subject of theoretical calculations already in 19471, two-dimensional (2D) materials were 

long presumed to not exist freely in nature2. Hence, the first isolation and examination of graphene, 

a single two-dimensional layer of carbon atoms arranged in a hexagonal lattice, by K.S. Novoselov 

and A.K. Geim in 2004 was even more a surprise3. Rapidly, graphene gained more and more interest 

owing to its exceptional electronic4 and mechanical properties5. This development was further 

fostered by its accessibility for experimental physics owing to the simple fabrication procedure using 

mechanical exfoliation3 as well as uncomplicated identification with conventional optical 

microscopy6. Its discovery not only demonstrated that 2D crystals can naturally occur but in fact 

initiated the exploration of a whole family of 2D materials7,8. In less than two decades, a growing 

diversity of materials and their respective characteristics have been revealed, ranging from 

exceptional insulators such as hexagonal boron nitride9,10, to molybdenum disulfide, a 

semiconductors with a sizeable band gap11 as well as extraordinary electrical properties12, and 

tungsten ditelluride, a material with superconducting13 and topological insulating behavior14. The 

key for their in-plane stability are strong covalent bonds, however, weak van der Waals forces play 

a crucial role in holding several layers vertically together7. It took not long to discover a technique 

of reliably stacking 2D materials15–18 analogous to Lego blocks7. This recently developed method 

represents a further step towards creating devices with atomic precision. Especially for electronic 

and optoelectronic applications, the possibility of combining the properties of individually stacked 

2D materials into heterostructures provides a new level of freedom to material engineering and 

device design8.  

Despite these major advances and the almost unlimited possibilities arising from the diversity of 2D 

materials, graphene-based systems have always been in the forefront in fundamental research 

because of their exceptional physical properties. For instance, a monolayer of graphene provides 

unexcelled electrical19,20 as well as thermal conductivity21, shows extraordinary mechanical 

robustness5 and has the ability to sustain extremely high current densities22. Adding an additional 

layer yields the simplest van der Waals structure, bilayer graphene, which inherits most of these 

advantages23 but provides even more tunability3,24,25. In contrast to the monolayer with its linear 

dispersion at low energies4, bilayer graphene exhibits non-linear touching bands with massive chiral 

quasiparticles23 and the possibility of opening a tunable band gap via gating25,26. Moreover, the 

stacking order of the two graphene layers provides yet another parameter to manipulate the 
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electronic properties. Recent advances27,28 demonstrated this by assembling two graphene sheets, 

twisted by an angle of about 1.1 degree. As a result, flat bands arise in these delicate structures, 

which foster the emergence of exotic correlated states including superconductivity28 and orbital 

ferromagnetism29,30. However, even the naturally occurring Bernal-stacked bilayer graphene can be 

a playground for correlated physics. In fact, bilayer graphene has been predicted to be susceptible 

to a wide range of correlated states that spontaneously break one or more symmetries of the 

system31–34. Indeed, by increasing the level of cleanliness and quality of bilayer graphene 

flakes19,22,35, numerous studies have revealed broken-symmetry states36–41 arising from many-body 

interactions. Although bilayer graphene has been subject of extensive research for more than a 

decade, it has retained many unanswered questions. For instance, at charge neutrality, where 

electron-electron interactions are especially strong42, a family of five competing quantum Hall states 

caused by chiral symmetry breaking has been predicted32,33. Despite the fact that each of the states 

possesses unique properties33, their identification by examining the resulting signatures in quantum 

transport remains challenging. So far, evidence of some of the phases has been observed 

experimentally, including the quantum valley Hall39,41, the layer antiferromagnetic40,43 as well as the 

quantum anomalous Hall phase35,44. Yet, the most exotic out of the five states, the so-called ALL 

phase, exhibiting substantial charge, spin and valley Hall conductivities of 2 𝑒2 ℎ−1 as well as a net 

layer polarization and orbital moment33, has not been pinpointed clearly. So far, it is unclear if it 

truly survives to zero magnetic field, which is especially interesting for a state exhibiting a quantum 

anomalous Hall effect, as its persistence would provide quantized resistance in the absence of any 

external magnetic field45. Moreover, it is still under debate which of the five broken-symmetry 

phases is the true ground state since ambiguous experimental results are reported in literature. 

Observations range from a vanishing36–41 to a finite conductance36,46 at charge neutrality and zero 

external electric as well as magnetic fields. In addition, it is unclear, if intrinsic effects such as 

disorder can mask the ground state or, alternatively, drive the system into another phase47. In this 

matter, a rather unexplored aspect is the influence of stacking domain walls, which are one-

dimensional lattice dislocations separating regions of AB and BA stacking in bilayer graphene48,49. 

They alter the quantum transport drastically, as topological valley transport can occur along such 

dislocations50–53, even though the bulk of the bilayer is gapped. Easily, they could be one of the major 

causes54 for discrepancies in experimental reports about quantum transport in bilayer graphene. 

Moreover, their impact on the behavior of broken-symmetry quantum Hall states emerging within 

the zero energy Landau levels is unknown. The main reason for their disregard is their challenging 

detection, which has only recently been possible with the help of precise scanning techniques48,50. 

For instance, scattering-type scanning near-field optical microscopy55 offers a versatile and non-

destructive way of detecting and locating these stacking domain walls50,56,57. Combining this 

additional pre-characterization technique with devices of extraordinary quality allows for the 

observation of correlated physics and the role of stacking domain walls in bilayer graphene.  
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To pursue these open questions, low-temperature transport measurements on high-quality dually 

gated freestanding bilayer graphene are presented within this thesis. Freestanding devices were 

chosen since they excel in offering excellent quality and provide a low dielectric environment for 

unimpeded electron-electron interactions. Moreover, special attention was given to any stacking 

domain walls present within the bilayer graphene flakes. To this end, scattering-type scanning near-

field optical microscopy was used as additional characterization technique. Three different topics 

were investigated: First, in the absence of any stacking domain walls, the ALL phase, one of the five 

competing quantum Hall states, has been tracked for the first time to vanishing magnetic field. 

Appearing as an octet of quantum anomalous Hall phases, it provides compelling evidence of orbital 

magnetism in bilayer graphene. Second, quantum transport along stacking domain walls was 

examined in the presence of broken-symmetry states within the zero energy Landau level. An 

intriguing interplay between topological valley and quantum Hall edge transport was observed. 

Lastly, the role of disorder and stacking domain walls on broken-symmetry states in bilayer 

graphene was studied and compared in several devices. The suppression of the insulating layer 

antiferromagnetic ground state could be correlated to broad phase transitions between different 

broken-symmetry states. Hereby, electric field disorder inducing the spontaneous formation of 

domains within the device were determined as common cause. 

All in all, the presented investigations led to the experimental revelation of the most exotic of the 

five predicted competing quantum Hall phases at charge neutrality and to major advances in 

understanding the role of stacking domain walls and disorder in the presence of broken-symmetry 

states. Although in recent years, the attention has moved towards twisted bilayer graphene27,28, the 

observations unambiguously proof that the naturally occurring Bernal-stacked bilayer retains many 

unexplored and intriguing physical phenomena. Very recent studies even revealed 

superconductivity58 and new strongly correlated phases58–60 in Bernal-stacked bilayer graphene at 

high electric fields, further highlighting that the material is worth to be subject of continuous 

experimental effort. 

 

The outline of the cumulative thesis is as follows: In Chapter 2, the theoretical background is 

presented. After outlining the basic electronic properties of both mono- and bilayer graphene, the 

quantum Hall effect in general and its characteristics in bilayer graphene are explained. Special 

attention is laid on the competing ground phases and the role of electron-electron interactions in 

the quantum Hall regime. Moreover, stacking domain walls and their impact on the electronic band 

structure of bilayer graphene are explained. In the last two sections, the general concepts of near-

field optical microscopy and dually gated field effect transistors are given. In Chapter 3, the 

experimental methods to fabricate and characterize dually gated freestanding bilayer graphene 

devices are illustrated in sequential order. This includes the description of exfoliating and 

preselecting suitable flakes as well as the investigation with near-field optical microscopy. 
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Furthermore, the actual fabrication techniques and the electrical measurement setup as well as the 

routine of device calibration are illustrated. Then, Chapter 4 summarizes the experimental findings 

about the quantum anomalous Hall effect in bilayer graphene. In Appendix A.1 the corresponding 

publications is attached in full. Chapter 5 is dedicated to the investigations on domain walls in bilayer 

graphene and their impact on the quantum transport. Appendix A.2 and B.1 show the related 

publication and supplementary information, respectively. Chapter 6 discusses the observations 

made about the role of electric field disorder on the ground state and on phase transitions between 

different broken-symmetry states in bilayer graphene. Here, the corresponding publication and 

supplementary information are given in Appendix A.3 and B.2, respectively. Lastly, Chapter 7 

concludes the thesis with a summary as well as a short outlook. 
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2 Theoretical Fundamentals 

In this chapter, the theoretical fundamentals of this thesis are discussed. First, an introduction to 2D 

materials and in particular to mono- and bilayer graphene is given. In the second part, the Hall effect 

as well as its appearance in bilayer graphene is explained. Thirdly, the influence of electron-electron 

interactions on quantum transport and the resulting emergence of broken-symmetry states in bilayer 

graphene is described. In the fourth section, domain walls and their impact on the electronic 

structure are discussed. Then, the principles of near-field microscopy and the underlying physical 

mechanisms are briefly explained. The last section gives a short overview of the basic functionality 

of a dually gated graphene field-effect transistor.

 

2.1 Two-Dimensional Materials 

In the last decades, the family of 2D materials has both grown in variety and versatility, since more 

and more two-dimensional systems7 as well as new astonishing properties7,12,14,26,61 have been 

revealed. Although the research field has extended far beyond simple carbon-based materials7, 

graphene, since its first isolation and identification in 20043, has always been on the front line owing 

to its exceptionally good mechanical5 and electronic19,20 characteristics. Stacking multiple layers of 

graphene adds even more complexity, e.g. due to a tunable band structure26 and the emergence of 

strongly correlated states caused by an enhancement of electron-electron 

interactions27,28,32,36,38,39,62. In the following, the crystal structure as well as the electronic structure 

of mono- and bilayer graphene are discussed. 

2.1.1 Monolayer Graphene 

Graphene consists of carbon atoms arranged in a hexagonal crystal lattice, which form a two-

dimensional layer4,63 (see Figure 2.1a). The structure is a result from the 𝑠𝑝2 – hybridization of one 

𝑠 and two 𝑝 orbitals forming strong covalent 𝜎 – bonds between neighboring carbon atoms4,63. 

These in-plane bonds are responsible for the exceptional mechanical robustness of the crystalline 

structure4. The remaining 𝑝𝑧 orbital, which is perpendicular to the graphene plane, forms 𝜋 – bonds 

with neighboring atoms4. These bonds give rise to a delocalized 𝜋 – electronic system, which dictates 

the electronic properties of graphene. 

The hexagonal structure of graphene can be treated as a triangular lattice with a basis of two atoms 
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per unit cell63, resulting in two distinct sublattices A and B. The corresponding lattice vectors are 

given by 

𝒂𝟏 =
𝑎

2
(3, √3) , 𝒂𝟐 =

𝑎

2
(3, −√3) (2.1) 

with 𝑎 ≈ 1.42 Å being the carbon-carbon distance63. The related reciprocal lattice is also 

triangular63. The first Brillouin zone is illustrated in Figure 2.1b. Of peculiar relevance for low-energy 

physics in graphene are the two inequivalent high-symmetry points 𝑲 and 𝑲′ at the positions  

𝑲 = (
2𝜋

3𝑎
,

2𝜋

3√3𝑎
) , 𝑲′ = (

2𝜋

3𝑎
, −

2𝜋

3√3𝑎
)  (2.2) 

in momentum space4,63. 

Using a tight-binding approach and considering only nearest- and next-nearest-neighbor hopping, 

Figure 2.1 Crystal and band structure of monolayer graphene. a) The hexagonal lattice of 

graphene with two atoms per unit cell. Atoms corresponding to sublattice A (B) are shown in 

red (blue). The unit cell vectors 𝑎1 and 𝑎2 are illustrated by arrows. [Figure adapted from 

Ref.4]. b) First Brillouin zone of graphene with high-symmetry points 𝑲 and 𝑲′ as well as other 

important points 𝜞 and 𝑴 highlighted. [Figure adapted from Ref.4]. c) Band structure of 

graphene calculated using a tight-binding approach. The energy is shown in units of the 

nearest neighbor hopping energy 𝑡, and the momentum vectors 𝒌𝑥 and 𝒌𝑦 in units of the 

inverse lattice constant 𝑎. At the 𝑲 and 𝑲′ points, the conduction (blue) and valence band 

(orange) touch and the dispersion is linear. 
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the Hamiltonian takes the following form4 

𝐻 = −𝑡 ∑ (𝑎𝜎,𝑖
† 𝑏𝜎,𝑗 + 𝐻. 𝑐. )

〈𝑖,𝑗〉,𝜎

− 𝑡′ ∑ (𝑎𝜎,𝑖
† 𝑎𝜎,𝑗 + 𝑏𝜎,𝑖

† 𝑏𝜎,𝑗 + 𝐻. 𝑐. )
〈𝑖,𝑗〉,𝜎

 ,  (2.3) 

where 𝑎𝜎,𝑖  (𝑏𝜎,𝑖) annihilates and 𝑎𝜎,𝑖
†  (𝑏𝜎,𝑖

† ) creates an electron with spin 𝜎 = ↑, ↓ on site 𝑅𝑖 on 

sublattice A (B). Moreover, 𝑡 and 𝑡′ represent the nearest and next-nearest neighbor hopping 

energies, respectively. The energy bands derived from the Hamiltonian are given by4 

𝐸±(𝒌) = ±𝑡√3 + 𝑓(𝒌) − 𝑡′𝑓(𝒌) , (2.4) 

with 

𝑓(𝒌) = 2 cos(√3𝑘𝑦𝑎) + 4cos (
√3

2
𝑘𝑦𝑎) cos (

3

2
𝑘𝑥𝑎) , (2.5) 

where ± denotes the conduction and valence band, respectively. The full band structure is shown 

in Figure 2.1c. Overall, it consists of two cosine-like energy bands, each can be attributed to one of 

the sublattices2,64. The two energy bands intersect at the high-symmetry points 𝑲 and 𝑲′, resulting 

in a gapless dispersion. At the touching point of the conduction and valence band, electronic states 

are a superposition of states of the two different sublattices2. The sublattice can be viewed as an 

additional degree of freedom, called pseudospin2,23, analogous to spin but with up/down referring 

to sublattice A/B. By expanding the Hamiltonian Eq. (2.3) close to the high-symmetry position 𝑲, i.e. 

𝒌 = 𝑲 + 𝒒 with |𝒒| ≪ |𝑲|, it takes the form4,63 

𝐻𝑲 = ℏ𝑣𝐹 (
0 (𝑞𝑥 − 𝑖𝑞𝑦)

(𝑞𝑥 + 𝑖𝑞𝑦) 0
) , (2.6) 

with 𝒒 = (𝑞𝑥 , 𝑞𝑦) being the momentum relatively to the 𝑲 point and 𝑣𝐹 = 3𝑡𝑎/2 the Fermi velocity. 

Then, the energy eigenvalues result in a conical band structure 4,63,65  

𝐸±(𝒒) ≈ ±ℏ𝑣𝐹|𝒒| . (2.7) 

Rewriting the Hamiltonian near the 𝑲 point using the Pauli vector 𝝈 = (𝜎𝑥, 𝜎𝑦) with the Pauli 

matrices 𝜎𝑥 = (
0 1
1 0

) and 𝜎𝑦 = (
0 −𝑖
𝑖 0

) as well as the replacements 𝑞𝑥 → −𝑖
𝜕

𝜕𝑥
 and 𝑞𝑦 → −𝑖

𝜕

𝜕𝑦
 

gives4,63 

𝐻𝑲 = −𝑖ℏ𝑣𝐹𝝈 ∙ 𝛁 . (2.8) 

Correspondingly, the result yields the transposed Hamiltonian 𝐻𝑲′ = 𝐻𝑲
𝑇 for quasiparticles near 

the 𝑲′ point63. Most strikingly, the Hamiltonian is analogous for massless Dirac fermions in two 

dimensions, with the speed of light replaced by 𝑣𝐹
4,63. Therefore, 𝑲 and 𝑲′ are called Dirac points 

or valleys. Lastly, the eigenfunctions of Eq. (2.8) can be derived: 

𝜓±,𝑲(𝒌) =
1

√2
(

𝑒−
𝑖𝜃𝒌

2

±𝑒
𝑖𝜃𝒌

2
) , 𝜓±,𝑲′(𝒌) =

1

√2
(

𝑒
𝑖𝜃𝒌

2

±𝑒−
𝑖𝜃𝒌

2
) , (2.9) 
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with the polar angle in momentum space 𝜃𝒌 = arctan (𝑘𝑥
𝑘𝑦

), and ± denoting the conduction and 

valence band, respectively. 

The quasiparticles in graphene have several interesting characteristics worth noting. Quasiparticles 

in the inequivalent 𝑲 and 𝑲′ valleys are described by distinct Hamiltonians and wavefunctions. 

However, they are closely related by time-reversal symmetry4. In pristine graphene the two valleys 

are decoupled63, i.e. scattering between them is weak. This can be accounted for by adding a valley 

degeneracy of two65. However, introducing valley scattering can lift this degeneracy. 

Another interesting property of graphene results from the unique band structure and the 

interconnection between electron and holes: For every electron state with energy +𝐸 and 

momentum 𝒒 there exists a hole state with energy −𝐸 and momentum −𝒒 within the same energy 

branch (i.e. sublattice)2,64. In other words, the two quasiparticles share the same pseudospin but 

move in opposite direction, i.e. the projection of the pseudospin on the direction of movement is 

always positive for electrons and negative for holes64. This characteristic is called chiral, and the 

symmetry between electron and holes is called chiral symmetry. Mathematically, chiral symmetry 

can be described as follows66: When 𝜓(𝒌) is an eigenstate of the Hamiltonian 𝐻𝑲 with eigenenergy 

𝐸 and 𝐻𝑲 commutes with the Pauli matrix 𝜎𝑧 = (
1 0
0 −1

), i.e. [𝐻𝑲, 𝜎𝑧] = 0, then 

𝐻𝑲𝜎𝑧𝜓(𝒌) = −𝜎𝑧𝐻𝑲𝜓(𝒌) = −𝜎𝑧𝐸𝜓(𝒌) = −𝐸𝜎𝑧𝜓(𝒌) , (2.10) 

that means there exists an eigenstate 𝜎𝑧𝜓(𝒌) of 𝐻𝑲 with eigenenergy −𝐸.  

Moreover, the nature of the band structure of graphene causes the following: In case a quasiparticle 

moves along a closed orbit around 𝑲, which corresponds to a rotation of 𝜃𝒌 by 2𝜋, the wave function 

changes sign, see Eq. (2.9). In other words, the quasiparticles acquire a phase of 𝜋4,24,63, called Berry’s 

phase. It is opposite for electron and holes as well as for the 𝑲 and 𝑲′ valley33. Often Berry’s phase 

is referred to the integral over the Berry curvature67. Put simply, the Berry curvature can be seen as 

in-built magnetic field, and Berry’s phase as the phase a charge particles acquires when encircling a 

magnetic flux with a closed loop in this field67. Overall, when considering the sum of the Berry 

curvature over all bands, it is zero. The quantity becomes relevant for example in case an external 

magnetic field is applied and the charge carriers move in cyclotron orbits, altering the appearance 

of the quantum Hall effect in graphene compared to conventional two-dimensional systems without 

Berry’s phase24. 

2.1.2 Bilayer Graphene 

Bilayer graphene consists of two monolayers on top of each other coupled by weak van der Waals 

forces4. The energetically most stable configuration of the two layers is AB – or Bernal stacking 

order4,63, where the top layer is shifted by the carbon-carbon distance 𝑎 in a way that one of its 

atoms sits directly in the middle of the honeycomb of the underlying layer (see Figure 2.2a).  



2.1 Two-Dimensional Materials 

9 
 

In order to derive the band structure of bilayer graphene using a tight-binding approach hopping 

between the two layers needs to be considered4. In Figure 2.2b, the most important hopping 

parameters are schematically shown. Here, 𝑡 is the intralayer hopping energy, 𝑡1 describes interlayer 

hopping between atoms sitting directly on top of each other, whereas 𝑡3 and 𝑡4 connect the same 

(e.g. A1 to A2) or distinct (e.g. A1 to B2) sublattices in different layers4. The Hamiltonian can be written 

as4 

𝐻 = −𝑡 ∑ (𝑎𝑚,𝑖,𝜎
† 𝑏𝑚,𝑗,𝜎 + 𝐻. 𝑐. )

〈𝑖,𝑗〉,𝑚,𝜎

− 𝑡1 ∑(𝑎1,𝑗,𝜎
† 𝑎2,𝑗,𝜎 + 𝐻. 𝑐. )                  

𝑗,𝜎

  

          −𝑡4 ∑(𝑎1,𝑗,𝜎
† 𝑏2,𝑗,𝜎 + 𝑎2,𝑗,𝜎

† 𝑏1,𝑗,𝜎 + 𝐻. 𝑐. )

𝑗,𝜎

− 𝑡3 ∑(𝑏1,𝑗,𝜎
† 𝑏2,𝑗,𝜎 + 𝐻. 𝑐. )

𝑗,𝜎

,  

(2.11) 

where 𝑎𝑚,𝑖,𝜎  (𝑏𝑚,𝑖,𝜎) annihilates and 𝑎𝑚,𝑖,𝜎
†  (𝑏𝑚,𝑖,𝜎

† ) creates an electron with spin 𝜎 =↑, ↓ on site 𝑅𝑖, 

in layer 𝑚 = 1, 2 and sublattice A (B). Notably, the interlayer hopping terms 𝑡3 and 𝑡4 are only 

relevant under certain circumstances (e.g. when interaction effects are weak). In this special case, 

Figure 2.2 Crystal and band structure of bilayer graphene. a) Top view of the crystal structure 

of Bernal-stacked bilayer graphene. The upper layer (black) is shifted relatively to the lower 

layer (grey). [Figure adapted from Ref.23]. b) Side view of Bernal-stacked bilayer graphene with 

the most important hopping parameters indicated in green. The sublattices A1 (A2) and B1 (B2) 

correspond to the bottom (top) layer. [Figure adapted from Ref.23]. c) Schematic band 

structure of bilayer graphene without (left) and with a gate voltage applied (right). 𝐸𝐹 and ∆ 

label the Fermi energy and the non-zero band gap, respectively. [Figure taken from Ref.26]. 
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𝑡3 can for example lead to a more complex band structure4,68. The effect is called trigonal warping 

and was experimentally observed in recent studies58–60. However, when interaction effects are 

dominant33, the approximation of considering only 𝑡 and 𝑡1 leads already to qualitatively good 

results63. The observations made in the course of this thesis are in particular well explained by this 

assumption and therefore it is used in the following.  

The wave function describing bilayer graphene is a four-component spinor4, accounting for the 

inequivalent sublattices A and B in layer 𝑚 = 1, 2. Calculating the eigenvalue yields four energy 

bands23, however, two bands are gapped by 2|𝑡1| (with 𝑡1 ≈ 0.4 𝑒V63) and are consequently 

irrelevant for low-energy physics63. Focusing only on the low-energy bands, an effective Hamiltonian 

for bilayer graphene can be derived near the 𝑲 point63, analogously to Eq. (2.6) for monolayer 

graphene: 

𝐻𝑲 =
ℏ2

2𝑚∗ (
𝑉 2⁄ (𝑞𝑥 − 𝑖𝑞𝑦)2

(𝑞𝑥 + 𝑖𝑞𝑦)2 − 𝑉 2⁄
) , (2.12) 

with the effective mass 𝑚∗ = 𝑡1/(2𝑣𝐹
2). Here, an interlayer bias 𝑉 causing a shift in the 

electrochemical potential between the two layers has been accounted for by adding a term 𝑉/2 𝝈𝑧 

to the Hamiltonian4,65. In case of 𝑉 = 0, the dispersion relation near the 𝑲 and 𝑲′ points63 is given 

by: 

𝐸±(𝒒) ≈ ±𝑣𝐹
2

𝒒2

𝑡1
= ±

ℏ2𝒒2

2𝑚∗
 . (2.13) 

Notably, when ignoring the interlayer hopping terms 𝑡3 and 𝑡4, Bernal-stacked bilayer graphene 

exhibits parabolic bands touching at the Dirac points (see Figure 2.2c) with massive charge carriers. 

Using the Pauli matrices and the same transformations as for monolayer graphene, the Hamiltonian 

can be rewritten as23,24,33 

 𝐻𝑲 = −
𝒑2

2𝑚∗ [𝜎𝑥 ∙ cos(2𝜃) + 𝜎𝑦 ∙ cos(2𝜃)] =  −
𝒑2

2𝑚∗ 𝝈 ∙ 𝒏(𝜃) , (2.14) 

with 𝒑 = ℏ𝒒 and 𝒏(𝜃) = (cos (2𝜃), sin (2𝜃)). The eigenstates are given by63 

𝜓±,𝑲(𝒌) =
1

√2
(

𝑒−𝑖𝜃𝒌

±𝑒𝑖𝜃𝒌
) , 𝜓±,𝑲′(𝒌) =

1

√2
(

𝑒𝑖𝜃𝒌

±𝑒−𝑖𝜃𝒌
) , (2.15) 

describing also chiral quasiparticles but with a Berry’s phase of ±2𝜋 instead of ±𝜋24,65.  

The shape of the band structure of bilayer can, however, be altered by breaking the equivalence of 

the two layers, i.e. the inversion symmetry4. For example, by applying an electric field perpendicular 

to the graphene plane65, i.e. 𝑉 ≠ 0, a gap opens in the energy spectrum63, since the dispersion of 

the low-energy bands in the vicinity of the 𝑲 and 𝑲′ points changes to4,63 

𝐸±(𝒒) ≈ ± (
𝑉

2
−

𝑉ℏ2𝑣𝐹
2

𝑡1
2 𝒒2 +

ℏ4𝑣𝐹
4

𝑡1
2𝑉

𝒒4) , (2.16) 

assuming ℏ𝑣𝐹𝑞 ≪ 𝑉 ≪ |𝑡1|. The resulting dispersion has a minimum at 𝑞 = 𝑉/(√2ℏ𝑣𝐹) with a band 
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gap tunable by the interlayer bias4,63. Experimentally, an electric field can be implemented by 

applying a gate voltage, however, this causes not only the opening of a band gap but also shifts the 

Fermi level26 (see Figure 2.2c). To disentangle both mechanisms, a dually gated device is needed 

(see Section 2.7). 

2.2 Quantum Hall Effect 

In 1980, Klaus v. Klitzing discovered that the Hall effect shows precisely quantized Hall resistance in 

case the electrons are confined in a two-dimensional system and strong magnetic fields are applied 

perpendicular to it at low temperatures69. Surprisingly, the so-called quantum Hall effect is solely 

dependent on fundamental physical constants and independent of irregularities within the material. 

Besides its emergence in two-dimensional electron gases in conventional semiconductors, the 

discovery of two-dimensional materials revealed a new versatile platform to study quantum Hall 

physics70. In the following, the classical Hall effect is briefly outlined. Then the quantum Hall effect 

in general and its occurrence in bilayer graphene are discussed to lay a basis for the observations 

made in the magnetotransport measurements. 

2.2.1 Classical and Quantum Hall Effect 

In case an electron current 𝐼𝑒 flows through a conductor with a magnetic field 𝐵 perpendicular to it 

(see Figure 2.3a), the charge carriers are deflected by the Lorentz force71. A voltage across the 

conductor builds up until an equilibrium is reached, i.e. when the Lorentz force is exactly 

compensated71.  

Assuming a constant drift velocity of the electrons along the 𝑥 – and no current flow in 𝑧 – direction, 

the longitudinal 𝜎𝑥𝑥 and transversal conductivity 𝜎𝑥𝑦 are given by71 

𝜎𝑥𝑥 =
𝑛3𝐷𝑒

𝐵

𝜏𝑒𝐵/𝑚∗

1 + 𝜏2(𝑒𝐵/𝑚∗)2
 (2.17) 

 and 

𝜎𝑥𝑦 = −
𝑛3𝐷𝑒

𝐵𝑧

𝜏2(𝑒𝐵/𝑚∗)2

1 + 𝜏2(𝑒𝐵/𝑚∗)2
 , (2.18) 

where 𝑛3𝐷 is the number of charge carriers per volume, 𝑚∗ the effective mass and 𝜏 the relaxation 

time, i.e. the mean free time between two scattering events of the charge carrier71. Using the 

relation between conductivity and resistivity tensors 𝜎𝑥𝑥 =  𝜌𝑥𝑥/(𝜌𝑥𝑥
2 + 𝜌𝑥𝑦

2) and 𝜎𝑥𝑦 =

 𝜌𝑥𝑦/(𝜌𝑥𝑥
2 + 𝜌𝑥𝑦

2) results in71 

𝜌𝑥𝑥 =
𝑚∗

𝑛3𝐷𝑒2𝜏
 (2.19) 

and 
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𝜌𝑥𝑦 =
𝐵

𝑛3𝐷𝑒
 , (2.20) 

for the longitudinal 𝜌𝑥𝑥 and transversal resistivity 𝜌𝑥𝑦. Most importantly, the former depends only 

on intrinsic properties of the material, whereas the latter is linearly dependent on the magnetic 

field. 

The charge transport signatures change drastically in case the charge carriers are localized into a 2D 

system at low temperatures and high magnetic fields71. When they can freely travel in for example 

the 𝑥𝑦 – plane but are confined in 𝑧 – direction in a thin sheet of thickness 𝑑, a quasi-two-

dimensional electron gas forms. Applying a magnetic field perpendicular to it, forces the electrons 

to move in discrete cyclotron orbits71. Consequently, the energy eigenstates 𝐸𝑁 of the system are 

quantized into the so-called Landau levels71,72: 

𝐸𝑁 = 𝐸0 + (𝑁 +
1

2
) ℏ𝜔𝐶  , 𝑁 = 0, 1, 2, … , (2.21) 

where 𝜔𝐶 = 𝑒𝐵/𝑚∗ is the cyclotron frequency and 𝐸0 accounts for the confinement in 𝑧 – direction. 

Since the density of states has to be conserved during the process, each Landau level possesses a 

degeneracy of 𝑔 = 𝑒𝐵/ℎ, i.e. for low temperatures each Landau level below the Fermi energy is 

occupied by 𝑔 electrons71,72. Tuning 𝐵 not only changes the energetic separation between two 

neighboring Landau levels but also varies their degree of degeneracy72. The transversal resistance 

of the 𝑁th – Landau level can then be calculated using the degeneracy and the classical formula of 

Eq. (2.20)71,72: 

𝑅𝑥𝑦 =
𝜌𝑥𝑦

𝑑
=

𝐵

𝑛𝑒
=

𝐵

𝜈𝑔𝑒
=

ℎ

𝜈𝑒2
=

𝑅𝐾

𝜈
, 𝜈 = 0, 1, 2, … , (2.22) 

when the present charge carriers fill exactly 𝜈 Landau levels, with 𝜈 is called the filling factor. Here, 

𝑛 denotes the charge carrier density in the quasi 2D electron gas and 𝑅𝐾 the von Klitzing constant. 

Most importantly, the resistance is quantized to a fraction of 𝑅𝐾 in case a Landau level is completely 

filled. Hence, the phenomenon is called quantum Hall effect. 

Nonetheless, to fully understand the behavior of longitudinal 𝑅𝑥𝑥 and transversal resistance 𝑅𝑥𝑦 the 

impact of impurities on the Landau levels needs to be considered. The density of states 

corresponding to the Landau levels does not exhibit discrete 𝛿 – functions but broadened 

distributions owing to localized states induced by residual disorder71 (Figure 2.3b). Only states in the 

center of the Landau level are delocalized71, as indicated in Figure 2.3b. Moreover, closed cyclotron 

orbits corresponding to the Landau levels are only possible in the bulk of the channel. At the edge 

of the material, the additional spatial confinement leads to a drastic increase of the energy of the 

Landau levels (see Figure 2.3c) as the charge carriers are elastically reflected. This gives rise to a net 

charge transport along edge channels71,72 (see Figure 2.3d). Even in case a charge carrier is scattered 

from a defect, the Lorentz force redirects it in the forward direction72. Furthermore, since edge 
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channels forming at either side of the channel are antiparallel, the forward and backward transport 

is spatially separated71,73. Hence, backscattering is highly suppressed resulting in a quasi-ballistic 

Figure 2.3 Classical and quantum Hall effect. a) Conductor with an electron current 𝐼𝑒 flowing 

in 𝑥 – direction and a magnetic field 𝐵𝑧 applied in 𝑧 – direction. The charge carriers are 

deflected in 𝑦 – direction due to the Lorentz force, building up a voltage across the voltage. 

[Figure adapted from Ref.71]. b) Density of states as a function of energy for a 2D electron gas 

with some disorder present in a perpendicular magnetic field. The (de-) localized states for 

each Landau level 𝑁 are shown in solid (hatched) color. The green/blue lines indicate the Fermi 

level with (un-) occupied states shown in black (grey). From the left to right panel, the 

magnetic field is increased. [Figure adapted from Ref.71]. c) Energetic landscape of the Landau 

levels shown over the spatial extend of the 2D electron gas in 𝑦 – direction. At the border, the 

energy of the Landau level is drastically increased due to the confinement. Residual disorder 

in the device causes fluctuations in the energetic landscape. The green/blue lines indicate the 

Fermi level, with (un-) occupied states shown in black (grey). The magnetic field is increased 

from the left to right panel. The red dots indicate ballistic edge channels. [Figure adapted from 

Ref.71]. d) Schematic representation of electron trajectories in the quantum Hall effect. In the 

bulk, the electrons move in closed cyclotron orbits, whereas at the edge skipping orbits lead 

to edge channels, which are illustrated in red. [Figure adapted from Ref.71]. e) Longitudinal 

𝑅𝑥𝑥 (black) and transversal 𝑅𝑥𝑦 resistance (red) as a function of magnetic field measured in a 

2D electron gas at low temperatures. The blue and green lines correspond to the position of 

the Fermi level shown in (b) and (c). The top axis illustrates the filling factor. [Figure taken 

from Ref.73]. 
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transport within the directional edge channels71,72.  

Finally, the behavior of 𝑅𝑥𝑥 and 𝑅𝑥𝑦 measured for a 2D electron gas at low temperatures (Figure 

2.3e) can be explained. For low magnetic fields, the resistances behave as described in the classical 

Hall effect. However, with increasing magnetic fields a step-like behavior of the 𝑅𝑥𝑦 appears, 

whereas 𝑅𝑥𝑥 features oscillations. At certain magnetic fields, 𝑅𝑥𝑦 shows a plateau and 𝑅𝑥𝑥 vanishes 

(blue line in Figure 2.3e). In this case, the Fermi energy lies within the localized states between two 

Landau levels (blue line in Figure 2.3b). The localized states give rise to closed cyclotron orbits within 

the bulk and consequently no conduction between the two edges of the sample is possible71. 

However, owing to the additional spatial confinement at the edge of the material, a specific number 

of ballistic edge channels emerge. Consequently, 𝑅𝑥𝑥 vanishes, whereas 𝑅𝑥𝑦 is quantized. Increasing 

the magnetic field broadens the density of states of each Landau level and moves them towards 

higher energies. When a Landau level reaches the Fermi energy (green line in Figure 2.3b), 

delocalized states become available enabling transport between the two edges of the sample72. 

Backscattering is possible, and consequently 𝑅𝑥𝑥 is finite but 𝑅𝑥𝑦 increases, since one Landau level 

is depleted of charge carriers (green line in Figure 2.3e). Raising the magnetic field further repeats 

the process, depleting the Landau levels one by one. Similar observations can be made when the 

Fermi level instead of the magnetic field is tuned. 

Whereas the section above discusses four-terminal measurements, in the course of this thesis 

mostly two-terminal devices were examined. For a two-terminal configuration, the conductance of 

a square-shaped device comparable to the ones used in this thesis (see Section 3.3.2) is given by74 

𝜎𝑡𝑤𝑜−𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = √𝜎𝑥𝑥
2 + 𝜎𝑥𝑦

2 , (2.23) 

or, with the relation between resistivity and conductance, by 

𝜎𝑡𝑤𝑜−𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 =
1

√𝜌𝑥𝑥
2 + 𝜌𝑥𝑦

2 

 . 
(2.24) 

Consequently, a two-terminal measurement exhibits, although only resolving a combination of 

longitudinal and transverse conductance, the same plateaus as 𝑅𝑥𝑦. 

2.2.2 Quantum Hall Effect in Bilayer Graphene 

With a nearly parabolic energy dispersion at low energies in case trigonal warping is ignored (see 

Section 2.1.2), the charge carriers in bilayer graphene resemble a regular 2D electron gas65. 

However, its charge carriers are chiral with a Berry’s phase of 2𝜋. Although not distinguishable from 

zero, the Berry’s phase causes an anomalous sequence of Landau levels to appear24,65. A magnetic 

field perpendicular to the graphene plane 𝑩 = (0, 0, −𝐵) can be accounted for by the 

transformation ℏ𝒒 → −𝑖ℏ𝛁 + 𝑒𝑨, with the vector potential 𝑨 = 𝛁 × 𝑩, in the effective Hamiltonian 

of bilayer graphene, see Eq. (2.12)23,68. Then, the energy of the Landau levels is given by23,24,68 
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 𝐸𝑁
𝐵𝐿𝐺 = ±ℏ𝜔𝐶√𝑁(𝑁 − 1) , 𝑁 = 0, 1, 2, … , (2.25) 

𝑁 is called orbital index and ± refers to electron and holes states, respectively. The energy states 

have a distinct behavior compared to monolayer graphene or conventional two-dimensional 

electron systems23,65. Most prominently, the ground state (𝑁 = 0) as well as the first excited state 

(𝑁 = 1) are fixed at zero energy23,65,68 leading to an unconventional quantum Hall effect in bilayer 

graphene. The 𝑁 = 0, 1 Landau levels, lying at the border of electron and hole gases, provide an 

eightfold degeneracy, when taking spin (↑, ↓), valley (𝑲, 𝑲′) and the additional orbital degeneracy 

(𝑁 = 0, 1) into account. Contrarily, higher Landau levels with 𝑁 ≥ 2 move in energy for varying 

magnetic field and have each a fourfold degeneracy, due to the spin and valley index23,68. Notably, 

electron and hole states behave symmetrically around zero energy. 

As a consequence, the Hall conductance 𝜎𝑥𝑦 measured in bilayer graphene exhibits quantized 

plateaus at integer values of 4 𝑒2 ℎ−1, but with a step of 8 𝑒2 ℎ−1 across zero density due to the 

additional orbital degeneracy of the zero energy Landau levels23,24. Consistent with theory, 

experimental data confirmed the unusual sequence24 (see Figure 2.4). Worth to note is that the 

sequence holds true only if interaction effects are neglected and any valley, spin or orbital splitting 

is negligible compared to temperature and Landau level broadening23. 

2.3 Competing Broken-Symmetry Ground Phases in Bilayer 

Graphene 

So far, the quantum Hall effect in bilayer graphene was explained in the absence of any many-body 

effects. However, their consideration is important, since they can drastically alter the behavior of 

the Landau levels23,41,44,65,75–78 and lead to the emergence of various broken-symmetry quantum Hall 

phases31–33,36–39. In particular, Coulomb interactions dominate in altering the spectrum41,44,75–78. 

Figure 2.4 Unconventional quantum Hall effect in bilayer graphene. 𝜎𝑥𝑦 (left) and 𝜌𝑥𝑥 (right) 

as a function of charge carrier density measured at fixed 𝐵 and 𝑇 = 4 K. The quantum Hall 

plateaus appear for 𝜎𝑥𝑦 at integer values of 4 𝑒2 ℎ−1, but with a step of 8 𝑒2 ℎ−1 across zero 

density due to the degeneracy of the zero energy Landau levels. [Figure taken from Ref.24]. 
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These electron-electron interactions are especially strong at low charge carrier densities, as their 

strength is given by the ratio between Coulomb 𝐸𝐶  and kinetic energy 𝐸𝐾 resulting in42,79 

 𝑟𝑆 =
𝐸𝐶

𝐸𝐾
∝ 1

√𝑛
⁄  (2.26) 

for bilayer graphene. Hence, at low density the Coulomb energy dominates over the kinetic energy 

and interactions become increasingly important42. As a consequence, bilayer graphene – owing to 

the non-zero density of states at charge neutrality in case trigonal warping is neglectable68, and a 

substantial Berry phase of ±2𝜋 – is susceptible to spontaneous symmetry breaking at zero external 

fields33. This can be accounted for by adding a spontaneous mass term 𝑚 to the Hamiltonian for the 

low-energy bands in bilayer graphene33,39, see Eq. (2.14). Then, the Hamiltonian in the 𝑲 valley 

changes to33 

𝐻𝑲
𝐼𝑛𝑡 = 𝐻𝐾 + 𝑚𝝈 , (2.27) 

where 𝝈(𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is the Pauli vector. The question is whether the spontaneous mass term is 

directed in-plate, i.e. 𝑚(𝜎𝑥, 𝜎𝑦), or out-of-plane, expressed by 𝑚𝜎𝑧. An in-plane mass term would 

break rotational symmetry giving rise to gapless nematic states33,39,46. In contrast, an out-of-plane 

mass term breaks chiral symmetry, since [𝐻𝑲
𝐼𝑛𝑡 , 𝜎𝑧] ≠ 0, see Eq. (2.10). This results in the emergence 

of a family of gapped quantum Hall phases32,33 with a spontaneous energy gap of 2𝑚 at 𝒑 = 0. 

Experiments36–41,43 suggest that these gapped states corresponding to an out-of-plane mass term 

are favored, hence the focus is laid on chiral symmetry breaking rather than on the emergence of 

nematic states.  

The sign of the out-of-plane mass term 𝑚𝜎𝑧 can be dependent on the spin and valley index, i.e. its 

implications need to be considered for all four species arising from the combinations of the valley 

(𝑲/𝑲′) and spin indices (↑/↓). In case of broken chiral symmetry, each of the four species 

spontaneously polarizes in a specific layer, depending on the sign of the mass term32,33. Moreover, 

the touching energy bands become gapped, resulting in a non-zero Berry curvature33, which is 

related to 

Ω𝑧
(𝛼)(𝒑, 𝜏𝑧, 𝑠𝑧) ∝ −𝛼𝜏𝑧sgn(𝑚) , (2.28) 

where 𝜏𝑧 = ±1 indicates the 𝑲 and 𝑲′ valley, respectively, and 𝛼 = +(−) labels the conduction 

(valence) band. Hence, it changes sign when the valley index 𝜏𝑧, the mass term or the band index 𝛼 

is inverted. The consequence of a non-zero Berry curvature is that quasiparticles in an in-plane 

electric field acquire an anomalous transverse velocity proportional to the Berry curvature. This 

gives rise to a magnetic moment and an intrinsic Hall conductivity, with their sign specified for each 

spin-valley flavor33. The orbital magnetic moment carried by a quasiparticle shows the following 

dependence: 

𝑀𝑧(𝒑, 𝜏𝑧, 𝑠𝑧) ∝ −𝜏𝑧sgn(𝑚)𝜇𝐵 , (2.29) 
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with the Bohr magneton 𝜇𝐵. Analogously to the Berry curvature, the orbital magnetic moment 

changes sign when the valley index 𝜏𝑧 or the mass term changes sign, however, it is independent on 

the band index 𝛼. Overall, considering the contributions from the four spin-valley flavors, a net 

orbital magnetization can persist for specific mass terms33. The intrinsic Hall conductivity is given 

by32,33 

𝜎𝐻
(𝛼)

(𝜏𝑧, 𝑠𝑧) =  
𝑒2

ℎ
𝜏𝑧 (𝑚 (√𝑚2 +

(𝑣𝐹𝑝𝐹)4

𝑡1
2 )

−1

−
𝑚

|𝑚|
𝛿𝛼,+) ∝

𝑒2

ℎ
𝜏𝑧 sgn(𝑚) , (2.30) 

where 𝑝𝐹 is the momentum of a quasiparticle at the Fermi level. When the Fermi level lies within 

the spontaneous gap, each spin-valley flavor adds ±𝑒2 ℎ−1, where the sign of its contribution is 

dependent on 𝜏𝑧, sgn(𝑚) and the band index 𝛼33. Taking into account the sign of all four 𝜎𝐻
(𝛼)

(𝜏𝑧, 𝑠𝑧) 

terms for one band 𝛼, an effective charge Hall conductivity 𝜎(𝐶𝐻) can be derived33: 

𝜎(𝛼)
(𝐶𝐻)

= ∑ 𝜎𝐻
(𝛼)(𝜏𝑧, 𝑠𝑧)

𝜏𝑧,𝑠𝑧

 .  (2.31) 

Likewise, in case a valley and/or spin polarization is present, a net valley Hall conductivity 

𝜎(𝛼)
(𝑉𝐻)

= ∑ 𝜎𝐻
(𝛼)(𝜏𝑧 = +1, 𝑠𝑧)

𝑠𝑧

− ∑ 𝜎𝐻
(𝛼)(𝜏𝑧 = −1, 𝑠𝑧)

𝑠𝑧

  (2.32) 

and/or spin Hall conductivity 

𝜎(𝛼)
(𝑆𝐻)

= ∑ 𝜎𝐻
(𝛼)

(𝜏𝑧, 𝑠𝑧 = +1)

𝜏𝑧

− ∑ 𝜎𝐻
(𝛼)

(𝜏𝑧, 𝑠𝑧 = −1)

𝜏𝑧

  
(2.33) 

can arise. Considering the dependence of the sign of the spontaneous mass term on the valley and 

spin indices, a total of five broken chiral symmetry states can emerge, each with a specific mass term 

and distinct charge, spin and valley dependent quantum Hall conductivities32,33: the quantum valley 

Hall (QVH), the quantum anomalous Hall (QAH), the layer antiferromagnetic (LAF) and the ALL as 

well as the quantum spin Hall (QSH) phase. These phases are schematically described in Figure 2.5. 

Moreover, their respective spontaneous mass term as well as the corresponding layer polarization 

of the four spin-valley species and the resulting Hall conductivities, following Eqs. (2.31), (2.32) and 

(2.33), are listed in Table 2.1. In addition, it is indicated whether the phases possess an overall layer 

polarization and/or orbital magnetization, see Eq. (2.29).  

In the following, the five phases are explained in more detail: Firstly, in the quantum valley Hall 

phase (see Figure 2.5a) each spin-valley flavor polarizes in the same layer32,33, i.e. the phase is fully 

layer polarized. It can be described by a spontaneous mass term of 𝑚𝜎𝑧. Since the 𝑲 and 𝑲′ valley 

contribute to the Hall conductivity and orbital magnetization with opposite sign, it shows zero 

charge and spin Hall but a non-zero valley Hall conductivity of 4 𝑒2 ℎ−1. Secondly, the quantum 

anomalous Hall phase shows a polarization of the two valleys in different layers33 (see Figure 2.5b). 

With the mass term taking the form 𝑚𝜏𝑧𝜎𝑧, all four Hall conductivity and orbital magnetization 

contributions are of the same sign33. Hence, the QAH phase exhibits a charge Hall conductivity of 4 
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𝑒2 ℎ−1 and a substantial orbital magnetization33 but the resulting spin and valley Hall conductivities 

are zero. Thirdly, the layer antiferromagnetic phase appears when the two spin species 

spontaneously polarize in opposite layers33 (see Figure 2.5c). It can be seen as the two spin species 

showing an opposite QVH effect and the two layers exhibiting an opposite spin polarization. The 

corresponding spontaneous mass term is given by 𝑚𝑠𝑧𝜎𝑧. The resulting Hall conductivity 

Figure 2.5 Five competing broken-symmetry quantum Hall ground phases in bilayer 

graphene. a) – e) Top: Schematic of the spontaneous quantum Hall effect for the five different 

phases. Bottom: Layer polarization for the corresponding spin-valley flavors. T and B label the 

top and bottom graphene layer, respectively. [Figure adapted from Refs.33,83]. 

 

Phase 
Spin-valley flavor 

Hall conductivities 

(𝑒2 h−1) 
Lay. pol./ 

orb. magn. 

Spontaneous 

mass term 
↑ 𝑲 ↓ 𝑲 ↑ 𝑲′ ↓ 𝑲′ 𝜎(CH) 𝜎(SH) 𝜎(VH) 

QVH T T T T 0 0 4 yes / no 𝑚𝜎𝑧 

QAH T T B B 4 0 0 no / yes 𝑚𝜏𝑧𝜎𝑧 

LAF T B T B 0 0 0 no / no 𝑚𝑠𝑧𝜎𝑧 

ALL T T T B 2 2 2 yes / yes 
𝑚 (

1 + 𝜏𝑧

2

+
1 − 𝜏𝑧

2
𝑠𝑧) 𝜎𝑧 

QSH T B B T 0 4 0 no / no 𝑚𝜏𝑧𝑠𝑧𝜎𝑧 

 

Table 2.1 Characteristics of the five competing broken-symmetry quantum Hall ground 

phases in bilayer graphene. Summary of the layer polarization of the four spin-valley flavors 

as well as the resulting charge 𝜎(𝐶𝐻), spin 𝜎(𝑆𝐻), and valley Hall conductivity 𝜎(𝑉𝐻) in units of 

𝑒2 ℎ−1 for each of the five quantum Hall ground phases. T and B relate to the top and bottom 

graphene layer, respectively. Moreover, it is indicated if the phases possess any net layer 

polarization and/or orbital magnetization. In addition, the corresponding spontaneous mass 

term for each of the five quantum Hall phases is shown. Here, 𝜏𝑧 = ±1 corresponds to valley 

𝑲/𝑲′ and 𝑠𝑧 = ±1 to spin ↑/↓. [Table adapted from Refs.33,83]. 
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contributions lead to all three charge, spin and valley conductivities being zero33. The most exotic 

out of the five states is the ALL phase, in which one spin-valley flavor polarizes in the opposite layer 

as the other three33 (see Figure 2.5d). It can be understood in a way that one spin species shows a 

QVH effect, whereas the other forms a QAH effect. The mass term is given by 𝑚 (
1+𝜏𝑧

2
+

1−𝜏𝑧

2
𝑠𝑧) 𝜎𝑧, 

resulting in a net layer polarization and orbital magnetization33. Intriguingly, the Hall conductivity 

contributions of the four spin-valley flavors yield charge, spin and valley conductivities of 2 𝑒2 ℎ−1. 

Hence, its name is ‘ALL’ phase. Lastly, the quantum spin Hall phase has opposite QAH effects in the 

two spin species33. With a spontaneous mass term of 𝑚𝜏𝑧𝑠𝑧𝜎𝑧, this phase possesses zero charge 

and valley Hall conductivity but a substantial spin Hall conductivity of 4 𝑒2 ℎ−1. 

Since all five broken-symmetry quantum Hall phases compete at zero charge carrier density and 

zero external fields, it is per se not clear which of these phases actually emerge. Importantly, since 

three of the five phases are insulating, it is not sufficient to examine the charge Hall conductivity of 

any appearing phases in experiments. Instead, they can only be distinguished when considering their 

respective combination of charge, spin and valley Hall conductivities and related properties such as 

orbital moment and layer polarization (see Table 2.1). So far, evidence has been found for four of 

the five phases: Phases with a layer polarization (i.e. with substantial valley Hall conductivity) are 

expected to be stabilized by an externally applied electric field, which breaks inversion symmetry33. 

Under this condition, the QVH phase with its full layer polarization has been observed 

experimentally33,39,41. On the contrary, a perpendicular magnetic field strengthens phases with an 

orbital moment since the latter couples to the magnetic field33. With increasing magnetic field, these 

phases exhibit – in contrast to the insulating phases – a slope in the 𝑛 − 𝐵 − space and eventually 

evolve smoothly into quantum Hall states with a filling factor matching their charge Hall 

conductivity33 (see Section 2.4). Therefore, the QAH phase, with its unique charge Hall conductivity 

of 4 𝑒2 ℎ−1, has been revealed by tracking the 𝜈 = ±4 quantum Hall states towards zero magnetic 

field35,44. However, it is not clear if the phase survives to 𝐵 = 0. In fact, experiments suggest that 

the LAF phase is stabilized in this regime and is possibly the true ground state of bilayer graphene 

for zero electric field40,43, however, contradicting studies reporting a finite conductance state have 

also been published36,46. In the presence of a small magnetic field, it evolves into the canted 

antiferromagnetic (CAF) phase, in which the spins are canted due to the applied magnetic field62,80,81. 

A detailed investigation to solve the debate about the ground state was conducted in this thesis (see 

Chapter 6). Lastly, the exotic ALL phase with its unique charge Hall conductance of 2 𝑒2 ℎ−1 

combines both a partial layer polarization and a substantial orbital moment33. Hence, it is expected 

to be stabilized by perpendicular magnetic and intermediately strong electric fields. Although 

experiments revealed evidence for its emergence82, the resulting orbital magnetism and its 

appearance towards zero magnetic field was firstly revealed in the course of this thesis83 (see 

Chapter 4). 
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2.4 Broken-Symmetry Quantum Hall States at Finite 

Magnetic Field 

Even for finite magnetic field, electron-electron interactions can drastically alter the appearance of 

the Landau levels by lifting their fourfold (or eightfold when considering the 𝑁 =  0, 1 zero energy 

levels) degeneracy23,41,44,65,75–78 giving rise to a multitude of quantum Hall states34,41,44,75–77,82,84. Since 

the energetic width of the Landau levels are limited by disorder, a high cleanliness of the material 

further supports electron-electron interactions85. With a sufficient high quality of bilayer graphene 

and the applying of external fields34, it is possible to observe all integer filling factors, i.e. filling 

factors in the range of −4 ≤ 𝜐 ≤ 4 for the lowest octet of broken-symmetry states41,75–77. A 

simplistic Landau level diagram can help to describe the behavior of the different quantum Hall 

states and their phase transitions41,75,76. In the following picture, 𝑲/𝑲′ label the valleys and 0/1 as 

well as ↑/↓ mark states of orbital index 𝑁 =  0/1 and spin up/down, respectively. Experimental 

effort has been made to derive the behaviors of the energy gaps related to the different symmetry 

breakings on the magnetic and electric field76. Valley imbalances breaking the valley degeneracy75,76 

are linear dependent on an externally applied electric field with a weak dependence on the magnetic 

field76, i.e. the valley splitting follows ∆𝒗 ∝ 𝑎1𝐸 + 𝑎2𝐵, where 𝑎1 and 𝑎2 are constants76. On the 

contrary, the interaction-induced ordering of the spins is solely dependent on the magnetic field75,76: 

∆𝑠 ∝ 𝑎3𝐵, where 𝑎3 is constant76 with 𝑎3 > 𝑎2. Lastly, Coulomb interactions as well as band 

structure effects cause both weak electric and magnetic field dependencies of the energies of 

different orbital index (i.e. 𝑁 =  0 and 𝑁 =  1)75,76,85.  

With this information, a schematic Landau level diagram has been derived (see Figure 2.6). Assuming 

a finite magnetic field is applied to sufficiently clean bilayer graphene, at zero electric field the spin 

degeneracy is lifted owing to the magnetic field but also states with distinct orbital index 𝑁 = 0/1 

differ energetically. Neglecting the weak dependence of the valley splitting on the magnetic field, 

the valley degeneracy is still intact and only broken by increasing 𝐸. In addition, applying an electric 

field affects the splitting of states with distinct orbital indices but not of states with opposite spins. 

As a result, assuming the electric field direction favors states at the 𝑲′ valley, states in the 𝑲/𝑲′ 

valley move upward/downward in energy, whereas distinct slopes of states corresponding to the 

𝑁 = 0/1 orbital index are observed. This results in the emergence of broken-symmetry quantum 

Hall phases with specific electric field behaviors and phase transitions. Experiments confirmed the 

occurrence of the following states and their phase transitions with electric field: layer unpolarized 

𝜈 = ±4 states41,75 without any phase transition and layer polarized 𝜈 = ±3 states with a phase 

transition around zero electric field85,86. Moreover, layer polarized 𝜈 = ±2 states at high electric 

fields have been observed75,82,85,86 undergoing a phase transition at finite electric fields to layer 

unpolarized phases82,85,86, which persist down to 𝐸 = 0. Similarly, the layer polarized 𝜈 = ±1 states 
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for high electric fields exhibit a phase transition at finite electric fields85,86, yet they vanish around 

𝐸 = 084–86. In addition, layer polarized 𝜈 = 0 phases for high electric fields and a layer unpolarized 

𝜈 = 0 phase at low electric fields have been observed39,41,62,87. 

Overall, the simple Landau level schematic gives a good qualitative understanding of the appearing 

quantum Hall phases and their phase transitions with electric field. Furthermore, it correctly 

explains the complex filling sequence of the Landau levels of the lowest octet depending on the 

electric field76,85 (the sequence from 𝜈 = −4 to 𝜈 = 0 is illustrated in the top of Figure 2.6). However, 

it certainly fails in other aspects. In particular, the picture does neither capture filling factor 

dependent many-body screening effects76, nor does it correctly predict the nature of all appearing 

phases. As an example, it suggests a spin ferromagnet for the 𝜈 = 0 phase76 for 𝐸 = 0, but 

experiments revealed a canted antiferromagnetic phase instead62. In the course of this thesis, the 

model with the predicted states as well as their expected phase transitions was used to identify the 

unique sequence of broken-symmetry quantum Hall states in bilayer graphene. 

2.5 Domain Walls in Bilayer Graphene 

As explained in Section 2.1.2, Bernal stacking is the most stable stacking order in bilayer graphene. 

It can occur in two energetically equivalent forms48,49: AB and BA stacking, both appearing equally 

frequently. They differ by the shift of one layer by a carbon-carbon distance along a certain direction 

in respect to the adjacent layer48–50. Even a simultaneous occurrence of both stacking orders within 

one bilayer graphene flake is possible. This requires the formations of domains, which are separated 

Figure 2.6 Schematic representation of the Landau level evolution with electric field and the 

appearing quantum Hall states. Landau level behavior as a function of electric field at finite 

magnetic field and sufficient high cleanliness of the device. The levels within the lowest Landau 

level octet are coded and their corresponding orbital (0/1) and valley indices (𝑲/𝑲′) as well 

as spin (↑/↓) are indicated. The appearing quantum Hall states are labeled with numerals. 

Moreover, it is assumed that the direction of the electric field favors states in the 𝑲′ valley. 

The color bars in the top of the graph illustrate the filling sequence from the 𝜈 = −4 to the 

𝜈 = 0 state as a function of electric field. [Figure adapted from Refs.75,76]. 

 



Chapter 2: Theoretical Fundamentals 

22 
 

by one-dimensional dislocations48–50,57,88. At these so-called domain walls, the stacking order 

transitions smoothly from AB to BA stacking (or vice versa) by either tensile or shear strain48,57,88 (see 

Figure 2.7a and b). Due to the energetic equivalence of both stacking forms, no forces develop to 

reduce the area of the stacking fault49, which results in an overall common occurrence of domain 

walls in bilayer graphene48,57. Since they possess only a width of 6 – 11 nm48, domain walls can only 

be detected by techniques with sufficient high-resolution, such as transition electron microscopy48,49 

or scattering-type scanning near-field optical microscopy56,57,88. The latter is explained in more detail 

in Section 2.6.  

Based on the common occurrence of domain walls in bilayer graphene flakes, it is essential to 

consider the consequences of their presence and understand their remarkable electronic 

properties. In case a perpendicular electric field is applied to bilayer graphene, a band gap opens 

within the bulk of bilayer graphene26 (see Section 2.1.2), which can also be explained by the 

emergence of the quantum valley Hall phase at zero charge carrier density41,62. However, in a 

uniformly applied electric field, AB and BA domains show opposite valley polarization, since the 

energetic favoring of the 𝑲 or 𝑲′ valley is reversed at the dislocation53,89,90. As a consequence, 

gapless states emerge at the stacking fault53,89, as schematically shown in Figure 2.7c. The states are 

chiral, hence electrons in the 𝑲 and 𝑲′ valley are counterpropagating50. Overall, since two states 

(both doubly spin degenerate) emerge within each valley, four valley-projected, one-dimensional 

channels are present. This results in a conductance of 4 𝑒2 ℎ−1 along the domain wall for each 

direction50,53,89 (see Figure 2.7d). In principle, intervalley scattering could lead to mixing of the 

counterpropagating modes and hence a reduction in conductance. However, domain walls consist 

of a defect free, smooth transition from AB to BA stacking over several hundred atoms. Hence, 

backscattering caused by intervalley mixing, which would require a large momentum change, is 

highly suppressed50,91. As a consequence, ballistic transport along the dislocation is possible50. 

An equivalent to these stacking domain walls are artificially created, electrostatically confined 

channels between two bilayer regions with the same stacking order but with electric fields of 

opposite polarity applied51,53,89,92. These antiparallel electric fields lead to regions with inverse layer 

(valley) polarization and hence to the emergence of chiral gapless modes53, analogous to the ones 

observed between domains of AB and BA stacking when applying a uniform electric field. These 

artificial domain walls have been successfully demonstrated in experiments51 and even potential 

applications such as valley polarizers and electron beam splitters have been realized92,93. Although 

they exhibit an advantageous tunability, as they can be switched on and off via gate voltages51,92, 

the presence of an electric field is inevitable for their emergence53. On the contrary, stacking domain 

walls are an actual deformation of the lattice and are consequently also present in the low electric 

field regime. However, the question is whether the arising topologically protected states at the 

stacking domain wall also persist in this regime, where a multitude of broken-symmetry states 
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emerges41,75,77,82. So far, the quantum transport along stacking domain walls was mainly examined 

for zero magnetic field50. Hence, in this thesis the focus was laid on revealing the interplay between 

topological valley and quantum Hall edge transport94 (see Chapter 5). 

2.6 Near-Field Microscopy 

In order to identify domain walls in bilayer graphene special techniques are necessary. This has 

mainly two reasons: first, owing to their small width of 6 – 11 nm48, they escape the detectability of 

conventional optical methods. And second, the stacking order transition happens only in the 

graphene plane, hence domain walls are unobservable in purely topographic measurements. Here, 

scattering-type scanning near-field optical microscopy56,57,88 (s-SNOM) combines a reliable 

Figure 2.7 Stacking domain walls in bilayer graphene. a),b) Schematic top view of the crystal 

structure of Bernal-stacked bilayer graphene with a tensile (a) and shear strain domain wall 

(b). The green rectangle illustrates the domain wall region in which the AB stacking smoothly 

transitions into a BA stacking domain. The upper (lower) graphene layer is shown in black 

(grey) and the green arrows indicate the direction of the strain. [Figure adapted from Ref.57]. 

c) Electronic band structure of bilayer graphene for a non-zero electric field applied with a 

domain wall present. 𝐸𝐹 and ∆ label the Fermi energy and the non-zero band gap, respectively. 

The blue (red) lines indicate topologically protected, doubly spin degenerate chiral states at 

the 𝑲(𝑲′)-valley. [Figure adapted from Ref.50]. d) Schematic side view of an AB-BA domain 

wall in bilayer graphene. Topological valley transport in the 𝑲 and 𝑲′ valley along the domain 

boundary is shown in blue and red, respectively. [Figure adapted from Ref.50]. 
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identification of domain walls in bilayer graphene with the advantage of being a non-destructive 

technique95. In the course of this thesis, it has been used to detect stacking dislocations. 

In conventional optical microscopy, the spatial resolution is limited by the diffraction limit, or Abbe 

limit, which prevents resolving two individual points separated by roughly less than half of the 

incident wavelength96. However, there are several possible ways of circumventing this limit to gain 

information of a sample with even higher resolution. One possibility is to use scanning probe 

microscopy techniques97. Hereby, a probe is brought into close proximity of the sample surface to 

extract local properties of the sample. Then, by scanning the device, i.e. by moving either the sample 

or the probe, images are created. One commonly used example for this technique is atomic force 

microscopy (AFM)98. A sharp tip acts as the probe interacting with the underlying material by 

attractive and repulsive forces, e.g. van der Waals force and Pauli repulsion97. By fixing the probe-

sample distance and simultaneously monitoring the movement of the tip, information about the 

sample topography can be gathered. In addition, it is possible to further extend this technique to 

measure more device characteristics such as local optical properties: In scattering-type (or 

apertureless) scanning near-field optical microscopy (s-SNOM)95 the tip is metallic and side-

illuminated from a focused laser beam. Consequently, it acts as nano-antenna55 to focus the incident 

electric field onto the sample surface. A near- (or evanescent) field is created55, modified by the 

interaction with the surface of the sample. The interaction decays exponentially with the tip-surface 

distance99. The back-scattered light, which can be detected in the far-field, carries information about 

local optical parameters of the sample. Hence, optical and topography information are 

simultaneously gained. Moreover, the resolution is no longer limited by the incoming wavelength, 

which would be several microns for mid-infrared light, but only dependent on the apex of the tip95. 

This process, schematically illustrated in Figure 2.8a, can be qualitatively explained with a simple 

dipole model55,99. Assuming the incident light with wavelength 𝜆 and electric field 𝐸in is only 

polarized parallel to the tip axis (any component orthogonal induces an inferior signal level99) an 

initial dipole 

𝑝0 = 𝛼𝐸in (2.34) 

is induced in the apex of the tip. Describing the tip as point dipole with radius 𝑅 (with 𝑅 ≪ 𝜆), its 

dipole polarizability equals100 

𝛼 = 4𝜋𝑅3
𝜀t − 1

𝜀t + 2
 , (2.35) 

with 𝜀t being the dielectric constant of the tip. As a consequence, a mirror dipole is formed within 

the sample with a strength of100 

𝑝′ = 𝛽𝑝0 , (2.36) 

where 𝛽 = (𝜀s − 1)/(𝜀s + 1) is the dielectric surface response function55 and 𝜀s the dielectric 

constant of the sample. The mirror image induces an additional dipole 𝑝i within the tip, leading to a 
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consecutive enhancement of dipole in the tip 𝑝 = 𝑝0 + 𝑝i and the sample 𝑝′ = 𝛽(𝑝0 + 𝑝i). Taking 

these near-field interactions into account55 leads to an effective polarizability 

𝛼eff =
𝛼

1 −
𝛼𝛽

16𝜋(𝑅 + 𝐻)3

 
(2.37) 

of the tip, where 𝐻 is the distance between tip and sample surface. Since the electric field scattered 

at a point dipole 𝐸sca is directly proportional to its polarizability55 

𝐸sca ∝ 𝛼eff𝐸in , (2.38) 

relative changes in the scattered light are caused by changes in the local dielectric constant of the 

sample. Numerous extensions can been made to improve the model, such as considering a finite-

dipole model101 or taking light scattered at the surface of the sample into account102. Nonetheless, 

the simple model already allows for intuitively understanding the mechanism between the scattered 

light and optical properties of the sample. The technical details of the measuring process are 

explained in Section 3.2.2.  

In graphene, the complex dielectric function, or the optical conductivity directly related to it103, is 

dependent on layer number as well as stacking order104 and, hence, the near-field signal changes 

from e.g. mono- to bilayer graphene. Moreover, since the scattered light is confined at the 

nanoscale to a much lower scale than the optical wavelength, the electric field strength and light-

matter interactions are highly enhanced105,106. At the interface between graphene and a dielectric, 

Figure 2.8 Point-dipole model and surface plasmon polaritons in near-field optical 

microscopy. a) A schematic illustration of the s-SNOM tip and the sample is shown. The 

incident light 𝐸in induces a dipole 𝑝0 (green arrow) in the tip (dielectric constant: 𝜀𝑡), which is 

modeled by a sphere with radius 𝑅. In the sample (dielectric constant: 𝜀𝑠) in close distance 𝐻 

to it, a mirror dipole 𝑝′ (dashed green arrow) is created interacting with the initial dipole in 

the tip and changing it by 𝑝𝑖. 𝛽 and 𝐸𝑠𝑐𝑎 are the dielectric surface response function and the 

back scattered light, respectively. The interaction is schematically shown in purple. [Figure 

adapted from Ref.55]. b) Plasmons are launched from the tip with a circular wavefront (dark 

blue). At a domain wall (red region) in bilayer graphene, they are partially transmitted and 

reflected (light blue) causing standing-wave interference pattern. [Figure taken from Ref.56]. 
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collective oscillations of free charge carriers, so called surface plasmon polaritons, can be 

excited107,108. These excitations, with a charge carrier density dependent plasmon wavelength107, are 

launched from the apex of the tip. Owing to the isotropic conductivity tensor in graphene106, they 

form a circular wavefront and propagate in-plane up to several times of their wavelength even at 

room temperature107,108. At the edge of a graphene flake, standing wave patterns can be observed 

due to back reflection and interference of plasmons107,108. Most importantly for this thesis, the same 

phenomena can be observed at stacking domain walls in bilayer graphene50,56,57, see Figure 2.8b. 

Even though plasmon are reflected only partially at the defects, standing-wave interference 

patterns can be observed56,57, albeit weaker than at the edge of the flake. Consequently, the 

dislocations are indirectly visible in the near-field microscope. Moreover, different types of 

dislocations (i.e. shear or tensile stacking domain walls) induce different phase shifts for the 

reflection56,57. Empirically, effective phase shifts of 𝜋 and 𝜋/2 have been determined for tensile and 

shear dislocations57, respectively. The consequences are distinguishable interference pattern 

allowing for a differentiation with s-SNOM. 

2.7 Dually Gated Bilayer Graphene Field-Effect Transistor 

The field-effect is the modulation of the electrical conductivity of a material by applying an external 

electric field, firstly demonstrated in experiment by J. Bardeen, W. Brattain and W. Shockley in 

194772. The effect can be exploited in a field-effect transistor to reliably probe the electronic 

properties of a material, which works also in graphene3,109. In the course of this thesis, a two-

terminal device geometry was used, in which the active graphene channel is connected to source-

drain contacts and its electronic properties are tuned via two gate electrodes. The dually gated 

structure (see Figure 2.9a) provides significant advantages over a device with a single gate, since 

both charge carrier density and electric field can be adjusted independently41. This is of particular 

importance in bilayer graphene as, in contrast to monolayer graphene, an electric field breaks the 

inversion symmetry of the bilayer, which can significantly alter its transport properties26. 

In a dually gated device, the net charge carrier density 𝑛 is the sum of the components 𝑛𝑡 and 𝑛𝑏 

induced by the top 𝑉𝑡 and bottom gate voltage 𝑉𝑏, respectively41,86: 

𝑛 = (𝑛𝑡 + 𝑛𝑏) =
𝐶𝑡(𝑉𝑡 − 𝑉𝑡

0) + 𝐶𝑏(𝑉𝑏 − 𝑉𝑏
0)

𝑒
=

𝐶𝑏

𝑒
(𝛼(𝑉𝑡 − 𝑉𝑡

0) + (𝑉𝑏 − 𝑉𝑏
0)) . (2.39) 

Here, 𝑉𝑡
0 and 𝑉𝑏

0 indicate the effective offset voltages due to residual charge carrier doping, i.e. 

charge neutrality at zero electric field is at 𝑉𝑡 = 𝑉𝑡
0 and 𝑉𝑏 = 𝑉𝑏

0. Moreover, 𝛼 denotes the ratio 

between top 𝐶𝑡 and bottom capacitance per unit area 𝐶𝑏 of the respective gate electrode to the 

graphene sheet, and 𝑒 is the electron charge. In the freestanding devices fabricated in the course of 

this thesis, the top gate is separated from the graphene by vacuum, whereas the bottom capacitor 
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consists partly of vacuum and partly of silicon dioxide, see Figure 2.9a. Hence, the latter can be 

described by the sum of two in-series capacitances: 

𝐶𝑏 = 𝜀0

𝑑𝑒𝑡𝑐ℎ𝑒𝑑
−1 ∙ 𝜀𝑆𝑖𝑂2

(𝑑𝑆𝑖𝑂2
− 𝑑𝑒𝑡𝑐ℎ𝑒𝑑)−1

𝑑𝑒𝑡𝑐ℎ𝑒𝑑
−1 + 𝜀𝑆𝑖𝑂2

(𝑑𝑆𝑖𝑂2
− 𝑑𝑒𝑡𝑐ℎ𝑒𝑑)−1

 , (2.40) 

where 𝜀0 denotes the vacuum permittivity, 𝜀𝑆𝑖𝑂2
 is the permittivity of SiO2, 𝑑𝑆𝑖𝑂2

 indicates the 

overall thickness of the initially unetched SiO2 layer and 𝑑𝑒𝑡𝑐ℎ𝑒𝑑 is the etching depth.  

The perpendicular electric field 𝐸 is the mean value of the electric field components 𝐸𝑡 and 𝐸𝑏 

applied by the top and bottom gate26: 

𝐸 =
1

2
(𝐸𝑡 + 𝐸𝑏) =

𝐶𝑏

2𝜀0
(𝛼(𝑉𝑡 − 𝑉𝑡

0) − (𝑉𝑏 − 𝑉𝑏
0)) . (2.41) 

Figure 2.9b and c illustrate two special cases: when the relation 𝛼(𝑉𝑡 − 𝑉𝑡
0) = (𝑉𝑏 − 𝑉𝑏

0) is true, 

𝑛 ≠ 0 and 𝐸 = 0 hold, whereas 𝑛 = 0 and 𝐸 ≠ 0 applies for 𝛼(𝑉𝑡 − 𝑉𝑡
0) = −(𝑉𝑏 − 𝑉𝑏

0). However, 

since 𝑛 and 𝐸 are linearly independent, any possible combination of charge carrier density and 

electric field can be set by applying the corresponding 𝑉𝑡 and 𝑉𝑏, see Eqs. (2.39) and (2.41).

Figure 2.9 Dually gated bilayer graphene field effect transistor. a) Schematic cross section of 

the finalized device. The bilayer graphene (green) is freestanding and attached to the source-

drain contacts (yellow). It is separated from the top gate (blue) by vacuum, and from the 

bottom gate by a layer of vacuum and SiO2 (light grey), with thicknesses of 𝑑𝑒𝑡𝑐ℎ𝑒𝑑 and 𝑑𝑆𝑖𝑂2
, 

respectively. 𝑉t and 𝑉b indicate the voltages applied to the top and bottom gate electrodes, 

with the latter being highly doped silicon (grey). b),c) Schematic working principle of the dual-

gate structure. The same color-coding as in (a) is used. For 𝛼(𝑉𝑡 − 𝑉𝑡
0) = (𝑉𝑏 − 𝑉𝑏

0), a net 

charge carrier density is induced in the bilayer graphene, but no electric field is applied, as 

illustrated in (b). In contrast, for 𝛼(𝑉𝑡 − 𝑉𝑡
0) = −(𝑉𝑏 − 𝑉𝑏

0), the total charge carrier density is 

zero, whereas a non-zero electric field is applied, as shown in (c). [Figure adapted from Ref.112]. 
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3 Device Fabrication and 

Characterization Methods 

In this chapter, the laboratory techniques for fabricating and examining the devices used in this thesis 

are described. Mainly delicate dually gated, freestanding bilayer graphene devices were fabricated 

and investigated using state-of-the-art procedures. At first, the process of exfoliation of high-quality 

graphene is presented. Secondly, pre-characterization methods such as optical and near-field 

microscopy are explained. Thirdly, the procedure of fabricating dually gated, freestanding bilayer 

graphene field effect devices is demonstrated. Lastly, the setup of electrical measurement for 

investigating the quantum transport is illustrated and the process of current annealing as well as 

device calibration is explained.

 

3.1 Wafer Preparation and Graphene Exfoliation 

As substrate for all devices commercial highly p-doped silicon wafers (Silicon Materials) with an 

insulating layer of 300 nm Silicon dioxide (SiO2) on top were used. Since the underlying silicon acted 

as bottom gate electrode during cryogenic measurements, the high doping level was necessary to 

ensure that the silicon possessed low resistivity even at temperatures close to absolute zero.  

Small 4x4 mm2 pieces cut from the wafers were rinsed in acetone as well as isopropanol. 

Subsequently, solvent residues were evaporated using dry air. Shortly prior to exfoliation, the 

substrates were additionally cleaned using an oxygen plasma (PICO Plasma Cleaner, Diener) for 

5 min at 50 W with an oxygen gas flow of 10 sccm. Directly afterwards, mechanical exfoliation2, a 

very simple yet successful technique to obtain graphene flakes with excellent quality19, was used to 

fabricate bilayer graphene flakes from a highly oriented pyrolytic graphite block (Momentive 

Performance Materials Inc.). As a first step, while the substrates were heated to 110 – 130 °C to 

ensure the evaporation of any residual water, an adhesive tape (Magic Tape, Scotch) was slightly 

pressed onto the graphite surface and subsequently peeled off. Hereby, thin layers of graphite stuck 

to the tape by van der Waals force4. Secondly, using an additional piece of tape and placing it on the 

section with graphite on the initial tape, the graphite is further thinned. The procedure was repeated 

up to five times. Lastly, the tape with a desired graphite thickness was pressed onto the pre-heated 

substrates for ten seconds and was then carefully removed. During this process, some of the flakes 
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were randomly transferred to the substrates. After exfoliation, the substrates were cleaned again 

in acetone as well as isopropanol and blow-dried with dry air to dissolve most of the glue residues 

originating from the tape. 

3.2 Optical and Near-Field Microscopy 

In order to select suitable bilayer graphene flakes, two different microscopy techniques were 

conducted before fabricating the actual dually gated devices. First, optical microscopy was used to 

locate bilayer graphene flakes. Subsequently, the preselected flakes were investigated with 

scattering-type scanning near-field optical microscopy. The obtained topography images provided 

information about their homogeneity and cleanliness, whereas any stacking domain walls present 

in the flakes were detected within the optical channel. In the following, the aforementioned 

methods are presented in detail. 

3.2.1 Optical Microscopy 

After exfoliation, an optical microscope (LD EC Epiplan-Neofluar 100x, Zeiss) was used to locate and 

preselect suitable bilayer graphene flakes. Under ideal conditions, the absorbance of monolayer 

graphene is almost independent on the wavelength of the incident visible light and is given by 𝜋𝑎 ≈

2.3 %, with 𝑎 being the fine structur constant6. In addition, for a low number of layers, it increases 

linearly with additional graphene sheets110, which can be used to estimate the number of layers of 

preselected flakes. To this end, optical images were taken, see Figure 3.1a. The optical contrast was 

identified by measuring the value of the green channel divided by the background value, see Figure 

3.1b. Although the optical contrast in a microscopy image is not solely dependent on the absorbance 

but also on the used substrate110 as well as the wavelength of the incident light, the difference 

between mono- and bilayer graphene is sufficient to determine the layer number (see Figure 3.1b). 

The results were confirmed in quantum transport measurements with the unique sequence of 

quantum Hall states in bilayer graphene (see Section 2.4). 

Besides layer number, this technique provides a fast and easy way to gain information about 

homogeneity and size of the flakes. Only rather isolated flakes with a homogenous looking surface 

were selected to enable an easy contacting procedure. In addition, special care was taken on the 

geometrical measures of the flakes for the following reasons: Firstly, freestanding graphene devices 

allow only for a certain width to be stable during suspension, hence, bilayer graphene flakes with a 

width of 0.5 – 3 µm were chosen. Secondly, of importance are also the aspect ratio of the devices 

(i.e. the ratio between channel length and width) as well as the ratio between channel length and 

contact width, as discussed in Chapter 6. Hence, appropriate flakes suitable for the experiments 

needed to be selected. Worth to note is that an additional etching step to shape flakes was avoided 

in order to maintain the high quality of the edges for quantum transport19.  
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3.2.2 Scattering-Type Scanning Near-Field Optical Microscopy 

After preselecting suitable bilayer graphene flakes, a customized scattering-type scanning near-field 

optical microscope (neaSNOM, neaspec) was used to scan the topography of the flakes with high 

resolution and simultaneously reveal any stacking defects. Essentially, the s-SNOM is an atomic force 

microscope operating in tapping mode with an infrared laser source coupled to it55, see Section 2.6. 

In Figure 3.2, the setup is illustrated schematically. Its basic functionality is explained in the 

following. 

An infrared laser (CO2 Laser Merit G, Access Laser Company) beam with a tunable wavelength in the 

range of 9.2 – 10.8 µm goes through a neutral density filter, which allows for adapting the intensity 

of the light. Subsequently, it is guided using multiple mirrors onto a beam splitter. In addition, a 

green laser diode can be coupled in the same beam path for alignment purposes of the invisible 

infrared laser. One part of the beam is focused with a parabolic mirror onto the metal-coated tip 

(Pt/Ir, Arrrow NCPT-50, Nanoworld), which is oscillating with a frequency of Ω ≈ 250 − 270 kHz 

and a tapping amplitude of 60 – 80 nm. After interacting with the sample surface (see Section 2.6), 

the scattered light is collected and collimated by the same parabolic mirror. The second part of the 

beam goes into a reference interferometer, called pseudo-heterodyne111 (ps-het) module, which 

consists of a mirror perpendicular to the incident beam oscillating with a frequency 𝑀 causing an 

interference pattern with the scattered light from the tip at the beam splitter. The combined signal 

is then guided and focused onto a liquid nitrogen cooled HgCdTe detector using multiple standard 

Figure 3.1 Optical microscopy. a) Background corrected optical microscope image of a 

graphene flake on a SiO2(300nm)/Si substrate. Mono- (1L) and bilayer graphene (2L) parts of 

it are labeled. The dashed line illustrates the position of the line trace shown in (b). Scale bar: 

2 µm. b) Line trace of the normalized optical contrast across the flake shown in (a). The red 

lines are constant fits to the respective contrast levels of 1L and 2L graphene in the data. In 

this example, the difference in absorbance of mono- and bilayer graphene compared to the 

substrate is 2.1 % and 4.6 %, respectively. This is sufficient for a differentiation with optical 

microscopy. 
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and one parabolic mirror. This pseudo-heterodyne technique provides an almost background-free, 

simultaneous detection of the near-field amplitude and phase111. Qualitatively, it works as follows. 

The detector measures the intensity of the incoming signal111 

𝐼 ∝ |𝐸sca,nf + 𝐸sca,bg +  𝐸ref|
2

 , (3.1) 

which is related to the electric field components associated with the near-field interaction 𝐸sca,nf, a 

large additive background signal 𝐸sca,bg caused by elastic reflection from the tip shaft or sample 

surface111 and the reference signal 𝐸ref. Since the tip oscillates vertically with a frequency of Ω ≈

250 − 270 kHz, 𝐸sca,nf and 𝐸sca,bg are modulated at Ω and its higher harmonics111. On the contrary, 

in the pseudo-heterodyne module, the mirror oscillates with a much lower frequency 𝑀 ≈ 300 Hz 

in the propagation direction of the laser beam leading to a phase modulation of 𝐸ref. Due to the 

interference of both components, the spectrum of the superposition shows sidebands at Ω and its 

𝑛-th harmonic 𝑛Ω at frequencies of 𝑓n,m = 𝑛Ω ± 𝑚𝑀, where 𝑚 is an integer111. According to Ref.111, 

the background-free near-field amplitude 𝑠n and phase contrast value 𝜑n can then be obtained from 

the detector signals 𝑢n,1 and 𝑢n,2 measured at the first 𝑓n,1 and second sideband 𝑓n,2, respectively. 

The quantities are given by 

𝑠n = 2.16𝑘√𝑢n,1
2 + 𝑢n,2

2 (3.2) 

 

Figure 3.2 Scattering-type scanning near-field optical microscopy setup. The CO2 laser beam 

goes through a neutral-density (ND-) filter and is focused with multiple mirrors onto a beam 

splitter (blue). One part of the beam is focused with a parabolic mirror (green) onto the metal 

coated tip, which oscillates with a frequency 𝛺. After interacting with the sample, the 

scattered light is collected and collimated back to the beam splitter. The other part is guided 

into the reference path (ps-het module) and gets back reflected at an oscillating mirror with 

frequency 𝑀. The two parts get superposed at the beam splitter and are subsequently focused 

onto the detector using multiple standard and one parabolic mirror. A data acquisition card 

reads out the signal. A green laser diode shares the same beam path for alignment purposes. 
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and  

𝜑n = arctan (2.16𝑘
𝑢n,2

𝑢n,1
) , (3.3) 

with 𝑘 being a constant. The equations are only true for sufficient high harmonic order 𝑛 > 1. In the 

course of this thesis, the signal was usually demodulated at the third or fourth harmonic of Ω, which 

was done by a data acquisition card connected to the detector.  

The main goal for using the s-SNOM was to detect stacking domain walls within the preselected 

bilayer graphene flakes. These defects are only indirectly visible owing to plasmon reflections at the 

stacking domain boundaries (see Section 2.6). Since this effect is much weaker compared to 

reflections at the edge of graphene, and the spatial extend of the interference pattern is in the order 

of a few hundred nanometers57, excellent alignment and an impeccable quality of the tip are crucial. 

3.3 Dually Gated Freestanding Device Fabrication 

In the course of this thesis, a dually gated, freestanding device geometry was used to achieve high 

quality, high tunable bilayer graphene samples free of any influence from the substrate. The 

technique was first developed by K.I. Bolotin et al.19 and further improved by R.T. Weitz et al.41, over 

a decade ago. It involves multiple steps of electron-beam lithography and physical vapor deposition 

as well as subsequently chemical wet etching with hydrofluoric acid, etching SiO2 but leaving the 

graphene and the metal contacts intact. The procedure is explained in the following in detail. 

3.3.1 Contact and Top Gate Patterning 

After the initial optical characterizations, the selected bilayer graphene flakes were contacted 

directly with chromium/gold contacts using electron-beam lithography. The process is schematically 

shown in Figure 3.3. Hereby, special attention was laid on domain walls detected in the flakes with 

the near-field microscope. The contacts were designed in three different configurations: i) domain 

walls were present in the channel and connected by source-drain contacts on both ends, ii) domain 

walls were present in the channel but not connecting both contacts, and iii) domain walls were 

completely absent. The devices were fabricated as follows. A positive resist polymethylmethacrylat 

(PMMA) 950 k dissolved in anisole (AR-P 672.045, Allresist) in a 4.5 wt.% solution was spin coated 

onto the devices (see Figure 3.3a) in a two-step process: at first, the sample rotated at 800 rpm for 

1 s and immediately after at 4000 rpm for 30 s. The procedure resulted in a homogenous layer of 

resist with roughly 230 nm thickness. Afterwards, a soft bake at 150 °C for 3 min was performed, 

illustrated in Figure 3.3b. Subsequently, small (big) contact leads were exposed with an electron-

beam using an acceleration voltage of 10 kV and a 10 (60) µm aperture with a dose of 

110 (170) µC cm-2 (see Figure 3.3c). The width of the designed contact leads was designed to be not 

smaller than 1 µm to ensure mechanical robustness during suspension. Consecutively, the devices 
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were developed in a 1:3 solution of methylisobutylketon (MIBK) and isopropanol for 2 min dissolving 

the exposed PMMA sections, then immersed in isopropanol and blow-dried with dry air (see Figure 

3.3d). Subsequently, metals were deposited using electron-beam physical vapor deposition (PVD) at 

low pressure (< 3 × 10−7 mbar), as illustrated in Figure 3.3e. Successively, an adhesion layer of 

5 nm chromium and a 100 nm gold layer were deposited with deposition rates of 0.1 – 0.2 Å s-1 and 

1.0 – 1.2 Å s-1, respectively. Afterwards, the devices were rinsed in warm acetone to lift-off the 

remaining resist, leaving only the designed contact patterns (see Figure 3.3f). Consecutively, the 

devices were immersed in isopropanol and blow-dried with dry air.  

After patterning the contact leads, two additional electron-beam lithography and PVD steps were 

used to fabricate the top gate structure. First, a SiO2 spacer was patterned. To this end, the 

aforementioned procedure of electron-beam lithography was used again, however, to prevent 

problems during lift-off owing to the greater thickness of the spacer than the contacts, both, the 

spin coating of the PMMA resist and the consecutive soft bake were performed twice. After 

exposure with unchanged parameters, an increased development time of 3:30 min was used. Then, 

SiO2 was deposited at a rate of 1.0 – 2.0 Å s-1 and the resist was lifted-off. Second, to fabricate the 

top gate, the spin coating procedure was again conducted twice, and the desired structure was 

patterned using an electron-beam. After 3:30 min of development, an adhesive layer of 5 nm 

chromium and a 160 nm layer of gold were deposited with deposition rates of 0.1 – 0.2 Å s-1 and 

1.1 – 1.3 Å s-1, respectively. The subsequent lift-off revealed the processed but not yet freestanding 

structure, as shown schematically in Figure 3.4a. 

Figure 3.3 Procedure of electron-beam lithography. a) PMMA resist (purple) is spin coated 

onto the substrate (grey) with a preselected bilayer graphene flake (green). b) A softbake at T 

= 150 °C is performed. c) Desired parts of the resist are exposed with an electron-beam. d) 

Rinsing the device in a developer dissolves the exposed parts. e) Metals (yellow) are deposited 

using electron-beam evaporation. f) The resist is dissolved using acetone and the metal 

remains only at the previously exposed sections. 
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3.3.2 Wet Etching and Critical Point Drying 

In order to finalize the devices and suspend both the bilayer graphene as well as the top gate, a wet 

etching procedure was used. Figure 3.4a,b illustrates a schematic cross section of a device before 

and after the process. The devices were immersed in a 1:7 buffered oxide etch based on hydrofluoric 

acid for 100 s, which uniformly removed about 150 nm of SiO2. The latter happens even under the 

flake due to a rapid propagation of the acid along the SiO2/graphene interface19. Consequently, the 

bilayer graphene flake is suspended and only attached underneath the gold contacts. The parts of 

SiO2 masked by chromium/gold are impenetrable for the acid and are only etched horizontally. 

Therefore, the contact leads do not collapse. In addition, the evaporated SiO2 spacer between the 

bilayer graphene and the top gate is also etched. This occurs almost instantaneously due to the low 

quality of the deposited dielectric. As a result, the top gate is also suspended above the channel of 

the device. After etching, the devices were immersed in water twice and subsequently three times 

in ethanol without drying them in between.  

As a last step, to prevent the collapse of the device during drying due the surface tension of the 

liquid19, the devices were placed directly from ethanol into a critical point dryer (K850, Quorum 

Technologies). Within the pressure chamber of the dryer, the devices were cooled down in ethanol 

to 12 °C. Then, the solvent was slowly replaced with liquid CO2 during multiple rinsing cycles at 

constant temperature. Afterwards, temperature and pressure within the chamber were raised to 

approximately 35 °C and 80 bar, which ensured the surpassing of the critical point of CO2. By 

Figure 3.4 Dually gated freestanding bilayer graphene device. a),b) Schematic cross section 

of the device architecture prior (a) and after suspending the device (b). In the final state, the 

bilayer graphene (green) is suspended and attached underneath the gold contacts (yellow) 

with a freestanding top gate (blue) above. The SiO2 and highly doped silicon substrate are 

shown in light grey and grey, respectively. c) False-color scanning electron microscope image 

of an exemplary dually gated freestanding device with multiple channels. The colors match 

the ones used in (a) and (b). Scale bar: 1 µm. 
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consecutively venting the chamber at constant temperature a phase transition between the liquid 

and vapor phase was avoided. A false-color scanning electron microscopy image of a fully processed, 

dually gated freestanding bilayer graphene device is shown in Figure 3.4c. 

3.3.3 Bonding 

Prior to loading the devices in the cryostat, they were glued onto a sample holder using conductive 

silver paint. Gold pads connected to the top gate and contact leads were successively bonded to 

pins attached to the sample holder using a wedge bonder (MEI 1204W, Marpet Enterprises). The 

bonding was carefully performed using only low power ultrasonic pulses as well as proper grounding 

to avoid a collapse of the fragile structures and any electrostatic discharge. 

3.3.4 Current Annealing 

Due to the involved electron-beam lithography, the suspended bilayer graphene devices were 

exposed to lots of contaminants and usually exhibited high amounts of residues, e.g. of the PMMA 

resist. Consequently, the quality and especially the quantum transport characteristics of the devices 

were initially relatively poor. To overcome this problem, a current annealing technique19,22,41 was 

used to greatly reduce the amount of residual dirt. The procedure was conducted at a temperature 

of 1.6 K after loading the device into the cryostat. By ramping up a large d.c. source-drain voltage 

𝑉d.c., a high current 𝐼d.c. runs through the two-terminal device. As a consequence, it heats up to very 

high temperatures due to dissipation, which removes the contaminants22. Successively after each 

𝑉d.c. ramp, the quality of the device was analyzed with a back gate voltage 𝑉b sweep. 

Figure 3.5 demonstrates the technique for an exemplary device, with several labeled annealing 

cycles. After the initial step (1), which involved applying approximatively 4.5 V and a resulting 

current of 0.5 mA (see Figure 3.5a), the resistance does not show any saturation (see Figure 3.5b). 

Moreover, the device is still highly doped, as the resistance increases monotonically as a function of 

𝑉b and shows no charge neutrality point (see Figure 3.5c). A second cycle (2) with much more current 

flowing (> 1 mA) reveals the begin of current saturation. Moreover, the charge neutrality point is 

visible in the accessible back gate voltage range. However, to achieve a high quality of the device, 

further cycles of current annealing were performed (3) – (5). Minimal higher currents can greatly 

improve the characteristics, remarkable in the reduction of contact resistance (i.e. the resistance 

offset for high back gate voltages) as well as in the narrowing of the resistance peak at charge 

neutrality (see Figure 3.5c). The best results were achieved when a current of approximatively 

0.35 mA per width of the channel (in µm) and per layer number was flowing and a source-drain 

voltage with an extra of 0.5 – 2.0 V above the onset of the saturation was used. However, significant 

higher currents (i.e. additional 150 – 250 % of current) were needed in devices with a low overall 

resistance to achieve similar annealing temperatures and a comparable quality of the devices. In 

particular, devices with a domain wall present connecting source and drain showed significant lower 
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resistance and, hence, much higher current was needed in order to obtain similar results from the 

annealing procedure. 

3.4 Electrical Characterization 

After annealing the devices, the quantum transport characteristics of the flakes were investigated. 

All measurements were conducted in a cryogen-free dilution refrigerator measurement system 

(Dilution Refrigerator BF-LD250, Bluefors) with a base temperature of 7 mK. Most measurements 

were performed at base temperature, however, in some experiments, the temperature was raised 

up to 10 K. In addition, a perpendicular magnetic field of up to 14 T could be applied. In-series low-

pass filters were used to minimize high-frequency noise. Due to the device geometry, only two-

terminal measurements were performed. However, to bypass in-series resistances originating from 

the filters and wiring, four connections with two interconnected at the bonding pins were used to 

measure the voltage drop relatively close to the actual device. Standard lock-in techniques were 

used for all measurements, apart from the conducted d.c. measurements for current annealing and 

the in-situ monitoring the device quality (see Section 3.3.4).  

In Figure 2.6, the electrical measurement setup is illustrated. First, an a.c. reference signal 𝑉Ref 

provided from a lock-in amplifier (SR830, Stanford Research Systems) was modulated onto an 

optional d.c. bias 𝑉d.c. from a d.c. source (SMU GS610, Yokogawa) using a transformer. Second, a 

high resistance 𝑅S was used to convert the applied a.c.–d.c. voltage into a current signal, resulting 

in an excitation current of 𝐼exc. (a.c.) = 1 − 10 nA with a frequency of 78 Hz running through the 

device (plus an optional d.c. current). 78 Hz was chosen to suppress any high frequency effects and 

50 Hz noise. The a.c. voltage drop 𝑉a.c. across the device was measured using a second lock-in 

amplifier (SR865, Stanford Research Systems) linked via 𝑉Ref to the first one. To consider the actual 

Figure 3.5 Current annealing technique. a),b) D.c. Current Id.c. (a) and resistance Rd.c. (b) as a 

function of applied d.c. source-drain voltage Vd.c. for five consecutive annealing cycles shown 

in black, red, blue, green and purple. The cycles are additionally labeled with numerals. c) Rd.c. 

versus bottom gate voltage Vb, subsequently measured after each annealing cycle. The colors 

match the sequence shown in (a) and (b). 
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current flowing through the device, it was amplified by a current amplifier (Model 1211, DL 

Instruments) and its a.c. 𝐼a.c. and d.c. component 𝐼d.c. were measured using the first lock-in amplifier 

as well as a multimeter (Multimeter 34461A, Keysight), respectively. With the measured 𝑉a.c. and 

𝐼a.c., the differential resistance and conductance of the devices could be calculated. To manipulate 

the gates, two source measure units (SourceMeter 2450, Keithley) were used to apply the top 𝑉t 

and bottom gate voltages 𝑉b and simultaneously measure the corresponding leakage currents, 𝐼t 

and 𝐼b.  

In order to control all electrical devices and specify their settings as well as to collect the data during 

the electrical measurements, a software developed by Felix Winterer112 was used. 

3.5 Device Calibration 

For each device, a set of calibration measurements were conducted to find its charge neutrality 

point, to convert the top and bottom gate voltages into charge carrier density and electric field as 

well as to calculate the contact resistance of the sample. 

At first, a top and bottom gate voltage sweep was performed at zero magnetic field (see Figure 3.7a). 

The line of highest resistance value 𝑅𝑚𝑎𝑥(𝑉b) for each 𝑉t (dashed line in Figure 3.7a) indicates charge 

neutrality. Moreover, the slope of the diagonal yields the gate coupling ratio 𝛼, see Section 2.7. 

Second, Eqs. (2.39) and (2.41) were used to define the dependence of 𝑛 and 𝐸 on the top and 

bottom gate voltage:  

Figure 3.6 Electrical measurement setup. Lock-in techniques were used in the setup to 

measure the differential resistance as well as conductance. It included the following units: a 

d.c. source, two lock-in amplifiers, a current amplifier as well as a multimeter and two source 

measure units. In addition, a transformer was used to mix the a.c. and d.c. signals, and a 

resistor to convert the applied source-drain voltages to current. 
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𝑉𝑡 =
𝑒𝑛 + 2𝜀0𝐸

2𝛼𝐶𝑏
+ 𝑉𝑡

0 (3.4) 

and 

𝑉𝑏 =
𝑒𝑛 − 2𝜀0𝐸

2𝐶𝑏
+ 𝑉𝑏

0 , (3.5) 

which were specified in the measurement software. Afterwards, precise charge carrier density and 

electric field sweeps were conducted (see Figure 3.7b and c). Hereby, 𝑉𝑡
0 as well as 𝑉𝑏

0 were initially 

set to zero and only an estimate of the bottom capacitance 𝐶𝑏 was used, calculated from the etching 

time and following Eq. (2.40). Subsequently, Lorentzian functions were fitted to both data sets to 

determine their respective offsets 𝑛𝑜𝑓𝑓 and 𝐸𝑜𝑓𝑓. Using Eqs. (3.4) and (3.5), the position of the CNP 

at 𝐸 = 0 could be derived by 

𝑉𝑡
0 = −

𝑒𝑛𝑜𝑓𝑓 + 2𝜀0𝐸𝑜𝑓𝑓

2𝛼𝐶𝑏
 (3.6) 

and 

𝑉𝑏
0 = −

𝑒𝑛𝑜𝑓𝑓 − 2𝜀0𝐸𝑜𝑓𝑓

2𝐶𝑏
 . (3.7) 

To obtain the correct value for 𝐶𝑏 and hence a precise calibration of the 𝑛 – and 𝐸 − axis, a fan 

diagram was recorded (see Figure 3.7d). The appearing quantum Hall states could be linked to 

integer filling factors 𝜐 in sequential order. Subsequently, linear functions following 𝐵 =

ℎ𝐶𝑏(𝛼(𝑉𝑡 − 𝑉𝑡
0) + (𝑉𝑏 − 𝑉𝑏

0)) (𝑒2𝜐)⁄  were plotted for each −4 ≤ 𝜐 ≤ 4 state. The true 𝐶𝑏, see 

Eq. (2.40), could be determined by tuning 𝑑𝑆𝑖𝑂2
 and 𝑑𝑒𝑡𝑐ℎ𝑒𝑑 in a way that the linear functions lie in 

the center of the corresponding quantum Hall plateaus (dashed lines in Figure 3.7d). 

Finally, in two-terminal transport measurements there always persists an in-series contact 

resistance, and its calculation as well as subtraction are crucial. For this purpose, a density sweep 

at 𝐵 = 2 T and 𝐸 = 20 mV nm-1 was performed. Figure 3.7e shows the conductance for hole doping. 

Note, that the case for electron doping behaves similarly. At this magnetic field, all integer quantum 

Hall states are fully visible. The applied finite electric field ensures the emergence of layer polarized 

states. The appearing quantum Hall states were compared to the unique Landau level diagram of 

bilayer graphene (see Section 2.4) and linked to integer filling factors in sequential order. Then, a 

constant fit to each plateau was conducted to obtain their respective conductance (or resistance) 

values, which were subsequently plotted against the corresponding inverse filling factor (see Figure 

3.7f). A linear fit to the data yields the contact resistance 𝑅𝑐 as its intercept and the von Klitzing 

constant as its slope. The former was subtracted to all measurements, whereas the latter acted as 

sanity check. 
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Figure 3.7 Device calibration procedure. a) Resistance as a function of top and bottom gate 

voltage. The directions of both charge carrier density and electric field are indicated. The 

dashed line illustrates charge neutrality. b),c) Conductance as a function of charge carrier 

density (b) and electric field (c) in the uncalibrated device. In both cases, a Lorentzian fit (in 

red) to parts of the data and the respective offsets 𝑛𝑜𝑓𝑓 and 𝐸𝑜𝑓𝑓 are shown. d) Conductance 

as a function of magnetic field and charge carrier density at zero electric field. The appearing 

quantum Hall states can be linked to integer filling factors of sequential order. Linear fits 

(dashed lines) to the appearing quantum Hall states help to calculate the correct 𝐶𝑏 and are 

labeled with the corresponding filling factor. e) Conductance as a function of negative charge 

carrier density (i.e. hole doping) for 𝐵 = 2 T and 𝐸 = 20 mV nm-1. To each appearing quantum 

Hall plateau, a constant function is fitted (red lines). The states are labeled with their 

respective filling factor. f) The resistance values obtained from the fits in (e) plotted versus the 

corresponding inverse filling factor. A linear fit to the data (solid red line) allows for the 

calculation of the contact resistance 𝑅𝑐, which is the intercept of curved red line. The dashed 

red line is a guide to the eye. 
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4 Quantum Anomalous Hall Effect in 

Bilayer Graphene 

Part of the findings presented in this chapter have been published in Ref.83. The full article can be 

found in Appendix A.1.

  

4.1 Summary 

The quantum anomalous Hall effect has only been observed in magnetically doped topological 

insulators45,113,114 and precisely aligned moiré heterostructures29,30,115–117. However, it has been 

theoretically predicted to occur also in pure Bernal-stacked bilayer graphene31–33. In Ref.83, which is 

part of this thesis, states with a conductance of ±2 𝑒2 ℎ−1 were observed that survive down to 

anomalously small magnetic fields as well as up to temperatures of 5 K and show a magnetic 

hysteresis providing compelling evidence of orbital magnetism. 

In the study, dually gated freestanding bilayer graphene devices were fabricated and current 

annealing was used to obtain ultraclean samples. Near-field optical microscopy was used to ensure 

the absence of any domain walls in the devices. The dual-gate structure was exploited to tune charge 

carrier density and electric field independently. By varying 𝑛 and 𝐵 for various 𝐸, quantum Hall 

states with a conductance of ±2 𝑒2 ℎ−1 were tracked down to vanishing magnetic fields. Notably, 

they appear only within a specific range of intermediately strong electric fields. Their emergence is 

consistent with a theoretically reported octet of exotic ALL phases, which are quantum anomalous 

Hall phases with a partial layer polarization as well as a substantial orbital moment33 (see Section 

2.3). So far, evidence of this phase has only been found for magnetic fields of 𝐵 > 1.2 T82, however, 

as one of the competing quantum Hall ground phases in bilayer graphene, it is predicted to survive 

down to zero magnetic field33. Moreover, owing to the substantial orbital moment and resulting 

quantum anomalous Hall character, a magnetic hysteresis is expected. In Ref.83, exactly this behavior 

was confirmed, with a hysteresis appearing only for a specific filling factor around 𝜐 = ±2 and, 

again, intermediately strong electric fields, consistent with the properties of the ALL phase. In 

addition, the temperature dependence of the 𝜐 = ±2 quantum anomalous Hall phase compared to 

the 𝜐 = 0, ±4 states were examined at 𝐵 = 0.5 T. The resulting activation energy gap of the 𝜐 = −2 
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state shows a specific electric field dependence consistent with its partial layer polarization. The 

surprising robustness of the 𝜐 = −2 state, which is on par to the one of the 𝜐 = −4 state, illustrates 

the coupling of electric and magnetic fields to the layer polarization and substantial orbital moment, 

respectively. 

Notably, the here observed QAH phase differs from the QAH effect in magnetically doped 

topological insulators45,113,114. In these materials, it arises from a combination of topological 

properties (caused by spin-orbit coupling) and broken time-reversal symmetry (owing to magnetic 

dopants), whereas in bilayer graphene it is ought to be of orbital nature due to a vanishing spin-

orbit coupling. Moreover, the ALL phase is caused by spontaneous chiral symmetry breaking33, 

unlike in moiré heterostructures29,30,115–117, in which the orbital magnetism is obtained by artificially 

designing the band structure. Besides a quantized charge Hall conductivity, the QAH phase in bilayer 

graphene possesses also spin, valley and spin-valley QAH effects32,33 (see Section 2.3), more unique 

features which distinguish it from the QAH effects in other materials.  

4.2 Outlook 

The observation of the quantum anomalous Hall octet in bilayer graphene is only the first step 

towards understanding its nature. Several aspects of it are worth future studies: first, a four-terminal 

device geometry would greatly help to examine the ALL phases, since its implementation would 

enable the independent determination of longitudinal and Hall resistance. One way would be to 

fabricate heterostructures consisting of graphene and hexagonal boron nitride18. Processing 

multiterminal devices is standard in this type of devices62,118, however, the strength of electron-

electron interactions, and hence the observation of the 𝜐 = ±2 quantum anomalous Hall octet, 

could be affected by embedding the bilayer graphene in a material with high dielectric constant42. 

Yet, even in freestanding devices the realization of a multiterminal device is possible and has been 

successfully established previously in a cross-like geometry35,43,119,120. Moreover, also a Hall bar 

structure with several voltage probes and two current leads (see Figure 4.1a) could be possible. 

Although the fabrication of such devices with a top gate is in principle feasible, the annealing of 

multiterminal devices is very challenging, as the cleaning process seems to happen 

inhomogenously120. This could hamper the observation of spontaneously broken-symmetry 

states120. All in all, if a sufficiently clean, multiterminal freestanding device can be realized, the 

determination of the actual quantization of the Hall conductance should be the first goal. Moreover, 

the full exploration of the magnetic hysteresis, one of the major aspects of the quantum anomalous 

Hall effect, would be facilitated. In particular, properties such as the coercive magnetic field and its 

temperature dependence could be measured properly. Both have been explored in moiré 

systems29,30,115,116 and greatly helped to understand the underlying phenomena.  
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A second intriguing aspect is the tunability of the phase. Since it shows a partial layer polarization, 

the phase is not solely defined by the magnetic field and the sign of the filling factor (i.e. positive or 

negative charge carrier density), but also by the direction of the electric field32,33. In fact, eight ALL 

phases, each unique in its combination of polarities of 𝑛, 𝐸 and 𝐵, form together a quantum 

anomalous Hall octet (see Figure 4.1b). By tuning one of the three physical quantities, the system 

can be switched into another ALL phase. Four of the phases are expected to show a conductance of 

+2 𝑒2 h−1, whereas the other half exhibit a conductance of opposite sign. Although reversing the 

direction of the electric field will not change the conductance but only the layer polarization, 

inverting the charge carrier density or the magnetic field does switch it from +2 𝑒2 ℎ−1 to 

−2 𝑒2 ℎ−1 (or vice versa). This tunability by charge carrier density could be exploited to control a 

magnetic state electrically by gate voltages. Experimentally, this has been realized in moiré 

heterostructures115. Another possibility to control the magnetic state could be the application of a 

d.c. bias current, which also has been demonstrated in moiré heterostructures29,30. It seems that a 

ALL phase in ABC-like 

graphene (𝑙 ≥ 2) 

Hall conductivities (𝑒2 ℎ−1) 

𝜎(𝐶𝐻) 𝜎(𝑆𝐻) 𝜎(𝑉𝐻) 

𝑙 𝑙 𝑙 

 

Figure 4.1 Aspects of the quantum anomalous Hall octet in bilayer graphene suitable as 

subjects for future studies. a) Optical microscopy image of a multiterminal bilayer graphene 

device. The bilayer graphene flake (dashed, green) is contacted in a Hall bar geometry with 

four voltage probes and two current leads. A designed but not realized top gate (dashed, blue) 

is illustrated. The device is not yet freestanding. b) Schematic cube illustrating the tunability 

of the quantum anomalous Hall octet. Each corner represents one of the eight ALL phases 

(labeled with roman numerals) with a unique combination of polarities of 𝑛, 𝐸 and 𝐵 as well 

as a charge Hall conductivity of either +2 𝑒2 ℎ−1 (red) or −2 𝑒2 ℎ−1 (blue). The phases are 

tunable by 𝑛, 𝐸 and 𝐵. [Figure adapted from Ref.83]. c) Charge 𝜎(𝐶𝐻), spin 𝜎(𝑆𝐻), and valley 

Hall conductivity 𝜎(𝑉𝐻) in units of 𝑒2 ℎ−1 for the ALL phase in ABC-like graphene multilayers 

with a layer number of 𝑙 ≥ 2. [Figure adapted from Ref.33]. 
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d.c. current can modify the magnetization of the quantum anomalous Hall phase, acting in a similar 

way as an external magnetic field29,30. Enabling the tunability of a magnetic state by either a gate 

voltage or a d.c. current in such a simple system as bilayer graphene would be a great achievement. 

In case the effect could be stabilized for higher temperatures, an application as a magnetic memory 

in logic devices comes immediately in mind115. However, even for low temperatures interesting 

applications are possible115,121. 

Lastly, since the quantum anomalous Hall octet is not uniquely tied to bilayer graphene, but is 

instead universal to ABC-like graphene stacks32,33, it is well worth to examine the phases in 

rhombohedral multilayer flakes with a layer number of 𝑙 ≥ 3. Although the fabrication of devices 

with rhombohedral stacking is more difficult due to its instability towards Bernal stacking during 

processing122, electron-electron interactions are expected to be enhanced for an increasing amount 

of layers in ABC-like graphene stacks42,79, at least up to a certain number of layers32,33. In fact, the 

ratio between Coulomb and kinetic energy follows79 

𝑟𝑆 ∝ 𝑛−(𝑙−1) 2⁄  , (4.1) 

i.e. at charge neutrality it diverges faster for a high number of layers than in bilayer graphene. This 

indicates even stronger electron-electron interactions in systems with more layers, up to a critical 

value32,33. It would be interesting to examine the ALL phases and in particular their parameters such 

as critical temperature and coercive magnetic field as a function of 𝑙. Moreover, the charge, spin 

and valley Hall conductivities of the quantum anomalous Hall octet depend on the layer number32, 

see Figure 4.1c. Thus, adding layers to an ABC-like system provides a unique way to tune some of 

the properties of the appearing ALL phases. In a first follow-up study, the quantum anomalous Hall 

octet has been revealed in rhombohedral trilayer graphene123. As expected, it exhibits a charge Hall 

conductivity of ±3 𝑒2 ℎ−1 and a magnetic hysteresis indicating the presence of orbital magnetism. 

However, these observations are only the first step towards examining the evolution of the ALL 

phases in ABC-like graphene stacks with increasing layer number. 
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5 Topological Valley and Quantum Hall 

Edge Transport 

Part of the findings presented in this chapter have been published in Ref.93. The full publication can 

be found in Appendix A.2 and the corresponding supplementary material in Appendix B.1. 

 

5.1 Summary 

The possibility to manipulate the valley degree of freedom in bilayer graphene to achieve valley-

polarized quantum transport has been predicted53 and successfully realized in experiments by 

locally inverting the direction of an applied electric field51,92. An analogous effect emerges at stacking 

domain walls in Bernal-stacked bilayer graphene. Here, topologically protected valley-helical states 

emerge in case a uniform electric field is applied50,89,124. In Ref.93, which is part of this thesis, the 

robustness of these kink states is examined in the presence of various broken-symmetry states 

within the manifold of the eight-fold degenerate zeroth Landau level. An intriguing interplay 

between topological domain wall and quantum Hall edge transport is observed.  

In the study, dually gated freestanding bilayer graphene devices were fabricated with two distinct 

configurations: devices with a domain wall contacted on both ends and pristine devices without any 

dislocation as reference. After current annealing the devices, the dual-gate structure was exploited 

to tune charge carrier density and electric field independently. In a first set of measurements, the 

behavior of the two-terminal resistance was examined under an electric field to confirm the 

presence of gapless kink states (see Section 2.5), as observed in previous studies50,51,92. In fact, for 

increasing electric field the resistance saturates at 𝑅 ≈ 8.5 kΩ. With a device length of 𝐿 = 0.7 µm 

and four valley-projected, one-dimensional channels (i.e., a theoretically expected conductance of 

𝜎0 = 4 𝑒2 ℎ−1) this results in a mean free path of 𝜆𝑚 ≈ 2.2 µm. Since 𝜆𝑚 > 𝐿, ballistic charge 

transport supported by the domain wall is confirmed. The long mean free path highlights the high 

quality of the device comparable to previous studies50,51,92. Then, the focus was laid on the behavior 

of the kink states within certain broken-symmetry phases, which has not been examined so far due 

to the following reasons: Investigations on artificially constructed domain walls can only be 

conducted at non-zero applied electric field as a matter of principle51,53,92. More specifically, as 
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locally inverted electric fields are needed to realize the valley-polarized quantum transport in these 

designed structures, the regime around zero electric field is inaccessible. Furthermore, the quantum 

transport along stacking domain walls was mainly examined for zero magnetic field and in devices 

with lower quality50. To this end, a second set of measurements was conducted at various magnetic 

fields. Measuring the conductance as a function of electric field and charge carrier density at low 

magnetic fields reveals an almost constant value of approximately 4 𝑒2 ℎ−1 within the eight-fold 

degenerate zeroth Landau level of bilayer graphene. Starting at 𝜐 = 0, for increasing filling factor 

the initial four kink states per direction are successively traded for quantum Hall edge states with 

higher quality. Hence, the conductance is decreasing only slightly. However, at stronger magnetic 

fields, the domain wall conductance is suppressed owing to the formation of minigaps (for the case 

of the 𝜐 = 0 canted antiferromagnetic phase) or intervalley backscattering (for the case of the 𝜐 =

±1, ±2 quantum Hall states). Overall, a complex interplay between topological domain wall and 

quantum Hall edge transport can be observed. Lastly, a set of temperature dependent 

measurements confirm both a metallic behavior of the domain wall as well as its negligible impact 

on the quantum transport within the 𝜐 = ±4 quantum Hall phases. 

5.2 Outlook 

Although the domain walls have recently gained a lot of interest owing to their ubiquity in magic-

angle twisted bilayer graphene125,126, they are rather unexplored in various aspects: in addition to 

the low electric field versus charge carrier density regime, which was examined in the present study, 

the impact of domain walls on higher Landau levels is worth further investigations. Theoretical 

calculation predict an influence of both stacking and artificial domain walls on the energetic 

landscape of higher Landau levels94,124. The otherwise energetically flat Landau levels display ripples 

and resonances caused by the presence of domain walls124. Under certain circumstances, they could 

provide additional charge channels and alter the conductance of the quantum Hall states. However, 

to resolve states with higher filling factors |𝜐| > 4 as a function of magnetic field, large charge 

carrier densities need to be applied. Since the achievable electric field and charge carrier density 

regime in freestanding devices is rather limited, the use of heterostructures consisting of bilayer 

graphene and hexagonal boron nitride18 are inevitable to examine higher Landau levels75. 

In addition, the 𝜐 = 0 ferromagnetic phase at high in-plane magnetic fields62,87 in the presence of a 

stacking domain wall is worth further investigations. In bilayer graphene, the 𝜐 = 0 state at zero 

charge carrier density and electric field transitions for increasing magnetic field from the layer 

antiferromagnetic43,81 to the canted antiferromagnetic62,127 and finally to the ferromagnetic 

phase62,80,81,127. The corresponding energetic edge gap is maximal for the LAF state, shows a smaller 

value for the CAF phase, and vanishes in the FM phase, where gapless states with opposite spin 

emerge62,80. This evolution is in stark contrast to the expected behavior of the kink states. In the 



5.2 Outlook 

47 
 

present study it was revealed that chiral states are present in the layer antiferromagnetic phase, but 

evidence of a minigap was found in case the spins are canted. However, stacking domain walls do 

not necessarily correspond to a topological domain wall in the order parameter and the absence of 

gapless states was predicted for the 𝜐 = 0 FM phase. Future experiments investigating the evolution 

of the chiral states at the kink alongside the transition of the 𝜐 = 0 phase and its edge states is worth 

considering. For this purpose, high in- and out-of-plane magnetic fields are needed62,87. 

Moreover, domain walls provide a flexible platform to study correlated physics128,129. As the charge 

transport along the dislocations is one-dimensional, Coulomb interactions are expected to cause 

strong perturbations and the quasiparticles should behave like a Luttinger liquid128,130. Experimental 

consequences are for example a specific power-law dependence of the differential conductance128: 

𝜎 ∝ 𝑇𝛼  , for 𝑒𝑉𝑑.𝑐. ≪ 𝑘𝐵𝑇 , (5.1) 

and 

𝜎 ∝ (𝑉𝑑.𝑐.)
𝛼 , for 𝑒𝑉𝑑.𝑐. ≫ 𝑘𝐵𝑇 , (5.2) 

where 𝑘𝐵 is the Boltzmann constant and 𝛼 a constant. This means, the behavior of the conductance 

depends on the relation between applied d.c. voltage 𝑉𝑑.𝑐. and temperature 𝑇. First steps towards 

examining these dependencies have been conducted in this thesis. Figure 5.1a shows the 

conductance as a function of d.c. current 𝐼𝑑.𝑐. along the domain wall measured at 𝑛 = 𝐸 = 𝐵 = 0 

for various temperatures on a log-log scale. As expected130,131, the curves for different temperatures 

collapse in a single curve in the high current (or voltage) regime and can be described by a power-

law function 𝜎 ∝ (𝐼𝑑.𝑐.)
𝛼 for 𝑒𝑉𝑑.𝑐. ≫ 𝑘𝐵𝑇, with 𝛼 ≈ 0.48. However, the true voltage dependency 

could not be measured due to the usage of in-series resistors for low-pass filtering. Furthermore, an 

excitation current rather than a voltage is applied in the setup (see Section 3.4). Moreover, to verify 

the temperature dependence of the conductance in the 𝑒𝑉𝑑.𝑐. ≪ 𝑘𝐵𝑇 regime, higher temperatures 

than the 𝑇 ≤ 10 K used are needed. Thus, the measurement shown in Figure 5.1a are only a first 

step and modifications to the electrical setup as well as detailed measurements at higher 

temperatures are necessary to fully explore the expected Luttinger liquid in stacking domain walls 

in bilayer graphene. 

More exotically, in case a certain combination of electric field and out-of-plane as well as high in-

plane magnetic fields is applied, a so-called spin ladder has been proposed129. Hereby, the spin of 

the four chiral states on each side of the domain wall is locked to the direction of movement, i.e. 

chiral quasiparticles with opposite charge have opposite spins129. Consequently, a two-leg spin 

ladder forms on each side of the domain wall, weakly coupled to each other129. In each leg, two 

counterpropagating modes with opposite chirality are present but spin and direction of movement 

are locked in the same way. Due to the spin-charge coupling, exotic correlated phases such as charge 

density wave or super fluidic phases are theoretically proposed129. Experimentally, the phases are 
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expected to exhibit special temperature dependencies of the conductance and to be tunable by 

electric and magnetic fields129. 

Another interesting but unexplored aspect of dislocations in bilayer graphene is the influence of 

their exact species. As explained in Section 2.5, the stacking order can change within a smooth, 

defect-free transition region in two different ways: either by tensile or shear strain57. Their 

differentiation is possible with near-field optical microscopy57,132 (see Figure 5.1b), since the two 

species result in distinct boundary conditions and hence interference pattern of the plasmons. 

Usually, a shear domain wall features one main amplitude maxima and two secondary ones, 

whereas a tensile strain transition shows two equally pronounced maxima. However, the patterns 

are doping and gate-dependent57 and the overall procedure is challenging, since a perfect alignment 

of the setup is needed to distinguish the different plasmon reflection patterns of tensile and shear 

strain solitons. Previous studies differentiating the species focused on optical properties57 and 

charge carrier transmission132 and confirmed distinct behaviors. However, investigations regarding 

the quantum transport are still missing and worth further effort. 

Figure 5.1 Aspects of stacking domain walls in bilayer graphene interesting for future 

studies. a) Log-log plot of the differential conductance as a function of applied d.c. current at 

𝑛 = 𝐸 = 𝐵 = 0 for various temperatures. The data collapses in a single curve to which a 

power-law function 𝜎 ∝ (𝐼𝑑.𝑐.)
𝛼 is fitted (dotted line). b) Topography (left), s-SNOM amplitude 

(mid) and phase (right) image of a bilayer graphene flake. A stacking domain wall is present, 

visible in the amplitude and phase images. With sufficiently good alignment, regions with 

shear and tensile strain transitions can be differentiated. Scale bars: 0.5 𝜇m. 
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6 Electric Field Disorder in Ultraclean 

Bilayer Graphene 

Part of the findings presented in this chapter have been published in Ref.133. The full publication can 

be found in Appendix A.3 and the corresponding supplementary material in Appendix B.2. 

 

6.1 Summary 

Bilayer graphene, owing to its various internal degrees of freedom and non-vanishing density of 

states at the charge neutrality point when trigonal warping68 is neglected, exhibits a rich variety of 

broken-symmetry states36–41,46,62. Coherent experimental determination of the exchange-induced 

ground state has up to now been challenging due to the interplay between interaction and disorder 

effects47. In Ref.133, which is part of this thesis, the strength of the spontaneously gapped layer 

antiferromagnetic ground state can be correlated to the behavior of phase transition between 

various broken-symmetry states at finite magnetic field. Spatial variations in the interlayer potential 

difference allowing for the spontaneous formation of domains of different broken-symmetry states 

are determined as common cause. 

In the study, dually gated freestanding bilayer graphene devices were fabricated, and special care 

was taken on the presence of any stacking domain walls. Overall, eleven devices, two with stacking 

domain walls within the channel but not connecting the two contacts, were investigated. After 

current annealing the devices, bottom gate voltage sweeps at various fixed top gate voltages already 

revealed major differences in the transport signatures at 𝑇 = 1.5 K. Measurements at base 

temperature (𝑇 < 10 mK) support this observation. In particular, some devices exhibit an insulating 

phase at charge neutrality with a nonmonotonic behavior of the resistance for increasing electric 

field. Contrarily, in other devices the spontaneously gapped phase is absent, and the resistance 

increases monotonically for increasing electric field. The measurements reflect well the ambiguous 

observations from literature, which report either a vanishing or a finite conductance at charge 

neutrality36–41,46. However, considering the behavior of all examined devices, a continuous spectrum 

of the resistance (or conductance) rather than a bimodal distribution36 is observed.  
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At first, the spontaneously gapped state at charge neutrality and zero electric field shows insulating 

behavior with phase transitions appearing at |𝐸| > 0. Hence, according to these signatures, it can 

be identified as the interaction-driven layer antiferromagnetic state in bilayer graphene32,40,43 (see 

Section 2.3). Secondly, in case the LAF state is present, the conductance at charge neutrality 𝜎𝐶𝑁𝑃 

shows an activated 𝑇 dependence and the width of the ground state in electric field Δ𝐸𝑆𝑃 increases 

for decreasing 𝑇. As both quantities correlate with the critical temperature 𝑇𝑐 for several devices, 

they can be taken as measures of the strength of the LAF state. As a result, the spectrum of 𝜎𝐶𝑁𝑃 

and Δ𝐸𝑆𝑃 observed across all devices demonstrates a continuous weakening of the spontaneously 

gapped state. As possible cause for this distribution, differences in the fabrication process or in the 

residual charge disorder present can be excluded since no systematic dependencies can be 

detected. Moreover, both devices with a stacking domain wall show an intermediately strong LAF 

ground state, hence their presence cannot explain its weakening or absence, although their 

presence has been made responsible for unusual transport signatures in the past36,134. Furthermore, 

the appearance of additional stacking domain walls owing to high current annealing as reported in 

literature134 can be excluded by measurements prior and after the annealing procedure.  

Nonetheless, Δ𝐸𝑆𝑃 depends on the current density required to observe saturation during annealing. 

The heat generated by the electric current during annealing leads to partial evaporation22 and most 

likely to a redistribution of contaminants within each layer towards the cooler contacts, instead of 

between the two layers. Thus, the process effectively removes lateral charge fluctuations producing 

spatially varying in-plane electric fields135 (i.e. residual charge disorder), yet charge imbalances 

between the two layers creating spatially varying out-of-plane electric fields135,136 (i.e. electric field 

disorder) remain. Hereby, devices with shorter channels exhibit higher shares of contaminated 

regions near the contacts compared to devices with long channels. Moreover, the contacts act as 

heat sink22, i.e. the wider the contacts the more likely the movement of contaminations towards 

them. Hence, electric field disorder is expected to be primarily present in devices with short 

channels and wide contacts. This can explain the observed dependency of Δ𝐸𝑆𝑃 on the device 

geometry, since the presence of electric field disorder allows for the formation of domains of 

competing spontaneously gapped states other than a uniform LAF state52 within a device. Then, the 

LAF state is effectively suppressed, which results in a smaller Δ𝐸𝑆𝑃. Spontaneous DWs separating 

these domains, which are known to carry gapless edge modes52, result in a finite 𝜎𝐶𝑁𝑃. 

To find further proof of electric field disorder, the quantum Hall regime was investigated. 

Conductance maps as a function of charge carrier density and electric field at 𝐵 = 3 T reveal distinct 

behaviors of the phase transitions between (partially) layer polarized 𝜐 = ±1, ±2 broken-symmetry 

states of opposite layer polarization around zero electric field, when comparing all devices. For 

example, the width of the phase transition in electric field between the 𝜐 = −2 state at 𝐸 > 0 and 

the one at 𝐸 < 0, Δ𝐸𝜈=−2, ranges from peak-like to a broad phase transition region with high 
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conductance. Again, a continuous distribution of Δ𝐸𝜈=−2 is observed. Since Δ𝐸𝜈=−2 correlates well 

to Δ𝐸𝑆𝑃, electric field disorder as common cause seems likely. Moreover, a varying number of 

spontaneously formed domains with states of opposite layer polarization present can again explain 

the continuous distribution. The resulting spontaneous domain walls carry charge54, which results 

in the enhanced conductance at the transition regions. Similar findings are made when examining 

the phase transition between the canted antiferromagnetic and fully layer polarized 𝜐 = 0 phases. 

To this end, conductance maps as a function of electric and magnetic field at zero charge carrier 

density were recorded. Again, the extend of the phase transition in electric field ranged from peak-

like to broadened and correlates to Δ𝐸𝑆𝑃. Once more, the picture electric field disorder causing the 

formation of multiple domains of CAF and FLP states in the transition region is plausible75.  

Overall, the results provide a unique insight into the role of electric field disorder on broken-

symmetry states and contribute to solving the debate about the interaction-driven ground state of 

ultraclean bilayer graphene. 

6.2 Outlook 

The measurements show that mainly electric field disorder determines the electric field dependence 

of various broken-symmetry states. Although stacking DWs were present in some of the devices, it 

seems they play only a minor role in e.g. suppressing the LAF ground state. In principle, stacking and 

spontaneously arising DWs should affect the quantum transport in a similar way, however, the 

number of domains might be crucial. Presumably, the spontaneously emerging domain walls arise 

in a complex network, whereas the examined devices with stacking fault possessed only a single 

one, which might well be the reason why the quantum transport was not as strongly affected. In 

fact, when increasing the number of dislocations, the consequences could be more drastic and 

comparable to the case of spontaneously arising domains. To examine the influence of the number 

of domains present within a device, graphene flakes with network-like structures of stacking DWs 

could be used. Clearly, they can occur naturally48,57 and have also been found in the course of this 

thesis (see Figure 6.1). One major difficulty might be, however, the mobility of stacking DWs. 

Although single dislocations seem to be stable during processing and current annealing133, in case 

several are close to each other, they could possibly merge, as reported in literature48,88.  

Another interesting aspect worth further experimental effort is the magnetic field dependence of 

the investigated phase transition regions. In the present study, phase transitions between distinct 

(partially) layer polarized 𝜐 = ±1, ±2 phases and between the canted antiferromagnetic and fully 

layer polarized 𝜐 = 0 phases were examined. The explanation for the increased conductance within 

the transition regions is the formation of domains, as reported in literature54,75. However, in both 

regimes, evidence for the emergence of new phases at high magnetic fields have been found: 

Around zero electric field, where the (partially) layer polarized 𝜐 = ±1, ±2 phases are unstable, 
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layer unpolarized 𝜐 = ±1 and ±2 phases appear82,84. Similarly, within the transition region of the 

canted antiferromagnetic to the fully layer polarized phase, an intermediate phase has been 

reported76,85. In both cases, the additional phases only occur for very high magnetic fields. Future 

measurements could examine the emergence of these phases and how they are affected by 

disorder. Presumably, spontaneously formed domains and/or the presence of stacking DWs have an 

impact on the critical magnetic field needed for their emergence. Hence, investigating the magnetic 

field dependence of the conductance within these regimes could be worth additional effort. 

Measurements at very high magnetic fields would be needed on several devices with different 

amounts of disorder present. 

Moreover, an interesting subject for future studies is the influence of spontaneously forming 

domains on the quantum transport in heterostructures consisting of hexagonal boron nitride and 

bilayer graphene. The phase transitions between the canted antiferromagnetic and fully layer 

polarized 𝜐 = 0 phases show similarities to the ones observed in freestanding devices, since a peak-

like62,76,87 and an extended region of enhanced conductance in electric field87 have been identified. 

This suggests that an analogous, underlying phenomena controls the appearance of the phase 

transitions in heterostructures. However, a major difference to freestanding devices lies of course 

in the fabrication process. In particular, current annealing is redundant in heterostructures, as on 

the one hand the bilayer graphene flakes are not exposed to PMMA or something alike during 

processing18, and on the other hand applying a current will hardly move any residues trapped within 

the heterostructures. Still, examining the phase transition within hexagonal boron nitride/bilayer 

graphene devices could be worth further effort. This hold true for phase transitions of higher Landau 

levels, since they are mostly inaccessible when using freestanding devices owing to the limited 

voltage and hence charge carrier density range applicable. Similar to the broken-symmetry states of 

the zeroth Landau level, they exhibit multiple phase transitions in electric field75, which might be 

susceptible to the spontaneous formation of domains. 

Figure 6.1 Network of stacking domain walls in bilayer graphene. Topography (left) and s-

SNOM amplitude image (right) of a bilayer graphene flake with a network-like structure of 

stacking domain walls present. Scale bars: 1 𝜇m. 
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7 Conclusion 

In the course of this thesis, the quantum transport in ultraclean, freestanding Bernal-stacked bilayer 

graphene was investigated. Special attention was given to any stacking domain walls present within 

the examined bilayer graphene flakes. To this end, scattering-type scanning near-field optical 

microscopy was conducted prior to contacting to detect any stacking faults present in the selected 

flakes. Subsequently, dually gated field-effect transistors were fabricated. The dual-gate geometry 

was exploited to independently tune charge carrier density and electric field in the bilayer graphene 

during magnetotransport measurements at low temperatures.

 

In the first part, clean bilayer graphene devices without any domain wall present were used to 

investigate the most exotic of the competing quantum Hall phases, which appear owing to 

spontaneous chiral symmetry breaking close to charge neutrality towards zero electric and magnetic 

field. To this end, quantum Hall states with a conductance of ±2 𝑒2 ℎ−1 were tracked for decreasing 

magnetic field. It was found that they survive down to anomalously small magnetic fields within a 

certain range of electric fields. Moreover, a magnetic hysteresis of the conductance was observed, 

only appearing at a specific filling factor of 𝜈 = ±2 and intermediately strong electric field. These 

findings are consistent with the emergence of an octet of quantum anomalous Hall phases and can 

be explained by the coupling of electric and magnetic field to the partial layer polarization and 

substantial orbital moment of the appearing phases. Each of the phases is unique in its combination 

of polarities of applied electric as well as magnetic field and charge carrier density. In addition, 

temperature dependent investigations of the 𝜈 = −2 QAH phase indicate a surprisingly high 

stability, as its activation energy gap is comparable to the one observed for the robust 𝜈 = −4 state. 

The observed quantum anomalous Hall effect in Bernal-stacked bilayer graphene differs from the 

one observed in magnetically doped topological insulators, as it is primarily of orbital nature due to 

vanishing spin-orbit coupling. Moreover, it is caused by spontaneous chiral symmetry breaking, 

unlike the quantum anomalous Hall effect appearing in the artificially designed band structure of 

moiré heterostructures. 

In the second part, devices with a stacking domain wall connecting the source-drain contacts were 

examined and compared to defect-free samples. Tracking the resistance as a function of electric 

field for zero magnetic field revealed a saturation at 𝑅 ≈ 8.5 kΩ in case a stacking fault is present. 

This observation confirms topologically valley transport along the domain wall separating AB and 
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BA stacking regions, as reported in previous studies. With a mean free path of 𝜆𝑚 ≈ 2.2 µm, the 

gapless kink states show a surprisingly high quality. By additionally applying a magnetic field, a 

complex interplay between topological valley transport originating from the domain wall and 

quantum Hall edge transport arising from the emerging broken-symmetry quantum Hall phases was 

observed. More precisely, for low magnetic fields, the conductance remains almost constant at 

approximately 4 𝑒2 ℎ−1 within the complete eight-fold degenerate zeroth Landau level, since the 

initial four kink states per direction within the 𝜐 = 0 state are successively traded with increasing 

filling factor for quantum Hall edge states. However, the conductance originating from the kink 

states decreases at high magnetic fields. Possible explanations are the formation of minigaps in the 

case of the 𝜐 = 0 canted antiferromagnetic phase and the occurrence of intervalley backscattering 

for the 𝜐 = ±1, ±2 quantum Hall states. Lastly, a set of temperature dependent measurements 

confirmed both a metallic behavior of the domain wall as well as a negligible impact of the domain 

wall on the quantum transport within the 𝜐 = ±4 quantum Hall states. Overall, the presence of 

dislocations drastically alters the quantum transport in bilayer graphene, as both topological valley 

and quantum Hall edge transport need to be considered in the vicinity of the eight-fold degenerate 

zeroth Landau level. 

In the third part, in total eleven devices, two of which exhibit a stacking domain wall but not 

connecting source and drain, were fabricated to investigate the true interaction-driven ground state 

of bilayer graphene. Comparing the transport signatures at charge neutrality for all devices revealed 

major discrepancies ranging from the emergence of an insulating state to a finite conductance and 

a resulting nonmonotonic or monotonic behavior of the resistance for increasing electric field, 

respectively. In the former case, an activated temperature dependence of the conductance as well 

as an expanding of the insulating phase in electric field with decreasing temperature was found. The 

gapped phase could be attributed to the layer antiferromagnetic state, and the distribution of 

behaviors across all devices to its continuous weakening. Any stacking domain walls present in a 

device seem not to be the major cause for the weakening. Instead, the continuous behavior can be 

explained by a variable amount of electric field disorder present, which seems uncorrelated to 

residual charge disorder but rather depends on the device geometry. Its presence allows for the 

spontaneous formation of domains of competing spontaneously gapped states other than a uniform 

LAF state within a device. Further proof for the presence of electric field disorder was found in the 

quantum Hall regime: Phase transitions between the broken-symmetry 𝜐 = ±1, ±2 states of 

opposite layer polarization arising around zero electric field as well as phase transitions between 

the canted antiferromagnetic and the two fully layer polarized 𝜐 = 0 phases show similar 

distributions of behaviors when comparing several devices. The widths of the phase transitions in 

electric field correlate well with the strength of the layer antiferromagnetic ground state, 

highlighting their common cause. The observations provide a unique insight into the role of electric 

field disorder on the appearance of broken-symmetry states and contribute to solving the debate 
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about the interaction-driven ground state of bilayer graphene.

 

In summary, the results presented in this thesis give new insights into correlated physics in the 

naturally occurring Bernal-stacked bilayer graphene, and proof that it retains many unexplored and 

intriguing physical phenomena despite being subject of intensive research for more than a decade. 

At first, the findings demonstrate that the seemingly simple system can exhibit exotic phases such 

as the quantum anomalous Hall effect without the need of delicate moiré heterostructures. Here, 

more effort on the fabrication of four-terminal devices is needed in the future to enable the 

differentiation of longitudinal and Hall resistance. In addition, new discoveries on the quantum 

anomalous Hall effect are expected since the observed phase is not uniquely tied to bilayer 

graphene but is instead universal to its rhombohedral cousins. Secondly, the measurements on 

structural domain walls show that they can greatly impact the quantum transport and emphasizes 

the inevitable need to regard them in future studies. It might be worth to consider precise near-field 

imaging, which would allow distinction between tensile and shear domain walls and their unique 

impact on the quantum transport in bilayer graphene. Lastly, the extensive studies on eleven dually 

gated devices help in solving the longstanding debate about the ground state in bilayer graphene 

and explain the corresponding ambiguous observations from literature. Moreover, the observations 

underline the importance of further investigations on the impact of electric field disorder in general, 

as it should be universal to all two-dimensional materials. 

Together, the results highlight bilayer graphene as a highly tunable platform to investigate 

fundamental many-body phenomena and open the possibility for exciting developments in low-

dissipation electronics or quantum information science. 
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A Publications 

In the following, the publications in which I contributed are listed chronologically and sorted for being 

part or not being part of this thesis. 

 

Peer-reviewed first author publications which are part of this 

cumulative thesis: 
 

Quantum Anomalous Hall Octet Driven by Orbital Magnetism in Bilayer Graphene 

F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, T. Xu, F. Zhang, and R. T. Weitz 

Nature 598, 53 – 58 (2021) 

Ref.83, the full article is shown in Appendix A1 including the extended data. 

 

Interplay between Topological Valley and Quantum Hall Edge Transport 

F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, I. Martin, and R. T. Weitz 

Nat. Commun. 13, 4187 (2022) 

Ref.94, the full article is shown in Appendix A2, the supplementary information in Appendix B1. 

 

Impact of Electric Field Disorder on Broken-Symmetry States in Ultraclean Bilayer Graphene 

F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, and F. Zhang, and R. T. Weitz 

Nano Lett. 22, 7378 – 7385 (2022) 

Ref.133, the full article is shown in Appendix A3, the supplementary information in Appendix B2. 

 

Further peer-reviewed publications: 
 

Vertical, Electrolyte-Gated Organic Transistors Show Continuous Operation in the MA cm-2 
Regime and Artificial Synaptic Behavior 
J. Lenz, F. del Giudice, F. R. Geisenhof, F. Winterer, and R. Thomas Weitz 
Nat. Nanotechnol., 14, 579–585 (2019) 
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Anisotropic Strain-Induced Soliton Movement Changes Stacking Order and Band Structure of 
Graphene Multilayers: Implications for Charge Transport 
F. R. Geisenhof, F. Winterer, S. Walkolbinger, T. D. Gokus, Y. C. Durmaz, D. Priesack, J. Lenz, F. 
Keilmann, K. Watanabe, T. Taniguchi, R. Guerrero-Avilés, M. Pelc, A. Ayuela, and R. T. Weitz 
ACS Appl. Nano Mater. 2, 6067–6075 (2019) 
 
Locally-Triggered Hydrophobic Collapse Induces Global Interface Self-Cleaning in van-der-Waals 
Heterostructures at Room-Temperature 
S. Wakolbinger, F. R. Geisenhof, F. Winterer, S. Palmer, J. G. Crimmann, K. Watanabe, T. Taniguchi, 
F. Trixler, and R. T. Weitz 
2D Mater. 7, 035002 (2020) 
 
Synthesis of Large-Area Rhombohedral Few-Layer Graphene by Chemical Vapor Deposition on 
Copper 
C. Bouhafs, S. Pezzini, F. R. Geisenhof, N. Mishra, V. Mišeikis, Y, Niu, C. Struzzi, R. T. Weitz, A. A. 
Zakharov, S. Forti, C. Coletti 
Carbon 177, 282-290 (2021) 
 
High-Performance Vertical Organic Transistors of Sub-5 nm Channel Length 
J. Lenz, A. M. Seiler, F. R. Geisenhof, F. Winterer, K. Watanabe, T. Taniguchi, and R. T. Weitz 
Nano Lett. 21 (10), 4430-4436 (2021) 
 
Spontaneous Gully-Polarized Quantum Hall States in ABA Trilayer Graphene 
F. Winterer, A. M. Seiler, A. Ghazaryan, F. R. Geisenhof, K. Watanabe, T. Taniguchi, M. Serbyn, and 
R. T. Weitz 
Nano Lett. 22 (8), 3317-3322 (2022) 
 
Quantum Cascade of Correlated Phases in Trigonally Warped Bilayer Graphene 
A. M. Seiler, F. R. Geisenhof, F. Winterer, K. Watanabe, T. Taniguchi, T. Xu, F. Zhang, and R. T. 
Weitz 
Nature 608, 298–302 (2022). 
 
Rhombohedral Trilayer Graphene Being More Stable Than Its Bernal Counterpart 
R. Guerrero-Avilés, M. Pelc, F. R. Geisenhof, R. T. Weitz, and A. Ayuela 
Nanoscale 14, 16295-16302 (2022) 
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A.1 Quantum Anomalous Hall Octet Driven by Orbital 

Magnetism in Bilayer Graphene 

Fabian R. Geisenhof, Felix Winterer, Anna M. Seiler, Jakob Lenz, Tianyi Xu, Fan Zhang, and R. Thomas 

Weitz 

Nature 598, 53 – 58 (2021) 

DOI: 10.1038/s41586-021-03849-w 

 

Reprinted with permission. Material from: Fabian R. Geisenhof et al., Quantum anomalous Hall octet 

driven by orbital magnetism in bilayer graphene, Nature, published 2021, Springer Nature.  

 

Abstract 

The quantum anomalous Hall (QAH) effect—a macroscopic manifestation of chiral band topology at 

zero magnetic field—has been experimentally realized only by the magnetic doping of topological 

insulators [1–3] and the delicate design of moiré heterostructures [4–8]. However, the seemingly 

simple bilayer graphene without magnetic doping or moiré engineering has long been predicted to 

host competing ordered states with QAH effects [9–11]. Here we explore states in bilayer graphene 

with a conductance of 2 𝑒2 ℎ−1 (where 𝑒 is the electronic charge and ℎ is Planck’s constant) that not 

only survive down to anomalously small magnetic fields and up to temperatures of five kelvin but 

also exhibit magnetic hysteresis. Together, the experimental signatures provide compelling 

evidence for orbital-magnetism-driven QAH behavior that is tunable via electric and magnetic fields 

as well as carrier sign. The observed octet of QAH phases is distinct from previous observations 

owing to its peculiar ferrimagnetic and ferrielectric order that is characterized by quantized 

anomalous charge, spin, valley and spin–valley Hall behavior [9]. 
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Contribution 

I fabricated all devices, conducted all measurements, and performed the data analysis. The first 

draft, apart from some theoretical sections, was written by me. Furthermore, I produced the final 

version of the publication and designed all figures. 
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A.2 Interplay between Topological Valley and Quantum Hall 

Edge Transport 

Fabian R. Geisenhof, Felix Winterer, Anna M. Seiler, Jakob Lenz, Ivar Martin, and R. Thomas Weitz 

Nat. Commun. 13, 4187 (2022) 

DOI: 10.1038/s41467-022-31680-y 

 

Reprinted from Ref.94 under a Creative Commons Attribution 4.0 International License (CC-BY 4.0). 

 

Abstract 

An established way of realising topologically protected states in a two-dimensional electron gas is 

by applying a perpendicular magnetic field thus creating quantum Hall edge channels. In 

electrostatically gapped bilayer graphene intriguingly, even in the absence of a magnetic field, 

topologically protected electronic states can emerge at naturally occurring stacking domain walls. 

While individually both types of topologically protected states have been investigated, their 

intriguing interplay remains poorly understood. Here, we focus on the interplay between topological 

domain wall states and quantum Hall edge transport within the eight-fold degenerate zeroth Landau 

level of high-quality suspended bilayer graphene. We find that the two-terminal conductance 

remains approximately constant for low magnetic fields throughout the distinct quantum Hall states 

since the conduction channels are traded between domain wall and device edges. For high magnetic 

fields, however, we observe evidence of transport suppression at the domain wall, which can be 

attributed to the emergence of spectral minigaps. This indicates that stacking domain walls 

potentially do not correspond to a topological domain wall in the order parameter. 

 

Contribution 

I fabricated all devices, conducted all measurements, and performed the data analysis. The first 

draft, apart from some theoretical sections, was written by me. Furthermore, I produced the final 

version of the publication and designed all figures. 
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A.3 Impact of Electric Field Disorder on Broken-Symmetry 

States in Ultraclean Bilayer Graphene 

Fabian R. Geisenhof, Felix Winterer, Anna M. Seiler, Jakob Lenz, Fan Zhang, and R. Thomas Weitz 

Nano Lett. 22, 7378 – 7385 (2022) 

DOI: 10.1021/acs.nanolett.2c02119 

 

Reprinted with permission from Geisenhof, F. R., Winterer, F., Seiler, A. M., Lenz, J., Zhang, F. & 

Weitz, R. T., Impact of Electric Field Disorder on Broken-Symmetry States in Ultraclean Bilayer 

Graphene. Nano Lett. 22, 7378–7385 (2022). Copyright 2022 American Chemical Society. 

 

Abstract 

Bilayer graphene (BLG) has multiple internal degrees of freedom and a constant density of states 

down to the charge neutrality point when trigonal warping is ignored. Consequently, it is susceptible 

to various competing ground states. However, a coherent experimental determination of the 

ground state has been challenging due to the interaction–disorder interplay. Here we present an 

extensive transport study in a series of dually gated freestanding BLG devices and identify the layer-

antiferromagnet as the ground state with a continuous strength across all devices. This strength 

correlates with the width of the state in the electric field. We systematically identify electric-field 

disorder─spatial variations in the interlayer potential difference─as the main source responsible for 

the observations. Our results pinpoint for the first time the importance of electric-field disorder on 

spontaneous symmetry breaking in BLG and solve a long-standing debate on its ground state. The 

electric-field disorder should be universal to all 2D materials. 

 

Contribution 

I fabricated all devices, conducted all measurements, and performed the data analysis. The first draft 

was written by me. Furthermore, I produced the final version of the publication and designed all 

figures. 
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 In the following, the Supplementary Information corresponding to the publications is provided.
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