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When you can’t control the wind, adjust your sails. 

Sailor’s saying.
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ABSTRACT 
Studies of prognostic or predictive markers in cancer diseases often focus on somatic 

mutations and cytogenetic abnormalities. Concomitant Single Nucleotide 

Polymorphisms (SNPs) are often understood as additional influencing factors for the 

development and outcome of multiple diseases. Despite great efforts in recent studies, 

the role of SNPs in Acute Myeloid Leukaemia (AML) remains unclear. This study aimed 

to provide a feasibility and pilot analysis of SNPs in recurrent mutant genes among 

AML patients.  

Sequenced deoxyribonucleic acid (DNA) data from 2,678 Northern European AML 

patients homogenously treated in trials of the German AML Cooperative Group 

(AMLCG) and the German-Austrian AML Study Group (AMLSG) were analysed. A total 

of 114,004 variants have been included in the targeted sequencing panels and was 

available for the association analysis.  

First, we focussed on the interplay of SNPs and clinical prediction parameters as 

well as SNPs and recurrent gene mutations. Novel predictive SNPs were identified but 

could not be successfully validated in an independent cohort. 

Second, we intended to validate SNPs from formerly conducted smaller-scale 

studies that were supposed to associate with outcome of AML patients. These 

prognostic factors could not be validated in our large data set.  

In summary, our analysis showed the feasibility to use targeted sequencing panels 

for SNP analysis in AML. The preliminary results showed SNP associations with 

prognostic power and invalidates SNP associations published in previous studies. 

 

 

  



 

 

INTRODUCTION 
The introduction will explain the fundamentals of Acute Myeloid Leukaemia (AML) and 

provides an overview on Single Nucleotide Polymorphisms (SNPs) in the human 

genome. 

 

Acute Myeloid Leukaemia  

Epidemiology and Pathogenesis 

With an approximate incidence of 3.7 per 100,000 people diagnosed per year, AML 

comprises the largest group of acute Leukaemia in European adults.1 There is a peak 

of incidence at a very young age, followed by a constant rise while ageing.2 The median 

age of diagnosis is documented to be around 69 years.3,4  

Healthy, functional blood cells arise by division and quiescence of pluripotent 

haematopoietic stem cells in the bone marrow. The underlying pathophysiology of AML 

is an uninhibited clonal multiplication of these haematopoietic stem cells as well as 

haematopoietic precursor cells. At the same time the healthy blood cell formation 

becomes gradually repressed. This process occurs due to chromosomal translocations 

or other genetic and epigenetic abnormalities that alter the activity of genes 

responsible for regulating the complex procedure of healthy blood cell formation.5-8  

 

Clinical Appearance 

The patient’s clinical picture is mainly stamped by the non-existence of mature blood 

cells. Beside the suppressed healthy white blood cell formation, also the development 

of erythrocytes and thrombocytes decreases. With the decreasing number of healthy 

cells in the periphery patients become granulocytopenic, anaemic and 

thrombocytopenic. The hereby arising symptoms tend to be unspecific. 

Granulocytopenia leads to an increased number of infections, particularly lung and 

throat infections as well as systemic mycoses and sepsis. Fatigue, pallor and 

decreased individual body performance is explained by anaemia. Thrombocytopenia 

leads to bleedings and petechiae, ecchymoses, menorrhagia or epistaxis.9 

Simultaneously the rising number of abnormal myeloblasts leads to their accumulation 



 

 

in the bone marrow, blood and sometimes even in spleen and liver. In 60% of the 

cases, leukocytosis is found but mainly branded by non-functioning leukocytes. 

Leukocytosis >100.000 leucocytes/µl increases the risk of leukostasis and can lead to 

hypoxia, neurological symptoms and retinal haemorrhages.10 However, some AML 

patients are aleukaemic. Their blood contains a regular or even reduced number of 

leukocytes. In clinical examinations, some patients suffer from spleno- and 

hepatomegaly as well as infiltrations of leukaemic cells in gingiva and skin. 9,10  

 

Aetiology and Risk Factors 

Depending on the origin and prehistory, different types of AML can be diagnosed. Most 

common is de novo AML (primary AML, pAML) occurring without any history of 

previous cancer or haematological disease. If AML develops from a myelodysplastic 

syndrome (MDS) or other haematologic disorders, it is called secondary AML 

(sAML).11 AML that develops after previous cancer treatment is referred to as therapy-

related AML (tAML).12  

Despite many possible risk factors, most pAML patients develop the disease without 

any identifiable risk factor. A distinction can be established between external and 

internal risk factors. Operating from extern, exposure to various substances, like 

ionising radiation, benzene, soot and coal dust as well as the inhalation of tobacco 

were reviewed.13-16 Further, internal factors as genetics play a large role in AML 

development. Patients with Trisomy 21, Li Fraumeni Syndrome, Fanconi Anaemia or 

Dyskeratosis Congenita show increased incidences of AML.17,18 Suffering from these 

congenital syndromes often coincidences with germline or somatic mutations that are 

involved in haematopoiesis and leukaemogenesis. Among others, predisposing 

mutations are found in the following genes: GATA1, GATA2, RUNX1, ANKRD26, 

TP53, BRCA1, BRCA2, CEBPA and DDX41. These genes have in common that their 

function is involved in healthy haematopoiesis or in the control of apoptosis of non-

functioning cells.18-22  

Due to progression and possible transformation into sAML, diseases of the 

haematopoietic system are also internal predisposing factors. MDS, myeloproliferative 

neoplasia or paroxysmal haemoglobinuria were described in this context.23  

Exposure to chemotherapeutic cytostatic drugs (as alkylating agents and 

topoisomerase-II-inhibitors) due to a prior tumour suffering increase the risk of tAML. 



 

 

The approximate latency period between exposure to these drugs and tAML lies 

between nine months and five years. Prior to tAML, patients often develop a tMDS.24,25  

Diagnosis  

The diagnosis of AML is established based on the criteria of the World Health 

Organization (WHO).7 To be diagnosed with AML, the myeloid blast percentage in a 

patient's blood or bone marrow must be ≥20. These blasts can be myeloblasts, 

monoblasts, or megakaryoblasts, serving as the precursors of granulocytic and 

agranulocytic leukocytes as well as macrophages and thrombocytes in functional bone 

marrow. Nonetheless, the diagnosis is also set with the blast percentage being <20 in 

the case of some typical chromosomal aberrations (t(8;21), inv(16), t(15;17) or 

t(16;16)) being diagnosed.7,26  

A number of tests are routinely performed, outlined below. 

▪ Blood and Bone Marrow Smear and Blood Count: Under the microscope, peripheral 

blood and bone marrow smears are analysed for appearance and morphology of 

their blood cells.27  

▪ Genetic Analyses and Immunophenotyping: Chromosomal tests and cytogenetic 

classification into subgroups are consulted as genetic markers and screened in 

AML patients to determine the therapy intensity and the individual prognosis 

(compare table 1). Immunophenotyping provides information on cell surface 

antigens which are used in AML classification. Samples are treated with antibodies 

and then analysed under the microscope (immunohistochemistry) or with a flow 

cytometer instrument.27,28  

▪ Fluorescence in situ Hybridisation (FISH) and Polymerase Chain Reaction (PCR), 

as well as Next Generation Sequencing (NGS) can be performed in order to screen 

for further genetic alterations.27,29,30 

 

WHO Classification 

Owing to the improved understandings of the molecular and pathogenetic backgrounds 

of AML, the WHO updated the Classification of Tumours of Haematopoietic and 

Lymphoid Tissues7 in 2016. This division is the currently clinical used classification 

system and allows to classify most of the AML patients based on cytogenetical and 



 

 

moleculargenetical criteria. The condensed extract of the 2016 WHO classification 

concerning AML mainly categorises the following six groups:  

▪ AML with recurrent genetic abnormalities  

▪ AML with myelodysplasia-related changes  

▪ Therapy-related myeloid neoplasms  

▪ AML, not otherwise specified  

▪ Myeloid sarcoma  

▪ Myeloid proliferations related to Trisomy 21.  

The more detailed classification can be consulted in the original paper of Daniel A. 

Arber, Blood (2016).7  

 

Prognosis and Development History of Risk Prognosing 
Models  

Even though the prognosis of AML patients has steadily improved in recent years, 

survival rates remain poor. 35 to 40% of AML patients <60 years can be cured whereas 

this holds true for only 5 to 15% of the patients >60 years with intensive therapy. 

Patients who cannot obtain intensive therapy due to advanced age or comorbidities 

have a median Overall Survival (OS)a of five to ten months.31 Considering the fact that 

the average age of AML onset is about 69 years, the survival prognosis for most 

patients is detrimental. 

Prognosis estimation before therapy start is essential in order to individually assign 

the best type of therapy, either curative or palliative. The most appropriate type of 

postremission treatment such as chemotherapy or Stem Cell Transplantation (SCT) 

also depends on the prognostic and predictive grading. Prognostic markers are 

indicators that estimate the outcome of a disease like the OS. Factors that outlook the 

chance of response or toxicity of an administered therapy, for instance, the chance of 

receiving Complete Remissionb (CR), are called predictive.27,32,33 These factors are 

 

 
a Overall Survival: According to Metzeler et al., Blood (2016) “measured from the date of study 

entry until the date of death”57 

 
b Complete Remission: According to Metzeler et al., Blood (2016) “bone marrow aspirate with 

cellularity greater than 20% and maturation of all cell lines, less than 5% blasts and no Auer rods; 
and in the peripheral blood, an absolute neutrophil count of ≥1,500/μL, platelet count of 
≥100,000/μL, and no leukemic blasts; and no evidence of extramedullary Leukaemia, all of which 
have to persist for at least 1 month.”57  



 

 

either patient- or disease-related. Among patient-related factors, age in particular has 

a strong independent prognostic influence with increasing age resulting in worse 

patient’s outcome.33 Other common patient-related factors are age-related specific 

genetic variations with an increased risk of therapy resistance. Further, coexisting 

diseases and poor performance status strongly lower the chances of survival. Prior 

MDS and prior cytotoxic treatment also influence patient’s outcome.27,34 Genetics as a 

disease-related prognostic factor has become increasingly important in recent 

decades. Some authors even hold genetical variations accountable for two-thirds of 

the observed variations in OS and Relapse-Free Survivalc (RFS) of AML patients.27  

Prognostic and predictive classification systems have grown for more than 20 years 

and are still developing. These systems mainly focus on the outlook power of typical 

genetical combinations in AML patients. The history of involving genetics into the 

routine of AML diagnostics started in 1990, when expert groups released the first 

diagnosis and treatment recommendations based on cytogenetic findings. According 

to Cheson et al., Clinical Journal of Oncology (1990), they divided AML into the four 

subgroups of Undifferentiated Acute Leukaemia, Mixed Lineage Leukaemia, 

Hypocellular AML and AML with lacking definitive myeloid Differentiation by 

Morphology or conventional Cytochemistry but with ultrastructural or 

immunophenotypic Evidence for AML.35 From this time onwards, many new criteria 

concerning the classification, prognostic and predictive grouping have followed. 

Chromosomal aberrations and abnormal karyotypes were observed, and finally, genes 

involved in the progress of AML were identified.36 In 2003, the criteria from 1990 were 

revised, and new research findings were added.37 In 2010, the ELN released a 

molecular genetic based risk stratification model. Primal genome-wide studies were 

conducted, and first AML-related SNPs were identified. The ELN2010 risk stratification 

sorted AML patients into 4 groups according to their karyotype and molecular 

genetics.26 The ELN2010 stratification was revised in 2017 following new findings in 

the genomic landscape of AML.27 The ELN2017 risk stratification, nowadays used in 

clinics, is mainly based on cytogenetic and genetic markers. It provides 

recommendations and scores regarding the individual therapy of AML patients based 

 

 
 
c Relapse-Free Survival: According to Metzeler et al., Blood (2016) “measured from the date of 

CR until the date of relapse or death.”57  

 



 

 

on his or her risk profile. Table 1 shows the characterisation criteria of the ELN2017 

risk classification.27  

 

 

 

Favourable t(8;21)(q22;q22.1); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

Mutated NPM1 without FLT3-ITD or with FLT3-ITDlow 

Biallelic mutated CEBPA 

Intermediate Mutated NPM1 and FLT3-ITDhigh 

Wild-type NPM1 without FLT3-ITD or with FLT3-ITDlow (without 

adverse-risk genetic lesions) 

t(9;11)(p21.3;q23.3); MLLT3-KMT2A 

Cytogenetic abnormalities not classified as favourable or adverse 

Adverse t(6;9)(p23;q34.1); DEK-NUP214 

t(v;11q23.3); KMT2A rearranged 

t(9;22)(q34.1;q11.2); BCR-ABL1 

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) 

−5 or del(5q); −7; −17/abn(17p) 

Complex karyotype, monosomal karyotype 

Wild-type NPM1 and FLT3-ITDhigh 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 

Table 1. ELN2017 Cytogenetic Risk Categories, adopted from Döhner et al., Blood (2017).27 

 

Therapy 

While new facts about the pathogenesis and molecular fundaments of AML have been 

identified, the major therapy design has changed only marginally since about 40 

years.38 The latter remains to take into account the patient’s age, general health status 

and co-diseases alongside of the ELN2017 recommendations deciding whether a 

patient can receive intensive therapy. This therapy design is complex with 



 

 

chemotherapy constituting its backbone.27 The essential parts of the therapy are 

summarised below. 

Induction therapy starts as soon as possible after AML diagnosis and aims to 

achieve CR. The standard induction therapy is the 7+3 regimen: Seven days of 

continuous Cytarabine infusion together with three days of an Anthracycline. Patients 

who do not reach CR after a second induction cycle are classified as primary refractory. 

Young patients up to 60 years achieve CR in 60-80%. Patients >60 years achieve CR 

in 40-60%.27  

Postremission therapy and stem cell transplantation intend to avoid quick relapses 

and clear from remaining leukaemia cells. Differences in the patient’s age, 

comorbidities, cytogenic profile of the myeloid blasts and the availability of a matching 

SCT donor determine the therapy options. Usually, patients receive either high doses 

of Cytarabine or multiagent chemotherapy in up to 4 cycles.27 In the case of an adverse 

risk group according to ELN2017, SCT is advised. Intermediate risk patients with a 

suitable donor are also considered to receive SCT. SCT is mostly executed during the 

first CR and is usually allogenic. Allogenic SCTs are given by a human leukocyte 

antigen- (HLA) compatible donor, a cord-blood- or haplo-identical donor. In rare cases, 

autologous SCT from the patient’s own BM is administered.27,39 

During the maintenance therapy low doses of chemotherapy, hypomethylating 

agents, immune therapy, B-cell Lymphoma 2 (BCL-2) or Fms-related tyrosine kinase 

3 (FLT3) inhibitors are applicated for few years.40  

 

Single Nucleotide Polymorphisms 

Definition, Types and their Role in Genes 

While 99.9% of DNA is shared between all humans, the remaining 0.1% is mainly 

covered by SNPs.33 SNPs are single base pair positions in the DNA at which place 

differing nucleotides can be found when comparing different individuals. These 

nucleotide alterations are called alleles and count as the most differing variation in our 

genome. SNPs are mainly detected in Genome-Wide-Association Studies (GWAS) 

and the number of newly discovered SNPs continues growing. The frequency of the 

least frequent allele must be equal or higher one percent to be called a SNP.41-43 

Variations that occur with unknown frequency or in less than one percent of the 



 

 

population are referred to as Single Nucleotide Variations (SNVs).44,45 Most often, 

SNPs are referred to as biallelic markers. However, sometimes they can be tri- or even 

tetraallelic, describing the number of different alleles that are found in various 

individuals at a fixed position.41 On average, there is one SNP found in about 300 to 

2,000 nucleotide-bases. SNPs are inheritedly stable and mutate quite little. The latter 

makes them an excellent foundation for research projects.46,47 The allele carried by 

most people at that genomic position is called Major Allele or Reference Allele. Minor 

Alleles or Variant Alleles are those which appear in the minority of people. Individuals 

can carry SNPs heterozygously or homozygously. Heterozygous carriers carry two 

different alleles at a particular locus, and homozygous carriers carry twice the same 

allele. Figure 1 illustrates the options in which SNPs can be carried. SNPs are further 

subdivided based on their genomic location. Located in coding regions of a gene they 

are called coding SNPs (cSNP), in between genes, they are referred to as intergenic 

SNPs (iSNPs) and in noncoding regions as perigenic SNPs (pSNPs).43,48 If a cSNP 

causes an amino acid change, it is referred to as nonsynonymous or missense SNP. 

cSNPs which do not result in an amino acid exchange are labelled synonymous or 

silent. A nonsynonymous SNP can change the structure of a protein and, therefore, it 

can have direct positive or negative influence onto enzyme activity. This, again, can 

influence factors like cancer susceptibility or drug effectiveness.43 Nonetheless, SNPs 

in noncoding regions like introns can also have consequences on genes, for instance, 

on gene splicing or transcription factor binding.49 

Genetic factors determine the sensitivity and resistance to diseases, such as 

disease progress and response to therapies. As SNPs are a common type of genetic 

variation, they are an essential base for understanding diseases and differences in 

disease progress and therapy response.47  

Many research fields make use of the frequent appearance and stable inheritance 

of SNPs such as pharmacogenetics, evolution and population studies, forensics and, 

finally, SNPs in cancer research.41  

  



 

 

 

Figure 1. SNPs. This DNA sequence equals in all four individuals except at one nucleotide position. 

Individual 1 represents an example reference sequence found in the majority of people at an 

unspecific location of chromosome 1. Individual 1 carries the reference allele ‘C’ at that certain 

position, printed in orange. Individual 2 also carries the reference allele ‘C’ at one of its 

chomosomes 1. On the other copy of chromosome 1, individual 2 carries allele ‘A’ which is not the 

reference nucleotide at this position and is hereby a minor allele. In this combination, individual 2 

is a heterozygous carrier of the minor allele ‘A’. Individual 3 is a homozygous carrier of the minor 

allele ‘A’ by carrying it at both chomosome 1 copies. Individual 4 carries a ‘G’ at the specific position 

what is also not the reference allele and makes individual 4 also being a heterozygous carrier of a 

minor allele. Since three different nucleotides can be found at the same position, this SNP is called 

a triallelic SNP.  

 

SNPs as potential Biomarkers in AML and Databases 
announcing them 

SNPs were identified as prognostic and predictive biomarkers in a wide variety of 

cancer diseases.33 In case of AML, a multitude of studies have been conducted during 

the last years concerning the prognostic role of SNPs. These association studies aim 

to find genetic variations associated with specific traits. They form the base for 

identifying relevant SNPs. Open access databases summarising published SNPs and 

their associations are, for example, dbSNP50, SNPedia51 and the GWAS catalog52. 

Together, these databases (as at may 2021) describe 7,759 SNPs to be associated 

with AML according to prior studies. The databases provide important information on 

the SNPs, including the location, the minor and major alleles, the frequency of the 

minor allele, the SNP type, e.g. synonymous variant, and if clinical influence of the 

SNP has been reported (e.g. in the ClinVar53 database).  

Many of these SNP associations arose from GWAS analysis. GWAS trials mainly 

serve to identify alleles that commonly emerge together with a certain disease. This 

information is important in order to identify biological variations leading to the disease. 

Individual 1, reference

Individual 2

Individual 3

Individual 4

CHR.1, copy1 …C G C T A A T…

CHR.1, copy2 …C G C T A A T …

CHR.1, copy1 …C G A T A A T …

CHR.1, copy2 …C G C T A A T …

CHR.1, copy1 …C G A T A A T …

CHR.1, copy2 …C G A T A A T …

CHR.1, copy1 …C G G T A A T …

CHR.1, copy2 …C G C T A A T …



 

 

We were particularly interested in the studies that suggest different SNPs to have 

prognostic or predictive value in AML patients. Some of these SNPs, for instance, 

seem to be able to prognose the RFS period of patients, some SNPs outlook the 

chance of CR achievement or how long OS will be. The results of these studies sound 

promising regarding the further subdivision of the ELN2017 prognostic groups. Hereby, 

the treatment is supposed to get further individualised. A range of these studies is 

described in the chapter Confirmation of previously identified SNP associations.  



 

 

THE AIM OF OUR STUDY 
With ELN2017, a powerful prognosis prediction model is available that classifies AML 

patients according to their genetic subtypes and helps to decide about the 

administered type of therapy. Still, the therapy success remains variable.54 Hence, this 

lets assume that more factors beyond age, health status, and the mutations mentioned 

in ELN2017 influence the outcome of AML patients.  

In the first part of our study we aimed to examine the sequencing data of two large 

and homogenously treated AML cohorts to detect biomarkers that are capable of 

prognosing the outcome of AML patients. Here, we set the focus on SNPs serving as 

such biomarkers. We intended to research SNPs with outcome outlooking capabilities 

by associating them, amongst others, to the following characteristics: OS, RFS and the 

post-induction-situation in terms of CR, Refractory or Resistant Diseased (RD) or death 

during or soon after induction therapy (Early Deathe, ED). Furthermore, we strived to 

analyse whether there are SNPs which occur mostly together with specific AML-

associated gene mutations. We performed all association analyses within the 

framework of the currently used risk classification system ELN2017. This enabled to 

find associations that have a prognostic relevance independent of any genetic 

mutations mentioned in the ELN2017 prognostic grouping.  

As demonstrated with the total number of more than 7,750 AML-associated SNPs, 

the research libraries are already rich in studies analysing the association between 

SNPs and AML. Nonetheless, the majority of these published associations arose from 

small analysed groups and has not yet been validated in a second cohort. Hence, 

serving as the second aim of our study, we intended to validate those 241 out of the 

more than 7,750 associations which were analysed to prognose or predict the outcome 

of AML patients in previous studies. We aimed to reproduce these association 

analyses identical to the respective prior executed study.   

 
 
d Refractory/Resistant Disease: According to Döhner et al., Blood (2017) “no CR after 2 courses 

of intensive induction treatment; excluding patients with death in aplasia or death due to 
indeterminate cause.” 27 
 
e Early Death: Death within 60 days after the primary diagnosis of AML.  



 

 

PATIENTS AND METHODS 
The following section is going to introduce the analysed patient samples. Afterwards 

the step by step workflow until the finding of SNP associations is depicted. 

Due to the complexity and error susceptibility of SNP association analyses, I performed 

the statistical part with the help and supervision of Dr. Aarif Nazeer Batcha from the 

Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), 

who is a bioinformatics specialist and has considerable expertise with SNP association 

projects.  

 

Study Design 

This study is a retrospective analysis of AML patients. It includes five trials collected 

and sequenced by the German AML Cooperative Group (AMLCG) and German-

Austrian AML Study Group (AMLSG). Clinical data, as well as sequencing (genotypic) 

data from the below described cohorts were available for statistical evaluation. 

 

Patient Cohort, Clinical Characterisation and Data 
Preparation 

The genetic material of 2,678 intensively treated AML patients enrolled in the trials of 

AMLCG and AMLSG was statistically analysed. All patients had been diagnosed with 

AML based on the WHO criteria.55 The patients were treated with comparable intensive 

therapy schemes. Moreover, all study protocols were in accordance with the 

Declaration of Helsinki56. Vast majority of the patients whose national backgrounds 

were recorded originated from northern Europe. All study participants provided their 

written informed consent.57,58  

 

Patient Selection  

The exclusion criteria rarely differed between the studies. The most common reasons 

for exclusion were: children (under 16 years of age), serious previous or concurrent 

illnesses, pregnancy and lack of consent. The samples involved in the respective trials 

were then included in our cohort. To increase the comparability of the data, we applied 



 

 

additional selection criteria like the exclusion of pretreated patients and of patients 

suffering from the AML subtype Acute Promyelocytic Leukaemia (APL) during the 

statistical work process. A more detailed description of these criteria can be found in 

the chapter Workflow of the explorative Association Analysis.  

 

AMLCG-Cohort 

The AMLCG cohort involved 1,138 patients from the AMLCG-1999 and AMLCG-2008 

trials. The age range was from 18 to 86 years.59  

 

AMLCG-1999 (clinicaltrials.gov identifier: NCT00266136): 

864/1,138 patients were enrolled in the AMLCG-1999 study. These patients were 

recruited between 1999 and 2005. All patients were treated with intensive Cytarabine-

based induction chemotherapy. For consolidation therapy, the patients were assigned 

to further Cytarabine-based therapy, allogenic, or autologous SCT. The assignment 

was based on the patient’s age, the availability of a matching donor, and 

randomisation. Also, some patients received maintenance therapy according to the 

study protocol. For more details see Büchner et al., Clinical Journal of Oncology 

(2006)60 and Leukemia (2016)61. 

 

AMLCG-2008 (clinicaltrials.gov identifier: NCT01382147):  

274/1,138 patients were recruited from AMLCG-2008 between 2009 and 2012 and 

included in this study. All patients received intensive Cytarabine-based chemotherapy 

as induction treatment. Consolidation therapy differed based on the genetic risk profile. 

Allogenic SCT was offered to all patients except those with favourable genetics and 

good response to induction chemotherapy. Patients who did not receive SCT obtained 

further Cytarabine-based treatment as consolidation and maintenance therapy. For 

more details see Braess et al., Blood (2013)62.  

 

Additional details of the AMLCG-1999 and AMLCG-2008 study protocols can be found 

in the supplemental appendix of Metzeler et al., Blood (2016)57.  

 



 

 

AMLSG-Cohort 

The AMLSG cohort encompassed 1,540 AML patients. These were enrolled in three 

clinical trials. The patients were aged between 18 and 84 years at the time of diagnosis. 

 

AML-HD98B (clinicaltrials.gov identifier: not available): 

173/1,540 participants were included from this study. They were aged older than 61 

years and enrolled between 1997 and 2003. The patients were randomised to receive 

Idarubicin, Cytarabine, and Etoposide (ICE) with or without All-Trans Retinoic Acid 

(ATRA) for induction therapy. The subsequent therapy was determined by the 

individual response.  

 

AML-HD98A (clinicaltrials.gov identifier: NCT00146120): 

This study involved 627/1,540 patients, recruited between 1998 and 2004. They 

received ICE for induction therapy. Depending on the risk stratification, patients were 

either treated with allogenic stem cell transplant (high risk and intermediate risk with 

matching donors) or intense consolidation chemotherapy for postremission therapy 

(low risk and intermediate risk without matching donor).  

 

AMLSG-07-04 (clinicaltrials.gov identifier: NCT00151242): 

740/1,540 patients were recruited between 2004 and 2011. A similar therapy design 

as in AML-HD98A was offered except that, here, the patients received induction ICE 

with or without ATRA based on randomisation.  

 

The appendix of Papaemmanuil et al., NEJM (2016)58 gives detailed insights into all 

three trials and treatment schemes.  

 

BEAT-AML Cohort  

(clinicaltrials.gov identifier: NCT03013998) 

The BEAT-AML cohort served as validation cohort. This cohort had incorporated 175 

adult AML patients (APL excluded) who received intensive standard treatment.63   



 

 

Clinical and Laboratory Patient Data  

Among others, following data were acquired from the patients in the above mentioned 

studies: 

Information Description AMLCG AMLSG 

Study samples  AMLCG 1999: N=864  

AMLCG 2008: N=274  

 

AMLHD98A: N=627 

AMLHD98B: N=173  

AMLSG0704: N=740 

AML type  pAML*: N=954 (84%) 

sAML*: N=126 (11%) 

tAML*: N=58 (5%) 

pAML: N=1,376 (91%) 

sAML: N=61 (4%) 

tAML: N=68 (5%) 

Age (years) By the Point of Diagnosis 58 

(18-86) 

50 

(18-84) 

Sex  Female: N=554 (49%) 

Male: N=584 (51%) 

Female: N=719 (47%) 

Male: N=821 (53%) 

Hemoglobine 

(g/dl) 

By the Point of Diagnosis 9 

(3.5-16.0) 

9.1 

(2.5-17.6) 

White Blood 

Cells (G/l) 

By the Point of Diagnosis 20.6 

(0.1-798.2) 

14.2 

(0.2-532.7) 

Platelets (G/l) By the Point of Diagnosis 54 

(0-1,760) 

53 

(2-916) 

LDH (U/l) By the Point of Diagnosis 440 

(76-19,624) 

435 

(83-7,627) 

Bone Marrow 

Blasts (%)** 

By the Point of Diagnosis 80 

(6-100) 

75 

(0-100) 

ECOG 

Performance 

Status 

By the Point of Diagnosis 

0=fully active without 

restriction 

4=completely disabled, 

no selfcare 

0: N=203 (27%) 

1: N=354 (47%) 

2: N=147 (20%) 

3: N=38 (5%) 

4: N=6 (<1%) 

0: N=350 (26%) 

1: N=846 (62%) 

2: N=156 (11%) 

3: N=16 (1%) 

4: N=2 (<1%)  

ELN 2017 

Classification 

 Favourable: N=428 (38%) 

Intermediate: N=290 (26%) 

Adverse: N=400 (36%) 

t_15_17 (APL): N=0  

Favourable: N=471 (38%) 

Intermediate: N=292 (24%) 

Adverse: N=429 (35%) 

t_15_17 (APL): N=38 (<1%) 

MRC Prognostic Groups 

according to the Medical 

Research Council Criteria  

Favourable: N=81 (7%) 

Intermediate: N=877 (78%) 

Adverse: N=161 (14%) 

Favourable: N=208 (15%) 

Intermediate: N=960 (68%) 

Adverse: N=253 (18%) 

OS (days) Days of Survival after 

Diagnosis until Death of 

any Cause 

513.5 

(1-5,023) 

773.5 

(1-5,384) 

Post Induction 

Therapy  

Status after Induction 

Therapy  

Early Death: N=234 (21%) 

Complete Remission: N=756 

(66%) 

Early Death: N=123 (8%) 

Complete Remission: N=1078 

(71%) 



 

 

Resistant Disease: N=148 

(13%) 

Resistant Disease: N=326 

(21%) 

RFS (days) Days after the point of 

CR achievement until 

relapse 

509 

(9-4,995) 

554 

(3-5,357) 

Relapse  After achievement of 

Complete Remission  

No Relapse: N=226 (34%) 

Relapse: N=440 (66%) 

No Relapse: N=489 (38%) 

Relapse: N=784 (62%) 

Normal 

Karyotype  

(NK AML)  

Cytogenetical normal 

karyotype 

Normal: N=732 (65%) 

Abnormal: N=386 (35%) 

 

Normal: N=695 (48%) 

Abnormal: N=754 (52%) 

 

Complex 

Karyotype  

≥3 Chromosome 

Abnormalities64 

Complex: N=101 (9%) 

Non-complex: N=1,019 

(91%) 

Complex: N=159 (11%) 

Non-complex: N=1,267 (89%) 

Mutations Screening for cytogenetic 

abnormalities and 

mutations 

No/Yes for each Mutation No/Yes for each Mutation 

Table 2. Cinical and Laboratory Patient Data. This table provides information on all 2,678 samples. 

If the sum of patients is lower in a row, the remaining data are not available. For all numerical 

values, the median value is given as well as the ranges in brackets.  

*pAML=primary/de novo AML, sAML=secondary AML, tAML=therapy-related AML.  
 
** The diagnosis of AML was centrally reviewed according to WHO 2016 classification. In case of 
a blast count below 20%, recurrent genetic abnormalities (t(8;21), inv(16)) irrespective of blast 
percent lead to the diagnosis of AML. 

 

Data Extraction and Sequencing 

Suitable bone marrow or peripheral blood was collected from the study participants 

before the start of induction treatment. Both cohorts used targeted DNA sequencing 

techniques and focussed on recurrently mutated genes in AML. Although the 

sequenced regions of interest differed between the cohorts, some genes were covered 

in both, AMLCG57 and AMLSG58 as illustrated in Figure 2. 

 



 

 

 

Figure 2. Sequenced Genes. The illustration shows the specific genes that were sequenced in 

AMLCG and AMLSG samples. From those sequenced in AMLCG, the entire coding region was 

sequenced for some genes, whereas for other genes, only specific exons were sequenced.57 In 

AMLSG samples, all coding exons were sequenced in the demonstrated genes.58 In total, 40 genes 

were sequenced by both cohorts.  

 

Mapping to a Reference Genome 

The sequencing data were mapped to the human reference genome. The human 

reference genome serves as a comparison base for researchers who analyse DNA 

variations like SNPs. This study used the reference genome from Genome Reference 

Consortium human build 37 (GRCh37).65 Both datasets were mapped with the 

Burrows-Wheeler Alignment (BWA) tool.66 The mapped output file contained every 

sequenced position from every sample, as well as unmapped reads. These data 

packed in Sequence Alignment Map (SAM) and in Binary Alignment Map (BAM) 

formats were subsequently processed.57,58  

 

Processing 

Data processing constituted an interim step that served to improve the accuracy of 

mapping and removed mis-mapped reads. Processing was conducted differently in 

both cohorts. In AMLCG, Insertions and Deletions (InDels) realignment was 

conducted.57 Realignment increased the precision of the mapping results from these 



 

 

regions. 12 AMLCG samples had to be removed due to the unavailability of genotype 

data. During the processing of the AMLSG dataset, unmapped reads, PCR duplicates 

as well as regions that were mapped outside of the target regions, were excluded.58  

 

 

Figure 3. Cohort Composition and Data Preparation. The diagram shows the build-up 

of the cohort and the data preparation executed before we received the data for the 

statistical analysis. Detailed information on the prior executed workflow can be 

received from the papers of Papaemmanuil et al., NEJM (2016)58 and Metzeler et al., 

Blood (2016)57. 

 

Workflow of the explorative Association Analysis 

All steps intended to extract the necessary information from the attained data sets, to 

identify meaningful SNPs and finally link these SNPs to specific outcome parameters 

described in detail in the following section. 
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Pileup and Variant Calling 

We combined the AMLCG and AMLSG datasets and executed all following steps as 

one cohort.  

We performed Multiway pileup (Mpileup) with Samtools67. Mpileup aimed to 

visualise the mapped data. The bases of the mapped reads compared to the reference 

genome got visible. Single positions that differed between the reference genome and 

the mapped reads were recorded. Mpileup incorporated all positions in all samples and 

summarised the results in pileup format. The following information were available for 

each genomic position:  

 

▪ Sequence ID 

▪ Sequence position  

▪ Reference base 

▪ Read count (number of reads which covered the position) 

▪ Read result (base which was found in the mapped read)  

▪ Quality of the read 

 

With this information on every mapped position, we performed variant calling with 

Varscan268. Variant calling calculated if specific base changes could be considered as 

SNVs. As long as the frequencies of these base variations were not evaluated, they 

cannot be termed as SNPs. Also, in variant calling the Minor Allele Frequencies 

(MAFs) were calculated. If patient one had 150 SNVs that differed from the reference 

genome, these positions would be recorded. If patient two shared 55 SNV positions 

with patient one while additionally showing 80 further SNV positions, then, these latter 

positions were added to the variant file. Varscan2 added the information on all SNVs 

from the whole cohort and wrote it onto a Variant Calling File (VCF). This file contained 

each SNV (together with its pileup information) that was scanned in at least one sample 

and finally comprised 114,004 different SNVs. 

We applied the following parameters to avoid incorrect variant calls.  

 

Mpileup criteria (adapted to Samtools67):  

▪ Reference Genome: GRCh37 

▪ Maximal per file read depth: 1,000,000 

▪ Minimum mapping quality for an alignment to be considered: 10 



 

 

▪ Minimum base quality for a base to be considered: 20 

Varscan268 criteria: 

▪ Minimum coverage (minimum depth at a position to make a call): 30 

▪ Minimum supporting reads (minimum number of variant-supporting reads at a 

position required to make a call): 6 

▪ Minimum base quality at the variant position required to use a read for calling: 20 

▪ Minimum variant allele (minor allele) frequency for calling a variant: 0.01 

▪ Default p-value for calling variants: 0.1 

▪ We ignored variants with >90% support in one strand 

▪ We called only variants (positions without changes were skipped) 

 

The overall aim of applying these threshold values was to filter out low-quality reads 

before the evaluation of variants started. 

We conducted the steps of Mpileup and variant calling twice in series. During the 

second approach, each of the 114,004 called SNVs was compared with each 

corresponding sample from the cohort. This implementation provided the exact 

information on the individual genotype of each sample and how often each allele 

appeared in the sample set. To determine each individual’s genotype for a certain 

SNV, we utilised the following frequency thresholds: If a minor allele was found in more 

than 90 percent of the reads of one sample, this sample was referred to as 

homozygous minor allele carrier for this specific SNV. If the occurrence of the minor 

allele was situated between 40 and 60 percent, the sample was a heterozygous carrier, 

and if the minor allele percentage was less than ten percent within one sample, it was 

referred to as homozygous reference allele carrier. Samples with genotypes that could 

not be assigned to one of these groups due to its percentages exceeding the 

mentioned ranges were excluded for the respective assessed SNV. SNVs had to be 

found in both strands of a read, the forward and reverse strand. If they were found in 

only one strand, Varscan2 filtered them out. This step vastly reduced the number of 

considered SNVs. The SNVs were presented on a VCF. 

 

SNP Annotation 

Annotation of the called SNVs was an indispensable step in the process of linking the 

SNVs with clinical characteristics. In order to estimate which SNV would be more likely 



 

 

to influence clinical factors in AML patients, we needed to perform effect prediction. 

This step was carried out with the SNPeff69 tool. Every SNV got annotated depending 

on its location (cSNP/pSNP/iSNP) and type (synonymous/nonsynonymous). The 

combination of these factors assumed the probable influence of a variation onto a 

gene. A SNV which does not change the amino acid determined through its codon is 

less likely to have any clinical influence than a SNV that e.g., leads to the stop gain of 

an important gene. By changing important functions of a gene, these SNVs could 

potentially result in longer OS or higher resistance to chemotherapy, for instance41,49. 

Incorrectly or incompletely executed annotation could lead to overestimation of 

variants which do not have significant influence, or to dilution of significant correlated 

SNVs inside many wrongly assumed influencing SNPs. We displayed the results in 

VCF format.  

 

Applied annotation criteria: 

▪ Upstream and downstream length: 5,000 bases 

▪ Size for splice sites (donor and acceptor): 2 bases. 

 

Filtering 

GEMINI70 is an online tool that enabled to break down the vast number of called SNVs 

into those variants which contained all necessary information for the subsequent steps. 

The previously annotated variants were extracted and served as input. Only SNVs with 

a correct ID were considered. To filter for the informative SNVs, we instructed GEMINI 

to register only those SNVs whose position was covered in at least 30% of the samples. 

For all variations that fitted to these designations we commanded GEMINI to query, 

select, and table the following parameters: The chromosome number, the SNV ID, ‘0’, 

the position of the SNV, the reference and alternative allele as well as the MAF.  

Also, within GEMINI we transformed the genotype information of our samples. The 

percentages that determined the genotypes mentioned in variant calling, were 

converted to characters in order to facilitate grouping them in the following steps of the 

association analysis. We grouped all homozygous minor allele carriers as BB, 

heterozygous carriers as AB, and homozygous reference allele carriers were set to 

AA.  



 

 

 

Figure 4. Workflow until Plink. The diagram shows the workflow executed in order to call the 

variants and prepare the data for the association analysis. The given numbers show the registered 

SNVs. 

 

Quality Control and Explorative Association Analysis  

Plink71,72 is a tool for genome association analysis that is capable of analysing 

genotype and clinical data. We used Plink version 2.00 Alpha. The GEMINI output file 

served as input. The desired actions were specified by defining commands. We used 

Plink to perform both, the quality control and the final association analysis. The survival 

analyses were carried out in R. 

 

Quality Control 

To minimise biases, false-positive associations and masking of positive association 

results, we performed SNV and sample input filtering before starting the association 

analysis. Duplicated SNVs were excluded. We removed patients with the AML subtype 

APL because of their different treatment and better chances of permanent recovery.73 

Furthermore, patients that had been pre-treated before study entry were excluded. 

Some of the SNVs had a low frequency and appeared only in the out-filtered 

samples. Hereby, no information was extractable from them anymore. We excluded 

these uninformative SNVs.  

After the step of filtering, we evaluated the Hardy Weinberg Equilibrium (HWE) and 

the Genomic Inflation Factor (GIF) for each SNV. Both methods were applied to 
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visualise population stratification. Stratification would bias the following association 

analysis and could produce false positive results. None of the SNPs deviated 

significantly from the HWE. SNPs that showed GIFs λ>1.04 got adjusted by dividing 

the expected test statistics (calculated in null distribution population) by the GIF λ of 

the SNV. Hereby, the number of false positive results during the later association 

analysis decreased.74,75   

Ensuing, we prepared two obligatory missing lists containing all SNVs that were only 

covered in one, the AMLCG or AMLSG cohort. All SNVs that were only covered in one 

cohort were also only investigated in this group during the following association 

analysis. We further produced a SNV attribute file according to the MAFs. For this, we 

divided the SNVs into three groups. If the minor allele of one variant was found in more 

than five percent of the covered samples, we have defined it as common SNP. If 

present in one to five percent of the covered samples we have called it a less common 

SNP, and in case of less than one percent prevalence we set it to be a rare SNV. We 

wrote separate files that included the SNVs from each attribute group. The subsequent 

analyses focussed on common SNPs. We also analysed the less common and rare 

files but, due to their less frequent occurrence, the power of the results is lower 

compared to the common SNPs.  

We divided the clinical patient variables/parameters into two files. One file included 

the binary variables like CR or ABCB1 mutation, the other file enclosed the quantitative 

clinical variables like OS and RFS. The subsequently executed analyses were done 

on these files separately. 

The genetic mutations categorising the ELN2017 groups adverse, intermediate, and 

favourable were attached. This was necessary for the multivariate analysis carried out 

later. 

 

Association analysis 

As primal part of the exploratory data analysis, we performed univariate association 

analysis. Different models were available for the implementation of association 

analyses. These models differ in terms of the genotypes to be compared. During the 

explorative analysis, we applied an allelic model. This model describes if there is any 

association found between the presence or absence of the minor allele in a certain 

SNP. It does not give the information whether the presence of the SNP in a 



 

 

homozygous manner has a stronger association with the clinical parameter than the 

presence of the SNP in the heterozygous form. 

 

 

Table 3. Allelic Association Model. The ‘B’ demonstrates the minor allele, while the ‘A’ shows the 

major allele.  

 

With Likelihood-Ratio tests we executed the association analyses of SNPs to 

continuous variables. For the association analyses to binary variables, we applied Chi-

Square tests. Every SNV was set into association with every continuous and binary 

variable. For univariate analysis, we set the p-value significance level to 0.1.  

In the next step, all SNVs significantly associated according to the univariate 

analysis were subjected to a multivariate association analysis. Here, the influence of 

age and the risk groups from ELN201727 were considered. Assuming that after 

univariate analysis there was a significant association between one SNP and OS, and 

that this association would no longer be significant after age and ELN adjustment in 

multivariate analysis. This would indicate that the association was not induced by the 

SNP but, for example, by a higher age of the patients carrying the SNP. We adjusted 

for both, age and ELN201727 and removed their influence on the clinical characteristics 

of AML patients. 

In multivariate analysis binary variables were associated with the help of logistic 

regression and continuous variables with linear regression models. For multivariate 

analysis, we set the p-value significance level to 0.05. The p-values were adjusted with 

the Benjamini-Hochberg (BH) method, as the BH technique has proven to be a 

particularly good method of suppressing the detection of false significant p-values.76  



 

 

 

Figure 5. Quality Control and Association Analysis in Plink. The diagram shows the executed 

workflow in Plink with the variation numbers that were excluded during the different steps.  
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Explorative Results’ Validation 

After multivariate analysis significantly associated SNPs were subjected to validation 

in an unrelated cohort - the BEAT-AML cohort. The validation analysis was done with 

comparable filtering criteria and workflow as in the initial association transaction. In 

validation statistics, we evaluated unadjusted p-values.  

 

Validation Analyses of previously published 
clinically relevant SNPs 

The validation of associations from literature constituted the second part of this project. 

Before we started the validation analyses, varying reasons decreased the number of 

validatable SNP associations. Most SNP association studies were GWA studies, 

investigating which SNPs were found more frequently in AML compared to healthy 

control groups. This was not the focus of our project. Of those associations with 

prognostic relevance many SNPs were located in regions not covered by our 

sequencing panels. Among the identified prognostically relevant plus covered SNPs, 

some SNPs did not pass the executed filtering steps and were therefore eliminated. 

Furthermore, in a couple of SNPs, the number of available data was too small for 

obtaining significant results. Figure 6 shows the reasons and sample numbers of the 

filtering process.   

 



 

 

 

Figure 6. SNPs from previous Studies. The diagram shows the reasons due to which SNPs from 

previous studies were excluded from the validation analysis.  

 

Twelve associations of prognostic relevance reported in previous studies were 

sufficiently covered in the AMLCG and/or AMLSG cohort to allow further analysis. 

Some of these SNP associations were previously described by one scientific group 

only, while others were found by different groups. All studies had in common that they 

analysed much smaller patient cohorts. Except the study team around Kutny, 

Leukaemia (2015)77, no study group validated their results with help of another 

uncoupled cohort. Some studies adjusted for certain risk categories or single risk 

mutations, but no study adjusted for the currently used ELN2017 prognostic scoring 

system. Table 4 illustrates the previous studies and the SNP associations discovered 

there.   
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SNP ID 

(gene) 

Publication Alleles 

(study) 

Samples 
 

Stratification Association 

result 

rs532545 

(CDA) 

Falk et al., 

Am J Hematol.  

(2013)78 
 

C>T  

 

N=205 NK;  

pAML; 

FLT3-ITD f 

TT: ↓OS, 

↓Progression Free 

Survival (PFS) 

NK;  

pAML;  

FLT3-ITD; 

NPM1 mutation 

(mut.) 

TT: Most 

pronounced ↓OS, 

↓PFS 

rs602950 

(CDA)  

Megías-Vericat et al., 

Leuk Lymphoma 

(2017)79 

T>C  

 

N=225 pAML Minor Allele (MA):  

↑CR, ↑OS, ↑Event 

Free Survival 

(EFS) at 5 years 

rs2072671 

(CDA) 

Falk et al.,  

Am J Hematol. 

(2013)78 

 

A>C 

 

N=205 

 

NK;  

pAML;  

FLT3-ITD 

CC: ↓OS 

NK;  

pAML;  

FLT3-ITD; 

NPM1 mut. 

CC: Most 

pronounced ↓OS 

Kim et al.,  

J Hum Genet. 

(2015)80 

A>C N=50 NK MA: ↓OS ↓CR 

duration  

Megías-Vericat et al., 

Leuk Lymphoma 

(2017)79  

A>C N=225 pAML AC: ↓OS, ↓EFS, 

↓RFS  

rs12036333 

(CDA) 

Gamazon et al.,  

Blood (2013)81  

G>A N=232 (in 

vivo, 

paediatric); 

N=523 (in 

vitro) 

 AA: ↓OS, 

↑Treatment 

Related Mortality 

(TRM) 

Megías-Vericat et al., 

Pharmacogenet.  

Genomics (2017)82  

 

 

 

 

 

G>A N=225  MA: ↓OS, 

↓Disease Free 

Survival (DFS), 

↓RFS at 5 years   

 

 

 

 



 

 

rs11554137 

(IDH1) 

Wagner et al.,  

J Clin Oncol. 

(2010)83 

 

C>T 

 

 

N=275 NK;  

pAML/sAMLg 

MA: ↓OS, ↓RFS 

NK;  

pAML/sAML;  

FLT3-ITD a/o 

NPM1 wildtypeh 

MA: Most 

pronounced ↓OS, 

↓RFS    

Ho et al., Blood 

(2011)84  

C>T N=274 (adult);  

N=253 

(paediatric) 

pAML; 

CR 

MA: ↓OS, ↓RFS  

rs2454206 

(TET2) 

Kutny et al., 

Leukaemia (2015)77 

A>G 

 

N=169 

(paediatric) 

pAML MA: ↑OS 

Wang et al., Genes 

Chromosomes 

Cancer (2018)85 

A>G N=254 

(paediatric) 

MRC86 

intermediate 

riski 

MA: ↑OS, ↑EFS  

rs2897047 

(intergenic, 

near IRX2) 

Gamazon et al.,  

Blood (2013)81 

 

C>T 

 

N=232  

(in vivo, 

paediatric); 

N=523  

(in vitro) 

 TT: ↓Cytarabine 

response, 

↑Minimal residual 

disease (MRD), 

↓RFS 

Megías-Vericat et 

al., Pharmacogenet. 

Genomics (2017)82 

C>T N=225  CT: ↑OS 

rs7729269 

(MCC) 

Gamazon et al.,  

Blood (2013)81 

T>C 

 

N=523  

(in vitro) 

 Cytarabine 

sensitivity in 

lymphoblastoid 

Cell Lines (LCLs) 

Megías-Vericat et 

al., Pharmacogenet 

Genomics (2017)82 

T>C N=225  MA: Cytarabine-

associated 

toxicities  

rs1045642 

(ABCB1) 

Megías-Vericat et 

al., 

Pharmacogenomics 

J. (2015)87 

C>T 

 

 

N=1,221 pAML/sAML MA: ↑OS  

Rafiee et al., Blood 

Cancer J. (2019)88 

C>T N=942 pAML MA: ↑EFS, 

↓Relapse rates  

 

 

 

 



 

 

Table 4. Detailed Literature Studies Information. The table shows the SNP associations from 

previous publications that underwent validation analysis in our cohort. Description: The SNP ID 

shows the SNP for which an association was found. The corresponding gene name is shown in 

brackets. Publication states authors and journals. Alleles (study) show the major and minor alleles 

resumed from the studies. Samples shows the number of samples that were analysed in the 

respective study. Stratification describes the cohort subgroup the result was valid for. This includes 

primal cohort restrictions as well as further stratification of the analysed group. The column 

Association result shows the results of the analysed cohort. In case MA is indicated in this column, 

the minor allele is associated with the shown clinics independent of its present genotype (according 

to an allelic association model). Specific genotypes like, for example, AA or CT show that only this 

genotype was significantly associated in the respective study.  

 

To validate the reported associations, we had to mimic the previous studies. In 

majority, the results of the previously conducted studies arose from subgroup 

analyses. Hence, many of the SNPs associated in a certain analysed subgroup were 

not associated in an unstratified cohort. We succeeded in stratifying our cohort 

according to all subgroups on which the studies were executed. These subgroups were 

normal karyotype AML, primary (de novo) AML, secondary AML, FLT3-ITD status, 

NPM1 status and MRC risk groups. 

The stratification criteria mentioned in the study description (compare table 4) were 

applied to all samples of the AMLCG and AMLSG cohorts. Accordingly, during 

validation analyses all samples in our cohort were filtered by equal criteria.  

rs1128503 

(ABCB1) 

Megías-Vericat et al., 

Pharmacogenomics J. 

(2015)87 
 

C>T  

 

N=925 pAML/sAML 
 

MA: ↑OS 

rs2229109 

(ABCB1) 

Gregers et al., 

Pharmacogenomics J. 

(2015)89 

G>A 

 

N=522 

(ALL) 

 GA: ↑Relapse risk, 

↓EFS 

Dessilly et al., 

Pharmacogenomics 

(2016)90 

G>A n.a. (CML 

LCLsj) 

 MA: ↑Drug 

metabolism, 

↓Intracellular 

accumulation 

rs10883841 

(NT5C2) 

Falk et al,  

Am J Hematol. 

(2013)78 

A>G  

 

N=205 NK;  

pAML;  

FLT3-ITD neg. 

MA: ↓OS 

f FLT3-ITD: Internal Tandem Duplication of the FLT3 gene. 
g pAML/sAML: samples were stratified for having either de novo AML, or secondary AML. 
h a/o: Wagner et al. stratified for samples that had a FLT3-ITD mutation and wildtype 
(unmutated) NPM1 or for patients that showed one of those phenomena, the FLT3-ITD or the 
unmutated NPM1 form.  
i MRC: a risk score applied by the Medical Research Council, UK.86  
j Chronic Myeloid Leukaemia Lymphoblastoid Cell Lines. 



 

 

Also, we aimed to imitate the association models used by the prior study conductors. 

We concluded the used models from the resulted associations since the information 

on those models were not available in most publications. If a study identified that the 

SNP’s minor allele has generally been associated with a clinical parameter, it was likely 

that an allelic model was performed. Studies that found specific genotypes of a SNP 

to be associated, were imitated by applying a genotypic model. 

 

 

Table 5. Genotypic Association Model. The ‘B’ demonstrates the minor allele, while the ‘A’ shows 

the major allele.  

 

In contrast to the successfully reproduced stratifications of the previous studies, we 

were only partially able to reproduce the associated clinical parameters. Following 

clinical parameters associated in the prior studies could be analysed in the AMLCG 

and AMLSG datasets: OS, CR, RFS, ED and RD. Other clinical characteristics were 

not available in AMLCG and AMLSG and could not be reproduced. In these cases, we 

associated the certain previously associated SNP with the closest screened variable 

in our cohort. Parameters that showed no close variable in our cohort were associated 

with the major outcome variables (OS, RFS, CR). Since in vitro variables were 

generally not evaluated in our cohort, previous studies focussing on the latter were 

also reproduced by associating their SNPs with the major outcome variables for 

validation analysis.  

A further challenge was that some of the studies found SNP alleles other than the 

SNP alleles we mentioned. In the studies of Megías-Vericat et al., Leuk Lymphoma 

(2017)79 (SNP rs602950), Wagner et al., J Clin Oncol (2010)83 and Ho et al., Blood 

(2011)84 (both rs11554137), Gregers et al., Pharmacogenomics (2015)89 and Desilly 

et al., Pharmacogenomics (2016)90 (both rs2229109) the shown alleles (compare table 

4) were the paired alleles from the opposite strand. This could be explained by 

sequencing the reverse strands in the literature studies. Alleles from the opposite 



 

 

strand should not influence the comparability of the literature results and the validation 

study results. Anyway, some other allele differences could not be explained by 

sequencing the opposite strand. These were the alleles mentioned in the studies of 

Gamazon et al., Blood (2013)81 and Megías-Vericat et al., Pharmacogenet Genomics 

(2017)82 (both rs2897047) as well as Megías-Vericat et al., Pharmacogenomics J. 

(2015)87 and Rafiee et al., Blood Cancer J. (2019)88 (both rs1045642) and Megías-

Vericat et al., Pharmacogenomics J. (2015)87 (rs1128503). For validating those 

associations, we used the variations analysed in our cohort. It is important to mention 

that all alleles from our analysis accorded with alleles found in the current dbSNP 

version (as of May 2021).  

In addition, some of the previous studies were conducted in children and patients 

with other types of leukaemia but AML.  

Beside the factors already mentioned, the validation analyses were carried out in 

the same way as the respective explorative analyses. The certain SNP(s) found in prior 

studies underwent association analysis with the previously noticed outcome factor(s). 

Univariate analysis without adjustment was performed. In case, a SNP showed 

p<0.1, multivariate analysis followed. Here, many different adjustment factors were 

applied in previous studies. Some examples were white blood cell count, year of 

diagnosis, or performance status. We did not mimic these adjustment parameters and 

adjusted for the clinically relevant parameters ELN2017 and age instead.   



 

 

RESULTS 
In this section I will describe the results of our pilot project. I will compare our data set 

with previously published data sets and hereby verify the transferability of our dataset 

to clinical AML patients. This will be followed by findings from both, the explorative 

analyses and the validation analyses from previous studies.  

 

Data Comparison 

Comparing the AMLCG and AMLSG data sets revealed a number of differences. The 

median AMLCG patient was eight years older than the median AMLSG patient. Since 

age is considered to be one of the major influencing factors in terms of outcome, 

differences in OS and the post-induction situation could be detected between both data 

sets. AMLCG patients had slightly lower rates of CR achievements, more EDs, and a 

shorter OS compared to AMLSG patients. Nevertheless, the cases of RD were 

proportionally higher in AMLSG. 

Compared to other published data on AML patients, both, the AMLCG and AMLSG 

cohort, incorporated rather young patients with the average of patients being in their 

fifties while the median age of AML onset is often published to be 69 years (compare 

chapter Epidemiology and Pathogenesis). Further differences compared to other 

publications were comparably high rates of pAML and low rates of sAML samples in 

both, the AMLCG and the AMLSG cohort. Nevertheless, the literature on the 

occurrence of pAML and sAML has strongly varied.91,92 With slightly more male 

patients in both cohorts, the sex distribution corresponded with other studies.93,94 

Broadly, most other parameters, such as blood parameters and karyotype, were 

consistent with other published data on AML patients.  

 

Explorative Results 

After conduction of the data preparation steps in terms of variant calling, pileup, 

annotation and GEMINI filtering 36,638 SNVs were available. Comparable with the 

gene coverage distribution (compare figure 2) only a smaller number of the SNVs was 

covered by both, the AMLCG and the AMLSG cohort. Figure 7 shows the distribution 

of these SNVs which then passed to plink.  



 

 

 

Figure 7. SNV Distribution. The upper figure shows the SNVs called in the AMLCG cohort; the 

lower figure shows the SNVs called in the AMLSG cohort. The X-axis indicates the relative positions 

of the SNVs on the chromosomes whereas 23=X and 24=Y chromosome. The Y-axis shows the 

overall number of minor alleles screened at the certain position. The colour coding (blue and 

orange) is used for the clarity between the different chromosomes. Uncircled dots indicate SNVs 

present in the shown cohort only. Black circled dots indicate SNVs that were covered in both, the 

AMLCG and AMLSG cohorts.  

The total number of shown SNVs is N=36,638.  

 

After the univariate analysis of all SNVs, a total of 7,151 associations with clinical 

variables as well as with curated mutations resulted. Out of these, 1,394 SNVs 

remained associated after the multivariate analysis.  

Since we focussed on frequent, clinically significant SNPs, the number of interesting 

associations decreased considerably after exclusion of the rare SNVs. Concerning 

gene mutations, only those associations with recurrent mutations were viewed for the 

result evaluation. By applying these filters, out of the 1,394 associations from 

multivariate analysis, solely 23 associations remained for further consideration.  

Figure 8 gives an insight on the composition of the multivariate association results. 

 



 

 

 

Figure 8. Explorative Multivariate Association Results Overview. The figure shows the composition 

of the multivariate association results from common and less common SNPs.  

 

In the following section I will describe in detail the associations marked in orange. 

First, I will describe the associations with clinical characteristics and then the 

associations with recurrent gene mutations. 

 

SNPs associated with Clinical Characteristics 

The following outcome variables were analysed: Overall Survival (OS), Refractory-

Free Survival (RFS), Complete Remission (CR), Early Death (ED) and Resistent 

Disease (RD). When focussing on these characteristics, we found three variants within 

the common and less common SNPs that were significantly (P<0.05) associated after 

multivariate analysis and correction for multiple testing.  

 

rs2303430 (A>T, A=major allele, T=minor allele) 

The most prominent SNP associations concerned rs2303430. This variant is located 

in the PDGFRA gene on chromosome 4.95 The region was covered in the AMLSG 
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population (N=1,366). With a MAF of 0.298, almost one-third of the sequenced reads 

carried the minor allele T at this specific position. Hereby, the SNP was categorised as 

common. dbSNP confirms the high MAF of rs2303430.95 

Within the AML patients from our cohort, there was a significant association found 

between samples carrying the minor allele and the patient’s outcome after induction 

treatment. A negative association could be seen between people carrying the minor 

allele and the rate of achieved CRs (P=0.003; OR=0.626). Simultaneously, there was 

a positive association between minor allele carriers and the rate of EDs (P<0.001; OR: 

2.004). Figure 9a and 9b visualise these associations.  

To the best of our knowledge, this SNP has not been mentioned in literature before 

neither in association with AML nor with any other variable or disease.  

 

      

9a.                                                                9b.  

Figure 9a. rs2303430~CR. Figure 9b. rs2303430~ED. The number of patients sequenced at the 

rs2303430 position who carried the major allele karyotype (AA) was N=694 in our cohort. N=672 

patients carried either one or two minor alleles (AT: N=530, TT: N=142). 

 

 

The BEAT-AML cohort covered rs2303430. We were not able to validate the 

associations to CR in the BEAT-AML cohort (P=0.56; OR=1.19). Information on ED 

was not available in the BEAT-AML cohort. 

 

rs28489067 (C>T) 

The SNP rs28489067 is located in the PDGFRA gene on chromosome 4.96 This region 

was covered in N=1,148 AMLSG samples. The MAF of 0.1 assigned this SNP to the 

group of common SNPs. With a MAF of 0.18 the dbSNP database indicates the minor 

allele to be more frequent as in our dataset.96 The association’s OR was 1.88, stating 

that the minor allele of the SNP was associated with higher rates of CR (P<0.001). 
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Figure 10 visualises the higher rate of CR in patients who have carried at least one 

minor allele compared to patients who are homozygous for the major allele. 

The SNP has not been reviewed in association with AML before. Solely, one article 

concerning the interpretation of variations in general, mentioned this SNP before.97  

The BEAT-AML cohort did not cover the SNP’s position for validation.  

 

 

Figure 10. rs28489067~CR. The total number of rs28489067 sequenced patients who carried the 

major CC-genotype was N=934 while the minor allele (CT, TT) was carried in N=214 patients.  

 

 

rs145370659 (A>C)  

This SNP belonged to the group of less common SNPs in our cohort (MAF: 0.015). 

The MAF was quoted similar by the dbSNP database. It is located on chromosome 1 

in the intergenic region of the protein-coding gene NDRC and the downstream variant 

of the MicroRNA MIR761.98 In our cohort, this region was covered in N=1,425 samples 

of the AMLSG cohort. We detected an association between the SNP and RD (P<0.001; 

Odds Ratio (OR)=4.29). This result revealed that holders of the minor allele had higher 

rates of RD in comparison to patients who were homozygous for the major allele as 

shown in figure 11. This SNP has not been mentioned in the literature before.  

The BEAT-AML cohort did not cover the position of rs145370659, therefore, we 

were not able to validate the association in an unrelated cohort. 
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Figure 11. rs145370659~RD. The total number of screened samples with the major AA-genotype 

was N=1,383. N=42 Samples carried the minor allele (AC, CC). 

SNPs associated with Gene Mutations 

Focussing on common and less common SNPs, 215 out of the 219 total associations 

from multivariate analysis were found between SNPs and gene mutations (compare 

figure 8). These associations occurred between SNPs and curated mutations of 38 

different genes. Most of these mutations were rare in the patient samples (found in 

less than five percent). Focussing on mutations which affected more than five percent 

of the patients in our cohort resulted in 19 significant associations between SNPs and 

gene mutations. All these associations were detected with SNPs only covered in the 

AMLSG cohort and shown in table 6.   
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Table 6. SNP Associations with Gene Mutations. The table shows the SNP 

associations with recurrent 

gene mutations after multivariate analysis. The given Gene is the name of the gene in 

which the SNP is located. Samples describes the number of samples in which the 

region was covered. The column Associated gene shows the name of the gene 

mutation that was associated with this certain SNP. OR and Adjusted P-value show 

the statistical results from multivariate association analysis in Plink. The MAF group 

gives information on the frequency of the minor allele and relates to the ranges for 

common and less common defined within Plink.  

 

Besides rs726070 none of the SNPs have been mentioned in literature before. 

rs726070 was described as associated with congenital ichthyosis and mentioned in a 

publication about the interpretation of sequence variants.97,99,100 Up to now, it has not 

been associated with AML before.  

Since SNP to gene mutation associations were not the main target of our study, we 

did not try to validate them in the BEAT-AML cohort. 

 

SNP Gene Samples 

N= 

Associated 

gene 

OR Adjusted 

P-Value 

MAF group 

rs1052639 (G>A) DDX18 1,435 IDH2 1.865 0.002 common 

rs114734174 (C>T) perigenic 1,412 IDH2 1.954 0.001 common 

rs7628252 (G>C) perigenic 1,429 IDH2 2.152 <0.001 common 

rs490052 (A>G) RBFOX1 1,201 TP53 0.553 0.002 common 

rs16845518 (C>T) perigenic 1,362 KRAS 2.427 <0.001 common 

rs726070 (C>T) ABCA12; SNHG31 1,435 MLL 3.614 0.002 less common 

rs17501532 (C>A) ABCA12 1,424 MLL 4.541 0.002 less common 

rs11890512 (T>G) ABCA12 1,433 MLL 2.59 0.035 less common 

rs10179876 (T>C) ABCA12 1,424 MLL 3.852 0.002 less common 

rs10167501 (G>A) ABCA12 1,424 MLL 3.248 0.009 less common 

rs11890512 (T>G) ABCA12 1,433 MLL-PTD 2.522 0.042 less common 

rs10179876 (T>C) ABCA12 1,424 MLL-PTD 3.574 0.008 less common 

rs10167501 (G>A) ABCA12 1,424 MLL-PTD 3.071 0.016 less common 

rs7789818 (T>C) KMT2C 1,343 NRAS 2.724 0.002 less common 

rs140378196 (A>G) KDM5A 1,386 NRAS 3.042 <0.001 less common 

rs77123954 (T>C) perigenic 1,380 NRAS 3.751 <0.001 less common 

rs75395837 (G>C) ZBTB44 1,381 ASXL1 11.45 <0.001 less common 

rs35918540 (C>T) TCF4 1,417 IDH2 3.114 <0.001 less common 

rs370821688 (G>T) perigenic 1,127 KRAS 4.309 0.002 less common 



 

 

Validation Analyses of previously published 
clinically relevant SNPs 

We were able to identify 12 previous studies which could be re-analysed in our data 

sets (compare figure 4). Below, table 7 shows the validation studies and the results 

from our data sets. Some association parameters were replaced by other parameters 

for the validation analyses. Also, some alleles mentioned in literature had to be 

validated with other alleles as identified in our cohort (compare chapter Confirmation 

of previously identified SNP associations).  

 

SNP Study Genotype Stratification Model Samples 

N= 

Association P 

rs532545  

(C>T) 

Falk et al.,  

Am J Hematol. 

(2013)78 

TT NK; 

pAML;  

FLT3-ITD 

genotypic 212 OS 0.99 

RFS 0.77 

NK; 

pAML;  

FLT3-ITD; 

NPM1 

genotypic 157 OS 0.82 

RFS 0.69 

rs602950 

(A>G) 

Megías-Vericat et 

al.,  

Leuk Lymphoma 

(2017)79 

MA pAML allelic 892 OS 0.32 

RFS 0.92 

CR 0.33 

rs2072671 

(A>C)  

Falk et al.,   

Am J Hematol. 

(2013)78 

CC NK;  

pAML; 

FLT3-ITD 

genotypic 216 OS 

 

0.65 

 

NK;  

pAML; 

FLT3-ITD; 

NPM1 

genotypic 160 OS 

 

0.91 

Kim et al.,  

J Hum Genet. 

(2015)80 

CC NK genotypic 696 OS 0.75 

MA NK allelic 696 OS 0.49 

Megías-Vericat et 

al.,  

Leuk Lymphoma 

(2017)79 

AC pAML 

 

genotypic 900 OS 0.88 

RFS 0.12 

rs12036333 

(G>A) 

Gamazon et al., 

Blood (2013)81 

AA  genotypic 1,022 OS 0.21 

RFS 0.46 

Megías-Vericat et 

al., 

Pharmacogenet. 

Genomics (2017)82 

 

MA  allelic 1,022 OS 0.46 

RFS 0.91 



 

 

rs11554137 

(G>A) 

Wagner et al., J Clin 

Oncol. (2010)83 

MA 

 

NK;  

pAML/sAML 

allelic 559 OS 0.65 

RFS 0.33 

NK; 

pAML/sAML; 

FLT3-ITD a/o  

NPM1 

wildtype 

allelic 445 OS 0.89 

RFS 0.64 

Ho et al., Blood 

(2011)84 

MA pAML 

CR 

allelic 928 OS 0.86 

RFS 0.67 

rs2454206 

(A>G) 

Kutny et al., 

Leukemia (2015)77 

MA pAML allelic 2,207 OS 0.41 

Wang et al., Genes 

Chromosomes 

Cancer (2018)85 

MA MRC 

intermediate 

risk 

allelic 1,786 OS 0.11 

RFS 0.06 

rs2897047 

(A>G) 

Gamazon et al., 

Blood (2013)81 

GG  genotypic 620 RFS 0.25 

Megías-Vericat et 

al., Pharmacogenet 

Genomics (2017)82 

AG  genotypic 1,070 OS 1 

 

rs7729269 

(T>C) 

Megías-Vericat et 

al., Pharmacogenet 

Genomics (2017)82;  

Gamazon et al., 

Blood (2013)81 

MA 

 

 allelic 1,076 OS 0.37 

RFS 0.89 

CR 0.06 

rs1045642 

(A>G) 

Megías-Vericat et 

al., 

Pharmacogenomics 

J. (2015)87 

MA pAML/sAML allelic 

 

1,013 OS 

 

0.85 

Rafiee et al.,  

Blood Cancer J. 

(2019)88 

MA pAML allelic 561 RFS 0.83 

rs1128503 

(A>G) 

Megías-Vericat et 

al., 

Pharmacogenomics 

J. (2015)87 

MA pAML/sAML allelic 1,007 OS 0.47 

rs2229109 

(C>T) 

Gregers et al., 

Pharmacogenomics 

J. (2015)89 

CT  genotypic 636 RFS 

 

0.99 

Dessilly et al., 

Pharmacogenomics 

(2016)90 

MA 

 

 allelic 1,089 OS 0.45 

RFS 0.7 

CR 0.81 

rs10883841 

(T>C) 

Falk et al.,  

Am J Hematol. 

(2013)78 

MA NK;  

pAML;  

FLT3-ITD pos. 

allelic 376 OS 0.72 

Table 7. Previous Studies’ Validation Results. The table shows the results from our validation study. 

The analyses printed in bold are those we fully succeeded to imitate. Study states which previous 

study was aimed to get validated. Genotype shows which genotype we used for the validation 

association analysis. In case a genotype differed from the literature study (compare table 4) 



 

 

different alleles were sequenced in the literature cohort and our cohort. If MA is shown, we 

associated all minor allele carrying (heterozygous and homozygous) genotypes with the SNP. 

Stratification explains how we stratified our cohort in the validation analysis. Model shows which 

association model was utilised for validation. The samples column illustrates number of samples in 

our cohort who fitted to the designated stratification criteria. Re-analysed association shows the 

variable to which we associated the SNP. In case, the association factor from the prior study was 

not recorded in our data set, this factor varies comparing to table 4. P shows the statistical results 

of the validation analysis with P being unadjusted.  

 

In summary, we could not validate any of the findings from previous studies.  

The validation from two studies showed interesting, though not significant, 

associations. 

First, rs2454206 (A>G) was associated with RFS and OS in MRC intermediate risk 

patients. The analysis aimed to validate the results prior published by Wang et al., 

Genes Chromosomes Cancer (2018)85. While Wang found higher RFS and better OS 

in paediatric patients carrying the SNP’s minor allele, we were able to reproduce these 

results in an adult cohort. The univariate allelic association analysis showed significant 

results for RFS and borderline significant results for OS in our cohort. However, the 

associations were not significant in multivariate analysis. Figure 12a and 12b visualise 

the association. 

              Figure 12a. 



 

 

                         Figure 12b. 

Figure 12a. rs2454206~OS 12b. rs2454206~RFS. The plots show the results from the univariate 

association analysis of MRC intermediate risk group patients.  

 

Second, the association analysis of rs7729269 (T>C) showed interesting results. 

We performed it to reproduce the studies of Gamazon et al., Blood (2013)81 and 

Megías-Vericat et al., Pharmacogenetic Genomics (2017)82.  In the previous studies, 

associations with Cytarabine response and toxicity were reported, neither of which 

were evaluated in our cohort. In our cohort the SNP associated with CR. Lower rates 

of CR in patients carrying the minor allele (P=0.06; OR=0.8) were observed. Again, 

these findings were not left as significant variables in multivariate analysis.  

In summary, our work was able to reproduce some previous findings, however, after 

considering current standard prognostic variables like ELN2017 none proved clinical 

relevance.   



 

 

DISCUSSION 

Patients  

A detailed characterisation of the patient samples was essential to correctly process 

the data and to minimise the risk of biases. All samples were broadly clinically 

characterised, and the disease process was continuously documented by the AMLCG 

and AMLSG study conductors. The data comparability was high with all patients being 

intensively treated within clinical trials. Since the therapy backbone did not change for 

30-40 years63,101 the results obtained from rather old samples (beginning from 1999) 

could be transferred to AML patients in these days. However, considerable 

improvements in supportive care and the introduction of targeted treatment 

approaches in the last years might influence comparability to more recently conducted 

trials. 

Median age of our cohort was significantly lower than the age of average, 

unselected AML patients.3,4 This age difference is presumably reasoned by the 

inclusion of only intensively treated patients in the AMLCG and AMLSG datasets. The 

intensive treatment is not offered to most of older or comorbid patients.102 As many 

patients do not accord with the age range in our study, the results might not be 

completely transferable to the large group of older AML patients. Also, the age 

difference between AMLCG and AMLSG patients might have influenced the 

comparability of the data. Since age is an important outcome-determining factor34, age 

was uncoupled from other variables during the adjustment in multivariate analysis.  

Since the transferability of a prognostic or predictive marker is always coupled with 

a specific therapy, the results of this study can only be applied on patients receiving 

the same intensive treatment protocols regardless of a patient’s age. 

The other clinical parameters of our cohort were largely comparable to those 

published in previous studies that included both younger and older AML patients, as 

indicated in the results section.  

 

Methods  

All tools and statistical methods have complied to commonly executed algorithms in 

SNP association analyses. The team chose the tools on base of good experience 



 

 

considering speed, accuracy, and handling of large datasets. Also, the chosen 

programs interlocked well with each other. However, concerning the way of 

sequencing, the chosen reference genome, and the cut-off percentage for excluding 

variants with low coverage, different applications might have been an equally good 

option. Following, I will discuss some of these alternate options. I will also briefly 

comment and reflect the way we performed the association re-analyses of previous 

studies and what consequences resulted from this way of performing validation 

analyses. 

First, the applied method of targeted amplicon sequencing required the knowledge 

of informative AML genome segments before the start of sequencing.103 Since 

recurrently mutated genes in AML have been identified, sequencing sites could be 

defined. Despite, potentially significant associations outside the targeted locations 

have been missed. Also, the sequenced regions differed between AMLCG and AMLSG 

samples. With this, the majority of the called SNPs also did not overlap between the 

cohorts. Due to the low overlap, an alternate option would have been to perform the 

workflow separately in both cohorts. This would have improved homogeneity of the 

data and thus reduced the error susceptibility of the subsequent association analyses. 

Meanwhile, the number of samples analysed for several SNPs would have been 

reduced, therefore reducing the significance and power of the results. In this context 

we kept the dataset as one cohort and decreased the error susceptibility by applying 

various filtering steps (compare chapter Workflow of the explorative Association 

Analysis).  

Second, even though many SNPs were only covered in half of our cohort, the SNPs 

were nevertheless analysed in a greater number of patients than in most previous AML 

SNP studies. Instead, a couple of previous studies sequenced larger genomic regions, 

providing a higher number of analysable SNPs.  

Third, the choice of the reference genome fell on the no longer current version 

GRCh37. This version was used to keep this study comparable to former studies 

executed on the same data set and utilised GRCh37. Also, a genomic position could 

always be viewed from the sight of GRCh37 and the actual GRCh38 in the dbSNP 

database. Nonetheless, we had to be careful when comparing genomic locations 

between our and other studies, as sequences may have differed depending on the 

reference genome chosen.  



 

 

Fourth, during the data preparation we removed SNVs whose genomic locations 

were covered in <30% of the samples. In many association studies, filters were applied 

that also exclude variants with higher missingness cut-offs as <50%. However, most 

of the other association studies were conducted on GWAS data, consequentially the 

coverage for the single samples was much higher compared to the amplicon 

sequencing in our cohort. Especially, variations that were covered in one of the 

cohorts, for example the AMLCG cohort and in only few samples of the second, 

AMLSG cohort, would have been excluded by applying a higher cut-off for 

missingness.  

 

During the validation analysis of previous study findings, we aimed to exactly re-

analyse the previous studies. Since we did not screen for all clinical parameters 

mentioned in the prior studies, we had to focus on the validation of few associations. 

With regard to the parameters that were not assessed in our cohort, replacing them by 

related variables reduced the power of our re-analysis results as a validation analysis 

on the one hand, on the other hand we still proved the clinical relevance of those 

variants.  

 

Results  

Explorative Analysis 

In this section, I will elaborate on possible causal explanations for the established 

associations between rs2303430, rs28489067, rs145370659, and prognostic factors. 

Furthermore, I will have a closer look at the associations between SNPs and gene 

mutations.  

 

With respect to rs2303430 (A>T), we found two associations between the SNP’s 

minor allele and lower CR rates as well as higher ED rates. While the reason of these 

associations has stayed speculative, it is worthy to discuss potential causes. 

Although rs2303430 is an intron variant and thus does not per se change the 

function of the Platelet Derived Growth Factor Receptor Alpha (PDGFRA) gene 

protein, intron variants do influence gene activity in other ways. For example, previous 



 

 

research has described SNPs which, though located far from any splice site in the 

intron, influenced the transcriptional factor binding or the splicing efficiency of genes.49  

The PDGFRA gene on whose intronic region SNP rs2303430 is located is 

particularly responsible for the stimulation of cell growth and proliferation 

processes.95,104 Specifically, the gene induces the formation of a protein belonging to 

the family of receptor tyrosine kinases (RTKs). Among others, these RTKs are 

responsible for reactions that (de-)activate enzymes104-107. Enzymes as regulators of 

cell growth could influence the remission rates and mortality in leukaemic patients. 

Also, the potentially altered role of enzymes in drug metabolism may contribute to 

decreased CR and increased ED rates.  

A further causal link could be established between rs2303430 and a particular 

leukaemia entity called PDGFRA-associated chronic eosinophilic leukaemia. The 

patients who suffer from this type of leukaemia carry a mutated PDGFRA gene (often 

in fusion with the FIP1L1 gene) that encodes a fusion protein which does not need 

cytokine bindings for being activated. Via signalling molecules, the mutated PDGFRA 

gene leads to the continuous myeloproliferation and a more probable survival of the 

affected cells. Cases in AML patients carrying the PDGFRA-FIP1L1 gene have been 

described before.108-110  

Translated to our cohort, this might mean that changes in the PDGFRA gene, 

potentially co-initiated by the SNP rs2303430, might increase the growth rate of 

leukaemic cells and hereby influence the achievement of CR and ED.  

 

Also associated with CR was the SNP rs28489067 (C>T). Patients with the minor allele 

showed an increased chance of achieving CR. Like rs2303430, this SNP is located in 

an intronic region of the PDGFRA gene.96 Therefore, the same possible association 

explanations can be constructed as for rs2303430. 

 

With two SNPs located in the PDGFRA gene being associated with CR, the theory of 

changes in this gene as a potential cause of the association with the postinduction 

situation becomes more likely. Surprisingly, previous studies did not review the latter 

two SNPs to be associated with the outcome of AML patients. A potential explanation 

for this may relate to the much lower patient sample numbers in studies analysing 

these associations up to now and to the intronic location of the respective SNPs. 

 



 

 

In contrast to the two common SNPs discussed above, rs145370659 (A>C) was less 

common in our cohort. Our analysis indicated that patients carrying this SNP’s minor 

allele had higher rates of RD compared to those carrying the major allele 

homozygously. rs145370659 is located on chromosome 1 in the intronic region of the 

Nardilysin Convertase (NDRC) gene.98 To our knowledge, no studies have established 

a link between either NDRC and leukaemia or NDRC and drug metabolism. Further, 

rs145370659 falls to the genomic location of the microRNA MIR761.98 Micro-RNAs 

participate in the post-transcriptional control of gene expression. They influence the 

stability and translation of messenger RNAs (mRNA) which promote gene 

transcription. MIR671 has been described in different manuscripts to be associated 

with tumour development and proliferation of other forms of cancer. For example, 

studies have revealed that MIR671 plays a regulating role in breast cancer, 

osteosarcomas and glioblastomas.111-113 Therefore, an influence of rs145370659 on 

the proliferation of AML cannot be ruled out either. MicroRNAs, in general, are proven 

to influence drug metabolism and efficacy.114 This was not yet proven for MIR671 in 

particular. Nevertheless, by being located on MIR671, rs145370659 might influence 

the chemotherapeutic drug metabolism in AML patients, leading to higher rates of RD.  

 

However, our findings remain speculative as long as they are not validated in an 

independent data set. 

 

Considering the results of the explorative analysis part, one can see that most 

associations existed between SNPs and gene mutations. In the next part, I will discuss 

the potential role of these associations.  

Many SNPs were associated with gene mutations located on chromosomes other 

than the SNP. For clarity, we focussed on common and less common SNPs in 

recurrently mutated genes. With ASXL1 and TP53, we found two AML mutations, 

incorporated in the ELN2017 scoring (compare table 1), that were significantly 

associated with analysed SNPs. Some other SNP associations were found with genes 

that are in the present field of AML research, for instance, IDH2 and RAS. We found 

the minor alleles of three SNPs to be associated with a higher occurrence of IDH2 

mutations. IDH inhibitors are one of the targets of new molecular therapies and first 

studies showed promising results for their success in IDH mutated AML patients.115 

Also subject to current AML research have been RAS (NRAS, KRAS, HRAS) 



 

 

mutations.116-118 We identified that the minor alleles of various SNPs are associated 

with an increased incidence of NRAS and KRAS mutations in our cohort. We further 

found several SNPs associated with MLL mutations. The latter are said to lead to 

decreased RFS periods and higher refractory rates.119 

Even if all the associated genes potentially influence AML in different manners, SNP 

with gene mutation associations are not of high relevance in diagnostics or prognosis 

estimation of AML. The following applies to all of the above-described SNP with gene 

associations: Either they are associated with gene mutations that are already being 

screened during AML diagnostics, or the prognostic significance of the target gene in 

AML is unclear.  

Nonetheless, SNP to gene associations should be viewed from another perspective: 

Genes located on the same chromosome are usually inherited together as long as 

there is no crossing over. On the other hand, genes located on different chromosomes 

are inherited unattached and uninfluenced by genes on other chromosomes.120 Hence, 

the question arises as to how a SNP can be associated with a mutation that is found 

elsewhere on the genome. For instance, the incidence of ASXL1 mutations on 

chromosome 20 is more than eleven times higher in patient samples carrying the minor 

allele of rs75395837 on chromosome eleven in the ZBTB44 gene (P<0.0001). Since 

the association resulted from the large number of 1,381 screened samples and the 

frequency of ASXL1 mutations in AML is high, it is not likely to be coincidence. 

Concluding, the inheritance of mutations seems more complex than generally 

assumed. As an already known example the simultaneous inheritance of mutations is 

evident in Trisomy 21 patients. These patients have an above-average incidence of 

Philadelphia-Chromosome-like Acute Lymphoblastic Leukaemia without a genomic 

link between Trisomy 21 and the underlying translocation.121 In this context, the role of 

SNPs as potential influencing factors in mutation inheritance and predisposition should 

be considered more closely.  

 

Validation Analyses of previously published clinically 
relevant SNPs 

In the following part, I will discuss the relevance of the results from the validation 

analyses. I will mention reasons that may have contributed to the invalidation as well 

as possible sources of biases during the validation analyses.  



 

 

I performed an intensive literature research by using the dbSNP, SNPedia, and 

GWAS catalogue databases to identify those SNPs associated with the outcome of 

AML in previously conducted studies. Due to the lack of a central platform that 

summarises all SNP studies, my literature search might have missed some relevant 

studies.  

Out of the final 12 SNPs that were sufficiently covered in our cohort for validation, 

merely rs245420685 and rs772926981,82 manifested a comparable association in the 

univariate validation analysis. However, the validation analyses of both associations 

could not be performed by exactly mimicking the respective previous studies. 

Furthermore, both associations were not significant after multivariate analysis. For 

most of the other reported SNP associations, we found a tendency of association, but 

the p-values did not approach the significance threshold of 0.1 in univariate analysis. 

The non-validation of the prior study results could be explained by various reasons.  

First, some literature results were based on cohorts that differed from our cohort 

either in terms of age or in terms of the type of leukaemia. Also, we reproduced studies 

that investigated parameters not assessed in our dataset and we associated the 

respective SNPs with clinically relevant parameters from our cohort. We chose to 

validate these associations with our differing data in order not to miss associations that 

overlapped between the different leukaemia cohorts.  

Second, the prior results were, with the exception of two studies of Megías-Vericat 

et al., Pharmacogenomics J. (2015)87 and Rafiee et al., Blood Cancer J. (2019)88 based 

on small cohorts (compare table 4). These small cohorts were additionally stratified, 

further reducing the sample size analysed. Study results from small cohorts have a low 

statistical power.122 However, the size of our cohort should be relativised, too, as many 

regions and hereby many SNPs were only covered by about half of our cohort. 

Additionally, by stratification, our cohort size decreased analogously to the previous 

study cohorts.  

Third, some of the published association papers did not inform on the applied 

association models. For performing the validation analysis, we had to deduce the 

chosen model from the results of the previous association analysis. These deductions 

might have led to other than the before applied association model.   

All before described points could have served as source of biases during the 

validation process. Therefore, like previous studies, our results are not definitive and 

need to be interpreted with caution.  



 

 

However, reinforced by the invalidation of several SNP associations, it can be 

concluded that results from small cohorts should only be considered as association 

tendencies as long as they have not been independently validated in a large cohort. 

Also, results from stratified cohorts should be questioned since they cannot be 

transferred to those patients who differ from the specific investigated parameters. 

Referring to those studies that have repeatedly stratified their cohorts, one might 

conclude that the results are applicable to only a relatively small minority of AML 

patients. In addition, the inclusion of ELN2017, a meaningful stratification model, 

challenges association results from studies which did not adjust for pre-known risk 

models during multivariate analysis. 

Our project encourages to critically reconsider the value of association studies on 

small cohorts. It further emphasises the importance of validating results with unrelated 

cohorts – especially in the context of currently established markers. 

 

Clinical Relevance 

Ensuing, I will outline the meaning of our results for the clinical management of AML 

patients. 

Since ELN risk stratification models were established, the individualised therapy 

opportunities of AML patients vastly increased. ELN2017 is an efficient scoring system, 

hence, additional prognostic biomarkers must show clear additive benefit. Such 

biomarkers could be of various origins. Our pilot study demonstrated that SNPs 

incorporated in current targeted sequencing panels cannot yet improve the further 

therapy individualisation, even though they are a promising area of research.  

I would like to point out that, with regard to the 12 reproduced SNP association 

studies, we were the only group to carry out the association analysis in the context of 

ELN2017. The same applies to most of the prior studies, which we could not validate 

due to the lack of coverage, but most of which were also not adjusted for ELN2017. 

Hereby, they are not applicable in times of ELN2017. Furthermore, compared to 

previous AML SNP studies, our explorative results are especially clinically interesting 

because, in contrast to most of the other studies, they were based on the analysis of 

an unstratified AML cohort. This makes our results being transferable to all younger, 

intensively treated adult AML patients.  



 

 

To be applicable, a biomarker must meet certain requirements. Low costs, quick 

results as well as high sensitivity and specificity are of main interest. All this vastly 

improved since Next Generation Sequencing techniques replaced Sanger sequencing 

techniques as standard.123 Hereby, SNP screening of patients with AML in the clinical 

diagnostic routine is realistic and could, in principle, be easily incorporated in targeted 

sequencing panels. 

Especially reliable biomarkers predicting the likelihood of CR achievement before 

the start of induction therapy would be of high value. rs2303430 could be one SNP that 

delivers this additional information. If the association could be validated in independent 

AML cohorts, studies on minor allele carriers can be conducted. Hereby, different 

treatment regimens could be compared in terms of outcome. In case these studies 

show positive results, screening for rs2303430 alleles could potentially improve the 

therapy success for AML patients as rs2303430 is a frequent SNP in AML cohorts. 

However, as mentioned before, since these findings were not yet validated, they 

should be considered preliminary and only hypothesis generating. 

Besides the honest discussion about a patient’s prognostic chances, the primary 

use of alternative second-line therapies in patients with an adverse constellation for 

CR achievement, could avoid burdensome therapies. Thus, in the best case, the 

survival rate could be improved through more individualised therapy, the patient’s 

quality of life would not be unnecessarily impaired by measures that do not promise 

success and the health system would not be burdened. 

Summarised, the results of our pilot study, particularly concerning rs2303430, 

encompassed promising associations relating to the outcome of AML patients. Yet, 

there is a need to conduct validation studies before they can evaluate for clinical use. 

   



 

 

PERSPECTIVE  
The here reported results can only be considered preliminary. The BEAT cohort, which 

had been used as a validation cohort up to this point, included genomic regions other 

than AMLCG and AMLSG. Furthermore, the BEAT cohort proved to be too small for 

being reliably used to validate the results of this study. Currently, under the direction 

of Dr. Aarif Nazeer Batcha, the results are being validated using the data from a further 

AML cohort. However, by May 2022, within our results no additional SNP associations 

were found that could have been validated with the additional dataset. 

  



 

 

SUMMARY 
The primary aim of this retrospective pilot study was to identify SNPs incorporated in 

targeted DNA sequencing panels of AML patients that can predict disease progression 

and/or therapy efficacy. Additionally, we intended to validate several SNP associations 

already described in previous publications.  

This comprehensive analysis constituted one of the largest SNP projects in patient 

samples with AML but is limited to a small part of the genome. Data of 2,678 Northern 

European patients enrolled in phase III trials of the AMLCG and AMLSG study groups 

were included in the study. These patients sequencing data were first compared with 

a reference genome to identify variants. The variants were annotated, filtered and then 

quality-controlled. Ensuing, univariate association analysis was conducted, followed 

by multivariate analysis of the significant association results. For associated SNPs, 

sequencing data of the BEAT cohort served as validation.   

With rs2303430 and rs28489067 (both located in the PDGFRA - gene) as well as 

rs145370659 (NDRC - gene), we found three previously unknown SNP associations 

with prognosis-predicting parameters among the analysed AML cohort. rs2303430 

was associated with lower rates of Complete Remission and higher rates of Early 

Death. rs145370659 was more frequently found in patients who achieved Complete 

Remission while rs28489067 was associated with higher rates of Resistant Disease. 

Yet, these given associations could not be validated. 

In the second part of our project, we reproduced various previously published SNP 

studies in our larger cohort. None of these previous association results could be 

validated. Since most of the published associations resulted from small and stratified 

cohorts, the invalidation of these SNPs in a large cohort underlines the relevance of 

large and homogenously treated patient cohorts. It further highlights the need for 

independent validation of association analyses to achieve reliable and reproducible 

results. 

If the SNP associations described as relevant in this project can be validated in 

further cohorts, they might serve as biomarkers in the future. The SNPs could be used 

in addition to the ELN2017 risk scoring in clinical practice. Used at the time of 

diagnosis, they could gain importance in determining the therapeutic procedure and 

support the individualisation of AML patients‘ treatment. 



 

 

ZUSAMMENFASSUNG 
Das primäre Ziel dieser retrospektiven Pilotstudie war, anhand von DNA-

Sequenzierungsdaten SNPs zu identifizieren, welche den Krankheitsverlauf sowie den 

Therapieerfolg von Patient*innen mit AML prognostizieren können. Ein weiteres 

Studienziel war die Validierung mehrerer SNP-Assoziationen, welche bereits in 

früheren Publikationen durch andere Autor*innen beschriebenen wurden.  

Diese umfassende Analyse stellt eines der größten an AML Patient*innen 

durchgeführten SNP-Assoziations-Projekte dar. Dennoch konnte in unserer Studie nur 

ein kleiner Teil des Genoms analysiert werden. Daten von 2678 nordeuropäischen 

Patient*innen, behandelt in Phase-III-Studien der AMLCG und AMLSG 

Studiengruppen, wurden eingeschlossen. Zunächst wurden die Sequenzierungsdaten 

dieser Patient*innen mit einem Referenzgenom verglichen, um Varianten zu 

identifizieren. Die Varianten wurden annotiert, gefiltert und ihre Qualität überprüft. 

Anschließend wurden univariate Assoziationsanalysen durchgeführt, gefolgt von 

multivariaten Analysen der signifikanten Assoziationsergebnisse. Für die assoziierten 

SNPs dienten Sequenzierungsdaten der BEAT-Kohorte als Validierung. 

Mit den SNPs rs2303430 und rs28489067 (beide im PDGFRA - Gen lokalisiert), 

sowie rs145370659 (NDRC - Gen), fanden wir drei bisher unbekannte SNP-

Assoziationen mit prognostisch relevanten Parametern in der untersuchten Kohorte. 

SNP rs2303430 war mit niedrigeren Raten von kompletten Remissionen und mit 

höheren Raten von frühen Todesfällen assoziiert. rs145370659 wurde häufiger bei 

Patient*innen gefunden, die eine komplette Remission erreichten, während 

rs28489067 mit höheren Raten einer therapieresistenten Erkrankung assoziiert war. 

Diese gefundenen Assoziationen konnten jedoch bisher nicht validiert werden. 

Im zweiten Teil unseres Projekts reproduzierten wir verschiedene zuvor 

durchgeführte SNP-Studien in unserer größeren Kohorte. Wir konnten keine der 

beschriebenen Assoziationen validieren. Da die meisten der zuvor publizierten 

Assoziationen aus kleinen und stratifizierten Kohorten stammten, unterstrich deren 

nicht erfolgreiche Validierung erneut die Notwendigkeit, Forschungsprojekte an 

großen und homogen behandelten Patient*innengruppen durchzuführen. Es bestätigt 

zudem das Erfordernis einer unabhängigen Validierung von Assoziationsergebnissen, 

um belastbare Daten zu erzielen.  



 

 

Vorausgesetzt, die von uns als relevant beschriebenen SNP-Assoziationen können 

in weiteren unabhängigen Kohorten validiert werden, könnten sie in Zukunft als 

Biomarker dienen. Die SNPs könnten zusätzlich zu der ELN2017 Risikostratifizierung 

im klinischen Alltag angewendet werden. Bereits bei Diagnosestellung eingesetzt, 

könnten sie Bedeutung bei der Festlegung des therapeutischen Prozedere gewinnen 

und die Individualisierung der Behandlung von AML-Patient*innen fördern.  
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GLOSSARY 

This is an explanation of terms, in what meaning they were used in this work. 
 
 
Allele   The different variants (bases) that exist for one SNV/SNP.  

Biomarker Variable that can be measured to forecast a particular 

outcome of the disease. 

Called Variants/  Genomic locations that were identified as different    

              SNVs/ compared to the reference genome during variant calling. 

              SNPs 

Clinical variables/  Disease factors that can be measured from the patient’s 

         parameters/            record. Comparable to Outcome. 

    characteristics/             

ELN2017  Risk scoring system from the European Leukemia Net that 

classifies AML by genetical characteristics. 

Exome   The totality of the exons of an organism. 

Exon Section of a gene containing the information necessary to 

produce proteins. 

Genome   All genetic information present in a cell. 

Genomic location Specifies the physical location of a SNV/SNP on the 

genome 

Genotype The two alleles present for a particular SNV/SNP in one 

individual. 

Heterozygous Carrying two different alleles at a particular SNV/SNP 

location. 

Homozygous Carrying two identical alleles at a particular SNV/SNP 

location. 

Intron     The non-coding sections of DNA within a gene. 



 

 

Mapping The genetical comparison between the reference genome 

and each individual of the cohort. 

Minor Allele Frequency    The frequency with which the second most common allele 

appears in a given population. 

Multivariate analysis Association analysis of data that contain different variables 

which might influence each other. In this study, the term 

describes association analysis with adjustment for age 

and ELN2017. This was only done for associations that 

were significant (p<0.1) in univariate analysis. 

Outcome Measurable parameters that describe the health status 

and the therapy success of a patient. In our analysis 

mainly: Overall Survival, Refractory-Free Survival, 

Complete Remission, Early Death and Resistant Disease.  

rs… Prefix for SNVs/SNPs (see SNV/SNP). rs=reference SNP 

cluster ID. 

SNP SNV that occurs in >1% of the organisms in a given 

population.  

SNV Variation of a single base pair in a complementary DNA 

double strand.  

Stratification Association analysis on parts of a cohort only. Often 

performed in studies found in publications. It was mainly 

stratified for: primary AML, Normal Karyotype AML, or 

patients carrying certain gene mutations.    

Univariate analysis Association analysis between two parameters. In this 

study it was done for every called SNV and every clinical 

outcome parameter as well as every gene mutation 

evaluated in the cohort. 
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