
Characterization of Response Properties and
Connectivity in Mouse Visual Thalamus and

Cortex

Simon Renner

Dissertation der

Graduate School of Systemic Neurosciences

Ludwig-Maximilians-Universität München

January 2022



Characterization of Response Properties and Connectivity in Mouse Visual
Thalamus and Cortex

Doctoral dissertation
by Simon Renner
Graduate School of Systemic Neurosciences
Ludwig-Maximilians-Universität München
January 2022

Except where otherwise noted, this work is licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0).

Supervisor

Prof. Dr. Laura Busse

Department Biologie II, Division Neurobiology

Ludwig-Maximilians-Universität München

First Reviewer: Prof. Dr. Laura Busse

Second Reviewer: Prof. Dr. Tatjana Tchumatchenko

Third Reviewer: Prof. Dr. Matthias Kaschube

Date of submission: January 20th 2022

Date of defense: June 22nd 2022

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Acknowledgements

I first want to thank three people without whom this thesis would never have started.
Prof. Dr. Thorsten Stein first encouraged me to travel the path of neuroscience and
Prof. Dr. Marco Taubert guided me during my first steps in this field. Prof. Dr.
Stefan Glasauer gave me the chance to come to Munich and start my PhD at the
GSN. Dear Thorsten, Marco, and Stefan, thank you for your trust and support, my
path would have been very different without you.

Foremost, I want to thank Prof. Dr. Laura Busse for supervising and guiding me
through my PhD. Dear Laura, thank you for your advice, your critique, your help,
your strength, your understanding and your support in all matters; you have made
me a better scientist and a better person.

I want to thank the members of my Thesis Advisory Committee – Prof. Dr.
Tatjana Tchumatchenko, Prof. Dr. Thomas Wachtler, and Dr. Martin Stemmler –
for the advice and fruitful discussions during my PhD.

I want to thank my collaborators – Prof. Dr. Tatjana Tchumatchenko and Dr.
Nataliya Kraynyukova – for the chance to work with them and learn from them.

I want to thank the entire Neurobiology Department for three great years at the
Biocenter; especially Yannik, who recruited me into the lab, Martin, who taught
me how to perform experiments and be a better programmer, and my office mates
Gregory and Felix, who made the bad times bearable and the good times even better.
Thank you for the support, the discussions, and the many happy moments, I will
miss you.

I also want to thank Davide and Lukas for proofreading my thesis, your keen
eyes and helpful comments have greatly improved this text.

I want to thank the SPP2041 Computational Connectomics for funding my PhD
and providing an embedding into the German neuroscience scene, the RTG2175

Perception in Context and its Neural Basis for interesting courses and wonderful
retreats, and the GSN for a beautiful and supportive environment to study in.

My deepest gratitude goes towards my girlfriend Lisa, who has been with me
through all the ups and downs of this journey, and my family, who has given me

3



4

unconditional support and freedom on my path towards this degree. Thank you for
your love and support, I could not have done this without you.



Summary

How neuronal activity is shaped by circuit connectivity between neuronal popu-
lations is a central question in visual neuroscience. Combined with experimental
data, computational models allow causal investigation and prediction of both how
connectivity influences activity and how activity constrains connectivity. In order to
develop and refine these computational models of the visual system, thorough char-
acterization of neuronal response patterns is required. In this thesis, I first present
an approach to infer connectivity from in vivo stimulus responses in mouse vi-
sual cortex, revealing underlying principles of connectivity between excitatory and
inhibitory neurons. Second, I investigate suppressed-by-contrast neurons, which,
while known since the 1960s, still remain to be included in standard models of vi-
sual function. I present a characterization of intrinsic firing properties and stimulus
responses that expands the knowledge about this obscure neuron type.

Inferring the neuronal connectome from neural activity is a major objective of
computational connectomics. Complementary to direct experimental investigation
of connectivity, inference approaches combine simultaneous activity data of indi-
vidual neurons with methods ranging from statistical considerations of similarity to
large-scale simulations of neuronal networks. However, due to the mathematically
ill-defined nature of inferring connectivity from in vivo activity, most approaches
have to constrain the inference procedure using experimental findings that are not
part of the neural activity data set at hand. Combining the stabilized-supralinear
network model with response data from the visual thalamus and cortex of mice,
my collaborators and I have found a way to infer connectivity from in vivo data
alone. Leveraging a property of neural responses known as contrast-invariance of
orientation tuning, our inference approach reveals a consistent order of connection
strengths between cortical neuron populations as well as tuning differences between
thalamic inputs and cortex.

Throughout the history of visual neuroscience, neurons that respond to a visual
stimulus with an increase in firing have been at the center of attention. A different
response type that decreases its activity in response to visual stimuli, however, has
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been only sparsely investigated. Consequently, these suppressed-by-contrast neu-
rons, while recently receiving renewed attention from researchers, have not been
characterized in depth. Together with my collaborators, I have conducted a survey
of SbC properties covering firing reliability, cortical location, and tuning to stimulus
orientation. We find SbC neurons to fire less regularly than expected, be located in
the lower parts of cortex, and show significant tuning to oriented gratings.
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1 Introduction

1.1 Primer: Function and Connectivity

Our visual system helps us to extract relevant information from the constant stream
of input that our surroundings bombard our eyes with. Illusions like the Rubin vase,
which doubles as two faces in profile, or Daniel Simons’ monkey business, where
we fail to spot a Gorilla running through a scene we observe, demonstrate power-
fully that this extraction of information is neither entirely truthful, nor is it trivial.
It takes complex pattern recognition to dissect a visual image into meaningful com-
ponents and represent them in conscious or unconscious perception. So how does
the brain handle this tremendous challenge? Today, with public attention on deep
learning and self-driving cars, it may seem obvious to think of the brain as a net-
work of computational units that send signals back and forth to extract information
patterns. But it was not always so. At the end of the 19th century, when many be-
lieved the brain was working as one unified construct, Ramón y Cajal identified the
individual neuron as the main functional unit of the brain. With Sherrington formu-
lating the idea of individual synapses as connection points between these neurons
and the discovery of the action potential as a communication signal passing along
these synapses, the ingredients for a distributed information processing system were
in place. In the following decades, pioneering work in the visual system led to the
discovery of receptive fields, convergent connections, and the formulation of dis-
tributed coding principles in the brain. Equally supported by evidence about how
the brain stores memories and navigates in space, the idea that neural networks
can extract and store information because of their specific network connections was
established as a fundamental principle in neuroscience.

Today, uncovering the direct relation between structure and function of brain
networks lies at the heart of modern neuroscience and provides one of its biggest
challenges: observing brain structure and function at the same time. As an ex-
perimental technique that can provide such a unified picture is still out-of-reach,
any attempt at directly relating structure and function must use combinations of
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10 1. INTRODUCTION

different methods that capture aspects of one or the other, and carefully piece to-
gether the evidence. However, even with such an approach, structure and function
are still measured separately both in time and space. Additionally, what can be
measured about network structure depends highly on the method employed, with
electron microscopy giving a much different picture than synaptic tracing or current
stimulation techniques. But beyond the methodological differences, which range
from anatomical descriptions to in vitro response propagation in neural tissue, lies a
joint characteristic: the computational structure of the network. In it, all biological
details about ion channels, membrane potentials, transmitters, and synaptic bou-
tons are combined into one fundamental property: how information flows from one
neuron to the next. This is an abstract property that can be implemented in biolog-
ical structure and can even remain intact as the detailed physical structure changes
over time. Motivated by such robustness, the question arises if the computational

structure of a brain network could be determined computationally, that is to say, by
combining experimental data with a mathematical model of brain function. In the
first part of this thesis, I will present a study that uses the stabilized supralinear net-
work (Ahmadian et al., 2013), a state-of-the-art cortical model, to infer connectivity
in mouse visual cortex.

The stabilized supralinear network model used in the first part of the thesis
highlights the interaction between populations of excitatory and inhibitory neu-
rons in cortex. At the same time, it excludes suppressed-by-contrast (SbC) neurons
(Rodieck, 1967), a neuronal response type that was discovered in the the 1960s
but has remained on the fringes of scientific interest. Consequently, SbC neurons,
which respond to visual stimuli with a decrease in activity rather than an increase
in activity, have remained understudied and have not found their way into computa-
tional models of visual function. As SbC neurons nonetheless represent a sizeable
fraction of visually responsive neurons and are likely to participate in visual feature
processing, a better understanding of their response properties and role in the circuit
is needed. In the second part of this thesis, I will present a study characterising both
intrinsic and stimulus response properties of SbC neurons.

Before presenting the two manuscripts, I will cover the necessary background
on response phenomena, computational models, and connectivity in the early visual
system.
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1.2 Emergence of Orientation Selectivity

When light hits the retina, it is transduced by photoreceptors into a bio-electrical
signal and thus becomes accessible to the brain. The retina additionally starts to
process the image signal, by, for example, extracting differences in contrast to re-
duce redundancy (Kuffler, 1953), before sending information on to the brain via
retinal ganglion cells. While retinal ganglion cells project to multiple brain areas,
like the hypothalamus, superior colliculus and pretectal region in mice, the strongest
projection is towards the dorsolateral geniculate nucleus (dLGN) in the thalamus
(Martersteck et al., 2017). This projection route is also the most important for con-
scious visual perception, as it further projects to the primary visual cortex (V1), the
first of multiple cortical areas for visual processing (Kandel et al., 2000).

Early recordings of action potentials in the dLGN, emitted in response to flashes
of light, have provided evidence that most neurons in dLGN possess center-surround
receptive fields (Hubel, 1960). This means that light in a specific circular region of
the visual field causes firing of a neuron at light onset (on-subfield), while light
in a surrounding annulus inhibits firing (off-subfield), or vice versa. In V1 on the
other hand, receptive fields are elongated into bar-like shapes, with different con-
figurations of an on-subfield being flanked by an off-subfield, or vice versa (Hubel
and Wiesel, 1962). Consequently, responses to an elongated stimulus are strongly
dependent on the orientation of the stimulus, constituting one of the hallmarks of
visual cortex: orientation selectivity. As a readily quantifiable property, the emer-
gency of orientation selectivity in visual processing has served both as an experi-
mental anchor to explore a multitude of other phenomena and as a foundation for
modeling the visual system.

1.3 Models of Orientation Selectivity

The first conceptual model for the emergence of orientation selectivity during the
transition from dLGN to V1 was provided by Hubel and Wiesel (1962), who pro-
posed a feed-forward model where multiple dLGN neurons with spatially offset re-
ceptive field centers converge onto one cortical neuron, endowing that neuron with
a ”simple” receptive field with an angled, elongated central region and two flanking
regions of opposite polarity. These simple cells were in turn hypothesized to con-
verge onto other neurons in V1 and thus form more ”complex” receptive fields that
are independent of the exact location of the presented edge as long as it is oriented
the correct way (Fig. 1.1). This simple model immediately offered predictions about
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A B

Figure 1.1: Convergence pattern in a feed-forward model. A Multiple dLGN neu-
rons with center-surround receptive fields converge onto one cortical simple cell,
forming an edge detector. B Multiple simple cells with vertical receptive fields con-
verge onto a complex cell, forming an edge detector that is invariant to the spatial
phase of the edge (Hubel and Wiesel, 1962, reproduced with permission from John
Wiley and Sons).

how dLGN neurons and V1 neurons would connect: 1) Neurons with a central on-
subfield in dLGN should be connected to neurons with a central on-subfield in V1.
2) dLGN neurons that project to V1 should be spatially aligned with their targets.
Both predictions were experimentally verified in the following years (e.g. matching
polarity: Reid and Alonso (1995), spatial alignment: Chapman et al. (1991)), solid-
ifying the idea that feed-forward convergence contributes to orientation selectivity
(Lien and Scanziani, 2013). However, besides the evidence that the circuit scheme
connecting dLGN and V1 is actually much more complicated (Jürgens et al., 2012),
there are also response phenomena that cannot be explained by such a simple model.

A surprisingly potent catalyst and checkpoint for models of orientation selec-
tivity has been the experimentally observed contrast-invariance of the width of the
orientation tuning curve, called contrast-invariance for short. It means that, during
presentation of orientated gratings, the width of the orientation tuning curve of a
neuron stays constant across different levels of contrast. The feed-forward model,
however, would predict the so-called iceberg effect, which is a stark contradiction
of contrast-invariance (Fig. 1.2). Experimentally confirmed in cats (Sclar and Free-
man, 1982; Skottun et al., 1987), ferrets (Alitto and Usrey, 2004), primates (Caran-
dini et al., 1997) and mice (Niell and Stryker, 2008), contrast-invariance has been
shown to be a cornerstone of visual processing. As such, contrast-invariance has
driven the creation of new computational models that can adequately explain how it
is generated (Somers et al., 1995; Carandini et al., 1997), and continues to serve to
test and refine models as they progress (Finn et al., 2007; Sadeh and Rotter, 2015).

One approach to formulating models that are consistent with contrast-invariance
revolves around including cortical inhibitory neurons. Since orientation tuning was
found to be highly dependent on cortical inhibition (Sillito et al., 1980), adding
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A B

Figure 1.2: Contrast-invariance is violated in the feed-forward model. A Left: Con-
trast invariance means that the width of the orientation tuning curve remains con-
stant as contrast increases. Right: Normalizing the curves leads to perfect super-
position. B Left: In the feed-forward model, the baseline membrane potential of a
V1 simple cell increases with contrast due to higher overall drive from dLGN in-
puts. The spiking threshold may be higher than the maximum membrane potential
for some contrasts. Right: A linear spiking threshold for action potential genera-
tion leads to unequal tuning curve widths across contrast levels (Finn et al., 2007,
reproduced with permission from Elsevier).

either divisive or subtractive inhibition to the feed-forward model has been pro-
posed. Divisive inhibition normalizes the activity of a neuron by the total activity
of a large group of neurons (Carandini and Heeger, 1994), while subtractive inhi-
bition subtracts the activity of the surrounding neurons in a broadly-tuned fashion
(Wörgötter and Koch, 1991). However, while these models can generate contrast-
invariance, some of their properties spark controversy: divisive inhibition through
changes in membrane conductance occurs in multiple contexts and brain regions
(Carandini and Heeger, 2012) but seems not to be involved in orientation tuning
(Douglas et al., 1988). Broad subtractive inhibition on the other hand, while being
plausible from a connectivity perspective (see also section 1.4), strongly influences
not only the width of a tuning curve but also its height, prompting the next step in
model evolution: recurrent connections (Somers et al., 1995).

The neocortex consists of an intricately connected network of inhibitory and
excitatory neurons (Binzegger, 2004), lending substantial biological plausibility to
modeling cortical response phenomena with recurrently connected networks. How-
ever, the seemingly small step of adding recurrent connections propels a model into
a different qualitative class: it is now a dynamical system. Dynamical systems offer
great explanatory power for time-dependent processes like brain activity but they
are also require complicated mathematical analysis tools to analyze and understand
(Vyas et al., 2020). At the same time, their mathematics immediately introduce a
property that is of vital importance in the brain: stability or homeostasis of firing ac-
tivity. When the homeostasis of brain activity is strongly perturbed, for example by
blocking inhibition on a large scale, the activity of excitatory neurons is no longer
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balanced, which leads to runaway excitation and epileptic seizures (McCormick and
Contreras, 2001). For dynamical systems models of cortex, this means that strong
recurrent excitatory connections have to be balanced by inhibitory connections to
form so-called inhibition stabilized networks (ISN) (Tsodyks et al., 1997). Exem-
plifying the sometimes counter-intuitive nature of dynamical systems, ISNs predict
that increasing the external input to inhibitory neurons paradoxically decreases their
firing activity, as more excitation is withdrawn via inhibition of the excitatory neu-
rons than added via the external input (Sadeh and Clopath, 2020a). Underscoring
the biological relevance of the ISN, there has been recent evidence of this paradox-
ical suppression across visual, somatosensory and motor cortices (Sanzeni et al.,
2020). However, ISNs typically fail to reconcile contrast invariance with another
experimentally observed property: contrast response functions that saturate earlier
in V1 than in dLGN (Scholl et al., 2012). ISN models allow only one or the other,
thus leaving gaps open for other modeling approaches (Finn et al., 2007; Persi et al.,
2011).

Initially designed to combine sigmoidal contrast response functions with contrast-
invariance of orientation tuning, the stabilized supralinear network (SSN) (Persi
et al., 2011; Ahmadian et al., 2013) has proven so successful at modeling a variety
of cortical phenomena, that it has been hailed as a unifying circuit motif (Rubin
et al., 2015). The SSN is identical to the ISN in its connectivity assumptions and
only differs in the activation function that its neurons use to convert input into firing
activity. While classical ISN models use threshold-linear activation functions, the
SSN uses a power-law activation function (Fig. 1.3), smoothing the transition from
inactivity to firing (Persi et al., 2011). Using a power-law activation function has a
legitimate basis in the experimental literature: in cats (Anderson et al., 2000; Priebe
et al., 2004; Finn et al., 2007) and mice (Tan et al., 2011), trial-to-trial variability in
firing threshold crossings of the membrane potential leads to a power-law relation-
ship between membrane potential and firing rate. This relationship has been further
supported by modeling work showing that the most-common spiking neuron mod-
els lead to a power-law activation function (Hansel and van Vreeswijk, 2002) and
that a power-law activation function is necessary to convert contrast-invariance of
the membrane potential to contrast-invariance of the firing rate (Miller and Troyer,
2002).

The strength of the SSN lies in its ability to describe multiple cortical phe-
nomena. Its most characteristic - and eponymous - feature stems from the way it
behaves when transitioning from weak to strong inputs (Ahmadian et al., 2013).
As the authors describe, due to the recurrent connections in the SSN, a neuron’s
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A B

Figure 1.3: Connectivity and power-law activation function in the stabilized-
supralinear network (SSN) A Like the inhibition-stabilized network (ISN), the
SSN combines external input with recurrent connections between excitatory and in-
hibitory neurons. (Tsodyks et al., 1997). Copyright 1997 Society for Neuroscience.
B Left: Membrane potential for low (blue), medium (green), and high (red) con-
trast drifting gratings. Noise fluctuations in the membrane potential cause threshold
crossings of the membrane potential even if the mean is below threshold. Right:
Threshold crossings smooth the activation function and lead to a power-low rela-
tionship between mean membrane potential and firing rate (From [Anderson et al.
(2000)]. Reprinted with permission from AAAS.)

activity is fed back into itself. Mathematically, this means that the firing will be
governed by the initial input term and infinitely many terms where the input term
and the recurrent term are multiplied. For weak inputs, these infinitely many terms
will converge to a constant value much smaller than the initial input term. Thus the
network is essentially feed-forward-driven, with the input being amplified supralin-
early by the power-law activation function. For a steady-state with large inputs on
the other hand, the recurrent term must cancel the input term to maintain stability.
This indeed happens as inhibition dynamically stabilizes the network when the in-
put becomes stronger, leading to a sublinear dependence on the input. The network
thus transitions from a supralinear into a sublinear regime while being stabilized by
inhibition (Ahmadian et al., 2013).

Partly stemming from the characteristic transition from supralinear to sublin-
ear regime, additional emergent properties give the SSN considerable explanatory
power. As the contrast of a visual stimulus is increased, the activity of some neu-
rons in V1 reaches a peak and then decreases again, a phenomenon termed super-
saturation (Peirce, 2007), which can also occur in the SSN (Ahmadian et al., 2013).
The SSN can also model surround suppression, a phenomenon where responses in
V1 decrease when a stimulus is extended beyond a preferred size (Rubin et al.,
2015). If two competing stimuli are presented, the SSN also correctly predicts that
the response will depend on the relative strength of the stimuli, transitioning from
summing the individual responses sublinearly to a winner-take-all response (Rubin
et al., 2015). Additionally, presenting a stimulus quenches the variability of activity
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in many brain areas (Churchland et al., 2010), which the SSN can model using only
a single, stimulus-driven attractor (Hennequin et al., 2018). Remarkably, contrary
to other ISNs (van Vreeswijk and Sompolinsky, 1996), the SSN can achieve these
computations without requiring tight coupling between the network and external
inputs due to its dynamic stabilization (Ahmadian et al., 2013; Rubin et al., 2015).

While most initial work involving the SSN has centered on V1, recent work
shows that it can be both applied to other visual areas (Liu et al., 2018), as well as
at different scales, by either modeling multiple layers of cortex (Obeid and Miller,
2019) or interactions between interneurons (Palmigiano et al., 2020). Furthermore,
the SSN has been shown to allow multiple stable states, which could be the com-
putational basis for working memory (Durstewitz et al., 2000), persistent activity,
which is involved in decision-making (Curtis and Lee, 2010), and rhythm gener-
ation, which is a fundamental cortical property (Singer, 1993), demonstrating its
applicability to many different brain functions (Kraynyukova and Tchumatchenko,
2018). Critically, the behavior of the SSN depends on the configuration of its con-
nectivity parameters. For example, the transition to sublinear summation depends
on the excitatory recurrent connection (Ahmadian et al., 2013) and the number of
stable states the SSN can support is dependent on the determinant of the weight
matrix (Kraynyukova and Tchumatchenko, 2018). To judge the applicability of the
model and generate further predictions, it is thus vital to relate the model to the
connectivity found in the brain networks of interest.

1.4 Connectivity

Since Ramón y Cajal’s groundbreaking work showed how neurons as building
blocks of the nervous system form specific connections with each other (Llinás,
2003), the notion that a neuronal wiring diagram forms the basis of brain func-
tion has dominated the field and even birthed a whole subfield of research intent
on quantifying these connections, termed connectomics (Toga et al., 2012). How-
ever, scientists are heavily debating how much information is gained by studying the
connectome (Morgan and Lichtman, 2013), with critics pointing out that even com-
plete knowledge of the neuronal structure does not account for effects of neuronal
dynamics or neuromodulation (Bargmann and Marder, 2013). The most promi-
nent example of this controversy is the nematode C. elegans: its connectome has
been completely mapped over 30 years ago (White et al., 1986), yet a complete
functional understanding of the nematode’s nervous system has not been achieved.
Nonetheless, understanding the connectome of C. elegans has benefited research
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immensely, opening new avenues for studying behavioral paradigms and genetic
manipulation (Schafer, 2018). At the heart of the controversy around connectomics
lies the question: what is the connectome? There are many ways of measuring and
interpreting connectivity, ranging from electron microscopy to diffusion magnetic-
resonance imaging (Rossini et al., 2019). Each method can be used to construct a
network of nodes and edges, yielding static or dynamic connectivity measures be-
tween neurons or entire brain areas (Rossini et al., 2019). The connectome thus
becomes a multi-faceted entity that depends on the method, species and brain area
it is derived from, as well as the research question that motivated its investigation.

To model circuits of the visual cortex using the SSN, principled knowledge
of neuron-type specific wiring as well as quantified connection probabilities and
strengths are essential. In rodents, connections between excitatory neurons in V1
are generally sparse (Seeman et al., 2018) and highly non-random: strong connec-
tions tend to cluster together (Song et al., 2005), neurons with similar response
properties tend to be connected (Cossell et al., 2015), and neurons that receive com-
mon thalamic input (Morgenstern et al., 2016) tend to be connected. Combining
these results, a consensus has emerged that the rodent visual system, like the vi-
sual system of carnivores and primates, employs response-based connectivity that
enhances feature coding in visual cortex (Harris and Mrsic-Flogel, 2013).

In recent years, and with the arsenal of genetic tools in mice expanding rapidly,
inhibitory interneurons have come into the focus of circuit mapping. While excita-
tory neurons constitute the majority of neurons in cortex, inhibitory neurons come in
a variety of anatomical and morphological subtypes (Defelipe et al., 2013). With the
discovery that these subtypes selectively express neuropeptides like parvalbumin,
calretinin, and calbindin, histological methods to investigate different inhibitory in-
terneurons were developed around 1990 (Kawaguchi et al., 1987; Baimbridge et al.,
1992). Once the expression of these proteins was leveraged for the expression of
light-sensitive ion channels that allowed optical manipulation of specific cell types
(Boyden et al., 2005; Deisseroth et al., 2006; Kuhlman and Huang, 2008), it was
only a matter of time before large-scale investigations of inhibitory neurons would
develop (de Vries et al., 2020). Such targeted investigations of inhibitory neurons
have shown that they seem to have less functional preference than excitatory pyra-
midal (PYR) neurons and form denser connections to PYR neurons than PYR neu-
rons amongst themselves (Packer and Yuste, 2011; Karnani et al., 2016).

Especially interesting has been the differentiation of the three major subtypes of
inhibitory interneurons: parvalbumin-positive (PV), somatostatin-positive (SOM)
and vasoactive-intestinal-peptide-positive (VIP) neurons (Rudy et al., 2011). Of the
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three types, PV neurons have been studied most intensely and play an important
role in oscillatory activity, feature processing, gain control, and plasticity (Atallah
et al., 2012; Hu et al., 2014). SOM neurons on the other hand are thought to be
involved in spatial processing (Adesnik, 2017) and interactions between neurons
over longer distances (Veit et al., 2017; Lee et al., 2017), while VIP neurons have
been connected to the enhancement of weak stimuli (Millman et al., 2020) and the
effects of locomotion (Fu et al., 2014). Together, they seem to form a canonical
circuit of cortical inhibition, where VIP neurons connect only to SOM neurons, PV
neurons connect to excitatory pyramidal neurons as well as themselves, and SOM
neurons connect to all (Pfeffer et al., 2013). Combined with strong input from
thalamus (Cruikshank et al., 2007), this scheme puts PV neurons in the position
to provide both feedforward and recurrent inhibition in network models of visual
cortex.

Connectivity is typically quantified by measuring the connection probability
and strength between different neurons. In an imaging setting for example, trac-
ing synaptic boutons will yield an estimate of the probability to find a connection
between two neuron types (Bock et al., 2011). During paired patch-clamp record-
ings (Edwards et al., 1989; Miles and Poncer, 1996), the current gold standard to
measure functional connectivity, current is injected into one neuron, triggering an
action potential, which then induces a detectable postsynaptic potential (PSP) in
a second neuron. By measuring the strength of the PSP and defining a threshold
for considering two neurons to be connected, this method yields connection proba-
bility and connection strength, making it an ideal candidate to supply connectivity
estimations for modeling.

One major challenge when quantifying connectivity between different types of
neurons, is to relate that connectivity to other functional response properties. Since
patch-clamp techniques are carried out in vitro, responses of a patched neuron to
e.g. visual stimuli cannot be obtained during the recording. Consequently, attempts
to link stimulus responses to connectivity involve first probing neuronal responses
to a set of stimuli while uniquely identifying the neurons under investigation, before
re-identifying these neurons in the brain slice that is subsequently used for probing
connectivity (Ko et al., 2011; Hofer et al., 2011; Cossell et al., 2015). The techni-
cal complexity and inevitably low through-put of such dual-technique approaches
highlight both the immense value of these data sets and the need to refine comple-
mentary approaches to provide estimates of connectivity that can be captured on a
larger scale.
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1.5 Inference of Connectivity

In contrast to detailed connectivity measurements, which remain technically chal-
lenging and labor-intensive to obtain, the development of ever denser electrode ar-
rays (Jia et al., 2019) and large-scale calcium imaging techniques (Jercog et al.,
2016) has led to a drastic increase in the amount of neural response data gathered
around the world. Utilizing available data sets and surrogate data, computational
neuroscientists and modelers have put forth increasing efforts to infer network con-
nectivity from large-scale neural activity recordings (Magrans de Abril et al., 2018).
Two approaches can be distinguished: model-free and model-based inference meth-
ods. Model-free approaches link two neuronal activity traces based on statistical or
information-theoretic estimations of the traces’ similarity. While widely applica-
ble, these approaches offer little explanatory power about the underlying network
and cannot generate predictions that could be tested and verified. Model-based
approaches on the other hand allow assumptions about the process that generated
the activity data, such that models can be compared not just in terms of accurately
predicting connectivity in ground-truth data but also in terms of how biologically
plausible the underlying assumptions are. Consequently, model-based approaches
can generate predictions, thus allowing to close the loop between theoretical and
experimental work (Magrans de Abril et al., 2018).

However, connectivity inference faces multiple challenges, of both biological
and computational nature. First, an inferred connection might not actually be a
biological connection because of the common input problem: if a neuron that is
not being observed drives two neurons that are being observed, they will appear
connected. This problem extends to input from other brain areas, possibly causing
entire populations of neurons to appear falsely connected. Researchers are trying to
account for the common input problem by adapting experimental protocols (Soudry
et al., 2013) or by estimating common input in network simulations (Ladenbauer
et al., 2019), but a general-purpose solution is unlikely to be found. Second, the tar-
geted biological networks consist of a multitude of neuron types with heterogeneous
characteristics: neurons can be excitatory or inhibitory, they can produce burst fir-
ing (Stiefel et al., 2013), and their connectivity might be generally restricted, e.g. to
certain cortical layers or neuron types (Jia et al., 2019). Additionally, signal integra-
tion at synapses can be non-linear (Nettleton and Spain, 2000), further complicating
the already non-linear activation function of neurons (Anderson et al., 2000). Rep-
resenting these biological traits in computational models rapidly increases model
complexity, which leads to increased computational demands or impairs model in-
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vertibility.
To cope with the above-mentioned challenges in connectivity inference, re-

searchers typically have to make trade-offs in their methodology, which I will briefly
illustrate using two recent studies. Ladenbauer et al. (2019) infer neuron-to-neuron
connectivity strengths in randomly connected networks of leaky integrate-and-fire
(LIF) neurons. Fitting networks of LIF neurons to simulated spiking data, they
demonstrate improved inference compared to other methods, especially when the
network is subsampled, mimicking the common input problem. However, the au-
thors define fixed connection probabilities and only infer the corresponding connec-
tion strengths, which are additionally bounded by experimentally plausible values.
Thus, they use key a-priori assumptions to enable their inference. Additionally,
Ladenbauer et al. use a random-connectivity setting without stimulus tuning, mak-
ing it hard to relate their work to the highly non-random, stimulus-related connectiv-
ity in the visual system. Baker et al. (2020), on the other hand, derive mathematical
constraints for inferring connectivity in a linear model of neurons with continuous
firing rates. They show that biological constraints such as neuron type, spatial dis-
tance or tuning can improve inference performance when using linear activation
functions. However, the authors can only infer the existence of connections rather
than their strength if the neurons are equipped with a non-linear activation function.
When they apply their method to in vivo data, the authors are faced with the problem
that the external inputs to the networks and their covariance structure is unknown.
Without knowing the input covariances, the authors pivot to fixing the connectiv-
ity with experimentally derived values and inferring the covariance structure rather
than inferring the connectivity.

The examples above show that model-based connectivity inference from in vivo

data remains a challenge in neuroscience that has yet to be solved. In the first
manuscript of this thesis, my collaborators and I present an approach to enable in-
ference by utilizing inherent response properties of in vivo recordings. We show
that contrast-invariance allows a transition from a two-population model describing
the contrast response functions of the network to a ring model that additionally ac-
counts for orientation selectivity. This transition means that response data can be
used to infer connectivity in a two-step process without additional assumptions or
parameter limitations. We then demonstrate contrast-invariance in electrophysio-
logical recordings from mouse V1, enabling us to combine the data with our model.
By using data from mouse V1 and dLGN, we finally infer connectivity profiles in
our model, showing which connectivity regime is compatible with the experimental
data. We find that connections in V1 follow a specific order, where strong connec-
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tions correlate with broad connectivity profiles across different stimulus orientation
preferences. We additionally compare these findings with connectivity measure-
ments from the literature, which show considerable variations. However, when re-
analyzing the data from the literature, we recover the same connectivity principles
our inference procedure suggested, indicating that a consistent order of connection
strengths and widths could indeed be a principle of connectivity in visual cortex.

1.6 Functional Neuron Classification

Computational models of neuronal function provide a simplified, interpretable per-
spective through the reduction of empirical complexity. The SSN model used in the
first manuscript highlights connections between inhibitory and excitatory simple
cells in V1, which constitute a specialized functional neuron type.

Classifying neurons by their responses to stimuli has shown that there exist
multiple functional streams, reaching from the retina to visual cortex, that can be
characterized by their receptive fields (center-surround vs other types) and their
temporal response patterns (sustained vs transient) (Van Hooser, 2007). Further-
more, neurons can fire action potentials in regular intervals (tonic firing) or in short
bursts (Grubb and Thompson, 2005), which shapes development of the visual sys-
tem (Shatz, 1996) and is also thought play a more general role in plasticity (Letzkus
et al., 2006). In visual cortex, neurons respond differently to stimulus orientation
(simple and complex cells), levels of contrast, spatial and temporal frequency, and
are even modulated by the stimulus’ surrounding area, which in itself will not cause
any response of the neuron (Van Hooser, 2007).

While scientists attempted to unite this functional variety in the theory of the lin-
ear receptive field, mounting failures of classical receptive field theory in explaining
non-linear phenomena such as contrast gain adaptation (Baccus and Meister, 2002),
suppression (Carandini, 2004), and surround modulation (Fitzpatrick, 2000), com-
bined with an increasing awareness of biases neuron sampling and stimulus se-
lection (Olshausen and Field, 2005), have diversified the approaches of functional
classification. Recently, Baden et al. (2016) have used a collection of dynamic stim-
uli and unsupervised clustering to discover over 40 functional response types in the
retina. In the dLGN, Piscopo et al. (2013) similarly used clustering techniques to
identify functional neuron types beyond orientation selectivity, while Walker et al.
(2019) have developed a closed-loop paradigm to optimize stimuli for individual
neurons in V1, resulting in multitude of input profiles beyond classical receptive
fields. Taken together, these results solidify the contemporary view that there exists
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a multitude of functional neuron types in the visual system.
One such neuron type that has remained outside the broad consideration of vi-

sual processing, despite being discovered in the early years of visual neuroscience,
consists of neurons that are suppressed by visual stimuli (Levick, 1967; Rodieck,
1967). Because they have been on the fringes of scientific attention, an extensive
description of their intrinsic and functional properties outside the retina has been
lacking. In the second manuscript of this thesis, my collaborators and I address this
gap by presenting a survey of spiking variability, electrophysiological characteris-
tics, and functional responses of suppressed-by-contrast (SbC) neurons in the dLGN
and visual cortex. Contrary to previous investigations, we find that SbC neurons fire
less regularly than non-SbC neurons and that this difference cannot be explained by
burst firing or oscillations. We also find SbC neurons to be putatively excitatory,
to be preferentially located in lower cortical layers, and to have higher response
latencies than non-SbC neurons. Finally, we find SbC neurons to be more contrast
sensitive than non-SbC neurons while showing significant stimulus tuning. These
results suggest that SbC neurons actively contribute to visual processing beyond de-
tection of luminance uniformity and that suppressed responses may be generated de

novo at multiple processing stages in the visual system, expanding the significance
of this understudied response type.

1.7 Aims of this thesis

In an attempt to connect a contemporary model of the visual system with experi-
mental observations of neural activity, this thesis aims to:

• Provide a proof of concept, that connectivity in V1 and inputs from dLGN
can be inferred via the SSN model

• Demonstrate that connectivity inference can yield insights into biological
connectivity principles

• Highlight the diversity of functional neuronal response types

• Improve understanding of suppressed neurons in the visual system



2 Model-based Connectivity Inference
in V1

2.1 Summary

In the cortex, feedforward inputs and recurrent connectivity provide the scaffold
for neural computations. However, relating circuit computations to the underlying
connectivity remains a fundamental, but as yet unsolved, problem. Here, we use a
novel, theory-driven approach to deduce V1 connectivity from sensory responses.
Combining in vivo extracellular activity from mouse visual thalamus and primary
visual cortex (V1) with the stabilized supralinear network model (SSN), we deter-
mined the connectivity weights for V1’s input and recurrent connections. These
connectivity weights had a specific ascending order in their orientation-dependent
profiles: the excitatory-to-inhibitory weight was the strongest and broadest, and the
inhibitory-to-excitatory weight was the weakest and narrowest. Surprisingly, we
discovered the same order within the diverse prior experimental connectivity mea-
surements, in which the individual connection probability and the synaptic strengths
varied by orders of magnitude across studies, hiding the universal order. Thus, we
discovered robust wiring principles contained in seemingly incompatible connec-
tivity estimates.

2.2 Contributions

The following authors contributed to this manuscript. Nataliya Kraynyukova (NK),
Laura Busse (LB), and Tatjana Tchumatchenko (TT) conceived the study. NK de-
veloped the mathematical proof of how contrast-invariance constrains connectivity,
and designed the connectivity inference method. Simon Renner (SR) recorded and
curated V1 data in one mouse, developed reverse correlation analysis techniques for
flashed gratings stimuli, optogenetic tagging analysis techniques, wave shape clas-
sification techniques, contrast-invariance analysis techniques, programmed the data
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analysis software, and showed contrast-invariance of the recorded V1 data. SR per-
formed all analyses in Figures 1, S1, S2, S3, S4 and made these Figures. NK and SR
pre-processed data for model fits, where SR developed and tested two-dimensional
response functions and constructed population responses. SR and NK reviewed
and analyzed V1 connectivity measures available in the experimental literature in
relation to the inferred connectivity with input by TT and LB. Here, SR selected
appropriate studies from the literature based on methodological considerations and
extracted connectivity parameters from publicly available data sets. Georgi Tushev
contributed to the connectivity inference algorithm. Gregory Born, Yannik Bauer
and Martin Spacek recorded and curated dLGN data and additional V1 data, and de-
veloped data analysis software. NK, SR, LB, and TT contributed conceptual ideas,
discussed and coordinated the project at all stages, wrote and edited the manuscript.
All authors contributed to the final version of the manuscript.

Copyright

A later version of this manuscript has been published as Kraynyukova* et al. (2022)
under a Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND). The authors reserve all rights on this manuscript and point the
reader towards the aforementioned published article.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Abstract
In the cortex, feedforward inputs and recurrent connectivity provide the scaffold for neural computations. However,
relating circuit computations to the underlying connectivity remains a fundamental yet unsolved problem. Here, we use
a novel, theory-driven approach to deduce V1 connectivity from sensory responses. Combining in vivo extracellular
activity from mouse visual thalamus and primary visual cortex (V1) with the stabilized supralinear network model
(SSN), we determined the connectivity weights for V1’s input and recurrent connections. These connectivity weights
had a specific ascending order in their orientation-dependent profiles: the excitatory-to-inhibitory weight was the
strongest and broadest, and the inhibitory-to-excitatory weight was the weakest and narrowest. Surprisingly, we
discovered the same order within the diverse prior experimental connectivity measurements, in which the individual
connection probability and the synaptic strengths varied by orders of magnitude across studies, hiding the universal
order. Thus, we discovered robust wiring principles contained in seemingly incompatible connectivity estimates.

Introduction

In the brain, neuronal activity is constrained by the circuit’s connectivity, yet a tractable and interpretable link between
experimentally recorded in vivo activity and connectivity remains to be found. Efforts to establish such a link are
currently fuelled by major progress in both measurements of the activity in neural circuits as well as analysis of circuit
connectivity. For example, it is now possible to perform brain-wide recordings with single-cell resolution and targeted
manipulations of neural activity1–3. At the same time, progress in imaging, tracing, and automated analysis has put
the first brain-wide mammalian connectome within reach4. Despite this tremendous progress in both fields, deriving
connectivity that is consistent with the recorded in vivo activity remains a challenge5.

In an effort to provide a link between in vivo activity and connectivity, circuit models of varying complexity have been
devised and refined over the years (reviewed in6). To specifically connect recent connectomics data with recorded
activity, powerful circuit models and large-scale simulations have been proposed7–12. Yet, such circuit simulations
are computationally demanding and experimental data concerning specific parameters in these highly heterogeneous
networks is often scarce and diverse. Therefore, these models typically require additional constraints on the connec-
tivity weights as well as assumptions about unknown external inputs to reproduce activity. Thus, inference of circuit
connectivity based solely on in vivo activity is yet to be achieved.

Relating circuit connectivity to in vivo activity is arguably most realistic for primary visual cortex (area V1), because
there, knowledge about cell types is rapidly advancing13, local connectivity measurements are continuously being
refined14–18, and investigations of feature selectivity and computations have a long tradition19. However, even in this
advantageous setting, linking V1 circuit connectivity to in vivo activity is hampered by the fact that cell-type specific
connectivity measurements can vary by an order of magnitude across the available experimental studies14–18. Addi-
tionally, V1’s characteristic property of orientation-selectivity19 relies at least in part on V1’s feature-specific connec-
tivity16–18,20. Yet, quantification of this feature-specific connectivity is scarce or even completely absent, in particular
between rarer neuron types and deeper layers of V1, as it requires technically challenging re-identification of in vivo
functionally characterized neurons in vitro 16–18,20.

An alternative avenue for linking activity and connectivity is offered by population models, such as the stabilized
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supralinear network (SSN) model21,22. Indeed, population models reduce the multitude of individual neurons found in
large-scale, individual neuron simulations to few populations of similar neurons23. As a result, the connection weight
matrices between the neuronal populations hold direct information about possible states of the underlying network,
which can be meaningfully interpreted. As a population model of V1, the SSN captures non-linear neuronal response
properties24 and at the same time can account for multiple activity features observed in V1, including normalization22,
quenched variability at stimulus onset25, and contextual modulation26. Importantly, the SSN is one of the few nonlinear
network models for which the mathematical description of possible firing steady-state configurations is available27,
granting a unique opportunity to compare possible state configurations to observed ones.

Here, we show that combining in vivo extracellular recordings of visual responses in mouse dorsolateral geniculate
nucleus (dLGN) of the thalamus and V1 with the stabilized supralinear network (SSN) model allows determining,
without further assumptions, V1 connectivity weights and their orientation-dependent profiles. Exploiting contrast-
invariance of orientation tuning in V1, we designed a novel algorithm that can predict recurrent cortical connections
and thalamic input weights consistent with the specific firing rate responses recorded in vivo. We found robust relation-
ships between the resulting recurrent connection weights. For example, the excitatory-to-inhibitory cortical connection
was the strongest and depended the least on the similarity in the populations’ preferred orientations. In contrary,
the inhibitory-to-excitatory connection was the weakest and depended strongly on the similarity in the populations’
preferred orientations. Despite large variability across previous experimental in vitro connectomics studies14–18, we
discovered that the connectivity weights had the same ascending order as our inferred weights, thus reconciling seem-
ingly different experimental connectivity estimates. Additionally, the connectivity patterns we found support the role of
V1 circuits in sharpening broadly orientation-tuned thalamic excitation, and their operation in an inhibition stabilized
network (ISN) regime, proposed to be the operational state of the cortex28. Overall, determining network connectivity
solely based on the recorded in vivo extracellular activity allowed us to find V1 connectivity principles underlying a
variety of nonlinear cortical computations.

Results

Our goal was to understand how in vivo extracellular activity constrains the connectivity between neural populations
in mouse V1. Here, we briefly illustrate our approach (Fig. 1). We combined the SSN model21,22 with our recordings
of dLGN and V1 responses (Fig. 1A, top) to infer connectivity by exploiting contrast invariance29–34, i.e. the finding
that orientation tuning curves preserve their width across different levels of contrast (Fig. 1A, bottom). Contrast
invariance, which we confirmed in our data, allowed us to split the response into contrast and orientation components
and develop a two-step inference procedure. In the first step of our connectivity inference, we concentrated on the
recorded contrast responses (Fig. 1B, top, left), which allowed us to fit a SSN model consisting of one excitatory (E)
and one inhibitory (I) population that receive input from dLGN (Fig. 1B, top, middle). The fit determined the dLGN
input weights and the recurrent V1 connectivity weights between the E and I populations that best matched the
recorded activity (Fig. 1B, top, right). In the second step, we could then expand our inference to the orientation
components of the cortical responses (Fig. 1B, bottom, left) within an extended SSN model that took into account the
orientation tuning of the cortical populations (Fig. 1B, bottom, middle). Here, we determined the relative amount of
orientation-specific input from each presynaptic source (Fig. 1B, bottom, right). Because our connectivity predicting
algorithm was unbiased and did not use any prior information about plausible connectivity regimes, we were curious
how our results would relate to previous experimental measurements. We thus compared the inferred connectivity to
recurrent and feedforward thalamic input connectivity extracted from previous connectomics results, which employed
different techniques e.g. in vitro multi-patch recordings.

Mouse V1 has contrast-invariant orientation tuning

To obtain neuronal responses for the inference of connectivity, we performed extracellular recordings in awake, head-
fixed mice (Fig. 2A). We measured visual responses across all layers of V1 (Fig. 2B), with the majority of recorded
neurons located in granular and infragranular layers (see Methods for quantification). To obtain stimulus selectivities
separately for the E and I V1 populations, we classified individual neurons (N = 242), based on the extracellular spike
wave shape, as putative excitatory (broad-spiking, orange) and putative inhibitory (narrow-spiking, teal) (Fig. 2C). Nar-
row spike wave shapes are indicative of parvalbumin-positive (PV+) inhibitory interneurons35–37, which preferentially
inhibit one another and pyramidal cells38,39, and thus resemble the SSN I population.

During our recordings, we presented briefly flashed, static gratings (84 ms), in order to efficiently sample stimulus
responses from the large parameter space spanned not only by orientation and contrast, but also spatial frequency

2



dLGN
V1

Contrast-invariance
E I

V1
E V1
I

dLGN

%

%

%

%

dLGN I

E

I

E

%
%

A B

OrientationOrientation

F
iri

n
g 

ra
te

dLGN

V1
IV1
E

Orientation

F
iri

n
g 

ra
te

Contrast

F
iri

n
g 

ra
te rE

rE~

rI

rI~

Fig. 1. Inference of thalamic input and V1 recurrent connectivity using in vivo extracellular recordings from mouse dLGN
and V1, and a network model. A, Top: Neurons in area V1 integrate inputs from dLGN, and V1 excitatory (E) and inhibitory (I)
neurons. Bottom: Contrast invariance of E and I V1 neurons means that the width of orientation responses is invariant with respect
to contrast. B, Contrast invariance in V1 allows contrast responses (top, left) and orientation tuning (bottom, left) to be treated
separately. Due to contrast invariance, the two-population SSN model used for the contrast response analysis (top, middle) can be
embedded in the extended SSN model, which reproduces V1 responses as a function of stimulus contrast and orientation (bottom,
middle). The shape of the contrast responses determines the connectivity weights to the E and I V1 populations, arising from dLGN
inputs, and recurrent V1 E and V1 I connections (top, right). The orientation component of the response contains information about
the relative amounts of orientation-specific inputs to a population with a particular orientation preference (bottom, right).

and phase (Fig. 2D). To obtain tuning curves from the acquired spike data, we first performed subspace reverse
correlation analysis44, yielding time-resolved responses (Fig. S1A), and then used each neuron’s optimal response
time (Fig. S1B) to extract two-dimensional response profiles covering orientation and contrast (Fig. 2E). For further
analysis, we only considered visually responsive neurons with optimal response time greater than 25 ms (174/242,
Fig. S1B).

We first asked whether responses of individual V1 neurons are contrast-invariant. We applied a singular value decom-
position (SVD) to split response profiles into their largest contrast-invariant component and a residual component45

(Fig. 2E). Since violations of contrast invariance would be visible as non-random spatial patterns in the residual, we
used spatial autocorrelation analysis46 to statistically assess the presence of spatial structure in the residuals (z -
scored Gamma index, gz ). Additionally, we computed the power of the residual within the SVD as a measure of the
strength of the remaining responses not captured by the separable component (see Methods). Similar to the example
neuron in Fig. 2E, top (gz = −0.48, power of residual = 4%), most neurons’ residual lacked spatial structure and con-
stituted only a minor part of the response profile. For other neurons, such as the example neuron in Fig. 2E, bottom,
the SVD residual indeed contained spatial structure (gz = 8.21), but its power was negligible (residual power = 2%).
Across the population of recorded responses, we thus classified neurons as contrast-invariant if their residual SVD
component’s power was small (< 5%) or if the residual did not contain a significant spatial pattern (gz < 1.96,
Fig. 2F). Consistent with previous studies29–32, we classified the vast majority of V1 neurons as contrast-invariant
(91%, 160/174). The observed violations of contrast invariance were restricted to excitatory neurons (E: 14/144,
I: 0/30), but the low number of inhibitory neurons leaves open the possibility that the proportion of contrast invariance
in the two populations was similar (Fisher-Yates-Test: p = 0.13).

Next, we investigated more closely the orientation tuning and contrast response curves of the recorded neurons.
We fitted individual response profiles with a separable two-dimensional tuning model constructed from a hyperbolic
ratio function47 for contrast responses and a wrapped Gaussian41 for orientation tuning (Fig. 2G). The separable
tuning model described the responses of the majority of neurons well (mean R 2 = 0.81 for both excitatory and
inhibitory neurons; Fig. 2H), further strengthening our assertion of contrast invariance. Among the well-fit neurons
(R 2 > 0.4) used for further analysis, we found a sizeable fraction of neurons (19%) whose response was suppressed
by contrast (SbC, Fig. S2). Since V1 SbC neurons might correspond to the vasoactive intestinal peptide-expressing
(VIP) interneurons48, and the function of SbC neurons is not well understood49, we continued our analyses using only
neurons whose responses were enhanced by contrast (101 excitatory, 30 inhibitory).
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Fig. 2. Population tuning curves for excitatory and inhibitory neurons in V1 are contrast-invariant. A, Schematic of the
setup for extracellular silicon probe recordings in V1. B, Histology of example V1 recording site. Blue: DAPI, white outline: V1,
labeled according to40. Scale bar: 1 mm. Bregma: -2.7 mm. C, Classification based on extracellular wave shape into putative
excitatory (broad-spiking, E, orange) and inhibitory (narrow-spiking, I, teal) neurons. Left : Normalized extracellular waveshapes.
Right : Clustering based on wave shape parameters. Large dots: neurons recorded in sessions relevant to the current study, i.e.
sessions containing the flashed grating stimulus, (N = 204 E + 38 I); small dots: V1 neurons recorded in other sessions, used
to improve N for clustering. D, Flashed gratings stimulus paradigm consisting of three stimulus intervals containing a random
sequence of gratings (white bars), with interleaved blank periods (gray bars). In some sessions, the blank periods were used for
photoactivation of ChR2 expressed in V1 PV+ inhibitory interneurons (not used for this study). E, Responses of two V1 example
neurons to combinations of orientation and contrast (left), first SVD component (middle) and SVD residual (right). Spatial patterns
in the residual, such as evident for the lower example neuron, reveal violations of contrast invariance. F, Violations of contrast
invariance were assessed by the power of the SVD residual (> 5%) and significance of spatial autocorrelation (gz > 1.96).
Light dots: contrast-dependent neurons (14/144 E, 0/30 I neurons). Solid dots: contrast-invariant neurons, considered for further
analysis. Purple: example neurons from (E). G, Two-dimensional tuning fit consisting of a product of a hyperbolic ratio function
and a wrapped Gaussian41 for an example V1 neuron. H, Distribution of fit quality across neurons. Dashed line: fit quality
threshold (0.4). Solid bars: neurons considered for further analysis (125/130 E, 30/30 I neurons). I, Normalized orientation tuning
component for E (left) and I (right) neurons. K, Cumulative distribution of orientation selectivity OSI;42,43. Inset: Density histogram
of orientation selectivity. Same x-axis as cumulative distribution, y-scale bar represents 2 neurons per bin of OSI. J, L, Same as
(I, K) for normalized contrast response component and cumulative distribution of contrast sensitivity (contrast at which the contrast
response function reaches half height). M,N, Pooled population responses from V1 (mean ± sem). (C,F,H–N) orange: putative
excitatory neurons, teal : putative inhibitory neurons.

4



To characterize selectivity for orientation and contrast, we next analyzed the individual, normalized tuning components
of the fitted 2D tuning model (Fig. 2I–L). Focusing first on orientation tuning (Fig. 2I), visual inspection suggested –
in the face of a broad range of tuning for both populations – that the inhibitory population had few neurons of narrow
tuning. To quantify differences in tuning strength, we computed an orientation selectivity index (OSI)42,43 (Fig. 2K).
Consistent with previous studies17,50–53, we found that excitatory neurons had overall stronger orientation selectivity
than inhibitory neurons (E: 0.21± 0.02, I: 0.13± 0.03, mean ± sem; two-tailed Welch’s t -Test: t = 2.28, p = 0.03). We
then investigated the normalized contrast response component of the fitted 2D tuning functions (Fig. 2J), and found a
broad range of contrast sensitivity. Inspecting the contrast at half-height of the normalized responses (Fig. 2L), we did
not find a significant difference between excitatory and inhibitory neurons (E: 0.54±0.02, I: 0.49±0.02, mean contrast
at half-height ± sem; two-tailed Welch’s t -Test: t = 1.07, p = 0.29).

Finally, to test whether the average population response is also contrast-invariant, we pooled across individual contrast-
invariant neurons by averaging their tuning curves, after aligning them to their preferred orientations. This is important
because an average of contrast-invariant neurons does not guarantee contrast invariance of the population54–56. Anal-
ogous to the procedure for the individual neurons, we applied SVD to the population average, and studied the spatial
autocorrelation of the residual in order to test for contrast invariance. This analysis revealed that the first SVD compo-
nent accounted for 99.9% of the variance, albeit with a significant spatial pattern in the residual (Fig. S3A). Due to the
small strength of the residual (< 0.1%), we conclude that the pooled population response was also contrast-invariant,
complementing the invariance of the individual neurons.

To allow connectivity inference in the SSN model (Fig. 1), another key ingredient besides the V1 E and I population
responses, is the input to the cortical network. Instead of assuming the thalamic input to be linear or retrieving average
values from the literature, we used the same stimulus and analysis framework to obtain the dLGN population response
for contrast (72 neurons, Fig. S4). We found its shape to be sigmoidal, with firing rates lying in between those for V1 E
and I neurons (Fig. S4, Fig. 3A). Taken together, our in vivo extracellular measurements of dLGN and V1 E and I
population responses provided realistic activity for connectivity inference in the SSN model.

Contrast responses reveal consistent relations between connectivity and input weights

Having corroborated contrast-invariant tuning in the E and I V1 populations, we split the response components, and
first focused on the recorded contrast responses in dLGN and V1 for inference of the thalamic feedforward and re-
current cortical connectivity weights. The thalamic contrast response TdLGN (Fig. 3A, left) provided input to our V1
network, which we represented via a two-dimensional SSN model (Fig. 3A, middle). The SSN model translated the
thalamic input into contrast responses of the E and I cortical populations (Fig. 3A, right). The four constants JXY rep-
resented the connectivity weights from the cortical populationY to X , and the two constants gX corresponded to tha-
lamic input weights to the cortical population X (Fig. 3A, middle). The power-law transfer function I n+ = (max{I , 0})n
with the exponent n described the non-linear relationship between the input and spike rate output of a V1 neuron (see
Fig. 5J, K in57, Fig. 3A, middle). Our goal was to determine distributions of JXY , gX and n , for which the SSN model
reproduced the recorded thalamic and cortical contrast responses. More specifically, for each recorded contrast C ,
we required that the stable steady-states rE and rI and the input TdLGN of the SSN model

rX (C ) 1
n = JXE · rE (C ) − JXI · rI (C ) + gX ·TdLGN (C ), X ∈ {E , I } (1)

accurately approximated the mean recorded contrast responses of the V1 and dLGN populations, relative to the
spontaneous activity at 0% contrast. To this end, we used the mean responses of the thalamic and V1 populations to
the eight contrasts (Fig. 3A, Eq. S3). To provide an unbiased comparison with the direct, experimental measurements
of connectivity, we computed the JXY and gX without prior assumptions about their possible experimental range.
Our only experimentally motivated parameter constraint was the assumption that the power-law exponent n ranged
between 1 and 558,59. Plotting the V1 population contrast responses as a function of contrast response measured in
dLGN (Fig. 3B), we found a supralinear relationship, which ruled out the possibility that the transfer function was linear
(n = 1).

To obtains sets of JXY , gX and n , we generated a triplet of sample dLGN, V1 excitatory, and inhibitory contrast
responses as random monotonically increasing functions within the ± sem areas of the measured contrast responses
(Fig. 3C, left). For each such triplet, we kept n constant in the range between 1.1 to 5 and initially computed the six
weights JXY , gX as a solution of the over-determined linear system in Eq. 1. We considered the weights JXY , gX to
be computationally valid, if they were positive, and lead to a stable steady state of the SSN model (Eq. S4 – Eq. S7).
In the next step, we minimized a score function (Eq. S8) in order to obtain fitted weights which accurately reproduced
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Fig. 3. Inference of cortical and thalamic input weights from contrast responses using the SSN model. A, The cortical
network transforms the dLGN population contrast response (left) to the contrast responses of E and I V1 populations (right). The
SSN model (middle) represents the cortical network. The weights JXY > 0 denote the strength of the recurrent connections from
cortical population Y to X , and gX > 0 denote the strength of the thalamic input to cortical population X . The transfer function
relating input to output of the cortical E and I populations is I n+ = (max{I , 0})n . Shaded areas represent ±sem of the recorded
responses. B, Supralinear thalamocortical mapping of contrast responses excludes the exponent n = 1 in the SSN model. C, Left:
Randomly generated sample curves (green lines) within ±sem of the dLGN and V1 contrast responses (shaded areas) were
substituted into the SSN model to yield the initial parameters JXY and gX for the fixed exponents n . Right: Subsequently, the SSN
parameters JXY , gX and n were optimized to minimize the distance between the fit (red) and the mean of the recorded responses
(orange, gray, teal). D, The distribution of fit scores of the final 103 fits has a mean of 2 · 10−2. The arrow (red) points to the largest
score value used to produce the example fit in (C, red). E, The distribution of the optimized power-law exponents n corresponding
to the final 103 fits has a median of n = 1.9. F, The distributions of the optimized connectivity weights JXY are broader than that
of input weights gX . The location of vertical dotted lines corresponds to the JXY and gX medians presented in the plot’s upper
right corners. G, The average ratios of connectivity weights from three input sources (local E, local I, external dLGN) to E cortical
population are similar to those of the I population. H, In 99% of the inferred connectivity parameter sets, the recurrent and input
connectivity weights, ordered according to the x -axis labels, build an increasing sequence. Thin green lines: four representative
examples of fits, bold green line: median of parameter distributions. I, For cortical E neurons, the weight gE of the dLGN input
was lower than the recurrent cortical weight JEE in 100% of the inferred connectivity parameter sets. The colored area (purple)
comprises relations between JEE and gE for which thalamic contribution of excitatory input entering the E cortical population would
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be smaller than the experimentally determined upper bound of 36± 2%60,61. J, The thalamic input weights to E cortical population
were lower than the I-weights in 100% of the inferred connectivity parameter sets. K, The connectivity weights between V1
populations computed from previously published in vitro measurements have largely the same increasing order as the connectivity
parameters obtained from our SSN-based inference procedure based on in vivo activity. L, Most of pairwise relations between
connectivity weights (H, x -axis labels) inferred from in vivo activity were consistent with relations computed from previous in vitro
measurements (Table 1).

the mean contrast responses (Fig. 3C, right). The resulting optimal weights yielded excellent fits with low scores
(Eq. S8; Fig. 3D; to illustrate the accuracy of these fits we show the worst resulting fit in Fig. 3C, right). Considering
the resulting optimal fits, we found that the distribution of the power-law exponents n peaked at n = 1.9 (Fig. 3E),
which is in line with previous experimental and theoretical evidence33,34,58,59.

Next, we highlight three characteristic features of the resulting connectivity distributions. First, the recorded thalamic
and cortical responses were supported by connectivity weights of diverse magnitudes (Fig. 3F). Specifically, we found
that the distributions of the inferred thalamic input weights gE and gI were largely limited to the range 1 to 5, while
distributions of recurrent connectivity weights JXY were broader and spanned almost a 5-fold range, with values
from 1 to 24 (Fig. 3F). Second, the connectivity weights to the I population were stronger than the weights to the E
population in all inferred sets of parameters (Fig. 3F, top: weights to E, bottom: weights to I). However, the relative
contributions of the weights from all three input sources (E, I, dLGN) targeting the E population were remarkably
similar to the relative contributions of the weights targeting the I population (Fig. 3G). Third, even though JXY and gX
were distributed broadly, the connectivity weights in 98.5% of the 103 final parameter sets represented an ascending
sequence following the order gE < gI < JEI < JEE < JI I < JI E (Fig. 3H).

Having discovered this consistent order within the inferred connectivity weights, we next focused on their pairwise
relations and tested if they could also be found in previous direct, experimental measurements of V1 connectivity.
We first studied the relation between the thalamic feedforward (gE ) and recurrent (JEE ) weights. We did this for both
our inferred connectivity weights and for experimental measurements obtained in Lien et al.60, who performed in vivo
recordings of excitatory postsynaptic currents in V1 L4 pyramidal cells and found that thalamic excitation, isolated
by optogenetic silencing of V1, to be 36 ± 2% of the total V1 L4 pyramidal cell excitation. To understand whether
this relative contribution to overall excitation was compatible with our inferred connectivity, we first estimated thalamic
and cortical input to V1 E neurons as a product of dLGN and V1 population firing rates and the inferred connectivity
weights (see Methods). The maximal relative contribution of the thalamic input of 36 ± 2% compared to the total
input60 yielded an approximate upper bound for the relation gE /JEE of 0.55, suggesting that gE was smaller than JEE
in direct experimental measurements (see Methods). The relationship gE < JEE was preserved across 100% of our
inferred sets of connectivity weights (Fig. 3I). This emphasizes the predominant role of recurrent excitatory cortical
connections over thalamic input weights in shaping visual contrast responses of the V1 E population.

In the next step, we addressed the relationship between the thalamic input weights gI and gE . Recently, an extensive
in vitro study reported connection probabilities and response amplitudes across V1 layers and cell types62. Con-
nection probabilities combined with corresponding response amplitudes provide a measure for a connectivity weight
between cortical populations. Specifically, Ji et al.62 demonstrate that the thalamic projections to V1 excitatory cells
had either similar (layers 2/3 and 6) or slightly lower (layers 4 and 5) connection probabilities than thalamic projections
to PV+ V1 neurons; the response amplitudes, however, were substantially lower in V1 excitatory cells than in PV+
neurons in all V1 layers. These data suggest that the connectivity strength of thalamocortical projections to excitatory
cells is lower than to PV+ V1 neurons. Consistent with this report, our inferred input weights to E cortical neurons
were lower (median gE = 1.5) than the thalamic input weights to the I neurons (median gI = 1.9) across all inferred
parameter sets (Fig. 3J).

We now turned to the cortical circuit and compared the inferred recurrent connectivity weights JXY with reports from in
vitro whole-cell patch-clamp recordings in V1 excitatory and inhibitory PV+ neurons (Table 1). For each experimental
source, we extracted the connectivity weights JXY (gray cells in Table 1) as a product of the measured connection
probability (CP), the measured strength of the postsynaptic potential (PSP) (white cells in Table 1), and the percentage
of neurons in the source populationY of the connection XY . Since our network represents the circuit motif between
V1 pyramidal cells and PV+ inhibitory neurons, we made the following assumptions to determine the percentage of
neurons in the source population: we set the fraction of excitatory neurons to be 80% of all V1 neurons63 and the
fraction of PV+ neurons to 50% of the inhibitory V1 population in layers 2/3–664 (Methods). Together, this resulted in
89% of neurons in the E SSN population and 11% of neurons in the I SSN population (Methods). Despite CPs and
PSPs varying across studies by an order of magnitude, the computed connectivity estimates from the experimental

7



sources in Table 1 had a surprisingly similar order as that observed in our inferred connectivity sets (Fig. 3K, Fig. S5B).
For example, the connectivity strength JI E had consistently the largest value among all four JXY in all cortical layers
and studies (Table 1, Fig. 3K).

We therefore asked next whether the pairwise relations found in our in vivo-inferred connectivity weights (Fig. 3L, top)
were consistent with the relations between the extracted in vitro connectivity weights (Table 1). We constrained our
analysis to experimental sources in Table 1, which contained measurements of both connections in each relation of
interest (Fig. 3L, top). Remarkably, four out of six relations (JEI < JI E , JEE < JI E , JI I < JI E , and JEE < JI I )
could also be computed from the experimental sources and across V1 layers (Table 1, Fig. 3L, bottom). Specifically,
JI E was always the strongest connectivity weight in all cortical layers and in our inferred connectivity sets (Table 1,
Fig. 3L). The remaining two pairwise relations found in our inferred connectivity sets (JEI < JEE and JEI < JI I )
held true for the majority of cortical layers and experimental sources. Specifically, we found three exceptions from the
above rules: the relation JEI < JEE did not hold in layer 6, and two available experimental reports for the relation
(JEE , JEI ) in layer 2/3 and (JI I , JEI ) in layer 5 did not lead to consistent conclusions (Fig. 3L, bottom).

Finally, we analyzed the inferred connectivity weights with respect to possible computational regimes. First, we asked if
the resulting circuit was an inhibition stabilized network (ISN)28,65. We found that all inferred connectivity weights were
consistent with the ISN regime, starting from the smallest contrast value of 4% recorded in our experiments (Fig. S5C).
In other words, for the contrast values exceeding 4%, an increase of external input to the I population of the SSN model
would lead to a paradoxical decrease in the activity of both E and I populations - an observation reported in previous
V1 experiments65–67. Second, we analyzed whether the resulting inferred circuit can have different levels of activity
for the same input, i.e. whether the SSN model with the inferred connectivity weights can have multiple stable steady
states. From our previous work27 we know that for specific connectivity regimes, the SSN model can have multiple
stable steady states. However, we found that for 100% of the inferred connectivity weights, the SSN model circuit had
a unique stable steady state, ruling out that the network was able to generate different levels of activity for the same
input.

Taken together, with minimal prior assumptions and solely based on the recorded in vivo extracellular data, our
SSN-based inference method found a consistent ascending order between the inferred cortical connectivity weights
(JEI < JI E , JEE < JI E , JI I < JI E , and JEE < JI I ). Remarkably, despite substantial variability in the absolute
values of connectivity measurements in previous in vitro connectomics estimates (white rows in Table 1), the inferred
pairwise relations between connectivity weights were preserved across experimental sources and cortical layers and
matched the relations identified through our inference method.

Determining connectivity and input profiles from contrast and orientation responses

Since it is known that V1 neurons form fine-scale subnetworks according to orientation preference and general re-
sponse similarity16–18,20,70,71, our next goal was to infer orientation-dependent connectivity patterns in a network of
orientation-selective cortical neurons. To reproduce the recorded dLGN contrast responses and V1 responses to ori-
entations and contrasts (Fig. 4A,B), we assumed that the cortical firing rates are the steady states RE and RI of the
SSN model

RX (ψ −θ,C ) =
( π/2∫
−π/2

(
WXE (θ−θ ′)RE (ψ −θ ′,C )dθ ′−WXI (θ−θ ′)RI (ψ −θ ′,C )

)
dθ ′+TdLGN (C )LX (ψ −θ)

)n
+
. (2)

Here, C represents the stimulus contrast, n is the exponent of the transfer function, θ is the preferred orientation of a
cortical population X , X ∈ {E , I }, and RX (ψ − θ,C ) represents the firing rate of the population X with the preferred
orientation θ in response to a grating stimulus having orientation ψ. The connectivity profilesWXY (θ−θ ′) correspond
to the strength of connection from population Y to population X that differ in their preferred orientations by |θ − θ ′ |.
The X population with the preferred orientation θ receives the thalamic input TdLGN (C )LX (ψ − θ).

Next, we used the experimental observation of contrast invariance as a constraint for the steady-state solutions RE
and RI of the SSN model in Eq. 2. Specifically, we analyzed how contrast invariance constrains the recurrent and
input connectivity profiles WXY and LX in Eq. 2. Contrast invariance means that for a fixed grating orientation, the
response can be represented as product of contrast and orientation components, namely, the firing rates RE and RI
follow the relations33,34

RE (ψ − θ,C ) = rE (C )r̃E (ψ − θ), RI (ψ − θ,C ) = rI (C )r̃I (ψ − θ). (3)
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PSPEI 0.31±0.20 0.42±0.03
JEI 1.18±0.76 1.50±0.11

CPEE 45/235 43/222 75/520 13/130 5/80 1/50
PSPEE 0.2 0.45±0.68 0.34±0.32 0.22±0.24 0.34±0.08
JEE 3.41 5.78±8.73 3.03±2.85 1.22±1.34 0.61±0.14

CPI I 13/32 36/97 28/78
PSPI I 0.58±0.10 0.66±0.74 0.61±0.10
JI I 2.59±0.45 2.69±3.02 2.41±0.39

CPI E 36/41 19/50 13/83
PSPI E 1.36 0.27±0.21 1.6±0.23
JI E 106.28 9.13±7.10 22.30±3.21
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JEI 2.60±1.45

CPEE 17/236
PSPEE 0.46±0.45
JEE 2.95±2.88

CPI I 26/55
PSPI I 0.83±0.63
JI I 4.32±3.28

CPI E 4/33
PSPI E 0.73±0.39
JI E 7.88±4.21
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CPEI 10/72 8/32
PSPEI 0.46±0.35 0.72±0.09
JEI 0.7±0.53 1.98±0.25

CPEE 13/553 0/12
PSPEE 0.46±0.59
JEE 0.96±1.23

CPI I 27/126 9/48
PSPI I 0.74±0.86 0.83±0.12
JI I 1.74±2.03 1.71±0.25

CPI E 7/74 3/36
PSPI E 1.01±0.41 0.87±0.07
JI E 8.50±3.45 6.45±0.52
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CPEI 16/69
PSPEI 0.92±0.76
JEI 2.35±1.94

CPEE 3/443
PSPEE 0.21
JEE 0.13

CPI I 41/118
PSPI I 0.67±0.45
JI I 2.56±1.72

CPI E 11/76
PSPI E 0.46±0.42
JI E 5.93±5.41

Table 1: Connectivity matrix for pyramidal and PV+ neurons in layers 2/3, 4, 5, and 6, summarized from recent in vitro
studies. The entries of the connectivity matrix JXY are computed for each layer based on the experimentally measured connection
probability (CP) and amplitude of the postsynaptic potential in mV (PSP) using the formula JXY = CP ∗ PSP∗NY /N ∗100%, where
NY /N is the proportion of neurons in the population NY . Here we use NE /N = 0.89 and NI /N = 0.1164 (see Methods).

Here, rE and rI are the contrast response functions studied in the previous section, and r̃E and r̃I are the peak-aligned
and normalized orientation tuning curves (Fig. 4B, left). The property of contrast invariance is computationally advan-
tageous because it allowed us to reduce the two-dimensional product of its one-dimensional contrast and orientation
components and study each component independently. We found that contrast responses rX , TdLGN (Fig. 4B, right)
and orientation tuning curves r̃X (Fig. 4B, left) provide direct access to the connectivityWXY and input tuning profiles
LX as expressed by the following relations∫ π/2

−π/2
WXY (θ − θ ′)r̃Y (ψ − θ ′)dθ ′ = JXY (r̃X (ψ − θ))1/n , LX (ψ − θ) = gX (r̃X (ψ − θ))1/n , X ,Y ∈ {E , I }, (4)

where the connectivity and input weights JXY and gX correspond to the cortical and thalamic contrast response
functions studied in the previous section (for full derivation, see Methods and Eq. S9 – Eq. S18). Relations in Eq. 4
generalize the result in Persi et al.72, which showed that the wrapped Gaussian approximation makes it possible to
relate orientation tuning curves and connectivity profiles.

In order to understand how our inferred connectivity between populations depends on the similarity of their orientation
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Fig. 4. Inferring orientation dependence of recurrent and feedforward connectivity. A, The connectivity profileWXY (θ − θ′)
describes the connection strength from a population Y to X with a difference in their preferred orientations of |θ − θ′ |. The input
profile LX (ψ − θ) represents the thalamic input to a population with the preferred orientation θ. B, The width of the normalized
orientation tuning curve r̃E is smaller than r̃I , wrapped Gaussian fit σE = 56◦±2◦, σI = 62◦±3◦ mean±sem (Left). The orientation-
dependent connectivity (WXY ) and input connectivity profiles (LX ) are determined using the widths of the recorded orientation
tuning curves σE and σI and the connectivity weights JXY , gX , n derived from the contrast responses in Fig. 3. C, The connectivity
profilesWXY (left and middle columns) can be calculated using σX , JXY , and n . The input profiles LX (right column) depend on
σX , gX , and n . Line: connectivity and input profiles for median JXY , gX , and n . Shaded area: distributions of connectivity and
input profiles corresponding to JXY , gX , and n distributions in Fig. 3E,F. D, Normalized connection strengths between populations
with different preferred orientations. The orientations are binned in 15◦ steps to aid comparison with experimental findings.

preference, we next determined the widths of the recurrent connectivity profilesWXY (Fig. 4C, left and middle) and
the input profiles LX (Fig. 4C, right; Eq. S20 and Eq. S22). Interestingly, inspecting equations in Eq. S20 and Eq. S22,
we realized that the recorded contrast responses corresponding to JXY and gX mostly determine the amplitudes
of the connectivity and input profiles, and represent connectivity strength between populations with similar preferred
orientations (Fig. 4C). In contrast, the widths of orientation tuning curves σX together with the power-law exponent
n characterizing the neuronal transfer properties determine the widths of connectivity profiles. The relative widths
of connectivity and input profiles are best visible after normalizing their amplitudes (Fig. 4D), where we combined
orientations in 15◦ bins. We found that the widths of connectivity profiles in each parameter set followed the order
σEI < σEE ≈ σI I < σI E . This order of connectivity profiles’ widths resembled the ascending order of connectivity
weights JEI < JEE < JI I < JI E discussed in the previous paragraph.

How do our inferred connectivity profiles WXY and tuning properties of the thalamic inputs LX relate to previous
experimental results? We first compared the width of the inferred thalamic input profiles LX with the width of V1
orientation tuning curves (Fig. 4B, left), a relation addressed in prior experimental reports (e.g.60,73–76). We found
that the widths of the inferred orientation-specific thalamic inputs to cortical neurons (mean σ inp

E = 65o , σ inp
I = 70o )

have a broader tuning than the average V1 orientation tuning curves themselves (mean σE = 56◦, σI = 62◦). This
is consistent with a wide range of experimental studies across cortical layers, showing broader dLGN input than V1
orientation tuning curves60,73–76.

We also compared our derived cortical connectivity profilesWXY with previous direct connectivity measurements. To
the best of our knowledge, information on how connection probability and the relative connection strength of I-to-E,
and I-to-I projections depend on the difference in the populations’ preferred orientations does not seem to be available
(but see20). Hence, for our comparison of inferred and experimentally measured orientation-dependent profiles, we
concentrated on the direct measurements currently available for E-to-E and E-to-PV+ connections in L2/316,17. The
orientation-dependence of our inferred connectivity profiles (mean σEE = 33◦, σI E = 42◦ Eq. 4 and Eq. S22) is
consistent with direct experimental measurements of connection probability16,17, demonstrating that the connectivity
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profile between pairs of E neurons was sharper than the E-to-I connectivity profile. However, both connectivity profiles
E-to-E and E-to-PV+ measured experimentally16,17 were flatter than our inferred profiles. This might be related to
overall sharper orientation tuning in V1 L2/332,75 compared to the lower layers, which are over-represented in our
recorded data (see Discussion).

In summary, we found that the widths of the connectivity profiles we derived from in vivo extracellular activity followed
the order σEI < σEE ≈ σI I < σI E , resembling the order of the connectivity weights JEI < JEE < JI I < JI E . Con-
sistent with experimental reports across cortical layers, we found that both E and I input profiles LX are broader than
the average cortical orientation tuning curves. For future experiments, our results predict that WEI is the narrowest
and WI E the broadest profile of all four projections. In our model, this results from the width of I orientation tuning
profile, σI , exceeding that of the E population σE , and the width σ inp

E of the E input profile LE exceeding the width of
orientation tuning curve, σI (see Methods).

Discussion

Here, we combined in vivo extracellular dLGN and V1 responses with the stabilized supralinear network (SSN) model
to infer feedforward and recurrent connectivity weights of mouse primary visual cortex, and their orientation-dependent
connectivity profiles. In a novel, 2-step inference procedure based on the separation of contrast and orientation tuning
of V1 responses, we identified consistent relationships between the input and recurrent cortical connectivity weights,
gE < gI , gE < JEE and JEI < JEE < JI I < JI E . These relations were hidden in experimental connectomics
results, and had to be revealed using a model-based approach. Our results demonstrate a single connectomic origin
underlying cortical signal amplification, contrast invariance and inhibition stabilisation. These results provide evidence
that key computations of visual processing are imprinted into the underlying connectivity and can be discovered and
linked via a circuit model.

Inferred connectivity reveals principles consistent with previous connectomics estimates

Cell-type specific connectivity in mouse V1 has been measured by a number of connectomics studies15,17,69. These
studies reported amplitudes of postsynaptic potentials and connection probabilities which can differ by an order of
magnitude across experiments (Table 1). This variability is likely due to differences in experimental conditions, e.g.
slice thickness or distance between cell bodies of interest. Despite this variability, we found that the pairwise relations
between connectivity weights within studies were remarkably consistent. Specifically, considering relations between
pairs of connectivity weights – a procedure similar to that applied to single slices to remove experimental variability
(e.g.62,77) – revealed that the relative magnitude of the recurrent weights followed the order JEI < JEE < JI I < JI E
across the majority of experimental studies and across the different cortical layers. Intriguingly, this order was also
contained in the connectivity we derived from our in vivo data.

Our results support several experimental and theoretical findings related to the computational regime of the cortex.
First, the strong E-to-I connection has been linked in a previous computational study to image discriminability78.
Second, we found that 100% of the inferred feedforward and recurrent connectivity weights were consistent with
the inhibition stabilized regime66,67. This regime has been associated with the paradoxical firing rate reduction in
response to increased excitation of the I population and fast, flexible stabilization mechanism that balances otherwise
unstable networks28,66. Such a paradoxical response of cortical populations seems to be present in both superficial
and deep layers of mouse V167. Interestingly, although previous studies hypothesized that a strong connectivity weight
JEE might be a requirement for inhibitory stabilization28,66,78, the ISN regime arises in our network even though the
connectivity weights JEE and JEI were the smallest entries in the connectivity matrix (Fig. 3). Lastly, our inference
method exploited the property of contrast invariance33,34, which we confirmed at the level of single neurons as well
as cortical excitatory and inhibitory populations. This indicates that contrast invariance and inhibitory stabilization can
be supported jointly by a connectivity pattern consistent with recorded cortical and thalamic activity.

Furthermore, we determined the widths of the orientation-dependent connectivity profiles showing that they follow the
order σEI < σEE ≈ σI I < σI E . Specifically, we have shown that this ascending order of the connectivity profiles’
widths is a direct consequence of the contrast-invariance property combined with the observation that the recorded in-
hibitory orientation tuning curve is broader than its excitatory counterpart. In line with our inferred relation σEI < σEE ,
direct measurements of orientation-dependent connectivity profiles report that E-to-E connection is sharper than that
of E-to-PV+ in V1 L2/316,17. However, both profiles WEE and WI E which we inferred from our in vivo recorded data
were sharper than respective profiles reported in the direct connectivity measurements16,17. Investigating our network
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model and its implications, we found that broader profiles WEE and WI E correlate with narrower orientation tuning
in the excitatory population. Interestingly, V1 L2/3 pyramidal neurons targeted in the previous connectivity measure-
ments16,17 are known to display sharper orientation tuning (e.g.32,75) compared to lower layers, which dominate in
our experimental data. Thus, the overall broader orientation tuning curves in deeper cortical layers might cause the
sharper tuning of connectivity profilesWEE andWI E we find in our recorded data.

Previous work reported that E cortical neurons receive primarily untuned input from their local inhibitory afferents79.
We emphasize that our highly selective WEI represents the connectivity profile and not the recurrent input current
profile measured in these experiments. Indeed, our theory predicts that the input arriving at E cortical population
from their local I afferents is a convolution of the functions WEI with the I orientation tuning curve. Consequently,
we show that the resulting width of the recurrent input profiles from each of the local afferents is equal to the widths
of the corresponding external thalamic input profiles, which we found to be almost flat. Additionally, although direct
measurements of highly selective connectivity profileWEI do not seem to be available at present, the overall similarity
of neuronal feature selectivity found for this connection in Znamenskiy et al.20 can serve as a predictor of connectivity
in mouse V1 L2/3.

We studied not only the recurrent connections in cortex, but also considered simultaneously the thalamic input
strengths and their profiles. Recurrent connections and feedforward input weights are rarely measured at the same
time60,61,76,80, therefore it is often difficult to study their relative strength. Consistent with previous experimental re-
sults, we found cortical connections to be stronger than the thalamic input weights, indicating that only a fraction of the
excitation in cortex is due to the thalamic connections60,61,76. At the same time, the tuning of thalamocortical afferents
and their interplay with intra-cortical connections in the emergence of orientation selectivity have been under intense
discussion. Yet, there is no consensus as to how much tuning the afferents carry or how much their tuning contributes
to cortical orientation selectivity. Our model results provide evidence that, if thalamic afferents, cortical inputs, mem-
brane transfer functions, and stimulus responses are considered together, orientation tuning can be generated with a
combination of weaker, broadly tuned thalamic input and strong, sharply tuned cortical connections60,61,76.

Theory-based inference of connectivity from in vivo responses complements existing in vitro approaches

Inferring network connectivity using a theory-driven network model and in vivo responses complements existing in
vitro approaches based on paired whole-cell recordings14–18,39,68,69, photo-stimulation81 or glutamate uncaging82,
gold standard methods for assessing circuit-level connectivity. One strength of our method is that it is based on
functional measurements in the intact, living brain, which has the potential to overcome limitations imposed by the un-
avoidable truncation of axo-dendritic branches in slices, where connectivity measurements constitute a lower bound.
In addition, since our in vivo activity recordings are obtained under thalamo-cortical operating regimes established
by local and long-range activity, they reflect, for instance, neuromodulatory input83,84, specific short-term synaptic
dynamics85, and background synaptic bombardment, rarely present under in vitro conditions86. Finally, our inference
method rests on stimulus-driven responses of neuronal populations and can thus yield estimates of connectivity in
the context of functional response properties. This is important because fine-scale specificity of connectivity with
respect to visual tuning similarity is a prominent motif in primary visual cortex16–18,71, but typically requires technically
challenging experiments involving a re-identification of neurons in vitro after their visual response properties were first
characterized in vivo 16–18,20,71,87–89. Such mapping is currently only performed by a few labs world-wide, which have
the appropriate technical resources and broad methodological expertise.

Our model-based connectivity inference connects a mathematically interpretable, generative model of brain activ-
ity with the underlying circuit. In contrast to direct connectivity reconstruction9,14,90 or inference approaches using
large spiking-networks10–12, which focus on detailed neuron-to-neuron connectivity, we are able to deduce cortical
firing regimes and possible network states directly from the inferred weight matrix. Since the inferred connectivity is
connected to a generative model, it can additionally be used to generate predictions about network activity that can
then be tested experimentally. Other groups have recently made complementary progress in inferring connectivity
from constrained models, focusing on spatial integration and behavioral state91, inhibitory cell types26 or response
perturbations92, showing that model-based connectivity inference can be used flexibly to elucidate multiple aspects
of cortical information processing. Yet, our approach is unique in that it succeeds in inferring remarkably accurate
cortical connectivity features directly and exclusively from dLGN and V1 response data, without imposing connectivity
constraints taken from the literature.
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Future directions

Our results can be extended in several directions. Conceptual advances on the experimental side demonstrate that
not only orientation preference but general similarity in stimulus selectivity can influence V1 connectivity18,20. Fu-
ture modeling efforts could thus expand the computational framework we present here to other aspects of feature
selectivity, such as receptive field location, spatial and temporal frequency preferences, and similarity of responses to
temporally varying stimuli. More substantially, while V1 neurons can be broadly classified into excitatory and inhibitory
types, there are many known subtypes for both excitatory and in particular for inhibitory V1 neurons13,15,15,39,48,93–97.
Future work, both on the recording and modeling front, could therefore consider more neuronal subtypes in relation
to specific computations. For instance, interneuron-specific 2-photon calcium imaging26,91,92 or optogenetic pertur-
bations67,92 would have the potential to inform multi-dimensional SSN-type models. Future work could also consider
cortical layers separately, providing insights into the pronounced differences in connectivity and potentially operat-
ing regime observed experimentally28,98,99. For instance, L2/3 is well-known for its long-range connectivity between
similarly tuned pyramidal cells16,70, strong lateral inhibition and the sparsity of responses51,98, while L5 coding is con-
sidered dense, with higher firing rates and broader stimulus selectivity98,100. Finally, future studies could investigate
how recurrent V1 and thalamic input connectivity change as a function of behavioral state of the animal. Indeed,
previous work has suggested that effective connectivity might change with locomotion and stimulus context91,101. Ex-
ploiting in vivo recordings, which can encompass the full spectrum of behavioral state-related neuronal modulations,
and our model-based inference framework to study circuit connectivity, promises to generate novel insights into the
potentially highly dynamic relationship between connectivity and computations.
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Methods

Data and code availability

Any additional information required to reanalyze the data reported in this paper is available from the lead author upon
request. During the review process, the reviewers can find the computer code underlying our data analysis here.
www.tchumatchenko.de/CodeForReviewers.zip, We will publish the code upon the publication of the manuscript.

Experiments and data analysis

All procedures complied with the European Communities Council Directive 2010/63/EU and the German Law for
Protection of Animals, and were approved by local authorities, following appropriate ethics review.

Animals
Recordings were performed in 4 adult male Ntsr1-Cre mice (3 hemizygous Tg, 1 negative control, median age at
first recording session: 24.4 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; MMRRC, #030648-UCD) and 2 (1
male, 1 female) PV-Cre mice (median age: 17.9 weeks; B6.129P2-Pvalbtm1(cr e)Ar br /J; Jackson Laboratory, #017320).

Surgery
The surgical procedures are described in detail in102. In brief: mice were administered an analgesic (Metamizole,
200 mg/kg, sc, MSD Animal Health, Brussels, Belgium) and put under isoflurane anesthesia (5% in oxygen at start,
then lowered to 0.5%–2% in oxygen, CP-Pharma, Burgdorf, Germany), the depth of which was constantly mon-
itored. After shaving and disinfecting the scalp, a skin incision was performed and the skull cleaned of any re-
maining tissue. Upon positioning the head in a skull-flat position, a custom lightweight aluminium head bar with
an opening over dLGN and V1 was placed on the skull and fixated using dental cement. For V1 recordings and
optogenetic stimulation unrelated to this study in PV-Cre mice, a small craniotomy above V1 was performed and
∼ 0.2µL of pAAV9/1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addgene, #20298-AAV9) dyed with fast-green
(Sigma-Aldrich, St. Louis, USA) was injected through the entire depth of the cortex. In the Ntsr1-Cre mice used
for additional V1 and dLGN recordings, a similar craniotomy was performed and ∼ 0.35µL of stGtACR2 (rAAV2/1-
pAAV-hSyn1-SIO-stGtACR2-FusionRed, Addgene, #105677) were injected in the infragranular layers of cortex for
experiments with suppression of corticothalamic feedback unrelated to the current study. Post-injection, the opening
was filled with Kwik-Cast (WPI Germany, Berlin, Germany). Long-term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer
Ingelheim, Ingelheim, Germany) was administered and continued to be administered for 3 consecutive days. After
at least 1 week of recovery, animals were gradually habituated to the experimental setup, by first handling them and
then simulating the experimental procedure. To allow for virus expression, neural recordings started no sooner than
3 weeks after injection. On the day prior to the first day of recording, mice were fully anesthetized using the same
procedures as for the initial surgery, and a craniotomy (ca. 1.5 mm2) was performed over dLGN and/or V1, and re-
sealed with Kwik-Cast. As long as the animals did not show signs of discomfort, the long-term analgesic Metacam
was administered only once at the end of surgery, to avoid any confounding effect on experimental results. Recordings
were performed daily and continued for as long as the quality of the electrophysiological signals remained high.

Experimental setup
Our experimental configuration for in-vivo recordings is described in detail in102. In brief: mice were head-fixed
and could run freely on an air-suspended styrofoam ball while stimuli were presented to the right visual field on
a gamma-corrected LCD screen. Extracellular neural signals were recorded with 32-channel silicon probes (Neu-
ronexus, A1x32Edge-5mm-20-177-A32, Ann Arbor, USA) for the 4 Ntsr1-Cre mice, a 32-channel silicon probe for one
PV-Cre mouse (A1x32-Edge-5mm-20-177-A32 and A1x32Edge-5mm-20-177-A32), and a 64-channel silicon probe
(A1x64-Poly2-6mm-23s-160-A64) for the other PV-Cre mouse. Ball movements were registered at 90 Hz by two
optical mice connected to an Arduino-type microcontroller. Eye movements were monitored under infrared light illumi-
nation.

For photostimulation of V1 PV+ inhibitory interneurons, an optic fiber (910 µm diameter, Thorlabs, Newton, USA) was
coupled to a light-emitting diode (LED, center wavelength 470 nm, M470F1, Thorlabs, Newton, USA) and positioned
with a micromanipulator less than 1 mm above the exposed surface of V1. A black metal foil surrounding the tip of the
head bar holder prevented the photostimulation light from reaching the animal’s eyes.
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Perfusion and histology
After the final recording session, mice were first administered an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal
Health, Brussels, Belgium) and following a 30 min wait period were transcardially perfused under deep anesthesia
using a cocktail of Medetomidin (0.5 mL/kg), Midazolam (1 mL/kg), and Fentanyl (1 mL/kg) (ip). Perfusion was first
done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium phosphate buffer (PBS).

To verify recording site and virus expression, we performed histological analyses. Brains were removed, postfixed in
PFA for 24 h, and then rinsed with and stored in PBS at 4◦C. Slices (40 µm) were cut using a vibrotome (Leica VT1200
S, Leica, Wetzlar, Germany), mounted on glass slides with Vectashield DAPI (Vector Laboratories, Burlingame, USA),
and coverslipped. A fluorescent microscope (BX61 Systems Microscope, Olympus, Tokyo, Japan) was used to in-
spect slices for the presence of yellow fluorescent protein (eYFP) and DiI. Recorded images were processed using
FIJI103,104.

Stimulus
We used custom software (EXPO, https://sites.google.com/a/nyu.edu/expo/home) to present visual stimuli on a gamma-
calibrated liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ; mean luminance 50 cd/m2, 60 Hz) at
25 cm distance to the animal’s right eye (spanning ∼ 108x66◦, small angle approximation). Mice were presented with
three 12 min random sequences of briefly flashed (84 ms), full-screen grating stimuli. The random sequences were
drawn from 2304 unique gratings covering 12 orientations (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165◦), 8 con-
trasts (0, 0.04, 0.10, 0.19, 0.30, 0.46, 0.69, 1), 6 spatial frequencies (0.01, 0.02, 0.06, 0.14, 0.33, 0.80 cyc/◦) and
4 spatial phases (0, 90, 180, 270◦). One sequence consisted of 9216 gratings. Between the sequences, a blank gray
screen was displayed for 1 min. For V1 recordings in PV-Cre mice expressing ChR2, light pulses (10 Hz, 1 ms pulses)
were delivered from the optical fiber during these periods; analyses of the blank screen responses or photostimulation
effects were not included in the current study. Typically, the stimulus sequence was presented once per electrode
penetration, except in two cases, where the sequence was run twice during one electrode penetration but data from
each run was analyzed separately.

Data analysis
Wideband extracellular signals were digitized at 30 kHz (Blackrock microsystems, Blackrock Microsystems Europe
GmbH, Hannover DE). To obtain single unit activity from extracellular recordings, the open source, Matlab-based,
automated spike sorting toolbox Kilosort105 was used. Resulting clusters were manually refined using Spyke106, a
Python application that allows the selection of channels and time ranges around clustered spikes for realignment, as
well as representation in 3D space using dimension reduction (multichannel PCA, ICA, and/or spike time). Exhaustive
pairwise comparisons of similar clusters allowed merging of potentially over-clustered units. All further analyses were
performed using an SQL data base and a custom-made analysis pipeline programmed in python107 and managed
via datajoint108.

Spike waveshape analysis
From the mean waveform of the maximum-response electrode channel of each single unit, the time between trough
and peak (rise time) and the half-width at half-height of the peak were calculated. Exploiting the waveshapes of all V1
units processed using the same pipeline (N = 428 from 10 mice), a k-means algorithm was used to cluster the data
into 2 populations.

Laminar location
We used current source density (CSD) analysis109 for recordings in area V1 to determine the laminar position of
electrode contacts. To obtain the LFP, we first down-sampled the signal to 1 kHz before applying a bandpass filter (3–
90 Hz, second-order Butterworth filter). We computed the CSD using the iCSD method110 implemented in elephant
(RRID:SCR_003833)111. We assigned the base of layer 4 to the contact that was closest to the earliest CSD polarity
inversion. The remaining contacts were assigned to layers based on relative layer thickness reported by112, assuming
a thickness of 1.2 mm for mouse visual cortex. The resulting distribution of neurons across layers was: L2/3 - 10/131
(7.6%), L4 - 29/131 (22.1%), L5 - 47/131 (35.9%), L6 - 45/131 (34.4%).

Temporal response kernels via reverse correlation
After eliminating units with overall very low firing rate (<0.1 Hz), the probability of a stimulus preceding a spike by a
time δt from -50 to 350 ms was computed for each unique grating stimulus. This was done by binning spike times
in 1 ms windows and then counting how often a specific stimulus occurred δt before a spike. After normalizing
this histogram by dividing by the total number of spikes, the posterior distribution was calculated according to Bayes’
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theorem by multiplying with the probability of a spike occurring and dividing by the probability of the stimulus occurring:

P (Spike|Grating) = P (Grating|Spike) · P (Spike)
P (Grating)

=

Grating And Spike Bins
Total Spike Bins · Total Spike Bins

Total Bins
Grating Bins

Total Bins

=
Grating And Spike Bins

Grating Bins

By dividing by the 1 ms bin duration, the resulting probabilities could be directly converted to firing rates and thus give
a temporal response kernel for each unique grating stimulus.

Determining visual responsiveness
To eliminate non-responsive or noise-dominated units, the variance of the temporal kernels across stimuli was cal-
culated and tested for non-randomness using the Wald-Wolfowitz-Test (WWT). The WWT uses the distribution of
consecutive ones and zeros in a binary sequence, which should follow a normal distribution in a random sequence, to
statistically determine randomness of the sequence. The test can be applied to a non-binary sequence by converting
it to a binary sequence via a threshold criterion, typically the mean or median. Before applying the WWT, global trends
in the sequence should be removed by either filtering or applying an approximation of the derivative. As the response
to grating contrast is a robust indicator of visual responsiveness, the analysis was performed using the aggregate
variance across grating contrast, which was computed by averaging the kernels across grating orientation, spatial
frequency and spatial phase, before computing the variance across the resulting contrast kernels. To further increase
signal-to-noise ratio, the partial variance was squared before computing the differences across time to remove any
global trends. On the resulting sequence, the WWT was performed using the median as cutoff criterion. Because
the WWT can miss narrow peaks, even if they are high, a second WWT was computed on the absolute values of the
sequence. A unit was classified as visually responsive if one of the WWT’s was significant and the test statistic of both
WWT’s was negative, indicating fewer sign changes than expected by chance.

Determining optimal time point
The time point of optimal response was determined via the peak of the summed aggregate variances across stimuli.
First, the partial variances were computed for all four stimulus parameters as described above for grating contrast.
The resulting partial variances were then summed and the time point of the first peak exceeding half the modulation
depth of the result was selected as the optimal response time point δtopt peak detection using scipy,113.

Response profiles
In a 20 ms window around δtopt , responses were averaged over grating spatial phase and frequency, resulting in
two-dimensional response matrices covering grating orientation and contrast.

Contrast-invariance
Contrast-invariance of a unit was assessed by applying a singular value decomposition (SVD) to its response matrix,
separating the SVD’s principle component and residual, and computing the Gamma index of spatial autocorrelation on
the residual46. The Gamma index is computed by computing a similarity matrix for all data points and then masking
the similarity matrix with a contiguity matrix that considers data points that share an edge to be neighbors. The
index itself is the sum of all entries in the masked similarity matrix. Patterns are detected by randomly shuffling data
points and comparing the original index against the resulting distribution. The strength of the first SVD component
was assessed as its power in the SVD: the quotient between the squared first singular value and the sum of squares
over all singular values. Residual strength was then computed as one minus first component power. The SVD was
calculated using numpy114 and the Gamma index using pysal115. Neurons with a z-scored Gamma index gz > 1.96
and residual strength p > 0.05 were classified as contrast-dependent.

Tuning model
Contrast invariant units were fitted with a two-dimensional tuning model consisting of a hyperbolic ratio function with
supersaturation parameter47 and a wrapped Gaussian41:

r (c,ψ, θ) = r0 + (rmax − r0) · cn

cs ·n50 + cs ·n ·
m=∞∑
m=−∞

exp
{−(ψ − θ + πm)2

2σ2

}
, (S1)

where c is stimulus contrast, ψ is the stimulus orientation, θ the preferred orientation, r0 the baseline response and
rmax the peak response of the neuron. The tuning model was fitted to each neuron’s response matrix in a least-
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squared sense using the scipy.optimize library. Quality of fit was assessed via the coefficient of determination
(r 2) and only units with r 2 > 0.4 were used for further analysis.

Width parameters of orientation tuning functions, σ in our case, scale non-linearly when tuning is either strong or
weak, depending on the specific function. When quantitatively analysing data that contains a broad spectrum of
tuning, it is thus advisable to use measures that are not distorted by such non-linear scaling. Accordingly, orientation
selectivity42,43 was quantified as

OSI =

√
(∑Rk sin(2θk ))2 + (∑Rk cos(2θk ))2∑

Rk
(S2)

where Rk is the response to the k th direction given by θk .

Contrast sensitivity was quantified as contrast at half height of the contrast response function. Since some of our
recorded contrast response functions did not saturate, even for full contrast, we preferred this measure as opposed to
the parameter c50 of the hyperbolic ratio function.

To construct population tuning curves for orientation and contrast, individual orientation and contrast tuning curves
were averaged, after aligning individual neurons to their preferred orientation. Population contrast-invariance was
assessed by applying the above explained SVD and spatial autocorrelation analysis to the population tuning curves.

Statistics
All statistics were performed using functions from scipy.stats and statsmodels.

Theory and model

Determining populations’ responses from the recorded data for the SSN model fit

The hyperbolic ratio function used to describe and quantify the recorded contrast responses imposes a sigmoidal
shape on the contrast response. However, the output of the SSN model itself can explain how S-shaped contrast
responses arise from a recurrent network wiring. Therefore, to avoid an additional fitting bias, we didn’t use the
hyperbolic ratio function to represent the recorded populations’ responses before we fitted the SSN model to the data.
To determine E, I and thalamic population responses to a stimulus of orientation ψ, the function

R (ci ,ψ − θ) = r0 + (r (ci ) − r0) ·
∞∑

m=−∞
exp

{−(ψ − θ + πm)2
2σ2

}
(S3)

was fitted to the two-dimensional contrast and orientation responses of individual units to determine the contrast
response functions r (ci ) at eight contrast values ci as well as the width σ of orientation tuning curves (see Swindale41

for justification of wrapped Gaussian fit). Then the responses of the units were aligned such that their preferred
orientations θ coincided with 0◦. The E, I, and thalamic population contrast responses at each contrast value ci in
(Fig. 3) were computed as an average r (ci ) in the corresponding population. The population orientation tuning widths
were computed as an average σ over the corresponding population.

SSN model with two populations, stability of steady states

The two population SSN model is given by the equations

τX · drX (t ,C )
d t

+ rX (t ,C ) =
(
JXE · rE (t ,C ) − JXI · rI (t ,C ) +TdLGN (C ) · gX

)n
+
, X ∈ {E , I }. (S4)

The steady states rE (C ) and rI (C ) defined by the equations (drX /d t = 0)

rX (C ) =
(
JXE · rE (C ) − JXI · rI (C ) +TdLGN (C ) · gX

)n
+
, X ∈ {E , I }. (S5)

are stable exactly when the inequalities

JEE r
1−1/n
E − (n · det J · r 1−1/nE + JI I )r 1−1/nI < 1/n (S6)

22



and

τE + τI + τE JI I nr 1−1/nI − τI JEE nr 1−1/nE > 0 (S7)

are fulfilled27. To guarantee stability of the fitted firing rates, we incorporated the inequality in Eq. S6 in the parameter
inference algorithm. We note that the second inequality in Eq. S7 can always be fulfilled if we choose sufficiently large
τE and/or small τI .

Determining the two-population SSN parameters from contrast responses

The SSN model with the initially unknown parameters JXY , gX , and n was required to generate stable steady states
rX (C ) (Eq. S5 - Eq. S7), which closely approximated the average recorded cortical and thalamic contrast responses
(Eq. S3). For each fixed n and eight contrasts C , Eq. 1 represented an over-determined system of 16 linear equations
with six unknown connectivity weights JXY , gX , which always has a unique solution. We called this solution valid,
if additionally, the constants JXY , gX were positive and lead to a stable steady state of the SSN model. We note
that the weights computed directly from the average V1 and thalamic contrast responses did not lead to any valid
solutions for the exponents n ranging from 1.1 to 5. Therefore, we randomly generated triplets of V1 and thalamic
contrast response curves within ±sem error bar areas of the contrast responses and computed corresponding sets of
the connectivity weights JXY , gX as solutions of the over-determined linear system in Eq. 1 for each triplet. Overall,
the fraction of valid connectivity weights was less than 0.1% for all n , and was a monotonically increasing function of
n with few valid fits found for n close to 1 (Fig. S5A). Since the initial SSN parameters JXY , gX , and n were computed
for random response triplets and not for the average contrast responses, we optimized them to closely approximate
the average responses by minimizing the score function

Scorefit (J , g , n) = 1

F (n)
8∑
i=1

(r fit
E (Ci ) − r av

E (Ci ))2
σ2
E (Ci )

+ (r fit
I (Ci ) − r av

I (Ci ))2
σ2
I (Ci )

+ (T fit
dLGN (Ci ) −T av

dLGN (Ci ))2
σ2

dLGN (Ci )
. (S8)

Based on the score function (Eq. S8), the contrast responses with smaller standard deviation σX were approximated
with higher precision than those with larger standard deviation. We note that as expected, lower firing rates had lower
variability in our recordings. We divided the difference between the fit and the recorded average by the fraction of valid
fits F as a function of n to reinforce the exponents n leading to a larger fraction of initial valid fits. Each parameter set
JXY , gX , n in the final distribution of 103 fits was a parameter set with the best score out of 104 optimized randomly
generated valid initial fits.

Comparison of the inferred connectivity parameters with direct connectivity measures: upper bound for the
relation gE /JEE

Lien et al.60 reported that the upper bound for the contribution of thalamic inputs compared to the total postsynaptic
charge of the E cortical neurons was 36 + 2% for full screen, 100% contrast drifting gratings see also61,76. We used
the upper bound of 38% to estimate an experimentally plausible region for the relation gE /JEE in Fig. 3I. To this end,
we assumed that the relative contribution of the thalamic input gE ·TdLGN to the E population with respect to the total
input to E population JEE · rE − JEI · rI + gE ·TdLGN was smaller than 38%. Using the estimate

gE ·TdLGN

JEE · rE + gE ·TdLGN
<

gE ·TdLGN

JEE · rE − JEI · rI + gE ·TdLGN
< 0.38,

we computed the approximate upper bound for the relation gE /JEE
gE
JEE
<

0.38

1 − 0.38
· rE
TdLGN

≈ 0.55.

Here we used the firing rates rE and TdLGN recorded for 100% of contrast.

Relation between parameters gI and gE

We determined the relation between the parameters gE and gI based on the measurements published in Ji et al.62.
The V1 E neurons received direct thalamic input with the probabilities 15/19 in layer 2/3, 19/19 in layer 4, 8/8 in layer
5, and 7/9 in layer 662. The V1 I neurons received direct thalamic input with the probabilities 14/17 in layer 2/3, 15/15
in layer 4, 15/15 in layer 5, and 9/11 in layer 662. The adjusted peak amplitudes of postsynaptic potentials amounted
to 190±78pA for E and 475±178pA for I V1 populations in layer 2/3, 430±97pA for E and 1111±260pA for I cortical
populations in layer 4, 190 ± 73pA for E and 596 ± 178pA for I cortical populations in layer 5, and 160 ± 49pA for E
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and 412 ± 167pA for I cortical populations in layer 662. In total, the experimentally measured gI was higher than gE
in all layers 2/3, 4, 5 and 6 (Fig. 3J).

Relations between connectivity constants JXY

The weights of the network connectivity matrix JXY were computed as a product of connection probability (CP),
strength of postsynaptic potential (PSP), and the fraction of neurons in the source population with respect to the total
number of neurons included in the network model. The data was extracted from experimental sources introduced in
the first rows of Table 1 for the layers 2/3, 4, 5, and 6. We note that only two experimental reports contained complete
information on both connectivity measures for all four V1 connections in layers 2/3 and 515,69, and only one source
on connectivity measures in layers 4 and 669. We assumed that our network contained 89% of excitatory and 11%
of PV+ neurons, based on the following calculation: The V1 network consists of approximately 80% of excitatory and
20% of inhibitory neurons. A survey of inhibitory subpopulations in V164 reported that PV+ neurons constitute 37, 49,
53, and 42% of inhibitory neurons in layers 2/3, 4, 5, and 6, respectively. 10 out of 131 recorded neurons belonged
to the layer 2/3, 29 to layer 4, 47 to layer 5, and 45 to layer 6. We computed the fraction of PV+ neurons in inhibitory
population as the weighted percentage of the recorded neurons (10 ·0.37+29 ·0.49+47 ·0.53+45 ·0.42)/131 ≈ 0.47.
Thus, the percentage of PV+ neurons in our cortical network is 0.47 · 20/(80 + 0.47 · 20) · 100% ≈ 11%.

Contrast invariance constrains connectivity and input profiles

We denote φ ≡ ψ − θ, φ ′ ≡ ψ − θ ′ and show that the property of contrast invariance (Eq. 3)

RX (φ,C ) = rX (C )r̃X (φ), X ∈ {E , I } (S9)

combined with steady state equations Eq. 2 leads to equations in Eq. 4, which relate orientation tuning curves r̃X with
connectivity and input profilesWXY and LX .

The steady-state equations of the extended SSN model in Eq. 2 are given by

RX (φ,C ) =
( π/2∫
−π/2

WXE (φ − φ ′)RE (φ ′,C )dφ ′ −
π/2∫

−π/2

WXI (φ − φ ′)RI (φ ′,C )dφ ′ +TdLGN (C )LX (φ)
)n
+
. (S10)

We insert the contrast invariant representation of steady states (Eq. S9) into (Eq. S10) and divide Eq. S10 by r̃X (φ)
to obtain

rX (C ) =
(
JXE (φ)rE (C ) − JXI (φ)rI (C ) +TdLGN (C )gX (φ)

)n
+
, (S11)

where JXY (φ) =
π/2∫

−π/2
WXY (φ − φ ′)r̃Y (φ ′)dφ ′/(r̃X (φ))1/n and gX (φ) = LX (φ)/(r̃X (φ))1/n .

Now we show that gX are constants independent of φ, then we show that JXY are constants provided the contrast
response functions are not exactly linearly dependent, i.e. rE and rI do not satisfy rE (C ) = a · rI (C ) for all contrasts
C with some constant a . We prove this statement by contradiction, i.e. we assume there is at least one parameter
JXY or gX such that JXY (φ) , JXY (φ ′) or gX (φ) , gX (φ ′) for some φ , φ ′, and derive a contradiction.

First, we show that gX are independent of φ. We substitute S = TdLGN (C ) into Eq. S11

r̂X (S ) =
(
JXE (φ)r̂E (S ) − JXI (φ)r̂I (S ) + SgX (φ)

)n
+
. (S12)

Here, r̂X (S ) = rX (C ) = rX (T −1
dLGN (S )). Since r̂X are non-negative, the content of the bracket on the right side of the

equations is positive and we can remove the sign +. Next, we apply the exponent 1/n to both sides of Eq. S12 to
obtain

(r̂X (S ))1/n = JXE (φ)r̂E (S ) − JXI (φ)r̂I (S ) + SgX (φ). (S13)

Now we denote ĴXY (φ) = JXY (φ) − JXY (φ ′) and ĝX (φ) = gX (φ) − gX (φ ′) and subtract from Eq. S13 the same
equation with φ substituted by φ ′ to obtain

0 = ĴXE (φ)r̂E (S ) − ĴXI (φ)r̂I (S ) + SĝX (φ). (S14)
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Next, we compute a derivative of Eq. S14 with respect to S and set S = 0. We obtain

0 = ĴXE (φ)r̂ ′E (S ) − ĴXI (φ)r̂ ′I (S ) + ĝX (φ). (S15)

We note that r̂ ′X (0) = 0 always holds for the zero steady state of Eq. S12 corresponding to S = 0 input. Then we
obtain ĝX (φ) = 0 from Eq. S15, which by definition implies gX (φ) = gX (φ ′) for all φ. We have shown that gE and gI
are constants independent of φ.

Now we show when JXY are independent of φ. From ĝE (φ) = ĝI (φ) = 0, we obtain that Eq. S14 is equivalent to

r̂E (S )/r̂I (S ) = ĴEI (φ)/ĴEE (φ). (S16)

Since the left side of Eq. S16 depends only on S and the right side only on φ, both sides are equal to the same
constant which we denote by a . In particular, this last observation implies exact linear dependence of the contrast
response functions: rE (C ) = a · rI (C ).

We have shown that the property of contrast-invariance Eq. 3 restricts the shape of the input functions LE and LI and
the interaction profilesWEE ,WEI ,WI E andWI I accordingly to the following relations

LE (φ) = gE · (r̃E (φ))1/n , LI (φ) = gI · (r̃I (φ))1/n , (S17)

∫ π/2

−π/2
WEE (φ − φ ′)r̃E (φ ′)dφ ′ = JEE · (r̃E (φ))1/n ,

∫ π/2

−π/2
WEI (φ − φ ′)r̃I (φ ′)dφ ′ = JEI · (r̃E (φ))1/n ,

∫ π/2

−π/2
WI E (φ − φ ′)r̃E (φ ′)dφ ′ = JI E · (r̃I (φ))1/n ,

∫ π/2

−π/2
WI I (φ − φ ′)r̃I (φ ′)dθ ′ = JI I · (r̃I (φ))1/n ,

(S18)

where the constants gX and JXY depend on the shape of contrast responses rE and rI that are steady states of the
two population SSN model.

Determining connectivity and input profiles of the extended SSN model

To determine the input and connectivity profiles LX and WXY from Eq. S17 and Eq. S18, we used the wrapped
Gaussian approximation of orientation tuning curves. The wrapped Gaussian function is given by

G (σ) (φ) =
∞∑

m=−∞
exp

{
− (φ + πm)2

2σ2

}
.

The widths of the orientation tuning curves r̃E and r̃I were σE ≈ 0.31π ≈ 56◦ and σI ≈ 0.34π ≈ 62◦ (Fig. 4B), the
orientation tuning curves are represented by

r̃E (φ) = G (σE ) (φ)/max
φ
G (σE ) , r̃I (φ) = G (σI ) (φ)/max

φ
G (σI ) . (S19)

To derive the input profiles LE and LI using Eq. S17, we fitted normalized wrapped Gaussian functions to the power-
law transformations of orientation tuning curves (r̃E )1/n and (r̃I )1/n , where n were the power-law exponents inferred
from the recorded contrast responses. We obtained that the mean widths of the curves (r̃E )1/n and (r̃I )1/n were
σ

inp
E ≈ 0.36π ≈ 65◦ and σ inp

I ≈ 0.39π ≈ 70◦, respectively, and the input profiles LE and LI (Fig. 4C) were represented
by

LE (φ) = gE · G (σ inp
E ) (φ)/max

φ
G (σ inp

E ) , LI (φ) = gI · G (σ inp
I ) (φ)/maxG (σ inp

I ) . (S20)

Our next goal was to determine the connectivity profilesWXY using Eq. S18. To this end, we used the formula for the
convolution of two wrapped Gaussian functions116

σ2√
2πσ1 (σ2

2 − σ2
1 )1/2

∫ π/2

−π/2
G ( (σ2

2−σ2
1 )1/2) (φ − φ ′)G (σ1) (φ ′)dφ ′ = G (σ2) (φ). (S21)

Next, we combined Eq. S18 and Eq. S21 to obtain the wrapped Gaussian representation ofWXY . Using

(r̃X (φ))1/n = G (σ inp
X ) (φ)/max

φ
G (σ inp

X ) , r̃Y (φ) = G (σY ) (φ)/max
φ
G (σY ) ,
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Eq. S18, and Eq. S21, we obtained

WXY (φ) =
JXY · σ inp

X√
2π · σY · ((σ inp

X )2 − σ2
Y )1/2

· maxφ G (σY )
maxφ G (σ inp

X )
· G ( ( (σ inp

X )2−σ2
Y )1/2)

(φ) (S22)

and
σXY = ((σ inp

X )2 − σ2
Y )1/2. (S23)

For our recorded data, we obtained σEE = 33◦, σEI = 19◦, σI E = 42◦, and σI I = 33◦.

Ascending order between the widths of connectivity profiles

The widths of connectivity profiles follow the order σEI < σEE < σI I < σI E in each inferred parameter set. However,
this result would also follow for a specific order between only σE , σI and σ inp

E . Here we show that the above derivations
constrain the possible order of connectivity widths: independently of the exact values of σE and σI , the assumptions

σE < σI , σI < σ
inp
E , n > 1 (S24)

always imply the relations
σEI < σEE < σI E σEI < σI I < σI E .

Indeed, since σE < σI , we always have σ inp
E < σ

inp
I for n > 1. Based on this inequality and Eq. S24, we obtain

σ2
E < σ

2
I < (σ inp

E )2 < (σ inp
I )2. Next, we obtain

(σ inp
E )2 − σ2

I < (σ inp
E )2 − σ2

E < (σ inp
I )2 − σ2

E

and
(σ inp
E )2 − σ2

I < (σ inp
I )2 − σ2

I < (σ inp
I )2 − σ2

E .

Together with Eq. S23, these chains of inequalities are equivalent to the relations σEI < σEE < σI E and σEI < σI I <
σI E . In particular, inequalities in Eq. S24 always imply that σEI is the smallest and σI E the largest connectivity profile
width, while σEE and σI I are constrained between σEI and σI E .
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Supplementary Information

Fig. S1. Reverse correlation and optimal response time point (related to Fig. 2). A, Reverse correlation analysis for an example
V1 neuron. Reverse correlation computes the firing rate at a time point δt relative to stimulus occurrence, yielding temporal kernels
for each stimulus combination (Middle: orientation; bottom: contrast; average across all other stimulus dimensions for visualization).
The optimal response time was calculated by using the sum of the aggregated variances in firing rate across stimulus conditions
(top, see Methods) and selecting its peak as the latency of optimal response (vertical line)45. B, Distribution of optimal response
times (teal : inhibitory, orange: excitatory, black : cumulative distribution). Inhibitory neurons had a significantly lower latency of
optimal response time (69 ± 3 ms) than excitatory neurons (89 ± 3 ms; mean ± sem; two-tailed Welch’s t -Test: t=5.18, p < .001).
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Fig. S2. Suppressed-by-contrast neurons (SbC) (related to Fig. 2). A, Four example SbC neurons, characterized by their
stronger response to low contrast and an increasing suppression with higher contrasts. B, Two-dimensional tuning model fitted to
an SbC neuron. C, Distribution of response amplitudes, defined as the difference between responses to 100% and 0% contrast.
A considerable fraction of broad-spiking, putative excitatory neurons (24/125) were suppressed by contrast (negative response
amplitude, transparent). Since SbC neurons might correspond to VIP interneurons48, SbC neurons were excluded from further
analysis.
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Fig. S3. Contrast-invariance of V1 population response (related to Fig. 2, Fig. 3). Top: excitatory, bottom inhibitory. A, Pop-
ulation response for two-dimensional tuning model using hyperbolic ratio function and wrapped Gaussian. Residuals are shown
once on the same scale as the data and once on a separate scale. The residuals show a significant, but very weak pattern (E:
gz = 10.41, residual strength < 0.1%; I: gz = 14.31, residual strength = 0.1%). B, Same as (A) for two-dimensional tuning
model using model-free contrast response and wrapped Gaussian, as used in Fig. 3 (E: gz = 11.58, residual strength < 0.1%; I:
gz = 15.07, residual strength < 0.1%).
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Fig. S4. Responses in dLGN (related to Fig. 2). A, Four example neurons from dLGN. As for the V1 data, SbC neurons were
excluded from further analysis (17/89). B, Two-dimensional tuning model fitted to a dLGN neuron. C, Normalized contrast response
functions. D, Population response curve obtained by averaged individual contrast response functions.
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Fig. S7. Inference of connectivity parameters for modified contrast responses (related to Fig. 3). A, To compute connectivity
and input weights for slight modifications of recorded responses, all three average contrast responses (dLGN, V1E, and V1I) were
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3 Suppressed-by-Contrast Neurons in
dLGN and V1

3.1 Summary

Neurons whose firing is suppressed by almost any visual stimulus exist along the
early processing stages of the mammalian visual system: retina, dorsolateral genic-
ulate nucleus (dLGN) and primary visual cortex (V1). However, the role of these
suppressed-by-contrast (SbC) neurons in visual processing remains unclear. In
mice, recent studies have investigated their connection to behavioral state and molec-
ular markers, but a dedicated multifaceted survey linking past and present findings
has been largely lacking. Here, we investigate intrinsic firing characteristics, func-
tional aspects, and stimulus response properties of SbC neurons in the dLGN and
V1 of mice. We find SbC neurons to fire less regularly and to be located in lower
cortical layers than non-SbC neurons. Additionally, we find SbC neurons to be
broad-spiking and to be tuned to the presented stimulus. Our results suggest that
SbC responses are generated de-novo at multiple processing stages along the visual
stream and highlight the diversity that underlies the SbC response type, which likely
spans multiple known cell types.

3.2 Contributions

The following authors contributed to this manuscript. Laura Busse (LB) and Si-
mon Renner (SR) conceived the study. SR recorded and curated data V1 data in
one mouse and developed the data analysis software. Gregory Born, Yannik Bauer
and Martin Spacek recorded and curated dLGN data and additional V1 data. Emma
Müller-Seydlitz developed analysis techniques for spontaneous activity data related
to Figure 2. SR expanded and finalized analysis techniques for variability and oscil-
lations of spontaneous activity. SR performed data analysis for all figures, includ-
ing identification of SbC neurons, wave shape classification, layer location analysis,
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and stimulus tuning analysis. SR made the figures. SR and LB contributed concep-
tual ideas, discussed and coordinated the project at all stages, wrote and edited the
manuscript.
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ABSTRACT

Neurons whose firing is suppressed by almost any visual stimulus exist all along the early processing stages of the mammalian
visual system. However, the role of these suppressed-by-contrast (SbC) neurons in visual processing remains unclear. In
mice, recent studies have investigated their connection to behavioral state and molecular markers, but a dedicated multifaceted
survey linking past and present findings has been largely lacking. Here, we investigate intrinsic spike characteristics, functional
aspects and stimulus response properties of SbC neurons in the dorsolateral geniculate nucleus (dLGN) and primary visual
cortex (V1) of mice. We find SbC neurons to differ from non-SbC neurons in firing regularity, cortical layer location, to be
broad-spiking and to be tuned to the presented stimulus. Our results suggest that SbC responses are generated at multiple
processing stations along the visual stream and highlight the diversity that underlies the SbC response type, which likely spans
multiple known cell types.

Introduction
Classically, visual neuroscience has studied action potentials evoked by visual stimuli. By probing neurons with stimuli ranging
from small spots of light to gratings and naturalistic images, studies have uncovered functional response types from simple
center-surround, Gabor-like [1] to, more recently, complex activation patterns [2, 3]. However, while action potentials elicited
by visual stimuli have been the subject of hundreds of studies and therefore have dominated the field, neurons which respond
with suppression to visual stimuli have received far less attention [4]. Despite this lack of attention, a small but steady flow
of studies has discovered examples of neurons that are suppressed by visual stimuli along all processing steps of the early
visual system [5, 6, 7]. Aided by large-scale recording techniques and genetic tools, recent investigation have probed the role of
suppressed neurons in different behavioral states as well as their relation to specific inhibitory neurons [8, 9]. In most aspects,
however, the knowledge of suppressed neurons’ computational and circuit role still remains scarce.

Neurons with high spontaneous activity, which is suppressed by visual stimuli, were first discovered in the cat and rabbit
retina during the late 1906s [5, 10]. Because these retinal ganglion cells were suppressed by virtually any stimulus that changed
a uniform blank screen, they were hypothesized to function as "uniformity detectors" [5, 10, 11]. With vision research shifting
to different species, similar neurons were found in the dorsolateral geniculate nucleus (dLGN) of the thalamus in primates
and mice [12, 6] as well as the primary visual cortex (V1) in mice [7, 13]. This indicates that "suppressed-by-contrast" (SbC)
neurons might be an integral part of visual coding, even in higher processing centers and across different species.

Investigations of SbC neurons have been distributed across time, different labs and research contexts, resulting in spotty
and diverse evidence of their role in visual processing. Despite being suppressed by almost any stimulus, retinal SbC neurons
already show diversity in their processing of stimulus onset and offset as well as their temporal dynamics and spike behavior
[10, 5, 14, 15, 2]. This diversity continues in dLGN, where SbC neurons have been observed to have different firing rates across
species [6, 12], fire more regularly than the rest of the population [12], and exist as different subtypes, potentially within a
projection pathway from the retina [16]. In visual cortex, SbC neurons have been implied to correspond to different populations
of inhibitory neurons [7, 9], to be involved in firing rate modulations during transitions between a quiescent and more active
brain state [13, 7], as well as to be part of a corticothalamic feedback channel [8]. In light of this scattered evidence, there
is no consensus on the functional role of SbC neurons. They could serve to mainly signal uniformity, perhaps in the context
of saccadic eye movements [15] and aid prey capture [17], they could regulate overall inhibitory drive to balance activity in
different behavioral states [7], perhaps in a feedback pathway [8], or they could provide disinhibition to selectively enhance
activity [9].

As knowledge about SbC neurons in dLGN and V1 is still limited and most studies have been carried out with different
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angles of attack, we here provide a wide screening of SbC and non-SbC neurons in mouse dLGN and V1, gathering evidence
on their firing patterns, cell type (excitatory vs. inhibitory), layer location and tuning properties. We find SbC neurons to be
mainly excitatory, be located in lower cortical layers, show tuning to multiple stimulus parameters, and their firing patterns to
vary between brain areas. As such, we offer a survey investigation that connects previous studies and provides details about
SbC neurons’ circuit and computational role.

Results
To identify SbC neurons in dLGN and V1, we performed silicon probe recordings in awake, head-fixed mice (Figure 1A) while
presenting full-field flashed gratings of different contrasts, orientations, spatial phase and spatial frequency (Figure 1B). Using
reverse correlation analysis [18, 19], we calculated temporal response profiles for each unique stimulus and extracted each
neuron’s optimal response latency as the time of maximal variance across stimuli [20] (Figure 1B). We then computed their
modulation strength by normalizing their responses to their firing rate during 0% contrast stimuli. We classified neurons as SbC,
if their mean modulation strength was below -0.1 i.e. if their average firing response was at least 10% lower than the response
to 0% contrast stimuli (Figure 1C, inset). Similarly, we only classified neurons as non-SbC, if their mean modulation strength
was larger than 0.1. Requiring modulation stronger than 10% effectively filtered out noisy neurons whose responses fluctuated
around their baseline responses (Figure 1D). Using this classification, we found 16% SbC neurons in dLGN (17/108) and 13%
(31/239) in V1 (χ2-test: χ2 = 0.22, p=.640).

Electrode

Head-post

LCD

84 ms

Draw from 2304 gratings

9216 x

12 min

V1

Figure 1. Identifying SbC neurons. (A) Left: Experimental recording setup for awake, head-fixed mice. Right: Histological
identification of V1. Scale bar: 1 mm. Bregma: -2.70 mm. (B) Top: Flashed gratings stimulus. During gray periods, a median
luminance gray screen was shown. Bottom: Example contrast response profile retrieved via reverse correlation. (C)
Distribution of mean contrast modulation strength (mean of responses normalized to firing at 0%-contrast stimuli) across
neurons used to classify neurons as SbC (pink) and non-SbC (turquoise). Inset: neurons with small modulation strength were
not associated with a response type (gray). (D) Contrast response functions of SbC neurons (pink) and neurons with mean
modulation strength between -0.1 and 0 from panel C (gray). (E) Distribution of spontaneous firing rate in dLGN (solid lines)
for SbC (pink) and non-SbC (turquoise) neurons. Arrows indicate means. (F) Same as E for V1 (dashed lines).

We first explored whether firing rates during spontaneous activity, a simpler criterion than suppression by sensory stimuli,
could equally well distinguish SbC from non-SbC neuron types. Indeed, a previous study in the retina [11] reported that the
high baseline firing rates of SbC neurons were distinct enough to constitute a criterion sufficient for identification, and Piscopo
et al. [6] observed a 4-fold difference in spontaneous firing rates between SbC and non-SbC neurons in dLGN that might have
served as a predictor for identifying SbC neurons. We therefore focused on periods of spontaneous activity in response to a
median luminance gray screen both during blank periods in our stimulus (Figure 1B, top) and during separate measurements
where available (see Methods). Comparing distributions of baseline firing rates in SbC and non-SbC neurons, we found the
distributions to be largely overlapping in both brain regions (Figure 1E, F). Consistent with previous studies [12, 7], we found
that mean firing rates were overall lower in V1 compared to dLGN (5.4±7.5 vs. 8.7±6.4, two-way ANOVA, main effect of
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region: F = 21.17, p < 0.001). More importantly, SbC neurons overall tended to have higher firing rates than non-SbC neurons
(8.2±7.3 vs. 5.8±6.6, main effect of response type: F = 2.92, p = 0.088). This trend arose because firing rate differences
between SbC and non-SbC neurons were larger in dLGN (dLGN SbC: 12.3±7.0 vs non-SbC 7.3±5.3) than in V1 (V1 SbC:
3.8±4.5 vs non-SbC 4.7±7.2, interaction effect: F = 5.84, p = 0.016, Figure 1E, F).

To better understand to which degree these differences in mean spontaneous firing rates might support differentiation
between SbC and non-SbC neurons, we next applied an ideal observer analysis. From the distributions of spontaneous firing
rates for SbC and non-SbC neurons, we determined the area under the receiver operating characteristics (ROC) curve, and
found, in line with the substantial overlap between the firing rate distributions (Figure 1F), classification performance for V1
to be poor (AUC = 0.51, Mann-Whitney-U test: U = 872.0, p = 0.455, Figure S1). In dLGN, classification accuracy was
different from chance (Mann-Whitney-U test: U = 327.0, p = .001; Figure S1), yet the overall low performance (AUC = 0.74)
did not not permit reliably identifying SbC neurons based on firing rate alone.

Firing properties of SbC and non-SbC neurons differ between brain areas
We next turned to firing regularity, bursting, and rhythmicity in activity of SbC and non-SbC neurons, to gain insights into
intrinsic properties of these neuron classes and how they might be embedded in their local network [21]. These investigations
were further motivated by previous studies, which have reported considerable differences in spike train regularity and burst
firing between SbC and non-SbC neurons [14, 12]. To measure firing regularity, we focused again on spontaneous activity
and computed the coefficient of variation (CV ), i.e. the standard deviation (SD) of the spike interval distribution divided by its
mean, with CV > 1 representing a spike train that is less regular than a Poisson process with the same firing rate. Comparing
CV s across brain regions and response types (Figure 2A), we found that the CV depended on both response type and region
(two-way ANOVA interaction, F = 4.81, p = .029): while both response types had similar CV s in dLGN (1.48± 0.33 vs.
1.49± 0.28), post-hoc Welch’s t-test: t = 0.09, p = 0.931; Figure 2A, top), SbC neurons tended to have higher CV s than
non-SbC neurons in V1 (1.72±0.77 vs. 1.34±0.52, post-hoc Welch’s t-test: t = 1.91, p = 0.073; Figure 2A, bottom). Thus,
contrary to a previous report in dLGN of anesthetized macaques, which found that SbC neurons had lower CV s (i.e. more
regular spike trains, more rhythmic activity) [12], SbC neurons in awake mouse seem to have similarly regular spike trains as
non-SbC neurons in dLGN, and more irregular spike trains than non-SbC neurons in V1.

Since higher CV ’s can be driven by burst firing, we next computed, for each neuron, the ratio of burst spikes in the spike
train. Relying on definitions for bursts driven by thalamic low-threshold calcium spikes [22], we identified bursts as groups
of spikes that were preceded by at least 100 ms of quiescence and had inter-spike intervals below 4 ms. Comparing again
across brain regions and response types, we found – consistent with the well-known propensity of thalamus to fire in bursts
[23] – higher mean burst ratios in dLGN than in V1 (0.088±0.088 vs. 0.012±0.036, two-way ANOVA, main effect of region:
F = 28.57, p < .001). In addition, we found a lower mean burst ratio for SbC neurons than for non-SbC neurons (0.028±0.050
vs. 0.047±0.078, main effect of response type: F = 5.38, p = .021) Figure 2B). This result indicates that burst firing in SbC
neurons is unlikely to be the underlying reason for higher CV s in SbC neurons, particularly in V1.

To corroborate this finding and investigate more directly to which degree burst firing determined the differences in firing
regularity between SbC and non-SbC neurons, we re-computed the CV while considering only tonic spikes (Figure S2) and
compared the CV across response types, brain regions and firing modes (full vs tonic-only). We found the CV to depend on
all three factors (three-way mixed ANOVA, region vs response type vs firing mode interaction effect, F = 4.13, p = 0.043).
Post-hoc tests (Bonferroni-adjusted: α = 0.00625) revealed that the removal of burst spikes did not affect either response
types in V1 (CV for all vs tonic-only spikes: non-SbC: 1.34± 0.0.52 vs 1.33± 0.52, Welch’s t-test: t = 0.23, p = 0.819;
SbC: 1.72± 0.77 vs. 1.72± 0.76, Welch’s t-test: t = 0.03, p = 0.98) nor SbC units in dLGN (1.48± 0.33 vs. 1.41± 0.34,
Welch’s t-test: t = 0.59, p = 0.557). Instead, removing burst spikes exclusively lowered the CV of non-SbC neurons in
dLGN (1.49±0.28 vs. 1.38±0.30, Welch’s t-test: t = 3.22, p = 0.00156). We thus conclude that burst firing cannot explain
differences in firing regularity between SbC and non-SbC neurons in V1, but might rather mask additional differences in firing
regularity in dLGN.

Having observed characteristic differences between SbC and non-SbC neurons in the relative variability of inter-spike
intervals, we next turned to spike autocorrelograms (Figure 2C). While the CV only considers neighboring spikes, autocorrelo-
grams take into account more distant spikes in the spike train, whose dynamics can reflect some of the intrinsic properties of the
neurons, ranging from firing modes to morphology [24]. Since the parameters used to compute an autocorrelogram influence
which frequencies can be detected, we used an oscillation score (OS) [25] to extract the strongest autocorrelogram oscillation
frequency (PF) and its relative strength of oscillation within specific frequency bands (θ : 4–8 Hz, α: 8–12 Hz, β−: 12–20 Hz,
β+: 20-30 Hz, γ−: 30-50 Hz, γ+: 50-80 Hz). To optimally capture oscillations in these bands, the method computes a separate
autocorrelogram with adjusted maximal time lag and binning for each band before extracting OS and PF from the Fourier
spectrum of each autocorrelogram. For instance, oscillations in the θ -band can be mathematically optimally extracted using
time lags up to ≈ 1000 ms, while oscillations in the γ+-band, can be optimally extracted using time lags up to ≈ 250 ms
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(Figure 2C, top left). To compare oscillation properties between brain regions and response types across the entire frequency
spectrum, we smoothed the obtained PF −OS diagrams via kernel convolution and extracted frequency ranges that differed
between SbC and non-SbC neurons or areas by computing their impact on the correlation between the spectra (see Methods).

We found the smoothed spectra of SbC and non-SbC neurons in V1 to be very similar (Pearson correlation, ρ = 0.986,
p < 0.001), lacking continuous frequency ranges impacting the correlation and prominent peaks (data not shown). In dLGN
(Figure 2C, top right), the spectra of SbC and non-SbC neurons were also similar (Pearson correlation, ρ = 0.966, p < 0.001),
both having prominent peaks at 12 and 59 Hz. The latter peak is consistent with a conspicuous narrow gamma-band oscillation
with a subcortical origin reported in previous studies [26, 27]. Interestingly, dLGN SbC neurons had lower OS than dLGN
non-SbC neurons in lower frequency ranges (4-18 Hz, impact 0.021). We also compared response types between dLGN and V1
(Figure 2C, bottom). For non-SbC neurons, we found they had higher OS in dLGN compared to V1 in the γ+-band (SbC:
56-62 Hz, impact 0.034; non-SbC: 56-61 Hz, impact 0.011) as well as across the α and β−-band (SbC: 10-14 Hz, impact 0.125;
non-SbC: 9-15 Hz, impact 0.122) (Figure 2C, bottom left). For SbC neurons, we found that they had lower OS in dLGN than
V1 in the θ -band (4-10 Hz, impact 0.233) and higher OS across the α and β−-band (11-14 Hz, impact 0.017) (Figure 2C,
bottom right). Performing the same oscillation analyses without burst spikes yielded qualitatively similar results. In summary,
we found SbC neurons in dLGN to have a unique OS spectrum, with low OS in lower frequency ranges. Furthermore, our
analyses show that dLGN SbC and non-SbC neurons equally participate in the prominent narrow-band gamma oscillation
known to exist in mouse dLGN.

Figure 2. Firing regularity, burst firing, and autocorrelogram oscillations for dLGN and V1 during spontaneous activity. (A)
Coefficient of variation (CV ) of SbC and non-SbC neurons. (B) Ratio between burst spikes and total spikes (burst ratio) of
non-SbC and SbC neurons. (C) Differences in autocorrelogram oscillations between regions and response types. Top left:
Example autocorrelogram of one non-SbC neuron in V1 (top) with high oscillation score (OS = 55.5, PF = 4.9 Hz) in the
θ -band (4–8 Hz) and one SbC neuron in dLGN (bottom) with high oscillation score (OS = 5.2, PF = 58.6 Hz) in the γ+-band
(50–80 Hz). Binning adjusted for optimal visibility of oscillation. Bottom left, top right, bottom right: Normalized, smoothed
oscillation score values across the tested frequency spectrum for different neuron populations. Shaded areas indicate ranges
with significant differences between compared populations. (A-C) Arrows indicate means. Pink: SbC; turquoise: non-SbC;
solid lines: dLGN; dashed lines: V1.

SbC neurons are mainly broad-spiking and have longer response latencies
In addition to differences in their spike statistics, SbC neurons might differ from non-SbC neurons with regards to their specific
neuronal type (e.g., excitatory vs inhibitory), or holding a specific place in the circuitry with regards to layers and the associated
projection patterns. For example, SbC neurons in mouse dLGN and V1 could be part of an excitatory projection pathway
signaling uniformity from the retina to the cortex [14, 16], provide complementary inhibition to balance overall firing rates [8]
and counteract effects of arousal [7], or influence the gain of pyramidal cells via disinhibition [9].

To determine whether SbC neurons belonged to the group of broad-spiking, putative excitatory neurons, or narrow-spiking,
putative inhibitory neurons, we first concentrated on primary visual cortex, for which the extracellular waveshape is known
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to serve as a proxy for cell type [28]. From the extracellular waveshape of 540 neurons recorded in V1 (Figure 3A, top),
we extracted characteristic parameters (peak width, trough-to-peak time) and identified two well-separated clusters (Mean
silhouette coefficient=0.64, Figure 3B, top). Remarkably, when we then labeled neurons recorded specifically for this study
according to their responses to contrast, we found a strong trend towards fewer SbC neurons in the narrow-spiking cluster
(3%, 1/34) than in the broad-spiking cluster (20%, 26/131, exact Fisher-test: oddsratio = 0.15, p = 0.053, Figure 3B, top).
This suggests that the V1 SbC neurons in their majority do not correspond to the class of fast-spiking, inhibitory basket
cells. Applying clustering to the dLGN wave shapes (Figure 3A, bottom) yielded, as expected, a single cluster, in which the
SbC and non-SbC response types overlapped (Figure 3B, bottom). This indicates that the same waveshape parameters as
used for V1 do not predict SbC vs. non-SbC neuron type in dLGN. In both V1 and dLGN, we also found a small group of
neurons with positive-polarity wave shapes (V1: 21/519, dLGN: 42/512, Figure 3A), which we did not include in the clustering.
Positive-polarity wave shapes in V1 have recently been associated with axonal recordings of thalamic inputs [29], which makes
them good candidates to investigate the propagation of SbC responses between dLGN and V1. We did indeed find SbC neurons
among the positive-polarity V1 waveshapes recorded for this study (40%, 4/10), suggesting that SbC feature selectivity could
be transmitted to cortex. We did not find any SbC neurons among the small number of dLGN positive-polarity neurons recorded
for this study (0/5).

To investigate the distribution of SbC neurons across V1 layers, we performed current-source density (CSD) analysis [30, 31],
and found that SbC neurons were more preferentially located in deeper layers. When we compared our recorded neurons’ relative
depths across response types, we observed SbC neurons and non-SbC neurons across all V1 layers (Figure 3C, top), with
little difference in average relative depth (SbC: 116±233 µm, non-SbC: 191±211 µm, Student’s t-test: t = 1.44, p = 0.151).
After assigning the neurons to their cortical layers, however, we found a trend for SbC neurons to be more strongly biased
towards infragranular layers (83%, 20/24 neurons) compared to non-SbC neurons (63%, 76/120 neurons, exact Fisher-test:
oddsratio = 2.89, p = 0.062, Figure 3C, bottom).

As layer IV of primary visual cortex receives the majority of thalamocortical axons [32], finding a higher proportion of
SbC neurons in lower layers might indicate that at least some part of contrast suppression is generated de-novo or enhanced
in V1, in addition to potentially being inherited from dLGN. We further investigated this hypothesis by comparing optimal
response latencies (i.e., time of peak variance across stimuli, Figure 1B) between SbC and non-SbC neurons as well as brain
regions. As expected, latencies were overall higher in V1 than in dLGN (87±28 vs. 70±24 ms, two-way ANOVA, main
effect of region: F = 24.7, p < .001). At the same time, SbC neurons had a significantly larger mean latency (103±36 ms)
than non-SbC neurons (77±24 ms, main effect of response type: F = 33.0, p < .001, Figure 3C). We found no significant
interaction effect (F = 1.84, p = 0.176), meaning the latency of SbC neurons in V1 was not additionally altered compared to
dLGN. Since cortical depth and optimal response latency were significantly, but only weakly correlated (ρ = 0.17, p = 0.047),
and explanatory power of cortical depth for optimal response latency was low (R2 = 0.027), our data cannot discern if the
higher latencies of SbC neurons in V1 could come from a slower direct projection pathway or because suppression is generated
de-novo at each processing station.

SbC neurons have stimulus selectivity
Classically, SbC cells have been reported to respond similarly to almost any kind of stimulus [5, 12] and not show specific
selectivity to stimulus properties like spatial phase, orientation or direction [14, 6, 7]. Recently however, there have been reports
of direction and phase tuning in SbC neurons [9]. Since these sensory response properties can reflect underlying connectivity
and computations (e.g., simple vs. complex cells in the case of phase tuning), we more closely investigated the tuning of SbC
and non-SbC neurons.

We first investigated the contrast response functions of SbC and non-SbC neurons in more detail, and found that SbC
neurons had higher contrast-sensitivity than non-SbC neurons (Figure 4A, B). We investigated the shape of the contrast
response functions by computing the contrast at half height (CHH) (Figure 4A, B; right). In addition to dLGN being overall
more contrast-sensitive than V1 (0.38±0.18 vs 0.48±0.20, main effect of region: F = 7.3, p = 0.007), SbC neurons across
both V1 and dLGN showed earlier saturation (0.30±0.14) than non-SbC neurons (0.47±0.19; two-way ANOVA, main effect
of response type: F = 28.9, p < .001). Strikingly, while almost half of the non-SbC neurons were late-saturating (CHH > 0.5;
102/244), the SbC population only contained 12.5% of late-saturating cells with (6/48 neurons; χ2-test: χ2 = 7.09, p = 0.008).
So, while SbC neurons seem to reach their peak response later in time (see above), they seem to respond at lower stimulus
intensities.

Spatial frequency tuning of neurons in V1 and dLGN typically falls into three broad categories: low-pass, high-pass,
and band-pass [33]. SbC neurons, on the other hand, are expected to have a U-shaped (convex) band-pass profile [6], being
suppressed by medium spatial frequencies and returning to their baseline firing once frequencies are too high to be resolved. We
used unbiased clustering to confirm this finding by recovering a convex response type consisting exclusively of SbC neurons.
More specifically, we first used k-means clustering on the individual normalized spatial frequency responses and embedded
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Figure 3. Comparison of functional type, layer location and response latencies in dLGN and V1. (A) Extracellular wave
shapes of neurons in V1 and dLGN. Red: non-classical, positive-polarity wave shapes. (B) Classification based on wave shape
parameters. Light dots: neurons recorded in other experiments to improve power for clustering, solid dots: neurons recorded for
the current study. (C) Top: cortical depth relative to the bottom of layer IV, separately for rising and contrast-suppressed
neurons. Bottom: layer affiliation based on layer border estimation. Thick line indicates split into supra- and infragranular
layers used for statistical analysis. (D) Response latency distributions. Arrows indicate means. solid lines: dLGN; dashed lines:
V1. (B-D) Pink: SbC; turquoise: non-SbC.

the result in a 2D space for visualization (Figure 4C, D, top left). We found that, for both brain regions, four clusters best
represented the data (maximum Variance Ratio Criterion, dLGN: 78.4, V1: 94.5). In dLGN, these four cluster corresponded
closely to the previously reported low-pass, band-pass and high-pass types and an additional convex-shaped type (Figure 4C,
bottom left), which exclusively contained SbC neurons (15 neurons, Figure 4C, top right). Only two SbC neurons were
assigned to a different cluster. In V1, we also found a convex cluster consisting exclusively of SbC neurons (30 neurons,
Figure 4D, top right) with only one SbC neuron being assigned to a different cluster. This close correspondence between
unsupervised clustering and hypothesis-driven classification of SbC neurons across two different response modalities (contrast,
spatial frequency) accentuates SbC neurons as an independent response type.

Next, we computed the mean spatial frequency tuning function for SbC and non-SbC neurons (Figure 4C, D, bottom
right). While non-SbC neurons had a concave tuning function (negative slope of a parabola fitted to mean tuning function,
dLGN: −1.29, V1: −1.48), SbC neurons had a convex tuning function (positive parabola slope, dLGN: 1.78, V1: 1.39).
Interestingly, the preferred spatial frequency of the two populations (peak of fitted parabola) were similar for SbC and non-SbC
neurons, especially in dLGN (dLGN: 0.087 vs 0.083 cyc/◦, V1: 0.111 vs 0.072 cyc/◦). This mirrored tuning could be an
indication of a homeostatic coupling between SbC and non-SbC firing that serves to keep overall firing in balance [8].

Following reports that SbC cells are insensitive to the spatial phase of a presented grating [12], we investigated possible
differences in phase tuning between SbC and non-SbC cells. To this end, we determined the preferred grating orientation
for each neuron and compared responses to the four spatial phases at this preferred orientation. To quantify selectivity for
spatial phase, we took advantage of spatial phase being a circular property and used a vector averaging method, which yields
values between 0 (no tuning) and 1 (maximum tuning) [34]. While the majority of neurons for both response types showed
little sensitivity for spatial phase (phase selectivity index (PSI) << 0.1) (Figure 4E,F, right), the top 30% of neurons in each
cell type did show tuning to spatial phase (dLGN: SbC: 0.11±0.03, non-SbC: 0.21±0.09, V1: SbC: 0.17±0.06, non-SbC:
0.20±0.09, Figure 4E,F, left). Mean tuning strength for spatial phase in this subpopulation was similar between brain regions
(two-way ANOVA, main effect of region: F = 0.88, p = 0.351), but SbC neurons showed weaker selectivity for phase than
non-SbC neurons (two-way ANOVA, main effect of response type: F = 5.40, p = 0.025) (Figure 4E,F). We thus conclude
that, contrary to previous reports, SbC neurons can be sensitive to spatial phase, albeit less so than non-SbC cells.

In addition to reporting a lack of spatial phase tuning, previous studies in monkey dLGN [12] and mouse V1 [7, 8] have
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found SbC cells to show no or only weak selectivity for grating orientation. Analogous to our analyses of spatial phase
tuning, we extracted the optimal spatial phase for each neuron and quantified orientation tuning at this spatial phase using
an orientation selectivity index (OSI) (Figure 4G, H, right). Focusing again on the 30% most selective neurons, we found
orientation selectivity to depend on brain region and response type (Figure 4G, H, left). As expected, mean orientation tuning
in this subpopulation was weaker in dLGN (0.12± 0.04) compared to V1 (0.22± 0.11, two-way ANOVA, main effect of
region: F = 12.11, p < 0.001). Additionally, SbC neurons were less orientation-tuned than non-SbC neurons (0.11±0.06 vs.
0.20±0.11, main effect of response type: F = 9.53, p = 0.003). In dLGN, SbC neurons were, on average, at most suppressed
to 74±5% of their baseline firing, which represents a negligible amount of tuning. In V1 on the other hand, tuning was stronger,
with SbC neurons being, on average, maximally suppressed to 53± 22% of baseline firing. Thus, while non-SbC neurons
respond stronger overall to grating orientation, we discovered previously unreported orientation tuning in SbC neurons.

Discussion

In this work, we provide a description of basic functional properties and feature-selectivity of SbC neurons in mouse dLGN and
V1. We found SbC neurons in V1 to fire less regularly, SbC neurons in dLGN to have weaker oscillations, and SbC neurons
in both brain areas to have fewer bursts than non-SbC neurons. A waveshape analysis for SbC neurons in V1 revealed that
SbC neurons were mainly broad-spiking, indicating that they likely do not correspond to fast-spiking basket cells, but rather
to other types of inhibitory interneurons or excitatory neurons. Furthermore, V1 SbC neurons were located preferentially in
lower cortical layers and had longer peak response latencies than non-SbC neurons. Lastly, we found sensitivity to spatial
phase and orientation of gratings that could allow SbC neurons a computational role beyond uniformity detection. Together, our
findings highlight that the sizeable fraction of SbC neurons is positioned to play a multifaceted role in visual processing along
the thalamo-cortical pathway.

Basic response properties
Our results regarding firing regularity of SbC neurons during spontaneous activity is different from previous results in dLGN of
anesthetized macaques, which had shown that SbC neurons fire more regularly than the rest of the population [12]. In light of
this previous result, we were surprised to find no differences between SbC and non-SbC neurons in spike train regularity in
dLGN, and even a lower regularity for SbC neuron in V1. These findings regarding spike train regularity could not be accounted
for by differences in burst-firing or autocorrelogram oscillations. Firing regularity is known to vary between brain areas [35] and
neuron type (excitatory vs. inhibitory) [36], both of which could, in principle, underlie the origin of the regularity bias between
SbC and non-SbC neurons we find in our results. Indeed, one study conducted in monkey temporal cortex found broad-spiking
neurons to fire less regularly than narrow-spiking neurons [37]. Since our SbC neurons overlapped almost entirely with the
broad-spiking cluster, a low firing regularity might thus be expected. It is also noteworthy, that firing regularity is strongly
influenced by the state of the animal [38] and seems to be particularly low during awake states, thus possibly explaining the
reports of highly regular SbC spiking in dLGN of anesthetized macaques [12].

Oscillatory activity in the thalamo-cortical system of mice is influenced by specific stimuli, behavioral state, and top-down
processing [39], and can globally influence firing regularity. When analyzing autocorrelogram oscillations, we found that SbC
neurons in dLGN had weaker 3–5 Hz oscillations compared to the non-SbC populations. Oscillatory activity in the 3–5 Hz
range within the mouse thalamo-cortical system is interesting, because this frequency has been linked to the primate alpha
rhythm [40, 41, 42], which in turn is widely known to signal mental relaxation and low-arousal states. Our results indicate
that SbC neurons in dLGN might be less affected by processes underlying the generation of the 3–5 Hz oscillation, which
interestingly seem to involve low-threshold calcium bursts [42]. Consistent with this interpretation, we found that SbC neurons
in dLGN displayed a lower burst ratio compared to the rest of the population. The 3–5 Hz rhythm in the mouse thalamo-cortical
system is also remarkable since it is driven by a cyclical interaction between dLGN and V1, where temporary blocking of
either dLGN or V1 abolishes the oscillation [42]. Together with our result that a similar difference in the strength of the
3–5 Hz oscillations between SbC and non-SbC neurons in V1 did not exist, this calls to question how much the responses
of SbC neurons simply propagate in feedforward (or feedback) ways through the early visual system of mice, as speculated
previously [15].

Interestingly, we found the largest differences in autocorrelogram oscillations between SbC and non-SbC neurons in dLGN,
where firing regularity of SbC and non-SbC neurons was equal. Conversely, in V1, oscillation profiles were similar, while spike
train regularity differed between response types. This suggests that oscillations in the autocorrelogram and spike train regularity
are mediated, at least partially, by different mechanisms, such as interactions between different neuronal populations [43] vs.
synaptic background activity [44, 45], respectively. These mechanisms, in turn, might thus impinge differentially on SbC and
non-SbC neurons.
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Figure 4. Tuning properties of SbC-cells in dLGN (A, C, E, G) and V1 (B, D, F, H). (A, B) Left: Z-scored contrast response
functions of SbC cells. Right: Contrast-at-half-height distributions. (C, D) Top left: Embedded visualization and clustering of
tuning curves reveals four distinct response groups. Bottom left: Response groups match previously reported response types
(green: low-pass, dLGN: 23/92, V1: 75/200 neurons; purple: band-pass, dLGN: 28/92, V1: 70/200 neurons; teal: high-pass,
dLGN: 28/92, V1: 26/200 neurons; yellow: band-stop, dLGN: 15/92, V1: 30/200 neurons). Top right: Unsupervised clustering
matches supervised response type identification. Bottom right: Mean spatial frequency tuning of SbC neurons (solid lines).
Dashed lines: fitted parabola to determine curvature. (E, F) SbC and non-SbC cells show similar mean tuning to spatial phase.
Left: Distribution of phase selectivity index (PSI). Dotted lines and shaded areas indicate 30% most tuned neurons. Right:
mean response at preferred orientation of the top 30% most tuned neurons, aligned to preferred spatial phase. Shaded areas
correspond to standard deviation. (G, H) Comparison of orientation tuning between SbC and non-SbC neurons. Left:
Distribution of orientation selectivity index (OSI). Dotted lines and shaded areas indicate 30% most tuned neurons. Right:
Mean response of top 30% most tuned neurons, aligned to preferred orientation. Shaded areas correspond to standard deviation.
(A-H) Pink: SbC; turquoise: non-SbC; solid lines: dLGN; dashed lines: V1.

Functional role in the circuit
Perhaps one of the most pressing questions around SbC neurons is if they represent a distinct response type that can also be
connected to a distinct functional cell type. The evidence on this matter is currently mixed. Niell and Stryker [7] identify layer
2/3 SbC neurons as behavioral state dependent, fast-spiking inhibitory neurons that have been interpreted as PV+ interneurons.
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Millman et al. [9], on the other hand, show that SbC neurons can be found in all cortical layers with the largest group being VIP
neurons in layer 2/3. Interestingly, their group of VIP neurons differs from our SbC neurons in their tuning properties: for low
contrasts, they display higher than baseline activity and strong orientation tuning that almost vanishes for high contrasts [9].
Additionally, the relatively tight distribution of waveshapes for SbC neurons (Figure 3B) we observe in our data seems different
from that of vasoactive intestinal peptide-expressing (VIP) interneurons in other sources [24]. A recent study investigating
both in vivo response properties and transcriptomic profiles of inhibitory V1 neurons identified another class of SbC neurons
[46]. The SbC neurons in that study were synuclein-gamma-expressing (Sncg) cells, which responded to gratings, in particular
of large size, with suppression [46]. Other results, however, point to excitatory neurons also belonging to the family of SbC
neurons, including layer 2/3 pyramidal neurons [9]. Curiously, these layer 2/3 pyramidal cells with SbC response characteristics
better matched the tuning properties of SbC neurons recorded in our study, but lacked the characteristically high baseline
activity of SbC neurons. The finding of SbC neuron among L6 cortico-thalamic pyramidal cells [8] is well in line with our
observed strong presence of SbC neurons in lower layers. Taken together, it seems save to say that, similar to the retina [2],
there are likely multiple subtypes of SbC neurons in cortex, which do not belong to the same functional class or share the same
genetic marker. Nonetheless, creating transgenic mouse lines that can selectively influence SbC neurons would be a prime way
to gain information about their identity and function, as has been demonstrated recently in the retina [15, 17].

The finding of SbC neurons along all stages of the early visual pathway warrants the question whether suppression represents
a projecting pathway, is generated de-novo multiple times, or a mixture of both. In the retina, SbC responses are generated
via inhibition from amacrine cells that inhibit the responses of retinal ganglion cells with high spontaneous firing rates. The
question is now whether involving inhibition to create SbC responses is also involved in other processing stages or if a mere
"lack of activation" is projected along the pathway. In the case of an inhibitory mechanism, since there are no inhibitory forward
projecting neurons from the retina or dLGN, local interneurons or maybe long-range inhibitory connections would have to be
involved, resulting in one (or more) additional synapses in an SbC pathway compared to the classical non-SbC pathway. This
would likely lead to a difference in response latency between SbC and non-SbC neurons when presented with abrupt stimuli.
Our flashed gratings paradigm seems to indicate such an effect in both dLGN and V1, as mean latencies of SbC neurons are
larger than non-SbC neurons. At the same time, the latency distributions still show considerable overlap, indicating that a
mechanism involving multiple synapses and thus longer latencies may not be the only way that SbC responses are generated.
Unfortunately, validating our results against other data is difficult; while [12] report equal or larger latencies for SbC neurons,
we could not find additional reports of SbC response latencies. Re-analysis of existing datasets or consideration of latency as a
relatively easily extracted indicator of projection route in future studies could lead to further insight on this matter. Additionally,
genetic targeting of candidate neurons as mentioned above mentioned would allow causal investigations of the projecting
pathway that leads to SbC responses.

Even though SbC neurons have been known for more than a half-century, their functional role is still not clear, partly
because the existing evidence points in different directions. The most concrete investigations of high-level SbC functioning
point towards involvement in saccade signaling in the retina [15] or prey capture [17]. Other studies, especially in dLGN
and V1, have either observed SbC neurons as part of a larger population [9, 17], or observed the influence of variables like
behavioral state on SbC neurons [7, 8], rather than the function of SbC Neurons. As such, these studies provide important
guidance to direct future research towards causal investigations. One reason that the functional nature of SbC neurons has not
yet been pinpointed is that they could be involved in almost anything: from a coding perspective, any feature that is coded in
non-SbC fashion by an increase in activity, could also be coded inversely via a decrease of activity in SbC neurons, barring
possibly higher metabolic costs. As such, one would expect diverse response features across brain areas and involvement in
multiple contexts, as we currently see in the literature. The similar tuning properties we find in SbC neurons compared to
non-SbC neurons similarly point towards the capability of SbC neurons to contribute to diverse coding processes.

Methods
All procedures complied with the European Communities Council Directive 2010/63/EU and the German Law for Protection of
Animals, and were approved by local authorities, following appropriate ethics review.

Animals: Recordings were performed in 6 adult Ntsr1-Cre mice (5 male, 1 female, 5 hemizygous Tg, 1 negative control,
median age at first recording session: 23.9 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; MMRRC, #030648-UCD)
and 3 (2 male, 1 female) PV-Cre mice (median age: 14.1 weeks; B6.129P2-Pvalbtm1(cre)Arbr/J; Jackson Laboratory, #017320).

Surgery: The surgical procedures are described in detail in [47]. In brief: mice were administered an analgesic (Metamizole,
200 mg/kg, sc, MSD Animal Health, Brussels, Belgium) and put under isoflurane anesthesia (5% in oxygen at start, then
lowered to 0.5%–2% in oxygen, CP-Pharma, Burgdorf, Germany), the depth of which was constantly monitored. After shaving
and disinfecting the scalp, a skin incision was performed and the skull cleaned of any remaining tissue. Upon positioning the
head in a skull-flat position, a custom lightweight aluminium head bar with an opening over dLGN and V1 was placed on the
skull and fixated using dental cement. For V1 recordings and optogenetic stimulation unrelated to this study in PV-Cre mice, a
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small craniotomy above V1 was performed and ∼ 0.2µL of pAAV9/1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addgene,
#20298-AAV9) dyed with fast-green (Sigma-Aldrich, St. Louis, USA) was injected through the entire depth of the cortex.
In the Ntsr1-Cre mice used for additional V1 and dLGN recordings, a similar craniotomy was performed and ∼ 0.35µL of
stGtACR2 (rAAV2/1-pAAV-hSyn1-SIO-stGtACR2-FusionRed, Addgene, #105677) were injected in the infragranular layers of
cortex for experiments with suppression of corticothalamic feedback unrelated to the current study. Post-injection, the opening
was filled with Kwik-Cast (WPI Germany, Berlin, Germany). Long-term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer
Ingelheim, Ingelheim, Germany) was administered and continued to be administered for 3 consecutive days. After at least
1 week of recovery, animals were gradually habituated to the experimental setup, by first handling them and then simulating the
experimental procedure. To allow for virus expression, neural recordings started no sooner than 3 weeks after injection. On the
day prior to the first day of recording, mice were fully anesthetized using the same procedures as for the initial surgery, and a
craniotomy (ca. 1.5 mm2) was performed over dLGN and/or V1, and re-sealed with Kwik-Cast. As long as the animals did not
show signs of discomfort, the long-term analgesic Metacam was administered only once at the end of surgery, to avoid any
confounding effect on experimental results. Recordings were performed daily and continued for as long as the quality of the
electrophysiological signals remained high.

Experimental setup: Our experimental configuration for in-vivo recordings is described in detail in [47]. In brief: mice
were head-fixed and could run freely on an air-suspended styrofoam ball while stimuli were presented to the right visual field
on a gamma-corrected LCD screen. Extracellular neural signals were recorded with 32-channel silicon probes (Neuronexus,
A1x32Edge-5mm-20-177-A32, Ann Arbor, USA) for the 4 Ntsr1-Cre mice, a 32-channel silicon probe for one PV-Cre mouse
(A1x32-Edge-5mm-20-177-A32 and A1x32Edge-5mm-20-177-A32), and a 64-channel silicon probe (A1x64-Poly2-6mm-
23s-160-A64) for the other PV-Cre mouse. Ball movements were registered at 90 Hz by two optical mice connected to an
Arduino-type microcontroller. Eye movements were monitored under infrared light illumination.

For photostimulation of V1 PV+ inhibitory interneurons, unrelated to this study, an optic fiber (910 µm diameter, Thorlabs,
Newton, USA) was coupled to a light-emitting diode (LED, center wavelength 470 nm, M470F1, Thorlabs, Newton, USA) and
positioned with a micromanipulator less than 1 mm above the exposed surface of V1. A black metal foil surrounding the tip of
the head bar holder prevented the photostimulation light from reaching the animal’s eyes.

Perfusion and histology: After the final recording session, mice were first administered an analgesic (Metamizole,
200 mg/kg, sc, MSD Animal Health, Brussels, Belgium) and following a 30 min wait period were transcardially perfused under
deep anesthesia using a cocktail of Medetomidin (0.5 mL/kg), Midazolam (1 mL/kg), and Fentanyl (1 mL/kg) (ip). Perfusion
was first done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium phosphate buffer (PBS).

To verify recording site and virus expression, we performed histological analyses. Brains were removed, postfixed in PFA
for 24 h, and then rinsed with and stored in PBS at 4◦C. Slices (40 µm) were cut using a vibrotome (Leica VT1200 S, Leica,
Wetzlar, Germany), mounted on glass slides with Vectashield DAPI (Vector Laboratories, Burlingame, USA), and coverslipped.
A fluorescent microscope (BX61 Systems Microscope, Olympus, Tokyo, Japan) was used to inspect slices for the presence of
yellow fluorescent protein (eYFP) and DiI. Recorded images were processed using FIJI [48, 49].

Stimulus: We used custom software (EXPO, https://sites.google.com/a/nyu.edu/expo/home) to present visual stimuli on a
gamma-calibrated liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ; mean luminance 50 cd/m2, 60 Hz) at
25 cm distance to the animal’s right eye (spanning ∼ 108x66◦, small angle approximation). Mice were presented with three
12 min random sequences of briefly flashed (84 ms), full-screen grating stimuli. The random sequences were drawn from
2304 unique gratings covering 12 orientations (0,15,30,45,60,75,90,105,120,135,150,165◦), 8 contrasts (0, 0.04, 0.10, 0.19,
0.30, 0.46, 0.69, 1), 6 spatial frequencies (0.01, 0.02, 0.06, 0.14, 0.33, 0.80 cyc/◦) and 4 spatial phases (0,90,180,270◦). One
sequence consisted of 9216 gratings. Between the sequences, a blank gray screen was displayed for 1 min. For V1 recordings
in PV-Cre mice expressing ChR2, light pulses (10 Hz, 1 ms pulses) were delivered from the optical fiber during these periods;
analyses of the blank screen responses or photostimulation effects were not included in the current study. Typically, the stimulus
sequence was presented once per electrode penetration, except in two cases, where the sequence was run twice during one
electrode penetration but data from each run was analyzed separately.

Data analysis: Wideband extracellular signals were digitized at 30 kHz (Blackrock microsystems, Blackrock Microsystems
Europe GmbH, Hannover DE). To obtain single unit activity from extracellular recordings, the open source, Matlab-based,
automated spike sorting toolbox Kilosort [50] was used. Resulting clusters were manually refined using Spyke [51], a
Python application that allows the selection of channels and time ranges around clustered spikes for realignment, as well
as representation in 3D space using dimension reduction (multichannel PCA, ICA, and/or spike time). Exhaustive pairwise
comparisons of similar clusters allowed merging of potentially over-clustered units. All further analyses were performed using
an SQL data base and a custom-made analysis pipeline programmed in python [52] and managed via datajoint [53].

Spike waveshape analysis: From the mean waveform of the maximum-response electrode channel of each single unit, the
time between trough and peak (trough-to-peak time) and the full-width at half-height of the peak (peak width) were calculated.
Exploiting the waveshapes of all V1 units processed using the same pipeline (N = 540 from 11 mice), a k-means algorithm was
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used to cluster the data into 2 populations.
Laminar location: We used current source density (CSD) analysis [30] for recordings in area V1 to determine the laminar

position of electrode contacts. To obtain the LFP, we first down-sampled the signal to 1 kHz before applying a bandpass filter
(3–90 Hz, second-order Butterworth filter). We computed the CSD using the iCSD method [31] implemented in elephant
[(RRID:SCR_003833) 54]. We assigned the base of layer 4 to the contact that was closest to the earliest CSD polarity inversion.
The remaining contacts were assigned to layers based on relative layer thickness reported by [55], assuming a thickness of
1.2 mm for mouse visual cortex.

Temporal response kernels via reverse correlation: After eliminating units with overall very low firing rate (<0.1 Hz),
the probability of a stimulus preceding a spike by a time δ t from -50 to 350 ms was computed for each unique grating stimulus.
This was done by binning spike times in 1 ms windows and then counting how often a specific stimulus occurred δ t before a
spike. After normalizing this histogram by dividing by the total number of spikes, the posterior distribution was calculated
according to Bayes’ theorem by multiplying with the probability of a spike occurring and dividing by the probability of the
stimulus occurring:

P(Spike|Grating) =
P(Grating|Spike) ·P(Spike)

P(Grating)

=

Grating And Spike Bins
Total Spike Bins · Total Spike Bins

Total Bins
Grating Bins

Total Bins

=
Grating And Spike Bins

Grating Bins

By dividing by the 1 ms bin duration, the resulting probabilities could be directly converted to firing rates and thus give a
temporal response kernel for each unique grating stimulus.

Determining visual responsiveness: To eliminate non-responsive or noise-dominated units, the variance of the temporal
kernels across stimuli was calculated and tested for non-randomness using the Wald-Wolfowitz-Test (WWT). The WWT uses
the distribution of consecutive ones and zeros in a binary sequence, which should follow a normal distribution in a random
sequence, to statistically determine randomness of the sequence. The test can be applied to a non-binary sequence by converting
it to a binary sequence via a threshold criterion, typically the mean or median. Before applying the WWT, global trends in
the sequence should be removed by either filtering or applying an approximation of the derivative. As the response to grating
contrast is a robust indicator of visual responsiveness, the analysis was performed using the aggregate variance across grating
contrast, which was computed by averaging the kernels across grating orientation, spatial frequency and spatial phase, before
computing the variance across the resulting contrast kernels. To further increase signal-to-noise ratio, the partial variance was
squared before computing the differences across time to remove any global trends. On the resulting sequence, the WWT was
performed using the median as cutoff criterion. Because the WWT can miss narrow peaks, even if they are high, a second
WWT was computed on the absolute values of the sequence. A unit was classified as visually responsive if one of the WWT’s
was significant and the test statistic of both WWT’s was negative, indicating fewer sign changes than expected by chance.

Determining optimal time point: The time point of optimal response was determined via the peak of the summed
aggregate variances across stimuli. First, the partial variances were computed for all four stimulus parameters as described
above for grating contrast. The resulting partial variances were then summed and the time point of the first peak exceeding
half the modulation depth of the result was selected as the optimal response latency δ topt [peak detection using scipy, 56].
Responses were then averaged over a 20 ms window around δ topt , yielding a 4 dimensional response matrix spanning contrast,
spatial frequency, spatial phase and orientation.

Contrast response functions: Contrast response functions were computed by averaging over the 3 other stimulus dimen-
sions: spatial frequency, spatial phase and orientation. Contrast sensitivity was quantified as contrast at half height of the
contrast response function.

Response type classification: First, contrast response functions were converted to modulation strength by dividing by the
response at 0 contrast. Neurons were classified as SbC, if their mean modulation strength was below -0.1. For the two cases
where the experiment was performed twice during one electrode penetration, if the response classification of the experiments
conflicted with one another (SbC vs non-SbC), the neuron was discarded from further analysis; in all other cases data from both
experiments were used for further analysis.

Spike statistics during spontaneous activity: For 6 of the 9 mice involved in this study, we were able to use spontaneous
activity during the grey-screen periods of the flashed gratings stimulus. For 1 of these mice and 1 of the remaining mice, we
were able to use spontaneous activity during other grey-screen periods lasting multiple minutes, translating to 7 out of 9 mice
contributing spontaneous activity data to the analysis. We computed mean firing rate, CV and burst ratio from this data and
compared them as described above. In this analysis, we performed an additional two-way ANOVA on the rank-transformed
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data in case of violations of the normality assumption. This yielded the same results.
Oscillation score: The OS analysis is described in detail in [25]. In brief: for a selected frequency band, a spike

autocorrelogram is computed with specifically chosen time delays and binning. It is smoothed with a Gaussian kernel to
eliminate high-frequency noise. The central peak of the autocorrelogram introduces strong low-frequency artifacts in the
spectrum, so the peak is cut from the autocorrelogram. Next, a Fourier transform is applied to compute a power spectrum. The
frequency of maximal power in the desired frequency band is then extracted and the OS is computed by dividing the maximal
power in the desired band by the mean power of the spectrum. To recover an interpretable spectrum from the frequency-OS
pairs calculated for each neuron and frequency band, we applied a triangular smoothing kernel of 3 Hz width. To find ranges
of difference between two spectra, we iteratively calculated the Pearson correlation between the spectra, replaced one point,
calculated the correlation again and interpreted the difference in ρ as the impact of the point. By always replacing the point
of largest difference between the spectra, they became more and more similar until their correlation was larger than 0.999.
Summing the impact of adjacent points yielded ranges of difference.

Tuning functions: Spatial frequency tuning curves were calculated by averaging over the other stimulus dimensions:
contrast, spatial phase and orientation.

Spatial phase: Spatial phase tuning curves were calculated by selecting responses at the preferred stimulus orientation and
then averaging over the remaining stimulus dimensions: contrast and spatial frequency. The preferred orientation was calculated
by fitting a wrapped Gaussian function to the orientation tuning curve (averaged over the remaining stimulus dimensions),
extracting the parameter of preferred orientation and selecting the stimulus orientation closest to this value. The then used
vector averaging methods is described below.

Orientation selectivity: Orientation tuning curves were calculated by selecting responses at the preferred spatial phase
and then averaging over the remaining stimulus dimensions: contrast and spatial frequency. The preferred spatial phase was
selected as the phase of maximal response in the phase tuning curves (averaged over the remaining stimulus dimensions).

When analyzing tuning strength, we employed a vector averaging method with the following reasoning: width parameters
of orientation tuning functions, σ in our case, scale non-linearly when tuning is either strong or weak, depending on the specific
function. When quantitatively analysing data that contains a broad spectrum of tuning, it is thus advisable to use measures that
are not distorted by such non-linear scaling. Accordingly, orientation selectivity [57, 58] was quantified as

OSI =

√
(∑Rk sin(2θk))2 +(∑Rk cos(2θk))2

∑Rk
(1)

where Rk is the response to the kth direction given by θk.
Statistics: All statistics were performed using functions from scipy.stats and statsmodels except for the three-

way mixed ANOVA’s used in the oscillation score analyses, which were implemented in R .
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Supplements

Figure S1. Receiver-operating-characteristics for spontaneous firing rates.
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Figure S2. CV distributions without burst spikes. Pink: SbC; turquoise: non-SbC; solid lines: dLGN; dashed lines: V1.
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4 Conclusion

In the two manuscripts presented in this thesis, my collaborators and I investigated
how stimulus responses in dLGN and V1 constrain connectivity in V1, and how
intrinsic properties and response characteristics differ between SbC and non-SbC
neurons in dLGN and V1. We found that in vivo responses imply a specific order
of connection strength and width, which we were able to recover from previous
studies. Additionally, we found that SbC neurons fire less regularly than non-SbC
neurons, are located in deeper cortical layers, have larger response latencies, and
show significant stimulus tuning, suggesting the role of SbC neurons in visual pro-
cessing goes beyond luminance uniformity detection.

4.1 Discussion

How and when biological complexity can be reflected in computational models has
been a central question underlying the work presented in this thesis. Without em-
ploying detailed single neurons or intricate circuit details, our SSN model nonethe-
less produced predictions about connectivity that had not been suggested before and
still could be recovered from the literature. At a time when many see large-scale
network analyses as the way forward in neuroscience (Saxena and Cunningham,
2019), this underscores the power of distilling interpretable information from bio-
logical data sets as well as modeling approaches. At the same time, the increasing
ability to classify cell types (Zeng and Sanes, 2017) presents an imperative to extend
models while maintaining interpretability. Additionally, the differences to earlier
studies we find in our investigation of SbC neurons, such as similar baseline activ-
ity as non-SbC neurons (Piscopo et al., 2013), irregular firing (Tailby et al., 2007),
and significant stimulus tuning (Niell and Stryker, 2010), highlight how difficult it
can be to distill interpretable information from experimental results. While some
of these differences might be explained by species effects or behavioral state, the
present picture of heterogeneity suggests that suppression is generated differently
across brain regions and animal models. It thus seems clear that additional inves-
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tigations are needed to uncover if SbC effects are bound to specific cell types or if
they emerge from properties of the underlying network.

Reasons for separating neuronal response types

Manuscripts one and two are connected by the presence of SbC neurons in the data,
which were deliberately excluded from modeling and analyses in manuscript one
and studied in detail in manuscript two. The reasons for the exclusion in manuscript
one are twofold: first, their role in visual processing is not well understood, making
it unclear how they should (or could) be included in our model. To my knowl-
edge, no study has investigated the thalamocortical projection patterns or polarity
of SbC neurons in dLGN. It is therefore unclear whether they are excitatory or in-
hibitory, if their responses are processed purely locally, or if they project to cortex.
Consequently, including them as inputs in our model would have been speculative
and might have introduced biases that were not present in earlier studies. In visual
cortex, SbC neurons can be excitatory pyramidal neurons (Augustinaite and Kuhn,
2020) but have also been associated with different subtypes of inhibitory neurons
(Niell and Stryker, 2010; Millman et al., 2020; Bugeon et al., 2021), which have
specific wiring patterns and functionality (Pfeffer et al., 2013). This heterogeneity
precludes the integration of SbC neurons in a two-population model until their in-
fluences on other neurons and wiring patterns have been mapped more extensively.
Modeling SbC neurons as separate populations on the other hand, would require
additional assumptions or render the inference procedure mathematically invalid
(see below for more details). Second, as SbC neurons have most likely been absent
from many data sets that led to the conceptualizations of cortical function, their
inclusion would likely lead to contradictions with the existing literature. Until auto-
mated, high-throughput methods were developed around the turn of the millennium
(Gray et al., 1995; Hulata et al., 2002), neurons were often hand-mapped with high-
contrast stimuli before recording actual data to optimize yield from labor-intensive
experiments (Hubel and Wiesel, 1962; Alitto and Usrey, 2004), introducing a bias
towards non-SbC neurons in recorded data and models constructed to fit the data
(Wörgötter and Koch, 1991; Carandini and Heeger, 1994). Including SbC neurons
in our population responses would significantly alter the shape of the contrast re-
sponse functions, which has strong influence on the behavior of the SSN (Persi et al.,
2011). Thus, we only used non-SbC neurons to construct the population response.
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Relation to contemporary modeling approaches

The two-population SSN model, positioned between large-scale spiking networks
and multi-population rate networks, offers mathematical tractability and could be
extended to incorporate different (sub-)types of neurons. Since plasticity effects
or individual spike timing were not relevant for our goal of inferring connectivity,
we used a mean-field approximation model (Renart et al., 2003) similar to previous
versions of the SSN (Ahmadian et al., 2013), rather than a detailed spiking network
model (Maass, 1997), to describe cortical activity. This approach allowed us to
work with tractable differential equations that only permitted the use of contrast-
invariance to simplify the model. As the roles of inhibitory interneuron subtypes
are currently being dissected meticulously (de Vries et al., 2020; Bugeon et al.,
2021), other contemporary studies have focused on extending two-population mod-
els to include multiple interneuron populations (Litwin-Kumar et al., 2016; Lee
et al., 2017; Bryson et al., 2021; Romero-Sosa et al., 2021). These approaches have
typically used Wilson-Cowan-type models (Wilson and Cowan, 1972), which do
not include the power-law activation function of the SSN, making them easier to
handle mathematically but also omitting known properties like contrast-invariance.
One recent study however, has used an SSN model with multiple inhibitory popu-
lations to predict perturbation effects of optogenetic stimulation (Palmigiano et al.,
2020), paving the way to expanding the SSN to incorporate multiple subpopula-
tions. In principle, the mathematics of our mapping procedure should be expand-
able to include more subtypes by applying the separation of contrast-dependent and
orientation-dependent factors to the additional terms. However, this would require
contrast-invariance in the responses of all subtypes, the presence of which is cur-
rently debated (Li et al., 2012) and would have to be verified in the process. What
complicates this assessment is that contrast-invariance would not only have to hold
for individual neurons of the populations but also for each population as a whole,
which relies heavily on the distribution of contrast response functions between the
neurons (see below). As more populations get added to the model and their prop-
erties become more distinct, this assumption becomes increasingly unlikely. Con-
sidering the difficulties around incorporating contrast-invariant subpopulations, one
could try to relax this condition and only require invariance for specific subpopu-
lations. The inference procedure developed in manuscript one would be rendered
impossible in this case, but additional restrictions, like requiring weak orientation
tuning or approximating a non-invariant subpopulation as a linear combination of
invariant parts, could still permit connectivity inference. Additionally, one could
mathematically derive or numerically test which connectivity regimes in a multi-
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population model would result in contrast-invariant or contrast-dependent responses
across subpopulations, thereby verifying if biological connectivity regimes rely on
contrast-invariance in multiple populations.

Contrast-invariance of the population response depends on the sampled distri-
bution of the response parameters of individual neurons. We combined individual,
contrast-invariant responses into a population response by aligning the responses
to the preferred orientation and then averaging the tuning curves. This procedure
hinges on two assumptions: first, orientation tuning parameters and contrast re-
sponse parameters need to be uncorrelated. If orientation tuning width and semi-
saturation contrast of individual neurons were correlated, the average width would
change between the most strongly represented saturation and the other parts of the
distribution, breaking contrast-invariance. Recordings with multi-electrode arrays
have found tuning width and semi-saturation contrast to be uncorrelated (Busse
et al., 2009), matching our findings of a contrast-invariant population response. Sec-
ond, contrast response parameters need to be uniformly distributed. Even without
correlations between tuning width and semi-saturation contrast, over-representation
of a particular semi-saturation contrast will break contrast-invariance because inac-
tive neurons contribute flat tuning to the mean. As visible in the cumulative distri-
bution of contrast sensitivity, our data met this criterion. Since evidence remains
for violations of contrast-invariance in cortex (Li et al., 2012; Tring and Ringach,
2018; Lee et al., 2019), it is important to keep these confounders in mind.

4.2 Outlook

How the brain is affected by arousal and behavioral state is currently under in-
tense discussion in the field (Froudarakis et al., 2019; McCormick et al., 2020). In
the visual system, locomotion modulates the gain of firing in dLGN and V1 (Niell
and Stryker, 2010; Erisken et al., 2014) and affects oscillatory activity (Nestvogel
and McCormick, 2021). Circuit investigations have demonstrated the importance
of interneuron projections in these phenomena (Polack et al., 2013; Dipoppa et al.,
2018), raising the question if the underlying connectivity between excitatory and in-
hibitory populations also depends on behavioral state. Similarly, inhibitory neurons
and behavioral state have been shown to be strongly related to suppression in the
visual pathway (Augustinaite and Kuhn, 2020; Niell and Stryker, 2010), suggesting
that SbC neurons in our data set might also be dependent on behavioral state. Since
locomotion and arousal information are collected in our paradigm, splitting connec-
tivity and SbC analyses into locomotion and quiescence states would be a natural
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extension of our investigations.
Another source of untapped potential in the currently available data is tempo-

ral information. There is evidence that contrast responses, spatial frequency tuning
and orientation selectivity are non-stationary over multiple time scales (Ringach
et al., 1997; Mazer et al., 2002; Hu et al., 2011), which has been argued to also
affect contrast-invariance (Nowak and Barone, 2009). However, a consensus on
this matter has not been reached, with evidence for stable tuning (Gillespie et al.,
2001) and evidence for sharpening over time (Nowak and Barone, 2009) both being
present. Our stimulus protocol offers the possibility to contribute to this discussion
by analyzing the temporal dynamics depending on multiple stimulus parameters.
Additionally, synaptic plasticity has been shown to change connectivity on short
time scales while depending strongly on different neuron types (Tan et al., 2008;
Beierlein et al., 2003; Mongillo et al., 2018). If contrast or orientation responses
in our data were time-dependent, inferred connectivity would likely follow, offer-
ing yet another perspective on network dynamics. Time-resolved analysis of our
inference paradigm thus represents a promising step for future work.

Finally, probing the effects of activity perturbations on inferred cortical connec-
tivity, as well as on different neuronal response types, could reveal details of the
underlying circuits. Due to its sweeping implications for modeling and conceptual-
izing the cortex, the cortical operating regime and the underlying connectivity are
a focal point of the current discussion in neuroscience (Sadeh and Clopath, 2020b;
Sanzeni et al., 2020). Importantly, recent experimental tools have allowed in vivo

perturbation of cortical activity to be established as a new gold standard for testing
circuit models (Sadeh and Clopath, 2020a). As the SSN predicts severely altered re-
sponse states for different connectivity regimes (Kraynyukova and Tchumatchenko,
2018), manipulating cortical responses is likely to strongly affect inferred connec-
tivity. Investigating whether or not these effects work to re-balance cortical firing
(Moore et al., 2018) would greatly benefit our understanding of cortex. As SbC
neurons might be closely related to inhibitory firing (Millman et al., 2020), opto-
genetic tagging or perturbations of inhibitory firing could allow direct testing of
the overlap between neuron types and response types and thus give insights about
the role of suppression in the cortical circuit. Combined, these prospects make the
investigation of perturbation effects a top priority for the future.

With such promising avenues to continue to impact the discussion about con-
nectivity, inhibition, and cortical function in visual neuroscience and beyond, I hope
the work presented in this thesis finds its way to strengthening the foundation that
researchers can stand on to see further than we can imagine today.
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