
Democratizing Machine Learning
Contributions in AutoML and

Fairness

Florian Pfisterer

München 2022

Democratizing Machine Learning
Contributions in AutoML and

Fairness

Florian Pfisterer

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

Eingereicht von
Florian Pfisterer

München, den 30.05.2022

Erstgutachter: Prof. Dr. Bernd Bischl
Zweitgutachter: Prof. Dr. Marius Lindauer
Drittgutacher: Prof. Dr. Eyke Hüllermeier
Tag der mündlichen Prüfung: 19.10.2022

Summary v

Zusammenfassung
Modelle des maschinellen Lernens sind zunehmend in der Gesellschaft verankert, oft in
Form von automatisierten Entscheidungsprozessen. Ein wesentlicher Grund dafür ist die
verbesserte Zugänglichkeit von Daten, aber auch von Toolkits für maschinelles Lernen, die
den Zugang zu Methoden des maschinellen Lernens für Nicht-Experten ermöglichen. Diese
Arbeit umfasst mehrere Beiträge zur Demokratisierung des Zugangs zum maschinellem
Lernen, mit dem Ziel, einem breiterem Publikum Zugang zu diesen Technologien zu er-
möglichen. Die Beiträge in diesem Manuskript stammen aus mehreren Bereichen innerhalb
dieses weiten Gebiets. Ein großer Teil ist dem Bereich des automatisierten maschinellen
Lernens (AutoML) und der Hyperparameter-Optimierung gewidmet, mit dem Ziel, die
oft mühsame Aufgabe, ein optimales Vorhersagemodell für einen gegebenen Datensatz
zu finden, zu vereinfachen. Dieser Prozess besteht meist darin ein für vom Benutzer
vorgegebene Leistungsmetrik(en) optimales Modell zu finden. Oft kann dieser Prozess
durch Lernen aus vorhergehenden Experimenten verbessert oder beschleunigt werden. In
dieser Arbeit werden drei solcher Methoden vorgestellt, die entweder darauf abzielen, eine
feste Menge möglicher Hyperparameterkonfigurationen zu erhalten, die wahrscheinlich gute
Lösungen für jeden neuen Datensatz enthalten, oder Eigenschaften der Datensätze zu
nutzen, um neue Konfigurationen vorzuschlagen. Darüber hinaus wird eine Sammlung
solcher erforderlichen Metadaten zu den Experimenten vorgestellt, und es wird gezeigt, wie
solche Metadaten für die Entwicklung und als Testumgebung für neue Hyperparameter-
Optimierungsmethoden verwendet werden können.
Die weite Verbreitung von ML-Modellen in vielen Bereichen der Gesellschaft erfordert gle-
ichzeitig eine genauere Untersuchung der Art und Weise, wie aus Modellen abgeleitete
automatisierte Entscheidungen die Gesellschaft formen, und ob sie möglicherweise Indi-
viduen oder einzelne Bevölkerungsgruppen benachteiligen. In dieser Arbeit wird daher ein
AutoML-Tool vorgestellt, das es ermöglicht, solche Überlegungen in die Suche nach einem
optimalen Modell miteinzubeziehen. Diese Forderung nach Fairness wirft gleichzeitig die
Frage auf, ob die Fairness eines Modells zuverlässig geschätzt werden kann, was in einem
weiteren Beitrag in dieser Arbeit untersucht wird.
Da der Zugang zu Methoden des maschinellen Lernens auch stark vom Zugang zu Soft-
ware und Toolboxen abhängt, sind mehrere Beiträge in Form von Software Teil dieser
Arbeit. Das R-Paket mlr3pipelines ermöglicht die Einbettung von Modellen in sogenan-
nte Machine Learning Pipelines, die Vor- und Nachverarbeitungsschritte enthalten, die
im maschinellen Lernen und AutoML häufig benötigt werden. Das mlr3fairness R-Paket
hingegen ermöglicht es dem Benutzer, Modelle auf potentielle Benachteiligung hin zu über-
prüfen und diese durch verschiedene Techniken zu reduzieren. Eine dieser Techniken,
multi-calibration wurde darüberhinaus als seperate Software veröffentlicht.

vi Summary

Summary
Machine learning artifacts are increasingly embedded in society, often in the form of au-
tomated decision-making processes. One major reason for this, along with methodological
improvements, is the increasing accessibility of data but also machine learning toolkits
that enable access to machine learning methodology for non-experts. The core focus of
this thesis is exactly this – democratizing access to machine learning in order to enable a
wider audience to benefit from its potential. Contributions in this manuscript stem from
several different areas within this broader area. A major section is dedicated to the field
of automated machine learning (AutoML) with the goal to abstract away the tedious task
of obtaining an optimal predictive model for a given dataset. This process mostly con-
sists of finding said optimal model, often through hyperparameter optimization, while the
user in turn only selects the appropriate performance metric(s) and validates the resulting
models. This process can be improved or sped up by learning from previous experiments.
Three such methods one with the goal to obtain a fixed set of possible hyperparameter
configurations that likely contain good solutions for any new dataset and two using dataset
characteristics to propose new configurations are presented in this thesis. It furthermore
presents a collection of required experiment metadata and how such meta-data can be used
for the development and as a test bed for new hyperparameter optimization methods.
The pervasion of models derived from ML in many aspects of society simultaneously calls
for increased scrutiny with respect to how such models shape society and the eventual biases
they exhibit. Therefore, this thesis presents an AutoML tool that allows incorporating
fairness considerations into the search for an optimal model. This requirement for fairness
simultaneously poses the question of whether we can reliably estimate a model’s fairness,
which is studied in a further contribution in this thesis.
Since access to machine learning methods also heavily depends on access to software
and toolboxes, several contributions in the form of software are part of this thesis. The
mlr3pipelines R package allows for embedding models in so-called machine learning pipelines
that include pre- and postprocessing steps often required in machine learning and AutoML.
The mlr3fairness R package on the other hand enables users to audit models for potential
biases as well as reduce those biases through different debiasing techniques. One such
technique, multi-calibration is published as a separate software package, mcboost.

CONTENTS

1 Introduction 1

2 Background 11
2.1 Setting & Notation . 11
2.2 Hyperparameter Optimization . 14

2.2.1 Single-Objective Optimization . 14
2.2.2 Multi-Objective Optimization . 19
2.2.3 Hyperparameter Defaults . 21
2.2.4 Algorithm Configuration . 23
2.2.5 AutoML . 23
2.2.6 Machine Learning Pipelines . 24
2.2.7 Contributions . 28

2.3 Fairness . 31
2.3.1 Notions of Fairness . 32
2.3.2 Bias Mitigation . 36
2.3.3 Contributions . 37

2.4 Benchmarks & Software . 39
2.4.1 Benchmarks . 39
2.4.2 Software . 41

2.5 Further Contributions . 43

3 Outlook & Future Directions 45
3.1 AutoML – a holistic perspective . 46
3.2 Conclusion . 51

References 53

viii Contents

4 Contributions - AutoML 77
4.1 Meta Learning for Defaults–Symbolic Defaults 78
4.2 Meta-Learning for Symbolic Hyperparameter Defaults 86
4.3 Learning Multiple Defaults for Machine Learning Algorithms 89
4.4 Collecting Empirical Data About Hyperparameters for Data Driven AutoML 92
4.5 Multi-Objective Automatic Machine Learning with AutoxgboostMC 105
4.6 Automated Benchmark-Driven Design and Explanation of Hyperparameter

Optimizers . 121
4.7 YAHPO Gym - Design Criteria and a new Multifidelity Benchmark for Hy-

perparameter Optimization . 141
4.8 Mutation is all you need . 182
4.9 Tackling Neural Architecture Search With Quality Diversity Optimization 193
4.10 High Dimensional Restrictive Federated Model Selection with Multi-objective

Bayesian Optimization over Shifted Distributions 224

5 Contributions - Fairness 245
5.1 Debiasing classifiers: is reality at variance with expectation? 246
5.2 Multi-objective counterfactual fairness . 260

6 Contributions - Benchmarks & Software 267
6.1 Benchmarking time series classification – Functional data vs machine learn-

ing approaches . 268
6.2 Regularized target encoding outperforms traditional methods in supervised

machine learning with high cardinality features 293
6.3 Evaluating Domain Generalization for Survival Analysis in Clinical Studies 316
6.4 mlr3pipelines - Flexible Machine Learning Pipelines in R 333
6.5 Fairness Audits And Bias Mitigation Using mlr3fairness 341
6.6 Multi-Calibration Boosting for R . 361

Eidesstattliche Versicherung 369

Contributions ix

Contributions

This cumulative PhD thesis consists of the following contributions:

1. J. N. van Rijn, F. Pfisterer, J. Thomas, B. Bischl, and J. Vanschoren. Meta learning
for defaults–symbolic defaults. In NeurIPS 2018 Workshop on Meta Learning, 2018

2. P. Gijsbers, F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren. Meta-learning
for symbolic hyperparameter defaults. In 2021 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO ’21 Companion), page 151–152, Lile, France,
2021. ACM

3. F. Pfisterer, J. N. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple
defaults for machine learning algorithms. In 2021 Genetic and Evolutionary Compu-
tation Conference Companion (GECCO ’21 Companion), page 241–242, Lile, France,
2021. ACM

4. M. Binder, F. Pfisterer, and B. Bischl. Collecting empirical data about hyperparam-
eters for data driven AutoML. In AutoML Workshop at ICML, 2020

5. F. Pfisterer, S. Coors, J. Thomas, and B. Bischl. Multi-objective automatic machine
learning with AutoxgboostMC. In Automating Data Science Workshop at ECML,
2019, arXiv:1908.10796

6. J. Moosbauer, M. Binder, L. Schneider, F. Pfisterer, M. Becker, M. Lang, L. Kotthoff,
and B. Bischl. Automated benchmark-driven design and explanation of hyperparam-
eter optimizers. To appear in IEEE Transactions on Evolutionary Computation, 2022

7. F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl. Yahpo gym - an
efficient multi-objective multi-fidelity benchmark for hyperparameter optimization.
In I. Guyon, M. Lindauer, M. van der Schaar, F. Hutter, and R. Garnett, editors,
Proceedings of the First International Conference on Automated Machine Learning,
volume 188 of Proceedings of Machine Learning Research, pages 3/1–39. PMLR, 25–
27 Jul 2022

8. L. Schneider, F. Pfisterer, M. Binder, and B. Bischl. Mutation is all you need. In
AutoML Workshop at ICML, 2021, arXiv:2107.07343

9. L. Schneider, F. Pfisterer, P. Kent, J. Branke, B. Bischl, and J. Thomas. Tackling
neural architecture search with quality diversity optimization. In I. Guyon, M. Lin-
dauer, M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the First
International Conference on Automated Machine Learning, volume 188 of Proceedings
of Machine Learning Research, pages 9/1–30. PMLR, 25–27 Jul 2022

x Contributions

10. X. Sun, A. Bommert, F. Pfisterer, J. Rahnenfürher, M. Lang, and B. Bischl. High
dimensional restrictive federated model selection with multi-objective Bayesian Op-
timization over shifted distributions. In Y. Bi, R. Bhatia, and S. Kapoor, editors,
Intelligent Systems and Applications, pages 629–647, Cham, 2020. Springer Interna-
tional Publishing

11. A. Agrawal, F. Pfisterer, B. Bischl, J. Chen, S. Sood, S. Shah, F. Buet-Golfouse, B. A.
Mateen, and S. Vollmer. Debiasing classifiers: is reality at variance with expectation?,
2020, arXiv:2011.02407

12. S. Dandl, F. Pfisterer, and B. Bischl. Multi-objective counterfactual fairness. In
GECCO ’22: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, page 328–331, Boston, United States of America, 2022. ACM

13. F. Pfisterer, L. Beggel, X. Sun, F. Scheipl, and B. Bischl. Benchmarking time series
classification – functional data vs machine learning approaches, 2019, arXiv:1911.07511

14. F. Pargent, F. Pfisterer, J. Thomas, and B. Bischl. Regularized target encoding
outperforms traditional methods in supervised machine learning with high cardinality
features. Computational Statistics, pages 1–22, 2022

15. F. Pfisterer, C. Harbron, G. Jansen, and T. Xu. Evaluating domain generalization
for survival analysis in clinical studies. In G. Flores, G. H. Chen, T. Pollard, J. C.
Ho, and T. Naumann, editors, Proceedings of the Conference on Health, Inference,
and Learning, volume 174 of Proceedings of Machine Learning Research, pages 32–47.
PMLR, 07–08 Apr 2022

16. M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl. mlr3pipelines
- flexible machine learning pipelines in R. Journal of Machine Learning Research,
22(184):1–7, 2021

17. F. Pfisterer, S. Wei, S. Vollmer, M. Lang, and B. Bischl. Fairness Audits And Debi-
asing Using mlr3fairness, Manuscript submitted for publication

18. F. Pfisterer, C. Kern, S. Dandl, M. Sun, M. P. Kim, and B. Bischl. mcboost: Multi-
calibration boosting for R. Journal of Open Source Software, 6(64):3453, 2021

Acknowledgements xi

Acknowledgements
I want to express my gratitude to a number of people without whom this dissertation would
not have been possible.
My sincerest thanks to

• my supervisor Prof. Dr. Bernd Bischl for providing me with guidance and support.
I am most grateful for the trust and freedom to conduct research in a number of
areas I wanted to pursue.

• Prof. Dr. Marius Lindauer and Prof. Dr. Eyke Hüllermeier for acting as referees of
this thesis.

• all my current and former colleagues at the Institute for Statistics for their support,
feedback, friendship and input. I would especially like to thank Christoph, Xudong,
Janek, Martin and countless others for hours of conversations and discussions. More-
over, I would also like to thank Martin, Lennart, Susanne, David, Xudong and Janek
for reviewing (parts of) this dissertation.

• all co-authors who sparked my interest in many different areas and provided me with
countless new perspectives.

• the mentoring program at the LMU as well as the MCML for financial and academic
support.

• my friends, family and my partner for supporting me on the way to and during my
dissertation.

xii Acknowledgements

CHAPTER 1

INTRODUCTION

The personality of science is neither that of a chivalrous
knight nor that of a pitiless juggernaut. What is then
science?
Science is a golem. A golem is a creature from Jewish
mythology. It is a humanoid made by man from clay and
water, with incantations and spells. It is powerful every
day. It will follow orders, do your work, and protect you
from the ever threatening enemy. But it is clumsy and
dangerous. Without control, a golem may destroy its
masters with its flailing vigour.

The Golem – what everybody should know about science
Harry Collins & Trevor Pinch

This dissertation comes into existence during a time of unprecedented growth in the field
of machine learning and artificial intelligence. This makes for an exciting time to conduct
research in this field due to an explosion of new research ideas and possibilities to apply new
methods, but simultaneously allows for observing the increasing impact of such systems
on individuals or society as a whole from the perspective of an insider. From this point of
view, ML models are strikingly similar to the golem of science described by Collins & Pinch
in [61] in the quotation above. They can enable humans and extend their capabilities to
answer questions that could not be answered before, but they also harbor dangers if we do
not carefully consider consequences of questions we ask of them, e.g. if we blindly trust
answers derived from miss-specified or imprecise questions.
Machine learning-based systems are embedded in almost all aspects of people’s day-to-
day life [13] e.g. by personalizing search results for individual users [258] or assisting in
medical decision making, e.g. to aid with cancer diagnosis [84] along with a wide variety
of other applications [22, 235, 239, 205]. This fusion of society and technology leads to a

2 1. Introduction

perspective of technology embedded into society as socio-technological systems [64, 7, 219].
It is characterized by interdependency between humans and technological artifacts, in this
case ML systems. Humans generate the data necessary for machine learning systems to
function, which in turn shapes models learned by ML systems. ML systems, likewise
exert control over or influence an individual’s life through automated decision making,
e.g. by automatically adjusting prices on online platforms or screening applicants for
eligibility for a loan [52]. This interplay often results in implicit or explicit feedback loops
[164, 58] that need to be carefully assessed and investigated in order to prevent ethically
undesirable outcomes such as perpetuating existing injustices into the future or introducing
new injustices based on biased models.
On the other hand, the increasing accessibility of machine learning has enabled domain
experts to improve processes and policies e.g. in medical decision making [235], public
policy [4], social good [221], environmental sustainability [247] or generally natural sci-
ences [48, 207]. There are several reasons for this increased accessibility. The accessibility
of data, especially the availability of benchmark datasets and repositories such as Ima-
genet [72], the UCI repository [73] or OpenML [245] have played a large role. So have
advancements in methodology and computational resources [151]. Another major role that
is often overlooked is the availability of data, as well as software i.e. readily available
open source implementations of new methodological advances in machine learning toolkits
[184, 181, 148]. Especially the latter increasingly enables domain experts without extensive
programming expertise or expertise in machine learning to benefit from said advancements.
This is further enhanced by the development of automated machine learning (AutoML)
tools [122] that automate the often tedious task of obtaining an optimal predictive model
for a given dataset. As a result, the amount of time and expertise required for practitioners
to develop and deploy models is heavily decreased.
To employ the metaphor of the golem again – ML models are golems in a similar sense
Collins & Pinch [61] describe science as a golem. They are powerful tools that can help
improve their master’s and many other people’s lives, but can also simultaneously result
in fatal consequences if their commands are unclear or their consequences are not entirely
forethought by the master. This ambiguity therefore requires that the commands given
to those golems and their potential consequences are thoroughly scrutinized before we un-
leash these creatures into the world. Similarly advances in ML give us more powerful (and
hopefully ultimately more useful) golems. Democratization in this context now serves a
double purpose – Availability of technology can significantly improve people’s lives, e.g.
through enhancing decision making, recommendation, or simply by improving access to
services or productivity. On the other hand, we would like to prevent those golems from
only serving the purposes of a selected few, in this case large companies with a budget
to employ machine learning specialists, but instead ultimately lead to an improvement
for everybody. Similarly, it is important that we prevent those ever more powerful golems
from wreaking havoc on society by ensuring their objectives are aligned with societal norms.

3

It is now important to understand what democratization means in the context of this thesis.
A definition for democratization could therefore be the process of increasing accessibility
to data, compute, methodology and knowledge to a broader audience ranging from citizen
data scientists to machine learning researchers.. It is now vital that democratization is
done responsibly – it also needs to consider detrimental consequences to society and the
environment. This entails several aspects that constitute prerequisites for developing ML
models.

• Access to data In order to gain insight into a subject of interest, investigators need
access to relevant, up-to-date, and high quality data. This is often problematic, as
access to such data is often not available or comes at a steep cost. Solutions for this
problem are for example freely available and appropriately licensed data sets and
artifacts [173].

• Access to compute Similarly developing models requires access to sufficient hard-
ware (e.g. GPUs). This is partially addressed by the availability of cloud compute
instances, but especially bigger models are often expensive to train1 and have con-
siderable environmental impact.

• Access to methods ML methods increasingly rely on heavily optimized implemen-
tations that e.g. allow to efficiently make use of multiple compute resources. This
requires careful and highly optimized implementations (see e.g. [54]). Such imple-
mentations are increasingly available as part of ML toolboxes or standalone software.

• Access to knowledge Developing ML models furthermore requires expert knowl-
edge regarding problem formulation, the ML method and hyperparameter optimiza-
tion as well as evaluation protocols. This also holds for methods regarding (fairness)
model auditing and interpretability.

Contributions in this thesis tackle the latter two aspects of this democratization process:
AutoML reduces entry barriers for the development of ML models, benchmarks provide a
better understanding of which methods to use while software provides access to important
methods. On the other hand, fairness and robustness are required to prevent these models
from producing unfavorable outcomes either for minorities or disadvantaged populations or
in situations where the data distribution changes between training and model deployment.

The typical workflow when developing machine learning models consists of several process-
ing steps : It often begins by collecting and verifying data, prep-processing it, subsequently
fitting a machine learning model and optionally by post-processing resulting models or
predictions. Those steps involve a multitude of decisions that require careful examination
by a machine learning expert in order to arrive at optimal models [150]. Several other
steps in the context of model deployment and maintenance exist, they are discussed in

1To provide an example, the recent PaLM [59] language model uses over 6144 TPU Chips for 1200
hours

4 1. Introduction

more detail in the outlook. To provide an example, during preprocessing we might want
to decide on how to impute missing data, how to represent or transform other variables
such as e.g. dates or whether to include or exclude certain variables from the analysis. All
of those steps include control parameters (subsequently called hyperparameters, denoted
by λ(·)), such as the data imputation technique to use as well as further hyperparameters
depending on the technique. During the Model phase, a practitioner has to choose between
an ever-growing list of potential ML algorithms (or neural network architectures) and si-
multaneously select the respective algorithm’s hyperparameters. After choosing a model,
predictions or models can optionally be post-processed (e.g. calibrated). The entire proce-
dure is schematically depicted in Figure 1.1. Several options, indicated by blue nodes exist
for each step in the pipeline, indicated by orange nodes. Each valid traversal of the graph
constitutes a valid configuration of the pipeline that can be evaluated. The evaluation
of a configured pipeline is then usually embedded in a resampling strategy such as cross-
validation [225, 31] in order to obtain unbiased estimates of a desired performance metric(s).

Data

Preprocessing

...PCA
λpca

Imputation
λimp

Transformed data

Model

...Neural Network
λnn

SVM
λsvm

Prediction

Postprocessing

...

Figure 1.1: Schematic of a machine learning pipeline
for tabular data. Data is preprocessed using a se-
lected preprocessing step with respective hyperparam-
eters (e.g. PCA and λpca) before fitting a model, again
with respective hyperparameters before optionally be-
ing post-processed. Several preprocessing steps can be
combined or selected, depending on the variable.

The requirement for combining
preprocessing steps as well as
models and hyperparameters adds
considerable complexity, since
choosing optimal hyperparameters
can have a strong influence on
model performance [150].

AutoML in the context of de-
mocratization intends to abstract
away aspects of this process that
require input from ML experts,
such as the choice of model
(model selection) and hyperpa-
rameters (hyperparameter selec-
tion). This problem is introduced
as the Combined Algorithm and
Hyperparameter Selection Problem
(CASH) [233] or Machine Learn-
ing Pipeline Configuration [230].
For the purposes of AutoML, the
configuration space is usually re-
stated as a directed acyclic graph
(DAG). To achieve this, prepro-
cessing is usually rewritten as a
fixed number of steps in order to
avoid cycles in the graph. Hyper-
parameters for a node only take ef-
fect if the node is selected, result-

5

ing in dependencies. This combination of discrete choices, numerical hyperparameters and
dependencies results in a mixed type, hierarchical hyperparameter space. Our goal now
is to find an optimal (or good enough) configuration within this search space. Instead of
manual trial and error or relying on expert knowledge, AutoML systems usually solve this
problem using black-box optimization techniques. The goal of an AutoML system usually
is to yield a model with optimal generalization error within a given allotted time window,
often with an additional constraint on computational resources. This is exemplified in
the AutoML benchmark [100], where AutoML systems compete under time- and resource
constraints on a set of pre-defined datasets in order to determine which systems actually
work and to track progress in the field. Several AutoML tools have been proposed in recent
years. They mainly differ in their approach to solving the CASH problem induced by the
available processing steps but also in many other details such as whether the resulting
models are stacked or ensembled [254, 51], whether the search process is initialized via
meta-learning [253, 90, 244], or whether the tools make use of low-fidelity approximations
[266]. Tools use different approaches towards solving the CASH problem, such as Bayesian
Optimization[92, 91], Evolutionary Algorithms [178, 103] or planning [170].
An important aspect of AutoML studied in more detail in this manuscript is Meta-Learning
[246, 40, 244], often also called learning to learn [211, 117, 234]. The goal of meta-learning
is to use meta-data about machine learning experiments to better understand learning
algorithms and subsequently use this meta-knowledge to robustify, speed up, or improve
learning or optimization. In the context of AutoML, this often means using collected data
about the performance of fitted models and hyperparameters across a broad set of learning
tasks in order to warm-start optimization [253, 90] by e.g. focusing on configurations that
have performed well in previous experiments in the hope to find promising solutions early
and focus subsequent optimization on relevant reasons.
The aforementioned machine learning pipelines-based approach is mostly applicable for
data modalities that admit an efficient tabular representation. Deep learning models on
the other hand are popular for other data modalities such as images or text. Neural Archi-
tecture Search (NAS) tries to find optimal neural network architectures for deep learning
models. The distinguishing factor between NAS and traditional ML pipeline optimiza-
tion is that a) preprocessing is largely absorbed by the neural network, and b) all models
are part of the same model class and c) it allows for switching between first order and
second order optimization since access to gradients is available. The NAS problem thus
often considers the optimization over a DAG defined by neural network modules and layers
[157, 81], where nodes can potentially share weights between different instantiations of a
neural architecture. Similarly to the CASH problem, optimization is done via e.g. Bayesian
Optimization[250], evolutionary algorithms [203] or reinforcement learning [157, 269]. In
order to facilitate exposition, if not explicitly stated, NAS will be treated as a subcate-
gory of the more general AutoML framework throughout the remainder of this manuscript.

The only user input to an AutoML system – other than the data and computational bud-
get – is the evaluation protocol and the performance metric to optimize for. This is an
often critically overlooked input, since it allows the user to encode problem specifics as

6 1. Introduction

well as to specify the constraints required to make a solution acceptable [79]. Especially
human subjective evaluations of model quality often widely disagree with classical perfor-
mance metrics (cf. [106]). In other scenarios such as automated decision making, where
humans are subject to model predictions, metrics again pose a central role when we ask
how to evaluate whether a model is biased against certain subpopulations [232]. From this
perspective, AutoML could be further extended to contexts where the solution quality is
not easily quantifiable or where optimization with respect to multiple metrics is required
[124, 187]. This aspect will be more thoroughly discussed in Section 3.1.

While advances in AutoML often come from improved optimizers or better engineering,
a better understanding of the individual components and how they interact can similarly
lead to performance improvements. For this reason, benchmarks of individual components
constitute an important aspect of advancing AutoML research. This, on the one hand,
allows for reducing the search space to components that demonstrably work on typical
workloads, thereby drastically increasing efficiency. On the other hand, benchmarking
helps advance understanding of the underlying functionality by allowing to track whether
novel, often increasingly complex methods actually improve over simple baselines. Third,
an improved understanding of what actually works could possibly lead to even better com-
ponents in the future. For example, [212] analyze the performance of stochastic gradient
descent based optimizers for deep learning, finding that none of the newly published op-
timizers consistently beat established baselines. This allows practitioners to select from a
small subset of optimizers instead of having to include a large set of (possibly ineffective)
optimizers. Simultaneously, benchmarks serve as a pulse for advancement in a scientific
discipline and therefore constitute an important part of the scientific process. Replication
of published results helps to ensure validity and reproducibility in science [35, 177]. This
calls in particular for benchmark studies conducted by researchers who are impartial in
their conclusions, so-called neutral benchmark studies [34] in order to avoid cherry picking
or rigging the lottery [218, 71].
In order to diffuse new scientific results in the realm of machine learning to a more general
audience, an important step is the availability of user-friendly software, essentially allow-
ing a broader audience to make use of implemented functionality. As a result, large open
source software libraries such as WEKA [118, 110] scikit-learn [184], mlr [30], MLJ [32]
and neural network libraries such as pytorch [181] and tensorflow [2] that often in turn
build upon existing libraries and programming languages such as R [229], Python [243],
Java [10] or Julia [23] have been used in a considerable amount of scientific publications.
Rigorously validated implementations of algorithms and methods in such frameworks fur-
thermore improve reproducibility due to clearly defined software versions (and algorithm
details) and less chance of implementation errors in comparison to custom implementa-
tions. Implementations of algorithms are especially important in areas such as algorithmic
fairness [13] where several software implementations required to audit machine learning
models for potential biases are available [210, 18, 27]. Along with raising awareness for
said problems, readily available and easy to use tools are vital for detecting and alleviating
potential fairness issues in ML systems, which could prevent ethically questionable prac-

7

tices as well as address (legal) compliance problems.

The concept of algorithmic fairness constitutes the last element of this manuscript. The
goal of algorithmic fairness is to detect and possibly alleviate ethical issues related to
discrimination in ML systems [13, 227, 168]. Fairness eludes a single and precise defini-
tion because what constitutes fairness depends on ethical perspective and cultural context
[138, 93] – in other words, fairness is highly situational.
Trying to find a single definition, Mehrabi et al. [165] define fairness as "the absence of
any prejudice or favoritism towards an individual or a group based on their inherent or ac-
quired characteristics. Thus, an unfair algorithm is one whose decisions are skewed toward
a particular group of people".

World as it should be

World as it is

Modeled world

Societal Bias

Statistical Bias

Data Model

Measurement
Bias

Measurement Error
Non-representative sample

Learning Bias

Model Bias
Selected Variables

Figure 1.2: Types and sources of bias in ML mod-
els adapted from [17, 168, 13]. Two main sources of
bias between the ideal world and the modeled world
exist: societal and statistical bias, the latter of which
encompasses other sources of bias (measurement bias
and learning biases).

Several types of biases can lead to
unfairness in a fitted model. Soci-
etal biases can occur due to data
reflecting historical biases, e.g. ju-
diciary decisions that historically
favor specific ethnic groups [60].
Measurement biases on the other
hand, can stem from the under
or over representation of specific
groups in the collected data, for
example, due to increased polic-
ing in specific areas [248, 104]
or differential access to services
[149]. Statistical bias can creep
in when the model does not ac-
curately reflect the physical data-
generating process, e.g. due to
model under- or overspecification.
Other biases include differences in
collected data between groups, e.g.
due to differing standards of doc-
umentation. A third bias, here called learning bias, is introduced during the modeling
stage, where the choice and specification of ML model can add biases that later manifest
in disparate predictions (e.g. due to model under- or overspecification). The full process is
detailed in Figure 1.2. At each step, the difference between the world as it should be and
world as it is can introduce biases into the final trained model. It is important to note that
how the world as it should be looks like is a highly normative question that depends on
the ethical perspective. As a result, judging whether societal bias – a systematic mismatch
between the modeled and an optimal world exists, requires ethical, legal and political con-
siderations. Other sources of bias, in turn, are more technical in nature. Machine learning

8 1. Introduction

often focuses on this technical aspect – reducing the systematic mismatch between modeled
and observed world [17].
Therefore, an important first task is to detect potential biases in ML models. As a result, a
large body of work has proposed different fairness metrics measuring deviations from fair-
ness that can be used in order to audit predictive models. The choice of metric depends on
the problem context (see, e.g. [165] for a survey and [210] for a flow chart). One important
chasm in this context is the differentiation between causal notions of fairness, e.g. notions
that rely on modeling the mechanistic data generating process [147, 134, 263, 262, 55] and
notions that rely on observational data [49, 65, 22, 112, 57]. While only a causal perspective
can realistically assume fairness, those notions require access to the causal directed acyclic
graph (DAG, c.f. [182]) underlying the data generating process. The exact specification of
DAGs, especially in the context of high dimensional data is often highly ambiguous (see
e.g. [183] for a discussion), leading to a gap in applicability. For this reason, observational
notions, such as measures focusing on differences in performances between groups, are of-
ten prefered in practice.
Should such problems be detected, several so-called debiasing techniques [128, 260, 259,
112, 113] promise to alleviate biases in ML models. Similar to the schema for ML pipelines
in Figure 1.1, this can happen in the different stages of the ML pipeline. preprocessing
methods [128, 129] change or augment the data that is fed to the subsequent models,
e.g. by balancing the number of data points in the protected groups or by yielding fair
representations of data [161]. In-processing techniques are ML models that include fair-
ness constraints as part of the model fit [260, 259] while post-processing techniques adjust
predictions of fitted models in order to improve or account for different fairness criteria
[112, 113].
It is important to note that fairness metrics as well as bias mitigation techniques have
several problems that need to be considered when being used in order to audit predictive
models for bias: Metrics assume that the relevant ethical perspective can be condensed into
numeric values [63]. Furthermore, there are often better techniques that can be used to
decrease bias in ML models like collecting additional data [47, 63]. Differences between the
actual world and its representation in the data can act as sources of bias that is impossible
to spot given only observational data, strengthening calls for improved documentation of
data artifacts [98]. Furthermore, bias mitigation often requires trading off notions of utility
(e.g. accuracy) and fairness [267, 249] (see e.g. [206] for a contrasting observation).
In the context of democratization, it is now important that not only the capability to build
powerful models, but simultaneously the capability to audit existing models for biases and
mitigating biases where required, is made available to a broad audience. While AutoML can
only reasonably hope to solve parts of the multiplicity of possible problems and solutions, it
is nonetheless an interesting area of application that can hopefully lead to fair(er) models.

Outline

The remainder of this thesis is structured as follows: Chapter 2 introduces the core concepts
and the required notation for this thesis. Section 2.2 introduces single- and multi-objective

9

optimization as well as Neural Architecture Search (NAS) and automated machine learning
(AutoML) before briefly presenting the contributions made as part of this thesis. In Sec-
tion 2.3, different notions of algorithmic fairness are introduced along with bias mitigation
techniques that can help to improve ML models with respect to fairness considerations.
It again concludes by presenting contributions in this thesis. Section 2.4 then introduces
several contributions in the area of benchmarking as well as software developed as part
of this thesis. Finally, Chapter 3 attempts to cast a wider net by looking at the field of
AutoML, considering also its role in democratizing access to machine learning methods and
its intersection with research conducted in the area of algorithmic fairness. We conclude
by presenting individual contributions in Sections 4.1 to 6.6.

10 1. Introduction

CHAPTER 2

BACKGROUND

The goal of this section is to set the scene for the contributions detailed throughout this the-
sis and to formally introduce some of the required notation. It furthermore introduces the
reader to the core topics and perspectives taken throughout the contributions part of this
thesis: Hyperparameter Optimization, AutoML, Fairness, Benchmarking and Software.

2.1 Setting & Notation

Contributions in this thesis are usually set in a supervised learning setting. That is, we are
interested in estimating the functional relationship between a set of features x and a target
variable of interest y. Together they comprise a dataset D =

(
(x(i), y(i)); i ∈ {1, ..., n}

)
∈

(X ×Y)n, consisting of n observations often assumed to be drawn independently and iden-
tically distributed (i.i.d.) from a data-generating distribution Pxy. With slight abuse of
notation, we will also denote with x and y random variables instead of realizations of the
random variable. What is meant is made clear from context. Features x and the target
variable(s) y can take different forms throughout this manuscript, such as images and text,
but are generally assumed to be categorical or numeric values in tabular format if not
indicated differently.

ML models f̂ are obtained by training an inducer algorithm or learner I that constructs
f̂ based on a training data set D often controlled by hyperparameters λ. This process is
often refered to as fitting the model. The resulting model f̂ : X → Y ′ assigns a prediction
f̂(x) to each feature vector x. We now want this prediction to be as close to y as possible,
as indicated by a performance metric or loss function L that measures the differences
between the predictions and the ground truth: L : Y ×Y ′ → R. In this work, generally no
differentiation between different inducer algorithms or model classes is made expecting that
the process of obtaining f̂ is a black-box process that can only be controlled by adjusting
λ. Throughout this work, we will refer to the inducer as a learner or ML algorithm, while

12 2. Background

we will call f̂ the (ML-) model produced or fitted learner.
Since we require that our model generalizes to future data unseen during training, our
goal is to minimize the expected error on new samples from the data distribution Pxy, the
generalization error :

GE = E(x,y)∼Pxy

[
L(y, f̂(x))

]
(2.1)

Since this quantity is not estimable directly without access to the data distribution Pxy,
we instead obtain an empirical estimate of GE by leaving out portions of the data during
fitting either in the form of train-test splits, or in the form of more involved resampling
techniques like cross-validation (cf. [225, 31]) that allow for obtaining estimates ĜE by
(iteratively) fitting on parts of the data and evaluating on the held-out part of the dataset.
The estimate ĜE is therefore a function of the inducing algorithm I, hyperparameters λ,
the dataset D, the loss function L and the estimation procedure. During optimization, we
assume that hyperparameters other than λ are constant and therefore omit them in the
notation defining the estimated generalization error ĜE(λ) : Λ → R as a function of λ
only.
We consider loss functions L : Y × Y ′ → R that take as input the true labels y and
prediction scores ŷ ∈ Y ′. For ease of exposition, we focus on classification and regression
scenarios where we assume Y ′ to either be Rg (a g dimensional vector of prediction scores
for g classes; R for binary classification) that can be translated to predicted labels y′ in
a classification scenario or R, the predicted response for regression [28]. Popular choices
for such loss functions are accuracy, true, and false positive rates or area under the ROC
curve (cf. [111]) for classification or mean squared error and mean absolute error for re-
gression. Note, that the definition in Equation (2.1) does only hold for point-based losses,
[28] provide a more general formulation for set-based losses like AUC.

First, second and third level optimization An important distinction between first,
second and third level optimization has to be made at this point. First order optimization
learns or optimizes model parameters via the inducer algorithm, e.g. coefficients in a linear
model through maximum likelihood estimation, splits in a decision tree through recursive
partitioning [43] or neural network weights through stochastic gradient descent. We will
denote these learned model parameters with θ̂ in the remainder of the manuscript where
required for differentiation. First-order optimization is often controlled by hyperparame-
ters λ that influence the way the model is generated. While the model parameters θ̂ are
an output of the inducer I, HPs λ are an input. In contrast, the goal of second-order
optimization, also often called hyperparameter optimization (HPO), is finding a number
of hyperparameters λ⋆ that lead to a model f̂(x) which is optimal with respect to one or
multiple performance metrics. This work concerns itself primarily with second order op-
timization. Without loss of generality, we assume that the objective function c(λ) should
be minimized in the remainder of this manuscript if not indicated differently. As a third
level, we consider optimizing the optimizer : In practice, we are interested in an HPO op-
timizer (or AutoML system) that works across a large variety of datasets D coming from

2.1 Setting & Notation 13

a distribution of datasets D. This can be achieved by configuring hyperparameters1 γ of
the optimization algorithm. This third optimization level is often solved using algorithm
configuration [121, 119, 159].

Domain Generalization While the scenario described above covers a large portion of
problems typically encountered in practice, several interesting problems that violate or
extend assumptions made above exist. One such setting is domain generalization:
The field of domain generalization studies settings where data do not come from a joint
distribution Pxy but instead from several different distributions. In this case, we denote by
P(j)
xy the distribution from which we have sampled a data set D(j). This is frequently encoun-

tered in real-world applications. Data can e.g. be a collection of data sets {D(1), ...,D(J)}
clinical records originating from J different hospitals that each provide care for different
patient populations. In this case, shifts in P(X) also called data drift (e.g. due to differ-
ences in population) and P(Y |X) (e.g. due to differences in treatment) can occur. We are
now interested in producing a model f̂ that has a low generalization error ĜE estimated
on a newly sampled dataset D(J+1) from available datasets {D(1), ...,D(J)}. A large variety
of methods to address this scenario exist, a survey providing an overview over methodology
is provided in [265]. It is important to note, that optimization in this context can happen
at the first level (by adapting the training procedure) and at the second level (by adapting
the tuning procedure), in both cases yielding a model f̂ .

1γ denotes third-level hyperparameters, often also called hyper-hyperparameters in literature.

14 2. Background

2.2 Hyperparameter Optimization

Hyperparameter configurations (HPC) λ ∈ Λ control the training of the inducer I and
therefore affect the estimated performance of the resulting model f̂ . A hyperparameter con-
figuration λ consists of settings for each individual hyperparameter λi ∈ Λi, i ∈ {1, ..., d}:

λ := (λ1, ..., λd)

Optimization is usually done over a fixed search space Λ̃ = Λ̃1×...×Λ̃d ⊆ Λ, where Λ̃i is the
(usually bounded) search space for hyperparameter λi [28]. Λ̃ ⊆ Λ = Λ1× ...×Λd is usually
a subspace of the set of all possible HPC. Individual hyperparameters are often integer,
real-valued, or categorical. If both types occur, a search space is said to be mixed, while
hyperparameters can also depend on each other, in which case it is said to be hierarchical
[233, 28]. This can occur, for example, if a hyperparameter λi is only active if a given
condition holds for a different hyperparameter λj.

2.2.1 Single-Objective Optimization

We introduce the optimization problem of finding an optimal configuration λ⋆ for a single
criterion c : Λ→ R following Bischl et al. [28]:

λ⋆ ∈ argmin
λ∈Λ̃

c(λ). (2.2)

Here c is an optimization criterion or objective function that maps λ to the target metric
(for example, ĜE for a fixed loss function L) with respect to which f̂ should be optimal.
In the context of Hyperparameter Optimization, we usually consider the objective function
c(λ) to be i) expensive to evaluate and ii) a black-box function. That is, i) when evaluating
a configuration λ, we obtain no additional information (e.g. gradients) that might help
with optimizing the objective function and ii) evaluating c(λ) incurs considerable cost (e.g.
computational cost) . Therefore, our goal is to find a good configuration λ⋆ using as few
evaluations of our objective function c as possible.
Several methods for solving the single objective optimization problem have been proposed.
Main variations between proposed methods are how each new candidate point for evaluation
λ is selected and how the optimization result is returned.
A generic template for iterative optimization methods inspired by [171] is given in Algo-
rithm 1. They iteratively evaluate the objective function c(λ) with the goal to determine
the optimal configuration λ⋆. A wide variety of existing optimization methods can be un-
derstood as instantiations of this schema. Methods usually start by iteratively proposing a
new candidate configuration for evaluation, evaluating it, and writing results to an archive
in order to keep track of previously evaluated configurations. This is repeated until a stop-
ping criterion (e.g. number of function evaluations or a prespecified maximum runtime) is
met. In the end, an optimal configuration λ⋆ is proposed, often by taking the configura-
tion that resulted in the best objective function value from the archive. The pseudocode

2.2 Hyperparameter Optimization 15

Algorithm 1: Generic pseudo code for a iterative single-objective optimizer.
Data: Objective c; Search Space Λ̃; Budget b.
Result: Optimal configuration λ̂⋆

A← {}
while not stopping_criterion(A, b) do

// Propose a new candidate for evaluation:
λ← propose_candidate(A, Λ̃)
// Evaluate λ:
cλ ← c(λ)
// Write results to archive:
A← A ∪ {(λ, cλ)}

end
// Return results
λ⋆ ← propose_result(A)

in Algorithm 1 omits two details for the sake of clarity: First, several methods require ad-
ditional state variables (e.g. the current iteration) and second proposal and evaluation of
candidates can happen in batches evaluated in parallel or asynchronously. It furthermore
absorbs initialization required for some algorithms into the propose_candidate function.

Grid Search and Random Search are both widely used in the context of HPO due to
their simplicity and ease of implementation. Grid search evaluates points on a multidimen-
sional grid of (usually equally spaced) points along each axis. Random search, in contrast
generates configurations by sampling random points from each dimension independently.
Both can be expressed within Algorithm 1 by adopting the propose_candidate() to gen-
erate points, either from a grid specified on Λ̃ or at random respectively. Bergstra et al.
[21] show that random search should be preferred over grid search, because grid search
experiments focus too much on the exploration of dimensions that do not matter and si-
multaneously suffer from poor coverage in important dimensions. We now consider two
more involved optimizers, Bayesian Optimization and Evolutionary Algorithms.

Bayesian Optimization (BO) [169, 127, 15, 224] employs so-called surrogate models
to propose next candidate points for evaluation. Surrogate models are regression models
trained on a meta-dataset of previously evaluated configurations and corresponding per-
formances D = {(λ(i), c(λ(i)))}, i ∈ {1, ..., N} with the goal to approximate the global
relationship between λ and the performance metric of interest c(λ). Widely used surro-
gate models are Tree-structured Parzen Estimators [20], Gaussian Processes [169, 224] or
Random Forests [127, 120], while the right choice of surrogate model is often problem- and
search-space dependent. Bayesian Optimization methods often make use of the surrogate
model’s uncertainty (e.g. variance of the posterior prediction in a Gaussian Process) to
trade off exploring regions of the search space with high uncertainty and exploiting regions

16 2. Background

where good performing configurations are expected.
Future candidate configurations are now chosen based on the so-called infill criteria, often
also called acquisition function [44]. A variety of myopic infill criteria, such as Probability of
Improvement [146], Expected Improvement [169], Lower/Upper Confidence Bound (LCB)
[66] have been proposed along with several non-myopic variants such as Entropy Search
[114] and Predictive Entropy Search [116] that do not consider the optimal point in the
next iteration but instead propose candidates that are optimal when looking ahead multiple
iterations into the future.
Given a surrogate model fitted on a dataset of previously evaluated configurations, we can
now obtain predictions of the posterior mean µ and variance σ2 for each configuration
λ ∈ Λ̃. We can now present the Lower Confidence Bound Criterion (LCB) [66]

LCB(λ) = µ(λ)− κσ(λ). (2.3)

Intuitively, the LCB criterion trades off exploring in regions with a large posterior standard
deviation σ and exploitation in regions with low predicted mean µ. This search can be
further guided using a hyperparameter κ. Using the LCB criterion, we can now propose
new evaluation candidates by solving the inner infill optimization problem

argmin
λ∈Λ̃

LCB(λ). (2.4)

Taking into account, that obtaining predictions from the surrogate model is cheap, it can
be solved using derivative-free optimizers, e.g. the DIRECT algorithm (as done, e.g. in
[127, 44] or a simple random search with a large budget).
We can mold BO into the pseudo-code provided in Algorithm 1 by specifying a
propose_candidate method. This method is detailed in Algorithm 2, where the
optimize_infill method could e.g. choose λ based on optimizing the LCB criterion in
Equation (2.4). If no sufficient number of configurations for fitting the surrogate model
exist in the archive (|A| < k), the propose_initial_point proposes initial data points. This
initial data set of configurations required to fit surrogate models is usually generated using
a fixed number of configurations drawn at random from Λ̃ or using experimental design
techniques (e.g. Latin Hypercube Sampling [120]).
The basic principle of Bayesian Optimization has been extended in multiple directions:
Several methods [224, 228, 152] consider settings where the evaluation of candidate config-
urations incurs varying costs, while other extensions focus on (batch-)parallel [105, 256, 251]
and asynchronous evaluation [131]. [175, 163] in turn study early stopping of Bayesian Op-
timization methods. Further methods that extend BO for multi-fidelity and multi-objective
will be discussed in separate chapters below.

Evolutionary Algorithms Evolutionary Algorithms (EAs) are iterative methods that
maintain and update a population of candidate solutions [11, 69, 14]. They are inspired by
the basic principle of survival of the fittest in natural evolution, maintaining a population
of individuals that compete for survival and generate offspring in order to arrive at (fitter)

2.2 Hyperparameter Optimization 17

Algorithm 2: propose_candidate method for Bayesian Optimization
Data: Archive A, Search space Λ̃
Result: Candidate configuration λ
if |A| < k then

λ← propose_initial_point(A, Λ̃))
else

// Fit the surrogate model
f̂ ← fit_surrogate(A)
// Solve infill optimization problem
λ← optimize_infill(f̂ , Λ̃) // e.g. Equation (2.4)

end

individuals. EA methods usually start by generating an initial population (often randomly
generated) and assessing each individual’s fitness - measured via the objective function
to be optimized. Then, individuals with high fitness value are selected for survival and
used to generate new evaluation candidates, so-called offspring via cross-over (combining
population members) and mutation (random perturbations of a population member). This
procedure is repeated iteratively until a stopping criterion is met. We can mold Evolu-
tionary Algorithms into the pseudo-code provided in Algorithm 1 by adapting it in several
ways: The archive A now has to keep track of which individuals are alive within each
given generation and the propose_candidate method needs to generate new points from
individuals alive in the current generation.
EAs are widely used because they do not make strong assumptions about the objective
function’s structure, are easy to implement, easy to parallelize, and generally robust [3]. In
contrast to Bayesian Optimization, EAs can be applied to even richer and more complex
search spaces, since they do not require surrogate models, but can instead be adapted using
specialized initialization and mutation operators. To provide an example, [144] use Genetic
Programming, an extension of EAs [14] to optimize formulas that describe mathematical
identities from a dataset of inputs and outputs (e.g. the trigonometric identity cos (2x) =
1− 2 · sin2 (x)). Genetic Programming allows a variable-length representation of solutions,
e.g. through representation of solutions as binary trees with differing node depths [179].
The space of available solutions can then be described by a grammar of symbolic expressions
EXPR(SYMB) where each expression EXPR and symbol SYMB can be substituted with either
another expression (e.g. sin,+,− in the example above) or terminal nodes such as variables
or constants (x and 1 in the example above). Expressions can be unary (e.g. sin), binary
(+), or take a variable number of inputs (n-ary). Iteratively substituting expressions and
symbols can then result in arbitrarily complex formulas. Optimization over the space of
binary trees induced by a given grammar can now again be done using principles from EAs.
Expressions and Symbols can be altered by mutation (e.g. replaced by a different symbol
allowed by the grammar) or cross-over (e.g. by combining randomly chosen (sub-)trees
from two or more parent programs).

18 2. Background

Multi-Fidelity Methods

In many settings, ML algorithms allow for obtaining comparatively cheap approximations
of ĜE. Such approximations can e.g. be obtained by training only a fraction of the
available dataset [185], by training iterative algorithms (for example, neural networks or
gradient-boosting machines) for only few iterations, or by evaluating only a subset of
all cross-validation folds [233]. The parameters controlling the computational cost are
called budget parameters, which are often low initially and then progressively increase until
evaluations are made at full-fidelity. For ease of exposition, we assume that there only
exists a single such budget parameter, denoted by λbudget ∈ Λ. The more general setting,
where we can cheaply query a second, correlated source is called multi-information source
optimization [199]. In contrast, problems are assumed to be multi-fidelity if there exists a
strict hierarchy of budgets [199] 2.
So-called low-fidelity evaluations can often speed up optimization, as unpromising configu-
rations can be stopped early; e.g. [133, 123] proposes iteratively stopping half of evaluated
configurations while doubling the available budget for more promising configurations. Since
then, evaluations at multiple fidelity levels have been incorporated into many existing algo-
rithms [154, 213], extending, for example, BO [87] or as a basis for asynchronous methods
[155].

Neural Architecture Search

Similarly to HPO, the goal of Neural Architecture Search (NAS) is to find model architec-
tures that yield an optimal model f̂ after training. The search space in this case defines
possible architectures for deep learning models. NAS methods naturally lend themselves to
multi-fidelity evaluation, as they can be trained for a variable number of iterations. The
goal of NAS similarly is to finding an architecture that minimizes some cost metric c, e.g.
the validation error [81]. Denoting with ψ ∈ Ψ an architecture from the space of available
architectures and with λ ∈ Λ̃ the space of hyperparameters (e.g. learning rate), we can
define the joint hyperparameter optimization and neural architecture search problem:

λ⋆, ψ∗ ∈ argmin
λ∈Λ̃,ψ∈Ψ

c(λ, ϕ) (2.5)

If gradients with respect to ψ are required, the problem is often defined as a bilevel op-
timization problem where the architecture ψ and the model parameters θ are optimized
simultaneously [81, 158]. The search space Ψ in NAS is often complex and cannot be
easily represented in a tabular format. As a result, several approaches to optimizing over
such search spaces have been proposed, e.g. based on evolutionary algorithms [202, 80], BO
[139, 250], reinforcement learning [268, 270], or making use of available gradients [158, 197].
Since full-fidelity evaluations for classical NAS scenarios are often prohibitively expensive,

2To the author’s knowledge there is no exhaustive formal definition of what constitutes a multi-fidelity
evaluation.

2.2 Hyperparameter Optimization 19

methods often include multi-fidelity evaluations in order to speed up training. Extensions
of NAS towards multi-objective evaluations (e.g. [80]) and AutoML systems for NAS (e.g.
[266]) have similarly been proposed.

2.2.2 Multi-Objective Optimization

In practical applications, we are often concerned with multiple criteria, e.g. multiple
performance criteria or other aspects of the model such as robustness, interpretability, or
computational efficiency when predicting with f̂ [124]. We now introduce the generalized
problem for the m criteria following [132]:
Given a number of evaluation criteria c1, . . . , cm; each assigning a value to a configuration
λ: Λ → R with m ∈ N. Furthermore, c : Λ → Rm assigns to each configuration λ a cost
vector of dimensions m. The goal of multi-objective optimization then is3

min
λ∈Λ

c(λ) = min
λ∈Λ

(c1(λ), c2(λ), . . . , cm(λ)) . (2.6)

Without loss of generalization, we assume that all criteria are minimized. Note that some
performance criteria (e.g. model size) do not depend on model predictions f̂(x) but instead
require properties of the fitted model. Optimization of Equation (2.6) usually yields a set
of solutions. Solutions in this set are Pareto optimal and usually incur different trade-offs,
where improving with respect to one criterion implies trading off or deteriorating other
objectives. Therefore, the goal of multi-objective optimization methods is to approximate
the theoretical Pareto front along possible trade-offs of all optimization criteria c. Since,
typically, there is no total order on RM , and hence there usually is no single best objective
value, we now consider Pareto-dominance and Pareto-optimality instead. Given a metric
c : Λ→ RM , define a binary relation ‘ ≺ ‘ on RM ×RM . Given two cost vectors ζ(1), ζ(2) ∈
RM we say ζ(1) dominates ζ(2), written as ζ(1) ≺ ζ(2), if and only if

∀k ∈ {1, ...,M} : ζ(1)
k ≤ ζ

(2)
k ∧ ∃k ∈ {1, ...,M} : ζ(1)

k < ζ
(2)
k . (2.7)

We similarly define a dominance relationship for configurations λ: A configuration λ(1)

dominates another configuration λ(2), so λ(1) ≺ λ(2). if and only if c(λ(1)) ≺ c(λ(2)). The
Pareto front P̃ is then given by

P̃ = {ζ ∈ c(Λ) |∄ ζ ′ ∈ c(Λ) s.t. ζ ′ ≺ ζ} (2.8)

and conversely the Pareto set P̃Λ as the pre-image of P̃ :

P̃Λ = c−1(P̃). (2.9)

One important aspect of multi-objective problems is selecting an optimal model from the
resulting set. Available trade-offs (i.e. the shape of the Pareto-front, cf. Figure 2.1) are

3min of a vector valued quantity here results in the pareto set defined in 2.9.

20 2. Background

Figure 2.1: Solution set for a multi-objective optimization problem considering two objec-
tives c1 and c2. Pareto-optimal points are highlighted in blue.

often unknown a-priori and methods should therefore yield the set of all possible trade-offs.
At the same time, not all trade-offs are relevant, e.g. models below some (a priori unknown)
accuracy threshold might not be interesting. This gives rise to strategies that suggest the
involvement of humans in the loop or the imposing of additional user preferences [37] One
assumption made in multi-objective strategies is that the objectives (or user preferences)
are quantifiable. If this is not the case, user preferences can also be learned [95]. This can
e.g. be done by involving the decision maker in the optimization process and asking to
rank available solutions, allowing one to learn implicit user preferences from the collected
rankings.
An introductory example for a Pareto-optimal set in a two-objective case is depicted in Fig-
ure 2.1. Each point in the figure denotes a configuration λ evaluated for the two objectives
we aim to simultaneously minimize, c1 and c2. Within the Pareto-optimal set, improving
with respect to one metric requires trading in the other metric. Depending on the nature
of the involved optimization criteria, interpolation between points on the Pareto-front can
yield further trade-offs, e.g. through ensembling or randomization, making the Pareto-
front convex.

Several methods have been proposed to solve the optimization problem defined in Equa-
tion (2.6). These range from methods based on scalarization of the objectives [166, 125, 78]
together with Bayesian Optimization e.g. parEGO [141] or SMS-EGO [200] to methods
based on evolutionary algorithms [70, 82] along with many other approaches.
In this thesis, [187] proposes an AutoML system that allows incorporating multiple objec-
tives based on parEGO [142]. Therefore, we briefly present its core components to facili-

2.2 Hyperparameter Optimization 21

tate understanding: parEGO is based on scalarization using the augmented Tschebyscheff
function [142]. It weights objectives ci, i ∈ {1, ...,m} using a weighting parameter α =
{α1, ..., αm} sampled uniformly at random from the probability simplex, subject to

∑
i αi =

1:

cα(λ) = max
i∈{1,...,m}

(αici(λ)) + ρ ·
m∑

i=1

αi · ci(λ). (2.10)

In each iteration, new scalarization weights α are sampled and the next evaluation candi-
date is chosen using the expected improvement [141] on a surrogate model. The parameter
ρ is a small constant that ensures that solutions are also found in non-convex regions of
the Pareto front.

2.2.3 Hyperparameter Defaults

Although hyperparameter optimization can lead to better solutions [150], it is often ex-
pensive, since multiple evaluations of the objective function are required. Default values
present a solution to this problem that require no evaluation of an algorithm during op-
timization. For this reason, hyperparameter defaults are also often called zero-shot HPO.
In comparison to tuning, defaults have several benefits: They require fitting the objective
function only once, are simple to implement and do not require any experimental design
considerations or considerations with respect to which parameter should be tuned [201].
As a result, defaults are often used in practice. Considerable effort has been spent on
obtaining good defaults and they are made available in different software implementations
[184, 42, 50]. Although default configurations are not likely to surpass complex tuning
methods across a large variety of datasets, they can nevertheless provide strong baselines
to compare against.
We consider obtaining defaults as a meta-learning [38, 244] task in this thesis. The goal in
this context is to infer configurations that are expected to perform well on future datasets.
We formalize this, denoting with D the distribution of all datasets D and with GED(λ)
the generalization error of a configuration λ on a dataset D

λ⋆def ∈ argmin
λ∈Λ

ED∼D [GED(λ)] . (2.11)

We can solve the optimization problem in Equation (2.11) by relying on the empirical
formulation based on estimated generalization errors across T datasets {D1, ...,DT} and
an aggregation function h, such as the mean:

ˆλdef ∈ argmin
λ∈Λ

h
(

̂GED1(λ), ...,
̂GEDT

(λ)
)
. (2.12)

Obtaining λdef in practice requires evaluating a large number of configurations λ across
a large quantity of datasets. This computational cost can be reduced if collections of
metadata on the relationship between hyperparameters λ and a performance metric of

22 2. Background

interest (e.g. accuracy) collected across a large and diverse set of datasets are available.
This requires that the same λ ∈ Λ̃ are evaluated on each dataset. If such meta-data is not
available, evaluations of ĜE(λ) can be substituted with evaluations of surrogate model
that approximates the relationship between λ and ĜE on each dataset [195]. Different
aggregation functions h, such as more robust estimators or ranking [39] have been studied
in literature [194, 255].

Symbolic Defaults For many algorithms, the optimal configuration λ might depend on
characteristics of the dataset, e.g. the number of features or the number of datapoints.
We call such defaults symbolic defaults as they rely on symbolic expressions that, when
evaluated using dataset criteria, yield a configuration. A popular example for such expres-
sions is mtry =

√
p, that is, setting the number of variables considered in each split to the

square root of the number of available features in the random forest algorithm [42]. To
integrate formulas using dataset characteristics into Equation (2.11) we define a space of
functions F . Those functions take as input meta-features obtained from a dataset D as
input and return a configuration λ. Equipped with such a function g ∈ F : D → Λ, we
can state the optimization problem

gdef⋆ := argmin
g∈F

ED∼D [GED(g(D))] . (2.13)

Optimally, solutions gdef to this problem should be simple to make them easy to implement
and understand, but also to prevent overfitting to the often relatively limited amount of
data that is available for such scenarios. Solutions to this optimization problem can, for
example, be obtained from Genetic Programming (cf. Section 2.2.1).

Multiple Defaults Given that a single default might not be optimal, the optimization
problem can be extended to return a set of multiple defaults. Formally, we now want to
obtain a set of defaults Λdef consisting of K configurations that are jointly optimal. That
is, for each dataset D ∼ D we would like that there exists one λ ∈ Λdef that yields good
performance. This can be formalized as follows:

Λdef := argmin
{λ1,...,λK}; λi∈ Λ

ED∼D

[
min

k∈{1,...,K}
GED(λk)

]
. (2.14)

Using a set of pre-computed defaults now requires evaluating all defaults in the set as well as
obtaining unbiased estimates of ĜE(λ), e.g. through cross-validation. On the other hand,
multiple defaults contain information about the performance of configurations across data
sets and can therefore be competitive with more involved tuning methods that do not
incorporate this knowledge [195]. The concept of a single (static) default for HPO was pre-
viously discussed e.g. in [201]. Several publications discuss (often symbolic) defaults along
with new algorithms or software implementations, e.g. using the inverse median for the
inverse kernel width γ of a radial basis function SVM [50]. The concept of obtaining mul-
tiple defaults was first introduced in [253] in the context of obtaining good initializations

2.2 Hyperparameter Optimization 23

for Bayesian Optimization. It has subsequently been extended to work in an online-fashion
making use of multi-fidelity evaluations [252] to significantly reduce computational cost of
obtaining such sets. Static defaults are also used in practice; AutoGluon [83] uses a fixed
set of hyperparameter configurations instead of employing any optimization.

2.2.4 Algorithm Configuration

With the introduction of a large variety of HPO methods and the multiplicity of available
design choices when deciding which optimization method to use and how to select hyper-
parameters of the optimization method, a natural next step is algorithm configuration, e.g.
used when the goal is to optimize the optimizer.
We now go on to formalize the goal of algorithm configuration for a general optimization
algorithm O controlled by configuration parameters γ ∈ Γ following [171]: The algorithm
O : Ω × Γ → Z takes as input a problem instance ω ∈ Ω drawn from a distribution
over problem instances PΩ and algorithm control parameters γ to produce an algorithm z
configured with γ. Given a cost metric ν : Z → R, that takes the configured algorithm,
our goal is now to find a configuration γ∗ that optimizes the expected cost across instances
drawn from PΩ.

γ∗ ∈ argmin
γ∈Γ

Eω∼PΩ
[ν(O(ω,γ))] (2.15)

The result of running algorithm configuration is an optimizer O. Selected control parame-
ters γ for O can refer to the particular options for the choice in optimization strategy, but
also individual hyperparameters of the given methods, e.g. the choice of κ when using the
LCB criterion from Equation (2.4). Having obtained a set of representative instances, the
algorithm configuration now proposes the configuration γ∗ that minimizes the aggregate
cost across all instances.

It is now interesting to view hyperparameter defaults introduced in Section 2.2.3 as a form
of algorithm configuration (cf. e.g. [156]). We are interested in optimizing the algorithm
O across a diverse set of instances, ω ∈ Ω, which in this case are datasets D ∼ D. In the
simplest case, our algorithm O is configured using a single hyperparameter configuration
λ. Setting Γ = Λ, choosing an appropriate cost function ν, we can essentially arrive at the
formulation of a default hyperparameter defined in Equation (2.11). After configuration,
we arrive at an optimal configuration γ∗ = λdef . This naturally extends to the notions of
symbolic and multiple hyperparameter defaults by adapting algorithm and search space.

2.2.5 AutoML

The field of AutoML now has the goal to optimize the process of obtaining optimal models
in multiple directions by i) abstracting away experimental design considerations regarding

24 2. Background

algorithm and hyperparameter selection and solving the Combined Algorithm and Hyperpa-
rameter Selection (CASH) Problem [233] automatically and ii) increasing the efficiency of
obtaining such solutions through the use of efficient HPO methods, meta-learning and par-
allelization. This results in AutoML systems that only expect a dataset, the performance
metric and optionally the computational budget as input and return one or multiple trained
models as output. Internally, the AutoML system should then determine the optimal pre-
and post-processing steps, as well as the optimal ML algorithm and hyperparameters. This
can be summarized as Machine Learning Pipeline Configuration [230].

2.2.6 Machine Learning Pipelines

Figure 1.1 in the Introduction depicts a typical machine learning pipeline for tabular data.
While different AutoML systems employ different strategies towards optimizing over the
search space arising from the directed acyclic graph (DAG), the core component of Au-
toML systems are machine learning pipelines. The following section mainly focuses on
typical AutoML systems for tabular data [233, 92, 91, 122]. Depending on the applica-
tion domain, differences between systems can exist, e.g. typical automatic NAS systems
often implicitly include pre-processing in the model architecture and optimization routine
(e.g. in the form of feature extraction through learned CNN filters). We therefore omit a
formal definition of an AutoML system, as it would likely only cover a small portion of ex-
isting and future systems and instead go on to introduce relevant concepts and components.

Data D

fpreproc

D′

fmodel

O

fpostproc

λpreproc

λmodel

λpostproc

θ̂preproc

θ̂model

θ̂postproc

New Data

tpreproc

D′
new

tmodel

Ŷnew

tpostproc

˜̂
Ynew

Training Prediction

Ppreproc

Plearner

Ppostproc

Figure 2.2: Schematic of a machine learning
pipeline. We differentiate between training and
prediction mode. During training, processing
steps g before being transformed into predictions
by a ML model.

The following section focuses mainly
on machine learning pipelines typically
used in AutoML systems for tabular
data [233, 92, 91, 122]. We define a ma-
chine learning pipeline as a sequence
of processing steps that sequentially
transform its input and produce a pre-
diction as its output. This process is
illustrated in Figure 2.2.

Notation We start by defining a
general processing step or pipeline op-
erator P: Pipelines are generally em-
ployed in two distinct phases: A train
phase with the goal of learning the pro-
cessing steps required to transform in-
coming data and learn a model, and a
predict phase, in which predictions for
new data points are obtained, each re-
quiring distinct processing steps. ML
pipelines are composed of individual

2.2 Hyperparameter Optimization 25

processing steps P. In the following,
we will define processing steps and their composition into general ML pipelines.

A general processing step consists of a tuple (fP, tP) that defines how inputs are processed
during the train and predict phase respectively. In general, we assume inputs during
training (vP ∈ VP) and prediction (wP ∈ WP) differ. The corresponding outputs of the
processing steps are primed to indicate that they might have changed structurally.

Train phase fP: The train function fP : VP × ΛP → V ′
P × ΘP takes an input vP and

hyperparameters λP and returns transformed inputs v′P together with the trained model
θ̂P. In general, we differentiate between two components in the training phase: state and
process. In the state step, the operation generates the model θ̂P : WP → W ′

P from vP
controlled by hyperparameters λP ∈ ΛP with the goal to transform new, future data points
wP in the prediction phase. In the process step, the goal is to transform the input data
that is returned during the train step. In some cases, this transformation is given, for
example, by applying the learned model θ̂P to the inputs vP.

Predict phase tP: The predict function tP :WP×ΘP×ΛP →W ′
P employs the model θ̂P

learned during the training phase to compute the output: w′
P = θ̂P(wP). The prediction

step can similarly be controlled by hyperparameters λP.

Operators Different operators are often composed together into ML pipelines. We can
now define pre-processing steps as well as learner and post-processing steps that further
specialize a general processing step P. We briefly introduce generic typical steps for a
supervised setting. Adoption to unsupervised settings is straightforward. In this setting,
we assume that the input features come from a dataset D ∈ D, that is comprised of features
from a feature space X and corresponding labels from a space of labels Y .

• A pre-processing operator Ppreproc processes features X and labels Y .

fpreproc : (X × Y)n × Λpreproc → (X ′ × Y ′)n
′ ×Θpreproc

tpreproc : (X)ñ ×Θpreproc × Λpreproc → (X ′)ñ

During training, fpreproc learns a model θ̂preproc while transforming the input data
and returns transformed features X ′ along with a learned transformation operation
θ̂preproc. The number of input samples n can differ between in- and output during
training. We denote the number of outputs during training with n′. During prediction
tpreproc, the operator transforms the input using the learned model and returns the
transformed features. In general, we assume that the number of samples in in- and
outputs ñ in the prediction phase is constant.

Preprocessing operators usually transform features X (feature transforms, e.g., miss-
ing data imputation), targets Y (target transforms, e.g. log-scaling), or both, for

26 2. Background

example, by over- or undersampling observations, or by introducing synthetic obser-
vations. The goal of pre-processing is not only to obtain different transformations
of the data that allow for better modeling, but also to remedy potential problems
that can arise from the data. As an example, ML algorithms often cannot naturally
handle missing values in the data, and pre-processing therefore needs to impute such
missing data while preserving all relevant information. Or, if data in a feature are
categorical, a numeric representation might be required, e.g. in the form of embed-
dings [108] or other categorical encoding schemes [180] for different algorithms to
work. As a result, some decisions regarding pre-processing depend on the learner
selected in the subsequent modeling step. In some cases, pre-processing also makes
use of or transforms the labels fed to the subsequent inducer, e.g. when encoding
categorical variables [180] or when applying log-scaling to regression outcomes.

• A learner operator Plearner learns a prediction model from features X and labels Y .

fmodel : (X × Y)n × Λmodel → O×Θmodel

tmodel : (X)ñ ×Θmodel × Λmodel → (Y)ñ

It takes as input feature, label pairs (X ,Y)n during training and produces a machine
learning model θ̂model. The goal of θ̂model is to predict the label Ŷ for new data points
X during prediction. We denote with O any other outputs a model might yield
during training. During prediction, the operator simply returns the learned model’s
prediction; tmodel : (X)ñ → (Ŷ)ñ. The learner operators can wrap different machine
learning models controlled by a respective configuration λlearner. Typical choices for
ML algorithms are decision trees [43], random forests [41] or xgboost models [54] or
support vector machines (SVM) [217], but many more are used in typical AutoML
systems.

• A post-processing operator Ppostproc takes as input a predicted label (Ŷ)n and learns
a transformation model θ̂postproc. During prediction, the predict function fpostproc :

(Ŷ)n → (Ŷ ′)n transforms predictions according to the learned model. Again, we de-
note with O any other inputs and outputs that might be required for a postprocessing
step.

fpostproc : O× Λpostproc → O×Θpostproc

tpostproc : (Y)ñ ×Θpostproc × Λpostproc → (Y ′)ñ

Typical post-processing steps include thresholding, i.e. applying cut-offs that trans-
forms classification scores to class predictions, prediction transforms, e.g. exponen-
tiation of predictions learned on a log-transformed target or calibration [176, 113] of
predicted class probabilities. Post-processing is often done on a separate training set
(or on cross-validated predictions [254]) to avoid further overfitting to the training
data.

2.2 Hyperparameter Optimization 27

In some cases, operators do not infer any quantities from the data, and instead simply
perform a static transformation during training and prediction. Examples for this, e.g.
include log-transforming regression labels before prediction and exponentiating predictions.

Composing Operators We now define an operation P(2)◦P(1) that defines the (sequen-
tial) composition of two operators P(1) and P(2) into a new operator Pcomp = (fcomp, tcomp),
such that V ′

P
(1) = VP(2) and W ′

P
(1) = WP

(2). During training, inputs are transformed
sequentially and resulting models are returned together.

fcomp : VP(1) ×
Λ
P(1)×Λ

P(2)︷ ︸︸ ︷
ΛPcomp → V ′

P
(2) ×

Θ
P(1)×Θ

P(2)︷ ︸︸ ︷
ΘPcomp

tcomp :WP
(1) ×ΘPcomp × ΛPcomp →W ′

P
(2)

Similarly, during prediction, inputs are also transformed sequentially given previously
learned models.

fcomp (vP
(1),

λ
P(1)×λP(2)︷ ︸︸ ︷
λPcomp) = v′P

(2)
,

θ̂
P(1)×θ̂P(2)︷ ︸︸ ︷
θ̂Pcomp

v′P
(1)
, θ̂P(1) = f

(1)
P (vP

(1), λP(1))

v′P
(2)
, θ̂P(2) = f

(2)
P (v′P

(1)
, λP(1))

tcomp (wP
(1), θ̂Pcomp , λPcomp) = w′

P
(2)

w′
P
(1)

= t
(1)
P (wP

(1), θ̂P(1) , λP(1))

w′
P
(2)

= t
(2)
P (w′

P
(1)
, θ̂P(2) , λP(2))

The hyperparameter space of the composed operator is then given by the concatenation of
the individual hyperparameter spaces

Λcomp = ΛP(1) × ΛP(2) .

Machine Learning pipelines By composing operators, we can build new, more complex
learning algorithms. This gives rise to ML pipelines, that are compositions of individual
operators which mimic a learning algorithm. First, composition of different pre-processing
operators again results in a pre-processing operator. This allows composing several, of-
ten needed operators such as scaling, missing value imputation or feature transformations
within a single pipeline. Second, composing different post-processing operators again re-
sults in a post-processing operator. This allows for sequentially applying widely used
post-processing steps such as target transformations or calibration. Third, concatenating

28 2. Background

any pre-processing operator with a model operator results essentially mimics a learner op-
erator. This means, that input and output types of the composed operators mimic input
and output types of a simple learner operator. The same holds, when learner operators
are connected with post-processing operators.
In summary, this allows us to express ML pipelines from a set of matching preprocessing
operators, a learner operator and a set of postprocessing operators as a sequential compo-
sition P(k)◦ . . .◦P(1). The composition than inherits in- and outputs from the first and last
operator respectively. The hyperparameter space is similarly given by the concatenation
of individual hyperparameter spaces ΛP(1) × . . .× ΛP(k) .

Limitations Sections above describe general linear pipeline operators that can be com-
posed into larger, more complex ML pipelines. However, the aforementioned categorization
into preprocessing, model and post-processing is not exhaustive, as not all processing steps
fit perfectly into the categorization. To provide an example, post-hoc calibration requires an
additional input (a calibration set). Furthermore, the aforementioned composition strategy
can only express a subset of pipelines that are typically used in ML contexts. To provide
an example, linear pipelines can not easily express parallel processing steps, e.g. based
on ensembles, including common strategies such as bagging and stacking. Similarly, we
might want to express a choice over different pre-processing steps inside the pipeline, which
could, e.g. be expressed via meta- operators that act as different operators depending on
their hyperparameter configurations. A different, more flexible approach therefore is to
express ML pipelines as a directed acyclic graph (DAG). This approach is used, e.g. in
mlr3pipelines [26]. And has been described in similar forms the context of scikit-learn
pipelines [46] and model composition for MLJ [33].

Further Components While the core component of AutoML systems is optimization
over a space of available ML pipelines, there are many other aspects that differentiate
individual systems. The auto-sklearn system e.g. warm starts optimization from a meta-
learned portfolio of pipelines similar to multiple defaults introduced above. It furthermore
aggregates a selection of models fitted during the optimization procedure into an ensemble
[51] to arrive at better and more robust predictors. AutoGluon [83] provides an additional
distillation step, reducing the ensemble into a single model [86]. Further adaptations in
many AutoML frameworks often introduce efficient parallelization of the computational
workloads or make systems more robust to different datasets often encountered in the
practice.

2.2.7 Contributions

Several contributions in this thesis pursue active research directions in the broader field of
AutoML.
In the context of HPO defaults, two contributions, [242] in Section 4.1 and [101] in Sec-
tion 4.2 propose approaches to obtaining symbolic defaults. Those contributions introduce

2.2 Hyperparameter Optimization 29

a principled way to obtain data-dependent defaults. At the same time, resulting formu-
las are trivial to implement in existing ML frameworks – required meta-features can be
computed cheaply from the data at train time. Several problems in this context provide
interesting avenues of future research: The space of possible formulas that can be used to
define a symbolic default is enormous, while the number of available data sets for configu-
ration is comparably small. Finding formulas that generalize to future datasets, therefore,
requires good inductive biases and strong regularization. In addition, it is unclear which
meta-features to use, as readily available meta-features as proposed by [241] do not neces-
sarily contain enough information required to compute good hyperparameters.
In contrast, another contribution [195] provided in Section 4.3 proposes an approach for
learning multiple defaults. From the perspective of providing a simple tuning method
– simply providing a list of configuration candidates – the method introduces a greedy
procedure that iteratively adds a new default configuration to a set of default values. It
demonstrates that such lists can be competitive with hyperparameter tuning approaches
in the domain of few function evaluations, and a list of, e.g. 8 defaults compares favorably
with random search using up to quadrupled budget. If higher budgets are available, the list
of defaults can also be used as an initialization strategy e.g. for Bayesian Optimization as
proposed previously in [253]. One problem when using such lists is that they are optimized
for a single performance metric; if a different metric should be considered, a new set of
default configurations has to be learned.

Learning defaults relies on evaluating configurations λ across a large collection of possi-
ble datasets with members D ∼ D. This can be computationally prohibitively expensive
and therefore methods often rely on a table of precomputed performances or model the
relationship between λ and c(λ) using a surrogate model. A contribution in this thesis,
[25] presented in Section 4.4, provides a large collection of such meta-data evaluating 7
algorithms across up to 119 datasets reporting several performance metrics along with ad-
ditional information such as runtime and memory usage. We leverage this data along with
other data sources to construct a multi-fidelity, multi-objective optimization benchmark
suite. This contribution [192] is presented in Section 4.7. The suite enables benchmarking
of single- and multiobjective HPO methods on a large variety of representative benchmark
instances stemming from the broader context of HPO and NAS. It leverages efficient sur-
rogate models to allow for evaluation of continuous search spaces Λ̃ in contrast to only
allowing for evaluation on the discretized search space induced by tabular representations.

In the context of this thesis, one contribution, [187] provided in Section 4.5 proposes a
multi-objective AutoML system that allows for simultaneously optimizing multiple crite-
ria c1, ..., cm. Optimization criteria can be performance criteria, but similarly also criteria
that measure fairness, interpretability or robustness of resulting learners along with com-
putational criteria (e.g. latency or required memory). The system employs the ParEgo
algorithm for multiobjective Bayesian Optimization introduced in Section 2.2.2 and opti-
mizes only a single learner, xgboost [54].
We furthermore introduce a software, mlr3pipelines that provides a powerful API for

30 2. Background

specifying complex pipelines using simple building blocks. The corresponding contribu-
tion [26] is provided in Section 6.4. Each building block (or processing step g comes with
a hyperparameter space Λg. Powerful meta-operators, that e.g. allow selecting between
different processing options or processing data in parallel allow specifying simple AutoML
systems tailored to the problem at hand using only a few lines of code.

AutoML systems internally rely on efficient HPO methods in order to arrive at good mod-
els. Finding good HPO optimizers is essentially an Algorithm Configuration problem: Find
an optimizer O, that in expectation yields low cost ζ(O) on a set of problem instances of
interest. Although the search space Γ is unknown during the development of new algo-
rithms, we can synthesize new HPO methods similarly from components proven successful
in other HPO methods. This can not only result in even better optimizers but simulta-
neously help to better understand design decisions made in previously proposed methods.
This thesis presents one attempt to synthesize a novel multi-fidelity HPO optimizer [171]
presented in Section 4.6.

2.3 Fairness 31

2.3 Fairness

Decisions based on predictions made by machine learning systems are abound in practice,
not only in industry [96] but increasingly so by governmental actors [8]. To provide an
example, in the context of lending, banks collect information about loan applicants such
as employment and loan history along with other demographic variables and use them to
predict a risk score for a given individual using an ML model. This score is then used by
loan officers to arrive at a decision regarding whether a loan should be granted and under
what terms [168]. The goal of algorithmic fairness now is to detect and possibly alleviate
ethical issues arising from the use of ML systems as a basis for decision making [13, 227].
Decisions made in such contexts are often assumed to be binary in the fairness literature
[168], the loan application is either accepted or rejected.
The credit scoring model used in this context is trained on data from previous loan appli-
cants and the outcome label of interest – whether the applicant paid back the loan. This
immediately raises two questions regarding the fairness of models used in this manner: 1)
If historical structures are unfair toward individuals, the model might perpetuate this un-
fairness, 2) if individuals with certain characteristics are denied loans, the decision maker
will never obtain ground truth regarding the individual’s credit worthiness, and 3) if data
indicates, that any subgroup may be less likely to pay back a loan4, ethical and legal con-
siderations might prohibit the model from acting on such knowledge. Discrepancies such
as the ones above are often informally called bias [168] in the fair ML literature. Figure 1.2
tries to provide a conceptual overview over such biases, which could manifest at any stage
of ML model development – already be present in the data, occur during data collection
or as a result of miss-specified models.
Given a trained model, we are now interested in determining whether the model is fair.
Defining what constitutes fair, and subsequently formalizing such notions of fairness is
difficult, as ethical and legal considerations of fairness often depend on the context. As a
result, different fairness notions have been proposed that try to translate ethical and legal
criteria into mathematical fairness definitions [165, 168].
We consider the following scenarios in an attempt to formalize fairness considerations in
the context of automated decision making, assuming a binary decision scenario. As a
first example, we consider decision over loan applications. The decision space includes the
option to decline (d(i) = 0) or to accept the loan application (d(i) = 1) for an individual i,
Y⋆ = {0, 1} [168]. The space of corresponding labels Y , in contrast, consists of information
regarding whether an individual paid back a previously granted loan (y(i) = 1) or defaulted
on the loan (y(i) = 0). If now y(i) = d(i), we retrospectively consider the decision to be
correct and incorrect otherwise. A trained ML model f̂ now predicts a real valued score
s(i) = f̂(x(i)) that is translated to a decision d(i) ∈ Y⋆ using a decision function δ : R→ Y⋆
(e.g. simple thresholding).
Several fairness criteria consider fairness with respect to demographic subgroups that are

4This should not be taken to indicate, that some groups are less trustworthy then others, but that data
might show such patterns, e.g. due to systemic discrimination or a variety of other reasons.

32 2. Background

legally protected, so called protected or sensitive groups. In the US, for example it is illegal
to treat individuals differently based on their membership in such groups, e.g. race, gender,
religion or sexual orientation (see, e.g. [53, 62]). As a second example, we consider pre-
trial risk assessment. The decision space Y⋆ is given by the option to release a defendant
prior to the trial (d(i) = 1) or to detain the defendant until trial (d(i) = 0). The space of
possible outcomes encompasses the defendant re-offending (y(i) = 0) or not re-offending
(y(i) = 1). It is important to note, that in both scenarios, that observing the true outcome
y(i) is conditioned on the decision d(i) = 1.
The features x(i) in the data D may include one or more protected attributes a(i) ⊂ x(i). We
furthermore define with A the space of all possible values of a. For clarity, we will explicitly
denote with A, D, X and Y the random variables from which we draw realizations a, d, x
and y respectively. The decision D = δ(S) is derived from a score S = f̂(X).

2.3.1 Notions of Fairness

Equipped with the required notation, we are now ready to introduce different notions of
fairness that can subsequently be translated into fairness metrics. There are three primary
flavors of fairness metrics: individual fairness metrics, which demand, informally stated,
that similar individuals are treated similarly [74]. To do so, they require a metric that al-
lows one to measure distances between individuals. For this reason, those fairness notions
are also called metric fairness [168]. Metrics can then be used to determine similar obser-
vations and subsequently to compare whether those similar people have similar outcomes.
However, in practice, how such metrics should be constructed is not immediately clear.
Causal notions integrate the causal structure of the data generating process, and define
e.g. counterfactual notions of fairness [147, 263]. Those notions answer questions like would
the decision have been different, had the individual been from a different protected group
by observing differences in prediction between original and counterfactual instances. To
provide an example, one could consider a male individual with associated features x and
ask how those features would look like had the individual been born female, arriving at a
set of different features x⋆. Differences in predictions between those two instances can now
be first steps towards detecting potential societal biases. Counterfactual methods require
access to the underlying data generating process in order to e.g. compute counterfactual
quantities. Both, individual and causal notions define fairness on the individual level and,
therefore, allow one to assess the fairness of individual decisions.
Contributions in this thesis mainly focus on statistical group fairness definitions. In con-
trast to individual and causal definitions, these definitions do not define unfairness on the
level of an individual decision, but instead on the level of averages over subgroups iden-
tified by protected attributes. At the same time, group fairness definitions operate on
an observational level, that is, they can be computed from the data alone [168]. Group
fairness definitions broadly require that either predictions or errors derived from a model
f̂ be independent of the protected group A. In the following, important statistical fairness
definition will be presented, which are later summarized in Section 2.3.1.

2.3 Fairness 33

Equal Error based fairness definitions informally require that errors made by a decision
system are independent of the protected group. This results in several notions, by either
conditioning on the outcome, D ⊥ A |Y = y, and that therefore requiring, that”... people
with the same outcome are treated the same, regardless of sensitive group membership”
[168]. Similarly, notions can be defined by conditioning on the decision Y ⊥ A |D = d.
This allows the definition of multiple fairness criteria based on the confusion matrix and
its extension, the fairness tensor [135]. A fairness tensor is constructed from the stacked
confusion matrices for each protected group in A. An example for such a fairness tensor is
provided in Table 2.1

Y = 1 Y = 0
∑

D = 1
TP FP PP

True Positive False Positive Predicted Positive

D = 0
FN TN PN

False Negative True Negative Predicted Negative
∑ P N

Positives Negatives

A = 1
TP1 FP1

FN1 TN1

A = 0
TP0 FP0

FN0 TN0

Table 2.1: Upper: Confusion matrix for binary decisions D and true outcomes Y .
Lower: Fairness-confusion tensor [135] for binary decisions D and outcomes Y for groups
A = 0 and A = 1. In practice, the fairness tensor is a 3-dimensional tensor containing the
stacked confusion matrices for all groups in A.

In the lending example from above, we might define fairness to be equality in true positive
rates, i.e. we require that the chance to accept loan applications for individuals who would
pay it back is independent of the protected group: P (D = 1|Y = 1, A = 1) = P (D =
1|Y = 1, A = 0) or expressed using entries from the fairness tensor: TP0/P0 = TP1/P1.
This notion corresponds to D ⊥ A |Y = 1 and is called equal opportunity [112]. It is often
used in context where a positive outcome (e.g. college admission, granted loans) has to be
fairly distributed [210]. Note that the equality in true positive rates equates to equality
in false negative rates due to symmetry TPR = 1 − FNR. Similar notions exist that
demand equality in the symmetric true negative and false positive rates [57]. In contrast
to equal opportunity, fairness notions based on false positive rates are used in the context
of punitive interventions: Considering, e.g. the case of assessing recidivism risk, we could
demand that all individuals who are going to reoffend have the same likelihood of receiving
the favorable outcome (e.g. early release) independent of their protected status [174, 168].

Fairness definitions based on TPR and FPR implicitly condition on the outcome Y . Sim-
ilarly, a set of fairness definitions can be defined by conditioning on the decision D, and

34 2. Background

therefore demanding Y ⊥ A |D = d. This naturally leads to consideration of the sym-
metric concepts of equality in positive predictive value and false omission rate [22] and
equality of negative predictive value or false discovery rate. This perspective is in line with
the point of view of the decision maker: Equal false discovery rates imply that an equal
number of people who are denied a loan would have gone on to repay it [168].

Furthermore, fairness notions can be combined into composite fairness notions, such as
equalized odds [112] or separation [13] when both equality in TPR and FPR are satisfied.
Similarly, sufficiency [13] is satisfied if the decision yields both an equalized false omission
rate and an equalized false discovery rate. If both TPR and TNR are equally important,
it is also natural to consider equality in accuracy [47] as a measure of fairness.

While fairness definitions have previously been defined based on the decision D, it is
naturally to also consider notions that rely on scores S. As a result, we might require that
score-based performance metrics (e.g. area under the curve, Brier score) be equal across
groups. The notion of calibration [13] is satisfied if the models are calibrated within each
group: P(Y |S,A = a) = S ∀ a ∈ {0, 1}. This essentially asks, that the score assigned to
each individual accurately reflects the true probability of Y = 1.

Equal Predictions based metrics only consider the implications of the decision D in-
dependent of the outcome Y . This stands in contrast to equal error based notions, which
imply that a form of merit, (e.g. the individual would pay back the loan) should be con-
sidered when assessing the fairness of a decision, as they depend on the decision D and
the true outcome Y . This can be motivated from several perspectives: Given an inter-
vention that is generally positive (e.g. admission to a promotional program), we could be
interested in distributing the intervention fairly across the sub-population and therefore
ask that the likelihood of being admitted be independent of the sensitive group. In other
scenarios, the true labels might suffer from differential measurement error. To provide an
example, we cannot truly measure whether a defendant re-offends but are instead mea-
suring if a defendant gets caught re-offending. Differences in policing can now lead to
highly different measurement errors in the outcome of interest Y [126]. Lacking reliable
labels, a fairness notion could then ask for equal predictions instead. Notions that only
depend on predictions have been called demographic parity [49] or independence [13]
in literature.
While many other definitions exist, we refer the interested reader to the relevant literature
[22, 135, 165].

From independence statements to fairness metrics What is now left, is to trans-
form the notions introduced above into fairness metrics.
A statistical group fairness metric ∆c : Y × Y ′ × A → R translates a set of true labels,
predictions and protected attributes into a real-valued score. Denoting with P{A=a}

xy the
data distribution of samples from the protected group a, we can now construct fairness

2.3 Fairness 35

Equality Independence Statement Name / Reference
Predictions:
PR D ⊥ A Demographic Parity [49],

Independence [13]
Errors:
TPR & FNR D ⊥ A |Y = 1 Equality of opportunity

[112]
FPR & TNR D ⊥ A |Y = 0 Predictive Equality [57]
FDR & PPV Y ⊥ A |D = 1 Predictive Parity ([57])
FOR & NPV Y ⊥ A |D = 0 [22]

Y ⊥ A |S Calibration [13]
Composition:
TPR & FPR Y ⊥ A |D Equalized Odds [112],

Separation [13]
FDR & FOR Y ⊥ A |D Sufficiency [13]

Table 2.2: Overview of commonly used statistical fairness metrics. Metrics consider the
true label Y , predicted scores S and derived decisions D as well as the protected group A.

metrics from different performance metrics or loss functions L. Given a fitted model f̂ ,
we can measure metrics of interest5 in groups A = 0 and A = 1 and aggregate using an
aggregation function h.

∆c = h
(
E

(X,Y)∼P{A=1}
xy

[
L(Y, f̂(X))

]
,E

(X,Y)∼P{A=0}
xy

[
L(Y, f̂(X))

])
(2.16)

Typical choices for h are the absolute difference h(x1, x2) = |x1 − x2| or the symmetric
relative difference h(x1, x2) = min(x1

x2
, x2
x1
) [6]. To provide an example, we can construct

the absolute differences in false positive rates as a fairness metric by employing the false
positive rate as a loss function L and the absolute difference as an aggregation function.
We denote this quantity with |∆FPR| as an example for a concrete fairness metric.
In many practical applications, perfect fairness (i.e. |∆FPR| = 0) is unlikely to be achieved
due to noise in the data and labels. Therefore, constraints |∆FPR| ≤ α are introduced to
differentiate between models that satisfy the fairness criterion and those that do not. A
typical value for α is 0.05 [213].
Given a set of fairness metrics, it is natural to ask whether models f̂ should satisfy only
one or multiple fairness notions (e.g. equality of opportunity and predictive parity). A
number of impossibility theorems, that establish the incompatibility between different sets
of fairness notions exist [140]. Consequentially, several different fairness notions cannot
be (perfectly) satisfied jointly except for trivial cases. In many scenarios, however, we are
interested in investigating trade-offs between the different notions [65, 6].

5e.g. performance metrics or other statistics derived from the confusion matrix, such as positive rates

36 2. Background

It is important to note that the observational criteria that have been the focus of this
section are by no means infallible. If labels y(i) for example include unrecognized biases
(e.g. through a biased annotation procedure), observational criteria have no hopes of
recovering this bias from the data and might therefore erroneously certify a model as
unbiased. Likewise, if systemic or societal injustices are baked into the data used to arrive
at a decision (e.g. in the form of more prior arrests or a lower GPA), producing fair models
might require severely deteriorating the utility of the resulting fair model. Causal notions
of fairness [147, 134, 263] purport to solve such questions by taking the data generating
process into account. However, in order to do so, they require access to the underlying
causal graph, which is often prohibitively complex, especially in the context of higher-
dimensional data.

2.3.2 Bias Mitigation

A wide variety of bias mitigation techniques have been proposed. Several approaches em-
phasize improved documentation of data and derived artifacts [19, 98] in order to increase
awareness for fairness-related issues. Simultaneously, a set of methods that aim to yield
fairer models by adapting data, model, or predictions, exist. Given a fitted ML model f̂
that exhibits bias with respect to a chosen fairness metric ∆c, we are now interested in
obtaining a new model f̂ ∗ that improves over f̂ with respect to the fairness criterion (while
not severely degrading predictive performance). Several approaches to arrive at a fairer
model f̂ ∗ have been proposed in the literature. Implementations of such debiasing methods
can be found in different toolkits like the Aequitas toolkit [210], IBM AI Fairness 360 [18]
or fairlearn [27]. They can mainly be classified into three categories that also constitute
parts of the ML pipeline schematic depicted in Figure 1.1, pre-, in- and postprocessing
introduced in Section 2.2.6. We will present only a few techniques for brevity and instead
refer the interested reader to a survey [165].

Preprocessing A pre-processing bias mitigation technique transforms input features x
via a pre-processing operator Ppreproc. This operator requires an additional argument A
during training. Note, that we denote with A the space of protected attributes to make
dependence on A explicit, although technically A ⊂ X . The resulting transformed features
are then passed on to the next pipeline operator, e.g. a ML algorithm Plearner.
In many scenarios, the reason for unfair models is a lack of sufficient and representative
data across all sub-populations. Preprocessing methods can now augment the training data
so that subsequently fitted models become fairer. Reweighing [129] was proposed to enforce
demographic parity by assigning each datapoint a weight w(i) = P (Y=y(i))·P (A=a(i))

P (Y=y(i),A=a(i))
, essen-

tially transforming the sampling distribution, such that statistical independence Y ⊥ A is
achieved [6]. Other approaches rely on adapting the associated labels [88], or by learning
fair representations, e.g. using auto-encoders [160] or adversarial learning strategies [261].

2.3 Fairness 37

Inprocessing Fairness can also be directly incorporated into the first level optimization
problem by including additional constraints on fairness criteria that should be satisfied by
a model. In this case, a fair inducer I is fitted directly to the data without any need for
preprocessing. This directly yields a fair model f̂ ′ : X × A → Y . Considering this in the
context of an ML pipeline, we can plug the fair inducer in at the model step Plearner and
combine it with different pre- and postprocessing steps.
In this vein, fair versions of linear models have been proposed that satisfy different fairness
criteria. They operate by incorporating fairness constraints into the optimization prob-
lem, for example, by imposing constraints on the solution space [260, 259], by employing
regularization [130] or by learning decoupled classifiers [240].

Post-processing A post-processing step Ppostproc takes as input predictions from a pre-
vious pipeline operator, e.g. a learner operator Pmodel. This operator again might require
an additional argument A, the protected attribute during training or prediction.
The equalized odds post-processing step introduced by [112, 198] e.g. allows for obtaining
prediction that satisfy the equalized odds fairness definition by flipping randomly selected
predictions in each group Y and D according to probabilities that are chosen, such that
flipped predictions D′ satisfies the equalized odds criterion, and that simultaneously D is
as close to D′ as possible. Other approaches [113, 136] rely on the more general notion of
multi-calibration, that tries to achieve calibrated predictors in arbitrary sub-groups.

A common weakness of several bias mitigation techniques is that they usually optimize
for a single fairness criterion. As a result, for each given fairness criterion, only a subset
of bias mitigation techniques are applicable. Several attempts to arrive at more robust,
criterion-independent approaches have been proposed [5, 6] in order to address this issue.

2.3.3 Contributions

Several open research directions in the broader context of fairness exist: While different bias
mitigation techniques have been proposed, it is by no means clear, which actually reliably
work in practice. It is therefore natural to compare the efficacy of different debiasing
techniques in practical applications done in [6] presented in Section 5.1.
We find that in practice debiasing techniques do not always improve fairness (especially
if fairness criterion and debiasing technique are not aligned), and that improving fairness
often comes with steep decreases in utility, e.g. predictive performance. We simultaneously
find that the estimation of the fairness metric ∆c suffers from high variance, which makes
obtaining reliable estimates difficult, e.g. in the context of tuning or model selection.
In contrast, other work has observed that fairness-accuracy trade-offs can also be compa-
rably small in public policy scenarios [206]. The question is therefore how big trade-offs
are when less simplistic models or more involved tuning methods are employed.
In this vein, it might be possible to combine different pre-, in- and postprocessing steps into
a single ML pipeline Ppostproc◦Plearner◦Ppreproc. This, in combination with partial debiasing
[6], could lead to more robust bias mitigation techniques. Simultaneously, the different

38 2. Background

processing steps g as well as the inducer I usually have hyperparameters λ that can be
tuned for better performance. A first attempt at this was introduced in a contribution in
this thesis in the context of a multi-objective AutoML system [187] presented in Section 4.5.
A step towards reconciling causal fairness notions with practical applications was devel-
oped in a publication [68], which employs multi-objective counterfactuals [67] to create
counterfactual instances x′ for an individual x with a different predicted attribute. This
allows one to answer questions along the lines of ”what would the model prediction be, had
the individual been male instead of female”, but does not require access to the causal DAG.
It is important to note that such procedures are not able to guarantee causal fairness
definitions, but they might be a first step towards better integrating the two perspectives.

2.4 Benchmarks & Software 39

2.4 Benchmarks & Software

Democratizing machine learning does not only require developing methodology that al-
lows for creating more powerful and accurate ML models, but simultaneously requires that
a broader public can actually make use of such technology. This is achieved mainly in
three ways: First, by extending education in ML to a broader audience, such that the
relevant concepts required for successfully applying ML are thoroughly understood, while
simultaneously creating awareness for possible ethical problems that might arise from the
development of such systems. Secondly, by determining which methods proposed in scien-
tific literature should actually be used in practice. With the large number of novel methods
that are proposed each year, it is unclear which methods should be used and which have not
shown promise in practical applications. Such questions can be answered by benchmarks,
that allow for an unbiased comparison of methods proposed to solve one or several related
problems. A third approach towards democratization is creating user-friendly software that
provides implementations of relevant methods through an easily understandable API. This
takes away the need to implement algorithms together with considerations of efficiency
and parallelization that often exhibit considerable difficulty. In lieu of introducing the
relevant notation and formalizing the problem to be solved, the following two sections will
discuss contributions to the areas of benchmarking (in the form of concrete benchmarks)
and software (in the form of open source software libraries).

2.4.1 Benchmarks

While small benchmarks are usually included with the publication of a new method in
order to demonstrate that the new method compares favorably to other methods, those
benchmarks are often by no means conclusive (c.f. [107, 137, 257]). This is partially due
to the fact that incentives for authors of a publications are not aligned with the goal of
an honest benchmark study: While the author’s goal is to report favorable outcomes for a
novel method, the goal of an impartial benchmark study is to provide a fair comparison of
relevant methods on a representative sample of relevant problems. It is important to note
that this does not neccessarily imply a lack of honesty in publications. The multiplicity
of design decisions [177] that are required when designing a benchmark study can lead
to different results depending on the exact specifications of the research questions. This
comes in tandem with the fact, that authors usually optimize a proposed method for
robustness on considered scenarios, while relying on publicly available, potentially less
optimized implementations of competitor methods. Another problem is cherry picking,
also termed rigging the lottery [71], that manifests when authors choose to report only the
subsets of results from a benchmark that demonstrate a favorable outcome for the proposed
method.
Many of the problems related to benchmarking can be ameliorated through the use of
standardized testing infrastructure along with a detailed definition of evaluation criteria
that are widely adapted or required for publication. Several examples for such testbeds
exist, for example, the AutoML benchmark [100] for AutoML systems, the CC-18 collection

40 2. Background

[29] of datasets for classification benchmarks, or the WILDS [143] benchmark for domain
generalization.

Contributions This thesis encompasses several contributions that provide impartial
benchmarks for relevant problems in the broader area of machine learning: The overarching
goal of the different benchmark studies is a) to provide a fair testbed for algorithms pro-
posed in the broader literature that can be used when new methods for a given setting are
developed, b) to identify methods that work robustly across a set of representative and re-
alistic problems and c) to advance scientific knowledge by identifying the core components
that lead to improved results, allowing for more precise insights into scientific progress
based on comparison of different techniques as well as ablation analyses.

One such benchmark study investigates different encoding techniques for categorical vari-
ables. Such variables are often present in tabular datasets, and pose a problem for the
application of different ML algorithms (e.g. Support Vector Machines). As a result, cat-
egorical variables have to be encoded using so-called categorical encodings that yield a
numeric representation of categorical variables. This typically happens in ML pipelines in
the form of a pre-processing step. Data including the categorical variables are fed into a
categorical encoder Ppreproc that transforms the data into a fully numeric dataset, which
can subsequently be used to fit and predict using any inducer I. Our contribution, [180]
presented in Section 6.2 conducts a benchmark of widely used categorical encoding strate-
gies across a variety of datasets including high-cardinality categorical variables. We find,
that more sophisticated, regularized categorical encoding schemes that take into account
the relationship with the target variable Y indeed outperform simpler strategies.

Another interesting setting is the field of functional data analysis (FDA), Functional data,
includes functional variables as part of the covariates or as the outcome in a regression
setting. Functional variables are derived from a theoretically infinite dimensional function,
that in practice has been observed or measured at discrete points. To provide an example,
consider recordings from an Electrocardiogram (ECG). While the underlying activity is a
continuous signal, we can only measure it at a finite amount of time points, e.g. every 0.01s
(100 Hz). If we are now interested in e.g. using such ECG records to identify patients with
different heart diseases that can be recognized from such records, the data under consider-
ation is potentially very high-dimensional. Such scenarios have been studied in the context
of time series classification [12] as well as in the domain of functional data analysis [89].
In one contribution, [186] presented in Section 6.1 we investigate the efficacy of classifi-
cation methods proposed for functional data along with a variety of baselines that trans-
form the high-dimensional functional space into a lower-dimensional representation using
a pre-processing step gpreproc and subsequently fit widely used machine learning models for
tabular data.

2.4 Benchmarks & Software 41

Furthermore, we present a benchmark studying the benefits of employing widely used
domain generalization methods in the context of predicting patient survival on clinical
datasets. The contribution [188] presented in Section 6.3 specifically adapts methods de-
veloped in the context of image classifications and evaluates whether methods can be
transferred to other scenarios, such as the low-dimensional, tabular scenario studied in our
contributions.

The field of HPO suffers from some of the problems related to unreliable benchmark results
described above. HPO methods are often evaluated on synthetic test functions that are not
representative for real-world problems they are intended to solve. Simultaneously, realistic
test-beds for a systematic evaluation have only recently been proposed [77, 192]. We
propose a surrogate based test-bed, especially for the evaluation of multi-objective HPO
methods in [192] presented in Section 4.7. Our test-bed is based on surrogate models that
strike a favorable trade-off between cheap-to-evaluate objectives c(λ) and realistic tuning
instances, providing e.g. mixed, hierarchical search spaces and allowing for multi-fidelity
evaluations. Another contribution, [214], presented in Section 4.8 studies HPO methods
developed for the NAS context in more detail and investigates which components of a
recently presented NAS system actually lead to improved performance.

2.4.2 Software

Similar to benchmarks, readily available implementations of ML toolboxes can improve
access to a broader public through the use of streamlined APIs. In the context of ML,
machine learning toolboxes like scikit-learn [184], weka [110] and mlr [30, 148] have
transformed the landscape for applying ML, enabling non-experts to fit machine learning
models without deeper understanding of the algorithms or significant programming back-
ground. In the context of deep learning, the same phenomenon can be observed. Deep
learning libraries with intuitive APIs as well as highly optimized implementations have
made deep learning accessible to a broad public. Libraries like keras [56], tensorflow[1],
pytorch [181] or jax [36] have simplified the implementation of neural networks along
with complex, distributed training procedures. In the context of this thesis, several soft-
ware packages implementing relevant novel methods for the Areas of AutoML & Fairness
have been developed. It is important to note that software contributions included in this
thesis do not merely have the goal to provide reference implementations of relevant ML
methods. They instead aim at making methods available to users and therefore are thor-
oughly tested and include extensive documentation and, as a consequence, make typical
machine learning workflows more efficient.

The mlr3 [148] framework is a ML toolbox implementing a large variety of machine learning
algorithms along with infrastructure for model evaluation and tuning of resulting model.
The mlr3pipelines [26] framework extends this framework towards machine learning
pipelines discussed in Section 2.2.6. It provides an intuitive ”meta-language” that allows
for expression complex machine learning pipelines in the form of chained processing steps.

42 2. Background

This is enabled by expressing ML pipelines as a directed acyclic graph (DAG) containing
nodes that represent pipeline processing steps, so-called PipeOps. Data then flows from
an input node and is transformed (or turned into model predictions) at every stage of the
DAG. Pre- and post-processing steps as well as ML algorithms can now be embedded in
PipeOps in order to form typical ML pipelines. This framework allows users to specify
complex ML pipelines intuitively in only few lines of code and can simultaneously serve as
the basis of powerful AutoML systems. By representing choices between different prepro-
cessing steps as traversals of the DAG that can be controlled by hyperparameters, we can
represent a search space over ML pipelines that is typically included in AutoML systems.

This manuscript furthermore includes two software packages aimed at improving the user
experience regarding bias auditing and mitigation: The mlr3fairness package [196] pre-
sented in Section 6.5 provides a toolbox for exactly this purpose. It similarly extends the
mlr3 [148] package by providing measures that implement fairness metrics presented in
Section 2.3. It furthermore includes pre-, in- and post-processing bias mitigation tech-
niques (in the form of processing steps for mlr3pipelines) that can be combined into
machine learning pipelines and be automatically tuned using readily available tools like
mlr3tuning. The mcboost package [190] included in Section 6.6 provides a set of addi-
tional bias mitigation techniques, multi-calibration [113] and multi-accuracy [136].

2.5 Further Contributions 43

2.5 Further Contributions

Several additional contributions and publications by the author of this dissertation were
submitted or published during research for this dissertation. They are not explicitly in-
cluded in this thesis and instead briefly presented in this section. They span a wide variety
of interesting topics in the broader context of data science and machine learning.

The topic of human involvement in AutoML was discussed in a short article [193]. The work
argues for incorporating a multi-objective perspective when developing an AutoML system
that can incorporate fairness constraints or constraints on the transparency of resulting
models.
I also contributed to a benchmark that proposes new problem instances for Quality Diver-
sity Optimization [216] based on HPO problems.

In addition, I contributed to several publications that are not publicly available at the time
of writing this thesis:
A survey on multiobjective HPO is presented in [132]. I contributed several sections to
this survey, specifically a section on multi-objective machine learning and several sections
on application areas for multi-objective HPO, specifically on interpretability, fairness, and
robustness metrics.
In another collaboration, I contributed to a publication that proposes a geometric frame-
work for outlier detection on functional (time-series) data [115]. It proposes using manifold
learning methods to aid in developing and fitting outlier detection models.

Throughout my PhD I furthermore supervised the ”Innovationslabor Big Data Science”,
which resulted in an additional publication, [94]. The publication employs different deep
learning methods with the goal to automatically classify general weather conditions over
Europe based on atmospheric measurements.

I also contributed to several software packages in the mlr3 [148] ecosystem. This includes
several contributions to improve documentation of mlr3 and the mlr3 book. I furthermore
developed the mlr3keras [191] package and helped in developing several packages through
feedback and minor contributions, e.g. the bbotk, mlr3multioutput, mlr3fda and the
mlr3temporal package6. In addition, I contributed several articles to the mlr3 gallery7

I furthermore contributed to the deepregression software [208] that implements a framework
for semi-structured deep distributional regression mostly on the software side, e.g. by
refactoring of the implementation, fixing implementation issues, and general improvements
and additions to the code base. A second manuscript [209] was created based on an
extension of the deepregression package towards the flexible estimation of distribution

6Available from https://github.com/mlr-org
7https://mlr3gallery.mlr-org.com/

https://github.com/mlr-org
https://mlr3gallery.mlr-org.com/

44 2. Background

mixture models based on neural networks.

Publications

[94] H. Funk, C. Becker, A. Hofheinz, G. Xi, Y. Zhang, F. Pfisterer, M. Weigert, and
M. Mittermeier. Towards an automated classification of Hess & Brezowsky’s atmospheric
circulation patterns Tief and Trog Mitteleuropa using deep learning methods. In Environ-
mental Informatics – A bogeyman or saviour to achieve the UN Sustainable Development
Goals? - Adjunct Proceedings of the 35th edition of the EnviroInfo – the long standing and
established international and interdisciplinary conference series on leading environmental
information and communication technologies, pages 22–30. Shaker Verlag GmbH, 2021
[115] M. Hermann, F. Pfisterer, and F. Scheipl. A geometric framework for outlier detec-
tion in high-dimensional data. Manuscript submitted for publication
[132] F. Karl, T. Pielok, J. Moosbauer, F. Pfisterer, S. Coors, M. Binder, L. Schneider,
J. Thomas, J. Richter, M. Lang, E. C. Garrido-Merchán, J. Branke, and B. Bischl. Multi-
objective hyperparameter optimization – an overview, 2022
[216] L. Schneider, F. Pfisterer, J. Thomas, and B. Bischl. A collection of quality diver-
sity optimization problems derived from hyperparameter optimization of machine learning
models. In GECCO ’22: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, Boston, United States of America, 2022. ACM
[148] M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalic-
chio, L. Kotthoff, and B. Bischl. mlr3: A modern object-oriented machine learning frame-
work in R. Journal of Open Source Software, dec 2019
[193] F. Pfisterer, J. Thomas, and B. Bischl. Towards human centered AutoML, 2019,
arXiv:1911.02391
[191] F. Pfisterer, J. Poon, and M. Lang. mlr3keras: mlr3 Keras extension, 2021. R package
version 0.1.3
[209] D. Rügamer, F. Pfisterer, and B. Bischl. Neural mixture distributional regression.
2020, arXiv:2010.06889
[208] D. Rügamer, C. Kolb, C. Fritz, F. Pfisterer, P. Kopper, B. Bischl, R. Shen, C. Bukas,
L. B. de Andrade e Sousa, D. Thalmeier, P. Baumann, L. Kook, N. Klein, and C. L. Müller.
deepregression: a flexible neural network framework for semi-structured deep distributional
regression. Journal of Statistical Software (provisionally accepted), 2022

CHAPTER 3

OUTLOOK & FUTURE DIRECTIONS

The greater goal of democratizing machine learning encompasses several aspects that have
not been discussed as a part of this thesis. These aspects include access to high-quality
data, access to sufficient compute resources, and access to tools and expertise [238]. To
provide an example, access to high-quality curated data-sets is often only available at
considerable cost, and therefore out of reach for e.g. NGOs with limited budget. In
the author’s personal experience, this has happened in the context of obtaining satellite
data with sufficiently high resolution to allow for road segmentation. Similarly, access to
compute resources and expertise is key to equitable access to ML.
Contributions in this thesis have mainly focused on improving the tooling aspect of ML:
By speeding up, improving, or robustifying AutoML, by studying multi-objective AutoML
systems that can include secondary objectives, e.g. fairness and lastly by providing readily
available implementations and toolboxes for important methods. The remainder of this
manuscript now tries to draw a wider frame: All of those aspects constitute important
facets of ideal AutoML systems, as they reflect the components or capabilities of such
systems. It is now natural to ask what other important facets should be considered for
AutoML systems in the future and what else should be automated. An answer to these
questions is given by Zoubin Ghahramani in [122, pp. vii-viii]:

”... we should try to automate all aspects of the entire machine learning and
data analysis pipeline. This includes automating data collection and experi-
ment design; automating data cleanup and missing data imputation; automat-
ing feature selection and transformation; automating model discovery, criti-
cism, and explanation; automating the allocation of computational resources;
automating hyperparameter optimization; automating inference; and automat-
ing model monitoring and anomaly detection. This is a huge list of things, and
we’d optimally like to automate all of it. There is a caveat of course. While
full automation can motivate scientific research and provide a long-term engi-
neering goal, in practice, we probably want to semi automate most of these

46 3. Outlook & Future Directions

and gradually remove the human in the loop as needed. Along the way, what
is going to happen if we try to do all this automation is that we are likely to
develop powerful tools that will help make the practice of machine learning,
first of all, more systematic (since it’s very ad hoc these days) and also more
efficient.”

This quote echoes two sentiments that are important in the context of this manuscript:
Some things should perhaps not be automated directly but instead involve a human in the
loop, which is discussed e.g. in the context of multi-objective AutoML (see Section 2.2.2) or
in the context of fairness (see Section 2.3). The other sentiment is the development of (and
need for) powerful tools that improve the practice of machine learning. This is e.g. reflected
in the software developed as part of this thesis (see Section 2.4.2) as well as benchmarks
(see Section 2.4.1) that systematically assess individual components of AutoML systems.

3.1 AutoML – a holistic perspective
In order to now draw this wider frame, it is important to look at the broader picture
and disregard ”implementation” differences between AutoML systems, e.g. in the form of
different optimization routines or search space considerations (e.g. whether NAS or HPO
is used). We’ll instead focus on more general capabilities of such systems, such as the
mode of data (tabular, images, ...) that systems can consider or the modeling goal, e.g. in
which context a model should be used and what should be predicted. AutoML systems
have become powerful at solving a set of narrow, well-defined problems, e.g. classification
on tabular datasets [100]. Furthermore, systems that solve different problems have been
developed, for example, in the context of several AutoML challenges [109]. Similarly,
domain specific AutoML systems have been developed, e.g. for medical imaging [85],
predictive maintenance [237] or in the context of recommender systems [264]. While those
systems have proven powerful in the narrow domains they were created for, they do not
easily extend to different problem settings or data modalities. In the following, several
requests are formulated that should be taken into consideration when developing future
AutoML systems. While considerable progress has already been made in some of those
directions, the problems described are not solved and especially widely available software
that addresses the issues is often still missing.

Different situations require for different systems Developing AutoML systems re-
quires significant software engineering effort - systems need not only provide good per-
formance, but also do so efficiently which requires parallelization and efficient implemen-
tations. As a downside, this often results in monolithic, closed systems that are only
extensible in few directions. If the intended use of AutoML systems now slightly deviates
from a problem at hand, the system might be completely unusable, e.g, due to not being
able to account for relatively minor problem characteristics.
An (incomplete) collection of such characteristics is provided in Figure 3.1. We consider
categories output modality, evaluation details and problem details. While data modality

3.1 AutoML – a holistic perspective 47

Properties of AutoML problems

Data Modality Problem Details
Output

Modality
Evaluation

Details

tabular

images

time-series

text

...

multi-modal

Constraints &
Objectives

Other

fairness

interpretability

resource
requirements

classification

regression

object detection

...

stratification

multi-domain

data drift

i.i.d assumption

Figure 3.1: Excerpt of typical problem characteristics encountered in practical ML appli-
cations.

considers the format of the input features, we call the format of labels / desired outputs
output modality. Depending on the problem at hand, several other details might be rele-
vant, e.g. deviations from the i.i.d. assumption of datasets D, here called evaluation details.
Depending on the use case, we might also be interested in imposing additional constraints
on the resulting model to ensure that it fits the intended purpose.

To provide an example, consider the fairly trivial example of energy demand forecasting.
Based on tabular features (e.g. forecasted weather, geo-location, ...) detailing past energy
usage, we are interested in forecasting demand in the coming month. Valid evaluation of
such a task requires that train and test data are stratified according to the date to provide
an unbiased estimate of the generalization error on future data. An AutoML system needs
to be able to incorporate such stratification at the outer (evaluation) as well as the inner
(tuning) level. Simultaneously, if it cannot do so, the system might not be useable for the
given problem. Such and similar other problems also often occur in other scenarios, e.g.
if additional structure is imposed on predictions, or if the system needs to monitor inputs
for validity and outliers in production settings, as e.g. implemented in tfx [16] and other
systems.
Different problem characteristics now often require specific solution components, e.g. a
component that continuously monitors inputs and detects deviations from the training
data, e.g. in the form of outliers produced through faulty sensors. An important obser-
vation in this context is that such components are often orthogonal to other components
required to solve a specific problem. Outside of AutoML systems, this enables re-use and

48 3. Outlook & Future Directions

composition of different components to develop pipelines that better adapt to the problem
characteristics at hand. An example of such a system is the MLBazaar proposed in [223],
which provides several primitives that can be combined into full AutoML systems that
allow multiple different data and output modalities.
This and other systems provide an important first step towards improving flexibility for
AutoML systems, which is an important avenue of future research: Currently, AutoML
systems are often tailored to a narrow application domain. While future AutoML sys-
tems that can incorporate all possible types of problems and problem characteristics are
a worthwhile research goal, this might be out of reach in the near future. A good inter-
mediate step might instead be user-friendly, extensible AutoML toolboxes that allow for
constructing AutoML systems by composing primitives into flexible ML pipelines. This
allows for incorporating new problem characteristics while reusing existing pipeline infras-
tructure where possible. It is important to note that composing AutoML systems does not
need to happen at the level of primitives. By bundling primitives that are often used to-
gether into exchangeable functional components, one could provide a basis for new domain
specific AutoML systems that have only few new components while being able to inherit
functionality from an abstract baseline AutoML system. This could free up developers
of AutoML systems to work on automating new aspects of the data science process or to
improve functionality for specific domains where currently no solutions exist.

AutoML systems need to incorporate additional criteria and constraints One
contribution in this thesis, [187] makes the case for multi-objective AutoML systems that
allow for incorporating additional objectives in AutoML systems. This is required in many
practical applications, where, e.g. considerations of energy usage or latency have to be
considered when models should be deployed to edge devices [153]. While this is important,
existing AutoML systems rarely allow optimizing for multiple objectives or incorporating
constraints.
One likely reason for this is, that multi-objective optimization might not solve all problems
that exist in such settings. In order to, e.g. reliably asses the energy usage of a model on an
edge device, it would need to be deployed to such an edge device, which requires additional
and more complicated evaluation protocols that do not only rely on predictions and labels
but require the full model. Furthermore, we are often not interested in approximating
the Pareto-optimal set. Instead, we might be interested in only a small set of trade-offs
between models that is hard to specify a priori. This would then require adapting the
goals of the AutoML system during training, e.g. by involving a human in the loop. One
downside to this is that the AutoML system becomes less automated, defying the original
goal of AutoML.
I conjecture that especially in the context of fairness, AutoML might have to fill a difficult
role: Obtaining models that strike favorable trade-offs between fairness and utility is often
difficult, especially considering the plethora of available bias mitigation techniques. Sim-
ilarly, models might need to strike further trade-offs between different fairness metrics in
order to be acceptable to regulators. Many of those problems might be solved at least to

3.1 AutoML – a holistic perspective 49

some degree through AutoML systems in the future. At the same time, fairness can not be
assessed based on observational data alone, and additional considerations (see Section 2.3)
might be required to guard against potential harms. One possible solution could be guided
bias assessments where a system and a user interact (e.g. in the form of a questionnaire)
to ensure all possible sources of bias are considered.
Opening up AutoML to additional goals also might require to further involve the user in
the loop, e.g. in contexts where user preferences need to be considered. In this context,
simply providing the user with the Pareto-optimal set might also be suboptimal – if a user
is faced with a choice between 100s of Pareto-optimal models that could potentially be
further ensembled to form even more powerful predictors, it is unclear which model should
be selected (especially if more than two objectives should be considered). Procedures to
guide and improve this selection process provide further interesting areas of research.

An AutoML system should know when it does not know Individual models re-
turned by an AutoML system are often ranked according to their estimated generalization
error. Estimates of this error can exhibit large variance, e.g. in the context of fairness
metrics [6]. This might lead to unreliable rankings or a violation of constraints, should
such constraints be imposed on returned models. Current AutoML systems usually simply
return a ranking of models according to a performance metric of interest [83] that allows
the users to inspect and select a final model (or ensemble thereof). This often disregards
information about the variance of said estimates or leads to less principled model selec-
tion procedures if variance information has to be considered by the user. Therefore, an
interesting future avenue of research would be to consider that AutoML systems should
include estimates of the variance of relevant metrics during training and when deciding
which model to return.
Given an input x, ML models will always return a prediction f̂(x). When models are used
in production, new data points can stem from a distribution other than Pxy. Such new
samples might e.g. only slightly deviate from the original distribution (e.g. in the context
of weak data drift), in which case model performance might only slightly deteriorate. But
new samples could also come from a new class unseen during training, which could result
in harmful decisions. It is therefore important that such changes in the data distribution
or individual outliers are automatically detected even when a model is already deployed.
Similarly, when models are employed in critical use cases, models should have the option
to abstain from a prediction [99], e.g. if the uncertainty becomes too big or to return
prediction sets (or intervals) instead, e.g. via conformal prediction [220].

AutoML systems should reflect the full pipeline In many settings, ML pipelines
only constitute part of the full pipeline from data collection to decisions based on model
predictions. To provide an example, data are often preprocessed and aggregated into more
easily digestible formats before AutoML systems are used, as e.g. AutoML systems only
allow for very specific input formats. The need for incorporating e.g. data management
and labeling is emphasized in [9], as changes or updates to data can require re-design of

50 3. Outlook & Future Directions

subsequent steps in the ML pipeline. Likewise, an AutoML system might yield a model
that produces optimal predictions in the narrow scope defined by the provided performance
metric. But if model outputs are used, e.g. together with additional information, fairness
guarantees regarding a process might no longer hold [76]. This becomes more problematic
if processes involve multiple steps in which individuals are included or excluded from the
analysis according to other criteria, or if multiple models are composed [167, 75] in different
steps. Considering that we are usually interested in optimizing with respect to metrics of
such a composite system, it is not sufficient to only consider parts of the pipeline when
evaluating the model, as interactions with other components could lead to deteriorate
relevant metrics.
This is especially important in the context of algorithmic fairness: If individuals are in-
cluded or excluded before the ML pipeline (e.g. through fraud screening mechanisms prior
to making a credit decision), fairness notions might not be computed with respect to a
representative sample and, therefore, yield invalid results. This might lead to mistakenly
assuming that the models are fair, although they are not.
The same can be observed in another contexts. If models, for example, should be deployed
on a specific device, the evaluation criteria of AutoML systems need to consider the device
to make sure that eventual constraints, such as e.g. system requirements are satisfied.
This presents a challenge to the current AutoML systems, that are currently often mono-
lithic systems that are highly optimized and efficient for a narrow domain. This challenge
is not only conceptual but largely also an engineering challenge: AutoML systems are often
highly parallelized and distributed, which might make incorporating e.g. external processes
that adequately reflect the full pipeline difficult.

AutoML is more than optimizing accuracy In essence, AutoML parametrizes a
variety of design decisions that are typically made when developing ML algorithms. It
then optimizes over the space spanned by those design decisions in a principled way, e.g.
using a optimization method such as Bayesian Optimization.
This approach is not only relevant in the context of developing models but might also
help to provide more robust results in the broader area of ML: When benchmarking new
algorithms or methods in the broader context of ML and statistics, we are often faced with
hyperparameters and design decisions (e.g. preprocessing) that might significantly impact
results [177]. If all relevant design decisions are adequately reflected in the hyperparameter
space of such an analysis pipeline, an optimizer can be used to tune over this space and as
a result yield less biased results. This intuitively leads to questions about improving the
interpretability of HPO methods [172] that pose interesting directions for future work.

AutoML needs to consider its societal impact AutoML as a field interacts with
many other disciplines, since it augments the ability of applicants to obtain more powerful
models. It is important to recognize, that more powerful models can also result in adverse
outcomes for individuals or groups – if ethical considerations regarding the applications
of such models are not adequately addressed. This can be exacerbated if users are not

3.2 Conclusion 51

sufficiently educated regarding potential problems and negative effects of such systems. To
put it in different terms, AutoML provides you with an answer, independently of whether
the question is a good one to ask. To provide an example, AutoML gives state actors the
ability to conduct face recognition at a large scale and based on well-performing models.
This might lead to negative consequences [222] (e.g. erroneous arrests) for individuals
or be biased against groups [204] if models are not properly validated and the potential
downsides of such systems are not explained sufficiently. AutoML can also partially solve
some of the problems associated with this, e.g. by simultaneously providing tools that help
better assess models with respect to such critical questions.
Simultaneously, the field of AutoML also needs to consider its environmental impact, es-
pecially in the context of NAS. Calls to consider this in the development of AutoML tools
have become louder [236]. This could be further improved by stopping optimization when
further improvements in the relevant objectives are no longer relevant (as e.g. determined
by the user) or unlikely [162].

3.2 Conclusion

Better and more flexible AutoML systems are likely one way towards better democratiza-
tion of machine learning. This thesis contains several contributions that advance knowledge
in the broader field of AutoML. For AutoML systems to truly deliver on their promise of
automating all aspects of machine learning, several hurdles must be cleared. Systems need
to become more flexible in order to better adapt to different problem settings and this
flexibility should optimally be available in the form of a user-facing API, such that users
can adapt systems to the problem at hand. Furthermore, AutoML systems need to be
able to incorporate the broader pipeline from data ingestion to decision-making, such that
subtleties in those steps can be taken into account, e.g. during validation. Clearing those
hurdles might be one way to drive user adoption of AutoML systems, along with other
improvements in the experience, such as better interpretability of AutoML systems [172].
This provides several important future directions of research that might not only improve
the state of the art in AutoML, but ultimately also lead to better access to ML for everyone.

In the context of algorithmic fairness, challenges and interesting avenues of research are
abound. Causal fairness notions are often difficult to apply as causal DAGs are often am-
biguous and complex. User friendly systems, that combine causal fairness notions with
(automated) causal discovery while keeping the human-in-the-loop might be one way to
drive adaptation of such notions in practice. Furthermore, it is an open question how
useful bias mitigation is in many settings, as it often comes with a steep decrease in utility
that warrants further investigation [65]. Comprehensive benchmark studies along with ex-
perience from real-world applications are needed to better understand the effects of such
techniques.

Returning back to the metaphor of golems – this dissertation has presented contributions

52 3. Outlook & Future Directions

that enable a broader public to employ statistical golems, made out of circuits and numbers.
Those golems are already powerful as they extend their master’s capabilities in several
directions. It is now important to build responsible golems by ensuring that they conform
to ethical and legal standards – and ultimately – that they do not destroy their master in
the process of fulfilling their mission [45, 97].

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensor-
flow.org.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design and implemen-
tation ({OSDI} 16), pages 265–283, 2016.

[3] A. Abraham and R. Goldberg. Evolutionary Multiobjective Optimization: Theoret-
ical Advances and Applications. Advanced Information and Knowledge Processing.
Springer London, 2006.

[4] K. Ackermann, J. Walsh, A. De Unánue, H. Naveed, A. Navarrete Rivera, S.-J.
Lee, J. Bennett, M. Defoe, C. Cody, L. Haynes, et al. Deploying machine learning
models for public policy: A framework. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 15–22, 2018.

[5] A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, and H. Wallach. A reductions
approach to fair classification. In International Conference on Machine Learning,
pages 60–69. PMLR, 2018.

[6] A. Agrawal, F. Pfisterer, B. Bischl, J. Chen, S. Sood, S. Shah, F. Buet-Golfouse,
B. A. Mateen, and S. Vollmer. Debiasing classifiers: is reality at variance with
expectation?, 2020, arXiv:2011.02407.

54 REFERENCES

[7] P. E. Agre. Lessons learned in trying to reform AI. Social science, technical systems,
and cooperative work: Beyond the Great Divide, 131, 1997.

[8] D. Allhutter, F. Cech, F. Fischer, G. Grill, and A. Mager. Algorithmic profiling of
job seekers in Austria: how austerity politics are made effective. Frontiers in Big
Data, 3:5, 2020.

[9] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann. Software engineering for machine learning: A case study. In
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE, 2019.

[10] K. Arnold, J. Gosling, and D. Holmes. The Java programming language. Addison
Wesley Professional, 2005.

[11] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

[12] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data mining and knowledge discovery, 31(3):606–660, 2017.

[13] S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

[14] T. Bartz-Beielstein, J. Branke, J. Mehnen, and O. Mersmann. Evolutionary algo-
rithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
4(3):178–195, 2014.

[15] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß. Sequential parameter optimiza-
tion. In 2005 IEEE congress on evolutionary computation, volume 1, pages 773–780.
IEEE, 2005.

[16] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,
V. Jain, L. Koc, et al. Tfx: A tensorflow-based production-scale machine learning
platform. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1387–1395, 2017.

[17] C. Becker. Multicalibration in survival analysis: Black-box post-processing for fair-
ness. Unpublished master thesis, 2021.

[18] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia,
J. Martino, S. Mehta, A. Mojsilović, S. Nagar, K. N. Ramamurthy, J. Richards,
D. Saha, P. Sattigeri, M. Singh, K. R. Varshney, and Y. Zhang. AI Fairness 360:
An extensible toolkit for detecting and mitigating algorithmic bias. IBM Journal of
Research and Development, 63(4/5):4:1–15, 2019.

http://www.fairmlbook.org

REFERENCES 55

[19] M. Benjamin, P. Gagnon, N. Rostamzadeh, C. Pal, Y. Bengio, and A. Shee. Towards
standardization of data licenses: The Montreal data license. arXiv:1903.12262, 2019.

[20] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. Advances in Neural Information Processing Systems, 24, 2011.

[21] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[22] R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. Fairness in criminal justice
risk assessments: The state of the art. Sociological Methods & Research, Aug. 2018,
1703.09207.

[23] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[24] M. Binder. mlrCPO: Composable Preprocessing Operators and Pipelines for Machine
Learning, 2021. R package version 0.3.7-3.

[25] M. Binder, F. Pfisterer, and B. Bischl. Collecting empirical data about hyperparam-
eters for data driven AutoML. In AutoML Workshop at ICML, 2020.

[26] M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl.
mlr3pipelines - flexible machine learning pipelines in R. Journal of Machine Learning
Research, 22(184):1–7, 2021.

[27] S. Bird, M. Dudík, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki, H. Wallach,
and K. Walker. Fairlearn: A toolkit for assessing and improving fairness in AI.
Technical Report MSR-TR-2020-32, Microsoft Research, Sept. 2020.

[28] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ull-
mann, M. Becker, A.-L. Boulesteix, et al. Hyperparameter optimization: Founda-
tions, algorithms, best practices and open challenges. arXiv:2107.05847, 2021.

[29] B. Bischl, B. Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang,
R. Gomes Mantovani, J. van Rijn, and J. Vanschoren. OpenML benchmarking suites.
In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks, volume 1, 2021.

[30] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio,
and Z. M. Jones. mlr: Machine learning in R. The Journal of Machine Learning
Research, 17(1):5938–5942, 2016.

[31] B. Bischl, O. Mersmann, H. Trautmann, and C. Weihs. Resampling methods for
meta-model validation with recommendations for evolutionary computation. Evolu-
tionary Computation, 20(2):249–275, 2012.

56 REFERENCES

[32] A. D. Blaom, F. Kiraly, T. Lienart, Y. Simillides, D. Arenas, and S. J. Vollmer. MLJ:
A julia package for composable machine learning. Journal of Open Source Software,
5(55):2704, 2020.

[33] A. D. Blaom and S. J. Vollmer. Flexible model composition in machine learning and
its implementation in MLJ, 2020.

[34] A.-L. Boulesteix, H. Binder, M. Abrahamowicz, W. Sauerbrei, et al. On the ne-
cessity and design of studies comparing statistical methods. Biometrical journal.
Biometrische Zeitschrift, 60(1):216–218, 2017.

[35] A.-L. Boulesteix, S. Hoffmann, A. Charlton, and H. Seibold. A replication crisis in
methodological research? Significance, 17(5):18–21, 2020.

[36] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

[37] J. Branke. MCDA and Multiobjective Evolutionary Algorithms, pages 977–1008.
Springer New York, New York, NY, 2016.

[38] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications
to Data Mining. Springer Publishing Company, Incorporated, 1 edition, 2008.

[39] P. B. Brazdil and C. Soares. A comparison of ranking methods for classification algo-
rithm selection. In European conference on machine learning, pages 63–75. Springer,
2000.

[40] P. B. Brazdil, C. Soares, and J. P. Da Costa. Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning, 50(3):251–277,
2003.

[41] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[42] L. Breiman and A. Cutler. Random forests Manual, 2020. https://www.stat.
berkeley.edu/~breiman/RandomForests/cc_home.htm.

[43] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression
trees. CRC press, 1984.

[44] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian Optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv:1012.2599, 2010.

[45] M. Brundage. Taking superintelligence seriously: Superintelligence: Paths, dangers,
strategies by Nick Bostrom (oxford university press, 2014). Futures, 72:32–35, 2015.

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

REFERENCES 57

[46] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Müller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, et al. API design for machine learning
software: experiences from the scikit-learn project. arXiv:1309.0238, 2013.

[47] J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities
in commercial gender classification. In Conference on fairness, accountability and
transparency, pages 77–91. PMLR, 2018.

[48] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh. Machine
learning for molecular and materials science. Nature, 559(7715):547–555, 2018.

[49] T. Calders and S. Verwer. Three naive bayes approaches for discrimination-free
classification. Data Mining and Knowledge Discovery, 21(2):277–292, 2010.

[50] B. Caputo, K. Sim, F. Furesjo, and A. Smola. Appearance-based object recognition
using svms: Which kernel should i use? In Procceedings of NIPS workshop on
Statitsical methods for computational experiments in visual processing and computer
vision, Whistler, pages 1–10, 2002.

[51] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from
libraries of models. In Proceedings of the twenty-first international conference on
Machine learning, page 18, 2004.

[52] J. Chen. Fair lending needs explainable models for responsible recommendation. In
Proceedings of the 2nd FATREC Workshop on Responsible Recommendation, Sept.
2018, 1809.04684.

[53] J. Chen, N. Kallus, X. Mao, G. Svacha, and M. Udell. Fairness under unaware-
ness: Assessing disparity when protected class is unobserved. In Proceedings of the
conference on fairness, accountability, and transparency, pages 339–348, 2019.

[54] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794, 2016.

[55] S. Chiappa. Path-specific counterfactual fairness. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 7801–7808, 2019.

[56] F. Chollet et al. Keras. https://keras.io, 2015.

[57] A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153–163, June 2017, 1703.00056.

[58] A. Chouldechova and A. Roth. A snapshot of the frontiers of fairness in machine
learning. Communications of the ACM, 63(5):82–89, 2020.

https://keras.io

58 REFERENCES

[59] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,
J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du,
B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin,
T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra,
K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiri-
donov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai,
M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,
X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with
pathways, 2022.

[60] J. T. Clemons. Blind injustice: The supreme court, implicit racial bias, and the
racial disparity in the criminal justice system. Am. Crim. L. Rev., 51:689, 2014.

[61] H. M. Collins, T. Pinch, et al. The golem: What you should know about science.
Cambridge University Press, 1998.

[62] U. Congress. S. 1745 (102nd) civil rights act of 1991, 1991.

[63] A. F. Cooper, E. Abrams, and N. NA. Emergent unfairness in algorithmic fairness-
accuracy trade-off research. In Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, pages 46–54, 2021.

[64] R. Cooper and M. Foster. Sociotechnical systems. American Psychologist, 26(5):467,
1971.

[65] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic deci-
sion making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, page
797–806, New York, NY, USA, 2017. Association for Computing Machinery.

[66] D. D. Cox and S. John. A statistical method for global optimization. In Proceedings
of the 1992 IEEE International Conference on Systems, Man, and Cybernetics, pages
1241–1246. IEEE, 1992.

[67] S. Dandl, C. Molnar, M. Binder, and B. Bischl. Multi-objective counterfactual ex-
planations. In International Conference on Parallel Problem Solving from Nature,
pages 448–469. Springer, 2020.

[68] S. Dandl, F. Pfisterer, and B. Bischl. Multi-objective counterfactual fairness. In
GECCO ’22: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, page 328–331, Boston, United States of America, 2022. ACM.

[69] K. A. de Jong. Evolutionary computation. Evolutionary Computation. Bradford
Books, Cambridge, MA, Feb. 2006.

REFERENCES 59

[70] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[71] M. Dehghani, Y. Tay, A. A. Gritsenko, Z. Zhao, N. Houlsby, F. Diaz, D. Metzler,
and O. Vinyals. The benchmark lottery. arXiv:2107.07002, 2021.

[72] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255. Ieee, 2009.

[73] D. Dua and C. Graff. UCI machine learning repository, 2017.

[74] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pages 214–226, 2012.

[75] C. Dwork and C. Ilvento. Fairness under composition. arXiv:1806.06122, 2018.

[76] C. Dwork, C. Ilvento, and M. Jagadeesan. Individual fairness in pipelines. arXiv
preprint arXiv:2004.05167, 2020.

[77] K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad,
M. Lindauer, and F. Hutter. Hpobench: A collection of reproducible multi-fidelity
benchmark problems for hpo. In Proceedings of the international conference on Neural
Information Processing Systems (NeurIPS) (Datasets and Benchmarks Track), Dec.
2021.

[78] M. Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005.

[79] C. Elkan. The foundations of cost-sensitive learning. In International Joint Confer-
ence on Artificial Intelligence, volume 17, pages 973–978. Lawrence Erlbaum Asso-
ciates Ltd, 2001.

[80] T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture
search via Lamarckian evolution. In Proceedings of the International Conference on
Learning Representations, 2019.

[81] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[82] M. Emmerich, N. Beume, and B. Naujoks. An emo algorithm using the hypervolume
measure as selection criterion. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 62–76. Springer, 2005.

[83] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and
A. Smola. Autogluon-tabular: Robust and accurate AutoML for structured data.
arXiv:2003.06505, 2020.

60 REFERENCES

[84] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115–118, 2017.

[85] L. Faes, S. K. Wagner, D. J. Fu, X. Liu, E. Korot, J. R. Ledsam, T. Back, R. Chopra,
N. Pontikos, C. Kern, et al. Automated deep learning design for medical image
classification by health-care professionals with no coding experience: a feasibility
study. The Lancet Digital Health, 1(5):e232–e242, 2019.

[86] R. Fakoor, J. W. Mueller, N. Erickson, P. Chaudhari, and A. J. Smola. Fast, accurate,
and simple models for tabular data via augmented distillation. Advances in Neural
Information Processing Systems, 33:8671–8681, 2020.

[87] S. Falkner, A. Klein, and F. Hutter. BOHB: robust and efficient hyperparameter
optimization at scale. In J. G. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML, volume 80 of Proceedings of
Machine Learning Research, pages 1436–1445. PMLR, 2018.

[88] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubrama-
nian. Certifying and removing disparate impact. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD
’15, pages 259–268, New York, New York, USA, 2015. ACM Press, 1412.3756.

[89] F. Ferraty and P. Vieu. Nonparametric functional data analysis: theory and practice,
volume 76. Springer, 2006.

[90] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Practical auto-
mated machine learning for the AutoML challenge 2018. In International Workshop
on Automatic Machine Learning at ICML, pages 1189–1232, 2018.

[91] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-sklearn
2.0: Hands-free automl via meta-learning. Journal of Machine Learning Research,
23(261):1–61, 2022.

[92] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hut-
ter. Auto-sklearn: efficient and robust automated machine learning. In Automated
Machine Learning, pages 113–134. Springer, Cham, 2019.

[93] R. R. Fletcher, A. Nakeshimana, and O. Olubeko. Addressing fairness, bias, and ap-
propriate use of artificial intelligence and machine learning in global health. Frontiers
in Artificial Intelligence, 3:116, 2021.

[94] H. Funk, C. Becker, A. Hofheinz, G. Xi, Y. Zhang, F. Pfisterer, M. Weigert, and
M. Mittermeier. Towards an automated classification of Hess & Brezowsky’s atmo-
spheric circulation patterns Tief and Trog Mitteleuropa using deep learning methods.

REFERENCES 61

In Environmental Informatics – A bogeyman or saviour to achieve the UN Sustain-
able Development Goals? - Adjunct Proceedings of the 35th edition of the EnviroInfo
– the long standing and established international and interdisciplinary conference se-
ries on leading environmental information and communication technologies, pages
22–30. Shaker Verlag GmbH, 2021.

[95] J. Fürnkranz and E. Hüllermeier. Preference learning. Springer, 2010.

[96] A. Fuster, P. Goldsmith-Pinkham, T. Ramadorai, and A. Walther. Predictably un-
equal? the effects of machine learning on credit markets. The Journal of Finance,
77(1):5–47, 2022.

[97] I. Gabriel. Artificial intelligence, values, and alignment. Minds and Machines,
30(3):411–437, 2020.

[98] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and
K. Crawford. Datasheets for datasets. Communications of the ACM, 64(12):86–92,
2021.

[99] Y. Geifman and R. El-Yaniv. Selective classification for deep neural networks. Ad-
vances in Neural Information Processing Systems, 30:4885–4894, 2017.

[100] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Vanschoren. An open
source AutoML benchmark. arXiv:1907.00909, 2019.

[101] P. Gijsbers, F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren. Meta-learning
for symbolic hyperparameter defaults. In 2021 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO ’21 Companion), page 151–152, Lile, France,
2021. ACM.

[102] P. Gijsbers, F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren. Meta-learning
for symbolic hyperparameter defaults, 2021, arXiv:2106.05767.

[103] P. Gijsbers, J. Vanschoren, and R. S. Olson. Layered tpot: Speeding up tree-based
pipeline optimization. arXiv:1801.06007, 2018.

[104] P. A. Goff and K. B. Kahn. Racial bias in policing: Why we know less than we
should. Social Issues and Policy Review, 6(1):177–210, 2012.

[105] J. Gonzalez, Z. Dai, P. Hennig, and N. Lawrence. Batch Bayesian Optimization
via local penalization. In A. Gretton and C. C. Robert, editors, Proceedings of the
19th International Conference on Artificial Intelligence and Statistics, volume 51 of
Proceedings of Machine Learning Research, pages 648–657, Cadiz, Spain, 09–11 May
2016. PMLR.

62 REFERENCES

[106] M. L. Gordon, K. Zhou, K. Patel, T. Hashimoto, and M. S. Bernstein. The disagree-
ment deconvolution: Bringing machine learning performance metrics in line with
reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pages 1–14, 2021.

[107] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In Interna-
tional Conference on Learning Representations, 2020.

[108] C. Guo and F. Berkhahn. Entity embeddings of categorical variables.
arXiv:1604.06737, 2016.

[109] I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Ja-
jetic, B. Ray, M. Saeed, M. Sebag, et al. Analysis of the AutoML challenge series.
Automated Machine Learning, page 177, 2019.

[110] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: an update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

[111] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

[112] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learn-
ing. Advances in Neural Information Processing Systems, 29:3323–3331, Dec. 2016,
1610.02413.

[113] U. Hebert-Johnson, M. P. Kim, O. Reingold, and G. Rothblum. Multicalibration:
Calibration for the (Computationally-identifiable) masses. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1939–1948, Stock-
holmsmässan, Stockholm Sweden, 2018. PMLR.

[114] P. Hennig and C. J. Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 13(6), 2012.

[115] M. Hermann, F. Pfisterer, and F. Scheipl. A geometric framework for outlier detection
in high-dimensional data. Manuscript submitted for publication.

[116] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. Advances in Neural
Information Processing Systems, 27, 2014.

[117] S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94.
Springer, 2001.

REFERENCES 63

[118] G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning workbench.
In Proceedings of ANZIIS’94-Australian New Zealnd Intelligent Information Systems
Conference, pages 357–361. IEEE, 1994.

[119] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In C. A. C. Coello, editor, Learning and
Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[120] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and
intelligent optimization, pages 507–523. Springer, 2011.

[121] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an auto-
matic algorithm configuration framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

[122] F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated Machine Learning -
Methods, Systems, Challenges. Springer, 2019.

[123] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperpa-
rameter optimization. In Artificial intelligence and statistics, pages 240–248. PMLR,
2016.

[124] Y. Jin. Multi-objective machine learning, volume 16. Springer Science & Business
Media, 2006.

[125] Y. Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An overview
and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(3):397–415, 2008.

[126] J. E. Johndrow and K. Lum. An algorithm for removing sensitive information: appli-
cation to race-independent recidivism prediction. The Annals of Applied Statistics,
13(1):189–220, 2019.

[127] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[128] F. Kamiran and T. Calders. Classification with no discrimination by preferential
sampling. In Proc. 19th Machine Learning Conf. Belgium and The Netherlands,
pages 1–6. Citeseer, 2010.

[129] F. Kamiran and T. Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and Information Systems, 33(1):1–33, 2012.

64 REFERENCES

[130] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with
prejudice remover regularizer. Lecture Notes in Artificial Intelligence, 7524(PART
2):35–50, 2012.

[131] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Poczos. Parallelised bayesian
optimisation via thompson sampling. In A. Storkey and F. Perez-Cruz, editors,
Proceedings of the Twenty-First International Conference on Artificial Intelligence
and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 133–
142. PMLR, 09–11 Apr 2018.

[132] F. Karl, T. Pielok, J. Moosbauer, F. Pfisterer, S. Coors, M. Binder, L. Schneider,
J. Thomas, J. Richter, M. Lang, E. C. Garrido-Merchán, J. Branke, and B. Bischl.
Multi-objective hyperparameter optimization – an overview, 2022.

[133] Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed
bandits. In International Conference on Machine Learning, pages 1238–1246. PMLR,
2013.

[134] N. Kilbertus, M. Rojas Carulla, G. Parascandolo, M. Hardt, D. Janzing, and
B. Schölkopf. Avoiding discrimination through causal reasoning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017.

[135] J. S. Kim, J. Chen, and A. Talwalkar. Model-agnostic characterization of fairness
trade-offs. In Proceedings of the International Conference on Machine Learning,
volume 37, pages 9339–9349, 2020.

[136] M. P. Kim, A. Ghorbani, and J. Zou. Multiaccuracy: Black-box post-processing for
fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, AIES ’19, pages 247–254, New York, NY, USA, 2019. Association
for Computing Machinery.

[137] S. Kim, K. Choi, H.-S. Choi, B. Lee, and S. Yoon. Towards a rigorous evaluation of
time-series anomaly detection, 2021.

[138] T.-Y. Kim and K. Leung. Forming and reacting to overall fairness: A cross-cultural
comparison. Organizational Behavior and Human Decision Processes, 104(1):83–95,
2007.

[139] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction
with Bayesian neural networks. In International Conference on Learning Represen-
tations, 2017.

REFERENCES 65

[140] J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair deter-
mination of risk scores. In C. H. Papadimitriou, editor, 8th Innovations in Theoret-
ical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 43:1–43:23. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[141] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, 2006.

[142] J. Knowles, D. Corne, and A. Reynolds. Noisy multiobjective optimization on a
budget of 250 evaluations. In M. Ehrgott, C. M. Fonseca, X. Gandibleux, J.-K. Hao,
and M. Sevaux, editors, Evolutionary Multi-Criterion Optimization, pages 36–50,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[143] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu,
M. Yasunaga, R. L. Phillips, I. Gao, et al. Wilds: A benchmark of in-the-wild
distribution shifts. In International Conference on Machine Learning, pages 5637–
5664. PMLR, 2021.

[144] J. R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and computing, 4(2):87–112, 1994.

[145] D. Kühn, P. Probst, J. Thomas, and B. Bischl. Automatic Exploration of Machine
Learning Experiments on OpenML. arXiv:1806.10961, 2018.

[146] H. J. Kushner. A new method of locating the maximum point of an arbitrary mul-
tipeak curve in the presence of noise. 1964.

[147] M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva. Counterfactual fairness.
arXiv:1703.06856, 2017.

[148] M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casal-
icchio, L. Kotthoff, and B. Bischl. mlr3: A modern object-oriented machine learning
framework in R. Journal of Open Source Software, dec 2019.

[149] A. J. Larrazabal, N. Nieto, V. Peterson, D. H. Milone, and E. Ferrante. Gender
imbalance in medical imaging datasets produces biased classifiers for computer-aided
diagnosis. Proceedings of the National Academy of Sciences, 117(23):12592–12594,
2020.

[150] N. Lavesson and P. Davidsson. Quantifying the impact of learning algorithm param-
eter tuning. In Proc. of AAAI, volume 6, pages 395–400, 2006.

[151] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

66 REFERENCES

[152] E. H. Lee, V. Perrone, C. Archambeau, and M. Seeger. Cost-aware Bayesian Opti-
mization. arXiv:2003.10870, 2020.

[153] C. Li, Z. Yu, Y. Fu, Y. Zhang, Y. Zhao, H. You, Q. Yu, Y. Wang, C. Hao, and
Y. Lin. Hw-nas-bench: Hardware-aware neural architecture search benchmark. In
International Conference on Learning Representations, 2020.

[154] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research, 18:185:1–185:52, 2017.

[155] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-tzur, M. Hardt, B. Recht,
and A. Talwalkar. A system for massively parallel hyperparameter tuning. In I. S.
Dhillon, D. S. Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning
and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.

[156] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically
configured algorithm selector. Journal of Artificial Intelligence Research, 53:745–778,
2015.

[157] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy. Progressive neural architecture search. In Proceedings of
the European conference on computer vision (ECCV), pages 19–34, 2018.

[158] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In
Proceedings of the International Conference on Learning Representations, 2019.

[159] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle.
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

[160] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel. The variational fair
autoencoder. arXiv:1511.00830, 2015.

[161] D. Madras, E. Creager, T. Pitassi, and R. Zemel. Learning adversarially fair and
transferable representations. In International Conference on Machine Learning,
pages 3384–3393. PMLR, 2018.

[162] A. Makarova, H. Shen, V. Perrone, A. Klein, J. B. Faddoul, A. Krause, M. Seeger,
and C. Archambeau. Overfitting in Bayesian Optimization: an empirical study and
early-stopping solution. arXiv:2104.08166, 2021.

[163] A. Makarova, H. Shen, V. Perrone, A. Klein, J. B. Faddoul, A. Krause, M. Seeger,
and C. Archambeau. Automatic termination for hyperparameter optimization. In
First Conference on Automated Machine Learning, 2022.

REFERENCES 67

[164] M. Mansoury, H. Abdollahpouri, M. Pechenizkiy, B. Mobasher, and R. Burke. Feed-
back loop and bias amplification in recommender systems. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pages
2145–2148, 2020.

[165] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on
bias and fairness in machine learning. 54(6), jul 2021.

[166] K. Miettinen. Nonlinear Multiobjective Optimization. International Series in Opera-
tions Research & Management Science. Springer US, 2012.

[167] I. Misra, A. Gupta, and M. Hebert. From red wine to red tomato: Composition with
context. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1792–1801, 2017.

[168] S. Mitchell, E. Potash, S. Barocas, A. D’Amour, and K. Lum. Algorithmic fair-
ness: Choices, assumptions, and definitions. Annual Review of Statistics and Its
Application, 8:141–163, 2021.

[169] J. Močkus. On bayesian methods for seeking the extremum. In Optimization tech-
niques IFIP technical conference, pages 400–404. Springer, 1975.

[170] F. Mohr, M. Wever, and E. Hüllermeier. Ml-plan: Automated machine learning via
hierarchical planning. Machine Learning, 107(8):1495–1515, 2018.

[171] J. Moosbauer, M. Binder, L. Schneider, F. Pfisterer, M. Becker, M. Lang, L. Kotthoff,
and B. Bischl. Automated benchmark-driven design and explanation of hyperpa-
rameter optimizers. To appear in IEEE Transactions on Evolutionary Computation,
2022.

[172] J. Moosbauer, J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl. Explain-
ing hyperparameter optimization via partial dependence plots. Advances in Neural
Information Processing Systems, 34, 2021.

[173] P. Murray-Rust. Open data in science. Nature Precedings, pages 1756–0357, 2008.

[174] A. Narayanan. Translation tutorial: 21 fairness definitions and their politics. In
Proc. Conf. Fairness Accountability Transp., New York, USA, volume 1170, page 3,
2018.

[175] V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh. Regret for expected im-
provement over the best-observed value and stopping condition. In Asian Conference
on Machine Learning, pages 279–294. PMLR, 2017.

[176] A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised
learning. In Proceedings of the 22nd International Conference on Machine Learning,
ICML ’05, page 625–632, New York, NY, USA, 2005. Association for Computing
Machinery.

68 REFERENCES

[177] C. Nießl, M. Herrmann, C. Wiedemann, G. Casalicchio, and A.-L. Boulesteix. Over-
optimism in benchmark studies and the multiplicity of design and analysis options
when interpreting their results. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 12(2):e1441, 2022.

[178] R. S. Olson and J. H. Moore. Tpot: A tree-based pipeline optimization tool for
automating machine learning. In Workshop on automatic machine learning, pages
66–74. PMLR, 2016.

[179] M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary
Computation, 5(4):349–358, 2001.

[180] F. Pargent, F. Pfisterer, J. Thomas, and B. Bischl. Regularized target encoding
outperforms traditional methods in supervised machine learning with high cardinality
features. Computational Statistics, pages 1–22, 2022.

[181] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[182] J. Pearl. Causal inference in statistics: An overview. Statistics surveys, 3:96–146,
2009.

[183] J. Pearl and D. Mackenzie. The Book of Why: The new science of Cause and Effect.
Basic books, 2018.

[184] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:2825–2830, 2011.

[185] J. Petrak. Fast subsampling performance estimates for classification algorithm se-
lection. In Proceedings of the ECML-00 Workshop on Meta-Learning: Building Au-
tomatic Advice Strategies for Model Selection and Method Combination, pages 3–14,
2000.

[186] F. Pfisterer, L. Beggel, X. Sun, F. Scheipl, and B. Bischl. Benchmarking
time series classification – functional data vs machine learning approaches, 2019,
arXiv:1911.07511.

[187] F. Pfisterer, S. Coors, J. Thomas, and B. Bischl. Multi-objective automatic machine
learning with AutoxgboostMC. In Automating Data Science Workshop at ECML,
2019, arXiv:1908.10796.

[188] F. Pfisterer, C. Harbron, G. Jansen, and T. Xu. Evaluating domain generalization
for survival analysis in clinical studies. In G. Flores, G. H. Chen, T. Pollard, J. C.
Ho, and T. Naumann, editors, Proceedings of the Conference on Health, Inference,
and Learning, volume 174 of Proceedings of Machine Learning Research, pages 32–47.
PMLR, 07–08 Apr 2022.

REFERENCES 69

[189] F. Pfisterer, C. Kern, S. Dandl, M. Sun, M. P. Kim, and B. Bischl. mcboost: Multi-
calibration boosting for R. Journal of Open Source Software, 6(64):3453, 2021.

[190] F. Pfisterer, C. Kern, S. Dandl, M. Sun, M. P. Kim, and B. Bischl. mcboost: Multi-
calibration boosting for R. Journal of Open Source Software, 6(64):3453, 2021.

[191] F. Pfisterer, J. Poon, and M. Lang. mlr3keras: mlr3 Keras extension, 2021. R
package version 0.1.3.

[192] F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl. Yahpo gym - an
efficient multi-objective multi-fidelity benchmark for hyperparameter optimization.
In I. Guyon, M. Lindauer, M. van der Schaar, F. Hutter, and R. Garnett, editors,
Proceedings of the First International Conference on Automated Machine Learning,
volume 188 of Proceedings of Machine Learning Research, pages 3/1–39. PMLR, 25–
27 Jul 2022.

[193] F. Pfisterer, J. Thomas, and B. Bischl. Towards human centered AutoML, 2019,
arXiv:1911.02391.

[194] F. Pfisterer, J. N. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple
defaults for machine learning algorithms. arXiv:1811.09409, 2018.

[195] F. Pfisterer, J. N. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple
defaults for machine learning algorithms. In 2021 Genetic and Evolutionary Compu-
tation Conference Companion (GECCO ’21 Companion), page 241–242, Lile, France,
2021. ACM.

[196] F. Pfisterer, S. Wei, S. Vollmer, M. Lang, and B. Bischl. Fairness Audits And
Debiasing Using mlr3fairness, Manuscript submitted for publication.

[197] H. Pham, M. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture
search via parameter sharing. In Proceedings of the 35th International Conference
on Machine Learning, pages 4095–4104, 2018.

[198] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger. On fairness
and calibration. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 30, pages 5680–5689. Curran Associates, Red Hook, NY, 2017,
1709.02012.

[199] M. Poloczek, J. Wang, and P. Frazier. Multi-information source optimization. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

70 REFERENCES

[200] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze. Multiobjective optimization
on a limited budget of evaluations using model-assisted S-Metric selection. In Parallel
Problem Solving from Nature - PPSN X, Lecture Notes in Computer Science, pages
784–794. Springer, Berlin, Heidelberg, 2008.

[201] P. Probst, A.-L. Boulesteix, and B. Bischl. Tunability: Importance of hyperparam-
eters of machine learning algorithms. The Journal of Machine Learning Research,
20(53):1–32, 2019.

[202] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 4780–4789, 2019.

[203] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin. Large-scale evolution of image classifiers. In International Conference
on Machine Learning, pages 2902–2911. PMLR, 2017.

[204] J. P. Robinson, G. Livitz, Y. Henon, C. Qin, Y. Fu, and S. Timoner. Face recognition:
too bias, or not too bias? In Proceedings of the IEEE/CVF Conference on computer
vision and pattern recognition workshops, pages 0–1, 2020.

[205] K. T. Rodolfa, H. Lamba, and R. Ghani. Machine learning for public policy: Do we
need to sacrifice accuracy to make models fair? arXiv:2012.02972, 2020.

[206] K. T. Rodolfa, H. Lamba, and R. Ghani. Empirical observation of negligible fairness–
accuracy trade-offs in machine learning for public policy. Nature Machine Intelli-
gence, 3(10):896–904, 2021.

[207] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke. Explainable machine learning
for scientific insights and discoveries. Ieee Access, 8:42200–42216, 2020.

[208] D. Rügamer, C. Kolb, C. Fritz, F. Pfisterer, P. Kopper, B. Bischl, R. Shen, C. Bukas,
L. B. de Andrade e Sousa, D. Thalmeier, P. Baumann, L. Kook, N. Klein, and C. L.
Müller. deepregression: a flexible neural network framework for semi-structured deep
distributional regression. Journal of Statistical Software (provisionally accepted),
2022.

[209] D. Rügamer, F. Pfisterer, and B. Bischl. Neural mixture distributional regression.
2020, arXiv:2010.06889.

[210] P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld, K. T. Rodolfa,
and R. Ghani. Aequitas: A bias and fairness audit toolkit. arXiv:1811.05577, 2018.

[211] J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning
how to learn: the meta-meta-... hook. PhD thesis, Technische Universität München,
1987.

REFERENCES 71

[212] R. M. Schmidt, F. Schneider, and P. Hennig. Descending through a crowded valley-
benchmarking deep learning optimizers. In International Conference on Machine
Learning, pages 9367–9376. PMLR, 2021.

[213] R. Schmucker, M. Donini, V. Perrone, M. B. Zafar, and C. Archambeau. Multi-
objective multi-fidelity hyperparameter optimization with application to fairness.
NeurIPS Workshop on Meta-Learning, 2020.

[214] L. Schneider, F. Pfisterer, M. Binder, and B. Bischl. Mutation is all you need. In
AutoML Workshop at ICML, 2021, arXiv:2107.07343.

[215] L. Schneider, F. Pfisterer, P. Kent, J. Branke, B. Bischl, and J. Thomas. Tackling
neural architecture search with quality diversity optimization. In I. Guyon, M. Lin-
dauer, M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the
First International Conference on Automated Machine Learning, volume 188 of Pro-
ceedings of Machine Learning Research, pages 9/1–30. PMLR, 25–27 Jul 2022.

[216] L. Schneider, F. Pfisterer, J. Thomas, and B. Bischl. A collection of quality diver-
sity optimization problems derived from hyperparameter optimization of machine
learning models. In GECCO ’22: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, Boston, United States of America, 2022. ACM.

[217] B. Schölkopf, A. J. Smola, F. Bach, et al. Learning with kernels: Support Vector
Machines, regularization, optimization, and beyond. MIT press, 2002.

[218] D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi. Winner’s curse? on pace,
progress, and empirical rigor. 2018.

[219] A. D. Selbst, D. Boyd, S. A. Friedler, S. Venkatasubramanian, and J. Vertesi. Fair-
ness and abstraction in sociotechnical systems. In Proceedings of the conference on
fairness, accountability, and transparency, pages 59–68, 2019.

[220] G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of Machine
Learning Research, 9(3), 2008.

[221] Z. R. Shi, C. Wang, and F. Fang. Artificial intelligence for social good: A survey.
arXiv:2001.01818, 2020.

[222] M. Smith and S. Miller. The ethical application of biometric facial recognition tech-
nology. Ai & Society, 37(1):167–175, 2022.

[223] M. J. Smith, C. Sala, J. M. Kanter, and K. Veeramachaneni. The machine learning
bazaar: Harnessing the ML ecosystem for effective system development. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data,
pages 785–800, 2020.

72 REFERENCES

[224] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of ma-
chine learning algorithms. Advances in Neural Information Processing Systems, 25,
2012.

[225] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society: Series B (Methodological), 36(2):111–133, 1974.

[226] X. Sun, A. Bommert, F. Pfisterer, J. Rahnenfürher, M. Lang, and B. Bischl. High
dimensional restrictive federated model selection with multi-objective Bayesian Op-
timization over shifted distributions. In Y. Bi, R. Bhatia, and S. Kapoor, editors,
Intelligent Systems and Applications, pages 629–647, Cham, 2020. Springer Interna-
tional Publishing.

[227] H. Suresh and J. V. Guttag. A framework for understanding unintended consequences
of machine learning. arXiv:1901.10002, 2, 2019.

[228] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian Optimization. Advances
in Neural Information Processing Systems, 26, 2013.

[229] R. C. Team et al. R: A language and environment for statistical computing. 2013.

[230] J. Thomas. Gradient boosting in automatic machine learning: feature selection and
hyperparameter optimization, April 2019. PhD thesis, LMU Munich.

[231] J. Thomas, S. Coors, and B. Bischl. Automatic gradient boosting. In International
Workshop on Automatic Machine Learning at ICML, 2018.

[232] R. Thomas and D. Uminsky. The problem with metrics is a fundamental problem
for AI. arXiv:2002.08512, 2020.

[233] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 847–855, 2013.

[234] S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media, 2012.

[235] E. J. Topol. High-performance medicine: the convergence of human and artificial
intelligence. Nature medicine, 25(1):44–56, 2019.

[236] T. Tornede, A. Tornede, J. Hanselle, M. Wever, F. Mohr, and E. Hüllermeier.
Towards green automated machine learning: Status quo and future directions.
arXiv:2111.05850, 2021.

[237] T. Tornede, A. Tornede, M. Wever, F. Mohr, and E. Hüllermeier. AutoML for
predictive maintenance: One tool to rul them all. In IoT Streams for Data-Driven
Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning,
pages 106–118. Springer, 2020.

REFERENCES 73

[238] J. Traub, Z. Kaoudi, J.-A. Quiané-Ruiz, and V. Markl. Agora: Bringing together
datasets, algorithms, models and more in a unified ecosystem [vision]. ACM SIGMOD
Record, 49(4):6–11, 2021.

[239] M. Turner and M. McBurnett. Predictive models with explanatory concepts: a
general framework for explaining machine learning credit risk models that simulta-
neously increases predictive power. In Proceedings of the 15th Credit Scoring and
Credit Control Conference, 2019.

[240] B. Ustun, Y. Liu, and D. Parkes. Fairness without harm: Decoupled classifiers
with preference guarantees. In International Conference on Machine Learning, pages
6373–6382. PMLR, 2019.

[241] J. N. van Rijn. Massively Collaborative Machine Learning. PhD thesis, Leiden
University, 2016.

[242] J. N. van Rijn, F. Pfisterer, J. Thomas, B. Bischl, and J. Vanschoren. Meta learning
for defaults–symbolic defaults. In NeurIPS 2018 Workshop on Meta Learning, 2018.

[243] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[244] J. Vanschoren. Meta-learning: A survey. arXiv:1810.03548, 2018.

[245] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. OpenML: networked science
in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[246] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

[247] R. Vinuesa, H. Azizpour, I. Leite, M. Balaam, V. Dignum, S. Domisch, A. Felländer,
S. D. Langhans, M. Tegmark, and F. F. Nerini. The role of artificial intelligence
in achieving the sustainable development goals. Nature communications, 11(1):1–10,
2020.

[248] S. Walker, C. Spohn, and M. DeLone. Race, Ethnicity, and Crime in America, 2007.

[249] S. Wei and M. Niethammer. The fairness-accuracy pareto front. arXiv:2008.10797,
2020.

[250] C. White, W. Neiswanger, and Y. Savani. BANANAS: Bayesian optimization with
neural architectures for neural architecture search. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2021.

[251] J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisition functions for
Bayesian Optimization. Advances in Neural Information Processing Systems, 31,
2018.

74 REFERENCES

[252] F. Winkelmolen, N. Ivkin, H. F. Bozkurt, and Z. Karnin. Practical and sample
efficient zero-shot HPO. arXiv:2007.13382, 2020.

[253] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter opti-
mization initializations. In Proc. of DSAA, pages 1–10. IEEE, 2015.

[254] D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[255] K. Woźnica, M. Grzyb, Z. Trafas, and P. Biecek. Consolidated learning–a domain-
specific model-free optimization strategy with examples for xgboost and mimic-iv.
arXiv:2201.11815, 2022.

[256] J. Wu and P. Frazier. The parallel knowledge gradient method for batch Bayesian Op-
timization. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[257] R. Wu and E. Keogh. Current time series anomaly detection benchmarks are flawed
and are creating the illusion of progress. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2021.

[258] H. Yoganarasimhan. Search personalization using machine learning. Management
Science, 66(3):1045–1070, 2020.

[259] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi. Fairness beyond
disparate treatment & disparate impact. In Proceedings of the 26th International
Conference on World Wide Web, pages 1171–1180, Geneva, Switzerland, Apr. 2017.
International World Wide Web Conferences Steering Committee.

[260] M. B. Zafar, I. Valera, M. Rodriguez, K. Gummadi, and A. Weller. From parity to
preference-based notions of fairness in classification. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30, pages 229–239, Red
Hook, NY, June 2017. Curran Associates, Inc., 1707.00010.

[261] B. H. Zhang, B. Lemoine, and M. Mitchell. Mitigating unwanted biases with adver-
sarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, pages 335–340, 2018.

[262] J. Zhang and E. Bareinboim. Equality of opportunity in classification: A causal ap-
proach. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31,
pages 3675–3685. Curran Associates, Inc., 2018.

[263] J. Zhang and E. Bareinboim. Fairness in decision-making—the causal explanation
formula. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

REFERENCES 75

[264] P. Zhao, K. Xiao, Y. Zhang, K. Bian, and W. Yan. Ameir: Automatic behavior
modeling, interaction exploration and mlp investigation in the recommender system.
In Z.-H. Zhou, editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 2104–2110. International Joint Conferences
on Artificial Intelligence Organization, 8 2021.

[265] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. Change Loy. Domain generalization: A
survey. arXiv e-prints, pages arXiv–2103, 2021.

[266] L. Zimmer, M. Lindauer, and F. Hutter. Auto-pytorch: Multi-fidelity metalearning
for efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[267] I. Zliobaite. On the relation between accuracy and fairness in binary classification.
In The 2nd workshop on Fairness, Accountability, and Transparency in Machine
Learning (FATML) at ICML’15, 2015.

[268] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In
Proceedings of the International Conference on Learning Representations, 2017.

[269] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

[270] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8697–8710, 2018.

76 REFERENCES

CHAPTER 4

CONTRIBUTIONS - AUTOML

78 4. Contributions - AutoML

4.1 Meta Learning for Defaults–Symbolic Defaults
Contributed Article:
J. N. van Rijn, F. Pfisterer, J. Thomas, B. Bischl, and J. Vanschoren. Meta learning for
defaults–symbolic defaults. In NeurIPS 2018 Workshop on Meta Learning, 2018

Declaration of contributions The main idea was contributed by JvR, who also imple-
mented the core method, with several adaptations resulting from discussions and advice
from FP, JT, BB ans JV. FP and JT drafted large parts of the manuscript with revisions
by JvR, BB and JV.

Meta Learning for Defaults – Symbolic Defaults

Jan N. van Rijn
Data Science Institute
Columbia University

Florian Pfisterer
Department of Statistics

LMU Munich

Janek Thomas
Department of Statistics

LMU Munich

Andreas Müller
Data Science Institute
Columbia University

Bernd Bischl
Department of Statistics

LMU Munich

Joaquin Vanschoren
Mathematics and Computer Science
Eindhoven University of Technology

Abstract

In this work we propose to use meta-learning to learn sets of symbolic default
hyperparameter configurations that work well across many data sets. A well known
example for such a symbolic default is the logarithmic relation between the number
of features of a dataset and the available features per split of a Random Forest, as
observed by Breiman (2001). Symbolic functions allow for a more rich vocabulary
to define defaults on. In the past, symbolic and static default values have been
obtained either from hand-crafted heuristics or empirical evaluations of specific
algorithms. We propose to automatically learn such symbolic configurations, i.e.,
formulas containing meta-features, from a large set of prior evaluations of numeric
hyperparameters on multiple data sets via symbolic regression and optimization.

1 Introduction

The performance of most machine learning algorithms is greatly influenced by their hyperparameter
settings. Various methods exist to automatically optimize hyperparameters, including random
search (Bergstra and Bengio, 2012), Bayesian optimization (Snoek et al., 2012; Hutter et al., 2011),
meta-learning (Brazdil et al., 2008) and bandit-based methods (Li et al., 2017). Depending on the
algorithm, proper tuning of hyperparameters can yield considerable performance gains (Lavesson and
Davidsson, 2006). Despite the acknowledged importance of tuning hyperparameters, the additional
run time, code complexity and experimental design questions cause many practitioners to leave
many hyperparameters to their default values, especially in real-world machine learning pipelines
containing many hyperparameters. Moreover, it seems less than ideal to optimize all hyperparameters
from scratch with every new dataset. If the optimal values of an hyperparameter are functionally
dependent on properties of the data, we could learn this functional relationship and express them
as symbolic default configurations that work well across many data sets. That way we can transfer
information from previous optimization runs to obtain better data set dependent defaults and good
starting configurations for further tuning.

Some of these functional relationships are reported in the literature, such as is the logarithmic
relation between the number of features of a dataset and the available features per split of a Random
Forest Breiman (2001). Other examples are the interaction between the RBF kernel bandwidth
parameter (gamma) in SVM’s and the number of features (Vanschoren et al., 2012) or the median
distance between observations (Caputo et al., 2002). Some of these are also implemented in machine-
learning workbenches such as sklearn (Pedregosa et al., 2011), weka (Hall et al., 2009) or mlr
(Bischl et al., 2016). It is often not clear and rarely reported how such relationships were discovered,
nor does there seem to be a clear consensus between workbenches on which symbolic defaults to
implement. Also, they are typically limited to a single hyperparameter, and don’t take into account
how multiple hyperparameters may interact.

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

Meta-learning approaches have been proposed to learn static defaults (Pfisterer et al., 2018; Probst
et al., 2018; Weerts et al., 2018; Wistuba et al., 2015), to find which hyperparameters are most
important to optimize (van Rijn and Hutter, 2018; Probst et al., 2018; Weerts et al., 2018), or to build
meta-models to select the kernel or kernel width in SVMs (Soares et al., 2004; Valerio and Vilalta,
2014; Strang et al., 2018).

This paper addresses a new meta-learning challenge: “Can we learn sets of symbolic configurations
for hyperparameters of state-of-the-art machine learning algorithms?”. Contrary to static defaults,
symbolic defaults should be a function of the meta-features of the data set at hand. Ideally, these meta-
features are easily computed, so that the symbolic default configurations can be easily implemented
into software frameworks with little to no computational overhead. We show that such symbolic
defaults outperform the best overall static defaults, and propose techniques to learn such symbolic
defaults via symbolic regression and optimization.

2 Problem definition

2.1 Preliminaries

Consider a target variable y, a feature vector X , and an unknown joint distribution P on (X, y),
from which we have sampled a dataset D containing |D| observations. A machine learning (ML)
algorithm tries to approximate the functional relationship between X and y by producing a prediction
model f̂θ(X), controlled by a multi-dimensional hyperparameter configuration θ ∈ Θ of length p:
θ = {φ1, . . . , φp}. In order to measure prediction performance pointwise between a true label y and
its prediction f̂(X), we define a loss function L(y, f̂(X)).
We are naturally interested in estimating the expected risk of the inducing algorithm, w.r.t. θ on
new data, also sampled from P: RP(θ) = E(L(y, f̂(X))|P). Thus, RP(θ) quantifies the expected
predictive performance associated with a hyperparameter configuration θ for a given data distribu-
tion, learning algorithm and performance measure. Given a data distribution, a learning algorithm
and a performance measure, this mapping encodes the numerical quality for any hyperparameter
configuration θ.

Given K different datasets (or data distributions) P1, ...,PK , we arrive at K hyperparameter risk
mappings.

Rk(θ) = E(L(y, f̂(X, θ))|Pk), k = 1, ...,K.

2.2 Meta Data

Evaluations To learn symbolic defaults, we first gather meta-data that evaluates Rk(θ) on all K
datasets. For a given fixed algorithm with hyperparameter space Θ and a performance measure, e.g.,
area under the ROC curve (AUC), a large number of experiments is run on datasets P1, . . . , PK . These
experiments can be generated by a simple random search, i.e., by sampling random hyperparameter
configurations from Θ, and evaluating them via cross-validation.

Surrogate Models In principle, it is possible to estimate Rk(θ) empirically using cross-validation
for every θ ∈ Θ. However, since each cross-validation involves training many models, this is costly if
we want to obtaining results for a large number of configurations. Therefore, we propose to employ
surrogate models that predict the outcome of a given performance measure and algorithm for a
given hyperparameter configuration. We train one model for each dataset (and each algorithm) on a
sufficiently large random sample of evaluations (Eggensperger et al., 2015). For this, we can also
reuse evaluations shared on OpenML (Vanschoren et al., 2014). These surrogate models provides
us with a fast approximate way to evaluate the performance of any given configuration, without the
requirement of costly training and evaluating models for every possible configuration.

Considering the fact that performances on different datasets are usually not commensurable (Demšar,
2006), an appropriate scaling is required before training surrogate models to enable a comparison
between datasets. This is done in literature by resorting to ranking (Bardenet et al., 2013), or
scaling (Yogatama and Mann, 2014) to standard deviations from the mean. We mitigate the problem
of lacking commensurability between datasets by normalizing performance results on a per-dataset

2

Table 1: Simple transformation functions, parameterized by a constant α and a meta-feature value x.

transformation function
linear x · α
square root

√
x · α

logaritmic log(x) · α
inverse α/x
exponentiation xα

basis. A drawback to this is that some information regarding the absolute performance of the
algorithm and the spread across different configurations is lost.

Data set characteristics In addition to the performance of random hyperparameter-configurations,
OpenML contains a range of dataset characteristics, i.e, meta-features. A full list of available
characteristics is described by van Rijn (2016). These characteristics include (among many others)
the number of observations, the number of features and information regarding class balance. We
denote the set of characteristics {c1, c2, ..., cL} with C.

2.3 Hypothesis space

Finding an optimal default now corresponds to finding a configuration θ that minimizes the risk
Rk(θ) across K datasets. We define the risk over K datasets R(θ) = 1

K

∑K
1 Rk(θ), i.e., aggregate

over datasets using the mean.

We allow our configurations to be symbolic, i.e., contain formulas instead of static values. For this
reason we define a set of transformations T that are functions of the data set’s meta-features, and
map from the values of these meta-features to a real value for a given numeric hyperparameter θi,
thus t(x) : R→ R. Table 1 shows a list of simple transformations from a single meta-feature x. Note
that although these symbolic function have a parameter (denoted by α), the optimal value for this
will be determined by the search procedure. Of course, many more complex transformations can be
considered as well.

Note that not all possible combinations will map the input to sensible output ranges. For example,
the exponential function may generate unreasonable high values for high values for α. We can either
add additional constraints on the transformed values to map them back into a reasonable range, or
constrain the search method at these functions to not consider them. In this work, we opted for the
latter.

3 Exhaustive search results

To demonstrate the utility of symbolic defaults, we first perform an exhaustive search on the simplified
hypothesis space shown in Table 1. Given these transformation functions, a set of meta-features and
a set of constant values (for parameter α), we enumerate all possible symbolic functions for a given
hyperparameter, evaluate them on a wide set of datasets, and select the optimal one. Also, instead of
jointly learning symbolic defaults for all hyperparameters, we only allow one symbolic default at
a time, and set all other hyperparameters to a static default such that for the configuration the risk
across datasets is minimized.

Setup The experiment is based on datasets from the OpenML100 (Bischl et al., 2017) benchmark
suite. A rbf-SVM is used and only the hyperparameters γ andC are optimized. We generate candidate
transformations according to Table 1, using a numerical constant (α) geometrically increasing with 10
steps from 0.1 to 2, and 80+ meta-features available from OpenML. This allows for 4,000 symbolic
expressions per hyperparameter. The search procedure should select the best among these.

The evaluation is based on a leave-one-dataset-out strategy, where the (symbolic) defaults are
computed based on all but one dataset, and compared to the best vanilla default values. The vanilla
defaults were computed by doing a full grid search over the hyperparameter space (with 8 values per
hyperparameter), using the corresponding surrogate model to predict the performance on a specific

3

Table 2: Comparison between vanilla defaults and symbolic defaults, on 98 datasets from the
OpenML100 (Bischl et al., 2017). Full results are displayed in Table 3 in the appendix.

strategy wins symbolc default configuration
symbolic 59 γ = 0.189824/NumberOfFeatures, C = 86.13
vanilla 36 γ = 0.001078,C = 4522.35

dataset. The best overall configuration across all datasets is the best vanilla default value. The
meta-data used to train the surrogate models is the same as used by van Rijn and Hutter (2018).

Results The results of the experiment can be seen in Table 2, in the appendix. The OpenML100
consists of 100 datasets; for 2 datasets the meta-data was incomplete. Out of the 98 datasets on which
the defaults were evaluated, the symbolic defaults outperform the vanilla defaults in 59 cases, lose
in 36 and draws in 3 cases. In all cases, the found default configuration was consistent across all
leave-one-out cross-validation folds, for both symbolic and vanilla defaults. The latter indicates that
(i) the set of datasets is large enough to learn meaningful defaults on, and (ii) the learned defaults
generalize over tasks. Moreover. since these results were obtained from a simplified search space, it
is quite possible that even better symbolic defaults can be discovered, as well as configurations in
which multiple hyperparameters have symbolic defaults.

Note that these findings are in line what was reported by Vanschoren et al. (2012), who stated that
they could not find a direct correlation, but that high gamma values are predominantly performing
well on datasets with a low number of features.

4 Outlook

The method detailed in the previous sections demonstrated the feasibility of learning a set of simple
data dependent defaults. In future work we first of all plan to extend the search space: we want to
find formulas not for a single hyperparameter, but instead for all sensible hyperparameters of an
algorithm. The current experiment additionally introduces prior assumptions with regards to the kind
of functions we are able to learn, and we currently limit our approach to transformations that contain
a single meta-feature. In future work, we want to introduce fewer restrictions to the space of possible
transformations. As such, we plan to include combinations of meta-features, as well as introduce
a host of significantly more complex transformations. Allowing for more complex formulas thus
reduces the amount of prior assumptions we have to introduce. This comes with a cost: it is no longer
sensible, or depending on the search space impossible, to exhaustively search through the space of
possible formulas, even when using a surrogate model. One possible approach to solve this is to
represent the space of functions as a grammar in Backus-Naur form and represent generated formulas
as integer vectors where each entry represents which element of the right side of the grammar
rule to follow (O’Neill and Ryan (2001), Noorian et al. (2016)). Using this representation, more
advanced techniques like genetic algorithms can also be used to search larger and more complex sets
of transformation functions in a much more efficient way.

Multiple challenges with this approach still exist. A search across the space of all possible functions
may result in invalid values, or values out of the valid range of the hyperparameter for specific
datasets. This does not necessarily pose a problem for genetic algorithms, as a few valid formulas
already suffice, but hampers the efficiency of the search procedure. Additionally, a concurrent search
for optimal formulas of all hyperparameters of an algorithm is difficult, because obtaining a bad value
for only a single hyperparameter φ out of the full configuration θ can result in a bad performance
overall. We propose to solve this using a round-robin approach, where we repeatedly iterate over all
parameters and only learn a formula for one hyperparameter at a time.

On the other hand, we hope to gain several insights that do not only advance the state of research,
but also improve the performance and robustness of many widely used machine learning algorithms,
and thus widely influence the quality of learned models for users who are not able to tune all model
hyperparameters.

Acknowledgments This material is based upon work supported by the National Science Foundation
under Grant No. 1740305 and by DARPA under Grant No. DARPA-BAA-16-51.

4

References
Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. (2013). Collaborative hyperparameter tuning.

In Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, pages II–199–II–207. JMLR.org.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N.,
and Vanschoren, J. (2017). OpenML Benchmarking Suites and the OpenML100. arXiv preprint
arXiv:1708.03731.

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., and Jones,
Z. M. (2016). mlr: Machine learning in R. JMLR, 17(170):1–5.

Brazdil, P., Giraud-Carrier, C., Soares, C., and Vilalta, R. (2008). Metalearning: Applications to
Data Mining. Springer Publishing Company, Incorporated, 1 edition.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Caputo, B., Sim, K., Furesjo, F., and Smola, A. (2002). Appearance-based object recognition using
svms: which kernel should i use? In Procceedings of NIPS workshop on Statitsical methods for
computational experiments in visual processing and computer vision, Whistler, pages 1–10.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of
Machine Learning Research, 7:1–30.

Eggensperger, K., Hutter, F., Hoos, H., and Leyton-Brown, K. (2015). Efficient benchmarking of
hyperparameter optimizers via surrogates. In Proc. of AAAI 2015, pages 1114–1120.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA
data mining software: an update. SIGKDD Explorations, 11(1):10–18.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pages 507–523. Springer.

Lavesson, N. and Davidsson, P. (2006). Quantifying the impact of learning algorithm parameter
tuning. In AAAI, volume 6, pages 395–400.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband: Bandit-
Based Configuration Evaluation for Hyperparameter Optimization. In Proc. of ICLR 2017.

Noorian, F., de Silva, A. M., Leong, P. H., et al. (2016). gramevol: Grammatical evolution in r.
Journal of Statistical Software, 71(i01).

O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE Transactions on Evolutionary
Computation, 5(4):349–358.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

Pfisterer, F., van Rijn, J. N., Probst, P., Müller, A. M., and Bischl, B. (2018). Learning Multiple
Defaults for Machine Learning Algorithms. arXiv preprint arXiv:1811.09409.

Probst, P., Bischl, B., and Boulesteix, A. (2018). Tunability: Importance of hyperparameters of
machine learning algorithms. arXiv preprint arXiv:1802.09596.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine
learning algorithms. In Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’12, pages 2951–2959, USA. Curran Associates Inc.

5

Soares, C., Brazdil, P., and Kuba, P. (2004). A meta-learning method to select the kernel width in
support vector regression. Mach. Learn., 54:195–209.

Strang, B., van der Putten, P., van Rijn, J. N., and Hutter, F. (2018). Don’t rule out simple models
prematurely: A large scale benchmark comparing linear and non-linear classifiers in openml. In
International Symposium on Intelligent Data Analysis, pages 303–315. Springer.

Valerio, R. and Vilalta, R. (2014). Kernel selection in support vector machines using gram-matrix
properties. In NIPS Workshop on Modern Nonparametrics: Automating the Learning Pipeline,
volume 14.

van Rijn, J. N. (2016). Massively Collaborative Machine Learning. PhD thesis, Leiden University.

van Rijn, J. N. and Hutter, F. (2018). Hyperparameter importance across datasets. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 2367–2376. ACM.

Vanschoren, J., Blockeel, H., Pfahringer, B., and Holmes, G. (2012). Experiment databases. Machine
Learning, 87(2):127–158.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2014). OpenML: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60.

Weerts, H., Meuller, M., and Vanschoren, J. (2018). Importance of tuning hyperparameters of
machine learning algorithms. Technical report, TU Eindhoven.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015). Learning hyperparameter optimization
initializations. In Data Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE
International Conference on, pages 1–10. IEEE.

Yogatama, D. and Mann, G. (2014). Efficient Transfer Learning Method for Automatic Hyperparam-
eter Tuning. In Kaski, S. and Corander, J., editors, Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning
Research, pages 1077–1085, Reykjavik, Iceland. PMLR.

6

A Results per dataset

Table 3: The difference between symbolic defaults and vanilla defaults, for 98 datasets
from the OpenML100 (Bischl et al., 2017). The best found symbolic default was ‘γ =
0.189824/NumberOfFeatures, C = 86.13’, consistent across all tasks. The best found vanilla
default was ‘γ = 0.001078,C = 4522.35’, consistent across all tasks.

symbolic vanilla
dataset

kr-vs-kp 0.993986 0.993256
letter 0.962879 0.913438
balance-scale 0.948774 0.915973
mfeat-factors 0.997986 0.998242
mfeat-fourier 0.994684 0.991689
breast-w 0.878953 0.936559
mfeat-karhunen 0.993776 0.989547
mfeat-morphological 0.974419 0.976140
mfeat-pixel 0.993166 0.982842
car 0.972400 0.971796
mfeat-zernike 0.968154 0.976384
cmc 0.740027 0.864494
mushroom 0.999673 0.999885
optdigits 0.998058 0.993982
credit-approval 0.905408 0.951653
credit-g 0.771748 0.682432
pendigits 0.995317 0.989628
segment 0.976898 0.991487
diabetes 0.835865 0.874568
soybean 0.991540 0.987747
spambase 0.993783 0.982050
splice 0.993554 0.976631
tic-tac-toe 0.980773 0.989053
vehicle 0.952675 0.921425
waveform-5000 0.959832 0.922108
electricity 0.499086 0.440656
satimage 0.959691 0.958328
eucalyptus 0.865020 0.950900
sick 0.968849 0.927118
vowel 0.997565 0.967072
isolet 0.996529 0.999196
scene 0.945410 0.923344
monks-problems-1 0.999999 0.978106
monks-problems-2 0.997830 0.888671
monks-problems-3 0.993750 0.997656
JapaneseVowels 0.956405 0.958125
synthetic_control 0.988586 0.986362
irish 0.999619 1.000000
analcatdata_authorship 0.997976 0.998362
analcatdata_dmft 0.689489 0.681528
profb 0.631895 0.931988
collins 1.000000 1.000000
mnist_784 0.869533 0.995322
sylva_agnostic 0.974975 0.958614
gina_agnostic 0.949198 0.994346
ada_agnostic 0.939905 0.915434
mozilla4 0.799870 0.696705
pc4 0.973807 0.939981
pc3 0.987253 0.987021

symbolic vanilla
dataset

jm1 0.519439 0.411916
kc2 0.717854 0.453129
kc1 0.800003 0.477086
pc1 0.411465 0.367177
KDDCup09_upselling 0.988281 0.988281
MagicTelescope 0.947935 0.839991
adult 0.879703 0.960864
wilt 0.998123 0.988539
wdbc 0.986231 0.959469
micro-mass 0.960787 0.837078
phoneme 0.636225 0.422257
one-hundred-plants-margin 0.986408 0.984546
one-hundred-plants-shape 0.935152 0.937328
one-hundred-plants-texture 0.988585 0.982143
qsar-biodeg 0.953944 0.949305
wall-robot-navigation 0.965796 0.918964
semeion 0.986686 0.989221
steel-plates-fault 0.998367 0.999982
tamilnadu-electricity 1.000000 1.000000
hill-valley 0.442016 0.766961
ilpd 0.907537 0.898711
madelon 0.859188 0.908491
nomao 0.998656 0.990892
ozone-level-8hr 0.920647 0.832482
cardiotocography 0.998393 0.999983
climate-model-simulation-crashes 0.917094 0.901476
cnae-9 0.989397 0.930784
eeg-eye-state 0.341995 0.376861
first-order-theorem-proving 0.635427 0.683760
gas-drift 0.998310 0.997685
banknote-authentication 1.000000 0.978950
blood-transfusion-service-center 0.801340 0.734690
artificial-characters 0.562517 0.473162
bank-marketing 0.767096 0.902828
Bioresponse 0.936898 0.882554
cjs 0.970188 0.994433
cylinder-bands 0.943682 0.914568
GesturePhaseSegmentationProcessed 0.748805 0.652932
har 0.996902 0.999590
PhishingWebsites 0.937853 0.914617
MiceProtein 0.788341 0.858647
Amazon_employee_access 0.550310 0.334129
dresses-sales 0.779151 0.788013
LED-display-domain-7digit 0.946904 0.967014
texture 0.998820 0.999320
Australian 0.927873 0.953403
connect-4 0.950426 0.940032
higgs 0.954954 0.844238
SpeedDating 0.736372 0.724337

7

86 4. Contributions - AutoML

4.2 Meta-Learning for Symbolic Hyperparameter De-
faults

Contributed Article:
P. Gijsbers, F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren. Meta-learning for
symbolic hyperparameter defaults. In 2021 Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’21 Companion), page 151–152, Lile, France, 2021. ACM

This chapter includes the short-form publication [101]. The interested reader is refered to
the long-form version of the article [102] 1.

Declaration of contributions PG and FP contributed equally. The main method was
jointly developed by PG and FP based on advice from their co-authors and previous work
in [242] by JvR and FP. PG and FP built the implementation, carried out the experiments,
and wrote the initial manuscript. JvR, BB and JV advised throughout the project and
further improved the manuscript.

© ACM 2021. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
2021 Genetic and Evolutionary Computation Conference Companion, http://dx.doi.
org/10.1145/3449726.3459532.

1https://arxiv.org/abs/2106.05767

http://dx.doi.org/10.1145/3449726.3459532
http://dx.doi.org/10.1145/3449726.3459532
https://arxiv.org/abs/2106.05767

Meta-Learning for Symbolic Hyperparameter Defaults
Pieter Gijsbers*

University of Eindhoven
Eindhoven, Netherlands

Florian Pfisterer*

Ludwig-Maximilians-University
Munich, Germany

Jan N. van Rijn
LIACS, Leiden University

Leiden, Netherlands

Bernd Bischl
Ludwig-Maximilians-University

Munich, Germany

Joaquin Vanschoren
University of Eindhoven
Eindhoven, Netherlands

ABSTRACT
Hyperparameter optimization in machine learning (ML) deals with
the problem of empirically learning an optimal algorithm configu-
ration from data, usually formulated as a black-box optimization
problem. In this work, we propose a zero-shot method to meta-learn
symbolic default hyperparameter configurations that are expressed
in terms of the properties of the dataset. This enables a much faster,
but still data-dependent, configuration of the ML algorithm, com-
pared to standard hyperparameter optimization approaches. In the
past, symbolic and static default values have usually been obtained
as hand-crafted heuristics. We propose an approach of learning such
symbolic configurations as formulas of dataset properties from a
large set of prior evaluations on multiple datasets by optimizing over
a grammar of expressions using an evolutionary algorithm. We eval-
uate our method on surrogate empirical performance models as well
as on real data across 6 ML algorithms on more than 100 datasets and
demonstrate that our method indeed finds viable symbolic defaults.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifi-
cation.

KEYWORDS
Hyperparameter Optimization, Metalearning

ACM Reference Format:
Pieter Gijsbers, Florian Pfisterer, Jan N. van Rijn, Bernd Bischl, and Joaquin
Vanschoren. 2021. Meta-Learning for Symbolic Hyperparameter Defaults.
In 2021 Genetic and Evolutionary Computation Conference Companion
(GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459532

1 INTRODUCTION & RELATED WORK
The performance of most machine learning (ML) algorithms is
greatly influenced by their hyperparameter settings. While various
methods exist to automatically optimize them, the additional com-
plexity and effort cause many practitioners to forgo optimization.

*Both authors contributed equally to the paper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459532

Defaults provide a fallback but are often static and do not take prop-
erties of the dataset into account, even though the success of tuning
hyperparameters suggests values should be based on properties of
the data. Contrary to static defaults, symbolic defaults should be a
function of the meta-features (dataset characteristics) of the dataset,
such as the number of features. A well-known example for a sym-
bolic default is the random forest algorithm’s default 𝑚𝑡𝑟𝑦 =

√
𝑝

for the number of features sampled in each split. In this paper we
explore how such formulas can be obtained in a principled, empiri-
cal manner, especially when multiple hyperparameters interact, and
have to be considered simultaneously1. We propose to learn such
symbolic default configurations by optimizing over a grammar of
potential expressions, in a manner similar to symbolic regression [3]
using evolutionary algorithms. We validate our approach across a
variety of state-of-the-art ML algorithms and propose default can-
didates for use by practitioners. The proposed approach is general
and can be used for any algorithm as long as their performance is
empirically measurable on instances in a similar manner.

2 METHOD
A symbolic configuration is a set of functions, one for each hyperpa-
rameter of the algorithm. Each function maps the meta-features of
the given dataset to a value for a hyperparameter, e.g.𝑚𝑡𝑟𝑦 =

√
𝑝.

Note that it is not needed for any or all meta-features to be used in
the mapping, i.e. the function may be constant (static) or only use
few meta-features. We want to learn a symbolic default configuration
𝜆(.) for algorithm A that minimizes the expected risk induced by
the model produced by A𝝀 across datasets.

We define a context-free grammar of transformations, which de-
fine the space of potential expressions for all functions 𝜆(.). We
select a small set of simple dataset characteristics for use in formu-
las, e.g. number of observations, features, or missing values. Given
𝐾 datasets, a risk function 𝑅(𝜆(.),D𝑖) that denotes the risk induced
by the model learnt using algorithm A with symbolic configuration
𝜆(.) on dataset D𝑖 , we can formulate a global objective to minimize:
𝑅D (𝜆(.)) = 1

𝐾

∑𝐾
𝑖=1 𝑅(𝜆(.),D𝑖). As estimating 𝑅D (𝜆(.)) empiri-

cally using cross-validation (CV) is costly in practice, we instead
employ surrogate models that approximate 𝑅D (𝜆(.)).

Meta-learning. To create surrogate models, we collect data about
the performance of randomly sampled constant configurations. These
configurations are evaluated across all datasets using 10-fold CV.
For each dataset we train a random forest model mapping hyper-
parameter configurations to expected performance. We can then
approximate the average risk of 𝜆(.) by querying each surrogate
1Code available at https://github.com/PGijsbers/symbolicdefaults

151

GECCO ’21 Companion, July 10–14, 2021, Lille, France Gijsbers et al.

model after first computing the real configuration values using the
dataset’s characteristics.

Optimization. The problem we aim to solve requires optimization
over a space of mathematical expressions. Several options to achieve
this exist [4, 5]. We opt for a tree representation of individuals, where
nodes correspond to operations and leaves to terminal symbols or
numeric constants, and optimize this via genetic programming [3].
We differentiate between real-valued and integer-valued terminal
symbols to account for the difference in algorithm hyperparameters.
We use a 𝜇 + 𝜆 algorithm to evolve candidate solutions via crossover
and mutation. We jointly optimize performance of solutions while
preferring formulas with smaller structural depth using NSGA-II
selection [1] without explicitly limiting length of the expressions.

3 RESULTS
We investigate symbolic defaults for 6 ML algorithms using a large
set of meta-data, containing evaluations of over a hundred datasets
available from OpenML [6]. We optimize the average logistic loss
(normalized to [0,1]), but our methodology trivially extends to other
performance measures. We evaluate using a leave-one-dataset-out
strategy to obtain symbolic defaults. As baselines, we employ ran-
dom search and 1-nearest neighbour, an approach that selects the
configuration that worked best on the most similar dataset, compara-
ble to warm-starting in auto-sklearn [2].

Table 1 shows the mean and standard deviation of the normalized
log-loss for each algorithm across all tasks, as predicted by surrogate
models. The symbolic and constant columns denote the performance
of defaults found with our approach including and excluding sym-
bolic terminals respectively. The package column shows the best
result obtained from either the scikit-learn or mlr default, and the
last column denotes the best-found performance sampling 8 random
real-world scores on the task for the algorithm. Note that the best
rank can deviate from the best average performance.

The default mean rank is never significantly lower than that of
other approaches, but in some cases, it is significantly higher. The
only implementation default which does not score a significantly
lower mean rank than our approach is the default for SVM, which
has carefully hand-crafted defaults. For more nuance about the per-
formance differences per dataset, Figure 1 shows the predicted nor-
malized log-loss per dataset for SVM configurations obtained by
different methods.

We further show the non-normalized log-loss per dataset obtained
with 10-fold CV experiments in Figure 2. The median performance
for symbolic defaults is slightly lower, though overall very similar
performance is achieved by this automatically obtained symbolic
default to the hand-crafted one in scikit-learn, or per-dataset recom-
mendations from 1NN.

ACKNOWLEDGMENTS
This material is based upon work supported by the Data Driven
Discovery of Models (D3M) program run by DARPA and the Air
Force Research Laboratory, and by the German Federal Ministry
of Education and Research (BMBF) under Grant No. 01IS18036A.
The authors of this work take full responsibility for its content.

algorithm symbolic constant package opt. RS 8

glmnet 0.917(.168) 0.928(.158) 0.857(.154) 0.906(.080)
knn 0.954(.148) 0.947(.156) 0.879(.137) 0.995(.009)
rf 0.946(.087) 0.951(.074) 0.933(.085) 0.945(.078)
rpart 0.922(.112) 0.925(.093) 0.792(.141) 0.932(.082)
svm 0.889(.178) 0.860(.207) 0.882(.190) 0.925(.084)
xgboost 0.995(.011) 0.995(.011) 0.925(.125) 0.978(.043)

Table 1: Mean normalized log-loss (standard deviation) across
all tasks with baselines. Boldface values indicate the average
rank was not significantly worse than the best (underlined) of
the four settings.

0.0 0.5 1.0
constant default

0.0

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

0.5 1.0
optimistic random search 8

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

Figure 1: Normalized log-loss comparison of symbolic defaults
to constant defaults (left) and budget 8 random search (right).

symbolic d
efault

sklearn default
1-NN

Search Strategy

0

1

2

Lo
gl

os
s

0 1 2
implementation default

0.0

0.5

1.0

1.5

2.0

2.5

sy
m

bo
lic

 d
ef

au
lt

Figure 2: Comparison of 1NN, symbolic, and implementation
default using log-loss across all datasets performed on real data.

REFERENCES
[1] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[2] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter.
2015. Efficient and Robust Automated Machine Learning. In Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2962–2970.

[3] John R Koza. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and computing 4, 2 (1994), 87–112.

[4] M. O’Neill and C. Ryan. 2001. Grammatical evolution. IEEE Transactions on
Evolutionary Computation 5, 4 (Aug 2001), 349–358.

[5] Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Müller, Bernd Bischl,
and Joaquin Vanschoren. 2018. Meta learning for defaults : symbolic defaults. In
Workshop on Meta-Learning @ NeurIPS2018.

[6] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. 2014. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter 15, 2 (2014),
49–60.

152

4.3 Learning Multiple Defaults for Machine Learning Algorithms 89

4.3 Learning Multiple Defaults for Machine Learning
Algorithms

Contributed Article:
F. Pfisterer, J. N. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple defaults
for machine learning algorithms. In 2021 Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’21 Companion), page 241–242, Lile, France, 2021. ACM

This chapter includes the short-form publication in [195]. The interested reader is refered
to the long-form version of the article in [194] 2.

Declaration of contributions The core idea to develop sets of defaults was proposed
by AM, JvR and BB. FP implemented the method based on previous code originally devel-
oped by PP. FP furthermore conducted the experimental evaluation of the method, with
JvR contributing the exhaustive search baseline. FP and JvR developed the manuscript
with refinement and additional input from AM, BB and PP. The theoretical formulation
of multiple defaults as a maximum coverage problem was contributed by JvR.

© ACM 2021. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
2021 Genetic and Evolutionary Computation Conference Companion, http://dx.doi.
org/10.1145/449726.34595320.

2https://arxiv.org/abs/1811.09409

http://dx.doi.org/10.1145/449726.34595320
http://dx.doi.org/10.1145/449726.34595320
https://arxiv.org/abs/1811.09409

Learning Multiple Defaults for Machine Learning Algorithms
Florian Pfisterer

Ludwig-Maximilians-University
Munich, Germany

Jan N. van Rijn
LIACS, Leiden University

Leiden, Netherlands

Philipp Probst
Benediktbeuern, Germany

Andreas C. Müller
Microsoft

Sunnyvale, U.S.A.

Bernd Bischl
Ludwig-Maximilians-University

Munich, Germany

ABSTRACT
Modern machine learning methods highly depend on their hyper-
parameter configurations for optimal performance. A widely used
approach to selecting a configuration is using default settings, of-
ten proposed along with the publication of a new algorithm. Those
default values are usually chosen in an ad-hoc manner to work
on a wide variety of datasets. Different automatic hyperparameter
configuration algorithms which select an optimal configuration per
dataset have been proposed, but despite its importance, tuning is
often skipped in applications because of additional run time, com-
plexity, and experimental design questions. Instead, the learner is
often applied in its defaults. This principled approach usually im-
proves performance but adds additional algorithmic complexity and
computational costs to the training procedure. We propose and study
using a set of complementary default values, learned from a large
database of prior empirical results as an alternative. Selecting an ap-
propriate configuration on a new dataset then requires only a simple,
efficient, and embarrassingly parallel search over this set. To demon-
strate the effectiveness and efficiency of the approach, we compare
learned sets of configurations to random search and Bayesian opti-
mization. We show that sets of defaults can improve performance
while being easy to deploy in comparison to more complex methods.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifi-
cation.

KEYWORDS
AutoML, Hyperparameter Optimization, Metalearning

ACM Reference Format:
Florian Pfisterer, Jan N. van Rijn, Philipp Probst, Andreas C. Müller, and Bernd
Bischl. 2021. Learning Multiple Defaults for Machine Learning Algorithms.
In 2021 Genetic and Evolutionary Computation Conference Companion
(GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459523

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459523

1 INTRODUCTION
Hyperparameter settings for machine learning algorithms are of-
ten optimized via hyperparameter optimization e.g. using random
search, Bayesian optimization, or meta learning. While not tuning
parameters at all can be detrimental, defaults provide a simple and
fast fall-back, that is easy to implement and use while providing
strong anytime performance. We describe a general, learner-agnostic
procedure, to (meta-)learn not one, but a (sequential) list of default
configurations, which complement each other. These sets are ordered
so that the earlier elements in the sequence provide greater benefits
on average.1 While traditional optimization methods are to be pre-
ferred when time and expertise are available, we conjecture that sets
of defaults work well across a large variety of datasets. We leverage a
large set of historic performance results of prior experiments that are
available on OpenML [4]. Several approaches attempt to combine
the paradigms of meta-learning and hyperparameter optimization,
for example by warm starting hyperparameter optimization meth-
ods [2, 5]. While all these methods yield convincing results, they are
by no means easy to deploy. Similar to our work, Wistuba et al. [6]
learn a set of defaults from a fixed grid of evaluations, requiring
hyperparameters evaluated on a grid across several datasets scaling
exponentially with hyperparameter dimensionality. This is practi-
cally infeasible when there are large numbers of hyperparameters.

2 METHOD
Consider a target variable 𝑦, a feature vector 𝒙, and an unknown joint
distribution 𝑃 on (𝒙, 𝑦), from which we have sampled a i.i.d dataset
D. A machine learning algorithmA𝝀 (D) learns a prediction model
𝑓 (𝒙). A𝝀 is controlled by a multi-dimensional hyperparameter con-
figuration 𝝀 ∈ Λ of length 𝐷 , where Λ 𝑗 is usually a bounded real or
integer interval, or a finite set of categorical values. We are interested
in estimating the expected risk of the inducing algorithm w.r.t. 𝝀
on new data, also sampled from P:𝑅P (𝝀) = 𝐸P (𝐿(𝑦,A𝝀 (D)(𝒙))),
where the expectation above is taken over all data setsD from P and
the test observation (𝒙, 𝑦). Thus, 𝑅P (𝝀) quantifies the expected pre-
dictive performance associated with a hyperparameter configuration
𝝀 for a given data distribution, learning algorithm and performance
measure. In practice, given 𝐾 different data sets we define 𝐾 hy-
perparameter risk mappings: 𝑅𝑘 (𝝀) = 𝐸P𝑘 (𝐿(𝑦,A𝝀 (D)(𝒙))) and
the average risk of 𝝀 over 𝐾 data sets: 𝑅(𝝀) = 1

𝐾

∑𝐾
𝑘=1 𝑅𝑘 (𝝀). Our

goal now is to find a fixed-size set Λ𝑑𝑒𝑓 of size 𝑇 , that works well
over a variety of datasets, in the sense that for each dataset D, Λdef
contains at least one configuration that works well on D. The risk
of a set of configurations Λdef of size 𝑇 , aggregation function ℎ (e.g.

1Full version of this article: https://arxiv.org/abs/1811.09409

GECCO ’21 Companion, July 10–14, 2021, Lille, France Pfisterer et al.

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

Number of evaluations

N
o

rm
a

liz
e

d
 A

c
c
u

ra
c
y

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

Number of evaluations

N
o

rm
a

liz
e

d
 A

c
c
u

ra
c
y

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32

Number of evaluations

N
o

rm
a

liz
e

d
 A

c
c
u

ra
c
y

Figure 1: Defaults (red), random search (blue) and Bayesian optimization (green) across several budgets for Adaboost (left), Random
Forest (middle) and SVM (right)

mean) and datasets 1, . . . , 𝐾 is then given by:

𝐺 (Λdef) = ℎ
(
min

𝑡=1,...,𝑇
𝑅1 (𝝀𝑡), . . . , min

𝑡=1,...,𝑇
𝑅𝐾 (𝝀𝑡))

)
Finding an optimal subset Λdef defines a (meta)-learning problem,
that can be solved exactly or using a greedy approximation.

The exact version can be formulated as an instance of Mixed
Integer Programming. In order to obtain a set of 𝑛 defaults, the goal
is to minimize

𝐾∑
𝑘=1

𝑀∑
𝑚=1

Ψ𝑘,𝑚 · 𝑅𝑘 (𝝀𝑚) (1)

subject to
𝑀∑
𝑚=1

𝜙𝑚 = 𝑛

∀𝑘 : ∀𝑚 : Ψ𝑘,𝑚 ≥ 𝜙𝑚 −
∑

𝑠∈𝑄 (𝑘,𝑚)
𝜙𝑠

∀𝑘 : ∀𝑚 : Ψ𝑘,𝑚 ≥ 0

∀𝑘 :
𝑀∑
𝑚=1

Ψ𝑘,𝑚 = 1

After the optimization procedure, element Ψ𝑘,𝑚 will be 1 if and only
if configuration Λ𝑚 has the lowest risk on distribution 𝑖 out of all
the configurations that are in the set of defaults. 𝜙𝑚 is an auxiliary
variable. Since the exact solution is computationally prohibitively
expensive, we adopt a greedy procedure for t = 1, . . . ,𝑇 :

𝝀def,𝑡 := argmin
𝝀∈Λ

𝐺 ({𝝀} ∪ Λdef,𝑡−1) (2)

Λdef,𝑡 := {𝝀def,1, . . . ,𝝀def,𝑡 } (3)

where Λ𝑑𝑒𝑓 ,0 = ∅, and the final solution Λdef = Λdef,𝑇 . It is possible
to estimate 𝑅𝑘 (𝝀) empirically using cross-validation, but since this is
computationally expensive, we employ surrogate models that predict
the performance for a given hyperparameter configuration resulting
in a fast approximate way to evaluate performances. This approach
can be extended to a set of defaults across algorithms.

3 EXPERIMENTAL EVALUATION
We estimate the generalization performance of our approach on fu-
ture datasets by running a leave-one-dataset-out CV scheme over 𝐾
datasets, estimating performances for each held-out dataset using
outer 10-fold CV and nested 5-fold CV for choosing the hyperpa-
rameter. We compare to random search with several budgets and
Bayesian optimization with 32 iterations. We use ±137.000 experi-
mental results available on OpenML [4] to evaluate the lists of de-
faults on three algorithms from scikit-learn and 100 datasets
from the OpenML100 [1]. We evaluate using Adaboost (5), SVM

(6), and random forest (6 hyperparameters) optimizing predictive
accuracy. Hyperparameters and their respective ranges are the same
as used in [3]. Figure 1 presents the results of the set of defaults
obtained by our approach and baselines across 3 algorithms normal-
ized to [0, 1] per algorithm and task and aggregate using the mean.
For defaults and random search more iterations strictly improves
performance. As expected, random search with only 1 or 2 iterations
performs poorly, while Bayesian optimization is often among the
best strategies. We further observe that using only a few defaults is
already competitive with Bayesian optimization and higher budget
random search, often competitive with random search with 4 − 8
times more budget. We note that using sets of defaults is especially
worthwhile when either computation time or expertise on hyper-
parameter optimization is lacking. Especially in the regime of few
function evaluations, sets of defaults seem to work well and are
statistically equivalent to state-of-the-art techniques. A potential
drawback is that the defaults are optimal with respect to a single
metric such as accuracy or AUC, and thus might need to be used
separately for different evaluation metrics. Our results can readily
be implemented in machine learning software as simple, hard-coded
lists of parameters. These will require less knowledge of hyperpa-
rameter optimization from the users than current methods, and lead
to faster results in many cases.
Acknowledgements. This work has been funded by the German
Federal Ministry of Education and Research (BMBF) under Grant
No. 01IS18036A. The authors of this work take full responsibility
for its content.

REFERENCES
[1] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang,

Rafael G Mantovani, Jan N van Rijn, and Joaquin Vanschoren. 2017. OpenML
Benchmarking Suites and the OpenML100. arXiv preprint arXiv:1708.03731v1
(2017).

[2] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. 2015. Initializing
Bayesian Hyperparameter Optimization via Meta-learning. In Proc. AAAI (Austin,
Texas). AAAI Press, 1128–1135.

[3] Jan N. van Rijn and Frank Hutter. 2018. Hyperparameter Importance Across
Datasets. In Proc. of KDD. ACM, 2367–2376.

[4] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. 2014. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter 15, 2 (2014),
49–60.

[5] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2015. Learning
hyperparameter optimization initializations. In Proc. of DSAA. IEEE, 1–10.

[6] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2015. Sequential
Model-Free Hyperparameter Tuning. In Proc. of ICDM. 1033–1038.

92 4. Contributions - AutoML

4.4 Collecting Empirical Data About Hyperparameters
for Data Driven AutoML

Contributed Article:
M. Binder, F. Pfisterer, and B. Bischl. Collecting empirical data about hyperparameters
for data driven AutoML. In AutoML Workshop at ICML, 2020

Declaration of contributions The project was proposed by FP and MB based on a
previous experiment by [145]. MB developed the evaluation protocol and scripts together
with the scheduling methodology that was integral to the project success. FP contributed
large parts of the experimental design, such as datasets, learners and search spaces to
evaluate, as well as predictive memory allocation based on data from a smaller pilot run.
FP and MB jointly extended the original scope to include multi-fidelity as well as repeated
evaluations. The experimental evaluation was largely done by MB with minor assistance
by FP. MB and FP jointly drafted the manuscript with refinement by BB. BB assisted
with advice throughout the project.

7th ICML Workshop on Automated Machine Learning (2020)

Collecting Empirical Data About Hyperparameters for Data
Driven AutoML

Martin Binder martin.binder@stat.uni-muenchen.de

Florian Pfisterer florian.pfisterer@stat.uni-muenchen.de

Bernd Bischl bernd.bischl@stat.uni-muenchen.de

Department of Statistics, LMU Munich, Germany

Abstract

All optimization needs some kind of prior over the functions it is optimizing over. We used
a large computing cluster to collect empirical data about the behavior of ML performance,
by randomly sampling hyperparameter values and performing cross-validation. We also
collected information about cross-validation error by performing some evaluations multiple
times, and information about progression of performance with respect to training data size
by performing some evaluations on data subsets. We present how we collected data, make
some preliminary analyses on the surrogate models that can be built with them, and give
an outlook over interesting analysis this should enable.

1. Introduction

Hyperparameter optimization (HPO) is an important aspect of automated machine learning
(AutoML) and is often tackled as a black-box optimization problem. The No Free Lunch
(NFL) theorem for optimization (Wolpert and Macready, 1997) states that the performance
of optimization algorithms, averaged over all possible problem sets, is constant, and that it is
therefore necessary to make a-priori assumptions about the characteristics of the problem at
hand. A well-known manifestation of this is the superiority of random search over grid search
on typical hyperparameter optimization problems, which is a consequence of them often
having low effective dimensionality (Bergstra et al., 2011). Another instance of this is the
favorable performance of model-based optimization (Snoek et al., 2012) for hyperparameter
optimization, which often uses explicit Bayesian priors (Bayesian optimization) to achieve
good performance with few function evaluations. We performed evaluations of different ML
algorithms with randomized hyperparameters on a variety of datasets to gather empirical
data about the influence of these hyperparameters on algorithm performance.

Model-based optimization makes use of surrogate models, which are regression models
fitted to evaluated objective values of the problem. Surrogate models can also be used
to benchmark or tune optimization algorithms (Eggensperger et al., 2013). With the large
amount of performance data that we have collected it is possible to fit high fidelity surrogate
models that can be used to analyse the behavior of classical machine learning algorithms
with respect to their hyperparameters.

The importance of hyperparameter optimization for deep learning (neural architecture
search, Elsken et al. (2019)) has been growing in recent years. Because of their nature – large
hyperparameter spaces and very long model fitting times – they have led to more research
into multi-fidelity approaches for HPO (Li et al., 2017; Tan and Le, 2019). Multi-fidelity

c©2020 Martin Binder, Florian Pfisterer, and Bernd Bischl.

Binder et al.

approaches vary certain fidelity hyperparameters that trade-off between model performance
evaluation cost and model performance. Here, an important prior assumption about the
behavior of ML algorithms with respect to the fidelity parameters is that performance at
low fidelity is somehow predictive for performance at high fidelity. Because this assumption
is so crucial, it is important to conduct empirical studies, and to gather data on the effect
of approaches towards trade-offs between model performance and computation time.

We have done a very large number of performance evaluations of machine learning
algorithms on a diverse set of 119 datasets with randomly sampled hyperparameters to
gather empirical data about the influence of hyperparameter configurations on machine
learning performance. We performed some of these evaluations on different subsamples of
the data, which can be used to empirically evaluate a sub-sampling approach to multi-
fidelity optimization. We further used repeated cross-validation for some evaluations, to
get an estimate of (some of the) uncertainty of the cross-validation estimators.

2. Related Work

The importance of gathering empirical data about hyperparameter influence on performance
has been recognized and several projects exist that do this on different classes of machine
learning algorithms and problems. Collections of experimental results like ours are often
published with papers for new methods (Wistuba et al., 2015a; van Rijn and Hutter, 2018),
but they are rarely as comprehensive and often only suffice for the particular task being pre-
sented. Especially in the context of deep learning, several collections of experimental data
have been made available lately. Kühn et al. (2018) publish results on 38 tabular datasets
across 6 algorithms for further analysis. NASBENCH-101 (Ying et al., 2019) provide a col-
lection of experimental results across 423.000 convolutional neural network architectures on
CIFAR-10 for faster and more reproducible analysis of neural architecture search strategies.
(Metz et al., 2020) publish experimental results for neural network optimizers across 1162
diverse datasets and propose sets of default configurations.

Experimental data is already being used to improve optimization performance. For
one, the HPOLib benchmark suite for black-box optimization (Eggensperger et al., 2013),
which can be used by researchers to evaluate their black box optimization algorithms,
uses surrogate models for some benchmarks (Eggensperger et al., 2015; Klein et al., 2019).
Optimization algorithms may get tuned on, or at least chosen by their performance on,
these surrogate models. The experimental data – on which the models are based – are thus
influencing the implicit prior assumptions made by these algorithms in an indirect way. A
more direct influence of experimental data on optimization is meta-learning (Brazdil et al.,
2008; Vanschoren, 2019), e.g. by studying the importance of various hyperparameters (van
Rijn and Hutter, 2018; Probst et al., 2018), or try to find initial configurations (Wistuba
et al., 2015b; Pfisterer et al., 2018; van Rijn et al., 2018) that perform well on many datasets.

3. Setup

We executed a large quantity of machine learning performance evaluations on a large grid
of computers of 3168 compute nodes, each with 48 physical (96 logical) CPU cores and 80
GB working memory, for 48 hours.

2

Collecting Empirical Data about Hyperparameters

The evaluations were performed on a collection of 119 classification task datasets chosen
from the OpenML-CC18 (Bischl et al., 2017) benchmark suite, as well as the AutoML
benchmark (Gijsbers et al., 2019). These datasets cover a large variety of different challenges
for machine learning, such as many missing values, large cardinality of factorial features,
large number of features, or great imbalance of outcome classes. We obtained datasets, as
well as resampling splits from OpenML (Vanschoren et al., 2014).

We investigate an array of classical machine learning algorithms: decision trees, random
forests, svm, gradient boosting, approximate KNN (Malkov and Yashunin, 2020), fully con-
nected neural networks, and regularized logistic regression (Zou and Hastie, 2005). Because
not all these algorithms can natively handle all datasets, we performed data-preprocessing:
missing value imputation, factorial feature cardinality reduction, and factor one-hot encod-
ing among others. The specific search spaces (including software libraries used) as well as
the preprocessing setup are detailed in Appendix A and B, respectively.

Values for each hyperparameter were sampled independently from individual univariate
distributions. A common problem in previous data collections is a limited hyperparameter
search space. If good values lie on the border of investigated hyperparameter spaces (e.g.
large number of gradient boosting iterations), then meta-learning approaches might miss
important facts about algorithm behavior, such as eventual overfitting beyond the investi-
gated region. Using too broad limits for sampling, on the other hand, can lead to many
evaluations in uninteresting regions where the algorithm crashes or predicts constant. We
alleviate this problem by defining intervals to sample from that were chosen informally and
from previous experience. However, we purposely sample outside of these intervals with a
small probability in order to obtain a more complete picture w.r.t. algorithm behavior be-
yond the regions. For this we sample a mixture distribution: uniformly distributed inside a
specified range with probability 5/6, and normally distributed centered in the middle of this
range and standard deviation half the range width with probability 1/6. The investigator-
chosen ranges were therefore soft bounds that contain about 5/6 + 1/6 × 68% = 95% of
all sampled points1. We made the prior assumption that many hyperparameters contain
more variation close to 0 than further away from it. These were sampled as described
here, but on a log-scale (including mixture uniform-normal sampling) and then exponenti-
ated. Hyperparameters with nominal discrete values were sampled uniformly. The specific
hyperparameters, their bounds and transformation are listed in Appendix A.

The same hyperparameter samples were used on all datasets. This makes it possible
to investigate the direct effect of dataset properties on machine learning performance while
keeping hyperparameters constant, without having to resort to surrogate modelling.

Performance evaluation was performed using 10-fold cross-validation, using pre-defined,
balanced (with respect to the outcome class) cross-validation folds provided by OpenML.
To make it possible to investigate the effect of subsampling before model training, or the
effect of the specific resampling split on the performance estimate, we also performed what
we call super-evals (supererogatory evaluations) on 10% of all sampled hyperparameter
points. (Which configurations were super-evaluated was kept constant across all datasets).
For super-evals, we employed: (1) the 10-fold cross-validation used on all other configura-
tion points; (2) another 10-times-10-fold repeated cross-validation; and (3) a sequence of

1. Some hyperparameter also presented hard bounds, e.g. when negative values are forbidden, in which case
hyperparameter values were sampled from a truncated distributions.

3

Binder et al.

Algorihtm N # of DS avg. N min N max N OpenML ID

glmnet 104820 114 919 58 2235 42578
ranger 278863 119 2343 356 4754 42580

knn 111753 116 963 146 2792 42582
rpart 92067 115 801 85 1382 42583
svm 540576 106 5100 174 13352 42577

xgboost 2955210 119 24834 2294 41147 42584
feed-forward NN 171691 107 1605 730 4133 42579

Table 1: Information about generated data: Experiment counts across different algorithms,
number of datasets for which data could be generated, average, min, and max number of
values per dataset, and OpenML ID of the performance data. Values not counting super-
evals.

cross-validations with reduced training set size using subsampling (see Appendix C for the
subsample sizes), simulating one approach to multi-fidelity cross-validation. The specific
subsamples are a tower of subsets of the training sets used for (1) and fixed for each dataset.

Performance was evaluated by training the machine learning methods on the chosen
training data subset and predicting on all other data-samples. Individual evaluation threads
were limited w.r.t. the amount of working memory (up to 55 GB; memory limits were
different depending on the algorithm and dataset) they could consume, and the amount of
time they could use for a single cross-validation fold (4 hours). Available resources (both
time and memory) for each learner and dataset were determined beforehand in a small pilot
experiment. Therefore, the amount of data generated varies across them. A small number
of datasets were too large for some ML algorithms and no data could be generated with the
randomly sampled hyperparameters given the time or memory constraints.

Besides machine learning performance data, we also collected information about the
working memory required for each configuration, as well as the training and prediction
runtime. This data can be used to investigate memory and time requirements for different
algorithms based on dataset properties and hyperparameters, and may help to improve
AutoML systems to better adhere to runtime and memory limits in the future. Table 1
gives an overview of the generated data.

4. Analysis

Several routes for the analysis of this data can be envisioned. In this work we decide to
study the quality of resulting surrogate models and the effect of the number of evaluated
configurations on that quality. We use the collected data to fit random forest surrogate
models. The usefulness of a surrogate model depends on its predictive performance, which
we can estimate using cross-validation.

It is often not clear how much experimental data is needed to build sufficiently accurate
surrogate models. The large amount of data that we have gathered makes it possible to
analyse the behavior of surrogate model fidelity with respect to data size, and to estimate
the marginal gain in model quality that would have been possible if even more data had been
collected. We set the resampling error, i.e. the error introduced by using surrogate models

4

Collecting Empirical Data about Hyperparameters

0.2

0.4

0.6

0.8

1.0

30 100 300 1000 3000 10000
Number of experiments

S
pe

ar
m

an
 R

ho

0.7

0.8

0.9

30 100 300 1000
Number of trees

S
pe

ar
m

an
 R

ho

learner svm [7] svm.radial [5] xgboost [11]

0.01

0.03

0.10

0.30

30 100 300 1000 3000 10000
Number of experiments

R
M

S
E

0.01

0.03

0.05

30 100 300 1000
Number of trees

R
M

S
E

learner svm [7] svm.radial [5] xgboost [11]

Figure 1: Resampling error of surrogate models with respect to number of included per-
formance data points (left) and number of trees for the surrogate model (right) across 4
different datasets. Algorithm svm is restricted to the radial kernel. It can be seen that
surrogate model performance varies with dataset as well as the learning algorithm.

instead of actual function evaluations, in relationship to the random noise introduced by
having finitely many trees in the random forest model, by analysing the progression of error
with different number of trees in the model.

Figure 1 shows the (ten-fold cross-validation) resampling error, both in terms of root
mean square error (RMSE) as well as Spearman rank correlation (Spearman Rho), and how
it progresses with different training set sizes, exemplary for a few datasets and algorithms
evaluated on them. Furthermore, the resampling error w.r.t. the number of trees used in
the surrogate model is shown. It becomes obvious that a few hundred random forest trees
are enough for all shown datasets, and that the limiting factor is the sample size.

4.1 Hyperparameter Response Surface

Figure 2 shows the average and standard deviation of the normalized accuracy for the
SVM cost and gamma parameters evaluated on a grid with resolution 200. Accuracy was
normalized to [0, 1] for each task to improve commensurability. Standard deviation seems
to be low in areas with generally good performance and high for larger values of gamma.
As we gathered a large number of evaluations for each dataset, we can build high-fidelity
surrogate models which allow for a more realistic analysis of corresponding response surface.

5

Binder et al.

Figure 2: Response surfaces of surrogate models for the performance of SVM with respect
to its gamma and cost parameters. Mean (left) and standard deviation (right) of normalized
classification accuracy across the 106 datasets for which SVM generated results.

5. Further Analysis & Future Work

We presented the large collection of resampling performance data which we have generated,
and showed some statistics and illustrative analysis results. There are, however, many
directions to analyse and make use of the produced hyperparameter data in this work. We
would like to use this data in order to reproduce and extend the results of several methods
for the analysis of hyperparameter importance (van Rijn and Hutter, 2018; Probst et al.,
2018). Furthermore the collected data allows for further investigation on hyperparameter
response surfaces. Meta-learning often assumes that knowledge for the optimization of one
task can be transferred to others. This would require a certain degree of similarity across
response surfaces, which can be empirically validated using our data. The runtime and
memory measurement also allows to build models predicting resource requirements (c.f.
Hutter et al. (2014)). This could be used to improve multi-fidelity approaches or to perform
automated scheduling for parallel workflows in AutoML systems.

We make the generated data publicly available on OpenML, with IDs listed in Table 1.
The code used to generate the the data is available online2.

Acknowledgments

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.3 for funding
this project by providing computing time on the GCS Supercomputer SuperMUC-NG at
Leibniz Supercomputing Centre4.

This work has been funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities
for its content.

2. https://github.com/compstat-lmu/randombot_ng/
3. www.gauss-centre.eu
4. www.lrz.de

6

Collecting Empirical Data about Hyperparameters

Appendix A. Search Spaces

The following tables list the learning algorithms and their respective sampled hyperparam-
eter bounds. Besides their natural hyperparameters, algorithms are also equipped with the
num.impute.selected.cpo hyperparameter, which controls imputation for missing values
in numeric features: mean, median, or histogram sampling imputation. All algorithms were
used as implemented or interfaced to the R (R Core Team, 2019) programming language for
statistics and the mlr framework for machine learning in R (Bischl et al., 2016), using the
mlrCPO (Binder et al., 2020) set of composable preprocessing operators for preprocessing.
“KerasFF” is a fully connected neural network implemented via keras (Chollet et al., 2015)
with hyperparameters controlling the architecture (number of neurons and layers, magni-
tude of dropout, ...) and the optimizer (learning rate, weight decay, ...). We additionally
vary the network’s seed in order to obtain more reliable estimates with respect to random-
ness induced by different weight initializations. “RcppHNSW” is an approximate k-nearest
neighbor implementation based on hierarchical navigable small world graphs (Malkov and
Yashunin, 2020). All other learners directly interface existing implementations, information
on their hyperparameters and meaning can be obtained from the respective software’s doc-
umentation: xgboost: (Chen and Guestrin, 2016), Random Forest: (Wright and Ziegler,
2017), Elastic Net: (Friedman et al., 2010) and Decision Trees: (Therneau and Atkinson,
2018).

Hyperparameter Range

epochs [23, 27](log)
optimizer sgd, rmsprop, adam
lr [5−5, 50](log)
decay [5−8, 50](log)
momentum [5−8, 50](log)
layers [1, 4]
batchnorm dropout batchnorm, dropout, none

input dropout rate [3−5/2, 30](log)

dropout rate [3−5/2, 30](log)
units layer1 [23, 29](log)
units layer2 [23, 29](log)
units layer3 [23, 29](log)
units layer4 [23, 29](log)
act layer relu, tanh
init layer glorot normal, glorot uniform, he normal, he uniform
l1 reg layer [5−10, 5−2](log)
l2 reg layer [5−10, 5−2](log)
learning rate scheduler TRUE, FALSE
init seed 1, 11, 101, 131, 499
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 2: Sample bounds of the KerasFF learning algorithm.

7

Binder et al.

Hyperparameter Range

k [1, 50]
distance l2, cosine, ip
M [18, 50]
ef [23, 28](log)
ef construction [24, 29](log)
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 3: Sample bounds of the RcppHNSW learning algorithm.

Hyperparameter Range

nrounds [23, 211](log)
eta [2−10, 20](log)
gamma [2−15, 23](log)
lambda [2−10, 210](log)
alpha [2−10, 210](log)
subsample [0.1, 1]
max depth [1, 15]
min child weight [20, 27](log)
colsample bytree [0.01, 1]
colsample bylevel [0.01, 1]
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 4: Sample bounds of the XGBoost learning algorithm.

Hyperparameter Range

num.trees [1, 2000]
replace TRUE, FALSE
sample.fraction [0.1, 1]
mtry.power [0, 1]
respect.unordered.factors ignore, order, partition
min.node.size [1, 100]
splitrule gini, extratrees
num.random.splits [1, 100]
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 5: Sample bounds of the Ranger (random Forest) learning algorithm.

8

Collecting Empirical Data about Hyperparameters

Hyperparameter Range

kernel linear, polynomial, radial
cost [2−12, 212](log)
gamma [2−12, 212](log)
degree [2, 5]
tolerance [2−12, 2−3](log)
shrinking TRUE, FALSE
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 6: Sample bounds of the SVM learning algorithm.

Hyperparameter Range

cp [2−10, 20](log)
maxdepth [1, 30]
minbucket [1, 100]
minsplit [1, 100]
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 7: Sample bounds of the RPART (decision tree) learning algorithm.

Hyperparameter Range

alpha [0, 1]
s [2−10, 210](log)
num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 8: Sample bounds of the glmnet (elastic net) learning algorithm.

9

Binder et al.

Appendix B. Preprocessing

We preprocess data using mlrCPO using the following procedure:

1. fixfactors: Set all categorical features missing not present during training to MISSING
in the prediction phase

2. imputation: Impute using a new level for categorical features and mean, median or
histogram for numerics. The latter is a hyperparameter exposed for all learners and
explored during the sampling procedure.

3. We add indicator columns for missing numeric values.

4. We limit the number of factor levels for a given categorical variable to 32. All other
columns with lower cardinality are collapsed to a ”other” category.

5. We drop constant features.

6. If learners can not handle categorical features natively (xgboost, keras, rcpphnsw),
we encode those using dummy encoding.

Appendix C. Subsampling

We use subsampling with the following factions of the training data:
0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

References

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in neural information processing systems, pages
2546–2554, 2011.

Martin Binder, Lars Kotthoff, Michel Lang, and Bernd Bischl. mlrCPO: Composable Pre-
processing Operators and Pipelines for Machine Learning, 2020. R package version 0.3.6.

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and
Z. M. Jones. mlr: Machine learning in R. JMLR, 17(170):1–5, 2016.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G
Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmarking suites and
the openml100. arXiv preprint arXiv:1708.03731, 2017.

Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo Vilalta. Metalearning:
Applications to data mining. Springer Science & Business Media, 2008.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
4232-2.

10

Collecting Empirical Data about Hyperparameters

François Chollet et al. Keras. https://keras.io, 2015.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek,
Holger Hoos, and Kevin Leyton-Brown. Towards an empirical foundation for assessing
bayesian optimization of hyperparameters. In NIPS workshop on Bayesian Optimization
in Theory and Practice, volume 10, page 3, 2013.

Katharina Eggensperger, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Efficient
benchmarking of hyperparameter optimizers via surrogates. In Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, 2015.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. Journal of Machine Learning Research, 20:1–21, 2019.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin
Vanschoren. An open source automl benchmark. arXiv preprint arXiv:1907.00909, 2019.

Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime pre-
diction: Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

Aaron Klein, Zhenwen Dai, Frank Hutter, Neil Lawrence, and Javier Gonzalez. Meta-
surrogate benchmarking for hyperparameter optimization. In Advances in Neural Infor-
mation Processing Systems, pages 6270–6280, 2019.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. Automatic Exploration of
Machine Learning Experiments on OpenML. arXiv preprint arXiv:1806.10961, 2018.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal
of Machine Learning Research, 18(1):6765–6816, 2017.

Yury A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(4):824–836, 2020.

Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, and Jascha
Sohl-Dickstein. Using a thousand optimization tasks to learn hyperparameter search
strategies. arXiv preprint arXiv:2002.11887, 2020.

Florian Pfisterer, Jan N. van Rijn, Philipp Probst, Andreas M. Müller, and Bernd Bis-
chl. Learning Multiple Defaults for Machine Learning Algorithms. arXiv preprint
arXiv:1811.09409, 2018.

P. Probst, B. Bischl, and A. Boulesteix. Tunability: Importance of hyperparameters of
machine learning algorithms. arXiv preprint arXiv:1802.09596, 2018.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2019.

11

Binder et al.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’12, pages 2951–2959, USA,
2012. Curran Associates Inc.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105–6114, 2019.

Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and Regression Trees,
2018. R package version 4.1-13.

Jan N. van Rijn and Frank Hutter. Hyperparameter importance across datasets. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2367–2376. ACM, 2018.

Jan N van Rijn, Florian Pfisterer, Janek Thomas, Andreas Muller, Bernd Bischl, and
Joaquin Vanschoren. Meta learning for defaults–symbolic defaults. In Neural Information
Processing Workshop on Meta-Learning, 2018.

Joaquin Vanschoren. Meta-learning. In Automated Machine Learning, pages 35–61.
Springer, Cham, 2019.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Hyperparameter search space
pruning–a new component for sequential model-based hyperparameter optimization. In
Proc. of ECML/PKDD 2015, pages 104–119. Springer, 2015a.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter
optimization initializations. In Data Science and Advanced Analytics (DSAA), 2015.
36678 2015. IEEE International Conference on, pages 1–10. IEEE, 2015b.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

Marvin N Wright and Andreas Ziegler. ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software, 77(1):1–17, 2017.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hut-
ter. NAS-bench-101: Towards reproducible neural architecture search. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 7105–7114, Long Beach, California, USA, 2019. PMLR.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

12

4.5 Multi-Objective Automatic Machine Learning with AutoxgboostMC 105

4.5 Multi-Objective Automatic Machine Learning with
AutoxgboostMC

Contributed Article:
F. Pfisterer, S. Coors, J. Thomas, and B. Bischl. Multi-objective automatic machine
learning with AutoxgboostMC. In Automating Data Science Workshop at ECML, 2019,
arXiv:1908.10796

Declaration of contributions The idea of developing a multi-objective AutoML system
originated from FP as a result of discussions with JT and BB. FP developed code for the
system and developed adaptations made throughout the paper such as adaption of the
search procedure and thresholding. Developed code was based on a previous project [231]
by JT. JT and BB provided helpful feedback during method development. FP wrote the
manuscript with minor contributions by JT, SC and BB. SC furthermore contributed the
main experimental evaluation in the paper and helped in refining the manuscript.

Multi-Objective Automatic Machine Learning with
AutoxgboostMC

Florian Pfisterer, Stefan Coors, Janek Thomas, and Bernd Bischl

LMU Munich

Abstract. AutoML systems are currently rising in popularity, as they can build
powerful models without human oversight. They often combine techniques from
many different sub-fields of machine learning in order to find a model or set of
models that optimize a user-supplied criterion, such as predictive performance.
The ultimate goal of such systems is to reduce the amount of time spent on menial
tasks, or tasks that can be solved better by algorithms while leaving decisions that
require human intelligence to the end-user. In recent years, the importance of other
criteria, such as fairness and interpretability, and many others have become more
and more apparent. Current AutoML frameworks either do not allow to optimize
such secondary criteria or only do so by limiting the system’s choice of models
and preprocessing steps. We propose to optimize additional criteria defined by the
user directly to guide the search towards an optimal machine learning pipeline.
In order to demonstrate the need and usefulness of our approach, we provide a
simple multi-criteria AutoML system and showcase an exemplary application.

1 Introduction

While many stages of a data analysis project still need to be done manually by human
data scientists, other parts, such as model selection and algorithm configuration can
be efficiently handled by algorithms. This does not only reduce the time required by
humans, but also allows to leverage parallelization. A typical challenge is the selection
of appropriate algorithms and corresponding hyperparameters for a given problem.
Multiple methods for solving this Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem (Thornton et al., 2013) already exist and are typically
referred to as Automatic Machine Learning (AutoML).

There is a growing number of approaches for AutoML available to non-specialists.
As one of the first frameworks, Auto-WEKA (Thornton et al., 2013) introduced a system
for automatically choosing from a broad variety of learning algorithms implemented
in the open source software WEKA (Hall et al., 2009). Auto-WEKA simultaneously
tunes hyperparameters over several learning algorithms using the Bayesian optimization
framework SMAC (Hutter et al., 2011). Similar to Auto-WEKA is auto-sklearn (Feurer
et al., 2015), which is based on the scikit-learn toolkit for python and includes all of
its learners as well as available preprocessing operations. It stacks multiple models
to achieve high predictive performance. Another python-based AutoML tool is called
Tree-based Pipeline Optimization Tool (TPOT) by Olson et al. (2016) and uses genetic
programming instead of Bayesian optimization to tune over a similar space as auto-
sklearn.

ar
X

iv
:1

90
8.

10
79

6v
2

 [
st

at
.M

L
]

 3
0

A
pr

 2
02

1

2 Pfisterer et al.

In this work we consider an approach that configures a machine learning pipeline,
i.e. an approach that optimizes pre- and post-processing steps along with algorithm
hyperparameters of a single gradient boosting model (Friedman, 2001). By focusing on a
single learning algorithm, hyperparameters can be optimized much more thoroughly and
the resulting model can be analyzed and deployed more easily. Gradient boosting models
can vary from very simple to highly complex models through the choice of appropriate
hyper-parameters. Single learner systems reduce the complexity of the configuration
space, however, a drawback is, that this search-space possibly does not include optimal
configurations, benefits from stacking and ensembling are not explored, and that thus
optimal predictive performance may not be achieved.
Only few single-learner AutoML methods exist. The autoxgboost software proposed by
Thomas et al. (2018) is a single-learner strategy using the xgboost (Chen and Guestrin
(2016)) algorithm, with model based optimization for hyperparameter tuning. The suc-
cess of such single-learner strategies was shown in the NIPS 2018 AutoML Challenge
(Guyon et al., 2019): The winning entry, AutoGBT (Wilson et al. (2018)) only used
LightGBM (Ke et al., 2017) models with a simple preprocessing scheme.

Several new challenges occur when adapting AutoML systems for multi-criteria opti-
mization. Depending on the objective to be optimized, different pre- and post-processing
methods might be required in order to obtain optimal performances. Additionally, differ-
ent user-preferences regarding which trade-offs between objectives a user is willing to
make have to be incorporated. We argue that giving the user the opportunity to intervene
in the process can be beneficial here. Lastly, measures that quantify objectives such as
fairness, interpretability and robustness are often not readily available. In this work, we
want to i) emphasize the necessity for considering multiple objectives in AutoML, ii)
provide several measures that can be useful in such a context and iii) propose a simple
system that allows the user to automatically optimize over a set of measures. In contrast
to previous work, we focus on optimizing multiple user-defined criteria simultaneously.
Being able to transparently optimize multiple criteria is a crucial missing step in many
existing frameworks. In order to underline the need for several different criteria, we
demonstrate the functionality of our proposed framework in a practical use case.

2 The case for additional criteria in AutoML

Multi-criteria optimization is well-established in machine learning for example in ROC
analysis (Everson and Fieldsend (2006)), computational biology (Handl et al. (2007))
and other fields. Jin and Sendhoff (2008) study various use cases, among others, mod-
els are optimized jointly with respect to interpretability and predictive performance.
Multi-criteria optimization is also actively researched in the field of Algorithm Configu-
ration. Blot et al. (2016) introduce a multi-criteria iterative local search procedure for
configuring SAT solvers, while Zhang et al. (2015) introduce a racing-based approach.
Different Multi-criteria Bayesian Optimization approaches have also been proposed (c.f.
Paria et al. (2018)), but it has not been thoroughly investigated as a part of AutoML
frameworks until now. Many different algorithms, such as approaches based on iterated
local search or racing as well as genetic algorithm based approaches can be used to

Multi-Objective Automatic Machine Learning with AutoxgboostMC 3

optimize machine learning pipelines, given that they can deal with hierarchical mixed
continuous and discrete spaces. We choose Bayesian Optimization because it has been
shown to work well with relatively small budgets (Bischl et al., 2018) and complex
hierarchical spaces can be optimized by using random forests as surrogate models.

Only being able to optimize a single performance measure entails multiple pit-
falls that can possibly be avoided when multiple performance measures are optimized
jointly. This has been emphasized recently in the FatML (Fairness, Accountability,
and Transparency in Machine Learning) community which made the case for models
that emphasize transparency and fairness (Barocas et al., 2018). The need for models
that do not discriminate against parts of the population in order to achieve optimal
predictive performance has garnered widespread support, yet no real options that allow
users to jointly search for fair, transparent and well-performing models are available.
The case for other criteria, that might be relevant to a user has been made in many
other areas of machine learning. Examples include models that emphasize sparseness,
a lower inference time, i.e., when searching for items in databases (Johnson et al.,
2017), a low memory footprint, for example when deploying models on mobile phones
(Howard et al., 2017) or a combination of those when doing inference on edge devices
(Huang et al. (2016)). Similarly, the case for requiring robust models, i.e., models that
are robust to perturbations in the data (adversarial perturbations, c.f Papernot et al.
(2015)) can be made. Models that satisfy a user-desired trade-off might not be found
using single-criteria optimization (Jin and Sendhoff (2008)). It is important to distinguish
between jointly optimizing multiple optimization criteria, and constrained optimization
(c.f. Hernández-Lobato et al. (2016) for an overview). Achieving a certain model size
might be paramount to be able to deploy a machine learning pipeline to a end user device,
but having a model smaller than this size threshold is only of minor interest. The concept
of constraints in multi-criteria optimization is a well researched topic (c.f. Fan et al.
(2017)).

2.1 Human in the loop approaches in AutoML

The original aim of AutoML systems is to transfer the CASH problem from the hands
of a human to the machine. This does not only allow experienced machine learning
researchers to focus on other tasks, such as validating data and feature engineering
leveraging domain knowledge, but also enables a broader public to apply Machine
Learning, as steps that require a machine learning expert, like selecting algorithms and
tuning their hyperparameters, are fully automated. The AutoML system is thus treated
as a black-box, that can only be influenced by some hyperparameters at the beginning of
the training, essentially removing the human from the optimization loop.

In situations, where multiple criteria have to be optimized simultaneously, a trade-off
between the different measures is often required. Specifying this trade-off a priori can be
difficult when possible trade-offs are not known. Hakanen and Knowles (2017) propose
an interactive Bayesian Optimization extension to parEgo (Knowles, 2004), that allows
a user to iteratively select preferred ranges for the different optimization criteria. This
does not only allow to search for solutions in the region a user is interested in, but also
allows the user to adapt preferences throughout the procedure. This emphasizes the need

4 Pfisterer et al.

for users to guide the AutoML process, essentially putting the user back into the loop,
albeit in a different fashion. Instead of manually configuring the pipeline, the user is now
able to occasionally supervise the search process and make adjustments where needed.
A different approach, that allows the user to guide the search process by adapting the
search space and tries to visualize and explain decisions made within AutoML systems
has been proposed in (Wang et al., 2019).

2.2 Measures for Multi-Criteria AutoML

Fairness

Interpretability

Robustness

Predictive Performance

Memory Footprint

Sparsity

AutoML
System

Budget

User Preferences

Fig. 1: User Input to AutoML Systems.

Multi-criteria optimization methods
usually explore the whole pareto front
defined by trade-offs between the differ-
ent objectives. In our work, we mainly
allow the user to guide the search pro-
cess in two ways: We enable the user
to focus on exploring different parts
of the pareto front by selecting upper
and lower trade-offs relevant to the user.
Second, we allow the user to adapt the
search space, by adjusting hyperparam-
eter ranges and activating or deactivat-
ing processing steps. This allows the
user to shape the result towards per-
sonal preferences.

In order to start the investigation into Multi-Criteria AutoML, we aim to provide
a list of measures that cover a wide variety of use-cases. We want to stress, that the
proposed measures are not comprehensive or final, but instead can be thought of as
exchangeable building blocks that can serve as a useful proxy in the AutoML process.
We hope to emphasize the necessity for measures, that better reflect the underlying model
characteristics we aim to optimize.

Predictive Performance can be quantified using many different measures, such as
Accuracy, F-Score or Area under the Curve for classification and Mean Squared Error or
Mean Absolute Error for regression. As those measures are already widely known, we
refrain from going into more detail in this work.

Interpretability In order to make a machine learning model’s decisions more transparent,
different methods that aim at providing human-understandable explanations have been
proposed (c.f. Molnar (2019)). Many of those work in a model-agnostic and post-hoc
fashion, which is desirable for AutoML processes, as this allows the user to explain
arbitrary models resulting from AutoML processes. Interpretability methods can produce
misleading results if a model is too complex. Quantifying interpretability, i.e. determining

Multi-Objective Automatic Machine Learning with AutoxgboostMC 5

how complex predictive decisions of a given model are could be a first step, making it a
useful criterion to optimize for AutoML systems. A first approach has been proposed in
Molnar et al. (2019), describing 3 measures that can be used as a proxy for interpretability.
We implement those measures and briefly present each:

– Complexity of main effects Molnar et al. (2019) propose to determine the average
shape complexity of ALE (Apley, 2016) main effects by the number of parameters
needed to approximate the curve with linear segments.

– Interaction Strength Quantifying the impact of interaction effects is relevant when
explanations are required, as most interpretability techniques use linear relationships
to obtain explanations. Interaction Strength is measured as the fraction of variance
that can not be explained by main effects.

– Sparsity can be a desired property in case a simple explanation of a model is
required, or obtaining features is costly and can potentially be avoided. In this work
we measure sparsity as the fraction of features used.

A different approach towards achieving interpretability, would to instead focus on lim-
iting an AutoML system to models, that are inherently interpretable. As those models
rarely achieve optimal performances and trade-offs between interpretability and pre-
dictive perfromance cannot be assessed, we resort instead to look for models that are
well-suited for post-hoc interpretability.

Fairness has been established as a relevant criterion in Machine Learning when humans
are subject to algorithmic decisions. The aim of the field is to encourage models that do
not discriminate between certain sub-populations in the data. Hardt et al. (2016) define
the concept of equalized odds and equal opportunity. Given a protected attribute A (e.g.
gender), an outcome X , a binary predictor Yb, several criteria can be derived.

– Independence or equalized odds can be measured as follows:

Pr{Yb = 1|A = 0, Y = 1} = Pr{Yb = 1|A = 1, Y = 1}
i.e. if the true positive rate is equal in sub-populations indicated by A.

– Sufficiency or equality of opportunity can be measured as follows:

Pr{Yb = 1|A = 0, Y = y} = Pr{Yb = 1|A = 1, Y = y}, y ∈ {0, 1}
i.e. if the false positive and the false negative rates are equal in sub-populations.

– Calibration is another desirable criterion for classifier, especially in the context of
fairness, where we might want to have calibrated probabilities in all groups. Pleiss
et al. (2017) show, that models that are well-calibrated but also have equalized odds
are only possible in case the predictor is perfect, i.e does not make any errors.

Žliobaitė (2017) provide a review of various discrimination measures that can be used
in this context. A score for fairness can now be derived for example from the absolute
differences of the given measure in each subgroup. In the use-case below, we use the
differences in F1-Scores as a measure we want to minimize. The F1 score is the harmonic
mean between the True Positive Rate and the Positive predictive value, and thus trades
off true positives, false negatives and false positives.

6 Pfisterer et al.

Addendum1

The use of machine learning in situations where individuals are affected by model
decisions harbors opportunities as well as dangers. In the context of fairness, ML
models can exhibit bias, similarly to humans. But in opposition to humans, bias in ML
systems can often be explicitly measured. On the other hand, humans can be asked
to justify or explain decisions, while this does not necessarily hold for ML models. It
is important to note that fairness can not be achieved solely through a reduction into
mathematical criteria e.g. statistical and individual notions of fairness such as disparate
treatment, disparate impact etc. . Many problems with such metrics still persist and
require additional research. Furthermore, practitioners need not only take into account
the model itself, but also the data used to train the algorithm, the process behind the
collection and labeling of such data and eventual feedback loops arising from use of
potentially biased models. It is of utmost importance to scrutinize data and resulting
models from the perspective of all sub-groups (and intersections of those) in order to
avoid introducing bias and causing harm to individuals.

Robustness as a concept, describes the behaviour of machine learning algorithms in
situations where the data originally used to train a model is changed. A formal definition
of robustness is currently lacking, which might arise from the many different concepts
such a definition would need to cover. Bousquet and Elisseeff (2002) define the notion of
stability, which essentially measures how much a pre-defined loss-function deteriorates
if an observation is held-out during training. This is not exactly what we are interested
in as it requires extensive retraining. Instead we require a post-hoc method that operates
on a fitted model and training or testing data. A different approach, also coined stability
is provided in Lange et al. (2003). Their notion of stability measures the disagreement
between a trained model on training data and test data. In this work, we detail three
measures of robustness, which we deem helpful in certain situations.

– Perturbations A very simple measure of robustness could be a classifiers’ robust-
ness to minimal perturbations in the input data. We create a copy X? of our data
X by adding a small magnitude noise N(0, ε) scaled by ε, typically 0.001− 0.01
times the range of the numerical feature. The robustness to perturbations can then
be measured via the absolute difference of some loss L, for example accuracy.

|L(X,Y)− L(X?, Y)|

– Adversarial Examples A widely researched area of robustness is the field of Ad-
versarial Examples Szegedy et al. (2013); Papernot et al. (2015). Various different
adversarial attacks and defenses against such attacks have been proposed. A variety
of robustness measures can be derived from the different types of attacks proposed.

1 The paragraph was added after presentation at ECML-PKDD ADS 2019 Workshop. Nonethe-
less, the authors deem it important to make the statement in order to avoid harm caused by
biased machine learning systems. An excellent resource for additional information is e.g.
2020 CVPR Tutorial on Fairness Accountability Transparency and Ethics in Computer Vision
/https://sites.google.com/view/fatecv-tutorial)

Multi-Objective Automatic Machine Learning with AutoxgboostMC 7

– Distribution shift is a concept that is gathering widespread interest not only as a
research field Zhang et al. (2013), but also as a problem in AutoML, which became
evident from the AutoML Challenge organized at the NIPS 2018 conference Guyon
et al. (2019). To the author’s knowledge, no measure that serves as a proxy for a
model’s robustness to distribution shift is available.

Inference Time and Memory requirements have been widely used as a measurement of
the performance of machine learning algorithms. The time required for inference can be
incorporated as a criterion.

Sparsity is also an important desideratum in other contexts, where interpretability is not
necessarily required. In cases, where observing each feature incurs different costs, a user
might want to find a model that achieves optimal performances using as few features as
possible.

Set class
weights

Encode
Categoricals

Fit Boosting
Model

Evaluate
Model

Propose New
Configuration

Evaluate
Submodels

While Budget left:

Select Focus Area

Adjust Search Space

Continue?

Performance
Measures

Start Process

Fig. 2: Workflow for multi-criteria Autoxgboost. The user selects a measure and a budget,
starts the process and then adapts the optimization before starting further evaluations.

3 Method

This section introduces the structure of a first simple approach for multi-criteria AutoML.
We heavily base our software on Thomas et al. (2018), and include several design
choices, such as the selection of preprocessing steps. The general workflow is detailed
in Figure 2. The implementation can be obtained from github 2. Automatic gradient

2 https://github.com/pfistfl/autoxgboostMC

8 Pfisterer et al.

boosting simplifies AutoML to a fixed choice of machine learning algorithm by only
using gradient boosting with trees (GBT). Gradient Boosted Decision Trees are widely
successfull for learning on tabular data and have desirable properties for AutoML
systems, as they can deal with missing observations, are insensitive to outliers and can
handle large amounts of features and data points. Additionally they are numerically stable
and memory efficient. Additionally modern GBT frameworks like xgboost Chen and
Guestrin (2016) or lightgbm (Ke et al., 2017) are highly configurable with a large number
of hyperparameters for regularization and optimization. As a result, they can approximate
or cover many other scenarios, such as decision trees, random forests or linear models.
Categorical feature transformation is performed as a preprocessing step. We employ
Sequential model-based optimization (SMBO), also known as Bayesian Optimization
as a hyperparameter optimization strategy (Snoek et al., 2012). The hyperparameter
space we optimize is identical to Thomas et al. (2018). We use multi-criteria Bayesian
Optimization (Bischl et al. (2016, 2018); Horn and Bischl (2016)) (c.f section 3.2) in
order to optimize the machine-learning pipeline.

3.1 Sub-evaluations

In the context of multi-criteria optimization, early stopping is no longer trivial, as multiple
pareto-optimal solutions might exist. The same holds for the selection of an optimal
classification threshold as a postprocessing step in case a measure requiring binary
outcomes instead of probabilities. At the same time, evaluating different thresholds or a
sub-model using only a fraction of a model’s gradient boosting iterations is very cheap
after fitting a full model. In order to make use of this information we adopt the following
procedure:

Algorithm 1 Bayesian Optimization using sub-evaluations
Require:
Sm ←

⋃m
1 (θ?i , yi): m Initial evaluations

j ← m+ 1
while Budget left do

θ?j ← proposed using Bayesian Optimization on Sj−1

fθ?,j ← fitted on data using θj , nroundsj and applying thrj .
yj ← obtained by evaluating fθ?,j for each measure.
Sj ← Sj−1 ∪ (θ?j , yj)
Ssub,j ← obtain sub-evaluations (Algorithm 2)
Ssub,j ← keep only Ssub,j which are on the pareto front of Sj ∪ Ssub,j
Sj ← Sj ∪ Ssub,j
j ← j + 1

end while

A full pipeline configuration θ? ∈ Θ? is composed of a threshold thr ∈ [0; 1], the
number of boosting iterations nrounds and several other pipeline hyperparameters,
denoted by θ for simplicity. From a set of m randomly chosen initial configurations
and their corresponding performances Sm we start multi-criteria Bayesian Optimization

Multi-Objective Automatic Machine Learning with AutoxgboostMC 9

as described in Algorithm 1. The method for obtaining sub-evaluations is described in
Algorithm 2. In order to decrease the number of sub-evaluations, we resort to evaluating
only 25%, 50%, 75% and 90% of nrounds (rounded to the next integer). Although this
section describes the case of classifying a binary target variable, extensions to multi-class
classification can be made by instead using a vector of thresholds instead.

Algorithm 2 Obtaining Sub-evaluations
Require:

Model fθ?,j ; i← 1
for n in {1, ..., nrounds} do

for thr in {0, 0.1, 0.2, ..., 1} do
Si ← evaluate f?θ using n iterations, applying threshold thr
i← i+ 1

end for
end for
Ssub ←

⋃i
1 Si

3.2 Multi-Criteria Bayesian Optimization

Formally multi-criteria optimization problems are defined by a set of target functions
f(θ) = (f1(θ), . . . , fk(θ)) which should be optimized simultaneously. As there is
no inherent order between the targets, the concept of Pareto dominance is used to
rank different candidate configurations. One configuration θ pareto-dominates another
configuration θ̃, θ � θ̃, if fi(θ) ≤ fi(θ̃) for i = 1, . . . , k and ∃ j fj(θ) < fj(θ̃),
i.e., θ needs to be as good as θ̃ in each component and strictly better in at least one.
A configuration θ is said to be non-dominated if it is not dominated by any other
configuration. The set of all non-dominated points is the Pareto set, which contains all
trade-off solutions. Finally, the Pareto front is evaluation of all configurations in the
Pareto set. The goal of multi-criteria optimization is to learn the Pareto set. There exists
a plethora of different ways to extend Bayesian optimization to the multi-criteria case.
We choose parEgo Knowles (2004), as it is a simple method, and it naturally lends
itself to focussing regions of the pareto front. parEgo is a rather simple extension, which
scalarizes the set of target functions by using the augmented Tchebycheff norm

max
i=1,...,k

(wifi(θ)) + ρ
k∑

i=i

wifi(θ),

with a different uniformly sampled weight vector w such that
∑k

i=1 wi = 1 in each
iteration. The augmentation term ρ

∑k
i=i wifi(θ); ρ > 0 is used to guarantee pareto-

optimal solutions (Miettinen and Mäkelä, 2002). This allows to apply standard single-
criteria Bayesian optimization to the scalarized target function. Furthermore the use of
the augmented Tchebycheff norm allows to exclude regions of the pareto front which are

10 Pfisterer et al.

0.00

0.02

0.04

0.06

0.2 0.4 0.6
mmce

fa
ir

ne
ss

.f1

(a) Full pareto front of first AutoxgboostMC run.
Not pareto-optimal points are displayed in red.

m
m

ce
fairness.f1

0 25 50 75 100 125

0.2

0.4

0.6

0.00

0.02

0.04

0.06

iter

(b) Final optimization path.

not of practical relevance, e.g., models with extremely low predictive accuracy do not
have to be considered regardless of their interpretability or fairness (Steuer and Choo
(1983), Hakanen and Knowles (2017)). This is done by constraining the values of some
wi between certain values. We adapt a similar procedure, where the user can choose
ranges for the weights wi, such that the algorithm focuses on a selected region of the
pareto front (see e.g. the blue line in Figure 3a).
For the case of k = 2 objectives, the weight vector w ∈ [0; 1]k can range from (1, 0)
(only optimize first objective) to (0, 1) (only optimizing the second objective). By
limiting w to [l, 1− l]× [u, 1− u]; 0 < l < u < 1 we can effectively limit the possible
trade-offs we might be willing to make.

4 Application: A Fair Model for Income Prediction

Income prediction of employers is a versatile use-case for the application of multi-criteria
AutoML, as several important criteria for a model can be derived. While trying to mini-
mize the missclassification error, moral and ethical principles must also be adhered to.
Thus, a model cannot be biased or unfair towards different sub-populations, e.g. men can
not be systematically favoured over women regarding their income. As a third possible
criterion, we might require an interpretable model, as a model might need to be accepted
by regulatory bodies.

We use a fairness measure described in section 2.2, namely the absolute difference in
F1-Scores between two sub-populations male and female. In order to start the AutoML
process, we simply need to specify our tuning budget by either setting the number of
MBO-iterations or the desired time for tuning. To get a first impression of the pareto
front, we start with a tuning budget of only 20 iterations. Figure 3a shows the resulting
pareto front. We can now use this, to focus the search towards trade-offs we are interested

Multi-Objective Automatic Machine Learning with AutoxgboostMC 11

in. This is done by limiting the range of projections available to parEgo. For a first
investigation, we choose values between 0.1 and 0.9. Those lower and upper limits on
the projections can be adapted throughout the process.

Valid. Test
Method mmce fairF1 mmce fairF1
autoxgboost 0.125 - 0.165 0.038
PF (ours) 0.129 0.023 0.139 0.061
PF (ours) 0.129 0.020 0.131 0.064
PF (ours) 0.130 0.002 0.130 0.080
PF (ours) 0.131 0.001 0.159 0.059
PF (ours) 0.132 0.001 0.157 0.067
PF (ours) 0.133 0.001 0.156 0.060
PF (ours) 0.135 0.000 0.142 0.096
PF (ours) 0.137 0.000 0.147 0.059
PF (ours) 0.142 0.000 0.146 0.077
PF (ours) 0.158 0.000 0.284 0.116
PF (ours) 0.238 0.000 0.244 0.000

Table 1: Performances of models from the
pareto-front on held-out test set. We com-
pare solutions from the Pareto front (PF) to
Thomas et al. (2018) (optimizing mmce) af-
ter 120 iterations.

Afterwards, we can simply continue
training with additional budget. Contin-
uing this training twice, we can also ac-
cess the final optimization path, which
is shown in Figure 3b. For each chosen
measure, it shows the achieved perfor-
mance for each function evaluation, and
the (single-criteria) optimum achieved. Fi-
nally, we observe the pareto fronts as il-
lustrated in Figure 4 for final tuning after
20, 70 and 120 iterations.
We compare to Thomas et al. (2018), op-
timizing a single objective (mmce). Note
that solely optimizing for Fairness is not
sensible, as many models achieve a fair-
ness score of 0 (on validation data). The
user can then choose an optimal hyper-
parameter configuration from the pareto
front which matches her preferences best.
Table 1 displays different points from the
pareto front as well as the single-objective
method evaluated on test data.

5 Outlook

In this work we conduct a first investigation into AutoML systems that can optimize a
machine learning pipeline with respect to many different criteria. We provide several

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
mmce mmce mmce

fa
ir

ne
ss

.f1

fa
ir

ne
ss

.f1

fa
ir

ne
ss

.f1

Fig. 4: Pareto fronts after each AutoxgboosMC run (20, 70, 120 tuning iterations).
Zoomed in, in order to better show the pareto-front. The region we focus on is coloured
in blue.

12 Pfisterer et al.

measures, that can be used as proxies for concepts such as Fairness, Interpretability,
Robustness and others. Additionally, we implement a simplified AutoML system, that
can optimize multiple objectives simultaneously, and can therefore serve as a tool for
investigating such scenarios. The potential and necessity of our approach is demonstrated
in a use-case.

The proposed method can be extended and improved in multiple directions. In a
first iteration, we aim to include a wider array of gradient boosting methods, such as
LightGBM (Ke et al. (2017)) and catboost (Dorogush et al. (2017)) into our framework.
By combining this with a larger set of different pre- and post-processing methods, which
can be tailored towards improving the different measures listed in section 2.2, we hope
to obtain a toolbox that is suitable for many different situations where multiple criteria
are required. Several interesting enhancements to the optimization procedure could also
be made, either by adopting promising approaches from Bayesian Optimization (c.f.
Paria et al. (2018)), or by adopting other search procedures.

The real underlying preferences a user has towards selecting a model might not
always be easily quantify-able, because they rely on previous experience, implementation
or other details. At the same time, a user can be asked to provide (noisy) labels for a
set of models or to indicate preferences of one model over another (c.f González et al.
(2017)). In future research, this might serve as an interesting avenue towards more
human-centered AutoML. A third important part of research we aim to conduct is
towards making AutoML methods more readily available to other user-groups, while at
the same time providing them with sufficient tools to obtain models tailored towards the
specific applications needs. In order to achieve this, we aim to research User Interfaces
that make the AutoML more transparent to the user, while at the same time ensuring
reproducibility.

Acknowledgements. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A.

Bibliography

Apley, D. W. (2016). Visualizing the effects of predictor variables in black box supervised
learning models. arXiv preprint arXiv:1612.08468.

Barocas, S., Hardt, M., and Narayanan, A. (2018). Fairness and Machine Learning.
fairmlbook.org. http://www.fairmlbook.org.

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G.,
and Jones, Z. M. (2016). mlr: Machine learning in R. Journal of Machine Learning
Research, 17(170):1–5.

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., and Lang, M. (2018). mlrMBO:
A Modular Framework for Model-Based Optimization of Expensive Black-Box Func-
tions.

Blot, A., Hoos, H. H., Vermeulen-Jourdan, L., Kessaci-Marmion, M.-É., and Traut-
mann, H. (2016). Mo-paramils: A multi-objective automatic algorithm configuration
framework. In LION.

Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. J. Mach. Learn.
Res., 2:499–526.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA. ACM.

Dorogush, A. V., Ershov, V., and Gulin, A. (2017). Catboost: gradient boosting with
categorical features support.

Everson, R. M. and Fieldsend, J. E. (2006). Multi-class roc analysis from a multi-
objective optimisation perspective. Pattern Recognition Letters, 27(8):918–927.

Fan, Z., Fang, Y., Li, W., Lu, J., Cai, X., and Wei, C. (2017). A comparative study of
constrained multi-objective evolutionary algorithms on constrained multi-objective
optimization problems. In 2017 IEEE Congress on Evolutionary Computation (CEC),
pages 209–216. IEEE.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015).
Efficient and robust automated machine learning. In Cortes, C., Lawrence, N. D.,
Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information
Processing Systems 28, pages 2962–2970. Curran Associates, Inc.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Ann. Statist., 29(5):1189–1232.

González, J., Dai, Z., Damianou, A., and Lawrence, N. D. (2017). Preferential bayesian
optimization. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1282–1291. JMLR. org.

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H. J., Escalera, S., Liu, Z., Jajetic,
D., Ray, B., Saeed, M., Sebag, M., Statnikov, A., Tu, W.-W., and Viegas, E. (2019).
Analysis of the AutoML Challenge Series 2015–2018, pages 177–219. Springer
International Publishing, Cham.

Hakanen, J. and Knowles, J. D. (2017). On using decision maker preferences with
parego. In EMO.

14 Pfisterer et al.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).
The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18.

Handl, J., Kell, D. B., and Knowles, J. (2007). Multiobjective optimization in bioin-
formatics and computational biology. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 4(2):279–292.

Hardt, M., Price, E., Srebro, N., et al. (2016). Equality of opportunity in supervised
learning. In Advances in neural information processing systems, pages 3315–3323.

Hernández-Lobato, J. M., Gelbart, M. A., Adams, R. P., Hoffman, M. W., and Ghahra-
mani, Z. (2016). A general framework for constrained bayesian optimization using
information-based search. The Journal of Machine Learning Research, 17(1):5549–
5601.

Horn, D. and Bischl, B. (2016). Multi-objective parameter configuration of machine
learning algorithms using model-based optimization. In Computational Intelligence
(SSCI), 2016 IEEE Symposium Series on, pages 1–8. IEEE.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna,
Z., Song, Y., Guadarrama, S., and Murphy, K. (2016). Speed/accuracy trade-offs for
modern convolutional object detectors. CoRR, abs/1611.10012.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential Model-Based Op-
timization for General Algorithm Configuration, pages 507–523. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Jin, Y. and Sendhoff, B. (2008). Pareto-based multiobjective machine learning: An
overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 38(3):397–415.

Johnson, J., Douze, M., and Jégou, H. (2017). Billion-scale similarity search with gpus.
CoRR, abs/1702.08734.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems 30, pages 3149–3157. Curran
Associates, Inc.

Knowles, J. (2004). Parego: A hybrid algorithm with on-line landscape approxima-
tion for expensive multiobjective optimization problems. Technical Report TR-
COMPSYSBIO-2004-01, University of Manchester.

Lange, T., Braun, M. L., Roth, V., and Buhmann, J. M. (2003). Stability-based model
selection. In Advances in neural information processing systems, pages 633–642.

Miettinen, K. and Mäkelä, M. M. (2002). On scalarizing functions in multiobjective
optimization. OR spectrum, 24(2):193–213.

Molnar, C. (2019). Interpretable Machine Learning. https://christophm.
github.io/interpretable-ml-book/.

Molnar, C., Casalicchio, G., and Bischl, B. (2019). Quantifying interpretability of
arbitrary machine learning models through functional decomposition. arXiv preprint
arXiv:1904.03867.

Multi-Objective Automatic Machine Learning with AutoxgboostMC 15

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., and
Moore, J. H. (2016). Automating biomedical data science through tree-based pipeline
optimization. In Squillero, G. and Burelli, P., editors, Applications of Evolutionary
Computation, pages 123–137, Cham. Springer International Publishing.

Papernot, N., McDaniel, P. D., Wu, X., Jha, S., and Swami, A. (2015). Distillation
as a defense to adversarial perturbations against deep neural networks. CoRR,
abs/1511.04508.

Paria, B., Kandasamy, K., and Póczos, B. (2018). A flexible multi-objective bayesian
optimization approach using random scalarizations. CoRR, abs/1805.12168.

Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Weinberger, K. Q. (2017). On
fairness and calibration. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pages 5684–5693, USA. Curran
Associates Inc.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’12, pages 2951–2959, USA.
Curran Associates Inc.

Steuer, R. E. and Choo, E.-U. (1983). An interactive weighted tchebycheff procedure
for multiple objective programming. Math. Program., 26(3):326–344.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus,
R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

Thomas, J., Coors, S., and Bischl, B. (2018). Automatic gradient boosting. In Interna-
tional Workshop on Automatic Machine Learning at ICML.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-WEKA:
Combined selection and hyperparameter optimization of classification algorithms. In
Proc. of KDD-2013, pages 847–855.

Wang, Q., Ming, Y., Jin, Z., Shen, Q., Liu, D., Smith, M. J., Veeramachaneni, K., and
Qu, H. (2019). Atmseer: Increasing transparency and controllability in automated
machine learning. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, pages 681:1–681:12, New York, NY, USA. ACM.

Wilson, J., Meher, A. K., Bindu, B. V., Sharma, M., Pareek, V., Chaudhury, S., and Lall,
B. (2018). Autogbt:automatically optimized gradient boosting trees for classifying
large volume high cardinality data streams under concept-drift. https://github.
com/flytxtds/AutoGBT.

Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. (2013). Domain adaptation under
target and conditional shift. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ICML’13, pages
III–819–III–827. JMLR.org.

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2015). Sprint multi-objective
model racing. In Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’15, pages 1383–1390, New York, NY, USA. ACM.

Žliobaitė, I. (2017). Measuring discrimination in algorithmic decision making. Data
Mining and Knowledge Discovery, 31(4):1060–1089.

4.6 Automated Benchmark-Driven Design and Explanation of
Hyperparameter Optimizers 121

4.6 Automated Benchmark-Driven Design and Expla-
nation of Hyperparameter Optimizers

Contributed Article:
J. Moosbauer, M. Binder, L. Schneider, F. Pfisterer, M. Becker, M. Lang, L. Kotthoff,
and B. Bischl. Automated benchmark-driven design and explanation of hyperparameter
optimizers. To appear in IEEE Transactions on Evolutionary Computation, 2022

Declaration of contributions The idea for the algorithmic framework (SMASHY) con-
sidered in the project originated from MB and BB, with input from JM. The idea to put it
in context as automatic configuration and analysis of algorithm components for hyperpa-
rameter optimizers originated from JM and MB. The code for the algorithmic framework
was developed by MB based on a previous project3. Code for the experiments for algorithm
configuration was written by MBe and MB. Benchmarks of competing state-of-the-art al-
gorithm implementations were conducted by JM. Code for the experiments for algorithm
analysis was written by LS (ablation studies), MB, and JM. The manuscript was written
by JM and MB, with refinement from LS, LK, MBe, FP, and BB. LS, MB, FP, LS, ML,
LK advised throughout the whole project.
The article is available under a Creative Commons License under the DOI: https://doi.
org/10.1109/TEVC.2022.3211336.

3https://github.com/mlr-org/miesmuschel

https://doi.org/10.1109/TEVC.2022.3211336
https://doi.org/10.1109/TEVC.2022.3211336

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 1

Automated Benchmark-Driven
Design and Explanation of Hyperparameter Optimizers

Julia Moosbauer*, Martin Binder*,
Lennart Schneider, Florian Pfisterer, Marc Becker, Michel Lang, Lars Kotthoff, Bernd Bischl

Abstract—Automated hyperparameter optimization (HPO) has
gained great popularity and is an important component of most
automated machine learning frameworks.

However, the process of designing HPO algorithms is still an
unsystematic and manual process: New algorithms are often
built on top of prior work, where limitations are identified and
improvements are proposed. Even though this approach is guided by
expert knowledge, it is still somewhat arbitrary. The process rarely
allows for gaining a holistic understanding of which algorithmic
components drive performance and carries the risk of overlooking
good algorithmic design choices.

We present a principled approach to automated benchmark-driven
algorithm design applied to multi-fidelity HPO (MF-HPO). First,
we formalize a rich space of MF-HPO candidates that includes,
but is not limited to, common existing HPO algorithms and then
present a configurable framework covering this space. To find
the best candidate automatically and systematically, we follow a
programming-by-optimization approach and search over the space
of algorithm candidates via Bayesian optimization. We challenge
whether the found design choices are necessary or could be replaced
by more naive and simpler ones by performing an ablation analysis.
We observe that using a relatively simple configuration (in some ways,
simpler than established methods) performs very well as long as some
critical configuration parameters are set to the right value.

Index Terms—Algorithm design, algorithm analysis, hyperparam-
eter optimization, multifidelity, automated machine learning

I. INTRODUCTION

Machine learning (ML) is, in many regards, an optimization
problem, and many ML methods can be expressed as algorithms
that perform loss minimization with respect to a given objective
function. The higher-level task of selecting the ML method and its
configuration is often framed as an optimization problem as well,
sometimes referred to as a hyperparameter optimization (HPO) [1]
or combined algorithm selection and hyperparameter optimization
(CASH) problem [2]. Successfully addressing this problem can
lead to large performance gains compared to simply using defaults,
and in the context of automated machine learning (AutoML), the
use of HPO can make ML more accessible to non-experts. Because
of their potential benefits to ML performance and usability, it is
of particular interest to design optimization algorithms that perform
particularly well on the HPO problem.

Optimization problems arise in many fields of science and
engineering, but as the no-free-lunch theorem states, there is no one
optimization algorithm that solves all problems equally well [3]. To
design suitable optimizers, it is therefore important to understand
the characteristics of HPO:
• Black-box: The objective usually provides no analytical

information [4] – such as a gradient. Thus, the application of

*Equal Contribution

many traditional optimization methods – such as BFGS – is
rendered inappropriate or at least questionable.

• Complex search space: The search space of the optimization
problem is often high-dimensional and may contain
continuous, integer-valued and categorical dimensions. Often,
there are dependencies between dimensions or even specific
hyperparameter values [5].

• Expensive: A single evaluation of the objective function may
take hours or days. Thus, the total number of possible function
evaluations is often severely limited [4].

• Low-fidelity approximations possible: An approximation of
the true objective value at lower expense can often be obtained,
for example, through a partial evaluation [6].

• Low effective dimensionality: The landscape of the objective
function can usually be approximated well by a function of
a small subset of all dimensions [7].

Recent HPO and AutoML research has focused on finding and
improving optimization algorithms that work particularly well
under these conditions. A common approach is to tackle HPO by
estimating a local or global structure of the objective landscape by
some form of predictive model. This introduces additional overhead
and complexity with the aim of reducing the overall number of
expensive objective evaluations necessary to find an approximate
optimum. Typical representatives of this approach are Bayesian
optimization (BO) [8] algorithms and frameworks based on BO,
which are global optimization schemes based on a non-linear
regression model, e.g., a Gaussian process or random forest. They
have shown significant improvements in performance compared
to other methods [9] but carry a significant overhead. Furthermore,
BO is somewhat difficult to parallelize due to its sequential nature,
although many variants exist (e.g. [10]–[13]).

Multi-fidelity HPO (MF-HPO) algorithms aim to accelerate
the optimization process by exploiting cheaper proxy functions
of the objective function itself (e.g., by training ML models on
a smaller subsample of the available training data, or by running
fewer training iterations). Bandit-based algorithms like Hyperband
(HB) [14] have become particularly popular because of their good
trade-off between optimization performance and simplicity.

Progress in the field of HPO often consists of iterative
improvements of established algorithms. Considerable work exists,
for example, to improve the limitations of HB: Asynchronous
successive halving (ASHA) [15] proposes a sophisticated way
to make efficient use of parallel resources, BO Hyperband
(BOHB) [16] improves performance during later parts of a run
by incorporating surrogate assistance into HB, and asynchronous
BOHB (A-BOHB) [17] unites a bandit-based optimization scheme
using model-based guidance with asynchronous parallelization.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 2

While these conceptual extensions of HPO all have their respec-
tive merit, it is often somewhat overlooked that the simplicity of
an optimization algorithm (i.e., how difficult modifications and
extensions are, and on how many dependencies a system relies [18])
heavily influences its adoption in practice. Random search (RS), for
example, still enjoys great popularity, as it is extremely simple to im-
plement and parallelize, has almost no overhead, and is able to take
advantage of the aforementioned low effective dimensionality [7].
Furthermore, algorithmic developments identify and address limita-
tions of prior research, but rarely question core algorithmic choices
that have been made in the original implementation. Many multi-
fidelity algorithms, for example, are extensions and further devel-
opments of HB that take the fixed successive halving schedule [19]
for granted. The process of designing a good MF-HPO optimizer in
practice – and many other algorithmic solutions in science in general
– can therefore often feel somewhat like a “manual stochastic local
search on the meta level”. The drawback of this manual procedure
is that the design space of all HPO algorithms is not systematically
searched, and parts of the design space are excluded by prior algorith-
mic decisions. If “established” algorithms are not challenged, there is
a risk that algorithms that work well will be overlooked., and it is of-
ten hard to identify what algorithmic components make a difference.
In particular, it is possible that overly complicated algorithms are
developed by extending “established” designs, only some of which
contribute meaningfully to performance gains. Sometimes certain
technical components of an algorithm, which are neither exposed nor
discussed in detail, may also influence performance significantly.

A. Contributions

We make a principled demonstration of how HPO algorithm
design can be performed systematically and automatically with
a benchmark-driven approach following the programming-by-
optimization paradigm [20]. In particular, the contributions of this
work are:
• Formalization: We formalize the design space of MF-HPO

algorithms and demonstrate that established MF-HPO
algorithms represent instances within this space.

• Framework: Based on this formalization, we present a rich,
configurable framework for MF-HPO algorithms, whose
software implementation we call SMASHY (Surrogate Model
Assisted HYperband).

• Configuration: Based on the formalization and framework,
we follow an empirical approach to design an MF-HPO
algorithm by optimization, given a large benchmark suite. This
configuration procedure does not only consider performance,
but also, e.g., the simplicity of the design.

• Benchmark: As in general any HPO algorithm will be applied
in a diverse set of application scenarios, we evaluate the perfor-
mance of our newly designed algorithm on a representative set
of problems that were not previously used for its configuration
(i.e., a clean test-set approach on the meta-level) and compare
them with established implementations of HPO methods.

• Explanation: For the resulting MF-HPO system, we
systematically assess and explain the effect of different design
choices on overall algorithmic performance. Furthermore, we
investigate the behavior of algorithmic design components
in the context of specific problem scenarios; i.e., we

investigate which algorithmic components lead to performance
improvements for simple HPO with numeric hyperparameters,
AutoML pipeline configuration, and neural architecture search.

II. RELATED WORK

HPO is one of the most essential components of current AutoML
methods [1], and MF-HPO has recently become more prominent,
given that cheap, low-fidelity evaluations have proven useful to
speed up optimization, especially for expensive HPO of complex
ML algorithms on larger data sets [14]. While AutoML tools have
historically relied on a limited set of HPO methods, we argue
that the optimal HPO method depends on problem characteristics,
and therefore a systematic development of HPO methods under
consideration of problem characteristics is required. Approaches
towards such systematic development have often relied on a high-
level language or template that allows expressing solutions to a given
problem, e.g. to solve constraint satisfaction problems [21]–[23],
satisfiability problems [24], or scheduling problems [25].

Even if a high-level language is available, manual configuration
of such frameworks is laborious and requires expert knowledge.
This motivates the design philosophy of “Programming by
Optimization” [20] (PBO), which advocates for allowing
algorithmic choices in a software system (instead of fixing them
at the time of implementation) and automatic configuration by
optimization for a given problem context.

As one approach to automatic and efficient algorithm
configuration, racing-based strategies have been used to design
optimization algorithms. For example, F-RACE [26] has been used
for the automatic design of multi-objective ant colony optimization
algorithms [27]. Similarly, IRACE [28] has been used for the
automatic design multi-objective evolutionary algorithms [29]
or to meta-configure the parameters IRACE itself [30]. Another
commonly used framework is SMAC [5], which extends the
sequential model-based optimization paradigm (SMBO, see also
Section IV-A2) to an algorithm configuration setting. This is
achieved through the use of an intensification procedure that governs
across how many problem instances each configuration is evaluated,
trading off computational cost against confidence regarding the
superiority of a given configuration. Furthermore, instance features
describing properties of a problem instance are used to train the
empirical performance model predicting the performance of a
configuration on a new problem instance. For example, SMAC
has been used by the authors of the SATenstein [24] framework
to automatically tailor SATenstein to particular sets of problems.
Besides racing and sequential model-based approaches, genetic
algorithms have also been used to evolve optimal solvers [31].

We argue that the design of HPO algorithms can be seen as
an instance of PBO. However, while there are many approaches
that focus on individual algorithmic choices (e.g., the choice of
a surrogate model for BO [32]), we are not aware of many cases
where PBO is applied to designing HPO systems themselves. One
exception is [33], who use SMACv3 [34] to automatically configure
Bayesian optimization (BO) for HPO from a flexible search space of
components. We take a similar approach here in that the algorithmic
choices are exposed as hyperparameters that can be tuned. However,
unlike [33], we do not configure an established HPO method
(such as BO) with a predefined structure and associated control

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 3

parameters (e.g., varying the surrogate model of BO). Instead, we
introduce a new configurable algorithmic framework, which covers
many different MF-HPO structures, including well-established
principles for multi-fidelity handling (e.g., Successive Halving) as
well as new approaches (e.g., equal batch size in all proposals).

In addition to designing well-performing algorithms, it is
equally important to facilitate an understanding of the effects of
all considered design choices. The field of sensitivity analysis (SA)
comprises a multitude of methods to assess the importance of input
factors on the output of a mathematical model [35]. Functional
ANOVA (fANOVA) methods, which decompose the response of
a (mathematical) model or function into lower-order components,
are a widely studied method in the field of SA, dating back to [36].
This class of methods has also become popular in the field of ML
to analyze the importance of hyperparameters [37].

Popular ways of analyzing effects of algorithmic effects in
ML and algorithm configuration are ablation studies [38]. This
involves measuring the performance when removing one or more of
algorithmic subcomponents to understand the relative contribution of
the ablated components to overall performance. There are different
ways of performing an ablation analysis; probably the most common
approach is leave-one-component-out (LOCO) ablation [39]. In
the context of algorithm configuration, [38] proposes an ablation
approach that links a source configuration (e.g., the default) to a
target (e.g., the optimized configuration) through an ablation path.

Nevertheless, many existing works that propose or improve
HPO or algorithm configuration systems do not analyze the
algorithmic choices of an optimized system, and the ones that
do perform relatively straightforward analyses. For example,
[21] compare the designs their approach finds automatically to
the designs expert humans generated. [40] perform ANOVA and
non-parametric Friedman tests to investigate in detail the effects that
algorithmic choices have for ant colony optimization algorithms.
[41] incrementally investigate the effect of different design choices
for ModCMA as individual components are changed.

III. METHODOLOGY

A. Supervised Machine Learning

Supervised ML typically deals with a dataset (which is,
mathematically speaking, a tuple)D =

(
(x(i), y(i))

)
∈ (X ×Y)n

of n observations, assumed to be drawn i.i.d. from a data-generating
distribution Pxy. An ML model is a function f̂ : X → Rg that
assigns a prediction to a feature vector from X .1 f̂ is itself con-
structed by an inducer function I, i.e., the model-fitting algorithm.
The inducer I : (D,λ) 7→ f̂ uses training data D and a vector of
hyperparameters λ ∈ Λ that govern its behavior. The overall goal
of supervised ML is to derive a model f̂ from a data setD so that f̂
predicts data sampled from Pxy best. The quality of a prediction is
measured as the discrepancy between predictions and ground truth.
This is operationalized by the loss function L : Y × Rg → R+

0 ,
which is to be minimized during model fitting. In contrast to the
optimisation problems that we will define in Sections III-B and
III-C, we term this the “first level” optimisation problem.

1where g allows handling of multi-output regression, as well as multiclass
classification with g classes by returning decision scores.

The expectation of the loss value of predictions made for data
samples drawn from Pxy is the generalization error

GE := E(x,y)∼Pxy

[
L(y, f̂(x))

]
(1)

which cannot be computed directly if Pxy is not known beyond
the available dataD. Therefore, one often uses so-called resampling
techniques that fit models onNiter subsamplesD[Jj] and evaluate
them on complementsD[−Jj] of these subsets to obtain an estimate
of the generalization error

ĜE(I,λ,J) =
1

Niter

Niter∑

j=1

L
(
y[−Jj],I (D[Jj],λ) (x[−Jj])

)
.

(2)
Depending on the resampling method, the inducer I, and

the quantity of data in D, estimating the generalization error
ĜE(I,λ,J) can require large amounts of computational resources.

B. Hyperparameter Optimization

The goal of HPO is to identify a hyperparameter configuration
that performs well in terms of the estimated generalization error
in Equation (2). Often, optimization only concerns a subspace of
available hyperparameters because some hyperparameters might be
set based on prior knowledge or due to other constraints. One would
therefore split up the space of hyperparameters Λ into a subspace
of hyperparameters ΛS over which optimization takes place, and
the remaining hyperparameters ΛC = Λ/ΛS for which values λC
are given exogenously. We define the HPO problem as:

λ∗S ∈ argmin
λS∈ΛS

c(λS) = argmin
λS∈ΛS

ĜE(I, (λS,λC),J). (3)

Here, λ∗S denotes a theoretical optimum, and c(λS) is a shorthand
for the estimated generalization error in Equation (2). We refer to
Problem 3 as the “second level” optimisation problem.

Hyperparameters can be either continuous, discrete, or categorical,
and search spaces are often a mix of the different types. The search
space may be hierarchical, i.e., some subordinate hyperparameters
can only be set in a meaningful way if another parent hyperparameter
takes a certain value. In particular, many AutoML frameworks
perform optimization over a hierarchical hyperparameter space that
represents the components of a complex ML pipeline [1].

Many HPO algorithms can be characterized by how they handle
two different trade-offs: (a) The exploration vs. exploitation
trade-off refers to how much budget an optimizer spends on either
trying to directly exploit the currently available knowledge base
by evaluating very close to the currently best candidates (e.g.,
local search) or whether it explores the search space to gather
new knowledge (e.g., random search). (b) The inference vs. search
trade-off refers to how much time and overhead is spent to induce
a model from the currently available archive data in order to exploit
past evaluations as much as possible. Other relevant aspects that
HPO algorithms differ in are: Parallelizability, i.e., how many
configurations a tuner can (reasonably) propose at the same time;
global vs. local behavior of the optimizer, i.e., if updates are always
quite close to already evaluated configurations; noise handling, i.e.,
if the optimizer takes into account that the estimated generalization
error is noisy; search space complexity, i.e., if and how hierarchical
search spaces can be handled; multi-fidelity, i.e., if the optimizer
uses cheaper evaluations to infer performance on the full data.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 4

Multi-fidelity methods make use of the fact that the resampling
procedure in Equation (2) can be modified in multiple ways to
make evaluation cheaper: one can (i) reduce the training sizes |Jj|
via subsampling, as model evaluation complexity is often at least
linear in training set size, or (ii) change some components in λ in
a way that makes model fits cheaper. Examples of (ii) are reducing
the overall number of training cycles performed by a neural network
fitting process, or reducing the number of base learner fits in a
bagging or boosting method. These modifications can both increase
the variance of ĜE and introduce an (often pessimistic) bias, as
models trained on smaller datasets or with values of λ that make
fitting cheaper often have worse generalization errors.

We introduce a fidelity parameter r ∈ (0,1] that influences the
resource requirements of the evaluation of ĜE and define

c(λS; r) := ĜE (I, (λS,λC(r)) ,J(r)) . (4)

With this definition we make the choice that r should influence the
evaluation cost of ĜE only by modifying the resampling, J(r) or
by modifying a hyperparameter λC(r). Typically, r only affects
one of these aspects at a time, and if it affects λC, it only affects
a single hyperparameter dimension.

Note that we normally assume that a higher fidelity r returns
a better model in terms of the estimate of the generalization error,
and the best estimate is returned for r = 1. Therefore, r enters the
expression in a way where it can influence performance, but is not
searched over. We define c(λS) := c(λS; 1) as in [42], and the
optimization problem remains as in Equation (3).

This assumption may be violated in some scenarios, and model
performance could worsen for a higher value of r (e.g., a neural
network, which may overfit on a small dataset if trained for too
many epochs). In this case, we define the optimization problem as
(λ∗S, r

∗) ∈ argminλS∈ΛS,r∈(0,1] c(λS; r).

The resource requirements of evaluating c(λ; r) can have a
complicated relationship with λ and r; in practice, r is chosen
in such a way that it has an overwhelming and linear influence on
resource demand. The overall cost of optimization up to a given point
in the optimization process is therefore assumed to be the cumulative
sum of the values of r of all evaluations of c(λ; r) up to that point.
We can also interpret r as the fraction of the budget of a single full
fidelity model evaluation that must be spent for evaluating c(λ; r).

Given the definition of the HPO problem, we present an
(MF-)HPO algorithm for a single, synchronous worker in its most
generic form in Algorithm 1. Until a pre-determined budget is
exhausted, such an algorithm decides in every iteration (a) which
configuration(s) λS to evaluate next and (b) which fidelity r to
use for evaluation; non-multi-fidelity algorithms set this to r = 1
as default. The algorithm makes use of an archive A, a database
recording previously proposed hyperparameter configurations and,
if available, their evaluation results. This database can be shared
among multiple worker processes that optimize concurrently.

Algorithm 1 A generic HPO algorithm

1: while budget is not exhausted do
2: Propose

(
λ

(i)
S , r

(i)
)
, i = 1, ..., k, based on archiveA

3: Write proposals into a shared archiveA
4: Estimate generalization error(s) c

(
λ

(i)
S ; r(i)

)

5: Write results into shared archiveA
6: end while
7: Wait for workers to synchronize
8: Return best configuration in archiveA

The optimization process can be accelerated by making efficient
use of parallel resources. We distinguish between synchronous and
asynchronous scheduling. The former starts multiple evaluations
synchronously at the same time and waits until all of these have
finished. To be more precise, a number of k > 1 configurations is
proposed in line 2 and evaluated in parallel in line 4, all within the
inner loop of Algorithm 1. GivenK available parallel resources, it
should be ensured that the number k of configurations scheduled in
parallel is not significantly smaller thanK and that the evaluation
runtimes amongst these k configurations do not differ significantly
in order to avoid unnecessarily idling single parallel resources.
In contrast, for asynchronous scheduling, Algorithm 1 is run
individually in K separate worker processes. Given a shared
archive that is synchronized between the workers, every worker can
independently schedule new configurations to evaluate.

C. Algorithm Design and Configuration

Our goal will be to design and configure a new HPO algorithm
based on a superset of design choices included in previously
published HPO methods. We are interested in finding a configuration
(or making design choices) based on a set of training instances that
works across a broad set of future problem instances. This problem
is called algorithm configuration [5], [43]. It is quite similar to HPO;
a major difference is that algorithm configuration optimizes the
configuration of an arbitrary algorithm over a diverse set of often het-
erogeneous instances for optimal average performance, while HPO
performs a per-instance configuration of an ML inducer for a single
data set. We introduce the following notation for consistency with the
relevant literature: γ denotes configuration parameters controlling
our optimizerA, while λ denotes hyperparameters optimized by our
optimizer, controlling our inducer I. The algorithm configuration
problem can be formally stated as follows: Given an algorithm
A : Ω×Γ→ Λ parametrized by γ ∈ Γ and a distribution PΩ over
problem instances Ω together with a cost metric ζ, we must find a
parameter setting γ∗ that minimizes the expected ζ(A) over PΩ:

γ∗ ∈ argmin
γ∈Γ

Eω∼PΩ
[ζ(A(ω,γ))] . (5)

In our example, Γ corresponds to the space of possible components
of our HPO method and Ω to a class of HPO problems (i.e., ML
methods and datasets on which they are evaluated) for which their
configuration should be optimal. Based on a training set of repre-
sentative instances {ωi} drawn from PΩ, a configuration γ∗ that
minimizes c across these instances should be chosen through opti-
mization. When necessary, we refer to this process as the “third level”
optimization problem to distinguish it from the optimization per-
formed by the HPO algorithmA, i.e., the second level optimization.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 5

IV. FORMALIZING A BROAD CLASS OF MF-HPO ALGORITHMS

We aim to find an HPO algorithm that performs particularly
well in the multi-fidelity setting. To design an algorithm by
optimization, we propose a framework and search space of HPO
algorithm candidates that covers a large class of possible algorithms
and focus on a subclass of algorithms similar to Hyperband
because of their favorable properties. This subclass focuses
on multi-fidelity algorithms that use a pre-defined schedule of
geometrically increasing fidelity evaluations containing algorithms
like Hyperband [14] and BOHB [16].

The basis of this framework is presented in Algorithm 2, which
can be configured by combining algorithmic building blocks in novel
ways. The main difference to Algorithm 1 is that the Propose part
is specified more explicitly. At its core, Algorithm 2 consists of two
parts: (i) sampling new configurations at low fidelities (lines 2–7)
and (ii) increasing the fidelity for existing configurations (lines 8–
14). In contrast to Algorithm 1, Algorithm 2 makes use of state
variables t, b, and r to account for optimization progress. However,
these variables are only shown in Algorithm 2 for clarity and can, in
principle, be inferred from the archiveA. As argued in Section III,
every single worker instance of Algorithm 1 can, in principle, be
scheduled asynchronously, but we do not consider this in this work.

In its first iteration, Algorithm 2 uses a SAMPLE-subroutine to
initialize the initial batch C of µ solution candidates. The fidelity of
the evaluation of the proposed configurations is refined iteratively;
when all configurations in the batch have been evaluated with given
fidelity r, the top 1/ηsurv fraction of configurations is evaluated
with a fidelity that is increased by a factor of ηfid. When the
fidelity cannot be further increased for a batch because all of its
configurations were evaluated at full fidelity r = 1, they are set
aside, and a new batch of configurations is sampled.

The SAMPLE subroutine creates new configurations to be evalu-
ated, possibly using information from the archive to propose points
that are likely to perform well. We allow that any inducer Ifsur that
produces a surrogate model fsur can be used for model-assisted sam-
pling. The subroutine works by at first sampling a number of points
from a given generating distribution Pλ(A). The performance of
these points is then predicted using the surrogate model, and points
with unfavorable predictions are discarded in a process we refer to
as filtering. This process is repeated until the requested number µ of
non-discarded points is obtained.Ns and ρ have the same function as
in [16] (see Section IV-A5), with the filter factorNs controlling the
number of sampled points needed for each of the µ points returned,
and ρ controlling the fraction of points that are not filtered. Thus,
the configuration space of sampling methods also includes purely
random sampling, as in Hyperband, by setting ρ = 1. The influence
of the surrogate model on sampled candidates is larger when (i) the
number of sampled configurationsNs is large, or (ii) the fraction ρ
of candidates sampled at random is small. We present two slightly
different SAMPLE algorithms: SAMPLETOURNAMENT (Algorithm
3) and SAMPLEPROGRESSIVE (Algorithm 4) based on this principle
(see Appendix A). Both allow to use differentNs values for different
points they sample, parameterized byN0

s andN1
s .

While hyperparameters λS are proposed by one of the two SAM-
PLE methods, the fidelity hyperparameter r follows a fixed schedule
similar to Successive Halving [19] and Hyperband [14], with a few
extensions. For one, the survivor factor ηsurv can be a different value

from the fidelity scaling factor ηfid. Furthermore, the algorithm
allows three scheduling modes, controlled by batch_method: SH
does Successive Halving. The HB mode evaluates brackets, as
performed by Hyperband. While µ(b) is, in principle, a free
configuration parameter for every value of b, we choose to set µ(b)
so that total budget expenditure is approximately equal between
all brackets. This follows the principle used in Hyperband, but
the dependency on ηsurv and ηfid is more complex and determined
dynamically. Finally, equal batch_method uses equal batch sizes
for every evaluation. Individuals that perform badly at low fidelity
are removed, as in SH, but new individuals are sampled to fill up
batches to the original size. Because new individuals are added
to the batches at all fidelity steps, it is not necessary to use
brackets with different initial fidelities, and therefore, only a single
repeating bracket b = 1 is used. The equal method is an original
contribution of this work and was designed to be similar to HB
while using parallel resources more efficiently; the two batch
scheduling methods are illustrated in Figure 1.

If the exploration-exploitation tradeoff is not balanced properly,
the optimization progress can either stagnate or function evaluations
are wasted due to too much exploration of uninteresting regions of
the search space. However, the relative importance of exploration
and exploitation can change throughout the course of optimization,
where exploration performed later during the optimization is not as
useful as during the beginning. The given configuration space makes
it possible to make the exploration-exploitation tradeoff dependent
on optimization progress by providing the option to make ρ(t) and(
N0

s (t),N1
s (t)

)
dependent on the proportion of exhausted total bud-

get at every configuration proposal step. It is likely that large values
of ρ(t) / small values ofN ·s(t) perform better when t is small. Con-
versely, it is likely that small ρ(t) / largeN ·s(t) work well for large t.

A. Common MF-HPO Algorithms Covered by Algorithm 2
The following describes a few common HPO algorithms that

can be instantiated within this framework; see Table I for specific
configuration parameter settings within Algorithm 2 that correspond
to these algorithms.

1) Random search (RS): Configurations λS are drawn
(uniformly) at random, and every configuration is evaluated
with full fidelity r = 1. Parallelization is straightforward, as
configurations are drawn independently.

2) Bayesian Optimization (BO) [8]: The configuration
that maximizes an acquisition function a(λ) (e.g., expected
improvement, EI [4]) is proposed and evaluated with the full fidelity
r = 1. a(λ) is based on a surrogate model trained on the archive
A. BO can be parallelized by either using methods that can propose
multiple points at the same time using a single surrogate model or,
alternatively, by fitting a surrogate model on the anticipated outcome
of configurations that were proposed but not yet evaluated [11].
BO can be represented in Algorithm 2 by using an inducer Ifsurr

that produces a function fsurr equal to the composition of model
prediction and acquisition function. In its basic form, BO is not an
MF algorithm and therefore always sets r = 1.

3) Successive halving (SH) [19]: Successive halving, also called
Sequential Halving [44], is a simple multi-fidelity optimization algo-
rithm that combines random sampling of configurations with a fixed
schedule for r. At the beginning, a batch of µ configurations is sam-
pled randomly and evaluated with an initial fidelity rmin < 1. This is

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 6

(a)
b = 1 b = 2 b = 3 b = 4

i |C| r |C| r |C| r |C| r

1 8 1/8 6 1/4 4 1/2 4 1
2 4 1/4 3 1/2 2 1
3 2 1/2 1 1
4 1 1

(b)
b = 1

i |C| r

1 8 1/8
2 8 1/4
3 8 1/2
4 8 1

(c) CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8

Time

(d) CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8
CPU 9
CPU10

(e) CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8

Bracket 2 (HB) /
Sampled with fidelity 1/4 (equal)

Bracket 1 (HB) /
Sampled with fidelity 1/8 (equal)

Bracket 3 (HB) /
Sampled with fidelity 1/2 (equal)

Bracket 4 (HB) /
Sampled with fidelity 1 (equal)

Evaluation of newly sampled configuration Evaluation "survivor" from previous iteration

Fig. 1: Illustration of the different batch_methods used, corresponding to values of ηfid = ηsurv = 2, s = 4, µ = 8.
The tables show (a) the HB method and (b) the equal method. Shown are the number |C| and fidelity value r of configurations
being evaluated in the iterations i of the various brackets counted by b. Except for i, the variables are the same as in Algorithm 2.
Subfigures (c) - (e) illustrate resource utilization by the batch methods, given availability of parallel resources. (c): Naively scheduling
the configuration evaluations one batch after another can make use of available parallel resources, but leaves many of them idle. (d):
Hypothetical way of scheduling configuration evaluations of different brackets at the same time so that all configurations with the same
r-value are scheduled together utilizes resources more efficiently, but the number of evaluations in each batch still varies. (e): The simpler
equal batch scheduling method always evaluates the same number of configurations within each batch and, therefore, makes optimal
use of available parallel resources.

TABLE I: RS, BO, SH, HB, BOHB as instances of Algorithm 2. η, ρ,Ns are configuration parameters of the respective algorithms.
“—” denotes that the value has no influence on the algorithm in this configuration.
*: BO and BOHB use inducers that produce non-standard model functions, which do not aim to predict the actual performance of
configurations, and instead calculate the value of an acquisition function such as EI [4] (for BO) or the ratio of two kernel density estimator
(KDE) models (for BOHB).
†: In a small departure from BOHB, Algorithm 2 uses the KDE estimate of good points for all sampled points, even when randomly
interleaved. BOHB randomly interleaves from a uniform distribution.

Algorithm µ(b) s ηsurv ηbudget Ifsur ρ Ns batch_mode Pλ(A)

RS — 1 — — — 1 — — uniform
BO 1 1 — — e.g. GP+EI* ρ Ns — uniform
SH µ b− logη(rmin)c+ 1 η η — 1 — SH uniform

HB ds · ηs−b
s−b+1

e b− logη(rmin)c+ 1 η η — 1 — HB uniform

BOHB ds · ηs−b
s−b+1

e b− logη(rmin)c+ 1 η η TPE* ρ Ns HB KDE†

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 7

Algorithm 2 SMASHY algorithm
Configuration Parameters: batch size schedule µ(b),

number of fidelity stages s, survival rate ηsurv, fidelity rate
ηfid, SAMPLE method (either SAMPLETOURNAMENT or
SAMPLEPROGRESSIVE), batch_method (one of equal, SH, or
HB), total budgetB; further configuration parameters of SAMPLE:
Ifsurr , Pλ(A), ρ(t),

(
N0

s (t),N1
s (t)

)
, ntrn.

State Variables: Expended budget fraction t ← 0, bracket
counter b ← 1 (remains 1 for batch_method ∈ {equal, SH}),
current fidelity r← 1, batch of proposed configurations C ← ∅

1: while t < 1 do

2: if r = 1 then . Generate new batch of configurations
3: r← (ηfid)

b−s

4: C ← SAMPLE
(
A, µ(b), r;Ifsur,Pλ(A),
ρ(t),

(
N0

s (t),N1
s (t)

)
, ntrn

)
5: if batch_method = HB then
6: b← (b mod s) + 1
7: end if
8: else . Progress fidelity
9: r← r · ηfid

10: C ← SELECT_TOP (C, |C|/ηsurv)
11: if batch_method = equal then
12: µ̃← µ(b)− |C|
13: C ← C ∪ SAMPLE

(
A, µ̃, r;Ifsur,Pλ(A),
ρ(t),

(
N0

s (t),N1
s (t)

)
, ntrn

)
14: end if
15: end if

16: Evaluate configuration(s) c (λS; r) for all λS ∈ C
17: Write results into shared archiveA
18: t← t+ r · |C|/B . Update budget spent
19: end while

followed by repeated “halving” steps, where the top fraction η−1 of
configurations is kept and evaluated after r is increased by a factor
of η, until the maximum fidelity value is reached. The schedule is
chosen to keep the total sum of all evaluated r constant in each batch.
Both ηsurv and ηfid in Algorithm 2 correspond to SH’s η-parameter.

4) Hyperband (HB) [14]: Similar to SH, Hyperband uses a
fixed schedule for the fidelity parameter r, but it augments SH by
using multiple brackets b of SH runs starting at different rmin(b)
and with different µ(b). The number of brackets is set to

s = blogη(1/rmin)c+ 1, (6)

which coincides with the number of fidelity steps that can be
performed on a geometric scale on the interval [rmin,1]. In bracket
b ∈ {1,2, . . . , s}, a number of µ(b) samples are initially sampled
and evaluated with initial fidelity r = ηs−b. µ(b) is chosen such
that each bracket needs an approximately similar amount of budget:
µ(b) = ds · ηs−b

s−b+1e.
5) Bayesian Optimization Hyperband (BOHB) [16]: Model-

based methods outperform Hyperband when a relatively large
amount of budget is available and many objective function evalua-
tions can be performed. BOHB was created to overcome this draw-
back. This method iterates through successive halving brackets like

Hyperband, but, instead of sampling new configurations randomly, it
uses information from the archive to propose points that are likely to
perform well. A total number ofNs configurations are proposed for
evaluation; ρ are sampled at random, and the rest are chosen based
on a surrogate model induced on the evaluated configurations inA.
The models used by BOHB are a pair of kernel density estimators
of the top and bottom configurations in A, similar to the process
in [45]. To implement BOHB in Algorithm 2, one therefore needs
to use an inducer Ifsurr that produces a function that calculates the
ratio of kernel densities, an unusual kind of regression model.

B. Limitations and Further MF-HPO Algorithms

The following lists notable HPO algorithms not currently covered
by the optimization space of Algorithm 1. They were excluded
because they differ in too substantial ways from the other algorithms
considered here.

1) FABOLAS [46]: Fabolas is a continuous multi-fidelity BO
method, where the conditional validation error is modelled as a
Gaussian process using a complex kernel-capturing covariance with
the training set fraction r ∈ (0,1] to allow for adaptive evaluation
at different resource levels.

2) Asynchronous successive halving (ASHA) [15] and
asynchronous Hyperband: Hyperband, as well as SH, have the
drawback that batch sizes decrease throughout the stages of an SH
run, preventing efficient utilization of parallel resources. ASHA
is an effective method to parallelize SH by an asynchronous
parallelization scheme. A shared archive across a number of different
workers is maintained. Instead of waiting until alln configurations of
a batch have been evaluated for fidelity r, every free worker queries
the shared archiveA for “promotable” configurations (i.e., configura-
tions that belong to the fraction of top η−1 configurations evaluated
with the same fidelity). Asynchronous Hyperband works similarly.

3) Asynchronous BOHB (A-BOHB) [17]: A-BOHB, an
asynchronous extension of BOHB where configurations are
sampled from a joint Gaussian Process, explicitly capturing
correlations across fidelities. In contrast to ASHA and asynchronous
versions of BOHB in the original BOHB publication [16], A-BOHB
does not perform synchronization after each stage but instead
uses a stopping rule [47] to asynchronously determine whether a
configuration should continue to run or be terminated.

V. EXPERIMENTAL ANALYSIS

Given the formalization of the framework in Section IV, our goal
is to find the best representative (out of this class of algorithms) by
solving the third-level optimization problem in Equation (5), and
explain the role of specific algorithmic components in a benchmark-
driven approach. We aim to answer the following research questions:
RQ1: How does the optimal configuration of our MF-HPO

framework differ between problem scenarios, i.e., do different
problem scenarios benefit from different HPO algorithms?

RQ2: How does our optimized MF-HPO algorithm compare to
other established HPO implementations?

RQ3: Does the successive-halving fidelity schedule have an
advantage over the simpler equal-batch-size schedule?

RQ4: What is the effect of using multi-fidelity methods in general?
RQ5a: Does changing SAMPLE configuration parameters

throughout the optimization process offer an advantage?

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 8

TABLE II: Three benchmark collections of YAHPO Gym used in our benchmark.

Hyperparameter Types

Scenario Target Metric d Cont. Integer Categ. Hierarchical # Instances # Training Set

lcbench: HPO of a neural network cross entropy loss 7 6 1 0 7 35 8
rbv2_super: AutoML pipeline configuration log loss 38 20 11 7 X 89 30
nb301: Neural architecture search validation accuracy 34 0 0 34 X 1 —

RQ5b: Does (more complicated) surrogate-assisted sampling in
SAMPLE provide an advantage over using simple random
sampling with surrogate filtering?

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

RQ7: Does the equal-batch-size schedule give an advantage over
established methods when parallel resources are available?

We rely on benchmark scenarios of the YAHPO Gym benchmark
suite [48], each of which provides a number of related instances of
optimization problems. The benchmark scenarios we have chosen
cover three important application areas of AutoML: Hyperparameter
optimization of a neural network (lcbench), AutoML pipeline
configuration (rbv2_super), and neural architecture search (nb301).
These classes of problems do not only represent common and
relevant tasks for researchers and practitioners in the field; as
presented in Table II, they are also quite different with regards
to: (1) the dimensionality of the search space, (2) hyperparameter
types (categorical, integer, continuous), and (3) whether there
are hierarchical dependencies between hyperparameters. More
details on the characteristics of the problem classes are given in
Appendix B. To avoid an optimistic bias in the analysis caused by
over-adaption to the random peculiarities of the particular instances
used during configuration, we are using meta-holdout splits on the
level of HPO problem instances (see Appendix IV). This means
that for analysing the performance of a configured candidate of
Algorithm 2, we are evaluating this candidate by running it on
instances that were not seen during configuration. Algorithm 2 is
always run with a budget limit corresponding to 30 · d full fidelity
evaluations (where d is the dimension of the problem instance).

A. Algorithm Design via Configuration

First, we describe the experiments we conducted to configure
Algorithm 2 via optimization.

We follow the PBO principle, and configure Algorithm 2 by
optimizing separately for different HPO scenarios, namely for
lcbench and rbv2_super, resulting in two optimized configurations
γ∗lcbench and γ∗rbv2_super, respectively. The nb301 scenario is not
used for configuration, but exclusively for subsequent analysis.

For the algorithm configuration of our framework (third level), the
performance objectiveEω∼PΩ

[ζ(A(ω,γ))] for a configuration γ in
Equation (5) is estimated by running Algorithm 2 (i.e., second level
optimization) configured by γ on a set of problem instances and
taking the average of observed performances. For this, all problem
instances included in the respective benchmark scenario that have
not been held out for subsequent analysis are used. As configurator
for our framework we use BO with the lower confidence bound ac-
quisition function [49] with interleaved random configurations every
three evaluations. Configuration is repeated three times for each sce-
nario with different random seeds. To get the overall best configura-

tion, the set of all evaluated configurations γ (i.e., the third level opti-
mization archive) is combined into a single data set for each scenario.
To estimate the actual best configuration, a common identification
criterion [50] is used: a surrogate model is fitted on the combined
datasets and the optimum among the in-sample predictions of this
model is used (γ∗lcbench and γ∗rbv2_super, respectively). We also store
the (surrogate-smoothed) optima of all three individual optimization
runs and record the range of configuration parameter values to obtain
an estimate of the uncertainty of the overall optimal configurations.

The search space used for the optimization of Algorithm 2
is shown in Appendix C, Table V. While the batch size µ is
constant in the equal batch_method, it changes for every bracket
when batch_method is HB. The batch sizes µ(2), µ(3), . . . are
constructed from µ(1) dynamically as described in Section IV.
The search space contains several surrogate learners: Random
forests [51] (RF), K-nearest-neighbors with k set to 1 (KNN1),
kernelized K-nearest-neighbors with “optimal” weighting [52]
(KKNN7), and the ratio of density predictions of good and bad points,
similar to tree parzen estimators [45] without a hierarchical structure
as in BOHB [16] (TPE). For the pre-filtering sample distribution
Pλ(A), we evaluate both uniform sampling (uniform), and
sampling from the estimated density of good points as done in
BOHB [16] (KDE). filter_mb determines whether the surrogate
model makes predictions assuming the highest fidelity value r ob-
served (TRUE), as opposed to assuming the fidelity of the points be-
ing sampled; in the framework of the SAMPLE Algorithms 3 and 4 in
Appendix A, this influences the behavior of Ifsurr . Note that the max-
imum number of fidelity steps per batch s is not part of the search
space and instead inferred automatically from ηfid and the lower
bound for r that is given as part of the optimization problem instance.
As in Hyperband, it is set to the largest number of stages that is pos-
sible given ηfid and the lower bound on r according to Equation (6).

B. Algorithm Analysis

Our goal in this work is not only to determine configurations of
Algorithm 2 that perform well on the respective benchmarking sce-
narios, but also to determine what effect individual components have
on performance. However, performing a complete sensitivity anal-
ysis would be prohibitively computationally expensive, as it would
require evaluation of the objective (i.e., running Algorithm 2) in an
experimental design of different configurations. Instead, we evaluate
the performance of the candidate configurations found in Sec-
tion V-A and alternative configurations – which are chosen in a way
to allow for answering our research questions – on the benchmark
test instances which were held out during configuration. A simple
method to answer many of these questions is to take the optimized
configuration of Algorithm 2 and swap components of it for simpler
components (or removing them completely), thereby performing
a one-factor-at-a-time analysis or an ablation study. However, the

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 9

optimal values of some components may interact strongly with other
components. We therefore auto-configure the framework several
times under certain constraints dictated by our particular research
question at hand. For example, to investigate the effect of varying
ntrn and Ns over t, we run the optimization of Algorithm 2 with
the constraint n(0) to be equal to n(1) and compare the resulting
configuration to the overall optimum γ. Table III lists the different
values of γ we generate under different constraints. For each value
of γ, we run the respectively configured HPO algorithm on both the
lcbench and the rbv2_super scenario, and (unless stated otherwise)
once each for batch_method set to equal and HB. We refer
to an optimized configuration that was obtained on the lcbench
scenario with batch_method set to equal as γ∗lcbench[equal],
and to the overall optimum (i.e., the better of γ∗lcbench[equal] and
γ∗lcbench[HB]) as γ∗lcbench; similar for rbv2_super.

Every evaluation of a framework configuration, i.e., a complete
HPO run on a problem instance, is repeated 30 times (with different
random seeds) to allow for statistical analysis.

The analysis of our research questions is based on the following
tables and visualizations. Table VI in Appendix D shows the
configuration parameters that were selected for each benchmark
scenario with various search space restrictions. We perform all op-
timization runs constrained to the fidelity scheduling equal and
HB, respectively, and denote the resulting optimal configurations
γ∗[equal] and γ∗[HB]. Figure 2 shows the configuration values of
the top 80 evaluated points according to their surrogate-predicted
performance. The ranges covered by the bee swarms are again an
indicator of approximate ranges of configuration values that can be
expected to work well. Figure 5 shows the final performance at 30·d
full-budget evaluations for all optimization runs that were performed.
The standard error shown is the estimated standard deviation of the
mean of benchmark-instance-wise performance, representing uncer-
tainty about the “true” performance mean if an infinite number of
benchmark instances of the given class of problems were available.

We now describe in more detail how we operationalize each of
the research question RQ1-RQ7 and report results.

RQ1: How does the optimal configuration differ between
problem scenarios, i.e., do different problem scenarios benefit from
different HPO algorithms?

Setup: We investigate the difference in the values that γ∗lcbench

and γ∗rbv2_super take, and put this difference in perspective by
comparing it to the uncertainty of these values. To evaluate how
well γ∗lcbench and γ∗rbv2_super generalize to other problem scenarios,
we evaluate them on the respective instances of scenarios that they
were not configured on.

Results: As can be seen in Table VI and in Figure 2, many of
the selected components of the γ∗ are relatively close to each other
across the two scenarios on which they were optimized, relative
to their uncertainty ranges. Ifsurr is chosen as KNN1 on rbv2_super,
but can also use KKNN7 on lcbench, which in fact seems to be
slightly preferred. This is interesting as KNN-based models are
rarely considered in surrogate-based HPO; the typically preferred
random forest model was not selected. Pλ(A) takes any of the two
values for rbv2_super, but is chosen to be KDE in lcbench. Finally,
ρ(0) is close to 1 in the beginning on rbv2_super, and closer to 0
(although still greater than ρ(1)) for lcbench.

The degree to which the differences in γ∗ influence the outcome

can be observed in Figure 5. The optimized results generalize well
to test instances from the same scenario as they were configured
on. Figure 3 shows the optimization progress (on unseen test
instances) of configurations if configured on the same scenario vs.
configurations that were configured on a different scenario. We see,
for example, a clear advantage of the configurations that we obtained
by optimizing directly on lcbench when we evaluate them on their
respective held out test instances. We suspect that this difference
in performance is mainly due to the different choices of surrogate
model classes Ifsurr as well as the random interleave fraction ρ
(cf. Figure 2), and that specific settings for these two algorithmic
components are needed for lcbench to reach optimal performance.

This is not the case for the rbv2_super scenario, where none
of the different algorithms seem to clearly exploit the problem
structure of rbv2_super better than others.

RQ2: How does the optimized algorithm compare to other
established HPO implementations?

Setup: We evaluate several well-known HPO algorithms in
their default configuration on the same benchmark instances: for
BOHB [16], we use the implementation found in HpBandSter2

(version 0.7.4); for HB [14], we use mlr3hyperband3 (version
0.1.2); for SMAC [5], we use the SMACv3 package4 (version
1.0.1). We also construct a traditional Gaussian process-based BO
(GPBO) [4] with mlrMBO5 (version 1.1.5). As GPBO works best
with numerical search spaces, we only evaluate it on lcbench. Note
that GPBO, SMAC, and RS are not multi-fidelity algorithms and
therefore always evaluate points with maximum fidelity 1.

Results: The performance curves for the mean normalized regret
are shown in Figure 3, and the final performance values at 30 ·d full
fidelity evaluations are shown in Figure 5. A critical difference plot
and test can be seen in Figure 4b. The behavior of RS, HB, BOHB,
and SMAC is not surprising; initially, RS and SMAC perform the
same, as SMAC evaluates an initial random design. After this, the
performance of SMAC improves quickly. HB and BOHB initially
both perform better than RS or SMAC because of their multi-fidelity
evaluations, but there is little difference between them. After a while,
BOHB starts to outperform HB because of its surrogate-based sam-
pling, which aligns with the observations in [16]. Therefore, BOHB
performs well for most budgets, often being the best optimizer for
a budget of one as well as for 100 full fidelity evaluations. Given its
multi-fidelity characteristics, HB is a good choice for low budgets,
while SMAC is well suited for larger optimization budgets. Our
framework is very competitive on both lcbench and rbv2_super, but
is outperformed by SMAC on nb301. We assume that this is because
Algorithm 2 was not explicitly optimized for the nb301 scenario.

Although our framework was only optimized for performance
at 30 · d evaluations, it is also competitive with BOHB after fewer
evaluations, as seen in Figure 4b.

RQ3: Does the successive-halving fidelity schedule have an
advantage over the (simpler) equal-batch-size schedule?

Setup: It is likely that the type of fidelity scheduling used interacts
with other configuration parameters. Therefore, we investigate

2https://github.com/automl/HpBandSter
3https://cran.r-project.org/package=mlr3hyperband
4https://github.com/automl/SMAC3
5https://cran.r-project.org/package=mlrMBO

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 10

1

1000

TPE

KNN1

KKNN7

RF

0

1

KDE

uniform

Progressive

Tournament

0

1

1

1000

1

1000

1

1000

1

1000

100

101

102

103

0

1/3

2/3

1

μ(1) ηfid ηsurv filter_method Ifsurr
Ns(0) Ns(1) ρ(0) ρ(1) Pλ(A)

Parameter

V
a

lu
e

Scenario LCbench rbv2_super γ* batch_method HB equal

Best Configuration Parameters

Fig. 2: Beeswarm plot of the best configurations according to the surrogate model over the meta-optimization archive of γ∗. Shown
are the top 80 configuration points (according to the surrogate-model-predicted performance) that were evaluated during optimization.
Levels of discrete parameters are shown. Most numeric parameters are on a log-scale (left axis), except for ρ(0), ρ(1), which are on
a linear scale (right axis). Instead of showing bothN0

s (t) andN1
s (t), their geometric meanNs(t) is shown. The highlighted large points

are γ∗[HB] and γ∗[EQUAL], which were found on both benchmark scenarios.

the difference of resulting optimal configurations γ∗[equal] and
γ∗[HB].

Results: In both scenarios, the batch method HB is ultimately
selected for the optimum γ∗, although Figures 4a and 4b show that
the difference to batch size equal is not statistically significant
at α = 1%. We observe that the equal fidelity scheduling mode
has several advantages: it is much simpler than HB as it does
not need to keep track of SH brackets, and does not need to adapt
µ(b) to make the expended budget at each bracket approximately
equal. As another benefit, it allows for easy parallel scheduling of
evaluations (see also Figure 1). This is because it always schedules
the same number of function evaluations at a time, which can
therefore be run synchronously.

RQ4: What is the effect of using multi-fidelity methods in
general?

Setup: We evaluate the performance of a modified γ∗ where
the number of fidelity stages s is set to to 1, thus ensuring that
configurations are only evaluated with maximum fidelity 1.6

Results: Our results show the superiority of MF-HPO methods
compared to HPO methods that do not make use of lower-fidelity
approximations. Figure 4a suggests that multi-fidelity methods are
significantly better than their non-multi-fidelity counterparts if opti-
mization is stopped at an intermediate overall budget corresponding
to 100 full fidelity evaluations. To be more precise, we see that
BOHB as well as both optimized variants γ∗[equal] and γ∗[HB]

6Because s is not part of the search space Γ and is instead given by Equation 6,
this is achieved by setting ηfid to∞.

(optimized for the respective scenario, respectively) significantly out-
perform SMAC under this strict budget constraint. In line with [14],
HB significantly outperforms RS for this budget. On the other hand,
Figure 4b provides evidence that multi-fidelity methods can achieve
performance on the same level as state-of-the-art methods that do
not make use of low fidelity approximations (e.g., SMAC) for larger
budgets. We conclude that a properly designed multi-fidelity mech-
anism provides substantial improvements of anytime performance
without affecting performance for larger budgets negatively. In our
opinion, the gain in anytime performance justifies the additional
algorithmic complexity that is introduced by multi-fidelity methods.

RQ5a and RQ5b: Does changing SAMPLE configuration
parameters throughout the optimization process offer an advantage?
Does (more complicated) surrogate-assisted sampling in SAMPLE
provide an advantage over using simple random sampling with
surrogate filtering?

Setup: To investigate RQ5a (i.e., the effect of the dependence of
ρ, ntrn and theNs configuration parameters on t), we performed an
optimization where this t-dependence was removed. As these pa-
rameters are interpolated between the values at t = 0 and t = 1, this
corresponds to restricting the search space to where these values are
equal, as shown for γ2 in Table III. In addition to this, we ran another
optimization where we further restricted N0

s and N1
s to be equal,

ntrn to be 1, and only the tournament filter_method be used
for RQ5b. The performance of the resulting configurations gives an
indication of the performance that is lost for the gain in simplicity.

Results: The observations made for γ2 (forbidding change over

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 11

Algorithm
BOHB

HB

RS

SMAC

γ* (lcbench bm HB)
γ* (lcbench bm equal)

γ* (rbv2_super bm HB)
γ* (rbv2_super bm equal)

GPBO

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t
rbv2_super Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

nb301 Test Instances

0.0

0.2

0.4

0.6

100 100.5 101

Budget in Multiples of Max Budget x 32

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances Parallel Runs

Algorithm
BOHB

HB

RS

SMAC

γ* (lcbench bm HB)
γ* (lcbench bm equal)

γ* (rbv2_super bm HB)
γ* (rbv2_super bm equal)

GPBO

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

rbv2_super Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

nb301 Test Instances

0.0

0.2

0.4

0.6

100 100.5 101

Budget in Multiples of Max Budget x 32

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances Parallel Runs

Fig. 3: Optimization progress (mean normalized regret) of serial evaluation on each benchmark scenario as well as 32x parallel evaluation
on lcbench. Different configurations of Algorithm 2 are executed on benchmark functions that have not been used for the meta-optimization
itself, and the progress of these algorithm runs is shown. “γ∗(lcbench bm equal)” is the configuration obtained from optimizing on lcbench
with batch_methodequal, other labels are contructed similarly. Shown is the mean over 30 evaluations, averaged over all available
test benchmark instances for each of the three scenarios. The uncertainty bands show the standard error over the test instances. Note
the log-scale on the x-axis. Regret is calculated as the difference between the best evaluation performance so far and the overall best
value found on each benchmark instance over all experiments; normalized such that 1 corresponds to the median of the performance
of all randomly sampled full fidelity evaluations. We plot performance values observed by the HPO algorithm which depend on evaluation
fidelity. This is the reason for the initially “slow” convergence of algorithms that make their first full-fidelity evaluation late. Note that
µ of γ∗[equal] was set to 32 for the parallel evaluations, and HB and BOHB were only naïvely parallelized to simulate a synchronous
“single optimizer, multiple workers” environment. See Figure 6 in Appendix E for a larger version.

2 3 4 5 6

CD

gamma*[HB]

BOHB

gamma*[EQUAL]

HB

SMAC

RS

(a) Intermediate optimization budget of 100 full evaluations

2 3 4 5 6

CD

gamma*[EQUAL]

SMAC

gamma*[HB]

BOHB

HB

RS

(b) Full evaluation budget (final performance)

Fig. 4: Critical difference plot [53] comparing the performance of different algorithms across all instances and scenarios. For each of the
three scenarios, the mean performance (across replications) for each of the six algorithms is computed (γ∗[HB] is equal to γ∗lcbench[HB]
for instances of the lcbench scenario, and to γ∗rbv[HB] for the rbv2_super scenario; same for γ∗[EQUAL]). The critical difference test
is based on the ranks of the algorithms computed per scenario and instance. Lower ranks are better. Horizontal bold bars indicate that
there is no significant difference between algorithms (α = 1%). GPBO, which was not evaluated on all scenarios, is not included.

time) and γ3 (forbidding change over time and within each batch)
are slightly contradictory. In particular, the nb301 performance
of γlcbench

2 [HB] is a visible outlier with regards to optimization
performance. There is no obvious explanation from inspecting the
configuration parameters of γlcbench

2 [HB], but it is possible that it is
an accidental “good fit” of configuration parameters to the specific
landscape of nb301.

On lcbench and rbv2_super, the impact of restricting the search
space is smaller and within the uncertainty of the performance
of a single configuration. However, we note that both changing
configuration parameters over time and within each batch sample
introduces significant complexity to the algorithm; thus we prefer
the restricted optimization results over γ∗.

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

Setup: We evaluate the overall result γ∗[equal] with Ifsur set
to each of the inducers in the original search space (see Table V).

Furthermore, γ∗[equal] is evaluated with ρ set to 1 (i.e., all points
are sampled randomly from a distribution that may be non-uniform),
and finally, with ρ = 1 and Pλ(A) = uniform (i.e., all points
are sampled completely uniformly at random).

Results: Surprisingly, the simple k-nearest-neighbors algorithm
seems to be chosen consistently by the algorithm configuration
for both lcbench and rbv2_super (see Figure 2), either with a
value of k = 1 or k = 7. This result is in line with what we
already speculated for RQ1. Our ablation experiments suggest that
the performance of the optimizer is on average best when using
this surrogate learner, even though the differences do not seem
to be significant. KNN1 is therefore a reasonable, and simpler,
alternative to more complex surrogate learners like the TPE-based
method proposed for the original BOHB algorithm.

RQ7: Does the equal-batch-size schedule give an advantage over
established methods when parallel resources are available?

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 12

lcbench rbv2_super nb301

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

γ6

γ5

γ4

γ3

γ2

γ1

γ*

Mean Normalized Regret

Scenario lcbench rbv2_super Ifsurr
KKNN7
KNN1

none
RF

Sample KDE
TPE

batch_method equal HB

Fig. 5: Mean normalized regret of final performance on “test” benchmark instances for the configuration, shown in Table III. Shown
is the mean over 30 evaluations, averaged over all available test benchmark instances for each of the three scenarios. The uncertainty
bands show standard error over instance means. Regret is calculated as the difference between the best evaluation performance so far
and the overall best value on each benchmark instance over all experiments; normalized such that 1 corresponds to the median of the
performance of all randomly sampled full fidelity evaluations.

Setup: Optimization of ML methods that are expensive to evaluate
is often done in parallel; we evaluate the performance of our method
and other methods in a (simulated) parallel setting. We evaluate
γ∗[equal] with µ set to 32 and with an optimization budget of
30 · 4 · d, where d is the dimensionality of the optimization problem.
We compare it to GPBO with qLCB [10] for 32 parallel evaluations,
and simulate parallel execution of RS by running 30 · 4 · d random
evaluations. Both BOHB and SMAC offer parallelized versions, but
the YAHPO Gym benchmark package does not yet provide support
for asynchronous parallel evaluations [48]. However, since HB and
BOHB propose evaluations in batches, we compared HB and BOHB
by accounting for submitted batches in increments of 32, essentially
simulating a single HB/BOHB optimizer sending evaluations to 32
parallel workers and waiting for their completion synchronously.

Results: Figure 3 shows that our algorithm is competitive with
GPBO – a state-of-the-art synchronously parallel optimization
algorithm – when evaluated with 32 parallel resources. This result
also shows the main advantage that the equal fidelity schedule
has over scheduling like HB, as synchronously parallelizing HB
or BOHB puts them at a great disadvantage over even RS. For
HB and BOHB, it is necessary to use asynchronously parallelized
methods [15], [17] or use an archive shared between multiple
workers [16] to obtain competitive results. However, synchronous
objective evaluations are much easier to implement in many
environments than asynchronous communication between workers,
making the advantage of the simplicity of the equal schedule
even more pronounced.

C. Reproducibility and Open Science
The implementation of the framework in Algorithm 2 and

reproducible scripts for the algorithm configuration and analysis

are available in public repositories.7 All data that were generated
by our analyses are available as well.

VI. CONCLUSION

We presented a principled approach and framework to benchmark-
driven algorithm design and applied it to generic multi-fidelity HPO.
We formalized the search space of multi-fidelity hyperparameter
optimizers and created a rich and configurable optimization
framework. Given the search space, we used BO for meta-
optimization of our framework on two different problem scenarios
within the field of AutoML, and evaluated the result on held out
test problems and an entirely held out test scenario. We evaluated
the configured optimizers and compared to BOHB, HB, SMAC,
and a simple RS as reference. We performed an extensive analysis
of the effect of different algorithmic components on performance,
while also considering the additional algorithmic complexity they
introduce. Our configured framework showed equal and in some
cases superior performance to widely-used HPO algorithms.

The additional algorithmic complexity introduced by multi-
fidelity evaluations provides substantial benefits. However, based on
our experiments, we argue that design choices made by established
multi-fidelity optimizers like BOHB can be replaced by simpler
choices: For example, the (more complex) SH schedule is not
significantly better than a schedule using equal batch sizes, which
allows for more efficient parallelization.

KDE-based sampling of points to propose, whether filtered by a
surrogate model or not, was consistently chosen by our framework.
This detail, which is not usually presented as the main feature of

7https://github.com/mlr-org/smashy,
https://github.com/compstat-lmu/paper_2021_benchmarking_special_issue

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 13

TABLE III: Summary of Experiment. Shown are the various optimizer configurations γ that were obtained from optimizations with
different constraints. “Name”: The name by which we refer to the configuration in the text. “RQ”: The research question that mainly
relates to the configuration. “Optimize”: Whether the given configuration was obtained by conducting a (possibly constrained) optimization
(X), or by substituting values into the global optimum γ∗.

Name RQ Optimize Design Modification

γ∗ 1, 2, 3 X none (global optimization)
γ1 4 7 ηfid →∞
γ2 5a X ntrn(0) = ntrn(1), N0

s (0) = N0
s (1), N1

s (0) = N1
s (1), ρ(0) = ρ(1)

γ3 5b X filter_method→ tournament, ntrn → 1, N0
s (0) = N0

s (1) = N1
s (0) = N1

s (1), ρ(0) = ρ(1)
γ4 6 7 batch_method→ equal, Ifsur → ∗
γ5 6 7 batch_method→ equal, ρ→ 0
γ6 6 7 batch_method→ equal, ρ→ 0, Pλ(A)→ uniform
γ7 7 7 batch_method→ equal, µ→ 32, quadruple budget

BOHB, seems to have an unexpectedly large impact. On the other
hand, our optimization results suggest that a surprisingly simple
surrogate learner (knn, k = 1) can perform even better.

Some components of our search space with large algorithmic
complexity have not shown much benefit. Optimization on
rbv2_super did choose time-varying random interleaving, and
overall, more aggressive filtering late during an optimization run
(Ns(1) > Ns(0)) was slightly favored, but the results did not
consistently outperform a configuration obtained from a restricted
optimization that excluded time-varying configuration parameters.

Our analysis of the set of best observed performances during
optimization indicates that there is a large agreement between
benchmark scenarios about what the optimal γ∗ configuration
should be, with parameters that control (model-based) sampling
and the surrogate model being the notable exception. This suggests
that there may be a set of configuration parameters that are either
generally good for many ML problems, or have little impact
on performance and can therefore be set to the simplest value.
However, some configuration parameters should be adapted to
the properties of the particular given optimization problem. The
meta-optimization framework presented in this work can be used
in future work to investigate the relationship between features of
optimization problems and related optimal configurations.

Other fruitful directions for future work include the more
in-depth evaluation of asynchronous evaluations; asynchronous
methods are important nowadays where parallel resources are
plentiful, but current widely-used surrogate-based benchmarks do
not allow for easy asynchronous evaluations. Suggested methods
– such as waiting with a sleep-timer for an appropriate amount [16]
– are impractical for meta-optimization.

ACKNOWLEDGMENTS

The authors of this work take full responsibilities for its content.
This work was supported by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A.
Lennart Schneider is supported by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy through the
Center for Analytics – Data – Applications (ADACenter) within
the framework of BAYERN DIGITAL II (20-3410-2-9-8). Lars
Kotthoff is supported by NSF grant 1813537.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 14

REFERENCES

[1] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,
T. Ullmann, M. Becker, A. Boulesteix, D. Deng, and M. Lindauer,
“Hyperparameter optimization: Foundations, algorithms, best practices and
open challenges,” CoRR, vol. abs/2107.05847, 2021.

[2] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
“Auto-weka: Automatic model selection and hyperparameter optimization
in weka,” in Automated Machine Learning: Methods, Systems, Challenges,
F. Hutter, L. Kotthoff, and J. Vanschoren, Eds. Cham: Springer International
Publishing, 2019, pp. 81–95.

[3] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[4] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of ex-
pensive black-box functions,” J. Glob. Optim., vol. 13, no. 4, pp. 455–492, 1998.

[5] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Learning and Intelligent
Optimization, C. A. C. Coello, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 507–523.

[6] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-thaw bayesian optimization,”
CoRR, vol. abs/1406.3896, 2014.

[7] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[8] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’12. Red Hook, NY, USA: Curran Associates Inc., 2012, p. 2951–2959.

[9] R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and
I. Guyon, “Bayesian optimization is superior to random search for machine
learning hyperparameter tuning: Analysis of the black-box optimization
challenge 2020,” in NeurIPS 2020 Competition and Demonstration Track,
6-12 December 2020, Virtual Event / Vancouver, BC, Canada, ser. Proceedings
of Machine Learning Research, H. J. Escalante and K. Hofmann, Eds., vol.
133. PMLR, 2020, pp. 3–26.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Parallel algorithm configuration,”
in Learning and Intelligent Optimization, ser. Lecture Notes in Computer
Science, Y. Hamadi and M. Schoenauer, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, no. 7219, pp. 55–70.

[11] B. Bischl, S. Wessing, N. Bauer, K. Friedrichs, and C. Weihs, “MOI-MBO:
multiobjective infill for parallel model-based optimization,” in Learning and
Intelligent Optimization - 8th International Conference, Lion 8, Gainesville,
FL, USA, February 16-21, 2014. Revised Selected Papers, ser. Lecture Notes
in Computer Science, P. M. Pardalos, M. G. C. Resende, C. Vogiatzis, and
J. L. Walteros, Eds., vol. 8426. Springer, 2014, pp. 173–186.

[12] J. González, Z. Dai, P. Hennig, and N. D. Lawrence, “Batch bayesian
optimization via local penalization,” in Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz,
Spain, May 9-11, 2016, ser. JMLR Workshop and Conference Proceedings,
A. Gretton and C. C. Robert, Eds., vol. 51. JMLR.org, 2016, pp. 648–657.

[13] C. Chevalier and D. Ginsbourger, “Fast computation of the multi-points
expected improvement with applications in batch selection,” in Learning and
Intelligent Optimization. Springer Berlin Heidelberg, 2013, pp. 59–69.

[14] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter optimization,”
J. Mach. Learn. Res., vol. 18, pp. 185:1–185:52, 2017.

[15] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-tzur, M. Hardt,
B. Recht, and A. Talwalkar, “A system for massively parallel hyperparameter
tuning,” in Proceedings of Machine Learning and Systems 2020, MLSys 2020,
Austin, TX, USA, March 2-4, 2020, I. S. Dhillon, D. S. Papailiopoulos, and
V. Sze, Eds. mlsys.org, 2020.

[16] S. Falkner, A. Klein, and F. Hutter, “BOHB: robust and efficient hyperparameter
optimization at scale,” in Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, ser. Proceedings of Machine Learning Research, J. G. Dy
and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 1436–1445.

[17] L. C. Tiao, A. Klein, C. Archambeau, and M. W. Seeger, “Model-based
asynchronous hyperparameter optimization,” CoRR, vol. abs/2003.10865, 2020.

[18] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J. Crespo, and D. Dennison, “Hidden technical debt
in machine learning systems,” in Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 2503–2511.

[19] K. G. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz,

Spain, May 9-11, 2016, ser. JMLR Workshop and Conference Proceedings,
A. Gretton and C. C. Robert, Eds., vol. 51. JMLR.org, 2016, pp. 240–248.

[20] H. H. Hoos, “Programming by Optimization,” Communications of the Associ-
ation for Computing Machinery (CACM), vol. 55, no. 2, pp. 70–80, Feb. 2012.

[21] S. Minton, “Automatically Configuring Constraint Satisfaction Programs: A
Case Study,” Constraints, vol. 1, pp. 7–43, 1996.

[22] S. J. Westfold and D. R. Smith, “Synthesis of Efficient Constraint Satisfaction
Programs,” Knowl. Eng. Rev., vol. 16, no. 1, pp. 69–84, 2001.

[23] D. Balasubramaniam, L. de Silva, C. A. Jefferson, L. Kotthoff, I. Miguel, and
P. Nightingale, “Dominion: An Architecture-driven Approach to Generating
Efficient Constraint Solvers,” in 9th Working IEEE/IFIP Conference on
Software Architecture, Jun. 2011, pp. 228–231.

[24] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, “SATenstein:
automatically building local search SAT solvers from components,” in Proceed-
ings of the 21st International Joint Conference on Artifical Intelligence. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp. 517–524.

[25] J.-N. Monette, Y. Deville, and P. van Hentenryck, “Aeon: Synthesizing
Scheduling Algorithms from High-Level Models,” in Operations Research
and Cyber-Infrastructure, 2009, pp. 43–59.

[26] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and iterated
f-race: An overview,” Experimental methods for the analysis of optimization
algorithms, pp. 311–336, 2010.

[27] M. López-Ibáñez and T. Stützle, “The automatic design of multi-objective
ant colony optimization algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 16, no. 6, pp. 861–875, 2012.

[28] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle,
“The irace package: Iterated racing for automatic algorithm configuration,”
Operations Research Perspectives, vol. 3, pp. 43–58, 2016.

[29] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle, “Automatic Component-
Wise Design of Multiobjective Evolutionary Algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 20, no. 3, pp. 403–417, 2016.

[30] N. Dang, L. P. Cáceres, P. D. Causmaecker, and T. Stützle, “Configuring irace
using surrogate configuration benchmarks,” in Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, July
15-19, 2017, P. A. N. Bosman, Ed. ACM, 2017, pp. 243–250.

[31] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck, “Evolving the structure
of Evolution Strategies,” in IEEE Symposium Series on Computational
Intelligence (SSCI), 2016, pp. 1–8.

[32] G. Malkomes and R. Garnett, “Automating bayesian optimization with
bayesian optimization,” Advances in Neural Information Processing Systems,
vol. 31, pp. 5984–5994, 2018.

[33] M. Lindauer, M. Feurer, K. Eggensperger, A. Biedenkapp, and F. Hutter,
“Towards assessing the impact of Bayesian optimization’s own hyperparameters,”
2019.

[34] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng,
C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter, “Smac3: A versatile
bayesian optimization package for hyperparameter optimization,” 2021.

[35] A. Saltelli, “Sensitivity analysis for importance assessment,” Risk Analysis,
vol. 22, no. 3, pp. 579–590, 2002.

[36] W. Hoeffding, “A Class of Statistics with Asymptotically Normal Distribution,”
The Annals of Mathematical Statistics, vol. 19, no. 3, pp. 293 – 325, 1948.

[37] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for
assessing hyperparameter importance,” in Proceedings of the 31st International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, E. P. Xing and T. Jebara, Eds., vol. 32, no. 1. Bejing, China:
PMLR, 22–24 Jun 2014, pp. 754–762.

[38] C. Fawcett and H. H. Hoos, “Analysing differences between algorithm config-
urations through ablation,” J. Heuristics, vol. 22, no. 4, pp. 431–458, 2016.

[39] S. Sheikholeslami, M. Meister, T. Wang, A. H. Payberah, V. Vlassov, and
J. Dowling, “Autoablation: Automated parallel ablation studies for deep
learning,” in EuroMLSys@EuroSys 2021, Proceedings of the 1st Workshop
on Machine Learning and Systemsg Virtual Event, Edinburgh, Scotland, UK,
26 April, 2021, E. Yoneki and P. Patras, Eds. ACM, 2021, pp. 55–61.

[40] M. López-Ibáñez and T. Stützle, “An experimental analysis of design choices
of multi-objective ant colony optimization algorithms,” Swarm Intelligence,
vol. 6, pp. 207–232, 2012.

[41] J. de Nobel, D. Vermetten, H. Wang, C. Doerr, and T. Bäck, “Tuning as a
Means of Assessing the Benefits of New Ideas in Interplay with Existing
Algorithmic Modules,” in Genetic and Evolutionary Computation Conference
Companion. Association for Computing Machinery, 2021, pp. 1375–1384.

[42] A. Klein, L. C. Tiao, T. Lienart, C. Archambeau, and M. Seeger, “Model-based
asynchronous hyperparameter and neural architecture search,” arXiv preprint
arXiv:2003.10865, 2020.

[43] M. Birattari, Tuning Metaheuristics - A Machine Learning Perspective, ser.
Studies in Computational Intelligence. Springer, 2009, vol. 197.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 15

[44] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration in
multi-armed bandits,” in International Conference on Machine Learning.
PMLR, 2013, pp. 1238–1246.

[45] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing systems,
vol. 24, 2011.

[46] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian
optimization of machine learning hyperparameters on large datasets,” in
Artificial Intelligence and Statistics. PMLR, 2017, pp. 528–536.

[47] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and
data mining, 2017, pp. 1487–1495.

[48] F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl, “YAHPO
Gym – Design Criteria and a new Multifidelity Benchmark for Hyperparameter
Optimization,” arXiv:2109.03670 [cs, stat], 2021, arXiv: 2109.03670.

[49] D. R. Jones, “A taxonomy of global optimization methods based on response
surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp. 345–383, 2001.

[50] H. Jalali, I. Van Nieuwenhuyse, and V. Picheny, “Comparison of kriging-based
algorithms for simulation optimization with heterogeneous noise,” European
Journal of Operational Research, vol. 261, no. 1, pp. 279–301, 2017.

[51] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[52] R. J. Samworth, “Optimal weighted nearest neighbour classifiers,” The Annals

of Statistics, vol. 40, no. 5, Oct. 2012.
[53] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,” J.

Mach. Learn. Res., vol. 7, pp. 1–30, 2006.
[54] L. Zimmer, M. Lindauer, and F. Hutter, “Auto-pytorch tabular: Multi-fidelity

metalearning for efficient and robust autodl,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, no. 9, pp. 3079 – 3090, 2021.

[55] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter, “Nas-bench-
301 and the case for surrogate benchmarks for neural architecture search,” 2020.

[56] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep learning for
recommender systems,” in Proceedings of the 1st workshop on deep learning
for recommender systems, 2016, pp. 7–10.

[57] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “Openml: networked
science in machine learning,” SIGKDD Explor., vol. 15, no. 2, pp. 49–60, 2013.

[58] M. Binder, F. Pfisterer, and B. Bischl, “Collecting empirical data about
hyperparameters for data driven automl,” in Proceedings of the 7th ICML
Workshop on Automated Machine Learning (AutoML 2020), 2020.

[59] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 42, no. 4, pp.
824–836, 2018.

[60] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized
linear models via coordinate descent,” Journal of Statistical Software, vol. 33,
no. 1, pp. 1–22, 2010.

[61] M. N. Wright and A. Ziegler, “ranger: A fast implementation of random forests
for high dimensional data in C++ and R,” Journal of Statistical Software,
vol. 77, no. 1, pp. 1–17, 2017.

[62] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And
Regression Trees. Routledge, Oct. 2017.

[63] B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the Fifth Annual ACM Conference on
Computational Learning Theory, COLT 1992, Pittsburgh, PA, USA, July 27-29,
1992, D. Haussler, Ed. ACM, 1992, pp. 144–152.

[64] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[65] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Architecture
Search,” in Proceedings of the International Conference on Learning
Representations, 2019.

[66] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 16

APPENDIX A
SAMPLE ALGORITHMS

The pseudocode of both SAMPLE algorithms is presented here
for clarity.

Algorithm Algorithm 3, SAMPLETOURNAMENT, diversifies
the set of points proposed through an extension that draws
different points {λS} in n tournaments at each invocation of
SAMPLE. Each tournament yields the top ntrn points out of
ntrn · N(i)

s samples according to the surrogate model, where
i ∈ {1, . . . , n}. We parameterize the number of points sampled
for each tournament using the configuration parameters N0

s
and N1

s ; the effective value of Ns for each point is interpolated
geometrically8: N(i)

s =
⌊
(N0

s)(n−i)/(n−1) · (N1
s)(i−1)/(n−1)

⌉
.

The special case of ntrn = 1 corresponds to a basic SAMPLE

subroutine where points λ(i)
S are each independently filtered with

different effective filter factorsN(i)
s .

Besides the sampling method described above, we propose
an alternative method, Algorithm 4, which we name
SAMPLEPROGRESSIVE: instead of sampling N

(i)
s points

independently for each configuration λ
(i)
S with i ∈ {1, . . . , µ}, we

sample a single ordered pool P of µ ·max(N0
s ,N

1
s) random points

once at the beginning of SAMPLE. Each λ
(i)
S is then selected as the

point with the best surrogate-predicted performance from the first
µ ·N(i)

s points in P that was not already selected before.

Algorithm 3 SAMPLETOURNAMENT algorithm
Input: Archive A, number of points to generate µ, current

fidelity r

Configuration Parameters: Surrogate learner Ifsur , generating
distribution Pλ(A), random interleave fraction ρ, sample filtering
rates (N0

s ,N
1
s), points to sample per tournament round ntrn.

State Variables: Batch of proposed configurations C ← ∅

1: Use ρ to decide how many points nrandom_interleave to sample
without filter

2: C ← Sample nrandom_interleave points from Pλ(A)
3: n← d(µ− nrandom_interleave)/ntrne .

Numter of tournament rounds
4: fsur ← Ifsur(A) . Surrogate model
5: for i← 1 to n do
6: nsample ←

⌊
(N0

s)
n−i
n−1 · (N1

s)
i−1
n−1

⌉

7: C0 ← Sample nsample configurations from Pλ(A)
8: Predict performances of points in C0 using fsur
9: C ← C ∪ SELECT_TOP (C0,min(ntrn, µ− |C|))

10: end for
11: return C

8Here, b·e is the operation that rounds to the next integer.

Algorithm 4 SAMPLEPROGRESSIVE algorithm
Input: Surrogate learner Ifsur , ArchiveA, number of points to

generate µ, current fidelity r, random interleave fraction ρ, sample
filtering rates (N0

s ,N
1
s), generating distribution Pλ(A)

State Variables: Batch of proposed configurations C ← ∅,
(ordered) pool of sampled points to select from P

1: Use ρ to decide how many points nrandom_interleave to sample
without filter

2: C ← Sample nrandom_interleave configurations from Pλ(A)
3: µ← µ− nrandom_interleave

4: npool ← µ ·max(N0
s ,N

1
s)

5: P ← Sample npool configurations from Pλ(A)
6: fsur ← Ifsur(A) . Surrogate model
7: Predict performances of points in P using fsur
8: for i← 1 to µ do
9: noptions ←

⌊
(N0

s)
µ−i
µ−1 · (N1

s)
µ−1
µ−1

⌉

10: Poptions ← first noptions elements of P
11: S ← SELECT_TOP (Poptions,1)
12: C ← C ∪ S
13: P ← P − S
14: end for
15: return C

APPENDIX B
BENCHMARK COLLECTIONS

While the underlying data for lcbench and nb301 have been
previously used in publications ([54], [55]), rbv2_super is a novel
task that has not been investigated previously in literature.

Benchmarks in the YAHPO Gym are implemented as surrogate
model benchmarks, where a Wide & Deep [56] neural network was
fitted to a set of pre-evaluated performance values of hyperparameter
configurations.

HPO on a neural network (lcbench [54]): The first set of
problems covers HPO on a relatively small and numeric search space.
The neural network (more precisely, a funnel-shaped multilayer
perceptron) that is tuned has a total of 7 numerical hyperparameters.
The fidelity of an evaluation can be controlled by setting the number
of epochs over which the neural network is trained. The instances
belonging to this scenario represent HPO performed on 35 different
classification tasks taken from OpenML [57]. As a target metric,
we choose the cross entropy loss on the validation set.

AutoML pipeline configuration (rbv2_super [58]): Second,
we investigate the problem of configuring an AutoML pipeline.
Here, a learning algorithm must be selected first from the following
candidates: approximate k nearest neighbors [59], elastic net linear
models [60], random forests [61], decision trees [62], support vector
machines [63], and gradient boosting [64]. The hyperparameters of
each learner are chosen conditioned on this learner being active, i.e.,
there are hierarchical hyperparameter dependencies. The fidelity
of a single evaluation can be controlled by choosing the size of
the training data set that is used to train the respective learner. The
automated optimization of the pipeline is performed for 89 different
classification tasks [58], again taken from OpenML. As a target
metric, we opt for the log loss.

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 17

Neural architecture search (nb301 [55]): As third problem
scenario, we consider neural architecture search. The search space
of architectures is given by the darts search space [65], and architec-
tures were trained and evaluated on CIFAR-10 [66]. A convolutional
neural network is constructed by stacking so-called normal and re-
duction cells that each can be represented as a directed acyclic graph
consisting of an ordered sequence of vertices (nodes) resembling
feature maps, with each directed edge associated with an operation
that transforms the input node. A tabular representation can be
derived using 34 categorical parameters with 24 dependencies. Each
architecture can be trained for 1 to 98 epochs, allowing again for
lower fidelity evaluations. The target metric is validation accuracy.

APPENDIX C
META-OPTIMIZATION SEARCH SPACE

The full optimization space used for optimization of γ∗ is
presented here in Table V. Other γ results have the restrictions
applied to them, as shown in Table III in Section V.

TABLE IV: Instances within the benchmarking scenarios lcbench, rbv2_super, and nb301 within the YAHPO Gym test suite that have
been used for the experimental analysis (Section V). We show the instances that have been used for optimization only (Section V-A),
and the instances that have been held out from optimization and exclusively used for analysis (Section V-B).

Scenario Instances used for configuration Instances held out for analysis

lcbench 3945, 7593, 126026, 167201, 168329, 168868, 168908, 189354 34539 126025, 126029, 146212, 167083, 167104, 167149, 167152,
167161, 167168, 167181, 167184, 167185, 167190, 167200, 168330,
168331, 168335, 168910, 189862, 189865, 189866, 189873, 189905,

189906, 189908, 189909

rbv2_super 1050, 1053, 1056, 1068, 12, 1461, 1464, 1489, 1510, 1515, 42, 44, 4534, 4538, 469, 470, 50, 54, 60,
188, 3, 307, 32, 37, 375, 38, 40496, 40498, 40701, 40978 1040, 1049, 1063, 1067, 11, 1111, 14, 1462, 1468, 1475,

40979, 40983, 41142, 41146, 41156, 41157, 458, 46, 6332, 1476, 1478, 1479, 1480, 1485, 1486, 1487, 1494, 1497, 15,
1501, 16, 18, 181, 182, 22, 23, 23381, 24, 28,

29, 31, 312, 334, 377, 40499, 40536, 40670, 40900, 40966,
40975, 40981, 40982, 40984, 40994, 41138, 41143, 41212, 4134, 4154

nb301 – 1

TABLE V: Meta-optimization search space used to configure Algorithm 2. Some configuration parameters are optimized on a non-linear
scale, meaning e.g. the optimizer optimizes a value of logµ(1) ranging from log 2 to log 200.

Parameter Meaning Range Scale

µ(1) (first bracket) batch size {2, . . . ,200} logµ(1)
batch_method batch method {equal, HB}
ηfid fidelity rate [21/4,24] log log ηfid
ηsurv survival rate [1,∞) 1/ηsurv
filter_method SAMPLE method {SAMPLETOURNAMENT, SAMPLEPROGRESSIVE}
Pλ(A) SAMPLE generating distribution {uniform, KDE}
Ifsurr surrogate learner {KNN1, KKNN7, TPE, RF}
ntrn(0) filter sample per tournament round at t = 0 {1, . . . , 10} logntrn(0)
ntrn(1) filter sample per tournament round at t = 1 {1, . . . , 10} logntrn(1)
N0

s (0) filtering rate of first point in batch at t = 0 [1,1000] logN0
s (1)

N0
s (1) filtering rate of first point in batch at t = 1 [1,1000] logN0

s (1)
N1

s (0) filtering rate of last point in batch at t = 0 [1,1000] logN1
s (1)

N1
s (1) filtering rate of last point in batch at t = 1 [1,1000] logN1

s (1)
ρ(0) random interleave fraction at t = 0 [0,1]
ρ(1) random interleave fraction at t = 1 [0,1]
filter_mb surrogate prediction always with maximum r {TRUE, FALSE}
ρrandom random interleave the same number in every batch {TRUE, FALSE}

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 18

APPENDIX D
ALL γ-VALUES

A table of all optimization γ-values is given in Table VI.

TABLE VI: Optimized configuration parameters, under some constraints. Top: restricted to batch_method HB, bottom: equal. γ2,
γ3 are further restricted, as described in Table III in Section V. Shown is the overall result. Square brackets show range (for numeric
parameters) or list (for discrete parameters) of values found in individual optimization runs when not aggregated as a rough indicator
of uncertainty. “(!)” indicates the parameter was forced to the value by a restriction.

Parameter γ∗ γ∗ γ2 γ2 γ3 γ3
Scenario lcbench rbv2_super lcbench rbv2_super lcbench rbv2_super

Optimized with batch_method HB:

µ(1) 5 [5, 23] 2 [2, 52] 126 [10, 126] 8 [8, 114] 5 [3, 68] 2 [2, 52]
ηfid 3.11 [1.25, 3.11] 1.97 [1.97, 6.73] 2.19 [1.68, 10.2] 4.4 [2.04, 4.4] 14.6 [1.45, 14.6] 5.19 [2.24, 5.19]
ηsurv 2.22 [2.22, 6.1] 6.09 [1.65, 6.09] 3.42 [2.58, 9.19] 3.26 [3.26, 5] 1.15 [1.15, 3.07] 1.20 [1.03, 1.62]
filter_method PROG [TRN] PROG [TRN] PROG [TRN] PROG [TRN] TRN (!) TRN (!)
Pλ(A) KDE uniform [KDE] KDE uniform [KDE] KDE uniform
Ifsurr KKNN7 [KNN1] KNN1 KKNN7 [KNN1] KNN1 KKNN7 [KNN1] KNN1
ntrn(0) 2 [2, 8] 2 [1, 5] 5 [1, 8] 5 [1, 6] 1 (!) 1 (!)
ntrn(1) 1 [1, 5] 5 [1, 5]
N0

s (0) 101 [9.19, 124] 226 [2.03, 226] 39.6 [10.5, 76.7] 125 [125, 163]
570 [73, 570] 155 [155, 561]N0

s (1) 312 [56.3, 817] 495 [57.1, 533]
N1

s (0) 28.9 [4.84, 144] 256 [7.19, 256] 31.4 [18.2, 74.6] 481 [480, 563]
N1

s (1) 8 [8, 654] 99.7 [46.4, 890]
ρ(0) 0.21 [0.12, 0.85] 0.86 [0.68, 0.86] 0.37 [0.2, 0.49] 0.71 [0.49, 0.71] 0.38 [0.12, 0.54] 0.34 [0.34, 0.45]
ρ(1) 0.08 [0.08, 0.55] 0.06 [0.01, 0.25]
filter_mb TRUE [FALSE] FALSE [TRUE] TRUE TRUE TRUE [FALSE] FALSE
ρrandom FALSE [TRUE] TRUE [FALSE] FALSE [TRUE] TRUE [FALSE] TRUE TRUE [FALSE]

Optimized with batch_method equal:

µ(1) 3 [2, 4] 15 [11, 15] 5 [2, 7] 5 [2, 5] 2 [2, 6] 85 [3, 93]
ηfid 2.71 [1.77, 12.2] 1.25 [1.22, 1.43] 2.63 [2.27, 6.01] 8 [1.28, 8] 2.59 [1.46, 2.59] 2.3 [1.36, 12.7]
ηsurv 2.5 [1.23, 3.36] 18.8 [8.74, 18.8] 1.87 [1.84, 5.49] 3.45 [3.45, 5.53] 3.53 [1.29, 4.86] 6.5 [5.34, 11.3]
filter_method TRN [PROG] PROG TRN [PROG] PROG [TRN] TRN (!) TRN (!)
Pλ(A) KDE KDE [uniform] KDE uniform [KDE] KDE uniform [KDE]
Ifsurr KKNN7 [KNN1] KNN1 KNN1 [KNN7] KNN1 KNN1 [KNN7] KNN1
ntrn(0) 1 [1, 4] 2 [1, 3] 5 [1, 5] 3 [1, 3] 1 (!) 1 (!)
ntrn(1) 2 [1, 2] 9 [1, 9]
N0

s (0) 21.5 [1.63, 309] 39.5 [2.42, 39.5] 169 [43.4, 191] 212 [49.5, 212]
81.3 [24.8, 111] 583 [295, 777]N0

s (1) 941 [58.2, 991] 18.1 [11.5, 408]
N1

s (0) 35.4 [7.8, 280] 6.65 [5.43, 391] 4.76 [2.34, 273] 1.71 [1.71, 4.21]
N1

s (1) 264 [5, 474] 925 [25.4, 925]
ρ(0) 0.32 [0.09, 0.68] 0.83 [0.49, 0.83] 0.34 [0.09, 0.37] 0.34 [0.34, 0.53] 0.27 [0.03, 0.27] 0.96 [0.38, 0.96]
ρ(1) 0.16 [0.06, 0.29] 0.03 [0.03, 0.5]
filter_mb TRUE TRUE TRUE TRUE TRUE [FALSE] TRUE
ρrandom TRUE [FALSE] FALSE TRUE [FALSE] FALSE [TRUE] TRUE TRUE [FALSE]

IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 19

APPENDIX E
ENLARGED OPTIMIZATION CURVE PLOTS

Algorithm
BOHB

HB

RS

SMAC

γ* (lcbench bm HB)
γ* (lcbench bm equal)

γ* (rbv2_super bm HB)
γ* (rbv2_super bm equal)

GPBO

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

rbv2_super Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

nb301 Test Instances

0.0

0.2

0.4

0.6

100 100.5 101

Budget in Multiples of Max Budget x 32

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances Parallel Runs

Algorithm
BOHB

HB

RS

SMAC

γ* (lcbench bm HB)
γ* (lcbench bm equal)

γ* (rbv2_super bm HB)
γ* (rbv2_super bm equal)

GPBO

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

rbv2_super Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

nb301 Test Instances

0.0

0.2

0.4

0.6

100 100.5 101

Budget in Multiples of Max Budget x 32

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances Parallel Runs

Algorithm
BOHB

HB

RS

SMAC

γ* (lcbench bm HB)
γ* (lcbench bm equal)

γ* (rbv2_super bm HB)
γ* (rbv2_super bm equal)

GPBO

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

rbv2_super Test Instances

0.0

0.5

1.0

1.5

2.0

100 100.5 101 101.5 102 102.5 103

Budget in Multiples of Max Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

nb301 Test Instances

0.0

0.2

0.4

0.6

100 100.5 101

Budget in Multiples of Max Budget x 32

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

lcbench Test Instances Parallel Runs

Fig. 6: Enlarged version of Figure 3.

4.7 YAHPO Gym - Design Criteria and a new Multifidelity Benchmark for
Hyperparameter Optimization 141

4.7 YAHPO Gym - Design Criteria and a new Multi-
fidelity Benchmark for Hyperparameter Optimiza-
tion

Contributed Article:
F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl. Yahpo gym - an efficient
multi-objective multi-fidelity benchmark for hyperparameter optimization. In I. Guyon,
M. Lindauer, M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the
First International Conference on Automated Machine Learning, volume 188 of Proceed-
ings of Machine Learning Research, pages 3/1–39. PMLR, 25–27 Jul 2022

Declaration of contributions FP and LS contributed equally. The core idea for the
system originated from FP who also developed initial code and a first version of the sys-
tem. FP, with help by LS then re-implemented the underlying software. FP, LS, MB
collected samples from relevant benchmarks and performance datasets. LS contributed
several improvements to software, stability and functionality as well as automated tuning.
MB, JM and BB advised throughout this process. LS and FP jointly developed the ex-
periments, which were executed by LS who also contributed implementations of relevant
baselines algorithms. FP and LS jointly authored the resulting manuscript with input and
improvements by MB, JM and BB.

YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity
Benchmark for Hyperparameter Optimization

Florian Pfisterer1 Lennart Schneider1 Julia Moosbauer1 Martin Binder1 Bernd Bischl1

1LMU Munich

Abstract When developing and analyzing new hyperparameter optimization methods, it is vital to
empirically evaluate and compare them on well-curated benchmark suites. In this work, we
propose a new set of challenging and relevant benchmark problems motivated by desirable
properties and requirements for such benchmarks. Our new surrogate-based benchmark
collection consists of 14 scenarios that in total constitute over 700 multi-fidelity hyper-
parameter optimization problems, which all enable multi-objective hyperparameter opti-
mization. Furthermore, we empirically compare surrogate-based benchmarks to the more
widely-used tabular benchmarks, and demonstrate that the latter may produce unfaithful
results regarding the performance ranking of HPO methods. We examine and compare our
benchmark collection with respect to defined requirements and propose a single-objective
as well as a multi-objective benchmark suite on which we compare 7 single-objective and
7 multi-objective optimizers in a benchmark experiment. Our software is available at
[https://github.com/slds-lmu/yahpo_gym].

1 Introduction

Hyperparameter optimization (HPO) of machine learning (ML) models is a crucial step for achiev-
ing good predictive performance [44]. Over the last ten years, a large and still growing set of HPO
tuning methods based on different principles has been developed [32, 66, 38]. A particularly inter-
esting development aremulti-fidelitymethods, whichmake use of relatively cheap approximations
of a given true objective, thereby achieving good performance relatively quickly [46, 22, 36], as
well as multi-objective methods, which allow for simultaneous optimization of multiple objectives
[41]. While different HPO methods found considerable adoption in practice, it is by no means
clear which method performs best under which circumstances. In order to investigate this, it is
necessary to evaluate these methods on testbeds that are ideally 𝑖) highly efficient, 𝑖𝑖) include a
sufficient amount of representative and diverse benchmark instances and 𝑖𝑖𝑖) are easy to set up
and integrate with different optimizer APIs. Furthermore, benchmarks have found use in meta-
learning [70, 75, 60] and meta-optimization [50, 54]. In those settings, a larger number of poten-
tially relevant optimization problems is required in order to obtain results that generalize beyond
the set of (meta-)training instances. Simultaneously, those applications require a large number
of evaluations that make obtaining real evaluations prohibitively expensive, indicating a need for
benchmarks that are cheap to query.

Several benchmarks that aim to address this, each of which are collections of multiple bench-
mark instances, have been proposed [69, 16, 3, 20]. Benchmark instances can be classified into
four categories: (i) synthetic functions, (ii) benchmarks incorporating real evaluations, (iii) tabu-
lar benchmarks based on pre-evaluated grid points, and (iv) surrogate benchmarks making use of
meta-models that approximate the relationship between configurations and performance metrics.
These categories have various advantages and drawbacks. Synthetic functions can be evaluated
quickly but are often not representative for the type of problems encountered in practice; real
evaluations on the other hand are often prohibitively expensive, especially in the context of larger
benchmarks and neural architecture search. Tabular benchmarks, while cheap to evaluate, rely

Submitted to AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

on a pre-defined grid which changes the optimization problem and can potentially lead to biases.
Surrogate benchmarks are also cheap to query but require high quality surrogates in order to avoid
introducing bias. While benchmark suites have found some use in scientific publications, they are
not used ubiquitously. This lack of permeation – and consequently the lack of a standard test bed
– can result in researchers choosing benchmark problems that favor their own method, leading
to the publication of biased results. The problem of cherry picking, also termed rigging the lot-
tery [15], can be ameliorated through the use of standardized testing infrastructure along with a
detailed definition of evaluation criteria that are widely adapted.

We therefore observe a clear need for benchmark libraries that provide unified interfaces to
a variety of cheap to evaluate, realistic, and practically relevant benchmarking problems that are
defined across diverse search spaces. In this work, we propose YAHPO Gym, a surrogate-based
benchmark library including a collection of over 700 benchmark instances defined across 14
scenarios. Scenarios are comprised of evaluations of one given machine learning algorithm on
different datasets (= instances) and therefore share the same search space and performance
metrics. It contains a versioned set of surrogate models that allow for multi-fidelity evaluations
of multiple objectives. Our library is licensed under the Apache 2.0 license and can be freely used
and extended by the community. Usage and available functionality is extensively documented1.

Contributions: We introduce YAHPO Gym, a surrogate-based benchmark for machine-
learning HPO. We conceptually demonstrate that tabular benchmarks may induce bias in perfor-
mance estimation and ranking of HPO methods, and that this happens to a lesser degree with
surrogate benchmarks. We argue that our surrogate benchmark YAHPO Gymmeets all desiderata
for a good benchmark, providing faithful results, fast evaluation, relevant problems and realistic
objective landscapes both on local as well as global scales. In order to demonstrate this, we conduct
an extensive evaluation of the proposed surrogates indicating that our surrogate models indeed
provide high quality approximations. We propose two benchmark suites for single-objective and
multi-objective evaluation comprised of a subset of our instances and demonstrate how they can
be used with YAHPO Gym in a multi-fidelity and a multi-objective optimization benchmark.

2 Related Work

Several efforts to provide unified testbeds for black-box optimization exist. For general pur-
pose black-box optimization, COCO [30] provides a collection of various synthetic black-box
benchmark functions, while kurobako [57] is a collection of various general black-box optimizers
and benchmark problems. Similarly, Bayesmark [69] includes several benchmarks for Bayesian
Optimization on real problems and LassoBench [64] provides a benchmark for high-dimensional
optimization problems. HPOlib [16] was one of the first to propose a common test bed for
empirically assessing the performance of HPO methods. It provides a common API to access
synthetic test functions, real-world HPO problems, tabular benchmarks as well as some surrogate
benchmarks and found use in empirical benchmark studies [7]. Its successor HPOBench [20] offers
similar capabilities, focussing on reproducible containerized benchmarks. It offers 12 benchmark
scenarios and more than 100 test instances. Recently, [3] introduced HPO-B, a large-scale
reproducible (tabular) benchmark for black-box HPO based on OpenML [71]. HPO-B2 relies on 16
search spaces that were evaluated sparsely on 101 datasets. PROFET [39] in contrast is not based
on real datasets but uses a generative meta-model to generate synthetic but realistic benchmark
instances. In the past, tabular benchmarks have been used frequently to speed up experiments in
the context of HPO [66, 23, 73, 24] and Neural Architecture Search (NAS) (c.f. [51]). Eggensperger
et al. [18] compared different instance surrogate models for 9 different HPO problems and

1Documentation and data are available at https://github.com/slds-lmu/yahpo_gym
2We consider the published v2 version for comparison. Surrogates are only available in the v3 version.

2

Table 1: Comparison of HPO Benchmark Suites.

Suite Types #Collections #HPs MF MO TF Async H Time† Memory†

YAHPO Gym S 14 2-38 ✓ ✓ ✓ (-) ✓ 0.4∗𝑠 0.1 GB
HPOBench R/T/S 12 4-26 ✓ ✓ (-) − (-) 12.2s 0.2 GB
HPO-B (v2) T/(S) 16 2-18 − − ✓ − − 18.8s 3.7 GB
MF: Multi-fidelity; MO: Multi-objective, TF: Transfer-HPO, Async: Asynchronous evaluation; H: Hierarchical search spaces.
✓: fully supported; (-): partially supported; -: not supported; R/T/S:real/tabular/surrogate.
† : Runtime and memory footprint for 300 iterations of random search on an SVM instance. ∗: allowing for batched evaluation, YAHPO Gym takes only 0.13𝑠).

concluded that the results of benchmarks run on surrogate models generally closely mimic those
of benchmarks using the actual evaluations that they are derived from, if performance measures
of the surrogate models indicate that they predict the underlying objective values sufficiently well
(cross-validated Spearman’s 𝜌 between 0.9 and 1 [18]). Similar observations have been made in
the context of algorithm configuration [19] and NAS [65].

We compare YAHPO Gym with the recently published benchmarks HPOBench [20] and HPO-
B [3] in Table 1. Our library relies on high quality surrogates that allow formulti-fidelity as well as
multi-objective evaluation. While existing benchmark suites could in principle be used to construct
multi-objective benchmarks, they do not offer full support: HPOBench contains only few instances
that allow evaluating multiple metrics and offers no unified API to query those, while HPO-B does
not support multiple objectives at all. Furthermore, neither propose a concrete evaluation proto-
col, opening up amultiplicity of (benchmark) design choices which can lead to inconclusive results
(c.f. [56]). Instead of relying on containerization to allow for portability, our library relies on neu-
ral network surrogates compressed using ONNX [4], allowing for reproducibility and portability
while simultaneously being extremely fast and efficient due to minimal overhead. This is demon-
strated in a small experiment where wemeasure runtime and memory consumption for evaluating
300 random configurations on SVM search spaces also shown in Table 1, demonstrating that our
software is more time and memory efficient. While YAHPO Gym provides the flexibility to design
and execute any subset of the provided benchmarks, we also propose two fully specified testbeds
for single- and multi-objective optimization that were specifically selected to cover a diverse set
of relevant instances while being less extensive. Seed details in Supplement B.2.

3 Background

3.1 Hyperparameter Optimization

AnML learner or inducer I configured by hyperparameters𝝀 ∈ Λmaps a data setD ∈ D to amodel
𝑓 , i.e., I : D × Λ → H, (D,𝝀) ↦→ 𝑓 . Hyperparameter optimization (HPO) methods for ML aim to
identify a well-performing hyperparameter configuration (HPC) 𝝀 ∈ Λ̃ for I𝝀 [11]. Typically, the
considered search space Λ̃ ⊂ Λ is a subspace of the set of all possible HPCs: Λ̃ = Λ̃1× Λ̃2×· · ·× Λ̃𝑑 ,
where Λ̃𝑖 is a bounded subset of the domain of the 𝑖-th hyperparameter Λ𝑖 . This Λ̃𝑖 can be either
real, integer, or category valued, and the search space can contain dependent hyperparameters,
leading to a possibly hierarchical search space. We formally define the (potentially multi-objective)
HPO problem as:

𝝀∗ ∈ argmin
𝝀∈Λ̃

𝑐 (𝝀), with 𝑐 : Λ̃ → R𝑚, (1)

where 𝝀∗ denotes the theoretical optimum and 𝑐 maps an arbitrary HPC to (possibly multiple)
target metrics. The classical HPO problem is defined as 𝝀∗ ∈ argmin𝝀∈Λ̃ ĜE(𝝀), i.e., the goal is
to minimize the estimated generalization error, see [11] for further details. Instead of optimizing

3

only for predictive performance, other metrics such as model sparsity or computational efficiency
of prediction (e.g., MACs and FLOPs or model size and memory usage) could be included, resulting
in a multi-objective HPO problem [62, 31, 8, 58, 28]. 𝑐 (𝝀) is a black-box function, as it usually has
no closed-form mathematical representation, and analytic gradient information is generally not
available. Furthermore, the evaluation of 𝑐 (𝝀) can take a significant amount of time. Therefore,
the minimization of 𝑐 (𝝀) forms an expensive black-box optimization problem.

Many HPO problems allow for approximations of the objective to a varying fidelity, making
multi-fidelity optimization a viable option [46, 62, 36]. E.g., in the context of fitting neural networks,
it is possible to stop or pause training runs early when performance does not indicate a promising
final result [67]. Another possibility is given by reducing the fraction of the dataset Dtrain used for
training [38], since the complexity of evaluating 𝑐 (𝝀) is often at least linear in |Dtrain |. Formally, the
possibility ofmulti-fidelity evaluation can be represented in the form of a “budget” hyperparameter
which we denote by 𝜆budget as a component of 𝝀.

3.2 Hyperparameter Optimization Benchmarks

Benchmark suites are comprised of a set of benchmark instances that each define an optimization
problem to be solved. We formally define benchmark instances adapted from [20] as:

Definition 1 (Benchmark Instance) A benchmark instance consists of a function 𝑔 : Λ → R𝑚,𝑚 ∈
N+, and a bounded hyperparameter space Λ̃ which is the Cartesian product of hyperparameters
Λ̃1, . . . , Λ̃𝑑 . Multi-fidelity benchmarks can be queried at lower fidelities by varying the budget pa-
rameter Λ̃budget ∈ Λ̃.While hyperparameters Λ̃𝑖 can be continuous, integer, ordinal or categorical, we
require at least ordinal scales for the fidelity parameter(s) Λbudget. We call a benchmark instance
multi-objective if the number of objectives𝑚 > 1 and single-objective otherwise.

We consider HPO benchmark instances estimating the generalization error 𝑔(𝝀) = ĜE(I,J , 𝜌,𝝀)
given an inducer I , resampling J , and performance metric(s) 𝜌 , along with other possibly rele-
vant metrics (computational cost, memory, ...). Real instances are based on actually performing
these evaluations during the benchmark, while tabular instances are based on a fixed set of pre-
recorded evaluations. Instances based on surrogates in turn approximate the functional relation-
ship between 𝝀 and 𝑔(𝝀). For clarity, we provide more precise definitions of synthetic, tabular and
surrogate instances in Section B.3 of the supplement. Real instances rely on live evaluations of the
generalization error and are therefore often prohibitively computationally expensive, especially
when considering larger benchmarks or meta-learning scenarios across many tasks [70, 60, 25].
Practitioners therefore often rely on tabular or surrogate benchmarks for large benchmark studies
because they are often cheaper to evaluate by orders of magnitude. For tabular benchmarks, a large
collection of pre-computed hyperparameter performance mappings is provided, which serves as
a look-up table during runs of HPO methods. This has the downside of constraining the search
space to precomputed evaluations, essentially turning the optimization problem from a continu-
ous/mixed space to a discrete optimization problem. Surrogate benchmarks can strike a balance
between the efficiency and faithful approximation to the real problem by learning the functional
relationship between hyperparameters and performance values yielding an approximation𝑔(𝝀) of
𝑔(𝝀). This allows evaluations across the full search space Λ while being considerably cheaper to
evaluate. The usefulness of surrogates in turn relies on the approximation quality of the surrogate
model. We present an in-depth analysis of approximation qualities of the surrogates employed in
YAHPO Gym in Supplement E.1.

Definition 2 (Benchmark Scenario) A benchmark scenario consists of a set of𝐾 functions 𝑔𝑘 : Λ →
Y ⊆ R𝑚,𝑚 ∈ N+, 𝑘 ∈ {1, ..., 𝐾} corresponding to a set of Benchmark Instances. Each instance
within a scenario shares the same bounded hyperparameter space Λ̃ (and therefore fidelity parameters)
as well as the same co-domain Y .

4

Table 2: YAHPO Gym Benchmarks.

Scenario Search Space # Instances Target Metrics Fidelity H

rbv2_super 38D: Mixed 103 9: perf(6) + rt(2) + mem fraction ✓
rbv2_svm 6D: Mixed 106 9: perf(6) + rt(2) + mem fraction ✓
rbv2_rpart 5D: Mixed 117 9: perf(6) + rt(2) + mem fraction
rbv2_aknn 6D: Mixed 118 9: perf(6) + rt(2) + mem fraction
rbv2_glmnet 3D: Mixed 115 9: perf(6) + rt(2) + mem fraction
rbv2_ranger 8D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
rbv2_xgboost 14D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
nb301 34D: Categ. 1 2: perf(1) + rt(1) epoch ✓
lcbench 7D: Cont. 34 6: perf(5) + rt(1) epoch
iaml_super 28D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_rpart 4D: Cont. 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_glmnet 2D: Cont. 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_ranger 8D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_xgboost 13D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓

Mixed = numeric and categorical hyperparameters; perf = performance measures; rt = train/predict time; mem =
memory consumption; inp = interpretability measures; H = Hierarchical search space. We do not include the fidelity
parameter in the search space dimensionality.

A scenario is therefore a collection of instances sharing the same search space and objective(s),
e.g., allowing for hyperparameter transfer learning between instances of the scenario. Benchmark
Suites in turn are sets of instances that do not need to share the same objectives, but instead can
consist of instances stemming from different scenarios.

4 YAHPO Gym

Motivated by the need for efficient and faithful benchmarks for HPO, we develop YAHPO Gym
based on a set of Criteria for HPO Benchmarks discussed in Supplement B.1. YAHPO Gym is ex-
plicitly designed to use surrogate-based benchmarks only. It consists of a collection of 14 scenarios
that can be evaluated across a total of ∼ 700 instances. Each benchmark instance consists of an
objective function that is parameterized in the form of a ConfigSpace Python object [48], making
the search space computer-readable and readily usable with a range of existing HPO implemen-
tations. The objective function generates a prediction using the instance surrogate model, which
is a compressed neural network. Table 2 provides an overview of all benchmark scenarios avail-
able in YAHPO Gym. We describe data sources as well as the full search spaces in Supplement F.
We want to highlight the rbv2_super collection, which reflects an AutoML pipeline: It is, to our
knowledge, the first available benchmark simulating a combined algorithm and hyperparameter
selection problem [68] in the form of a high dimensional hierarchical search space by introducing
the algorithm as an additional tunable hyperparameter.

In YAHPO Gym, every scenario allows for querying objective values at lower fidelities, en-
abling efficient benchmarking of multi-fidelity HPO methods. Analogously, every benchmark al-
lows for returning multiple target metrics as criteria, enabling benchmarking of multi-objective
HPO methods. Finally, almost all benchmark scenarios provide problems on a large number of
instances (ranging from 34 to 119), allowing for benchmarking of transfer-learning HPO methods.
Predictions as well as sampling can be made reproducible through seeding. In order to achieve
portability while still being efficient, YAHPOGym uses fitted neural networks compressed via ONNX
[4] as surrogate models. Our neural networks are ResNets for tabular data [27] consisting of up to 8
layers with a width of up to 512 and hyperparameters individually tuned for each scenario. We re-
fer the reader to Supplement D for details regarding architecture and fitting procedure. Surrogate
models have very small memory and inference time overhead and are compatible across platforms

5

BenchmarkSet(s, i)

get_opt_space()
objective_function(xs)

instances (1,...,K)
targets

ConfigSpace

{’t1’: 0.95, ..., ’t5’: 0.87}

(a) YAHPO Gym’s core functionality (s: scenario,
i: instance, xs: configuration). Evaluating
objective_function for a given configuration xs
returns a dictionary of predicted metrics for a given
scenario and instance.

from yahpo_gym import *

b = BenchmarkSet('lcbench', instance='3945')

Sample a point from the ConfigSpace

xs = b.get_opt_space().sample_configuration(1)

Evaluate the configuration

b.objective_function(xs)

(b) Python code for instantiating a benchmark in-
stance, sampling a new configuration and evaluat-
ing the objective function.

and operating systems. In contrast to other benchmarks, evaluating 𝑐 (𝝀) requires only 10 − 100
ms and only 100MB of memory. In fact, YAHPO Gym’s current infrastructure is so lightweight, it
can easily be integrated in any existing toolbox or benchmark suite.

4.1 Suites: YAHPO-SO & YAHPO-MO

Together with YAHPO Gym, we propose two carefully selected benchmark suites. They constitute
a proposal for surrogate-based benchmarks of HPO problems. We call those YAHPO-SO (single-
objective, 20 instances) and YAHPO-MO (multi-objective, 25 instances). Together with the set of
instances, we provide specific evaluation criteria, such as the budget available for optimization and
number of stochastic replications as well as metrics to be used and fully specified search spaces
which can be obtained from our software. Instances were selected across all scenarios taking
into account approximation quality of the underlying surrogate and diversity. We consider those
benchmarks a first draft for such a benchmark set (version v1) and explicitly invite the community
to jointly work on a larger, more comprehensively evaluated set of benchmark instances. Details
with respect to how instances were selected, and a full list of included instances, can be found in
Section C.2 in the Supplement. We conduct a benchmark providing anytime performance for a
large variety of baselines on the proposed benchmark suites.

5 Tabular or Surrogate Benchmarks?

Consider the true objective 𝑐 (𝝀) of a real benchmark instance with 𝑐 : Λ̃ → R in the single-
objective setting. In a tabular benchmark, the domain of the objective function is implicitly dis-
cretized into a finite grid Λ̃discrete of the original domain and pre-evaluated at these points and
the benchmark objective 𝑐tabular(𝝀) is thus the original 𝑐 (𝝀) restricted to Λ̃discrete. The extent to
which discretization affects the faithfulness of tabular benchmarks depends on the nature and di-
mensionality of the search space: It disregards local structure in the response function and might
even impose fixed fidelity schedules, should evaluations not be available at all budget levels. In
order to assess the magnitude of this effect, we investigate the practical effects of discretization
in the following experiment by comparing 8 black-box optimizers on tabular, surrogate and real
versions of 5 synthethic multi-fidelity functions of varying dimensionality (Branin2D, Currin2D,
Hartmann3D/6D, and Borehole8D [36]). The tabular benchmark is constructed by drawing and
evaluating 106 points from a grid. Surrogates are then fitted using those points. We compare Ran-
dom search (RS), several versions of Bayesian optimization (BO) and Hyperband (HB, [46]) across
all settings. BO is configured with algorithm surrogate model either a Gaussian process (BO_GP),
ensemble of feed-forward neural networks (NN, [74]) or random forest (BO_RF, [13]) and acquisition
function optimizer either Nelder-Mead/exhaustive search3 (*_DF [55]) or random search (*_RS).We
describe additional details regarding the benchmark setup in Supplement E.1 and briefly present
results: Figure 2 shows the anytime performance and mean rank of each HPO method split for the

3for tabular benchmarks

6

Figure 2: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

real, surrogate, and tabular benchmark on the Hartmann6D and Borehole8D test functions. We
observe very similar performance traces of HPO methods on surrogate versions of benchmarks
compared to real versions (Figure 2, top). However, in tabular benchmarks, we notice that for
some problems, the BO methods converge substantially faster to a lower mean normalized regret
(especially for BO_GP_*), which can possibly be explained by the much simpler infill optimization
problem solved in the tabular case. Moreover, Hyperband appears to consistently perform better
on tabular benchmarks. We further investigate average rankings over all replications (Figure 2, bot-
tom). Each benchmark function yields an average ranking of HPO methods (e.g., with respect to
final performance). Using consensus rankings, we can arrive at a single ranking over all benchmark
functions [52] for a given benchmark type. We use the optimization based symmetric difference
(SD) [37] minimizing rank reversals to compare both the surrogate and tabular inferred consensus
rankings with the “ground truth” real function consensus ranking. We observe that consensus
rankings obtained using surrogate benchmarks (permutation order 2) match more closely than
tabular benchmarks (permutation order 5). We again provide additional details in Supplement E.1.

6 A Benchmark of HPO Methods on YAHPO Gym

We now demonstrate how YAHPO Gym can be used in practice to benchmark different HPOmeth-
ods. We benchmark 7 single-objective HPO methods on YAHPO-SO and 7 multi-objective HPO
methods on YAHPO-MO and want to answer the following research questions: (RQ1) Do multi-
fidelity (single-objective) HPOmethods improve over full-fidelity methods? (RQ2)Do advanced multi-
objective HPO methods improve over Random Search?

7

6.1 RQ1: Do multi-fidelity (single-objective) HPO methods improve over full-fidelity methods?

We compare Random Search and SMAC (SMAC4HPO facade; [49]) to the multi-fidelity methods
Hyperband [46], BOHB [22], DEHB [5], SMAC-HB (SMAC4MF facade; [49]) and optuna ([2]; TPE
sampler and median pruner following successive halving steps). More details on the experimental
setup and HPO methods is given in Supplement E.2. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations with 30 replications. Figure 3a shows the
average rank of HPO methods with respect to their anytime performance. Figure 3b and Figure 3c
show critical difference plots (𝛼 = 0.05) of mean ranks after 25% and 100% of the optimization bud-
get. The corresponding Friedman tests indicate significant differences (𝑝 < 0.001) in both cases.
We observe that all multi-fidelity optimizers outperform Random Search with respect to interme-
diate performance (25% of optimization budget) and optuna, BOHB, SMAC-HB and Hyperband
also outperform SMAC. With respect to final performance, SMAC takes the lead closely followed
by SMAC-HB with other multi-fidelity optimizers slightly falling behind. We conclude that multi-
fidelity HPO methods indeed improve over full-fidelity methods, but only with respect to interme-
diate performance. Our results are in line with what has been reported in other benchmarks [20]
with the exception that optuna seems more competitive in our benchmark, while DEHB is less
competitive. One reason for this difference might be that we include hierarchical search spaces in
contrast to previous work.

(a) Mean ranks of HPO methods. x-
axis starts after 10%.

(b) Critical differences plot for mean
ranks of HPO methods after 25%
of the optimization budget.

(c) Critical differences plot for mean
ranks of of HPO methods after
100% of the optimization budget.

Figure 3: Results of YAHPO-SO single-objective benchmark across 7 optimizers (20 Instances).

6.2 RQ2: Do advanced multi-objective HPO methods improve over Random Search?

We compare Random search, Random search x4 (random search with quadrupled budget as
a strong baseline), ParEGO [41], SMS-EGO [61], EHVI [21], MEGO [34] and MIES [47] on
multi-objective HPO problems with 2 − 4 objectives. More details on the experimental setup
and HPO methods is given in Supplement E.3. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations for 30 replications. Figure 4a shows the
average rank of HPO methods with respect to their anytime performance (determined based on
the normalized Hypervolume Indicator). Figure 4b and Figure 4c show critical difference plots
(𝛼 = 0.05) of these ranks after 25% and 100% of the optimization budget. The corresponding
Friedman tests indicate significant differences (𝑝 < 0.001) in both cases. We observe that not all
methods significantly improve over Random Search with respect to final performance, i.e., EHVI
and SMS-EGO fail to do so. Especially with respect to intermediate performance (25% of optimiza-
tion budget), Random x4 outperforms all competitors. However, with respect to final performance,
MEGO, ParEGO and MIES yield similar performance catching up to Random x4. We conclude that,
in general, advanced multi-objective HPO methods improve over Random Search but also want
to highlight that optimizer performance strongly varies with respect to the different benchmark
instances.

8

(a) Mean ranks of HPO methods. x-
axis starts after 10% of the opti-
mization budget has been used.

(b) Critical differences plot for differ-
ences in ranks of HPOmethods af-
ter 25% of optimization budget.

(c) Critical differences plot for differ-
ences in ranks of HPO methods af-
ter 100% of optimization budget.

Figure 4: Results of the YAHPO-MO multi-objective benchmark across 7 optimizers (25 Instances).

In total, both benchmarks described in this section took the equivalent of 138.7CPU days using
YAHPO Gym. We estimate that the YAHPO-SO benchmark, would take 15.34 CPU years when
running real benchmarks, while our benchmark using YAHPO Gym took only 388 CPU hours,
essentially speeding up evaluation by a factor of ∼ 350.

7 Conclusions, Limitations and Broader Impact

We present YAHPO Gym, a multi-fidelity, multi-objective benchmark for HPO. Our benchmark
is based on surrogates, which strike a favorable trade-off between faithfulness and efficiency,
which we demonstrate in various experiments throughout our paper before conducting a large
scale benchmark of modern single- and multi-objective optimizers. An as of yet under-explored
domain are asynchronous optimization algorithms, which have recently gained popularity [45].
This has been studied in surrogate-based benchmarks by predicting runtimes and pausing the ob-
jective function for the predicted runtime, lowering computational demand for benchmarks but
leading to a large waiting time [22]. In future work we plan on introducing faster-than-real time
asynchronous benchmarking based on predicted runtimes.

Limitations. YAHPOGym is based on surrogatemodels and therefore heavily relies on the faithful-
ness of those models in order to allow for valid conclusions. We have comprehensively evaluated
surrogate models and provide a detailed report of performance metrics, hoping to demonstrate the
faithfulness of our surrogates, but can only do so to a certain degree. We are furthermore aware
that the real HPO problems modeled in our surrogates are in fact stochastic, and results can vary
depending on randomness of the fitting procedure, data splits or initialization. We therefore pro-
vide a set of noisy surrogate models that intend to model the stochasticity of the problems using
an ensemble of neural networks, but simultaneously allow for full control of the stochastic process
by using random seeds.

Broader Impact. This manuscript presents a set of surrogate-based benchmarks for HPO. As such,
our work does not have direct implications on society or individuals, but can lead to such indirectly
if new methods are developed based on it. We would like to emphasize the possible societal &
environmental benefits. First, we hope our benchmarks can improve the state of benchmarking
in hyperparameter optimization contexts, leading to better tracking of progress in the discipline.
Second, and more important, we hope that experiments based on YAHPO Gym can drastically
reduce computational cost of hyperparameter optimization experiments. This type of experiments
is usually extremely expensive, if real experiments are run for the evaluation of each HPC, which
can be sped up by large factors if cheap approximations through surrogates are available.

9

Acknowledgements. The authors of this work take full responsibilities for its content. This work
was supported by the German Federal Ministry of Education and Research (BMBF) under Grant
No. 01IS18036A. Lennart Schneider is supported by the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy through the Center for Analytics Data Applications (ADACenter)
within the framework of BAYERN DIGITAL II (20-3410-2-9-8). This work has been carried out by
making use of AI infrastructure hosted and operated by the Leibniz-Rechenzentrum (LRZ) der
Bayerischen Akademie der Wissenschaften and funded by the German Federal Ministry of Educa-
tion and Research (BMBF) under Grant No. 01IS18036A. The authors gratefully acknowledge the
computational and data resources provided by the Leibniz Supercomputing Centre (www.lrz.de).
The authors gratefully acknowledge the computational and data resources provided by the ARCC
Teton HPC [1].

8 Reproducibility Checklist

f

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a url)? [Yes] The full code for experiments, figures and table can be obtained
from the following GitHub repositories:

i. Software: https://github.com/slds-lmu/yahpo_gym
ii. Documentation: https://slds-lmu.github.io/yahpo_gym/
iii. Surrogates & Search Spaces: https://github.com/slds-lmu/yahpo_data
iv. Code for Results: https://github.com/slds-lmu/yahpo_exps

(b) Did you include the raw results of running the given instructions on the given code
and data? [Yes] We make the full data used to train our surrogates available at https:
//syncandshare.lrz.de/getlink/fiCMkzqj1bv1LfCUyvZKmLvd/

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] See
https://github.com/slds-lmu/yahpo_exps

10

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See Supplement F for search
spaces, the code repository as well as the software repository for further fixed hyperpa-
rameters

(f) Did you ensure that you compared different methods (including your own) exactly on the
same benchmarks, including the same datasets, search space, code for training and hyper-
parameters for that code? [Yes] Yes, this is explicitly guaranteed by our software.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] Partially, see sections throughout the supplementary material.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] Yes
(i) Did you compare performance over time? [Yes] Anytime performances are reported in all

relevant figures throughout the paper.
(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We

perform 30 replications for each experiments. Random seeds can be obtained from the
acompanying code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All figures reporting experimental results include error bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Surrogate
benchmarks

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] We state the total computation as well as
CO2 equivalent in the respective section and briefly summarize here: Tuning and fitting
surrogates required a total of 45 GPU-days (116 kg CO2-equivalent on NVIDIA DGX-A100
instances) while the main experiments require 138.7 CPU days across all replications (262
kg CO2 equivalent). The tabular vs surrogate benchmark required 22 CPU-hours (2kg CO2)
equivalent.

(n) Did you report how you tuned hyperparameters, andwhat time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [Yes] We report tuning of surrogates in the
supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, throughout the paper
and explicitly in Supplement F for datasets we base our surrogates on.

(b) Did you mention the license of the assets? [Yes] Yes, see Supplement F.
(c) Did you include any new assets either in the supplemental material or as a url?

[Yes] Yes, trained surrogates are available at https://github.com/slds-lmu/yahpo_data.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Data is meta-data about ML experiments and we do not consider
any personal data. All used data is available via OSS Licenses and no consent was required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Data is only metadata about ML experiments.

11

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] No crowd sourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] No IRB was required.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

12

References
[1] Advanced Research Computing Center. Teton computing environment. https://doi.org/

10.15786/M2FY47, 2018. University of Wyoming.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, andMasanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[3] Sebastian Pineda Arango, Hadi S. Jomaa, Martin Wistuba, and Josif Grabocka. HPO-B: A
Large-Scale Reproducible Benchmark for Black-BoxHPObased onOpenML. arXiv:2106.06257
[cs], 2021.

[4] ONNX authors. ONNX. https://github.com/onnx/onnx, 2022.

[5] Noor Awad, Neeratyoy Mallik, and Frank Hutter. DEHB: Evolutionary Hyberband for Scal-
able, Robust and Efficient Hyperparameter Optimization. arXiv:2105.09821 [cs], 2021.

[6] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Proceedings of the 24th International Conference on Neural In-
formation Processing Systems, pages 2546–2554, 2011.

[7] James Bergstra, Brent Komer, Chris Eliasmith, and David Warde-Farley. Preliminary Evalua-
tion of Hyperopt Algorithms on HPOLib. In ICMLWorkshop on Automatic Machine Learning,
2014.

[8] Martin Binder, Julia Moosbauer, Janek Thomas, and Bernd Bischl. Multi-objective Hyper-
parameter Tuning and Feature Selection Using Filter Ensembles. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference, GECCO ’20, page 471479, New York, NY,
USA, 2020. Association for Computing Machinery.

[9] Martin Binder, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd
Bischl. mlr3pipelines - Flexible machine learning pipelines in R. Journal of Machine Learning
Research, 22(184):1–7, 2021.

[10] Martin Binder, Florian Psterer, and Bernd Bischl. Collecting Empirical Data About Hyper-
parameters for Data Driven AutoML. In ICML Workshop on Automatic Machine Learning,
2020.

[11] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, and Marius
Lindauer. Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open
Challenges. arXiv:2107.05847 [cs, stat], 2021.

[12] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, et al. Aslib: A
benchmark library for algorithm selection. Artificial Intelligence, 237:41–58, 2016.

[13] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[14] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Arad-
hye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque,
Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & Deep Learning for Rec-
ommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, DLRS 2016, pages 7–10, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

13

[15] Mostafa Dehghani, Yi Tay, Alexey A. Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz,
Donald Metzler, and Oriol Vinyals. The Benchmark Lottery. arXiv:2107.07002 [cs], 2021.

[16] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown.
Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters.
In NIPS Workshop on Bayesian Optimization in Theory and Practice, 2013.

[17] Katharina Eggensperger, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Surrogate
Benchmarks for Hyperparameter Optimization. In MetaSel@ ECAI, pages 24–31, 2014.

[18] Katharina Eggensperger, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Efficient
Benchmarking of Hyperparameter Optimizers via Surrogates. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 1114–1120, Austin, Texas,
2015. AAAI Press.

[19] Katharina Eggensperger, Marius Lindauer, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. Efficient Benchmarking of Algorithm Configurators via Model-based Surrogates. Ma-
chine Learning, 107(1):15–41, 2018.

[20] Katharina Eggensperger, PhilippMüller, NeeratyoyMallik, Matthias Feurer, René Sass, Aaron
Klein, Noor Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of repro-
ducible multi-fidelity benchmark problems for hpo, 2021.

[21] Michael T. M. Emmerich. Single- and multi-objective evolutionary design optimization as-
sisted by Gaussian random field metamodels. PhD Dissertation, 2005.

[22] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and Efficient Hyperparameter
Optimization at Scale. In International Conference on Machine Learning, pages 1437–1446.
PMLR, July 2018.

[23] M. Feurer, T. Springenberg, and F. Hutter. Initializing BayesianHyperparameter Optimization
viaMeta-learning. In B. Bonet and S. Koenig, editors, Proceedings of the Twenty-Ninth National
Conference on Artificial Intelligence (AAAI15), volume 15, pages 1128–1135. AAAI Press, 2015.

[24] Matthias Feurer, Benjamin Letham, FrankHutter, and Eytan Bakshy. Practical Transfer Learn-
ing for Bayesian Optimization. arXiv:1802.02219 [cs, stat], 2021.

[25] Pieter Gijsbers, Florian Pfisterer, JanN. van Rijn, Bernd Bischl, and Joaquin Vanschoren. Meta-
Learning for Symbolic Hyperparameter Defaults. arXiv:2106.05767 [cs, stat], 2021.

[26] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D. Sculley. Google Vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, page 14871495,
2017.

[27] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems, 34, 2021.

[28] J. Guerrero-Viu, S. Hauns, S. Izquierdo, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken,
D. Deng, M Lindauer, and F. Hutter. Bag of Baselines for Multi-objective Joint Neural Ar-
chitecture Search and Hyperparameter Optimization. arXiv:2105.01015 [cs.LG], 2021.

[29] ChengGuo and Felix Berkhahn. Entity Embeddings of Categorical Variables. arXiv:1604.06737
[cs], 2016.

14

[30] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brock-
hoff. Coco: A platform for comparing continuous optimizers in a black-box setting. Opti-
mization Methods and Software, 36(1):114–144, 2021.

[31] Daniel Horn and Bernd Bischl. Multi-objective Parameter Configuration of Machine Learn-
ing Algorithms using Model-based Optimization. In 2016 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 1–8, 2016.

[32] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-based Optimiza-
tion for General Algorithm Configuration. In Carlos A. Coello Coello, editor, Learning and
Intelligent Optimization, Lecture Notes in Computer Science, pages 507–523, Berlin, Heidel-
berg, 2011. Springer.

[33] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyper-
parameter optimization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2015.

[34] S. Jeong and S. Obayashi. Efficient global optimization (EGO) for multi-objective problem and
data mining. In 2005 IEEE Congress on Evolutionary Computation, volume 3, pages 2138–2145,
2005.

[35] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient Global Optimization of Expensive Black-
Box Functions. Journal of Global Optimization, 13(4):455–492, 1998.

[36] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas Poczos. Multi-
fidelity Bayesian Optimisation with Continuous Approximations. arXiv:1703.06240 [stat],
2017.

[37] John G. Kemeny and James Laurie Snell. Mathematical Models in the Social Sciences. MIT
Press, Cambridge, MA, USA, 1972.

[38] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian Optimization of Ma-
chine Learning Hyperparameters on Large Datasets. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Ma-
chine Learning Research, pages 528–536. PMLR, 2017.

[39] Aaron Klein, Zhenwen Dai, Frank Hutter, Neil Lawrence, and Javier Gonzalez. Meta-
surrogate benchmarking for hyperparameter optimization. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[40] Aaron Klein, Louis C. Tiao, Thibaut Lienart, Cedric Archambeau, andMatthias Seeger. Model-
based Asynchronous Hyperparameter and Neural Architecture Search. arXiv:2003.10865 [cs,
stat], 2020.

[41] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[42] Michel Lang, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors,
Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. mlr3: A modern object-
oriented machine learning framework in R. Journal of Open Source Software, 4(44):1903, 2019.

[43] Michel Lang, Bernd Bischl, and Dirk Surmann. batchtools: Tools for R to work on batch
systems. The Journal of Open Source Software, 2017.

15

[44] N. Lavesson and P. Davidsson. Quantifying the impact of learning algorithm parameter tun-
ing. In Proc. of AAAI, volume 6, pages 395–400, 2006.

[45] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Bentzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A System for Massively Parallel Hyperpa-
rameter Tuning. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 230–246, 2020.

[46] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, andAmeet Talwalkar. Hyper-
band: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

[47] Rui Li, Michael T.M. Emmerich, Jeroen Eggermont, Thomas Bäck, M. Schütz, J. Dijkstra, and
J.H.C. Reiber. Mixed integer evolution strategies for parameter optimization. Evolutionary
Computation, 21(1):2964, 2013.

[48] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and F. Hutter.
BOAH: A Tool Suite for Multi-fidelity Bayesian Optimization &Analysis of Hyperparameters.
arXiv:1908.06756 [cs.LG], 2019.

[49] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhopf, René Sass, and Frank Hutter. SMAC3: A versatile Bayesian
optimization package for hyperparameter optimization. arXiv:2109.09831 [cs, stat], 2022.
arXiv: 2109.09831.

[50] Marius Lindauer, Matthias Feurer, Katharina Eggensperger, André Biedenkapp, and Frank
Hutter. Towards assessing the impact of bayesian optimization’s own hyperparameters. arXiv
preprint arXiv:1908.06674, 2019.

[51] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable Architecture Search. In Proceedings
of the International Conference on Learning Representations, 2019.

[52] Olaf Mersmann, Heike Trautmann, Boris Naujoks, and Claus Weihs. Benchmarking Evolu-
tionary Multiobjective Optimization Algorithms. In IEEE Congress on Evolutionary Computa-
tion, pages 1–8, July 2010.

[53] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Quantifying model complexity
via functional decomposition for better post-hoc interpretability. In Peggy Cellier and Kurt
Driessens, editors, Machine Learning and Knowledge Discovery in Databases, page 193204.
Springer International Publishing, 2020.

[54] Julia Moosbauer, Martin Binder, Lennart Schneider, Florian Pfisterer, Marc Becker, Michel
Lang, Lars Kotthoff, and Bernd Bischl. Automated benchmark-driven design and explanation
of hyperparameter optimizers, 2021.

[55] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer
Journal, 7(4):308–313, 1965.

[56] Christina Nießl, Moritz Herrmann, Chiara Wiedemann, Giuseppe Casalicchio, and Anne-
Laure Boulesteix. Over-optimism in benchmark studies and the multiplicity of design and
analysis options when interpreting their results.Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, page e1441, 2021.

[57] Takeru Ohta and Hiroyuki Vincent Yamazaki. Kurobako. https://github.com/optuna/
kurobako, 2022.

16

[58] Maryam Parsa, John P. Mitchell, Catherine D. Schuman, Robert M. Patton, Thomas E. Potok,
and Kaushik Roy. Bayesian Multi-objective Hyperparameter Optimization for Accurate, Fast,
and Efficient Neural Network Accelerator Design. Frontiers in Neuroscience, 14:667, 2020.

[59] Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archambeau. Scalable
Hyperparameter Transfer Learning. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[60] Florian Pfisterer, Jan N. van Rijn, Philipp Probst, Andreas C. Müller, and Bernd Bischl. Learn-
ing Multiple Defaults for Machine Learning Algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’21, pages 241–242, New York, NY,
USA, 2021. Association for Computing Machinery.

[61] Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. Multiobjective
optimization on a limited budget of evaluations using model-assisted S-metric selection. In
Günter Rudolph, Thomas Jansen, Nicola Beume, Simon Lucas, and Carlo Poloni, editors, Par-
allel Problem Solving from Nature PPSN X, Lecture Notes in Computer Science, pages 784–794.
Springer, 2008.

[62] R. Schmucker, M. Donini, V. Perrone, M. B. Zafar, and C. Archambeaut. Multi-objective Multi-
fidelity Hyperparameter Optimization with Application to Fairness. In NeurIPS Workshop on
Meta-Learning, volume 2, 2020.

[63] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of
the ACM, 63(12):54–63, 2020.

[64] Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A
high-dimensional hyperparameter optimization benchmark suite for lasso. arXiv preprint
arXiv:2111.02790, 2021.

[65] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter. NAS-Bench-301 and the
Case for Surrogate Benchmarks for Neural Architecture Search. arXiv:2008.09777 [cs.LG],
2020.

[66] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of Ma-
chine Learning Algorithms. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[67] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-ThawBayesian Optimization.
arXiv:1406.3896 [cs, stat], 2014.

[68] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-weka: Com-
bined selection and hyperparameter optimization of classification algorithms. In Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 847–855, 2013.

[69] Ryan Turner. Uber. bayesopt benchmark. https://github.com/uber/bayesmark, 2022.

[70] Joaquin Vanschoren. Meta-Learning. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren,
editors, Automated Machine Learning: Methods, Systems, Challenges, The Springer Series
on Challenges in Machine Learning, pages 35–61. Springer International Publishing, Cham,
2019.

[71] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luís Torgo. OpenML: Networked
Science in Machine Learning. SIGKDD Explor., 15(2):49–60, 2013.

17

[72] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[73] Michael Volpp, Lukas P Fröhlich, Kirsten Fischer, AndreasDoerr, Stefan Falkner, FrankHutter,
and Christian Daniel. Meta-learning Acquisition Functions for Transfer Learning in Bayesian
Optimization. International Conference on Learning Representations, 2020.

[74] C. White, W. Neiswanger, and Y. Savani. BANANAS: Bayesian Optimization with Neural
Architectures for Neural Architecture Search. arXiv:1910.11858 [cs.LG], 2019.

[75] Martin Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning Hyperparameter Optimiza-
tion Initializations. 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pages 1–10, 2015.

[76] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Two-Stage Transfer Surrogate
Model for Automatic Hyperparameter Optimization. In European Conference on Machine
Learning and Knowledge Discovery in Databases - Volume 9851, ECML PKDD 2016, pages 199–
214, Berlin, Heidelberg, 2016. Springer-Verlag.

[77] C. Ying, A. Klein, E. Christiansen, E. Real, K.Murphy, and F. Hutter. NAS-Bench-101: Towards
Reproducible Neural Architecture Search. In Proceedings of the 36th International Conference
on Machine Learning, pages 7105–7114, 2019.

[78] Lucas Zimmer. data_2k_lw.zip. figshare. Dataset. https://doi.org/10.6084/m9.figshare.
11662422.v1, Apache License, Version 2.0, 2020.

[79] Lucas Zimmer. nasbench301_full_data. figshare. Dataset. https://doi.org/10.6084/m9.
figshare.13286105.v1, Apache License, Version 2.0, 2020.

[80] Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch tabular: Multi-fidelity met-
alearning for efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(9):3079 – 3090, 2021.

[81] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance assess-
ment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117132, 2003.

18

A Maintenance of YAHPO Gym

Following [20], we present a maintenance plan for YAHPO Gym.

• Who is maintaining the benchmarking library?
YAHPO Gym is developed and maintained by the Statistical Learning and Data Science Group at
the Ludwig-Maximilians University Munich.

• How can the maintainer of the dataset be contacted (e.g., email address)?
Questions should be submitted via an issue on the Github repository at https://github.com/
slds-lmu/yahpo_gym.

• Is there an erratum?
No

• Will the library be updated?
We plan on adding new instances as well as continuously updating in existing instances should
need occur. Changes will be communicated via Github releases as well as a CHANGELOG.

• Will older versions of the benchmarking library continue to be supported/hosted/maintained?
Old versions are available via GitHub releases in the git repositories. We aim to support old
versions on a best-effort basis with limited support for older versions.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?
We have detailed how additional benchmarks can be added in the documentation https://
slds-lmu.github.io/yahpo_gym/extending.html. We have furthermore made available the
full code used to tune, fit and export surrogate models used in YAHPO Gym. The code is easily
extendable for future datasets.

• Which dependencies does YAHPO Gym have?
YAHPO Gym currently relies on the following dependencies
(versions used throughout experiments in brackets):

– onnxruntime (1.10.0)

– pyyaml (5.4.1)

– configspace (0.4.20)

– pandas (1.3.5)

B Benchmark Suites

B.1 Criteria for Benchmark Suites and Instances

To allow for a more systematic assessment of the quality of benchmarking instances, we define
criteria that guided the development of YAHPO Gym and which should be satisfied to make a
compelling argument for the use of any HPO benchmark.

I. Representativity & Diversity of Tasks The goal of benchmark suites is to allow for a rank-
ing of HPO methods according to their performance on future problems. Instances should
therefore cover response surfaces encountered in relevant problem domains.

II. Difficulty and Structure Benchmarks must be non-trivial, i.e., they should contain instances
of sufficient difficulty to identify rankings between optimizers. Search spaces should reflect

19

search spaces that are encountered frequently in practice including mixed spaces with inter-
actions as well as hierarchical spaces and sufficient dimensionality.

III. Faithfulness Rankings based on approximations (e.g., for tabular and surrogate instances)
should reflect true rankings. The performance of surrogate models 𝑔 should be close enough
to 𝑔 based on performance metrics such as Spearman’s 𝜌 .

IV. Efficiency Benchmark experiments often require repeated evaluation of several optimizers
across several datasets leading to considerable computational (and consequentially environ-
mental cost [63]). Benchmarks should therefore strive for computational efficiency.

V. Ease of use Benchmark software needs to be accessible and portable across operating sys-
tems and programming languages. In practice, systems that do not require complex set up
or require establishment of databases might lead to more widespread adoption. Meta-data
such as search spaces should be available and machine-readable. As benchmarks allow for
embarrassingly parallel execution, parallelization should be supported.

VI. Reproducibility While performance estimation in practice often includes stochastic compo-
nents, it is important that benchmark suites can be made reproducible through the use of
random seeds. Furthermore, software dependencies and versions should be clearly commu-
nicated and design components should be fixed and versioned to avoid cherry picking.

VII. Stochasticity Performance estimates obtained in real instances are realizations of random
variables. In order to reflect this in practice, instances should allow for repeated evaluations.

While we consider the above requirements for good benchmarking suites, we furthermore want
to highlight other properties that might be relevant for benchmarking suites.

A. Multi-fidelity Multi-fidelity methods have been shown to considerably speed up evaluation.
Benchmark instances should therefore allow for querying performances at multiple fidelities.

B. Runtime In practice, HPO evaluations, especially for complex AutoML scenarios, can have
very heterogeneous runtimes [66], which should also be reflected in a realistic benchmark by
providing access to (estimated) runtimes which could subsequently be used to more accurately
benchmark cost-efficient optimization methods.

C. Asynchronous Evaluation Although technically non-trivial, benchmarks should ideally allow
the comparison of parallel HPO methods, allowing to compare, e.g., asynchronous HPO pro-
cedures [45, 40].

D. Multi-Objective Inmany scenarios, users are not only interested inmaximizing a single perfor-
mance metric such as accuracy, but instead multiple relevant metrics such as calibration, infer-
ence time, memory usage, and many others. We therefore consider including multi-objective
HPO problems an important characteristic of a benchmark suite.

E. Meta-Learning Last but not least, in many cases, data collections are used to test scenarios for
meta-learning [70, 60, 25] or transfer learning [76, 59]. For these scenarios, the availability of
data across a large amount of datasets is often useful.

B.2 Comparison to other Benchmark Suites

While a variety of benchmarking suites for optimization such as COCO [30], HPOLib [17], ASLib
[12] and others exist, we do not go into detail and instead refer the reader to [20] where those
libraries are discussed in more detail. We instead compare YAHPO Gym to the most similar suites:
HPOBench [20] and HPO-B [3] and discuss and justify assessments made in Table 1.
Evaluations in Table 1 follow the doctrine "the documentation is the product" and we therefore
consider only features that are explicitly documented in the accompanying manuscript and doc-

20

umentation, not considering other features. We note that all three libraries could theoretically
be used or extended for additional tasks such as multi-objective evaluations but instead focus on
scenarios where the considered property is explicitly included in the documented API. We fur-
thermore note that several important aspects such as ease of use are not easily quantifiable and
assessments made are therefore subjective. We derive assessments made in this section based on
the criteria defined in Supplement B.1.

I. Representativity YAHPO Gym contains 14 across diverse search spaces for widely used ML
algorithms trained on representative datasets. Search spaces are often mixed and sometimes
include dependent hyperparameters resulting in a hierarchical search space. While theo-
retically possible, none of the instances in HPOBench currently contain hierarchical search
spaces. HPO-B only supports continuous search spaces.

II. Difficulty To the best of our knowledge, it is not yet clear how to assess the difficulty of a
benchmark instance. We therefore instead focus on showing that benchmark instances in
YAHPO Gym are not trivial, e.g., constant across the full search space.

III. Faithfulness We evaluate the quality of fitted surrogates in Supplement D.2. To the best of
our knowledge, analyses that establish the faithfulness of tabular benchmarks have not been
conducted for tabular benchmarks previously.

IV. Efficiency We consider efficiency with respect to two aspects: computational cost and mem-
ory consumption. Tabular benchmarks often keep the full data inmemory, essentially limiting
the amount of parallel optimization runs on a given hardware required, e.g., for replications
of stochastic benchmark experiments. Furthermore, surrogate benchmarks are often based
on un-optimized models fitted for each single instance. As a result, the required metadata
(and memory consumption when multiple models are kept in memory) is often compara-
tively large. Our surrogates in contrast are highly optimized, compressed neural networks
fitted across an entire scenario. Our surrogates are furthermore portable across platforms,
alleviating concerns regarding software dependencies. Prediction on a surrogate requires
only 10-100 ms and around 100 MB of memory allowing for a high degree of parallelization.
In a small experiment, we estimate runtime and memory overhead for 300 iterations of ran-
dom search on comparable SVM search spaces in Table 1 using the Python memory profiler
(https://pypi.org/project/memory-profiler/). Since memory profiling is not accurate
for HPO-Bench due to external processes, we estimate memory consumption using htop.
Differences partially stem from more expensive setup in other libraries, but we consider 300
iterations of random search a representative use-case for many scenarios. Benchmarks were
conducted on an AMD Ryzen 5 3600 6-Core CPU.

V. Ease of use YAHPO Gym does not require setting up containerization or any database and
has only 4 dependencies that are both widely used and mature. All metadata required can
be downloaded from a single, versioned metadata repository 4. The modules API is simple
to use (see, e.g., Section 4). Other benchmarking suites either require benchmark instance
specific software dependencies that can differ from benchmark instance to instance. While
HPOBench has solved this using containerization adding considerable computational over-
head, our surrogates only rely on a single fixed version of ONNX and can therefore completely
ignore the problem.

VI. Reproducibility surrogates used in the benchmarking suites proposed along with YAHPO
Gym are deterministic. Reproducibility therefore only requires ensuring seeding of any
stochastic procedures in the optimization algorithm. Furthermore, we fix several design
choices that might lead to differences between benchmarks: 𝑖) search spaces Λ̃ are fixed

4https://github.com/slds-lmu/yahpo_data

21

for each scenario and should be used in benchmarks 𝑖𝑖) target metrics and exact evaluation
protocol are fixed within the benchmark suites (see Supplement C.2) to ensure comparability.

Additional properties 𝐴. − 𝐸. described in Supplement B.1 are compared in Table 1 and described
in more detail below.

A. Multi-fidelity Only surrogate based benchmarks allow doing so for the full range of available
fidelity steps. This essentially enforces evaluation at fixed fidelities in tabular benchmarks, e.g.,
disallowing evaluation of differing fidelity schedules. In contrast, surrogates in YAHPO Gym
allow for evaluation at all fidelity steps.

B. Runtime All surrogates in YAHPO Gym allow for querying the predicted runtime for training
a configuration, essentially allowing benchmarking methods that take into account runtimes.

C. Asynchronous Evaluation To our knowledge, none of the existing benchmark suites allow
for asynchronous evaluation (except for real instances in HPO-Bench). YAHPO Gym currently
allows for asynchronous evaluation, but this is considered an experimental feature. We hope
to be able to fully allow asynchronous benchmarking in future versions of our benchmark.

D. Multi-Objective YAHPO Gym explicitly includes multiple objective for each scenario and al-
lows the user to subset the returned targets explicitly. In contrast, HPO-Bench contains only
few multi-objective benchmarks and does not explicitly document how they are supposed to
be used.

E. Transfer learning All considered suites allow for transfer learning. In contrast to HPO-Bench
and HPO-B, YAHPO Gym includes the (to our knowledge) largest collection of instances for a
given scenario for the rbv2_* scenarios consisting of up to 119 instances. Only few collections
in HPOBench contain enough instances for meta-learning.

We furthermore define a single objective as well as amulti-objective benchmark task that include a
evaluation protocol with respect to instances, search spaces, evaluation budget and target metrics.
This allows for reproduction and extension by practicioners without additional design choices and
provides a singular point of references.

B.3 A Benchmark Instance

In order to improve differentiation, we formally define four different types of benchmark instances
derived from 1. We therefore only consider benchmarks based on tabular, surrogate and real in-
stances in our manuscript.

Definition 3 (Synthetic Benchmark Instance) A synthetic benchmark instance is a benchmark in-
stance, where 𝑔 : 𝝀 → R𝑚 is a mathematically tractable function.

Synthetic instances, such as the ones, e.g., included in COCO [30] rely on mathematically tractable
test functions (e.g., Rosenbrock-2D) as response surface. While they provide cheap evaluations,
problem structures in such functions are qualitatively distinct from test functions encountered in
HPO scenarios, and the resulting optimization problem is therefore often not representative for
optimization problems typically encountered in HPO.

Definition 4 (Tabular Benchmark Instance) A tabular benchmark instance returns function eval-
uations 𝑔(𝝀) from a table of pre-recorded performance results. Performance results are typically ob-
tained by estimating ĜE(I,J , 𝜌,𝝀) for given I , J and 𝜌 . In contrast to synthetic and surrogate
instances, the search space Λ is discretized and 𝑔 can therefore be only evaluated at discrete points
Λ̃ ∈ Λ.

22

Definition 5 (Surrogate Benchmark Instance) A surrogate benchmark returns predictions 𝑔(𝝀) of
machine learning models trained to infer the functional relationship between 𝝀 and function evalua-
tions 𝑔(𝝀) based on a set of pre-recorded performance results.

For clarity, we would like to differentiate in terminology between the instance surrogate of a sur-
rogate benchmark, and the algorithm surrogate potentially used by an HPO method, e.g., the
Gaussian process as surrogate model in BO explicitly mentioning the algorithm surrogate where
required. The instance surrogate model 𝑔 or the tabular data should approximate the true relation-
ship between 𝝀 and the target metrics reasonably well. We consider a mapping 𝑔 to be faithful
if:

1. cross-validated performance metrics are sufficiently good with respect to metrics such as 𝑅2
and Spearman’s 𝜌 . We typically consider a cutoff 𝜌 > 0.7 for including a surrogate.

2. if the induced ranking of optimizers on a given 𝑔 closely resembles the true rankings on the
original underlying optimization problem (in general, the real setting relying on 𝑔).

3. learning curves of HPO methods on 𝑔 closely resemble the true performance curves.

Definition 6 (Real Benchmark Instance) A real benchmark instance returns function evaluations
𝑔(𝝀). Performance results are typically obtained by estimating ĜE(I,J , 𝜌,𝝀) for given I , J and 𝜌 .

Since the same benchmark instance can be provided as a real, tabular, or surrogate instance, we
speak of different versions of that instance where required.

C YAHPO Gym

In the following we will provide additional details on general aspects of YAHPO Gym. A detailed
description of included surrogates can be found in Supplement D and a detailed description of
used data and included search spaces can be found in Supplement F.

C.1 Usage

The yahpo_gym software can be directly installed from GitHub5 and only requires downloading
one additional GitHub repository containing metadata6 in an initial setup step.

HPO Benchmarking

To ensure interoparability with different optimizer API’s, YAHPO Gym offers only evaluation of
the objective function using the BenchmarkSet.objective_function(xs) method (where xs is a
hyperparameter configuration to be evaluated). This allows for use with many different optimizers
(see, e.g., examples provided in the acompanying notebooks). We furthermore allow for querying
the search space using BenchmarkSet.get_opt_space(xs) in order to ensure that optimizers are
ran on comparable search spaces. We provide additional details with respect to exact setups

Transfer HPO

Different forms of Transfer HPO are available in YAHPO Gym and can be setup analogous by
querying the objective function across different instances of the scenario. We present examples in
the modules documentation.

5https://github.com/slds-lmu/yahpo_gym
6https://github.com/slds-lmu/yahpo_data

23

C.2 Benchmark Suites: YAHPO-SO & YAHPO-MO
This section provides additional details with respect to the two benchmark sets proposed with
YAHPO Gym. Both suites can be obtained via get_suites(<type>, <version>) specifying the
type of the benchmark (currently supporting ’single’ for YAHPO-SO and ’multi’ for YAHPO-MO)
and the version (currently 1.0).

• Optimizers should use the search spaces included in YAHPO Gym in order to establish that
differences in performance do not depend on differing search spaces.

• Optimization should be run for ⌈20 + 40 · √search_space_dim ⌉ steps. Each step is equivalent
to a full budget evaluation, essentially allowing multi-fidelity method the same number of full
budget equivalents. We report the budgets for each scenario in Table 3 and Table 4.

• Target metrics to be used with the single-objective and multi-objective suite are reported in
Table 3 and Table 4.

• We encourage reportingmean normalized regret andmean ranks for the anytime performance of
an optimizer. Reported values are based on the target metric for YAHPO-SO and the normalized
Hypervolume Indicator for YAHPO-MO.

• In order to assess variance, we encourage reporting averages and standard errors across 30 repli-
cations with differing random seeds.

We will now go on to discuss criteria for inclusion of tasks in the respective benchmarks.

In light of the criteria defined in B.1, we strive for diversity by including instances from all included
scenarios. We consider only surrogates that are faithful (measured via Spearman’s 𝜌 reported for
each target below). Our benchmarks are made available through a fully documented API. Infer-
ence on a surrogate model is highly efficient taking usually only 10-100 milliseconds per batch.
Benchmarks are furthermore reproducible and allow for parallelization and runtime prediction on
a continuous range of fidelities. We include search spaces for all problems in Supplement F.
We furthermore brieflywant to discuss selecting a budget that depends on the scenario at hand. We
consider the search space dimension to be a relevant input for determining the overall optimization
budget that should be used for optimization. Our formula ensures, that optimization runs for a
minimum of 77 iterations (iaml_glmnet, 2D) and a maximum of 267 (rbv2_super, 38D) iterations,
which we consider useful bounds for the respective search space dimensionality, especially given
that multi-fidelity allows for evaluations at a fraction of the full budget.

C.3 R package
While we focus on the python module in the manuscript, YAHPO Gym offers a R interface that
is equivalent in functionality. We do not present the API in detail here since it follows the same
principles and naming conventions as the python module. Further information is available from
the package documentation. Listing 1 contains the sample R-code used to first draw a random
configuration from the search space and then evaluate the drawn configuration.

D YAHPO Gym Surrogates
On an implementation level, YAHPO Gym consists of a (versioned) Python module / R-package
yahpo_gym and a (versioned) set of required metadata (including fitted surrogate models) which we
will call yahpo_data in the following. The core contribution in YAHPO Gym is a set of surrogate
models7 based on neural networks. This section provides additional details with respect to the
fitting procedures of surrogate models as well as a rigorous evaluation of the final surrogates.

7available at https://github.com/slds-lmu/yahpo_data

24

Table 3: YAHPO-SO (v1): Collection of single-objective benchmark instances. We indicate surrogate
approximation quality using Spearman’s 𝜌 .

scenario instance target(s) 𝜌 budget
1 lcbench 167168 val_accuracy 0.94 126
2 lcbench 189873 val_accuracy 0.97 126
3 lcbench 189906 val_accuracy 0.97 126
4 nb301 CIFAR10 val_accuracy 0.98 250
5 rbv2_glmnet 375 acc 0.80 90
6 rbv2_glmnet 458 acc 0.85 90
7 rbv2_ranger 16 acc 0.93 134
8 rbv2_ranger 42 acc 0.98 134
9 rbv2_rpart 14 acc 0.92 110
10 rbv2_rpart 40499 acc 0.97 110
11 rbv2_super 1053 acc 0.31 267
12 rbv2_super 1457 acc 0.70 267
13 rbv2_super 1063 acc 0.57 267
14 rbv2_super 1479 acc 0.36 267
15 rbv2_super 15 acc 0.75 267
16 rbv2_super 1468 acc 0.77 267
17 rbv2_xgboost 12 acc 0.93 170
18 rbv2_xgboost 1501 acc 0.89 170
19 rbv2_xgboost 16 acc 0.91 170
20 rbv2_xgboost 40499 acc 0.96 170

library("yahpogym")
library("paradox")
library("bbotk")
Instantiate the BenchmarkSet
b = BenchmarkSet$new('lcbench', instance='3945')
Get the objective
objective = b$get_objective('3945', check_values = FALSE)
Sample a point from the ConfigSpace
xdt = generate_design_random(b$get_search_space(), 1)$data
xss_trafoed = transform_xdt_to_xss(xdt, b$get_search_space())
Evaluate the configuration
objective$eval_many(xss_trafoed)

Listing 1: R-code to sample and evaluate a configuration using YAHPO Gym.

D.1 Setup and Training

Previous work [18, 19, 65] suggests that tree based regression methods such as random forests
[13] are very suited as instance surrogate models for (single-objective) benchmarks. However,
in YAHPO Gym we want to predict multiple target metrics for each instance of a benchmark
collection efficiently and compactly. As a result, we use neural network surrogates because they
1) can naturally handle multiple outputs and do not require a model for each target metric and 2)
should scale better than a random forest (fitted on each target metric) when the dimensionality of
the data (especially in the number of features) increases.

25

Table 4: YAHPO-MO (v1): Collection of multi-objective benchmark instances. We indicate surrogate
approximation quality using Spearman’s 𝜌 (averaged over targets).

scenario instance target(s) 𝜌 budget
1 iaml_glmnet 1489 mmce, nf 0.86 77
2 iaml_glmnet 1067 mmce, nf 0.73 77
3 iaml_ranger 1489 mmce, nf, ias 0.93 134
4 iaml_ranger 1067 mmce, nf, ias 0.92 134
5 iaml_super 1489 mmce, nf, ias 0.82 232
6 iaml_super 1067 mmce, nf, ias 0.82 232
7 iaml_xgboost 40981 mmce, nf, ias 0.88 165
8 iaml_xgboost 1489 mmce, nf, ias 0.92 165
9 iaml_xgboost 40981 mmce, nf, ias,rammodel 0.89 165
10 iaml_xgboost 1489 mmce, nf, ias,rammodel 0.92 165
11 lcbench 167152 val_accuracy, val_cross_entropy 0.98 126
12 lcbench 167185 val_accuracy, val_cross_entropy 0.91 126
13 lcbench 189873 val_accuracy, val_cross_entropy 0.93 126
14 rbv2_ranger 6 acc, memory 0.90 134
15 rbv2_ranger 40979 acc, memory 0.73 134
16 rbv2_ranger 1476 acc, memory 0.88 134
17 rbv2_rpart 41163 acc, memory 0.85 110
18 rbv2_rpart 1476 acc, memory 0.80 110
19 rbv2_rpart 40499 acc, memory 0.83 110
20 rbv2_super 1457 acc, memory 0.66 267
21 rbv2_super 6 acc, memory 0.68 267
22 rbv2_super 1053 acc, memory 0.45 267
23 rbv2_xgboost 1478 acc, memory 0.86 170
24 rbv2_xgboost 1476 acc, memory 0.83 170
25 rbv2_xgboost 32 acc, memory 0.82 170

Surrogate models used in YAHPO Gym are based on ResNet architectures for tabular data [27].
Instead of relying on a fixed architecture, we tune the neural network for each Scenario using
Optuna [2]. We used the Adam optimizer for a maximum of 100 epochs (early stopping with
patience of 10) with L2 loss. Surrogates were trained jointly for each benchmark scenario (for all
instances and target metrics). We use a stratified train/validation/test split of 0.6/0.2/0.2, using
the validation data to determine the surrogate model architecture and report performances on
the test set. The search space as well as the fully reproducible code for fitting can be obtained at
YAHPO Gym. Tuning and fitting of a single Scenario takes 3 GPU days on average on an NVIDIA
DGX-A100 instance, we therefore estimate a one time cost of 45 GPU days for establishing the full
benchmark.
We adapt the architecture proposed in [27] in multiple ways:
Feature- and output-scalingHyperparameters as well as resulting performance metrics (e.g learn-
ing rates of log-loss values) often vary across orders of magnitudes. We have practically observed
that transforming target metrics to the unit cube prior to training and reverse-transforming af-
terwards massively improves quality of the resulting surrogates. Available scaling techniques in-
clude Neg-Exp and Log transformation before scaling to [0, 1]. We furthermore include clamping
to ensure that predictions are in valid ranges. Non-numeric features were transformed via entity
embeddings [29].

26

Ensembles In order to allow for an estimate of variance, we make noisy versions of our surrogates
available together with the standard deterministic set of surrogates. Ensembles consist of repli-
cations of the architecture determined during tuning and fitted on different permutations of the
data with differing initial weights. The prediction step is the weighted average over predictions
from ensemble members with weights 𝛼𝑖 sampled from a Dirichlet distribution.

We furthermore consider scenarios that allow simulating asynchronous evaluation and therefore
predict the time of the training procedure using our surrogates. YAHPO Gym currently supports
asynchronous scheduling by estimating the runtime of training a model and then idling the system
for the estimated time. This is implemented via objective_function_timed in yahpo_gym but
currently considered in an experimental status.
In future work, we hope to propose and evaluate a surrogate-based benchmark explicitly allowing
for benchmarking of asynchronous scheduling strategies based on surrogate predictions. To enable
more realistic scheduling, we hope to furthermore include memory constraints using predicted
peak memory consumption for a training run.

D.2 Surrogate Quality

We provide an overview over surrogate quality measured on the test set using Spearman’s 𝜌 aver-
aged across all instances in Table 5. Metrics are routinely ≥ 0.9 except for few instances / target
metrics and even surpasses performances for surrogate models reported, e.g., in [65]. We further-
more depict real and predicted learning curves for 4 randomly drawn configurations in Figure 5.
Note that in our work, learning curves are predicted only based on hyperparameters, and not based
on initial, low-fidelity observations (as done in learning curve prediction tasks). Our surrogates
therefore solve a much harder task. Surrogates in general predict the learning curves with a high
degree of precision.

Table 5: Average surrogate performance (Spearman’s rho) across all instances per scenario/target. We
abbreviate cross_entropy (ce) and balanced_accuracy(bac) for brevity.

Scenario 𝜌
iaml_glmnet mmce:0.97,f1:0.9,auc:0.92,logloss:0.97,rammodel:0.97,timetrain:0.95,mec:0.9,ias:0.91,nf:0.97
iaml_ranger mmce:0.99,f1:0.98,auc:1,logloss:0.95,rammodel:1,timetrain:0.91,mec:0.88,ias:0.98,nf:1
iaml_rpart mmce:0.99,f1:0.96,auc:0.99,logloss:0.96,rammodel:1,timetrain:0.96,mec:0.71,ias:0.96,nf:0.96
iaml_super mmce:0.93,f1:0.95,auc:0.89,logloss:0.93,rammodel:0.71,timetrain:0.61,mec:0.94,ias:0.65,nf:0.92
iaml_xgboost mmce:0.97,f1:0.98,auc:0.97,logloss:0.93,rammodel:0.86,timetrain:0.71,mec:0.95,ias:0.84,nf:0.99
lcbench time:0.94,val_accuracy:0.95,val_ce:0.97,val_bac:0.98,test_ce:0.99,test_bac:0.98
nb301 val_accuracy:0.98,runtime:0.94
rbv2_aknn acc:0.99,bac:0.99,auc:0.98,brier:1,f1:0.91,logloss:0.99,timetrain:0.64,memory:0.83
rbv2_glmnet acc:0.99,bac:0.95,auc:0.91,brier:1,f1:0.96,logloss:0.99,timetrain:0.79,memory:0.82
rbv2_ranger acc:0.99,bac:0.98,auc:0.95,brier:1,f1:0.92,logloss:1,timetrain:0.84,memory:0.66
rbv2_rpart acc:0.98,bac:0.96,auc:0.93,brier:0.99,f1:0.93,logloss:0.98,timetrain:0.72,memory:0.86
rbv2_super acc:0.82,bac:0.78,auc:0.73,brier:0.91,f1:0.91,logloss:0.89,timetrain:0.69,memory:0.71
rbv2_svm acc:0.99,bac:0.98,auc:0.94,brier:0.99,f1:0.91,logloss:0.99,timetrain:0.76,memory:0.84
rbv2_xgboost acc:0.98,bac:0.96,auc:0.94,brier:0.99,f1:0.92,logloss:0.98,timetrain:0.93,memory:0.78

Some of the targets available require further study and we therefore discourage their use in bench-
marks. Those are rampredict & ramtrain (iaml_* scenarios) as well as timepredict (rbv2_* scenarios).
Reasons for this assessment are partially poor surrogates, but we also assume that the underlying
data is at fault: Prediction times are often very small and heavily influenced by system load, while
correct estimation of required memory are relatively difficult to obtain in general.

D.3 Instance Difficulty

We quantify difficulty of instances using the The Empirical Cumulative Distribution Function
(ECDF), assuming that difficult instances have only a small probability mass close to the optimum.

27

ECDFs for all instances in YAHPO-SO are shown in Figure 6. Differences between real evaluations
and surrogate predictions can stem from the sampling procedure (random on surrogates vs. un-
known sampling for real evaluations), as well as biases in the surrogates. All evaluations are made
at maximal fidelity.
We furthermore provide cumulative ECDF plots for all optimizers in Figure 7. This allows for a
different perspective on the quality of solutions found by the different optimizers.

E Experiments

E.1 Tabular vs. Surrogate Benchmarks

Resolution of tabular benchmarks. In practice, the resolution of grid points needs to be low for
high dimensional spaces to limit the resulting table to a usable size. With purely categorical search
spaces, often used in Neural Architecture Search, an exhaustive (i.e., Λ̃discrete = Λ̃) tabular bench-
mark is often possible, as in, e.g., NAS-Bench-101 [77], which contains “only” 423k unique archi-
tectures. Multi-fidelity evaluations essentially add an additional dimension to the optimization
problem when considering tabular data, since each evaluation now needs to be stored at multiple
fidelity steps. If fidelity steps are not available at all budget levels, optimization benchmarks can
be restricted to fixed fidelity progression (e.g., geometric progression as used in Hyperband).

Discrete Search Spaces. The modification of the search space from Λ̃ to Λ̃discrete can be handled
in one of two ways: One can let HPO methods operate on the original search space Λ̃ and trans-
parently “round” values to the nearest point contained in Λ̃discrete. This effectively presents the
optimization algorithm with a locally constant objective function. Alternatively, one can inform
the HPO algorithm about the discrete nature of Λ̃discrete, and possibly even modify the optimiza-
tion procedure. As an example, consider the acquisition function optimization step within the BO
framework: In the context of tabular benchmarks, the problem of optimizing the infill criterion
becomes trivial because one can perform an exhaustive search over all points not yet evaluated to
determine the next candidate(s) for evaluation. Note that we could also proceed to use a 1-Nearest-
Neighbor model to evaluate HPCs in tabular benchmarks. This essentially results in a surrogate
benchmark because we now rely on a performance model for the evaluation. In contrast to approx-
imation by discretization, in a surrogate benchmark the domain of the objective function is not
explicitly altered. Instead, predictions of an instance surrogate regression model 𝑓 (·) are returned
as function evaluations, 𝑐surrogate : Λ̃ → R𝑚 , 𝝀 ↦→ 𝑓 (𝝀). The drawback here is that values returned
by the surrogate model may misrepresent the local structure of the problem as well. Beyond the
resolution of the surrogate model training data, these structures are interpolated and influenced
by the inductive bias implied by the model.

Experimental Setup. As a real benchmark, we consider the original synthethic benchmark
function, while we generate a grid containing at most 106 points for the tabular version, storing
these pre-evaluated points in a look-up table together with their function value. The resolution of
the grid is the same for all functions along the budget parameter dimension, with 10 grid points
ranging from 2−9 to 1 on a 2𝑥 scale. For all other parameters of the domain, an equidistant grid
was generated by using ⌊(105) 1

𝐷 ⌋ grid points for each dimension 𝑑 = 1, . . . , 𝐷 . With the same data
we employ a similar surrogate neural network as used in YAHPO Gym. We compare the following
methods on real, surrogate, and tabular benchmarks: All HPOmethods were run for a total budget
of 100 evaluations reflecting 100 full fidelity evaluations. The synthetic test functions used in the
experiments [36] include a multi-fidelity parameter allowing for the use of multi-fidelity methods
such as Hyperband. Of the methods investigated, only HB makes use of the fidelity parameter,
while all other methods perform full budget evaluations. As a surrogate, we train a Wide & Deep
Network [14]. More details can be found in https://github.com/slds-lmu/yahpo_exps. BO
variants used Expected Improvement [35] as acquisition function and an initial design of 5 · 𝐷

28

Table 6: Consensus Rankings of HPO Methods for Real, Surrogate and Tabular Benchmarks.

Benchmark Consensus Ranking (CR) Permutation Order

Real BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_RS ≻ BO_NN_RS ≻ BO_NN_DF ≻ HB ≻ BO_RF_DF ≻ RS -
Surrogate BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_RS ≻ BO_NN_RS ≻ HB ≻ BO_NN_DF ≻ BO_RF_DF ≻ RS 2
Tabular BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_DF ≻ HB ≻ BO_RF_RS ≻ BO_NN_DF ≻ BO_NN_RS ≻ RS 5

points sampled uniformly at random. The Gaussian process surrogate model used a Matérn 3/2
kernel. Nelder-Mead as acquisition function optimizer was terminated if the relative change in
the maximum fell below 1𝑒 − 4. Tabular benchmarks used an exhaustive search for optimizing
the acquisition function in the scenario of *_DF. Random search as acquisition function optimizer
was allowed 104 evaluations.

Evaluation. For evaluation, we computed the mean normalized regret for each HPO method sep-
arately on the real, surrogate and tabular benchmarks (where the normalized regret for an HPO
method given a cumulative budget is defined as the difference between the value of the best HPC
found by any algorithm and the value of the best HPC found by this method, scaled by the range
of objective function values as found by any method, see also [3]). Based on the normalized regret,
we also computed the mean rank of each HPO method.
Results for the Branin2D, Currin2D and Hartmann3D benchmark functions are given in Figure 8.
Differences between tabular and real/surrogate benchmarks can be explained by the fact that the
inner optimization problem of BO methods is much easier to solve when only a finite set of po-
tential candidates must be evaluated (i.e., by exhaustive search). We also observe that for the BO
performance on the tabular benchmarks, there is no substantial difference in whether the acqui-
sition function optimization is solved exactly or via a random search. We employ the rank-based
symmetric difference (SD) method that aims to find a consensus ranking that minimizes the aver-
age number of rank reversals for the individual benchmark function rankings. We limit ourselves
to the scenario of considering the set of all linear orders of HPO methods as candidates for a
consensus ranking (SD/L).
By comparing the consensus ranking obtained via the surrogate/tabular benchmarks to the con-
sensus ranking obtained using the real benchmarks, we determine the faithfulness of surrogate
and tabular benchmarks.
We observe that the consensus ranking obtained using the surrogate benchmarks matches the real
one more closely than rankings obtained using tabular benchmarks (Table 6).

E.2 Single-Objective Benchmark on YAHPO-SO

Instances and Evaluation Protocol. We use the set of instances and target variables defined for
the YAHPO-SO benchmark suite defined in Supplement C.2 and detailed Table 3. We furthermore
follow the described evaluation protocol, using available search spaces and optimization budgets
including 30 replications to assess variance in results. As an evaluation criterion, we report mean
normalized regret (based on the target metric), see Figure 9. Table 7 provides additional info on
all optimizers used in the benchmark. Random Search simply samples configurations uniformly
at random. SMAC is a model based full-fidelity optimizer using a random forest as surrogate
model and Expected Improvement as acquisition function [35]. We use the SMAC4HPO facade
[49]. Hyperband randomly samples new configurations and allocates more fidelity to promising
configurations by relying on repeated successive halving (SH; [33]). BOHB combines BO with
Hyperband and uses a Tree Parzen Estimator (TPE; [6]) as surrogate model. DEHB is a model-
free successor of BOHB which relies on differential evolution instead of BO. We use the software
defaults regarding the choice of mutation and crossover. SMAC-HB also combines BO with Hy-
perband but uses a random forest as surrogate model (SMAC4MF facade; [49]). Optuna uses a TPE

29

as surrogate model and a median pruner [26] that follows a fixed SH schedule. A configuration is
stopped by the pruner if its best intermediate result (at a given fidelity level determined by the SH
schedule) is worse compared to the median of the other configurations on the same fidelity level.

Table 7: Optimizers used in the single-objective benchmark.

Optimizer Software Reference Version

Random Search - - -
SMAC (SMAC4HPO) https://github.com/automl/SMAC3 [49] 1.1.1
Hyperband https://github.com/automl/HpBandSter [46] 0.7.4
BOHB https://github.com/automl/HpBandSter [22] 0.7.4
DEHB https://github.com/automl/DEHB [5] 67ac239
SMAC-HB (SMAC4MF) https://github.com/automl/SMAC3 [49] 1.1.1
optuna https://optuna.org/ [2] 2.10.0

E.3 Multi-Objective Benchmark on YAHPO-MO

Instances and Evaluation Protocol. We use the set of instances and target variables defined for the
YAHPO-MO benchmark suite defined in Supplement C.2 and detailed in Table 4. We furthermore
follow the described evaluation protocol, using available search spaces and optimization budgets
including 30 replications to assess variance in results. As an evaluation criterion, we report the
mean Hypervolume Indicator [81] computed on normalized targets (see Figure 10). Nadir points
and reference Pareto fronts were obtained empirically over all replications of all HPO methods on
a given benchmark instance. Table 8 provides additional info on all optimizers used in the bench-
mark. Random Search simply samples configurations uniformly at random. Random Search (x4) at
each step samples four configurations uniformly at random (in parallel). ParEGO is a model based
optimizer relying on a scalarization of the objectives which we then model using a random forest
as surrogate model. As acquisition function we use Expected Improvement (EI; [35]). SMS-EGO
is a model based optimizer that uses a surrogate model for each objective (again, we use random
forests) and proposes candidates based on the S-metric [61]. EHVI is a model based optimizer us-
ing a surrogate model for each objective (again, we use random forests) and proposes candidates
based on their Expected Hypervolume Improvement [21]. MEGO is a model based optimizer using
a surrogate model for each objective (again, we use random forests) and proposes candidates by
considering the EI for each objective which gives rise to a multi-objective optimization problem
of the acquisition functions themselves. For the final candidate selection, we sample uniformly
at random over the Pareto optimal (with respect to the EIs) candidates. MIES is a mixed integer
evolutionary optimizer (plus survival scheme, 𝜇 = ⌊budget/6⌋, 𝜆 = ⌊𝜇/4⌋8). We use Gaussian
mutation (𝑝 = 0.2) for numerical parameters and discrete uniform mutation (𝑝 = 0.2) for categor-
ical parameters. For recombination, we use uniform crossover (𝑝 = 0.2). As parent selection we
perform a tournament selection of parents using nondominated sorting. For survival, we select
the best individuals based on nondominated sorting.

F Scenarios, Search Spaces and Data Sources

Random Bot V2 (rbv2_)

All scenarios prefixed with rbv2_ use data described in [10]. Data contains results from several ML
algorithms trained across up to 117 datasets evaluated for a large amount of random evaluations.
Table 9 lists all hyperparameters of the search space of the rbv2_ scenarios. Targets are given by

8where budget is the optimization budget for a given instance, i.e., number of total evaluations

30

Table 8: Optimizers used in the multi-objective benchmark.

Optimizer Software Reference Version

Random Search - - -
Random Search (x4) - - -
ParEGO https://github.com/mlr-org/mlr3mbo [41] 1f59e13
SMS-EGO https://github.com/mlr-org/mlr3mbo [61] 1f59e13
EHVI https://github.com/mlr-org/mlr3mbo [21] 1f59e13
MEGO https://github.com/mlr-org/mlr3mbo [34] 1f59e13
MIES https://github.com/mlr-org/miesmuschel [47] 3483f11

accuracy (acc), balanced accuracy (bac), AUC (auc), Brier Score (brier), F1 (f1), log loss (logloss),
time for training the model (timetrain), and memory usage (memory).
Surrogates are fitted on subsets of the full data available from [10], such that a minimum of 1500
and a maximum of 200000 (depending on the scenario) evaluations are available for each instance
in each scenario. All scenarios consist of a pre-processing step (missing data imputation) and a
subsequently fitted ML algorithm. Instance ID’s correspond to OpenML [71] dataset ids through
which dataset properties can be queried9. OpenML tasks corresponding to each dataset can be
obtained from [10]. We abbreviate the num.impute.selected.cpo hyperparameter with imputation
throughout the tables. We fix the repl parameter to 10 for experiments.

NasBench-301 (nb301)

nb301 uses data of the NAS-Bench-301 benchmark ([79], see also [65]). Table 10 lists all hyperpa-
rameters of the search space of the nb301 scenario. Targets are given by the validation accuracy
(val_accuracy) and the training time (runtime).

LCBench (lcbench)

The lcbench collection uses data of the LCBench benchmark [78], as described in [80]. Table 11
lists all hyperparameters of the search space of the lcbench scenario. Targets are given by the
validation accuracy (val_accuracy), validation cross entropy (val_crossentropy), validation bal-
anced accuracy (val_balanced_accuracy), test cross entropy (test_crossentropy), test balanced
accuracy (test_balanced_accuracy) and the training time (time).

Interpretable AutoML (iaml_)

All scenarios prefixed with iaml_ rely on data that were newly collected by us. Different mlr3
[42] learners (“classif.glmnet”, “classif.rpart”, “classif.ranger”, “classif.xgboost”) were incorporated
into an ML pipeline with minimal preprocessing (removing constant features, fixing unseen fac-
tor levels during prediction and missing value imputation for factor variables by sampling from
mon-missing training levels) via mlr3pipelines [9]. Hyperparameters of the learners were sam-
pled uniformly at random (for the search spaces, see Table 12) and the ML pipeline performance
(classification error - mmce, F1 score - f1, AUC - auc, logloss - logloss) was evaluated via 5-fold
cross-validation on the following OpenML [72] classification tasks (data id): 40981, 41146, 1489,
1067. Each pipeline was then refitted and used for prediction on the whole data to estimate train-
ing and predict time (timetrain, timepredict) and RAM usage (during training and prediction,
ramtrain and rampredict as well as model size, rammodel). Moreover, interpretability measures as
described in [53] were computed for all models: number of features used (nf), interaction strength
of features (ias) and main effect complexity of features (mec). To our best knowledge, this is the

9https://www.openml.org/d/<dataset_id>

31

Table 9: Search Spaces of YAHPO Gym’s rbv2_ scenarios. ⊢ indicates the parent in case dependencies
between hyperparameters exist. The super scenario inherits dependencies from previous
scenarios, while additional dependencies on the learner_id are introduced, indicated by a
prefix.

rbv2_glmnet

Hyperparameter Type Range Info

alpha continuous [0, 1]
s continuous [0.001, 1097] log
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_rpart

Hyperparameter Type Range Info

cp continuous [0.001, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_svm

Hyperparameter Type Range Info

kernel categorical {linear, polynomial, radial}
cost continuous [4.5e-05, 2.2e4] log
gamma continuous [4.5e-05, 2.2e4] log, ⊢ kernel
tolerance continuous [4.5e-05, 2] log
degree integer [2, 5] ⊢ kernel
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_aknn

Hyperparameter Type Range Info

k integer [1, 50]
distance categorical {l2, cosine, ip}
M integer [18, 50]
ef integer [7, 403] log
ef_construction integer [7, 403] log
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_ranger

Hyperparameter Type Range Info

num.trees integer [1, 2000]
sample.fraction continuous [0.1, 1]
mtry.power integer [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] ⊢ splitrule
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_xgboost

Hyperparameter Type Range Info

booster categorical {gblinear, gbtree, dart}
nrounds integer [7, 2980] log
eta continuous [0.001, 1] log, ⊢ booster
gamma continuous [4.5e-05, 7.4] log, ⊢ booster
lambda continuous [0.001, 1097] log
alpha continuous [0.001, 1097] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] ⊢ booster
min_child_weight continuous [2.72, 148.4] log, ⊢ booster
colsample_bytree continuous [0.01, 1] ⊢ booster
colsample_bylevel continuous [0.01, 1] ⊢ booster
rate_drop continuous [0, 1] ⊢ booster
skip_drop continuous [0, 1] ⊢ booster
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_super

Hyperparameter Type Range Info

svm.kernel categorical {linear, polynomial, radial}
svm.cost continuous [4.5e-05, 2.2e4] log
svm.gamma continuous [4.5e-05, 2.2e4] log
svm.tolerance continuous [4.5e-05, 2] log
svm.degree integer [2, 5]
glmnet.alpha continuous [0, 1]
glmnet.s continuous [0.001, 1097] log
rpart.cp continuous [0.001, 1] log
rpart.maxdepth integer [1, 30]
rpart.minbucket integer [1, 100]
rpart.minsplit integer [1, 100]
ranger.num.trees integer [1, 2000]
ranger.sample.fraction continuous [0.1, 1]
ranger.mtry.power integer [0, 1]
ranger.respect.unordered.factors categorical {ignore, order, partition}
ranger.min.node.size integer [1, 100]
ranger.splitrule categorical {gini, extratrees}
ranger.num.random.splits integer [1, 100]
aknn.k integer [1, 50]
aknn.distance categorical {l2, cosine, ip}
aknn.M integer [18, 50]
aknn.ef integer [7, 403] log
aknn.ef_construction integer [7, 403] log
xgboost.booster categorical {gblinear, gbtree, dart}
xgboost.nrounds integer [7, 2980] log
xgboost.eta continuous [0.001, 1] log
xgboost.gamma continuous [4.5e-05, 7.4] log
xgboost.lambda continuous [0.001, 1097] log
xgboost.alpha continuous [0.001, 1097] log
xgboost.subsample continuous [0.1, 1]
xgboost.max_depth integer [1, 15]
xgboost.min_child_weight continuous [2.72, 148.41] log
xgboost.colsample_bytree continuous [0.01, 1]
xgboost.colsample_bylevel continuous [0.01, 1]
xgboost.rate_drop continuous [0, 1]
xgboost.skip_drop continuous [0, 1]
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}
learner_id categorical {aknn, glmnet, ranger, rpart, svm, xgboost}

32

Table 10: Search space of the nb301 scenario. We summarize multiple parameters (using, e.g., {3 − 5}
if parameters with suffix 3 through 5 are present).

Hyperparameter Type Range Info

NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_{0-13} categorical {max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3, dil_conv_5x5}

NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_{0-13} categorical {max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3, dil_conv_5x5}

NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_{3-5} categorical {0_1, 0_2, 1_2}
NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_{3-5} categorical {0_1, 0_2, 1_2}
epoch integer [1, 98] budget

Table 11: Search Space of the lcbench scenario.

Hyperparameter Type Range Info

epoch integer [1, 52] budget
batch_size integer [16, 512] log
learning_rate continuous [1e-04, 0.1] log
momentum continuous [0.1, 0.9]
weight_decay continuous [1e-05, 0.1]
num_layers integer [1, 5]
max_units integer [64, 1024] log
max_dropout continuous [0, 1]

first publicly available benchmark that combines performance, resource usage and interpretability
of models allowing for the construction of interesting multi-objective benchmarks. Hyperparam-
eter configurations were evaluated at different fidelity steps (training sizes of the following frac-
tions: 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1) achieved via incorporating resampling in the ML pipeline. The
super learner scenario was constructed by using the data of all four base learners introducing con-
ditional hyperparameters in the form of branching. In total, 5451872 different configurations were
evaluated. Data collection was performed on the moran partition of the ARCC Teton HPC cluster
of the University of Wyoming using batchtools [43] for job scheduling and took around 9.8 CPU
years. Surrogate models were then fitted on the available data as described in Supplement D.1.
Table 12 lists all hyperparameters of the search spaces of the iaml_ scenarios. Instance ID’s cor-
respond to OpenML [71] dataset ids through which dataset properties can be queried10. OpenML
tasks corresponding to each dataset can be obtained from [10].

10https://www.openml.org/d/<dataset_id>

33

Table 12: Search spaces of YAHPOGym’s iaml_ scenarios. ⊢ indicates the parent in case dependencies
between hyperparameters exist. The super scenario inherits dependencies from previous
scenarios, while additional dependencies on the learner are introduced, indicated by a prefix.

iaml_glmnet

Hyperparameter Type Range Info

alpha continuous [0, 1]
s continuous [1e-04, 1000] log
trainsize continuous [0.03, 1] budget

iaml_rpart

Hyperparameter Range Type Info

cp continuous [1e-04, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]
trainsize continuous [0.03, 1] budget

iaml_ranger

Hyperparameter Type Range Info

num.trees integer [1, 2000]
replace boolean {TRUE, FALSE}
sample.fraction continuous [0.1, 1]
mtry.ratio continuous [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] ⊢ splitrule
trainsize continuous [0.03, 1] budget

iaml_xgboost

Hyperparameter Type Range Info

booster categorical {gblinear, gbtree, dart}
nrounds integer [3, 2000] log
eta continuous [1e-04, 1] log, ⊢ booster
gamma continuous [1e-04, 7] log, ⊢ booster
lambda continuous [1e-04, 1000] log
alpha continuous [1e-04, 1000] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] ⊢ booster
min_child_weight continuous [exp(1) , 150] log, ⊢ booster
colsample_bytree continuous [0.01, 1] ⊢ booster
colsample_bylevel continuous [0.01, 1] ⊢ booster
rate_drop continuous [0, 1] ⊢ booster
skip_drop continuous [0, 1] ⊢ booster
trainsize continuous [0.03, 1] budget

iaml_super

Hyperparameter Type Range Info

learner categorical {ranger, glmnet, xgboost, rpart}
glmnet.alpha continuous [0, 1]
glmnet.s continuous [1e-04, 1000] log
rpart.cp continuous [1e-04, 1] log
rpart.maxdepth integer [1, 30]
rpart.minbucket integer [1, 100]
rpart.minsplit integer [1, 100]
ranger.num.trees integer [1, 2000]
ranger.replace boolean {TRUE, FALSE}
ranger.sample.fraction continuous [0.1, 1]
ranger.mtry.ratio continuous [0, 1]
ranger.respect.unordered.factors categorical {ignore, order, partition}
ranger.min.node.size integer [1, 100]
ranger.splitrule categorical {gini, extratrees}
ranger.num.random.splits integer [1, 100]
xgboost.booster categorical {gblinear, gbtree, dart}
xgboost.nrounds integer [3, 2000] log
xgboost.eta continuous [1e-04, 1] log
xgboost.gamma continuous [1e-04, 7] log
xgboost.lambda continuous [1e-04, 1000] log
xgboost.alpha continuous [1e-04, 1000] log
xgboost.subsample continuous [0.1, 1]
xgboost.max_depth integer [1, 15]
xgboost.min_child_weight continuous [2.71828182845905, 150] log
xgboost.colsample_bytree continuous [0.01, 1]
xgboost.colsample_bylevel continuous [0.01, 1]
xgboost.rate_drop continuous [0, 1]
xgboost.skip_drop continuous [0, 1]
trainsize continuous [0.03, 1] budget

34

Figure 5: Predicted learning curves (lines) together with true learning curves (dotted) for 4 randomly
drawn configurations (differentiated by colour) out of each instance in YAHPO-MO report-
ing the respective target metric. Best viewed in color. 35

Figure 6: Empirical Cumulative Distribution Function (ECDF) for surrogate predictions (blue) and real
evaluations (orange). Best viewed in color. 36

Figure 7: Empirical Cumulative Distribution Function (ECDF) for optimizer traces on YAHPO-SO.
Best viewed in color.

37

Figure 8: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

38

Figure 9: Mean normalized regret of HPO methods separate for each benchmark instance. x-axis
starts after 10% of the optimization budget has been used.

39

Figure 10: Mean normalized Hypervolume Indicator of HPO methods separate for each benchmark
instance. x-axis starts after 10% of the optimization budget has been used.

40

182 4. Contributions - AutoML

4.8 Mutation is all you need
Contributed Article:
L. Schneider, F. Pfisterer, M. Binder, and B. Bischl. Mutation is all you need. In AutoML
Workshop at ICML, 2021, arXiv:2107.07343

Declaration of contributions The contribution was developed based on the results
of a master thesis by LS supervised by FP, MB and BB. The code, methodology, and
manuscript were largely written by LS with input by FP, MB and BB who also revised and
improved the final manuscript. FP and MB also provided feedback regarding the design
of benchmark experiments which were then carried out by LS.

8th ICML Workshop on Automated Machine Learning (2021)

Mutation is all you need

Lennart Schneider lennart.schneider@stat.uni-muenchen.de

Florian Pfisterer florian.pfisterer@stat.uni-muenchen.de

Martin Binder martin.binder@stat.uni-muenchen.de

Bernd Bischl bernd.bischl@stat.uni-muenchen.de

Department of Statistics, LMU Munich, Germany

Abstract

Neural architecture search (NAS) promises to make deep learning accessible to non-experts
by automating architecture engineering of deep neural networks. BANANAS is one state-
of-the-art NAS method that is embedded within the Bayesian optimization framework.
Recent experimental findings have demonstrated the strong performance of BANANAS on
the NAS-Bench-101 benchmark being determined by its path encoding and not its choice
of surrogate model. We present experimental results suggesting that the performance of
BANANAS on the NAS-Bench-301 benchmark is determined by its acquisition function
optimizer, which minimally mutates the incumbent.

1. Introduction

Neural architecture search (NAS) methods can be categorized along three dimensions
(Elsken et al., 2019a): search space, search strategy, and performance estimation strat-
egy. Focusing on search strategy, popular methods are given by Bayesian optimization
(BO, e.g., Bergstra et al. 2013; Domhan et al. 2015; Mendoza et al. 2016; Kandasamy et al.
2018; White et al. 2019), evolutionary methods (e.g., Miller et al. 1989; Liu et al. 2017; Real
et al. 2017, 2019; Elsken et al. 2019b), reinforcement learning (RL, e.g., Zoph and Le 2017;
Zoph et al. 2018), and gradient-based algorithms (e.g., Liu et al. 2019; Pham et al. 2018).

Within the BO framework, BANANAS (White et al., 2019) has emerged as one state-
of-the-art algorithm (White et al., 2019; Siems et al., 2020; Guerrero-Viu et al., 2021;
White et al., 2021). The two main components of BANANAS are a (truncated) path
encoding, where architectures represented as directed acyclic graphs (DAG) are encoded
based on the possible paths through that graph, and an ensemble of feed-forward neural
networks as surrogate model. Recently, White et al. (2021) investigated the performance
of different surrogate models in the context of BO-based NAS and concluded that the
strong performance of BANANAS on the NAS-Bench-101 benchmark (Ying et al., 2019)
is determined by its path encoding and not its choice of surrogate model. Results suggest
that path encoding leads to a performance boost on smaller search spaces (such as the one
of NAS-Bench-101) but does not scale well on larger search spaces such as DARTS (Liu
et al., 2019).

We hypothesize that for larger search spaces, the strong performance of BANANAS
stems from its choice of acquisition function optimizer in the sense that local optimization of
architectures is most important and other components have less impact on performance. To
investigate this hypothesis, we vary the main BANANAS components, namely architecture
representation, surrogate model, acquisition function and acquisition function optimizer in a

©2021 Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl.

ar
X

iv
:2

10
7.

07
34

3v
1

 [
cs

.L
G

]
 4

 J
ul

 2
02

1

Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl

factorial manner and examine the performance difference on the NAS-Bench-301 benchmark
(Siems et al., 2020)1.

2. BANANAS

BANANAS (White et al., 2019) uses a (truncated) path encoding, combined with an en-
semble of feed-forward neural networks as surrogate model, to predict the performance of
architectures. Cell-based search spaces such as DARTS can be encoded by representing
cells as DAGs, with nodes as vertices and connections with operations between them as
edges. For every path, i.e., every possible ordering of vertices, a binary feature is generated,
indicating whether the DAG contains all directed edges along this path. If architectures are
created by sampling edges in the DAG subject to a maximum edge constraint (i.e., limiting
the number of edges), most possible paths have a low probability of occurring (White et al.,
2019; Ying et al., 2019). Therefore, BANANAS truncates the least-likely paths, resulting
in a relatively informative encoding that scales linearly with the size of the cell.

Let A denote the search space of architectures and {fm}Mm=1 denote an ensemble of
M feed-forward neural networks (NN)2, where fm : A → R. BANANAS uses independent
Thompson sampling (ITS, Thompson 1933; White et al. 2019) as acquisition function:

αITS(x) = f̃x(x), f̃x(x) ∼ N (f̂ , σ̂2), (1)

where f̂ = 1
M

∑M
m=1 fm(x) and σ̂ =

√∑M
m=1(fm(x)−f̂)2

M−1 . αITS(·) is then optimized using
the following mutation algorithm (Mut): The best performing architecture so far is selected
and mutated in 100 different ways by changing a single operation or edge randomly and
the architecture yielding the largest acquisition value is proposed as the next candidate for
evaluation.

3. Experiments

To investigate the effectiveness of different components of BANANAS on NAS-Bench-301,
we conducted a series of experiments where we replaced some of them with what we consider
more “standard” choices. A simpler configuration could use a random forest (RF, Breiman
2001; notably used successfully in SMAC, Hutter et al. 2011) as a surrogate model which
can either be fitted to path encodings (Path) or natural tabular representations (Tabular)
of the architectures as provided in NAS-Bench-301 in the form of a ConfigSpace (see the
ConfigSpace library, Lindauer et al. 2019). In the tabular encoding, architectures are
represented by enumerating all nodes and potential edges and introducing categorical hy-
perparameters for each operation along each potential edge, where the nodes serving as
input of each intermediate node are again defined as categorical hyperparameters and op-
erations on a certain edge can only be specified if this edge is actually present in the DAG

1. NAS-Bench-301 uses architectures of the DARTS search space trained and evaluated on CIFAR-10
(Krizhevsky, 2009)

2. White et al. (2019) use M = 5 sequential fully-connected networks with 10 layers of width 20 by default,
initialized with different random weights and trained using permuted training sets, the Adam optimizer
with a learning rate of 0.01, and mean absolute error (MAE) loss

2

AutoML@ICML Mutation is all you need

(Siems et al., 2020). Note that another possible architecture representation is given by ad-
jacency matrix encoding (Ying et al., 2019; White et al., 2020a), which was not considered
by us. Looking at the acquisition function, the expected improvement (EI) is a well-known
alternative:

αEI(x) = Ey[max(y − ymax, 0)], (2)

given in Jones et al. (1998), where in our context ymax is the best validation accuracy
observed so far and y is the surrogate prediction of architecture x. As a very simple
alternative, one could also only be interested in the posterior mean prediction (Const.
Mean) as acquisition function, which does not take the surrogate model uncertainty estimates
into account. Finally, looking at acquisition function optimizers, a popular choice is given by
random search (RS): Drawing a large number of architectures uniformly at random (e.g., by
sampling from the ConfigSpace) and selecting the architecture with the largest acquisition
value. Our RS method samples 1000 architectures in each BO iteration.

3.1 Different BANANAS Configurations on NAS-Bench-301

Choices for the architecture encodings, surrogate candidates, acquisition functions, and
acquisition function optimizers were crossed in a full factorial manner (where possible),
resulting in overall 18 different algorithms. BANANAS, local search (LS) and random
search (as NAS method, Random) were used as implemented in naszilla (White et al.,
2020a). In LS (White et al., 2020b), all neighbors (e.g., all architectures differing in one
operation or edge) of an incumbent are evaluated and the incumbent is replaced if a better
architecture has been found and the process is repeated until no better architecture can be
found (i.e., a local optimum is reached) or another termination criterion is met. Regarding
the reference BANANAS implementation, two configurations were used differing in the
frequency of updating their ensemble of feed-forward networks (k = 1, i.e., after every
iteration, or k = 10, see White et al. 2019). The initial design for all methods consisted
of ten architectures that were sampled uniformly at random (note that LS and Random do
not rely on an initial design and simply start from zero evaluations). All methods were run
for 100 iterations (architecture evaluations) and all runs were replicated 20 times. Results
are shown in Figure 1, where the validation accuracy is plotted against the batch number.
Note that in each facet, the reference naszilla implementations of BANANAS, LS, and
Random are provided and by design, Paths + NN + ITS + Mut is a (re-)implementation
of the BANANAS (k = 1) configuration. In general, using Mut as acquisition function
optimizer always results in a strong performance boost compared to using RS. Notably,
BANANAS’ ensemble of feed-forward neural networks, together with path encoding only
performs well if combined with Mut and is otherwise outperformed by Random. Moreover, the
very simple configuration of Tabular + RF + EI + Mut performs similarly to the reference
BANANAS implementation. Finally, neglecting all uncertainty in the predictions by opting
for the Const. Mean acquisition function results in very good performance when combined
with Tabular + RF + Mut. Performing a one-way ANOVA on the top seven algorithms
indicated no significant difference in final performance, F (6, 133) = 1.026, p = 0.411. Table 1
presents results of a four-way ANOVA on the final performance of the 18 algorithms outlined
above with respect to the factors architecture encoding, surrogate candidate, acquisition

3

Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl

Acquisition Function Optimizer: Mut Acquisition Function Optimizer: RS

0 25 50 75 0 25 50 75

93.75

94.00

94.25

94.50

94.75

Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

±
S

E

Algorithm / Representation + Surrogate
BANANAS (k = 1)

BANANAS (k = 10)

LS

Random

Tabular + RF

Path + RF

Path + NN Acquisition Function EI ITS Const. Mean

Figure 1: Different BANANAS configurations on NAS-Bench-301. Mean validation accuracy with standard
error bands, higher is better. Color: optimization method and surrogate model. Facet: acquisition function
optimizer, where applicable. Point shape: acquisition function, where applicable. The ITS acquisition
function and Mut acquisition function optimizer is used for BANANAS methods, and LS and Random do not
use an acquisition function; their accuracy is therefore shown in both facets of the graph.

function, and acquisition function optimizer. The acquisition function optimizer is by far
the most important determinant of final performance.

Sum Sq Df F value Pr(>F)
Architecture Encoding 0.41 1 19.57 0.0000
Surrogate Candidate 1.01 1 48.31 0.0000
Acquisition Function 0.56 2 13.49 0.0000
Acq. F. Optimizer 13.18 1 632.43 0.0000
Residuals 7.38 354

Table 1: Results of a four-way ANOVA on the factors architecture encoding, surrogate candidate, acqui-
sition function, and acquisition function optimizer. Type II sums of squares.

3.2 Examining the Effect of the Acquisition Function Optimizer

To investigate the performance difference with respect to the acquisition function optimiz-
ers, another experiment was conducted. Based on the Tabular + RF + EI configuration
three different acquisition function optimizers were compared: Random search with 100000
architectures drawn uniformly at random in each BO iteration (RS+), random search as de-
scribed above (RS) and Mut as described above. Ten architectures were sampled uniformly
at random and used as the initial design points for all replications. All methods were run
for 100 iterations (architecture evaluations) and all runs were replicated 20 times. Results
are given in Figure 2A. As can be seen, Mut strongly outperforms even the RS+ optimizer.

We collected additional data in the RS+ runs shown in Figure 2A. In each BO iteration of
these runs, we also performed acquisition function optimization using the other two methods
(RS and Mut) and investigated the properties of the proposed architectures. While the op-

4

AutoML@ICML Mutation is all you need

94.00

94.25

94.50

94.75

0 25 50 75
Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

±
S

E
A

0.00

0.02

0.04

0.06

0.08

0 25 50 75
Iteration

M
ea

n
E

I

B

−3

−2

−1

0

0 25 50 75
Iteration

M
ea

n
V

al
. A

cc
. r

el
at

iv
e

to
 In

cu
m

be
nt

C

0.00

0.02

0.04

0.06

0 25 50 75
Iteration

M
ea

n
A

ct
ua

l I
m

pr
ov

em
en

t

D

Acquisition Function Optimizer Mut RS RS+

Figure 2: Tabular + RF + EI with different acquisition function optimizers on NAS-Bench-301. A: Vali-
dation accuracy. B: EI. C: Validation accuracy relative to the incumbent. D: Actual improvement. Ribbons
in B and C represent 2.5% and 97.5% quantiles. In D, LOESS smoothing was performed and triangles
indicate no improvement.

timization itself proceeded with the architectures proposed by RS+, the collected data gives
information about the quality of architecture proposals done by the other methods. The
data collected was the EI of each proposed architecture, according to the surrogate model
(Figure 2B), the actual validation accuracy of each proposed architecture (when evaluated),
minus the validation accuracy of the incumbent during that iteration (Figure 2C), and that
same quantity, conditional on the proposed architecture giving higher validation accuracy
than the incumbent (“actual improvement”, Figure 2D).

Mut results in both higher EI and actual improvement, i.e., Mut solves the inner optimiza-
tion problem better than the other optimizers and the actual improvement is comparably
large. Note that the difference between the validation accuracy of proposed architectures
and incumbent is mostly negative due to a fixed iteration seldom resulting in actual im-
provement. Looking at Figure 2D, we observe that following the proposals by RS+ and RS

results in many iterations with no improvement (as indicated by triangles).

In a final experiment, focus was given to the accuracy of the surrogate model when
predicting the validation accuracy of architectures depending on the edit distance to the
incumbent. Based on the Tabular + RF + EI + Mut configuration, the BO loop was run
for 50 iterations (architecture evaluations); the construction of the initial design remained
the same and all runs were replicated 100 times. For edit distances ranging from 1 to 8,
100 test architectures were constructed each by mutating a fixed number of parameters
(operations or edges) of the incumbent. For these test architectures, Kendall’s τ with re-
spect to the predicted and true validation accuracy (after evaluation) is given in Figure 3A.

5

Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl

Additionally, the true validation accuracy is plotted against the edit distance (Figure 3B),
with the gray point representing the incumbent. In Figure 3C, the expected improvement
and the actual improvement is plotted. While the true validation accuracy decreases when
increasing the edit distance, Kendall’s τ increases, suggesting that the surrogate model is
not capable of precise performance prediction for high performing architectures close to the
incumbent. This finding goes in line with results of White et al. (2021) that model based
NAS methods perform bad when predicting the performance of neighbors of high perform-
ing architectures when the search space is large. Moreover, the expected improvement is
relatively unaffected by the edit distance, although the actual improvement is largest for
close architectures. This may indicate that thorough optimization of the acquisition func-
tion is not needed, instead simply considering neighboring architectures as candidates may
be sufficient.

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8
Edit Distance to Incumbent

M
ea

n
τ

±
S

E

A

93.0

93.5

94.0

94.5

0 1 2 3 4 5 6 7 8
Edit Distance to Incumbent

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

B

0.00

0.02

0.04

1 2 3 4 5 6 7 8
Edit Distance to Incumbent
M

ea
n

E
I a

nd
 A

ct
ua

l I
m

pr
ov

em
en

t

C

Figure 3: Tabular + RF + EI + Mut on NAS-Bench-301. A: Kendall’s τ of the predicted and true vali-
dation accuracy of test architectures constructed to have different edit distances to the incumbent. B: True
validation accuracy of these test architectures. Validation accuracy of the incumbent is given in gray. C:
Expected Improvement (red) and actual improvement (gray) of these test architectures. Bars in B and C
represent 2.5% and 97.5% quantiles.

4. Discussion

We have presented empirical results suggesting that the performance of BANANAS on
large cell-based search spaces such as DARTS is predominantly determined by its choice
of acquisition function optimizer that is effectively performing a randomized local search.
Other components such as the architecture encoding, surrogate model and acquisition func-
tion have a comparably small effect on the performance, and exchanging most components
of BANANAS with more “standard” choices results in a method that is not significantly
worse. Local search, which uses no surrogate model at all, does in fact perform equally well
(at least on the NAS-Bench-301 benchmark), giving more evidence that the local nature
of BANANAS’ mutation acquisition function optimization contributes mainly to its suc-
cess. Minimally mutating the incumbent allows for solving the inner acquisition function
optimization problem better than random search variants with large budget, although the
surrogate model suffers from imprecise surrogate predictions for architectures close in edit
distance to the incumbent. Future work on BO methods for NAS should therefore also
focus on algorithms for solving the inner acquisition function optimization problem.

6

AutoML@ICML Mutation is all you need

References

M. Becker, J. Richter, M. Lang, B. Bischl, and M. Binder. bbotk: Black-Box Optimization
Toolkit, 2021. https://bbotk.mlr-org.com, https://github.com/mlr-org/bbotk.

H. Bengtsson. A unifying framework for parallel and distributed processing in R using
futures. arXiv:2008.00553 [cs.DG], 2020.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proceedings of the
30th International Conference on Machine Learning, pages 115–123, 2013.

M. Binder, F. Pfisterer, L. Schneider, B. Bischl, M. Lang, and S. Dandl. mlr3pipelines:
Preprocessing Operators and Pipelines for ’mlr3’, 2020. URL https://CRAN.R-project.

org/package=mlr3pipelines. R package version 0.3.0.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Proceedings
of the 24th International Conference on Artificial Intelligence, page 3460–3468, 2015.

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2021. URL https:

//CRAN.R-project.org/package=data.table. R package version 1.14.0.

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of
Machine Learning Research, 20(55):1–21, 2019a.

T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture search
via Lamarckian evolution. In Proceedings of the International Conference on Learning
Representations, 2019b.

J. Guerrero-Viu, S. Hauns, S. Izquierdo, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken,
D. Deng, M Lindauer, and F. Hutter. Bag of baselines for multi-objective joint neural
architecture search and hyperparameter optimization. arXiv:2105.01015 [cs.LG], 2021.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pages 507–523, 2011.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. Neural architecture
search with Bayesian optimisation and optimal transport. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, 2018.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

7

Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl

M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio,
L. Kotthoff, and B. Bischl. mlr3: A modern object-oriented machine learning framework
in R. Journal of Open Source Software, dec 2019.

M. Lindauer and F. Hutter. Best practices for scientific research on neural architecture
search. arXiv:1909.02453 [cs.LG], 2019.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and
F. Hutter. BOAH: A tool suite for multi-fidelity Bayesian optimization & analysis of
hyperparameters. arXiv:1908.06756 [cs.LG], 2019.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical represen-
tations for efficient architecture search. In Proceedings of the International Conference
on Learning Representations, 2017.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In Proceed-
ings of the International Conference on Learning Representations, 2019.

H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. Towards
automatically-tuned neural networks. In ICML Workshop on Automatic Machine Learn-
ing, 2016.

G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using genetic
algorithms. In Proceedings of the Third International Conference on Genetic Algorithms,
pages 379–384, 1989.

H. Pham, M. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search
via parameter sharing. In Proceedings of the 35th International Conference on Machine
Learning, pages 4095–4104, 2018.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Ku-
rakin. Large-scale evolution of image classifiers. In Proceedings of the 34th International
Conference on Machine Learning, page 2902–2911, 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier
architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 4780–4789, 2019.

J. Richter, M. Becker, M. Lang, B. Bischl, M. Binder, and J. Moosbauer.
mlr3mbo: Flexible Bayesian Optimization in R, 2021. https://mlr3mbo.mlr-org.com,
https://github.com/mlr-org/mlr3mbo.

J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter. NAS-Bench-301
and the case for surrogate benchmarks for neural architecture search. arXiv:2008.09777
[cs.LG], 2020.

8

AutoML@ICML Mutation is all you need

W. R. Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

K. Ushey, JJ. Allaire, and Y. Tang. reticulate: Interface to ’Python’, 2020. URL https:

//CRAN.R-project.org/package=reticulate. R package version 1.18.

C. White, W. Neiswanger, and Y. Savani. BANANAS: Bayesian optimization with neural
architectures for neural architecture search. arXiv:1910.11858 [cs.LG], 2019.

C. White, W. Neiswanger, S. Nolen, and Y. Savani. A study on encodings for neural archi-
tecture search. In Proceedings of the 34th Conference on Neural Information Processing
Systems, 2020a.

C. White, S. Nolen, and Y. Savani. Local search is state of the art for neural architecture
search benchmarks. In ICML Workshop on Automatic Machine Learning, 2020b.

C. White, A. Zela, B. Ru, Y. Liu, and F. Hutter. How powerful are performance predictors
in neural architecture search? arXiv:2104.01177 [cs.LG], 2021.

M. N. Wright and A. Ziegler. ranger: A fast implementation of random forests for high
dimensional data in C++ and R. Journal of Statistical Software, 77(1):1–17, 2017.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-Bench-101:
Towards reproducible neural architecture search. In Proceedings of the 36th International
Conference on Machine Learning, pages 7105–7114, 2019.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceed-
ings of the International Conference on Learning Representations, 2017.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8697–8710, 2018.

9

Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl

Appendix A. Computational Details

The BO algorithms were implemented in R (R Core Team, 2020) within the mlr3 (Lang
et al., 2019) ecosystem relying on mlr3mbo (version 0.0.0.9999; Richter et al. 2021) and
bbotk (version 0.3.0.9999; Becker et al. 2021). Random forests were used as imple-
mented in the mlr3extralearners package wrapping ranger::ranger (version 0.12.1;
Wright and Ziegler 2017) with num.trees set to 500, se.method set to "jack", and
respect.unordered.factors set to "order". Missing values were encoded with a new level
“.missing” via a preprocessing pipeline built using mlr3pipelines (version 0.3.0; Binder
et al. 2020).

Python 3.8.7 was used via the reticulate package (version 1.18; Ushey et al. 2020)
within R. For NAS-Bench-301, nasbench301 version 0.2 (Siems et al., 2020) was used relying
on the xgb v1.0 surrogate model for the validation accuracy. The feed-forward ensemble of
neural networks and path encoding as used by BANANAS was directly adopted as imple-
mented in naszilla (version 1.0; White et al. 2020a). BANANAS, local search and random
search (as NAS methods) were run using naszilla employing the same nasbench301 setup
as described above under Python 3.6.12 (due to different module requirements).

All computations were performed on 2 Intel© Xeon© E5-2650 v2 @ 2.60GHz CPUs
each with 16 threads using R 4.0.3 under Ubuntu 20.04.1 LTS. Parallelization in R was done
via the future (Bengtsson, 2020) and future.apply (Bengtsson, 2020) packages (version
1.21.0 and 1.7.0) on top of the internal parallelization of the data.table (Dowle and Srini-
vasan, 2021) package (version 1.14.0).

Appendix B. NAS Best Practices Checklist

Here, we answer to applicable questions of the NAS best practices checklist (version 1.0),
see Lindauer and Hutter (2019).

• as NAS benchmark, NAS-Bench-301 (nasbench301) version 0.2 was used relying on
the xgb v1.0 surrogate model (deterministic) for the validation accuracy

• all computations were run on the same hardware (2 Intel© Xeon© E5-2650 v2 @
2.60GHz CPUs)

• all results reported are based on ablation studies

• the same evaluation protocol was used for all methods

• performance was compared with respect to the number of architecture evaluations

• random search was included as a NAS method

• multiple runs (20 or 100) were conducted; reproducibility with respect to algorithms
implemented in R is given due to an initial random seed being set; regarding naszilla,
no seed can be explicitly set

10

4.9 Tackling Neural Architecture Search With Quality Diversity Optimization193

4.9 Tackling Neural Architecture Search With Quality
Diversity Optimization

Contributed Article:
L. Schneider, F. Pfisterer, P. Kent, J. Branke, B. Bischl, and J. Thomas. Tackling neu-
ral architecture search with quality diversity optimization. In I. Guyon, M. Lindauer,
M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the First Interna-
tional Conference on Automated Machine Learning, volume 188 of Proceedings of Machine
Learning Research, pages 9/1–30. PMLR, 25–27 Jul 2022

Declaration of contributions The project was initiated by LS, who also developed the
core ideas and implementation of the methodology. FP contributed code for the use case on
pruning studied in the paper. The manuscript was largely written by LS. FP contributed
larger parts to the Appendix of the paper and reiterated parts of the Introduction and
Conclusion. PK contributed the related work section on quality diversity optimization. FP,
JT, PK, JB and BB advised throughout the project and further improved the manuscript.

Tackling Neural Architecture Search
With Quality Diversity Optimization

Lennart Schneider1 Florian Pfisterer1 Paul Kent2 Juergen Branke3 Bernd Bischl1

Janek Thomas1

1Department of Statistics, LMU Munich, Germany
2Mathematics of Real World Systems, University of Warwick, UK
3Warwick Business School, University of Warwick, UK

Abstract Neural architecture search (NAS) has been studied extensively and has grown to become
a research field with substantial impact. While classical single-objective NAS searches
for the architecture with the best performance, multi-objective NAS considers multiple
objectives that should be optimized simultaneously, e.g., minimizing resource usage along
the validation error. Although considerable progress has been made in the field of multi-
objective NAS, we argue that there is some discrepancy between the actual optimization
problem of practical interest and the optimization problem that multi-objective NAS tries
to solve. We resolve this discrepancy by formulating the multi-objective NAS problem
as a quality diversity optimization (QDO) problem and introduce three quality diversity
NAS optimizers (two of them belonging to the group of multifidelity optimizers), which
search for high-performing yet diverse architectures that are optimal for application-specific
niches, e.g., hardware constraints. By comparing these optimizers to their multi-objective
counterparts, we demonstrate that quality diversity NAS in general outperforms multi-
objective NAS with respect to quality of solutions and efficiency. We further show how
applications and future NAS research can thrive on QDO.

1 Introduction

The goal of neural architecture search (NAS) is to automate the manual process of designing
optimal neural network architectures. Traditionally, NAS is formulated as a single-objective
optimization problem with the goal of finding an architecture that has minimal validation error
[13, 35, 45, 47, 46, 63]. Considerations for additional objectives such as efficiency have led to the
formulation of constraint NAS methods that enforce efficiency thresholds [1] as well as multi-
objective NAS methods [10, 12, 37, 53, 36] that yield a Pareto optimal set of architectures. However,

Resource Usage

V
al

id
at

io
n

E
rr

or

Figure 1: Optimizing neural network architectures for a discrete set of devices. We are interested in
the best solution (green) within the constraints of the respective device (dashed vertical
lines). Multi-objective optimization, in contrast, approximates the full Pareto front (black).

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

in most practical applications, we are not interested in the complete Pareto optimal set. Instead,
we would like to obtain solutions for a discrete set of scenarios (e.g., end-user devices), which we
henceforth refer to as niches in this paper. This is illustrated in Figure 1. A concrete example is
finding neural architectures for microcontrollers [32] and other edge devices [38], e.g., in 𝜇NAS
[32] architectures for “mid-tier” IoT devices are searched. To evaluate the benefits for larger devices,
the search would need to be restarted with adapted constraints, thus wasting computational
resources. Formulating the search as a multi-objective problem would also waste resources; once
an architecture satisfies the constraints of a device, we are not interested in additional trade-offs,
and we select only based on the validation error.

We therefore argue that the multi-objective NAS problem can and usually should be formu-
lated as a quality diversity optimization (QDO) problem, which directly corresponds to the actual
optimization problem of interest. The main contributions of this paper are: We (1) formulate
multi-objective NAS as a QDO problem; (2) show how to adapt black-box optimization algorithms
for the QDO setting; (3) modify existing QDO algorithms for the NAS setting; (4) propose novel
multifidelity QDO algorithms for NAS; and (5) illustrate that our approach can be used to extend a
broad range of NAS methods from conventional to Once-for-All methods.

2 Theoretical Background and Related Work

Let A denote a search space of architectures and Λ the search space of additional hyperparameters
controlling the training of an architecture𝐴. Furthermore, let 𝑓err : A×Λ→ R denote the validation
error obtained after training an architecture 𝐴 ∈ A with a set of hyperparameters 𝜆 ∈ Λ for a
given number of epochs (𝜆epoch ∈ 𝜆). Typically, we consider 𝜆 ∈ Λ to be fixed, except for 𝜆epoch in
multifidelity methods, and we therefore omit 𝜆 in the following. The goal of single-objective NAS
is to find the architecture with the lowest validation error, 𝐴∗ B argmin𝐴∈A 𝑓err(𝐴).

NAS methods can be categorized along three dimensions: search space, search strategy, and
performance estimation strategy [13]. For chain-structured neural networks (simply a connected
sequence of layers), cell-based search spaces have gained popularity [46, 45]. In cell-based search
spaces, different kinds of cells – typically, a normal cell preserving dimensionality of the input
and a reduction cell reducing spatial dimension – are stacked in a predefined arrangement to form
a final architecture. Regarding search strategy, popular methods utilize Bayesian optimization
(BO) [3, 8, 39, 24, 57], evolutionary methods [41, 34, 47, 46, 12], reinforcement learning [63, 64],
or gradient-based algorithms [35, 45]. For performance estimation, popular approaches leverage
lower fidelity estimates [31, 14, 64] or make use of learning curve extrapolation [8, 27].

Multi-Objective Neural Architecture Search Contrary to the single-objective NAS formulation,
multi-objective NAS does not solely aim for minimizing the validation error but simultaneously
optimizes multiple objectives. These objectives typically take resource consumption – such as
memory requirements, energy usage or latency – into account [10, 12, 37, 53, 36]. Denote by
𝑓1, . . . , 𝑓𝑘 the 𝑘 ≥ 2 objectives of interest, where typically 𝑓1 = 𝑓err and denote by f (𝐴) the vector
of objective function values obtained for architecture 𝐴 ∈ A, f (𝐴) = (𝑓1(𝐴), . . . , 𝑓𝑘 (𝐴)) ′. The
optimization problem of multi-objective NAS is then formulated as min𝐴∈A f (𝐴). There is no
architecture that minimizes all objectives at the same time since these are typically in competition
with each other. Rather, there are multiple Pareto optimal architectures reflecting different trade-offs
in objectives approximating the true (unknown) Pareto front. An architecture 𝐴 is said to dominate
another architecture 𝐴′ iff ∀𝑖 ∈ {1, . . . , 𝑘} : 𝑓𝑖 (𝐴) ≤ 𝑓𝑖 (𝐴′) ∧ ∃ 𝑗 ∈ {1, . . . , 𝑘} : 𝑓𝑗 (𝐴) < 𝑓𝑗 (𝐴′).

Constrained and Hardware-Aware Neural Architecture Search In contrast, Constrained NAS
[62, 15, 55] solves the problem of finding an architecture that optimizes one objective (e.g., validation
error) with constraints on secondary objectives (e.g., model size). Constraints can be naturally given
by the target hardware that a model should be deployed on. Hardware-Aware NAS in turn searches
for an architecture that trades off primary objectives [60] against secondary, hardware-specific

2

metrics. In Once-for-All [5], a large supernet is trained which can be efficiently searched for subnets
that, e.g., meet latency constraints of target devices. For a recent survey, we refer to [1].

Quality Diversity Optimization The goal of a QDO algorithm is to find a set of high-performing,
yet behaviorally diverse, solutions. Similarly to multi-objective optimization, there is no single best
solution. However, whereas multi-objective optimization aims for the simultaneous minimization of
multiple objectives, QDO minimizes a single-objective function with respect to diversity defined on
one or more feature functions. A feature function measures a quality of interest and a combination
of feature values points to a niche, i.e., a region in feature space. QDO could be considered a set
of constrained optimisation problems over the same input domain where the niche boundaries
are constraints in feature space. The key difference is that constrained optimisation seeks a
single optimal configuration given some constraints, while QDO attempts to identify the optimal
configuration for each of a set of constrained regions simultaneously. In this sense, QDO could
be framed as a so-called multi-task optimization problem [43] where each task is to find the best
solution belonging to a particular niche.

QDO algorithms maintain an archive of niche-optimal observations, i.e., a best-performing
observed solution for each niche. Observations with similar feature values compete to be selected
for the archive, and the solution set gradually improves during the optimization process. Once
the optimization budget has been spent, QDO algorithms typically return this archive as their
solution. QDO is motivated by applications where a group of diverse solutions is beneficial, such as
the training of robot movement where a repertoire of behaviours must be learned [7], developing
game playing agents with diverse strategies [44], and in automatic design where QDO can be used
by human designers to search a large dimensional search space for diverse solutions before the
optimization is finished by hand. Work on automatic design tasks have been varied and include
air-foil design [18], computer game level design [16], and architectural design [9]. Recently, QDO
algorithms were used for illuminating the interpretability and resource usage of machine learning
models while minimizing their generalization error [52].

In the earliest examples, Novelty Search (NS; [29]) asks whether diversity alone can produce
a good set of solutions. Despite not actively pursuing objective performance, NS performed
surprisingly well in some settings and was followed by Novelty Search with Local Competition
[30], the first true quality diversity (QD) algorithm. MAP-Elites [42], a standard evolutionary QDO
algorithm, partitions the feature space a-priori into niches and attempts to identify the optimal
solution in each of these niches. QDO has seen much work in recent years and a variant based on
BO, BOP-Elites, was proposed recently [25]. BOP-Elites models the objective and feature functions
with surrogate models and implements an acquisition function over a structured archive to achieve
high sample efficiency even in the case of black-box features.

3 Formulating Neural Architecture Search as a Quality Diversity Optimization Problem

In the example in Figure 1, a quality diversity NAS (subsequently abbreviated as qdNAS) problem is
given by the validation error and three behavioral niches (corresponding to different devices) that
are defined via resource usage measured by a single feature function. Let 𝑓1 : A→ R, 𝐴 ↦→ 𝑓1(𝐴)
denote the objective function of interest (in our context, 𝑓err). Denote by 𝑓𝑖 : A → R, 𝐴 ↦→
𝑓𝑖 (𝐴), 𝑖 ∈ {2, . . . , 𝑘}, 𝑘 ≥ 2 the feature function(s) of interest (e.g., memory usage). Behavioral
niches 𝑁 𝑗 ⊆ A, 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1 are sets of architectures characterized via niche-specific
boundaries b𝑖 𝑗 =

[
𝑙𝑖 𝑗 , 𝑢𝑖 𝑗

) ⊆ R on the images of the feature functions. An architecture 𝐴 belongs to
niche 𝑁 𝑗 if its values with respect to the feature functions lie between the respective boundaries,
i.e.:

𝐴 ∈ 𝑁 𝑗 ⇐⇒ ∀𝑖 ∈ {2, . . . , 𝑘} : 𝑓𝑖 (𝐴) ∈ b𝑖 𝑗 .

3

The goal of a QDO algorithm is then to find for each behavioral niche 𝑁 𝑗 the architecture that
minimizes the objective function 𝑓1:

𝐴∗𝑗 B argmin
𝐴∈𝑁 𝑗

𝑓1(𝐴) .

In other words, the goal is to obtain a set of architectures S B
{
𝐴∗1, . . . , 𝐴

∗
𝑐

}
that are diverse with

respect to the feature functions and yet high-performing.
A Remark about Niches In the classical QDO literature, niches are typically constructed to be

pairwise disjoint, i.e., a configuration can only belong to a single niche (or none) [42, 25]. However,
depending on the concrete application, relaxing this constraint and allowing for overlap can be
beneficial. For example, in our context, an architecture that fits on a mid-tier device should also be
considered for deployment on a higher-tier device, i.e., in Figure 1, the boundaries indicated by
vertical dashed lines resemble the respective upper bound of a niche whereas the lower bound is
unconstrained. This results in niches being nested within each other, i.e., 𝑁1 ⊊ 𝑁2 ⊊ . . . ⊊ 𝑁𝑐 ⊆ A,
with 𝑁1 being the most restrictive niche, followed by 𝑁2. In Supplement A, we further discuss
different ways of constructing niches in the context of NAS.

3.1 Quality Diversity Optimizers for Neural Architecture Search
As themajority of NAS optimizers are iterative, we first demonstrate how any iterative optimizer can
in principle be turned into a QD optimizer. Based on this correspondence, we introduce three novel
QD optimizers for NAS: BOP-Elites*, qdHB and BOP-ElitesHB. Let 𝑓1 : A→ R, 𝐴 ↦→ 𝑓1(𝑥) denote
the objective function that should be minimized. In each iteration, an iterative optimizer proposes
a new configuration (e.g., architecture) for evaluation, evaluates this configuration, potentially
updates the incumbent (best configuration evaluated so far) if better performance has been observed,
and updates its archive. For generic pseudo code, see Supplement B.
Moving to a QDO problem, there are now feature functions 𝑓𝑖 : A → R, 𝐴 ↦→ 𝑓𝑖 (𝐴), 𝑖 ∈
{2, . . . , 𝑘}, 𝑘 ≥ 2, and niches 𝑁 𝑗 , 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1, defined via their niche-specific bound-
aries b𝑖 𝑗 =

[
𝑙𝑖 𝑗 , 𝑢𝑖 𝑗

) ⊆ R on the images of the feature functions. Any iterative single-objective
optimizer must then keep track of the best incumbent per niche (often referred to as an elite in
the QDO literature) and essentially becomes a QD optimizer (see Algorithm 1). The challenge

Algorithm 1: Generic pseudo code for an iterative quality diversity optimizer.
Input : 𝑓1, 𝑓𝑖 , 𝑖 ∈ {2, . . . , 𝑘}, 𝑘 ≥ 2, 𝑁 𝑗 , 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1, Ddesign, 𝑛total
Result :𝑆 = {𝐴∗1, . . . , 𝐴∗𝑐 }

1 D← Ddesign
2 for 𝑗 ← 1 to 𝑐 do
3 𝐴∗𝑗 ← argmin𝐴∈D|𝑁𝑗

𝑓1(𝐴) # initial incumbent of niche 𝑁 𝑗 based on archive
4 end
5 for 𝑛 ← 1 to 𝑛total do
6 Propose a new candidate 𝐴★ # subroutine
7 Evaluate 𝑦 ← 𝑓1(𝐴★),∀𝑖 ∈ {2, . . . , 𝑘} : 𝑧𝑖 ← 𝑓𝑖 (𝐴★)
8 if 𝐴★ ∈ 𝑁 𝑗 ∧ 𝑦 < 𝑓1(𝐴∗𝑗) then
9 𝐴∗𝑗 ← 𝐴★ # update incumbent of niche 𝑁 𝑗

10 end
11 D← D ∪ {(

𝐴★, 𝑦, 𝑧2, . . . , 𝑧𝑘
)}

12 end

in designing an efficient and well-performing QD optimizer now mostly lies in proposing a new
candidate for evaluation that considers improvement over all niches.

4

Bayesian Optimization A recently proposed model-based QD optimizer, BOP-Elites [25], ex-
tends BO [54, 17] to QDO. BOP-Elites relies on Gaussian process surrogate models for the objective
function and all feature functions. New candidates for evaluation are selected by a novel acqui-
sition function – the expected joint improvement of elites (EJIE), which measures the expected
improvement to the ensemble problem of identifying the best solution in every niche:

𝛼EJIE(𝐴) B
𝑐∑︁
𝑗=1
P (𝐴 ∈ 𝑁 𝑗 |D)E𝑦

[
I |𝑁 𝑗 (𝐴)

]
. (1)

Here, P (𝐴 ∈ 𝑁 𝑗 |D) is the posterior probability of 𝐴 belonging to niche 𝑁 𝑗 , and E𝑦
[
I |𝑁 𝑗 (𝐴)

]
is the

expected improvement (EI; [23]) with respect to niche 𝑁 𝑗 :

E𝑦
[
I |𝑁 𝑗 (𝐴)

]
= E𝑦

[
max

(
𝑓minNj − 𝑦, 0

)]
,

where 𝑓min𝑁𝑗
is the best observed objective function value in niche 𝑁 𝑗 so far, and 𝑦 is the surrogate

model prediction for 𝐴. A new candidate is then proposed by maximizing the EJIE, i.e., Line 6 in
Algorithm 1 looks like the following: 𝐴★← argmax𝐴∈A 𝛼EJIE(𝐴).

BOP-Elites* In order to adapt BOP-Elites for NAS, we introduce several modifications. First, we
employ truncated (one-hot) path encoding [56, 57]. In path encoding, architectures are transformed
into a set of binary features indicating presence for each path of the directed acyclic graph from the
input to the output. By then truncating the least-likely paths, the encoding scales linearly in the
size of the cell [57] allowing for an efficient representation of architectures. Second, we substitute
the Gaussian process surrogate models used in BOP-Elites with random forests [4] allowing us
to model non-continuous hyperparameter spaces. Random forests have been successfully used as
surrogates in BO [21, 33], often performing on a par with ensembles of neural networks [57] in the
context of NAS [51, 59]. Third, we introduce a local mutation scheme similarly to the one used
by the BANANAS algorithm [57] for optimizing the infill criterion EJIE: Since our aim is to find
high quality solutions across all niches, we maintain an archive of the incumbent architecture in
each niche and perform local mutations on each incumbent. We refer to our adjusted version as
BOP-Elites* in the remainder of the paper to emphasize the difference from the original algorithm.
For the initial design, we sample architectures based on adjacency matrix encoding [56].

Multifidelity Optimizers For NAS, performance estimation is the computationally most ex-
pensive component [13], and almost all NAS optimizers can be made more efficient by allowing
access to cheaper, lower fidelity estimates [13, 31, 14, 64]. By evaluating most architectures at lower
fidelity and only promoting promising architectures to higher fidelity, many more architectures
can be explored given the same total computational budget. The fidelity parameter is typically the
number of epochs over which an architecture is trained.

qdHB One of the most prominent multifidelity optimizers is Hyperband (HB; [31]), a multi-
armed bandit strategy that uses repeated Successive Halving (SH; [22]) as a subroutine to identify
the best configuration (e.g., architecture) among a set of randomly sampled ones. Given an initial
and maximum fidelity, a scaling parameter 𝜂, and a set of configurations of size 𝑛, SH evaluates all
configurations on the initial smallest fidelity, then sorts the configurations by performance and only
keeps the best 1/𝜂 configurations. These configurations are then trained with fidelity increased by a
factor of 𝜂. This process is repeated until the maximum fidelity for a single configuration is reached.
HB repeatedly runs SH with different sized sets of initial configurations called brackets. Only
two inputs are required: 𝑅, the maximum fidelity and 𝜂, the scaling parameter that controls the
proportion of configurations discarded in each round of SH. Based on these inputs, the number 𝑠max
and size 𝑛𝑖 of different brackets is determined. To adapt HB to the QD setting, we must track the
incumbent architecture in each niche and promote configurations based on their performancewithin
the respective niche (see Supplement B): To achieve this, we choose the top ⌊𝑛𝑖/𝜂⌋ configurations

5

to be promoted uniformly over the 𝑐 niches (done in the topk_qdo function), i.e., we iteratively select
one of the niches uniformly at random and choose the best configuration observed so far that
has yet not been selected for promotion until ⌊𝑛𝑖/𝜂⌋ configurations have been selected. Note that
during this procedure, it may happen that not enough configurations belonging to a specific niche
have been observed yet. In this case, we choose any configuration uniformly at random over the
set of all configurations that have yet to be promoted. With those modifications, we propose qdHB,
as a multifidelity QD optimizer.

BOP-ElitesHB While HB typically shows strong anytime performance [31], it only samples
configurations at random and is typically outperformed by BO methods with respect to final
performance if optimizer runtime is sufficiently large [14]. BOHB [14] combines the strengths of
HB and BO in a single optimizer, resulting in strong anytime performance and fast convergence.
This approach employs a fidelity schedule similar to HB to determine how many configurations to
evaluate at which fidelity but replaces the random selection of configurations in each HB iteration
by a model-based proposal. In BOHB, a Tree Parzen Estimator [2] is used to model densities
𝑙 (𝐴) = 𝑝 (𝑦 < 𝛼 |𝐴,D) and 𝑔(𝐴) = 𝑝 (𝑦 > 𝛼 |𝐴,D), and candidates are proposed that maximize the
ratio 𝑙 (𝐴)/𝑔(𝐴), which is equivalent to maximizing EI [2]. Based on BOP-Elites* and qdHB, we
can now derive the QD Bayesian optimization Hyperband optimizer (BOP-ElitesHB): Instead of
selecting configurations at random at the beginning of each qdHB iteration, we propose candidates
that maximize the EJIE criterion. This sampling procedure is described in Supplement B.

4 Main Benchmark Experiments and Results

We are interested in answering the following research questions: (RQ1) Does qdNAS outperform
multi-objective NAS if the optimization goal is to find high-performing architectures in pre-defined
niches? (RQ2) Do multifidelity qdNAS optimizers improve over full-fidelity qdNAS optimizers? To
answer these questions, we benchmark our three qdNAS optimizers – BOP-Elites*, qdHB, and
BOP-ElitesHB– on the well-known NAS-Bench-101 [61] and NAS-Bench-201 [11] and compare
them to three multi-objective optimizers adapted for NAS: ParEGO*, moHB*, and ParEGOHB as
well as a simple Random Search1.

Experimental Setup It is important to compare optimizers using analogous implementation
details. We therefore use truncated path encoding and random forest surrogates throughout our
experiments for all model-based optimizers. Furthermore, we use local mutations as described
in [57] in order to optimize acquisition functions in BOP-Elites*, BOP-ElitesHB, ParEGO*, and
ParEGOHB. To control for differences in implementation, we re-implement all optimizers and take
great care in matching the original implementations.

We provide full details regarding implementation in Supplement B and only briefly introduce
conceptual differences: ParEGO* is a multi-objective optimizer based on ParEGO [28] and only
deviates from BOP-Elites* in that it considers a differently scalarized objective in each iteration,
which is optimized using local mutations similar to the acquisition function optimization of BOP-
Elites*. moHB* is an extension of HB to the multi-objective setting (promoting configurations based
on non-dominated sorting with hypervolume contribution for tie breaking, for similar approaches
see, e.g., [48, 49, 50, 19]). ParEGOHB is a model-based extension of moHB* that relies on the
ParEGO scalarization [28] and on the same acquisition function optimization as ParEGO*.

All optimizers were evaluated on NAS-Bench-101 (Cifar-10, validation error as the first objective
and the number of trainable parameters as the feature function/second objective) and NAS-Bench-
201 (Cifar-10, Cifar-100, ImageNet16-120, validation error as the first objective and latency as the
feature function/second objective). For multifidelity, we train architectures for 4, 12, 36, 108 epochs
on NAS-Bench-101 and for 2, 7, 22, 67, 200 epochs on NAS-Bench-201 (reflecting 𝜂 = 3 in the HB
variants). As the optimization budget, we consider 200 full architecture evaluations (resulting in

1using adjacency matrix encoding [56]

6

a total budget of 21600 epochs for NAS-Bench-101 and 40000 epochs for NAS-Bench-201). For
each of these four settings, we construct three different scenarios by considering different niches
of interest with respect to the feature function, resulting in a total of 12 benchmark problems.
In the small/medium/large settings, two, five and ten niches are considered, respectively. Niches
are constructed to be overlapping, and boundaries are defined based on percentiles of the feature
function. For the small setting, the boundary is given by the 50% percentile (𝑞50%), effectively
resulting in two niches with boundaries [0, 𝑞50%) and [0,∞). For the medium and large settings,
percentiles indicating progressively larger niches were used, ranging from: 1% to 30% and 70%
respectively. More details on the niches can be found in Supplement C. All runs were replicated
100 times.

Results As an anytime performance measure, we are interested in the validation error obtained
for each niche, which we aggregate in a single performance measure as

∑𝑐
𝑗=1 𝑓err(𝐴∗𝑗), i.e., we

consider the sum of validation errors over the best-performing architecture per niche. If a niche
is empty, we assign a validation error of 100 as a penalty (this is common practice in QDO, i.e.,
if no solution has been found for a niche, this niche is assigned the worst possible objective
function value [25]). For the final performance, we also consider the analogous test error. Figure 2
shows the anytime performance of optimizers. We observe that model-based optimizers (BOP-
Elites* and ParEGO*) in general strongly outperform Random Search, and BO HB optimizers
(BOP-ElitesHB and ParEGOHB) generally outperform their full-fidelity counterparts, although this
effect diminishes with increasing optimization budget. In general, HB variants that do not rely
on a surrogate model (qdHB and moHB*) show poor performance compared to the model-based
optimizers. Moreover, especially in the small number of niches setting, QD strongly outperforms
multi-objective optimization. Mean ranks of optimizers with respect to final validation and test
performance are given in Table 1. For completeness, we also report critical differences plots of
these ranks in Supplement C.

We also conducted two four-way ANOVAs on the average performance after half and all of
the optimization budget is used, with the factors problem (benchmark problem), multifidelity
(whether an optimizer uses multifidelity), QDO (whether an optimizer is a QD optimizer) and
model-based (whether the optimizer relies on a surrogate model)2. For half the budget used,
results indicate significant main effects of the factors multifidelity (𝐹 (1) = 19.13, 𝑝 = 0.0001), QDO
(𝐹 (1) = 11.08, 𝑝 = 0.0017) andmodel-based (𝐹 (1) = 21.13, 𝑝 < 0.0001). For all of the budget used, the
significance of multifidelity diminishes, whereas the main effects of QDO (𝐹 (1) = 18.31, 𝑝 = 0.0001)
and model-based (𝐹 (43.44), 𝑝 < 0.0001) are still significant. We can conclude that QDO in general
outperforms competitors when the goal is to find high-performing architectures in pre-defined
niches. Multi-fidelity optimizers improve over full-fidelity optimizers but this effect diminishes
with increasing budget. Detailed results are reported in Supplement C.

Regarding efficiency, we analyzed the expected running time (ERT) of the QD optimizers given
the average performance of the respective multi-objective optimizers after half of the optimization
budget: For each benchmark problem, we computed the mean validation performance of each
multi-objective optimizer after having spent half of its optimization budget and investigated the
ERT of the analogous3 QD optimizer. For each benchmark problem, we then computed the ratio of
ERTs between multi-objective and QD optimizers and averaged them over the benchmark problems.
For BOP-ElitesHB, we observe an average ERT ratio of 2.41, i.e., in expectation, BOP-ElitesHB is a
factor of 2.41 faster than ParEGOHB in reaching the average performance of ParEGOHB (after half
the optimization budget). For qdHB and BOP-Elites*, the average ERT ratios are 1.14 and 1.44. We
conclude that all QD optimizers are more efficient than their multi-objective counterparts. More
details can be found in Supplement C.

2For this analysis, we excluded qdHB and moHB* due to their lackluster performance.
3BOP-ElitesHB for ParEGOHB, qdHB for moHB*, and BOP-Elites* for ParEGO*

7

Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

Small NAS−Bench−101 Cifar−10 Small NAS−Bench−201 Cifar−10 Small NAS−Bench−201 Cifar−100 Small NAS−Bench−201 ImageNet16−120

5000 10000 15000 20000 10000 20000 30000 40000 10000 20000 30000 40000 10000 20000 30000 40000

5000 10000 15000 20000 10000 20000 30000 40000 10000 20000 30000 40000 10000 20000 30000 40000

5000 10000 15000 20000 10000 20000 30000 40000 10000 20000 30000 40000 10000 20000 30000 40000

110

120

130

140

150

300

325

350

375

400

425

600

700

800

60

70

100

200

250

300

350

400

500

600

20

30

40

70

100

200

200

300

400

12

13

14

15

50

70

100

80

100

200

Total Budget used (Epochs)

A
ve

ra
ge

 V
al

id
at

io
n

E
rr

or
 S

um
m

ed
 o

ve
r

N
ic

he
s

Optimizer
BOP−ElitesHB

qdHB

BOP−Elites*

ParEGOHB

moHB*

ParEGO*

Random

Figure 2: Anytime performance of optimizers. Ribbons represent standard errors over 100 replications.
x-axis starts after 10 full-fidelity evaluations.

Table 1: Ranks of optimizers with respect to final performance, averaged over benchmark problems.

Mean Rank (SE) BOP-ElitesHB qdHB BOP-Elites* ParEGOHB moHB* ParEGO* Random

Validation 2.08 (0.29) 5.92 (0.26) 1.83 (0.21) 4.25 (0.48) 6.42 (0.15) 2.58 (0.31) 4.92 (0.34)
Test 1.42 (0.19) 5.00 (0.17) 2.08 (0.23) 4.33 (0.50) 6.50 (0.19) 3.25 (0.35) 5.42 (0.42)

5 Additional Experiments and Applications

In this section, we illustrate how qdNAS can be used beyond the scenarios investigated so far and
present results of additional experiments ranging from a comparison of qdNAS to multi-objective
NAS on the MobileNetV3 search space to an example on how to incorporate QDO in existing
frameworks such as Once-for-All [5] or how to use qdNAS for model compression.

Benchmarks on the MobileNetV3 Search Space We further investigated how qdNAS compares
to multi-objective NAS on a search space that is frequently used in practice [20]. We consider
CNNs divided into a sequence of units with feature map size gradually being reduced and channel
numbers being increased. Each unit consists of a sequence of layers where only the first layer has
stride 2 if the feature map size decreases and all other layers in the units have stride 1. Units can use
an arbitrary number of layers (elastic depth chosen from {2, 3, 4}) and for each layer, an arbitrary
number of channels (elastic width chosen from {3, 4, 6}) and kernel sizes (elastic kernel size chosen
from {3, 5, 7}) can be used. Additionally, the input image size can be varied (elastic resolution
ranging from 128 to 224 with a stride 4). For more details on the search space, see [5]. To allow for
reasonable runtimes we use accuracy predictors (based on architectures trained and evaluated on
ImageNet as described in [5]) and resource usage look-up tables of the Once-for-All module [5, 6]
and construct a surrogate benchmark. As an objective function we select the validation error and
as a feature function/second objective the latency (in ms) when deployed on a Samsung Note 10
(batch size of 1), or the number of FLOPS (M) used by the model. So far, we have only investigated
qdNAS in the context of 𝑘 = 2, i.e., considering one objective and one feature function. Here, we
additionally consider a setting of 𝑘 = 3, by incorporating both latency and the size of the model (in
MB) as feature functions/second and third objective. We compare BOP-Elites* to ParEGO* and a

8

Random Search due to the accuracy predictors not supporting evaluations at multiple fidelities.
We again construct three scenarios by considering different niches of interest with respect to the
feature functions taking inspiration from latency and FLOPS constraints as used in [5] (details
are given in Table 4 in Supplement C). Optimizers are given a total budget of 100 architecture
evaluations. Figure 3 shows the anytime performance of optimizers with respect to the validation
error summed over niches (averaged over 100 replications). BOP-Elites* strongly outperforms the
competitors on all benchmark problems. More details are provided in Supplement D.

Large | Latency Large | FLOPS Large | Latency x Size

Medium | Latency Medium | FLOPS Medium | Latency x Size

Small | Latency Small | FLOPS Small | Latency x Size

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100
50

100

200

100

300

500

200

300

500

50

70

100

125

150

175
200

250

300

350

50

70

100

150

180

210

240

200

250

300

350

Total Budget used (Architecture Evaluations)

A
ve

ra
ge

 V
al

id
at

io
n

E
rr

or
 S

um
m

ed
 o

ve
r

N
ic

he
s

Optimizer BOP−Elites* ParEGO* Random

Figure 3: MobileNetV3 search space. Anytime performance of optimizers. Ribbons represent standard
errors over 100 replications. x-axis starts after 10 evaluations.

Making Once-for-All Even More Efficient In Once-for-All [5], an already trained supernet
is searched via regularized evolution [46] for a well performing subnet that meets hardware
requirements of a target device relying on an accuracy predictor and resource usage look-up tables.
This is sensible if only a single solution is required, however, if various subnets meeting different
constraints on the same device are desired, repeated regularized evolution is not efficient. Moreover,
look-up tables do not generalize to new target devices in which case using as few as possible
architecture evaluations suddenly becomes relevant again. We notice that the search for multiple
architectures within Once-for-All can again be formulated as a QDO problem and therefore compare
MAP-Elites [42] to regularized evolution when performing a joint search for architectures meeting
different latency constraints on a Samsung Note 10. Results are given in Table 2 with MAP-Elites
consistently outperforming regularized evolution, making this novel variant of Once-for-All even
more efficient. More details are provided in Supplement E.

Table 2: MAP-Elites vs. regularized evolution within Once-for-All.

Method Best Validation Error for Different Latency Constraints
[0, 15) [0, 18) [0, 21) [0, 24) [0, 27) [0, 30) [0, 33)

Reg. Evo. 21.57 (0.01) 20.34 (0.02) 19.29 (0.01) 18.48 (0.02) 17.81 (0.02) 17.40 (0.02) 17.06 (0.02)
MAP-Elites 21.60 (0.01) 20.28 (0.01) 19.21 (0.01) 18.39 (0.01) 17.70 (0.01) 17.25 (0.01) 16.90 (0.01)

Average over 100 replications based on the accuracy predictor of Once-for-All [5, 6]. Standard errors in parentheses. Reg. Evo. = regularized evolution.

Applying qdNAS to Model Compression We are interested in deploying a MobileNetV2 across
different devices that are mainly constrained by memory. For each device, we can therefore only
consider models up to a fixed amount of parameters, similarly as depicted in Figure 1. Given that we
have a pretrained model that achieves high performance, we want to compress this model exploiting
redundancies in model parameters. In our application, we use the Stanford Dogs dataset [26] and

9

rely on the neural network intelligence (NNI; [40]) toolkit for model compression. Pruning consists
of several (iterative) steps as well as re-training of the pruned architectures. Choices for the pruner
itself, pruner hyperparameters, and hyperparameters controlling retraining are available and must
be carefully selected to obtain optimal models (see Supplement F). We consider the number of
model parameters as a proxy measure for memory requirement, yielding three overlapping niches
for different devices. The pre-trained MobileNetV2 achieves a validation error of 20.25 using around
2.34 million model parameters. We define niches with boundaries corresponding to compression
rates (number of parameters after pruning) of 40% to 50%, 40% to 60%, and 40% to 70%. As the
QD optimizer, we use BOP-ElitesHB and specify the number of fine-tuning epochs a pruner can
use as a fidelity parameter, since fine-tuning after pruning is costly but also strongly influences
final performance. After evaluating only 69 configurations (a single BOP-ElitesHB run with 𝜂 = 3),
we obtain high-performing pruner configurations for each niche, resulting in the performance vs.
memory requirement (number of parameters) trade-offs shown in Table 3.

Table 3: Results of using BOP-ElitesHB for model compression of MobileNetV2 on Stanford Dogs.

Niche Validation Error # Params (in millions; rounded) % (# ParamsBaseline)

Niche 1 [0.94, 1.17) 31.20 1.13 48.10%
Niche 2 [0.94, 1.41) 29.07 1.29 54.99%
Niche 3 [0.94, 1.64) 27.76 1.62 68.97%

Baseline 20.25 2.34 100.00%

6 Conclusion

We demonstrated how multi-objective NAS can be formulated as a QDO problem that, contrary
to multi-objective NAS, directly corresponds to the actual optimization problem of interest, i.e.,
finding high-performing architectures in different niches. We have shown how any iterative black
box optimization algorithm can be adapted to the QDO setting and proposed three QDO algorithms
for NAS, with two of which making use of multifidelity evaluations. In benchmark experiments,
we have shown that qdNAS outperforms multi-objective NAS while simultaneously being more
efficient. We furthermore illustrated how qdNAS can be used for model compression and how
future NAS research can thrive on QDO. QDO is orthogonal to the NAS strategy of an algorithm
and can be similarly used to extend, e.g., one-shot NAS methods.

Limitations The framework we describe relies on pre-defined niches, e.g., memory requirements
of different devices. If niches are mis-specified or cannot be specified a priori, multi-objective
NAS may outperform qdNAS. However, an initial study (see Supplement H) how qdNAS performs
in a true multi-objective setting, which would correspond to unknown niches, shows little to no
performance degradation depending on the choice of niches. Moreover, we only investigated the
performance of qdNAS in the deterministic setting. Additionally, our multifidelity optimizers
require niche membership to be unaffected by the multifidelity parameter. Finally, we mainly
focused on model-based NAS algorithms that we have extended to the QDO setting.

Broader Impact Our work extends previous research on NAS and therefore inherits its implica-
tions on society and individuals such as potential discrimination in resulting models. Moreover,
evaluating a large number of architectures is computationally costly and can introduce serious
environmental issues. We have shown that qdNAS allows for finding better solutions, while simul-
taneously being more efficient than multi-objective NAS. As performance estimation is extremely
costly in NAS, we believe that this is an important contribution towards reducing resource usage
and the CO2 footprint of NAS.

10

7 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material
or as a url)? [Yes] The full code for experiments, application, figures and tables can be
obtained from the following GitHub repository: https://github.com/slds-lmu/qdo_nas.

(b) Did you include the raw results of running the given instructions on the given code and
data? [Yes] Raw results are provided via the same GitHub repository.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes]
Scripts to generate figures and tables based on raw results are provided via the same GitHub
repository.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] For our benchmark experiments
we used NAS-Bench-101 and NAS-Bench-201. Regarding the Additional Experiments
and Applications Section, all details are reported in Supplement D, Supplement E and
Supplement F.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes] As described in Section 4.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] See Supplement C, Supplement G and Supplement H.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] As
described in Section 4.

(i) Did you compare performance over time? [Yes] Anytime performance was assessed with
respect to the number of epochs as described in Section 4 or the number of architecture
evaluations as described in Section 5.

11

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] All
runs of main benchmark experiments were replicated 100 times. Random seeds can be
obtained via https://github.com/slds-lmu/qdo_nas.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All results include error bars accompanying mean estimates.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used the
tabular NAS-Bench-101 and NAS-Bench-201 benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] As described in Supplement I.

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [N/A] No tuning of hyperparameters was
performed.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] NAS-Bench-101, NAS-
Bench-201, Naszilla, the Once-for-All module, NNI, and the Stanford Dogs dataset are cited
appropriately.

(b) Did you mention the license of the assets? [Yes] Done in Supplement I.
(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

provide all our code via https://github.com/slds-lmu/qdo_nas.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All assets used are either released under the Apache-2.0 License or
MIT License.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

Acknowledgements. The authors of this work take full responsibilities for its content. Lennart
Schneider is supported by the Bavarian Ministry of Economic Affairs, Regional Development and
Energy through the Center for Analytics - Data - Applications (ADACenter) within the framework
of BAYERN DIGITAL II (20-3410-2-9-8). This work was supported by the German Federal Ministry
of Education and Research (BMBF) under Grant No. 01IS18036A. Paul Kent acknowledges support
from EPSRC under grant EP/L015374. This work has been carried out by making use of AI
infrastructure hosted and operated by the Leibniz-Rechenzentrum (LRZ) der Bayerischen Akademie
der Wissenschaften and funded by the German Federal Ministry of Education and Research (BMBF)
under Grant No. 01IS18036A. The authors gratefully acknowledge the computational and data
resources provided by the Leibniz Supercomputing Centre (www.lrz.de).

12

References

[1] H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and N. Wang. Hardware-
aware neural architecture search: Survey and taxonomy. In Z.-H. Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4322–4329,
2021.

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
In Advances in Neural Information Processing Systems, volume 24, 2011.

[3] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th
International Conference on Machine Learning, pages 115–123, 2013.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize
it for efficient deployment. In International Conference on Learning Representations, 2020.

[6] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize
it for efficient deployment. https://github.com/mit-han-lab/once-for-all, 2020.

[7] A. Cully and J.-B. Mouret. Evolving a behavioral repertoire for a walking robot. Evolutionary
Computation, 24(1):59–88, 2016.

[8] T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter opti-
mization of deep neural networks by extrapolation of learning curves. In Proceedings of the
24th International Conference on Artificial Intelligence, pages 3460–3468, 2015.

[9] S. Doncieux, N. Bredeche, L. L. Goff, B. Girard, A. Coninx, O. Sigaud, M. Khamassi, N. Díaz-
Rodríguez, D. Filliat, T. Hospedales, A. Eiben, and R. Duro. Dream architecture: A develop-
mental approach to open-ended learning in robotics. arXiv:2005.06223 [cs.AI], 2020.

[10] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun. DPP-Net: Device-aware progressive
search for pareto-optimal neural architectures. In European Conference on Computer Vision,
2018.

[11] X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2020.

[12] T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via
Lamarckian evolution. In Proceedings of the International Conference on Learning Representa-
tions, 2019.

[13] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21, 2019.

[14] S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization
at scale. In Proceedings of the 35th International Conference on Machine Learning, 2018.

[15] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough. Sparse: Sparse architecture search for
CNNs on resource-constrained microcontrollers. Advances in Neural Information Processing
Systems, 32, 2019.

13

[16] M. C. Fontaine, R. Liu, J. Togelius, A. K. Hoover, and S. Nikolaidis. Illuminating mario scenes
in the latent space of a generative adversarial network. In AAAI Conference on Artificial
Intelligence, 2021.

[17] P. I. Frazier. A tutorial on Bayesian optimization. arXiv:1807.02811 [stat.ML], 2018.

[18] A. Gaier, A. Asteroth, and J.-B. Mouret. Aerodynamic design exploration through surrogate-
assisted illumination. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference, 2017.

[19] J. Guerrero-Viu, S. Hauns, S. Izquierdo, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken, D. Deng,
M. Lindauer, and F. Hutter. Bag of baselines for multi-objective joint neural architecture search
and hyperparameter optimization. In 8th ICML Workshop on Automated Machine Learning,
2021.

[20] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, Q. V. Le, and H. Adam. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1314–1324, 2019.

[21] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization,
pages 507–523, 2011.

[22] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2015.

[23] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–492, 1998.

[24] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. Neural architecture search
with Bayesian optimisation and optimal transport. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018.

[25] P. Kent and J. Branke. BOP-Elites, a Bayesian optimisation algorithm for quality-diversity
search. arXiv:2005.04320 [math.OC], 2020.

[26] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset for fine-grained image
categorization. In FirstWorkshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

[27] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction with Bayesian
neural networks. In International Conference on Learning Representations, 2017.

[28] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[29] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for novelty
alone. Evolutionary Computation, 19(2):189–223, 2011.

[30] J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through novelty search
and local competition. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, pages 211–218, 2011.

14

[31] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
configuration evaluation for hyperparameter optimization. In International Conference on
Learning Representations, 2017.

[32] E. Liberis, Ł. Dudziak, and N. D. Lane. 𝜇nas: Constrained neural architecture search for
microcontrollers. In Proceedings of the 1st Workshop on Machine Learning and Systems, pages
70–79, 2021.

[33] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhopf,
R. Sass, and F. Hutter. SMAC3: A versatile Bayesian optimization package for hyperparameter
optimization. Journal of Machine Learning Research, 23(54):1–9, 2022.

[34] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical represen-
tations for efficient architecture search. In Proceedings of the International Conference on
Learning Representations, 2017.

[35] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In Proceedings
of the International Conference on Learning Representations, 2019.

[36] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti. NSGANetV2: Evolutionary multi-
objective surrogate-assisted neural architecture search. In A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, editors, European Conference on Computer Vision, pages 35–51, 2020.

[37] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf. NSGA-Net: A
multi-objective genetic algorithm for neural architecture search. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 419–427, 2019.

[38] B. Lyu, H. Yuan, L. Lu, and Y. Zhang. Resource-constrained neural architecture search on
edge devices. IEEE Transactions on Network Science and Engineering, 9(1):134–142, 2021.

[39] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. Towards automatically-
tuned neural networks. In ICML Workshop on Automatic Machine Learning, 2016.

[40] Microsoft. Neural Network Intelligence. https://github.com/microsoft/nni, 2021.

[41] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using genetic algorithms.
In Proceedings of the Third International Conference on Genetic Algorithms, pages 379–384,
1989.

[42] J.-B. Mouret and Jeff. Clune. Illuminating search spaces by mapping elites. arXiv:1504.04909
[cs.AI], 2015.

[43] M. Pearce and J. Branke. Continuous multi-task Bayesian optimisation with correlation.
European Journal of Operational Research, 270(3):1074–1085, 2018.

[44] D. Perez-Liebana, C. Guerrero-Romero, A. Dockhorn, D. Jeurissen, and L. Xu. Generating
diverse and competitive play-styles for strategy games. In 2021 IEEE Conference on Games
(CoG), pages 1–8, 2021.

[45] H. Pham, M. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via
parameter sharing. In Proceedings of the 35th International Conference on Machine Learning,
pages 4095–4104, 2018.

[46] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier
architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
4780–4789, 2019.

15

[47] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin. Large-
scale evolution of image classifiers. In Proceedings of the 34th International Conference on
Machine Learning, pages 2902–2911, 2017.

[48] D. Salinas, V. Perrone, O. Cruchant, and C. Archambeau. A multi-objective perspective on
jointly tuning hardware and hyperparameters. In 2nd Workshop on Neural Architecture Search
at ICLR 2021, 2021.

[49] R. Schmucker, M. Donini, V. Perrone, M. B. Zafar, and C. Archambeau. Multi-objective multi-
fidelity hyperparameter optimization with application to fairness. In NeurIPS Workshop on
Meta-Learning, 2020.

[50] R. Schmucker, M. Donini, M. B. Zafar, D. Salinas, and C. Archambeau. Multi-objective
asynchronous successive halving. arXiv:2106.12639 [stat.ML], 2021.

[51] L. Schneider, F. Pfisterer, M. Binder, and B. Bischl. Mutation is all you need. In 8th ICML
Workshop on Automated Machine Learning, 2021.

[52] L. Schneider, F. Pfisterer, J. Thomas, and B. Bischl. A collection of quality diversity opti-
mization problems derived from hyperparameter optimization of machine learning models.
arXiv:2204.14061 [cs.LG], 2022.

[53] C. Schorn, T. Elsken, S. Vogel, A. Runge, A. Guntoro, and G. Ascheid. Automated design of error-
resilient and hardware-efficient deep neural networks. Neural Computing and Applications,
32:18327–18345, 2020.

[54] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25, 2012.

[55] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and D. Marculescu.
Single-Path NAS: Designing hardware-efficient ConvNets in less than 4 hours. In U. Brefeld,
E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, and C. Robardet, editors, Machine Learning
and Knowledge Discovery in Databases, pages 481–497, 2020.

[56] C. White, W. Neiswanger, S. Nolen, and Y. Savani. A study on encodings for neural architecture
search. In Advances in Neural Information Processing Systems, 2020.

[57] C. White, W. Neiswanger, and Y. Savani. BANANAS: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

[58] C. White, S. Nolen, and Y. Savani. Exploring the loss landscape in neural architecture search.
In Uncertainty in Artificial Intelligence, pages 654–664, 2021.

[59] C. White, A. Zela, B. Ru, Y. Liu, and F. Hutter. How powerful are performance predictors
in neural architecture search? In Proceedings of the 35th International Conference on Neural
Information Processing Systems, 2021.

[60] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer. FBNet:
Hardware-aware efficient convnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10734–10742, 2019.

16

[61] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-Bench-101: Towards
reproducible neural architecture search. In Proceedings of the 36th International Conference on
Machine Learning, pages 7105–7114, 2019.

[62] Y. Zhou, S. Ebrahimi, S. Ö. Arık, H. Yu, H. Liu, and G. Diamos. Resource-efficient neural
architect. arXiv:1806.07912 [cs.NE], 2018.

[63] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings
of the International Conference on Learning Representations, 2017.

[64] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable
image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8697–8710, 2018.

17

A Niches in NAS

In the classical QDO literature, niches are assumed to be pairwise disjoint. This implies that each
architecture 𝐴 ∈ A yields feature function values 𝑓𝑖 (𝐴), 𝑖 ≥ 2 that map to a single niche (or none).
In practice, this does not necessarily have to be the case though, as an architecture can belong to
multiple niches. For example, when considering memory or latency constraints, a model with lower
latency or lower memory requirements can always be used in settings that allow for accommodating
slower or larger models. This is illustrated in Figure 4. Note that we index niches in the disjoint
scenario in Figure 4 with two indices, to highlight that some niches share the same boundaries
on a given feature function (e.g., 𝑁1,1 and 𝑁2,1 share the same latency boundaries and only differ
with respect to the memory boundaries). In this paper, we mainly investigated the scenario of
nested niches. The setting for QDO in the NAS context as described in Figure 1 in the main paper
is given by the search of models for deployment on multiple different end-user devices. Similarly,
qdNAS can also be applied in the context of searching for models for deployment on a single
end-user device, meeting different constraints, e.g., as illustrated in Section 5 (Benchmarks on the
MobileNetV3 Search Space) in the main paper. Typically, relevant boundaries of feature functions
that form niches naturally arise given the target device(s) and concrete application at hand.

𝑁1,5

𝑁1,4

𝑁1,3

𝑁1,2

𝑁1,1

𝑁2,5

𝑁2,4

𝑁2,3

𝑁2,2

𝑁2,1

𝑁3,5

𝑁3,4

𝑁3,3

𝑁3,2

𝑁3,1

𝑁4,5

𝑁4,4

𝑁4,3

𝑁4,2

𝑁4,1

𝑁5,5

𝑁5,4

𝑁5,3

𝑁5,2

𝑁5,1

Memory

La
te
nc
y

𝑁1

𝑁2

𝑁3

𝑁4

𝑁5

Memory

La
te
nc
y

Figure 4: Disjoint (left) and nested (right) niches.

B Optimizers

In this section, we provide additional information on optimizers used throughout this paper.
Algorithm 2 illustrates a generic iterative single-objective optimizer in pseudo code.

qdHB Algorithm 3 presents qdHB in pseudo code. qdHB requires only 𝑅 (maximum fidelity)
and 𝜂 (scaling parameter) as input parameters and proceeds to determine the maximum number of
brackets 𝑠max and the approximate total resources 𝐵 which each bracket is assigned. In each bracket
𝑠 , the number of configurations 𝑛 and the fidelity 𝑟 at which they should be evaluated is calculated
and these parameters are used within the SH subroutine. The central step within the SH subroutine
is the selection of the ⌊𝑛𝑖/𝜂⌋ configurations that should be promoted to the next stage. Here, the
topk_qdo function (highlighted in grey) works as follows: We iteratively select one of the niches
uniformly at random and choose the best configuration within this niche observed so far that has
yet not been selected for promotion. This procedure is repeated until ⌊𝑛𝑖/𝜂⌋ configurations have
been selected in total. If not enough configurations belonging to a specific niche have been observed
so far, we choose any configuration uniformly at random over the set of all configurations that
have yet to be promoted. Note that feature functions and thereupon derived niche membership are
assumed to be unaffected by the multifidelity parameter. Niche membership is determined by the

18

Algorithm 2: Generic pseudo code for an iterative single-objective optimizer.
Input : 𝑓1, Ddesign, 𝑛total
Result :𝐴∗

1 D← Ddesign
2 𝐴∗ ← argmin𝐴∈D 𝑓1(𝐴) # initial incumbent based on archive
3 for 𝑛 ← 1 to 𝑛total do
4 Propose a new candidate 𝐴★

5 Evaluate 𝑦 ← 𝑓1(𝐴★)
6 if 𝑦 < 𝑓1(𝐴∗) then
7 𝐴∗ ← 𝐴★ # update incumbent
8 end
9 D← D ∪ {(

𝐴★, 𝑦
)}

10 end

get_niche_membership function which simply checks for each niche whether feature values of an
architecture are within the respective niche boundaries. Moreover, we assume that all evaluations
are written into an archive similarly as in Algorithm 1 in the main paper which allows us to
return the best configuration per niche as the final result. Note that in practice, evaluating all
stages of brackets with the same budget instead of iterating over brackets (like in the original HB
implementation) can be more efficient. We use this scheduling variant throughout our benchmark
experiments and application study. More details regarding our implementation can be obtained via
https://github.com/slds-lmu/qdo_nas.

Algorithm 3: Quality Diversity Hyperband (qdHB).
Input :𝑅, 𝜂 # maximum fidelity and scaling parameter
Result :Best configuration per niche

1 𝑠max = ⌊log𝜂 (𝑅)⌋, 𝐵 = (𝑠max + 1)𝑅
2 for 𝑠 ∈ {𝑠max, 𝑠max − 1, . . . , 0} do
3 𝑛 = ⌈𝐵𝑅

𝜂𝑠

(𝑠+1) ⌉, 𝑟 = 𝑅𝜂−𝑠
4 # begin SH with (𝑛, 𝑟) inner loop
5 A = sample_configuration(𝑛)
6 Z = {(𝑓𝑖 (𝐴), . . . , 𝑓𝑘 (𝐴)) : 𝐴 ∈ A, 𝑖 ∈ {2, . . . , 𝑘}} # evaluate feature functions
7 N = get_niche_membership(A,Z)
8 for 𝑖 ∈ {0, . . . , 𝑠} do
9 𝑛𝑖 = ⌊𝑛𝜂−𝑖⌋
10 𝑟𝑖 = 𝑟𝜂𝑖

11 Y = {𝑓1(𝐴, 𝑟𝑖) : 𝐴 ∈ A} # evaluate objective function
12 A = topk_qdo(A,Y,N, ⌊𝑛𝑖/𝜂⌋)
13 end
14 end

BOP-ElitesHB In Algorithm 4 we describe the sampling procedure (for a single configuration)
used in BOP-ElitesHB in pseudo code. In contrast to the original BOHB algorithm, we use random
forest as surrogate models, similarly as done in SMAC-HB [33]. Throughout our benchmark
experiments and application study we set 𝜌 = 0. Furthermore, we employ a variant that directly
proposes batches of size 𝑛. This can be done by simply sorting all candidate architectures obtained
via local mutation of the incumbent architectures of each niche within the acquisition function

19

optimization step by their EJIE values and selecting the top 𝑛 candidate architectures. Note that
surrogate models are fitted on all available data contained in the current archive (this includes
the multifidelity parameter) and predictions are obtained with respect to the fidelity parameter
set to the current fidelity level. More details regarding our implementation can be obtained via
https://github.com/slds-lmu/qdo_nas.

Algorithm 4: Sampling procedure in BOP-ElitesHB.
Input : 𝜌 # fraction of configurations sampled at random
Result :Next configuration to evaluate

1 if rand() < 𝜌 then
2 return sample_configuration(1)
3 else
4 𝐴★← argmax𝐴∈A 𝛼EJIE(𝐴) # Equation (1)
5 return 𝐴★

6 end

ParEGO* ParEGO [28] is a multi-objective model-based optimizer that at each iteration scalar-
izes the objective functions differently using the augmented Tchebycheff function. First, the 𝑘
objectives are normalized and at each iteration a weight vector 𝜆 is drawn uniformly at random
from the following set of

(𝑠+𝑘−1
𝑘−1

)
different weight vectors4:{

𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘) |
𝑘∑︁
𝑖=1

𝜆𝑖 = 1 ∧ 𝜆𝑖 =
𝑙

𝑠
, 𝑙 ∈ {0, . . . , 𝑠}

}
.

The scalarization is then obtained via 𝑓𝜆 (𝐴) = max𝑘𝑖=1 (𝜆𝑖 · 𝑓𝑖 (𝐴)) + 𝛾
∑𝑘
𝑖=1 𝜆𝑖 · 𝑓𝑖 (𝐴), where 𝛾 is a

small positive value (in our benchmark experiments we use 0.05). In ParEGO* we use the same
truncated path encoding as in BOP-Elites* as well as a random forest surrogate modeling the
scalarized objective function. For optimizing the EI, we use a local mutation scheme similarly to
the one utilized by BANANAS [57], adapted for the multi-objective setting (conceptually similar to
the one proposed by [19]): For each Pareto optimal architecture in the current archive, we obtain
candidate architectures via local mutation and out of all these candidates we select the architecture
with the largest EI for evaluation. More details regarding our implementation can be obtained via
https://github.com/slds-lmu/qdo_nas.

moHB* moHB* [28] is an extension of HB to the multi-objective setting. The optimizer follows
the basic HB routine except for the selection mechanism of configurations that should be promoted
to the next stage: Configurations are promoted based on non-dominated sorting with hypervolume
contribution for tie breaking. For similar approaches, see [48, 49, 50, 19]. In our benchmark
experiments we again use a scheduling variant that evaluates all stages of brackets with the same
budget instead of iterating over brackets. More details regarding our implementation can be
obtained via https://github.com/slds-lmu/qdo_nas.

ParEGOHB ParEGOHB combines BO with moHB* by using the same scalarization as ParEGO*.
Instead of selecting configurations at random at the beginning of each moHB* iteration, ParEGOHB
proposes candidates that maximize the EI with respect to the scalarized objective. In our benchmark
experiments we again set 𝜌 = 0 (fraction of configurations sampled uniformly at random) and
employ a variant that directly proposes batches of size 𝑛. Note that surrogate models are fitted on
all available data contained in the current archive (this includes the multifidelity parameter) and
predictions are obtained with respect to the fidelity parameter set to the current fidelity level. More
details regarding our implementation can be obtained via https://github.com/slds-lmu/qdo_nas.

4note that 𝑠 simply determines the number of different weight vectors

20

Table 4: Niches and their boundaries used throughout all benchmark experiments.

Benchmark Dataset Niches Niche Boundaries
Niche 1 Niche 2 Niche 3 Niche 4 Niche 5 Niche 6 Niche 7 Niche 8 Niche 9 Niche 10

NAS-Bench-101
Params Cifar-10

Small [0, 5356682) [0,∞) - - - - - - - -
Medium [0, 650520) [0, 1227914) [0, 1664778) [0, 3468426) [0,∞) - - - - -
Large [0, 650520) [0, 824848) [0, 1227914) [0, 1664778) [0, 2538506) [0, 3468426) [0, 3989898) [0, 5356682) [0, 8118666) [0,∞)

NAS-Bench-201
Latency

Cifar-10
Small [0, 0.015000444871408) [0,∞) - - - - - - - -
Medium [0, 0.00856115) [0, 0.01030767) [0, 0.01143533) [0, 0.01363741) [0,∞) - - - - -
Large [0, 0.00856115) [0, 0.00893427) [0, 0.01030767) [0, 0.01143533) [0, 0.01250159) [0, 0.01363741) [0, 0.01429903) [0, 0.01500044) [0, 0.01660615) [0,∞)

Cifar-100
Small [0, 0.0159673188862048) [0,∞) - - - - - - - -
Medium [0, 0.00919228) [0, 0.01138714) [0, 0.01232998) [0, 0.01475572) [0,∞) - - - - -
Large [0, 0.00919228) [0, 0.00957457) [0, 0.01138714) [0, 0.01232998) [0, 0.01327515) [0, 0.01475572) [0, 0.01534633) [0, 0.01596732) [0, 0.01768237) [0,∞)

ImageNet16-120
Small [0, 0.014301609992981) [0,∞) - - - - - - - -
Medium [0, 0.00767465) [0, 0.0094483) [0, 0.01054566) [0, 0.01271056) [0,∞) - - - - -
Large [0, 0.00767465) [0, 0.00826192) [0, 0.0094483) [0, 0.01054566) [0, 0.01173623) [0, 0.01271056) [0, 0.01352221) [0, 0.01430161) [0, 0.01595311) [0,∞)

MobileNetV3
Latency ImageNet

Small [0, 17.5) [0, 30) - - - - - - - -
Medium [0, 15) [0, 20) [0, 25) [0, 30) [0, 35) - - - - -
Large [0, 17) [0, 19) [0, 21) [0, 23) [0, 25) [0, 27) [0, 29) [0, 31) [0, 33) [0, 35)

MobileNetV3
FLOPS ImageNet

Small [0, 150) [0, 400) - - - - - - - -
Medium [0, 150) [0, 200) [0, 250) [0, 300) [0, 400) - - - - -
Large [0, 150) [0, 175) [0, 200) [0, 225) [0, 250) [0, 275) [0, 300) [0, 325) [0, 350) [0, 400)

MobileNetV3
Latency × Size ImageNet

Small [0, 20) × [0, 20) [0, 35) × [0, 20) - - - - - - - -
Medium [0, 20) × [0, 20) [0, 25) × [0, 20) [0, 30) × [0, 20) [0, 35) × [0, 20) [0, 40) × [0, 20) - - - - -
Large [0, 20) × [0, 20) [0, 23) × [0, 20) [0, 26) × [0, 20) [0, 29) × [0, 20) [0, 32) × [0, 20) [0, 35) × [0, 20) [0, 38) × [0, 20) [0, 41) × [0, 20) [0, 44) × [0, 20) [0, 47) × [0, 20)

21

C Additional Benchmark Details and Results
In this section, we provide additional details and analyses with respect to our main benchmark
experiments. Table 4 summarizes all niches and their boundaries used throughout our benchmarks
(including the additional ones on the MobileNetV3 search space).

The following results extends the results reported for the main benchmark experiments. Critical
differences plots (𝛼 = 0.05) of optimizer ranks (with respect to final performance) are given
in Figure 5. Friedman tests (𝛼 = 0.05) that were conducted beforehand indicated significant
differences in ranks for both the validation (𝜒2(6) = 53.46, 𝑝 < 0.001) and test performance
(𝜒2(6) = 52.14, 𝑝 < 0.001). However, note that critical difference plots based on the Nemenyi test
are underpowered if only few optimizers are compared on few benchmark problems.

1 2 3 4 5 6 7

CD

BOP−Elites*

BOP−ElitesHB

ParEGO*

ParEGOHB

Random

qdHB

moHB*

(a) Validation error summed over niches.

1 2 3 4 5 6 7

CD

BOP−ElitesHB

BOP−Elites*

ParEGO*

ParEGOHB

qdHB

Random

moHB*

(b) Test error summed over niches.

Figure 5: Critical differences plots of the ranks of optimizers.

Figure 6 and Figure 7 show the average best validation and test performance for each niche for
each optimizer on each benchmark problem.

Table 5 summarizes results of a four way ANOVA on the average performance (validation
error summed over niches) of BOP-ElitesHB, BOP-Elites*, ParEGOHB, ParEGO* and Random after
having used half of the total optimization budget. Prior to conducting the ANOVA, we checked the
ANOVA assumptions (normal distribution of residuals and homogeneity of variances) and found
no violation of assumptions. The factors are given as follows: Problem indicates the benchmark
problem (e.g., NAS-Bench-101 on Cifar-10 with small number of niches), multifidelity denotes if
the optimizer uses multifidelity (TRUE for BOP-ElitesHB and ParEGOHB), QDO denotes whether
the optimizer is a QD optimizer (TRUE for BOP-ElitesHB and BOP-Elites*) and model-based denotes
whether the optimizer relies on a surrogate model (TRUE for BOP-ElitesHB, BOP-Elites*, ParEGOHB
and ParEGO*). All main effects are significant at an 𝛼 level of 0.05. We also computed confidence
intervals based on Tukey’s Honest Significant Difference method for the estimated differences
between factor levels: Multifidelity −12.45[−18.19− 6.72], QDO −9.34[−15.08,−3.61], model-based
−13.55[−20.57,−6.52]. Note that the negative sign indicates a decrease in the average validation
error summed over niches.

Table 5: Results of a four way ANOVA on the average performance (validation error summed over
niches) after having used half of the total optimization budget. Type II sums of squares.

Df Sum Sq Mean Sq F value Pr(>F)

Problem 11 1810569.79 164597.25 1410.16 0.0000
Multifidelity 1 2233.44 2233.44 19.13 0.0001
QDO 1 1293.41 1293.41 11.08 0.0017
Model-Based 1 2466.45 2466.45 21.13 0.0000
Residuals 45 5252.51 116.72

We conducted a similar ANOVA on the final performance of optimizers (Table 6). Prior to
conducting the ANOVA, we checked the ANOVA assumptions (normal distribution of residuals
and homogeneity of variances) and found no violation of assumptions. While the effects of QDO

22

Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

Small NAS−Bench−101 Cifar−10 Small NAS−Bench−201 Cifar−10 Small NAS−Bench−201 Cifar−100 Small NAS−Bench−201 ImageNet16−120

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

54

55

56

57

58

60

70

80

60

70

80

27

28

29

30

31

30

50

70

30

50

70

8.5

9.0

9.5

10.0

10.5

10

20

30

10

20

30

5.4

5.6

5.8

6.0

6.2

10

20

30

10

20

30

Optimizer

A
ve

ra
ge

 V
al

id
at

io
n

E
rr

or

Niche 1

Niche 2

Niche 3

Niche 4

Niche 5

Niche 6

Niche 7

Niche 8

Niche 9

Niche 10

Figure 6: Best solution found in each niche with respect to validation performance. Bars represent
standard errors over 100 replications.

and model-based are still significant at an 𝛼 level of 0.05, the effect of multifidelity no longer is,
indicating that full-fidelity optimizer caught up in performance (which is the expected behavior).
We again computed confidence intervals based on Tukey’s Honest Significant Difference method
for the estimated differences between factor levels: QDO −6.85[−10.12 − 3.58], model-based
−11.08[−15.08,−7.07].

Table 6: Results of a four way ANOVA on the average final performance (validation error summed
over niches). Type II sums of squares.

Df Sum Sq Mean Sq F value Pr(>F)

Problem 11 1724557.85 156777.99 4130.33 0.0000
Multifidelity 1 97.76 97.76 2.58 0.1155
QDO 1 695.13 695.13 18.31 0.0001
Model-Based 1 1648.94 1648.94 43.44 0.0000
Residuals 45 1708.10 37.96

We analyzed the ERT of the QD optimizers given the average performance of the respective
multi-objective optimizers after half of the optimization budget. For each benchmark problem, we
computed the mean validation performance of each multi-objective optimizer after having spent
half of its optimization budget and investigated the analogous QD optimizer. We then computed
the ratio of ERTs between multi-objective and QD optimizers (see Table 7).

23

Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

Small NAS−Bench−101 Cifar−10 Small NAS−Bench−201 Cifar−10 Small NAS−Bench−201 Cifar−100 Small NAS−Bench−201 ImageNet16−120

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

54

55

56

57

58

60

70

80

60

70

80

27

28

29

30

31

30

40

50

30

40

50

9.0

9.5

10.0

10.5

11.0

10

20

30

10

20

30

6.25

6.50

6.75

10

20

30

10

20

30

Optimizer

A
ve

ra
ge

 T
es

t E
rr

or

Niche 1

Niche 2

Niche 3

Niche 4

Niche 5

Niche 6

Niche 7

Niche 8

Niche 9

Niche 10

Figure 7: Best solution found in each niche with respect to test performance. Bars represent standard
errors over 100 replications.

D Details on Benchmarks on the MobileNetV3 Search Space

In this section, we provide additional details regarding our benchmarks on the MobileNetV3 Search
Space. We use ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and rely on accuracy
predictors and latency/FLOPS look-up tables as provided by [6]. The search space of architectures
is the same as used in [5]. For the model-based optimizers we employ the following encoding of
architectures: Given an architecture, we encode each layer in the neural network into a one-hot
vector based on its kernel size and expand ratio and we assign zero vectors to layers that are
skipped. Besides, we have an additional one-hot vector that represents the input image size. We
concatenate these vectors into a large vector that represents the whole neural network architecture
and input image size. This is the same encoding as used by [5]. Acquisition function optimization
is performed by sampling 1000 architectures uniformly at random.

E Details on Making Once-for-All Even More Efficient

In this section, we provide additional details regarding replacing regularized evolution with MAP-
Elites within Once-for-All. We use ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and
rely on accuracy predictors and latency look-up tables as provided by [6]. Seven niches were defined
via the following latency constraints (in ms): [0, 15), [0, 18), [0, 21), [0, 24), [0, 27), [0, 30), [0, 33).
Regularized evolution is run with an initial population of size 100 for 71 generations 5 resulting in

5this is exactly ⌈(50100 − 7 · 100)/(7 ∗ 100)⌉ with 50100 being the budget MAP-Elites is allowed to use

24

Table 7: ERT ratios of multi-objective and QD optimizers to reach the average performance (after half
of the optimization budget) of the respective multi-objective optimizer.

Benchmark Dataset Niches ERT Ratio
ParEGOHB/ moHB*/ ParEGO*/

BOP-ElitesHB qdHB BOP-Elites*

NAS-Bench-101 Cifar-10
Small 3.94 1.19 1.99
Medium 0.76 1.43 1.85
Large 1.47 1.20 1.58

NAS-Bench-201

Cifar-10
Small 4.31 1.96 1.45
Medium 0.94 0.73 1.34
Large 1.04 0.72 1.35

Cifar-100
Small 4.82 1.77 1.46
Medium 1.35 0.67 1.42
Large 1.57 0.78 0.98

ImageNet16-120
Small 4.30 1.20 1.73
Medium 2.31 0.93 1.14
Large 2.11 1.15 0.96

7200 architecture evaluations per latency constraint and 50400 architecture evaluations in total.
We use a mutation probability of 0.1, a mutation ratio of 0.5 and a parent ratio of 0.25. MAP-Elites
searches for optimal architectures jointly for the seven niches and is configured to use a population
of size 100 and is run for 500 generations, resulting in 50100 architecture evaluations in total. The
number of generations for each regularized evolution run and the MAP-Elites run were chosen in a
way so that the total number of architecture evaluations is roughly the same for both methods. We
again use a mutation probability of 0.1. Note that the basic MAP-Elites (as used by us) does not
employ any kind of crossover. We visualize the best validation error obtained for each niche in
Figure 8 (left). MAP-Elites outperforms regularized evolution in almost every niche, making this
variant of Once-for-All even more efficient. In the scenario of using Once-for-All for new devices,
look-up tables do not generalize and the need for using as few as possible architecture evaluations
is of central importance. To illustrate how MAP-Elites compares to regularized evolution in this
scenario, we reran the experiments above but this time we used a population of size 50 and 100
generations for MAP-Elites (and therefore 14 generations for each run of regularized evolution).
Results are illustrated in Figure 8 (right). Again, MAP-Elites generally outperforms regularized
evolution.

F Details on Applying qdNAS to Model Compression

In this section, we provide additional details regarding our application of qdNAS to model compres-
sion. BOP-ElitesHB was slightly modified due to the natural tabular representation of the search
space. Instead of using a truncated path encoding we simply use the tabular representation of
parameters. To optimize the EJIE during the acquisition function optimization step we employ a
simple Random Search, sampling 10000 configurations uniformly at random and proposing the
configuration with the largest EJIE. Table 8 shows the search space used for tuning NNI pruners on
MobileNetV2.

G Analyzing the Effect of the Choice of the Surrogate Model and Acquisition Function
Optimizer

In this section, we present results of a small ablation study regarding the effect of the choice of
the surrogate model and acquisition function optimizer. In the main benchmark experiments, we
observed that our qdNAS optimizers sometimes fail to find any architecture belonging to a certain

25

Large Budget Small Budget

[0, 15) [0, 18) [0, 21) [0, 24) [0, 27) [0, 30) [0, 33) [0, 15) [0, 18) [0, 21) [0, 24) [0, 27) [0, 30) [0, 33)

18

20

22

Niche (Latency in ms)

V
al

id
at

on
 E

rr
or

Method OFA + Reg. Evo. OFA + MAP−Elites

Figure 8: Regularized evolution vs. MAP-Elites within Once-for-All. Left: Large budget of total
architecture evaluations. Right: Small budget of total architecture evaluations. Boxplots are
based on 100 replications.

Table 8: Search space for NNI pruners on MobileNetV2.

Hyperparameter Type Range Info

pruning_mode categorical {conv0, conv1, conv2, conv1andconv2, all}
pruner_name categorical {l1, l2, slim, agp, fpgm, mean_activation, apoz, taylorfo}
sparsity continuous [0.4, 0.7]
agp_pruning_alg categorical {l1, l2, slim, fpgm, mean_activation, apoz, taylorfo}
agp_n_iters integer [1, 100]
agp_n_epochs_per_iter integer [1, 10]
slim_sparsifying_epochs integer [1, 30]
speed_up boolean {TRUE, FALSE}
finetune_epochs integer [1, 27] fidelity
learning_rate continuous [1e-06, 0.01] log
weight_decay continuous [0, 0.1]
kd boolean {TRUE, FALSE}
alpha continuous [0, 1]
temp continuous [0, 100]

“agp_pruning_alg”, “agp_n_iters”, and “agp_n_epochs_per_iter” depend on “pruner_name” being “agp”. “slim_sparsifying_epochs” depends on “pruner_name”
being “slim”. “alpha” and “temp” depend on “kd” being “TRUE”. “log” in the Info column indicates that this parameter is optimized on a logarithmic scale.

niche (even after having used all available budget). This was predominantly the case for the very
small niches in the medium and large number of niches settings (i.e., Niche 1, 2 or 3). Figure 9
shows the relative frequency of niches missed by optimizers (over 100 replications). Note that for
the small number of niches settings, relative frequencies are all zero and therefore omitted. In
general, model-based multifidelity variants perform better than the full-fidelity optimizers and QD
optimizers sometimes perform worse than multi-objective optimizers.

We hypothesized that this could be caused by the choice of the surrogate model used for the
feature functions: A random forest cannot properly extrapolate values outside the training set and
therefore, if the initial design does not contain an architecture for a certain niche, the optimizer
may fail to explore relevant regions in the feature space. We therefore conducted a small ablation
study on the NAS-Bench-101 Cifar-10 medium number of niches benchmark problem. BOP-Elites*
was configured to either use a random forest (as before) or an ensemble of feed-forward neural
networks6 (as used by BANANAS [57]) as a surrogate model for the feature function. Moreover, we

6with an ensemble size of five networks

26

Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

Optimizer

R
el

. F
re

q.
 N

ic
he

 M
is

se
d

Niche 1 Niche 2 Niche 3

Figure 9: Relative frequency of niches missed by optimizers over 100 replications. For the small number
of niches settings, relative frequencies are all zero and therefore omitted.

varied the acquisition function optimizer between a local mutation (as before) or a simple Random
Search (generating the same number of candidate architectures but sampling them uniformly at
random using adjacency matrix encoding). Optimizers were given a budget of 100 full architecture
evaluations and runs were replicated 30 times. Figure 10 shows the anytime performance of these
BOP-Elites* variants. We observe that switching to an ensemble of neural networks as a surrogate
model for the feature function results in a performance boost which can be explained by the fact
that this BOP-Elites* variant no longer struggles with finding solutions in the smallest niche. The
relative frequencies of a solution for Niche 1 being missing are: 26.67% for the random forest +
Random Search, 16.67% for the random forest + mutation, 3.33% for the ensemble of neural networks
+ Random Search, and 3.33% for the ensemble of neural networks + mutation. Regarding the other
niches, a solution is always found. Results also suggest that the choice of the acquisition function
optimizer may be more important in case of using a random forest as a surrogate model for the
feature function.

H Judging Quality Diversity Solutions by Means of Multi-Objective Performance Indica-
tors

In this section, we analyze the performance of our qdNAS optimizers in the context of a multi-
objective optimization setting. As an example, suppose that niches were mis-specified and the
actual solutions (best architecture found for each niche) returned by the QD optimizers are no
longer of interest. We still could ask the question of how well QDO performs in solving the multi-
objective optimization problem. To answer this question, we evaluate the final performance of
all optimizers compared in Section 4 by using multi-objective performance indicators. Figure 11
shows the average Hypervolume Indicator (the difference in hypervolume between the resulting
Pareto front approximation of an optimizer for a given run and the best Pareto front approximation
found over all optimizers and replications). For these computations, the feature function was
transformed to the logarithmic scale for the NAS-Bench-101 problems. As nadir points we used
(100, log(49979275)) ′ for the NAS-Bench-101 problems and (100, 0.0283) ′ for the NAS-Bench-201
problems obtained by taking the theoretical worst validation error of 100 and feature function
upper limits as found in the tabular benchmarks (plus some additional small numerical tolerance).

27

50

70

100

3000 6000 9000
Total Budget used (Epochs)

A
ve

ra
ge

 V
al

id
at

io
n

E
rr

or
 S

um
m

ed
 o

ve
r

N
ic

he
s

Variant Random Forest + Mutation Random Forest + Random NN + Mutation NN + Random

Figure 10: Anytime performance of BOP-Elites* variants configured to either use a random forest
or an ensemble of neural networks as a surrogate model for the feature function crossed
with either using a local mutation or a Random Search as acquisition function optimizer.
NAS-Bench-101 Cifar-10 medium number of niches benchmark problem. Ribbons represent
standard errors over 30 replications. x-axis starts after 10 full-fidelity evaluations.

Note that for all optimizers which are not QD optimizers, results with respect to the different
number of niches settings (small vs. medium vs. large) are only statistical replications because
these optimizers are not aware of the niches. We observe that ParEGOHB and ParEGO* perform
well but BOP-ElitesHB also shows good performance in the medium and large number of niches
settings. This is the expected behavior, as the number and nature of the niches directly corresponds
to the ability of qdNAS optimizers to search along the whole Pareto front, i.e., in the small number
of niches settings, qdNAS optimizers have no intention to explore.

 NAS−Bench−101 Cifar−10 NAS−Bench−201 Cifar−10 NAS−Bench−201 Cifar−100 NAS−Bench−201 ImageNet16−120

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

BOP−E
lite

sH
B

qd
HB

BOP−E
lite

s*

Par
EGOHB

m
oH

B*

Par
EGO*

Ran
do

m

0.05

0.07

0.10

0.07

0.08

0.10

0.05

0.07

0.10

30

50

100

Optimizer

A
ve

ra
ge

 H
V

I

Niches Small Medium Large

Figure 11: Average Hypervolume Indicator. Bars represent standard errors over 100 replications.

Critical differences plots (𝛼 = 0.05) of optimizer ranks (with respect to the Hypervolume
Indicator) are given in Figure 12. A Friedman test (𝛼 = 0.05) that was conducted beforehand
indicated significant differences in ranks (𝜒2(6) = 41.61, 𝑝 < 0.001). Again, note that critical
difference plots based on the Nemenyi test are underpowered if only few optimizers are compared
on few benchmark problems.

28

2 3 4 5 6 7

CD

ParEGOHB

BOP−ElitesHB

ParEGO*

BOP−Elites*

Random

qdHB

moHB*

Figure 12: Critical differences plot of the ranks of optimizers with respect to the Hypervolume Indicator.

In Figure 13 we plot the average Pareto front (over 100 replications) for BOP-Elites*, ParEGO*
and Random. The average Pareto fronts of BOP-Elites* and ParEGO* are relatively similar, except for
the small number of niches settings, where ParEGO* has a clear advantage. Summarizing, qdNAS
optimizers can also perform well in a multi-objective optimization setting, but their performance
strongly depends on the number and nature of niches.

Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

Small NAS−Bench−101 Cifar−10 Small NAS−Bench−201 Cifar−10 Small NAS−Bench−201 Cifar−100 Small NAS−Bench−201 ImageNet16−120

13 14 15 16 17 0.010 0.015 0.020 0.010 0.015 0.020 0.010 0.015

13 14 15 16 17 0.010 0.015 0.020 0.010 0.015 0.020 0.010 0.015 0.020

13 14 15 16 17 0.010 0.015 0.020 0.010 0.015 0.020 0.010 0.015 0.020

60

70

80

60

70

80

55

60

65

70

30

40

50

60

30

40

50

60

30

40

50

60

20

40

60

20

40

60

20

40

60

8

12

16

10

20

30

40

50

5.0

7.5

10.0

12.5

15.0

Log(# Params) / Latency

V
al

id
at

io
n

E
rr

or

Optimizer BOP−Elites* ParEGO* Random

Figure 13: Average Pareto front (over 100 replications) for BOP-Elites*, ParEGO* and Random.

I Technical Details

Benchmark experiments were run on NAS-Bench-101 (Apache-2.0 License) [61] and NAS-Bench-
201 (MIT License) [11]. More precisely, we used the nasbench_full.tfrecord data for NAS-
Bench-101 and the NAS-Bench-201-v1_1-096897.pth data for NAS-Bench-201. Parts of our code
rely on code released in Naszilla (Apache-2.0 License) [56, 57, 58]. For our benchmarks on the
MobileNetV3 search space we used the Once-for-All module [6] released under the MIT License.
We rely on ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and accuracy predictors
and resource usage look-up tables as provided by [6]. NNI is released under the MIT License
[40]. Stanford Dogs is released under the MIT License [26]. Figure 1 in the main paper has been
designed using resources from Flaticon.com. Benchmark experiments were run on Intel Xeon
E5-2697 instances taking around 939 CPU hours (benchmarks and ablation studies). The model
compression application was performed on an NVIDIA DGX A100 instance taking around 3 GPU

29

days. Total emissions are estimated to be an equivalent of 72.30 kg CO2. All our code is available at
https://github.com/slds-lmu/qdo_nas.

30

224 4. Contributions - AutoML

4.10 High Dimensional Restrictive Federated Model Se-
lection with Multi-objective Bayesian Optimiza-
tion over Shifted Distributions

Contributed Article:
X. Sun, A. Bommert, F. Pfisterer, J. Rahnenfürher, M. Lang, and B. Bischl. High dimen-
sional restrictive federated model selection with multi-objective Bayesian Optimization
over shifted distributions. In Y. Bi, R. Bhatia, and S. Kapoor, editors, Intelligent Systems
and Applications, pages 629–647, Cham, 2020. Springer International Publishing

Copyright Springer.

Declaration of contributions XS proposed the idea of Restrictive Federated Model
Selection (RFMS) based on earlier research ideas of Michel Lang, JR and BB of multi-
objective tuning of cohort. Michel Lang and BB suggested the evaluation strategy for
openbox and curator datasite. The implementation of RFMS is done by XS, together with
the benchmark codes. He conducted the experiments and collected the results. AB wrote
some of the critical analytical code for result analysis with refinements by XS. FP wrote a
first version of code for the clustering of data to simulate distribution shift with refinement
by XS. XS wrote the manuscript, with refinements from all authors, especially AB.

High Dimensional Restrictive Federated
Model Selection with Multi-objective
Bayesian Optimization over Shifted

Distributions

Xudong Sun1(B), Andrea Bommert2(B), Florian Pfisterer1(B),
Jörg Rähenfürher2(B), Michel Lang2(B), and Bernd Bischl1(B)

1 LMU Munich, Munich, Germany
smilesun.east@gmail.com,

{florian.pfisterer,bernd.bischl}@stat.uni-muenchen.de
2 TU Dortmund, Dortmund, Germany

{lang,bommert,rahnenfuehrer}@statistik.tu-dortmund.de

Abstract. A novel machine learning optimization process coined
Restrictive Federated Model Selection (RFMS) is proposed under the
scenario, for example, when data from healthcare units can not leave the
site it is situated on and it is forbidden to carry out training algorithms
on remote data sites due to either technical or privacy and trust concerns.
To carry out a clinical research in this scenario, an analyst could train
a machine learning model only on local data site, but it is still possible
to execute a statistical query at a certain cost in the form of sending a
machine learning model to some of the remote data sites and get the per-
formance measures as feedback, maybe due to prediction being usually
much cheaper. Compared to federated learning, which is optimizing the
model parameters directly by carrying out training across all data sites,
RFMS trains model parameters only on one local data site but optimizes
hyper parameters across other data sites jointly since hyper-parameters
play an important role in machine learning performance. The aim is to
get a Pareto optimal model with respective to both local and remote
unseen prediction losses, which could generalize well across data sites.
In this work, we specifically consider high dimensional data with dif-
ferent distributions over data sites. As an initial investigation, Bayesian
Optimization especially multi-objective Bayesian Optimization is used
to guide an adaptive hyper-parameter optimization process to select
models under the RFMS scenario. Empirical results shows that solely
using the local data site to tune hyper-parameters generalizes poorly
across data sites, compared to methods that utilize the local and remote
performances. Furthermore, in terms of hypervolumes, multi-objective
Bayesian Optimization algorithms show increased performance across
multiple data sites among other candidates.

Keywords: Federated learning ·
Multi-objective Bayesian Optimization · High dimensional data ·
Differential privacy · Distribution shift · Model selection

c© Springer Nature Switzerland AG 2020
Y. Bi et al. (Eds.): IntelliSys 2019, AISC 1037, pp. 629–647, 2020.
https://doi.org/10.1007/978-3-030-29516-5_48

53

630 X. Sun et al.

1 Introduction

1.1 Background

Federated Learning [20,24] has drawn increasing attention recently due to over-
whelmingly growing data volume and an emerging request for privacy protection
from the perspective of individuals, as well as the perspective of data owners,
e.g. due to GDPR [26]. Usually in federated learning, a server moderates several
data sites to carry out optimization iterations, like gradient descent updates, on
each data site. Each data site then sends an intermediate result to the server.
The server side aggregates the results and distributes it, so that each data site
obtains an updated model. This distributed model training process circumvents
the bottleneck of data transmission and prevents private data from leaving the
data center. To further increase privacy security against attacks [26], differential
private federated learning algorithms have been proposed [19,37].

Current federated learning algorithms rely on an efficient and synchronized
communication protocol [20,25] across the server and different data sites as well
as the availability that data on each data site can be used for training. How-
ever, it might also be expensive to meet the technical requirements to have a
synchronized communication framework needed by federated learning.

From a privacy protection perspective, several attacks and defenses that
undermine privacy in a federated learning context have been proposed [3,27,32].
Differential private federated learning algorithms [12,26,37] are based on stan-
dard Federated Learning algorithms, with some detail being tailored to fit the
need for differential privacy.

However, there might be restrictions that the data from the remote data site
can not be used for training at all. Especially when there is no established trust
between parties, privacy protection and attack becomes an arm race, in which
case, data owners might want to restrict the access of the data to a maximum
extent but still want to participate in the community to build a predictive model
that could benefit all sides. To the best of our knowledge, this is a problem that
current differential private federated learning algorithms do not address yet.

In both restricted cases, sending a model to the remote data sites and asking
for how good the sent model performs on the remote data sites comes at a certain
cost (transmission cost and prediction computation cost for instance). This is
comparably acceptable, as only aggregated statistics (typically a single number)
need to be reported back.

We coin this new learning scenario Restrictive Federated Learning, empha-
sizing the point that only data situated locally could be used for model training,
while data on the other data sites are partially observed in the sense that the
analyst could only observe a scalar performance measure of a sent model on the
remote data site, which is restrictive.

In this restrictive learning scenario, we could only access limited data locally
for training a machine learning model, but still want to have a model that could
generalize well across the data sites. Therefore, how to do model selection in this
special restricted federated learning scenario is of significant interest.

54 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 631

Bayesian Optimization has proved to be really successful in optimizing
machine learning hyper-parameters [34]. In this work, we want to investigate
how it works under the RFMS scenario.

1.2 Challenges

A critical challenge in federated learning is unevenly distributed data. For exam-
ple, there are situations where most features are not available on all data sites [19]
or the class distribution is extremely unbalanced across different computation
nodes [43].

In RFMS, there is also the challenge that data can be differently distributed
on each data site. Specifically, in this work we consider the challenge that dis-
tribution of features from one data site might be considerably different from
another, due to different sub-populations frequenting a given clinic for example.

Furthermore, the number of observations in clinical research is usually rel-
atively small, while with the inclusion of genetic data, the number of features
can be rather large. This makes model selection [6,14] quite challenging. Find-
ing stable predictive models that could generalize well to data collected from
different clinical studies or cohorts is difficult.

2 Problem Statement

2.1 Terminology and Notation

To clearly address the problem, at the first step, terminologies and notations
used throughout the remainder of this paper are explained.

Data Site: Data of a specific domain, clinical research for example, could
be located in different places and it is expensive to carry data from one site to
another due to technical or privacy concerns. We denote one of such a integrated
data unity as a data site. There is a need to train a specific machine learning
model for the domain, which requires collaboration across data sites. We consider
data sites of following types.

Openbox Data Site Dob: On the openbox data site, the analyst has full
access to the data. A machine learning model can be trained locally using the
data situated on openbox data site.

Curator Data Site Dcu: From the openbox side, curator data site can be
queried for model performance, which can assist the analyst on the openbox
data site to get a better model that might generalize across data sites. The
curator data site Dcu can only be queried with respect to predictive performance,
i.e. a single aggregate statistic, but the analyst from the openbox side can not
access the data in any other way. This name stems from the field of differential
privacy [9] where there is a curator that controls the data flow which acts like
a firewall to Dcu. The curator has full access to Dcu but decides on its strategy
w.r.t. which feedback value to give to the statistical query by actively perturbing
and coordinating the answers given to the queries. In this work, we assume a
honest answer to the query except otherwise specified.

55

632 X. Sun et al.

Lockbox Data Site Dlb: Lockbox [13] data site refers to data sites which the
analyst from the openbox side can not access by any means. In practice, lockbox
correspond to data sites that could not contribute in the process of building
a machine learning model due to various reasons, but are likely to participate
in the future or simply benefit from the model built. From a model evaluation
perspective, Dlb on the other hand could measure how good a machine learning
model generalizes to completely unseen data.

Inbag and Outbag: For evaluation purposes, we hold out a fraction (say
20%) of the curator and openbox data which we call outbag, denoted by Dog

cu

and Dog
ob , the leftover is called inbag, which is Dig

cu and Dig
ob. For simplicity, we

use Dob to represent Dig
ob when the context is about learning and use Dob to

represent Dog
ob when the context is about evaluating how good a method is. Also,

we define the inbag and outbag of lockbox to be identical to lockbox itself, i.e.
Dlb = Dig

lb = Dog
lb .

Model Parameter θ and Hyper-parameter φ: A machine learning algo-
rithm, given a dataset Dl, where l means “learn” or “local”, Dl = Dig

ob, for
example, and a set of hyperparameters φ, learns a model specified by a set of
model parameters θ = L(Dl | φ) where L represent the learning process to map
a dataset Dl associated with a set of hyper-parameter φ to a machine learning
model parameter θ.

Model Performance and Loss: The performance of a model characterized
by θ to a data site D is given by

F (D | θ = L(Dl | φ))

where F computes an estimate of predictive performance on D, under model
parameter θ trained from dataset Dl, based on hyper-parameter φ. By conven-
tion, we use J to represent a regret that need to be minimized, which could be
1 − accuracy for example.

Restricted Federated Model Selection (RFMS) Scenario: The ana-
lyst from the openbox side want to initiate a study to a specific domain (clinical
studies like cancer research for example). A machine learning model that fits
the data well on the openbox side, as well as one that could generalize to a cer-
tain extent across the other data sites is required. Due to privacy sensitivity or
technical difficulty, some data sites could only collaborate in a model selection
process in the form of curators. Each query to the curator from the openbox side
is at a certain cost. Note that all forms of data sites including openbox, curator
and lockbox should be used to evaluate the selected model whenever possible.

2.2 An Example of RFMS on High Dimensional Unevenly
Distributed Data

Gene Expression Omnibous (GEO) is a public available functional genomics data
repository with array and sequence based data that researchers from around
the world could contribute to. Although the data in GEO is publicly available
instead of privacy sensitive, the origin that the datasets in GEO comes from

56 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 633

different sources makes it a perfect example of RFMS. We use the breast cancer
datasets GSE16446, GSE20194, GSE20271, GSE32646, and GSE6861 from the
GEO database [8,23]. Each dataset we consider here could be regarded as a
data site due to the fact that they come from different sources, by different
contributors.

The publicly available microarray gene expression datasets were accessed via
tools provided by the Gene Expression Omnibus (GEO) data repository. Frozen
robust multiarray analysis (fRMA) [23] was used for normalization. All breast
cancer datasets were checked for duplicates and a pair of patients was consid-
ered duplicate when the correlation of their expression values was at least 0.999.
Duplicates were removed. The response variable is binary (classes “pathological
complete response” and “residual disease”) for all datasets. The six observa-
tions with a missing value for the response variable are omitted. The resulting
numbers of observations per dataset are displayed in Table 1. The datasets con-
tain clinical and gene expression data. We do not consider the clinical variables
because many values are missing. The gene expression data has been measured
on three different types of microarray chips (HG-U133-Plus2 for GSE16446 and
GSE32646, HG-U133-A for GSE20194 and GSE20271, and HG-U133-X3P for
GSE6861). As the measured genes differ between the three chips, we only con-
sider the genes that are measured on all of the chips. Out of these 1965 genes,
we only use the 1000 genes with the highest variances across all patients and
datasets.

Table 1. Number of observations per GEO dataset

GEO-ID 16446 20194 20271 32646 6861

Observations 114 211 178 115 161

It can be assumed that the relation between the response variable and the
covariates is not identical across the datasets and the features distribution also
varies from data site to data site. This is typical for gene expression data, espe-
cially if it has been measured on different chips, at different times, at different
places and after different times until the tissue was frozen. A T-SNE [22] plot by
pooling the feature part of the data together from these data sites can be found
in Fig. 1 where the colors indicate different data sites. From Fig. 1, it is obvious
that the data sites lie on different locations in the low dimension embedding,
which is a clear indicator of distribution shift across data sites. We will use this
example as a major case in this paper.

2.3 Evaluation Criteria

To further explain the problem, before discussing any potential solution, we first
address the question of how to evaluate model performance, which will help
deeper understanding of the problem.

57

634 X. Sun et al.

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●●
●

● ●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●
●

●
● ●● ● ●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

● ●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

−30

−20

−10

0

10

20

30

−2
0

−1
0 0 10 20

V1

V2

data sites
●

●

●

●

●

GSE16446
GSE20194
GSE20271
GSE32646
GSE6861

Fig. 1. T-SNE plot for the GEO datasets over data sites.

In RFMS, we want to obtain a model that generalize well for the openbox,
curator and hopefully for the lockbox as well, which is a multi-objective problem.
Accordingly, the selected model should also be evaluated with method that could
take different objectives into consideration.

Dominated Hypervolume: A natural criterion is to measure the Domi-
nated Hypervolume [2] of the model performance on the outbag part of openbox
and curator site, as well as the lockbox, as in Eq. (1)

Jhv(φ | Dog
ob , Dog

cu, Dlb) = H [fog
ob , fog

cu , flb] ,

fog
ob = F

(
Dog

ob | θ = L(Dig
ob | φ)

)
,

fog
cu = F

(
Dog

cu | θ = L(Dig
ob | φ)

)
,

flb = F
(
Dlb | θ = L(Dig

ob | φ)
)

. (1)

where, H represent the calculation of the Dominated Hypervolume, and the per-
formance on each data site outbag part is represented as fog

ob , fog
cu , flb respec-

tively. Dominated Hypervolume Indicator is also known as Lebesgue Measure or
S-Metric which is the hypervolume between a non-dominated front and a refer-
ence point. Due to space limit, we invite readers who are not familiar with these
multi-objective concepts to refer to the references.

3 Related Work

In this section, we review recent works that has connections with RFMS.
Nested Cross Validation (NCV): NCV [14] uses an outer loop cross

validation to safe guard the risk of overfitting during the hyper-parameter tuning
process. However, RFMS does not allow cross validation due to the constraint
that remote data site can not be used for training.

58 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 635

Federated Learning: Federated learning [24] also consider situations where
data is distributed non-i.i.d. across several data sites and possibly unbalanced,
but they assume scenarios where data is fully accessible over a huge amounts
of data sites compared to a smaller number of data points available at each
site. This is different from RFMS, where we consider data can only be accessed
through prediction. Moreover, in RFMS, we consider a relatively small amount
of data sites with less instances but high dimensional data.

Distribution Shift: Distribution Shift refers to a mismatch in distribution
between the data an algorithm was trained on, and data used for model vali-
dation or prediction. Detecting and characterizing such shift remains an open
problem [29,42]. In this work, we do not drive deeper in theory of the data shift
problem, but provides an empirical study which partially addresses the data shift
problem, especially when feature distribution varies across data sites.

Train On Validation: In [36] the authors use parts of the validation dataset
for training to generate a stable algorithm. In [41], a progressive resampling
process is used. However, both works assume that all the data in question is
available for training, which is not possible in RFMS.

Thresholdout Family: The author in [7] shows that differential privacy
is deeply associated with model generalization and propose the Thresholdout
algorithm to avoid overfitting on the validation set due to repetitive usage. [13]
extends the instance wise Thresholdout to AUC measures. However, these meth-
ods rely on the i.i.d assumption of data which does not fit our scenario here.

Adaptive Regularization: In [30], the author proposed an alternative
update method for model parameter θ and hyper-parameter φ = λ of a recom-
mendation system [21], where the λ is the regularization parameter. In adaptive
regularization, the update for the λ is based on the “future” value of performance
which is also similar to the EM algorithm update process. However, adaptive
regularization only works with gradient based algorithms. Especially, it is only
implemented for Factorization Machine in libFM. So in general it does not work
for non-gradient based optimization typed machine learning models.

Model Agnostic Meta Learning (MAML): Model Agnostic Meta Learn-
ing [10] originates from few shot learning. It aims at adapting to new instances,
in which sense is similar to RFMS. However, MAML works only with gradient
based method and pre-assumes that the algorithm could see the full subsequent
dataset which is not possible in RFMS problem setting.

4 Methods

In this section, we first describe the general RFMS process in Sect. 4.1, then
in Sect. 4.2, we propose how to handle the RFMS process with Bayesian
Optimization.

4.1 Restrictive Federated Model Selection

The general process of RFMS is illustrated in Fig. 2, which depicts an asyn-
chronous communication process during optimization. At step i, based on hyper-

59

636 X. Sun et al.

parameter φi, the machine learning model is trained on Dob to get the model
parameter θi = L(Dob | φi).

Fig. 2. Restrictive Federated Model Selection starting from step i

With the same hyper-parameter φi, a 10-fold cross validation is carried out
on the openbox inbag part Dob, which gives us one loss function in Eq. (2).

J l
i (φi | Dig

ob) = cv(Dig
ob | φi) (2)

where cv(Dig
ob | φi) represent the average loss of the cross validation and J l

i means
local loss at the ith step.

Another loss function is obtained by sending the model parameters θi to the
remote side as shown in Eq. (3)

Jr
i (φi | Dig

cu) = F(Dig
cu | θi = L(Dig

ob | φi)) (3)

Here Jr
i means loss on the remote curator at the ith step.

At the next step, a decision process β (see Algorithm 1) based on all historical
observations will propose a new hyper-parameter to be tried out for a potential
better performance. This process is repeated until budget reached. The process
should return the optimal hyper-parameters. The complete procedure is listed
in Algorithm 1, where the decision process β to generate the proposal is approx-
imately greedily taking the optimal of a Gaussian Process originated surrogate
μ(φ | R, Φ), Expected Improvement [33], for instance. We use Φ (with an initial
design sized nini) to represent the hyper-parameter buffer and R to represent
the corresponding objective(s) buffer.

60 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 637

4.2 Bayesian Optimization and Baselines

Bayesian optimization tries to solve the problem of optimizing (often expensive-
to-evaluate) black-box functions by using an internal empirical performance
model which learns a surrogate model of the objective function while optimizing
it. A widely used application for Bayesian Optimization [16] is the optimization
of hyperparameters [1,33] of machine learning algorithms. Its aim is to find an
optimal configuration φ� from the feasible region. The choice of hyperparameters
for a machine learning model influences the learned model and can thus result
in different performances (cf. [28,31]).

Since the distribution of the data across different data sites is unknown,
we propose to treat the model selection approach as a black box optimization
problem. Specifically, we use Bayesian Optimization in Algorithm 1 to solve the
Restrictive Federated Model Selection problem with the following variants.

Local Single Objective (lso) Bayesian Optimization: In local single
objective (lso) Bayesian Optimization, we set objective function as cross vali-
dation performance on the local openbox data site, hyper-parameters are tuned
based on J lso(φ) = J l = cv

(
Dig

ob | φ
)

where J l is defined in Eq. (2).
Federated Single Objective (fso) Bayesian Optimization: In Feder-

ated Single Objective Bayesian Optimization, we combine the openbox cross
validation aggregated results in Eq. (2) and curator performance in Eq. (3) lin-
early as objective function, hyper-parameters are tuned based on

Jfso(φ) = α J l(φ | Dig
ob) + (1 − α) Jr(φ | Dig

cu)
α ∈ [0, 1] . (4)

Specifically, we use fso2 to represent α = 0.2 and fso8 to represent α = 0.8 and
so on. Note that α = 1 corresponds to lso. We use different α to check if there
is an obvious effects by changing α.

Federated Multiobjective Objective (fmo) Bayesian Optimization:
Multiobjective Bayesian Optimization [15] optimizes multiple objectives simul-
taneously, by random linear combination or optimization a S-metric based objec-
tive, which avoid deciding which linear combination parameter α to choose. In
this work, we use the Parego algorithm [18] to optimize the local objective in
Eq. (2) and remote objective in Eq. (3) jointly.

Random Search Multiobjective (rand mo): To evaluate whether
Bayesian optimization makes sense, we randomly search the hyper-parameter
space and select the pareto front [38] as final output, which we call random
search multi-objective.

4.3 Semi-simulation of Data Sites

Publicly available datasets which could fit into the RFMS scenario intrinsically
are rare. To get data from a diversified source aside from the Gene Expression
Ominbus, we turn to approximate the RFMS scenario by splitting an existing
dataset into different parts as if each part sits on a different data site. In practice,

61

638 X. Sun et al.

Algorithm 1. RFMS with Bayesian Optimization (RFMS-BO)
1: procedure RFMS-BO � data site notation here refer to the inbag part
2: Φ1:nini = {φ1, . . . , φnini} � initial design as hyper-parameter buffer
3: R0 = ∅ � objective buffer
4: for i in 1 : nini, φi in Φ1:nini do
5: J l

i (φi | Dob) = cv(Dob | φi) � Cross validation performance aggregation as
loss

6: θi = L(Dob | φi) � training on Dob with φi

7: Jr
i (φi | Dcu, Dob) = F(Dcu | θi) � test on curator

8: Ri = Ri−1‖
[
J l
i , J

r
i

]
� populate objective buffer

9: end for
10: fit μ(φ | Ri, Φ1:nini) � train Surrogate Function
11: j = i + 1
12: while budget not reached do
13: φj = β(μ(φ | Rj−1, Φ1:j−1)) � propose new hyper-parameter
14: Φ1:j = Φ1:j−1‖ [φj] � populate hyper-parameter buffer
15: J l

j(φj | Dob) = cv(Dob | φj)
16: θj = L(Dob | φj)
17: Jr

j (φj | Dcu) = F(Dcu | θj)
18: Rj = Rj−1‖

[
J l
j , Jr

j

]
� populate objective buffer

19: j ← j + 1
20: update μ(φ | Rj , Φ1:j) � update surrogate
21: end while
22: i∗ = arg maxi(R)
23: {φ∗} = Φi∗
24: {θ∗} = L(Dob; φ

∗)
25: return φ∗, θ∗

26: end procedure

we always split an existing dataset into 5 parts to keep consistence with our GEO
datasets.

Since we use real data, but kind of simulate to split the dataset into different
data sites to fit into the RFMS scenario, we call this semi-simulation of data
sites. We propose the following strategy to semi-simulate the data sites.

Stratified Random Split (SRS): First, split the dataset into two parts
according to a factor column. Specifically, we use the target column in a clas-
sification dataset. Then, each factor part is randomly split into 5 buckets. The
positive class part got bp

1, . . . , b
p
5 and the negative class part got bn

1 , . . . , bn
5 , where

bn
i and bp

i represent the ith bucket in the negative part and positive part respec-
tively. Lastly, sort the buckets in each factor part according to the number of
instances and combine the buckets in reversing order to form each data site, i.e.,
di = bn

sn(i)‖bp
sp(6−i), where di represents the ith combined data site, sn and sp

are the sorted index vector of each part. We use ‖ to denote pooling two data
buckets.

Dimension Reduction and Clustering (DRC): First, carry out a dimen-
sion reduction technique on the dataset like Principal Component Analysis. Then

62 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 639

split the dataset into positive class part and negative class part. Cluster each
part into 5 clusters, i.e. cn

1 , . . . , cn
5 for the negative class part and cp

1, . . . , cp
5

for the positive class part. Sort the clusters with respect to the cluster size
in each part and combine them in reversed order to form each data site, i.e.,
di = cn

sn(i)‖cp
sp(6−i), where di represent the ith combined data site, sn and sp

are the sorted index vector of each part. We use ‖ to denote pooling two data
together.

We choose Mixture of Gaussian Model (MOG) for the clustering, due to
consideration that MOG could also serve as a density estimator.

p(X) = Σ5
k=1ckN (X|µk,Σk) (5)

In MOG, each cluster is represented by a Gaussian distribution N (X|µk,Σk)
with its own parameters µk(mean) and Σk(covariance), as shown in Eq. (5), ck is
the mixing coefficient of each cluster. For each of the chosen datasets in Table 2,
we model the data distribution as p(X) in Eq. (5) and approximately, each cluster
resulted data site represent a different distribution. For simplicity, we assume all
clusters are with different mean vectors but share the same covariance matrix
to assemble a distribution shift. The T-SNE plot is done to the SRS scenario
(Fig. 3) and the DRC scenario. In DRC, we use PCA as dimension reduction,
keeping 10% (Fig. 4) and 50% (Fig. 5) of the total variance to tell if the reduced
dimension makes a big difference in generating an unevenly distributed data
sites scenario). From these figures, we do not observe a big difference between
different percentage of variance to reserve in PCA, but observe a big difference
between SRS and DRC where SRS generates a more evenly distributed data
sites, while DRC generates more uneven distributions across different clusters
(data sites).

−40

−20

0

20

−2
0 0 20

V1

V2

data sites
ds1
ds2
ds3
ds4
ds5

Fig. 3. Stratified random
split (SRS)

−40

−20

0

20

−2
0 0 20

V1

V2

data sites
ds1
ds2
ds3
ds4
ds5

Fig. 4. DRC with PCA
and keep 10% variance

−40

−20

0

20

−2
0 0 20

V1

V2

data sites
ds1
ds2
ds3
ds4
ds5

Fig. 5. DRC with PCA
and keep 50% variance

63

640 X. Sun et al.

5 Experiment

5.1 Settings

Since we have selected 5 datasets from the Gene Expression Ominibus to repre-
sent 5 data sites, we will consider the exemplary problem of 5 data sites for the
remainder of the paper.

In the experiment, one of the 5 data sites is used as openbox Dob, another
one as lockbox Dlb and the three left over are used as curators Dcu. We choose
to have only one openbox to simulate the scenario, that usually only local data
at the current data sites are fully available to the analyst. We choose to have 3
curators and only 1 lockbox to simulate the scenario that more data sites want
to collaborate with the openbox data site. Curator data site losses are weighted
by the size of the each curator data site during optimization. With this strategy,
there are in total 5 × 4 = 20 combinations of openbox-curator-lockbox on the
5 datasets. Each openbox and lockbox combination defines one scenario. Each
scenario is repeated 10 times (10 replications) where we call each replication one
experiment. We sequentially run all RFMS methods, described in Sect. 4.2, with
3 machine learning algorithms (kernel support vector machine, random forest
and elastic net). Thus, we have in total 20 × 10 × 3 = 600 experiments given a
RFMS problem with 5 data sites. All Bayesian Optimization procedures share
the same initial design of 20 randomly selected configurations, and are then run
for another 40 iterations. Thus in total we have a budget of 60 evaluations. To
have a fair comparison, Random Search use the same number of evaluations.

In order to evaluate our method, we randomly partition openbox and the
curator into two parts, namely an inbag part (80%) and an outbag part (20%).
Replications mentioned above could average out the random splits and other
stochastic factors. We use Dig

ob for training a model, and use Dig
cu as well as

Dig
ob for model selection. The outbag parts of openbox and curator are reserved

for post-hoc analysis. This allows us to assess, whether our methods overfit in
each of the two boxes. Additionally, performance is also recorded on the lockbox
site for another aspect of evaluation. We then compare the different methods
described in Sect. 4.2 on the outbag portion of the respective boxes (as noted in
Sect. 2.1, all data of lockbox belongs to outbag).1

5.2 Selection of Dataset for Semi-simulation

In order to validate our results on different data sources, we obtain additional
data sets from OpenML [39]. As no datasets with an intrinsic splitting mech-
anism such as the GEO dataset (where each dataset comes from a particular
source) are available, we simulate the RFMS scenario according to the strategies
described in Sect. 4.3.

Model generalization becomes more difficult when there are comparatively
more features than instances. Therefore, we restrict ourselves to datasets with a

1 source code in https://github.com/compstat-lmu/paper 2019 multiobjective rfms

64 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 641

relatively high-dimension characteristics: Since we intend to split a dataset into 5
parts as 5 data sites, the number or instances in each data site is approximately
reduced by 5 times compared to the original dataset (we rebalanced cluster
results which generate too small clusters but adding instances to the smallest
cluster from the biggest cluster until the smallest cluster reaches 10% of the total
number of instances), but the number of features over the number of instances
get to be approximately 5 times of the original ratio, so a p (number of features)
over n (number of instances) ratio of more than 0.2 in the original dataset
corresponds to p

n = 1 in each data site, thus we consider datasets with p
n ratio

around 0.2 to be high-dimensional.
Too few instances is more prone to problems in data resampling processes

like cross validation. For example, one fold of the cross validation might contain
no instance from the underrepresented class. Thus we do not want too extremely
unbalanced classification datasets. In order to have a sufficient amount of data
in each of the 5 boxes, we select only data sets with more than 500 instances.
For the purpose of simplicity, we additionally restrict our data set selection to
data sets that are (i) binary class, (ii) do not have missing values. As a result,
we use the data sets in Table 2 to provide additional validation of the proposed
methods.

Table 2. List of datasets from OpenML

Name n p p/n Class ratio

gina agnostic 3468 970 0.28 0.97

Bioresponse 3751 1776 0.47 0.84

fri c4 500 100a 500 100 0.2 0.77
ahttps://www.openml.org/d/742

Since close or even identical predicative performance values on a problem
can occur for varying machine learning hyperparameters, when the predicative
performance is used as the target for Gaussian Process regression, it can cre-
ate numerical difficulties, so hyperparameter tuning might fail for a particular
algorithm, even though we use a nugget value of 1e − 6. Therefore, to get fair
comparison, all algorithms are run sequentially over a problem on the same
computing node. Only those experiments with all algorithms finished are used
for analysis, where in practice, we only get neglectable number of experiments
(around 100 out of 1800 experiments, which is 5 percent) within which at least
one algorithm is not finished, see Fig. 9 and Fig. 11. The Winner-vs-Loser plots
are more effective than carrying out statistical tests.

5.3 Machine Learning Algorithms and Hyper-Parameters

We choose 3 machine learning algorithms (which we call learner) based on the
consideration that the learners should be representative to different mechanisms

65

642 X. Sun et al.

of various machine learning algorithms. Elastic net logistic regression (imple-
mented in R package glmnet [11]) is a good representative for linear classi-
fier which could deal with high dimensional data (classif.glmnet), thus chosen
because according to [35], one should not rule out simple models prematurely.
R package ranger [40] implements a random forest (classif.ranger) which is a
state of art non-linear learner that has shown outstanding performance. Kernel
support vector machine (ksvm) (classif.ksvm) implemented in [17], is a nonlin-
ear classifier which could deal with high dimensional data. The hyper-parameters
to be optimized with their ranges are shown in Table 3. Hyper-parameter tuning
is done with mlr[4] and mlrMBO[5]. Meaning of hyper-parameters can be found
in respective packages.2

Table 3. List of hyperparameters

Classifier Hyperparameter Type Range

glmnet alpha numeric (0, 1)

glmnet s numeric (2−10, 210)

ksvm C numeric (2−15, 215)

ksvm sigma numeric (2−15, 215)

random forest num.trees integer (100, 5000)

random forest min.node.size integer (1, 50)

random forest sample.fraction numeric (0.1, 1)

5.4 Results and Discussion

In this section, we compare different candidates of RMFS methods proposed
in Sect. 2.3 with respect to their predictive performance. Our aim is to obtain
machine learning models, that generalize well across data sites. As an aggregate
measure, we choose the dominated hypervolume of the data kept out-of-bag
in the openbox Dog

ob , curator Dog
cu and lockbox Dlb respectively as shown in

Eq. (1). We consider the average performance on the curators for calculating
the hypervolume. Lockbox data measures how our methods generalize to sub-
populations not considered at all during the training and model selection process.
Using hypervolume results in a comprehensive overview of them.

Results on the GEO Datasets. As shown in Fig. 6, we compare the mean
dominated hypervolume from Eq. (1) of 3 machine learning algorithms (corre-
sponding to the 3 panels in the plot) and several RFMS methods. We aggregate

2 https://github.com/mlr-org/mlr/blob/3edac9f65ed5c157a3d868fe8d2908eaa2a09e
bd/R/RLearner classif glmnet.R\#L7.

66 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 643

Fig. 6. Dominated hypervolume on
GEO datasets

Fig. 7. Comparison of wins and losses
on GEO dataset

over 10 replications and 20 combinations of possible openbox-lockbox combina-
tions.

From Fig. 6, we can observe that lso performs the worst among other can-
didates, showing that in the RFMS scenario, solely tuning hyper-parameters on
the local openbox data site will usually not lead to a model that generalizes well
across data sites, which is in accordance with intuition. The other candidates
methods including fmo and several fso variants, that predicting on the data
of the curator and using this performance as a feedback performs better, show-
ing that the feedback could help in arriving at models which generalize better.
However, the considered Bayesian Optimization approaches do not overrate the
multi-objective random search rand mo, nor do we observe any effect of chang-
ing α in the performance of fso. In order to make a more precise comparison,
we compare the pairwise wins and losses of all the RFMS methods in terms
of dominated hypervolume. For each experiment, we build a 0 − 1 matrix to
compare the win and loss of each algorithm pair (when method A is compared
against method B, we take 0 for loss, 1 for win, and 0.5 for tie) and aggregate the
matrix across all 600 experiments. Results are shown in Fig. 7, where the hor-
izontal axis corresponds to winners and the vertical axis correspond to losers.
The elements in the matrix correspond to how many times the winner has won
against the loser. It is easily observable that both bi-criteria methods (fmo and
rand mo) are slightly better than other candidates, as they win more than half
of the experiments.

Results on the Semi-simulated RFMS Scenario. To avoid single dataset
bias, we also analyze how the same algorithms compare under our semi-simulated
RFMS scenario described in Sect. 4.3 over data of various sources.

Dimension Reduction and Clustering (DRC): We first simulate the
RFMS scenario with DRC explained in Sect. 4.3, which could result in a situation
that data from different data sites are differently distributed, where we keep 10
percent variance in the PCA step.

67

644 X. Sun et al.

Fig. 8. Aggregated mean dominated hyper-
volume under DRC scenarios obtained over
OpenML datasets

Fig. 9. Aggregated wins and losses
on the DRC scenarios obtained over
OpenML datasets

Figure 8 shows the dominated hypervolume by aggregating across all the
datasets in Table 2. Compared to Fig. 6, it is more obvious here that the multi-
objective methods work better than the single objective Bayesian optimization
methods. In Fig. 9, we have the Winner-vs-Loser plot for the aggregated results
on the OpenML datasets listed in Table 2, where the multi-objective candidates
outperform the rest by a large margin. Furthermore, fmo wins rand mo by
a considerable margin, giving confidence that Bayesian Optimization make a
difference compared to random search.

Stratified Random Split (SRS): To answer the question if a different
data splitting technique affects the comparison, we use the stratified technique
described in Sect. 4.3 which corresponds to the situation that data being more
evenly distributed across data sites. Figure 10 shows the hypervolume plot, from
which we can still observe the pattern that the multi-objective candidates per-
form better in terms of hypervolume, while compared to Fig. 8, all methods show
increased performance under this evenly distributed data scenario across data
sites, possibly due to the bonus of evenly distributed data scenario. In Fig. 11, we
compare the wins and losses for each pair of candidates, where in this case, the
fmo wins rand mo by a larger margin, maybe because the generate a simpler
RFMS scenario for the Bayesian Optimization.

6 Summary

We introduce a novel learning scenario, Restrictive Federated Model Selection
(RFMS), which could play an important role in clinical research, where privacy
sensitive immobile high dimensional data is differently distributed among vari-
ous data sites, in which case federated learning is not applicable due to a lack
of access to data from all data sites to be used for training. RFMS is a model
selection process in this scenario, with the aim to obtain a model that gener-
alizes comparably well across data sites with potential different distributions.
Compared to Federated Learning, RFMS can be carried out in an asynchronous

68 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 645

classif.glmnet classif.ksvm classif.ranger

fm
o

fs
o2

fs
o5

fs
o8 ls
o

ra
nd

_m
o

fm
o

fs
o2

fs
o5

fs
o8 ls
o

ra
nd

_m
o

fm
o

fs
o2

fs
o5

fs
o8 ls
o

ra
nd

_m
o

0.2

0.4

0.6

0.8

Algorithm

M
ea

n
do

m
in

at
ed

 h
yp

er
 v

ol
um

e

algo
fmo
fso2
fso5
fso8
lso
rand_mo

Fig. 10. Aggregated mean dominated
hyper-volume under SRS scenario obtained
over OpenML datasets

596264302.5 218.5 182.5

1089 551.5625 448 399.5

1421 1133.5955 703.5 643

1382.5 1060730 601.5 565

1466.5 1237981.51083.5 809

1502.5 1285.510421120 876

fmo

fso2

fso5

fso8

lso

rand_mo

fm
o

fs
o2

fs
o5

fs
o8 ls
o

ra
nd

_m
o

Winner

Lo
se

r

500

1000

1500

Times

Fig. 11. Aggregated wins and losses
over SRS scenario obtained over
OpenML datasets

fashion, which is not communication hungry compared to standard federated
learning and much easier to be deployed. Additionally, the amount of informa-
tion that needs to be transferred for each query is comparatively small which
takes less efforts to be deployed.

As an initial investigation, we compare various methods for model selec-
tion and hyper-parameter tuning using Bayesian Optimization. Empirical results
from various data sources indicate that Federated Multi-objective Bayesian Opti-
mization compares favorably against other single objective candidates as well as
multi-objective random search, in terms of better generalization across data sites.

Acknowledgment. This work was supported by Deutsche Forschungsgemeinschaft
(DFG), Project RA870/7-1 and BI 1902/1-1. The authors thank Janek Thomas, Philip
Probst and Martin Binder for helpful suggestions.

References

1. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems, pp. 2546–
2554 (2011)

2. Beume, N., Rudolph, G.: Faster s-metric calculation by considering dominated
hypervolume as klee’s measure problem. Universitätsbibliothek Dortmund (2006)

3. Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., Rogers, R.: Protection against
reconstruction and its applications in private federated learning. arXiv:1812.00984
(2018)

4. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casal-
icchio, G., Jones, Z.M.: mlr: Machine learning in R. J. Mach. Learn. Res. 17(1),
5938–5942 (2016)

5. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: a
modular framework for model-based optimization of expensive black-box functions.
arXiv preprint arXiv:1703.03373 (2017)

6. Cawley, G.C., Talbot, N.L.: On over-fitting in model selection and subsequent
selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

69

646 X. Sun et al.

7. Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A.: Guilt-free
data reuse. Commun. ACM 60(4), 86–93 (2017)

8. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucl. Acids Res. 30(1), 207–
210 (2002)

9. Elder, S.: Bayesian adaptive data analysis guarantees from subgaussianity. arXiv
preprint arXiv:1611.00065 (2016)

10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 (2017)

11. Friedman, J., Hastie, T., Tibshirani, R.: glmnet: Lasso and elastic-net regularized
generalized linear models. R Packag. Version 1(4) (2009)

12. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

13. Gossmann, A., Pezeshk, A., Sahiner, B.: Test data reuse for evaluation of adaptive
machine learning algorithms: over-fitting to a fixed ‘test’ dataset and a potential
solution. In: Medical Imaging 2018: Image Perception, Observer Performance, and
Technology Assessment, vol. 10577, p. 105770K. International Society for Optics
and Photonics (2018)

14. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: beyond the
Bayesian/frequentist divide. J. Mach. Learn. Res. 11, 61–87 (2010)

15. Horn, D., Dagge, M., Sun, X., Bischl, B.: First investigations on noisy model-
based multi-objective optimization. In: International Conference on Evolutionary
Multi-Criterion Optimization, pp. 298–313. Springer (2017)

16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

17. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab-an S4 package for
kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004)

18. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput.
10, 50–66 (2006)

19. Konecnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimiza-
tion: distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527 (2016)

20. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

21. Kushwaha, N., Sun, X., Singh, B., Vyas, O.: A lesson learned from pmf based
approach for semantic recommender system. J. Intell. Inf. Syst. 50(3), 441–453
(2018)

22. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008)

23. McCall, M.N., Bolstad, B.M., Irizarry, R.A.: Frozen robust multiarray analysis
(fRMA). Biostatistics 11(2), 242–253 (2010)

24. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
AISTATS (2017)

25. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-
efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629 (2016)

26. Melis, L.: Building and evaluating privacy-preserving data processing systems.
Ph.D. thesis, UCL (University College London) (2018)

70 B. Restrictive Federated Model Selection

Restrictive Federated Model Selection over Shifted Distributions 647

27. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Inference attacks against
collaborative learning. arXiv preprint arXiv:1805.04049 (2018)

28. Probst, P., Bischl, B., Boulesteix, A.L.: Tunability: Importance of hyperparameters
of machine learning algorithms. arXiv preprint arXiv:1802.09596 (2018)

29. Rabanser, S., Günnemann, S., Lipton, Z.C.: Failing loudly: an empirical study of
methods for detecting dataset shift. arXiv preprint arXiv:1810.11953 (2018)

30. Rendle, S.: Learning recommender systems with adaptive regularization. In: Pro-
ceedings of the Fifth ACM International Conference on Web Search and Data
Mining, pp. 133–142. ACM (2012)

31. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 2367–2376. ACM (2018)

32. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP), pp. 3–18 (2017). https://doi.org/10.1109/SP.2017.41

33. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2951–2959 (2012)

34. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,
M., Prabhat, M., Adams, R.: Scalable Bayesian optimization using deep neural
networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

35. Strang, B., van der Putten, P., van Rijn, J.N., Hutter, F.: Don’t rule out simple
models prematurely: a large scale benchmark comparing linear and non-linear clas-
sifiers in OpenML. In: International Symposium on Intelligent Data Analysis, pp.
303–315. Springer (2018)

36. Tennenholtz, G., Zahavy, T., Mannor, S.: Train on validation: squeezing the data
lemon. arXiv preprint arXiv:1802.05846 (2018)

37. Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R.: A hybrid
approach to privacy-preserving federated learning. arXiv preprint arXiv:1812.03224
(2018)

38. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence
to a pareto front. In: Late Breaking Papers at the Genetic Programming 1998
Conference, pp. 221–228 (1998)

39. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

40. Wright, M.N., Ziegler, A.: Ranger: a fast implementation of random forests for
high dimensional data in C++ and R. arXiv preprint arXiv:1508.04409 (2015)

41. Zeng, X., Luo, G.: Progressive sampling-based bayesian optimization for efficient
and automatic machine learning model selection. Health Inf. Sci. Syst. 5(1), 2
(2017)

42. Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain adaptation under target
and conditional shift. In: International Conference on Machine Learning, pp. 819–
827 (2013)

43. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-iid data. CoRR abs/1806.00582(2018)

71

244 4. Contributions - AutoML

CHAPTER 5

CONTRIBUTIONS - FAIRNESS

246 5. Contributions - Fairness

5.1 Debiasing classifiers: is reality at variance with ex-
pectation?

Contributed Article:
A. Agrawal, F. Pfisterer, B. Bischl, J. Chen, S. Sood, S. Shah, F. Buet-Golfouse, B. A.
Mateen, and S. Vollmer. Debiasing classifiers: is reality at variance with expectation?,
2020, arXiv:2011.02407

Declaration of contributions The project originated with an implementation of sev-
eral debiasing methods in Julia 1 by AA with guidance from SV and JC. Experimental
results reported in the manuscript stem from a subsequent benchmark mostly conducted
by AA with input from FP, JC and SV. JC, with help from AA, FP and SV drafted the
manuscript with feedback by all other authors. FBG contributed the theoretical analysis
on the convergence on performance - fairness tradeoffs. FP contributed several smaller ex-
periments regarding class balance and comparisons to previous work. All authors provided
feedback and iteratively refined the manuscript in subsequent iterations.

1https://github.com/ashryaagr/Fairness.jl

Debiasing classifiers: is reality at variance with
expectation?

Ashrya Agrawal
Birla Institute of Technology and Science

Pilani, India
ashryaagr@gmail.com

Florian Pfisterer
Ludwig-Maximilians-University

Münich, Germany
florian.pfisterer@stat.uni-muenchen.de

Bernd Bischl
Ludwig-Maximilians-University

Münich, Germany
bernd.bischl@stat.uni-muenchen.de

Francois Buet-Golfouse
J.P. Morgan

London, United Kingdom
francois.buet-golfouse@jpmorgan.com

Srijan Sood
J.P. Morgan AI Research

New York, New York, USA
srijan.sood@jpmorgan.com

Jiahao Chen
J.P. Morgan AI Research

New York, New York, USA
jiahao.chen@jpmorgan.com

Sameena Shah
J.P. Morgan AI Research

New York, New York, USA
sameena.shah@jpmorgan.com

Sebastian Vollmer
University of Warwick

Warwick, United Kingdom
svollmer@warwick.ac.uk

Abstract

We present an empirical study of debiasing methods for classifiers, showing that
debiasers often fail in practice to generalize out-of-sample, and can in fact make
fairness worse rather than better. A rigorous evaluation of the debiasing treatment
effect requires extensive cross-validation beyond what is usually done. We demon-
strate that this phenomenon can be explained as a consequence of bias-variance
trade-off, with an increase in variance necessitated by imposing a fairness con-
straint. Follow-up experiments validate the theoretical prediction that the estimation
variance depends strongly on the base rates of the protected class. Considering
fairness–performance trade-offs justifies the counterintuitive notion that partial
debiasing can actually yield better results in practice on out-of-sample data.

1 Introduction

Artificial intelligence and machine learning (AI/ML) are now used for many high-stakes decision-
making processes at scale [36, 43], such as credit decisions [15, 50], medical diagnoses [49], and
criminal sentencing [3, 18, 7]. In these use cases, unfairness is not just an ethical concern, but has
legal and regulatory dimensions as well [5, 15, 53, 33, 26]. As such, regulators have signalled their
interests in detecting and remediating bias in these real-world applications [26, 48].

Bias can originate from any part of the machine learning modeling process, ranging from exclusionary
biases [5, 13, 41] in training data, to problem definitions or feedback cycles that reinforce historical
and systemic discrimination [23, 34, 4, 37]. To address bias in a model, one must first identify the
relevant fairness metrics [38, 51] and then select a method to debias the model with respect to those

Preprint. Under review.

ar
X

iv
:2

01
1.

02
40

7v
2

 [
cs

.L
G

]
 3

1
M

ay
 2

02
1

metrics. However, both aspects are challenging in practice. It is not always obvious which fairness
definitions are relevant for a particular application [3, 7], and remediating bias usually comes at a cost.
For example, a credit decisioning model has to be accurate in order to be profitable, which motivates
fairness notions like equality of opportunity. At the same time, there are reputational and regulatory
risks associated with bias in incorrect decisions, leading to considerations of equalized false negative
rate and equalized false positive rate [25]. These different definitions of fairness cannot be satisfied
simultaneously due to well-known impossibility theorems [31, 17]. Furthermore, a debiased model
will not be used in practice if its performance degrades too much. Therefore, in practice, we have
to consider not only fairness–fairness trade-offs, but also the fairness–performance trade-offs to
determine the best debiased model [40, 30].

Assumptions. The setting for our paper assumes that 1) membership in protected classes is fully
known, ignoring practical concerns to the contrary [16, 27], 2) all relevant fairness and performance
metrics can be clearly identified at the outset, and 3) remediation is only at single point in time,
ignoring time-evolving concerns [34]. Despite this restricted setting, we find that the practicalities of
debiasing are already sufficiently rich for in-depth study. Other work identified technical challenges
resulting from the lack of native support for fairness or debiasing concerns in major machine learning
software libraries, but do not consider variance or sensitivity issues [10]. More recently, Rodolfa et al.
[42] show that trade-offs between recall parity and precision@k are often small in real-world projects.

Given this body of work, we were therefore surprised to it is surprising to see results like those in
Figure 2, which suggest that classifiers can exhibit any combination of improved or worsened fairness,
and also improved or worsened performance, after using standard debiasing algorithms. In this paper,
we show that out-of-sample generalization error is responsible for the fluctuations observed in the
aforementioned figure, and that careful estimation of such error is essential for proper evaluation
of debiasing methods. While previous works have studied distributionally robust optimization for
fairness [35] and data-dependent constraint generalization [19], we focus on the generalization of
fairness algorithms.

Our Contributions. In Section 2, we show how to generalize existing debiasers to apply to fairness
metrics other than what they were originally defined for. We introduce generalized reweighing which
can apply to other fairness definitions beyond demographic parity and identify fairness definitions
for which reweighing cannot generalize to. We also introduce a new NLinProg debiaser which
generalizes the equalized odds debiaser, and is capable of handling multiple fairness and performance
metrics simultaneously. In Section 3, we present a detailed empirical study across nine different
models, showing that debiasing methods generally fail to achieve perfect fairness in out-of-sample
measurements, and produce large variance in the actual metrics, and tend to overfit on training data.
In Section 4, we present our main theoretical result, Theorem 1, showing that the fluctuations we
observed empirically can be attributed to bias-variance trade-off. In Section 5, we verify a prediction
from this analysis, that the ability to debias varies with the base rate of the protected class. In
Section 6, we show how an explicit consideration of the fairness–performance trade-offs motivates
the notion of partial debiasing. We also show experimentally the somewhat counter-intuitive result
that a partial debiasing treatment can actually yield classifiers with better out-of-sample fairness. We
introduce other related work throughout the exposition of this paper, in lieu of a dedicated section.

Notation. Sets. In general, calligraphic letters likeA denote a set, capital lettersA denote a variable
that is an element of a set A, and small letters a denote a value that the variable A can take. Let
S ∈ S = {0, 1} be a binary protected class, X ∈ X be some set of features that explicitly excludes
S, Y ∈ Y = {0, 1} be a binary outcome variable, and Ŷ ∈ Y be an estimator for Y . While we
specialize to the cases of binary Y and S for the ease of presentation, our results generalize to larger
finite classes. Furthermore, let Z = (X,Y) ∈ Z = X×Y and W = (X,Y, S) ∈ W = X×Y×S,
Additionally, define D ∈ Wn to be in-sample (training) data with n points, D? ∈ Wn?

to be
out-of-sample (testing) data with n? points, and ∆k = {z ∈ Rk+1 : z ≥ 0, ‖z‖1 = 1} be the
standard non-negative simplex of dimensionality k. Classification functions. Let F : X×S → Y be
the function space of S-aware classifiers, where each element f ∈ F is a classification function, and
F0 : X → Y be the function space of S-oblivious classifiers. Each S-oblivious classifier f0 ∈ F0

has a 1:1 relation to a trivial S-aware classifier f ∈ F : f(x, s) = f0(s) which simply ignores the
s argument. We differentiate between aware and oblivious classifiers only where necessary. Also,
let H ⊆ F be some family of classifiers, and idA : A → A be the identity function over the set A.

2

Debiasing functions. Let gpre : X×S → X be a pre-processing debiasing function, gpost : Y×S → Y
be a post-processing debiasing function, and G : F → F be an in-processing debiaser, which is a
higher-order function that is an endomorphism over F . Loss functions. Let ` : F×W → R+

0 be a
performance loss such as the hinge or binomial deviance, and φh : R2 →= R+

0 be a loss function
associated with the fairness definition h. Metrics. Let γ : F×WN → [0, 1], γ(f,D) be the accuracy
of the classifier f on the data set D, and τh : F×WN → [0, 1] , τh(f,D) the fairness metric as
defined in Definition 2 corresponding to the fairness definition h. When clear from context, the
arguments f and D will be dropped for brevity.

1.1 Fairness definitions & metrics

Fairness metric Equality statement

Equalized false omission rate (EFOR) [7] Pr(Y = 1|Ŷ = 0, S = s) = Pr(Y = 1|Ŷ = 0)

Predictive parity (PP) [17] Pr(Y = 1|Ŷ = 1, S = s) = Pr(Y = 1|Ŷ = 1)

Demographic parity (DP) [14] Pr(Ŷ = 1|S = s) = Pr(Ŷ = 1)

Equalized false negative rate (EFNR) [17] Pr(Ŷ = 0|Y = 1, S = s) = Pr(Ŷ = 0|Y = 1)

Predictive equality (PE) [17] Pr(Ŷ = 1|Y = 0, S = s) = Pr(Ŷ = 1|Y = 0)

Equality of opportunity (EOp) [25] Pr(Ŷ = 1|Y = 1, S = s) = Pr(Ŷ = 1|Y = 1)
Equalized odds (EOd) [25] EOp and PE

Table 1: Group fairness definitions used in this paper.

Many technical definitions of fairness exist and they have been reviewed elsewhere [38, 51, 7, 30].
We present only the definitions of fairness that we will study in this paper in Table 1. In addition
to choosing a suitable fairness definition, we also have to choose some loss function, φ, to quantify
the discrepancy from perfect fairness. One such function is the Calders-Verwer gap [14] ∆DP =

Pr(Ŷ =1|S=1)− Pr(Ŷ =1|S=0), which is simply the difference of the two sides of the equation
that define demographic parity, and vanishes when perfect fairness exists. In addition to absolute
differences, other metrics based on ratios, relative differences, or other more complicated losses have
have been proposed. In this paper, we focus on symmetrized ratio metrics as defined in Definition 2.

1.2 Pre-, in- and post-processing methods for debiasing

Figure 1: Overview of debiasing methods as de-
scribed in Section 1.2. Top: pre-processing meth-
ods. Middle: in-processing methods. Bottom:
post-processing methods.

Toolkits such as Aequitas [45], IBM AI Fairness
360 [6], Microsoft Fairlearn [9], and Amazon
SageMaker Clarify [47] provide many debias-
ing algorithms. These algorithms are tradition-
ally classified as pre-processing, in-processing
and post-processing methods, which are de-
picted at the functional level in Figure 1. In
this section, all primed quantities have been de-
biased. A pre-processing debiaser first trans-
forms the input features X using some func-
tion gpre : X ×S → X , then feeds the trans-
formed features as input to an oblivious clas-
sifier f : X → Y . The debiased classifier
is then the composition f ′ : X × S → Y ,
f ′ = f ◦ gpre. A post-processing debiaser takes
the output of some oblivious classifier, Ŷ ∈ Y ,
then transforms this output using some func-
tion gpost : Y×S → Y , The debiased classi-
fier is then the composition f ′ : X ×S → Y ,
f ′ = gpost ◦ (f × idS), where idS is the iden-
tity function over protected class. Finally, an
in-processing debiaser transforms some oblivi-
ous classifier f into an S-aware but debiased classifier f ′ = G(f), using the function-to-function
mapping G : (X → Y)×W → (X×S → Y). In general, the resulting classifier cannot be written

3

as a function composition involving the original oblivious classifier f . Some in-processing debiasers
like prejudice removal [29] further require that the debiased classifier f ′ be S-oblivious, which is
equivalent to the defining the debiased classifier f ′(X,S) = f(X) to be independent of S always. In
other words, pre-processing debiasers transform the features X , post-processing debiasers transform
the predictions Ŷ , and in-processing debiasers transform the classifiers f .

We conclude the introduction with two debiasing algorithms as illustrations of the general principle.
Reweighing (RW) is a pre-processing debiaser introduced to enforce demographic parity (DP)
[28]. Since DP is satisfied when Y and S are independent, reweighing assigns each data point i
a weight wDP,i = Pr(Ŷ =yi) Pr(S=si)/Pr(Ŷ =yi, S=si), altering the measure associated with
the sampled distribution of (Y, S) to match what would be expected from statistical independence.
Equalized odds (EOd) is a post-processing debiaser [25, 40] that calculates probabilities Pr(Ŷ ′|Ŷ , S)

that the predictions Ŷ should be flipped to yield the debiased predictions Ŷ ′ that satisfy equalized
odds fairness, while having Ŷ ′ as close as possible to Ŷ .

2 Generalized debiasers

The reweighing pre-processor and equalized odds post-processsor are specialized to specific fairness
definitions, demographic parity and equalized odds respectively. In this section, we show how these
debiasers can be generalized to other fairness definitions.

2.1 Generalized reweighing for pre-processing

The reweighting pre-processor of Section 1.2 can be easily extended to some, but not all, other
definitions of group fairness. For example, considering Ŷ ⊥⊥ S|Y = 1 instead of Ŷ ⊥⊥ S gives
an immediate generalization of reweighing for equality of opportunity (EOp) instead of DP. As
EOp fairness requires Pr(Ŷ = 1|S = 0, Y = 1) = Pr(Ŷ = 1|S = 0, Y = 1), the corresponding
reweighing scheme is simply wEOp,i = Pr(Ŷ = yi)/Pr(Ŷ = yi|S = si, Y =1). However, there is
no such reweighing scheme for equalized odds (EOd), which requires that both EOp and PE hold.
Each equation demands its own reweighing scheme, with the first as before and the second as
in wPE,i = Pr(Ŷ = yi)/Pr(Ŷ = yi|S = si, Y =0), which will in general differ from the weights
wEOp,i. Thus, reweighing as a method for exact debiasing works for neither composite fairness
definitions that require multiple equality constraints, nor situations requiring multiple fairnesses to
be satisfied simultaneously. It is therefore natural to consider the possibility of some interpolation
scheme between different weighting schemes. We will revisit this idea later in Section 6.

2.2 Nonlinear programs for post-processing (NLinProg; NLP)

We now introduce NLinProg (NLP), a generalization of the equalized odds post-processor to allow
for arbitrary combinations of group fairnesses to be debiased simultaneously.

Algorithm 1 The NLinProg post-processing debiaser

Input: Predictions Ŷ , protected class S, performance losses {`(i)}i, and fairness losses {φ(i)}i.
Output: Debiased predictions Ŷ ′.

1: Compute the solution z = (Pr(Ŷ ′=y′, Ŷ =y|S=s))y′,y,s to the PFOP (1).
2: For each prediction Ŷ = y with protected class label S = s, choose a corresponding debiased

prediction Ŷ ′ = y′ with probability Pr(Ŷ ′=y′|Ŷ =y, S=s).

Definition 1. The performance–fairness optimality problem (PFOP) is to determine the fairness-
confusion tensor (FACT) z = (TP1, FN1, FP1, TN1, TP0, FN0, FP0, TN0)/N [30] that solves:

arg min
z∈∆7

∑

i

µi`
(i)(z) +

∑

j

λjφ
(j)(z), (1)

where TP0/N = Pr(Ŷ ′ = 1, Ŷ = 1, S = 0) is the normalized true positive entry for S = 0, and
similarly for the other entries of z, ∆7 = {z ∈ R8 : z ≥ 0, ‖z‖1 = 1} is the standard non-negative

4

simplex, `(i) : ∆7 → R+
0 is some performance loss with corresponding Lagrange multiplier µi, and

φ(i) : ∆7 → R+
0 is some fairness loss with corresponding Lagrange multiplier λj .

We implement Algorithm 1 in the JuMP [22] framework for the Julia programming language [8],
which uses Ipopt [52] for interior point optimization. The MIT-licensed open source implementation
is available on GitHub.1

Unless otherwise specified, our subsequent experiments specialize to one accuracy loss `(1)(z) =
1 − γ(z), where γ(z) =

∑
i(TPi + TNi)/N is the usual definition of accuracy, and fairness loss

φ(1)(z) = 1− τh(z), where τh is a quantity we will now define.

Definition 2. For a FACT z, define z|S=s = (TPs, FNs, FPs, TNs)/N as the restriction of z to
entries corresponding to S=s. Let h : [0, 1]4 → R be a group fairness expressible as a constraint
h(z|S=1) = h(z|S=0). Then, the symmetrized fairness gap for the fairness h at z is ∆h(z) =
|h(z|S=1) − h(z|S=0)|, and the symmetrized ratio metric for h evaluated at z is τh(z|S=0, z|S=1) =

min
(
h(z|S=1)/h(z|S=0), h(z|S=0)/h(z|S=1)

)
.

It is easy to show that τh ∈ [0, 1]; we omit the proof of this simple fact. Furthermore, τh is symmetric
in its arguments, which removes the need to assume that either class is generally privileged. Where
clear from context, we will (with abuse of notation) also write the above as τh(z).

Example 1. Demographic parity Pr(Ŷ = 1|S = 1) = Pr(Ŷ = 1|S = 0) can be ex-
pressed as hDP(z|S=1) = hDP(z|S=0) with the function hDP(z|S=s) = Pr(Ŷ = s|S = s) =
(TPs + FPs)/(TPs + FPs + FNs + TNs).

We do not recommend NLinProg for general use—as we will see in Section 3, its performance is
generally Pareto suboptimal, in that it yields neither the most fair classifiers nor the most accurate
classifiers. However, for our experiments, NLinProg serves as a useful construct for investigating the
general behavior of post-processing methods.

3 Empirical evaluation of debiasers

Methodology. We now evaluate the performance of three representative debiasers, RW, EOd
(as described in Section 1.2), and NLP (Algorithm 1) on nine different debiasing experiments as
stated in Table 2, representing different fairness criteria, data sets and debiasing strategies. We
observe the phenomena in this section when running similar experiments using the Python toolkits
Aequitas [45] and Fairness 360 [6], and have carefully reimplemented the algorithms in our own
Julia implementation (provided in the Supplement) to verify that these effects are not the results
of undiagnosed implementation bugs. We present results from our own implementations, which
corroborate similar findings from the Python codes.

The classifier trained for each experiment is a random forest classifier estimated using the MIT-
licensed DecisionTree.jl [44] Julia package, which implements the standard classification and
regression trees (CART) [12] and random forest algorithms [11]. While hyperparameter tuning is an
important part of developing fair real-world models [46, 39], we keep all hyperparameters at the same
default values to facilitate comparison across these varied experiments, eliminating variation due to
hyperparameter choice. Our evaluation criteria are the ratio of out-of-sample fairnesses τ/τ0 for the
debiased and original classifiers, with τ as defined in Definition 2, and the ratio of out-of-sample
accuracies γ/γ0 respectively. Unlike many previous studies, we focus on the out-of-sample behavior
of the original and debiased classifiers, and estimate the generalization error by computing metrics
across 100 different train–test splits computed from ten times ten-fold cross-validation (10 CV 10).
Such extensive evaluation is necessary to reduce the error bars on the fairness metrics τ to determine
if a debiaser had a statistically meaningful treatment effect; our experiments demonstrating such
necessity are detailed in the Supplement.

Results. Figure 2 summarizes the results of our experiments. Within each subplot and point type,
each point corresponds to the exact same classifier type, debiased the exact same way, but repeated
over 100 different train–test splits arising from ten times ten-fold cross-validation (10 CV 10). The

1URL redacted for double-blind peer review.

5

Data set Protected class Fairness metric Source
A Adult income sex PP [21, 32]
B German credit marital_status EFOR [21]
C Portuguese bank marketing gender EFOR [21]
D COMPAS race EFPR [3]
E Loan Defaults sex EFOR [21]
F Student Performance sex EFNR [21]
G Communities and crime racepctblack EFPR [21]
H Framingham Heart Study male EFOR [20]
I Medical Expenditure race EFOR [6]

Table 2: List of experiments with data sets and associated fairness metrics used in our benchmarking
study of Section 3.

A B C

D E

G IH

F

EOd NLP RW

Figure 2: Plots of fairness ratios τ/τ0 (vertical axes) against accuracy ratios γ/γ0 (horizontal axes)
for the experiments of Section 3 and Table 2 using random forest classifiers, showing that none of the
reweighing (RW), equalized odds (EOd), and NLinProg (NLP) debiasers can consistently debias all
the experiments.

only variation thus comes from the specific subset of data used for model training, and the test data
for evaluation. The thick cross-hairs represent the ideal perfect fairness and accuracy, with the grey
regions representing a one standard deviation spread across the folds. The narrow cross-hairs pinpoint
the point where γ = γ0 and τ = τ0, i.e., where the debiaser had no treatment effect whatsoever.

Naïvely, we would expect that τ > τ0 and γ ≈ γ0, i.e., that the fairness should improve while the
accuracy stays roughly constant or perhaps decreases due to an implicit fairness–accuracy trade-off.
Instead, we see that for Experiments A, E, H, and I, no debiaser was able to attain the target of
maximal fairness. In fact, some experiments (like NLP in A or EOd in D) show essentially no change
in the fairness and accuracy metrics at all. More worryingly, nearly all the experiments show large
scatter in the out-of-sample fairness, with many points below the τ = τ0 line. Our results therefore
show that not only are debiasers unable to guarantee fairness out-of-sample, but even when it can do
so for a particular train–test split, the effect can disappear entirely for different test data.

Experiments A, C, G, H and I also show evidence of an fairness–accuracy trade-off: as the fairness
improves, the accuracy worsens, and the graphs generally trace out a negative slope. The satisfiability
analysis of Kim et al. [30] shows that perfect accuracy and fairness can be attained in theory for all
the experiments; however, we can understand this effect as arising from change in Bayes rate due
to the additional fairness constraint imposed [30]. Nevertheless, we also see evidence of overfitting,

6

not just in the variance of γ/γ0, but also in many points with γ > γ0, where debiasing increased the
accuracy of the classifier, but not in a robust way. Our results agree with Friedler et al. [24], who
showed that debiasing methods are prone to overfit on the training set, in that debiasing outcomes
vary depending on the details of the train/test split, albeit without an explanation for this phenomenon.
Our results are also consistent with [46], who showed that retuning hyperparameters is necessary to
improve generalizability, also we do not investigate the effect of hyperparameter tuning in our work.

In summary, 1) the large variance in fairness metrics necessitate extensive uncertainty quantification
to ascertain the treatment effect, 2) despite controlling for this variance, fairness can either improve
or worsen after debiasing, and 3) accuracy usually decreases after debiasing, sometimes severely
so. Below in Section 4, we provide a theoretical analysis of these phenomena in Theorem 1 in
terms of bias-variance trade-off. In additional experiments in Section 6 and the Supplement, we also
demonstrate the somewhat counter-intuitive result that a partial debiasing treatment can actually yield
more fair classifiers in practice, which is the case for 12 out of the 27 combinations of experiment
and debiaser.

4 Convergence of performance–fairness trade-offs

We now present a theoretical analysis of the phenomena we have observed above. To simplify
our approach, we consider the penalized (or dual) version of machine learning problems involving
fairness constraints. Our starting point is the scalarized optimization program λ`+ (1− λ)φ, with
fairness loss φ : R2 → R+

0 , for example, φ(x, y) = |x − y|. The trade-off is parameterized by λ,
interpolating linearly between considering only fairness (λ = 0) and only performance (λ = 1).

We want to know how the empirical trade-off, as measured on some test set D?, converges to the true
trade-off, as measured on the true underlying distribution (Z, S) ∼ P .
Definition 3. Let `, µ : H×Z×S → {0, 1} be indicator functions corresponding to the performance
and fairness criteria such that when the desired criteria are satisfied, E(Z,S)∼P(`(f, Z, S)) = 0, and
φ(z̃0, z̃1) = 0, where z̃s = E(Z|S=0)∼P(µ(f, Z, S)). Then, the population empirical risk LP for a
population P is

LP(f) = λE(Z,S)∼P(`(f, Z, S)) + (1− λ)φ (z̃0, z̃1) . (2)

An example of ` would be misclassification error ` = 1{Ŷ 6=Y } (the complement of accuracy,
1{Ŷ=Y }), while an example of µ would be predictive parity, µ = 1{Ŷ=1}, corresponding to the

fairness constraint Pr(Ŷ = 1|S = 1) = Pr(Ŷ = 1|S = 0), i.e., demographic parity. The fairness
loss φ is related to the symmetrized fairness gap ∆h defined in Definition 2, since we can take
φ(z|S=0, z|S=1) = |h(z|S=0)− h(z|S=1)| = ∆h(z).
Definition 4. The sample empirical risk for a data set D is

LD(f) = λl(m)(D) + (1− λ)φ (lm0
0 (D), lm1

1 (D)) , (3)

where l(m)(D) =
∑

(z,s)∈D `(f, z, s)/m is the mean empirical performance loss, l(ms)
s (D) =∑

(z,s′)∈D:s′=s µ(f, z, s)/ms is the mean empirical fairness loss for the subgroup S = s, ms =

|{(z, s′) ∈ D : s′ = s}| is the sample sizes for the group S = s, and m = m0 +m1 = |D|.
We now derive the limiting distribution of LD?(f) and show that it exhibits some form of bias–
variance decomposition.
Theorem 1. Let f : X → Y be a classification function and ` and µ be the indicator functions of
Definition 3. Assume that we have observedm iid samplesD = {(Zj , Sj) : (Zj , Sj) ∼ P}mj=1 from a
population distribution P , the variance of `(f, Z, S) is finite, the fairness penalty function φ is at least
once-differentiable, and the variance of µ(f, Z, S) is finite. Then, the sample empirical loss converges
asymptotically to the population empirical loss:

√
m [LD(f)− LP(f)] −−−−→

m→∞
N (0,Vlim(f)) ,

with limiting variance

Vlim(f) = λ2
∑

s∈S
πs(σ

`
s)

2 + λ2
∑

s 6=s′
πsπs′ (LP,s(f)− LP,s′(f))

2

+(1− λ)2
∑

s

k2
s

(σµs)2

πs
+ 2λ(1− λ)

∑

s

ks Cov(z,s′)∈Ds
(`(f, z, s), µ(f, z, s)) ,

(4)

7

where Cov is the covariance, s, s′ ∈ S, Ds = {(z, s) ∈ D : s′ = s} ⊆ D is the sub-
set of data with protected class membership S = s, πs = Pr[S = s] is the base rate of the
protected class S = s, LP,s(f) = E(z,s)∈Ds

(`(f, z, s)) is the sample expected loss ` over Ds,
(σ`s)

2 = V(z,s′)∈Ds
(`(f, z, s)) is the sample variance of the loss ` over Ds, MP,s(f) and (σµs)2 are

the analogous mean and variance for the loss µ, and (k0, k1)T = ∇φ (MP,0(f),MP,1(f)) is the
gradient of φ at the true value of the fairness function.

This result can be proved with repeated use of the central limit theorem, the delta method and
Slutsky’s lemma. The full proof is included in the Supplement.

The first three terms in the limiting variance Vlim(f) can be interpreted as 1) the intra-group variance,
2) the (statistical) bias that measures unfairness through the difference in loss for each group S, and
3) the variance stemming from the fairness penalty term. The last terms grow with (1− λ)2k2

i , which
intuitively captures how sensitivity to fairness constraints leads to increased variance. Interestingly,
these terms are also inversely proportional to the base rates πs = Pr(S = s), meaning that imbalance
in the protected class increases the variance.

5 Empirical dependence on protected class imbalance

Theorem 1 predicts that the estimation variance depends on protected class imbalance, specifically,
that the standard deviation of the estimated classifier σ(f̂) ∼ 1/Pr(S = 1) as Pr(S = 1) goes to
zero. We should therefore expect a similar behavior for the fairness metric σ(τ) ∼ 1/Pr(S = 1)
computed for the estimated classifer. We now confirm this dependency on a simple synthetic data
generating process that allows us to vary the base rates in both outcome class Pr(Y) and protected
class Pr(S). The details of the synthetic data and experimental setup are given in the Supplement.
We use 10 times repeated 10-fold cross-validation on 20,000 data points and report the standard
deviation of τEFPR across the replications.

Pr(S=1)

=

Figure 3: Standard deviations for τEFPR estimated
via 10-fold CV across different fractions for pro-
tected class and positive class. Larger imbalances
correspond to higher variance in the estimation of
the fairness metric.

Figure 3 shows how the standard deviation
of the fairness metric changes with the base
rate Pr(S = 1) for three different values of
Pr(Y = 1). Each curve has the same qualitative
shape consistent with an inverse dependence on
Pr(S = 1). Our results support the theoretical
analysis above that the variance in debiasing is
strongly affected by class imbalances, both with
respect to the class imbalance and the fraction of
data points in the two protected attribute groups.

6 Partial debiasing

Theorem 1 implies that when considering the
trade-off between performance and fairness, it
is possible to construct a variance-minimizing
debiaser that does not perfectly debias a model,
but has better generalization properties. Mini-
mizing the limiting variance (4) with respect to
λ will in general not yield a full debiaser λ = 1,
but rather some intermediate debiasing strength.
This observation motivates our introduction of
the notion of partial debiasing in this section.
We will now describe two specific examples of
partial debiasing.

Partial reweighing. The reweighing pre-processor of Section 1.2 can be easily generalized to yield
a partial debiaser, simply by interpolating between the weight 1 (for λ = 0) and the weight wh,i for
the fairness constraint h in Definition 2 (for λ = 1). The simplest such partial reweighing scheme is
to simply perform linear interpolation, wi = (1− λ)1 + λwh,i, although more exotic interpolation
method could also be used.

8

Partial post-processing. Similarly, for post-processing methods like equalized odds (Section 1.2)
and NLinProg (Section 2.2), we can define a partial debiasing scheme simply by interpolating the flip-
ping probabilities Pr(Ŷ ′|Ŷ =y, S=s) between 0 and their original values defined previously. Again
for linear interpolation, this corresponds to replacing the flipping probabilities by λPr(Ŷ ′|Ŷ , S).

As we show below, we find some surprising and nontrivial behaviors of this simple partial reweighing
scheme, including the result that partial debiasing is in general preferable to full debiasing (λ = 1) to
produce a low-variance debiased classifier.

6.1 Empirical evaluation of partial debiasing

Figure 4: Accuracy–fairness plot
of debiased models derived from
a logistic regressor trained for the
Adult income data set and debiased
for PP fairness, showing paramet-
ric trajectories for increasing the de-
biasing strength λ from 0 to 1 the
partial debiasers of Section 6.

We finish with another follow-up experiment, reporting out-of-
bag metrics after 10-fold cross-validation and train an initial
logistic regression model. We then debias this same model
multiple times with respect to predictive parity (PP) fairness
using three different partial debiasers (Section 6): partial equal-
ized odds post-processing (EOd), partial reweighing (RW), and
partial NLinProg (NLP) for accuracy and PP fairness. Fig-
ure 4 shows three different trajectories from parametrically
increasing the debiasing strength from λ = 0 (no debiasing) to
λ = 1 (full debiasing), starting from the initial model (λ = 0)
at coordinates (γ/γ0, τ/τ0) = (1, 1), again aggregated across
10CV10 folds.

As in our earlier experiments in Section 3, we see that the
behavior of the different debiasers are markedly different. As
before, it should be possible in theory to improve a classifier’s
fairness τ without compromising accuracy γ in this experiment.
On the contrary, we observe that reweighing barely changes the
metrics of the model, whereas EOd steadily leads to worsened
PP unfairness and worse accuracy. The worsened fairness is to
be expected, however, since we are debiasing with respect to
a different metric that we are measuring. In contrast, debiasing
and measuring the same metric of fairness in NLinProg leads
to improved fairness τ , but at the expense of worsened accuracy γ. In this example, none of the
debiased models come close to perfect fairness with metric 1/τ0 = 1.842, implying that the training
data and model family simply do not admit a perfectly fair classifier.

7 Conclusions and outlook

We have presented detailed empirical studies throughout the paper (especially Section 3) showing that
classifiers treated with debiasing methods generally suffer from worse out-of-sample generalization
behavior, so much so that the out-of-sample fairness can worsen relative to the original classifier. We
need many test–train–validate splits to make a statistically significant determination of the treatment
effect. As shown in the Supplement, the uncertainty in the fairness metric appears to be usually
an order of magnitude larger than that for accuracy, which could reflect rare protected classes in
Definition 2. We showed in Theorem 1 that this increased variance can be explained by bias–variance
trade-off. To remove the statistical bias in the classifier that corresponds to discriminatory bias, we
have to impose a fairness constraint, but satisfying that constraint increases the uncertainty of where
the best decision boundary can be drawn, especially when the baseline model is already carefully
estimated with attention paid to out-of-sample generalization error. Furthermore, we confirmed
empirically in Section 5 that the estimation variance (4) is particularly severe when any of the
protected classes is rare, i.e., when the base rate Pr(S) approaches zero. In practice, full debiasing is
also not desirable if the performance of the debiased classifier degrades too much. We showed in
Section 6 that the fine-grained control afforded by partial debiasing allows us to learn new classifiers
that have desirable out-of-sample fairness properties.

The empirical results, while mostly negative, have motivated the theoretical analysis of Theorem 1,
which gives us detailed insight into the origins of the large variance in classifiers. In particular, (4)
states that the variance varies dramatically with protected class imbalance, which to our knowledge is

9

a new result. Furthermore, (4) suggests that that partial debiasing can let us find a variance minimizing
estimator that, while not applying the full debiasing treatment, can yield better fairness properties
that generalize in practice. Since it is in general difficult to vary this trade-off parameter λ explicitly
to find this estimator, finding practical ways to compute this minimal variance estimator seems like a
promising research direction that could improve the practical utility of debiasing methods. Conversely,
our results also show that fundamental limits exist to the ability to debias arbitrary models in a purely
black box manner. Identifying underlying causal connections linking protected classes to features
[54] may therefore be a more promising direction for successful mitigation of bias.

Our results signal caution to avoid the risk of fairwashing [1, 2], in the sense of believing that one is
using a fair model resulting from some debiasing treatment, when in fact the model is overfit and
does not generalize well out-of-sample [24]. Rather than blindly trusting that a debiased classifier
is now fair, our results demonstrate that debiasing treatments need to be carefully tested in order to
verify that the desired fairness properties hold in practice.

Acknowledgements

This work has been funded by the German Federal Ministry of Education and Research (BMBF)
under Grant No. 01IS18036A. The authors of this work take full responsibilities for its content. We
also thank our generous funding agencies IQVIA, UNIVERSITY of Auckland, Turing and tools
practices, and Microsoft.

Disclaimer This paper was prepared for informational purposes in part by the Artificial Intelligence
Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the
Research Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

References
[1] U. Aïvodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp. Fairwashing: the

risk of rationalization. In Proceedings of the 36th International Conference on Machine
Learning, pages 161—-170, 2019. URL http://arxiv.org/abs/1901.09749http://
proceedings.mlr.press/v97/aivodji19a.

[2] C. J. Anders, P. Pasliev, A.-K. Dombrowski, K.-R. Müller, and P. Kessel. Fairwashing expla-
nations with off-manifold detergent. In Proceedings of the 37th International Conference on
Machine Learning, pages 314–323, 2020. URL http://arxiv.org/abs/2007.09969https:
//proceedings.mlr.press/v119/anders20a.

[3] J. Angwin, J. Larson, S. Mattu, and L. Kichner. Machine bias, May 2016.
URL https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing.

[4] C. Barabas, C. Doyle, J. Rubinovitz, and K. Dinakar. Studying up: Reorienting the study of
algorithmic fairness around issues of power. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, FAT* ’20, page 167–176, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450369367. doi: 10.1145/3351095.3372859.
URL https://doi.org/10.1145/3351095.3372859.

[5] S. Barocas and A. Selbst. Big data’s disparate impact. California Law Review, 104(1):671–729,
2016. doi: 10.15779/Z38BG31.

[6] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino,
S. Mehta, A. Mojsilović, S. Nagar, K. N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri,
M. Singh, K. R. Varshney, and Y. Zhang. AI Fairness 360: An extensible toolkit for detecting
and mitigating algorithmic bias. IBM Journal of Research and Development, 63(4/5):4:1–15,
2019.

10

[7] R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. Fairness in criminal justice risk
assessments: The state of the art. Sociological Methods & Research, Aug. 2018. doi: 10.1177/
0049124118782533.

[8] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. SIAM Review, 59(1):65–98, 2017. doi: 10.1137/141000671.

[9] S. Bird, M. Dudík, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki, H. Wal-
lach, and K. Walker. Fairlearn: A toolkit for assessing and improving fairness in
AI. Technical Report MSR-TR-2020-32, Microsoft Research, Sept. 2020. URL
https://www.microsoft.com/en-us/research/publication/fairlearn-a-
toolkit-for-assessing-and-improving-fairness-in-ai/.

[10] S. Biswas and H. Rajan. Do the Machine Learning Models on a Crowd Sourced Platform Exhibit
Bias? An Empirical Study on Model Fairness, pages 642–653. Association for Computing
Machinery, New York, NY, USA, 2020. doi: 10.1145/3368089.3409704.

[11] L. Breiman. Random forests. Machine Learning, pages 5–32, 2001. doi: 10.1023/A:
1010933404324.

[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Chapman & Hall/CRC, Boca Raton, FL, 1993.

[13] J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. Proceedings of Machine Learning Research, 81:77–91, 2018. URL
http://proceedings.mlr.press/v81/buolamwini18a.html.

[14] T. Calders and S. Verwer. Three naive bayes approaches for discrimination-free classification.
Data Mining and Knowledge Discovery, 21(2):277–292, 2010. doi: 10.1007/s10618-010-0190-
x.

[15] J. Chen. Fair lending needs explainable models for responsible recommendation. In Proceedings
of the 2nd FATREC Workshop on Responsible Recommendation, Sept. 2018.

[16] J. Chen, N. Kallus, X. Mao, G. Svacha, and M. Udell. Fairness under unawareness: As-
sessing disparity when protected class is unobserved. In FAT* 2019 - Proceedings of the
2019 Conference on Fairness, Accountability, and Transparency, pages 339–348, 2019. doi:
10.1145/3287560.3287594.

[17] A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big Data, 5(2):153–163, June 2017. doi: 10.1089/big.2016.0047.

[18] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic decision making
and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page 797–806, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098095.
URL https://doi.org/10.1145/3097983.3098095.

[19] A. Cotter, M. Gupta, H. Jiang, N. Srebro, K. Sridharan, S. Wang, B. Woodworth, and S. You.
Training Well-Generalizing classifiers for fairness metrics and other Data-Dependent constraints.
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 1397–
1405. PMLR, 2019.

[20] L. Cupples, Q. Yang, S. Demissie, D. L. Copenhafer, and D. Levy. Description of the framing-
ham heart study data for genetic analysis workshop 13. BMC genetics, 4 Suppl 1:S2, 02 2003.
doi: 10.1186/1471-2156-4-S1-S2.

[21] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://
archive.ics.uci.edu/ml.

[22] I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical optimiza-
tion. SIAM Review, 59(2):295–320, 2017. doi: 10.1137/15M1020575.

[23] A. Freeman. Racism in the credit card industry. North Carolina Law Review, 95(4):1071 –
1160, 2017. URL https://ssrn.com/abstract=2976471.

[24] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamilton, and
D. Roth. A comparative study of fairness-enhancing interventions in machine learning. In
Proceedings of the Conference on Fairness, Accountability, and Transparency - FAT* ’19, pages
329–338, New York, New York, USA, 2019. ACM Press. doi: 10.1145/3287560.3287589.

11

[25] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning.
Advances in Neural Information Processing Systems, 29:3323–3331, Dec. 2016. doi:
10.5555/3157382.3157469. URL https://papers.nips.cc/paper/6374-equality-of-
opportunity-in-supervised-learning.

[26] Information Commissioner’s Office. Guidance on the ai auditing framework: Draft guidance for
consultation (v1.0). Technical report, Information Commissioner’s Office, Wilmslow, UK, Feb.
2020. URL https://ico.org.uk/media/about-the-ico/consultations/2617219/
guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf.

[27] N. Kallus, X. Mao, and A. Zhou. Assessing algorithmic fairness with unobserved pro-
tected class using data combination. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, page 110, New York, NY, USA, Jan. 2020. ACM. doi:
10.1145/3351095.3373154.

[28] F. Kamiran and T. Calders. Data preprocessing techniques for classification without discrimina-
tion. Knowledge and Information Systems, 33(1):1–33, 2012.

[29] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice
remover regularizer. Lecture Notes in Artificial Intelligence, 7524(PART 2):35–50, 2012. doi:
10.1007/978-3-642-33486-3_3.

[30] J. S. Kim, J. Chen, and A. Talwalkar. Model-agnostic characterization of fairness trade-offs. In
Proceedings of the International Conference on Machine Learning, volume 37, pages 9339–
9349, 2020.

[31] J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination of
risk scores. In C. H. Papadimitriou, editor, Proceedings of the 8th Innovations in Theoretical
Computer Science Conference, volume 67 of Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ITCS.2017.43.

[32] R. Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In
Proceedings of the 2nd. International Conference on Knowledge Discovery and Data Mining,
pages 202–207, Portland, Oregon, 1996. American Association for Artificial Intelligence.

[33] E. Kurshan, H. Shen, and J. Chen. Towards self-regulating AI: Challenges and opportunities
of AI model governance in financial services. In Proceedings of the 1st ACM International
Conference on AI in Finance, New York, NY, USA, 2020. ACM.

[34] L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt. Delayed impact of fair machine
learning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pages 6196–6200. AAAI Press, 2019.

[35] D. Mandal, S. Deng, S. Jana, J. Wing, and D. J. Hsu. Ensuring fairness beyond the train-
ing data. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 18445–18456. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d6539d3b57159babf6a72e106beb45bd-Paper.pdf.

[36] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and
fairness in machine learning, 2019.

[37] S. Mohamed, M.-T. Png, and W. Isaac. Decolonial ai: Decolonial theory as sociotechnical
foresight in artificial intelligence. Philosophy & Technology, 405, 2020. doi: 10.1007/s13347-
020-00405-8.

[38] A. Narayanan. Translation tutorial: 21 fairness definitions and their politics. In Proceedings of
the Conference on Fairness, Accountability and Transparency, FAT* 18, New York, USA, 2018.

[39] V. Perrone, M. Donini, M. B. Zafar, R. Schmucker, K. Kenthapadi, and C. Archambeau. Fair
Bayesian Optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, Ethics
and Society, pages 1–15, jun 2020. URL http://arxiv.org/abs/2006.05109.

[40] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger. On fairness and calibration.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30, pages 5680–5689.
Curran Associates, Red Hook, NY, 2017. URL https://papers.nips.cc/paper/7151-on-
fairness-and-calibration.

12

[41] R. Richardson, J. M. Schultz, and K. Crawford. Dirty data, bad predictions: How civil rights
violations impact police data, predictive policing systems, and justice. New York University Law
Review, 94(2):192–233, 2019. URL https://www.nyulawreview.org/online-features/
dirty-data-bad-predictions-how-civil-rights-violations-impact-police-
data-predictive-policing-systems-and-justice/.

[42] K. T. Rodolfa, H. Lamba, and R. Ghani. Machine learning for public policy: Do we need to
sacrifice accuracy to make models fair? arXiv preprint arXiv:2012.02972, 2020.

[43] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019. doi:
10.1038/s42256-019-0048-x.

[44] B. Sadeghi. DecisionTree.jl, v0.10.10, Sept. 2020. URL https://github.com/
bensadeghi/DecisionTree.jl.

[45] P. Saleiro, B. Kuester, A. Stevens, A. Anisfeld, L. Hinkson, J. London, and R. Ghani. Aequitas:
A bias and fairness audit toolkit, 2018. URL https://arxiv.org/abs/1811.05577.

[46] S. Schelter, Y. He, J. Khilnani, and J. Stoyanovich. FairPrep: Promoting Data to a First-
Class Citizen in Studies on Fairness-Enhancing Interventions. In Proceedings of the 23nd
International Conference on Extending Database Technology, page 4, nov 2019. URL http:
//arxiv.org/abs/1911.12587.

[47] M. Sun and P. Yildaz. Understand ML model predictions and biases with Amazon SageMaker
Clarify. In AWS re:Invent, 2020. URL https://aws.amazon.com/sagemaker/clarify.

[48] The Comptroller of the Currency, The Federal Reserve System, The Federal Deposit Insurance
Corporation, The Consumer Financial Protection Bureau, and The National Credit Union
Administration. Request for information and comment on financial institutions’ use of artificial
intelligence, including machine learning. Federal Register, pages 16837–16842, mar 2021.

[49] E. J. Topol. High-performance medicine: the convergence of human and artificial intelligence.
Nature Medicine, 25(1):44–56, 2019. doi: 10.1038/s41591-018-0300-7.

[50] M. Turner and M. McBurnett. Predictive models with explanatory concepts: a general frame-
work for explaining machine learning credit risk models that simultaneously increases predictive
power. In Proceedings of the 15th Credit Scoring and Credit Control Conference, 2019. URL
https://crc.business-school.ed.ac.uk/wp-content/uploads/sites/55/2019/07/
C12-Predictive-Models-with-Explanatory-Concepts-McBurnett.pdf.

[51] S. Verma and J. Rubin. Fairness definitions explained. In Proceedings of the International
Conference on Software Engineering, pages 1–7, New York, NY, USA, 2018. ACM. doi:
10.1145/3194770.3194776.

[52] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
2006. doi: 10.1007/s10107-004-0559-y.

[53] A. Xiang and I. D. Raji. On the legal compatibility of fairness definitions. In Workshop on
Human-Centric Machine Learning at the 33rd Conference on Neural Information Processing
Systems, 2019.

[54] J. Zhang and E. Bareinboim. Fairness in decision-making: the causal explanation formula. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18), volume 32, pages
2037–2045, 2018. URL https://ojs.aaai.org/index.php/AAAI/article/view/11564.

13

260 5. Contributions - Fairness

5.2 Multi-objective counterfactual fairness
Contributed Article:
S. Dandl, F. Pfisterer, and B. Bischl. Multi-objective counterfactual fairness. In GECCO
’22: Proceedings of the Genetic and Evolutionary Computation Conference Companion,
page 328–331, Boston, United States of America, 2022. ACM

Declaration of contributions SD and FP contributed equally. The initial idea for
the project initiated with FP based on previous work by SD [67]. FP wrote the initial
manuscript together with SD and feedback by BB. FP and SD furthermore jointly im-
plemented the proposed method and devised and executed the experiments. FP and SD
jointly improved and revised the manuscript. BB provided guidance and feedback through-
out the process.

©ACM 2022. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in 2022 Genetic
and Evolutionary Computation Conference Companion, http://dx.doi.org/10.1145/
520304.3528779.

http://dx.doi.org/10.1145/520304.3528779
http://dx.doi.org/10.1145/520304.3528779

Multi-Objective Counterfactual Fairness
Susanne Dandl∗

LMU Munich
Munich, Germany

Florian Pfisterer∗
LMU Munich

Munich, Germany

Bernd Bischl
LMU Munich

Munich, Germany

ABSTRACT
When machine learning is used to automate judgments, e.g. in ar-
eas like lending or crime prediction, incorrect decisions can lead
to adverse effects for affected individuals. This occurs, e.g., if the
data used to train these models is based on prior decisions that are
unfairly skewed against specific subpopulations. If models should
automate decision-making, they must account for these biases to
prevent perpetuating or creating discriminatory practices. Counter-
factual fairness audits models with respect to a notion of fairness
that asks for equal outcomes between a decision made in the real
world and a counterfactual world where the individual subject to a
decision comes from a different protected demographic group. In
this work, we propose a method to conduct such audits without
access to the underlying causal structure of the data generating
process by framing it as a multi-objective optimization task that
can be efficiently solved using a genetic algorithm.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; •Mathematics of computing;

KEYWORDS
machine learning, fairness, counterfactuals, multi-objective
ACM Reference Format:
Susanne Dandl, Florian Pfisterer, and Bernd Bischl. 2022. Multi-Objective
Counterfactual Fairness. In Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3520304.3528779

1 INTRODUCTION
Machine learning (ML) is increasingly used to automate judgments
in areas like lending, hiring, or predictive policing. Decisions made
by such systems cannot only lead to adverse effects for affected
individuals, but also shape future data that are collected (or not
collected) [1], e.g., by not collecting data on individuals denied a
loan. Such adverse effects are ethically or legally problematic when
they disproportionately affect protected subgroups, e.g., based on
race, gender, or sexual orientation. Several reasons lead to unfair
predictions, such as a lack of representative data or differences in
data quality between subgroups. We focus on a scenario where the
labels used to train machine learning models are biased on prior
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528779

decisions which are unfairly skewed against a specific subpopula-
tion. If such biases exist in the data, models must take them into
account in order to prevent such injustices.

Several contributions have addressed this topic and have argued
that a causal perspective is required to address the problem [9, 16].
This has resulted in a variety of (causal) fairness notions [15, 16, 23]
that can be used to audit fairness algorithms. Counterfactuals [20]
provide a causal, interpretable perspective to answer what-if ques-
tions about alternative (counterfactual) worlds. From a perspective
of fairness, this allows us to answer questions such as:Would the
model’s prediction change if the person had been male instead of
female? This requires access to the underlying (causal) mechanism
generating the data, e.g., in the form of a directed acyclic graph (DAG,
c.f. [20]), which are often ambiguous, especially in the context of
high dimensional data.

Introductory Example In order to provide some intuition, we
use the law school example from [16]. The directed acyclic graph for
the postulated data generating process is shown in Figure 1a. Sex,
race as well as a latent variable knowledge (K) influence the result
in the law school admission test (LSAT), GPA and the first-year
average grade (FYA). Instantiating a counterfactual instance x★

with, e.g., a changed variable Sex requires adapting the dependent
variables LSAT, GPA and FYA. A ML model is now used to predict
FYA from all other observed variables (Figure 1b). A fair model
should now predict the same FYA regardless for x and x★.

𝑆𝑒𝑥

𝑅𝑎𝑐𝑒

𝐿𝑆𝐴𝑇

𝐺𝑃𝐴

𝐹𝑌𝐴

𝐾

(a) DAG

𝑆𝑒𝑥

𝑅𝑎𝑐𝑒

𝐿𝑆𝐴𝑇

𝐺𝑃𝐴

ˆ𝐹𝑌𝐴

(b) Observational perspective

Figure 1: Law school example from [16].

Contributions: We propose a method to audit predictive mod-
els with respect to a fairness notion that relies on counterfactuals.
Counterfactuals are found as solutions to a multi-objective opti-
mization procedure, inspired by [7]. We argue that we can find
realistic counterfactual examples by carefully crafting the objec-
tives used for optimization. Due to the flexibility of the evolutionary
algorithm used to tackle the resulting optimization problem, we can
furthermore incorporate additional constraints in the optimization
problem, allowing to attain more realistic and actionable counter-
factuals. Unlike other methods, the multi-objective nature of our
optimization problem allows us to return a Pareto-optimal set of
diverse counterfactuals that can be used to assess fairness. Our

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Dandl and Pfisterer et al.

x
𝑓

ŷ★

x★

(a) Counterfactual Explanations

x

𝑎

x★

𝑓

ŷ★

(b) Counterfactual Fairness

Figure 2: Generating counterfactuals x★ as explanations (CFE)
(left) and for fairness (CFF) (right) for an observations x and
predictor 𝑓 . The role of counterfactual prediction 𝑦★ differs
in both cases: While𝑦★ is incorporated into the generation of
counterfactuals for CFEs, in CFF, the counterfactuals are first
generated by striving for a different protected class 𝑎, and
subsequently their counterfactual predictions are compared.

method does not require access to the underlying causal DAG and
can therefore be used when such information is not available.

2 RELATEDWORK
Fairness broadly asks that there is no disproportionate treatment
between individuals depending on protected groups such as race,
gender, or sexual orientation. A large body of work has previously
studied differing notions of fairness [1, 18], often based on subgroup
statistics in observational data [2, 4, 6, 13], while other notions of
fairness argue to treat similar persons similarly [11] or argue for
taking a causal perspective into account [5, 15, 16]. We follow
the line of argumentation proposed in [16], which argues that the
distribution over predictions should remain unchanged between
the observed universe and a counterfactual universe in which an
individual has different protected attributes. While [16] propose an
algorithm that implements this definition, it requires access to the
underlying DAG. One line of work implements notions similar to
ours that do not require access, such as FlipTest [3], which uses a
generative model approximating an optimal transport mapping to
generate counterfactuals.

The notion of counterfactuals has been similarly used to improve
model interpretability, answering which change in inputs would
lead to a different model prediction [22]. These methods can gener-
ate potentially unrealistic out-of-distribution samples, which can
jeopardize derived conclusions. For this reason, methods were pro-
posed [7, 21] which focus on generating plausible counterfactuals.
This is especially important in the context of algorithmic recourse.
Karimi et al. [14] argue that explanations should be actionable but
also realistic in the sense that they take into account the (causal)
structure of the world from which they are obtained. This scenario
differs from counterfactual fairness, since it aims at counterfactuals
that lead to different model predictions. In contrast, counterfac-
tual fairness notions observe the amount of change in a prediction
from an instance to its counterfactual example. This difference is
visualized in Figure 2.

Our method is heavily inspired by the MOC method described in
[7], which was proposed in the context of finding multiple counter-
factual explanations. In contrast, our method is used to find realistic
counterfactual examples that allow auditing ML models with re-
spect to counterfactual fairness for individual observations; when

applied to multiple observations, we could also obtain a global as-
sessment. We similarly formulate a multi-objective optimization
problem that can be efficiently solved using evolutionary algorithms.
In order for our counterfactuals to be realistic and actionable, we
carefully craft objectives and mutation operators used in the search.

3 METHODOLOGY
Let 𝑓 (x) : X ↦→ R denote a model fitted to approximate the re-
lationship between features x and a target variable of interest y,
which are i.i.d. samples from a data generating distribution P𝑥𝑦 .
We assume that our data contain feature(s)𝐴 defining the protected
class and define 𝑍 ≡ 𝑋 \ 𝐴 as the set of all other observable fea-
tures. For a data point x, we define a counterfactual observation as
x★ with prediction 𝑦★ := 𝑓 (x★). Counterfactuals that arise from
intervention 𝐴 ← 𝑎 could equivalently be denoted as x𝐴←𝑎 [20].
For ease of exposition, we restrict ourselves to classification models
that predict probabilities throughout the manuscript. Extensions to
regression models are straightforward once prediction thresholds
are specified.

3.1 Counterfactual Fairness
We first restate the definition of counterfactual fairness from [16].
It assumes a causal model (𝑈 ,𝑋, 𝐹), with𝑈 as a set of latent back-
ground variables not caused by any observed variables 𝑋 , and 𝐹
as a set of causal equations. 𝑌 denotes a predictor that contrary to
𝑓 depends on 𝑋 and 𝑈 . The resulting 𝑌 for intervention 𝐴← 𝑎 is
denoted as 𝑌𝐴←𝑎 (𝑈).

Definition 1 (Counterfactual fairness [16]). Predictor 𝑌 is
counterfactually fair if under arbitrary context 𝑍 = z and 𝐴 = 𝑎,

𝑃 (𝑌𝐴←𝑎 (𝑈) = 𝑦 | 𝑍 = z, 𝐴 = 𝑎) = 𝑃 (𝑌𝐴←𝑎′ (𝑈) = 𝑦 | 𝑍 = z, 𝐴 = 𝑎),
for all 𝑦 and for any value 𝑎′ attainable by 𝐴.

This suggests that changing 𝐴 while keeping features that are
not causally reliant on 𝐴 constant has no effect on the distribution
of 𝑌 . The computation of 𝑈 and 𝑌𝐴←𝑎 is complex and requires
access to the underlying DAG. We therefore state a similar criterion
below that is practically applicable without access to the DAG. Note
that the counterfactual instance is not necessarily deterministic,
and the desired counterfactual can stem from a distribution of
counterfactual instances.

3.2 A Practical Instantiation
In practical scenarios without access to the DAG, there is little
chance to recover 𝑈 . More realistically, our model uses x to pre-
dict the outcome of interest. Instead, we can therefore ask that the
equality in Definition 1 holds between a data point x and its coun-
terfactual x★. We now state a version of counterfactual fairness
that can be practically applied to observational data:

Definition 2 (Counterfactual fairness in practice). Pre-
dictor 𝑌 is counterfactually fair if under any context 𝑍 = z and
𝐴 = 𝑎,

𝑃 (𝑓 (x𝐴←𝑎) = 𝑦 |𝑍 = z, 𝐴 = 𝑎) = 𝑃 (𝑓 (x𝐴←𝑎′) = 𝑦 |𝑍 = z, 𝐴 = 𝑎)
for all 𝑦 and for any value 𝑎′ attainable by 𝐴.

Multi-Objective Counterfactual Fairness GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

3.3 Generating Counterfactuals
The remaining task is now to generate counterfactuals x★ := x𝐴←𝑎′
which should fulfill the following requirements: (1) the counter-
factual should be valid, such that it has high likelihood w.r.t. the
distribution of the desired protected class 𝑃𝑋𝐴=𝑎′ ; (2) the counterfac-
tual should be close to the original observation; (3) the counterfac-
tual should be plausible such that it lies in a high-density region
w.r.t. the full dataset. Similar to [7], we translate our customized
requirements into the following optimization problem:

min
x★

o(x★) := min
x

(
𝑜𝑣𝑎𝑙𝑖𝑑 (x★), 𝑜𝑐𝑙𝑜𝑠𝑒 (x★, x), 𝑜𝑝𝑙𝑎𝑢𝑠 (x★,X𝑜𝑏𝑠)

)
with o : X → R3 and X𝑜𝑏𝑠 being the observed data.

The first objective 𝑜𝑣𝑎𝑙𝑖𝑑 quantifies whether x★ truly stems from
the desired protected group 𝑎′. We operationalize it for minimiza-
tion using an additional predictor𝑔 that is trained to predict whether
a datapoint x★ does not belong to the protected group 𝑎′.

𝑜𝑣𝑎𝑙𝑖𝑑 (x★) = 𝑔(x★)
The second and third objectives 𝑜𝑐𝑙𝑜𝑠𝑒 and 𝑜𝑝𝑙𝑎𝑢𝑠 are similar to

the ones proposed by [7]. 𝑜𝑐𝑙𝑜𝑠𝑒 quantifies the distance between
the counterfactual x★ and the original datapoint x using an aug-
mentation of the Gower distance (see c.f. [7]).

The third objective𝑜𝑝𝑙𝑎𝑢𝑠 quantifies theweighted average Gower
distance between x★ and the 𝑘 nearest observed data points x[1] , ...,
x[𝑘] ∈ X𝑜𝑏𝑠 as an empirical approximation of how likely x★ origi-
nates from the distribution of X:

𝑜𝑝𝑙𝑎𝑢𝑠 (x★,X𝑜𝑏𝑠) =
𝑘∑︁
𝑖=1

𝑤 [𝑖] 1
𝑝

𝑝∑︁
𝑗=1

𝛿𝐺 (𝑥★𝑗 , 𝑥 [𝑖]𝑗) ∈ [0, 1]

where
∑𝑘
𝑖=1𝑤

[𝑖] = 1. We optimize counterfactuals using an NSGA-
II [8] variant adapted to the scenario of generating counterfactual
instances proposed by [7], including their described modifications.
The algorithm uses nature-inspired methods such as selection, mu-
tation and recombination to steer a randomly initialized population
towards the optimal solution (see Appendix A for details). This
yields a set of Pareto-optimal counterfactuals that can be subse-
quently used to evaluate algorithms with respect to our practical
notion of counterfactual fairness. The Pareto set can be interpreted
as a distribution over counterfactuals (as defined by the objectives),
reflecting the fact that real counterfactuals can be stochastic due to
stochasticity in the data generating process as well as uncertainty
in the estimation of required quantities.

Since we seek counterfactuals with a high likelihood of coming
from the distribution of the desired protected class 𝑃𝑋𝐴=𝑎′ , we base
the fairness notions of Section 4 on samples with high values of
𝑜𝑣𝑎𝑙𝑖𝑑 letting the user define a lower threshold for 𝑜𝑣𝑎𝑙𝑖𝑑 . We as-
sume that this Pareto-optimal and valid subset approximates the
distribution over counterfactuals for a single data point x.

Actionable Counterfactuals. By defining additional customized
operators or objectives (e.g., sparsity constraints), our method can
be further adapted to more closely reflect the real-world data gen-
erating processes. This includes carefully designed mutation oper-
ators that constrain the allowable changes to features: values for
non-actionable features (e.g., age) could be frozen, or monotonicity
constraints could be considered such that an increase in one feature

leads to an increase or decrease in another feature [19]. Further-
more, we can accelerate the convergence to the Pareto front by
initializing the first population of the NSGA-II with observations
from X𝑜𝑏𝑠 with 𝐴 = 𝑎′. These observations per definition should
have low values both for 𝑜𝑣𝑎𝑙𝑖𝑑 and 𝑜𝑝𝑙𝑎𝑢𝑠 .

3.4 Evaluating for Counterfactual Fairness
A counterfactual generation procedure 𝑔𝑒𝑛 : X → X★ (such as the
one proposed above) turns an instance x into a set of counterfactual
instances X★. We now define fairness criteria based on generated
counterfactuals:

Definition 3 (Instance-wise counterfactual unfairness).
For a single individual x and a set of corresponding generated coun-
terfactuals X★, we define unfairness as:

icuf(x) = |Ex★∼gen(x) [𝑓 (x) − 𝑓 (x★)] |.
Computing the norm reflects the fact, that our notion does not

differentiate between the direction of the unfairness (e.g., if 𝑓 favors
or disadvantages the individual).

Definition 4 (Global counterfactual unfairness). For a
distribution over datapoints X and a set of sets of corresponding
generated counterfactualsX★, we define a global notion of unfairness:

gcuf(X) = Ex∼X [icuf(x)] .
Taking the expectation simultaneously reduces variance in the

estimation and results in more robust estimates. Note that 𝑓 for our
purposes can be a predicted probability. By thresholding predictions,
we can simultaneously obtain FlipSets – the set of points for which
the classification switches between the original instance and the
counterfactual – and subsequently create transparency reports [3].

4 EMPIRICAL EVALUATION
Our goal is to create realistic counterfactuals. We therefore use the
data generating process (DGP) of the law school dataset from [16] to
generate data and true counterfactuals x′, while we present results
for another dataset in the supplementary material. We describe
experimental details in Appendix B.
RQ1: Does our method generate realistic counterfactuals?
We present a visual comparison using t-SNE embeddings in Fig-
ure 3. Generated counterfactuals are found in high-density regions
of the data and close to instances of the desired class. The true
counterfactual is surrounded by generated counterfactuals. The
average minimum Gower distance between x★ and x′ is 0.069. We
further quantify this in Table 1 by comparing our counterfactuals
x★ to two simple baselines: 𝑥𝑛𝑛 , the nearest neighbor of 𝑥 with
desired protected attribute 𝑎′ and 𝑥𝑟𝑛𝑑 , a random observation. Dis-
tances between generated counterfactuals are typically lower than
random points, while distances between an instance and the true
counterfactual are comparatively high.
RQ2: How does fairness reported by our method compare to
simple baselines?
To investigate the faithfulness of our method and several baselines,
we calculate their𝑔𝑢𝑐 𝑓 to the one of true counterfactuals. Individual
values as well as further experiments are reported in the supple-
mentary material. Table 2 reports 𝑔𝑐𝑢𝑓 across several baselines and

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Dandl and Pfisterer et al.

data gen_cf true_cf x Amerindian

Asian

Black

Hispanic

Mexican

Other

Puertorican

White

Figure 3: t-SNE plot for an instance of the law school DGP.

Table 1: Average Gower distances between 𝑥 (original in-
stance), 𝑥★ (generated counterfactual), 𝑥 ′ (true counterfac-
tual) and 𝑥𝑟𝑛𝑑 (random point) and 𝑥𝑛𝑛 (nearest neighbor).

𝑑 (𝑥, 𝑥 ′) 𝑑 (𝑥, 𝑥★) 𝑑 (𝑥, 𝑥𝑟𝑛𝑑) 𝑑 (𝑥, 𝑥𝑛𝑛)
0.16 0.07 0.192 0.008

Table 2: Mean gcuf measured using true counterfactuals and
different generation methods: The proposed method (ours)
and two baselines: 𝑓 𝑙𝑖𝑝, flipping the protected attribute𝐴 = 𝑎′
in X, and 𝑛𝑛, the nearest neighbors with 𝐴 = 𝑎′.

𝑔𝑐𝑢𝑓 𝑡𝑟𝑢𝑒 𝑔𝑐𝑢𝑓𝑜𝑢𝑟𝑠 𝑔𝑐𝑢𝑓 𝑓 𝑙𝑖𝑝 𝑔𝑐𝑢𝑓𝑛𝑛
0.277 ± .003 0.278 ± .003 0.265 ± .004 0.318 ± .004

𝑔𝑐𝑢𝑓 obtained using true counterfactuals. Reported values using x★
are considerably closer to values estimated for true counterfactuals.

5 OUTLOOK
This manuscript proposes and evaluates a method for evaluating
predictive models with respect to a counterfactual notion of individ-
ual and global fairness. Our method does not require access to the
DAG generating the data, accounts for stochasticity by returning
a Pareto-optimal set of counterfactuals, and is flexible enough for
adoption to the needs of individual use cases. It is important to note
that the validity of fairness auditing as proposed in our method
heavily relies on the validity of generated counterfactuals, which is
discussed in detail in Appendix C. In future work, we would like
to improve the procedure used to find counterfactuals for a set of
instances. The current procedure requires an inefficient loop across
𝑁 observations that can hopefully be expedited by further tweaks
to the optimization procedure. In a different line of work, we want
to incorporate path-based notions of counterfactual fairness [5],
which would allow for the definition of fair paths determined, e.g.,
due to principles such as business necessity (c.f. [12]).

ACKNOWLEDGMENTS
This work is funded by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A. The authors of
this work take full responsibilities for its content.

REFERENCES
[1] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2019. Fairness and Machine

Learning. fairmlbook.org. http://www.fairmlbook.org.
[2] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.

2018. Fairness in Criminal Justice Risk Assessments: The State of the Art. So-
ciological Methods & Research (Aug. 2018), 42 pages. https://doi.org/10.1177/
0049124118782533 arXiv:1703.09207

[3] Emily Black, Samuel Yeom, andMatt Fredrikson. 2020. Fliptest: fairness testing via
optimal transport. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency. 111–121.

[4] Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for
discrimination-free classification. Data Mining and Knowledge Discovery 21,
2 (2010), 277–292. https://doi.org/10.1007/s10618-010-0190-x

[5] Silvia Chiappa. 2019. Path-specific counterfactual fairness. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 7801–7808.

[6] Alexandra Chouldechova. 2017. Fair Prediction with Disparate Impact: A Study
of Bias in Recidivism Prediction Instruments. Big Data 5, 2 (June 2017), 153–163.
https://doi.org/10.1089/big.2016.0047 arXiv:1703.00056

[7] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. 2020. Multi-
objective counterfactual explanations. In International Conference on Parallel
Problem Solving from Nature. Springer, 448–469.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6, 2 (April 2002), 182–197. https://doi.org/10.1109/4235.996017

[9] Simon DeDeo. 2014. Wrong side of the tracks: Big data and protected categories.
arXiv preprint arXiv:1412.4643 (2014).

[10] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[11] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference. 214–226.

[12] Susan S Grover. 1995. The business necessity defense in disparate impact dis-
crimination cases. Ga. L. Rev. 30 (1995), 387.

[13] Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of opportunity in
supervised learning. Advances in Neural Information Processing Systems 29 (Dec.
2016), 3323–3331. https://doi.org/10.5555/3157382.3157469 arXiv:1610.02413

[14] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. 2021. Algorithmic
recourse: from counterfactual explanations to interventions. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency. 353–362.

[15] Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt,
Dominik Janzing, and Bernhard Schölkopf. 2017. Avoiding discrimination through
causal reasoning. arXiv preprint arXiv:1706.02744 (2017).

[16] Matt J Kusner, Joshua R Loftus, Chris Russell, and Ricardo Silva. 2017. Counter-
factual fairness. arXiv preprint arXiv:1703.06856 (2017).

[17] Rui Li, Michael T.M. Emmerich, Jeroen Eggermont, Thomas Bäck, M. Schütz,
J. Dijkstra, and J. H.C. Reiber. 2013. Mixed Integer Evolution Strategies for
Parameter Optimization. Evolutionary Computation 21, 1 (2013), 29–64.

[18] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. 54, 6, Article
115 (jul 2021), 35 pages. https://doi.org/10.1145/3457607

[19] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining
Machine Learning Classifiers through Diverse Counterfactual Explanations. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency
(Barcelona, Spain) (FAT* ’20). Association for Computing Machinery, New York,
NY, USA, 607–617. https://doi.org/10.1145/3351095.3372850

[20] Judea Pearl. 2009. Causal inference in statistics: An overview. Statistics surveys 3
(2009), 96–146.

[21] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach.
2020. FACE: Feasible and Actionable Counterfactual Explanations. Association for
Computing Machinery, New York, NY, USA, 344–350. https://doi.org/10.1145/
3375627.3375850

[22] SandraWachter, Brent Daniel Mittelstadt, and Chris Russell. 2018. Counterfactual
explanations without opening the black box: automated decisions and the GDPR.
Harvard Journal of Law and Technology 31, 2 (2018), 841–887.

[23] Junzhe Zhang and Elias Bareinboim. 2018. Equality of Opportunity in Classifica-
tion: A Causal Approach. In Advances in Neural Information Processing Systems,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2018/file/ff1418e8cc993fe8abcfe3ce2003e5c5-Paper.pdf

Multi-Objective Counterfactual Fairness GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

A NSGA-II
NSGA-II [8] first initializes a random set of candidates (in our case
counterfactual instances) which are evaluated by the proposed
objectives. The best candidates are recombined in pairs and then
slightly mutated to generate new candidates. Old and new can-
didates are ranked according to their objective values using non-
dominated sorting and crowding distance sorting. The first aims
at optimality, the second at diversity of the objective values. Based
on this ranking, the best candidates are selected for the next gen-
eration. In subsequent generations, recombination, mutation and
selection are repeated based on the updated population. In the end,
the Pareto optimal set over all candidates is returned. Compared
to the originally proposed NSGA-II, the method by Dandl et al.
[7] uses mutation and recombination methods [17] to cover mixed
(discrete and continuous) search spaces, and a crowding distance
sorting that additionally considers diversity in the feature space.

B EXPERIMENTAL DETAILS
The goal of the experimental evaluation is two-fold: Since fair-
ness metrics 𝑖𝑐𝑢𝑓 (Definition 3) and 𝑔𝑐𝑢𝑓 (Definition 4) rely on the
assumption that generated counterfactuals are realistic, we inves-
tigate this assumption in downstream experiments based on the
adult dataset [10]. Simultaneously, our ultimate goal is to check
for instance-wise or global unfairness, therefore, we also need to
ascertain that our numeric estimates of unfairness correspond to
the real unfairness. The latter can only be observed in scenarios
where true counterfactuals are observable – which is not the case
for the adult dataset. Therefore, we investigate our goals in a simu-
lation scenario based on the law school example described in the
introduction. The code to reproduce all experiments is available in a
GitHub repository: https://github.com/pfistfl/counterfactuals/tree/
moccf/paper/experiments. Optimization is generally run for ≤ 30
generations of the adapted NSGA-II algorithm. Generating coun-
terfactuals for a single instance generally takes around 15 seconds
for 30 generations.

Quality of generated counterfactuals
We generate the counterfactual for a given instance x and use t-SNE
embeddings to visualize the generated counterfactuals x★ ∈ X★.
We visually judge the quality of generated counterfactuals using
the following criteria:

• x★ should lie in high-density regions of the data.
• x★ should lie in high-density regions for samples of X with
the desired protected status.
• x★ should be close to the original instance x.

Adult. We trained a random forest model on the first 1000 sam-
ples of the adult dataset [10]. As a preprocessing step, we combined
categories of the protected attribute racewith few observations such
that we receive three categories (White, Black and Other). For an
instance with race Black, we generated counterfactuals x𝐴←𝑊ℎ𝑖𝑡𝑒 .
Figure 5 of the Pareto front reveals that the three objectives con-
tradict each other, e.g., counterfactuals with low values in 𝑜𝑣𝑎𝑙𝑖𝑑
or 𝑜𝑐𝑙𝑜𝑠𝑒 have higher values in 𝑜𝑝𝑙𝑎𝑢𝑠 . The t-SNE embeddings in

Figure 4 show that generated counterfactuals are found in high-
density regions of the data and close to instances of the desired
class.

Other Black White data gen_cf x

Figure 4: t-SNE plot for the adult dataset after 175 genera-
tions.

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4
ovalid

o c
lo

se

0.025

0.050

0.075

0.100

0.125

oplaus

Figure 5: Plot of the Pareto front for the adult dataset after
175 generations.

Law School. We draw 1000 samples from the data generating
process as described in [16] and detailed in the introduction. We
then investigate the counterfactuals x′ := x𝐴←𝑊ℎ𝑖𝑡𝑒 for all in-
stances in 𝑋 with race Black. We furthermore use the 𝐹𝑌𝐴 variable
in order to estimate a variable 𝑃𝐴𝑆𝑆 (indicating whether a student
will pass), where 𝑃𝐴𝑆𝑆 (𝑖) ∼ 𝐵𝑒𝑟 (𝑙𝑜𝑔𝑖𝑡 (𝐹𝑌𝐴(𝑖))) for each respec-
tive instance 𝑖 . Given access to the true counterfactual x′, we can
furthermore assess how close x★ ∈ X★ lie to x′ for example given
the Gower distance. Results reported in Figure 3 are for a single
instance, while distances reported in Table 1 are averaged across
all instances with label Black. We did not include the protected
attribute for calculating Gower distances.

Individual and global unfairness
We investigate global and individual level unfairness based on the
law school example described in the introduction. We use the same
experimental setup as described above. Since we have access to the
data generating process in this simulated scenario, we can generate
the true counterfactuals as well as counterfactuals generated using

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Dandl and Pfisterer et al.

0.0

0.2

0.4

0.6

0.8

generated true

ic
uf

−0.50

−0.25

0.00

0.25

0.50

0.75

icuf(true)

ic
uf

(g
en

er
at

ed
)

Figure 6:Upper: Comparison of icuf between generated coun-
terfactuals (left) and true counterfactuals (right) for the law
school example. The global gcuf is 0.268 and 0.319 respec-
tively. Lower: Scatterplot of icuf for generated counterfac-
tuals (x★) and true counterfactuals (x′) for the law school
example.

the proposed method. The resulting 𝑖𝑐𝑢𝑓 and 𝑔𝑐𝑢𝑓 for both true
counterfactuals (right) and generated counterfactuals (left) are re-
ported in Figure 6. While 𝑖𝑐𝑢𝑓 is slightly underestimated, the global
estimate of model unfairness (0.268) is reasonably close to the true
one (0.319).

C ASSUMPTIONS AND VALIDITY OF
GENERATED COUNTERFACTUALS

The goal of this work is to propose an alternative method for fair-
ness auditing of machine learning models. In contrast to existing
methods for observational data (cf. [13]), our method hopes to

generate causally valid counterfactuals. In the absence of an un-
ambiguous DAG, there can be no guarantees that any generated
counterfactual actually stems from the true distribution of counter-
factuals – at best we can hope that we generate sufficiently similar
datapoints given the specified objectives. Thus, we argue that our
method (as well as other methods proposed in this context) should
never be used in isolation, but as one additional perspective to
detect potential biases in data. It is similarly important to consider
fairness in its broader context, i.e., the actual outcomes that de-
cisions based on ML models produce and their long-term effects,
e.g., in the context of feedback loops. Furthermore, the question of
whether a technical intervention in favor of possible other solutions
is necessary for a given context needs to be thoroughly considered.

CHAPTER 6

CONTRIBUTIONS - BENCHMARKS & SOFTWARE

268 6. Contributions - Benchmarks & Software

6.1 Benchmarking time series classification – Functional
data vs machine learning approaches

Contributed Article:
F. Pfisterer, L. Beggel, X. Sun, F. Scheipl, and B. Bischl. Benchmarking time series clas-
sification – functional data vs machine learning approaches, 2019, arXiv:1911.07511

Declaration of contributions BB initiated the project, with help on the first architec-
ture design and data flow implementation by XS and LB, while FP and BB refactored and
implemented the current version of the software architecture. LB independently provided
the repository of data sets for the benchmark and gathered the results of the benchmark
experiments of [12]. LB implemented the first version of several classification algorithms
for mlrFDA, followed by a refactoring of the code by FP. XS implemented the first ver-
sion of several functional feature extraction algorithms used in mlrFDA, including bsignal,
Dynamic Time Warping (multiple reference input), multiresolution (proposed by BB with
major code snippet), FP refactored these codes and added several new feature extraction
methods. XS implemented the first version of classification and regression of FDboost,
FGAM, with the help of FS, followed by refactor by FP. LB implemented the first ver-
sion of Fourier and Wavelets feature extraction; FP and XS refactored the code. XS
implemented the first version of the Benchmark code and conducted a first batch of exper-
iments, with LB analyzing the results. FP refactored the benchmark code and rerun the
experiment and collected the experiment results independently.

Benchmarking time series classification - Functional
data vs machine learning approaches

Florian Pfisterer, Xudong Sun1, Laura Beggel1, Fabian Scheipl, Bernd Bischl

Department of Statistics, Ludwig-Maximilians-Universität München
Ludwigstr. 33,

80539, München, Germany

Abstract

Time series classification problems have drawn increasing attention in the ma-
chine learning and statistical community. Closely related is the field of func-
tional data analysis (FDA): it refers to the range of problems that deal with
the analysis of data that is continuously indexed over some domain. While of-
ten employing different methods, both fields strive to answer similar questions,
a common example being classification or regression problems with functional
covariates. We study methods from functional data analysis, such as functional
generalized additive models, as well as functionality to concatenate (functional)
feature extraction or basis representations with traditional machine learning al-
gorithms like support vector machines or classification trees. In order to assess
the methods and implementations, we run a benchmark on a wide variety of
representative (time series) data sets, with in-depth analysis of empirical re-
sults, and strive to provide a reference ranking for which method(s) to use for
non-expert practitioners. Additionally we provide a software framework in R
for functional data analysis for supervised learning, including machine learning
and more linear approaches from statistics. This allows convenient access, and
in connection with the machine-learning toolbox mlr, those methods can now
also be tuned and benchmarked.

Keywords: Functional Data Analysis, Time Series, Classification, Regression

?source code available at https://github.com/mlr-org/mlr
∗Corresponding author: florian.pfisterer@stat.uni-muenchen.de
1Equal Contribution

ar
X

iv
:1

91
1.

07
51

1v
2

 [
st

at
.M

L
]

 2
4

Fe
b

20
21

1. Introduction

The analysis of functional data is becoming more and more important in many
areas of application such as medicine, economics, or geology (cf. Ullah and
Finch [1], Wang et al. [2]), where this type of data occurs naturally. In industry,
functional data are often a by-product of continuous monitoring of production
processes, yielding great potential for data mining tasks. A common type of
functional data are time series, as time series can often be considered as dis-
cretized functions over time.
Many researchers publish software implementations of their algorithms, there-
fore simplifying the access to already established methods. Even though such a
readily available, broad range of methods to choose from is desirable in general,
it also makes it harder for non-expert users to decide which method to apply
to a problem at hand and to figure out how to optimize their performance.
As a result, there is an increasing demand for automated model selection and
parameter tuning.
Furthermore, the functionality of available pipeline steps ranges from simple
data structures for functional data, to feature extraction methods and packages
offering direct modeling procedures for regression and classification. Users are
again faced with a multiplicity of software implementations to choose from and,
in many instances, combining several implementations may be required. This
can be difficult and time-consuming, since the various implementations utilize a
multiplicity of different workflows which the user needs to become familiar with
and synchronize in order to correctly carry out the desired analysis.
There is a wide variety of packages for functional data analysis in R [3] available
that provide functionality for analyzing functional data. Examples range from
the fda [4] package which includes object types for functional data and allows
for smoothing and simple regression, to, e.g., boosted additive regression models
for functional data in FDboost [5]. For an extensive overview, see the CRAN
task view [6].
Many of those packages are designed to provide algorithmic solutions for one
specific problem, and each of them requires the user to become familiar with
its user interface. Some of the packages, however, such as fda.usc [7] or refund
[8] are not designed for only one specific analysis task, but combine several
approaches. Nevertheless, these packages do not offer unified frameworks or
consistent user interfaces for their various methods, and most of the packages
can still only be applied separately.
A crucial advantage of providing several algorithms in one package with a unified
and principled user interface is that it becomes much easier to compare the
provided methods with the intention to find the best solution for a problem at
hand. But to determine the best alternative, one still has to be able to compare
the methods at their best performance on the considered data, which requires
hyperparameter search and, more preferably, efficient tuning methods.
While the different underlying packages are often difficult and sometimes even
impossible to extend to new methods, custom implementations and extensions
can be easily included in the accompanying software.

2

We want to stress that the focus of this paper does not lie in proposing new al-
gorithms for functional data analysis. Its added value lies in a large comparison
of algorithms while providing a unified and easily accessible interface for com-
bining statistical methods for functional data with the broad range of functions
provided by mlr, most importantly benchmarking and tuning. Additionally, the
often overlooked possibility of extracting non-functional features from functional
data is integrated, which enables the user to apply classical machine learning
algorithms such as support vector machines [9] to functional data problems.
In a benchmark study similar to Bagnall et al. [10] and Fawaz et al. [11], we ex-
plore the performance of implemented methods, and try to answer the following
questions:

1. Can functional data problems be solved with classical machine learning
methods ignoring the functional structure of the data as well as with more
elaborate methods designed for this type of data? Bagnall et al. [10]
measure the performance of some non-functional-data-specific algorithms
such as the rotation forest [12], but this does not yield a complete picture.

2. Guidance on the wide range of available algorithms is often hard to obtain.
We aim to make some recommendations in order to simplify the choice of
learning algorithm.

3. Do statistical methods explicitly tailored to the analysis of functional data
[e.g. FDboost, 5] perform well on classical time series tasks? No bench-
mark results for these methods, which provide interpretable results, are
currently available.

4. Many methods that represent functional data in a non-functional domain
have been proposed and are also often applied in practice. Examples for
this include either hand crafted features [cf. 13], summary statistics [14],
or generally applicable methods such as wavelet decomposition [15].

5. Hyperparameter optimization is a very important step in many machine
learning applications. In our benchmark, we aim to quantify the impact
of hyperparameter optimization for a set of given algorithms on several
data sets.

Contributions. As contributions of this paper, we aim to answer the questions
posed above. Additionally, we provide a toolbox for the analysis of functional
data. It implements several methods for feature extraction and directly model-
ing functional data, including a thorough benchmark of those algorithms. This
toolbox also allows for full or partial replication of the conducted benchmark
comparison.

3

2. Related Work

In the remainder of the paper, we focus on comparing algorithms from the func-
tional data analysis and the machine learning domain. Functional data analysis
traditionally values interpretable results and valid statistical inference over pre-
diction quality. Therefore functional data algorithms are often not compared
with respect to their predictive performance in literature. We aim to close this
gap. On the other hand, machine learning algorithms often do not yield inter-
pretable results. While we consider both aspects to be important, we want to
focus on predictive performance in this paper.

2.1. Feature extraction and classical machine learning methods

In this work, we differentiate between machine learning algorithms that can di-
rectly be applied to functional data, and algorithms intended for scalar features,
which we call classical machine learning methods.
A popular approach when dealing with functional data is to reduce the problem
to a non-functional task by extracting relevant non-functional features [1]. Ap-
plying classical machine learning methods after extracting meaningful features
can then lead to competitive results [cf. 16, e.g.] or at least provide baselines,
which are in general not covered by functional data frameworks. In our frame-
work, such functionality is easily available by combining feature extraction, e.g.,
based on extracting heuristic properties [cf. tsfeatures; 14] or wavelet coeffi-
cients [17, 15] and analyzing these derived scalar features with classical machine
learning tools provided by mlr.
Based on some existing functionality of the listed packages, we adapt different
feature extraction methods. Along with different algorithms already proposed
in literature, we propose two new custom methods, DTWKernel and MultiRes-
Features:

tsfeatures [14] extracts scalar features, such as auto-correlation functions,
entropy and other heuristics from a time series.

fourier transforms data from the time domain into the frequency domain
using the fast fourier transform [18]. Extracted features are either phase
or amplitude coefficients.

bsignal B-Spline representations from package FDboost [5] are used as
feature extractors. Given the knots vector and effective degree of freedom,
we extract the design matrix for the functional data using mboost.

wavelets [15] applies a discrete wavelet transform to time series or func-
tional data, e.g., with Haar or Daubechies wavelets. The extracted features
are wavelet coefficients at several resolution levels.

PCA projects the data on their principal component vectors. Only a
subset of the principal component scores representing a given proportion
of signal variance is retained.

4

DTWKernel computes the dynamic time warping distances of functional
or time series data to (a set of) reference data. We implement dynamic
time warping (DTW) based feature extraction. This method computes
the dynamic time warping distance of each observed function to a (user-
specified) set of reference curves. The distances of each observation to the
reference curves is then extracted as a vector-valued feature. The reference
curves can either be supplied by the user, e.g., they could be several typical
functions for the respective classes, or they can be obtained from the
training data. In order to compute dynamic time warping distances, we use
a fast dynamic time warping [19] implementation from package rucrdtw
[20].

MultiResFeatures extracts features, such as the mean at different levels
of resolution (zoom-in steps). Inspired by the image pyramid and wavelet
methods, we implement a feature extraction method, multi-resolution fea-
ture extraction where we extract features like mean and variance com-
puted over specified windows of varying widths. Starting from the full
sequence, the sequence is repeatedly divided into smaller pieces, where at
each resolution level, a scalar value is extracted. All extracted features
are concatenated to form the final feature vector.

2.2. Methods for functional data

Without feature extraction, direct functional data modeling (both classification
and regression) methods incorporated in our package span two families: The first
family of semi-parametric approaches includes FGAM [8], FDboost [5], and the
functional generalized linear model [FGLM; 21], which are all structured ad-
ditive models. Those methods use (tensor product) spline basis functions or
functional principal components (FPCs) [22] to represent effects fitted in a gen-
eralized additive model. While FGAM and FGLM use the iterated weighted
least square (IWLS) method to generate maximum likelihood estimates, FD-
boost uses component-wise gradient boosting [23] to optimize the parameters.
Additionally, the estimated parameters can be penalized. A general formula for
this family of methods is ζ(Y |X = x) = h(x) =

∑J
j=1 hj(x), where ζ represents

a functional of the conditional response distribution (e.g., an expectation or a
quantile), x is a vector of (functional) covariates and hj(x) are partial additive
effects of subsets of x in basis function representation, cf. Greven and Scheipl
[24] for a general introduction.
The second family of methods are non-parametric methods as introduced in
Ferraty and Vieu [25], e.g., based on (semi-)metrics which quantify local or
global differences or distances across curves. For example, the distance between
two instances could be defined by the L2 distance of two curves d(xi(t), xj(t)) =√∫

(xi(t)− xj(t))2dt. Kernel functions are used to average over the training

instances and weigh their respective contributions based on the value of their
distance semi-metric to the predicted instance. Functional k-nearest neighbors
algorithms can also be defined based on such semi-metrics. Implementations
can be found in packages fda.usc [7] and classiFunc [26].

5

2.3. Toolboxes for functional data analysis

The package fda [4] contains several object types for functional data and allows
for smoothing and regression for functional data. Analogously, the R-package
fda.usc [7] contains several classification algorithms that can be used with func-
tional data. In Python, scikit-fda [27] offers both representation of and (pre-
)processing methods for functional data, but only a very small set of machine
learning methods for classification or regression problems is implemented at the
time of writing.
As a byproduct of the Time-Series Classification Bake-off [10], a wide variety
of algorithms were implemented and made available. But this implementation
emphasizes the benchmark over providing a data analysis toolbox for users, and
is therefore not easily usable for inexperienced users.

2.4. Benchmarks

The recently published benchmark analysis Time-Series Classification Bake-off
by Bagnall et al. [10] provides an overview of the performance of 18 state-of-
the-art algorithms for time series classification. They re-implement (in Java)
and compare 18 algorithms designed especially for time series classification on
85 benchmark time series data sets from Bagnall et al. [28]. In their analysis,
they also include results from several standard machine learning algorithms.
They note that the rotation forest [12] and random forest [29] are competitive
with their time series classification baseline [1-nearest neighbor with dynamic
time warping distance; 30]. Their results show that ensemble methods such as
collection of transformation ensembles [COTE; 31] perform best, but for the
price of considerable runtime.
Deep learning methods applied to time series classification tasks have also shown
competitive prediction power. For example, [11] provide a comprehensive review
of state-of-the-art methods. The authors compared both generative models and
discriminative models, including fully connected neural networks, convolutional
neural networks, auto-encoders and echo state networks, whereas only discrimi-
native end-to-end approaches were incorporated in the benchmark study.
The benchmark study conducted in this work does not aim to replicate or com-
pete with earlier studies like [10], but instead tries to extend their results.

3. Functional Data

In contrast to non-functional data analysis, where the measurement of a single
observation is a vector of scalar components whose entries represent values of the
separate multidimensional features, functional data analysis treats and analyses
the features themselves as functions over their domain. By learning to represent
the underlying function, the carried out analysis is not just restricted to the
measured discrete values but it is possible to sample from (and analyze) the
entire domain space.
In this work, we focus on pairs of features and corresponding labels (x, y) for
supervised learning. In contrast to non-functional data analysis, where the

6

measurement of a single observation is a vector of scalar components, functional
features are function-valued over their domain. The features x = (x1, ..., xp)
can thus also be a function, i.e., xj = gj(t), g : T → R. In practice, functional
data comes in the form of observed values gj(t), t ∈ {1, ..., L}, where each t
corresponds to a discrete point on the continuum. Those observed values stem
from an underlying function f evaluated over a set of points. A frequent type
of functional data is time series data, i.e., measurements of a process measured
at discrete time-points.
For example, in some electrical engineering applications, signals are obtained
over time at a certain sampling rate, but other domains are possible as well.
Spectroscopic data, for example, are functional data recorded over certain parts
of the electromagnetic spectrum. One such example is depicted in Figure 1. It
shows spectroscopy data of fossil fuels [32] where the measured signal represents
reflected energies in the ultraviolet-visible (UV-VIS) and the near infrared spec-
trum (NIR). In the plot, different colors correspond to different instances. This
is a typical example of a scalar-on-function regression problem, where the inputs
are a collection of spectroscopic curves for a fuel, and the prediction target is
the heating value of the fossil fuel.
In Figure 2, we display two functional classification scenarios. The goal in
those scenarios is to distinguish the class type of the curve, which can also
be understood as a function-on-scalar problem. Figure 2a shows the vertical
position of an actor’s hand while either drawing a toy-gun and aiming at a
target, or just imitating the motion with the blank hand. This position is
measured over time. The two different types of classes of the curves can be
distinguished by the color scheme.
Figure 2b shows a data set built for distinguishing images of beetles from images
of flies based on their outlines. While following the outline, the distance to the
center of the object is measured which is then used for classification purposes.
The latter data sets are available from [28].
The interested reader is referred to Ramsay [21] and Kokoszka and Reimherr
[35] for more in-depth introductions to this topic.

4. Functional Data Analysis with mlrFDA

Along with the benchmark, we implement the software mlrFDA, which extends
the popular machine learning framework mlr for the analysis of functional data.
As the implemented functionality is an extension of the mlr package, all of the
functionality available in mlr transfers to the newly added methods for func-
tional data analysis. We include a brief overview of the implemented function-
ality in Appendix A.1. A more in-detail overview and tutorial on mlr can be
found in the mlr tutorial [36].
mlr provides a unified framework for machine learning methods in R, currently
supporting tasks from 4 main problem types: (multilabel-)classification, regres-
sion, cluster analysis, and survival analysis. For each problem type, many algo-
rithms (called learners) are integrated. This yields an extensive set of modeling
options with a unified, simple interface. Moreover, advanced techniques such

7

−2

−1

0

−1.0

−0.5

0.0

0.5

400 600 800 1000 1500 2000 2500

Wavelength [nm] Wavelength [nm]

U
V

V
IS

 E
ne

rg
y

N
IR

 E
ne

rg
y

Heat [mJ]

17.5

20.0

22.5

25.0

Heat emission for different fossil fuels

Figure 1: Scalar-on-function regression: Spectral data for fossil fuels [32]

as hyperparameter tuning, preprocessing and feature selection are also part of
the package. An additional focus lies on extensibility, allowing the user to inte-
grate their own algorithms, performance measures and preprocessing methods.
As mlrMBO seamlessly integrates into the new software, many different tun-
ing procedures can be readily adapted by the user. Tuning of hyperparameters
is usually not integrated in software packages for functional data analysis and
thus would require the user to write additional, non-trivial code that handles
(nested) resampling, evaluation and optimization methods.
mlrFDA contains several functional data algorithms from several R packages,
e.g., fda.usc, refund or FDboost. The algorithms’ functionality, however, re-
mains unchanged, only their user interface is standardized for use with mlr. For
detailed insights into the respective algorithms, full documentation is available
in the respective packages.
Since our toolbox is built on mlr’s extensible class system, our framework is eas-
ily extensible to other methods that have not yet been integrated, and the user
can include his or her own methods which do not necessarily need to be available
as a packaged implementation. Additionally, mlrFDA inherits mlr’s function-
ality for performance evaluation and benchmarking, along with extensive and
advanced (hyperparameter) tuning. This makes our platform very attractive for
evaluating which algorithm fits best to a problem at hand, and even allows for
large benchmark studies.

5. Benchmark Experiment

In order to enable a comparison of the different approaches, an extensive bench-
mark study is conducted. This paper does not aim to replicate or reproduce

8

−2

−1

0

1

2

0 50 100 150
Time

H
an

d
po

si
tio

n
in

 X
−

ax
is

Class
Gun−Draw
Point

(a) Gunpoint

−2

−1

0

1

2

0 100 200 300 400 500
Outline

D
is

ta
nc

e
to

 c
en

te
r

Class
Beetle
Fly

(b) BeetleFly

Figure 2: Excerpts from two time series classification data sets. (a): Gunpoint data [33], (b):
BeetleFly Data [34].

results obtained by Bagnall et al. [10] or Fawaz et al. [11]. Instead we focus on
providing a benchmark complementary to previous benchmarks. This is done
because i) the experiments require large amounts of computational resources,
and ii) the added value of an exact replication of the experiments (with open
source code) is comparatively small. Nonetheless, we aim for results that can
be compared, and thus extend the results obtained by Bagnall et al. [10] by
staying close to their setup. The experiments were carried out on a high per-
formance computing cluster, supported by the Leibniz Rechenzentrum Munich.
Individual runs were allowed up to 2.2 GB of RAM and 4 hours run-time for
each evaluation. We want to stress that this benchmark compares implemen-
tations, which does not always necessarily correspond to the performance of
the corresponding theoretical algorithm. Additionally, methods for functional
data analysis are traditionally more focused on valid statistical inference and
interpretable results, which does not necessarily coincide with high predictive
performance.

5.1. Benchmark Setup

A benchmark experiment is defined by four important characteristics: The data
sets algorithms are tested on, the algorithms to be evaluated, the measures
used for evaluating predictive performance, and a resampling strategy used for
generating train and test splits of the data. A comprehensive overview of the
conducted benchmark setup can be obtained from Table 1.
These characteristics are briefly described subsequently before providing and
discussing the results. We use a subset of 51 data sets from the popular UCR
archive [28] in order to enable a comparison of results in [10] with the additional
methods described in this paper. The data sets stem from various application
types such as ECG measurements, sensor data, or image outlines, therefore

9

Data sets 51 Data sets, see table B.7

Algorithms Function (Package)
Machine Learning: - glmnet (glmnet)

- rpart (rpart)
- ksvm? (kernlab)
- ranger? (ranger)
- xgboost? (xgboost)

Functional Data - classif.knn(fda.usc)
- classif.glm (fda.usc)
- classif.np (fda.usc)
- classif.kernel(fda.usc)
- FDboost (FDboost)
- fgam (refund)
- knn with dtw (classiFunc)

Feature Extraction + ML - feature extraction: see table A.6
- in combination with ML algorithms marked with a ?.

Measures mean misclassification error, training time

Resampling 20-fold stratified sub-sampling;
class balances and train/test set size as in [10].

Tuning 100 iterations of Bayesian optimization (3-fold inner CV).
Corresponding hyperparameter-ranges can be obtained
from tables 3 and 5.

Table 1: Benchmark experiment setup

having varying training set sizes or measurement lengths. For more detailed
information about the data sets, see Bagnall et al. [28].
We selected data using the following criteria: In order to reduce the compu-
tational resources we did i) not run data sets that have multiple versions, ii)
exclude data sets with less then 3 examples in each class iii) remove data sets
with more than 10000 instances or time series longer than 750 measurements.
As some of the classifiers only work with multi-class targets via 1-vs-all clas-
sification, we iv) additionally excluded data sets with more then 40 classes.
In essence, we benchmark small and medium sized data sets with a moderate
amount of different classes.
We add 7 new algorithms and 6 feature extraction methods which can be com-
bined with arbitrary machine learning methods for scalar features (c.f. Table 1).
Additionally we test 5 classical machine learning methods, in order to obtain
a broader perspective on expected performance if the functional nature of the
data is ignored. As we benchmark default settings as well as tuned algorithms,
in total 80 different algorithms are evaluated across all data sets. When com-
bining feature extraction and machine learning methods, we fuse the learning
algorithm and the preprocessing, thus treating them as a pipeline where data
is internally transformed before applying the learner. This allows us to jointly
tune the hyperparameters of learning algorithm and preprocessing method. The
respective defaults and parameter ranges can be obtained from Table 3 (feature
extractors) and Table 5 (learning algorithms). More detailed description of the

10

hyperparameters can be obtained from the respective packages documentation.
In order to generate train/test splits, and thus obtain an unbiased estimate of
the algorithm’s performance, we use stratified sub-sampling. We use 20 different
train/test splits for each data set in order to reduce variance and report the
average. For tuned models, we use use nested cross-validation [37] to ensure
unbiased estimates, where the outer loop is again subsampling with 20 splits,
and the inner resampling for tuning is a 3-fold (stratified) cross-validation. All
compared 80 algorithms are presented exactly the same index sets for the 20
train-test outer subsampling splits.
Mean misclassification error (MMCE) is chosen as a measure of predictive per-
formance in order to stay consistent with Bagnall et al. [10]. Other measures,
such as area under the curve (AUC) require predicted probabilities and do not
trivially extend to multi-class settings.
While Bagnall et al. [10] tune all algorithms across a carefully handcrafted grid,
we use Bayesian optimization [38]. In order to stay comparable, we analogously
fix the amount of tuning iterations to 100.
We use mlrMBO [39] in order to perform Bayesian optimization of the hyperpa-
rameters of the respective algorithm. Additionally, in order to scale the method
to a larger amount of data sets and machines, the R-package batchtools (Bischl
et al. [40], Lang et al. [41]) is used. This enables running benchmark experiments
on high-performance clusters. For the benchmark experiment, a job is defined
as re-sampling of a single algorithm (or tuning thereof) on a single version of a
data set. This allows for parallelization to an arbitrary number of CPU’s, while
at the same time guaranteeing reproducibility. The code for the benchmark is
available from https://github.com/compstat-lmu/2019_fda_benchmark for
reproducibility.

5.2. Results

This Section tries to answer the questions posed in section 1. We evaluate i)
various machine learning algorithms in combination with feature extraction, ii)
classical time series classification approaches, iii) the effect of tuning hyperpa-
rameters for several methods, and iv) try to give recommendations with respect
to which algorithm(s) to choose for new classification problems.
Algorithms evaluated in this benchmark have been divided into three groups:
Algorithms specifically tailored to functional data, classical machine learning
algorithms without feature extraction and classical machine learning algorithms
in combination with feature extraction.

5.2.1. Algorithms for functional data

Performances of algorithms specifically tailored to functional data analysis can
be obtained from Figure 3. The k-nearest neighbors algorithm from package
classiFunc [26] in combination with dynamic time warping [19] distance seems
to perform best across data sets. It is also considered a strong baseline in Bagnall
et al. [10].

11

●●

●●●
●●
●
●●
●●
●●

0.00

0.25

0.50

0.75

1.00

classiFunc.knn.dtw fdausc.glm fdausc.kernel fdausc.knn fdausc.np FDboost fgam
Learner

A
cc

ur
ac

y

Figure 3: Performances for functional data analysis algorithms in default settings (untuned)
across all 51 data sets.

5.2.2. Machine Learning algorithms with feature extraction

Performances of different machine learning algorithms in combination with fea-
ture extraction with and without tuning can be obtained from Figure 4.

●

●

●● ●

●

●
●●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

bsignal dtwkernel fourier fpca multires wavelet

gl
m

ne
t

ks
vm

ks
vm

.tu
ne

d
ra

ng
er

ra
ng

er
.tu

ne
d

rp
ar

t
xg

bo
os

t
xg

bo
os

t.t
un

ed
gl

m
ne

t
ks

vm
ks

vm
.tu

ne
d

ra
ng

er
ra

ng
er

.tu
ne

d
rp

ar
t

xg
bo

os
t

xg
bo

os
t.t

un
ed

gl
m

ne
t

ks
vm

ks
vm

.tu
ne

d
ra

ng
er

ra
ng

er
.tu

ne
d

rp
ar

t
xg

bo
os

t
xg

bo
os

t.t
un

ed
gl

m
ne

t
ks

vm
ks

vm
.tu

ne
d

ra
ng

er
ra

ng
er

.tu
ne

d
rp

ar
t

xg
bo

os
t

xg
bo

os
t.t

un
ed

gl
m

ne
t

ks
vm

ks
vm

.tu
ne

d
ra

ng
er

ra
ng

er
.tu

ne
d

rp
ar

t
xg

bo
os

t
xg

bo
os

t.t
un

ed
gl

m
ne

t
ks

vm
ks

vm
.tu

ne
d

ra
ng

er
ra

ng
er

.tu
ne

d
rp

ar
t

xg
bo

os
t

xg
bo

os
t.t

un
ed

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Tuning

default

mbo

Learner

glmnet

ksvm

ranger

rpart

xgboost

Figure 4: Results for feature extraction-based machine learning algorithms with default and
tuned (MBO) hyperparameters across 51 data sets. Hyperparameters are tuned jointly for
learner and feature extraction method.

We conclude that feature extraction using splines (bsignal) and wavelets as
well as extracting dynamic time warping distances works well when combined

12

with conventional machine learning algorithms, even at their default hyper-
parameters. Among the learners, random forests, especially in combination with
bsignal show quite advantageous performance. In addition, we find an obvious
improvement from hyper-parameter tuning for the Fourier feature extraction.
In terms of learners, random forest and gradient boosted tree learners (xgboost)
perform better than support vector machines.

5.2.3. Machine Learning algorithms without feature extraction

Additionally, we aim to provide some insight with regards to the performance of
machine learning algorithms that ignore the functional nature of our data. Fig-
ure 5 provides an overview over the performance of different machine learning
algorithms that are often used together with traditional tabular data. Perfor-
mances in this figure are obtained from algorithms directly applied to the func-
tional data without any additional feature extraction. The widely used gradient
boosting (xgboost) and random forest (ranger) implementations seem to work
reasonably well for functional data even without additional feature extraction.

●●●

●

0.25

0.50

0.75

1.00

glm
ne

t

ks
vm

ra
ng

er
rp

ar
t

xg
bo

os
t

Learner

A
cc

ur
ac

y

Tuning

default

tuned

Learner

glmnet

ksvm

ranger

rpart

xgboost

Figure 5: Performance of non-functional machine learning algorithms across 51 data sets
applied directly to functional data with and without tuning.

5.2.4. The effect of tuning hyperparameters

From our experiments, we conclude, that tuning hyperparameters of machine
learning algorithms in general has a non-negligible effect on the performance.
Using Bayesian optimization in order to tune algorithm hyperparameters on
average yielded an absolute increase in accuracy of 5.4% across data sets and
learners.
Figure 6 displays the aggregated time over all data sets, taking into account
the time required for hyperparameter tuning. All experiments have been run

13

on equivalent hardware on high-performance computing infrastructure. Due to
fluctuations in server load, this does not allow for an exact comparison with
respect to computation time, but we hope to achieve comparable results as
we repeatedly evaluate on sub-samples. Note that we restrict the tuning to 3
algorithms where tuning traditionally leads to higher performances.2

10−2

100

102

104

cla
ss

iF
un

c.k
nn

fd
au

sc
.g

lm

fd
au

sc
.ke

rn
el

fd
au

sc
.kn

n

fd
au

sc
.n

p

FDbo
os

t
fg

am

glm
ne

t

ks
vm

ra
ng

er
rp

ar
t

xg
bo

os
t

Learner

R
un

ni
ng

 ti
m

e
(s

ec
)

(lo
g)

default
mbo

Figure 6: Comparison of running time for the different learner classes with default and tuned
hyperparameters across 51 data sets. A log transformation on the running time in seconds is
applied, and the mean running time is visualized for each stratification as a horizontal line
within the violin plot.

5.2.5. Top 10 Algorithms and recommendations

Table 2 showcases the top 10 algorithms from the benchmark in terms of average
rank in predictive accuracy across data sets. With this list, we aim to provide
some initial understanding of the performance of different algorithms and feature
extraction methods. Note that this list by no means reflects performance on
future data sets, but might serve as an indicator, of which algorithms one might
want to try first given computational constraints.
We observe that wavelet extraction in combination with either ranger or xgboost
seems to be very strong. They obtain an average rank of 12.90 and 14.45 (out of
80) respectively. Dynamic time warping distances for k-nearest neighbors indeed
seems to be a strong baseline, even without tuning. Another strong feature
extraction method seems to be the extraction of B-spline features. Using the 10
algorithms above allows us to obtain an accuracy within 5% of the maximum
on 49 of the 51 data sets.

2Additionally, we find significantly improved performance for tuned FDboost in Figure 3

14

Table 2: Top 10 algorithms by average rank across all data sets. Percent Accuracy describes
the fraction of the maximal accuracy reached for each task.

Algorithm Setting Accuracy % Average Rank
ranger wavelet tuned 0.92 12.90
xgboost wavelet tuned 0.92 14.45
ranger bsignal tuned 0.90 15.02
knn dtw tuned 0.92 15.22
ranger none default 0.90 15.59
ranger bsignal default 0.89 15.71
ranger wavelet default 0.90 16.33
knn dtw default 0.92 16.43
xgboost bsignal tuned 0.90 17.57
ranger none tuned 0.89 18.49

If the only criterion for model selection is predictive performance, (tuned) ma-
chine learning models in combination with feature extraction is a competitive
baseline. This class of methods achieves within 95% of the optimal performance
on 47 out of 51 data sets, while they include the best performing classifier in 35
cases.

5.2.6. Comparison to classical time series classification

Even though the main purpose of this paper is not a direct comparison with
the results from [10], we can use our results to show that applying functional
data approaches and classical machine learning approaches together with feature
extraction can still improve classification accuracy compared to current state-
of-the-art time series classification methods.
In the experiments we conducted, the methods described in this paper improved
accuracy on 9 out of the 51 data sets which is displayed in Figure 7. The 9 data
sets and the corresponding best learner are displayed in Table 4. For each data
set, only the best reached accuracy for both sets of algorithms is displayed.
Additionally, we evaluate how our learners rank in comparison to the individual
bake-off algorithms from [10]. The algorithm which performs best on a data set
obtains the rank 1. The mean rank of the individual learners over all 49 data
sets (we take the intersection of the data sets from our benchmark and the ones
from [10]). The average sorted ranks for the top 50% algorithms are displayed
in Figure 8. We observe that the ensemble methods get the top ranks, which is
no surprise, as for instance the COTE algorithm [42] internally combines several
classifiers from 4 different time series domains.
However, compared to the classical time series algorithms from [10] with the
ensemble methods removed, our functional data algorithms obtain an overall
good rank in accuracy performance, interleaved with the algorithms from [10].
Note that the benchmarks are not exactly comparable due to minor differences
in the benchmark setup, and we instead only include their reported results.

15

id type values def. trafo

bsignal
bsignal.knots int {3,...,500} 10 -
bsignal.df int {1,...,10} 3 -
multires
res.level int {2,...,5} - -
shift num [0.01,1] - -
pca
rank. int {1,...,30} - -
wavelets
filter chr d4,d8,d20,la8,la20,bl14,bl20,c6,c24 - -
boundary chr periodic,reflection - -
fourier
trafo.coeff chr phase,amplitude - -
dtwkernel
ref.method chr random,all random -
n.refs num [0,1] - -
dtwwindow num [0,1] - -

Table 3: Parameter spaces and default settings for feature extraction methods.

6. Summary and Outlook

In this work, we provide a benchmark along with a software implementation
that integrates the functionality of a diverse set of R-packages into a single user
interface and API. Both contributions come with a multiplicity of benefits:

• The user is not required to learn and deal with the vast complexity of the
different interfaces the underlying packages expose.

• All of the existing functionality (e.g., preprocessing, resampling, perfor-
mance measures, tuning, parallelization) of the mlr ecosystem can now be
used in conjunction with already existing algorithms for functional data.

• We expose functionality that allows us to work with functional data using
traditional machine learning methods via feature extraction methods.

• Integration of additional preprocessing methods or models is (fairly) trivial
and automatically benefits from the full mlr ecosystem.

In order to obtain a broader overview of the performance of the integrated
methods, we perform a large benchmark study. This allows users to get an initial
overview of potential performances of the different algorithms. Specifically,

• We open up new perspectives for time series classification tasks by incor-
porating methods from functional data analysis, as well as feature trans-
formations combined with conventional machine learning models.

16

Name Algorithm Setting Accuracy
Beef xgboost wavelet tuned 0.83
ChlorineConcentration ksvm none tuned 0.91
DistalPhalanxOutlineAgeGroup ranger none default 0.83
DistalPhalanxOutlineCorrect ranger dtwkernel default 0.83
DistalPhalanxTW ranger bsignal default 0.76
Earthquakes FDboost none default 0.80
Ham xgboost wavelet tuned 0.84
InsectWingbeatSound ranger wavelet default 0.65
SonyAIBORobotSurface1 ksvm wavelet default 0.94

Table 4: Data sets together with corresponding mlrFDA learner and accuracy for which our
learners were able to improve accuracy in the conducted experiments.

• Based on the large scale benchmark, we conclude that many learners
have competitive performance (Figure 7) and additionally offer the inter-
pretability of many functional data analysis methods. Our toolbox serves
as a strong complement and alternative to other time series classification
software.

• The presented benchmark study uses state-of-the-art Bayesian optimiza-
tion for hyperparameter optimization, which results in significant improve-
ments over models that are not tuned. This kind of hyperparameter tuning
is easy to do with mlrFDA. Tuning, albeit heavily influencing performance
is often not investigated. Our benchmark closes this gap in existing liter-
ature.

• We find that extracting vector valued features and feeding them to a con-
ventional machine learning model can often form competitive learners.

• The pareto-optimal set in terms of performance on each data set contains
23 different algorithm−feature-extraction combinations. Our toolbox i)
offers the same API for all methods and ii) allows to automatically search
over this space, and thus allows users to obtain optimal models without
knowing all underlying methods.

Concerning the questions we proposed at the beginning of the paper, we draw
the following conclusions:

• Tuning only a subset of the presented learners and feature extractions, i.e.,
the methods listed in Table 2, is sufficient to achieve good performances
on almost all data sets in our benchmark.

• A simple random forest without any preprocessing can also be a reasonable
baseline for time series data. It achieves an average rank of 15.59 (top 4)
in our benchmark.

17

parameter type values default trafo

ksvm

C num [-15,15] - 2^x
sigma num [-15,10] - 2^x

ranger

mtry.power num [0,1] - px

min.node.size num [0,0.99] - 2^(log2(n) ∗ x)
sample.fraction num [0.1,1] - -

xgboost

nrounds int {1,...,5000} 100 -
eta num [-10,0] - 2^x
subsample num [0.1,1] - -
booster chr gbtree,gblinear - -
max depth int {1,...,15} - -
min child weight num [0,7] - 2^x
colsample bytree num [0,1] - -
colsample bylevel num [0,1] - -
lambda num [-10,10] - 2^x
alpha num [-10,10] - 2^x

FDboost

mstop int {1,...,5000} 100 -
nu num [0,1] 0.01 -
df num [1,5] 4 -
knots int {5,...,100} 10 -
degree int {1,...,4} 3 -

Table 5: Parameter spaces and defaults used for tuning machine learning and functional data
algorithms. In case no default is provided, package defaults are used. Additional information
can be found in the respective packages documentation.

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0
Bakeoff Learner ACC

m
lrF

D
A

 A
C

C

Figure 7: Comparing accuracy between our mlrFDA learners and the classical time series
classification algorithms in [10]. For each data set, only the best accuracy for each of the two
benchmarks is shown. We observe that for 9 of the evaluated data sets the classification per-
formance can directly be improved solely by applying our mlrFDA learners, while we perform
on par with the classical time series classification algorithms (when rounding to 3 decimal
digits) on two data sets.

• Most algorithms for functional data (e.g., FDboost) do not perform well in
our benchmark study. As those algorithms are fully interpretable and offer
statistically valid coefficients, they can still be useful in some applications,
and should thus not be ruled out.

• Feature extraction techniques, such as b-spline representations (bsignal)
and wavelet extraction work well in conjunction with machine learning
techniques for vector valued features such as xgboost and random forest.

• Tuning leads to an average reduction in absolute MMCE of 3.59% (ranger),
5.69% (xgboost), 7.78% (ksvm) (across feature extraction techniques) and
11% (FDboost). This holds for all feature extraction techniques, where
improvements range from 1.12% multires to 20.3% fourier.

In future work we will continue to expand the available toolbox along with a
benchmark of new methods, and provide the R community a wider range of
methods that can be used for the analysis of functional data. This includes
not only integrating many already available packages, and as a result to en-
able preprocessing operations such as smoothing (e.g., fda [4]) and alignment
(e.g., fdasrvf [43] or tidyfun [44]), but also to explore and integrate advanced
imputation methods for functional data. Further work will also extend the cur-
rent implementation to support data that is measured on unequal or irregular

19

grids. Additionally, we aim to implement some of the current state-of-the art
machine learning models from the time series classification bake-off [10], such as
the Collective of Transformation-Based Ensembles (COTE) [31]. This enables
researchers to use and compare with current state-of-the-art methods.

Acknowledgements

This work has been funded by the German Federal Ministry of Education and
Research (BMBF) under Grant No. 01IS18036A. The authors of this work take
full responsibilities for its content.

20

References

[1] S. Ullah, C. F. Finch, Applications of functional data analysis: A systematic
review, BMC Medical Research Methodology 13 (2013) 43. URL: https:
//doi.org/10.1186/1471-2288-13-43. doi:10.1186/1471-2288-13-43.

[2] J.-L. Wang, J.-M. Chiou, H.-G. Müller, Functional data analysis,
Annual Review of Statistics and Its Application 3 (2016) 257–295.
URL: https://doi.org/10.1146/annurev-statistics-041715-033624.
doi:10.1146/annurev-statistics-041715-033624.

[3] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, 2014. URL:
http://www.R-project.org/.

[4] J. O. Ramsay, H. Wickham, S. Graves, G. Hooker, fda: Functional
Data Analysis, 2018. URL: https://CRAN.R-project.org/package=fda,
r package version 2.4.8.

[5] S. Brockhaus, D. Ruegamer, FDboost: Boosting Functional Regression
Models, 2018.

[6] F. Scheipl, Cran task view - functional data analysis, 2018. URL: https:
//cran.r-project.org/web/views/FunctionalData.html.

[7] M. Febrero-Bande, M. Oviedo de la Fuente, Statistical computing in func-
tional data analysis: The r package fda.usc, Journal of Statistical Software
51 (2012) 1–28. URL: http://www.jstatsoft.org/v51/i04/.

[8] J. Goldsmith, F. Scheipl, L. Huang, J. Wrobel, J. Gellar, J. Harezlak,
M. W. McLean, B. Swihart, L. Xiao, C. Crainiceanu, P. T. Reiss, refund:
Regression with Functional Data, 2018. URL: https://CRAN.R-project.
org/package=refund, r package version 0.1-17.

[9] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn.
20 (1995) 273–297. URL: https://doi.org/10.1023/A:1022627411411.
doi:10.1023/A:1022627411411.

[10] A. Bagnall, J. Lines, A. Bostrom, J. Large, E. Keogh, The great time
series classification bake off: a review and experimental evaluation of recent
algorithmic advances, Data Mining and Knowledge Discovery 31 (2017)
606–660.

[11] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Deep
learning for time series classification: a review, Data Mining and Knowledge
Discovery (2019) 1–47.

[12] J. J. Rodriguez, L. I. Kuncheva, C. J. Alonso, Rotation forest: A new
classifier ensemble method, IEEE Transactions on Pattern Analysis and
Machine Intelligence 28 (2006) 1619–1630. doi:10.1109/TPAMI.2006.211.

21

[13] C. Stachl, M. Bühner, Show me how you drive and i’ll tell you who you
are. recognizing gender using automotive driving parameters, Procedia
Manufacturing 3 (2015) 5587 – 5594. URL: http://www.sciencedirect.
com/science/article/pii/S2351978915007441. doi:https://doi.org/
10.1016/j.promfg.2015.07.743, 6th International Conference on Ap-
plied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Con-
ferences, AHFE 2015.

[14] R. Hyndman, E. Wang, Y. Kang, T. Talagala, Y. Yang, tsfeatures:
Time Series Feature Extraction, 2018. URL: https://github.com/

robjhyndman/tsfeatures/, r package version 0.1.

[15] E. Aldrich, wavelets: A package of functions for computing wavelet fil-
ters, wavelet transforms and multiresolution analyses, 2013. URL: https:
//CRAN.R-project.org/package=wavelets, r package version 0.3-0.

[16] J. Goldsmith, F. Scheipl, Estimator selection and combination in scalar-on-
function regression, Computational Statistics & Data Analysis 70 (2014)
362–372.

[17] S. Mallat, A theory for multiresolution signal decomposition: The wavelet
representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989) 674–693.

[18] E. O. Brigham, R. E. Morrow, The fast fourier transform, IEEE Spectrum
4 (1967) 63–70. doi:10.1109/MSPEC.1967.5217220.

[19] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, E. Keogh, Searching and mining trillions of time se-
ries subsequences under dynamic time warping, in: Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2012, pp. 262–270. URL: http://doi.org/10.1145/
2339530.2339576. doi:10.1145/2339530.2339576.

[20] P. Boersch-Supan, rucrdtw: Fast time series subsequence search in r, The
Journal of Open Source Software 1 (2016) 1–2. URL: http://doi.org/10.
21105/joss.00100. doi:10.21105/joss.00100.

[21] J. Ramsay, Functional data analysis, Wiley Online Library, 2006.

[22] A. Srivastava, E. P. Klassen, Functional and Shape Data Analysis, Springer,
2016.

[23] T. Hothorn, P. Bühlmann, T. Kneib, M. Schmid, B. Hofner, Model-based
boosting 2.0, Journal of Machine Learning Research 11 (2010) 2109–2113.

[24] S. Greven, F. Scheipl, A general framework for functional regression mod-
elling, Statistical Modelling 17 (2017) 1–35.

[25] F. Ferraty, P. Vieu, Nonparametric functional data analysis: theory and
practice, Springer Science & Business Media, 2006.

22

[26] T. Maierhofer, F. Pfisterer, classiFunc: Classification of Functional Data,
2018. URL: https://CRAN.R-project.org/package=classiFunc, r pack-
age version 0.1.1.

[27] Grupo de Aprendizaje Automatico - Universidad Autonoma de Madrid,
scikit-fda: Functional Data Analysis in Python, 2019. URL: https://fda.
readthedocs.io.

[28] A. Bagnall, J. Lines, W. Wickers, E. Keogh, The UEA & UCR time series
classification repository, 2017. www.timeseriesclassification.com.

[29] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32. URL: https:
//doi.org/10.1023/A:1010933404324. doi:10.1023/A:1010933404324.

[30] P. Tormene, T. Giorgino, S. Quaglini, M. Stefanelli, Matching incomplete
time series with dynamic time warping: An algorithm and an application
to post-stroke rehabilitation, Artificial Intelligence in Medicine 45 (2008)
11–34. doi:10.1016/j.artmed.2008.11.007.

[31] A. Bagnall, J. Lines, J. Hills, A. Bostrom, Time-series classification with
cote: The collective of transformation-based ensembles, IEEE Transactions
on Knowledge and Data Engineering 27 (2015) 2522–2535. doi:10.1109/
TKDE.2015.2416723.

[32] K. Fuchs, F. Scheipl, S. Greven, Penalized scalar-on-functions regression
with interaction term, Computational Statistics & Data Analysis 81 (2015)
38–51. doi:10.1016/j.csda.2014.07.001.

[33] C. A. Ratanamahatana, E. J. Keogh, Three myths about dynamic time
warping data mining., in: H. Kargupta, J. Srivastava, C. Kamath, A. Good-
man (Eds.), SDM, SIAM, 2005, pp. 506–510.

[34] J. Hills, J. Lines, E. Baranauskas, J. Mapp, A. Bagnall, Clas-
sification of time series by shapelet transformation, Data Min.
Knowl. Discov. 28 (2014) 851–881. URL: http://dx.doi.org/10.1007/
s10618-013-0322-1. doi:10.1007/s10618-013-0322-1.

[35] P. Kokoszka, M. Reimherr, Introduction to functional data analysis, CRC
Press, 2017.

[36] J. Schiffner, B. Bischl, M. Lang, J. Richter, Z. M. Jones, P. Probst, F. Pfis-
terer, M. Gallo, D. Kirchhoff, T. Kühn, et al., mlr tutorial, arXiv preprint
arXiv:1609.06146 (2016).

[37] B. Bischl, O. Mersmann, H. Trautmann, C. Weihs, Resampling methods
for meta-model validation with recommendations for evolutionary com-
putation, Evolutionary Computation 20 (2012) 249–275. URL: https:

//doi.org/10.1162/EVCO.a.00069. doi:10.1162/EVCO.a.00069, pMID:
22339368.

23

[38] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian opti-
mization of machine learning algorithms, in: F. Pereira, C. J. C.
Burges, L. Bottou, K. Q. Weinberger (Eds.), Advances in Neu-
ral Information Processing Systems 25, Curran Associates, Inc.,
2012, pp. 2951–2959. URL: http://papers.nips.cc/paper/

4522-practical-bayesian-optimization-of-machine-learning-algorithms.

pdf.

[39] B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, M. Lang, mlrMBO:
A Modular Framework for Model-Based Optimization of Expensive Black-
Box Functions, 2017. URL: http://arxiv.org/abs/1703.03373.

[40] B. Bischl, M. Lang, O. Mersmann, J. Rahnenführer, C. Weihs, BatchJobs
and BatchExperiments: Abstraction mechanisms for using R in batch en-
vironments, Journal of Statistical Software 64 (2015) 1–25. URL: http:
//www.jstatsoft.org/v64/i11/.

[41] M. Lang, B. Bischl, D. Surmann, batchtools: Tools for r to work on batch
systems, The Journal of Open Source Software 2 (2017). URL: https:

//doi.org/10.21105/joss.00135. doi:10.21105/joss.00135.

[42] A. Bagnall, J. Lines, J. Hills, A. Bostrom, Time-series classification with
cote: the collective of transformation-based ensembles, IEEE Transactions
on Knowledge and Data Engineering 27 (2015) 2522–2535.

[43] J. D. Tucker, fdasrvf: Elastic Functional Data Analysis, 2016. URL: https:
//CRAN.R-project.org/package=fdasrvf, r package version 1.6.0.

[44] F. Scheipl, J. Goldsmith, tidyfun, https://github.com/fabian-s/

tidyfun, 2019.

[45] L. Jin, Q. Niu, Y. Jiang, H. Xian, Y. Qin, M. Xu, Driver sleepiness detection
system based on eye movements variables, Advances in Mechanical Engi-
neering 5 (2013) 648431. URL: https://doi.org/10.1155/2013/648431.
doi:10.1155/2013/648431.

[46] M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, Eeg feature ex-
traction for classifying emotions using fcm and fkm, in: Proceedings
of the 7th WSEAS International Conference on Applied Computer and
Applied Computational Science, ACACOS’08, World Scientific and En-
gineering Academy and Society (WSEAS), Stevens Point, Wisconsin,
USA, 2008, pp. 299–304. URL: http://dl.acm.org/citation.cfm?id=

1415743.1415793.

[47] S. Soltani, On the use of the wavelet decomposition for time se-
ries prediction, Neurocomputing 48 (2002) 267 – 277. URL: http:

//www.sciencedirect.com/science/article/pii/S0925231201006488.
doi:https://doi.org/10.1016/S0925-2312(01)00648-8.

24

6.2 Regularized target encoding outperforms traditional methods in
supervised machine learning with high cardinality features 293

6.2 Regularized target encoding outperforms traditional
methods in supervised machine learning with high
cardinality features

Contributed Article:
F. Pargent, F. Pfisterer, J. Thomas, and B. Bischl. Regularized target encoding outper-
forms traditional methods in supervised machine learning with high cardinality features.
Computational Statistics, pages 1–22, 2022

Declaration of contributions The contribution originated from a master’s thesis by
FPa that investigated the effect of different categorical encoding techniques supervised
by JT and BB. This resulted in a first draft that extended the analysis of the original
thesis, which was mainly authored by FPa with help from FPf who substantially revised
the manuscript. JT and BB provided helpful feedback, reviewed and edited the final
manuscript.

Computational Statistics
https://doi.org/10.1007/s00180-022-01207-6

ORIG INAL PAPER

Regularized target encoding outperforms traditional
methods in supervised machine learning with high
cardinality features

Florian Pargent1 · Florian Pfisterer2 · Janek Thomas2 · Bernd Bischl2

Received: 30 April 2021 / Accepted: 7 February 2022
© The Author(s) 2022

Abstract
Since most machine learning (ML) algorithms are designed for numerical inputs, effi-
ciently encoding categorical variables is a crucial aspect in data analysis. A common
problem are high cardinality features, i.e. unordered categorical predictor variables
with a high number of levels. We study techniques that yield numeric representations
of categorical variables which can then be used in subsequent ML applications. We
focus on the impact of these techniques on a subsequent algorithm’s predictive per-
formance, and—if possible—derive best practices on when to use which technique.
We conducted a large-scale benchmark experiment, where we compared different
encoding strategies together with five ML algorithms (lasso, random forest, gradient
boosting, k-nearest neighbors, support vector machine) using datasets from regres-
sion, binary- and multiclass–classification settings. In our study, regularized versions
of target encoding (i.e. using target predictions based on the feature levels in the train-
ing set as a new numerical feature) consistently provided the best results. Traditionally
widely used encodings that make unreasonable assumptions to map levels to integers
(e.g. integer encoding) or to reduce the number of levels (possibly based on target
information, e.g. leaf encoding) before creating binary indicator variables (one-hot or
dummy encoding) were not as effective in comparison.

Keywords Supervised machine learning · Benchmark · High-cardinality categorical
features · Target encoding · Dummy encoding · Generalized linear mixed models

B Florian Pargent
florian.pargent@psy.lmu.de

1 Department of Psychology, Psychological Methods and Assessment, LMU Munich,
Leopoldstraße 13, 80802 Munich, Germany

2 Department of Statistics, Statistical Learning and Data Science, LMU Munich, Ludwigstraße 33,
80539 Munich, Germany

123

F. Pargent et al.

1 Introduction

While increasing sample size is usually considered the most important step to improve
the predictive performance of a machine learning (ML) model, using effective fea-
ture engineering comes as a close second. One remaining challenge is how to handle
high cardinality features—categorical predictor variables with a high number of dif-
ferent levels but without any natural ordering. While categorical variables with only
a small number of possible levels can often be efficiently dealt with using standard
techniques such as one-hot encoding, this approach becomes inefficient as the number
of levels increases. Despite this inefficiency, simpler strategies are often favored in
practice because other methods are either not known, implementations are missing or
because of a lack of trust due to missing validation studies. Although domain knowl-
edge can sometimes be used to reduce the number of theoretically relevant levels,
finding strategies that work well on a large variety of problems is highly important
for many applications as well as in automated ML (Feurer et al. 2015; Thomas et al
2018; Thornton et al. 2013). Optimally, strategies should be model-agnostic because
benchmarking encoding methods together with ML algorithms from different classes
is often necessary for applications. While a variety of strategies exist, there are very
few benchmarks that can be used to decide which technique is expected to yield good
predictive performance. Furthermore, there has recently been increasing attention on
scientific benchmark studies that compare different methods to provide a clearer pic-
ture in light of a large number of methods available to practitioners (Bommert et al.
2020; Fernández-Delgado et al. 2014), as they can provide at least partial answers to
such questions. The goal of this study is to provide an overview of existing approaches
for encoding categorical predictor variables and to study their effect on a model’s pre-
dictive performance. Following calls in the computational statistics community for
neutral benchmark studies (Boulesteix et al. 2017), which do not introduce a new
method, thus reducing the risk of cherry picking methods (Dehghani et al. 2021)
and reporting over-optimistic performance (Nießl et al. 2021), we present a carefully
designed experimental setting to discern the effect of encoding strategies and their
interaction with different ML algorithms.

1.1 Notation

We consider the classical setting of supervised learning from an i .i .d. tabular dataset
D of size N sampled from a joint distribution P(x, y) of a set of features x and
an associated target variable y. Here, x consists of a mix of numeric (real-valued
or integer-valued) features and categorical features, the latter of which we seek to
transform feature-wise to numeric features using a categorical encoding technique.
Let x be a single unordered categorical feature from a feature spaceX with cardinality
card(X) ≤ card(N). It holds either y ∈ R (regression), y ∈ C from a finite class
space C = {c1, . . . , cC } with C = 2 (binary classification) or C > 2 (multiclass
classification). We always assume to observe all C classes in our training sample,
however we might only observe a subset Ltrain ⊆ X of a feature’s available L levels,
Ltrain = {l1, . . . , lL} for categorical features. We denote the observed frequency of

123

Regularized target encoding outperforms traditional…

Fig. 1 Taxonomy of common
categorical variable encoding
techniques

class c in the training set with Nc and the observed frequency of a level l in the
training set with Nl . We investigate categorical encoding techniques to transform each
nominal feature xtrain into numerical features x̂ train which are then used for training.
If clear from the context, we use x̂l as the encoded value for an observation with level
l. Although datasets might contain multiple high cardinality features, we encode each
feature separately but with the same strategy.

1.2 Related work

We broadly categorize feature encoding techniques into target-agnostic methods and
target-based methods (Micci-Barreca 2001). Figure 1 contains a taxonomy of our
considered encodingmethods.Target-agnosticmethods do not rely on any information
about the target variable and can therefore also be used in unsupervised settings. Simple
strategies from this domain e.g. one-hot or dummy encoding are widely used—in the
scientific literature (Hancock and Khoshgoftaar 2020; Kuhn and Johnson 2019) but
also on Kaggle1 to embed variables for classical ML algorithms as well as (deep)
neural networks. Such indicator methods map each level of a categorical variable to a
set of dichotomous features encoding the presence or absence of a particular level. An
obvious drawback of indicator encoding is that it adds one additional feature per level
of a categorical variable. When indicator encoding leads to an unreasonable number
of features, levels are often mapped to integer values with random order (integer
encoding). Alternatively, the “hashing trick” (Weinberger et al. 2009) can be used to
randomly collapse feature levels into a smaller number of indicator variables (Kuhn
and Johnson 2019), or levels can be encoded by using the observed frequency of a
given level in the dataset (frequency encoding).

Target-based methods try to incorporate information about the target values asso-
ciated with a given level. Early strategies aimed to reduce the number of levels by
methods like hierarchical clustering or decision trees based on statistics of the tar-
get variable, although this has been rarely described in the scientific literature (for a
brief mention, see Micci-Barreca 2001). The basic idea of more advanced methods

1 https://www.kaggle.com.

123

F. Pargent et al.

called target, impact, mean, or likelihood encoding is to use the training set to make
a simple prediction of the target for each level of the categorical feature, and to use
the prediction as the numerical feature value x̂l for the respective level. An early for-
mal description of this strategy is (Micci-Barreca 2001). In simple target encoding
for regression problems, the mean target value in the training set from all observa-
tions with a certain feature level is used to encode that level for all observations:

x̂l =
∑

i :xtraini =l
ytraini

Nl
. Simple target encoding often does not perform well with rare

levels, where it tends to overfit to the training data and fails to generalize well for new
observations. In the extreme case of a categorical feature with unique values (e.g. some
hashed ID variable) studied in Prokhorenkova et al. (2018), the mean target for each
level of this feature in simple target encoding is similar to the true target value of a
single observation. Based on the encoded feature, all observations can be predicted
perfectly in the training set, even if the original variable did not contain any useful
information. ML models would place a high priority on such an encoded feature dur-
ing training but would perform badly on test data. To avoid this, practitioners often
use regularized target encoding with a smoothing parameter that shrinks those effects
towards the global mean (Micci-Barreca 2001). An alternative strategy is to combine
target encoding with cross-validation (CV) techniques (Prokhorenkova et al. 2018).

1.3 Categorical encoding benchmarks

Several small-scale studies have been previously conducted. Thoseworks did not yield
conclusive results due to narrower scopes or not considering high cardinality variables.
One benchmark (6 datasets) on encoding high cardinality features (cardinality between
103 and 9095) in combination with gradient boosting has been published on the Kag-
gle forums (Prokopev 2018). Different versions of target encoding are compared with
indicator, integer, and frequency encoding. They recommend combining the smoothed
version of target encodingwith 4- or 5-fold CV, never using simple target encoding and
using indicator encoding only for small datasets. Interestingly, frequency encoding did
perform well in many cases. Coors (2018) performed a benchmark (12 datasets) on
encoding high cardinality features (maximum number of levels per dataset between 10
and 25,847) when developing the automatic gradient boosting (autoxgboost) library
(Thomas et al 2018). They compared different variants of target encoding with inte-
ger and indicator encoding. In their benchmarks, target encoding only improved over
target-agnostic methods on 2 datasets, while it led to worse results on 4 datasets. For
a smaller number of levels, indicator and integer encoding yielded similar results. As
those studies only consider gradient boosting and a limited amount of datasets, it is
unclear whether results generalize to other datasets andML algorithms. A recent study
(15 datasets) found good performance of target encoding, but they only investigated
categorical features in regression settings (Seca and Mendes-Moreira 2021). Several
other publications studied encoding text data based on similarity (Cerda et al. 2018;
Cerda and Varoquaux 2020) and employed indicator or target encoding as baselines.
Another line of work studies variable encodings employed within specific ML mod-
els. Wright and König (2019) study treatments for categorical variables in random
forests together with dummy and integer encoding (18 datasets, cardinality between

123

Regularized target encoding outperforms traditional…

3 and 38), concluding that indicator and integer encoding perform subpar in compar-
ison to methods that re-order levels according to the target variable. Prokhorenkova
et al. (2018) compared their new CatBoost variant of target encoding to smoothed
target encoding without CV, hold-out, and leave-one-out CV on 8 datasets. While the
CatBoost method performed best, hold-out came second and target encoding without
CV performed worst. An overview of encoding techniques tailored towards neural
networks (e.g. the widely adopted entity embeddings by Guo and Berkhahn 2016) is
provided inHancock andKhoshgoftaar (2020). They present a survey of indicator- and
embedding-based methods but no benchmark study. In contrast, our work is the first to
focus on high cardinality variables and techniques that are agnostic to the subsequent
ML method. We study this problem on a larger variety of datasets and settings.

The main goal of our study is to assess the impact different categorical encoding
techniques have on subsequentmodels’ predictive performance. As the optimal encod-
ing might differ depending on the ML algorithm, we consider various state-of-the-art
algorithms, regularized linear models (LASSO), random forests (RF), gradient tree
boosting (GB), k-nearest neighbors (KNN), and support vector machines (SVM). To
find default settings for high cardinality features, we analyze a variety of datasets
with different characteristics including regression, binary classification, and multi-
class classification problems. Because our methods vary in runtime and complexity,
we are interested in whether more complex methods are to be preferred, or if simpler
approaches suffice. We also study the relationship between a feature’s cardinality and
the choice of encoding technique by varying the minimum number of levels above
which features are transformed.

1.4 Contributions

Wesurvey a broad set of categorical encoding techniques and conduct a comprehensive
benchmark study with a focus on high cardinality features. We carefully design a
benchmark scenario as well as a preprocessing scheme allowing us to study 7 different
encoding techniques in conjunction with 5 commonly used ML algorithms across 24
diverse datasets, both from a classification and a regression regime. We give a detailed
description of our study design to highlight important considerations for studying high
cardinality features. Our results provide an overview of the performance of various
approaches heavily used in the literature. After a discussion of results concerning
predictive performance, we provide further analyses seeking to inform practitioners
which methods to apply. This includes an important discussion of runtimes.

2 Encodings

Pseudocode for all encoders is presented in the SupplementaryMaterial. An important
detail is how encoding techniques treat new levels during the prediction phase.

123

F. Pargent et al.

2.1 Integer encoding

The simplest strategy for categorical features is integer encoding (also called ordinal
encoding). Observed levels from the training set are mapped to the integers 1 to L .
Although new levels could be mapped to L + 1 or 0, model predictions would be
arbitrary as the integer order does not carry information. Thus, we encode new levels
as missing values and use mode imputation to obtain the integer which matches the
most frequent level in the training set. Integer encoding should only be an acceptable
strategy for tree-based models, which can separate all original levels with repeated
splits.

2.2 Frequency encoding

Frequency encoding maps each level to its observed frequency in the training set
(x̂l = Nl). This assumes a functional relationship between the frequency of a level
and the target. It implicitly reduces the number of levels, and the subsequent model can
best differentiate between levels with dissimilar frequencies. This approach is heavily
used in natural language processing to encode token or n-gram counts. We encode
new levels with a frequency of 1.

2.3 Indicator encoding

We use indicator encoding as an umbrella term for two common strategies to encode
categorical features with a small to moderate number of levels: one-hot and dummy
encoding. One-hot encoding transforms the original feature into L binary indicator
columns, each representing one original level. An observation is coded with 1 for
the indicator column representing its level (xtraini = l) and 0 for all other indicators.
Dummy encoding results in only L −1 indicator columns. A reference feature level is
chosen that is encoded with 0 in all indicator columns. For one-hot encoding, the zero
vector can be used to encode new levels which were not observed during training. For
dummy encoding, it is not useful to collapse new levels to the often arbitrary reference
category; in our case the first level in alphabetical order. We replace new levels in
the prediction phase with the most frequent level in the training set. As constructing
all indicator variables is practically infeasible for high cardinality variables, we limit
their number by collapsing rare levels beyond a varying threshold to a single other
category before encoding.

2.4 Hash encoding

Hash Encoding can be used to compute indicator variables based on a hash function
(Weinberger et al. 2009). The basic idea is to transform each feature level l into an inte-
ger hash(l) ∈ N, based on its label. This integer is then transformed into an indicator
representation, with 1 in indicator column number (hash(l) mod hash.si ze)+1 and
0 in all remaining columns (Kuhn and Johnson 2019). Some levels are hashed to the

123

Regularized target encoding outperforms traditional…

same indicator representation. The smaller the hash.si ze, the higher the number of
collapsed levels. The number of indicators is often effectively lower than hash.si ze,
as some indicators can be constant in the training set (we remove those columns for
both training and prediction). Although we could jointly hash multiple features, we
hash each feature separately to improve comparability with the other encoders.

2.5 Leaf encoding

Leaf encoding fits a decision tree on the training set to predict the target based on
the categorical feature. Each level is encoded by the number of the terminal node,
in which an observation with the respective level ends up. In that way, leaf encoding
combines feature levels with similar target values. We use the rpart package in R
(Therneau and Atkinson 2018) which grows CARTs with categorical feature support
that can be pruned based on internal performance estimates from 10-fold CV. Thus,
our leaf encoder automatically uses an “optimal” number of new levels. To speed up
the computation for multiclass classification, our implementation uses the ordering
approach presented in Wright and König (2019). New levels are encoded with the
arbitrary number of the terminal nodewithmost observations during training. Encoded
values are treated as a new categorical feature and encoded by one-hot encoding.
Our leaf encoder can be thought of as a simplification of the approach suggested by
Gra̧bczewski and Jankowski (2003).

2.6 Impact encoding

An early formal description of a so-called impact, target or James-Stein encoder was
provided by Micci-Barreca (2001). The basic idea is to encode each feature level with
the conditional target mean (regression) or the conditional relative frequency of one or
more target classes (classification). The impact encoder for classification uses a logit
link and transforms the original feature into C numeric features, each representing
one target class. A smoothing parameter ε is introduced to avoid division by zero.
This parameter could be used to further regularize towards the unconditional mean.
We choose a small ε = 0.0001 as we want to compare simple target encoding with the
regularized encoder introduced next. Weights of evidence encoding from the credit
scoring classification literature (Hand and Henley 1997) is almost identical to impact
encoding, but without regularization or centering.

2.7 GLMM encoding

Smoothed target encoding (Micci-Barreca 2001) can be interpreted as a simple (gen-
eralized) linear mixed model (glmm) in which the target is predicted by a random
intercept for each feature level in addition to a fixed global intercept. This connection
is described in Kuhn and Johnson (2019). To achieve regularized impact encoding, we
implemented glmm encoders for regression, binary, and multiclass classification. The
encoded value for each level is based on the spherical conditional mode estimates. In

123

F. Pargent et al.

regression, the conditional modes are similar to the mean target value for each level,
weighted by the relative observed frequency of that level in the training set (Bates
2020). The estimate of the fixed intercept can be used during the prediction phase to
encode new feature levels not observed in the training set. In multiclass classification,
we fit C one vs. rest glmms resulting in one encoded feature per class. An impor-
tant advantage of using a glmm over impact encoding with a smoothing parameter is
that a reasonable amount of regularization is determined automatically and tuning the
complete ML pipeline is not necessary.

Overfitting can be further avoided through combination with cross-validation (CV)
to train the encoder on independent observations without limiting the data to train
the MLmodel. We provide an implementation which combines target encoding based
on glmms with CV. During the training phase, we partition the data using CV into
n. f olds and fit a glmm on each resulting training set. For each observation, there is
exactly one glmm that did not use that observation for model fitting and can be safely
used for encoding. Note that the n. f olds CV models (for n. f olds > 1) are only used
during the training phase. In the prediction phase, feature values are always encoded
by a single glmm fitted to the complete training set. We study this method in three
different settings: without CV (noCV), with 5− (5CV) and with 10− fold CV (10CV).
In our study, we use the lmer (regression) and glmer (classification) functions from
the lme4 package in R (Bates et al. 2015) as an efficient way to fit glmms.

2.8 Control conditions

We include three control conditions to better understand the effectiveness of the investi-
gated encoders: The performance of a featureless learner (FL condition)was estimated
as a conservative baseline for each dataset. In regression problems, FL predicts the
mean of the target variable in the training set for each observation in the test set. In
classification problems, the most frequent class of the target within the training set
is predicted. For each dataset, we also consider a RF without encoding (none con-
dition), to compare the use of encoding methods with a natural categorical splitting
approach. The ranger (Wright et al. 2017) implementation provides efficient categori-
cal feature support by ordering levels once before starting the tree growing algorithm
(Wright and König 2019). In the remove high cardinality features control condition,
we omit features with a high number of levels above some threshold and use one-hot
encoding (without collapsing rare levels) for the remaining features. This condition
reflects on whether including high cardinality features does indeed improve predictive
performance. Otherwise, the best encoding might just provide the least impairment
compared to not including any high cardinality features. We include an overview of
available implementations in widely used ML frameworks for R and python in the
Supplementary Material.

123

Regularized target encoding outperforms traditional…

3 Benchmark setup

3.1 Datasets

A table showing a detailed summary of all benchmark datasets can be found in the
Supplementary Material. We specifically investigate datasets that contain categorical
variables with a large number of levels, includingmanywell-known datasets from pre-
vious studies (Cerda et al. 2018; Coors 2018; Kuhn and Johnson 2019; Prokhorenkova
et al. 2018). All datasets can be downloaded from the OpenML platform Vanschoren
et al. (2013) based on the name or the displayed OmlId. The datasets include 8 regres-
sion, 10 binary classification, and 6 multiclass classification problems (between 3
and 12 classes). To assess the imbalance in categorical variables we computed the
normalized entropy for each categorical variable. The maximum normalized entropy
is 1, which corresponds to a uniform distribution, while a lower number indicates a
larger imbalance. Sample sizes range between 736 and 1224158 observations. The
total number of features ranges between 5 and 208. Datasets contain between 1 and
20 categorical features with more than 10 levels, with the maximum number of levels
for a feature ranging between 14 and 30,114. Missing values are present in about half
of the datasets.

3.2 High cardinality threshold

It is often assumed that advanced encoding methods are only advantageous for vari-
ableswith a high number of levels,while simple indicator encoding ismore appropriate
for a small number of levels. To reflect this in our benchmark, a high cardinality
threshold (HCT) parameter with values of 10, 25, and 125 was introduced deter-
mining varying configurations for the different encoders. For indicator encoding, the
HCT − 1 most frequent levels are encoded together with a single collapsed cate-
gory for the remaining levels. For integer, frequency, hash, leaf, impact, and glmm
encoders, only features with more than HCT levels in the training set were encoded
with the respective strategy, while the remaining categorical features were one-hot
encoded. HCT is used as the hash size in hash encoding. In the remove control con-
dition, features with more than HCT levels in the training set are removed from the
feature set.2

3.3 Machine learning pipeline and algorithms

In total, we investigate 5 ML algorithms. We kept tuning their hyperparameters to a
minimum because we were interested in the effect of the encoding techniques instead
of a comparison of ML algorithms. LASSOs were fitted with glmnet (Friedman

2 Based on the number of categorical features and levels per feature, some HCT settings were removed
from the benchmark for some combinations of dataset X encoder. This ensured that encoders always affect
at least one feature and that the remove condition always removes at least one feature. If settings where an
encoder would lead to identical encoding strategies for all features of a dataset, we only kept the condition
with the smallest HCT value.

123

F. Pargent et al.

et al. 2010), internally tuning the regularization using 5-fold CV. RFs with 500 trees
were trained using ranger (Wright et al. 2017) without tuning, because RFs can be
expected to give reasonable resultswith default settings (Probst et al. 2019).GBmodels
were trained using xgboost (Chen et al. 2018), setting the learning rate to 0.01 and
determining the number of iterations using early stopping on a 20% holdout set.
KNNwas taken from package kknn (Schliep and Hechenbichler 2016) standardizing
features and using a constant k = 15 for the number of nearest neighbors, together
with an information gain filter (Brown et al. 2012) to limit the number of features to 25.
SVMswith radial basis function kernel were trainedwith liquidSVM (Steinwart and
Thomann 2017). The bandwidth and regularization parameters were internally tuned
using 5-fold CV. We used a one-vs-all approach for multiclass-settings.

The ML pipeline outlined below was used for all experimental conditions. It was
carefully designed to ensure consistent results for extreme conditions (e.g. some levels
only existing in the training data).

Imputation I Create a new factor level for missing values in categorical features
with more than two categories. Impute missing values in binary features using the
mode and missing values in numerical features using the mean feature value in the
training data.

Encoding Transform the complete categorical features by the respective encoder. In
the no encoding condition, the encoder simply passes on its input. The leaf and remove
conditions still return categorical features, while the remaining encoders return only
numerical features. Encoders only affect categorical variables above the specifiedHCT
value.

Imputation II To handle new levels observed during prediction, impute missing
values obtained during encoding.

Drop constants Drop features that are constant during training. As none of the
original datasets includes constant columns, this step only removes constant features
that are produced by the encoders or the CV splitting procedure.

Final one-hot encoding Transform all remaining categorical features via one-hot
encoding (skipped for no encoding condition).

Learner Use the transformed data from each training set to fit the respective ML
algorithm. In the prediction phase, transformed feature values (based on the trained
encoder) for new observations in each test set are fed into the trainedmodel to compute
predictions.

3.4 Performance evaluation

We perform all analyses in the open-source statistical software R (R Core 2021).
To enable a fair and reliable comparison in our study, we implemented all encoding
methods on top of the mlrCPO package (Binder 2018). The pre-processing, as well
as the final ML algorithm described in Sect. 3.3, were trained and resampled using
the mlr framework (Bischl et al. 2016) together with the batchtools package
(Lang et al. 2017) to scale the benchmark analysis to HPC compute infrastructure.

123

Regularized target encoding outperforms traditional…

All materials for this study, including reproducible code for this manuscript and result
objects can be downloaded from our online repository. 3

Throughout our experiments, we use 5-fold CV to obtain estimates of predictive
performance. Depending on the target variable, we report root mean squared error
(RMSE) for regression, area under the curve (AUC) for binary classification, and its
extension AUNU (Ferri et al. 2009) for multiclass problems.

In our benchmark study, each encoding method listed in Sect. 2 is combined with
all ML algorithms (c.f. Sect. 3.3) across high cardinality thresholds (HCT) 10, 25,
125. While we only report results for the best HCT setting for each ML algorithm
× dataset combination in Sect. 4, we study the effect of the HCT parameter in more
detail in Sect. 4.5.

4 Benchmark results

Our main question is which encoding methods generally work well across various
datasets. We report results for regression and classification datasets separately, as the
associated metrics differ in scale.

For 6 datasets, some conditions with the SVM led to unexpected crashes due to
memory problems or numerical errors. We completely removed those datasets for the
SVMwhen computing ranks or other statistics that compare encodings across datasets.

4.1 Encoder performance

Mean performance estimates along with minimum and maximum performance are
reported for all datasets in Figs. 2 (regression), 3 (binary classification), and 4 (mul-
ticlass classification). To reduce the complexity induced by the hyperparameter HCT
we only display the parameter condition with the best performance for each combi-
nation of dataset × encoding × ML algorithm. The y-axis differs for all datasets and
is reversed for the RMSE for better visual comparison. For some datasets, the remove
condition performed very similar to the other encodings (e.g. ames-housing, porto-
seguro), suggesting that categorical features were not informative. Performance in
some CV folds was below the FL learner for flight-delay-usa-dec-2017 (RMSEFL =
48.81) and nyc-taxi-green-dec-2016 (RMSEFL = 2.22).

On datasets with substantive performance differences, target encoding with the
glmm encoder was generallymost effective. The worst encoder differed by ML algo-
rithm and dataset. For datasets Click_prediction_small, KDDCup09_upselling, kick,
and okcupid-stem some encoder × ML algorithm conditions performed worse than
simply removing high cardinality features.

4.2 Meta rankings and dataset clustering

To further analyze our results, we used statistical inference methods inspired by the
benchmark community in computational statistics (e.g., Hothorn et al. 2005). First,

3 https://github.com/slds-lmu/paper_2021_categorical_feature_encodings.

123

F. Pargent et al.

integer frequency dummy one−hot hash leaf impact glmm−noCV glmm−5CV glmm−10CV none remove

20000

30000

40000

50000

60000

R
M
S
E

ames−housing

10000

15000

20000

25000

employee_salaries

0.15

0.20

0.25

0.30

R
M
S
E

avocado−sales
2.0

2.2

2.4

2.6

wine−reviews

2000

4000

6000

R
M
S
E

medical_charges
10.0

10.5

11.0

particulate−matter−ukair−2017

43

45

47

49

LASSO RF GB KNN SVM

R
M
S
E

flight−delay−usa−dec−2017

1.5

1.8

2.1

LASSO RF GB KNN SVM

nyc−taxi−green−dec−2016

Fig. 2 Performance estimates from 5-CV for regression (mean, min, max). For each combination, only the
best HCT condition is displayed. Note the reversed y-axis to ease visual interpretation

we present meta rankings for each ML algorithm in Fig. 5: We defined an encoder
relation within each dataset, based on corrected resample t-tests (Nadeau and Bengio
2003). An encoding was defined to beat another encoding if the one-sided p-value of
the t-test was < .05. This allowed us to compute a weak-order consensus ranking R
defined by the optimization problem:

arg min
R∈C

B∑

b=1

d(Rb, R)

where d is the symmetric difference distance and Rb is the relation for dataset b (Hornik
and Meyer 2007; Meyer and Hornik 2018). The symmetric difference between two
relations is the number of cases one encoding beats another encoding in one relation
but not in the other one.

Although the presented solutions of the optimization problem are not unique, rank-
ings were highly stable for the high and low ranks. Meta rankings seem to be highly
consistent with the individual patterns of encoder performances reflected in Figs. 2
to 4. Looking at meta-rankings, approaches based on GLMM’s in combination with

123

Regularized target encoding outperforms traditional…

integer frequency dummy one−hot hash leaf impact glmm−noCV glmm−5CV glmm−10CV none remove

0.84

0.88

0.92

0.96

AU
C

churn

0.90

0.92

0.94

0.96

kdd_internet_usage

0.5

0.6

0.7

0.8

AU
C

Amazon_employee_access

0.45

0.50

0.55

0.60

0.65

0.70
Click_prediction_small

0.87

0.88

0.89

0.90

0.91

0.92

AU
C

adult

0.6

0.7

0.8

KDDCup09_upselling

0.70

0.72

0.74

0.76

AU
C

kick

0.5

0.6

0.7

0.8

0.9

open_payments

0.50

0.55

0.60

0.65

0.70

0.75

LASSO RF GB KNN

AU
C

road−safety−drivers−sex

0.550

0.575

0.600

0.625

LASSO RF GB KNN SVM

porto−seguro

Fig. 3 Performance estimates from 5-CV for binary classification (mean, min and max). For each combi-
nation, only the best HCT condition is displayed

cross-validation outperform all other approaches across all algorithms. A further inter-
esting detail omitted in Fig. 5 for clarity is that the none encoding strategy for the RF
was beaten by all strategies except for the remove condition. This implies, that even
if the algorithm provides a mechanic for treating categorical variables, it might often
be optimal to use a different strategy instead.

In a second exploratory analysis, we tried to find clusters of datasets based on sys-
tematic patterns of encoder performance (independent of the employedMLalgorithm).
We computed a partial-order consensus relation acrossML algorithms for each dataset
and hierarchically clustered the dataset consensus relations using the symmetric dif-
ference distance in combination with the complete linkage agglomeration method.
The resulting dendrogram is displayed in Fig. 6. Although the cluster structure is
somewhat ambiguous, roughly three clusters can be described: The first 9 datasets

123

F. Pargent et al.

integer frequency dummy one−hot hash leaf impact glmm−noCV glmm−5CV glmm−10CV none remove

0.85

0.90

0.95

1.00

AU
N
U

eucalyptus

0.70

0.75

0.80

0.85

0.90

Midwest_survey

0.75

0.80

0.85

0.90

0.95

AU
N
U

hpc−job−scheduling

0.70

0.75

0.80

video−game−sales

0.76

0.78

0.80

0.82

LASSO RF GB KNN SVM

AU
N
U

okcupid−stem

0.600

0.625

0.650

0.675

0.700

LASSO RF GB KNN SVM

Diabetes130US

Fig. 4 Performance estimates from 5-CV for multiclass classification (mean, min and max). For each
combination, only the best HCT condition is displayed

dumm frqCV10CV5 noCV hashimp intleafoh rm

dummfrqCV10CV5 noCV hashimp int ho fael rm

dumm frqCV10CV5noCV hashimp intleaf oh rm

dummfrqCV10CV5 noCV hash tni pmi leafoh rm

dummfrqCV10CV5 noCV hashimp intleaf oh rmGB

KNN

LASSO

RF

SVM

1 2 3 4 5 6 7 8 9 10 11

integer

frequency

dummy

one−hot

hash

leaf

impact

glmm−noCV

glmm−5CV

glmm−10CV

remove

Fig. 5 Consensus rankings across all datasets for each algorithm. Lower ranks indicate better performance.
The rank of the none control condition of the RF (rank 11 of 12) was omitted from the figure

from the top of the dendrogram are characterized by a medium to high number of
levels, low performance of the remove condition (indicating the importance of high
cardinality features) and clear performance advantage of target encoders. For the next
13 datasets which contain the smallest number of levels, traditional encodings can
compete with target encoding. This biggest cluster also includes 9 datasets with zero
distances, in which no significant performance differences could be observed between

123

Regularized target encoding outperforms traditional…

Click_prediction_small
KDDCup09_upselling

Diabetes130US
adult

nyc−taxi−green−dec−2016
porto−seguro

flight−delay−usa−dec−2017
particulate−matter−ukair−2017

kick
kdd_internet_usage

churn
eucalyptus

ames−housing
hpc−job−scheduling

avocado−sales
okcupid−stem

open_payments
Amazon_employee_access

road−safety−drivers−sex
Midwest_survey

employee_salaries
video−game−sales

wine−reviews
medical_charges

0 20 40 60

Fig. 6 Hierarchical cluster analysis of benchmark datasets. The symmetric difference distance between two
datasets reflects differences in performance patterns between encodings (independent of the employed ML
algorithm)

any encoding conditions (nor with the remove condition, indicating that high cardi-
nality features are less informative). The last two datasets with the highest number
of levels formed a separate cluster, in which target encoding without strong regular-
ization (impact, glmm-noCV) showed severe overfitting. Note that clusters were not
determined by problem type, again suggesting that encoder rankings are somewhat
similar for regression and classification settings.4

4.3 Summary of encoder performance

Regularized target encoding was superior or at least competitive on all datasets. We
could not observe a setting in which regularized target encoding was convincingly
beaten by target agnostic methods. Especially effective was glmm encoding with 5-
fold-CV, which ranked first place for all ML algorithms except SVM. Performance
often did not improve with glmm-10CV, suggesting that 5 folds might be a good
regularization default in practice. In line with earlier research (Micci-Barreca 2001;
Prokhorenkova et al. 2018), target encoding with regularization (glmm) performed
better or equally well in comparison with the unregularized impact encoder. When
glmm performed better, impact encoding not only performed worse than glmm with
CV but was sometimes also inferior compared to other encoders.

4 We tried to corroborate this observation by comparing meta-rankings between problem types. Unfortu-
nately, problem type specific consensus relations did not converge (probably due to the reduced number of
datasets) and were uninterpretable.

123

F. Pargent et al.

The following observationswere also interesting: Surprisingly, integer encoding did
not perform well with GB and target-based encoders (especially the glmm encoder)
seem to be preferable. For LASSO, previous studies have suggested that indicator
encoding works well, even with a very high number of levels (Cerda et al. 2018).
Although the glmm encoders ranked first in our benchmark for the LASSO, it was
the only algorithm where the indicator encoders achieved the next best ranking. Note
that for computational reasons we limited the maximum amount of indicator variables
per feature to 125 in our experimental design. The HCT = 125 setting performed
best for LASSO with indicator encoding in a large number of datasets, indicating that
performancemight have further improvedwith higher values.BothKNNandSVMrely
on numerical distances in feature space and tend to perform poorly in the presence of
high dimensionality. Thus,we expected that target encoding shouldworkwell here as it
transforms categories into a single, smooth numerical feature. This was backed by our
benchmark results. For some datasets (medical_charges, road-safety-drivers-sex, and
Midwest_survey) KNN (without tuning of the optimal number of nearest neighbors)
could compete with the more sophisticatedML algorithms when combined with target
encoding, but performed poorly with other encoders. Although consistent with the big
picture, SVM results have to be considered with care, as some experimental conditions
resulted in unexpected computational errors. In RF, a widely used strategy to deal with
categorical features is to order levels by average target statistics for a given level. For
a small number of levels, this approach has been reported superior to indicator and
integer encoding (Wright and König 2019), while we observed poor performance for
datasets with a larger number of levels.

When looking for a simple default encoding, indicator encoding in combination
with collapsing small levels seems a robust alternative, although the glmm encoders
performed better.We found that one-hot encoding usually gave a slightly better perfor-
mance than dummy encoding, which has also been observed by Chiquet et al. (2016);
Tutz and Gertheiss (2016) (p. 254). Our results suggest that one-hot encoding is the
better standard compared to dummy encoding when applying nonlinear regularized
models like RF, GB or SVM with (high cardinal) categorical features. We provide a
more detailed comparison for indicator encoding in the Supplementary Material.

4.4 Runtime analysis

To determine whether traditional encodings are preferred when facing limited com-
putational resources, we further analyzed runtimes of the whole analysis pipeline for
different encoders and ML algorithms. Aggregated results are shown in Table 1. To
enable a meaningful comparison, we report runtime as the fraction of a full pipeline’s
strategy compared to the one-hot encoding condition and then further aggregate across
datasets using the median. Again, we only report the best HCT setting. Absolute run-
times are hard to interpret and aggregate because runtime distributions across datasets
are heavily skewed as proportionally larger runtimes are observed for big datasets.
While a pipeline’s runtime can be dominated by the encoder for small datasets, the
training of the consecutive ML algorithm is dominating for large datasets, which
might render differences during encoding irrelevant. Therefore we aim to report what

123

Regularized target encoding outperforms traditional…

Table 1 Proportional increase in runtime compared to one-hot encoding

Encoding LASSO RF GB KNN SVM

Integer 0.41.40 0.591.10 0.670.90 0.851.50.4 1.011.60.6

Frequency 0.342.10 0.541.70 0.541.50 0.791.10.2 1.111.70.5

Dummy 1.132.80.8 0.911.70.5 0.975.70.4 1.051.60.6 1.021.50.7

One-hot 111 111 111 111 111
Hash 0.872.60.2 1.033.30.4 0.987.30.4 0.932.20.5 1.1620.5
Leaf 0.461.70 0.672.30 0.859.10 0.972.20.5 1.011.90.6

Impact 0.51.90.1 0.61.50.1 0.82120.50 1.11240.3 1.061.80.7

glmm-noCV 0.582.80 0.573.80.1 1.65120 1.0910.30.3 1.12.10.7

glmm-5CV 0.832.20.1 0.6615.30.1 7.2169.30 2.7750.10.7 1.414.60.6

glmm-10CV 1.074.20.1 0.9628.40.1 12.71127.60 5.3797.90.8 1.554.60.5

None 0.21.40

Remove 0.41.70 0.481.10 0.581.30 0.821.20.2 1.0920.6

Median max
min across datasets of the proportional increase in runtime from 5-CV, when comparing the respec-

tive encoder with one-hot encoding. Only the best HCT conditions are reported

is important in practice, the time differences for training the full pipeline. The results
clearly show that regularized target encoding does not consistently yield slower run-
times compared to simple strategies like indicator encoding. Supposedly, the more
efficient representations produced by target encoding lead to faster runtimes of subse-
quentML algorithms. This suggests that a possible runtime vs. predictive performance
trade-off might also be in favour of target encoding, especially for large datasets where
a high number of indicator variables increases computational load. We did observe
a substantial increase in runtimes when using regularized glmm with GB (with little
tuning), where runtimes are relatively short in comparison to the time required to fit
categorical encoders. In other settings (LASSO, RF), the glmm encoders have been
observed to be even faster than indicator encoding.

4.5 Analysing high cardinality thresholds

Until now, we ignored the HCT parameter by reporting only the condition with the
best performance. An interesting question is whether target encoding is only useful for
features with a very high number of levels or also for fewer levels, where most practi-
tioners would routinely use indicator encoding. We tested this using HCT thresholds
of 10, 25 and 125, but the results are not easy to interpret. In general, the optimal
threshold seemed to strongly depend on the dataset, but we also observed some weak
patterns: LASSO improved for larger HCT, indicating that its internal regularization
can efficiently deal with the sparseness induced by indicator encoding. In comparison,
other methods generally yielded better performance if features above the very low
HCT of 10 were encoded using one of the target encoding strategies. Differences in
regularization for the target based encoders seemed not to prefer different HCT values.

123

F. Pargent et al.

5 Discussion

In our benchmark, we compared encoding strategies for high cardinality categori-
cal features on a variety of regression, binary, and multiclass classification datasets
with different ML algorithms. Regularized target encoding was superior across most
datasets and ML algorithms. Although the performance of other encoding strategies
was comparable in some conditions, target encoding was never outperformed. In gen-
eral, our results suggest that regularized target encoding based on glmms with 5-fold
CV (glmm-5CV) works well for all kinds of algorithms and should be a reason-
able default strategy. It sometimes leads to slightly longer runtimes (in comparison
to indicator encoding), but especially for larger datasets this is often offset by the
more efficient representation produced by target encoding. The glmm encoder has a
clear advantage over target encodingwith a smoothing hyperparameter (Micci-Barreca
2001), as costly tuning the whole ML pipeline with different smoothing values is not
required.

What constitutes a “high” cardinality problem is a difficult question that might not
only depend on the number of levels but also on other characteristics of the dataset
and its features. Supposedly, the number of datasets in our study was too small to
discover consistent patterns between encoder performance and dataset characteristics.
Target encoding features with only 10 levels seemed to be effective in a substantive
number of conditions, but for other datasets, higherHCTvalues performedbetter. Thus,
some form of hyperparameter tuning seems necessary to decide the level threshold
for target encoding at this point, as no suitable defaults seem to be available. Note
that we compared different HCT values but then used the same encoding strategy for
all affected features alongside one-hot encoding for the remaining ones. A further
improvement could be to decide whether to use target encoding on a feature by feature
basis. ML pipelines could introduce a categorical hyperparameter for each feature
that represents which encoding is used. To make this complicated meta optimization
problem feasible, only a small number of encoders can be included. Our study can
help to decide which encoders could be safely omitted from consideration.

5.1 Limitations

Several design decisions were necessary to make answering our research questions
computationally feasible: We used minimal tuning for our ML algorithms, as we
were not interested in comparing their performance against each other. This probably
led to suboptimal performance for the GB, KNN, and SVM learners. When inter-
preting our results, we assume that the encoder rankings are comparable when more
extensive tuning is used. This is plausible because the meta rankings between algo-
rithms were highly stable. We only used 5-fold-CV without repetitions to estimate
predictive performance, but due to a small variance between folds, we could confi-
dently detect performance differences of encoders for many datasets. Because we are
interested in model-agnostic methods that can be combined with any supervised ML
algorithm, we did not investigate recent model-specific strategies (Guo and Berkhahn
2016; Prokhorenkova et al. 2018). We did not include deep neural networks in our

123

Regularized target encoding outperforms traditional…

benchmark because they are still rarely applied in the statistical learning community
and more dominant in computer science. We do not differentiate between nominal and
ordinal categorical features: Most publicly available datasets simply do not contain
any high cardinal ordinal features. For many applications, ordinal feature informa-
tion is not available as metadata which makes it less relevant for some applications
like automatic ML. Thus, our benchmark does not include specific ordinal encoding
methods like Helmert and Polynomial contrasts (Chambers and Hastie 1992) or ordi-
nal penalization methods (Tutz and Gertheiss 2016). We only investigate traditional
categorical variables and do not extend our analysis to multi-categorical variables or
text-strings (Cerda et al. 2018; Cerda and Varoquaux 2020), where other encoding
techniques can harvest additional information. We only investigate univariate encod-
ings, i.e. we always encode each variable separately. Levels with comparable main
effects can not be distinguished based on the transformed feature, which prevents
the consecutive ML algorithm from learning interactions for specific levels. Methods
that jointly encode features and therefore leverage correlational structures between
features are an interesting avenue for future research: Recent approaches use target-
based encoding strategies to learn a vector-valued representation of a level, similar to
neural network embeddings (Guo and Berkhahn 2016; Rodríguez et al. 2018). Those
should be compared to classical approaches from the optimal scaling literature (e.g.
De De Leeuw et al. 1976; Young et al. 1976) or the subsequent aspect framework
(Mair and Leeuw 2010), which are unfortunately unfamiliar to many ML researchers.

5.2 Conclusion

This benchmark study compared the predictive performance of a variety of strategies
to encode categorical features with a high number of unordered levels for differ-
ent supervised ML algorithms. Regularized versions of target encoding, which uses
predictions of the target variable as numeric feature values, performed better than
traditional strategies like integer or indicator encoding. Most effective, with a consis-
tently superior performance across ML algorithms and datasets, was a target encoder
which combines simple generalized linear mixed models with cross-validation and
does not require hyperparameter tuning. GLMMs are a major workhorse in applied
statistics but not well understood and often neglected by the ML community. Refining
target encoders that use statistical models for more efficient regularization and study-
ing their theoretical properties could be a valuable research topic for the computational
statistics community.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00180-022-01207-6.

Funding Open Access funding enabled and organized by Projekt DEAL. This work has been funded by
the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A and by
the Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center for
Analytics–Data–Applications (ADA-Center) within the framework of, BAYERN DIGITAL II“ (20-3410-
2-9-8).

Data Availability All benchmark datasets are publicly available at https://www.openml.org/.

123

F. Pargent et al.

Code Availability All analysis code is publicly available at https://github.com/slds-lmu/paper_2021_
categorical_feature_encodings.

Declaration

Conflicts of interest The authors declare no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bates D (2020) Computational methods for mixed models. Vignette for lme4. https://cran.r-project.org/
web/packages/lme4/vignettes/Theory.pdf

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat
Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

Binder M (2018) mlrCPO: Composable preprocessing operators and pipelines for machine learning. R
package version 0.3.4-2. https://github.com/mlr-org/mlrCPO

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM (2016) mlr:
machine learning in r. J Mach Learn Res 17:1–5

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020) Benchmark for filter methods for feature
selection in high-dimensional classification data. Comput Stat Data Anal. https://doi.org/10.1016/j.
csda.2019.106839

Boulesteix A-L, Binder H, Abrahamowicz M, Sauerbrei W et al (2017) On the necessity and design of
studies comparing statistical methods. Biomet J Biomet Zeitschrift 60:216–218. https://doi.org/10.
1002/bimj.201700129

Brown G, Pocock A, Ming-Jie Z, Luján M (2012) Conditional likelihood maximisation: a unifying frame-
work for information theoretic feature selection. J Mach Learn Res 13:27–66

Cerda P, Varoquaux G (2020) Encoding high-cardinality string categorical variables. IEEE Trans Knowl
Data Eng. https://doi.org/10.1109/TKDE.2020.2992529

Cerda P, Varoquaux G, Kégl B (2018) Similarity encoding for learning with dirty categorical variables.
Mach Learn 107:1477–1494. https://doi.org/10.1007/s10994-018-5724-2

Chambers J, Hastie T (1992) Statistical models. Chapter 2 of statistical models in S, 1st edn. Routledge.
https://doi.org/10.1201/9780203738535

Chen T, He T, Benesty M, Khotilovich V,Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, Li M, Xie J,
Lin M, Geng Y, Li Y (2018) Xgboost: Extreme gradient boosting. R package version 0.71.2. https://
CRAN.Rproject.org/package=xgboost

Chiquet J, Grandvalet Y, Rigaill G (2016) On coding effects in regularized categorical regression. Stat
Modell 16:228–237. https://doi.org/10.1177/1471082X16644998

Coors S (2018)Automatic gradient boosting (Master’sthesis). LMUMunich. https://epub.ub.uni-muenchen.
de/59108/1/MA_Coors.pdf

De Leeuw J, Young FW, Takane Y (1976) Additive structure in qualitative data: an alternating least squares
method with optimal scaling features. Psychometrika 41:471–503

DehghaniM, TayY,GritsenkoAA, Zhao Z,HoulsbyN,Diaz F,Metzler D,Vinyals O (2021) The benchmark
lottery. arXiv preprint arXiv:2107.07002

Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve
real world classification problems? J Mach Learn Res 15:3133–3181

123

Regularized target encoding outperforms traditional…

Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for
classification. Pattern Recogn Lett 30:27–38. https://doi.org/10.1016/j.patrec.2008.08.010

FeurerM,KleinA,EggenspergerK,Springenberg J,BlumM,Hutter F (2015)Efficient and robust automated
machine learning. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in
neural information processing systems 28. Curran Associates Inc, New York, pp 2962–2970

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate
descent. J Stat Softw 33:1–22. https://doi.org/10.18637/jss.v033.i01

Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge
University Press, Cambridge

Gra̧bczewski K, Jankowski N (2003) Transformations of symbolic data for continuous data orientedmodels.
In: Kaynak O, Alpaydin E, Oja E, Xu L (eds) Artificial neural networks and neural information
processing – ICANN/ICONIP 2003. Springer, Berlin, Heidelberg, pp 359–366

Guo C, Berkhahn F (2016) Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737
Hancock JT, Khoshgoftaar TM (2020) Survey on categorical data for neural networks. J Big Data 7:1–41.

https://doi.org/10.1186/s40537-020-00305-w
Hand DJ, Henley WE (1997) Statistical classification methods in consumer credit scoring: a review. J R

Stat Soc A Stat Soc 160:523–541. https://doi.org/10.1111/j.1467-985X.1997.00078.x
Hornik K, Meyer D (2007) Deriving consensus rankings from benchmarking experiments, In: Advances in

data analysis. Springer, pp 163–170. https://doi.org/10.1007/978-3-540-70981-7_19
Hothorn T, Leisch F, Zeileis A, Hornik K (2005) The design and analysis of benchmark experiments. J

Comput Graph Stat 14:675–699. https://doi.org/10.1198/106186005X59630
Kuhn M, Johnson K (2019) Feature engineering and selection: a practical approach for predictive models.

Hall/CRC, Chapman
Lang M, Bischl B, Surmann D (2017) Batchtools: tools for r to work on batch systems. J Open Source

Softw. https://doi.org/10.21105/joss.00135
Mair P, de Leeuw J (2010) A general framework for multivariate analysis with optimal scaling: the r package

aspect. J Stat Softw 32:1–23. https://doi.org/10.18637/jss.v032.i09
Meyer D, Hornik K (2018) Relations: data structures and algorithms for relations
Micci-Barreca D (2001) A preprocessing scheme for high-cardinality categorical attributes in classification

and prediction problems. SIGKDD Explor Newsl 3:27–32. https://doi.org/10.1145/507533.507538
Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52:239–281. https://doi.

org/10.1023/A:1024068626366
Nießl C, Herrmann M, Wiedemann C,Casalicchio G, Boulesteix A-L (2021) Over-optimism in benchmark

studies and the multiplicity of design and analysis options when interpreting their results. WIREs Data
Mining and Knowledge Discovery, e1441. https://doi.org/10.1002/widm.1441

Probst P, Wright MN, Boulesteix A-L (2019) Hyperparameters and tuning strategies for random forest.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. https://doi.org/10.1002/
widm.1301

Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) CatBoost: Unbiased boosting with
categorical features, in: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R
(Eds.), Advances in Neural Information Processing Systems 31. Curran Associates, Inc., pp. 6638–
6648

Prokopev V (2018) Mean (likelihood) encodings: a comprehensive study. Kaggle Forums
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria
Rodríguez p, Bautista MA, Gonzàlez J, Escalera S (2018) Beyond one-hot encoding: lower dimensional

target embedding. Image Vis Comput 75:21–31. https://doi.org/10.1016/j.imavis.2018.04.004
Schliep K, Hechenbichler K (2016) Kknn: Weighted k-nearest neighbors R package version 1.3.1. https://

CRAN.R-project.org/package=kknn
Seca D, Mendes-Moreira J (2021) Benchmark of encoders of nominal features for regression. In: Rocha Á,

Adeli H, Dzemyda G, Moreira F, Ramalho Correia AM (eds) Trends and applications in information
systems and technologies. Springer International Publishing, Cham, pp 146–155

Steinwart I, Thomann P (2017) liquidSVM: A fast and versatile SVM package. arXiv: 1702:06899
Therneau T, Atkinson B (2018) Rpart: recursive partitioning and regression trees. R package version 4.1-13.

https://CRAN.R-project.org/package=rpart
Thomas J, Coors S, Bischl B (2018) Automatic gradient boosting. arXiv preprint arXiv:1807.03873

123

F. Pargent et al.

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms, In: Proceedings of the 19th ACM SIGKDD
international conference on knowledge discovery and data mining, KDD ’13. ACM, New York, NY,
USA, pp 847–855. https://doi.org/10.1145/2487575.2487629

Tutz G, Gertheiss J (2016) Rejoinder: Regularized regression for categorical data. Stat Model 16:249–260.
https://doi.org/10.1177/1471082X16652780

Vanschoren J, van Rijn N, Bischl B, Torgo L (2013) OpenML: networked science in machine learning.
SIGKDD Explor 15:49–60. https://doi.org/10.1145/2641190.2641198

Weinberger KQ, Dasgupta A, Langford J, Smola AJ, Attenberg J (2009) Feature hashin for large scale
multitask learning. In: Proceedings of the 26th Annual International Conference onMachine Learning
(ICML ’09). Association for Computing Machinery, New York, NY, USA, 1113–1120. https://doi.
org/10.1145/1553374.1553516

Wright MN, König IR (2019) Splitting on categorical predictors in random forests. PeerJ 7. https://doi.org/
10.7717/peerj.6339

Wright MN, Ziegler A (2017) Ranger: a fast implementation of random forests for high dimensional data
in C++ and R. J Stat Softw 77:1–17. https://doi.org/10.18637/jss.v077.i01

Young FW, De Leeuw J, Takane Y (1976) Regression with qualitative and quantitative variables: an alter-
nating least squares method with optimal scaling features. Psychometrika 41:505–529. https://doi.org/
10.1007/BF02296972

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

316 6. Contributions - Benchmarks & Software

6.3 Evaluating Domain Generalization for Survival Anal-
ysis in Clinical Studies

Contributed Article:
F. Pfisterer, C. Harbron, G. Jansen, and T. Xu. Evaluating domain generalization for
survival analysis in clinical studies. In G. Flores, G. H. Chen, T. Pollard, J. C. Ho, and
T. Naumann, editors, Proceedings of the Conference on Health, Inference, and Learning,
volume 174 of Proceedings of Machine Learning Research, pages 32–47. PMLR, 07–08 Apr
2022

Declaration of contributions The main part of the project was conducted while FP
was interning with Fa. Hofmann-La Roche AG. The initial project idea was contributed by
TX. FP collected and implemented relevant methods and conducted the core benchmark
with additional input and ideas by TX and GJ. FP and TX jointly created the manuscript
with additional feedback and helpful comments by GJ and CH.

Proceedings of Machine Learning Research 174:32–47, 2022 Conference on Health, Inference, and Learning (CHIL) 2022

Evaluating Domain Generalization for Survival Analysis in
Clinical Studies

Florian Pfisterer florian.pfisterer@stat.uni-muenchen.de
F.Hoffmann-La Roche AG, Switzerland; Ludwig-Maximilians-Universität München, Germany

Chris Harbron chris.harbron@roche.com
Roche Products Ltd, United Kingdom

Gunther Jansen gunther.jansen@roche.com
F.Hoffmann-La Roche AG, Switzerland

Tao Xu tao.xu.tx1@roche.com

F.Hoffmann-La Roche AG, Switzerland

Abstract

Machine learning models are often required to
generalize to new populations (domains) unseen
during training, which may lead to model un-
derperformance. So far, most research has fo-
cused on Domain Generalization methods for
image classification tasks, which address the
problem by learning domain invariant predic-
tors. In this study, we assess the efficacy of do-
main generalization methods in survival analy-
sis. The goal is to predict time-to-events such
as death or disease progression based on base-
line demographic and clinical variables of in-
dividuals exposed to medical treatment. We
benchmark four domain generalization methods
and several conventional/established methods
on real world scenarios encountered in clinical
practice. This includes tasks such as generaliz-
ing between randomized controlled trials to real
world data, identification of prognostic models
regardless of treatment or disease subtypes. We
find that the generalization issue is often not as
severe as reported in synthetic scenarios. Fur-
thermore, our results corroborate previous find-
ings that domain generalization often does not
consistently outperform classical empirical risk
minimization baselines also on low-dimensional
data. Finally, to better understand when do-
main generalization methods can lead to per-
formance gains and thus better outcomes for
patients, we quantify the influence of different
types of shifts occurring in the data.

Data and Code Availability Our study includes
patient outcome and baseline characteristics data col-
lected from several clinical studies on non-small-cell

lung carcinoma (NSCLC) and diffuse large B-cell
lymphoma (DLBCL). A short description of each
dataset along with references is available in the Ap-
pendix. Details of the clinical trials can be found on
https://clinicaltrials.gov/. Datasets are not
publicly available at the time of writing, please con-
tact the study team to obtain data access. Legal
review for code sharing is in progress and the code
cannot be shared by the time of manuscript submis-
sion. Please contact the authors regarding the access
to the code.

1. Introduction

Machine learning is increasingly important in med-
ical research. It can be used for a broad array of
tasks ranging from improving the understanding of
biological or chemical processes, automating and en-
hancing physician capabilities (e.g., by providing ad-
ditional annotations or a second opinion in radiology)
or providing additional diagnostic scores to predict
patient survival. A central assumption for these tasks
is that new data points stem from the same under-
lying distribution as that on which a machine learn-
ing model was trained (Widmer and Kubat, 1996;
Quiñonero-Candela et al., 2009). This is a reasonable
assumption when a large enough and representative
data sample about the population we wish to predict
for can be collected, or when variation among indi-
viduals is limited and central relationships between
data and the corresponding property of interest are
stable across sub-populations. Unfortunately, this is
often not the case in clinical scenarios, e.g., when

© 2022 C. Harbron, G. Jansen & T. Xu.

Domain Generalization for Survival Analysis

data is collected across different sub-populations with
access to different hospitals, standards of care and
disease heterogeneity (Challen et al., 2019). In such
clinical generalization scenarios, clinical models often
show lower predictive performance in medical imag-
ing applications (Zhang et al., 2021) such as radiog-
raphy (Zech et al., 2018; Pooch et al., 2019; Cohen
et al., 2020) and MRI imaging (Mårtensson et al.,
2020). A popular example of such a scenario is the
CAMELEYON17 dataset (Bándi et al., 2019), part of
the WILDS (Koh et al., 2021) domain generalization
benchmark. Baseline models that attempt to gener-
alize a histology image segmentation task across hos-
pitals saw an average drop in accuracy from 93.2% on
training domains to 70.3% on target domains (Koh
et al., 2021) due to variations in slide staining and
hospital populations.

A solution to this problem is the use of Domain
Generalization (DG) methods (Pan and Yang, 2010;
Zhou et al., 2021) which identify models that are ro-
bust to such shifts in domains by learning domain in-
variant representations or predictors. Although pre-
vious DG research mostly focused on (medical) im-
age classification scenarios, many clinical applications
rely on low dimensional tabular data to predict the
expected time to a clinical event, using methods from
survival analysis. In these scenarios only few highly
relevant features are available, and there is consider-
able error even for a Bayes optimal predictor. This
makes clinical time-to-event prediction distinct from
the high dimensional scenarios in image classifica-
tion. In this study we therefore benchmark four DG
methods against several Empirical Risk Minimization
(ERM) based baseline methods with respect to dif-
ferent types of distribution shifts.

To study the efficacy of domain generalization
methods on clinical survival data we ask two ques-
tions: 1) how reliable are domain generalization
methods in typical clinical survival prediction sce-
narios and 2) can we provide additional understand-
ing by investigating types of shifts occurring in those
scenarios. We use five tabular datasets obtained
from randomized controlled trials and from electronic
health record derived real-world data. Our main con-
tributions are the following:

• We quantify different types of distribution shifts
in the data to characterize scenarios where DG
can be successfully applied.

• We find that domain shift and performance
degradation of ERM models for survival analysis

with tabular data in real-world clinical cases are
often smaller than reported in imaging domains
(Koh et al., 2021; Zhang et al., 2021).

• We corroborate findings in the imaging litera-
ture (Gulrajani and Lopez-Paz, 2020; Koh et al.,
2021; Zhang et al., 2021) that DG methods of-
fer an improvement over ERM only in the lim-
ited cases in real-world survival analysis scenar-
ios and is correlated with degree of domain shift.

It is important to note that model and hyper-
parameter selection (Guyon et al., 2010) in DG sce-
narios is an active field of research and existing strate-
gies often fail to provide a satisfying solution (Gul-
rajani and Lopez-Paz, 2020). This has drastic em-
pirical consequences, since practitioners, lacking an
estimate of a model’s generalization error to the tar-
get domain, cannot determine whether ERM or DG
methods should be preferred and failures w.r.t. gen-
eralization can only be detected at the time of pre-
diction.

2. Related work

The goal of domain generalization is to estimate the
functional relationship f(x) between a data set X
sampled from an input space X and a corresponding
outcome of interest y ∈ Y . We further ask that this
estimate f(x) generalizes across changes in P (X),
P (Y) and P (Y |X) across a set of source domains
used for training and a target domain we aim to con-
duct inference on. In the case of survival analysis, Y
is often the cumulative survival distribution St(x) for
an observation x ∈ X at time point t. Each data point
is assigned a domain di. We will denote with Dsrc,i

the set of observations sampled from source domain i
and with Dtgt,i observations sampled from the target
domain i (i ∈ 1, ..., k). Models fitted on source do-
mains can now suffer from various distribution shifts
that lead to worsened performance. An additional
often encountered problem called single-source DG
in (Zhou et al., 2021) is that datasets often lack la-
beled source domains, which either requires identi-
fying domains (Creager et al., 2021) before applying
domain generalization, or the use of methods that do
not require information about domains (Wang et al.,
2019). In contrast to models on high-dimensional
data, models studied in our manuscript might suf-
fer less severely from poor generalization as has been
shown e.g. in (Simon-Gabriel et al., 2018) under

33

Domain Generalization for Survival Analysis

small transformations (Azulay and Weiss, 2019) or
adversarial examples (Szegedy et al., 2013).

2.1. Types of domain shifts

Distribution shifts may occur due to different reasons:
Shifts in P (X) might e.g. occur due to population dif-
ferences between rural and urban hospitals, or shifts
in P (Y |X) occurring due to differences between clin-
ical trials and treatment in the real-world. Typically,
such shifts in distribution do not occur in isolation
but domains exhibit several shifts of differing magni-
tudes. Depending on the perspective, several types of
combined shifts can be identified (Zhang et al., 2015).

• Shift in P (X) with constant P (Y |X). This is of-
ten referred to as covariate shift in the literature
(Zhang et al., 2015). In this case, model per-
formance should theoretically not degrade, but
in practice models might be oversimplified and
under-fits the conditional models, which causes
the predicted Y to depend on the input distri-
bution P (X).

• Shift in P (Y |X). In this case, the optimal model
takes into account variations in P (Y |X) between
source domains in order to predict the target do-
main.

• Shift in P (Y): Since we model a functional re-
lationship X→Y, a shift in Y can not occur in
isolation (Zhang et al., 2015). define two types
of shifts in Y for the reverse causal direction
Y→X that result in subsequent changes of P (X)
or P (Y |X). We assume effects only in the tem-
poral direction X → Y in the remainder of this
manuscript.

2.2. Domain generalization methods

Domain Generalization, in contrast to the related
concepts of transfer learning and domain adaptation,
does not assume access to or knowledge about statis-
tics of the target domain (Pan and Yang, 2010). In
recent years, a large variety of domain generaliza-
tion methods have been proposed. Methods vary
from kernel-based methods (Blanchard et al., 2011;
Muandet et al., 2013) to approaches that incorpo-
rate causal frameworks such as Invariant Causal Pre-
dictions (ICP) (Peters et al., 2016; Rothenhäusler
et al., 2021) as well as approaches that take a ro-
bustness perspective (Krueger et al., 2021; Sagawa
et al., 2019). For brevity we only introduce methods

relevant to our benchmark, a comprehensive overview
over state-of-the-art DG methods is e.g. provided in
(Zhou et al., 2021).

3. Method

3.1. ERM and domain generalization
methods for survival analysis

3.1.1. Baselines

We investigate two methods based on empirical risk
minimization (ERM) as baselines. We choose two
widely used models, a Cox Proportional-Hazards
model (coxph)(Cox, 1972) and a parametric model
using a weibull distribution (weibull) (Kalbfleisch
and Prentice, 2011). In coxph, the hazard function
hi(t) = h0(t) exp(

∑p
k=1 θkxi,k), where each feature

affects the hazard multiplicatively. In the Weibull
model, baseline hazards are defined as hi(t) = λγtγ−1

with estimated shape γ and scale λ, as a linear com-
bination of the features X.

3.1.2. Ensemble-based approaches

Ensembles of ML models can be used to obtain better
generalizing estimators (Zhou et al., 2021). We inves-
tigate survival forests (Ishwaran et al., 2008) as well
as more sophisticated survival quilts (Lee et al., 2019)
as ensemble baselines for the survival context. Tem-
poral quilting constructs ensembles of survival models
assuring that the resulting model is a valid risk func-
tion. The core idea is to optimize weights wj,t for
risk functions of individual ensemble members j and
each time point t optimizing model calibration under
a constraint for the predictive error using Bayesian
Optimization.

3.1.3. Low-rank decomposition based
approaches

Several low-rank decomposition based approaches
have been proposed in literature (Khosla et al., 2018;
Li et al., 2017; Piratla et al., 2020). We design a strat-
egy heavily inspired by common-specific low-rank de-
composition (LRD, (Piratla et al., 2020)). The core
assumption is, that for each source domain k, the
optimal model’s parameters can be written as

θ⋆ = θc + γkθk

where θk is a domain specific effect and the goal there-
fore is to find model coefficients θc encompassing the

34

Domain Generalization for Survival Analysis

signal that is common across all domains. We per-
form a low-rank decomposition on the model coef-
ficients of a cox proportional hazards model fitted
on each domain in order to find a set of coefficients
θc containing the domain-independent signal which is
used for subsequent prediction on the target domains.

3.1.4. Invariant Risk Minimization (IRM) &
Environment Inference for Invariant
Learning (EIIL)

Arjovsky et al. (2019) propose Invariant Risk Mini-
mization (IRM), a novel risk minimization strategy
with the goal to discover domain-invariant classifiers
Φ by solving the following minimization problem:

min
Φ

∑

i

Ri(Φ) + λ ∗ ∥∇w|w=1R
i(w · Φ)∥2

The resulting invariant predictor therefore is bal-
anced by λ between predictive performance and a low
gradient at w=1 as a measure of domain invariance
(Arjovsky et al., 2019). If domain assignments di
are latent, domains can be inferred as described in
(Creager et al., 2021) (EIIL) by inferring domain as-
signments di, such that the domain invariance in the
equation is maximized before training the model us-
ing IRM. This method will fit for the single-source
DG use cases. We adapt IRM/EIIL a survival by op-
timizing for the negative log likelihood of the Cox PH
risk as Ri (c.f. Kvamme and Borgan (2021)).

3.1.5. Continuously Index Domain
Adaptation (CIDA)

Wang et al. (2020) propose an Encoder-Decoder
based approach to obtain domain invariant represen-
tations E(x) for the scenarios where domain assign-
ments i are continuous (Wang et al., 2020). The goal
is to learn an encoder E that allows for training a pre-
dictor F on y which simultaneously does not permit
predicting domain assignments i.

min
E,F

max
D

Lp(F (E(x, di)), y)− λdLd(D(E(x, di)), di)

Models can be trained using either the Ld = L2

(CIDA), i.e. the mean squared error loss or a prob-
abilistic loss Ld modeling the mean and variance
of a Gaussian distribution and optimizing for the
negative log-likelihood (PCIDA). We configured the
model both in a linear as well as a deep setting, im-
plementation details can be found in the appendix.

We adapt to a survival setting by employing the neg-
ative log likelihood of the Cox PH model as a loss for
Lp (Kvamme and Borgan, 2021).

3.2. Quantifying shifts

We try to characterize types and magnitudes of shifts
occurring in the data to better understand differences
between the scenarios and investigate correlations be-
tween domain shifts and the improvement by DG
methods. In particular, we measure the shift between
the target domain and the pooled source domains.
We propose 3 metrics allowing for measuring the dif-
ferent shifts, i.e., shifts in P (X), P (Y), and P (Y |X)
aforementioned. Other metrics for such shifts have
been proposed in histopathology (Stacke et al., 2020),
or structured biological data (Borgwardt et al., 2006).

3.2.1. Shift in P (X)

Shift in P (X) are summarized using the Wasserstein
distance (Dobrushin) between the distribution of the
propensity score of data in the source and target do-
main. The propensity score of a sample in source or
target domain was calculated using a logistic model
with all features in X.

3.2.2. Shift in P (Y)

The distribution shift in P (Y) were measured using
the chi square statistics from the log-rank test be-
tween the outcomes in the source and target domain.

χ̃i
2 =

n∑

t=1

(Oit − Eit)
2

V ar(Eit)

V ar(Eit) = Eij(
Nt −Ot

Nt
)(
Nt −Nit

Nt − 1
)

where Oit represents the observed number of events
in the group i (target or source domain) over time, Eit

represents the expected number of events in the group
i over time, Nit represents the number of subject at
time t in group i.

3.2.3. Shift in P (Y |X)

To measure the shift in P (Y |X), we used the differ-
ence between a model trained on the source domain
(Φsrc) and a model trained on the target domain (Φ∗,
fitted with the training split of the target domain) in
the Akaike information criterion (AIC) computed on
the data from target domain for both models. Note

35

Domain Generalization for Survival Analysis

that the Φ∗ is fitted in the target domain, which usu-
ally have a much smaller sample size than the source
domain in our experiments.

Dx,y = AIC(Ytgt,Φ
∗(Xtgt))−AIC(Ytgt,Φ

src(Xtgt))

3.3. Model selection

Since DG assumes no access to target domain data,
no reliable estimates for the generalization error
GEtgt are available for model selection or hyperpa-
rameter tuning (Sagawa et al., 2019; Gulrajani and
Lopez-Paz, 2020). Since we are interested in the per-
formance of models, we investigate models from a
post-hoc perspective by reporting best-in-class per-
formance on target domain data from each approach
(Oracle, ERM, DG). Since this is not possible in prac-
tice, we additionally investigate a setting where a
model is selected based on performance on a 30%
validation sample collected from each source domain.
Then, the best model is refitted on the full data to
compute GEtgt after model selection. We investigate
differences to post-hoc selection in order to assess the
effect of model selection.

3.4. Synthetic domain shift

Besides scenario A, all other scenarios has natural
domains that can be identified. For scenario A, we
create a label based on the quantiles (0-20%, 21-40%,
41-60%, 61-80%, 81-100%) of propensity score of one
sample, which primarily categorize data based on the
distribution of P(X). We use the propensity labels
together with the original domain labels to rearrange
the source and target domains to 10 different sub-
domains. By different combinations of these sub-
domains, we are able to create new source and target
datasets with different degrees of distribution shifts
and to test the performance of domain generalization
under these scenarios (see Appendix for more details).

3.5. Data

In this study, we focus on patient-level tabular data
from the oncology domain, in particular diffuse large
B-cell lymphoma (DLBCL) as well as squamous
and non-squamous small cell lung cancer (NSCLC).
Datasets are obtained either from randomized con-
trolled trials (RCTs) or electronic health record based
real-world data (RWD) collection efforts (for more
details see Appendix). Measured covariates contain

demographic information such as sex and age as well
as clinical variables, e.g., Eastern Cooperative On-
cology Group (ECOG) score (Oken et al., 1982) and
lab test results. For NSCLC datasets (dataset D,E),
we select five covariates following Alexander et al.
(2017), while for DLBCL (dataset A,C,E) we select
five variables chosen for the International Prognos-
tic Index (IPI) (International Non-Hodgkin’s Lym-
phoma Prognostic Factors Project, 1993). For both
diseases, patients’ death of all causes is used as the
target event for survival analysis. We further created
synthetic datasets based on the DLBCL data in case
A, using the method described above.

The five different domain shift cases from real clin-
ical data are summarized in Table 1. In order to pro-
vide an overview, we indicate the presence of detected
shifts. The datasets contain between 733 and 3218
samples distributed into 5-8 source domains while
target domains are pooled into a single domain for
evaluation. Target domain sizes vary from 107 to 733
(Table 1). Distributions across datasets reflect shifts
that might typically be encountered in clinical prac-
tice: A) build a prognostic model for DLBCL on RCT
data and apply the model in the real-world dataset;
B) train a model on squamous NSCLC trials and ap-
ply it to a non-squamous NSCLC trial, which may
reflect the case of generalization of models between
disease subtypes; C) train a model on a set of ran-
domly selected treatment groups in the NSCLC trials
and apply to other treatment groups in NSCLC tri-
als, which aims to investigate the potential influence
by the change of care; D) train a model based on
younger DLBCL patient groups (0-60 yrs) and ap-
ply the model to the older population (60+), which
tests the generalizability between demographic sub-
populations; E) train a model on low/intermediate
risk populations and apply to the high risk popula-
tion of DLBCL patients, which tests generalizability
across risk groups (Wang et al., 2021).

4. Domain Generalization on clinical
data

We design an experiment comparing a set of DG
methods reflective of existing approaches to ERM
baselines including cox proportional-hazards mod-
els (Cox, 1972) and weibull models (Kalbfleisch and
Prentice, 2011). Together with ensemble models pre-
sented above, this allows us to go one step further be-
yond questions posed in previous publications (Gulra-
jani and Lopez-Paz, 2020; Zhang et al., 2021): analyz-

36

Domain Generalization for Survival Analysis

Table 1: Overview of datasets and generalization cases. Criteria for check marks: if the Wasserstein
distance of features between the datasets is larger than 0.1, we consider it as a case with shift in
P(X); if the differences on survival outcomes between the source and target domains is significant
under a log-rank test (p−value < 0.05), we consider it as a case with shift in P(Y); if the difference
on δAIC is larger than 6, we consider it as a case with shift in P (Y |X).

ID Generalization P (X) P (Y) P (Y |X)
Samples size

(target domain)
Sample size

(source domain)
Number of

source domains

A RCT to RWD ✓ ✓ ✓ 733 1060 1
B Cancer subtypes - ✓ ✓ 107 3111 6
C Treatment groups - ✓ ✓ 254 2857 8
D Age group - - - 191 542 4
E Disease risk - ✓ ✓ 151 582 4

ing whether DG not only improves over simple base-
lines but instead also over more advanced methods
that are readily available in practice. We adapt the
following experimental protocol for all studied set-
tings: After splitting data into fixed source and target
domains, we impute missing values using their me-
dian/mode and subsequently fit the model. Each ex-
periment is replicated 10 times on a randomly drawn
90% sample of the data to obtain an estimate of the
variance of results.

4.1. Performance metrics

Given that our outcome of interest is a continuous
survival distribution, we measure the target domain
generalization error (GEtgt) in terms of the C-index
(Harrell Jr et al., 1996) on data obtained from the
target domain.

GEtgt = C(Ytgt,Φ(Xtgt))

We further estimate the source domain generalization
error GEsrc using a random 70-30 split of source data
from each source domain as training and validation
data. The GEsrc are used for the model selection
process as the validation data strategy.

GEsrc = C(Y
′
src,Φ(X

′
src))

4.2. Oracle models

We further study an oracle condition to answer how
much performance gain could be had, if access to the
target domain data was available. Measured differ-
ences in C-index between source model and the oracle
model stem from training on either a subset of the

target domain (oracle model) or source domain data
(source model). The resulting gap δoracle thus reflects
differences in training data between source and target
domain.

5. Results

5.1. Domain shifts and model performance
degradation

In case A, we observe a significant difference in P (X)
(Wasserstein distance Wp = 0.25), P (Y) (χ2 = 23.49,
p < 0.001) and P (Y |X) (∆AIC = 12.62) between the
cohorts from RWD and the RCT. Case B and C both
show distribution shifts in P (Y) and P (Y |X), but the
metrics are larger in case B. In case D, we observe a
moderate shift in P (Y) (χ2 = 5.55, p = 0.02), but
not in P (Y |X) or P (X). In case E, we found a signif-
icant difference in P(Y) (χ2 = 8.75, p = 0.003), and
P (Y |X) (∆AIC = 16.33). Metrics of domain shifts
are summarised in Table 2 (for additional details see
Fig. 3 in the Appendix).

When measuring performance degradation by com-
paring GEsrc and GEtgt, differences range between
0.01 and 0.05 across all experiments (Fig. 4 in the
Appendix). Interestingly, we find that performance
of the ERM models on the source domain are worse
than on the target domain in the conducted experi-
ments. When using the oracle models as a compara-
tor, oracle models are also not always superior to the
ERM models. The performances of oracle models are
worse than ERM models in the cases D by 0.03 and E
by 0.01. Note, that model performances can be worse
than random guessing if models over-fit on source do-
main data.

37

Domain Generalization for Survival Analysis

Table 2: Summary of experimental results. We compare the best performing baseline with the best
performing DG method selected as best-of-class (DG) and selected according to the validation
data strategy (DG’). We report the domain shift by each metric for each tested scenario. For the
model performance, we report mean C-index along with standard deviations (in brackets) over 10
monte-carlo cross-validation iterations. The best class is denoted in bold.

A B C D E

Domain shift metrics
Shift in P (X) (Wp) 0.25 0.02 0.01 0.01 0.03
Shift in P (Y) (χ2) 23.49 12.43 3.89 5.55 8.75
Shift in P (Y |X) (∆AIC) 12.62 19.24 6.32 2.76 16.33
C-index by method class
Oracle 0.70(0.02) 0.65(0.07) 0.63(0.04) 0.66(0.08) 0.67(0.07)
ERM 0.70(0.01) 0.59(0.01) 0.62(0.01) 0.71(0.01) 0.69(0.01)
Ensemble 0.65(0.01) 0.61(0.01) 0.640(0.00) 0.64(0.01) 0.66 (0.01)
DG 0.70(0.01) 0.63(0.01) 0.66(0.01) 0.70(0.01) 0.67(0.01)
DG’ 0.65(0.01) 0.60(0.01) 0.66(0.01) 0.66(0.01) 0.66(0.01)

5.2. Performance of DG methods

We report best-of-class results across all investigated
DG and ERM methods to provide an overview. We
find DG only outperforms ERM in two out of five
real-world cases, with improvement on C-index be-
tween 0.03 and 0.05. In case A, the difference be-
tween the best DG and ERM was almost negligible.
In case D and E, ERM gives yields better C-indices
than DG (Table 2). Among the selected DG meth-
ods, LRD performed competitively well in all cases.
CIDALinear was the best performing method for case
C, and outperformed ERMs in two out of five cases.
Full results can be found in Table 3 in the Appendix.

When applying the validation data strategy for
model selection, the selected methods (DG′, Table
2) have a loss from 0.02 to 0.05 in C-index compared
to the best-of-class results.

5.3. Correlation between domain shift and
the improvement by DG methods

Since the introduced domain shift metrics such as chi-
square statistics and ∆AIC are comparable with the
same target domain, we derive an experiment allow-
ing us to evaluate correlations with a fixed testing
dataset while changing source domains to mimic sce-
narios with different degrees of shifts between source
and target domain.

We first tested the correlation in case B. While
keeping the same testing dataset, we remove clinical
trials from the training datasets, two at each time, to

create new training datasets. This generates shifts
with ∆AIC ranging from 16.6 to 20.5. With in-
creased domain shift, we observe a larger advantage
in performance of DG over ERM based models (from
0.63 to 0.59 for DG, 0.63 to 0.56 for ERM, Figure 1).

Using synthetic domain labels, we applied the same
approach and created four scenarios with increasing
domain shift between the target and source domains
based on case A (Fig. 5 in the Appendix). The ERM
and DG models have similar performance in the ini-
tial scenario (median C-index of 0.70 in both cases
with ∆AIC of 14). However, when the ∆AIC in-
creases to 26 and 39, the performance was worse in
ERM models (median C-index 0.68 and 0.66) com-
pared to DG models (0.69 and 0.67, Fig. 2).

6. Discussion

6.1. Domain shift and generalizability issues
in clinical data

A comparison between GEsrc and GEtgt is a com-
mon method to evaluate model performance under
domain shift. In contrast to the literature on im-
age data, where significant performance degradation
has been reported in target domains (Arjovsky et al.,
2019; Koh et al., 2021), we observed relatively small
performance loss in most of the tested cases, which
are low dimensional survival analysis settings. In our
experiment we find domain shift are not reflected in
differences between GEsrc and GEtgt, which is often

38

Domain Generalization for Survival Analysis

Figure 1: Performance of ERM and DG models with increased domain shift in case B. While
keeping the same target domain, we create different training datasets by excluding trials from the
source domain. See appendix for the details of the NSCLC RCTs.

used as an indicator for detecting potential gener-
alization issues. We observe that models often ex-
hibit GEtgt < GEsrc, which might stem from differ-
ent Bayes error rates (Fukunaga, 1990) between the
domains.

Oracle models are often used in previous studies to
benchmark the performance of DG methods. How-
ever, oracle models may suffer from small sample sizes
and large variations in the target domain. In the cur-
rent study, oracle models also do not seem to be the
upper limit of the performance as suggested in other
literature (Zhang et al., 2021). In practice, compar-
ing the ERM model with an oracle model trained on a
small dataset from the target domain may not neces-
sarily help to identify potential generalizability issues
either. An additional open challenge is model selec-
tion from a set of candidate models, which can lead
to severe performance degradation in comparison to
the post-hoc best algorithm.

Because no single metric can directly measure the
generalizability of a model, a set of carefully designed
experiments are required to understand the underly-
ing issues.

6.2. Synthetic data for DG assessment

Synthetic data allows to test DG methods in con-
trolled experiments. However, previous publications
have shown that DG methods only outperform ERMs
in some special settings, particularly influenced by
spurious correlations generated from the synthetic
process. Synthetic DG scenarios such as coloured
MNIST (Arjovsky et al., 2019) or artificial features
often introduce spurious correlations in the source do-
mains that are reversed on the target domain, which
is perhaps rarely observed in real datasets (Zhang
et al., 2021; Arjovsky et al., 2019).

Instead of creating synthetic datasets, we introduce
a method to create synthetic domain labels based on
propensity scores. One advantage of this approach
is that the method only attempts to identify sub-
clusters within the sample to be used as domains,
and thus does not change the correlations between
the features and the outcomes. This may mimic more
realistic domain shift scenarios than directly modify-
ing the distribution of the original data.

6.3. Factors influencing domain
generalization methods

Previous studies reported that domain generalization
provides no advantage in the case of more subtle data

39

Domain Generalization for Survival Analysis

Figure 2: Performance of ERM and DG models with increased domain shift in the synthetic
data. While keeping the same target domain as in case A, we create multiple training datasets by
removing subgroups of patients from the original DLBCL trial data according to their propensity
scores categories, which creates training datasets with different degrees of deviation from the target
domain. As an example, RCTps2-5 includes patients in RCT with propensity score category 2-5.
Models are tested on patients from RWD dataset with propensity score category 1 and 2.

shifts (Zhang et al., 2021; Gulrajani and Lopez-Paz,
2020). We observe that the DG methods show more
benefits when the source and target domains have
larger deviations. From a practical point of view,
when the training datasets are expected to be close
to the target domains, training with ERM methods
might be sufficient; when the training data are more
likely to be different from the target domain, e.g.
from a different disease subtype (case B) or patients
with different characteristics (the synthetic case), DG
method could yield improvements.

It is worth noting that ∆AICs from different
datasets are not directly comparable, comparisons are
only meaningful when the models share the same test
dataset. Although Case A and E have similar ∆AICs
as in case B, it does not necessarily mean that they
have the same degree of domain shift. On the other
hand, there might be other factors influencing the ef-
ficacy of DG methods, such as the diversity of the
source domains (Zhou et al., 2021) and sample size.
In case A, since only one dataset is used in the train-
ing, the source domains are created by a random split
of the dataset, which may result in very homogeneous
source domains. Similarly in case E, although the
target domain includes patients with higher risk, the
source domains are similarly included patients with
low/intermediate risk patients. Additionally, case E
has a relatively small sample size in each source do-
main (100), which may influence the model fitting.

The process of model selection is another factor
influencing the final performance of the DG meth-
ods (Gulrajani and Lopez-Paz, 2020). In our exper-
iments, the selected models have a loss in c-index
between 0.02 to 0.05 compared with post-hoc model

selection. The model selection should not only in-
clude hyper-parameter tuning of the algorithms, but
also feature selection. None of the original publica-
tions of the tested DG methods address the proper
optimization under the DG scenario. As suggested
previously (Zhang et al., 2021; Gulrajani and Lopez-
Paz, 2020), the model selection strategy needs to be
an integral part of a domain generalization method
and its evaluation. Without it, the validity of the
reported performance of these methods is limited.

6.4. Clinical applications and regulatory
hurdles

It is encouraging for practitioners in the field that
in most cases ERM methods are performing compet-
itively. But we should also be aware that in many
other scenarios DG methods do outperform ERM
models. Both successful and failed attempts to use
DG methods in different clinical applications abound
in the literature (Lafarge et al.; Guo et al., 2021; Jin
et al.). As observed here and elsewhere (Wang et al.),
these conflicting observations may be explained by
different degrees of domain shifts as well as the quan-
tity and diversity of training data. The challenge thus
lies in the correct choice of proper methods contingent
on the recognition of the specific type of scenario. To
aid this choice, we propose a set of metrics that can
be used to qualify domain shifts, and to understand
the diversity within the source domain. Additionally,
estimating potential shifts in the target domain of the
intended use cases will be a potential required step
for identifying the proper use scenarios (Gossmann
et al.).

40

Domain Generalization for Survival Analysis

For a clinical algorithm, the regulatory require-
ment plays a critical role. With the rising question
on trustworthiness of the machine learning models,
the request is not only on accuracy, but increasingly
on transparency of the model training process, which
includes a demonstration of model design tailored to
the available data and intended use (FDA, 2021).
These may imply a requirement of evidence to justify
the use of selected methods, their applicable scenarios
and potential risks, such as over-fitting, performance
degradation, and security risks. In essence, this calls
for comprehensive evaluation of methods before real-
world application.

7. Conclusion

In this study, we evaluated four recently published
domain generalization methods for their ability to
generalize to an unseen data domain with real clinical
data. Similar to previous findings with imaging data,
these methods provided improvement over ERM for
survival analysis in limited settings. However, our
study is limited to comparatively low-dimensional
settings (less than 10 features), which are often en-
countered in clinical practice. Richer settings em-
ploying a larger number of variables might result in
different results due to possibly stronger over-fitting.
We propose several metrics of domain shifts, and an-
alyze the factors influencing the efficacy of the DG
methods, which is a first step to find the right method
that fits a particular domain shift scenario. Further-
more, data used throughout our study comes only
from the US, a broader study across different popu-
lations could lead to interesting results.

Most of the current DG methods were developed
for tasks outside low-dimensional clinical settings and
may therefore not have been optimized for clinical use
cases. We hope our work will encourage researchers
in the field to further develop suitable DG methods
for clinical research, as well as to develop more fit-
ting evaluation frameworks and datasets to bench-
mark these methods.

Institutional Review Board (IRB)

The data used in this study were all published pre-
viously, the study did not require an IRB approval.
For the original clinical studies, approval from the In-
dependent Review Board (IRB)/Independent Ethics
Committee (IEC) were obtained before the start of

the studies, and all patients provided written in-
formed consent.

Acknowledgments

The project is funded by F.Hoffmann-La Roche AG.
The work was done while FP was interning at Fa.
Hoffman-La Roche AG. We would like to thank Prof.
Bernd Bischl for supporting FP taking the intern
project and continuing with the write up after the
internship.

References

Marliese Alexander, Rory Wolfe, David Ball,
Matthew Conron, Robert G Stirling, Benjamin
Solomon, Michael MacManus, Ann Officer, Sameer
Karnam, Kate Burbury, et al. Lung cancer prog-
nostic index: a risk score to predict overall survival
after the diagnosis of non-small-cell lung cancer.
British journal of cancer, 117(5):744–751, 2017.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani,
and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Aharon Azulay and Yair Weiss. Why do deep convo-
lutional networks generalize so poorly to small im-
age transformations? Journal of Machine Learning
Research, 20:1–25, 2019.

Gilles Blanchard, Gyemin Lee, and Clayton Scott.
Generalizing from several related classification
tasks to a new unlabeled sample. Advances in neu-
ral information processing systems, 24:2178–2186,
2011.

Karsten M Borgwardt, Arthur Gretton, Malte J
Rasch, Hans-Peter Kriegel, Bernhard Schölkopf,
and Alex J Smola. Integrating structured biolog-
ical data by kernel maximum mean discrepancy.
Bioinformatics, 22(14):e49–e57, 2006.

Péter Bándi, Oscar Geessink, Quirine Manson, Mar-
cory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byung-
jae Lee, Kyunghyun Paeng, Aoxiao Zhong,
Quanzheng Li, Farhad Ghazvinian Zanjani, Svit-
lana Zinger, Keisuke Fukuta, Daisuke Komura,
Vlado Ovtcharov, Shenghua Cheng, Shaoqun
Zeng, Jeppe Thagaard, Anders B. Dahl, Huangjing
Lin, Hao Chen, Ludwig Jacobsson, Martin Hed-
lund, Melih Çetin, Eren Halıcı, Hunter Jackson,

41

Domain Generalization for Survival Analysis

Richard Chen, Fabian Both, Jörg Franke, Heidi
Küsters-Vandevelde, Willem Vreuls, Peter Bult,
Bram van Ginneken, Jeroen van der Laak, and
Geert Litjens. From detection of individual metas-
tases to classification of lymph node status at the
patient level: The camelyon17 challenge. IEEE
Transactions on Medical Imaging, 38(2):550–560,
2019. doi: 10.1109/TMI.2018.2867350.

Robert Challen, Joshua Denny, Martin Pitt, Luke
Gompels, Tom Edwards, and Krasimira Tsaneva-
Atanasova. Artificial intelligence, bias and clinical
safety. BMJ Quality & Safety, 28(3):231–237, 2019.

Joseph Paul Cohen, Mohammad Hashir, Rupert
Brooks, and Hadrien Bertrand. On the limits
of cross-domain generalization in automated x-ray
prediction. InMedical Imaging with Deep Learning,
pages 136–155. PMLR, 2020.

David R Cox. Regression models and life-tables.
Journal of the Royal Statistical Society: Series B
(Methodological), 34(2):187–202, 1972.

Elliot Creager, Joern-Henrik Jacobsen, and Richard
Zemel. Environment inference for invariant learn-
ing. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 2189–2200.
PMLR, 18–24 Jul 2021.

R. L. Dobrushin. Prescribing a system of random
variables by conditional distributions. 15(3):458–
486. ISSN 0040-585X. doi: 10.1137/1115049. Pub-
lisher: Society for Industrial and Applied Mathe-
matics.

Health Center for Devices and Radiological FDA. Ar-
tificial Intelligence and Machine Learning in Soft-
ware as a Medical Device. FDA, September 2021.
Publisher: FDA.

Keinosuke Fukunaga. Introduction to Statistical Pat-
tern Recognition (Computer Science & Scientific
Computing). Academic Press, hardcover edition,
10 1990. ISBN 978-0122698514.

Alexej Gossmann, Kenny H. Cha, and Xudong Sun.
Performance deterioration of deep neural networks
for lesion classification in mammography due to
distribution shift: an analysis based on artificially
created distribution shift. In Medical Imaging
2020: Computer-Aided Diagnosis, volume 11314,

page 1131404. International Society for Optics and
Photonics.

Ishaan Gulrajani and David Lopez-Paz. In
search of lost domain generalization. CoRR,
abs/2007.01434, 2020.

Lin Lawrence Guo, Stephen R Pfohl, Jason Fries, Al-
istair Johnson, Jose Posada, Catherine Aftandilian,
Nigam Shah, and Lillian Sung. Evaluation of do-
main generalization and adaptation on improving
model robustness to temporal dataset shift in clin-
ical medicine. medRxiv, 2021. doi: 10.1101/2021.
06.17.21259092.

Isabelle Guyon, Amir Saffari, Gideon Dror, and
Gavin Cawley. Model selection: Beyond the
bayesian/frequentist divide. Journal of Machine
Learning Research, 11(3):61–87, 2010.

Frank E Harrell Jr, Kerry L Lee, and Daniel B Mark.
Multivariable prognostic models: issues in develop-
ing models, evaluating assumptions and adequacy,
and measuring and reducing errors. Statistics in
medicine, 15(4):361–387, 1996.

International Non-Hodgkin’s Lymphoma Prognostic
Factors Project. A predictive model for aggressive
non-hodgkin’s lymphoma. N Engl J Med, 329(14):
987–994, 1993.

Hemant Ishwaran, Udaya B. Kogalur, Eugene H.
Blackstone, and Michael S. Lauer. Random sur-
vival forests. The Annals of Applied Statistics, 2(3):
841–860, September 2008. ISSN 1932-6157, 1941-
7330. doi: 10.1214/08-AOAS169. Publisher: Insti-
tute of Mathematical Statistics.

Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen, and
Li Zhang. Style normalization and restitution for
generalizable person re-identification. URL http:

//arxiv.org/abs/2005.11037.

John D Kalbfleisch and Ross L Prentice. The statisti-
cal analysis of failure time data, volume 360. John
Wiley & Sons, 2011.

Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz,
Alexei Efros, and Antonio Torralba. Undoing the
damage of dataset bias, Jun 2018.

Pang Wei Koh, Shiori Sagawa, Sang Michael Xie,
Marvin Zhang, Akshay Balsubramani, Weihua Hu,
Michihiro Yasunaga, Richard Lanas Phillips, Irena

42

Domain Generalization for Survival Analysis

Gao, Tony Lee, et al. Wilds: A benchmark of in-
the-wild distribution shifts. In International Con-
ference on Machine Learning, pages 5637–5664.
PMLR, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Ja-
cobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-
of-distribution generalization via risk extrapolation
(rex). In International Conference on Machine
Learning, pages 5815–5826. PMLR, 2021.

H̊avard Kvamme and Ørnulf Borgan. Continuous and
discrete-time survival prediction with neural net-
works. Lifetime Data Analysis, pages 1–27, 2021.

Maxime W. Lafarge, Josien P. W. Pluim, Koen A. J.
Eppenhof, and Mitko Veta. Learning domain-
invariant representations of histological images. 6:
162. ISSN 2296-858X. doi: 10.3389/fmed.2019.
00162.

Changhee Lee, William Zame, Ahmed Alaa, and Mi-
haela Schaar. Temporal quilting for survival anal-
ysis. In The 22nd international conference on ar-
tificial intelligence and statistics, pages 596–605.
PMLR, 2019.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5542–
5550, 2017.

Gustav Mårtensson, Daniel Ferreira, Tobias
Granberg, Lena Cavallin, Ketil Oppedal, Alessan-
dro Padovani, Irena Rektorova, Laura Bonanni,
Matteo Pardini, Milica G Kramberger, et al. The
reliability of a deep learning model in clinical
out-of-distribution mri data: a multicohort study.
Medical Image Analysis, 66:101714, 2020.

Krikamol Muandet, David Balduzzi, and Bernhard
Schölkopf. Domain generalization via invariant fea-
ture representation. In International Conference
on Machine Learning, pages 10–18. PMLR, 2013.

Martin M Oken, Richard H Creech, Douglass C
Tormey, John Horton, Thomas E Davis, Eleanor T
McFadden, and Paul P Carbone. Toxicity and re-
sponse criteria of the eastern cooperative oncology
group. American journal of clinical oncology, 5(6):
649–656, 1982.

Sinno Jialin Pan and Qiang Yang. A survey on trans-
fer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, 2010. doi:
10.1109/TKDE.2009.191.

Jonas Peters, Peter Bühlmann, and Nicolai Mein-
shausen. Causal inference by using invariant pre-
diction: identification and confidence intervals.
Journal of the Royal Statistical Society. Series B
(Statistical Methodology), pages 947–1012, 2016.

Vihari Piratla, Praneeth Netrapalli, and Sunita
Sarawagi. Efficient domain generalization via
common-specific low-rank decomposition. In
Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 7728–7738. PMLR,
13–18 Jul 2020.

Eduardo HP Pooch, Pedro L Ballester, and Ro-
drigo C Barros. Can we trust deep learning
models diagnosis? the impact of domain shift
in chest radiograph classification. arXiv preprint
arXiv:1909.01940, 2019.

Joaquin Quiñonero-Candela, Masashi Sugiyama,
Neil D Lawrence, and Anton Schwaighofer. Dataset
shift in machine learning. Mit Press, 2009.

Dominik Rothenhäusler, Nicolai Meinshausen, Pe-
ter Bühlmann, and Jonas Peters. Anchor regres-
sion: Heterogeneous data meet causality. Journal
of the Royal Statistical Society: Series B (Statisti-
cal Methodology), 83(2):215–246, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B
Hashimoto, and Percy Liang. Distributionally ro-
bust neural networks for group shifts: On the im-
portance of regularization for worst-case general-
ization. arXiv preprint arXiv:1911.08731, 2019.

Carl-Johann Simon-Gabriel, Yann Ollivier, Léon
Bottou, Bernhard Schölkopf, and David Lopez-
Paz. Adversarial vulnerability of neural networks
increases with input dimension. 2018.

Raphael Sonabend, Franz J Király, Andreas Bender,
Bernd Bischl, and Michel Lang. mlr3proba: An r
package for machine learning in survival analysis.
Bioinformatics, 02 2021. ISSN 1367-4803. doi: 10.
1093/bioinformatics/btab039.

43

Domain Generalization for Survival Analysis

Karin Stacke, Gabriel Eilertsen, Jonas Unger, and
Claes Lundström. Measuring domain shift for
deep learning in histopathology. IEEE journal of
biomedical and health informatics, 25(2):325–336,
2020.

Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199,
2013.

Hao Wang, Hao He, and Dina Katabi. Continu-
ously indexed domain adaptation. arXiv preprint
arXiv:2007.01807, 2020.

Haohan Wang, Zexue He, Zachary C Lipton, and
Eric P Xing. Learning robust representations by
projecting superficial statistics out. arXiv preprint
arXiv:1903.06256, 2019.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, and Tao Qin. Generalizing to unseen do-
mains: A survey on domain generalization. In Pro-
ceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, pages 4627–4635.
International Joint Conferences on Artificial Intel-
ligence Organization. ISBN 978-0-9992411-9-6. doi:
10.24963/ijcai.2021/628.

Xuejian Wang, Wenbin Zhang, Aishwarya Jadhav,
and Jeremy Weiss. Harmonic-mean cox models:
A ruler for equal attention to risk. In Russell
Greiner, Neeraj Kumar, Thomas Alexander Gerds,
and Mihaela van der Schaar, editors, Proceedings
of AAAI Spring Symposium on Survival Predic-
tion - Algorithms, Challenges, and Applications
2021, volume 146 of Proceedings of Machine Learn-
ing Research, pages 171–183. PMLR, 22–24 Mar
2021. URL https://proceedings.mlr.press/

v146/wang21a.html.

Gerhard Widmer and Miroslav Kubat. Learning in
the presence of concept drift and hidden contexts.
Machine learning, 23(1):69–101, 1996.

John R Zech, Marcus A Badgeley, Manway Liu, An-
thony B Costa, Joseph J Titano, and Eric Karl
Oermann. Variable generalization performance of
a deep learning model to detect pneumonia in
chest radiographs: a cross-sectional study. PLoS
medicine, 15(11):e1002683, 2018.

Haoran Zhang, Natalie Dullerud, Laleh Seyyed-
Kalantari, Quaid Morris, Shalmali Joshi, and
Marzyeh Ghassemi. An Empirical Framework for
Domain Generalization in Clinical Settings, page
279–290. Association for Computing Machinery,
New York, NY, USA, 2021. ISBN 9781450383592.

Kun Zhang, Mingming Gong, and Bernhard
Schölkopf. Multi-source domain adaptation: A
causal view. In Twenty-ninth AAAI conference on
artificial intelligence, 2015.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization: A sur-
vey, 2021.

44

Domain Generalization for Survival Analysis

Appendix A. Data and Methods

A.1. Datasets

The data are collected from the following studies:
NSCLC:

• NCT01351415 (RCT1): A Study of Beva-
cizumab in Combination With Standard of
Care Treatment in Participants With Advanced
Non-squamous Non-small Cell Lung Cancer
(NSCLC).

• NCT01496742 (RCT2): A Study of Onar-
tuzumab (MetMAb) in Combination With Beva-
cizumab (Avastin) Plus Platinum And Paclitaxel
or With Pemetrexed Plus Platinum in Patients
With Non-Squamous Non-Small Cell Lung Can-
cer.

• NCT01903993 (RCT3): A Randomized Phase
2 Study of Atezolizumab (an Engineered Anti-
PDL1 Antibody) Compared With Docetaxel
in Participants With Locally Advanced or
Metastatic Non-Small Cell Lung Cancer Who
Have Failed Platinum Therapy - “POPLAR”.

• NCT02008227 (RCT4): A Study of Ate-
zolizumab Compared With Docetaxel in Par-
ticipants With Locally Advanced or Metastatic
Non-Small Cell Lung Cancer Who Have Failed
Platinum-Containing Therapy (OAK).

• NCT02366143 (RCT5): A Study of Ate-
zolizumab in Combination With Carbo-
platin Plus (+) Paclitaxel With or With-
out Bevacizumab Compared With Carbo-
platin+Paclitaxel+Bevacizumab in Participants
With Stage IV Non-Squamous Non-Small Cell
Lung Cancer (NSCLC) (IMpower150).

• NCT02657434 (RCT6): A Study of Ate-
zolizumab in Combination With Carboplatin or
Cisplatin + Pemetrexed Compared With Carbo-
platin or Cisplatin + Pemetrexed in Participants
Who Are Chemotherapy-Naive and Have Stage
IV Non-Squamous Non-Small Cell Lung Cancer
(NSCLC) (IMpower 132).

• NCT01519804 (target): A Study of Onar-
tuzumab (MetMAb) Versus Placebo in Combi-
nation With Paclitaxel Plus Platinum in Pa-
tients With Squamous Non-Small Cell Lung
Cancer.

DLBCL:

• NCT01287741 (RCT): A Study of Obin-
utuzumab in Combination With CHOP
Chemotherapy Versus Rituximab With CHOP
in Participants With CD20-Positive Diffuse
Large B-Cell Lymphoma (GOYA)

• FlatironHealth (RWD): This study used the na-
tionwide Flatiron Health electronic health record
(EHR)-derived de-identified database. We se-
lected a subset of patients from the DLBCL co-
hort for the analyses.

A.2. Model Selection

Throughout the manuscript, we report the best-in-
class model. That is, for each group of models (ERM,
DG, Oracle condition), we report the best model
based on the average performance on the held-out
30% validation data from each split.
Since DG assumes no access to source domain data,
no reliable estimates for the generalization error GE
are available. Mainly three strategies have been pro-
posed in literature (Sagawa et al., 2019; Gulrajani
and Lopez-Paz, 2020):

• Validation Data Measure generalization error us-
ing average performance on a hold-out sample
from each source domain.

• Worst-case analysis Measure generalization error
as a method’s performance on the worst domain
(Sagawa et al. 2019).

• Validation Domain Measure generalization error
as a method’s performance on a (randomly) held
out source domain.

While each method can help to obtain better esti-
mates of eventual performance on a target domain,
their efficacy heavily depends on the (dis-)similarity
between source and target domains.

A.3. Implementation Details

IRM & EIL

Since we consider low-dimensional datasets with only
few observations, we consider simplistic (linear) neu-
ral networks in our benchmarks. The regularization
parameter λ for both is tuned on a grid of values:
, 1e−7, 1e−5, 1e−3, 1e−2, 1e−1, .5 and trained us-
ing the Adam optimizer with a learning rate of 0.01.

45

Domain Generalization for Survival Analysis

CIDA

We consider versions of CIDA and PCIDA that in-
clude only a linear predictor (CIDALinear and PCI-
DALinear) as well as a deep version including 4 layers
of widths (8, 12, 12, 8) respectively (CIDA, PCIDA).
Since we study settings with ∼ 5 covariates, we con-
sider a width of 12 to be appropriately big for our
neural networks.

A.4. Building synthetic domain shift

We created the synthetic dataset based on case A
to mimic scenario different degree of domain shift.
The case A contains only one dataset in the source
domain. For the main task, we simply separated the
data according to the age groups of the population
(0-50, 51-60, 61-70, 71-80, 80+), however, this is an
over simplification of categorizing the heterogeneous
subgroups within the population.

We applied the method described to create syn-
thetic domain labels. Firstly, a logistic regression
model was fitted on the combined source and target
domain to calculate the propensity of each sample be-
ing in one of the domains. Based on the propensity
scores, we stratified the whole population according
to the quantiles of the propensity scores (0-20%, 21-
40%, 41-60%, 61-80%, 81-100%), which are used as
the propensity labels (ps 1-5, Fig. 5). We then com-
bined the propensity labels and the original domain
labels (RCT or RWD) to create a new domain label
for each stratum in the population (e.g. RCT1, indi-
cates the patient comes from the RCT data and be-
longs to the propensity category ps 1). Based on dif-
ferent combinations of stratum we are able to created
scenarios with different degrees of domains shifts.

Appendix B. Figures and Tables

Figure 3: Summary of the distribution of fea-
ture space X and outcome Y. I)
propensity score of data from the source
and target domain; II) Kaplan-Meier curve
of the source and target domain.

Figure 4: GEsrc and GEtgt of the ERM Model with
error bars for the reported mean.

46

Domain Generalization for Survival Analysis

Table 3: Full experimental results. We report c-index across replications for all experiments by method
and scenarios. Bold: best method according to GEtgt except Oracle model, underlined: chosen via
validation data strategy. We report averages along with standard deviations (in brackets).

Algorithm A B C D E

Oracle 0.703 (0.023) 0.648 (0.069) 0.634 (0.036) 0.664 (0.078) 0.666 (0.069)
ERM
coxph 0.695 (0.003) 0.592 (0.012) 0.625 (0.003) 0.710 (0.003) 0.686 (0.005)
weibull 0.694 (0.003) 0.588 (0.011) 0.624 (0.003) 0.710 (0.003) 0.687 (0.004)
LRD 0.683 (0.027) 0.630 (0.002) 0.629 (0.004) 0.698 (0.014) 0.654 (0.009)
CIDA
CIDA 0.631 (0.062) 0.588 (0.040) 0.601 (0.024) 0.665 (0.044) 0.642 (0.043)
PCIDA 0.593 (0.067) 0.551 (0.054) 0.556 (0.051) 0.654 (0.036) 0.639 (0.049)
CIDALinear 0.648 (0.002) 0.601 (0.014) 0.658 (0.014) 0.659 (0.012) 0.659 (0.013)
PCIDALinear 0.646 (0.001) 0.595 (0.015) 0.607 (0.015) 0.683 (0.020) 0.674 (0.014)
IR
IRM 0.345 (0.034) 0.465 (0.016) 0.478 (0.035) 0.605 (0.055) 0.518 (0.074)
EIIL 0.364 (0.019) 0.452 (0.002) 0.471 (0.002) 0.519 (0.110) 0.292 (0.007)
Ensemble
surv.quilts 0.635 (0.049) 0.613 (0.006) 0.623 (0.002) 0.635 (0.007) 0.662 (0.009)
surv.forest 0.650 (0.004) 0.602 (0.008) 0.639 (0.003) 0.610 (0.004) 0.655 (0.008)

Figure 5: Create synthetic domain labels based
on propensity score in case A. The
RCT and RWD data were each categorized
based on the quantiles of the propensity
score (ps 1-5). Combining with the orig-
inal domain labels, the target and source
domains were divided into 10 different sub-
domains, labeled as RCT1-5 and RWD1-5.

47

6.4 mlr3pipelines - Flexible Machine Learning Pipelines in R 333

6.4 mlr3pipelines - Flexible Machine Learning Pipelines
in R

Contributed Article:
M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl. mlr3pipelines -
flexible machine learning pipelines in R. Journal of Machine Learning Research, 22(184):1–
7, 2021

Declaration of contributions The project was originally initiated by BB and FP based
on previous work by MB in [24]. BB and FP developed initial code that was later revised
and rewritten mostly by MB to arrive at the current software. MB also developed the
core functionality of the package along with documentation. FP, LS and ML contributed
several operators and extensions to the package and improved documentation as well as
core functionality. ML, LK and BB advised throughout the process and improved the
resulting manuscript.

Journal of Machine Learning Research 22 (2021) 1-7 Submitted 3/21; Revised 6/21; Published 6/21

mlr3pipelines – Flexible Machine Learning Pipelines in R

Martin Binder1 martin.binder@stat.uni-muenchen.de
Florian Pfisterer1 florian.pfisterer@stat.uni-muenchen.de
Michel Lang1 michel.lang@stat.uni-muenchen.de
Lennart Schneider1 lennart.schneider@stat.uni-muenchen.de
Lars Kotthoff2 larsko@uwyo.edu
Bernd Bischl1 bernd.bischl@stat.uni-muenchen.de

1 Department of Statistics, LMU Munich, Germany
2 Department of Computer Science, University of Wyoming, USA

Editor: Alexandre Gramfort

Abstract

Recent years have seen a proliferation of ML frameworks. Such systems make ML accessible
to non-experts, especially when combined with powerful parameter tuning and AutoML
techniques. Modern, applied ML extends beyond direct learning on clean data, however,
and needs an expressive language for the construction of complex ML workflows beyond
simple pre- and post-processing. We present mlr3pipelines, an R framework which can be
used to define linear and complex non-linear ML workflows as directed acyclic graphs. The
framework is part of the mlr3 ecosystem, leveraging convenient resampling, benchmarking,
and tuning components.

Keywords: machine learning pipelines, preprocessing, automated machine learning

1. Introduction

As one of the most popular and widely-used software systems for statistics and ML, R (R
Core Team, 2020) has several packages that provide a standardized interface for predictive
modeling, such as caret (Kuhn, 2008), tidymodels (Kuhn and Wickham, 2020b), mlr

(Bischl et al., 2016), and its successor mlr3 (Lang et al., 2019). But real-world applications
often require complex combinations of ML (pre-) processing steps, which can be expressed
as a directed acyclic graph (DAG); we will call such graphs ML pipelines or ML workflows.
Specifying such a workflow in an ML system without direct support requires error-prone
glue code to combine the individual pieces. One particular difficulty is that (in ML) each
pipeline operation is not a stateless function application, but consists of a train and predict
stage, where the former not only transforms its inputs into an output, but also learns an
internal parameter state, which the latter relies on.1 mlr3pipelines provides a domain-
specific language which allows building ML pipelines from individual processing operations
(PipeOps, also see Figure 1). It ships with a large collection of such operations and allows
their custom extension through user-defined operations.

1. This implies that the pipeline idiom in mlr3pipelines is quite different compared to magrittr, dplyr,
and tidymodels.

©2021 Martin Binder, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0281.html.

Binder, Pfisterer, Lang, Schneider, Kotthoff, and Bischl

Figure 1: Train and predict steps for a short linear pipeline. Trained PipeOps carry state /
parameters (factors and the fitted model) that can be applied to test data.

2. Related Work

By far, the most widely-used implementation of ML pipelines is Python scikit-learn’s
(Pedregosa et al., 2011) pipeline module (Buitinck et al., 2013). Unlike our software,
scikit-learn supports only linear pipelines directly, although complex pipelines can be
expressed through a wrapper mechanism. Several extensions such as baikal (Tineo, 2019)
and neuraxle (Chevalier et al., 2019) extend scikit-learn’s pipelining via a graph-based API
similar to ours. tidymodels provides the recipes R package (Kuhn and Wickham, 2020a)
for building linear preprocessing pipelines with limited flexibility and the workflows package
(Vaughan, 2020) for combining these with models into pipelines. The mlr extension mlrCPO

(Binder, 2021) also focuses on linear pipelines and has limited support for more complex
structures. Industry is increasingly providing systems that support ML pipelines, e.g.,
Microsoft’s ml.net (Ahmed et al., 2019) for C# and H2O (H2O.ai, 2021) with bindings
for Python and R. The d3m software (Milutinovic et al., 2017) was developed as part of
DARPA’s Data Driven Discovery of Models program (Shen, 2018) and includes a pipeline
system to combine ML primitives, again without the full flexibility of mlr3pipelines. The
DAGs in mlr3pipelines go beyond simple combinations of preprocessing and ML models.
They support ensemble models and conditional branching that can be represented explicitly
as part of the graph structure. Existing pipelining frameworks are often limited to passing
training or prediction data objects through the pipeline, while mlr3pipelines allows for
passing arbitrary objects. Some operators, for example, pass on functions, which are then
used to influence the behavior of operators later in the graph.

3. Design, Functionality, and Examples

mlr3pipelines represents ML workflows as Graph objects: DAGs, whose vertices are
PipeOps, which represent arbitrary ML processing operations. The pipeline can either
be called to train or predict. Inputs and intermediate objects, most commonly data, move
along the DAG’s edges. When they pass through a vertex, they are processed by the cor-

2

mlr3pipelines – Flexible Machine Learning Pipelines in R

factor_xgboost = po("encode") %>>%

lrn("classif.xgboost")

pipe = ppl("branch", list(

xgboost = factor_xgboost,

ranger = lrn("classif.ranger")

))

Listing 1 (left) and Figure 2 (right): Example of a branching pipeline. LHS: The %>>%

operator builds a linear partial graph. The “ppl branch” template constructs
two alternative paths xgboost and ranger, where the latter does not require factor
encoding. A new hyperparameter controls the path through which the data will
flow. RHS: The pipeline can be plotted with pipe$plot(html = TRUE).

responding PipeOp, and, depending on the call, are either transformed by its train() or
predict() method, where the former also creates the operator’s internal state.

This ensures that no information leakage from test data occurs, which is required for the
evaluation of predictive systems (Bischl et al., 2012). mlr3pipelines and the mlr3 ecosys-
tem are integrated with each other, so that mlr3’s Learners can be used as PipeOps and
Graphs adhere to the same interface as mlr3 learners and can be, for example, resampled and
tuned just like any other Learner. This also enables effortless parallelization of these opera-
tions for pipelines. mlr3pipelines provides the %>>% operator, which concatenates Graphs
(or PipeOps) into larger Graphs. Templates for more complex but frequently used graph pat-
terns are provided through the ppl() lookup function. Outputs from different nodes can be
combined in non-trivial ways, for example, joining features created by different preprocessing
steps, to create non-linear structures. Other examples include alternative path branching
(one of several flows is executed, depending on a hyperparameter), ensembling (predictions
from different PipeOps are averaged), and stacking (predictions from different PipeOps are
combined in another PipeOp, usually a Learner, to produce a final prediction). Listing 1
shows an example of branching for model and preprocessing selection. Many more examples
can be found at https://mlr3gallery.mlr-org.com/#category:mlr3pipelines.

Figure 3 shows examples of complex pipeline components. Some of these are already
used in other packages in the mlr3 ecosystem, e.g., mlr3proba (Sonabend et al., 2021) uses
the pipeline in Figure 3(i). Users can easily implement their own PipeOps and define their
exposed hyperparameters, by inheriting from the PipeOp class to, for example, implement
custom feature extraction and processing.

4. Hyperparameter Tuning and AutoML

Each Graph exposes the hyperparameters of its constituent PipeOps for joint tuning via
any of the automated tuning methods in mlr3. Simple tuners such as grid and random
search, as well as advanced black-box optimizers like Bayesian Optimization (Snoek et al.,
2012) and Hyperband (Li et al., 2018) are available through mlr3tuning. Building upon the
branching principle of Listing 1, this allows to build entire AutoML systems by combining

3

Binder, Pfisterer, Lang, Schneider, Kotthoff, and Bischl

Imputation

Factor
Encoding

Imbalancy
Correction

Copy

New target:
y > 0

CV Learner

Union

Copy

Convert
Regression Task

CV Learner

Thresholds

Copy

Target 1

CV Learner

Target 2

CV Learner

Union

Union

CV
Learner

CV
Learner

Copy

CV
Learner

Union

a) Preprocessing b) Zero-Inflated Models d) Ordinal f) Chained
Multi-Output

g) Stacking

Copy

Linear
Predictor

Baseline
Distr.

DistrCompose

i) Distribution Comp.

New target:
y==k

MulticlassToBinary

New target:
y==0

h) One-vs-All

Learner Learner

BinaryToMultiClass

Learner

Copy

...

Branch

PCA ICA

Unbranch

e) Branching

Scale-trafo y

Learner

Trafo-Invert

c) Target Trafo

Figure 3: Example pipelines constructed from simple building blocks: (a) typical pre-
processing pipeline, (b) zero-inflated data (Zuur et al., 2009), (c) target trans-
formations (scaling to [0, 1]) before a model and back afterward, (d) ordinal re-
gression through thresholding, (e) alternative path branching between different
options, (f) chaining (Read et al., 2011), (g) stacking (Wolpert, 1992), (h) multi-
class classification through ensembling of multiple class-vs-rest binary classifiers,
(i) estimation of survival distributions and continuous risk rankings from linear
predictors through composition (Sonabend et al., 2021).

multiple learners and preprocessing options. Jointly tuning the selection of these steps with
their (subordinate) hyperparameters yields a single pipeline, tailored for a specific task.

5. Availability, Documentation, Code Quality Control

All packages of the mlr3 ecosystem are released under LGPL-3 on GitHub (https://
github.com/mlr-org) and on CRAN. Package documentation is available at https://

mlr3pipelines.mlr-org.com and in the (work-in-progress) mlr3 book (https://mlr3book.
mlr-org.com), with examples in the mlr3 gallery (https://mlr3gallery.mlr-org.com).
An extensive suite of unit tests is run on each change via a continuous integration system.

6. Outlook

mlr3pipelines is complete and ready for production use. Our focus for future improve-
ments is better integration of automated ML and deep learning (through mlr3keras and
mlr3torch), and leveraging parallel processing specifically for pipelines.

Acknowledgments

This work has been funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. LK is supported by NSF grant #1813537.

4

mlr3pipelines – Flexible Machine Learning Pipelines in R

References

Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng Chin, Yael
Dekel, Xavier Dupre, Vadim Eksarevskiy, Senja Filipi, Tom Finley, Abhishek Goswami,
Monte Hoover, Scott Inglis, Matteo Interlandi, Najeeb Kazmi, Gleb Krivosheev, Pete
Luferenko, Ivan Matantsev, Sergiy Matusevych, Shahab Moradi, Gani Nazirov, Justin
Ormont, Gal Oshri, Artidoro Pagnoni, Jignesh Parmar, Prabhat Roy, Mohammad Zee-
shan Siddiqui, Markus Weimer, Shauheen Zahirazami, and Yiwen Zhu. Machine learning
at Microsoft with ML.NET. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2448–2458, 2019.

Martin Binder. mlrCPO: Composable Preprocessing Operators and Pipelines for Machine
Learning, 2021. URL https://CRAN.R-project.org/package=mlrCPO. R package ver-
sion 0.3.7-2.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Claus Weihs. Resampling methods for
meta-model validation with recommendations for evolutionary computation. Evolutionary
Computation, 20(2):249–275, 2012.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,
Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning in R. Journal of
Machine Learning Research, 17(170):1–5, 2016. URL http://jmlr.org/papers/v17/

15-066.html.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design
for machine learning software: Experiences from the scikit-learn project. In European
Conference on Machine Learning and Principles and Practices of Knowledge Discovery
in Databases, 2013.

Guillaume Chevalier, Alexandre Brillant, and Éric Hamel. Neuraxle - a Python framework
for neat machine learning pipelines, 09 2019. URL https://github.com/Neuraxio/

Neuraxle.

H2O.ai. h2o software, 10 2021. URL https://github.com/h2oai/h2o-3. H2O version
3.32.1.3.

Max Kuhn. Building predictive models in R using the caret package. Journal of Statistical
Software, 28(5):1–26, 2008.

Max Kuhn and Hadley Wickham. recipes: Preprocessing tools to create design matri-
ces, 2020a. URL https://CRAN.R-project.org/package=recipes. R package version
0.1.16.

Max Kuhn and Hadley Wickham. Tidymodels: A collection of packages for modeling and
machine learning using tidyverse principles., 2020b. URL https://www.tidymodels.

org.

5

Binder, Pfisterer, Lang, Schneider, Kotthoff, and Bischl

Michel Lang, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors,
Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. mlr3: A modern object-
oriented machine learning framework in R. Journal of Open Source Software, 4(44):1903,
2019.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of
Machine Learning Research, 18(185):1–52, 2018. URL http://jmlr.org/papers/v18/

16-558.html.

Mitar Milutinovic, Atılım Güneş Baydin, Robert Zinkov, William Harvey, Dawn Song,
Frank Wood, and Wade Shen. End-to-end training of differentiable pipelines across ma-
chine learning frameworks. In 31st Conference on Neural Information Processing Systems
(NIPS 2017), 2017.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12(85):2825–2830, 2011. URL http://jmlr.

org/papers/v12/pedregosa11a.html.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for
multi-label classification. Machine Learning, 85(3):333, 2011.

Wade Shen. Darpa’s data driven discovery of models (D3M) and software defined hardware
(SDH) programs. In D. Chen, H. Homayoun, and B. Taskin, editors, Proceedings of
the 2018 on Great Lakes Symposium on VLSI, GLSVLSI 2018, Chicago, IL, USA, May
23-25, 2018, page 1. ACM, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of
machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2951–
2959. Curran Associates, Inc., 2012.

Raphael Sonabend, Franz J. Király, Andreas Bender, Bernd Bischl, and Michel Lang.
mlr3proba: An R package for machine learning in survival analysis. Bioinformatics,
02 2021.

Alejandro Gonzalez Tineo. baikal, 2019. URL https://github.com/alegonz/baikal.

Davis Vaughan. workflows: Modeling Workflows, 2020. URL https://CRAN.R-project.

org/package=recipes. R package version 0.2.1.

David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

6

mlr3pipelines – Flexible Machine Learning Pipelines in R

Alain F Zuur, Elena N Ieno, Neil J Walker, Anatoly A Saveliev, and Graham M Smith.
Zero-truncated and zero-inflated models for count data. In Mixed Effects Models and
Extensions in Ecology with R, pages 261–293. Springer, New York, NY, USA, 2009.

7

6.5 Fairness Audits And Bias Mitigation Using mlr3fairness 341

6.5 Fairness Audits And Bias Mitigation Using mlr3fairness
Contributed Article:
F. Pfisterer, S. Wei, S. Vollmer, M. Lang, and B. Bischl. Fairness Audits And Debiasing
Using mlr3fairness, Manuscript submitted for publication

Declaration of contributions The project originated with an initial draft by SW,
guided and subsequently improved FP and ML. FP then refactored the resulting software
and extended it in several directions. FP also implemented additional measures, debiasing
techniques, and fair learners along with documentation. The idea of including model and
data reporting functionality originated with FP. BB and ML supervised FP and SW with
respect to scope, API design, and implementation details. SV provided feedback and
further improved the manuscript.

CONTRIBUTED RESEARCH ARTICLE 1

Fairness Audits And Debiasing Using
mlr3fairness
by Florian Pfisterer, Siyi Wei, Sebastian Vollmer, Michel Lang, and Bernd Bischl

Abstract Given an increase in data-driven automated decision-making based on machine learning
models, it is imperative that along with tools to develop and improve such models there are sufficient
capabilities to analyze and assess models with respect to potential biases. We present the package
mlr3fairness, a collection of metrics and methods that allow for the assessment of bias in machine
learning models. Our package implements a variety of widely used fairness metrics that can be
used to audit models for potential biases along with a set of visualizations that can help to provide
additional insights into such biases. mlr3fairness furthermore integrates debiasing methods that
can help allevaite biases in ML models through data preprocessing or post-processing of predictions.
These allow practicioners to trade off performance and fairness metric that are appropriate for their
use case.

Introduction

Humans are increasingly subject to data-driven automated decision-making. Those automated proce-
dures such as credit risk assessments are often applied using predictive models (Galindo and Tamayo,
2000). It is imperative that along with tools to develop and improve such models, we also develop
sufficient capabilities to analyze and assess models not only with respect to their robustness and pre-
dictive performance, but also address potential biases. This is highlighted by the GDPR requirement
to process data fairly. Popular R (R Core Team, 2021) modeling frameworks such as caret (Kuhn, 2021),
tidymodels (Kuhn and Wickham, 2020), SuperLearner (Polley et al., 2021), or mlr (Bischl et al., 2016)
implement a plethora of metrics to measure performance, but fairness metrics are widely missing. This
lack of availability can be detrimental to obtaining fair and unbiased models if the result is to forgo bias
audits due to the considerable complexity of implementing such metrics. Consequently, there exists
considerable necessity for R packages (a) implementing such metrics, and (b) connecting these metrics
to existing ML frameworks. If biases are detected and need to be mitigated, we might furthermore
want to employ debiasing techniques that tightly integrate with the fitting and evaluation of the
resulting models in order to obtain trade-offs between a model’s fairness and utility (e.g., predictive
accuracy).

In this article, we present the mlr3fairness package which builds upon the ML framework mlr3
(Lang et al., 2019). Our extension contains fairness metrics, fairness visualizations, and model-agnostic
pre- and postprocessing operators that aim to reduce biases in ML models. Additionally, mlr3fairness
comes with reporting functionality to allow for fairness audits and reducing disparities in ML models.

In the remainder of the article, we first provide an introduction to fairness in ML with the goal
to raise awareness for biases that can arise due to the use of ML models. Next, we introduce the
mlr3fairness package, followed by an extensive case study, showcasing the capabilities of mlr3fairness.
We conclude with a short summary.

Fairness in Machine Learning

Studies have found that data-driven automated decision-making systems often improve over human
expertise (c.f. Dawes et al. (1989)) and high stakes decisions can therefore be improved using data-
driven systems. This often does not only improve predictions but can also make decisions more
efficient through automation. Such systems, often without human oversight, are now ubiquitous in
everyday life (O’neil (2016), Eubanks (2018), Noble (2018)). To provide further examples, ML-driven
systems are used for highly influential decisions such as loan accommodations (Chen (2018), Turner
and McBurnett (2019)), job applications (Schumann et al., 2020), healthcare (Topol, 2019), and criminal
sentencing (Angwin et al. (2016), Corbett-Davies et al. (2017), Berk et al. (2018)). With this proliferation,
such decisions have become subject to scrutiny as a result of prominent inadequacies or failures, for
example in the case of the COMPAS recidivism prediction system (Angwin et al., 2016).

Without proper auditing, those models can unintentionally result in negative consequences for
individuals, often from underprivileged groups (Barocas et al., 2019). Several sources of such biases
are worth mentioning in this context: Data often contains historical biases such as gender or racial
stereotypes, that – if picked up by the model – will be replicated into the future. Similarly, unprivileged
populations are often not represented in data due to sampling biases leading to models that perform

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 2

well in groups sufficiently represented in the data but worse on others (Buolamwini and Gebru, 2018)
- this includes a higher rate of missing data. Other biases include biases in how labels and data are
measured as well as feedback loops where repeated decisions affect the population subject to such
decisions. For an in-depth discussion and further sources of biases, the interested reader is referred to
(Mehrabi et al., 2021, Mitchell et al. (2021)).

Quantifying Fairness

We now turn to the question of how we can detect whether disparities exist in a model and if so,
how they can be quantified. What constitutes a fair models depends on a society’s ethical values and
whether we take a normative position, resulting in different metrics that are applied to a problem at
hand. In this article, we focus on a subgroup of these, so-called statistical group fairness metrics. First,
the observations are grouped by a protected attribute A (A = 0 vs. A = 1) which, e.g., is an identifier
for a person’s race or a person’s gender. For the sake of simplicity, we consider a binary classification
scenario and a binary protected attribute. Each observation has an associated label Y, Y ∈ {0, 1} we
aim to predict, e.g. whether a defendant was caught re-offending. A system then makes a prediction
Ŷ, Ŷ ∈ {0, 1} with the goal to predict whether an individual might re-offend. We assume that Y = 1 is
the favored outcome in the following exposition. However, the concepts discussed in the following
often extend naturally to more complex scenarios including multi-class classification, regression or
survival analysis and similarly to settings with multiple protected attributes. We now provide and
discuss several metrics grouped into metrics that require Separation and Independence (Barocas et al.,
2019) to provide further intuition regarding core concepts and possible applications.

Separation

One group of widely used fairness notions requires Separation: Ŷ ⊥ A|Y. This essentially requires,
that some notion of model error, e.g. accuracy or false positive rate is equal across groups A. From this
notion, we can derive several metrics that come with different implications. It is important to note,
that those metrics can only meaningfully identify biases under the assumption that no disparities exist
in the data, or that they are legally justified. If e.g. societal biases lead to disparate measurements of an
observed quantity (e.g. SAT scores) for individuals with the same underlying ability, separation based
metrics might not identify existing biases. For this reason, Wachter et al. (2020) refer to those metrics
as bias-preserving metrics since underlying disparities are not addressed. We now provide and discuss
several metrics to provide further intuition regarding core concepts and possible applications.

Equalized Odds A predictor Ŷ satisfies equalized odds with respect to a protected attribute A and
observed outcome Y, if Ŷ and A are conditionally independent given Y:

P
(
Ŷ = 1 | A = 0, Y = y

)
= P

(
Ŷ = 1 | A = 1, Y = y

)
, y ∈ {0, 1}. (1)

In short, we require the same true positive rates (TPR) and false positive rates (FPR) across both
groups A = 0 and A = 1. This intuitively requires, e.g. in the case of university admission, that
independent of the protected attribute, qualified individuals have the same chance to be accepted and
unqualified individuals are rejected. Similar arguments have been made for equalized false positive
rates (Chouldechova, 2017) and false omission rates (Berk et al., 2018) depending on the exact scenario.

Equality of Opportunity A predictor Ŷ satisfies equality of opportunity with respect to a protected
attribute A and observed outcome Y, if Ŷ and A are conditionally independent given Y = 1. This is a
relaxation of the aforementioned equalized odds essentially only requiring equal TPRs:

P
(
Ŷ = 1 | A = 0, Y = 1

)
= P

(
Ŷ = 1 | A = 1, Y = 1

)
. (2)

Intuitively, this only requires that independent of the protected attribute, qualified individuals have
the same chance of being accepted.

Performance Parity A more general formulation can be applied when we require parity of some
performance metric across groups. To provide an example, Buolamwini and Gebru (2018) compare
accuracy across intersectional subgroups, essentially arguing that model performance should be equal
across groups:

P
(
Ŷ = Y | A = 0

)
= P

(
Ŷ = Y | A = 1

)
Y ∈ {0, 1}. (3)

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 3

This intuitively requires, that the model should work equally well for all groups, i.e. individuals are
correctly accepted or denied at the same rate, independent of the predicted attribute. This notion can
be extended across supervised learning settings and performance metrics, leading to considerations of
equal mean squared error, e.g. in a regression setting.

Independence (Demographic Parity)

A second group of fairness metrics is given by so-called bias-transforming metrics (Wachter et al., 2020).
They require, that decision rates, such as the positive rate are equal across groups. This notion can
identify biases e.g. arising from societal biases that manifest in different base rates across groups. At the
same time, employing such notions poses a considerable risk, as blindly optimizing for demographic
parity might result in predictors that e.g. jail innocent people from an advantaged group in order to
achieve parity across both groups (Dwork et al., 2012, Berk et al. (2018)).

A predictor Ŷ satisfies demographic parity [@{Calders2010] with respect to a protected attribute A
and observed outcome Y, if Ŷ and A are conditionally independent.

P
(
Ŷ = 1 | A = 0

)
= P

(
Ŷ = 1 | A = 1

)
. (4)

In contrast to the previous definitions, this only requires that the chance of being accepted is equal
across groups.

Fairness metrics In order to encode the requirements in equations 1) - 4 into a fairness metric, we
often encode differences between measured quantities in two groups. For a performance metric M,
e.g. the true positive rate (TPR), we calculate the difference in the metric across the two groups:

∆M = MA=0 −MA=1.

When ∆M now significantly deviates from 0, this can be indicative of a fairness violation with respect
to the fairness notion described via M. To provide an example, with P

(
Ŷ = 1 | A = ⋆, Y = 1

)
denoted

with TPRA=⋆, we calculate the difference in TPR between the two groups:

∆TPR = TPRA=0 − TPRA=1.

When ∆FPR now significantly deviates from 0, the prediction Ŷ violates the requirement for equality of
opportunity formulated above.

It is important to note, that in practice we might not be able to perfectly satisfy a given metric,
e.g. due to stochasticity in data and labels. Instead, to provide a binary conclusion regarding fairness,
a model could be considered fair, if |∆TPR| < ϵ for a given threshold ϵ > 0, e.g., ϵ = 0.05. This allows
for small deviations from perfect fairness due to variance in the estimation of TPRA=⋆ or additional
sources of bias. It is important to note, that choosing apropriate thresholds is difficult and widely used
values for ϵ such as 0.05 are arbitrary and do not translate to legal doctrines, such as e.g. disparate
impact (Watkins et al., 2022). A more in-depth treatment of metrics along with additional fairness
metrics are described in (Saleiro et al. (2018), Kim et al. (2020), Mehrabi et al. (2021) and Wachter et al.
(2020)).

Selecting fairness metrics While the three metrics are conceptually similar, they encode a different
belief of what constitutes fair in a given scenario. Wachter et al. (2020) differentiate between bias-
preserving and bias transforming metrics: Bias-preserving metrics such as equalized odds and equality
of opportunity require that errors made by a model are equal across groups. This can help to detect
biases, stemming e.g. from data acquisition, but might be problematic in cases where e.g. labels are
biased. To provide an example, police enforcement and subsequent arrests of violent re-offenders
might be different across ZIP code areas, a proxy for race. This might lead to situations where labels Y
suffer from differential measurement bias strongly correlated with race (Bao et al., 2021).

Bias-transforming methods, in contrast do not depend on the labels and might therefore not
suffer from this problem. They can help detecting biases arising from different base-rates across
populations, arising e.g. from aforementioned biases in the labeling or as a consequence of structural
discrimination. Deciding which metrics to use constitutes a value judgement and requires careful
assessment of the societal context a decision making system is deployed in. A discussion of different
metrics and their applicability can be found in the Aequitas Fairness Toolkit (Saleiro et al., 2018)
which also provides guidance towards selecting a metric via the Aequitas Fairness Tree. Wachter et al.
(2020) recommend using bias-transforming metrics and provide a checklist that can guide the choice
of fairness metric. Corbett-Davies and Goel (2018) on the other hand point out several limitations of
available metrics and argue for grounding decisions in real world quantities in addition to abstract

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 4

fairness metrics. Similarly, Friedler et al. (2016) emphasize the need to differentiate between constructs
we aim to measure (e.g. job-related knowledge) and the observed quantity that can be measured in
practice (e.g. years in a job) when trying to automate decision, since disparities in how constructs
translate to observed quantities might suffer from bias. To provide an example, individuals with
similar ability might exhibit different measured quantities (grades) due to structural bias, e.g. worse
access to after-school tutoring programs.

The dangers of fairness metrics We want to stress, that overly trusting in metrics can be dangerous
and that fairness metrics can and should not be used to prove or guarantee fairness. Whether a selected
fairness notion (and a corresponding numerical value) is actually fair depends on the societal context
in which a decision is made and which action should be derived from a given prediction. Therefore,
selecting the correct fairness metric requires a thorough understanding of the societal context, decisions
are made in, as well as possible implications of such decisions. To provide an example, in some cases
discrepancies in positive predictions might be justified or even desired, as they, e.g. allow for a more
nuanced, gender-specific diagnosis (?). Furthermore, fairness metrics might not detect biases in more
fine-grained subgroups, e.g. at the intersection of multiple protected attributes. It is also important
to note, that fairness metrics merely provide a reduction of the aforementioned fairness notions into
mathematical objectives. As such, they require a variety of abstraction steps that might invalidate the
metric (Watkins et al., 2022), as they e.g. require that the data is a large enough and representative
sample of the entire population that we aim to investigate. Furthermore, practitioners need to look
beyond the model, but also at the data used for training and the process of data and label acquisition. If
the data e.g. exhibits disparate measurement errors in the features or labels, valid fairness assessments
can become impossible. Similarly, feedback loops might arise from a prediction leading to changes in
the data collected in the future. Even an initially fair model might then lead to adverse effects in the
long term (Schwöbel and Remmers, 2022).

Note, that the fairness definitions presented above serve a dual purpose (Wachter et al., 2020):
First, as a diagnostic tool with the goal to detect disparities. This e.g. allows assessing whether a model
has inherited biases, e.g. from historical disparities reflected in the data. The second purpose is as
a basis for model selection and making fair decisions in practice. In this setting, fairness notions are
employed with the goal to audit ML models or to select which model should be used in practice. It
is important to note, that fairness metrics should however not be used as the sole basis for making
decisions about whether to employ a given ML model or to assess whether a given system is fair. We
therefore explicitly encourage using the presented metrics in an explorative manner.

Other notions of fairness In addition to statistical group fairness notions introduced above, several
additional fairness notions exist. The notion of individual fairness was proposed by (Dwork et al., 2012).
Its core idea comes from the principle of treating similar cases similarly and different cases differently. In
contrast to statistical group fairness notions, this notion allows assessing fairness at an individual level
and would therefore allow determining, whether an individual is treated fairly. A more in-depth
treatment of individual fairness notions is given by Binns (2020) and Heidari et al. (2019). Similarly, a
variety of causal fairness notions exist (c.f. Kilbertus et al. (2017)). They argue, that assessing fairness
requires incorporating causal relationships in the data.

Fairness Constraints

Statistical group fairness notions suffer from two further problems in practice: First, it might be hard to
exactly satisfy the required fairness notions, e.g. due to limited amount of data available for evaluation.
Secondly, only requiring fairness might lead to degenerate solutions (Corbett-Davies and Goel, 2018)
or models that have low utility, e.g. in separating good and bad credit risk. One approach to take
this into account is to employ models which maximize utility but satisfy some maximum constraint
on potential unfairness. This can be achieved via constraints on the employed fairness measure,
e.g. |∆M| ≤ ϵ requiring that the absolute difference in a metric M between groups is smaller than a
chosen value ϵ. In the following, we denote the fairness metric we want to minimize with ∆M and the
performance metric with ρ (assuming the latter should be maximized).

ρ|∆|M≤ϵ =

{
ρ |∆M| ≤ ϵ
−|∆M| else

This approach has e.g. been employed by (Perrone et al., 2021) as the objective of an AutoML
system. It is not immediately clear, how the constraint ϵ should be chosen. An alternative therefore is
to employ multi-objective optimization in order to investigate available trade-offs between performance
and accuracy metrics. This can be done via mlr3tuning which contains functionality to tune models for

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 5

multiple metrics, described in more detail in the mlr3book. The result of optimization is the pareto-set:
A list of models which optimally trade off the specified objectives.

Debiasing Models

If biases are detected in a model, we might now be interested in improving models in order to
potentially mitigate such biases. Bias in models might arise from a variety of sources, so a careful
understanding of the data, data quality and distribution might lead to approaches that can help in
decreasing biases, e.g. through the collection of better or additional data or a better balancing of
protected groups. Similarly, biases might arise from the model, e.g. through under- or overfitting and
more careful tuning of model hyperparameters might help with improving fairness. Especially in
the case of bias-transforming metrics, a better solution might often be to address fairness problems in
the real world instead of relying on algorithmic interventions to solve fairness not only momentarily.
In addition, a variety of algorithmic debiasing techniques, that might help with obtaining fairer
models have been proposed. Their goal is to reduce measured gaps in fairness, either via data pre-
processing, employing models that incorporate fairness or by applying post-processing techniques
on a model’s predictions. Popular examples for such techniques include computing instance weights
before training (Kamiran and Calders, 2012), where each observation is weighted proportional to
the inverse frequency of it’s label and protected attribute. Other methods work by directly learning
fair models that incorporate fairness constraints into the fitting procedure (Zafar et al., 2017) or by
adapting model predictions, e.g. (Hardt et al., 2016) propose to randomly flip a small fraction of
predictions in each group given by Ŷ and A, such that fairness metrics are satisfied in expectation.
Since debiasing techniques are often tailored towards a particular fairness metric, the optimal choice
of debiasing technique is often not trivial and a combination of algorithms and debiasing techniques,
e.g. determined via tuning might result in an optimal model.

Bias mitigation techniques, as proposed above have the goal to mitigate fairness issues, as e.g. mea-
sured by fairness metrics. In practice, this usually comes with several drawbacks: First, bias mitigation
strategies often lead to a decrease in a classifier’s predictive performance (Corbett-Davies and Goel,
2018). In addition, processing schemes can worsen interpretability or introduce stochasticity during
prediction (see e.g. (Hardt et al., 2016)). Furthermore, we want to caution against favoring bias mitiga-
tion techniques over policy interventions that tackle biases at their root cause. A different set of risk is
posed by fairwashing (Aivodji et al., 2019), i.e. finding fair explanations or satisfying fairness metrics
for otherwise unfair models. If biases are only addressed at a given moment and without regard
for downstream effects, they might simultaneously lead to a decrease in predictive performance in
the near term and to negative consequences for the protected group in the long term (Schwöbel and
Remmers, 2022).

mlr3fairness

In this section, we first give an overview of related software. Next, we give a very briefly introduce to
the mlr3 ecosystem of packages. Finally, the implemented extensions for fairness are presented.

Related Software

Several R packages provide similar capabilities to our software, but mostly focus on fairness metrics
and visualization. The fairness package (Kozodoi and V. Varga, 2021) allows for the calculation of
a variety of fairness metrics, while aif360 (Bellamy et al., 2018) wraps the Python aif360 module
allowing for the computation of fairness metrics and several debiasing techniques but has only limited
interoperability with R objects such as data.frames. The fairmodels(Wiśniewski and Biecek, 2022)
package again allows for the computation of fairness metrics for classification and regression settings
as well as several debiasing techniques. It tightly integrates with DALEX (Biecek, 2018) to gain further
insight using interpretability techniques.

Outside R, in Python, the fairlearn module (Bird et al., 2020) provides ample functionality to
study a wide variety of metrics, debias with respect to a variety of pre-, in- and postprocessing
methods as well as to visualize differences. It furthermore provides a fairlearn dashboard providing a
comprehensive fairness report. The aif360 (Bellamy et al., 2018) module similarly provides metrics as
well as debiasing techniques while the aequitas fairness toolkit (Saleiro et al., 2018) provides similar
capabilities. Interoperability with the scikit-learn (Pedregosa et al., 2011) ML framework allows for
debiasing a wide variety of ML models in all aforementioned systems. Similar capabilities are also
available in Julia’s Fairness.jl (Agrawal et al., 2020a) library.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 6

The mlr3 Ecosystem

mlr3fairness is tightly integrated into the ecosystem of packages around the ML framework mlr3 (Lang
et al., 2019). mlr3 provides the infrastructure to fit, resample, and evaluate over 100 ML algorithms
using a unified API. Multiple extension packages bring numerous additional advantages and extra
functionality. In the context of fairness, the following extension packages deserve special mention:

• mlr3pipelines (Binder et al., 2021) for pre- and postprocessing via pipelining. This allows
merging debiasing with arbitrary ML algorithms shipped with mlr3 as well as comparison of
different models through joint resampling and tuning. It furthermore integrates with mcboost
(Pfisterer et al., 2021), which implements additional debiasing methods. We present an example
in the supplementary material.

• mlr3tuning for its extensive tuning capabilities. Fusing debiasing techniques with ML algo-
rithms as well as other often necessary preprocessing steps such as imputation of missing
values or class balancing allows for joint tuning of hyperparameters with respect to arbitrary
performance and fairness metrics.

• mlr3proba (Sonabend et al., 2021) for survival analysis.
• mlr3benchmark for post-hoc analysis of benchmarked approaches.
• mlr3oml as a connector to OpenML (Vanschoren et al., 2014), an online scientific platform for

collaborative ML.

In order to provide the required understanding for mlr3, we briefly introduce some terminology
and syntax. A full introduction can be found in the mlr3 book (Becker et al., 2022).

A Task in mlr3 is a basic building block holding the data, storing covariates and the target variable
along with some meta-information. The shorthand constructor function tsk() can be used to quickly
access example tasks shipped with mlr3 or mlr3fairness. In the following chunk, we retrieve the
binary classification task with id "compas_race_binary" from the package. It contains a simplified
version of the COMPAS data set (Angwin et al., 2016). The task is to predict whether a parolee will
re-offend within a span of 2 years. The column "race" is set as a binary protected attribute with levels
"Caucasian" and "African American".

library("mlr3verse")
library("mlr3fairness")

get a simplified compas example data set
task = tsk("compas_race_binary")

#> Warning in (function () : Using the COMPAS dataset for benchmarking is
#> generally discouraged in fairness literature. See `help('compas') for additional
#> information.`

print(task)

#> <TaskClassif:compas_race_binary> (5278 x 11)
#> * Target: two_year_recid
#> * Properties: twoclass
#> * Features (10):
#> - int (5): age, days_b_screening_arrest, decile_score,
#> length_of_stay, priors_count
#> - fct (5): age_cat, c_charge_degree, race, score_text, sex
#> * 1: pta

The protected attribute(s) are identified by a col_role named pta and can be set accordingly,
e.g. via taskcol_rolespta = c("gender, "race"). If more than one protected attribute is specified,
metrics will be computed based on intersecting groups formed by the columns.

The second building block is the Learner. It is a wrapper around an ML algorithm, e.g., an
implementation of logistic regression or a decision tree. It can be trained on a Task and used for
obtaining a Prediction on an independent test set which can subsequently be scored using a Measure
to get an estimate for the predictive performance on new data. The shorthand constructors lrn()
and msr() allow for the instantiation of implemented Learners and Measures, respectively. In the
following example, we will instantiate a learner, train it on the train set of the dataset and evaluate
predictions on held-out test data. The train-test split in this case is given by row indices, here stored in
the idx variable.

initialize a classification tree from package rpart, predicting probabilities
learner = lrn("classif.rpart", predict_type = "prob")

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 7

split into a list with train and test set
idx = partition(task)
fit model on train set
learner$train(task, idx$train)
predict on observations of test set
prediction = learner$predict(task, idx$test)

We then employ the classif.acc measure which measures the accuracy of a prediction compared
to the true label:

measure = msr("classif.acc")
prediction$score(measure)

#> classif.acc
#> 0.6622631

In the example above, we obtain an accuracy score of 0.6623, meaning our ML model correctly
classifies roughly 66 % of the samples in the test data. As the split into training set and test set is
stochastic, the procedure should be repeated multiple times for smaller datasets (Bischl et al., 2012)
and the resulting performance values should be aggregated. This process is called resampling, and can
easily be performed with the resample() function, yielding a ResampleResult object. In the following,
we employ 10-fold cross-validation as a resampling strategy.

resampling = rsmp("cv", folds = 10)
rr = resample(task, learner, resampling)
rr$aggregate(measure)

#> classif.acc
#> 0.6754507

We can call the aggregate method on the ResampleResult to obtain the accuracy aggregated
across all 10 replications. Here, we again obtain an accuracy of 0.6755, so slightly higher than previous
scores, due to using a larger fraction of the data. Furthermore, this estimate has a lower variance
(as it is an aggregate) at the cost of additional computation time. To properly compare competing
modeling approaches, candidates can be benchmarked against each other using the benchmark()
function (yielding a BenchmarkResult). In the following, we compare the decision tree from above
to a logistic regression model. To do this, we use the benchmark_grid function to compare the two
Learners across the same Task and resampling procedure.

learner2 = lrn("classif.log_reg", predict_type = "prob")

build an exhaustive grid design and run benchmark
grid = benchmark_grid(task, list(learner, learner2), resampling)
bmr = benchmark(grid)
bmr$aggregate(measure)[, .(learner_id, classif.acc)]

#> learner_id classif.acc
#> 1: classif.rpart 0.6716531
#> 2: classif.log_reg 0.6851047

After running the benchmark, we can again call .$aggregate to obtain aggregated scores. The
mlr3viz package comes with several ready-made visualizations for objects from mlr3 via the autoplot
function. For a BenchmarkResult, the autoplot function provides a Box-plot comparison of perfor-
mances across the cross-validation folds for each Learner. Figure ?(fig:bmrbox) contains the box-plot
comparison. We can see, that log_reg has a higher accuracy and lower inter-quartile range across the
10 folds and we might therefore want to prefer the log_reg model.

Selecting the protected attribute

For a given task, we can select one or multiple protected attributes. In mlr3, the protected attribute is
identified by the column role pta and can be set as follows:

taskcol_rolespta = "race"

This information is then automatically passed on when the task is used, e.g. when computing
fairness metrics.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 8

classif.rp
art

classif.lo
g_reg

0.64

0.66

0.68

0.70

cl
as

si
f.a

cc

Figure 1: Model comparison for decision trees (rpart) and logistic regression (log_reg).

Quantifying Fairness

With the mlr3fairness package loaded, fairness measures can be constructed via msr() like any other
measure in mlr3. They are listed with prefix fairness, and simply calling msr() without any arguments
will return a list of all available measures. Table 1 provides a brief overview over some popular fairness
measures which are readily available. The full list can be obtained from mlr_measures_fairness.

Table 1: Selection of implemented fairness metrics.

key description

fairness.acc Accuracy equality (Buolamwini and Gebru, 2018)
fairness.mse Mean squared error equality (Regression)
fairness.eod Equalized odds (Hardt et al., 2016)
fairness.tpr True positive rate equality / Equality of opportunity (Hardt et al., 2016)
fairness.fpr False positive rate equality / Predictive equality (Chouldechova, 2017)
fairness.tnr True negative rate equality
fairness.fnr False negative rate equality (Berk et al., 2018)
fairness.fomr False omission rate equality (Berk et al., 2018)
fairness.tnr Negative predictive value equality
fairness.tnr Positive predictive value equality
fairness.cv Demographic parity / Equalized positive rates (Calders and Verwer, 2010)
fairness.pp Predictive parity / Equalized precision (Chouldechova, 2017)
fairness.{tp, fp, tn, fn} Equal true positives, false positives, . . .
fairness.acc_eod=.05 Accuracy under equalized odds constraint (Perrone et al., 2021)
fairness.acc_ppv=.05 Accuracy under ppv constraint (Perrone et al., 2021)

Furthermore, new custom fairness measures can be easily implemented, either by implementing
them directly or by composing them from existing metrics. This process is extensively documented in
an accompanying vignette.

Here we choose the binary accuracy measure "classif.acc" and the equalized odds metric from
above using "fairness.eod": The constructed list of measures can then be used to score a Prediction,
a ResampleResult or BenchmarkResult, e.g.

measures = list(msr("classif.acc"), msr("fairness.eod"))
rr$aggregate(measures)

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

prob.0

0.3 0.4 0.5 0.6 0.7
0

2

4

6

de
ns

ity

Protected Class

African−American

Caucasian

0.00

0.05

0.10

0.15

0.20

fairness.fpr

fairness.tpr

fairness.equalized_odds

Metrics

V
al

ue

Figure 2: Left: Prediction densities for the negative class for races Caucasian and African-American.
Right: Fairness metrics comparison for FPR, TPR, EOd fairness metrics.

#> classif.acc fairness.equalized_odds
#> 0.6754507 0.2046731

We can clearly see a comparatively large difference in equalized odds at around 0.2. This means,
that in total, the false positive rates (FPR) and true positive rates (TPR) on average differ by ~0.2,
indicating that our model might exhibit a bias. Looking at the individual components, yields a clearer
picture. Here, we are looking at the confusion matrices of the combined predictions of the 10 folds,
grouped by protected attribute:

fairness_tensor(rr)

#> $`African-American`
#> truth
#> response 0 1
#> 0 0.18112922 0.09321713
#> 1 0.10572186 0.22148541
#>
#> $Caucasian
#> truth
#> response 0 1
#> 0 0.19780220 0.08071239
#> 1 0.04490337 0.07502842

Plotting the prediction density or comparing measures graphically often provides additional
insights: We can e.g. see, that African-American defendants are more often assigned low probabilities
of not re-offending (predicted class 0). Similarly, we can see that both equality in FPR and TPR differ
considerably.

fairness_prediction_density(prediction, task)
compare_metrics(prediction, msrs(c("fairness.fpr", "fairness.tpr", "fairness.eod")), task)

Debiasing

As mentioned above, several ways to improve a model’s fairness exist. While non-technical interven-
tions, such as e.g. collecting more data should be prefered, mlr3fairnes provides several debiasing
techniques that can be used together with a Learner to obtain fairer models. Table 2 provides an
overview over implemented debiasing techniques. They are implemented as PipeOps from the
mlr3pipelines package and can be combined with arbitrary learners to build a pipeline. An introduc-
tion to mlr3pipelines is available in the corresponding mlr3book chapter.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

Automatically reweigh data before training a learner:
po("reweighing_wts") %>>% po("learner", lrn("classif.glmnet"))

Post-process predictions for equalized odds.
po("learner_cv", lrn("classif.glmnet")) %>>% po("EOd")

Table 2: Overview over available debiasing techniques.

Key Description Type Reference

EOd Equalized-Odds Debiasing Postprocessing Hardt et al. (2016)
reweighing_os Reweighing (Oversampling) Preprocessing Kamiran and Calders (2012)
reweighing_wts Reweighing (Instance Weights) Preprocessing Kamiran and Calders (2012)

It is simple for users or package developers to extend mlr3fairness with additional debiasing
methods – as an example, the mcboost package adds further postprocessing methods that can improve
fairness. Along with pipeline operators, mlr3fairness contains several algorithms that can directly
incorporate fairness constraints. They can similarly be constructed using lrn().

Table 3: Overview over fair ML algorihtms.

key package reference

regr.fairfrrm fairml Scutari et al. (2021)
classif.fairfgrrm fairml Scutari et al. (2021)
regr.fairzlm fairml Zafar et al. (2017)
classif.fairzlrm fairml Zafar et al. (2017)
regr.fairnclm fairml Komiyama et al. (2018)

Reports

Because fairness aspects can not always be investigated based on the fairness definitions above (e.g.,
due to biased sampling or labelling procedures), it is important to document data collection and the
resulting data as well as the models resulting from this data. Informing auditors about those aspects
of a deployed model can lead to better assessments of a model’s fairness. Questionnaires for ML
models (Mitchell et al., 2019) and data sets (Gebru et al., 2021) have been proposed in literature. We
further add an automated report template using R markdown (Xie et al., 2020) which includes many
fairness metrics and visualizations to provide a good starting point in order to generate a full fairness
report inspired by similar reports offered in the Aequitas Toolkit (Saleiro et al., 2018). A preview for the
different reports can be obtained from the Reports vignette.

Table: Overview of reports generated by mlr3fairness. | Report | Description | Reference |
|——————–|————————–|—————————–| | report_modelcard | Modelcard for
ML models | Mitchell et al. (2019) | | report_datasheet | Datasheet for data sets | Gebru et al. (2021)
| | report_fairness | Fairness Report | – |

Case Study

In order to demonstrate a full workflow, we conduct full bias assessment and debiasing on the popular
adult data set (Dua and Graff, 2017). The goal is to predict whether an individual’s income is larger
than $50.000 with the protected attribute being gender. The data set ships with mlr3fairness, separated
into a train and test task and can be instantiated using tsk("adult_train") and tsk("adult_test"),
respectively. As a fairness metric, we consider predictive parity (Chouldechova, 2017) which calls for
equality in true positive rates between groups. We furthermore are interested in the model’s utility,
here measured with its classification accuracy.

library("mlr3verse")
library("mlr3fairness")

task = tsk("adult_train")
print(task)

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 11

#> <TaskClassif:adult_train> (30718 x 13)
#> * Target: target
#> * Properties: twoclass
#> * Features (12):
#> - fct (7): education, martial_status, occupation, race, relationship,
#> sex, workclass
#> - int (5): age, capital_gain, capital_loss, education_num,
#> hours_per_week
#> * 1: pta

measures = msrs(c("fairness.tpr", "classif.acc"))

In order to get an initial perspective, we benchmark three models using 3-fold cross-validation
each:

• a classification tree from the rpart package,
• a penalized logistic regression from the glmnet package and
• a penalized logistic regression from the glmnet package, but with reweighing preprocessing.

The logistic regression in the latter two approaches do not support operating on factor features
natively, therefore we pre-process the data with a feature encoder from mlr3pipelines:

set.seed(4321)
learners = list(

lrn("classif.rpart"),
po("encode") %>>% lrn("classif.glmnet"),
po("encode") %>>% po("reweighing_wts") %>>% po("learner", lrn("classif.glmnet"))

)
grid = benchmark_grid(
tasks = tsks("adult_train"),
learners = learners,
resamplings = rsmp("cv", folds = 3)

)
bmr1 = benchmark(grid)
bmr1$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: classif.rpart 0.059767256 0.8407773
#> 2: encode.classif.glmnet 0.070780981 0.8411354
#> 3: encode.reweighing_wts.classif.glmnet 0.004731584 0.8351453

The preprocessing step of reweighing already improved the fairness while sacrificing only a
tiny bit of performance. To see if we can further improve, we use mlr3tuning to jointly tune all
hyperparameters of the glmnet model as well as our reweighing hyperparameter. In order to do this,
we use an AutoTuner from mlr3tuning; a model that tunes its own hyperparameters during training.
The full code for setting up this model can be found in the appendix. An AutoTuner requires a specific
metric to tune for. Here, we define a fairness-thresholded accuracy metric. We set ϵ = 0.01 as a
threshold.

i f |∆EOd| ≤ ϵ : accuracy else : −|∆EOd|

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.01

)

We then design the pipeline and the hyperparameters we want to tune over.

In the following example, we choose tuning_iters = 3L and choose a small range for the
hyperparameters in vals to shorten the run time of the tuning procedure. In real settings, this
parameter would be set to a larger number, such as 100.

tuning_iters = 3L
at = AutoTuner$new(lrn, rsmp("holdout"),

metric,

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 12

adult_train

0.835 0.840 0.845

0.00

0.02

0.04

0.06

classif.acc

fa
ir

ne
ss

.tp
r

learner_id

classif.rpart

encode.classif.glmnet

encode.reweighing_wts.classif.glmnet

encode.reweighing_wts.classif.glmnet.tuned

Figure 3: Fairness-Accuracy tradeoff for 3-fold CV on the adult train set.

tuner = mlr3tuning::tnr("random_search"),
terminator = trm("evals", n_evals = tuning_iters)

)

grd = benchmark_grid(
tasks = tsks("adult_train"),
learners = list(at),
resamplings = rsmp("cv", folds = 3)

)

bmr2 = benchmark(grd, store_models = TRUE)
bmr2$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: encode.reweighing_wts.classif.glmnet.tuned 0.009085494 0.840875

The result improves w.r.t. accuracy while only slightly decreasing the measured fairness. Note,
that the generalization error is estimated using a holdout strategy during training and slight violations
of the desired threshold ϵ can therefore happen. The results of both benchmark experiments can then
be collected and jointly visualized in Figure ?(fig:fat). In addition to aggregate scores (denoted by a
cross) individual iterations of the 3 fold Cross-Validation (denoted by points) are shown to visualize
variations in the individual results.

and print the aggregated scores:

bmr$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: classif.rpart 0.059767256 0.8407773
#> 2: encode.classif.glmnet 0.070780981 0.8411354
#> 3: encode.reweighing_wts.classif.glmnet 0.004731584 0.8351453
#> 4: encode.reweighing_wts.classif.glmnet.tuned 0.009085494 0.8408750

Especially when considering optimizing accuracy while still retaining a fair model, tuning can
be helpful and further improve upon available trade-offs. In this example, the AutoTuner improves
w.r.t. the fairness metric while offering accuracy comparable with the simple glmnet model. Whether

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 13

the achieved accuracy is sufficient, needs to be determined, e.g. from business context. For now, we
assume that the model obtained from the AutoTuner is the model we might want to use going forward.
Having decided for a final model, we can now train the final model

at_lrn = bmr$learners$learner[[4]]
at_lrn$train(tsk("adult_train"))

and predict on the held out test set available for the Adult dataset to obtain a final estimate. This is
important since estimating fairness metrics often incurs significant variance (Agrawal et al., 2020b)
and evaluation of the test-set provides us with an unbiased estimate of model performance after the
previous model selection step.

test = tsk("adult_test")
at_lrn$predict(test)$score(measures, test)

#> fairness.tpr classif.acc
#> 0.00734166 0.83421482

On the held-out test set, the fairness constraint is slightly violated which can happen due to the
comparatively large variance in the estimation of fairness metrics.

Summary

The large-scale availability and use of automated decision making systems have resulted in growing
concerns for a lack of fairness in the decisions made by such systems. As a result, fairness auditing
methods that allow for investigating (un-)fairness in such systems are required. Implementations
of such methods are still not widely available, especially considering the required interoperability
with machine learning toolkits that allows for ease of use and integration into model evaluation and
tuning. In future work we plan on implementing several tools that further support the user w.r.t.
pinpointing potential fairness issues in the data, especially through the help of interpretability tools,
such as the iml package. We furthermore aim to implement additional fairness metrics from the realm
of ‘individual fairness’ (Dwork et al., 2012) and ‘conditional demographic parity’ [wachter-vlr2020].

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 14

Appendix

Tuning the ML Pipeline

We include the full code to construct the AutoTuner with additional details and comments below. We
first load all required packages and use mlr3’s interaction with future to automatically distribute
the tuning to all available cores in parallel by setting a plan. See the documentation of future for
platform-specific hints regarding parallelization.

library(mlr3misc)
library(mlr3)
library(mlr3pipelines)
library(mlr3fairness)
library(mlr3tuning)

Enable paralellization utilizing all cores
future::plan("multicore")

We then instantiate an ML pipeline using mlr3pipelines. This connects several modeling steps, in
our case categorical encoding, reweighing and a final learner using the %>>% (double caret) operator,
ultimately forming a new learner. This learner can then subsequently be fit on a Task. We use the
po(<key>) shorthand to construct a new pipeline operator from a dictionary of implemented operators.
We conduct categorical encoding because glmnet can not naturally handle categorical variables and
we therefore have to encode them (in our case using one-hot encoding).

Define the learner pipeline.
lrn = as_learner(po("encode") %>>% po("reweighing_wts") %>>% po("learner", lrn("classif.glmnet")))

We furthermore have to specify the hyperparameter space our Tuner should tune over. We do this
by defining a list of values with a to_tune() token specifying the range. Note, that hyperparameter
names are prefixed with the respective operation’s id.

Define the parameter space to optimize over
vals = list(
reweighing_wts.alpha = to_tune(0.75, 1),
classif.glmnet.alpha = to_tune(0.5, 1),
classif.glmnet.s = to_tune(1e-4, 1e-2, logscale = TRUE)

)
Add search space to the learner
lrn$param_set$values = insert_named(lrn$param_set$values, vals)

Before we now train the model, we again specify a metric we aim to satisfy, here we would like the
equalized odds difference to be smaller than 0.1. In this case, we set a constraint on the equalized odds
difference comprised of the differences in true positive rate (TPR) and false positive rate (FPR):

∆EOd = |TPRsex=M − TPRsex=F|+ |FPRsex=M − FPRsex=F|
This can be done using the fairness.constraint measure.

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.1

)

We can now instantiate a new AutoTuner using lrn defined above by additionally providing
arguments specifying the tuning strategy, in our case random search, the measure to optimize for as
well as the number of tuning steps.

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.1

)
at = AutoTuner$new(
learner = lrn, # The learner

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 15

resampling = rsmp("holdout"), # inner resampling strategy
measure = metric, # the metric to optimize for
tuner = mlr3tuning::tnr("random_search"), # tuning strategy
terminator = trm("evals", n_evals = 30)) # number of tuning steps

The so-constructed AutoTuner can now be used on any classification Task! Additional information
regarding the AutoTuner is again available in the corresponding mlr3book chapter. In the following
example, we will apply it to the Adult task and train our model. This will perform a tuning loop for
the specified number of evaluations and automatically retrain the best found parameters on the full
data.

at$train(tsk("adult_train"))

After training, we can look at the best models found, here ordered by our metric. Note, that our
metric reports the negative constraint violation if the constraint is violated and the accuracy in case
the constraint is satisfied.

head(at$archive$data[order(fairness.acc_equalized_odds_cstrt), 1:4])

We can then use the tuned model to assess our metric on the held out data:

prd = at$predict(tsk("adult_test"))
prd$score(c(metric, msr("classif.acc"), msr("fairness.eod")), tsk("adult_test"))

So our tuned model manages to obtain an accuracy of ~0.84 while satisfying the specified con-
straint of ∆EOd < 0.1. So to summarize, we have tuned a model with the goal to optimize accuracy
with respect to a constraint on a selected fairness metric using an AutoTuner.

Bibliography

A. Agrawal, J. Chen, S. Vollmer, and A. Blaom. Fairness.jl, 2020a. [p5]

A. Agrawal, F. Pfisterer, B. Bischl, J. Chen, S. Sood, S. Shah, F. Buet-Golfouse, B. A. Mateen, and
S. Vollmer. Debiasing classifiers: is reality at variance with expectation?, 2020b. [p13]

U. Aivodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp. Fairwashing: the risk of rationaliza-
tion. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 161–170. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/aivodji19a.html. [p5]

J. Angwin, J. Larson, S. Mattu, and L. Kichner. Machine bias, May 2016. URL https://www.propublica.
org/article/machine-bias-risk-assessments-in-criminal-sentencing. [p1, 6]

M. Bao, A. Zhou, S. A. Zottola, B. Brubach, S. Desmarais, A. S. Horowitz, K. Lum, and S. Venkata-
subramanian. It’s compaslicated: The messy relationship between rai datasets and algorithmic
fairness benchmarks. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021. [p3]

S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairmlbook.org, 2019.
http://www.fairmlbook.org. [p1, 2]

M. Becker, M. Binder, N. Foss, L. Kotthoff, M. Lang, F. Pfisterer, N. G. Reich, J. Richter, P. Schratz,
R. Sonabend, D. Pulatov, and B. Bischl. mlr3book, 09 2022. URL https://mlr3book.mlr-org.com.
[p6]

R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino, S. Mehta,
A. Mojsilovic, S. Nagar, K. N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri, M. Singh, K. R. Varshney,
and Y. Zhang. AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating
unwanted algorithmic bias, Oct. 2018. URL https://arxiv.org/abs/1810.01943. [p5]

R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. Fairness in criminal justice risk assessments:
The state of the art. Sociological Methods & Research, Aug. 2018. doi: 10.1177/0049124118782533. [p1,
2, 3, 8]

P. Biecek. Dalex: Explainers for complex predictive models in r. Journal of Machine Learning Research, 19
(84):1–5, 2018. URL https://jmlr.org/papers/v19/18-416.html. [p5]

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 16

M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl. mlr3pipelines - Flexible
Machine Learning Pipelines in R. Journal of Machine Learning Research, 22(184):1–7, 2021. URL
https://jmlr.org/papers/v22/21-0281.html. [p6]

R. Binns. On the apparent conflict between individual and group fairness. In Proceedings of the 2020
conference on fairness, accountability, and transparency, pages 514–524, 2020. [p4]

S. Bird, M. Dudík, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki, H. Wallach, and K. Walker. Fair-
learn: A toolkit for assessing and improving fairness in AI. Technical Report MSR-TR-2020-32, Mi-
crosoft, May 2020. URL https://www.microsoft.com/en-us/research/publication/fairlearn-
a-toolkit-for-assessing-and-improving-fairness-in-ai/. [p5]

B. Bischl, O. Mersmann, H. Trautmann, and C. Weihs. Resampling methods for meta-model validation
with recommendations for evolutionary computation. Evolutionary computation, 20(2):249–275, 2012.
[p7]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones.
mlr: Machine learning in r. Journal of Machine Learning Research, 17(170):1–5, 2016. URL https:
//jmlr.org/papers/v17/15-066.html. [p1]

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial gender
classification. In Conference on fairness, accountability and transparency, pages 77–91. PMLR, 2018. [p2,
8]

T. Calders and S. Verwer. Three naive bayes approaches for discrimination-free classification. Data
Mining and Knowledge Discovery, 21(2):277–292, 2010. doi: 10.1007/s10618-010-0190-x. [p8]

J. Chen. Fair lending needs explainable models for responsible recommendation. In Proceedings of the
2nd FATREC Workshop on Responsible Recommendation, Sept. 2018. [p1]

A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big Data, 5(2):153–163, June 2017. doi: 10.1089/big.2016.0047. [p2, 8, 10]

S. Corbett-Davies and S. Goel. The measure and mismeasure of fairness: A critical review of fair
machine learning. arXiv preprint arXiv:1808.00023, 2018. [p3, 4, 5]

S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic decision making and the cost
of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’17, page 797–806, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098095. URL https://doi.org/10.1145/
3097983.3098095. [p1]

R. M. Dawes, D. Faust, and P. E. Meehl. Clinical versus actuarial judgment. Science, 243(4899):
1668–1674, 1989. [p1]

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.
[p10]

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In Proceedings
of the 3rd innovations in theoretical computer science conference, pages 214–226, 2012. [p3, 4, 13]

V. Eubanks. Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin’s
Press, 2018. [p1]

S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. On the (im)possibility of fairness, 2016.
URL https://arxiv.org/abs/1609.07236. [p4]

J. Galindo and P. Tamayo. Credit risk assessment using statistical and machine learning: basic
methodology and risk modeling applications. Computational Economics, 15(1):107–143, 2000. [p1]

T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and K. Crawford.
Datasheets for datasets. Communications of the ACM, 64(12):86–92, 2021. [p10]

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. Advances in neural
information processing systems, 29:3315–3323, 2016. [p5, 8, 10]

H. Heidari, M. Loi, K. P. Gummadi, and A. Krause. A moral framework for understanding fair ml
through economic models of equality of opportunity. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* ’19, page 181–190, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450361255. doi: 10.1145/3287560.3287584. URL https:
//doi.org/10.1145/3287560.3287584. [p4]

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 17

F. Kamiran and T. Calders. Data preprocessing techniques for classification without discrimination.
Knowledge and Information Systems, 33(1):1–33, 2012. [p5, 10]

N. Kilbertus, M. Rojas Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Schölkopf. Avoiding
discrimination through causal reasoning. Advances in neural information processing systems, 30, 2017.
[p4]

J. S. Kim, J. Chen, and A. Talwalkar. Fact: A diagnostic for group fairness trade-offs. In International
Conference on Machine Learning, pages 5264–5274. PMLR, 2020. [p3]

J. Komiyama, A. Takeda, J. Honda, and H. Shimao. Nonconvex optimization for regression with
fairness constraints. In International conference on machine learning, pages 2737–2746. PMLR, 2018.
[p10]

N. Kozodoi and T. V. Varga. fairness: Algorithmic Fairness Metrics, 2021. URL https://CRAN.R-
project.org/package=fairness. R package version 1.2.1. [p5]

M. Kuhn. caret: Classification and Regression Training, 2021. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-88. [p1]

M. Kuhn and H. Wickham. Tidymodels: a collection of packages for modeling and machine learning using
tidyverse principles., 2020. URL https://www.tidymodels.org. [p1]

M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kotthoff, and
B. Bischl. mlr3: A modern object-oriented machine learning framework in R. Journal of Open Source
Software, dec 2019. doi: 10.21105/joss.01903. URL https://joss.theoj.org/papers/10.21105/
joss.01903. [p1, 6]

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and fairness in
machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021. [p2, 3]

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji, and
T. Gebru. Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability,
and Transparency, FAT* ’19, page 220–229, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450361255. doi: 10.1145/3287560.3287596. URL https://doi.org/10.1145/
3287560.3287596. [p10]

S. Mitchell, E. Potash, S. Barocas, A. D’Amour, and K. Lum. Algorithmic fairness: Choices, assumptions,
and definitions. Annual Review of Statistics and Its Application, 8:141–163, 2021. [p2]

S. U. Noble. Algorithms of oppression. New York University Press, 2018. [p1]

C. O’neil. Weapons of math destruction: How big data increases inequality and threatens democracy. Crown,
2016. [p1]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of Machine Learning
Research, 12:2825–2830, 2011. [p5]

V. Perrone, M. Donini, M. B. Zafar, R. Schmucker, K. Kenthapadi, and C. Archambeau. Fair bayesian
optimization. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages
854–863, 2021. [p4, 8]

F. Pfisterer, C. Kern, S. Dandl, M. Sun, M. P. Kim, and B. Bischl. mcboost: Multi-calibration boosting
for r. Journal of Open Source Software, 6(64):3453, 2021. doi: 10.21105/joss.03453. URL https:
//doi.org/10.21105/joss.03453. [p6]

E. Polley, E. LeDell, C. Kennedy, and M. van der Laan. SuperLearner: Super Learner Prediction, 2021.
URL https://CRAN.R-project.org/package=SuperLearner. R package version 2.0-28. [p1]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL http://www.R-project.org/. ISBN 3-900051-07-0. [p1]

P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld, K. T. Rodolfa, and R. Ghani.
Aequitas: A bias and fairness audit toolkit. arXiv preprint arXiv:1811.05577, 2018. [p3, 5, 10]

C. Schumann, J. S. Foster, N. Mattei, and J. P. Dickerson. We need fairness and explainability in
algorithmic hiring. In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’20, page 1716–1720, Richland, SC, 2020. International Foundation for
Autonomous Agents and Multiagent Systems. ISBN 9781450375184. [p1]

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 18

P. Schwöbel and P. Remmers. The long arc of fairness: Formalisations and ethical discourse. In
Proceedings of the Conference on Fairness, Accountability, and Transparency (FAccT’22), 2022. [p4, 5]

M. Scutari, F. Panero, and M. Proissl. Achieving fairness with a simple ridge penalty. arXiv preprint
arXiv:2105.13817, 2021. [p10]

R. Sonabend, F. J. Király, A. Bender, B. Bischl, and M. Lang. mlr3proba: An R Package for Machine
Learning in Survival Analysis. Bioinformatics, 02 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btab039. [p6]

E. J. Topol. High-performance medicine: the convergence of human and artificial intelligence. Nature
Medicine, 25(1):44–56, 2019. doi: 10.1038/s41591-018-0300-7. [p1]

M. Turner and M. McBurnett. Predictive models with explanatory concepts: a general
framework for explaining machine learning credit risk models that simultaneously increases
predictive power. In Proceedings of the 15th Credit Scoring and Credit Control Conference,
2019. URL https://crc.business-school.ed.ac.uk/wp-content/uploads/sites/55/2019/07/
C12-Predictive-Models-with-Explanatory-Concepts-McBurnett.pdf. [p1]

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML. ACM SIGKDD Explorations Newsletter,
15(2):49–60, June 2014. doi: 10.1145/2641190.2641198. URL https://doi.org/10.1145/2641190.
2641198. [p6]

S. Wachter, B. Mittelstadt, and C. Russell. Bias preservation in machine learning: the legality of fairness
metrics under EU non-discrimination law. West Virginia Law Review, 123, 2020. [p2, 3, 4]

E. A. Watkins, M. McKenna, and J. Chen. The four-fifths rule is not disparate impact: a woeful tale of
epistemic trespassing in algorithmic fairness, 2022. URL https://arxiv.org/abs/2202.09519. [p3,
4]

J. Wiśniewski and P. Biecek. fairmodels: a flexible tool for bias detection, visualization, and mitigation
in binary classification models. The R Journal, 14:227–243, 2022. doi: 10.32614/RJ-2022-019. URL
https://rj.urbanek.nz/articles/RJ-2022-019/. [p5]

Y. Xie, C. Dervieux, and E. Riederer. R Markdown Cookbook. Chapman and Hall/CRC, Boca Ra-
ton, Florida, 2020. URL https://bookdown.org/yihui/rmarkdown-cookbook. ISBN 9780367563837.
[p10]

M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi. Fairness beyond disparate treatment
& disparate impact. In Proceedings of the 26th International Conference on World Wide Web, pages
1171–1180, Geneva, Switzerland, Apr. 2017. International World Wide Web Conferences Steering
Committee. doi: 10.1145/3038912.3052660. [p5, 10]

Florian Pfisterer
LMU Munich

ORCiD: 0000-0001-8867-762X
florian.pfisterer@stat.uni-muenchen.de

Siyi Wei
University of Toronto

weisiyi2@gmail.com

Sebastian Vollmer
DFKI

University of Kaiserslautern

svollmer@stat.uni-muenchen.de

Michel Lang
LMU Munich

TU Dortmund University

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 19

ORCiD: 0000-0001-9754-0393
michel.lang@stat.uni-muenchen.de

Bernd Bischl
LMU Munich

ORCiD: 0000-0001-6002-6980
bernd.bischl@stat.uni-muenchen.de

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

6.6 Multi-Calibration Boosting for R 361

6.6 Multi-Calibration Boosting for R
Contributed Article:
F. Pfisterer, C. Kern, S. Dandl, M. Sun, M. P. Kim, and B. Bischl. mcboost: Multi-
calibration boosting for R. Journal of Open Source Software, 6(64):3453, 2021

Declaration of contributions FP implemented and extended the main part of the
package, heavily influcenced by an unpublished python code-base written in large parts by
MS. FP furthermore worked on the interaction with mlr3 by integrating mlr3 learners as
Auditing Mechanism as well as exporting functionality to integrate mcboost as a ‘PipeOp‘
into mlr3pipelines. CK prepared and contributed to the vignettes and co-authored the
summary paper. CK contributed (very) moderately to the python code underlying this
package and helped conceptionally in transitioning from the python code to the R im-
plementation. SD reviewed the R package, provided advice on extensions and extended
as well as improved vignettes, and worked towards thorough unit testing of the different
methods. MS wrote the initial Python implementation of MCBoost, with feedback and
oversight provided by MK. His version guided large parts of mcboost’s current design and
architecture. MK is a co-author of the research papers that introduced Multi-Calibration.
MK oversaw the development of the initial Python implementation of MCBoost and pro-
vided additional advice and directions in the development of this R package. BB oversaw
package development and provided feedback with respect to API design, implementation
details, and methodology.

mcboost: Multi-Calibration Boosting for R
Florian Pfisterer∗1, Christoph Kern2, Susanne Dandl1, Matthew Sun3,
Michael P. Kim4, and Bernd Bischl1

1 Ludwig Maximilian University of Munich 2 University of Mannheim 3 Princeton University 4 UC
Berkeley

DOI: 10.21105/joss.03453

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @mwt
• @OwenWard

Submitted: 09 June 2021
Published: 06 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Given the increasing usage of automated prediction systems in the context of high-stakes de-
cisions, a growing body of research focuses on methods for detecting and mitigating biases
in algorithmic decision-making. One important framework to audit for and mitigate biases
in predictions is that of Multi-Calibration, introduced by Hebert-Johnson et al. (2018). The
underlying fairness notion, Multi-Calibration, promotes the idea of multi-group fairness and
requires calibrated predictions not only for marginal populations, but also for subpopulations
that may be defined by complex intersections of many attributes. A simpler variant of Multi-
Calibration, referred to as Multi-Accuracy, requires unbiased predictions for large collections
of subpopulations. Hebert-Johnson et al. (2018) proposed a boosting-style algorithm for
learning multi-calibrated predictors. Kim et al. (2019) demonstrated how to turn this al-
gorithm into a post-processing strategy to achieve multi-accuracy, demonstrating empirical
effectiveness across various domains. This package provides a stable implementation of the
multi-calibration algorithm, called MCBoost. In contrast to other Fair ML approaches, MC-
Boost does not harm the overall utility of a prediction model, but rather aims at improving
calibration and accuracy for large sets of subpopulations post-training. MCBoost comes with
strong theoretical guarantees, which have been explored formally in Hebert-Johnson et al.
(2018), Kim et al. (2019), Dwork et al. (2019), Dwork et al. (2020) and Kim et al. (2021).
mcboost implements Multi-Calibration Boosting for R. mcboost is model agnostic and allows
the user to post-process any supervised machine learning model. It accepts initial models
that fit binary outcomes or continuous outcomes with predictions that are in (or scaled to)
the range [0, 1]. For convenience and ease of use, mcboost tightly integrates with the mlr3
(Lang et al., 2019) machine learning eco-system in R by allowing to calibrate regression or
classification models fitted either within or outside of mlr3. Post-processing with mcboost
starts with an initial prediction model that is passed on to an auditing algorithm that runs
Multi-Calibration-Boosting on a labeled auditing dataset (Fig. 1). The resulting model can
be used for obtaining multi-calibrated predictions. mcboost includes two pre-defined learners
for auditing (ridge regression and decision trees), and allows to easily adjust the learner and
its parameters for Multi-Calibration Boosting. Users may also specify a fixed set of subgroups,
instead of a learner, on which predictions should be audited. Furthermore, mcboost includes
utilities to guard against overfitting to the auditing dataset during post-processing.

∗Corresponding author

Pfisterer et al., (2021). mcboost: Multi-Calibration Boosting for R. Journal of Open Source Software, 6(64), 3453. https://doi.org/10.21105/
joss.03453

1

Figure 1: Fig 1. Conceptual illustration of Multi-Calibration Boosting with mcboost.

Statement of need

Given the ubiquitous use of machine learning models in crucial areas and growing concerns of
biased predictions for minority subpopulations, Multi-Calibration Boosting should be widely
accessible in the form of a free and open-source software package. Prior to the development
of mcboost, Multi-Calibration Boosting has not been released as a software package for R.
The results in Kim et al. (2019) highlight that MCBoost can improve classification accuracy
for subpopulations in various settings, including gender detection with image data, income
classification with survey data and disease prediction using biomedical data. Barda, Yona,
et al. (2020) show that post-processing for Multi-Calibration can greatly improve calibration
metrics of two medical risk assessment models when evaluated in subpopulations defined by
intersections of age, sex, ethnicity, socioeconomic status and immigration history. Barda,
Riesel, et al. (2020) demonstrate that Multi-Calibration can also be used to adjust an initial
classifier for a new task. They re-calibrate a baseline model for predicting the risk of severe
respiratory infection with data on COVID-19 fatality rates in subpopulations, resulting in an
accurate and calibrated COVID-19 mortality prediction model.
We hope that mcboost lets Multi-Calibration Boosting be utilized by a wide community
of developers and data scientists to audit and post-process prediction models, and helps to
promote fairness in machine learning and statistical estimation applications.

Acknowledgements

We thank Matthew Sun for developing an initial Python implementation of MCBoost. This
work has been partially supported by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities for
its content.

References

Barda, N., Riesel, D., Akriv, A., Levy, J., Finkel, U., Yona, G., Greenfeld, D., Sheiba, S.,
Somer, J., Bachmat, E., Rothblum, G., Shalit, U., Netzer, D., Balicer, R., & Dagan,
N. (2020). Developing a COVID-19 mortality risk prediction model when individual-level
data are not available. Nature Communications, 11, 4439. https://doi.org/10.1038/
s41467-020-18297-9

Pfisterer et al., (2021). mcboost: Multi-Calibration Boosting for R. Journal of Open Source Software, 6(64), 3453. https://doi.org/10.21105/
joss.03453

2

Barda, N., Yona, G., Rothblum, G. N., Greenland, P., Leibowitz, M., Balicer, R., Bachmat,
E., & Dagan, N. (2020). Addressing bias in prediction models by improving subpopulation
calibration. Journal of the American Medical Informatics Association, 28(3), 549–558.
https://doi.org/10.1093/jamia/ocaa283

Dwork, C., Kim, M. P., Reingold, O., Rothblum, G. N., & Yona, G. (2019). Learning from
outcomes: Evidence-based rankings. 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), 106–125. https://doi.org/10.1109/FOCS.2019.00016

Dwork, C., Kim, M. P., Reingold, O., Rothblum, G. N., & Yona, G. (2020). Outcome
indistinguishability. https://arxiv.org/abs/2011.13426

Hebert-Johnson, U., Kim, M., Reingold, O., & Rothblum, G. (2018). Multicalibration: Cal-
ibration for the (Computationally-identifiable) masses. In J. Dy & A. Krause (Eds.),
Proceedings of the 35th international conference on machine learning (Vol. 80, pp. 1939–
1948). PMLR.

Kim, M. P., Ghorbani, A., & Zou, J. (2019). Multiaccuracy: Black-box post-processing for
fairness in classification. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, 247–254. https://doi.org/10.1145/3306618.3314287

Kim, M. P., Kern, C., Goldwasser, S., Kreuter, F., & Reingold, O. (2021). Universal general-
ization versus propensity scoring. Manuscript submitted for publication.

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalicchio,
G., Kotthoff, L., & Bischl, B. (2019). mlr3: A modern object-oriented machine learning
framework in R. Journal of Open Source Software. https://doi.org/10.21105/joss.01903

Pfisterer et al., (2021). mcboost: Multi-Calibration Boosting for R. Journal of Open Source Software, 6(64), 3453. https://doi.org/10.21105/
joss.03453

3

LIST OF FIGURES

1.1 Schematic of a machine learning pipeline for tabular data. Data is prepro-
cessed using a selected preprocessing step with respective hyperparameters
(e.g. PCA and λpca) before fitting a model, again with respective hyperpa-
rameters before optionally being post-processed. Several preprocessing steps
can be combined or selected, depending on the variable. 4

1.2 Types and sources of bias in ML models adapted from [17, 168, 13]. Two
main sources of bias between the ideal world and the modeled world exist:
societal and statistical bias, the latter of which encompasses other sources
of bias (measurement bias and learning biases). 7

2.1 Solution set for a multi-objective optimization problem considering two ob-
jectives c1 and c2. Pareto-optimal points are highlighted in blue. 20

2.2 Schematic of a machine learning pipeline. We differentiate between train-
ing and prediction mode. During training, processing steps g before being
transformed into predictions by a ML model. 24

3.1 Excerpt of typical problem characteristics encountered in practical ML ap-
plications. 47

366 LIST OF FIGURES

LIST OF TABLES

2.1 Upper: Confusion matrix for binary decisions D and true outcomes Y .
Lower: Fairness-confusion tensor [135] for binary decisions D and outcomes
Y for groups A = 0 and A = 1. In practice, the fairness tensor is a 3-
dimensional tensor containing the stacked confusion matrices for all groups
in A. 33

2.2 Overview of commonly used statistical fairness metrics. Metrics consider
the true label Y , predicted scores S and derived decisions D as well as the
protected group A. 35

368 LIST OF TABLES

EIDESSTATTLICHE VERSICHERUNG
(Siehe Promotionsordnung vom 12. Juli 2011, §8 Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig,
ohne unerlaubte Beihilfe angefertigt ist.

München, den 30.05.2022 Florian Pfisterer

370 6. Eidesstattliche Versicherung

	Introduction
	Background
	Setting & Notation
	Hyperparameter Optimization
	Single-Objective Optimization
	Multi-Objective Optimization
	Hyperparameter Defaults
	Algorithm Configuration
	AutoML
	Machine Learning Pipelines
	Contributions

	Fairness
	Notions of Fairness
	Bias Mitigation
	Contributions

	Benchmarks & Software
	Benchmarks
	Software

	Further Contributions

	Outlook & Future Directions
	AutoML – a holistic perspective
	Conclusion

	References
	Contributions - AutoML
	Meta Learning for Defaults–Symbolic Defaults
	Meta-Learning for Symbolic Hyperparameter Defaults
	Learning Multiple Defaults for Machine Learning Algorithms
	Collecting Empirical Data About Hyperparameters for Data Driven AutoML
	Multi-Objective Automatic Machine Learning with AutoxgboostMC
	Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers
	YAHPO Gym - Design Criteria and a new Multifidelity Benchmark for Hyperparameter Optimization
	Mutation is all you need
	Tackling Neural Architecture Search With Quality Diversity Optimization
	High Dimensional Restrictive Federated Model Selection with Multi-objective Bayesian Optimization over Shifted Distributions

	Contributions - Fairness
	Debiasing classifiers: is reality at variance with expectation?
	Multi-objective counterfactual fairness

	Contributions - Benchmarks & Software
	Benchmarking time series classification – Functional data vs machine learning approaches
	Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
	Evaluating Domain Generalization for Survival Analysis in Clinical Studies
	 mlr3pipelines - Flexible Machine Learning Pipelines in R
	Fairness Audits And Bias Mitigation Using mlr3fairness
	Multi-Calibration Boosting for R

	Eidesstattliche Versicherung

