
Deep Knowledge Transfer for Generalization
across Tasks and Domains under Data Scarcity
On intersections of anomaly detection, few-shot learning, continual

learning, domain generalization and data-free learning

Dissertation von Ahmed Frikha

München 2022





Deep Knowledge Transfer for Generalization
across Tasks and Domains under Data Scarcity
On intersections of anomaly detection, few-shot learning, continual

learning, domain generalization and data-free learning

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von
Ahmed Frikha

aus
Tunis, Tunesien

am 05.08.2022



Erstgutachter: Prof. Dr. Volker Tresp

Zweitgutachter: Prof. Dr. Amos Storkey

Drittgutachter: Prof. Dr. Florian Büttner

Tag der mündlichen Prüfung: 07.11.2022



Eidesstattliche Versicherung  
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.) 

 

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne unerlaubte 

Beihilfe angefertigt ist. 

 

Frikha, Ahmed          _ 

Name, Vorname 

 

  

    Princeton (USA), 05.08.2022                                     Ahmed Frikha                                               

         Ort, Datum                                                         Unterschrift Doktorand/in 

 

 

Formular 3.2             

 
 



iv



Contents

Abstract vii

Zusammenfassung ix

Acknowledgements xiii

List of Publications and Declaration of Authorship xv

1 Introduction 1
1.1 Knowledge transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Tasks and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Anomaly Detection via Meta-Learning . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Few-Shot Anomaly Detection . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Continual Anomaly Detection . . . . . . . . . . . . . . . . . . . . . 13

1.3 Domain Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Multi-Level Feature Discovery via Corruption . . . . . . . . . . . . 19
1.3.3 Data-Free Domain Generalization . . . . . . . . . . . . . . . . . . . 19

2 Few-Shot One-Class Classification via Meta-Learning 23

3 ARCADe: A Rapid Continual Anomaly Detector 41

4 Discovery of New Multi-Level Features for Domain Generalization via
Knowledge Corruption 51



vi Contents

5 Towards Data-Free Domain Generalization 63

6 Summary of Contributions 77

Bibliography 81



Abstract

Over the last decade, deep learning approaches have achieved tremendous performance in
a wide variety of fields, e.g., computer vision and natural language understanding, and
across several sectors such as healthcare, industrial manufacturing, and driverless mobility.
Most deep learning successes were accomplished in learning scenarios fulfilling the two
following requirements. First, large amounts of data are available for training the deep
learning model and there are no access restrictions to the data. Second, the data used
for training and testing is independent and identically distributed (i.i.d.). However, many
real-world applications infringe at least one of the aforementioned requirements, which
results in challenging learning problems. The present thesis comprises four contributions
to address four such learning problems. In each contribution, we propose a novel method
and empirically demonstrate its effectiveness for the corresponding problem setting.

The first part addresses the underexplored intersection of the few-shot learning and the
one-class classification problems. In this learning scenario, the model has to learn a new
task using only a few examples from only the majority class, without overfitting to the few
examples or to the majority class. This learning scenario is faced in real-world applications
of anomaly detection where data is scarce. We propose an episode sampling technique
to adapt meta-learning algorithms designed for class-balanced few-shot classification to
the addressed few-shot one-class classification problem. This is done by optimizing for a
model initialization tailored for the addressed scenario. In addition, we provide theoretical
and empirical analyses to investigate the need for second-order derivatives to learn such
parameter initializations. Our experiments on 8 image and time-series datasets, including
a real-world dataset of industrial sensor readings, demonstrate the effectiveness of our
method.

The second part tackles the intersection of the continual learning and the anomaly
detection problems, which we are the first to explore, to the best of our knowledge. In this
learning scenario, the model is exposed to a stream of anomaly detection tasks, i.e., only
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examples from the normal class are available, that it has to learn sequentially. Such problem
settings are encountered in anomaly detection applications where the data distribution
continuously changes. We propose a meta-learning approach that learns parameter-specific
initializations and learning rates suitable for continual anomaly detection. Our empirical
evaluations show that a model trained with our algorithm is able to learn up 100 anomaly
detection tasks sequentially with minimal catastrophic forgetting and overfitting to the
majority class.

In the third part, we address the domain generalization problem, in which a model
trained on several source domains is expected to generalize well to data from a previously
unseen target domain, without any modification or exposure to its data. This challenging
learning scenario is present in applications involving domain shift, e.g., different clinical
centers using different MRI scanners or data acquisition protocols. We assume that learn-
ing to extract a richer set of features improves the transfer to a wider set of unknown
domains. Motivated by this, we propose an algorithm that identifies the already learned
features and corrupts them, hence enforcing new feature discovery. We leverage methods
from the explainable machine learning literature to identify the features, and apply the
targeted corruption on multiple representation levels, including input data and high-level
embeddings. Our extensive empirical evaluation shows that our approach outperforms 18
domain generalization algorithms on multiple benchmark datasets.

The last part of the thesis addresses the intersection of domain generalization and
data-free learning methods, which we are the first to explore, to the best of our knowledge.
Hereby, we address the learning scenario where a model robust to domain shift is needed
and only models trained on the same task but different domains are available instead of
the original datasets. This learning scenario is relevant for any domain generalization ap-
plication where the access to the data of the source domains is restricted, e.g., due to
concerns about data privacy concerns or intellectual property infringement. We develop
an approach that extracts and fuses domain-specific knowledge from the available teacher
models into a student model robust to domain shift, by generating synthetic cross-domain
data. Our empirical evaluation demonstrates the effectiveness of our method which out-
performs ensemble and data-free knowledge distillation baselines. Most importantly, the
proposed approach substantially reduces the gap between the best data-free baseline and
the upper-bound baseline that uses the original private data.



Zusammenfassung

Im vergangenen Jahrzent haben Deep-Learning-Ansätze in einer Vielzahl von Bereichen,
z.B. im Computer-Vision und beim Verstehen natürlicher Sprache, sowie in verschiede-
nen Sektoren wie dem Gesundheitswesen, der industriellen Fertigung und der fahrerlosen
Mobilität enorme Leistungen erzielt. Die meisten Deep-Learning-Erfolge wurden in Lern-
szenarien erzielt, die die folgenden zwei Anforderungen erfüllen. Erstens, es stehen große
Datenmengen für das Training des Deep-Learning-Modells zur Verfügung und es gibt keine
Zugangsbeschränkungen zu den Daten. Zweitens, die für Training und Test verwendeten
Daten sind unabhängig und identisch verteilt (i.i.d.). Viele reale Anwendungen verstoßen
jedoch gegen mindestens eine der vorgenannten Anforderungen, was zu herausfordernden
Lernproblemen führt. Die vorliegende Dissertation umfasst vier Beiträge, die sich mit vier
solchen Lernproblemen befassen. In jedem Beitrag schlagen wir eine neue Methode vor
und demonstrieren empirisch ihre Effektivität für die entsprechende Problemstellung.

Der erste Teil befasst sich mit der noch wenig erforschten Überschneidung der Prob-
leme der few-shot learning und one-class classification. In diesem Lernszenario muss das
Modell eine neue Aufgabe mit nur wenigen Beispielen aus der Mehrheitsklasse erlernen,
ohne dass eine Überanpassung an die wenigen Beispiele oder an die Mehrheitsklasse erfolgt.
Dieses Lernszenario kommt in der Praxis bei Anomalieerkennung-Anwendungen vor, in de-
nen die Daten knapp sind. Wir schlagen ein Episoden-Sampling-Verfahren vor, um Meta-
Learning-Algorithmen, die für eine klassenbalancierte few-shot learning entwickelt wurden,
an das adressierte few-shot one-class classification Problem anzupassen. Dies geschieht
durch die Optimierung einer Parameterinitialisierung, die auf das adressierte Lernszenario
zugeschnitten ist. Darüber hinaus bieten wir theoretische und empirische Analysen, um
die Notwendigkeit von Ableitungen zweiter Ordnung zum Erlernen solcher Parameterini-
tialisierungen zu untersuchen. Unsere Experimente mit 8 Bild- und Zeitseriendatensätzen,
einschließlich eines realen Datensatzes von industriellen Sensormesswerten, demonstrieren
die Effektivität unserer Methode.
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Der zweite Teil befasst sich mit der Überschneidung der Probleme des kontinuier-
lichen Lernens und der Anomalieerkennung, die wir unseres Wissens nach als erste un-
tersuchen. In diesem Lernszenario wird das Modell einer Sequenz von unterschiedlichen
Anomalieerkennungsaufgaben ausgesetzt, d.h. es stehen nur Beispiele aus der normalen
Klasse zur Verfügung, die es sequentiell lernen muss. Solche Problemstellungen treten bei
Anomalieerkennung-Anwendungen auf, bei denen sich die Datenverteilung ständig ändert.
Wir schlagen einen Meta-Learning-Ansatz vor, der parameterspezifische Initialisierungen
und Lernraten erlernt, die für die kontinuierliche Anomalieerkennung geeignet sind. Unsere
empirischen Auswertungen zeigen, dass ein mit unserem Algorithmus trainiertes Modell in
der Lage ist, bis zu 100 Anomalieerkennungsaufgaben sequentiell zu erlernen, und zwar
mit minimalem katastrophalen Vergessen und minimaler Überanpassung an die Mehrheit-
sklasse.

Im dritten Teil befassen wir uns mit dem Problem der Domänengeneralisierung, bei
dem von einem Modell, das auf mehreren Quelldomänen trainiert wurde, erwartet wird,
dass es sich gut auf Daten aus einer zuvor unbekannten Zieldomäne verallgemeinern lässt,
ohne dass es modifiziert wird oder seinen Daten ausgesetzt wird. Dieses schwierige Lern-
szenario tritt bei Anwendungen auf, die Daten aus mehreren Domänen, d.h. mehrere
Datenverteilungen, involvieren, z.B. verschiedene klinische Zentren, die unterschiedliche
MRI-Scanner oder Datenerfassungsprotokolle verwenden. Wir gehen davon aus, dass das
Erlernen eines reichhaltigeren Satzes von Merkmalen die Übertragung auf einen größeren
Satz unbekannter Domänen verbessert. Aus diesem Grund schlagen wir einen Algorithmus
vor, der die bereits gelernten Merkmale identifiziert und sie verfälscht, um so die Entdeck-
ung neuer Merkmale zu erzwingen. Wir nutzen Methoden aus der Literatur des erklärbaren
maschinellen Lernens, um diese Merkmale zu identifizieren, und wenden die gezielte Ver-
fälschung auf mehreren Repräsentationsebenen an, einschließlich Eingabedaten und High-
Level-Repräsentationen. Unsere umfangreiche empirische Evaluierung zeigt, dass unser
Ansatz 18 Algorithmen der Domänengeneralisierung in mehreren Benchmark-Datensätzen
übertrifft.

Der letzte Teil der Arbeit befasst sich mit der Überschneidung von Domänengener-
alisierung und datenfreien Lernmethoden, die wir unseres Wissens nach als erste unter-
suchen. Wir befassen uns mit dem Lernszenario, in dem ein Modell benötigt wird, das
gegenüber Domänenverschiebungen bzw. -änderungen robust ist, und in dem anstelle der
ursprünglichen Datensätze nur Modelle zur Verfügung stehen, die auf der gleichen Auf-
gabe, aber in unterschiedlichen Domänen trainiert wurden. Dieses Lernszenario ist für jede
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Domänengeneralisierungsanwendung relevant, bei der der Zugang zu den Daten der Quell-
domänen eingeschränkt ist, z.B. aufgrund von Bedenken hinsichtlich des Datenschutzes
oder der Verletzung geistigen Eigentums. Wir entwickeln einen Ansatz, der domänenspez-
ifisches Wissen aus den verfügbaren Lehrermodellen extrahiert und in einem Schülermod-
ell verschmilzt, das gegenüber Domänenverschiebungen robust ist, indem es synthetische
domänenübergreifende Daten erzeugt. Unsere empirische Evaluierung zeigt die Effektivität
unserer Methode, die Ensemble- und datenfreie Wissensdestillationsmethoden übertrifft.
Besonders wichtig ist, dass der vorgeschlagene Ansatz die Lücke zwischen dem besten
datenfreien Ansatz und der Methode, die die privaten Originaldaten verwendet, erheblich
verringert.
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Chapter 1

Introduction

This chapter provides an overview of the technical background useful for understanding
the following chapters. In section 1, we discuss challenging learning scenarios relevant
to real-world applications and highlight the importance of knowledge transfer. Section
2 introduces research areas related to our contributions in chapters 2 and 3, including
anomaly detection, meta-learning, few-shot learning, and continual learning. In section
3, we present the domain generalization and data-free learning topics, which are relevant
for our contributions in chapters 4 and 5. In particular, we discuss the motivation behind
addressing each of these topics, their related works, as well as their connection to our
contributions.

1.1 Knowledge transfer

This section presents challenging learning scenarios encountered in real-world applications
and underlines the importance of knowledge transfer methods in addressing them. Subse-
quently, we discuss two types of data distribution shift, domain and task shift.

1.1.1 Motivation

Over the last decade, deep learning methods have achieved impressive results on different
data types, such as images Krizhevsky et al. (2012), natural language Devlin et al. (2018),
tabular data Arık and Pfister (2021), time-series Oreshkin et al. (2019), and combinations
thereof Radford et al. (2021); Ren et al. (2019), as well as across multiple sectors including
industrial manufacturing Nasir and Sassani (2021), healthcare Bakator and Radosav (2018)
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and finance Ozbayoglu et al. (2020) to name a few. Most deep learning successes were
achieved in offline learning scenarios involving a single task and under the assumption that
the data used for training and evaluation is independent and identically distributed (i.i.d.).
Hereby, the availability and unrestricted access to a large dataset are usually assumed.

Real-world applications exhibit characteristics, which give rise to challenging learning
problems. Firstly, there exist applications where data is scarce, e.g., due to high annotation
or collection costs, leading to the overfitting of deep learning models to the small datasets.
Such applications motivated the research efforts in the field of few-shot learning Wang and
Yao (2019) aiming to train models to learn new tasks using few datapoints. Secondly,
in multiple applications, data collection happens gradually and with frequent changes in
the data distribution, e.g., as a result of modifications to a manufactured product. In
such learning scenarios, deep learning models suffer from the catastrophic forgetting phe-
nomenon French (1999), i.e., they are not able to retain knowledge acquired from earlier
tasks. Hence, developing models that are able to continuously learn new tasks without
forgetting has gained a surge of interest in the continual learning research Parisi et al.
(2019) during the last years. Thirdly, distribution shifts are often observed between the
data used for training in the model development phase and the data encountered in the
production phase after the model deployment. Such distribution shifts result in a deteri-
oration of the model performance on the target distribution faced at evaluation time. A
plethora of domain adaptation and generalization works Wang and Deng (2018); Wilson
and Cook (2020); Zhou et al. (2021a) was proposed to tackle this problem. Fourthly, in the
light of increasing data privacy awareness and concerns, several data-owning entities have
become reluctant to share their data, raising the need for privacy-preserving data-driven
methods. Consequently, deep learning approaches leveraging federated learning Kairouz
et al. (2021) and, more recently, data-free knowledge transfer Liu et al. (2021b) have been
proposed. Finally, some applications demonstrate an extreme class-imbalance in the data,
e.g., the detection of banking fraud, rare diseases, or manufacturing deficiencies. Training
neural networks on severely class-imbalanced data, or in the extreme case on data from only
one class, leads to overfitting to the majority class and performance degradation. There-
fore, one-class classification and anomaly detection were extensively studied and several
approaches able to cope with class-imbalance were proposed Khan and Madden (2014);
Aggarwal (2015).

In many real-world applications, the aforementioned learning problems are usually not
encountered separately. In the present thesis, we investigate three underexplored inter-
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sections of pairs of these problems. In particular, we address the intersection of few-shot
learning and one-class classification (Chapter 2), the intersection of continual learning
and one-class classification (Chapter 3), and the intersection of domain generalization and
privacy-preserving data-free learning (Chapter 5). Moreover, we propose a novel approach
to the domain generalization problem (Chapter 4). We present an overview of the problem
settings we address in Table 1.1.

Table 1.1: Overview of the problem settings addressed in the thesis contributions.

Learning scenario addressed Related research problems Chapter
Few-Shot One-Class Classification Few-Shot Learning

One-Class Classification
Chapter 2

Continual Anomaly Detection Continual Learning
Anomaly Detection

Chapter 3

Domain Generalization - Chapter 4
Data-Free Domain Generalization Data-Free Knowledge Transfer

Domain Generalization
Chapter 5

When faced with different source and target distributions, as is the case in some of
the aforementioned problems and their intersections, knowledge transfer from the (usually
label-rich) source distributions to the (usually label-scarce) target distributions is crucial.
Hence, to tackle these challenging learning problems, we develop approaches that leverage
knowledge transfer.

Transfer learning Torrey and Shavlik (2010) refers to the problem setting and the family
of techniques that improve learning a task, the target task, by leveraging data from one
or many other task(s), the source task(s). The most common transfer learning method
consists in further training some or all the layers of a model, which is initially trained on
the source task(s), using data from the target task. A wide variety of transfer learning
approaches were developed over the years. We refer to Zhuang et al. (2020) for an extensive
overview.

Transfer learning can improve the learning of the target task in three major ways, which
we visualize in Figure 1.1. First, a higher start performance can be achieved which is ben-
eficial in cold start situations for instance. In addition, transfer learning can enable faster
learning of the target task, i.e., the same performance is reached with fewer training itera-
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Figure 1.1: The learning improvements yielded by transfer learning Torrey and Shavlik
(2010).

tions. Finally, the final model performance can be increased by leveraging the knowledge
acquired from the source task(s).

1.1.2 Tasks and Domains

In the works that we propose in chapters 2-5 of the present thesis, the source data distri-
bution used for training and the target data distributions used for evaluation are different.
In the following, we distinguish two types of distribution differences that are relevant for
our works: domain shift and task change.

We define domain and tasks, following Zhuang et al. (2020). A domain D by a feature
space X and a marginal distribution P (X), i.e., D = {X , P (X)}, where X denotes a set of
instances, i.e., X = {x|xi ∈ X , i = 1, ..., n}. On the other hand, a task T id defined by a
label space Y and an implicit decision function f that needs to be learned from the data. f

can be described by the conditional distribution P (y|x). Our contributions in the present
thesis consider scenarios that involve multiple datasets with different data distributions
Pi(x, y). Pi(x, y) can be rewritten as Pi(y|x)Pi(x) and Pi(x|y)Pi(y).

Following Kairouz et al. (2021) and Li et al. (2021a), we define domain shift as the
setting covering covariate shift and concept shift. In covariate shift, the datasets have
different marginal feature distributions, i.e., Pi(x) ̸= Pj(x), while the conditional label dis-
tribution are the same, i.e., Pi(y|x) = Pj(y|x). In concept shift, the datasets have different
conditional feature distributions, i.e., Pi(x|y) ̸= Pj(x|y), while having the same marginal
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label distribution, i.e., Pi(y) = Pj(y). Domain shift is also referred to as feature shift in Li
et al. (2021a).

Figure 1.2: Exemplary sets of data exhibiting domain shift

Figure 1.2 displays a concrete example of domain shift. Hereby, the different datasets
have the same classes, e.g., horse, house, guitar, and dog, but different input feature
distributions, i.e., pixel distributions, including hand-drawn sketches and pictures taken
by a camera. The images used in Figure 1.2 are from the PACS dataset Li et al. (2017a)
commonly used for domain generalization benchmarks.

Different learning settings involving domain shift are investigated in different research
problems, including supervised Wang and Deng (2018) and unsupervised domain adapta-
tion Wilson and Cook (2020), as well as domain generalization Zhou et al. (2021a) (Section
1.3). Our works presented in Chapters 4 and 5 consider problem settings involving domain
shift.

We consider that two datasets have different tasks in the following cases: 1) the datasets
have different label spaces, i.e., Yi ̸= Yj, or 2) the datasets have different conditional label
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distributions Pi(y|x) ̸= Pj(y|x), even if the marginal feature distribution is the same,
i.e., Pi(x) = Pj(x). Our works presented in Chapters 2 and 3 consider problem settings
involving different tasks. A concrete example of datasets with different tasks can be seen in
Figure 1.3. Here, the different tasks have different classes, while having the same number
of classes, i.e., the same label space Y . Note that even though some classes are shared
across the tasks, they have different labels, i.e., Pi(y|x) ̸= Pj(y|x). The images used are
from the MiniImageNet dataset Ravi and Larochelle (2016) commonly used for few-shot
learning benchmarks.

Figure 1.3: Examples of different 4-class classification tasks.

Different learning settings involving different tasks are investigated in different research
problems, including few-shot learning Wang and Yao (2019) (Section 1.2.2), meta-learning
Hospedales et al. (2020) (Section 1.2.1) and continual learning Delange et al. (2021) (Sec-
tion 1.2.3). Recently, learning scenarios involving both domain shift and different tasks
have enjoyed a surge of interest. These include cross-domain few-shot learning Guo et al.
(2020) and continual domain generalization Li et al. (2020a).
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1.2 Anomaly Detection via Meta-Learning

This section presents an overview of research areas that are related to our contributions in
chapters 2 and 3. Section 1.2.1 provides information about anomaly detection and meta-
learning, which are relevant for both contributions. Thereafter, section 1.2.2 introduces
few-shot learning, the Model-Agnostic Meta-Learning (MAML) algorithm, and how they
relate to our contribution from chapter 2. Finally, in section 1.2.3, we present the continual
learning problem and its relationship to our contribution in chapter 3.

1.2.1 Introduction

In this section, we introduce and discuss the anomaly detection problem and the meta-
learning paradigm, which are relevant for our contributions in chapters 2 and 3.

Anomaly Detection

Anomaly Detection (AD) is the task of differentiating between normal and abnormal exam-
ples, also called anomalies or outliers Chandola et al. (2009); Aggarwal (2015). Anomaly
detection is present in several real-world applications in different sectors, including health-
care Prastawa et al. (2004), banking Raj and Portia (2011), cybersecurity Garcia-Teodoro
et al. (2009) and industrial manufacturing Scime and Beuth (2018). Since anomalies occur
very rarely compared to normal behavior, the data collected for anomaly detection appli-
cations exhibits a high class-imbalance in favor of the normal class. Hence, AD problems
are usually formulated as One-Class Classification (OCC) problems Moya et al. (1993),
i.e., few or no data examples from the anomalous class are available for model training
Khan and Madden (2014). In other words, the task is to determine a binary classification
decision boundary, while having access to only examples from one class, i.e., the normal
class.

Several works were developed to address the AD and OCC problems. In the follow-
ing, we discuss some of them and refer to Chandola et al. (2009); Khan and Madden
(2014) for an extensive literature review. Classical OCC such as One-Class SVM (OC-
SVM) Schölkopf et al. (2000) and Support Vector Data Description (SVDD) Tax and Duin
(2004) methods leverage SVMs to learn a decision boundary that separates the normal class
from outliers. To cope with high-dimensional data, feature extraction models are used to
yield lower-dimensional representations of the data before feeding them to the SVM-based
classifier Xu et al. (2015); Andrews et al. (2016); Erfani et al. (2016). Fully end-to-end deep
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learning methods that incorporate both steps, i.e., embedding and classification were also
developed Ruff et al. (2018). Another line of work trains auto-encoder models Hinton and
Salakhutdinov (2006) to learn to reconstruct normal class examples and detects anoma-
lies by their higher reconstruction loss values Hawkins et al. (2002); An and Cho (2015);
Chen et al. (2017). More recent approaches leverage generative models, e.g., Generative
Adversarial Networks (GAN) Goodfellow et al. (2014a) and Normalizing Flows Rezende
and Mohamed (2015), to detect anomalies Schlegl et al. (2017); Ravanbakhsh et al. (2017);
Sabokrou et al. (2018); Rudolph et al. (2021).

Meta-Learning

Traditional machine learning involves the optimization of model predictions over a dataset
D including several data examples, as shown in Equation 1.1. Hereby the parameters θ

of the prediction model are optimized to minimize a defined loss function L. Here, ω

denotes the meta-learner. The meta-learner defines the learning process of new tasks by
the learner model parameterized by θ. It can be viewed as the learning algorithm used and
its assumptions, e.g., the choice of a random initialization for θ or the usage of a specific
rule for updating the learner’s parameters.

θ∗ = argmin
θ
L(D; θ, ω) (1.1)

In contrast, meta-learning, also referred to as learning to learn Schmidhuber (1987);
Thrun and Pratt (2012), is the process of optimizing a meta-learner ω over several learning
problems, also called tasks T Hospedales et al. (2020) (Equation 1.2).

ω∗ = argmin
ω

ET ∼P (T ) L(D; ω) (1.2)

We present a schematic representation describing the meta-learning problem setting,
inspired by De Lange et al. (2021), in Figure 1.4.

The tasks used for meta-learning usually share common characteristics and are sampled
from a task-distribution P (T ). Hereby, we implicitly define a task Ti by its corresponding
dataset Di (Section 1.1.2). Examples of task-distributions include a distribution over 5-
class classification tasks of natural images of animals, or a distribution over regression tasks
on sine functions with different amplitudes and periods. In these examples, a task instance
would be an image classification task with 5 specific classes of animals, and a regression



1.2 Anomaly Detection via Meta-Learning 9

Figure 1.4: Schematic representation of the meta-learning problem setting.

task of a sine function with a defined amplitude and period. The tasks used for training
the meta-learner are called the meta-training tasks.

At test time, the resulting meta-learner ω∗ is applied to the learner model to facilitate
learning a new task Ttest which was not observed during training. The tasks used for the
evaluation of the meta-learner are referred to as meta-testing tasks. A subset of the dataset
Dtest of the meta-testing task is used for training the learner using the meta-learner ω. The
meta-learner ω can have a high impact on learning-related performance metrics such as
convergence speed and data efficiency Finn et al. (2017), as well as the performance and
characteristics of the predictive model θ trained by it, e.g., robustness to domains shift
Li et al. (2018a); Dou et al. (2019) or adversarial attacks Yin et al. (2018). Examples of
meta-learners include an initialization of the parameters of the predictive model θ Finn
and Levine (2017), the parameters of another model that updates Hochreiter et al. (2001);
Andrychowicz et al. (2016); Ravi and Larochelle (2016) or generates Rusu et al. (2018a);
Zhmoginov et al. (2022) the parameters of the predictive model, a loss function Bechtle
et al. (2021), or an optimization algorithm Li and Malik (2017).

The task distribution P (T ) plays an important role in defining the meta-learning ob-
jective and influences the optimization of the learning strategy. The task-distribution is
usually designed to include tasks that share characteristics with the target tasks, i.e., the
tasks expected to be encountered at test time. For instance, if the target application ex-
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hibits data scarcity, the task-distribution should include few-shot learning tasks, i.e., tasks
with a small training set Vinyals et al. (2016). In this case, the resulting meta-learner is
optimized to learn new tasks with few datapoints. In practice, the task distribution P (T )
is usually discrete, i.e., it represents a collection of n datasets P (T ) = {D1, D2, ..., Dn}.

Several works developed meta-learning-based techniques to address the few-shot learn-
ing problem Finn et al. (2017); Li et al. (2017b); Nichol and Schulman (2018); Rusu et al.
(2018b); Lee et al. (2019). Further applications include continual learning Javed and
White (2019); Spigler (2019); Beaulieu et al. (2020); Requeima et al. (2019), robustness
to domain shift Li et al. (2018a); Balaji et al. (2018); Dou et al. (2019), robustness to
adversarial attacks Yin et al. (2018); Zhang et al. (2020), unsupervised learning Hsu et al.
(2018); Khodadadeh et al. (2019), active learning Contardo et al. (2017); Pang et al. (2018),
reinforcement learning Gupta et al. (2018); Nagabandi et al. (2018); Rakelly et al. (2019),
hyperparamneter optimization Franceschi et al. (2018) and Neural Architecture Search
(NAS) Liu et al. (2018). For an extensive review of meta-learning methods we refer to
Hospedales et al. (2020); Huisman et al. (2021).

1.2.2 Few-Shot Anomaly Detection

This section introduces the few-shot learning problem and its related works, with a focus
on the Model-Agnostic Meta-Learning (MAML) algorithm. Thereafter, we motivate and
summarize our contribution from chapter 2 Frikha et al. (2021b).

Few-Shot Learning

Several real-world applications exhibit a high data scarcity, hence disallowing the usage
of the conventional and data-hungry deep learning methods. There exist various reasons
for data scarcity. On the one hand, the data collection process itself might be expensive,
e.g., in the healthcare sector, or gradual, e.g., in cold start situations. On the other hand,
the data annotation process might be expensive due to the scarcity of domain experts
required for it, e.g., sensor readings collected in an industrial manufacturing plant can only
be labeled by highly trained experts. To enable learning from scarce datasets, the few-shot
learning (FSL) problem was introduced and studied.

A few-shot learning task includes a small training set, also called the support set, and
a test set, commonly called the query set. A few-shot classification task is defined by the
number of its classes n and the number of per-class examples k included in its support
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set Vinyals et al. (2016). It is referred to as n-way-k-shot classification task. The FSL
literature assumes access to a distribution of such FSL tasks P (Ttrain) that is available for
training. Given P (Ttrain), the goal of few-shot learning is to enable a model θ to learn
an unseen task using only its small support set, i.e., the trained model generalizes to the
unseen query set of the same task.

Recently, a plethora of works was proposed to address few-shot learning. In the fol-
lowing, we discuss four main categories of few-shot learning approaches and refer to Wang
et al. (2020a) for an extensive survey. Metric-based FSL techniques involve embedding
the data into a representation space where examples belonging to the same class are simi-
lar according to a pre-defined metric, which facilitates classification Koch (2015); Vinyals
et al. (2016); Snell et al. (2017); Sung et al. (2018); Oreshkin et al. (2018); Bertinetto et al.
(2018); Lee et al. (2019). Optimization-based FSL approaches leverage meta-learning to
yield a learning strategy tailored for learning FSL tasks. The learning strategies proposed
include optimization algorithms Ravi and Larochelle (2016), model initializations Finn
et al. (2017); Nichol and Schulman (2018), and/or parameter-specific learning rates Li
et al. (2017b). Hybrid methods that combine metric-learning and meta-learning were also
developed Rusu et al. (2018a); Lee and Choi (2018); Triantafillou et al. (2019). Finally,
the third category of approaches modulates Requeima et al. (2019); Vuorio et al. (2019)
or generates some Qi et al. (2018); Gidaris and Komodakis (2018) or all Zhmoginov et al.
(2022) the parameters of the predictive model in a task-specific way.

Model-Agnostic Meta-Learning

In this section, we introduce the Model-Agnostic Meta-Learning (MAML) algorithm Finn
et al. (2017), since our work builds upon it.

While MAML can also be used for few-shot regression and policy gradient reinforce-
ment learning, we focus on its usage for few-shot classification. The meta-learned learning
strategy, i.e., the meta-learner, that MAML optimizes is a model initialization that enables
quick task-specific adaptation with few datapoints. For this, MAML uses a training task-
distribution p(Ttrain) that contains few-shot learning tasks, i.e., tasks with a small support
set.

θ
′

i = θ − α∇θLS
Ti

(fθ), (1.3)

MAML employs a bi-level optimization scheme to optimize the parameter initialization
θ. In the inner optimization step, MAML adapts θ to a task Ti by taking one (or more) gra-



12 1. Introduction

dient descent steps, yielding model parameters θ
′
i specific to task i (Equation1.3). Hereby,

α denotes the learning rate, f the model parametrized by θ, and LS
Ti

the loss function
computed on the support set of Ti.

θ ← θ − β∇θ

∑
Ti∼p(T )

LQ
Ti

(fθ
′
i
). (1.4)

In the outer optimization step, MAML optimizes the parameter initialization θ explic-
itly for few-shot learning (Equation 1.4). In particular, it minimizes LQ

Ti
(fθ

′
i
), the loss of

the task-specific model θ
′
i computed on the query set of Ti. Note that the loss minimized

is a good measure of the initialization suitability for few-shot learning. The learning rate
used for the outer optimization is denoted by β. Note that the MAML meta-objective
consists in learning an initialization that yields a low loss on unseen examples from a task
T after a task-specific adaptation with few examples from that task.

Figure 1.5: The meta-learned parameters θ allow fast adaptation to several tasks.

In each iteration, MAML samples a batch of training tasks from p(Ttrain) and updates
the model initialization θ following Equation 1.4. As depicted in Figure 1.5, the meta-
learned parameter initialization lie in the vicinity of local optima of different tasks, hence
enabling task-adaptation using only a few data examples. At test time, the meta-learned
initialization is adapted to the target task by taking one (or more) gradient updates using
its small support set.
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Few-Shot Anomaly Detection via Meta-Learning

In this section, we summarize the motivation, method, and findings of our published work
Frikha et al. (2021b) presented in Chapter 2.

On the one hand, most of the Anomaly Detection (AD) approaches developed in prior
work (Section 1.2.1) require large datasets of normal examples to generalize Chandola et al.
(2009). Such datasets are not available in data-scarce application scenarios (Section 1.2.2).
On the other hand, the few-shot classification literature Wang et al. (2020a) focuses on
class-balanced classification scenarios, where examples are available from all classes. Due
to the extreme rarity of anomalous behavior, data examples from the anomalous class are
usually not available, and One-Class Classification (OCC) techniques Khan and Madden
(2014) are employed to perform AD.

Our work addresses the Few-Shot One-Class Classification (FS-OCC) problem, the un-
derexplored intersection of the well-studied OCC, and few-shot learning problems. We for-
mulate this problem as a meta-learning, where the tasks (Section 1.1.2) are AD tasks with
different normal and anomalous classes. perspective Our contribution in this work is four-
fold. Firstly, we empirically show that classical OCC methods fail in the low-data regime.
Secondly, we theoretically analyze why the parameter initializations optimized by gradient-
based meta-learning algorithms, e.g., MAML (Section 1.2.2), are not tailored for OCC,
and why second-order derivatives are needed to optimize for such initializations. Thirdly,
we propose an episode sampling technique that adapts any meta-learning algorithm that
employs a bi-level optimization to the FS-OCC problem. Finally, we demonstrate the ef-
fectiveness of the proposed approach on eight datasets of images and time-series, including
an industrial sensor readings dataset.

1.2.3 Continual Anomaly Detection

In this section, we first introduce the continual learning problem and its related works.
Subsequently, we motivate and summarize our contribution from chapter 3 Frikha et al.
(2021d).

Continual Learning

The ability to continuously learn new tasks without corrupting prior knowledge is a hall-
mark of human intelligence. When exposed to a sequence of tasks, deep learning methods
exhibit a performance decrease on older tasks due to overwriting the previously acquired
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knowledge. This problem is referred to as catastrophic forgetting McCloskey and Cohen
(1989); French (1999); Goodrich (2015); Kirkpatrick et al. (2017). Continual learning (CL),
also called lifelong learning, investigates ways of building models that are able to learn sev-
eral tasks in an incremental fashion, i.e., reducing the impact of catastrophic forgetting.
Ideally, the model should not only retain knowledge about past tasks but also leverage
it while learning new tasks. Such models are essential for real-world applications where
the data distribution changes frequently, e.g., quality control in industrial manufacturing,
where the product portfolio is constantly evolving.

Figure 1.6: Schematic representation of the continual learning problem setting.

We present a schematic representation describing the continual learning problem set-
ting, inspired by De Lange et al. (2021), in Figure 1.6. We focus on the continual learning
framework introduced in Lopez-Paz and Ranzato (2017). Here, the learner is exposed to
a series of different tasks Ti during training and can be evaluated at any time step, e.g.,
training iteration, on any of the tasks previously encountered. The evaluation is done using
a test set, i.e., a separate set of data not seen during training, of the corresponding task.
While some CL methods Lopez-Paz and Ranzato (2017) assume access to task descriptors,
i.e., task identifiers that are fed to the learner at evaluation time, we address the more
challenging setting where the learner needs to infer the task from the test samples Riemer
et al. (2018).
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The most commonly used performance metric used in CL is the retained accuracy (RA),
which measures the task-averaged test performance after sequentially training on all tasks
Lopez-Paz and Ranzato (2017). Other metrics include the learning accuracy (LA) and the
backward transfer and interference (BTI). While LA computes the average test accuracy for
each task immediately after training on it, BTI measures the average performance change
for each task between the time step it was last learned and the end of the training, i.e., the
difference between RA and LA. Note that a positive BTI indicates a positive transfer across
the tasks, i.e., on average the tasks learned after task Ti were beneficial for the performance
on that task. A negative BTI highlights catastrophic forgetting, i.e., the tasks learned after
task Ti led to a deterioration of performance on that task.

Several works were conducted to investigate continual learning. We categorize the pro-
posed approaches into four categories and refer to Parisi et al. (2019); Delange et al. (2021)
for extensive reviews. The first category inhibits catastrophic forgetting by replaying ex-
periences, e.g., data examples, from past tasks Schaul et al. (2015); Rebuffi et al. (2017);
Lopez-Paz and Ranzato (2017); Riemer et al. (2018), while learning new tasks. Some
approaches perform experience replay using synthetically generated examples Shin et al.
(2017); Wang et al. (2018); Chaudhry et al. (2020). Another line of work regularizes param-
eter updates Kirkpatrick et al. (2017); Zenke et al. (2017); Lee et al. (2017) by penalizing
changes to parameters that are important for previously learned tasks. Isolation-based
methods prevent interference by assigning different model parameters for different tasks.
This is done by increasing the model capacity Rusu et al. (2016); Aljundi et al. (2017); Xu
and Zhu (2018), by using pruning masks Mallya and Lazebnik (2018), or learning sparse
task-specific attention masks Serra et al. (2018). Finally, recent works tackle continual
learning by leveraging meta-learning-based techniques which maximize transfer and min-
imize interference Riemer et al. (2018), learn an initialization for some Javed and White
(2019); Beaulieu et al. (2020) or all Spigler (2019) model parameters, or continuously adapt
class-prototypes Zhang et al. (2019).

Continual Anomaly Detection via Meta-Learning

In this section, we summarize the motivation, method, and findings of our published Frikha
et al. (2021d) work presented in Chapter 3.

While the continual learning problem has been well-studied Parisi et al. (2019); Delange
et al. (2021), the vast majority of works in this field focus on class-balanced classification.
However, many real-world applications exhibit a high class-imbalance due to the rarity of
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some categories, e.g., defective products in industrial manufacturing or the diagnosis of
a rare disease in healthcare. As introduced in Section 1.2.1, anomaly detection problems
are usually framed as one-class classification problems (OCC) Khan and Madden (2014),
where only data from the normal class is available. To the best of our knowledge, we are
the first to address the intersection of continual learning and anomaly detection, to which
we refer to as Continual Anomaly Detection (CAD). CAD considers practical use-cases
where a central anomaly detector for multiple applications is needed and new applications
become available gradually in time. CAD is defined as a continual learning problem setting
(Figure 1.6) where all the tasks are anomaly detection tasks, i.e., only data from their
respective normal classes is available for training. The learner is expected to sequentially
learn multiple anomaly detection classes, using only normal class examples from each task.

Our contribution in this work is threefold. Firstly, we introduce the novel and praxis-
relevant continual anomaly detection problem and discuss its challenges: catastrophic for-
getting and overfitting to the normal class. Secondly, we propose an effective and model-
agnostic meta-learning approach to address CAD. Our method learns a learning strategy
tailored for learning anomaly detection task-sequences with minimal forgetting. Finally,
we empirically validate our approach on three datasets, where we significantly outperform
previous class-balanced continual learning and anomaly detection methods.

1.3 Domain Generalization

This section presents an overview of research areas that are related to our contributions
in chapters 4 and 5. Section 1.3.1 introduces the domain generalization problem which is
relevant for both contributions. Thereafter, section 1.3.2 summarizes the motivation and
contribution of our paper presented in chapter 4. Finally, in section 1.3.3, we present the
data-free learning paradigm and summarize our contribution from chapter 5.

1.3.1 Introduction

While most deep learning achievements have been realized in the scenarios where the data
is independent and identically distributed (i.d.d.), distribution shifts between training and
testing are common in real-world applications. The performance of neural networks usually
deteriorates substantially when evaluated on out-of-distribution (OOD) data Torralba and
Efros (2011). In the healthcare sector, for instance, neural networks trained on MRI
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images from one hospital fail to generalize to those from other hospitals that use different
scanners Dou et al. (2019). Several domain adaptation (DA) approaches were developed
to inhibit the performance degradation incurred by the domain shift present between the
source domain used for training and the target domain faced at test time Wilson and Cook
(2020).

While DA methods require access to a subset of data from the target domain, there
exist scenarios where the target domain data is not available at development time. In fact,
target domain data collection might be expensive, slow, e.g., in a cold start situation, or
infeasible, e.g., collecting images from all streets in all countries to train autonomous ve-
hicles. Sometimes, target domains cannot be known a priori. The Domain Generalization
(DG) problem Blanchard et al. (2011); Muandet et al. (2013) was introduced to address
such settings. In particular, a model trained on multiple source domains is directly eval-
uated on target domains without any modification or exposure to their data, i.e., there
is no conditioning on the target domain. DG can be viewed as a zero-shot version of the
domain adaptation problem.

We present a schematic representation describing the domain generalization problem
setting in Figure 1.7. The DG problem assumes access to multiple datasets containing data
from the same task but different domains. An example can be seen in Figure 1.2. These
datasets are referred to as the source domains and can be used to train a model that is
expected to be resilient to domain shift. In particular, the trained model is expected to
perform well on data Dtarget from a new domain unseen during training, the target domain.
Hereby the model is tested without any modification or adaptation to the target domain,
which is unknown at training time, as opposed to domain adaptation.

In the last decade, a wide variety of DG approaches were proposed. In the following,
we broadly classify them into three categories and refer to Zhou et al. (2021a) for an
extensive review. The first category methods aim to align the different domains in a
common embedding space by learning domain-invariant representations. The distribution
mismatch between the domain-specific representations can be reduced by minimizing the
distance between the means Tzeng et al. (2014), covariance matrices Sun and Saenko
(2016) or the maximum mean discrepancy (MMD) criteria Gretton et al. (2012); Li et al.
(2018b) across different domains in the embedding space. For the same purpose, contrastive
learning techniques were employed as a regularization Motiian et al. (2017); Yoon et al.
(2019); Mahajan et al. (2020), and the alignment of loss gradients across the domains
using inner-product maximization Shi et al. (2021) or masking Parascandolo et al. (2020);
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Figure 1.7: Schematic representation of the domain generalization problem setting.

Shahtalebi et al. (2021) was considered. Another line of work learn domain-invariant
features by maximizing the error of a domain-discriminator model Ganin et al. (2016);
Li et al. (2018c); Albuquerque et al. (2019); Shao et al. (2019); Rahman et al. (2020);
Deng et al. (2020). The second category includes data augmentation approaches. While
some methods augment the training data by leveraging Mixup Zhang et al. (2017) to
synthesize cross-domain examples Xu et al. (2020); Yan et al. (2020); Wang et al. (2020b),
others synthesize new images by using generative models to augment the source domains
Rahman et al. (2019); Somavarapu et al. (2020); Borlino et al. (2021) or create novel
domains Maria Carlucci et al. (2019); Zhou et al. (2020a,b). Adversarial perturbations
Goodfellow et al. (2014b) were also used to perturb the training data based on the outputs
of a class classifier Sinha et al. (2017); Volpi et al. (2018); Qiao et al. (2020) or a domain
classifier Shankar et al. (2018), or to perturb learned representations of the data Huang
et al. (2020); Zhou et al. (2021b). Finally, meta-learning methods (Section 1.2) that involve
a bi-level optimization scheme were developed to address DG, by learning a regularizer of
the last layer Balaji et al. (2018), explicitly optimizing for quick adaptation Li et al. (2018a),
and regularizing the embedding space via inter-class and intra-class similarity optimization
Dou et al. (2019).
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1.3.2 Multi-Level Feature Discovery via Corruption

In this section, we summarize the motivation and contributions of our published work
Frikha et al. (2021c) presented in Chapter 4.

Highly parametrized deep learning models trained with gradient-descent achieve im-
pressive performance in a variety of tasks including computer vision Guo et al. (2016) and
natural language processing Chai and Li (2019), sometimes even outperforming humans
Silver et al. (2018); Madani et al. (2018). However, these models were found to rely on
learning only a subset of (spurious) features, failing to capture further (more predictive)
features present in the training data Geirhos et al. (2018); Shah et al. (2020); Pezeshki
et al. (2021). This results in a performance deterioration when exposed to data that ex-
hibits domain shift. Many terms are used to describe this phenomenon including shortcut
learning Geirhos et al. (2018), simplicity bias Shah et al. (2020) and gradient starvation
Pezeshki et al. (2021).

In our work, we propose a domain generalization (DG) approach that addresses this
phenomenon by incentivizing the model to capture as many features as possible. This is
based on the assumption that a richer set of features improves the knowledge transfer to
a wider variety of unseen domains. Our method leverages methods from the explainable
machine learning literature to identify the features captured by the model. Thereafter,
these learned features are corrupted and the model is trained on the corrupted version
of the data, hence enforcing new feature discovery. We evaluated our method on a DG
testbed Gulrajani and Lopez-Paz (2020) that fairly compares DG algorithms by including
the same pre-processing pipeline and hyperparameter search. We found that our algorithm
outperforms 18 DG approaches on three different DG benchmark datasets.

1.3.3 Data-Free Domain Generalization

This section introduces the data-free learning paradigm including the motivation behind
it and its related works. Thereafter, we provide an overview of our contribution presented
in chapter 5.

Data-Free Learning

While machine learning methods require data to learn, in many real-world scenarios, data
access is not possible. For instance, some companies might not be willing to share their
data to avoid commercial disadvantage and/or reverse engineering. Moreover, General
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Data Protection Regulations (GDPR) disallow the usage of personal information from
individuals, e.g., biometric data or other confidential information. Likewise, some data
might be accessible due to security or safety concerns. Furthermore, as datasets become
larger and larger, their release and transfer become utterly costly. While federated learn-
ing McMahan et al. (2017) techniques enable learning from decentralized data and were
extensively studied in this context Kairouz et al. (2021), we focus on the alternative more
recent family of approaches of data-free learning Liu et al. (2021b).

In data-free learning, we consider the scenario where the data owners are willing to
share a model trained on their data instead of releasing the original dataset. Recently, this
setting has enjoyed a surge of interest in the machine learning research community Micaelli
and Storkey (2019); Chen et al. (2019); Nayak et al. (2019); Liang et al. (2020); Li et al.
(2020b); Kundu et al. (2020); Yin et al. (2020); Ahmed et al. (2021). Data-Free Knowledge
Distillation methods were proposed to transfer knowledge from one Micaelli and Storkey
(2019); Nayak et al. (2019); Chen et al. (2019); Yin et al. (2020); Zhang et al. (2021) or
several trained teacher models Li et al. (2021b) to other untrained student models without
any access to the original data. This is done by training the student model on synthetic
data generated by a generative model Micaelli and Storkey (2019); Chen et al. (2019) or
via Inceptionism-style Mahendran and Vedaldi (2015) image synthesis Nayak et al. (2019);
Yin et al. (2020); Zhang et al. (2021), i.e., optimization of random noise examples to be
recognized by trained models. We note that in classical knowledge distillation Hinton et al.
(2015) the original dataset is used to distill the teacher knowledge into the student model.

While the aforementioned DFKD methods address domain-specific scenarios, many
real-world applications exhibit domain shift between training and test data. Recently, the
Source-Free Domain Adaptation (SFDA) problem Liang et al. (2020); Li et al. (2020b);
Kundu et al. (2020) was proposed to investigate data-free learning settings involving do-
main shift. In particular, it addresses the situation where one or multiple models trained
on the source domains are available instead of the data itself, along with data from the
target domain.

The approaches developed to tackle SFDA rely on weighting the target domain examples
by their similarity to the source domains Kundu et al. (2020), combining generative models
with a regularization loss Li et al. (2020b), pairing an information maximization loss with
pseudo-labeling Liang et al. (2020); Ahmed et al. (2021), or replacing the source-domain
batch normalization Ioffe and Szegedy (2015) statistics with those computed on the target
domain examples Li et al. (2016). Recently, federated learning approaches were developed
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to cope with domain shift Li et al. (2021a); Liu et al. (2021a); Chen et al. (2022).

Data-Free Domain Generalization via Multi-Teacher Knowledge Amalgamation

In this section, we summarize the motivation and contributions of our published work
Frikha et al. (2021a) presented in Chapter 5.

On the one hand, the aforementioned DFKD methods were designed to tackle domain-
specific single-teacher scenarios with no domain shift. On the other hand, the previously
mentioned SFDA methods require access to data from target domains. In our work, we
address the unexplored intersection of domain generalization and data-free learning, which
we define as the Data-Free Domain Generalization (DFDG) problem. DFDG investigates
the practical setting where a model that is robust to domain shift is needed and only models
trained on the source domains are available. The key difference to the SFDA problem is the
absence of the target domain data, which is motivated by the fact that in many real-world
scenarios the target domains are not known a priori and there is no access to their data.

The contribution of our work on DFDG is threefold: Firstly, we introduce and define
the novel DFDG problem. Secondly, we propose Domain Entanglement via Knowledge
Amalgamation from domain-specific Networks (DEKAN), an effective approach for this
problem, as well as several baseline methods. Our algorithm extracts and merges the
knowledge contained in the available domain-specific teacher model by generating domain-
specific and cross-domain synthetic examples. The latter are optimized by maximizing
the agreement of different domain-specific teachers and minimizing a cross-domain feature
distribution matching loss. The generated images are then used to transfer the knowledge
to a student model via multi-teacher knowledge distillation. The student is tested on the
target domain without any modification or prior exposure to their data. Thirdly, we eval-
uate DEKAN on 2 DG benchmark datasets and find that it outperforms all the baselines
including ensemble-based and multi-teacher DFKD methods, hence achieving state-of-the-
art results on this challenging problem. Moreover, DEKAN substantially reduces the gap
between the best DFDG baseline and the upper-bound oracle method that uses the original
source domain data.



22 1. Introduction



Chapter 2

Few-Shot One-Class Classification via
Meta-Learning



Few-Shot One-Class Classification via Meta-Learning

Ahmed Frikha 1, 2, 4, Denis Krompaß 1, 2, Hans-Georg Köpken 3, Volker Tresp 2, 4
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Abstract

Although few-shot learning and one-class classification
(OCC), i.e., learning a binary classifier with data from only
one class, have been separately well studied, their intersection
remains rather unexplored. Our work addresses the few-shot
OCC problem and presents a method to modify the episodic
data sampling strategy of the model-agnostic meta-learning
(MAML) algorithm to learn a model initialization particu-
larly suited for learning few-shot OCC tasks. This is done by
explicitly optimizing for an initialization which only requires
few gradient steps with one-class minibatches to yield a per-
formance increase on class-balanced test data. We provide
a theoretical analysis that explains why our approach works
in the few-shot OCC scenario, while other meta-learning al-
gorithms fail, including the unmodified MAML. Our exper-
iments on eight datasets from the image and time-series do-
mains show that our method leads to better results than classi-
cal OCC and few-shot classification approaches, and demon-
strate the ability to learn unseen tasks from only few nor-
mal class samples. Moreover, we successfully train anomaly
detectors for a real-world application on sensor readings
recorded during industrial manufacturing of workpieces with
a CNC milling machine, by using few normal examples. Fi-
nally, we empirically demonstrate that the proposed data sam-
pling technique increases the performance of more recent
meta-learning algorithms in few-shot OCC and yields state-
of-the-art results in this problem setting.

Introduction
The anomaly detection (AD) task (Chandola, Banerjee, and
Kumar 2009; Aggarwal 2015) consists in differentiating
between normal and abnormal data samples. AD applica-
tions are common in various domains that involve differ-
ent data types, including medical diagnosis (Prastawa et al.
2004), cybersecurity (Garcia-Teodoro et al. 2009) and qual-
ity control in industrial manufacturing (Scime and Beuth
2018). Due to the rarity of anomalies, the data underlying
AD problems exhibits high class-imbalance. Therefore, AD
problems are usually formulated as one-class classification
(OCC) problems (Moya, Koch, and Hostetler 1993), where
either only a few or no anomalous data samples are available
for training the model (Khan and Madden 2014). While most

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the developed approaches (Khan and Madden 2014) re-
quire a substantial amount of normal data to yield good gen-
eralization, in many real-world applications, e.g., in indus-
trial manufacturing, only small datasets are available. Data
scarcity can have many reasons: data collection itself might
be expensive, e.g., in healthcare, or happens only gradually,
such as in a cold-start situation, or the domain expertise re-
quired for annotation is scarce and expensive.

To enable learning from few examples, viable approaches
(Lake et al. 2011; Ravi and Larochelle 2017; Finn, Abbeel,
and Levine 2017) relying on meta-learning (Schmidhuber
1987) have been developed. However, they rely on having
examples from each of the task’s classes, which prevents
their application to OCC tasks. While recent meta-learning
approaches focused on the few-shot learning problem, i.e.,
learning to learn with few examples, we extend their use to
the OCC problem, i.e., learning to learn with examples from
only one class. To the best of our knowledge, the few-shot
OCC (FS-OCC) problem has only been addressed in (Koz-
erawski and Turk 2018; Kruspe 2019) in the image domain.

Our contribution is fourfold: Firstly, we show that classi-
cal OCC approaches fail in the few-shot data regime. Sec-
ondly, we provide a theoretical analysis showing that clas-
sical gradient-based meta-learning algorithms do not yield
parameter initializations suitable for OCC and that second-
order derivatives are needed to optimize for such initializa-
tions. Thirdly, we propose a simple episode generation strat-
egy to adapt any meta-learning algorithm that uses a bi-level
optimization scheme to FS-OCC. Hereby, we first focus on
modifying the model-agnostic meta-learning (MAML) al-
gorithm (Finn, Abbeel, and Levine 2017) to learn initializa-
tions useful for the FS-OCC scenario. The resulting One-
Class MAML (OC-MAML) maximizes the inner product
of loss gradients computed on one-class and class-balanced
minibatches, hence maximizing the cosine similarity be-
tween these gradients. Finally, we demonstrate that the pro-
posed data sampling technique generalizes beyond MAML
to other metalearning algorithms, e.g., MetaOptNet (Lee
et al. 2019) and Meta-SGD (Li et al. 2017), by successfully
adapting them to the understudied FS-OCC.

We empirically validate our approach on eight datasets
from the image and time-series domains, and demonstrate its
robustness and maturity for real-world applications by suc-
cessfully testing it on a real-world dataset of sensor read-
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ings recorded during manufacturing of metal workpieces
with a CNC milling machine. Furthermore, we outperform
the concurrent work One-Way ProtoNets (Kruspe 2019) and
achieve state-of-the-art performance in FS-OCC.

Approach
The primary contribution of our work is to propose a way to
adapt meta-learning algorithms designed for class-balanced
FS learning to the underexplored FS-OCC problem. In this
section, as a first demonstration that meta-learning is a vi-
able approach to this challenging learning scenario, we fo-
cus on investigating it on the MAML algorithm. MAML was
shown to be a universal learning algorithm approximator (?),
i.e., it could approximate a learning algorithm tailored for
FS-OCC. Later, we validate our methods on further meta-
learning algorithms (Table 4).

Problem Statement
Our goal is to learn a one-class classification task using
only a few examples. In the following, we first discuss the
unique challenges of the few-shot one-class classification
(FS-OCC) problem. Subsequently, we discuss the formula-
tion of the FS-OCC problem as a meta-learning problem.

To perform one-class classification, i.e., differentiate be-
tween in-class and out-of-class examples using only in-class
data, approximating a generalized decision boundary for the
normal class is necessary. Learning such a class decision
boundary in the few-shot regime can be especially challeng-
ing for the following reasons. On the one hand, if the model
overfits to the few available datapoints, the class decision
boundary would be too restrictive, which would prevent gen-
eralization to unseen examples. As a result, some normal
samples would be predicted as anomalies. On the other hand,
if the model overfits to the majority class, i.e., predicting
almost everything as normal, the class decision boundary
would overgeneralize, and out-of-class (anomalous) exam-
ples would not be detected.

In the FS classification context, N -way K-shot learning
tasks are used to test the learning procedure yielded by the
meta-learning algorithm. An N -way K-shot classification
task includes K examples from each of the N classes that
are used for learning this task, after which the trained clas-
sifier is tested on a disjoint set of data (Vinyals et al. 2016).
When the target task is an OCC task, only examples from
one class are available for training, which can be viewed as a
1-way K-shot classification task. To align with the anomaly
detection problem, the available examples must belong to
the normal (majority) class, which usually has a lower vari-
ance than the anomalous (minority) class. This problem for-
mulation is a prototype for a practical use case where an
application-specific anomaly detector is needed and only
few normal examples are available.

Model-Agnostic Meta-Learning
MAML is a meta-learning algorithm that we focus on adapt-
ing to the FS-OCC problem before validating our approach
on further meta-learning algorithms (Table 4). MAML
learns a model initialization that enables quick adaptation to

unseen tasks using only few data samples. For that, it trains
a model explicitly for few-shot learning on tasks Ti coming
from the same task distribution p(T ) as the unseen target
task Ttest. In order to assess the model’s adaptation ability
to unseen tasks, the available tasks are divided into mutually
disjoint task sets: one for meta-training Str, one for meta-
validation Sval and one for meta-testing Stest. Each task Ti
is divided into two disjoint sets of data, each of which is used
for a particular MAML operation:Dtr is used for adaptation
and Dval is used for validation, i.e., evaluating the adapta-
tion. The adaptation of a model fθ to a task Ti consists in
taking few gradient descent steps using few datapoints sam-
pled from Dtr yielding θ

′
i.

A good measure for the suitability of the initialization pa-
rameters θ for few-shot adaptation to a considered task Ti is
the loss LvalTi

(fθ′
i
), which is computed on the validation set

Dval
i using the task-specific adapted model fθ′

i
. To optimize

for few-shot learning, the model parameters θ are updated by
minimizing the aforementioned loss across all meta-training
tasks. This meta-update, can be expressed as:

θ ← θ − β∇θ
∑

Ti∼p(T )

LvalTi
(fθ′

i
). (1)

Here β is the learning rate used for the meta-update. To
avoid overfitting to the meta-training tasks, model selection
is done via validation using tasks from Sval. At meta-test
time, the FS adaptation to unseen tasks from Stest is eval-
uated. We note that, in the case of few-shot classification,
K datapoints from each class are sampled from Dtr for the
adaptation, during training and testing.

One-Class Model-Agnostic Meta-Learning
Algorithm. MAML learns a model initialization suitable
for class-balanced (CB) FS classification. To adapt it to FS-
OCC, we aim to find a model initialization from which tak-
ing few gradients steps with a few one-class (OC) exam-
ples yields the same effect as doing so with a CB mini-
batch. We achieve this by adequately modifying the objec-
tive of the inner loop updates of MAML. Concretely, this
is done by modifying the data sampling technique during
meta-training, so that the class-imbalance rate (CIR) of the
inner loop minibatches matches the one of the test task.

MAML optimizes explicitly for FS adaptation by creat-
ing and using auxiliary tasks that have the same character-
istic as the target tasks, in this case tasks that include only
few datapoints for training. It does so by reducing the size
of the batch used for the adaptation (via the hyperparameter
K (?)). Analogously, OC-MAML trains explicitly for quick
adaptation to OCC tasks by creating OCC auxiliary tasks
for meta-training. OCC problems are binary classification
scenarios where only few or no minority class samples are
available. In order to address both of theses cases, we intro-
duce a hyperparameter (c) which sets the CIR of the batch
sampled for the inner updates. Hereby, c gives the percent-
age of the samples belonging to the minority (anomalous)
class w.r.t. the total number of samples, e.g., setting c = 0%
means only majority class samples are contained in the data
batch. We focus on this extreme case, where no anomalous
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Algorithm 1 Meta-training of OC-MAML

Require: Str: Set of meta-training tasks
Require: α, β: Learning rates
Require: K,Q: Batch size for the inner and outer updates
Require: c: CIR for the inner-updates

1: Randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti from Str; Ti = {Dtr, Dval}
4: for each sampled Ti do
5: SampleK examplesB fromDtr such that CIR= c

6: Initialize θ
′
i = θ

7: for number of adaptation steps do
8: Compute adapted parameters with gradient de-

scent using B: θ
′
i = θ

′
i − α∇θ′

i
LtrTi

(fθ′
i
)

9: end for
10: Sample Q examples B

′
from Dval w/ CIR= 50%

11: Compute outer loop loss LvalTi
(fθ′

i
) using B

′

12: end for
13: Update θ: θ ← θ − β∇θ

∑
Ti
LvalTi

(fθ′
i
)

14: end while
15: return meta-learned parameters θ

samples are available for learning. In order to evaluate the
performance of the adapted model on both classes, we use
a class-balanced validation batch B

′
for the meta-update.

This way, we maximize the performance of the model in rec-
ognizing both classes after having seen examples from only
one class during adaptation. The OC-MAML meta-training
is described in Algorithm 1, and the cross-entropy loss was
used for L. At test time, the adaptation to an unseen task is
done by applying steps 5-9 in Algorithm 1, starting from the
meta-learned initialization.

We note that the proposed episode sampling strategy, i.e.,
training on a one-class batch then using the loss computed
on a class-balanced validation batch to update the meta-
learning strategy (e.g., model initialization), is applicable to
any meta-learning algorithm that incorporates a bi-level op-
timization scheme (examples in Table 4).

Figure 1: Adaptation to task Ts from the model initializa-
tions yielded by OC-MAML and MAML

Using OCC tasks for adaptation during meta-training fa-
vors model initializations that enable a quick adaptation to

OCC tasks over those that require CB tasks. The schematic
visualization in Figure 1 shows the difference between
the model initializations meta-learned by MAML and OC-
MAML. Hereby, we consider the adaptation to an unseen
binary classification task Ts. θ∗

s,CB denotes a local opti-
mum of Ts. The parameter initializations yielded by OC-
MAML and MAML are denoted by θOCMAML and θMAML re-
spectively. When starting from the OC-MAML parameter
initialization, taking a gradient step using an OC support
set Ds,OC (gradient direction denoted by ∇Ls,OC ), yields
a performance increase on Ts (by moving closer to the local
optimum). In contrast, when starting from the parameter ini-
tialization reached by MAML, a class-balanced support set
Ds,CB (gradient direction denoted by ∇Ls,CB) is required
for a performance increase on Ts.

Theoretical Analysis: Why Does OC-MAML Work ? In
this section we give a theoretical explanation of why OC-
MAML works and why it is a more suitable approach than
MAML for the FS-OCC setting. To address the latter prob-
lem, we aim to find a model parameter initialization, from
which adaptation using few data examples from only one
class yields a good performance on both classes, i.e., good
generalization to the class-balanced task. We additionally
demonstrate that adapting first-order meta-learning algo-
rithms, e.g., First-Order MAML (FOMAML) (Finn, Abbeel,
and Levine 2017) and Reptile (Nichol and Schulman 2018),
to the OCC scenario as done in OC-MAML, does not yield
initializations with the desired characteristics.

By using a Taylor series expansion the gradient used in the
MAML update can be approximated to Equation 2 (Nichol
and Schulman 2018), where the case with only 2 gradient-
based updates is considered, i.e., one adaptation update on
a minibatch (1), the support set including K examples from
Dtr, and one meta-update on a minibatch (2), the query set
including Q examples from Dval. We use the notation from
(Nichol and Schulman 2018), where gi and Hi denote the
gradient and Hessian computed on the ith minibatch at the
initial parameter point φ1, and α the learning rate. Here it is
assumed that the same learning rate is used for the adapta-
tion and meta-updates.

gMAML = g2 − αH2g1 − αH1g2 +O(α2)

= g2 − α
∂(g1.g2)

∂φ1
+O(α2)

(2)

Equation 2 shows that MAML maximizes the inner product
of the gradients computed on different minibatches (Nichol
and Schulman 2018). Under the assumption of local linear-
ity of the loss function (which is the case around small op-
timization steps), and when gradients from different mini-
batches have a positive inner product, taking a gradient step
using one minibatch yields a performance increase on the
other (Nichol and Schulman 2018). Maximizing the inner
product leads to a decrease in the angle between the gradi-
ent vectors and thus to an increase in their cosine similarity.
Hence, MAML optimizes for an initialization where gradi-
ents computed on small minibatches have similar directions,
which enables few-shot learning.

Equation 2 is independent of the data strategy adopted and
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hence holds also for OC-MAML. However, in OC-MAML
the minibatches 1 and 2 have different class-imbalance rates
(CIRs), since the first minibatch includes examples from
only one class and the second minibatch is class-balanced.
So, it optimizes for increasing the inner product between a
gradient computed on a one-class minibatch and a gradient
computed on class-balanced data. Thus, OC-MAML opti-
mizes for an initialization where gradients computed on one-
class data have similar directions, i.e., a high inner product
and therefore a high cosine similarity, to gradients computed
on class-balanced data (Figure 1). Consequently, taking one
(or few) gradient step(s) with one-class minibatch(es) from
such a parameter initialization results in a performance in-
crease on class-balanced data. This enables one-class clas-
sification. In contrast, MAML uses only class-balanced data
during meta-training, which leads to a parameter initializa-
tion that requires class-balanced minibatches to yield the
same effect. When adapting to OCC tasks, however, only ex-
amples from one class are available. We conclude, therefore,
that the proposed data sampling technique modifies MAML
to learn parameter initializations that are more suitable for
adapting to OCC tasks.

A natural question is whether applying the same data sam-
pling method to other gradient-based meta-learning algo-
rithms would yield the same desired effect. We investigate
this for First-Order MAML (FOMAML), a first-order ap-
proximation of MAML that ignores the second derivative
terms and Reptile (Nichol and Schulman 2018), which is
also a first-order meta-learning algorithm that learns an ini-
tialization that enables fast adaptation to test tasks using few
examples from each class. We refer to the versions of these
algorithms adapted to the FS-OCC setting as OC-FOMAML
and OC-Reptile. We note that for OC-Reptile, the firstN−1
batches contain examples from only one class and the last
(N th) batch is class-balanced. The approximated FOMAML
and Reptile gradients are given by Equations 3 and 4 (Nichol
and Schulman 2018), respectively.

gFOMAML = g2 − αH2g1 +O(α2) (3)

gReptile = g1 + g2 − αH2g1 +O(α2) (4)

We note that these equations hold also for OC-FOMAML
and OC-Reptile. By taking the expectation over minibatch
sampling Eτ,1,2 for a task τ and two class-balanced mini-
batches 1 and 2, it is established that Eτ,1,2[H1g2] =

Eτ,1,2[H2g1] (Nichol and Schulman 2018). Averaging the
two sides of the latter equation results in

Eτ,1,2[H2g1] =
1

2
Eτ,1,2[H1g2 +H2g1]

=
1

2
Eτ,1,2[

∂(g1.g2)

∂φ1
].

(5)

Equation 5 shows that, FOMAML and Reptile, like
MAML, in expectation optimize for increasing the inner
product of the gradients computed on different minibatches
with the same CIR. However, when the minibatches 1 and
2 have different CIRs, which is the case for OC-FOMAML

and OC-Reptile, Eτ,1,2[H1g2] 6= Eτ,1,2[H2g1] and there-
fore Eτ,1,2[H2g1] 6= 1

2Eτ,1,2[∂(g1.g2)
∂φ1

]. Hence, despite us-
ing the same data sampling method as OC-MAML, OC-
FOMAML and OC-Reptile do not explicitly optimize for
increasing the inner product, and therefore the cosine simi-
larity, between gradients computed on one-class and class-
balanced minibatches. The second derivative term H1g2 is,
thus, necessary to optimize for an initialization from which
performance increase on a class-balanced task is yielded by
taking few gradient steps using one class data.

Related Works
Our proposed method addresses the FS-OCC problem, i.e.,
solving binary classification problems using only few data-
points from only one class. To the best of our knowledge,
this problem was only addressed in (Kozerawski and Turk
2018) and (Kruspe 2019), and exclusively in the image data
domain. In (Kozerawski and Turk 2018) a feed-forward neu-
ral network is trained on ILSVRC 2012 to learn a transfor-
mation from feature vectors, extracted by a CNN pre-trained
on ILSVRC 2014 (Russakovsky et al. 2015), to SVM deci-
sion boundaries. At test time, an SVM boundary is inferred
by using one image of one class from the test task which is
then used to classify the test examples. This approach is spe-
cific to the image domain since it relies on the availability of
very large, well annotated datasets and uses data augmenta-
tion techniques specific to the image domain, e.g., mirroring.
Meta-learning algorithms offer a more general approach to
FS-OCC since they are data-domain-agnostic, and do not re-
quire a pre-trained feature extraction model, which may not
be available for some data domains, e.g., sensor readings.

The concurrent work One-Way ProtoNets (Kruspe 2019)
adapts ProtoNets (Snell, Swersky, and Zemel 2017) to ad-
dress FS-OCC by using 0 as a prototype for the null class,
i.e., non-normal examples, since the embedding space is 0-
centered due to using batch normalization (BN) (Ioffe and
Szegedy 2015) as the last layer. Given the embedding of a
query example, its distance to the normal-class prototype is
compared to its norm. This method constraints the model
architecture by requiring the usage of BN layers. We pro-
pose a model-architecture agnostic data sampling technique
to adapt meta-learning algorithms to the FS-OCC problem.
The resulting meta-learning algorithms substantially outper-
form One-Way ProtoNets (Kruspe 2019) (Table 4).

Class-Balanced Few-Shot Classification
Meta-learning approaches for FS classification approaches
may be broadly categorized in 2 categories. Optimization-
based approaches aim to learn an optimization algorithm
(Ravi and Larochelle 2017) and/or a parameter initializa-
tion (Finn, Abbeel, and Levine 2017; Nichol and Schulman
2018), learning rates (Li et al. 2017), an embedding network
(Lee et al. 2019) that are tailored for FS learning. Metric-
based techniques learn a metric space where samples be-
longing to the same class are close together, which facilitates
few-shot classification (?Vinyals et al. 2016; Snell, Swersky,
and Zemel 2017; Sung et al. 2018; Oreshkin, López, and
Lacoste 2018; Lee et al. 2019). Hybrid methods (?Lee and
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Choi 2018) combine the advantages of both categories. Prior
meta-learning approaches to FS classification addressed the
N-way K-shot classification problem described in the prob-
lem statement section, i.e they require examples from each
class of the test tasks. We propose a method to adapt meta-
learning algorithm to the 1-way K-shot scenario, where only
few examples from one class are available.

One-Class Classification
Classical OCC approaches rely on SVMs (Schölkopf et al.
2001; Tax and Duin 2004) to distinguish between nor-
mal and abnormal samples. Hybrid approaches combining
SVM-based techniques with feature extractors were devel-
oped to compress the input data in lower dimensional rep-
resentations (Xu et al. 2015; Erfani et al. 2016; Andrews
et al. 2016). Fully deep methods that jointly perform the fea-
ture extraction step and the OCC step have also been devel-
oped (Ruff et al. 2018). Another category of approaches to
OCC uses the reconstruction error of antoencoders (Hinton
and Salakhutdinov 2006) trained with only normal exam-
ples as an anomaly score (Hawkins et al. 2002; An and Cho
2015; Chen et al. 2017). Yet, determining a decision thresh-
old for such an anomaly score requires labeled data from
both classes. Other techniques rely on GANs (Goodfellow
et al. 2014) to perform OCC (Schlegl et al. 2017; Ravan-
bakhsh et al. 2017; Sabokrou et al. 2018). The aforemen-
tioned hybrid and fully deep approaches require a consider-
able amount of data from the OCC task to train the typically
highly parametrized feature extractors specific to the normal
class, and hence fail in the scarce data regime (Table 1).

Experimental Evaluation
The conducted experiments 1 use some modules of the
pyMeta library (Spigler 2019) and aim to address the fol-
lowing key questions: (a) How do meta-learning-based ap-
proaches using the proposed episode sampling technique
perform compared to classical OCC approaches in the few-
shot (FS) data regime? (b) Do the findings of our theoretical
analysis about the differences between the MAML and OC-
MAML initializations hold in practice? (c) Does the pro-
posed episode sampling strategy to adapt MAML to the FS-
OCC setting yield the expected performance increase and
does this hold for further meta-learning algorithms?

Baselines and Datasets
We compare OC-MAML, with the classical OCC ap-
proaches One-Class SVM (OC-SVM) (Schölkopf et al.
2001) and Isolation Forest (IF) (Liu, Ting, and Zhou 2008)
(Question (a)), which we fit to raw features and embeddings
of the support set of the test task. Here, we explore two
types of embedding networks which are trained on the meta-
training tasks as follows: one is trained in a Multi-Task-
Learning (MTL) (Caruana 1997) setting using one-class-vs-
all tasks and the other trained using the ”Finetune” baseline
(FB) (Triantafillou et al. 2019). i.e., using multi-class classi-
fication on all classes available.

1Code available under https://github.com/AhmedFrikha/Few-
Shot-One-Class-Classification-via-Meta-Learning

Moreover, we compare first-order (FOMAML and Rep-
tile) and second-order (MAML) class-balanced meta-
learning algorithms to their adapted versions to the OCC
scenario, i.e., OC-FOMAML and OC-Reptile and OC-
MAML (Question (b)). Finally, we compare MetaOptNet
(Lee et al. 2019) and meta-SGD (Li et al. 2017) to their one-
class counterparts that use our sampling strategy (Question
(c)). We conducted a hyperparameter search for each base-
line separately and used the best performing setting for our
experiments. We evaluate our approach on 8 datasets from
the image and time-series data domains, including two syn-
thetic time-series (STS) datasets that we propose as a bench-
mark for FS-OCC on time-series, and a real-world sen-
sor readings dataset of CNC Milling Machine Data (CNC-
MMD). To adapt the image datasets to the OCC scenario,
we create binary classification tasks, where the normal class
is one class of the initial dataset and the anomalous class
contains examples from multiple other classes.

Results and Discussion
In this section, we first discuss the performance of classi-
cal OCC approaches and the meta-learning algorithms in the
FS-OCC problem setting, as well as the impact of the pro-
posed data sampling strategy. Subsequently, we demonstrate
the maturity of our approach on a real-world dataset. There-
after, we further confirm our theoretical analysis with empir-
ical results of cosine similarity between gradients. Finally,
we show the generalizability of our sampling technique to
further meta-learning algorithms beyond MAML, and com-
pare the resulting algorithms to One-Way ProtoNets.

Table 1 shows the results averaged over 5 seeds of the
classical OCC approaches (Top) and the meta-learning ap-
proaches, namely MAML, FOMAML, Reptile and their
one-class versions (Bottom), on 3 image datasets and on the
STS-Sawtooth dataset. For the meta-learning approaches,
models were trained with and without BN layers and the re-
sults of the best architecture were reported for each dataset.
The results of all the methods on the other 8 MT-MNIST
task-combinations and on the STS-Sine dataset, are consis-
tent with the results in Table 1.

While classical OCC methods yield chance performance
in almost all settings, OC-MAML achieves very high re-
sults, consistently outperforming them across all datasets
and on both support set sizes. Likewise, we observe that OC-
MAML consistently outperforms the class-balanced and
one-class versions of the meta-learning algorithms in all the
settings, showing the benefits of our modification to MAML.

Moreover, OC-FOMAML and OC-Reptile yield poor re-
sults, especially without BN, confirming our theoretical
findings that adapting first-order meta-learning algorithms to
the OCC setting does not yield the desired effect. We found
that using BN yields a substantial performance increase on
the 3 image datasets and explain that by the gradient orthog-
onalizing effect of BN (Suteu and Guo 2019). In fact, gra-
dient orthogonalization reduces interference between gradi-
ents computed on one-class and class-balanced batches. OC-
MAML achieves high performance even without BN, as it
reduces interference between these gradients by the means
of its optimization objective (see theoretical analysis).
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Adaptation set size K = 2 K = 10
Model \ Dataset MIN Omn MNIST Saw MIN Omn MNIST Saw
FB 50.0 50.6 56.5 50.0 50.0 51.2 50.3 50.0
MTL 50.0 50.0 49.7 50.0 50.2 50.0 45.3 50.0
OC-SVM 50.2 50.6 51.2 50.1 51.2 50.4 53.6 50.5
IF 50.0 50.0 50.0 50.0 50.7 50.0 50.9 49.9
FB + OCSVM 50.0 50.0 55.5 50.4 51.4 58.0 86.6 58.3
FB + IF 50.0 50.0 50.0 50.0 50.0 50.0 76.1 51.5
MTL + OCSVM 50.0 50.0 50.0 50.0 50.0 50.1 53.8 86.9
MTL + IF 50.0 50.0 50.0 50.0 50.0 55.7 84.2 64.0
Reptile 51.6 56.3 71.1 69.1 57.1 76.3 89.8 81.6
FOMAML 53.3 78.8 80.7 75.1 59.5 93.7 91.1 80.2
MAML 62.3 91.4 85.5 81.1 65.5 96.3 92.2 86
OC-Reptile 51.9 52.1 51.3 51.6 53.2 51 51.4 53.2
OC-FOMAML 55.7 74.7 79.1 58.6 66.1 87.5 91.8 73.2
OC-MAML (ours) 69.1 96.6 88 96.6 76.2 97.6 95.1 95.7

Table 1: Accuracies (in %) computed on the class-balanced test sets of the test tasks of MiniImageNet (MIN), Omniglot (Omn),
MT-MNIST with Ttest = T0 and STS-Sawtooth (Saw).

Several previous meta-learning approaches, e.g., MAML
(Finn, Abbeel, and Levine 2017), were evaluated in a trans-
ductive setting, i.e., the model classifies the whole test set
at once which enables sharing information between test ex-
amples via BN (Nichol and Schulman 2018). In anomaly
detection applications, the CIR of the encountered test set
batches, and therefore the statistics used in BN layers, can
massively change depending on the system behavior (nor-
mal or anomalous). Hence, we evaluate all methods in a
non-transductive setting: we compute the statistics of all BN
layers using the few one-class adaptation examples and use
them for predictions on test examples. This is equivalent to
classifying each test example separately. We also use this
method during meta-training. We note that the choice of
the BN scheme heavily impacts the performance of several
meta-learning algorithms (Bronskill et al. 2020).

Validation on the CNC-Milling Real-World Dataset.
We validate OC-MAML on the industrial sensor read-
ings dataset CNC-MDD and report the results in Table 2.
We compute F1-scores for evaluation since the test sets
are class-imbalanced. Depending on the type of the target
milling operation (e.g., roughing), tasks created from differ-
ent operations from the same type are used for meta-training.
OC-MAML consistently achieves high F1-scores between
80% and 95.9% across the 6 milling processes. The high
performance on the minority class, i.e., in detecting anoma-
lous data samples, is reached by using only K = 10 non-
anomalous examples (c = 0%). These results show that OC-
MAML yielded a parameter initialization suitable for learn-
ing OCC tasks in the time-series data domain and the ma-
turity of this method for industrial real-world applications.
Due to the low number of anomalies, it is not possible to
apply MAML with the standard sampling, which would re-
quire K anomalous examples in the inner loop during meta-
training. With OC-MAML, the few anomalies available are
only used for the outer loop updates. We note that despite the

high class-imbalance in the data of the meta-training pro-
cesses, class-balanced query batches were sampled for the
outer loop updates. This can be seen as an under-sampling
of the majority class.

F1 F2 F3 F4 R1 R2

80.0% 89.6% 95.9% 93.6% 85.3% 82.6%

Table 2: OC-MAML F1-scores, averaged over 150 tasks
sampled from the test operations, on finishing (Fi) and
roughing (Rj) operations of the real-world CNC-MMD
dataset, with only K = 10 normal examples (c = 0%).

Model \ Dataset MIN Omn MNIST Saw
Reptile 0.05 0.02 0.16 0.02
FOMAML 0.13 0.14 0.31 −0.02
MAML 0.28 0.16 0.45 0.01
OC-Reptile 0.09 0.05 −0.09 0.03
OC-FOMAML 0.26 0.12 0.36 0.07
OC-MAML 0.42 0.23 0.47 0.92

Table 3: Cosine similarity between the gradients of one-class
and class-balanced minibatches averaged over test tasks of
MiniImageNet, Omniglot, MT-MNIST and STS-Sawtooth.

Cosine Similarity Analysis. We would like to directly
verify that OC-MAML maximizes the inner product, and
therefore the cosine similarity, between the gradients of one-
class and class-balanced batches of data, while the other
meta-learning baselines do not (see theoretical analysis). For
this, we use the initialization meta-learned by each algorithm
to compute the loss gradient of K normal examples and the
loss gradient of a disjoint class-balanced batch. We use the
best performing initialization for each meta-learning algo-
rithm and compute the cosine similarities using on test tasks.
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Support set size K = 2 K = 10
Model \ Dataset MIN CIFAR-FS FC100 MIN CIFAR-FS FC100
MAML 62.3 62.1 55.1 65.5 69.1 61.6
OC-MAML (ours) 69.1 70 59.9 76.2 79.1 65.5
MetaOptNet 50 56 51.2 56.6 74.8 53.3
OC-MetaOptNet (ours) 51.8 56.3 52.2 67.4 75.5 59.9
MetaSGD 65 58.4 55 73.6 71.3 61.3
OC-MetaSGD (ours) 69.6 71.4 60.3 75.8 77.8 64.3
One-Way ProtoNets (Kruspe 2019) 67 70.9 56.9 74.4 76.7 62.1

Table 4: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of MiniImageNet (MIN), CIFAR-FS
and FC100 after using a one-class support set for task-specific adaptation

We report the mean cosine similarity on 3 image datasets
and one time-series dataset in Table 3. The significant dif-
ferences in the mean cosine similarity found between OC-
MAML and the other meta-learning algorithms consolidate
our theoretical findings.

Applicability to Further Meta-Learning Algorithms
and Comparison to One-Way ProtoNets. To investigate
whether the benefits of our sampling strategy generalize to
further meta-learning algorithms beyond MAML, we apply
it to MetaOptNet (Lee et al. 2019) and Meta-SGD (Li et al.
2017). Like MAML, these algorithms use a bi-level opti-
mization scheme (inner and outer loop optimization) to per-
form few-shot learning. This enables the application of our
proposed data strategy which requires two sets of data with
different CIRs to be used. We refer to the OC versions of
these algorithms as OC-MetaOptNet and OC-MetaSGD.

MetaOptNet trains a representation network to extract
feature embeddings that generalize well in the FS regime
when fed to linear classifiers, e.g., SVMs. For that, a dif-
ferentiable quadratic programming (QP) solver (Amos and
Kolter 2017) is used to fit the SVM (Lee et al. 2019) (inner
loop optimization). The loss of the fitted SVM on a held-out
validation set of the same task is used to update the repre-
sentation network (outer loop optimization). Since solving
a binary SVM requires examples from both classes and our
sampling strategy provides one-class examples in the inner
loop, we use an OC-SVM (Schölkopf et al. 2000) classifier
instead. The embeddings extracted for few normal examples
by the representation network are used to fit the OC-SVM,
which is then used to classify the class-balanced validation
set and to update the embedding network, analogously to
the class-balanced scenario. To fit the OC-SVM, we solve
its dual problem (Schölkopf et al. 2000) using the same dif-
ferentiable quadratic programming (QP) solver (Amos and
Kolter 2017) used to solve the multi-class SVM in (Lee et al.
2019). The ResNet-12 architecture is used for the embed-
ding network. We use the meta-validation tasks to tune the
OC-SVM hyperparameters.

Meta-SGD meta-learns an inner loop learning rate for
each model parameter besides the initalization. Our episode
sampling method is applied as done for MAML. Unlike the
class-balanced MetaSGD, the meta-learning optimization
assigns negative values to some parameter-specific learning
rates to counteract overfitting to the majority class, which

leads to performing gradient ascent on the adaptation loss.
To prevent this, we clip the learning rates between 0 and 1.

Table 4 shows that applying the proposed sampling tech-
nique to MetaOptNet and Meta-SGD results in a signifi-
cant accuracy increase in FS-OCC on the MiniImageNet,
CIFAR-FS and FC100 datasets. Eventhough MetaOptNet
substantially outperforms MAML and Meta-SGD in the
class-balanced case (Lee et al. 2019), it fails to compete in
the FS-OCC setting, suggesting that meta-learning a suitable
initialization for the classifier is important in this scenario.

Finally, we compare to One-Way ProtoNets 2 and find that
OC-MAML and OC-MetaSGD significantly outperform it
on all three datasets. The poorer performance of One-Way
ProtoNets and OC-MetaOptNet could be explained by the
absence of a mechanism to adapt the feature extractor (the
convolutional layers) to the unseen test tasks. OC-MAML
and OC-MetaSGD finetune the parameters of the feature ex-
tractor by the means of gradient updates on the few normal
examples from the test task. We conducted experiments us-
ing 5 different seeds and present the average in Table 4.

Conclusion
This work addressed the novel and challenging problem of
few-shot one-class classification (FS-OCC). We proposed
an episode sampling technique to adapt meta-learning
algorithms designed for class-balanced FS classification to
FS-OCC. Our experiments on 8 datasets from the image
and time-series domains, including a real-world dataset of
industrial sensor readings, showed that our approach yields
substantial performance increase on three meta-learning
algorithms, significantly outperforming classical OCC
methods and FS classification algorithms using standard
sampling. Moreover, we provided a theoretical analysis
showing that class-balanced gradient-based meta-learning
algorithms (e.g., MAML) do not yield model initializations
suitable for OCC tasks and that second-order derivatives are
needed to optimize for such initializations. Future works
could investigate an unsupervised approach to FS-OCC, as
done in the class-balanced scenario (Hsu, Levine, and Finn
2018).

2We re-implemented One-Way ProtoNets to conduct the exper-
iments, since the code from the original paper was not made public.
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A Experimental Details
In the following we provide details about the model architec-
tures used. For MT-MNIST, we use the same 4-block con-
volutional architecture as used by (Hsu, Levine, and Finn
2018) for their multi-class MNIST experiments. Each con-
volutional block includes a 3 x 3 convolutional layer with
32 filters, a 2 x 2 pooling and a ReLU non-linearity. The
same model architecture is used for the MiniImageNet ex-
periments as done by (Ravi and Larochelle 2016). For the
Omniglot experiments, we use the same architecture used in
(Finn, Abbeel, and Levine 2017).

On the STS datasets, the model architecture used is com-
posed of 3 modules, each including a 5 x 5 convolutional
layer with 32 filters, a 2 x 2 pooling and a ReLU non-
linearity. The model architecture used for the CNC-MMD
experiments is composed of 4 of these aforementioned mod-
ules, except that the convolutional layers in the last two mod-
ules include 64 filters. The last layer of all architectures is a
linear layer followed by softmax. We note that in the exper-
iments on the time-series datasets (STS and CNC-MMD)
1-D convolutional filters are used.

We conducted a hyperparameter grid search for each
meta-learning algorithm separately. The hyperparameters
with the most effect on the algorithm performance were
identified and variated. These are: the inner and outer learn-
ing rates (α and β), the number of inner updates (adaptation
steps). We also conducted a separate hyperparameter search
for the case, where BN layers are used. Our results are aver-
aged over 5 runs with different seeds, using the best hyper-
parameter values. For the outer learning rate β we searched
over the grid {0.1, 0.01, 0.001} for all datasets. Regard-
ing the inner learning rate (α) we searched over the grids
{0.1, 0.01, 0.001} for MiniImageNet and the STS datasets,
and {0.1, 0.05, 0.01} for MT-MNIST and Omniglot. As for
the number of adaptation steps, we search over the grids
{1, 3, 5} for MiniImageNet, MT-MNIST and Omniglot, and
{1, 3, 5, 10} for the STS datasets.

For the meta-learning algorithms, including OC-MAML,
we used vanilla SGD in the inner loop and the Adam opti-
mizer (Kingma and Ba 2014) in the outer loop, as done by
(Finn, Abbeel, and Levine 2017). For (FO)MAML and OC-
(FO)MAML, the size of the query set, also called outer loop
minibatch, (Q), was set to 60, 20, 100 and 50, for MiniIm-
ageNet, Omnigot, MT-MNIST and the STS datasets respec-
tively. Since the outer loop data is class-balanced, it includes
Q/2 examples per class. Reptile uses the same batch size for
all updates (Nichol and Schulman 2018). Hence, we set the
outer loop minibatch size to be equal to the inner loop mini-
batch size, i.e., Q = K. The number of meta-training tasks
used in each meta-training iteration (also called meta-batch
size) was set to 8 for all datasets.

The MTL and FB baselines were also trained with the
Adam optimizer. Here, the batch size used is 32 for all
datasets, and the learning rate was set to 0.05 for MiniIm-
ageNet and Omniglot and 0.01 for MT-MNIST and STS.

In the following we give the hyperparameters used for the
real-world CNC-MMD dataset of industrial sensor readings.
The outer learning rate (β) was set to 0.001, the inner learn-
ing rate (α) was set to 0.0001, the number of adaptation

steps was set to 5 and the meta-batch size was set to 16.
Since the sizes and CIRS of the validation sets Dval differ
across the meta-training tasks in this dataset, we could not
fix the outer loop size Q. Here we sample the Q datapoints
with the biggest possible size, under the constraint that these
datapoints are class-balanced. The resulting Q values are be-
tween 4 and 16, depending on the meta-training task.

In the following, we provide details about the meta-
training procedure adopted in the meta-learning experi-
ments. We use disjoint sets of data for adaptation (Dtr) and
validation (Dval) on the meta-training tasks, as it was em-
pirically found to yield better final performance (Nichol and
Schulman 2018). Hereby, the same sets of data are used
in the OC-MAML and baseline experiments. In the MT-
MNIST, Omniglot, MiniImageNet and STS experiments, the
aforementioned sets of data are class-balanced. The sam-
pling of the batch used for adaptation B ensures that this
latter has the appropriate CIR (c = 50% for MAML, FO-
MAML and Reptile, and c = ctarget for OC-MAML,
OC-FOMAML and OC-Reptile). For the one-class meta-
learning algorithms, ctarget = 0%, i.e., no anomalous sam-
ples of the target task are available, sothat only normal ex-
amples are sampled from Dtr during meta-training. In order
to ensure that class-balanced and one-class meta-learning al-
gorithms are exposed to the same data during meta-training,
we move the anomalous examples from the adaptation set of
data (Dtr) to the validation set of data (Dval). We note that
this is only done in the experiments using one-class meta-
learning algorithms.

During meta-training, meta-validation episodes are
conducted to perform model selection. In order to mimic the
adaptation to unseen FS-OCC tasks with CIR c = ctarget at
test time, the CIR of the batches used for adaptation during
meta-validation episodes is also set to c = ctarget. We note
that the hyperparameter K denotes the total number of
datapoints, i.e., batch size, used to perform the adaptation
updates, and not the number of datapoints per class as done
by (Finn, Abbeel, and Levine 2017). Hence, a task with size
K = 10 and CIR c = 50% is equivalent to a 2-way 5-shot
classification task.

In the following, we provide details about the adaptation
to the target task(s) and the subsequent evaluation. In the
MT-MNIST and MiniImageNet experiments, we randomly
sample 20 adaptation sets from the target task(s)’ data, each
including K examples with the CIR corresponding to the
experiment considered. After each adaptation episode con-
ducted using one of these sets, the adapted model is evalu-
ated on a disjoint class-balanced test set that includes 4,000
images for MT-MNIST and 600 for MiniImageNet. We note
that the samples included in the test sets of the test tasks are
not used nor for meta-training neither for meta-validation.
This results in 20 and 400 (20 adaptation sets created from
each of the 20 test classes) different test tasks for MT-
MNIST and MiniImageNet, respectively. All the results pre-
sented give the mean over all adaptation episodes. Likewise,
in the STS experiments, we evaluate the model on 10 dif-
ferent adaptation sets from each of the 5 test tasks. In the
CNC-MMD experiments, the 30 tasks created from the tar-



get operation are used for adaptation and subsequent eval-
uation. For each of these target tasks, we randomly sample
K datapoints belonging to the normal class that we use for
adaptation, and use the rest of the datapoints for testing. We
do this 5 times for each target task, which results in 150 test-
ing tasks. For MTL and FB baselines, as well as all the base-
line combining these model with shallow models, i.e., IF
and OC-SVM, we use the meta-validation task(s) for model
choice, like in the meta-learning experiments. For the MTL
baseline, for each validation task, we finetune a fully con-
nected layer on top of the shared multi-task learned layers,
as it is done at test time.

B Datasets and task creation procedures
In this Section we first provide general information about the
datasets used in our experiments. Subsequently, we present
more detailed information about the original datasets, the
procedures adopted for creating OCC tasks, and the steps
adopted to create the proposed STS datasets.

We evaluate our approach on 8 datasets from the image
and time-series data domains. From the image domain we
use 4 few-shot learning benchmarks, namely MiniImageNet
(Ravi and Larochelle 2016), Omniglot (Lake, Salakhutdi-
nov, and Tenenbaum 2015), CIFAR-FS (Bertinetto et al.
2018) and FC100 (Oreshkin, López, and Lacoste 2018) and
1 OCC benchmark dataset, the Multi-Task MNIST (MT-
MNIST) dataset. To adapt the datasets to the OCC sce-
nario, we create binary classification tasks, where the normal
class contains examples from one class of the initial dataset
and the anomalous class contains examples from multiple
other classes. We note that the class-balanced versions of
the meta-learning baselines, e.g., MAML and Reptile, are
trained with class-balanced data batches from such AD tasks
in the inner loop of meta-training. We create 9 sub-datasets
based on MNIST, where the meta-testing task of each con-
sists in differentiating between a certain digit and the oth-
ers, and the same (10th) task for meta-validation in all sub-
datasets.

Since most of the time-series datasets for anomaly de-
tection include data from only one domain and only one
normal class, it is not possible them to the meta-learning
problem formulation where several different tasks are re-
quired. Therefore, we create two synthetic time-series (STS)
datasets, each including 30 synthetically generated time-
series that underlie 30 different anomaly detection tasks.
The time-series underlying the datasets are sawtooth wave-
forms (STS-Sawtooth) and sine functions (STS-Sine). We
propose the STS-datasets as benchmark datasets for the few-
shot (one-class) classification problem in the time-series do-
main and will publish them upon paper acceptance. Finally,
we validate OC-MAML on a real-world anomaly detec-
tion dataset of sensor readings recorded during industrial
manufacturing using a CNC milling machine. Various con-
secutive roughing and finishing operations (pockets, edges,
holes, surface finish) were performed on ca. 100 aluminium
workpieces to record the CNC Milling Machine Data (CNC-
MMD). The temporal dimension is handled using 1-D con-
volutions.

In the following, we give details about all datasets, the
task creation procedures adopted to adapt them to the OCC
case, as well as the generation of the STS-datasets.

Multi-task MNIST (MT-MNIST): We derive 10 binary
classification tasks from the MNIST dataset (LeCun, Cortes,
and Burges 2010), where every task consists in recogniz-
ing one of the digits. This is a classical one-class classifi-
cation benchmark dataset. For a particular task Ti, images
of the digit i are labeled as normal samples, while out-
of-distribution samples, i.e., the other digits, are labeled as
anomalous samples. We use 8 tasks for meta-training, 1 for
meta-validation and 1 for meta-testing. Hereby, images of
digits to be recognized in the validation and test tasks are not
used as anomalies in the meta-training tasks. This ensures
that the model is not exposed to normal samples from the
test task during meta-training. Moreover, the sets of anoma-
lous samples of the meta-training, meta-validation and meta-
testing tasks are mutually disjoint. We conduct experiments
on 9 MT-MNIST datasets, each of which involves a differ-
ent target task (T0 − T8). The task T9 is used as a meta-
validation task across all experiments. Each image has the
shape 28x28.

Omniglot: This dataset was proposed in (Lake, Salakhut-
dinov, and Tenenbaum 2015) and includes 20 instances of
1623 hand-written characters from 50 different alphabets.
We generate our meta-training and meta-testing tasks based
on the official data split (Lake, Salakhutdinov, and Tenen-
baum 2015), where 30 alphabets are reserved for training
and 20 for evaluation. For each character class, we create a
binary classification task, which consists in differentiating
between this character and other characters from the same
set (meta-training or meta-testing), i.e., the anomalous ex-
amples of a task Ti are randomly sampled from the remain-
ing characters. By removing 80 randomly sampled tasks
from the meta-training tasks, we create the meta-validation
tasks set. Each image has the shape 28x28.

MiniImageNet: This dataset was proposed in (Ravi and
Larochelle 2016) and includes 64 classes for training, 16
for validation and 20 for testing, and is a classical challeng-
ing benchmark dataset for few-shot learning. 600 images per
class are available. To adapt it to the few-shot one-class clas-
sification setting, we create 64 binary classification tasks for
meta-training, each of which consists in differentiating one
of the training classes from the others, i.e., the anomalous
examples of a task Ti are randomly sampled from the 63
classes with labels different from i. We do the same to cre-
ate 16 meta-validation and 20 meta-testing tasks using the
corresponding classes. Each image has the shape 84x84x3.

CIFAR-FS: This dataset was proposed in (Bertinetto
et al. 2018) and includes 64 classes for training, 16 for vali-
dation and 20 for testing, derived from CIFAR-100, and is a
benchmark dataset for few-shot learning. 600 images of size
32x32x3 are available per class. To adapt it to the few-shot
one-class classification setting, we proceeded exactly as we
did for miniImageNet (see above).

FC100: This dataset was proposed in (Oreshkin, López,
and Lacoste 2018) and also includes 64 classes for training,
16 for validation and 20 for testing derived from CIFAR-
100, and is a benchmark dataset for few-shot learning. How-



ever, in this dataset, the classes for training, validation and
testing belong to different superclasses to minimize se-
mantic overlap. This dataset contains 600 images of size
32x32x3 per class. To adapt it to the few-shot one-class clas-
sification setting, we proceeded exactly as we did for mini-
ImageNet (see above).

Synthetic time-series (STS): In order to investigate the
applicability of OC-MAML to time-series (question (c)), we
created two datasets, each including 30 synthetically gener-
ated time-series that underlie 30 different anomaly detection
tasks. The time-series underlying the datasets are sawtooth
waveforms (STS-Sawtooth) and sine functions (STS-Sine).
Each time-series is generated with random frequencies, am-
plitudes, noise boundaries, as well as anomaly width and
height boundaries. Additionally, the width of the rising ramp
as a proportion of the total cycle is sampled randomly for the
sawtooth dataset, which results in tasks having rising and
falling ramps with different steepness values. The data sam-
ples of a particular task are generated by randomly cropping
windows of length 128 from the corresponding time-series.
We generate 200 normal and 200 anomalous data exam-
ples for each task. For each dataset, we randomly choose 20
tasks for meta-training, 5 for meta-validation and 5 for meta-
testing. We propose the STS-datasets as benchmark datasets
for the few-shot one-class classification problem in the time-
series domain, and will make them public upon paper accep-
tance.

In the following, we give details about the generation
procedure adopted to create the STS-Sawtooth dataset. The
same steps were conducted to generate the STS-Sine dataset.
First, we generate the sawtooth waveforms underlying the
different tasks by using the Signal package of the Scipy li-
brary (Jones et al. 2001–). Thereafter, a randomly gener-
ated noise is applied to each signal. Subsequently, signal
segments with window length l = 128 are randomly sam-
pled from each noisy signal. These represent the normal,
i.e., non-anomalous, examples of the corresponding task.
Then, some of the normal examples are randomly chosen,
and anomalies are added to them to produce the anomalous
examples.

Figure 1 shows exemplary normal and anomalous samples
from the STS-Sawtooth and STS-Sine datasets. In order to
increase the variance between the aforementioned synthetic
signals underlying the different tasks, we randomly sample
the frequency, i.e., the number of periods within the window
length l, with which each waveform is generated, as well as
the amplitude and the vertical position (see Figure 1). For
sawtooth waveforms, we also randomly sample the width of
the rising ramp as a proportion of the total cycle between
0% and 100%, for each task. Setting this value to 100% and
to 0% produces sawtooth waveforms with rising and falling
ramps, respectively. Setting it to 50% corresponds to triangle
waveforms.

We note that the noise applied to the tasks are ran-
domly sampled from task-specific intervals, the boundaries
of which are also randomly sampled. Likewise, the width
and height of each anomaly is sampled from a random task
specific-interval. Moreover, we generate the anomalies of
each task, such that half of them have a height between

the signal’s minimum and maximum (e.g., anomalies (a)
and (d) in Figure 1), while the other half can surpass these
boundaries, i.e., the anomaly is higher than the normal sig-
nal’s maximum or lower than its minimum at least at one
time step (e.g., anomalies (b) and (c) in Figure 1). We note
that an anomalous sample can have more than one anomaly.

We preprocess the data by removing the mean and scaling
to unit variance. Hereby, only the available normal examples
are used for the computation of the mean and the variance.
This means that in the experiments, where the target task’s
size K = 2 and only normal samples are available c = 0%,
only two examples are used for the mean and variance com-
putation. We note that the time-series in Figure 1 are not
preprocessed.

CNC Milling Machine Data (CNC-MMD): This dataset
consists of ca. 100 aluminum workpieces on which vari-
ous consecutive roughing and finishing operations (pockets,
edges, holes, surface finish) are performed. The sensor read-
ings which were recorded at a rate of 500Hz measure var-
ious quantities that are important for the process monitor-
ing including the torques of the various axes. Each run of
machining a single workpiece can be seen as a multivariate
time-series. We segmented the data of each run in the vari-
ous operations performed on the workpieces. e.g., one seg-
ment would describe the milling of a pocket where another
describes a surface finish operation on the workpiece. Since
most manufacturing processes are highly efficient, anoma-
lies are quite rare but can be very costly if undetected. For
this reason, anomalies were provoked for 6 operations dur-
ing manufacturing to provide a better basis for the analy-
sis. Anomalies were provoked by creating realistic scenar-
ios for deficient manufacturing. Examples are using a work-
piece that exhibits deficiencies which leads to a drop in the
torque signal or using rather slightly decalibrated process
parameters which induced various irritations to the work-
piece surface which harmed production quality. The data
was labeled by domain experts from Siemens Digital Indus-
tries. It should be noted that this dataset more realistically
reflects the data situation in many real application scenarios
from industry where anomalies are rare and data is scarce
and for this reason training models on huge class-balanced
datasets is not an option.

For our experiments, we created 30 tasks per operation by
randomly cropping windows of length 2048 from the corre-
sponding time-series of each operation. As a result, the data
samples of a particular task Ti cropped from a milling op-
eration Oj correspond to the same trajectory part of Oj , but
to different workpieces. The task creation procedure ensures
that at least two anomalous data samples are available for
each task. The resulting tasks include between 15 and 55
normal samples, and between 2 and 4 (9 and 22) anomalous
samples for finishing (roughing) operations. We validate our
approach on all 6 milling operations in the case where only
10 samples belonging to the normal class (K = 10, c = 0%)
are available. Given the type of the target milling opera-
tion,e.g., finishing, we use the tasks from the other opera-
tions of the same type for meta-training. We note that the
model is not exposed to any sample belonging to any task of
the target operation during training. Each example has the



Figure 1: Exemplary normal (left) and anomalous (right) samples belonging to different tasks from the STS-Sawtooth (a and b)
and the STS-Sine (c and d) datasets

shape 2048x3.
We preprocess each of the three signals separately by re-

moving the mean and scaling to unit variance, as done for the
STS datasets. Likewise, only the available normal examples
are used for the computation of the mean and the variance.

Exemplary anomalous signals recorded from a finishing
and a roughing operations are shown in Figure 2. These sig-
nals are not mean centered and scaled to unit variance. We
note that we do not use the labels per time-step, but rather
the label ”anomalous” is assigned to each time-series that
contains at least an anomalous time-step.

C Further Experimental Results
In this section, we first present a more detailed overview of
the experimental results on meta-learning algorithms, with
and without using Batch Normalization (BN) layers in Table
1. Subsequently, we report the results of the experiments on
the STS-Sine dataset (Tables 2 and 3) and the 8 further MT-
MNIST task combinations (Tables 4, 5, 6, 7).

On the STS-Sine dataset and the 8 other MT-MNIST task
combinations, we observe consistent results with the results
from section ??. OC-MAML yields high performance across
all datasets. We also note that none of the meta-learning
baselines consistently yields high performance across all
datasets, as it is the case for OC-MAML.

D Speeding up OC-MAML
A concurrent work (Raghu et al. 2019) established that
MAML’s rapid learning of new tasks is dominated by
feature reuse. The authors propose the Almost No Inner
Loop (ANIL) algorithm, which consists in limiting the task-
specific adaptation of MAML (inner loop updates) to the
parameters of the model’s last layer (the output layer), dur-
ing meta-training and meta-testing. This leads to a speed up
factor of 1.7 over MAML, since ANIL requires the com-
putation of second-order derivative terms only for the last

layer’s parameters instead of all parameters. ANIL achieves
very comparable performance to MAML.

We investigate, whether this simplification of MAML can
also speed up OC-MAML, while retaining the same perfor-
mance. In other words, could we also compute the second-
order derivatives, which are required to explicitly optimize
for few-shot one-class classification (FS-OCC) (section ??),
to the last layer’s parameters and still reach a model ini-
tialization suitable for FS-OCC. Preliminary results of OC-
ANIL on the MiniImageNet and Omniglot datasets were
very comparable to the results of OC-MAML. Moreover,
we conducted the same cosine similarity analysis described
in section ?? with ANIL, FOANIL, OC-ANIL and OC-
FOANIL and got very consistent results with our findings
for the MAML-based algorithms (Table ??). This confirms
that second-order derivatives have only to be computed for
the last layer of the neural network to optimize for FS-OCC,
and that OC-ANIL is faster than OC-MAML by a factor of
1.7 (Raghu et al. 2019) with comparable performance. This
modification significantly reduces the computational burden
incurred by computing the second-order derivatives for all
parameters as done in OC-MAML. Our implementation of
OC-ANIL will be published upon paper acceptance.



Figure 2: Exemplary anomalous samples from a finishing (left) and a roughing (right) operations, where the anomalous time-
steps are depicted in red.

Table 1: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of MiniImageNet (MIN), Omniglot
(Omn), MT-MNIST with Ttest = T0 and STS-Sawtooth (Saw). The results are shown for models without BN (top) and with
BN (bottom), and give the average over 5 different seeds. One-class support sets (c = 0%) are used, unless otherwise specified.

Support set size K = 2 K = 10
Model \ Dataset MIN Omn MNIST Saw MIN Omn MNIST Saw
Reptile 50.2 50 71.1 50.6 50.2 56.2 85.2 72.8
FOMAML 50 50.9 80.7 52.5 50 50.6 83.8 50.4
MAML 51.4 87.2 80.7 81.1 50 92.3 91.9 72.9
OC-Reptile 50 50.4 50 50 50 50.7 50 50
OC-FOMAML 54.6 52.2 57.5 55.9 51 53.2 73.3 58.9
OC-MAML (ours) 66.4 95.6 85.2 96.6 73 96.8 95.1 95.7
Reptile (BN) 51.6 56.3 61.8 69.1 57.1 76.3 89.8 81.6
FOMAML (BN) 53.3 78.8 80 75.1 59.5 93.7 91.1 80.2
MAML (BN) 62.3 91.4 85.5 51.7 65.5 96.3 92.2 86
OC-Reptile (BN) 51.9 52.1 51.3 51.6 53.2 51 51.4 53.2
OC-FOMAML (BN) 55.7 74.7 79.1 58.6 66.1 87.5 91.8 73.2
OC-MAML (BN) (ours) 69.1 96.6 88 51.3 76.2 97.6 95.1 88.8

Table 2: Test accuracies (in %) computed on the class-
balanced test sets of the test tasks of the STS-Sine dataset.
One-class adaptation sets (c = 0%) are used, unless other-
wise specified.

Model \ Adaptation set size K = 2 K = 10
FB (c = 50%) 68.9 77.7
MTL (c = 50%) 64.5 91.2
FB 73.8 76.6
MTL 50 50
OC-SVM 50.2 51.3
IF 50 49.9
FB + OCSVM 52.1 65.3
FB + IF 50 62.8
MTL + OCSVM 50 51.9
MTL + IF 50 64.7
OC-MAML (ours) 99.9 99.9

Table 3: Test accuracies (in %) computed on the class-
balanced test sets of the test tasks of the STS-Sine dataset.
The results are shown for models without BN (top) and with
BN (bottom). One-class adaptation sets (c = 0%) are used,
unless otherwise specified.

Model \ Adaptation set size K = 2 K = 10
Reptile 52.5 50.0
FOMAML 60.3 52.1
MAML 99.6 99.1
OC-Reptile 50.0 50.0
OC-FOMAML 78.7 58.1
OC-MAML (ours) 99.9 99.9
Reptile (w. BN) 90.9 98.6
FOMAML (w. BN) 90.8 97.3
MAML (w. BN) 51.4 99.0
OC-Reptile (w. BN) 52.6 53.4
OC-FOMAML (w. BN) 78.8 80.0
OC-MAML (w. BN) (ours) 50.5 95.5



Table 4: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of the MT-MNIST datasets with
Ttest = T1−4. One-class adaptation sets (c = 0%) are used, unless otherwise specified.

Adaptation set size K = 2 K = 10
Model \ Dataset 1 2 3 4 1 2 3 4
FB (c = 50%) 78.8 59.8 66.7 66.8 91.9 77.3 79.9 81.5
MTL (c = 50%) 64.9 65 59.5 56.4 91 84.6 84.4 83.3
FB 53.7 56 50.7 57.1 53.6 50.7 50.2 59
MTL 54 46.8 41.5 52 49.4 49.6 54.7 46.1
OC-SVM 56.9 51.5 50.5 51.8 63.7 50.2 51.2 51.5
IF 50 50 50 50 50.9 50 50.1 50
FB + OCSVM 50.1 53.2 51.8 56.1 62.5 70.5 80.4 89.8
FB + IF 50 50 50 50 54.3 51.3 77.7 67.4
MTL + OCSVM 50 50 50 50 50.2 52.8 54.8 50.7
MTL + IF 50 50 50 50 76.5 75.5 69.3 74.4
OC-MAML (ours) 87.1 86.3 86.8 85.9 92.5 92.4 91.7 92

Table 5: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of the MT-MNIST datasets with
Ttest = T5−8. One-class adaptation sets (c = 0%) are used, unless otherwise specified.

Adaptation set size K = 2 K = 10
Model \ Dataset 1 2 3 4 1 2 3 4
FB (c = 50%) 64.6 69.8 68.9 62.9 64.4 83 87.8 72.8
MTL (c = 50%) 60.5 71.4 65 60.6 88.4 91.4 82 79.1
FB 52.2 66.5 54.3 53.8 58.3 63.5 53.6 50.1
MTL 48.5 56.2 51.1 50.1 49.9 51.4 48.5 49.6
OC-SVM 51 53.4 53.9 50.1 50.5 54 54 52.2
IF 50 50 50 50 50 50.2 49.8 50.2
FB + OCSVM 52.2 51.2 50.5 58 86.2 75 84.5 80
FB + IF 50 50 50 50 80.4 87.2 79.2 71.4
MTL + OCSVM 50 50 50 50 51 59.1 71.3 75.9
MTL + IF 50 50 50 50 50 55.7 84.2 64
OC-MAML (ours) 85.9 91.5 85.1 82.5 91.5 95.4 91.4 89.8

Table 6: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of the MT-MNIST datasets with
Ttest = T1−4. The results are shown for models without BN (top) and with BN (bottom). One-class adaptation sets (c = 0%)
are used, unless otherwise specified.

Adaptation set size K = 2 K = 10
Model \ Dataset 1 2 3 4 1 2 3 4
Reptile 67.1 58.3 57 65.9 82.4 78.5 76.4 81.8
FOMAML 76.3 74.2 74.9 75.6 82.3 75.7 75.1 80.8
MAML 78.1 71.8 77 71.4 88.8 88.7 87.2 86.6
OC-Reptile 50 50 50 50 50 50 50 50
OC-FOMAML 56.6 52.6 55.6 50.1 50.7 50 53.8 64.3
OC-MAML (ours) 85.2 83.5 80.2 84.3 92.5 92.4 91.7 92
Reptile (w. BN) 58.9 56 56.6 62.2 90.4 84.6 88.9 86.7
FOMAML (w. BN) 75.4 72.3 72.2 74.5 91.7 88.6 86 87.8
MAML (w. BN) 83.5 81.3 83.9 77 91.9 90.3 88.7 87.3
OC-Reptile (w. BN) 52 53.2 51.9 51 51.5 51.2 51.1 50.3
OC-FOMAML (w. BN) 74.7 68.5 67 78.7 90.2 85.5 84.3 89.3
OC-MAML (w. BN) (ours) 87.1 86.3 86.8 85.9 92.1 90.7 90.2 91.8



Table 7: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of the MT-MNIST datasets with
Ttest = T5−8. The results are shown for models without BN (top) and with BN (bottom). One-class adaptation sets (c = 0%)
are used, unless otherwise specified.

Adaptation set size K = 2 K = 10
Model \ Dataset 1 2 3 4 1 2 3 4
Reptile 60.3 65.4 59.9 57.2 73.6 86.3 79.1 72.3
FOMAML 76.5 80.2 77.9 72.8 66.2 84.4 76.9 72.5
MAML 74.8 82.1 73.6 70.7 86.1 93 90.2 85.7
OC-Reptile 50 50 50 50 50 50 50 50
OC-FOMAML 54.6 57.3 59 55 53.3 56.7 51 50
OC-MAML (ours) 80.6 91.5 82.1 77.5 91.5 94.2 91.3 89.8
Reptile (w. BN) 62.3 58.2 60.3 61 85.3 88 88.4 87.2
FOMAML (w. BN) 69.5 75.1 77.3 72.8 86.9 92.3 88.6 85
MAML (w. BN) 84.9 81.8 83.4 76.9 88.6 92.5 90.5 84
OC-Reptile (w. BN) 52 52.2 51.7 53.5 51.1 51.4 50.9 51.8
OC-FOMAML (w. BN) 68.3 85.7 78.5 67.1 83.2 94.7 89.9 82.6
OC-MAML (w. BN) (ours) 85.9 84.8 85.1 82.5 90.5 95.4 91.4 89.8
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Abstract—Although continual learning and anomaly detection
have separately been well-studied in previous works, their inter-
section remains rather unexplored. The present work addresses
a learning scenario where a model has to incrementally learn
a sequence of anomaly detection tasks, i.e. tasks from which
only examples from the normal (majority) class are available
for training. We define this novel learning problem of continual
anomaly detection (CAD) and formulate it as a meta-learning
problem. Moreover, we propose A Rapid Continual Anomaly
Detector (ARCADe), an approach to train neural networks to be
robust against the major challenges of this new learning problem,
namely catastrophic forgetting and overfitting to the majority
class. The results of our experiments on three datasets show that,
in the CAD problem setting, ARCADe substantially outperforms
baselines from the continual learning and anomaly detection
literature. Finally, we provide deeper insights into the learning
strategy yielded by the proposed meta-learning algorithm.

I. INTRODUCTION

Humans can continually learn new tasks without corrupting
their previously acquired abilities. Neural networks, however,
tend to overwrite older knowledge and therefore fail
at incrementally learning new tasks. This is called the
catastrophic forgetting problem [1], [2], [3]. In fact, most
deep learning achievements have been realized in the
offline supervised single-task or multi-task learning [4]
settings, where the availability of independent and identically
distributed (i.i.d.) data can be assumed. Building intelligent
agents that are able to incrementally acquire new capabilities
while preserving the previously learned ones remains an old
and long-standing goal in machine learning research.

Several approaches have been developed to enable
continual learning, e.g. by alleviating interference between
the sequentially learned tasks, [5], [3], [6] and/or encouraging
knowledge transfer between them [7], [8], [9], [10], [11].
While most of the previous works addressed the continual
learning problem with neatly class-balanced classification
tasks, many real-world applications exhibit extreme class-
imbalance, e.g. in anomaly detection [12] problems. For
example, in industrial manufacturing, of all produced parts,
only a few per million are faulty. And since the products
and/or machines in the plant are continuously changing,
building a central anomaly detector that incrementally
improves by learning new anomaly detection tasks would
relax this cold-start problem.

To the best of our knowledge, continual learning with
class-imbalanced data has only been addressed in [13], [14].
Hereby the authors assume, however, access to examples
from all classes, including the minority class. In the anomaly
detection literature [12] most works address the unsupervised
anomaly detection problem, where only examples from the
majority (normal) class are available for training an anomaly
detector. Learning a binary classifier using data samples
from only one of its classes (usually the majority class) is
referred to as One-Class Classification (OCC) [15], [16].
Our work addresses the novel and unexplored problem of
Continual Anomaly Detection (CAD), where different binary
classification tasks have to be learned sequentially by using
only examples from their respective majority classes for
training. We also refer to this problem as Continual One-
Class Classification (ContOCC). In particular, we propose
an approach that relies on meta-learning [17] to yield a
parameter initialization that resists to the main challenges of
CAD, namely catastrophic forgetting and overfitting to the
majority class. Several state-of-the-art works introduced meta-
learning algorithms to tackle continual learning problems [9],
[10], [18], [19], [11]. Hereby, however, only class-balanced
classification tasks were considered.

Our contribution in this work is threefold: Firstly, we in-
troduce and define the novel and relevant CAD problem. Sec-
ondly, we propose a first, strong and model-agnostic approach
to tackle it. Thirdly, we successfully validate our approach on
three datasets, where we substantially outperform continual
learning and anomaly detection baseline methods.

II. THE CONTINUAL ANOMALY DETECTION (CAD)
PROBLEM

The goal of Continual Anomaly Detection (CAD) or Con-
tinual One-Class Classification (ContOCC) is to sequentially
learn multiple OCC tasks without forgetting previously learned
one. More precisely, the target model should be able to sequen-
tially learn binary classification tasks by using only examples
from their respective normal classes for training, and then
achieve a high performance in distinguishing between both
classes of each of the learned tasks, when faced with unseen
datapoints. The CAD problem is a prototype for a practical use
case where a central anomaly detector for multiple applications
is needed and new applications become available gradually in



time. In this section, we first discuss the unique challenges
of the CAD learning scenario. Subsequently, we present a
problem formulation for CAD. Finally, we introduce the meta-
learning optimization technique, upon which our approach
builds to tackle CAD.

A. Unique Challenges

In order to perform CAD, approximating one decision
boundary that encompasses all the (normal) majority classes of
the observed tasks is necessary. In fact, the examples belonging
to the normal class of any observed task should be mapped
inside the normal class boundary, and therefore classified as
normal. Learning such a decision boundary can be especially
challenging due to two inherent problems of neural networks:
catastrophic forgetting and overfitting to the majority class,
i.e. predicting the normal class label for any input. On the
one hand, each model update that we perform using examples
from a new task shifts our decision boundary away from
the normal class of previously learned tasks, resulting in a
poorer classification performance on the latter (catastrophic
forgetting). On the other hand, since the model is only exposed
to (normal) majority class examples, the decision boundary
tends to over-generalize and classify any input as normal.
This way the model overfits to the normal class and anomalies
would not be detected.

B. Problem Formulation

We define a CAD task-sequence S = {T1, ..., Tn} as
an ordered sequence of OCC tasks Ti. To learn S, the
classification model is trained on the tasks included in it,
one after another. Due to the sequential exposure to tasks,
the model is trained with non i.i.d. samples. This setting
is commonly used in class-balanced continual learning to
define non-stationary conditions. It is also called locally
i.i.d. [7], [9], since the model is exposed to a sequence of
stationary distributions, defined by the tasks Ti. In contrast,
offline single-task and multi-task learning assume that a fixed
training dataset is available at all points in time. We note that
for an OCC task Ti, the training set T tri and the validation
set T vali have different data distributions, since T tri includes
only examples from one class and T vali is class-balanced.

In the following we formulate the CAD problem as a
meta-learning problem. We consider separate sets of task-
sequences for meta-training (Dtr), meta-validation (Dval) and
meta-testing (Dtest). Hereby all the tasks in these sequences
belong to the same domain, i.e. come from a task distribution
p(T ). To prevent leakage between Dtr, Dval and Dtest, these
sets of data must have mutually exclusive classes, i.e. none
of the classes building the tasks T included in Dtr is used to
build a task in Dval or Dtest and vice versa.

Each sequence in Dtr, Dval and Dtest is composed of a
training and a test set. Let Str = {Strtr , Svaltr } denote a meta-
training task-sequence from Dtr, where Strtr = {T tr1 , ..., T trn }
is a sequence of the training sets of the tasks composing S, and

Svaltr = {T val1 , ..., T valn } is a sequence of their validation sets.
Following the terminology introduced in [11] to formulate
meta-learning problems, we refer to Strtr as a meta-training
training task-sequence and Svaltr as a meta-training validation
task-sequence. We call the set of all meta-training training
(validation) sequences the meta-training training (validation)
set Dtr

tr (Dval
tr ). We note that the sequences in Dtr

tr include
examples from only the majority class of each task, while
the sequences in Dval

tr contain disjoint class-balanced sets of
data from each task. The same holds for the meta-validation
and meta-testing sets Dval and Dtest.

We aim to find an algorithm that, by using Dtr, yields a
learning strategy that enables a classification model to sequen-
tially learn anomaly detection tasks without (or with minimal)
forgetting. Applying this learning strategy to a random task-
sequence from Dtr

test would then provide a model that has high
performance on Dval

test, hence performing CAD. In this work
the learning strategy yielded by the proposed meta-learning
algorithm consists in a model initialization and a learning rate
for each model parameter, which are suitable to perform CAD.
Starting from the meta-learned model initialization, taking few
gradient descent steps with the meta-learned learning rates
to learn each of the OCC tasks in a sequence S leads to a
proficient anomaly detector on all tasks.

C. Continual Learning via Meta-Learning a Parameter Ini-
tialization

The proposed meta-learning approach to tackle the CAD
problem learns a model initialization and parameter-specific
learning rates by building upon a bi-level optimization scheme.
In this section we explain this optimization mechanism which
was introduced in the MAML algorithm [20] to address
the few-shot learning problem [21], [22]. Since then this
optimization scheme was used by multiple meta-learning
algorithms to address several problems, e.g. few-shot learning
[20], [23], [24], [25], few-shot one-class classification [26],
resisting to adversarial examples [27] and continual learning
[10], [18], [11].

Let θ denote the set of model parameters. The
aforementioned bi-level optimization mechanism aims
to optimize these model parameters to be easily adaptable
to unseen tasks Ti which have certain characteristics, e.g.
few-shot learning tasks, anomaly detection tasks or continual
learning tasks. After adaptation to a task Ti, e.g. by taking few
gradient steps using its training set, the adapted parameters
θ
′
i yield high performance on a held-out test set of the

same task. In that sense the meta-learned model parameters
θ can be viewed as a parameter initialization that enables
quick learning of unseen tasks. The meta-learned parameter
initialization represents an inductive bias that facilitates
learning tasks with certain characteristics.

To find such a model initialization, a model is explicitly
trained for quick adaptation using a set of meta-training tasks.



Hereby, these tasks belong to the same domain and have
the same characteristics as the test tasks, e.g. if the unseen
test tasks are expected to have only few examples, the meta-
training tasks should be few-shot learning tasks [20]. In each
meta-training iteration, two operations are performed for each
task, parameter adaptation and evaluation. Adapting the model
initialization θ to a task Ti is done by taking few gradient
descent steps using its training set T tri , yielding a task-specific
model θ

′
i. The evaluation of the task-specific model uses the

task’s validation set T vali . The resulting loss LvalTi
(fθ′i

) is used
to update the initialization θ as shown in Equation 1, where
β is the learning rate used for this update.

θ ← θ − β∇θ
∑

Ti∼p(T )

LvalTi
(fθ′i

). (1)

For a model initialization to be suitable for continual learn-
ing, i.e. to inhibit catastrophic forgetting, each meta-training
and meta-testing task is built as a sequence of classification
tasks [18], [10]. Hereby, adapting the parameter initialization
to a task-sequence consists in taking a few gradient descent
steps on the tasks included in it, sequentially. The parameter
initialization is then updated as shown in Equation 1, where
LvalTi

(fθ′i
) is the sum of the losses computed on the validation

set of each task in the task-sequence.

III. RELATED WORK

The present work addresses the Continual Anomaly De-
tection (CAD) problem, which represents the intersection of
the continual learning and anomaly detection problems. To
the best of our knowledge no prior works addressed the CAD
problem. Therefore, in this section we review related continual
learning and anomaly detection work separately.

A. Continual Learning

Several Continual learning (CL) approaches inhibit
catastrophic forgetting by retaining past knowledge. This
can be done by increasing the model capacity [28] or by
regularizing the parameter updates [3], [5], [6]. Another
category of CL methods relies on replaying previous
experiences, e.g. datapoints, by interleaving them between
new experiences [29], [7], [9]. Recent works developed
meta-learning based approaches to tackle CL [9], [19], [30],
[10], [18], [11]. In [9], a method that maximizes transfer
and minimizes interference between the sequentially learned
tasks is developed by combining the meta-learning algorithm
Reptile [31] with a reservoir sampling. The CL approach
proposed in [19] learns and continuously adapts class
prototypes, by building upon the meta-learning algorithm
ProtoNets [32].

Using the bi-level optimization scheme introduced in Sec-
tion II-C, methods were developed to meta-learn a parameter
initialization that inhibits catastrophic forgetting [10], [18],
[11]. Here, it is possible to learn an initialization for all
model parameters [18] or learn an embedding network and
an initialization for only the classifier network [10], [11]. In

[11], a separate network is additionally trained to perform a
task-specific feature weighting by modulating the output of
the embedding network. The aforementioned works address
CL by assuming that the classification tasks, which have to be
learned, are class-balanced. The absence of any mechanism
to cope with the extreme setting, where all the tasks are OCC
tasks as in CAD, makes these approaches prone to overfitting
to the majority class. In contrast, our approach inhibits this un-
desired phenomenon besides reducing catastrophic forgetting.
We compare to the meta-learning based continual learning
algorithm SeqFOMAML [18] in our experiments and show
that it overfits to the majority class in the CAD problem
setting.

B. Anomaly Detection and One-Class Classification

Typical anomaly detection (AD) approaches use SVMs
to detect anomalous examples [33], [34], i.e. examples
that do not belong to the normal class. When faced with
high-dimensional data, e.g. images, feature extractors are
used to embed the data into a lower-dimensional space
before they are fed to the SVM-based classifier [35], [36],
[37]. End-to-end deep learning methods were also proposed
to tackle AD, by jointly training a feature extractor and a
one-class classifier [38] or by using the reconstruction loss
of autoencoders [39] to distinguish anomalies [40], [41],
[42]. GAN-based [43] approaches were also used for AD
[44], [45], [46]. Recently, an episodic data sampling strategy
was proposed to adapt various class-balanced meta-learning
algorithms to the AD setting [26]. Hereby, the bi-level
optimization mechanism explained in Section II-C is used to
find a model (initialization) that enables few-shot AD, i.e.
learning a classification task by using only few examples
from only its normal class.

All the aforementioned approaches yield a classification
model that can detect the anomalies of a single AD task. In
fact, they do not incorporate any feature to promote learning
multiple tasks sequentially or inhibit catastrophic forgetting,
which makes them unsuitable for the CAD problem setting.
We propose a method that enables a model to sequentially
learn multiple AD tasks with only minimal forgetting. In our
experiments, we compare to the meta-learning algorithm OC-
MAML [26], which yields an initialization tailored for learning
AD tasks. Our results (Section V-B) show that it fails at
sequentially learning several tasks.

IV. APPROACH: A RAPID CONTINUAL ANOMALY
DETECTOR (ARCADE)

This work introduces A Rapid Continual Anomaly Detector
(ARCADe), a meta-learning algorithm designed to tackle the
Continual Anomaly Detection (CAD) problem (Section II).
ARCADe builds upon the bi-level optimization scheme intro-
duced in Section II-C. Since meta-learning algorithms that use
this optimization mechanism have been shown to be universal
learning algorithm approximators [47], ARCADe should be
able to approximate a learning algorithm tailored for the CAD



problem. In this section, we first present ARCADe using the
CAD problem formulation from Section II-B. Subsequently,
we explain the intuition behind meta-learning parameter-
specific learning rates. Finally, we destinguish between two
variants of ARCADe.

A. Algorithm

Our algorithm uses the meta-training set Dtr to learn an
initialization θ as well as a learning rate α for each model
parameter, as done in [23] to address the few-shot learn-
ing problem. Starting from this meta-learned initialization,
learning a sequence Stest of unseen OCC tasks (by taking
few gradient descent steps) using the meta-learned learning
rates yields a model that has a high performance on all tasks
included in Stest. The meta-training procedure of ARCADe is
presented in Algorithm 1.

Algorithm 1 ARCADe Meta-training Procedure
Require: Dtr: Set of meta-training task-sequences
Require: β: Learning rate for the meta-update
Require: K: Adaptation set size

1: Randomly initialize model parameters θ and parameter-
specific learning rates α

2: while not done do
3: Sample a batch of task-sequences Si from Dtr

4: Initialize meta-learning loss Lmeta = 0
5: for each sampled Si do
6: Initialize sequence adaptation loss Ls = 0
7: Initialize θ

′
i,0 = θ (θ

′
i,0 = θhead if ARCADe-H)

8: for Tj in Si with j in {1, ..., J = length(Si)} do
9: Compute adapted parameters using K (normal)

majority class examples from T trj :
θ
′
i,j = θ

′
i,j−1 −α ◦ ∇

θ
′
i,j−1

LT tr
j
(f
θ
′
i,j−1

)

10: Compute LTval
j

(f
θ
′
i,j
) with the current adapted

parameters θ
′
i,j on the class-balanced val set T valj

11: Ls = Ls + LTval
j

(f
θ
′
i,j
)

12: end for
13: for Tj in Si do
14: Compute loss LTval

j
(f
θ
′
i,J

) with the final adapted

parameters θ
′
i,J on the val set T valj

15: Ls = Ls + LTval
j

(f
θ
′
i,J

)

16: end for
17: Lmeta = Lmeta + Ls
18: end for
19: Update (θ,α): (θ,α)← (θ,α)− β∇(θ,α)Lmeta
20: end while
21: return Meta-learned parameters θ and learning rates α

In each meta-training iteration of ARCADe a batch of
task-sequences is randomly sampled from Dtr. The current
parameter initialization θ is adapted to each sequence Si
by taking one (or more) gradient step(s) on the training
sets T trj of the tasks included in Si sequentially. Hereby

the gradient descent steps are performed using the current
parameter-specific learning rates α. We note that in Algorithm
1 only one gradient descent update is performed (Operation
9) for simplicity of notation. Extending it to multiple updates
is straightforward. We use the binary cross-entropy loss for
all loss functions mentioned in Algorithm 1.

In the CAD problem setting (Section II-B), we consider
anomaly detection tasks (or OCC tasks), i.e. each task Tj
includes a training set T trj with only majority class examples
and a class-balanced validation set T valj . For each task Tj we
compute the loss on the class-balanced held-out validation set
T valj twice. The first time (Operation 10) is done directly after
learning Tj by using the adapted model θ

′
i,j . This ensures

a high model performance on the task immediately after it
is learned. The second time (Operation 14) is conducted
after learning all the tasks in Si, i.e. using the final model
adapted to that sequence θ

′
i,J . This maximizes the last

model’s performance on all the tasks in the sequence, hence
minimizing catastrophic forgetting. These two losses are
computed for each task in Si and added to the sequence
adaptation loss Ls. The model initialization and learning rates
are updated in each meta-training iteration by minimizing
Lmeta which is the sum of the adaptation losses Ls of each
sampled task-sequence Si (Operation 19). In that sense,
we can say that ARCADe explicitly optimizes for having
a high performance on all tasks contained in a sequence,
immediately after learning them and after having learned
them all sequentially, while using only examples from their
majority class.

In order to ensure that the model has a high performance
on a task Tj at all points in time after learning it, one could
compute the loss on its validation set T valj after learning each
task Tk subsequent to Tj and add it to Ls. Here the loss
would be computed using the current model parameters θ

′
i,k

after learning a task Tk. Doing this would minimize forgetting
task Tj in all points in time while incrementally learning
new tasks (Tk). However, in this case, the computational
cost for computing Ls would increase exponentially with
the length of the task-sequence, which does not scale for
long task-sequences. Instead we approximate this additional
optimization objective by adding to Ls the validation loss of
one randomly sampled previous task Tj , every time a new
task Tk in the sequence is learned. We note that this cannot
be performed for the first task in the sequence, since it has
no previous tasks. Even though we compute these additional
loss terms and use them for our experimental evaluation, we
do not mention them in Algorithm 1 for simplicity of notation.

Once meta-training is done, the best performing initializa-
tion and learning rates are used to learn task-sequences from
the meta-testing set Dtest. Here, the model initialization is
sequentially adapted to the tasks from the test task-sequence
using their training sets and the meta-learned learning rates, as



done during meta-training (Operations 8 and 9 in Algorithm
1). Thereafter the adapted model is evaluated on the class-
balanced validation sets of these tasks, as done in meta-
training (Operations 13 and 14 in Algorithm 1). We note
that the selection of the best performing model initialization
and learning rates is done by conducting validation episodes
(adaptation and evaluation) using the task-sequences from the
meta-validation set Dval, throughout meta-training.

B. Meta-Learning Parameter-Specific Learning Rates

In the following, we explain the intuition behind
additionally meta-learning parameter-specific learning
rates to tackle the CAD problem and not only the model
initialization as it was done in [18], [10] and [11] in the
class-balanced continual learning setting. We hypothesize
that meta-learning parameter-specific learning rate enables
the optimization algorithm to identify the parameters that are
responsible for overfitting to the majority class and/or for
catastrophic forgetting, and reduce their learning rates. Our
results (Section V-B) confirm our intuition and show that
additionally meta-learning parameter-specific learning rates
leads to a more effective inductive bias for the CAD problem.

Before performing the adaptation updates (Operation 9 in
Algorithm 1), we clip the learning rates to have values between
0 and 1. We do this to prevent them from having negative
values, which would lead to taking gradient ascent steps on
the task adaptation loss LT tr

j
. The meta-update (Operation 19

in Algorithm 1) can indeed update the learning rates to have
negative values since performing gradient ascent on the one-
class training set of a task prevents overfitting to that class
(by increasing the loss on that class). The lower overfitting
to the majority class leads to a lower loss on the class-
balanced validation set (LTval

j
(f
θ
′
i,j
)), which results in a lower

Lmeta. By clipping the negative learning rates to 0, we ensure
that the corresponding parameter (responsible to overfitting to
the majority class) is not updated during task-adaptation. It
is considered as a task-agnostic parameter and is used as-
is for all tasks, as opposed to other parameters which are
updated to task-specific values. To speed-up meta-training, it
is possible to conduct the first n meta-training iterations with
constant learning rates, before meta-learning them along with
the initialization (Operation 13 in Algorithm 1).

C. Variants of ARCADe

We distinguish two variants of ARCADe: ARCADe-M,
which we introduced up to now, meta-learns an initialization
and a learning rate for all model parameters, and ARCADe-H,
which does the same but only for the parameters of the clas-
sification head, i.e. the output layer. For the parameters of the
backbone layers, ARCADe-H does not learn an initialization
but rather task-agnostic end values, which do not have to be
updated depending on the task-sequence that has to be learned.
When learning tasks sequentially ARCADe-H updates only the
parameters of the output layer with their corresponding meta-
learned learning rates. The only difference in the meta-learning

procedure can be seen in Operation 7 from Algorithm 1. Meta-
learning approaches that adapt only the classification head to
learn unseen tasks were proposed in [25] and [10] to address
the few-shot learning and the class-balanced continual learning
problems, respectively.

V. EXPERIMENTAL EVALUATION

We conduct experiments 1 in an attempt to answer the
following key questions: (1) Can the proposed meta-learning
algorithm cope with the challenges of the CAD problem, i.e.
catastrophic forgetting and overfitting to the majority class,
and how do its two variants, ARCADe-M and ARCADe-H,
compare to each other? (2) How do previous meta-learning
approaches for anomaly detection and class-balanced continual
learning perform in the CAD setting? (3) Does meta-learning
a learning rate for each parameter, besides the initialization,
boost performance in a CAD context? (4) If yes, does the
distribution of the meta-learned learning rates follow a pattern
across datasets?

A. Baselines and Datasets

We evaluate the two variants of the proposed meta-learning
Algorithm (ARCADe-M and ARCADe-H) on three different
datasets which range from grey-scale images of letters to
more challenging RGB natural images (Question 1). Besides
we compare ARCADe to OC-MAML [26] and SeqFOMAML
[18], which meta-learn model initializations that are tailored
for anomaly detection and continual learning, respectively
(Questions 2). We use the same evaluation procedure for
ARCADe and the baselines: Task-sequences are sampled
from the meta-testing set Dtest and their tasks are learned
sequentially using gradient descent. For a fairer comparison,
we adapt SeqFOMAML to the anomaly detection scenario
by using anomaly detection tasks for its meta-training. Note
that SeqFOMAML samples the same number of examples
from each class during the adaptation phase of its meta-
training, i.e. it uses normal and anomalous examples for
model adaptation during meta-training. Furthermore, we train
ARCADe without meta-learning learning rates to investigate
their impact when addressing a CAD problem (Question 3).
Finally, we analyze the distribution and properties of the
learning rates meta-learned by ARCADe (Question 4).

We evaluate ARCADe on three meta-learning benchmark
datasets: Omniglot [48], MiniImageNet [49] and CIFAR-FS
[50]. Omniglot is composed of 20 instances of 1623 hand-
written character classes from 50 different alphabets. The
images have the size 28x28 pixels. We use 25 alphabets for
meta-training, 5 for meta-validation and 20 for meta-testing.
MiniImageNet contains 100 classes from ImageNet where
each class includes 600 images of size 84x84x3. We use
the official data split of 64 classes for meta-training, 16
for meta-validation and 20 for meta-testing. CIFAR-FS was
derived from CIFAR-100 by dividing its classes into 64

1Our code is made public under: https://github.com/AhmedFrikha/
ARCADe-A-Rapid-Continual-Anomaly-Detector



classes for meta-training, 16 for meta-validation and 20 for
meta-testing to make it suitable for meta-learning problems.
Here, each class includes 600 images of size 32x32x3. The
same data splits are used for ARCADe and the baselines.

To create meta-learning tasks for CAD, i.e. sequences of
anomaly detection tasks as explained in Section II-B, we
proceed as follows. First, we divide the classes available,
e.g. the meta-training classes, into L disjoint sets of classes,
where L is the task-sequence length. By building tasks using
these sets we ensure that the tasks do not share any class.
Subsequently, to create a task, one class from its set of classes
is randomly chosen to be the normal class, i.e. its datapoints
are labeled as non-anomalous, while the remaining classes are
all labeled as anomalous. This ensures that the anomaly class
has a higher variance than the normal class, which is usually
the case in AD problems. Two disjoint sets of examples are
then created from this task: a training set T tr containing
only normal class examples and a class-balanced validation
set T val. The tasks are then concatenated in a random order
into a task-sequence. This task-sequence creation procedure
is adopted to create meta-training, meta-validation and
meta-testing task-sequences for the three datasets.

For ARCADe as well as for the baselines we use the same
4-module architecture used in [18] for continual learning. Each
module includes a 3x3 convolutional layer, a 2x2 max-pooling
layer, a batch-normalization [51] layer and a ReLU activation
function. The 4 modules are followed by a linear layer and
a sigmoid activation function. For omniglot, the convolutional
layers include 64 filters, while for MiniImageNet and CIFAR-
FS they include 32 filters. Since the meta-update of ARCADe
requires backpropagating the gradients through all updates of
all tasks, which is computationally expensive, we use a first-
order approximation for our experiments. Hereby, the second-
order terms of the derivatives are ignored, as done in [18].

B. Results and discussion

In this section we present and discuss the results of our
experimental evaluation. Following previous continual learn-
ing works [7], [9] we consider the final retained accuracy,
i.e. the average of the accuracies of the final model on the
validation sets of all test tasks, as our main metric. We use
task-sequences composed of 10 tasks for meta-training on
Omniglot and 5 tasks for meta-training on MiniImageNet and
CIFAR-FS. For meta-testing task-sequence lengths between
1 and 100 are used for Omniglot and between 1 and 5 for
the more challenging MiniImageNet and CIFAR-FS. During
meta-training and meta-testing, each task is learned by per-
forming only 3 gradient descent updates and using only 10
normal examples, across all datasets. This extends ARCADe’s
applicability to few-shot CAD problems, i.e. CAD problems
that exhibit extreme data scarcity. The performance of the two
ARCADe variants and the baselines is shown in Figure 1 on
Omniglot and in Figure 2 on MiniImageNet and CIFAR-FS.

For all datasets, we report the retained accuracy averaged over
500 task-sequences from the meta-testing set Dtest.

Fig. 1. Retained accuracy on Omniglot

Fig. 2. Retained accuracy on MiniImageNet and CIFAR-FS

We find that both ARCADe variants substantially
outperform the baselines for all sequences that include
more than one task on all three datasets. While the model
initialization meta-learned by SeqFOMAML slows down
catastrophic forgetting when adapted to class-balanced tasks
[18], it fails at retaining a high accuracy in the CAD problem
setting i.e. when adapted to a sequence of OCC tasks. The
quick decrease in retained accuracy suggests an important
overfitting to the majority class. While OC-MAML yields
a higher accuracy on the first task on MiniImageNet and
Omniglot, it is not able to preserve this performance while
learning the subsequent tasks in the sequence. In a CAD
situation, the OC-MAML model quickly forgets the first
task learned and collapses to a model that predicts only
the majority class. We note that the lower performance of
OC-MAML on the first task compared to the results reported
in [26] is due to the different evaluation setting in the CAD
problem, where the identifiers and training sets of the learned



tasks are not available at test time. OC-MAML uses the
training set of the learned test task to overwrite the batch
normalization statistics (mean and variance) before testing on
the validation set.

Surprisingly, we find that ARCADe can learn up to
100 OCC tasks sequentially on Omniglot, while losing
only 6% accuracy, even though it was trained with only
10-tasks sequences. We observe that ARCADe-H outperforms
ARCADe-M on Omniglot, while ARCADe-M achieves
higher retained accuracy on MiniImageNet and CIFAR-FS.
Our explanation for this is that since MiniImageNet and
CIFAR-FS have a higher variance in the input space, adapting
the parameters of the feature extractor to the normal classes
of the test tasks is beneficial. However, ARCADe-H can
only adapt the parameters of the output layer, which results
in a lower performance. The features meta-learned on
the meta-training set of Omniglot, which includes by far
more classes than the ones of MiniImageNet and CIFAR-FS,
require less adaptation to perform well on the meta-testing set.

To assess the impact of meta-learning parameter specific
learning rates, we evaluate ARCADe with constant learning
rates, i.e. only parameter initializations are meta-learned. In
Table I, we present the results in terms of retained accuracy on
test task-sequences with the same length as the ones used for
meta-training. We find that additionally meta-learning learning
rates boosts the performance of both ARCADe variants across
all datasets. This validates our hypothesis that additionally
meta-learning learning rates leads to a more effective inductive
bias for the addressed CAD problem.

TABLE I
RETAINED TEST ACCURACIES OF ARCADE WITH AND WITHOUT

META-LEARNING LEARNING RATES

Model \ Dataset Omniglot CIFAR-FS MIN
ARCADe-M 96.1 68.1 64.5
ARCADe-M (constant α) 95.7 66.4 63.1
ARCADe-H 96 67.8 64.1
ARCADe-H (constant α) 95.6 66.8 63.0

Finally, we would like to investigate the characteristics of
the meta-learned learning rates in order to gain a deeper insight
into the learning strategy to which ARCADe-M converges. As
mentioned in Section IV, we clip the learning rates between
0 and 1. Thus, only positive learning rates are active. We
measure the percentage and mean of the positive (active)
learning rate per neural network layer and present them in
Figure 3.

The following observations and interpretations hold for all
three datasets. We find that, for all layers, the majority of the
learning rates are chosen to be not active, i.e. they converge
to negative values. This suggests that most parameters are
task-agnostic and can be used as-is independently of the task-
sequence to be learned. As we progress in the layers of the
embedding network (CNN), the percentage of active learning
rates increases to reach its maximum at the last convolutional

Fig. 3. Layer-wise mean and percentage of positive learning rates meta-
learned by ARCADe-M

layer. This means that, while the basic features (layer 1)
can be reused without adaptation across tasks, the more
sophisticated features that are used for classification (layer 4)
have to be task-specifically adapted. Moreover, ARCADe-M
freezes almost all the parameters in the linear output layer
(less than 1% of the parameters are updated). This suggests
that, each time it learns a new task, ARCADe-M does not
update its normal class decision boundary to include the
embeddings of the normal class examples of this new task, but
rather changes the embedding of the latter to fit inside a frozen
decision boundary. We hypothesize that ARCADe-M does this
since the output layer is more prone to the CAD challenges,
i.e. overfitting to the majority class and catastrophic forgetting.

Furthermore, we analyze the means of the active learning
rates and find a similar trend across the layers. In fact, the
few active learning rates in the first and last layer have
substantially lower values than those of the other convolutional
layers, especially layer 4. This shows that, during adaptation,
bigger update steps are performed on the last layer of the
embedding network than on the output layer, which backs our
previous interpretation of the ARCADe-M’s learning strategy.
On the other hand, ARCADe-H cannot update the parameters
of the embedding network by design, and learns therefore
how to adapt the parameter of the output layer. Analyzing the
parameter-specific learning rates meta-learned by ARCADe-H
shows also that some parameters are chosen to be task-agnostic
(due to negative learning rates), while other are chosen to be
task-specific. This further explains the performance increase
of ARCADe-H when additionally meta-learning learning rates
(Table I).

VI. CONCLUSION

In this work we addressed the novel and challenging prob-
lem of Continual Anomaly Detection (CAD). After formu-
lating this learning scenario as a meta-learning problem, we
proposed A Rapid Continual Anomaly Detector (ARCADe)



to serve as a first and strong baseline in this research con-
text. On the Omniglot dataset, our meta-learning approach
enables sequentially learning up to 100 anomaly detection
tasks using only examples from their normal (majority) class,
with minimal forgetting and overfitting to the majority class.
Our method substantially outperformed continual learning and
anomaly detection baselines on three datasets.
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Abstract—Machine learning models that can generalize to
unseen domains are essential when applied in real-world scenar-
ios involving strong domain shifts. We address the challenging
domain generalization (DG) problem, where a model trained
on a set of source domains is expected to generalize well in
unseen domains without any exposure to their data. The main
challenge of DG is that the features learned from the source
domains are not necessarily present in the unseen target domains,
leading to performance deterioration. We assume that learning
a richer set of features is crucial to improve the transfer to
a wider set of unknown domains. For this reason, we propose
COLUMBUS, a method that enforces new feature discovery via
a targeted corruption of the most relevant input and multi-
level representations of the data. We conduct an extensive
empirical evaluation to demonstrate the effectiveness of the
proposed approach which achieves new state-of-the-art results
by outperforming 18 DG algorithms on multiple DG benchmark
datasets in the DOMAINBED framework.

I. INTRODUCTION

Deep learning models have achieved tremendous success
when applied to independent and identically distributed (i.i.d.)
data. However, in real-world applications, distribution shifts
between training and test data are commonly encountered.
For instance, data distributions might differ from one hospital
to another [1], and from one production plant to another.
Similarly, the models in self-driving cars are exposed to
different urban and rural environments in different countries
with changing weather conditions [2] and object poses [3].

Approaches to make machine learning models resilient
to such data distribution changes were studied for different
domain shift settings. For example, several domain adaptation
methods were developed to address the case where, besides
the data from the source domain(s), a set of labeled [5] or
unlabeled [6] data is available from a specific target domain.
However, in real-world scenarios, collecting data from the tar-
get domain(s) is often slow, e.g., a new hospital or production
site, expensive, or even infeasible, e.g., collecting images from
every street of every country in the context of self-driving cars.
Sometimes, the target domains cannot be known beforehand.

The Domain Generalization (DG) problem [7], [8] was
introduced to address such cases. Specifically, a model trained
on multiple source domains is expected to directly perform
well in unseen target domains without requiring any exposure
to its data. This problem setting can be interpreted as multi-
source 0-shot domain adaptation.

Fig. 1. Relevance maps computed with GuidedGrad-CAM [4] for ERM and
COLUMBUS using images from the target domains, PACS Sketch, VLCS
VOC and OfficeHome Clipart. COLUMBUS recognizes more features than
ERM, including horse back and muzzle, dog legs and tail, and phone shape.

Training a model to generalize across several related but
unseen data distributions remains arguably one of the most
challenging open problems in machine learning. In the last
decade, a plethora of widely different methods were developed
to address the DG problem. We refer to [9] for an extensive
overview of DG algorithms. Despite these efforts, [10] found
that carefully tuning the baseline, which simply applies Em-
pirical Risk Minimization (ERM) on the data of the source
domains, achieves a high performance that is competitive with
state-of-the-art methods.

One major challenge of DG is that the model can only
observe and learn features from the source domains, which
may not be present in the unseen target domains, limiting gen-
eralization. We presume that learning a wider set of different
features would increase the chance of learning features that are
useful for a larger set of unseen domains. Hence, we introduce



COLUMBUS, a training procedure for automated new feature
discovery, which leads to a better feature recognition in unseen
domains (Figure 1). During training on the source domains,
COLUMBUS incentivizes the model to discover new features,
even in data examples on which it already performs well. To
achieve this, COLUMBUS prevents the model from using the
features it deems most relevant for the source domains by
corrupting them during training. To identify the most relevant
features for a model, we leverage attribution methods [11]
usually used for model explainability purposes.

We evaluate our approach on the recently proposed DO-
MAINBED framework [10] which includes several DG datasets
and algorithm implementations to promote a fair and re-
producible comparison of different approaches. Our method
outperforms 18 DG algorithms evaluated on 3 datasets in the
DOMAINBED framework, achieving new state-of-the-art re-
sults using 2 different model selection methods. Furthermore,
our method achieves the highest performance when evaluated
on unseen data from the source domains used for training (in-
domain generalization), which confirms its effectiveness and
ability to learn new features useful for unseen data.

II. RELATED WORK

A. Domain Generalization

This section presents an overview of domain generalization
(DG) approaches. Methods to which we compare in our
experiments (Section IV) are highlighted in bold. We refer
to [9] for an extensive overview of DG algorithms. The
simplest approach to DG is to train one model via Empirical
Risk Minimization (ERM) [12] on the training datasets of
all source domains. GroupDRO [13] additionally increases
the importance of source domains where the model yields a
lower performance. In the following, we broadly categorize
DG approaches into three categories.

Domain alignment methods aim to learn domain-invariant
representations of the data by aligning features across the
source domains. The reduction of the representation distribu-
tion mismatch across source domains can be achieved by mini-
mizing the maximum mean discrepancy criteria [14] combined
with an adversarial autoencoder (MMD) [15], minimizing
the difference between the means [16] or covariance matri-
ces (CORAL) [17] in the embedding space across different
domains, or minimizing a contrastive loss [18]–[20], e.g.,
SelfReg [21]. Domain alignment is also performed by aligning
the loss gradients across source domains via inner product
maximization (Fish) [22], or binary (AND-mask) [23], [24]
or continuous gradient masking (SAND-mask) [24].

Another line of works optimizes for features that confuse
a domain discriminator model [25]–[28], and includes DANN
[29] and its class-conditional extension C-DANN [30]. Other
works additionally involve the classifier in the representation
alignment, either by optimizing for an embedding space such
that the optimal linear classifier on top of it is the same across
different domains (IRM) [31], or by passing a domain-specific
mean embedding to the classifier as a second argument (MTL)
[32]. VREx [33] is an approximation of IRM via a variance

penalty and ARM [34] is an extension of MTL that employs
a separate embedding CNN.

Meta-learning techniques were applied to DG by training
a model in a bi-level optimization scheme on meta-train and
meta-test sets sampled from the source domains. Hereby,
MLDG [35] optimizes for parameters that can be quickly
adapted to different domains, MASF [1] adds inter-class and
intra-class losses to regularize the embedding space, and
MetaReg meta-learns a regularizer for the output layer [36].

Data augmentation approaches were proposed to tackle
DG and our method falls into this category. Some works use
Mixup [37] to compute inter-domain examples to augment the
training set [38]–[40]. SagNets [41] reduce the domain gap by
randomizing the style of images while keeping their content.
Another line of works generate images by using adversarial
attacks [42] to perturb input images based on a class classifier
[43]–[45] or a domain classifier [46], by training CNNs to
generate images within the source domains [47]–[49] or novel
domains [50]–[52]. Other works apply such perturbations on
a feature level [53], [54].

Our approach corrupts the raw input data as well as the
multi-level representations that the model learns in order to
enforce new feature discovery. Instead of using visually unde-
tectable adversarial attacks or highly parametrized generative
models, we employ attribution methods, e.g., Guided-Grad-
CAM [4], to identify and corrupt the most relevant features.
Our approach shares similarities with RSC [53] which discards
the most dominant features fed to the output layer to promote
the activation of the remaining features. The key difference of
our approach is that we corrupt features not only in the last
high-level representation space, i.e., the input to the output
layer, but also in the raw input space and other low-level
representation spaces. We argue that by discarding the features
only in the representation space (e.g., elephant trunk detector),
as done in RSC, the same silenced feature detectors can be
relearned as long as the model is exposed to the corresponding
features in the input space (e.g., the pixels of the elephant
trunk). We hypothesize that corrupting the features in the input
space is crucial to enforce the discovery of new features. Our
empirical results show that our method outperforms RSC by
a significant margin (Section IV) on unseen data from source
and target domains, hence confirming our hypothesis.

B. Relevance Attribution

In an attempt to explain and interpret the predictions of
deep learning models, several attribution methods that assign
relevance scores to input features have been developed [4],
[55], [56]. In Saliency Maps [55] the relevance scores are
given by the gradient of the output neuron corresponding to the
ground truth w.r.t. the input. Better attributions were achieved
by averaging these gradients over local neighborhood patches
in SmoothGrad [57] and over brightness level interpolations
in IntegratedGradients [58]. Another category of approaches
modifies the backpropagation procedure by considering only
positive gradients [59] or to satisfy the relevance conservation
property through the layers [60], [61]. Class Activation Maps



(CAM) [62] leverages the activations in the last convolutional
layer to produce a heatmap highlighting the relevance of
each feature in the raw input. Gradient-weighted CAM (Grad-
CAM) [4] generalizes CAM to a variety of CNNs by using
the gradient information flowing into the last convolutional
layer. This method can be combined with GuidedBP [59]
to yield GuidedGrad-CAM [4]. IBA [56] approximates at-
tribution scores by restricting the information flow via noise
injection to intermediate feature maps during the forward pass.

While prior works used attribution methods to explain and
interpret model predictions, we leverage them for training
purposes. To the best of our knowledge, we are the first to
incorporate attribution methods combined with data corruption
into training to improve the model’s generalization ability. For
a broader overview of attribution methods, we refer to [11].

III. METHOD

The proposed method improves the knowledge transfer to
unknown data distributions by training a model to learn a rich
set of features on several representation levels of the data via
an automated new feature discovery.

Let Fs and Ft denote the sets of features learnable for the
addressed classification task, which are present in the data of
the source domains and in the target domain, respectively, and
G their intersection. In the optimal case, the set of features
L learned by the model on the source domains encompasses
G fully. Since Ft is unknown at training time, our method
maximizes the size of L by training the model to learn as
many features as possible, resulting in a higher chance to
capture features from G via the higher intersection between
L and G. To achieve this, we propose COLUMBUS, a train-
ing procedure that enables automated new feature discovery.
COLUMBUS prevents the model from using (a part of)
the most relevant features for its current predictions during
training. This is done in 3 major steps: identification of the
most relevant features, their corruption, and training with the
corrupted data representations. Figure 2 presents an overview
of our approach. We apply this technique on several levels of
representations of the data ranging from the raw input, e.g.,
pixels of the elephant trunk, to the high-level features fed to
the output layers, e.g., elephant-trunk-detector, including the
representations yielded by intermediate layers, hence fostering
multi-level new feature discovery.

A. Identification

In each training iteration, we sample a method from a set
of attribution methods A, and use it to compute an attribu-
tion map M that identifies the most relevant features. Any
attribution method can be included in the set A. In this work,
we use Saliency Maps [55] and GuidedGrad-CAM [4], since
they are simple, fast, and model-architecture-agnostic. Other
methods require modifications to support skip connections and
batch normalization layers [60] or involve training additional
parameters after each update [56]. Moreover, GuidedGrad-
CAM was found to be competitive with the state-of-the-art
attribution methods in the image degradation evaluation [56].

Fig. 2. Overview of the proposed COLUMBUS method. In the identification
stage, the most class-discriminative features according to the current model
are identified via a relevance attribution method, which in this case is applied
to the raw input representation. In the corruption stage, the identified features,
e.g., elephant trunk and back, are perturbed by using a corruption method, in
this case a replacement by a random pixel. Finally, the model is trained with
the batch of corrupted data, promoting the discovery of new features, e.g.,
elephant feet and toes. The image used belongs to the PACS Sketch domain.

While Saliency Maps and GuidedGrad-CAM were devel-
oped to assign relevance scores to features in the input
space, we extend their usage to identify relevant features in
representations extracted by intermediate layers. Let y and
ŷ denote the ground truth and the model prediction for a
datapoint X. The attribution map Ml yielded by Saliency Maps
for a representation Rl yielded by layer l is given by

Ml,Saliency =
∂(ŷ⊙ y)
∂Rl

. (1)

Note that the original Saliency Maps method [55] corresponds
to the case where l = 0, i.e., R0 is the raw input representation.

The class-discriminative relevance map Ml yielded by Grad-
CAM [4] for a layer l is given by a sum over the channels of
the representation Rl weighted by importance factors αc for
each channel c, resulting in

Ml,GradCAM = ReLU(
∑

c

αcR
c
l ). (2)

Hereby, the importance factors are given by the gradient of the
model prediction for the correct class w.r.t. the global-average-
pooled representation Rl. Formally,

αc =
1

Z

∑

i

∑

j

∂(ŷ⊙ y)
∂Rc,i,j

l

. (3)

Grad-CAM is applied to the representation yielded by the last
convolutional layer to obtain a relevance map M which is
upsampled to the input size [4]. For intermediate representa-
tion Rl, we use the corresponding relevance map Ml (Eq.
2). We use GuidedGrad-CAM [4] which yields more fine-
grained maps than Grad-CAM by multiplying Ml,GradCAM

with the relevance maps determined by Guided Backpropaga-
tion (Guided BP) [59], for the same representation Rl. Guided
BP modifies Saliency Maps by removing negative gradients
when backpropagating through ReLU layers.



B. Corruption

In each training iteration, we sample a method from the set
of corruption methods C and use it to corrupt the identified
features based on the relevance attribution map M . Any tech-
nique that perturbs the information contained in the identified
features can be used. We use different corruption methods
depending on the sampled representation level l.

To corrupt the raw input (l = 0), the most relevant input
features according to the attribution map M0, e.g., the pixels
corresponding to an elephant trunk, are perturbed using a
corruption method. Hereby, we perturb the identified pixel
values by setting them to a random value, to zero, i.e., black
pixels, by applying the Fast Gradient Sign Method (FGSM)
[42], or by applying Gaussian blurring. For an intermediate
representation level l > 0, first the original input is fed
through the model up to the corresponding layer l to yield the
representation Rl. The latter is then corrupted based on the
relevance attribution map Ml resulting from the identification
stage and finally fed to the next layer. To corrupt intermediate
embeddings, we drop the most relevant features, i.e., set their
values to zero. This can be viewed as a targeted Dropout [63].

C. Training

The COLUMBUS training procedure is described by Algo-
rithm 1. In each training iteration, a data batch B, a representa-
tion level l, an attribution method, and a corruption method are
sampled. Subsequently, the aforementioned identification and
corruption steps are performed. The model is trained on the
corrupted data (representations). Hereby, the p% most relevant
features are corrupted. To enable the model to learn some
features at the beginning of training, p is set to 0, i.e., no
corruption is applied. As training progresses, more features are
corrupted in the data, forcing the model to discover and learn
new features. Concretely, p is linearly increased throughout
the training to reach pmax, a hyperparameter. Note that the
resulting gradual learning of new features, independently from
each other, promotes also feature disentanglement, which was
found to be beneficial for visual reasoning [64]. We use
different identification and corruption methods to increase the
diversity of the corrupted datapoints used to train the model
and prevent overfitting. We also found that sampling multiple
methods leads to better empirical results. It should also be
noted that COLUMBUS is adaptive to the model’s learning,
since the identification step is model-state-specific. In other
words, if the model forgets a set of features during training,
these will not be identified (again), and hence will not be
corrupted (again), which enables the model to relearn them.

The model parameters θ are updated by minimizing a loss
function f using a gradient-based optimization algorithm,
e.g., Adam [65]. In algorithm 1, SGD is used for simplicity
of notation. The loss function f used is a weighted sum
comprising a classification loss Lcls and a domain-alignment
regularization loss term LDA. Formally,

f = Lcls + λ

Ns∑

i=1

Ns∑

j=i+1

LDA(i, j), (4)

where λ is a weighting factor and Ns the number of source
domains. We use cross-entropy as classification loss Lcls. LDA

regularizes the embedding space by minimizing the l2-norm
between the domain-specific embedding means and covariance
matrices for each pair of source domains i and j, as in DDC
[16] and CORAL [17] respectively. The normalization of the
regularization loss by the number of source domain pairs is
omitted for simplicity of notation. We note that, unlike prior
works [10], [16], [17] that apply this loss on the represen-
tations of the original images, we use corrupted images and
representations. This leads to an alignment in the embedding
space not only across the domains, but also between class-
specific features, e.g., by minimizing the difference between
the embedding distribution of cartoon images of elephant feet
and art painting images of elephant trunks.

Algorithm 1 The COLUMBUS training procedure
Require: Ds: Training data of all source domains
Require: f : Loss function
Require: α: Learning rate
Require: L: Set of representation levels including the raw

input level
Require: A: Set of relevance attribution methods
Require: C: Set of corruption methods
Require: pmax: Max. % of representation to be corrupted

1: Initialize the model parameters θ randomly or from a pre-
trained model

2: Initialize the % of representation to be corrupted p = 0
3: while not done do
4: Sample a data batch B = {X, y} from Ds

5: Sample level of representation l from L
6: Feed B through the model parametrized by θ
7: Get the relevance attribution map Ml by applying a

relevance attribution method randomly sampled from
A on level l using the current model parameters θ

8: if l = 0 then
9: Corrupt the values in B corresponding to the p%

highest values in M0 by applying a corruption
method randomly sampled from C, yielding the
corrupted input Bc

10: Feed Bc through the model to obtain the predictions
ŷ

11: else
12: Feed B through the model until level l to obtain the

representation Rl

13: Corrupt the values in Rl corresponding to the p%
highest values in Ml, yielding the corrupted repre-
sentation Rl,c

14: Feed Rl,c through the model starting from level l+1
to obtain the predictions ŷ

15: end if
16: Update θ: θ ← θ − α∇θf(y, ŷ)
17: Increase p linearly towards pmax

18: end while
19: return Learned model parameters θ



In our experiments, we corrupt q% of the sampled data batch
in each iteration, and increase q linearly during the training
until qmax is reached, as done for the representation percentage
to be corrupted p. This is omitted in Algorithm 1 for simplicity
of notation. During training, we alternate between sampling an
intermediate representation and the raw input for corruption.
The intermediate representations correspond to the outputs of
each ResNet block in the used ResNet-50 model [66]. At test
time, the model trained with COLUMBUS is applied to the
data from the target domains without any corruption.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate our approach empirically* on the recently pro-
posed DOMAINBED framework [10] which includes several
DG datasets, implementations of DG algorithms, and model
selection methods. DOMAINBED promotes a fair and repro-
ducible comparison of the different approaches by including
a common automated hyperparameter search, i.e., a random
search with the given seeds conducts the same experiments for
all methods. For a fair comparison with the 18 DG algorithms,
our experiments follow the same experimental setting adopted
in DOMAINBED [10]: We use a ResNet-50 model [66] pre-
trained on ImageNet [67] with frozen batch normalization [68]
statistics as suggested in [69], the same optimization algo-
rithm, data augmentation techniques and number of training
iterations used in DOMAINBED. The COLUMBUS-specific
hyperparameters pmax, qmax and λ are included in the hyper-
parameter search of DOMAINBED, and the intervals used can
be found in the Appendix. We noticed that the published code
[10] with the provided seeds does not enable the reproduction
of the published results, since the resulting points in the
hyperparameter search space are different from the ones used
for the published results. Therefore, for a fairer comparison,
we additionally rerun the experiments of the best performing
DG method in DOMAINBED, i.e., CORAL, with the published
code and seeds that we used for COLUMBUS.

We conduct experiments on 3 challenging multi-domain
datasets commonly used as DG benchmarks: VLCS [70], Of-
ficeHome [71] and PACS [72]. VLCS contains images belong-
ing to 5 classes from 4 photographic domains: VOC2007 (V),
LabelMe (L), Caltech101 (C), and SUN09 (S). OfficeHome
consists of images of 65 classes from the domains Art (A),
Clipart (C), Product (P), and Real (R). PACS comprises images
belonging to 7 classes from the domains Art-painting (A),
Cartoon (C), Photo (P), and Sketch (S). DOMAINBED splits
each source domain data into 80% for training and 20% for
validation. Each experiment is run with the provided 3 seeds.

B. Results

Tables I, II and III show the results averaged over the 3
seeds pre-determined by DOMAINBED, on VLCS, PACS and
OfficeHome respectively. Hereby, the unseen target domain is
defined by the column name, i.e., the 3 other domains are

*Code under https://github.com/AhmedFrikha/columbus-domainbed.

used as source domains for training. The test accuracy is
computed on the test set of the target domain. We provide
results including standard deviations in the appendix. The
average results over the domains of each dataset can be seen in
Table IV. We select the model with the highest source-domain
validation performance for the evaluation on the target domain.

TABLE I
DOMAIN GENERALIZATION RESULTS ON VLCS.

Algorithm C L S V Avg

ERM 97.7 64.3 73.4 74.6 77.5
IRM 98.6 64.9 73.4 77.3 78.5
GroupDRO 97.3 63.4 69.5 76.7 76.7
Mixup 98.3 64.8 72.1 74.3 77.4
MLDG 97.4 65.2 71.0 75.3 77.2
CORAL 98.3 66.1 73.4 77.5 78.8
MMD 97.7 64.0 72.8 75.3 77.5
DANN 99.0 65.1 73.1 77.2 78.6
CDANN 97.1 65.1 70.7 77.1 77.5
MTL 97.8 64.3 71.5 75.3 77.2
SagNet 97.9 64.5 71.4 77.5 77.8
ARM 98.7 63.6 71.3 76.7 77.6
VREx 98.4 64.4 74.1 76.2 78.3
RSC 97.9 62.5 72.3 75.6 77.1

CORAL† 97.3 65.2 71.5 75.6 77.4
COLUMBUS 98.9 65.0 75.0 77.9 79.2

TABLE II
DOMAIN GENERALIZATION RESULTS ON PACS.

Algorithm A C P S Avg

ERM 84.7 80.8 97.2 79.3 85.5
IRM 84.8 76.4 96.7 76.1 83.5
GroupDRO 83.5 79.1 96.7 78.3 84.4
Mixup 86.1 78.9 97.6 75.8 84.6
MLDG 85.5 80.1 97.4 76.6 84.9
CORAL 88.3 80.0 97.5 78.8 86.2
MMD 86.1 79.4 96.6 76.5 84.6
DANN 86.4 77.4 97.3 73.5 83.6
CDANN 84.6 75.5 96.8 73.5 82.6
MTL 87.5 77.1 96.4 77.3 84.6
SagNet 87.4 80.7 97.1 80.0 86.3
ARM 86.8 76.8 97.4 79.3 85.1
VREx 86.0 79.1 96.9 77.7 84.9
RSC 85.4 79.7 97.6 78.2 85.2

CORAL† 87.4 79.4 97.5 73.9 84.5
COLUMBUS 88.7 78.7 97.2 81.5 86.5

COLUMBUS achieves the highest results on all datasets
on average, advancing the state-of-the-art by 1.6% and 1.2%
compared to ERM and CORAL respectively. We note an
impressive 5.5% improvement on OfficeHome’s most chal-
lenging domain Clipart (C) compared to ERM and 3.3%
compared to CORAL, on this 65-class classification task.
Likewise, on the Art (A) domain of PACS, substantial 4% and
1.3% increases are observed compared to ERM and CORAL
respectively. A significant performance increase is achieved

†Results yielded by using published code [10] with the provided seeds.



TABLE III
DOMAIN GENERALIZATION RESULTS ON OFFICEHOME.

Algorithm A C P R Avg

ERM 61.3 52.4 75.8 76.6 66.5
IRM 58.9 52.2 72.1 74.0 64.3
GroupDRO 60.4 52.7 75.0 76.0 66.0
Mixup 62.4 54.8 76.9 78.3 68.1
MLDG 61.5 53.2 75.0 77.5 66.8
CORAL 65.3 54.4 76.5 78.4 68.7
MMD 60.4 53.3 74.3 77.4 66.3
DANN 59.9 53.0 73.6 76.9 65.9
CDANN 61.5 50.4 74.4 76.6 65.8
MTL 61.5 52.4 74.9 76.8 66.4
SagNet 63.4 54.8 75.8 78.3 68.1
ARM 58.9 51.0 74.1 75.2 64.8
VREx 60.7 53.0 75.3 76.6 66.4
RSC 60.7 51.4 74.8 75.1 65.5

CORAL† 64.8 54.6 76.8 78.4 68.6
COLUMBUS 62.8 57.9 75.5 77.9 68.5

TABLE IV
AVERAGE DOMAIN GENERALIZATION RESULTS.

Algorithm VLCS PACS OfficeHome Avg

ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 76.5
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 75.5
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 75.7
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 76.7
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 76.3
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 77.9
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 76.2
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 76.0
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 75.3
MTL 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 76.1
SagNet 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 77.4
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 75.8
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 76.5
RSC 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 75.9
SelfReg 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 77.1
Fish 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 77.3
AND-mask 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 76.0
SAND-mask 77.4 ± 0.2 84.6 ± 0.9 65.8 ± 0.4 75.9

CORAL† 77.4 ± 0.3 84.5 ± 0.5 68.6 ± 0.2 76.9
COLUMBUS 79.2 ± 0.2 86.5 ± 0.4 68.5 ± 0.4 78.1

on PACS’s challenging Sketch (S) domain as well. On all
target domains, COLUMBUS consistently outperforms all the
baselines or yields a competitive performance. The fact that
COLUMBUS outperforms RSC [53] confirms our hypothesis,
that corrupting the learned features in the raw input is crucial
to prevent relearning the same high-level features, and hence
enforce new feature discovery.

We also evaluate our approach using the oracle selection
method [10], where the model is evaluated on a held-out
validation set from the target domain. In order to limit access
to the target domain, this evaluation is performed only once
at the end of each training, disallowing early stopping. The
average results are presented in Table V. We find that the per-
formance advantage of COLUMBUS is increased when better
proxies for model selection, e.g., a held-out set from the target
domain, are available, further confirming the effectiveness of

TABLE V
DOMAIN GENERALIZATION RESULTS USING THE TEST-DOMAIN

VALIDATION SET (ORACLE) AS A SELECTION METHOD.

Algorithm VLCS PACS OfficeHome Avg

ERM 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 76.9
IRM 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 74.8
GroupDRO 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 76.9
Mixup 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 77.6
MLDG 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 77.0
CORAL 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 77.7
MMD 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 77.1
DANN 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 76.8
CDANN 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 77.0
MTL 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 77.0
SagNet 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 77.2
ARM 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 76.1
VREx 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 77.0
RSC 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 76.8
AND-mask 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 76.3
SAND-mask 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 76.0

CORAL† 77.4 ± 0.6 85.6 ± 0.8 68.4 ± 0.4 77.1
COLUMBUS 77.7 ± 0.4 88.2 ± 0.2 69.6 ± 0.4 78.5

our approach. Our results on DOMAINBED using both model
selection methods show that the additional features learned
thanks to the corruption of the most relevant features are useful
for generalization to unseen domains. This is backed by Figure
1, where COLUMBUS recognizes more features in examples
from the unseen target domain than ERM.

Finally, we investigate whether the richer set of features
learned by COLUMBUS leads to a better in-domain general-
ization, i.e., whether a performance boost is also yielded on
unseen source domain data. We evaluate COLUMBUS and
the DG baselines on the held-out validation sets of the source
domains and report the maximal mean validation accuracy
across domains in the Appendix. COLUMBUS consistently
achieves the highest validation performance on the training
domains compared to the DG baselines. This shows that the
richer set of learned features improves generalization to unseen
in-distribution datapoints, suggesting that COLUMBUS might
also be suitable for applications without domain shift.

V. CONCLUSION

In this work, we proposed COLUMBUS, a novel and
strong domain generalization (DG) approach that enforces
new feature discovery to improve the transfer to a wider set
of unseen domains. During training, COLUMBUS corrupts
the input and multi-level representations of the data most
relevant for the model. For the identification of such features,
relevance attribution methods that are usually used for model
explainability purposes are leveraged. Our extensive empirical
evaluation on DOMAINBED demonstrates the effectiveness of
the proposed method, which outperforms 18 DG algorithms
and achieves new state-of-the-art results on multiple DG
benchmarks. Our results show that the richer set of learned
features improves the generalization to unseen data from both
seen and unseen domains, suggesting the suitability of our
approach for applications beyond domain generalization to
include scenarios without domain shift.



APPENDIX

Experimental Setting Details In this section we provide
further details about the experiments conducted. The experi-
ments were conducted on computing instances that include a
Tesla T4 NVIDIA GPU, 8 custom Intel Cascade Lake CPUs
and 32 Gb of memory. The operating system used is Ubuntu
20.04 LTS. The libraries PyTorch [73] and TorchVision were
used with the versions 1.7.1 and 0.8.2, respectively.

In our experiments, the percentage of representation cor-
rupted p and the percentage of the batch corrupted q are
increased linearly towards pmax and qmax, respectively, during
the first half of the training. In the second half of the training,
the maximum values are used.

For a fair comparison, we used the automated
hyperparameter search from DOMAINBED [10] for
each domain and dataset. Hereby, each hyperparameter
search involves 20 random search experiments, i.e., the
hyperparameters are randomly sampled from the specified
intervals. To distribute the hyperparameter search experiments
over multiple devices (each experiment runs on a single
GPU), we used the Ray Tune package [74], [75]. Our
experiments follow the experimental setting: We use a
ResNet-50 model [66] pretrained on ImageNet [67] with
frozen batch normalization [68] statistics as suggested in [69],
as well as the same optimization algorithm, ADAM [65], data
augmentation techniques, and number of training iterations.
An overview of the hyperparameter-specific intervals we used
for COLUMBUS can be seen in Table VI. The algorithm-
specific hyperparameter intervals used for the other DG
algorithms can be found in [10]. Depending on whether
the corruption is applied on the input or an intermediate
representation, different value intervals were used for
the percentage of the representation corrupted p and the
percentage of the batch corrupted q. For the hyperparameters
related to intermediate representations, i.e., pmax,intermediate

and qmax,intermediate, the interval upper bounds were
chosen based on the results of RSC [53], which discards
the most dominant features fed to the output layer, i.e., the
last representation level. We used the same intervals used in
DOMAINBED for the other algorithms for all hyperparameters.

Source Domain Generalization
In this section, we investigate whether the richer set of

features learned by COLUMBUS leads to a better in-domain
generalization, i.e., whether a performance boost is also
yielded on unseen data from the source domains used for
training. We evaluate COLUMBUS and the DG baselines on
the held-out validation sets of the source domains and report
the maximal average validation accuracy across domains in
Table VII*.

COLUMBUS consistently achieves the highest validation
performance on the training domains compared to the DG

*For the baselines, we computed the results using
the logs made public in https://drive.google.com/file/d/
16VFQWTble6-nB5AdXBtQpQFwjEC7CChM/view?usp=sharing.

baselines, on every dataset. This shows that the richer
set of learned features improves generalization to unseen
in-distribution data examples as well, suggesting that
COLUMBUS might be suitable for applications beyond
domain generalization to include scenarios without domain
shift.

Results including standard deviations We present the
domain generalization results of COLUMBUS and the base-
lines, including the standard deviations computed over the 3
runs with the seeds provided by DOMAINBED in Tables VIII,
IX and X. Hereby, for model selection, the training-domain
validation-set from DOMAINBED is used.



TABLE VI
HYPERPARAMETER INTERVALS USED FOR THE HYPERPARAMETER SEARCH CONDUCTED WITH DOMAINBED

Hyperparameter Random Distribution

Weighting coefficient λ 10Uniform(−1,1)

Max. corruption % for input representation pmax,input Uniform(0.2, 0.5)
Max. corruption % for intermediate representation pmax,intermediate Uniform(0.01, 0.333)
Max. batch corruption % for input representation qmax,input Uniform(0.2, 1.0)
Max. batch corruption % for intermediate representation qmax,intermediate Uniform(0.1, 0.5)

TABLE VII
SOURCE DOMAIN VALIDATION PERFORMANCE.

Algorithm VLCS PACS OfficeHome Avg

ERM 86.4 ± 0.0 97.0 ± 0.1 82.1 ± 0.2 88.5
IRM 85.8 ± 0.2 96.5 ± 0.4 79.9 ± 2.0 87.4
GroupDRO 86.4 ± 0.0 96.9 ± 0.1 81.6 ± 0.2 88.3
Mixup 86.6 ± 0.1 97.4 ± 0.1 83.2 ± 0.3 89.0
MLDG 86.4 ± 0.1 97.1 ± 0.1 82.4 ± 0.3 88.6
CORAL 86.5 ± 0.0 97.1 ± 0.1 83.7 ± 0.2 89.1
MMD 86.4 ± 0.1 96.9 ± 0.0 82.0 ± 0.1 88.4
DANN 86.3 ± 0.0 96.4 ± 0.3 80.4 ± 0.9 87.7
CDANN 86.4 ± 0.1 96.4 ± 0.3 80.5 ± 0.9 87.8
MTL 86.3 ± 0.0 97.0 ± 0.0 81.7 ± 0.2 88.3
SagNet 86.4 ± 0.0 97.0 ± 0.2 82.9 ± 0.4 88.8
ARM 86.3 ± 0.0 96.5 ± 0.1 80.2 ± 0.2 87.7
VREx 86.2 ± 0.1 96.9 ± 0.1 81.8 ± 0.4 88.3
RSC 86.4 ± 0.3 96.8 ± 0.2 81.5 ± 0.3 88.2

CORAL† 86.6 ± 0.1 96.8 ± 0.2 83.6 ± 0.0 89.0
COLUMBUS 86.6 ± 0.1 97.3 ± 0.0 83.4 ± 0.1 89.1

TABLE VIII
DOMAIN GENERALIZATION RESULTS ON VLCS, INCLUDING STANDARD DEVIATION.

Algorithm C L S V Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

CORAL† 97.3 ± 0.3 65.2 ± 0.5 71.5 ± 0.6 75.6 ± 0.9 77.4
COLUMBUS 98.9 ± 0.2 65.0 ± 1.3 75.0 ± 0.2 77.9 ± 0.9 79.2



TABLE IX
DOMAIN GENERALIZATION RESULTS ON PACS, INCLUDING STANDARD DEVIATION.

Algorithm A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

CORAL† 87.4 ± 0.3 79.4 ± 0.3 97.5 ± 0.1 73.9 ± 1.8 84.5
COLUMBUS 88.7 ± 0.8 78.7 ± 1.0 97.2 ± 0.1 81.5 ± 1.5 86.5

TABLE X
DOMAIN GENERALIZATION RESULTS ON OFFICEHOME, INCLUDING STANDARD DEVIATION.

Algorithm A C P R Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

CORAL† 64.8 ± 0.2 54.6 ± 0.7 76.8 ± 0.6 78.4 ± 0.3 68.6
COLUMBUS 62.8 ± 0.3 57.9 ± 0.8 75.5 ± 0.1 77.9 ± 0.5 68.5
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Abstract

In this work, we investigate the unexplored intersection of domain generalization
and data-free learning. In particular, we address the question: How can knowledge
contained in models trained on different source data domains be merged into a
single model that generalizes well to unseen target domains, in the absence of
source and target domain data? Machine learning models that can cope with
domain shift are essential for for real-world scenarios with often changing data
distributions. Prior domain generalization methods typically rely on using source
domain data, making them unsuitable for private decentralized data. We define the
novel problem of Data-Free Domain Generalization (DFDG), a practical setting
where models trained on the source domains separately are available instead of the
original datasets, and investigate how to effectively solve the domain generalization
problem in that case. We propose DEKAN, an approach that extracts and fuses
domain-specific knowledge from the available teacher models into a student model
robust to domain shift. Our empirical evaluation demonstrates the effectiveness of
our method which achieves first state-of-the-art results in DFDG by significantly
outperforming ensemble and data-free knowledge distillation baselines.

1 Introduction

Deep learning methods have achieved impressive performance in a wide variety of tasks where the data
is independent and identically distributed. However, real-world scenarios usually involve a distribution
shift between the training data used during development and the test data faced at deployment time.
In such situations, deep learning models often suffer from a performance degradation and fail to
generalize to the out-of-distribution (OOD) data from the target domain [62, 66, 17, 21]. For instance,
this domain shift problem is encountered when applying deep learning models on MRI data from
different clinical centers that use different scanners [10]. Domain Adaptation (DA) approaches
[71, 73] assume access to data from the source domain(s) for training as well as target domain data
for model adaptation. However, data collection from the target domain can sometimes be expensive,
slow, or infeasible, e.g. self-driving cars have to generalize to a variety of weather conditions [80] and
object poses [3] in urban and rural environments from different countries. In this work, we focus on
the Domain Generalization (DG) [5, 48] setting, where a model trained on multiple source domains
is applied without any modification to unseen target domains.

In the last decade, a plethora of DG methods requiring only access to the source domains were
proposed [86]. Nevertheless, the assumption that access to source domain data can always be granted
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does not hold in many cases. For instance, General Data Protection Regulation (GDPR) prohibits
the access to sensitive data that might identify individuals, e.g. bio-metric data or other confidential
information. Likewise, some commercial entities are not willing to share their original data to
prevent competitive disadvantage. Furthermore, as datasets get larger, their release, transfer, storage
and management can become prohibitively expensive [39]. To circumvent the concerns related to
releasing the original dataset, the data owners might want to share a model trained on their data
instead. In light of increasing data privacy concerns, this alternative has recently enjoyed a surge of
interest [44, 7, 50, 37, 33, 28, 78, 1].

Although Data-Free Knowledge Distillation (DFKD) methods were developed to transfer knowledge
from a teacher model to a student model without any access to the original data [39, 44, 7, 50, 78, 9],
only single-teacher scenarios with no domain shift were studied. On the other hand, Source-Free
Domain Adaptation (SFDA) approaches were proposed to tackle the domain shift problem setting
where one [37, 33, 28, 70, 11] or multiple [1] models trained on source domain data are available
instead of the original dataset(s). Nonetheless, they require access to data from the target domain.
In this work, we investigate the unstudied intersection of Domain Generalization and Data-Free
Learning. Data-Free Domain Generalization (DFDG) is a problem setting that assumes only access to
models trained on the source domains, without requiring data from source or target domains. Hereby,
the goal is to have a single model able to generalize to unseen domains without any modification or
data exposure, as it is the case in DG. To the best of our knowledge, we are the first to address this
problem setting. Works addressing related problems are discussed in Appendix A.

Our contribution is threefold: Firstly, we introduce and define the novel and practical DFDG problem
setting. Secondly, we tackle it by proposing a first and strong approach that merges the knowledge
stored in the domain-specific models via the generation of synthetic data and distills it into a single
model. Thirdly, we demonstrate the effectiveness of our method by empirically evaluating it on two
DG benchmark datasets.

2 Approach

2.1 Problem statement

Let Di
s and Dj

t denote the datasets available from the source and target domains respectively with
i = 1, .., I and j = 1, .., J . Hereby, I and J denote the number of source and target domains
respectively. In the Domain Generalization (DG) [5, 48] problem setting, the goal is to train a model
on the source domain data Di

s in a way that enables generalization to a priori unavailable target domain
data Dj

t , without any model modification at test time. We consider the source-data-free scenario of
this problem where the source domain datasets Di

s are not accessible, e.g., due to privacy, security,
safety or commercial concerns, and models trained on these domain-specific datasets separately are
available instead.

We refer to the source domain models as teacher models Ti as in the knowledge distillation literature
[22]. We assume that the teacher models were trained without the prior knowledge that they
would be used in a DFDG setting, i.e., their training does not involve any domain shift robustness
mechanism. Hence, the application scenarios where the source domain data is not accessible
anymore, e.g., was deleted, are also considered. We refer to this novel learning scenario as Data-Free
Domain Generalization (DFDG). The major difference with Source-Free Domain Adaptation (SFDA)
[37, 33, 28] is the absence of target domain data Dj

t in DFDG.

The DFDG problem is a prototype for a practical use case where a model robust to domain shifts is
needed and models trained on the same task but different data domains are available. This problem
definition is motivated by the question: How can we amalgamate the knowledge from multiple models
trained on different domains into a single model that is able to generalize to unseen target domains
without any data exposure?

2.2 Domain Entanglement via Knowledge Amalgamation from Domain-Specific Networks

We propose Domain Entanglement via Knowledge Amalgamation from domain-specific Networks
(DEKAN). Our approach tackles the challenges of DFDG in 3 stages: Knowledge extraction, fusion
and transfer. In the first stage, Intra-Domain Data-Free Knowledge Extraction, we extract the
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knowledge from the different source domain teacher models separately. Hereby, we generate domain-
specific synthetic datasets via inceptionism-style [46] image synthesis, i.e., we initialize random
noise images x̂ and optimize them to be recognized as a sample from a pre-defined class by a trained
domain-specific model. In particular, we apply the data-free knowledge distillation method described
in [78, 83] to invert each domain-specific teacher separately. In the second stage, Cross-Domain
Data-Free Knowledge Fusion, DEKAN generates cross-domain synthetic data by leveraging all pairs
of inter-domain model-dataset combinations. Here, the cross-domain examples are optimized to
be recognizable by teacher models trained on different domains. In the final stage, Multi-Domain
Knowledge Distillation, DEKAN transfers the extracted knowledge from the domain-specific teachers
to a student model via knowledge distillation using the generated data. At test time, i.e., deployment
phase, the resulting student model is evaluated on target domain data without any modification.
Details about the first stage as well as DEKAN’s complete algorithm can be found in Appendix B. In
the following, we focus on the second and third stages.

Figure 1: Overview of the Cross-Domain Data-Free Knowledge Fusion.

In the second stage, we propose a technique to merge the knowledge from two domains by generating
cross-domain synthetic images that capture class-discriminative features present in the two domains,
and match the distribution of intermediate features extracted by a domain-specific model from images
of another domain. Let Ta and Tb denote the teacher models, and Da

g and Db
g the synthetic data

generated in the first stage (Appendix B.0.1), specific to two domains a and b. We generate synthetic
images Dab

g by minimizing the cross-domain inversion loss Lab
CD, that we formulate as

Lab
CD = LC(Ta(x̂), y) + LC(Tb(x̂), y) + α1LR(x̂) + α2L

ab
CDM (x̂), (1)

where LC denotes the classification loss, e.g., cross-entropy, LR an image prior regularization,
LCDM the cross-domain feature moment matching loss, and α1 and α2 weighting coefficients. LR

penalizes the l2-norm and the total variation of the image to ensure the convergence to valid natural
images [42, 52, 46, 78]. We incentivize the generated images to contain class-discriminative features
from both domains by minimizing the classification loss using both teachers. We hypothesize that
images that can be recognized by models trained on different domains capture more domain-agnostic
semantic features than those generated by inverting a single domain-specific model as done in prior
works [78].

In addition, the cross-domain feature distribution matching loss Lab
CDM optimizes the cross-domain

synthetic images Dab
g so that their feature distribution matches the distribution of the features

extracted by Ta, the model trained on domain a, for images Db
g synthesized from domain b. Note

that Lab
CDM ̸= Lba

CDM and that using the model Tb and the data generated by inverting Ta in the first
stage, i.e., Da

g , would yield the cross-domain images Dba
g that are different from Dab

g . Formally,
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Lab
CDM (x̂) =

∑

l

max(∥µl(x̂)− b
aµ̂l∥2 − b

aδl, 0) +
∑

l

max(∥σ2
l (x̂)− b

aσ̂
2
l ∥2 − b

aγl, 0). (2)

Lab
CDM minimizes the l2-norm between the BN-statistics of the synthetic data, µl(x̂) and σ2

l (x̂), and
target statistics, at each BN layer l. Here, the target statistics, b

aµ̂l and b
aσ̂

2
l , are computed in a way

that involves knowledge from different domains. In particular, they result from feeding the synthetic
data specific to domain b through the teacher model trained on data from domain a, and computing
the first two feature moments, i.e., mean and variance, for each BN layer. The intention behind this is
to synthesize images that capture the features learned by the model on domain a that are activated
and recognized when exposed to images from domain b. We hypothesize that such images would
encompass domain-agnostic semantic information that would be useful for training a single model
resilient to domain shift in the next stage.

We relax LCDM by allowing the BN-statistics of the synthetic input to fluctuate within a certain
interval. Here, we compute the relaxation constants b

aδl and b
aγl as the ϵCD percentile of the

distribution of differences between the stored BN-statistics, i.e., computed on the original domain a
images, and those computed using the images Db

g synthesized from the domain b teacher model in the
first stage. Note that ϵCD = 100% corresponds to synthesized images x̂ yielding the BN-statistics
from domain a, i.e., stored in model Ta, would not be penalized, i.e., Lab

CDM = 0. This stage can be
viewed as a domain augmentation, since the synthesized images Dab

g do not belong neither to domain
a nor to domain b. The synthesis of cross-domain data is applied to all possible domain pairs.

In the final DEKAN stage, the domain-specific and cross-domain knowledge, which is captured
in the synthetic data generated in the first and second stages respectively, is transferred to a single
student model S. To this end, we use knowledge distillation [22], i.e., we train the student model to
mimic the predictions of the teachers for the synthetic data. As described in Equation 3, we minimize
the Kullback-Leibler divergence DKL between the predictions of the student S and the teacher(s)
corresponding to the synthetic image x̂. In particular, if the data example is domain-specific, i.e., it
was generated in the first DEKAN stage, the predictions of the corresponding teacher are used as soft
labels to train the student. For the cross-domain synthetic images that were generated in the second
stage, the average predictions of the two corresponding teachers is used instead. The aggregation
of the prediction distributions of two domain-specific teacher models contributes to the knowledge
amalgamation across domains.

LKD = DKL(S(x̂) || p) with p =

{
Ti(x̂), if x̂ ∈ Di

g (domain-specific)
1
2 (Ti(x̂) + Tj(x̂)), if x̂ ∈ Dij

g (cross-domain)
(3)

3 Experiments and Results

The conducted experiments3 aim to tackle the following key questions: (a) How does DEKAN
compare to leveraging the domain specific models directly to make predictions on data from unseen
domains? (b) How does our approach compare to data-free knowledge distillation methods applied to
each domain separately? (c) How much does the unavailability of data cost in terms of performance?

We design baseline methods to address the novel DFDG problem, and compare them with DEKAN.
The first category of baselines applies the available domain-specific models on the data from the
target domains (Question (a)). We consider two ensemble baselines that aggregate the predictions
of these models, e.g., by taking the average of the model predictions (AvgPred), or by taking the
prediction of the most confident model, i.e., the model with the lowest entropy (HighestConf).
Besides, we implement oracle methods that evaluate each of the domain-specific models separately
on the target domain and then report the results of the best model (BestTeacher). Furthermore, we
propose a baseline that applies an improved version [83] of DeepInversion (DI) [78] on each of the
models separately to generate domain-specific synthetic images used to then train a student model via
knowledge distillation (Multi-DI; Question (b)). Note that Multi-DI is equivalent to the application
of DEKAN’s first and third stage. Finally, we compare DEKAN to an upper-bound baseline that uses

3Code will be made public upon paper acceptance.
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the original data from the source domains to train a single model via Empirical Risk Minimization
(ERM) [68, 20], a common domain generalization baseline (Question (c)).

Algorithm Art Painting Cartoon Photo Sketch Average

Ensemble - AvgPred 79.88 65.40 96.35 79.46 80.27
Ensemble - HighestConf 82.28 65.96 96.59 76.86 80.42
Multi-DI 82.13 72.14 95.57 73.75 80.90
DEKAN (ours) 83.01 75.94 96.29 80.17 83.88

BestTeacher (oracle) 75.24 62.80 96.41 69.76 76.05
ERM [20] (not data-free) 86.0 81.8 96.8 80.4 86.2

Algorithm MNIST MNIST-M SVHN USPS Average

Ensemble - AvgPred 97.85 45.83 31.33 96.12 67.78
Ensemble - HighestConf 98.52 46.71 30.45 96.47 68.04
Multi-DI 93.31 54.04 36.72 96.53 70.15
DEKAN (ours) 94.64 55.86 39.15 96.77 71.61

BestTeacher (oracle) 99.27 48.33 38.11 97.73 70.86
ERM (not data-free) 98.22 55.18 50.13 96.54 75.02

Table 1: Domain Generalization results on PACS (top) and Digits (bottom).

We evaluate DEKAN and the baselines on two DG benchmark datasets, PACS [30] and Digits, which
comprises images from MNIST [29], MNIST-M [15], SVHN [51] and USPS [24]. Table 1 shows the
results of DEKAN and the baselines. Hereby, the column name refers to the unseen target domain,
i.e., the 3 other domains are the source domains used to train the teacher models. The test accuracy is
computed on the test set of the target domain.

DEKAN outperforms all data-free baselines on both datasets on average, setting a first state-of-the-art
performance for the novel DFDG problem. We find that generative approaches, i.e., Multi-DI and
DEKAN, outperform the ensemble methods on average, suggesting that training a single model
on data from different domains enables a better aggregation of knowledge than the aggregation of
domain-specific model predictions. Most importantly, DEKAN substantially outperforms Multi-DI,
highlighting the importance of the synthesized cross-domain images. This is especially the case for
the challenging domains, i.e., the domains where all the methods yield the lowest performance. In
particular, the generation of cross-domain synthetic data leads to performance improvements of 6.4%
and 3.8% on the Sketch and Cartoon PACS domains respectively, as well as a 2.4% increase on the
SVHN domain of Digits. Additionally, we note the positive knowledge transfer across domains on
the PACS dataset, as all the multi-domain methods outperform the oracle BestTeacher baseline that
uses a single domain-specific teacher model, i.e., the teacher that achieves the highest performance
on a validation set from the target domain. Finally, it is worth noting that while DEKAN significantly
reduces the gap between the best data-free baseline and the upper-bound baseline that uses the original
data, there is still potential for improvement.

4 Conclusion

This work addressed the unstudied intersection of domain generalization and data-free learning, a
practical setting where a model robust to domain shifts is needed and the available models were
trained on the same task but with data from different domains. We proposed DEKAN, an approach
that fuses domain-specific knowledge from the available teacher models into a single student model
that can generalize to data from a priori unknown domains. Our empirical evaluation demonstrated
the effectiveness of our method which outperformed ensemble and data-free knowledge distillation
baselines, hence achieving first state-of-the-art results in the novel and challenging data-free domain
generalization problem.
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A Related Work

Our method addresses the Data-Free Domain Generalization (DFDG) problem. To the best of our
knowledge, we are the first to address this problem. In the following, we discuss approaches to related
problem settings.

A.1 Domain Generalization

Domain Generalization (DG) approaches can be broadly classified into three categories. Domain
alignment methods attempt to learn a domain-invariant representation of the data from the source
domains by regularizing the learning objective. Variants of such a regularization include the mini-
mization across the source domains of the maximum mean discrepancy criteria (MMD) [19, 32], the
minimization of a distance metric between the domain-specific means [67] or covariance matrices
[65], the minimization of a contrastive loss [47, 79, 41, 26], or the maximization of loss gradient
alignment [61, 59]. Other works use adversarial training with a domain discriminator model [16, 34]
for the same purpose. Another category of works leverages meta-learning techniques, e.g., the bi-level
optimization scheme proposed in [12], to optimize for quick adaptation to different domains [31], or
to learn how to regularize the output layer [4]. A combination of meta-learning and embedding space
regularization is proposed in [10]. Another line of works augment the training data to tackle DG. On
the one hand, some approaches perturb the source domain data by computing inter-domain examples
[74, 76, 72] via Mixup [82], by randomizing the style of images [49], by computing adversarial
examples [18] using a class classifier [63, 69, 55] or a domain classifier [60], or corrupting learned
features to incentivize new feature discovery [14]. On the other hand, CNNs are trained to generate
new images from the source domains [56, 64, 6] or from novel domains [43, 87]. Other works perturb
intermediate representations of the data [23, 88, 14]. We refer to [86] for a more extensive overview
of DG approaches.

Unlike standard DG approaches that require access to the source domain datasets, our method merges
the domain-specific knowledge from models trained on the source domains into a single model
resilient to domain shift, while preserving data privacy.

A.2 Knowledge Distillation

Knowledge distillation (KD) [22] was originally proposed to compress the knowledge of a large
teacher network into a smaller student network. Several KD extensions and improvements [58, 81,
75, 2, 53] enabled its application to a variety of scenarios including quantization [45, 54], domain
adaptation [84, 85], semantic segmentation [38], and few-shot learning [57, 8]. While these methods
rely on the original data, Data-Free Knowledge Distillation (DFKD) methods were recently developed
[39, 44, 50, 7]. Hereby, knowledge is transferred from one [44, 50, 7, 9, 78, 40, 83] or multiple [36]
teacher(s) to the student model via the generation of synthetic data, either by optimizing random
noise examples [50, 78, 83] or by training a generator network [44, 7, 9, 40]. Nevertheless, the
aforementioned DFKD methods focus on scenarios without any domain shift, i.e. the student is
evaluated on examples from the same data distribution used for training the teacher. In the DFDG
problem setting we address, the student is trained from multiple teachers that are trained on different
source domains in a way that enables generalization to data from unseen target domains. We propose
a baseline that extends the usage of a recent DFKD method [83] to the DFDG setting, and compare it
to our approach (Section 3).

A.3 Source-free domain adaptation

The recently addressed Source-Free Domain Adaptation problem [37, 33, 28] assumes access to
one or multiple model(s) trained on the source domains, as well as data examples from a specific
target domain. Proposed approaches to tackle it include the combination of generative models
with a regularization loss [33], a feature alignment mechanism [77], or a weighting of the target
domain samples by their similarity to the source domain [28]. SHOT [37] employs an information
maximization loss along with a self-supervised pseudo-labeling, and is extended to the multi-source
scenario via source model weighting [1]. BUFR [11] aligns the target domain feature distribution
with the one from the source domain. Another line of works leverage Batch Normalization (BN) [25]
layers by replacing the BN-statistics computed on the source domain with those computed on the
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target domain [35], or by training the BN-parameters on the target domain via entropy minimization
[70]. While these approaches rely on the availability of data from a known target domain, we address
the DFDG scenario where the model is expected to generalize to a priori unknown target domain(s)
without any modification or exposure to their data. We also note that some methods [28, 37, 11]
modify the training procedure on the source domain, which would not be possible in cases where the
data is not accessible anymore.

B More details about DEKAN

In the following, we introduce the first DEKAN stage in more detail. The second and third stages are
described in Section 2.2. DEKAN’s training procedure is described in Algorithm 1.

B.0.1 Intra-Domain Data-Free Knowledge Extraction

In this stage, we extract the domain-specific knowledge from the available teacher models Ti

separately by generating domain-specific synthetic datasets Di
g . For this, we apply [83], an improved

version of the data-free knowledge distillation method DeepInversion (DI) [78] that enables the
generation of more diverse images. Hereby, we use inceptionism-style [46] image synthesis, also
called DeepDream, i.e., we initialize random noise images x̂ and optimize them to be recognized as
a sample from a pre-defined class by a trained model. This process is also referred to as Inversion
[13, 78]. Following [78, 83], uniformly sample labels y and optimize the corresponding random
images x̂ by minimizing the domain-specific inversion loss LDS given by

LDS = LC(T (x̂), y) + λ1LR(x̂) + λ2LM (x̂), (4)

where LC denotes the classification loss, e.g., cross-entropy, LR an image prior regularization, LM a
feature moment matching loss, and λ1 and λ2 weighting coefficients. LR penalizes the l2-norm and
the total variation of the image to ensure the convergence to valid natural images [42, 52, 46, 78].
LM , also called moment matching loss [40], optimizes the synthetic images so that their feature
distributions captured by batch normalization (BN) layers match those of the real data used to train
the teacher model. Formally,

LM (x̂) =
∑

l

max(∥µl(x̂)− µ̂l∥2 − δl, 0) +
∑

l

max(∥σ2
l (x̂)− σ̂l

2∥2 − γl, 0). (5)

LM minimizes the l2-norm between the BN-statistics of the synthetic data, i.e., mean µl(x̂) and
variance σ2

l (x̂), and those stored in the trained teacher model, µ̂l and σ̂l
2, at each BN layer l [78].

In order to increase the diversity of the generated images, we relax this optimization by allowing
the BN-statistics computed on the synthetic images to deviate from those stored in the model within
certain margins, as introduced in [83]. These deviation margins are defined by relaxation constants for
mean and variance, denoted by δl and γl respectively. The latter are computed as the ϵDS percentile
of the distribution of differences between the stored BN-statistics and those computed using random
images, as proposed in [83]. We note that the higher the value of the hyperparameter ϵDS , the higher
the relaxation.

We apply this data-free inversion step to each domain-specific model Ti separately, yielding domain-
specific synthetic datasets Di

g that are correctly classified by their respective model and match the
distribution of the features extracted by it.

B.0.2 Algorithm

Algorithm 1 summarizes the 3 stages of the DEKAN’s training procedure. We note that the updates
of the syntehtic data and the student model parameters θ are performed using gradient-based opti-
mization, specifically Adam [27] in our case. Explicit update rule formulas and iteration over the
synthetic data batches are omitted for simplicity of notation.
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Algorithm 1 Domain Entanglement via Knowledge Amalgamation from domain-specific Networks
Require: T1..I : I Domain-specific teacher models

// First stage: Intra-Domain Knowledge Extraction
1: for i← 1 to I do
2: Initialize the domain-specific synthetic dataset Di

g: Images x̂ ∼ N (0, I) and arbitrary labels
3: while not converged do
4: Update Di

g by minimizing the domains-specific inversion loss LDS (Eq. 4) using Ti

5: end while
6: end for

// Second stage: Cross-Domain Knowledge Fusion
7: for i← 1 to I do
8: for j ← 1 to I and i ̸= j do
9: Initialize the cross-domain synthetic dataset Dij

g : Images x̂ ∼ N (0, I) and arbitrary labels
10: while not converged do
11: Update Dij

g by minimizing the cross-domain inversion loss Lij
CD (Eq. 1) using Ti, Tj

and Dj
g

12: end while
13: end for
14: end for

// Third stage: Multi-Domain Knowledge Distillation
15: Initialize the student model Sθ randomly or from a pre-trained model
16: Concatenate the domain-specific and cross-domain synthetic datasets into one dataset Dg

17: while not converged do
18: Randomly sample a mini-batch B = {x̂, y} from Dg

19: Update θ by minimizing the knowledge distillation loss LKD (Eq. 3) using B and T1..I

20: end while
21: return Domain-generalized student model Sθ
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Chapter 6

Summary of Contributions

This thesis included four contributions that addressed four different learning problems,
which involve data from multiple sources and are relevant for real-world applications. De-
spite tackling four different problems with different assumptions and characteristics, the
four contributions addressed the same overarching question. We investigated how to train
deep learning models on multiple datasets to best capture knowledge that can be reused
when faced with related tasks/datasets. We developed approaches that leverage and opti-
mize knowledge transfer from the training datasets to the ones encountered at evaluation
time.

In our first contribution (Chapter 2), we addressed the underexplored intersection of
the well-studied one-class classification (OCC) and few-shot learning problems. On the one
hand, most of the Anomaly Detection (AD) approaches developed in prior work require
large datasets of normal examples to generalize. However, such datasets are not available in
data-scarce application scenarios. On the other hand, the few-shot classification literature
focuses on class-balanced classification scenarios, where examples are available from all
classes. Yet, due to the extreme rarity of anomalous behavior, e.g., defective products in
industrial manufacturing or the diagnosis of a rare disease in healthcare, data examples
from the anomalous class are usually not available, and OCC techniques are employed to
perform AD. Hence, we addressed the few-shot one-class classification (FS-OCC) problem,
a practical setting where an application-specific anomaly detector is needed and only a
few normal examples are available for training. Our contribution is fourfold. Firstly, we
have empirically shown that classical OCC methods fail in the low-data regime. Secondly,
we theoretically analyzed why the parameter initializations optimized by gradient-based
meta-learning algorithms, e.g., MAML, are not tailored for OCC, and why second-order
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derivatives are necessary to optimize for such initializations. Thirdly, we proposed an
episode sampling technique that adapts any meta-learning algorithm that employs a bi-
level optimization to the FS-OCC problem. Finally, we demonstrated the effectiveness of
the proposed approach on eight datasets of images and time-series, including an industrial
sensor readings dataset. Future works could investigate an unsupervised approach to FS-
OCC which does not require the meta-training tasks to be labeled.

Our second contribution (Chapter 3) addressed the unexplored intersection of the con-
tinual learning and the anomaly detection problems. Continual learning investigates ways
of training models that are able to learn several tasks incrementally, i.e., reducing the im-
pact of the catastrophic forgetting phenomenon. Such models are essential for real-world
applications where the data distribution changes frequently, e.g., quality control in in-
dustrial manufacturing, where the product portfolio is constantly evolving. While the vast
majority of continual learning works focus on class-balanced classification, many real-world
applications exhibit a high class-imbalance due to the rarity of some categories. Anomaly
detection problems are usually framed as one-class classification problems (OCC), where
only data from the normal class is available. To the best of our knowledge, we were the first
to address the Continual Anomaly Detection problem, which considers practical use-cases
where a central anomaly detector for multiple applications is needed and new applications
become available gradually over time. This contribution is threefold. Firstly, we introduced
the novel and praxis-relevant continual anomaly detection problem and discussed its chal-
lenges: catastrophic forgetting and overfitting to the normal class. Secondly, we proposed
an effective and model-agnostic meta-learning approach to address CAD. Our method
learns a learning strategy tailored for learning anomaly detection task-sequences with min-
imal forgetting. Finally, we empirically validated our approach on three datasets, where
we significantly outperformed previous class-balanced continual learning and anomaly de-
tection methods. While our experiments focused on tasks containing in-domain anomalies,
it would be interesting to investigate the suitability of our approach to out-of-distribution
detection applications where the model is evaluated on anomalies that belong to unseen
domains.

In our third contribution (Chapter 4), we tackled the domain generalization problem. In
real-world applications, distribution shifts between training and test data are commonly
encountered. For instance, data distributions might differ from one hospital to another
and from one production plant to another due to using different scanners and machines.
Domain generalization works study learning scenarios, which involve different datasets
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exhibiting domain shift, and where the target domain is unknown beforehand, e.g., the
data collected by a scanner that will be acquired in the future. In this contribution, we
proposed a domain generalization (DG) approach that incentivizes the model to capture
as many features as possible. This is based on the assumption that a richer set of features
improves the knowledge transfer to a wider variety of unseen domains. Our algorithm
leverages methods from the explainable machine learning literature to identify the features
captured by the model. Thereafter, these learned features are corrupted and the model is
trained on the corrupted version of the data, hence enforcing new feature discovery. We
evaluated our method on a DG testbed that fairly compares DG algorithms by including
the same pre-processing pipeline and hyperparameter search. We found that our algorithm
outperforms 18 DG approaches on three different DG benchmark datasets. Furthermore,
our results have shown that the richer set of learned features also improves in-domain
generalization, suggesting the suitability of our approach for applications beyond domain
generalization to include scenarios without domain shift. In future works, it would be
interesting to explore an unsupervised variant of our approach where the model is trained
to reconstruct the corrupted features instead of predicting the correct class of the corrupted
datapoint.

Our fourth and last contribution (Chapter 5) addressed the novel data-free domain
generalization problem. While machine learning methods require data to learn, in many
real-world scenarios, data access is not possible, e.g., due to data privacy, security, or safety
concerns, or to avoid commercial disadvantage and/or reverse engineering. As a response,
Data-Free Knowledge Distillation (DFKD) methods were proposed to tackle the scenario
where the data owners are willing to share a model trained on their data instead of releas-
ing the original dataset. However, most DFKD methods address domain-specific scenarios,
while many real-world applications exhibit domain shift between training and test data.
In this work, we addressed the unexplored intersection of domain generalization and data-
free learning, which we defined as the Data-Free Domain Generalization (DFDG) problem.
DFDG investigates the practical setting where a model that is robust to domain shift is
needed and only models trained on the source domains are available. Moreover, we pro-
posed Domain Entanglement via Knowledge Amalgamation from domain-specific Networks
(DEKAN), an effective approach for this problem, as well as several baseline methods. Our
algorithm extracts and merges the knowledge contained in the available domain-specific
teacher model by generating domain-specific and cross-domain synthetic examples. The
latter are optimized by maximizing the agreement of different domain-specific teachers
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and minimizing a cross-domain feature distribution matching loss. The generated images
are then used to transfer the knowledge to a student model via multi-teacher knowledge
distillation. The student is tested on the target domain without any modification or prior
exposure to their data. Finally, we evaluated DEKAN on two DG benchmark datasets and
found that it achieved new state-of-the-art results on this challenging problem and reduced
the gap between the best DFDG baseline and the upper-bound oracle method that uses
the private source domain data. In future works, it would be interesting to study DFDG
from a differential privacy perspective, e.g., by applying DEKAN to teacher models trained
with differential privacy methods, which might prevent private information leakage to the
generated synthetic data.
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