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Abstract
Word representations are the cornerstone of modern NLP. Representing words or
characters using real-valued vectors as static representations that can capture the
Semantics and encode the meaning has been popular among researchers. In more
recent years, Pretrained Language Models using large amounts of data and creating
contextualized representations achieved great performance in various tasks such as
Semantic Role Labeling. These large pretrained language models are capable of
storing and generalizing information and can be used as knowledge bases.

Language models can produce multilingual representations while only using
monolingual data during training. These multilingual representations can be bene-
ficial in many tasks such as Machine Translation. Further, knowledge extraction
models that only relied on information extracted from English resources, can now
benefit from extra resources in other languages.

Although these results were achieved for high-resource languages, there are
thousands of languages that do not have large corpora. Moreover, for other tasks
such as machine translation, if large monolingual data is not available, the models
need parallel data, which is scarce for most languages. Further, many languages
lack tokenization models, and splitting the text into meaningful segments such
as words is not trivial. Although using subwords helps the models to have better
coverage over unseen data and new words in the vocabulary, generalizing over
low-resource languages with different alphabets and grammars is still a challenge.

This thesis investigates methods to overcome these issues for low-resource
languages. In the first publication, we explore the degree of multilinguality in
multilingual pretrained language models. We demonstrate that these language
models can produce high-quality word alignments without using parallel training
data, which is not available for many languages. In the second paper, we extract
word alignments for all available language pairs in the public bible corpus (PBC).
Further, we created a tool for exploring these alignments which are especially
helpful in studying low-resource languages. The third paper investigates word
alignment in multiparallel corpora and exploits graph algorithms for extracting new
alignment edges. In the fourth publication, we propose a new model to iteratively
generate cross-lingual word embeddings and extract word alignments when only
small parallel corpora are available. Lastly, the fifth paper finds that aggregation
of different granularities of text can improve word alignment quality. We propose
using subword sampling to produce such granularities.
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Zusammenfassung

Wortdarstellungen sind der Eckpfeiler der modernen Maschinellen Sprachver-
arbeitung. Die Darstellung von Wörtern oder Zeichen mit Hilfe von Vektoren
als statistische Repräsentationen, die die Semantik erfassen und die Bedeutung
kodieren können, ist in der Forschung weitverbreitet. In den letzten Jahren haben
vortrainierte Sprachmodelle, die große Datenmengen verwenden und kontextua-
lisierte Repräsentationen erstellen, bei verschiedenen Aufgaben, wie z.B. Semantic
Role Labeling, große Erfolge erzielt. Diese großen vortrainierten Sprachmodelle
sind in der Lage, Informationen zu speichern und zu verallgemeinern und können
als Wissensbasis verwendet werden.

Sprachmodelle können mehrsprachige Repräsentationen erzeugen, obwohl
sie beim Training nur einsprachige Daten verwenden. Diese mehrsprachigen
Repräsentationen können bei vielen Aufgaben wie der maschinellen Übersetzung
von Vorteil sein. Außerdem können Modelle zur Wissensextraktion, die nur
auf Informationen aus englischen Ressourcen basieren, nun von zusätzlichen
Ressourcen in anderen Sprachen profitieren.

Obwohl diese Ergebnisse für Sprachen mit vielen Ressourcen erzielt wurden,
gibt es Tausende von Sprachen, die nicht über große Korpora verfügen. Außerdem
benötigen die Modelle für andere Aufgaben wie die maschinelle Übersetzung,
wenn keine großen einsprachigen Daten verfügbar sind, parallele Daten, die für
die meisten Sprachen nur in geringem Umfang vorhanden sind. Außerdem gibt es
in vielen Sprachen keine Tokenisierungsmodelle, und die Aufteilung des Textes
in sinnvolle Segmente wie Wörter ist nicht trivial. Obwohl die Verwendung von
Subwords den Modellen hilft, eine bessere Abdeckung von ungesehenen Daten
und neuen Wörtern im Vokabular zu erreichen, ist die Verallgemeinerung auf
ressourcenarme Sprachen mit unterschiedlichen Alphabeten und Grammatiken
immer noch eine Herausforderung.

In dieser Arbeit werden Methoden zur Überwindung dieser Probleme für
Sprachen mit geringen Ressourcen untersucht. In der ersten Veröffentlichung unter-
suchen wir den Grad der Mehrsprachigkeit in mehrsprachigen vortrainierten Sprach-
modellen. Wir zeigen, dass diese Sprachmodelle hochwertige Wortalignierungen
erzeugen können, ohne parallele Trainingsdaten zu verwenden, welche für viele
Sprachen nicht verfügbar sind. In der zweiten Arbeit extrahieren wir Wort-
alignierungen für alle verfügbaren Sprachpaare im Public Bible Corpus
(PBC). Darüber hinaus haben wir ein Tool zur Untersuchung dieser Alignierungen
entwickelt, das insbesondere bei der Untersuchung von Sprachen mit geringen
Ressourcen hilfreich ist. Die dritte Arbeit untersucht die Wortalignierungen in
multiparallelen Korpora und nutzt Graphalgorithmen zur Extraktion neuer Aus-
richtungskanten. In der vierten Veröffentlichung schlagen wir ein neues Modell
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zur iterativen Erzeugung von crosslingual word embeddings und zur Extraktion
von Wortalignierungen vor, wenn nur kleine parallele Korpora verfügbar sind. Im
fünften Beitrag schließlich wird festgestellt, dass die Aggregation verschiedener
Textgranularitäten die Qualität der Wortalignierungen verbessern kann. Wir schla-
gen die Verwendung von sogenanntem subword sampling vor, um solche Granula-
ritäten zu erzeugen.
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Chapter 1

Introduction

1.1 Motivation

Natural language is one of the most important features of human civilization. As
a result, the understanding, processing, and generation of natural language have
been a major research topic in computer science from the start. The beginning of
natural language processing dates back to the 1950s when Alan Turing proposed
the task of automated natural language understanding and generation as a criterion
of intelligence for machines, which is now called the Turing test (Turing, 1950).

During the early years, most works on language processing were rule-based.
After the introduction of machine learning methods for language processing, statis-
tical models such as statistical machine translation (Brown et al., 1988a,b) became
popular. Since in natural languages an infinite number of different sentences are
possible, which all contain a different number of words, models have to divide the
text into smaller meaningful units, such as sentences and words, in order to process
it. Statistical models then calculate the frequency of words and their co-occurrences
in order to estimate conditional probability distributions – for example, based on
n-grams – and use them to represent words and the relationships between them.
However, these simple techniques were at their limits in many tasks, and scaling
up the size of the datasets did not result in any significant progress (Mikolov et al.,
2013a).

Word or token representation forms the basis of most modern NLP approaches.
Following this approach, the text is segmented into smaller units, which can be
words, tokens, or characters. Each segment is represented by a real-valued vector
that can encode the semantics of the segment and its context in the text (Schütze,
1992). It should be mentioned that these distributed representations can be used
as a similarity measure between different segments. Word representations were
used as the first layer of neural networks for different tasks such as part-of-speech
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1. Introduction

tagging, named entity recognition, and semantic role labeling (Collobert et al.,
2011). Although these models achieve good performance, there are several open
questions about the best way to create the underlying representations. There are
multiple challenges regarding this process:

• Handling new tokens and out-of-vocabulary (OOV) words: creating em-
beddings for new tokens that fit the representations of known tokens is a
challenge. Schick and Schütze (2019) propose a method to leverage both
the surface form and the context of the word to create embeddings, but only
investigate static representations.

• Choosing the smallest meaningful unit: while using subwords and characters
is a promising potential solution to represent the semantics of OOV words,
it is hard to capture their meaning through representation learning (Park
et al., 2021). Pretrained language models mostly use subword tokenizers
that are generated by compression algorithms such as byte pair encoding
(Sennrich et al., 2016) and WordPiece (Schuster and Nakajima, 2012), which
are not morphologically informed (Hofmann et al., 2021). As an example, in
the BERT language model (Devlin et al., 2019), the word “Superbizarre” is
represented by the subwords { “superb”, “iza”, “rre” }, while “Superb” can
have a contrastive sentiment with “Superbizarre”; this means that segmenting
words into meaningful subunits is even more challenging in multilingual
settings.

• Hierarchical representations: producing representations for a group of units
(e.g., an embedding for a sentence or phrase, which is produced by individual
word embeddings) or for subunits (e.g., generating character or subword
embeddings that are comparable with word embeddings) is desirable, but non-
trivial. As an example, the word “war” can appear as a subunit in other words,
such as “warzone”, “warehouse”, “warranty”, and “wardrobe”. Since the
language models should be able to produce the word representations from
the corresponding subunits, assigning a single representation to “war”, which
is compatible with the meanings of all the mentioned words, can be difficult.
Surprisingly, averaging word embeddings of all words in a sentence has
proven to be a strong baseline (Faruqui et al., 2015), but for long sentences,
paragraphs, and documents, averaging the representations may lose important
information.

In more recent years, pretrained language models (LMs) that create contex-
tualized word representations have achieved good performance in a wide range
of tasks (Peters et al., 2018; Devlin et al., 2019). Various factors contributed to
their exceptional performance. First, the leveraging of contextualized, rather than
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static representations, provides more information for downstream tasks. Second,
using the transformer architecture allows for more parallelization and therefore
for the training of larger models on larger amounts of data. As a consequence,
these large pretrained models are capable of storing and generalizing information
and can be used as knowledge bases (Petroni et al., 2019). Third, the usage of
subwords (Sennrich et al., 2016) has increased the coverage of the models and
provided a solution for OOV words with high performance. Previous works use
morphological information (in the form of a table of possible affixes) to increase
the coverage over OOV words in morphologically rich languages (Passban et al.,
2018), but building a large list of all possible affixes for many languages is a costly
and time-consuming task, and might not be a good solution for all phenomena for
all languages (e.g., compound words in German).

Although these contributions have paved the way for more innovations in
natural language processing, they have not had the same impact on many low-
resource languages (Blasi et al., 2021). There are more than 7000 languages in
the world (Eberhard et al., 2020), only a few of which have adequate resources
for training such models. Due to memory constraints and to overcome sparsity,
pretrained multilingual language models use subword tokenization models with
limited vocabulary sizes, which means that most languages (e.g., Khmer, Lao,
Kurdish, and Oromo) are not included in the vocabulary, and the tokens are mostly
chosen from dominant languages (the languages with the most training data, such
as English, German, and French). Additionally, for some low-resource languages
(e.g., Arabic, Finnish, Korean, Russian, and Turkish) that are included in the
vocabulary, the tokens are over-segmented, which results in poor quality token
representations (Rust et al., 2021).

Language models can produce multilingual representations even though they
only use monolingual data during training (Devlin et al., 2019; Conneau et al.,
2020a). Training multilingual models can be beneficial for many reasons. First,
the model requires less data to train and generalize on multiple languages. In
addition, the multilingual representations can be beneficial for many tasks that
directly make use of them, such as machine translation. Furthermore, knowledge
extraction models, which formerly only had access to information extracted from
resources available in one language (e.g., English), can now benefit from resources
in all languages (Roy et al., 2020).

This extends further to annotated data from high-resource languages, which can
be used to train a model that can be applied to other languages. The last advantage
of multilingual language models is that they are easier to maintain compared to
individual models for each language.
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1. Introduction

1.1.1 Approach
In this work, we approach the mentioned issues of multilingual NLP models for
low-resource languages using different methods:

• Tokenization: we examine different tokenization models for languages, to
improve the quality of their representations and enable models to reach better
performance when large training datasets are not available.

• Multilingual embeddings: we experiment with different multilingual models
in order to study the strengths and weaknesses of such models for various
languages. This will provide an insight into the effectiveness of different
features of these models and may help develop stronger models.

• Multi-parallel datasets: we investigate multi-parallel datasets and different
methods of employing them to improve the quality of representations for all
languages.

It should be noted that the above approaches are language agnostic. Despite
the fact that languages have different characteristics, which means that applying
the same procedures to all of them may lead to poor results for some, we pursue
pipelines and methods that can be applied to models effortlessly. We argue that
using language-specific rules hinders the growth and scalability of multilingual
models.

1.1.2 Research Questions
Considering the necessity of multilingual representations and models, and their
aforementioned benefits, we can pursue a range of interesting questions:

(i) Data: What kinds of datasets can help improve multilingual models? How
much data is needed for the model during training time to show desirable
performance on a language (or a language pair)?

(ii) Models: Do models require supervision in order to obtain better generaliza-
tion? Are there any additional signals from the training data that the models
can use to perform better for more languages?

(iii) Analysis: It is not clear how similar concepts are connected in different
languages. How can we study this similarity? Is multilinguality based on the
similarity of the languages? Does the model performance improve when the
information from the other languages is added?

In this work, we aim to address all of these questions.
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1.2 Foundations

1.1.3 Outline

In this chapter, we start by defining the notation used throughout this thesis and
clarifying the terminology. We then introduce the basic methods of monolingual
and multilingual representation learning, both in static and contextualized forms.
We finally describe applications that can benefit from these representations and
show common evaluation methods for them.

In Chapter 2, we analyze existing multilingual representations and their per-
formance in different languages. We show that we can obtain high-quality word
alignments from them. In the second publication, presented in Chapter 3, we
generate word alignments for all language pairs in the Parallel Bible Corpus (PBC)
and present a tool to study the connections between languages. In Chapter 4, we
propose a graph model that uses multi-parallel datasets to improve the quality of
word alignments. This method especially aims for improvements in low-resource
languages. Chapter 5 presents a model to iteratively improve the multilingual rep-
resentations and word alignments. The last paper, presented in Chapter 6, measures
the word alignment performance based on the quality of the subword tokenization.
We propose a new model which samples from several subword tokenizations and
improves the word alignment quality for multiple language pairs.

1.2 Foundations

1.2.1 Notation

With positive integers d, t ∈ N+, we denote vectors as boldface lowercase x ∈ Rd,
and matrices as boldface uppercase letters X ∈ Rt×d. The i-th element of x
can be referred to as xi and matrices can be indexed (Xij)i=1,2...,t,j=1,2,...d = X.
The i-th row and j-th column of X are denoted as Xi ∈ Rd,X?,j ∈ Rt. When
a textual unit is used to index a matrix or vector, instead of an index, it refers
to the vector or scalar corresponding to that unit; i.e., Xbook refers to the vector
Xi where index(book) = i and index() is a bijective function that assigns each
textual unit a unique integer. The cardinality of a set S is denoted by |S|, and
the Euclidean norm of a vector is ‖x‖. The transposed vector and matrix are
denoted as xᵀ and Xᵀ. We denote the cosine similarity of two vectors x,y as
cos-sim(x,y) := xᵀy/(‖x‖ ‖y‖).

1.2.2 Local and Distributed Representations

Natural language text has an order and can be interpreted as sequential data. We
can therefore denote it as (u1, u2, . . . , ut), where ui is some unit of text. The set
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Everyone enjoyed the food. I cooked pasta.Corpus

Everyone enjoyed the food. I cooked pasta.Sentences

Everyone enjoyed the food . I ...Words

Every one enjoy ed ...Subwords

E v e r y ...Characters

69 118 101 114 121 ...Bytes

Figure 1.1 – Common ways to split text data into units. The byte representation
depends on the encoding for unicode points (e.g., utf-8).

of all distinct text units is called the vocabulary V = {v1, v2, . . . , vn}. Common
choices for units are shown in Figure 1.1. In order to process units of text, these
units need to be assigned numerical representations, called embeddings. We denote
an embedding function as a map e : V → E, which assigns each unit in the
vocabulary an embedding. A simple choice of embedding function is the one-hot
encoding, which chooses E = {0, 1}|V | and assigns each element vi ∈ V the i-th
unit in E. This requires one computing element for each unit vi and is called a
local representation (Hinton et al., 1990). In contrast, distributed representations
use multiple computing elements to represent each vi. This implies that E is a
d-dimensional space with d� |V |.

For example, assume a vocabulary of n elements V = {“cook”, “cookies”,
“begin”, “began”, . . . }. We can use one-hot encodings as local representations by
assigning e(“cook”) = (1, 0, 0 . . . ), e(“cookies”) = (0, 1, 0 . . . ), etc. A possible
distributed representation could consist of d dimensional vectors, where d is the
number of all characters across all elements in V . Afterward, we assign e(vi)j =
1{cj ∈ vi} where {c1, c2, . . . , cd} is the set of all characters. This means e(vi)
assings 1 to all the characters in vi.

At first glance, it can be noticed that unlike distributed representations, in the
local representations, all vectors are orthogonal to each other, and developing a
useful similarity metric is therefore challenging. On the other hand, on distributed
representations, a metric such as cosine similarity can be used: as “cook” and
“cookies” share more common characters, their respective vectors are more similar
than “cook” and “begin”. Another advantage of this is that adding new elements to
the vocabulary does not require the embedding function to change the number of
its dimensions.

Finding a meaningful mapping for a distributed representation model is not triv-
ial. Furthermore, it is not clear how to assess a representation model. One common
way of evaluating the resulting representations is to measure their performance on
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downstream tasks. Another is to check whether the similarity measures correlate
with the semantic similarity of the text units. When looking at multilingual repre-
sentations specifically, more challenges regarding definition and evaluation arise.
In the literature, the term multilingual is sometimes used for models that can pro-
cess multiple languages with no cross-language connections, whereas crosslingual
models can leverage the connections between languages and provide a meaningful
similarity measure between text units in different languages. These two groups
naturally require different methods of evaluation.

1.3 Static Representations
A static embedding function over a vocabulary V is defined as

e : V → Rd, (1.1)

with dimensionality d. Most static representation methods use the context of
the text unit to create the embedding for that unit (Mikolov et al., 2013a). The
supporting argument is that two words that occur in similar contexts are likely to
have similar meanings. For example, the words “bank” and “money” are more
likely to occur in the same sentences, therefore their embeddings are expected to
have high similarity.

Given a sequence of text units S = (s1, s2, . . . , st) ∈ V t, the co-occurrence
matrix of the vocabulary V with size n is denoted as C ∈ Rn×n, where Cij is the
co-occurrence of si and sj in S. Formally, a text unit si is in the context of sj if
|i − j| ≤ c, where c is the size of the context window. The co-occurrence can
then be calculated as the number of times that two units occur in the same context
window. A more relaxed version of co-occurrence is calculated by the number
of times two units co-occur in the same batch of units in the corpus S, such as
sentences or paragraphs (Levy et al., 2017). Note that these co-occurrence counts
can be weighted based on the distance between words or normalized over units,
i.e., rows of C.

1.3.1 Monolingual Representations
A simple method for creating monolingual representations is to use the co-occurrence
matrix C as embeddings; i.e., the embedding function is defined as e(vi) := Ci.
Consequently, if vi and vj occur in similar contexts, the embeddings e(vi) and
e(vj) will have higher cosine similarity. Although this method is preferable to local
representations, there are certain disadvantages. The main issue is that since the
size of the vectors depends on the vocabulary size n, a large vocabulary may result
in large input size and therefore higher computational costs for the model that uses
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them. Furthermore, the addition of new units to the vocabulary will increase the
dimensionality of overall representations, resulting in a need to update the entire
pipeline. Lastly, C is sparse since most units never co-occur which may result in
problems in downstream models.

One way of overcoming this issue is the use of matrix factorization as proposed
by Schütze (1992). More specifically, using the singular value decomposition
(SVD) of C for the embeddings enables the representations to be of any chosen
dimensionality. During recent years, as neural networks became more popular in
natural language processing, the need for low-dimensional representations became
more prominent. For instance, Levy and Goldberg (2014) and Pennington et al.
(2014) introduced the use of matrix factorization for word representations.

As neural networks became more popular in natural language processing, new
methods were introduced that exploited them for the generation of representations.
Mikolov et al. (2013a) employed shallow neural networks to encode the text and
used the hidden layer representation as word embeddings, which is a widely popular
method nowadays. We move forward by discussing two such methods in more
details.

Continuous Bag-of-Words and Skip-gram

Mikolov et al. (2013a) proposed two new methods for generating word representa-
tions using neural networks. In the first method, continuous bag of words (CBOW),
the model predicts a word ui given the representations of words uj in the context
window. The context window includes words both from the left and the right of
the target word.

The second proposed architecture is skip-gram with negative sampling. Similar
to CBOW, the main idea of the model is to predict, given a word ui, whether other
units uj are likely to appear in the context window of ui. To summarize, CBOW
predicts a word given all the words in the context while skip-gram predicts all the
context words given a word.

More formally, assume two matrices E,W ∈ R|V |×d where Eui is the word
embedding of ui and Wui is the context embedding of the word. Further, consider
cp(ui) ⊂ V as the set of words in the context window of ui and let cn(ui) ⊂ V
be a set of random negative samples for the training. The skip-gram model with
negative sampling tries to minimize the following objective:

L(E,W) = −
|V |∑

i=1

∑

w∈cp(ui)
log
(
σ(Eᵀ

ui
Ww)

)

−
∑

w∈cn(ui)
log
(
σ(−Eᵀ

ui
Ww)

)
,

(1.2)

22



1.3 Static Representations

where σ : R → R is the sigmoid function. σ(x) = 1/(1 + e−x). Mikolov et al.
(2013a) used a context window size of C = 10.

Incorporating Subword Information

Both skip-gram and CBOW use only the context of the words for prediction, while
ignoring the internal structure of the words. For example, bank and banks while
spelled similarly, are assined independent vector representations.

Bojanowski et al. (2017) proposed a method that makes use of the additional
information source of subword structure. They published the implementation of
this model under the name fastText. We denote Gk : V → Ck as a function that
maps a word to the set of k-grams contained in the word. To allow the model to
distinguish prefixes and suffixes from other sequences, special boundary symbols
< and> are added at the beginning and end of words. Considering the word “book”
and k = 3 as an example, G3(book) = {<bo, boo, ook, ok>}. Let Ck be the set of
all possible n-grams in V . Each n-gram g in Ck will be represented with a vector
zg and finally, for each word ui, Eui in Eq. 1.2 will be replaced with

Eui +
∑

g∈Gk(ui)
zg. (1.3)

This allows the model to integrate the subword information into the word
representations.

1.3.2 Multilingual Representations
So far, we have described two static monolingual representation learning models.
In this section, we revisit the methods for creating multilingual embedding spaces
in more detail. For languages e and f with vocabularies Ve and Vf , let us consider
E(e) and E(f) as the static embeddings with dimensions de and df . For simplicity,
we assume de = df =: d.

It is not clear what properties should be expected from a multilingual em-
bedding space. It is desirable that the multilingual representations preserve the
monolingual features and can be used in monolingual tasks. However, high quality
multilingual representations should also exhibit transferability between different
language spaces, i.e., if a model is trained on a task with embeddings E(e), it
should be able to process E(f) for the same task without a significant decrease in
performance. One way to achieve this is to require semantically similar units to
have similar representations. For example, if monolingual embedding spaces for
English and German are learned separately, there is no correlation between the
similar words in the two languages. For instance, E

(e)
drive and E

(f)
fahren are in different
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law
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judge
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judge

W

Figure 1.2 – Mapping a German monolingual embedding space into English
embeddings using a rotation matrix W. Figure taken from Dufter (2021).

spaces and therefore have random cosine similarity. However, in a multilingual
space with embeddings Ee+f , cos-sim(Ee+f

drive,E
e+f
fahren) should be close to 1.

Mapping Approach

One popular approach to the creation of multilingual embedding spaces is to
individually learn monolingual representations E(e),E(f) for both languages, and
then learn a mappingw : Rd → Rd, which will be applied to one or both embedding
spaces such that Ē(f)

i := w(E
(f)
i ), and E(e) and Ē(f) are in a multilingual space.

This is illustrated in Figure 1.2. This mapping approach relies on the assumption
that the monolingual spaces have similar structure and a mapping can therefore
properly transfer one embedding space to the other (Vulić et al., 2020). As the early
research on this approach was done on European languages, which have similar
structure and training data (Mikolov et al., 2013b), the facts that many languages
have different structures and that their training data comes from various domains
were neglected.

Assume that a bilingual dictionary is available for the target pair of languages

D := {(u(e)1 , u
(f)
1 ), (u

(e)
2 , u

(f)
2 ), . . . , (u(e)m , u(f)m )}, (1.4)

where each tuple has a unit from both languages and m is the number of entries in
the dictionary. Further, consider creating modified embedding matrices Ẽ(e), Ẽ(f)

that only contain embeddings from the units in D. A function w(x) = Wᵀx with
W ∈ Rd×d, can be used for the mapping by minimizing the loss function
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L(W) =
1

2

m∑

i=1

∥∥∥Ẽ(e)
i W − Ẽ

(f)
i

∥∥∥
2

. (1.5)

This optimization problem is an instance of the Procrustes Problem. Mikolov
et al. (2013b) used a gradient descent method for this optimization and showed
that the multilingual spaces created by this method can perform well for word
translation.

An extension to this approach is to constrain the matrix W to be orthonormal,
i.e., WᵀW = I (Xing et al., 2015). This transformation does not modify the
structure of the embedding space which is desirable. This constraint will change
Eq. 1.5 to the Orthogonal Procrustes Problem (Schönemann, 1966), which can
be solved with singular value decomposition (SVD). By computing the SVD of
matrix (Ẽ(f))ᵀẼ(e) that is (Ẽ(f))ᵀẼ(e) = UΣVᵀ, with E,V as complex unitary
matrices, and Σ as a rectangular diagonal matrix with non-negative real numbers
on the diagonal, the transformation is given by W∗ = VUᵀ.

The aforementioned approaches are effective when a bilingual dictionary is
available. In the unsupervised setting, the underlying challenge is that E(e) and
E(f) are unaligned across both axes: neither the ith vocabulary item E

(e)
i∗ and E

(f)
i∗

nor the jth dimension of the embeddings E
(e)
∗j and E

(f)
∗j are aligned.

Since creating these dictionaries is challenging for many language pairs, un-
supervised embedding alignment approaches gained popularity, in particular the
approach introduced by Lample et al. (2018). They proposed a generative adver-
sarial learning method following the training method of Goodfellow et al. (2014).
Consider a discriminator model with parameters θD, where fθD(z) shows the prob-
ability of vector z being an embedding from language e. Values output by the
discriminator that are closer to zero show that z is an embedding from language f .
The discriminator and the mapping losses are written as

LD(θD|W) = − 1

n

n∑

i=1

log
(
fθD(WE

(e)
i )
)
− 1

m

m∑

i=1

log
(

1− fθD(E
(f)
i )
)

(1.6)

LG(W|θD) = − 1

n

n∑

i=1

log
(

1− fθD(WE
(e)
i )
)
− 1

m

m∑

i=1

log
(
fθD(E

(f)
i )
)

(1.7)

The transformation W is trained with the mapping loss so that the discriminator
is unable to predict the original language of an embedding. During the training,
both the discriminator and the transformation matrix are trained alternatingly with
gradient descent. The authors also propose a refinement procedure that uses well-
aligned units as a noisy dictionary which is used in a Procrustes solution to find a
final transformation.
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Artetxe et al. (2018) shows that the generator-discriminator model is rather
unstable and frequently fails to find a transformation. Thus they introduced a model
called Vecmap that exploits the structural similarity of the embeddings and a robust
self-learning algorithm that iteratively improves this solution.

Joint Learning

The main assumption of the mapping approaches is that the embedding spaces
E(e),E(f) are monolingual representations that have been already learned individ-
ually for both languages. Joint learning approaches introduce other embedding
learning algorithms that aim to learn E(e),E(f) simultaneously in the same multi-
lingual space.

Many joint learning methods employ a parallel corpus with two or more lan-
guages. Assume that this corpus consists of n parallel sentences in two languages
S(e) = (s

(e)
1 , s

(e)
2 , . . . , s

(e)
n ), S(f) = (s

(f)
1 , s

(f)
2 , . . . , s

(f)
n ) where each sentence pair

s
(e)
i = (u

(e)
1 , . . . , u

(e)

l
(e)
i

), s
(f)
i = (u

(f)
1 , . . . , u

(f)

l
(f)
i

) consists of two sentences that are

translations of each other, and l(e)i , l
(f)
i are the number of units in each sentence.

The Parallel Bible Corpus (PBC) (Mayer and Cysouw, 2014) and the Proceedings
of the European Parliament (Koehn, 2005) are two examples of a parallel corpus.
Both of these corpora are also multi-parallel, meaning that the translations of each
sentence is provided in multiple languages, more than a thousand in the case of
PBC.

As a simple approach of joint learning, Vulić and Moens (2015) proposed to cre-
ate pseudo-bilingual sentences, where the sentences s(e)i and s(f)i are concatenated
and randomly shuffled. For instance, with two sentences
“Ich habe eine Katze” and “I have a cat”, the pseudo-bilingual sentence could be
“eine I Katze habe Ich cat a have”. Afterwards, a monolingual learning algorithm,
such as skip-gram, is trained on the resulting corpus. The intuition behind this
approach is that the monolingual learning algorithms treat the sentences as context
for words. Creating pseudo-bilingual sentences will allow the model to treat the
words from all languages as the context. In the example sentence, the tokens
have and habe will more likely occur in similar contexts and therefore will have
similar vector representations. While there are certainly better ways of constructing
pseudo-bilingual sentences, this work only considered random shuffling. Other
works learn distinct embedding models for the source and the target languages
that keep the sentence orders, while jointly learning a cross-lingual regularizer,
enforcing word pairs aligned in the parallel text to have similar representations
(Klementiev et al., 2012; Gouws et al., 2015). The word pairs are obtained from a
dictionary with 1:1 mappings between source and target words.

Levy et al. (2017) proposed an algorithm based on sentence IDs, where the
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intuition is similar to pseudo-bilingual sentences: units across languages that occur
in similar sentences in a parallel corpus are likely to have a similar meaning. In this
approach, instead of using the individual words as context, the parallel sentences
will be represented with a special token and used as context. A new corpus will be
constructed, where each sentence consists of a pair of tokens. The first token in
each pair is the special token of the parallel sentence and the second token is one
of the words in that sentence. After training the skip-gram learning method on the
final corpus, the words that occur in similar sentences will have more matching
sentence IDs as their context and thus similar vector representations.

Another approach for joint training uses matrix factorization to create the
representations. In this approach, an inverted index of words and sentences is
created, where the vector for each word has the same dimensionality as the number
of sentences in the corpus. Subsequently, the matrix factorization is used to reduce
the dimensionality of word vectors to smaller numbers (Søgaard et al., 2015;
Jalili Sabet et al., 2016).

1.4 Contextualized Representations

Static representations are created as mappings e : V → Rd, which assign a
particular vector to each unit in the vocabulary (Mikolov et al., 2013a). To give
an example, in static models, the unit bank is always represented by the same
embedding vector, whether it occurs in the phrase river bank (where its meaning
is “the land alongside or sloping to a river or lake”) or the bank account (where
its meaning is “a financial establishment”). It is up to debate whether aggregating
multiple meanings of a unit and representing them with a single embedding vector
is problematic. Neelakantan et al. (2014) approaches this issue with learning
separate vectors for each word sense.

Contextualized representation methods attempt to take into account the context
in which a unit appears (McCann et al., 2017). We can define a contextualized
embedding function as

e : V tmax → Rtmax×d, (1.8)

where tmax is the maximum number of units that the function can process at once.
This number can vary between the size of a phrase, a sentence, a paragraph or a
document. Therefore, the contextualized embedding of the unit ui in a sentence
(u1, . . . , ui, . . . ut) depends on all other units in the sentence. In the case of the
above example, the two different contexts will result in different contextualized
representations for the unit bank.

The model proposed by Peters et al. (2017) uses bidirectional LSTMs (Hochre-
iter and Schmidhuber, 1997) to process the text in a forward and reverse fashion,
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which means the model can potentially use all the previous and all the following
words as context. Recent transformer-based language models, such as Devlin et al.
(2019), use self-attention operations, and their computation costs scale quadrati-
cally with the sequence length. This means that these models are not optimized to
process long sequences. A solution for this issue is to reduce their cost closer to
linear complexity (Beltagy et al., 2020).

1.4.1 Monolingual Representations
This section presents various methods of learning contextualized monolingual
representations.

Pretrained Language Models

Peters et al. (2017) is one of the first works that attempted to learn contextualized
vector representations for words. The key idea is to train a neural language model
without the need for a labeled training dataset. The hidden states of the model can
then be used as contextualized embeddings.

A language model is a probability distribution over strings of text. It takes
unstructured text as input for training and estimates the probability of a sequence of
units occurring in that text. Formally, it models the probability P (u1, u2, . . . , ut).
As text is sequential in nature and in order to simplify the estimation of the
probability distribution, the chain rule of probabilities is commonly applied in
various approaches. The resulting forward language model is given by

P (u0, u1, u2, . . . , ut, ut+1) = P (u0)
t∏

i=0

P (ui+1|u≤i), (1.9)

where u≤i are all tokens with index j ≤ i, and u0, ut+1 are extra tokens that indicate
the start and end of a sequence. Analogously, the backward language model can be
formulated as

P (u0, u1, u2, . . . , ut, ut+1) = P (ut+1)
t∏

i=0

P (ui|u≥i+1). (1.10)

The probability model Pθ(ui|u<i) can be parameterized with different model
architectures such as recurrent neural networks (RNNs). A RNN is a model that is
recursively computed as

h(i) = σh(W
(u)e(i) + W(h)h(i−1) + b(h)) (1.11)

y(i) = σy(W
(y)h(i) + b(y)) (1.12)
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for i = 1, . . . , n, where Pθ(ui|u<i) = ŷ
(i)
ui is the probability of the unit ui occurring

at position i,

θ = (W(u),W(h) ∈ Rd×d; h(0),b(h) ∈ Rd; E,W(y) ∈ Rn×d; b(y) ∈ Rn) (1.13)

are the parameters of the model. The W’s are weight matrices and the b’s are
biases. e(i) is an embedding vector for the unit ui, i.e., e(i) = Eui , h(i) is the
hidden layer representation of the unit ui, and σ : Rm → Rm are activation
functions. A common choice is to apply tangens hyperbolicus to the hidden
layer vectors σh(x)k = tanh(xk) component-wise, and the softmax function
σy(x)k = exk/

∑n
i=1 e

xi to generate the probability over tokens in the output vector.
Negative cross entropy between the ŷ(i) and the observed units is commonly used
as the objective function. The latter is formulated as:

L(θ, U) = − 1

m

m∑

k=1

tk∑

i=1

CE(y(i), ŷ(i)) = − 1

m

m∑

k=1

tk∑

i=1

log(ŷ(i)
ui

), (1.14)

where U = (s1, . . . , sm) is a corpus with m sentences with sk = (u1, . . . , utk),
and y(i) is a one-hot vector. This objective function can then be minimized using
stochastic gradient descent. One of the popular variants of RNN models is Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) which has
shown good performance for language modeling.

Using either a forward or a backward language model neglects one side of the
sequence while creating the contextualized representations. Peters et al. (2017)
proposed to train a language model that consists of both forward and backward
LSTMs. They considered the concatenation of the hidden states of the LSTMs as
embeddings and used them together with static embeddings as input to models for
solving downstream tasks, such as named entity recognition. This approach yielded
state of the art performance and was further developed in their next paper: Peters
et al. (2018) introduced deep contextualized embeddings called Embeddings from
Language Models (ELMo), which outperformed the state of the art performance
across many tasks. In ELMo, bidirectional LSTMs are trained with the task of
language modeling.

The advantage of these models is that language models do not need any man-
ually labeled data and can be (pre-)trained on large amounts of text data, which
could for example be sourced from the Internet. These models can then be used for
downstream tasks. This motivates the name Pretrained Language Models (PLMs).

Transformer Models

Recurrent neural networks take advantage of the inherent sequential nature of text.
However, studies show that recurrent neural networks cannot properly propagate
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a) Scaled Dot-Product
Attention

b) Multi-Head Attention c) Transformer Encoder
Block

Figure 1.3 – Transformer model. a) Scaled Dot-Product Attention. b) Multi-
Head Attention consists of several attention layers running in parallel. c)
Schema of a transformer encoder block that can be repeated for l layers.
Figure taken from Vaswani et al. (2017)

information across long spans of text, as analyzed for example by Cho et al. (2014)
for machine translation. Bahdanau et al. (2015) proposed using other extensions
such as attention to overcome this issue.

A key milestone in this area is Vaswani et al. (2017), where the authors intro-
duced a machine translation system that only uses the attention mechanism, and
this model exhibits superior performance compared to recurrent neural networks.
They proposed to stack Transformer Encoder Blocks as shown in Figure 1.3. These
blocks are functions tθ : Rn×d → Rn×d with tθ(X) =: Z, which is computed as
follows:

Q,K,V = XW(q),XW(k),XW(v)

A = Softmax(
QKᵀ
√
dh

)

M = AV

O = LayerNorm1(M + X)

F = ReLU(OW(f1) + b(f1))W(f2) + b(f2)

Z = LayerNorm2(F + O),

(1.15)

where Q,K,V are respectively projections of the embeddings for queries, keys,
and values, A is the self attention matrix, and the softmax function is applied
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row-wise. LayerNorm(X)i = g� (Xi−µ(Xi))/σ(Xi) +b is layer normalization
with µ(x), σ(x) returning the mean and standard deviation of a vector and g, b as
parameters (Ba et al., 2016), and ReLU(X) = max(0,X). The parameters of such
a block are

θ = (W(q),W(k),W(v) ∈ Rd×d; g(1),g(2),b(1),b(2) ∈ Rd;

W(f1) ∈ Rd×df ; W(f2) ∈ Rdf×d; b(f1) ∈ Rdf ; b(f2) ∈ Rd),
(1.16)

where d is called the hidden dimension, df the intermediate dimension, and n is
the sequence length. Multi-head attention runs several attention layers in parallel
and concatenates their results. In this setting, each of the h heads learns its own
projection matrices for queries, keys, and values, that is W(q),W(k),W(v) ∈ Rd×dh

where d = hdh. The output matrices M(h) ∈ Rt×dh are then concatenated along
the second dimension to obtain the final M.

As an example, consider how a Transformer is applied to text data, for the
sequence U = (u1, u2, . . . , ut). The token embeddings T ∈ Rt×d are created by
a projection of the token IDs to the embedding matrix E ∈ Rv×d, where v is the
vocabulary size. The Transformer block, specifically the multihead attention, does
not take into consideration the position information in a sequence and is therefore
invariant to reorderings of the input. The way the attention mechanism is designed
makes it suitable to operate on sets (Lee et al., 2019). Therefore, the sequential
information has to be injected into the model with a different way. The simplest
method is to add positional encodings to the input embeddings by creating a matrix
of absolute position embeddings P ∈ Rt×d, and changing the final input to Tθ to
U + P. In some models additional embeddings such as language embeddings or
layer embeddings are also added to the input.

Transformer-Based Language Models

Devlin et al. (2019) proposed a new language model Bidirectional Encoder Rep-
resentations from Transformers (BERT). BERT is pretrained on a new variant of
language modeling. Most of the previously proposed language modeling meth-
ods use the sequential nature of text and learn a unidirectional model. The main
innovation of BERT is that it is not a unidirectional language model, but rather
bidirectional. Instead of only utilizing the right or left context of a word, BERT
has access to context words on both sides simultaneously. This is realized by the
use of masked language modeling (MLM).

Consider a corpus U = (u1, . . . , ut). The MLM objective is to receive a cor-
rupted version of U , here U ′, as input, and attempt to reconstruct U . The corrupted
input U ′ is created by randomly altering some tokens in U . For instance, in Devlin
et al. (2019), each token ui has the probability 0.15 to be corrupted, and the model
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learns to reconstruct such tokens. The possible changes applied to corrupted tokens
are: (i) replacing it with the special token [MASK], (ii) replacing it with another
random token from the vocabulary, and (iii) keeping the token as is. This process
can be defined by two sequences of independent and identically distributed (iid)
random variables (R

(1)
i )i=1,...,t, (R

(2)
i )i=1,...,t with uniform distributions on [0, 1].

Then U ′ is created by

u′i =





[MASK] if R(1)
i ≤ ρ1 ∧R(2)

i ≤ ρ2

ur if R(1)
i ≤ ρ1 ∧ ρ2 < R

(2)
i ≤ ρ3

ui if R(1)
i ≤ ρ1 ∧ ρ3 < R

(2)
i

ui otherwise,

(1.17)

where ur is a randomly sampled unit from the vocabulary and [MASK] is a special
token. The values used in Devlin et al. (2019) are ρ1 = 0.15, ρ2 = 0.8, ρ3 = 0.9.
The MLM uses this modified corpus as input to a Transformer. The original
input X can then be used as the targets for prediction. The final hidden vectors
corresponding to the corrupted tokens are fed into an output softmax over the
vocabulary. In contrast to previous language modeling methods, the model only
predicts the masked tokens, rather than reconstructing the entire input. Although
MLM is useful for learning a bidirectional pre-trained model, one downside is
that this creates a mismatch between pre-training and fine-tuning. This is caused
by the fact that the [MASK] tokens only appear during pre-training and do not
appear during fine-tuning. To mitigate this issue, the corrupted tokens are not
always replaced with [MASK] tokens, but instead are sometimes left unchanged or
replaced by a random token. All of the corruped tokens are then used to predict the
original token with cross entropy loss.

Other technical aspects were taken into consideration during training. Using
words as the basic units requires large vocabularies, which leads to high memory
consumption. To mitigate this, BERT uses the wordpiece tokenizer (Schuster and
Nakajima, 2012) to split the text into subword units. With this, the vocabulary size
can be adjusted before training the model, which reduces the memory requirements
of the embedding matrix E, while at the same time enabling the model to cover
various text sequences. For pre-training, the Adam optimizer (Kingma and Ba,
2015) is used and regularization methods such as dropout (Srivastava et al., 2014)
are applied. The model also includes a second loss term, next sentence prediction,
which aims at generating better sentence representations. However, experiments
later showed that it has no impact on the performance of the model (Liu et al.,
2019). Hence, in the follow-up works, this term is mostly excluded from the overall
loss.
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1.4.2 Multilingual Representations

BERT presented a method for learning high-quality contextualized representa-
tions. This section discusses methods for training multilingual contextualized
representations.

Joint Training

The authors of Devlin et al. (2019) have also published a multilingual version of
BERT (mBERT). This model is trained on Wikipedia across multiple languages,
selected for largest amount of data. In case of mBERT, the 104 languages with the
largest amount of available text on Wikipedia were used for training. The articles
from these languages are concatenated and shuffled and a shared vocabulary across
all these corpora is learned. Afterwards, a standard BERT model is trained on this
data.

In this method, the model does not use any explicit crosslingual supervision.
This means no parallel data or dictionary is used, and the loss function does not
include any term that contains special signals for multilinguality. The underlying
idea behind the multilinguality in this approach is that the tokens in the shared
vocabulary can appear in multiple languages. As an example, the word find appears
both in the English word finding and the German word finden. Experiments show
that this model yields promising multilingual representations when evaluated with
the methods described in Section 1.5.

Other works attempted to further improve mBERT’s multilinguality. Conneau
and Lample (2019) proposed a new loss term, Translation Language Modeling
(TLM) that uses parallel sentences. In this model, a pair of parallel sentences are
used as the input of the Transformer with a similar task of predicting the masked
tokens, so that the model can also use the sentence in the other language as context.
The intuition is that this can help increase the multilinguality of the model. In
follow-up work, Conneau et al. (2020a) propose (XLM-R), which does crosslingual
learning at scale by using more data, and drops the next sequence prediction loss
term. Similar to static representation mapping approaches, Conneau et al. (2020b)
show that monolingual contextualized embeddings can also be mapped into a
common embedding space using linear transformations.

1.5 Evaluation

Previous sections have discussed how to learn static and contextualized represen-
tation models for both monolingual and multilingual settings. In this section we
study different methods to evaluate the quality of such representations.
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There are intrinsic and extrinsic evaluations for assessing the quality of mono-
lingual static embeddings. The intrinsic evaluations include tasks for analyzing
different properties of the embeddings, and they range from word similarity, e.g.,
(Hill et al., 2015; Gerz et al., 2016), and word analogy (Mikolov et al., 2013c; Glad-
kova et al., 2016), to correlation with linguistic features (Tsvetkov et al., 2015). In
extrinsic evaluations, the main objective is a downstream task and the embeddings
are used as input to a model that solves the task. Examples of downstream tasks
are part-of-speech tagging and named entity recognition.

Monolingual contextualized embeddings can also be evaluated using perplexity
in language modeling. However, to better understand the quality of the contextual-
ization, there is often a range of extrinsic tasks for which the model is finetuned
and then evaluated, e.g., the GLUE or SuperGLUE benchmarks (Wang et al., 2018,
2019) for natural language understanding, SQUAD and SQUAD 2.0 benchmarks
(Rajpurkar et al., 2016, 2018) with questions for machine comprehension of text,
the natural language inference (NLI) task (Bowman et al., 2015), and common
tasks like named entity recognition.

Multilingual representations can be applied to many use cases, which in turn
can be used for evaluating the representation models.

1. Translation. The representations of text units such as words, phrases, or
sentences, that are semantically similar, should be close to each other across
languages. This means that these representations can be used for translation
or other applications including word alignment and crosslingual sentence
retrieval.

2. Zero-shot transfer. Consider a model that is only trained on a specific
dataset or language, e.g., English, for a downstream task such as part-of-
speech tagging. If this model, without additional training, can be applied to
other languages and is able to correctly tag words in non-English sentences,
the model is performing zero-shot transfer across languages. Using multilin-
gual representations can enable the models to achieve this. This is a desirable
quality of these representations since annotating training data, especially for
more complex tasks, requires labor, which is costly and time-consuming. If
we aim to annotate data for tens or hundreds of languages, the costs quickly
become infeasible. For this reason, zero-shot transfer is a common trend in
modern NLP.

3. Low-resource coverage. Training datasets of various tasks are mostly an-
notated for the English language. On the other hand, a large number of
languages are low-resource: there are only a few or no datasets available for
them. One of the main objectives of multilingual NLP is to use the represen-
tations to make a multilingual model that exhibits sensible improvements in
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Ski excursions are excellent .

Skiausflüge sind hervorragend .

Figure 1.4 – Example of a word alignment. Figure taken from Jalili Sabet et al.
(2020)

performance for low-resource languages. Another advantage of such models
is that it is much easier to maintain a single model than to have multiple
language-specific models.

In this thesis we intend to cover all these use cases with different experiments:
the word alignment task covers the first use case as an intrinsic evaluation, and
part-of-speech tagging with annotation projection as an extrinsic evaluation covers
the other two use cases.

1.5.1 Word Alignment
Word alignment is a task where translations of words in two parallel sentences
should be identified, as in the example shown in Figure 1.4. Consider a corpus
with parallel sentences U = {(s(e)1 , s

(f)
1 ), (s

(e)
2 , s

(f)
2 ), . . . , (s

(e)
m , s

(f)
m )}. For a parallel

sentence pair s(e)i , s
(f)
i , the word alignment of the whole sentence can be considered

as a bipartite graph, where the units in s(e)i and s(f)i are the nodes in the graph
denoted by V (e)

i , V
(f)
i . In some datasets, instead of one type of alignment, there are

two sets of sure and possible edges, Si, Pi ⊂ V
(e)
i × V (f)

i where Si ⊂ Pi. The task
is to automatically predict the edges that were marked as correct in the manually
created gold standard. The model generates a set of prediction edges Ai, while
the edge sets without index denote the union of word alignments across sentences,
i.e., S =

⋃m
i=1 Si. Standard evaluation metrics are then precision, recall, F1 and

alignment error rate (AER) (Och and Ney, 2000) computed by

precision =
|A ∩ P |
|A| , recall =

|A ∩ S|
|S| ,

AER = 1− |A ∩ S|+ |A ∩ P ||A|+ |S| ,

F1 =
2 precision× recall
precision + recall

.

(1.18)

Since word alignment is also an important step in the statistical machine
translation (SMT) pipeline, there are several works that proposed different methods
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for generating high quality word alignments. Most statistical methods are either an
implementation of the IBM alignment models or inspired by them (Brown et al.,
1993). Namely, Giza++ (Och and Ney, 2003), fast-align (Dyer et al., 2013), as well
as follow-up models such as eflomal (Östling and Tiedemann, 2016), are widely
used for word alignment.

More recently, several works attempted to use multilingual representations for
this task. In this set of approaches, a simple method to induce the alignment edges
could be to match each unit with another unit in the parallel sentence, such that the
corresponding embeddings have the highest similarity. Most such models require
training or finetuning on the same task, or similar tasks such as translation. Garg
et al. (2019) pursued a multitask approach for alignment and translation, while
in other works only the word alignment task is used for end-to-end training or
finetuning, and only new loss terms help the model to learn better representations
(Zenkel et al., 2020; Dou and Neubig, 2021).

Both statistical and neural approaches have their advantages for different lan-
guage pairs. However, the output alignments of these models can be aggregated
to form an ensemble method for word alignment with better performance (Stein-
grímsson et al., 2021).

1.6 Conclusion

This introductory chapter has described the main concepts of multilingual rep-
resentations that are relevant to this thesis. We presented mathematical notation
and linguistic foundations, which were used to introduce the existing static and
contextualized representation learning methods. We discussed the approaches for
achieving multilinguality through joint training or mapping. Finally, we described
the evaluation methods with possible use cases for multilingual models. The
next chapters use the presented methods in a series of research papers and aim to
improve the performance of different tasks for low-resource languages.

1.6.1 Contributions
In light of the three research questions posed at the beginning, we can categorize
and summarize our contributions in this thesis as follows.

i) Data: In Chapter 2, we introduce SimAlign, a high-quality word alignment
tool that uses static and contextualized embeddings and does not require
parallel training data. We examine multiple datasets and show that, with only
using monolingual training data, our unsupervised model performs better
than popular supervised models. We train statistical word aligners, such as
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fast-align, eflomal, and Giza++, with several training data sizes and show the
effect of training data size on word alignment performance. Our experiments
reveal that when we use SimAlgin with Vecmap embeddings, the alignment
quality is on par with fast-align trained on ten thousand sentence pairs, while
using SimAlign with mBERT performs better than all statistical aligners
trained with more than 1 million sentence pairs. In Chapter 4, we show that
training on multi-parallel corpora can enable the word aligner to improve its
performance over bilingual corpora. Interestingly, the experiments reveal
that multi-parallel corpora created by translations can still contribute to better
alignment performance for the target language pair.

ii) Models: We incorporate various signals into existing word alignment models
and introduce a new word aligner, SimAlign, that does not require supervi-
sion or parallel training data. We use contextualized representations trained
on monolingual corpora as features for a word aligner (Chapter 2). We study
the graph structures and use parallel sentences in a multi-parallel corpus
for extra information in order to generate better bilingual word alignments
(Chapter 4). In another work, subword structures and different granularities
of text are studied (Chapter 6). We show that the aggregation of subword
samplings of a language (subword models with different vocabulary sizes)
can improve the quality of word-level alignments. We improve the state-
of-the-art for the word alignment task in several evaluation datasets, while
aiming to use little or no training data (Chapter 2, Chapter 5).

iii) Analysis: We build a tool named ParCourE to study languages and their word
connections to better understand the quality of representations (Chapter 3).
ParCourE can also help linguists as an interactive explorer for studying
low-resource languages in PBC. In Chapter 4, we investigate the effect
of anchor languages on bilingual word alignments of a target language
pair and show that using similar languages as anchors is more effective
for improving performance. Furthermore, we explore the effect of using
similar granularities of text learned for a language pair and applying it to
other languages for word alignment (Chapter 6). The experiments show that
such features can be transferred to similar languages and improve the model
performance.

1.6.2 Future Work
We now describe future work and related literature that address our research
questions.

Training a pretrained multilingual language model that covers more than 1000
languages can be beneficial for the performance of NLP tasks in low-resource
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languages. The popular pretrained language models mostly use some form of
subword tokenization. Since large amounts of text are not available for low-
resource languages, this puts such languages at a disadvantage when subword
tokenization methods are learning a shared vocabulary (Maronikolakis et al., 2021).
One way to solve this issue is to use character-level encoders. Other works have
tried to replace subwords by using visual representations (Salesky et al., 2021),
downsampling characters (Clark et al., 2021), and using deep character encoders
(Xue et al., 2021). These models need large datasets for training. The next step
towards character-level encoders can be to use multi-parallel corpora, and the
bilingual signals in such corpora, to enable the models to converge faster and with
less training data.

Our work in Chapter 4 shows that using multi-parallel corpora can boost the
performance of word alignment for low-resource and distant languages by using
other languages as anchors. We used graph algorithms that only rely on the
information from the graph of words. This means that important considerations of
word aligners, such as the distortion (introduced in IBM Model 2), and the context
of the sentence, are neglected in the current model. Having a better encoding of
the graph of languages might be beneficial for creating better word representations
(nodes in the graph), and alignment prediction (edges in the graph). Using graph
neural networks (GNN) (Scarselli et al., 2009) could be the key to solving this
challenge. The GNN encoders can take the representations of words and their
positions as input. It is also possible to include additional information as input
to GNNs, such as part-of-speech tags of the words and the dependency trees of
the sentences. Furthermore, by adding language identifiers as features for word
representations, the GNN encoder can learn which anchor languages to use for
each word. All of this suggests that by using proper features and models, the
performance of word alignment can be further improved.

Using the graph of multiple languages can also be used for tasks other than
word alignment. The word alignment edges can be used to project tags, such as
part-of-speech tags and semantic role labels, from several languages to a target
language (Agić et al., 2016). This method can create a training dataset for a
target low-resource language while only parallel data and proper taggers for other
languages (e.g., English and German) are available. It is worth investigating the
effect of using GNN encoders for annotation projection and creating training
datasets for all languages in a multi-parallel corpus such as PBC.
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Chapter 2

SimAlign: High Quality Word
Alignments Without Parallel
Training Data Using Static and
Contextualized Embeddings
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Abstract

Word alignments are useful for tasks like sta-
tistical and neural machine translation (NMT)
and cross-lingual annotation projection. Statis-
tical word aligners perform well, as do meth-
ods that extract alignments jointly with trans-
lations in NMT. However, most approaches
require parallel training data, and quality de-
creases as less training data is available. We
propose word alignment methods that require
no parallel data. The key idea is to lever-
age multilingual word embeddings – both
static and contextualized – for word alignment.
Our multilingual embeddings are created from
monolingual data only without relying on any
parallel data or dictionaries. We find that align-
ments created from embeddings are superior
for four and comparable for two language pairs
compared to those produced by traditional sta-
tistical aligners – even with abundant parallel
data; e.g., contextualized embeddings achieve
a word alignment F1 for English-German that
is 5 percentage points higher than eflomal, a
high-quality statistical aligner, trained on 100k
parallel sentences.

1 Introduction

Word alignments are essential for statistical ma-
chine translation and useful in NMT, e.g., for im-
posing priors on attention matrices (Liu et al.,
2016; Chen et al., 2016; Alkhouli and Ney, 2017;
Alkhouli et al., 2018) or for decoding (Alkhouli
et al., 2016; Press and Smith, 2018). Further, word
alignments have been successfully used in a range
of tasks such as typological analysis (Lewis and
Xia, 2008; Östling, 2015b), annotation projection
(Yarowsky et al., 2001; Padó and Lapata, 2009;
Asgari and Schütze, 2017; Huck et al., 2019) and
creating multilingual embeddings (Guo et al., 2016;
Ammar et al., 2016; Dufter et al., 2018).

∗ Equal contribution - random order.

Der Pinguin Nils Olav wurde vom norwegischen König zum Ritter geschlagen

Pingvin Nils Olav Norvegiya qiroli tomonidan ritsar edi

Sir Nils Olav III. ですペンギン knighted by el rey noruego

Nils Olav der Dritte is a penguin nominato cavaliere par un roi norvégien

Figure 1: Our method does not rely on parallel train-
ing data and can align distant language pairs (German-
Uzbek, top) and even mixed sentences (bottom). Exam-
ple sentence is manually created. Algorithm: Itermax.

Statistical word aligners such as the IBM mod-
els (Brown et al., 1993) and their implementations
Giza++ (Och and Ney, 2003), fast-align (Dyer
et al., 2013), as well as newer models such as eflo-
mal (Östling and Tiedemann, 2016) are widely used
for alignment. With the rise of NMT (Bahdanau
et al., 2014), attempts have been made to interpret
attention matrices as soft word alignments (Cohn
et al., 2016; Koehn and Knowles, 2017; Ghader
and Monz, 2017). Several methods create align-
ments from attention matrices (Peter et al., 2017;
Zenkel et al., 2019) or pursue a multitask approach
for alignment and translation (Garg et al., 2019).
However, most systems require parallel data (in suf-
ficient amount to train high quality NMT systems)
and their performance deteriorates when parallel
text is scarce (Tables 1–2 in (Och and Ney, 2003)).

Recent unsupervised multilingual embedding al-
gorithms that use only non-parallel data provide
high quality static (Artetxe et al., 2018; Conneau
et al., 2018) and contextualized embeddings (De-
vlin et al., 2019; Conneau et al., 2020). Our key
idea is to leverage these embeddings for word align-
ments – by extracting alignments from similarity
matrices induced from embeddings – without rely-
ing on parallel data. Requiring no or little paral-
lel data is advantageous, e.g., in the low-resource
case and in domain-specific settings without par-
allel data. A lack of parallel data cannot be easily
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remedied: mining parallel sentences is possible
(Schwenk et al., 2019) but assumes that compara-
ble, monolingual corpora contain parallel sentences.
Further, we find that large amounts of mined par-
allel data do not necessarily improve alignment
quality.

Our main contribution is that we show that
word alignments obtained from multilingual pre-
trained language models are superior for four and
comparable for two language pairs, compared to
strong statistical word aligners like eflomal even
in high resource scenarios. Additionally, (1) we
introduce three new alignment methods based on
the matrix of embedding similarities and two ex-
tensions that handle null words and integrate posi-
tional information. They permit a flexible tradeoff
of recall and precision. (2) We provide evidence
that subword processing is beneficial for aligning
rare words. (3) We bundle the source code of our
methods in a tool called SimAlign, which is avail-
able.1 An interactive online demo is available.2

2 Methods

2.1 Alignments from Similarity Matrices

We propose three methods to obtain alignments
from similarity matrices. Argmax is a simple base-
line, IterMax a novel iterative algorithm, and Match
a graph-theoretical method based on identifying
matchings in a bipartite graph.

Consider parallel sentences s(e), s(f), with
lengths le, lf in languages e, f . Assume we have
access to some embedding function E that maps
each word in a sentence to a d-dimensional vector,
i.e., E(s(k)) ∈ Rlk×d for k ∈ {e, f}. Let E(s(k))i
denote the vector of the i-th word in sentence s(k).
For static embeddings E(s(k))i depends only on the
word i in language k whereas for contextualized
embeddings the vector depends on the full context
s(k). We define the similarity matrix as the matrix
S ∈ [0, 1]le×lf induced by the embeddings where
Sij := sim

(
E(s(e))i, E(s(f))j

)
is some normal-

ized measure of similarity, e.g., cosine-similarity
normalized to be between 0 and 1. We now de-
scribe our methods for extracting alignments from
S, i.e., obtaining a binary matrix A ∈ {0, 1}le×lf .

Argmax. A simple baseline is to align i and
j when s(e)i is the most similar word to s(f)j and

1https://github.com/cisnlp/simalign
2https://simalign.cis.lmu.de/

Algorithm 1 Itermax.
1: procedure ITERMAX(S, nmax , α ∈ [0, 1])
2: A,M = zeros like(S)
3: for n ∈ [1, . . . , nmax ] do
4: ∀i, j :

5: Mij =





1 if max
(∑le

l=0Alj ,
∑lf

l=0Ail

)
= 0

0 if min
(∑le

l=0Alj ,
∑lf

l=0Ail

)
> 0

α otherwise
6: Ato add = get argmax alignments(S �M)
7: A = A+Ato add
8: end for
9: return A

10: end procedure

Figure 2: Description of the Itermax algorithm. ze-
ros like yields a matrix with zeros and with same shape
as the input, get argmax alignments returns alignments
obtained using the Argmax Method, � is elementwise
multiplication.

vice-versa. That is, we set Aij = 1 if

(i = argmax
l
Sl,j) ∧ (j = argmax

l
Si,l)

and Aij = 0 otherwise. In case of ties, which
are unlikely in similarity matrices, we choose the
smaller index. If all entries in a row i or column
j of S are 0 we set Aij = 0 (this case can appear
in Itermax). Similar methods have been applied
to co-occurrences (Melamed, 2000) (“competitive
linking”), Dice coefficients (Och and Ney, 2003)
and attention matrices (Garg et al., 2019).

Itermax. There are many sentences for which
Argmax only identifies few alignment edges be-
cause mutual argmaxes can be rare. As a remedy,
we apply Argmax iteratively. Specifically, we mod-
ify the similarity matrix conditioned on the align-
ment edges found in a previous iteration: if two
words i and j have both been aligned, we zero out
the similarity. Similarly, if neither is aligned we
leave the similarity unchanged. In case only one of
them is aligned, we multiply the similarity with a
discount factor α ∈ [0, 1]. Intuitively, this encour-
ages the model to focus on unaligned word pairs.
However, if the similarity with an already aligned
word is exceptionally high, the model can add an
additional edge. Note that this explicitly allows
one token to be aligned to multiple other tokens.
For details on the algorithm see Figure 2.

Match. Argmax finds a local, not a global opti-
mum and Itermax is a greedy algorithm. To find
global optima, we frame alignment as an assign-

41



1629

ment problem: we search for a maximum-weight
maximal matching (e.g., (Kuhn, 1955)) in the bi-
partite weighted graph which is induced by the
similarity matrix. This optimization problem is
defined by

A∗ = argmax
A∈{0,1}le×lf

le∑

i=1

lf∑

j=1

AijSij

subject toA being a matching (i.e., each node has at
most one edge) that is maximal (i.e., no additional
edge can be added). There are known algorithms to
solve the above problem in polynomial time (e.g.,
(Galil, 1986)).

Note that alignments generated with the match
method are inherently bidirectional. None of our
methods require additional symmetrization as post-
processing.

2.2 Distortion and Null Extensions
Distortion Correction [Dist]. Distortion, as intro-
duced in IBM Model 2, is essential for alignments
based on non-contextualized embeddings since the
similarity of two words is solely based on their
surface form, independent of position. To penalize
high distortions, we multiply the similarity matrix
S componentwise with

Pi,j = 1− κ (i/le − j/lf )2 ,

where κ is a hyperparameter to scale the dis-
tortion matrix P between [(1 − κ), 1]. We use
κ = 0.5. See supplementary for different val-
ues. We can interpret this as imposing a locality-
preserving prior: given a choice, a word should
be aligned to a word with a similar relative posi-
tion ((i/le − j/lf )2 close to 0) rather than a more
distant word (large (i/le − j/lf )2).

Null. Null words model untranslated words and
are an important part of alignment models. We
propose to model null words as follows: if a word
is not particularly similar to any of the words in
the target sentence, we do not align it. Specifi-
cally, given an alignment matrix A, we remove
alignment edges when the normalized entropy of
the similarity distribution is above a threshold τ , a
hyperparameter. We use normalized entropy (i.e.,
entropy divided by the log of sentence length) to
account for different sentence lengths; i.e., we set
Aij = 0 if

min(−
∑lf

k=1S
h
iklogS

h
ik

log lf
,−
∑le

k=1S
v
kj logS

v
kj

log le
)>τ,

where Sh
ik := Sik/

∑lf
m=1 Sim, and Sv

kj :=

Skj/
∑le

m=1 Smj . As the ideal value of τ depends
on the actual similarity scores we set τ to a per-
centile of the entropy values of the similarity dis-
tribution across all aligned edges (we use the 95th
percentile). Different percentiles are in the supple-
mentary.

3 Experiments

3.1 Embedding Learning
Static. We train monolingual embeddings with
fastText (Bojanowski et al., 2017) for each lan-
guage on its Wikipedia. We then use VecMap
(Artetxe et al., 2018) to map the embeddings into
a common multilingual space. Note that this algo-
rithm works without any crosslingual supervision
(e.g., multilingual dictionaries). We use the same
procedure for word and subword levels. We use the
label fastText to refer to these embeddings as well
as the alignments induced by them.

Contextualized. We use the multilingual BERT
model (mBERT).3 It is pretrained on the 104 largest
Wikipedia languages. This model only provides
embeddings at the subword level. To obtain a word
embedding, we simply average the vectors of its
subwords. We consider word representations from
all 12 layers as well as the concatenation of all
layers. Note that the model is not finetuned. We
denote this method as mBERT[i] (when using em-
beddings from the i-th layer, where 0 means using
the non-contextualized initial embedding layer) and
mBERT[conc] (for concatenation).

In addition, we use XLM-RoBERTa base (Con-
neau et al., 2020), which is pretrained on 100 lan-
guages on cleaned CommonCrawl data (Wenzek
et al., 2020). We denote alignments obtained using
the embeddings from the i-th layer by XLM-R[i].

3.2 Word and Subword Alignments
We investigate both alignments between subwords
such as wordpiece (Schuster and Nakajima, 2012)
(which are widely used for contextualized language
models) and words. We refer to computing align-
ment edges between words as word level and be-
tween subwords as subword level. Note that gold
standards are all word-level. In order to evaluate
alignments obtained at the subword level we con-
vert subword to word alignments using the heuristic
“two words are aligned if any of their subwords are

3https://github.com/google-research/
bert/blob/master/multilingual.md
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Subword-emb.

Word-emb.

Embeddings Alignments Gold Standard

Convert by averaging, 
if required

Subword-level

Word-level
Convert using a 
heuristic

Word-level
evaluate

Ski excursions are excellent .

Ski ##ausflüge sind hervor ##ragend .

Ski excursions are excellent .

Skiausflüge sind hervorragend .

Figure 3: Subword alignments are always converted to
word alignments for evaluation.

aligned” (see Figure 3). As a result a single word
can be aligned with multiple other words.

For the word level, we use the NLTK tokenizer
(Bird et al., 2009) (e.g., for tokenizing Wikipedia
in order to train fastText). For the subword level,
we generally use multilingual BERT’s vocabulary3

and BERT’s wordpiece tokenizer. For XLM-R we
use the XLM-R subword vocabulary. Since gold
standards are already tokenized, they do not require
additional tokenization.

3.3 Baselines

We compare to three popular statistical alignment
models that all require parallel training data. fast-
align/IBM2 (Dyer et al., 2013) is an implemen-
tation of an alignment algorithm based on IBM
Model 2. It is popular because of its speed and high
quality. eflomal4 (based on efmaral by Östling
and Tiedemann (2016)), a Bayesian model with
Markov Chain Monte Carlo inference, is claimed
to outperform fast-align on speed and quality. Fur-
ther we use the widely used software package
Giza++/IBM4 (Och and Ney, 2003), which imple-
ments IBM alignment models. We use its standard
settings: 5 iterations each for the HMM model,
IBM Models 1, 3 and 4 with p0 = 0.98.

Symmetrization. Probabilistic word alignment
models create forward and backward alignments
and then symmetrize them (Och and Ney, 2003;
Koehn et al., 2005). We compared the symmetriza-
tion methods grow-diag-final-and (GDFA) and in-
tersection and found them to perform comparably;
see supplementary. We use GDFA throughout the
paper.

4github.com/robertostling/eflomal

3.4 Evaluation Measures

Given a set of predicted alignment edges A and
a set of sure, possible gold standard edges S, P
(where S ⊂ P ), we use the following evaluation
measures:

prec =
|A ∩ P |
|A| , rec =

|A ∩ S|
|S| ,

F1 =
2 prec rec
prec + rec

,

AER = 1− |A ∩ S|+ |A ∩ P ||A|+ |S| ,

where | · | denotes the cardinality of a set. This is
the standard evaluation (Och and Ney, 2003).

3.5 Data

Our test data are a diverse set of 6 language pairs:
Czech, German, Persian, French, Hindi and Roma-
nian, always paired with English. See Table 11 for
corpora and supplementary for URLs.

For our baselines requiring parallel training data
(i.e., eflomal, fast-align and Giza++) we select addi-
tional parallel training data that is consistent with
the target domain where available. See Table 11
for the corpora. Unless indicated otherwise we use
the whole parallel training data. Figure 5 shows the
effect of using more or less training data.

Given the large amount of possible experiments
when considering 6 language pairs we do not have
space to present all numbers for all languages. If
we show results for only one pair, we choose ENG-
DEU as it is an established and well-known dataset
(EuroParl). If we show results for more languages
we fall back to DEU, CES and HIN, to show effects
on a mid-resource morphologically rich language
(CES) and a low-resource language written in a
different script (HIN).

4 Results

4.1 Embedding Layer

Figure 4 shows a parabolic trend across layers of
mBERT and XLM-R. We use layer 8 in this paper
because it has best performance. This is consis-
tent with other work (Hewitt and Manning, 2019;
Tenney et al., 2019): in the first layers the contex-
tualization is too weak for high-quality alignments
while the last layers are too specialized on the pre-
training task (masked language modeling).
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Gold Gold St. Parallel Parallel Wikipedia
Lang. Standard Size |S| |P \ S| Data Data Size Size

ENG-CES (Mareček, 2008) 2500 44292 23132 EuroParl (Koehn, 2005) 646k 8M
ENG-DEU EuroParl-baseda 508 9612 921 EuroParl (Koehn, 2005) 1920k 48M
ENG-FAS (Tavakoli and Faili, 2014) 400 11606 0 TEP (Pilevar et al., 2011) 600k 5M
ENG-FRA WPT2003, (Och and Ney, 2000), 447 4038 13400 Hansards (Germann, 2001) 1130k 32M
ENG-HIN WPT2005b 90 1409 0 Emille (McEnery et al., 2000) 3k 1M
ENG-RON WPT2005b 203 5033 0 Constitution, Newspaperb 50k 3M
a www-i6.informatik.rwth-aachen.de/goldAlignment/
b http://web.eecs.umich.edu/˜mihalcea/wpt05/

Table 1: Overview of datasets. “Lang.” uses ISO 639-3 language codes. “Size” refers to the number of sentences.
“Parallel Data Size” refers to the number of parallel sentences in addition to the gold alignments that is used for
training the baselines. Our sentence tokenized version of the English Wikipedia has 105M sentences.

ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method F1 AER F1 AER F1 AER F1 AER F1 AER F1 AER

Pr
io

rW
or

k

(Östling, 2015a) Bayesian .94 .06 .57 .43 .73 .27
(Östling, 2015a) Giza++ .92 .07 .51 .49 .72 .28
(Legrand et al., 2016) Ensemble Method .81 .16 .71 .10
(Östling and Tiedemann, 2016) efmaral .93 .08 .53 .47 .72 .28
(Östling and Tiedemann, 2016) fast-align .86 .15 .33 .67 .68 .33
(Zenkel et al., 2019) Giza++ .21 .06 .28
(Garg et al., 2019) Multitask .20 .08

B
as

el
in

es W
or

d fast-align/IBM2 .76 .25 .71 .29 .57 .43 .86 .15 .34 .66 .68 .33
Giza++/IBM4 .75 .26 .77 .23 .51 .49 .92 .09 .45 .55 .69 .31
eflomal .85 .15 .77 .23 .61 .39 .93 .08 .51 .49 .71 .29

Su
bw

or
d fast-align/IBM2 .78 .23 .71 .30 .58 .42 .85 .16 .38 .62 .68 .32

Giza++/IBM4 .82 .18 .78 .22 .57 .43 .92 .09 .48 .52 .69 .32
eflomal .84 .17 .76 .24 .63 .37 .91 .09 .52 .48 .72 .28

T
hi

s
W

or
k

W
or

d fastText - Argmax .70 .30 .60 .40 .50 .50 .77 .22 .49 .52 .47 .53
mBERT[8] - Argmax .87 .13 .79 .21 .67 .33 .94 .06 .54 .47 .64 .36
XLM-R[8] - Argmax .87 .13 .79 .21 .70 .30 .93 .06 .59 .41 .70 .30

Su
bw

or
d fastText - Argmax .58 .42 .56 .44 .09 .91 .73 .26 .04 .96 .43 .58

mBERT[8] - Argmax .86 .14 .81 .19 .67 .33 .94 .06 .55 .45 .65 .35
XLM-R[8] - Argmax .87 .13 .81 .19 .71 .29 .93 .07 .61 .39 .71 .29

Table 2: Comparison of our methods, baselines and prior work in unsupervised word alignment. Best result per
column in bold. A detailed version of the table with precision/recall and Itermax/Match results is in supplementary.

0 2 4 6 8 10 12
Layer

0.4

0.6

0.8

F1

XLM R

eng_deu
eng_ces
eng_hin

layers
conc

Figure 4: Word alignment performance across layers
of mBERT (top) and XLM-R (bottom). Results are F1

with Argmax at the subword level.

4.2 Comparison with Prior Work

Contextual Embeddings. Table 2 shows that
mBERT and XLM-R consistently perform well
with the Argmax method. XLM-R yields mostly
higher values than mBERT. Our three baselines,
eflomal, fast-align and Giza++, are always outper-

formed (except for RON). We outperform all prior
work except for FRA where we match the perfor-
mance and RON. This comparison is not entirely
fair because methods relying on parallel data have
access to the parallel sentences of the test data dur-
ing training whereas our methods do not.

Romanian might be a special case as it exhibits a
large amount of many to one links and further lacks
determiners. How determiners are handled in the
gold standard depends heavily on the annotation
guidelines. Note that one of our settings, XLM-
R[8] with Itermax at the subword level, has an F1
of .72 for ENG-RON, which comes very close to
the performance by (Östling, 2015a) (see Table 3).

In summary, extracting alignments from similar-
ity matrices is a very simple and efficient method
that performs surprisingly strongly. It outperforms
strong statistical baselines and most prior work in
unsupervised word alignment for CES, DEU, FAS
and HIN and is comparable for FRA and RON.
We attribute this to the strong contextualization in
mBERT and XLM-R.
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Figure 5: Learning curves of fast-align/eflomal vs.
embedding-based alignments. Results shown are F1

for ENG-DEU, contrasting subword and word repre-
sentations. Up to 1.9M parallel sentences we use Eu-
roParl. To demonstrate the effect with abundant paral-
lel data we add up to 37M additional parallel sentences
from ParaCrawl (Esplà et al., 2019) (see grey area).

Static Embeddings. fastText shows a solid per-
formance on word level, which is worse but comes
close to fast-align and outperforms it for HIN. We
consider this surprising as fastText did not have
access to parallel data or any multilingual signal.
VecMap can also be used with crosslingual dictio-
naries. We expect this to boost performance and
fastText could then become a viable alternative to
fast-align.

Amount of Parallel Data. Figure 5 shows that
fast-align and eflomal get better with more train-
ing data with eflomal outperforming fast-align, as
expected. However, even with 1.9M parallel sen-
tences mBERT outperforms both baselines. When
adding up to 37M additional parallel sentences
from ParaCrawl (Esplà et al., 2019) performance
for fast-align increases slightly, however, eflomal
decreases (grey area in plot). ParaCrawl contains
mined parallel sentences whose lower quality prob-
ably harms eflomal. fastText (with distortion) is
competitive with eflomal for fewer than 1000 paral-
lel sentences and outperforms fast-align even with
10k sentences. Thus for very small parallel corpora
(<10k sentences) using fastText embeddings is an
alternative to fast-align.

The main takeaway from Figure 5 is that mBERT-
based alignments, a method that does not need any
parallel training data, outperforms state-of-the-art
aligners like eflomal for ENG-DEU, even in the
very high resource case.

ENG- ENG- ENG- ENG- ENG- ENG-
Emb. Method CES DEU FAS FRA HIN RON

mBERT[8]
Argmax .86 .81 .67 .94 .55 .65
Itermax .86 .81 .70 .93 .58 .69
Match .82 .78 .67 .90 .58 .67

XLM-R[8]
Argmax .87 .81 .71 .93 .61 .71
Itermax .86 .80 .72 .92 .62 .72
Match .81 .76 .68 .88 .60 .70

Table 3: Comparison of our three proposed methods
across all languages for the best embeddings from Ta-
ble 2: mBERT[8] and XLM-R[8]. We show F1 at the
subword level. Best result per embedding type in bold.

ENG-DEU ENG-CES ENG-HIN

E
m

b.

nmax α Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

m
B

E
R

T
[8

]

1 - .92 .69 .79 .21 .95 .80 .87 .13 .84 .39 .54 .47

2
.90 .85 .77 .81 .19 .87 .87 .87 .14 .75 .47 .58 .42
.95 .83 .80 .81 .19 .85 .89 .87 .13 .73 .48 .58 .42
1 .77 .79 .78 .22 .80 .86 .83 .17 .63 .46 .53 .47

3
.90 .81 .80 .80 .20 .83 .88 .85 .15 .70 .49 .57 .43
.95 .78 .83 .81 .20 .81 .91 .86 .15 .68 .52 .59 .41
1 .73 .83 .77 .23 .76 .91 .82 .18 .58 .51 .54 .46

fa
st

Te
xt

1 - .81 .48 .60 .40 .86 .59 .70 .30 .75 .36 .49 .52

2
.90 .69 .56 .62 .38 .74 .69 .72 .29 .63 .42 .51 .49
.95 .66 .56 .61 .39 .71 .69 .70 .30 .59 .41 .48 .52
1 .59 .55 .57 .43 .62 .65 .63 .37 .53 .39 .45 .55

3
.90 .63 .59 .61 .39 .67 .72 .70 .31 .57 .43 .49 .51
.95 .59 .59 .59 .41 .63 .73 .68 .33 .53 .44 .48 .52
1 .53 .58 .55 .45 .55 .70 .62 .39 .48 .43 .45 .55

Table 4: Itermax with different number of iterations
(nmax) and different α. Results are at the word level.

4.3 Additional Methods and Extensions

We already showed that Argmax yields alignments
that are competitive with the state of the art. In this
section we compare all our proposed methods and
extensions more closely.

Itermax. Table 4 shows results for Argmax
(i.e., 1 Iteration) as well as Itermax (i.e., 2 or
more iterations of Argmax). As expected, with
more iterations precision drops in favor of recall.
Overall, Itermax achieves higher F1 scores for the
three language pairs (equal for ENG-CES) both for
mBERT[8] and fastText embeddings. For Hindi the
performance increase is the highest. We hypothe-
size that for more distant languages Itermax is more
beneficial as similarity between wordpieces may
be generally lower, thus exhibiting fewer mutual
argmaxes. For the rest of the paper if we use Iter-
max we use 2 Iterations with α = 0.9 as it exhibits
best performance (5 out of 6 wins in Table 4).

Argmax/Itermax/Match. In Table 3 we com-
pare our three proposed methods in terms of F1

across all languages. We chose to show the two
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ENG-DEU ENG-CES ENG-HIN

E
m

b.
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

fa
st

Te
xt

Argmax .81 .48 .60 .40 .86 .59 .70 .30 .75 .36 .49 .52
+Dist .84 .54 .65 .35 .89 .68 .77 .23 .64 .30 .41 .59
+Null .81 .46 .59 .41 .86 .56 .68 .32 .74 .34 .46 .54

Itermax .69 .56 .62 .38 .74 .69 .72 .29 .63 .42 .51 .49
+Dist .71 .62 .66 .34 .75 .76 .76 .25 .54 .37 .44 .57
+Null .69 .53 .60 .40 .74 .66 .70 .30 .63 .40 .49 .51

Match .60 .58 .59 .41 .65 .71 .68 .32 .55 .43 .48 .52
+Dist .67 .64 .65 .35 .72 .78 .75 .25 .50 .39 .43 .57
+Null .61 .56 .58 .42 .66 .69 .67 .33 .56 .41 .48 .52

m
B

E
R

T
[8

]

Argmax .92 .69 .79 .21 .95 .80 .87 .13 .84 .39 .54 .47
+Dist .91 .67 .77 .23 .93 .79 .85 .15 .68 .29 .41 .59
+Null .93 .67 .78 .22 .95 .77 .85 .15 .85 .38 .53 .47

Itermax .85 .77 .81 .19 .87 .87 .87 .14 .75 .47 .58 .43
+Dist .82 .75 .79 .21 .84 .85 .85 .15 .56 .34 .43 .58
+Null .86 .75 .80 .20 .88 .84 .86 .14 .76 .45 .57 .43

Match .78 .74 .76 .24 .81 .85 .83 .17 .67 .52 .59 .42
+Dist .75 .71 .73 .27 .79 .83 .81 .20 .45 .35 .39 .61
+Null .80 .73 .76 .24 .83 .83 .83 .17 .68 .51 .58 .42

Table 5: Analysis of Null and Distortion Extensions.
All alignments are obtained at word-level. Best result
per embedding type and method in bold.

best performing settings from Table 2: mBERT[8]
and XLM-R[8] at the subword level. Itermax per-
forms slightly better than Argmax with 6 wins, 4
losses and 2 ties. Itermax seems to help more for
more distant languages such as FAS, HIN and RON,
but harms for FRA. Match has the lowest F1, but
generally exhibits a higher recall (see e.g., Table 5).

Null and Distortion Extensions. Table 5 shows
that Argmax and Itermax generally have higher pre-
cision, whereas Match has higher recall. Adding
Null almost always increases precision, but at the
cost of recall, resulting mostly in a lower F1 score.
Adding a distortion prior boosts performance for
static embeddings, e.g., from .70 to .77 for ENG-
CES Argmax F1 and similarly for ENG-DEU. For
Hindi a distortion prior is harmful. Dist has little
and sometimes harmful effects on mBERT indicat-
ing that mBERT’s contextualized representations
already match well across languages.

Summary. Argmax and Itermax exhibit the best
and most stable performance. For most language
pairs Itermax is recommended. If high recall align-
ments are required, Match is the recommended
algorithm. Except for HIN, a distortion prior is
beneficial for static embeddings. Null should be ap-
plied when one wants to push precision even higher
(e.g., for annotation projection).

4.4 Words and Subwords
Table 2 shows that subword processing slightly out-
performs word-level processing for most methods.
Only fastText is harmed by subword processing.

0 <= x < 5
(240)

5 <= x < 25
(331)

25 <= x < 125
(650)

125 <= x
(9312)

Frequency Bin

0.60

0.65

0.70

0.75

0.80

0.85

F 1

mBERT[8](Argmax)
eflomal

word
subword

Figure 6: Results for different frequency bins on ENG-
DEU. An edge in S, P , orA is attributed to exactly one
bin based on the minimum frequency of the involved
words (denoted by x). Number of gold edges in brack-
ets. Eflomal is trained on all 1.9M parallel sentences.
Frequencies are computed on the same corpus.

ADJ ADP ADV AUX NOUN PRON VERB

eflomal Word 0.83 0.69 0.72 0.63 0.85 0.79 0.63
Subword 0.82 0.68 0.71 0.57 0.85 0.77 0.62

mBERT[8] Word 0.79 0.74 0.71 0.71 0.81 0.84 0.69
Subword 0.81 0.75 0.72 0.72 0.87 0.84 0.69

Table 6: Alignment performance (F1) on ENG-DEU
for POS. We use mBERT[8](Argmax) and Eflomal
trained on 1.9M parallel sentences on the word level.

We use VecMap to match (sub)word distributions
across languages. We hypothesize that it is harder
to match subword than word distributions – this
effect is strongest for Persian and Hindi, proba-
bly due to different scripts and thus different sub-
word distributions. Initial experiments showed that
adding supervision in form of a dictionary helps
restore performance. We will investigate this in
future work.

We hypothesize that subword processing is ben-
eficial for aligning rare words. To show this, we
compute our evaluation measures for different fre-
quency bins. More specifically, we only consider
gold standard alignment edges for the computation
where at least one of the member words has a cer-
tain frequency in a reference corpus (in our case all
1.9M lines from the ENG-DEU EuroParl corpus).
That is, we only consider the edge (i, j) in A,S or
P if the minimum of the source and target word
frequency is in [γl, γu) where γl and γu are bin
boundaries.

Figure 6 shows F1 for different frequency bins.
For rare words both eflomal and mBERT show a
severely decreased performance at the word level,
but not at the subword level. Thus, subword pro-
cessing is indeed beneficial for rare words.
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At the same time , Regulation No 2078 of 1992 on 
environmentally compatible agricultural production methods 
adapted to the landscape has also contributed substantially to 
this trend . 

Daneben hat die Verordnung 2078 aus dem Jahr 1992 über
umweltverträgliche und landschaftsgerechte
Produktionsweisen in der Landwirtschaft ebenfalls erheblich
zu dieser Entwicklung beigetragen .

The Commission , for its part , will continue to play an active 
part in the intergovernmental conference .

Die Kommissionwird bei der Regierungskonferenz auch
weiterhin eine aktive Rolle spielen .

Figure 7: Example alignment of auxiliary verbs. Same
setting as in Table 6. Solid lines: mBERT’s alignment,
identical to the gold standard. Dashed lines: eflomal’s
incorrect alignment.

4.5 Part-Of-Speech Analysis

To analyze the performance with respect to differ-
ent part-of-speech (POS) tags, the ENG-DEU gold
standard was tagged with the Stanza toolkit (Qi
et al., 2020). We evaluate the alignment perfor-
mance for each POS tag by only considering the
alignment edges where at least one of their mem-
ber words has this tag. Table 6 shows results for
frequent POS tags. Compared to eflomal, mBERT
aligns auxiliaries, pronouns and verbs better. The
relative position of auxiliaries and verbs in German
can diverge strongly from that in English because
they occur at the end of the sentence (verb-end po-
sition) in many clause types. Positions of pronouns
can also diverge due to a more flexible word or-
der in German. It is difficult for an HMM-based
aligner like eflomal to model such high-distortion
alignments, a property that has been found by prior
work as well (Ho and Yvon, 2019). In contrast,
mBERT(Argmax) does not use distortion informa-
tion, so high distortion is not a problem for it.

Figure 7 gives an example for auxiliaries. The
gold alignment (“has” – “hat”) is correctly identi-
fied by mBERT (solid line). Eflomal generates an
incorrect alignment (“time” – “hat”): the two words
have about the same relative position, indicating
that distortion minimization is the main reason for
this incorrect alignment. Analyzing all auxiliary
alignment edges, the average absolute value of the
distance between aligned words is 2.72 for eflomal
and 3.22 for mBERT. This indicates that eflomal
is more reluctant than mBERT to generate high-
distortion alignments and thus loses accuracy.

5 Related Work

Brown et al. (1993) introduced the IBM models, the
best known statistical word aligners. More recent
aligners, often based on IBM models, include fast-
align (Dyer et al., 2013), Giza++ (Och and Ney,
2003) and eflomal (Östling and Tiedemann, 2016).
(Östling, 2015a) showed that Bayesian Alignment
Models perform well. Neural network based exten-
sions of these models have been considered (Ayan
et al., 2005; Ho and Yvon, 2019). All of these mod-
els are trained on parallel text. Our method instead
aligns based on embeddings that are induced from
monolingual data only. We compare with prior
methods and observe comparable performance.

Prior work on using learned representations for
alignment includes (Smadja et al., 1996; Och and
Ney, 2003) (Dice coefficient), (Jalili Sabet et al.,
2016) (incorporation of embeddings into IBM mod-
els), (Legrand et al., 2016) (neural network align-
ment model) and (Pourdamghani et al., 2018) (em-
beddings are used to encourage words to align to
similar words). Tamura et al. (2014) use recur-
rent neural networks to learn alignments. They use
noise contrastive estimation to avoid supervision.
Yang et al. (2013) train a neural network that uses
pretrained word embeddings in the initial layer. All
of this work requires parallel data. mBERT is used
for word alignments in concurrent work: Libovický
et al. (2019) use the high quality of mBERT align-
ments as evidence for the “language-neutrality” of
mBERT. Nagata et al. (2020) phrase word align-
ment as crosslingual span prediction and finetune
mBERT using gold alignments.

Attention in NMT (Bahdanau et al., 2014) is
related to a notion of soft alignment, but often de-
viates from conventional word alignments (Ghader
and Monz, 2017; Koehn and Knowles, 2017). One
difference is that standard attention does not have
access to the target word. To address this, Pe-
ter et al. (2017) tailor attention matrices to obtain
higher quality alignments. Li et al. (2018)’s and
Zenkel et al. (2019)’s models perform similarly
to and Zenkel et al. (2020) outperform Giza++.
Ding et al. (2019) propose better decoding algo-
rithms to deduce word alignments from NMT pre-
dictions. Chen et al. (2016), Mi et al. (2016) and
Garg et al. (2019) obtain alignments and transla-
tions in a multitask setup. Garg et al. (2019) find
that operating at the subword level can be bene-
ficial for alignment models. Li et al. (2019) pro-
pose two methods to extract alignments from NMT
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models, however they do not outperform fast-align.
Stengel-Eskin et al. (2019) compute similarity ma-
trices of encoder-decoder representations that are
leveraged for word alignments, together with super-
vised learning, which requires manually annotated
alignment. We find our proposed methods to be
competitive with these approaches. In contrast to
our work, they all require parallel data.

6 Conclusion

We presented word aligners based on contextual-
ized embeddings that outperform in four and match
the performance of state-of-the-art aligners in two
language pairs; e.g., for ENG-DEU contextualized
embeddings achieve an alignment F1 that is 5 per-
centage points higher than eflomal trained on 100k
parallel sentences. Further, we showed that align-
ments from static embeddings can be a viable al-
ternative to statistical aligner when few parallel
training data is available. In contrast to all prior
work our methods do not require parallel data for
training at all. With our proposed methods and
extensions such as Match, Itermax and Null it is
easy to obtain higher precision or recall depending
on the use case.

Future work includes modeling fertility explic-
itly and investigating how to incorporate parallel
data into the proposed methods.
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A Additional Non-central Results

A.1 Comparison with Prior Work
A more detailed version of Table 2 from the main
paper that includes precision and recall and results
on Itermax can be found in Table 7.

A.2 Rare Words
Figure 8 shows the same as Figure 6 from the
main paper but now with a reference corpus of
100k/1000k instead of 1920k parallel sentences.
The main takeaways are similar.

A.3 Symmetrization
For asymmetric alignments different symmetriza-
tion methods exist. Dyer et al. (2013) provide an
overview and implementation (fast-align) for these
methods, which we use. We compare intersection
and grow-diag-final-and (GDFA) in Table 9. In
terms of F1, GDFA performs better (Intersection
wins four times, GDFA eleven times, three ties).
As expected, Intersection yields higher precision
while GDFA yields higher recall. Thus intersection
is preferable for tasks like annotation projection,
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ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER

Pr
io

rW
or

k

(Östling, 2015a) Bayesian .96 .92 .94 .06 .85 .43 .57 .43 .91 .61 .73 .27
(Östling, 2015a) Giza++ .98 .87 .92 .07 .63 .44 .51 .49 .85 .63 .72 .28
(Legrand et al., 2016) Ensemble Method .79 .83 .81 .16 .59 .90 .71 .10
(Östling and Tiedemann, 2016) efmaral .93 .08 .53 .47 .72 .28
(Östling and Tiedemann, 2016) fast-align .86 .15 .33 .67 .68 .33
(Zenkel et al., 2019) Giza++ .21 .06 .28
(Garg et al., 2019) Multitask .20 .08

B
as

el
in

es W
or

d fast-align/IBM2 .71 .81 .76 .25 .70 .73 .71 .29 .60 .54 .57 .43 .81 .93 .86 .15 .34 .33 .34 .66 .69 .67 .68 .33
Giza++/IBM4 .71 .79 .75 .26 .79 .75 .77 .23 .55 .48 .51 .49 .90 .95 .92 .09 .47 .43 .45 .55 .74 .64 .69 .31
eflomal .84 .86 .85 .15 .80 .75 .77 .23 .68 .55 .61 .39 .91 .94 .93 .08 .61 .44 .51 .49 .81 .63 .71 .29

Su
bw

or
d fast-align/IBM2 .72 .84 .78 .23 .67 .74 .71 .30 .60 .56 .58 .42 .80 .92 .85 .16 .39 .37 .38 .62 .69 .67 .68 .32

Giza++/IBM4 .79 .86 .82 .18 .78 .78 .78 .22 .58 .56 .57 .43 .89 .95 .92 .09 .52 .44 .48 .52 .74 .64 .69 .32
eflomal .80 .88 .84 .17 .74 .78 .76 .24 .66 .60 .63 .37 .88 .95 .91 .09 .58 .47 .52 .48 .78 .67 .72 .28

T
hi

s
W

or
k

W
or

d

fastText - Itermax .74 .69 .72 .29 .69 .56 .62 .38 .63 .45 .53 .48 .74 .78 .76 .24 .63 .42 .51 .49 .64 .40 .50 .51
mBERT[8] - Itermax .87 .87 .87 .14 .85 .77 .81 .19 .80 .63 .70 .30 .91 .95 .93 .08 .75 .47 .58 .43 .82 .58 .68 .32
XLM-R[8] - Itermax .89 .85 .87 .13 .86 .73 .79 .21 .84 .63 .72 .28 .91 .93 .92 .08 .79 .49 .61 .39 .87 .61 .71 .29
fastText - Argmax .86 .59 .70 .30 .81 .48 .60 .40 .75 .38 .50 .50 .85 .71 .77 .22 .75 .36 .49 .52 .77 .34 .47 .53
mBERT[8] - Argmax .95 .80 .87 .13 .92 .69 .79 .21 .88 .54 .67 .33 .97 .91 .94 .06 .84 .39 .54 .47 .90 .50 .64 .36
XLM-R[8] - Argmax .96 .80 .87 .13 .93 .68 .79 .22 .91 .57 .70 .30 .96 .91 .93 .06 .88 .45 .59 .41 .94 .56 .70 .30

Su
bw

or
d

fastText - Itermax .61 .57 .59 .41 .63 .54 .58 .42 .20 .07 .11 .90 .70 .76 .73 .28 .14 .05 .07 .93 .56 .38 .45 .55
mBERT[8] - Itermax .84 .89 .86 .14 .83 .80 .81 .19 .76 .65 .70 .30 .91 .96 .93 .08 .71 .49 .58 .42 .79 .62 .69 .31
XLM-R[8] - Itermax .84 .89 .86 .14 .83 .78 .80 .20 .79 .67 .72 .28 .89 .94 .92 .09 .75 .52 .62 .39 .83 .64 .72 .28
fastText - Argmax .72 .48 .58 .42 .75 .45 .56 .44 .27 .06 .09 .91 .80 .67 .73 .26 .14 .02 .04 .96 .67 .31 .43 .58
mBERT[8] - Argmax .92 .81 .86 .14 .92 .72 .81 .19 .85 .56 .67 .33 .96 .92 .94 .06 .81 .41 .55 .45 .88 .51 .65 .35
XLM-R[8] - Argmax .92 .83 .87 .13 .92 .72 .81 .19 .87 .59 .71 .30 .95 .91 .93 .07 .86 .47 .61 .39 .91 .59 .71 .29

Table 7: Comparison of word and subword levels. Best overall result per column in bold.

ENG-DEU ENG-CES ENG-HIN
Emb. Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

fa
st

Te
xt

Argmax .75 .45 .56 .44 .72 .48 .58 .42 .14 .02 .04 .96
+Dist .79 .51 .62 .38 .77 .58 .66 .34 .16 .04 .06 .94
+Null .76 .43 .55 .45 .74 .47 .57 .42 .14 .02 .04 .96

Itermax .63 .54 .58 .42 .61 .57 .59 .41 .14 .05 .07 .93
+Dist .67 .60 .64 .36 .63 .66 .65 .36 .15 .07 .09 .91
+Null .64 .52 .57 .43 .62 .56 .59 .41 .14 .04 .07 .93

Match .51 .58 .54 .46 .44 .61 .52 .49 .10 .08 .09 .91
+Dist .59 .66 .62 .38 .54 .71 .61 .39 .10 .09 .09 .91
+Null .52 .57 .54 .46 .46 .60 .52 .48 .10 .08 .09 .91

m
B

E
R

T
[8

]

Argmax .92 .72 .81 .19 .92 .81 .86 .14 .81 .41 .55 .45
+Dist .90 .70 .79 .21 .91 .80 .85 .15 .65 .30 .41 .59
+Null .93 .70 .80 .20 .92 .78 .85 .15 .82 .40 .54 .47

Itermax .83 .80 .81 .19 .84 .89 .86 .14 .71 .49 .58 .42
+Dist .81 .77 .79 .21 .82 .87 .84 .16 .53 .35 .42 .58
+Null .85 .77 .81 .20 .84 .86 .85 .15 .72 .47 .57 .43

Match .75 .80 .78 .23 .76 .90 .82 .18 .64 .52 .58 .43
+Dist .72 .77 .75 .26 .74 .88 .80 .20 .45 .37 .40 .60
+Null .77 .78 .78 .23 .77 .88 .82 .19 .65 .51 .57 .43

Table 8: Comparison of methods for inducing align-
ments from similarity matrices. All results are
subword-level. Best result per embedding type across
columns in bold.

whereas GDFA is typically used in statistical ma-
chine translation.

A.4 Alignment Examples for Different
Methods

We show examples in Figure 10, Figure 11, Fig-
ure 12, and Figure 13. They provide an overview
how the methods actually affect results.
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0.60

0.65
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0.75

0.80

0.85

F 1

mBERT[8](Argmax)
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Figure 8: Results for different frequency bins. An edge
in S, P , or A is attributed to exactly one bin based on
the minimum frequency of the involved words (denoted
by x). Top: Eflomal trained and frequencies computed
on 100k parallel sentences. Bottom: 1000k parallel sen-
tences.

B Hyperparameters

B.1 Overview

We provide a list of customized hyperparameters
used in our computations in Table 10. There are
three options how we came up with the hyperpa-
rameters: a) We simply used default values of 3rd
party software. b) We chose an arbitrary value.
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ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method Symm. Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER

eflomal Inters. .95 .79 .86 .14 .91 .66 .76 .24 .88 .43 .58 .42 .96 .90 .93 .07 .81 .37 .51 .49 .91 .56 .70 .31
GDFA .84 .86 .85 .15 .80 .75 .77 .23 .68 .55 .61 .39 .91 .94 .93 .08 .61 .44 .51 .49 .81 .63 .71 .29

fast-align Inters. .89 .69 .78 .22 .87 .60 .71 .29 .78 .43 .55 .45 .93 .84 .88 .11 .55 .22 .31 .69 .89 .50 .64 .36
GDFA .71 .81 .76 .25 .70 .73 .71 .29 .60 .54 .57 .43 .81 .93 .86 .15 .34 .33 .34 .66 .69 .67 .68 .33

GIZA++ Inters. .95 .60 .74 .26 .92 .62 .74 .26 .89 .26 .40 .60 .97 .89 .93 .06 .82 .25 .38 .62 .95 .47 .63 .37
GDFA .71 .79 .75 .26 .79 .75 .77 .23 .55 .48 .51 .49 .90 .95 .92 .09 .47 .43 .45 .55 .74 .64 .69 .31

Table 9: Comparison of symmetrization methods at the word level. Best result across rows per method in bold.
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0.60

0.65
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 (percentile)
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Figure 9: Top: F1 for ENG-DEU with fastText at word-
level for different values of κ. Bottom: Performance
for ENG-DEU with mBERT[8] (Match) at word-level
when setting the value of τ to different percentiles. τ
can be used for trading precision against recall. F1 re-
mains stable although it decreases slightly when assign-
ing τ the value of a smaller percentile (e.g., 80).

Usually we fell back to well-established and rather
conventional values (e.g., embedding dimension
300 for static embeddings). c) We defined a reason-
able but arbitrary range, out of which we selected
the best value using grid search. Table 10 lists
the final values we used as well as how we came
up with the specific value. For option c) the corre-
sponding analyses are in Figure 4 and Table 3 in the
main paper as well as in §B.2 in this supplementary
material.

B.2 Null and Distortion Extensions
In Figure 9 we plot the performance for different
values of κ. We observe that introducing distortion
indeed helps (i.e., κ > 0) but the actual value is not
decisive for performance. This is rather intuitive,
as a small adjustment to the similarities is sufficient
while larger adjustments do not necessarily change
the argmax or the optimal point in the matching
algorithm. We choose κ = 0.5.

For τ in null-word extension, we plot precision,
recall and F1 in Figure 9 when assigning τ different
percentile values. Note that values for τ depend
on the similarity distribution of all aligned edges.

As expected, when using the 100th percentile no
edges are removed and thus the performance is
not changed compared to not having a null-word
extension. When decreasing the value of τ the
precision increases and recall goes down, while F1

remains stable. We use the 95th percentile for τ .

C Reproducibility Information

C.1 Computing Infrastructures, Runtimes,
Number of Parameters

We did all computations on up to 48 cores of In-
tel(R) Xeon(R) CPU E7-8857 v2 with 1TB mem-
ory and a single GeForce GTX 1080 GPU with
8GB memory.

Runtimes for aligning 500 parallel sentences on
ENG-DEU are reported in Table 12. mBERT and
XLM-R computations are done on the GPU. Note
that fast-align, GIZA++ and eflomal usually need
to be trained on much more parallel data to achieve
better performance: this increases their runtime.

All our proposed methods are parameter-free.
If we consider the parameters of the pretrained lan-
guage models and pretrained embeddings then fast-
Text has around 1 billion parameters (up to 500k
words per language, 7 languages and embedding
dimension 300), mBERT has 172 million, XLM-R
270 million parameters.

Method Runtime[s]

fast-align 4
GIZA++ 18
eflomal 5
mBERT[8] - Argmax 15
XLM-R[8] - Argmax 22

Table 12: Runtime (average across 5 runs) in seconds
for each method to align 500 parallel sentences.

C.2 Data
Table 11 provides download links to all data used.
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System Parameter Value

fastText

Version 0.9.1
Code URL https://github.com/facebookresearch/fastText/archive/v0.9.1.zip
Downloaded on 11.11.2019
Embedding Dimension 300

mBERT,XLM-R Code: Huggingface Transformer Version 2.3.1
Maximum Sequence Length 128

fastalign
Code URL https://github.com/clab/fast align
Git Hash 7c2bbca3d5d61ba4b0f634f098c4fcf63c1373e1
Flags -d -o -v

eflomal
Code URL https://github.com/robertostling/eflomal
Git Hash 9ef1ace1929c7687a4817ec6f75f47ee684f9aff
Flags –model 3

GIZA++
Code URL http://web.archive.org/web/20100221051856/http://code.google.com/p/giza-pp
Version 1.0.3
Iterations 5 iter. HMM, 5 iter. Model 1, 5 iter. Model3, 5 iter. Model 4 (DEFAULT)
p0 0.98

Vecmap
Code URL https://github.com/artetxem/vecmap.git
Git Hash b82246f6c249633039f67fa6156e51d852bd73a3
Manual Vocabulary Cutoff 500000

Distortion Ext. κ 0.5 (chosen ouf of [0.0, 0.1, . . . , 1.0] by grid search, criterion: F1)

Null Extension τ 95th percentile of similarity distribution of aligned edges (chosen out of [80, 90, 95, 98, 99,
99.5] by grid search, criterion: F1)

Argmax Layer 8 (for mBERT and XLM-R, chosen out of [0, 1, . . . , 12] by grid search, criterion: F1 )

Vecmap α 0.9 (chosen out of [0.9, 0.95, 1] by grid search, criterion: F1)
Iterations nmax 2 (chosen out of [1,2,3] by grid search, criterion: F1)

Table 10: Overview on hyperparameters. We only list parameters where we do not use default values. Shown are
the values which we use unless specifically indicated otherwise.

Lang. Name Description Link

ENG-CES (Mareček, 2008) Gold Alignment http://ufal.mff.cuni.cz/czech-english-manual-word-alignment
ENG-DEU EuroParl-based Gold Alignment www-i6.informatik.rwth-aachen.de/goldAlignment/
ENG-FAS (Tavakoli and Faili, 2014) Gold Alignment http://eceold.ut.ac.ir/en/node/940
ENG-FRA WPT2003, (Och and Ney, 2000), Gold Alignment http://web.eecs.umich.edu/ mihalcea/wpt/
ENG-HIN WPT2005 Gold Alignment http://web.eecs.umich.edu/ mihalcea/wpt05/
ENG-RON WPT2005 (Mihalcea and Pedersen, 2003) Gold Alignment http://web.eecs.umich.edu/ mihalcea/wpt05/

ENG-CES EuroParl (Koehn, 2005) Parallel Data https://www.statmt.org/europarl/
ENG-DEU EuroParl (Koehn, 2005) Parallel Data https://www.statmt.org/europarl/
ENG-DEU ParaCrawl Parallel Data https://paracrawl.eu/
ENG-FAS TEP (Pilevar et al., 2011) Parallel Data http://opus.nlpl.eu/TEP.php
ENG-FRA Hansards (Germann, 2001) Parallel Data https://www.isi.edu/natural-language/download/hansard/index.html
ENG-HIN Emille (McEnery et al., 2000) Parallel Data http://web.eecs.umich.edu/m̃ihalcea/wpt05/
ENG-RON Constitution, Newspaper Parallel Data http://web.eecs.umich.edu/ mihalcea/wpt05/

All langs. Wikipedia (downloaded October 2019) Monolingual Text download.wikimedia.org/[X]wiki/latest/[X]wiki-latest-pages-articles.xml.bz2

Table 11: Overview of datasets. “Lang.” uses ISO 639-3 language codes.
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Figure 10: Comparison of alignment methods.
Dark/light green: sure/possible edges in the gold stan-
dard. Circles are alignments from the first mentioned
method in the subfigure title, boxes alignments from
the second method.
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Figure 11: More examples.
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Figure 12: More examples.
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Figure 13: More examples.
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Chapter 3

ParCourE: A Parallel Corpus
Explorer for a Massively
Multilingual Corpus
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Abstract
With more than 7000 languages world-
wide, multilingual natural language process-
ing (NLP) is essential both from an academic
and commercial perspective. Researching ty-
pological properties of languages is fundamen-
tal for progress in multilingual NLP. Exam-
ples include assessing language similarity for
effective transfer learning, injecting inductive
biases into machine learning models or creat-
ing resources such as dictionaries and inflec-
tion tables. We provide ParCourE, an online
tool that allows to browse a word-aligned par-
allel corpus, covering 1334 languages. We
give evidence that this is useful for typologi-
cal research. ParCourE can be set up for any
parallel corpus and can thus be used for typo-
logical research on other corpora as well as for
exploring their quality and properties.

1 Introduction

While≈7000 languages are spoken (Eberhard et al.,
2020), the bulk of NLP research addresses English
only. However, multilinguality is an essential ele-
ment of NLP. It not only supports exploiting com-
mon structures across languages and eases mainte-
nance for globally operating companies, but also
helps save languages from digital extinction and
fosters more diversity in NLP techniques.

There are extensive resources that can be used
for massively multilingual typological research,
such as WALS (Dryer and Haspelmath, 2013), Glot-
tolog (Hammarstrm et al., 2020), BabelNet (Nav-
igli and Ponzetto, 2012) or http://panlex.org. Many
of them are manually created or crowdsourced,
which guarantees high quality, but limits coverage,
both in terms of content and languages.

We work on the Parallel Bible Corpus (PBC)
(Mayer and Cysouw, 2014), covering 1334 lan-
guages. More specifically, we provide a word-
aligned version of PBC, created using state-of-the-
art word alignment tools. As word alignments

Figure 1: Screenshot of the ParCourE interface. It pro-
vides a word-aligned version of the Parallel Bible Cor-
pus (PBC) spanning 1334 languages. Users can search
for sentences in any language and see their alignments
in other languages from MULTALIGN page. Alterna-
tively they can feed their parallel sentences to INTER-
ACTIVE view and see their word level alignments. They
can look up translations of words in other languages,
automatically induced from word alignments, from the
LEXICON view (This page is interconnected with MUL-
TALIGN). Statistics of the corpus is calculated and
shown in the Stats view.

themselves are only of limited use, we provide an
interactive online tool1 that allows effective brows-
ing of the alignments.

The main contributions of this work are: i) We
provide a word-aligned version of the Parallel Bible
Corpus (PBC) spanning 1334 languages and a total
of 20M sentences (‘verses’). For the alignment we
use the state-of-the-art alignment methods SimA-
lign (Jalili Sabet et al., 2020) and Eflomal (Östling
and Tiedemann, 2016a). ii) We release ParCourE,

1http://parcoure.cis.lmu.de/
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a user interface for browsing word alignments, see
the MULTALIGN view in Figure 1. We demon-
strate the usefulness of ParCourE for typological
research by presenting use cases in §6. iii) In addi-
tion to browsing word alignments, we provide an
aggregated version in a LEXICON view and com-
pute statistics that support assessing the quality of
the word alignments. The two views (MULTALIGN

and LEXICON views) are interlinked, resulting in a
richer user experience. iv) ParCourE has a generic
design and can be set up for any parallel corpus.
This is useful for analyzing and managing paral-
lel corpora; e.g., errors in an automatically mined
parallel corpus can be inspected and flagged for
correction.

2 Related Work

Word Alignment is an important tool for typolog-
ical analysis (Lewis and Xia, 2008) and annotation
projection (Yarowsky et al., 2001; Östling, 2015;
Asgari and Schütze, 2017). Statistical models
such as IBM models (Brown et al., 1993), Giza++
(Och and Ney, 2003), fast-align (Dyer et al., 2013)
and Eflomal (Östling and Tiedemann, 2016b) are
widely used. Recently, neural models were pro-
posed, such as SimAlign (Jalili Sabet et al., 2020),
Awesome-align (Dou and Neubig, 2021), and meth-
ods that are based on neural machine translation
(Garg et al., 2019; Zenkel et al., 2020). We use
Eflomal and SimAlign for generating alignments.

Resources. There are many online resources
that enable typological research. WALS (Dryer
and Haspelmath, 2013) provides manually created
features for more than 2000 languages. We pre-
pare a multiparallel corpus for investigating these
features on real data. http://panlex.org is an on-
line dictionary project with 2500 dictionaries cov-
ering 5700 languages and BabelNet (Navigli and
Ponzetto, 2012) is a large semantic network cover-
ing 500 languages, but their information is gener-
ally on the type level, without access to example
contexts. In contrast, ParCourE supports the explo-
ration of word translations across 1334 languages
in context.

Another line of work uses the Parallel Bible
Corpus (PBC) for analysis. Asgari and Schütze
(2017) investigate tense typology across PBC lan-
guages. Xia and Yarowsky (2017) created a mul-
tiway alignment based on fast-align (Dyer et al.,
2013) and extracted resources such as paraphrases
for 27 Bible editions. Wu et al. (2018) used align-

ments to extract names from the PBC.
One of the first attempts to index the Bible and

align words in multiple languages were Strong’s
numbers (Strong, 2009[1890]); they tag words with
similar meanings with the same ID. Mayer and
Cysouw (2014) created an inverted index of word
forms. Östling (2014) align massively parallel cor-
pora simultaneously. We use the Eflomal word
aligner by the same authorsostling2016efficient.

Finally, we review work on Word Alignment
Browsers. Gilmanov et al. (2014)’s tool supports
visualization and editing of word alignments. Ak-
bik and Vollgraf (2017) use co-occurrence weights
for word alignment and provide a tool for the in-
spection of annotation projection. Aulamo et al.
(2020)’s filtering tool increases the quality of
(mined) parallel corpora. Graën et al. (2017) rely
on linguistic preprocessing, target corpus and word
alignment exploration, do not show the graph of
alignment edges and do not provide a dictionary
view. While there is commonality with this prior
work, ParCourE is distinguished by both its func-
tionality and its motivating use cases: an important
use case for us are typological searches; linguis-
tic preprocessing is not available for many PBC
languages; ParCourE can be used as an interactive
explorer (but is not a fully-automated pipeline for
a specific use case); our goal is not annotation;
we use state-of-the-art word alignment methods.
However, much of the complementary functional-
ity in prior work would be useful additions to Par-
CourE. Another source of useful additional func-
tionality would be work on embedding learning
(Dufter et al., 2018; Kurfal and Östling, 2018) and
machine translation (Tiedemann, 2018; Santy et al.,
2019; Mueller et al., 2020) for PBC.

3 Features

ParCourE’s user facing functionality can be divided
into three main parts: MULTALIGN and LEXICON

views and interconnections between the two.

3.1 Multiparallel Alignment Browser:
MULTALIGN

ParCourE allows the user to search through the
parallel corpus and check word alignments in a
multiparallel corpus. An overview of MULTALIGN

is shown in Figure 2.
In the search field (a(1)), the user can enter a

text query and select (a(2)) multiple sentences for
alignment. For narrowing the search scope, the
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Figure 2: An overview of the MULTALIGN view. a)
Search field for selecting sentences [a(1)] and the list
of selected sentences [a(2)]. Any language can be used
for the source sentence – in this case, it is English. b)
Search bar for selecting the target languages. c) The
alignment graph for the selected sentences in the source
and the target languages. d) Switch button for simple
view / cluster view. e) Save and retrieve search results

language and edition of the text segment can be
specified in the beginning, e.g., by typing l:eng-
newworld2013. Similarly, v:40002017 specifies a
verse ID.

PBC has 1334, so showing alignments for all
translations of a sentence is difficult. We provide a
drop-down (b) to select a subset of target languages
for display.

For each sentence, a graph of alignment edges
between selected languages is shown (c). By hover-
ing over a word, the alignments of that word will be
highlighted. Above each alignment graph, there is
a button to switch between Simple view and Clus-
ter view (d). In the simple view, when hovering
over a word, only the alignment edges connected
to that word are highlighted; in the cluster view,
all words in a cluster (neighbors of neighbors) that
are aligned together will be highlighted. We do not
actually run any clustering algorithm on the align-
ment graph. Instead we simply highlight words that
are up to two hops away from the hovered word.
This helps spot a group of words across languages
that have the same meaning.

Creating queries for typology research can take
time. Thus, MULTALIGN allows the user to save
and retrieve (e) queries.

Figure 3: LEXICON view example: for the English
word “confusion”, there are five frequent translations in
German. “Unordnung” literally means “disorder” and
“Verwirrung” means “bewilderment”.

3.2 Lexicon View: LEXICON

The MULTALIGN view allows the user to focus on
word alignments on the sentence level and study the
typological structure of languages in context. The
LEXICON view focuses on word translations. The
user can specify a source language by selecting
the language code. This is to distinguish words
with the same spelling in different languages. The
user can search for one or multiple word(s) and
specify target language(s). A pie chart for each
target language depicting translations of the word
is generated. Figure 3 shows German translations
of “confusion” and the number of alignment edges
for each. Word alignments are not perfect, so pie
charts may also contain errors.

3.3 Interconnections

Both MULTALIGN and LEXICON views provide
important features to the user for exploring the par-
allel corpus. For many use cases (cf. §6), the user
may need to go back and forth between the views.
For example, if she notices an error in the word
alignment, she may want to check the LEXICON

statistics to see if one of the typical translations of
an incorrectly aligned word occurs in the sentence.

Thus, the two views are interconnected. In the
MULTALIGN view, the user will be transferred to
the LEXICON statistics of a word by clicking on
it. This will open the LEXICON view, showing the
search results for the selected word. Conversely,
if the user clicks on one of the target translations
in the LEXICON view, the MULTALIGN view will
show sentences where this correspondence is part
of the word alignment between source and target
translation.
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# editions 1758 # verses 20,470,892
# languages 1334 # verses / # editions 11,520

# tokens / # verses 28.6

Table 1: PBC corpus statistics

3.4 Alignment Generation View:
INTERACTIVE

The views mentioned so far provide the ability to
search over the indexed corpus. This is useful when
the main corpus of interest is fixed and the user has
generated its alignments.

The INTERACTIVE view allows the user to study
the alignments between arbitrary input sentences
that are not necessarily in the corpus. Since the
input sentences are not part of a corpus, INTERAC-
TIVE uses SimAlign to generate alignments for all
possible pairs of sentences. Similar to MULTAL-
IGN, the INTERACTIVE view shows the alignment
between the input sentences.

4 Experimental Setup

Corpus. We set up ParCourE on the PBC corpus
provided by Mayer and Cysouw (2014). The ver-
sion we use consists of 1758 editions (i.e., transla-
tions) of the Bible in 1334 languages (distinct ISO
639-3 codes). Table 1 shows corpus statistics. We
use the PBC tokenization, which contains errors
for a few languages (e.g., Thai). We extract word
alignments for all possible language pairs. Since
not all Bible verses are available in all languages,
for each language pair we only consider mutually
available verses.

PBC aligns Bible editions on the verse level by
using verse-IDs that indicate book, chapter and
verse (see below). Although one verse may contain
multiple sentences, we do not split verses into in-
dividual sentences and consider each verse as one
sentence.

Retrieval. Elasticsearch2 is a fast and scalable
open source search engine that provides distributed
fulltext search. The setup is straightforward using
an easy-to-use JSON web interface. We use it as the
back-end for ParCourE’s search requirement. We
find that a single instance is capable of handling the
whole PBC corpus efficiently, so we do not need a
distributed setup. For bigger corpora, a distributed
setup may be required. We created two types of
inverted indices for our data: an edge-ngram in-

2https://www.elastic.co/

dex to support search-as-you-type capability and a
standard index for normal queries.

Alignment Generation. SimAlign (Jalili Sabet
et al., 2020) is a recent word alignment method
that uses representations from pretrained language
models to align sentences. It has achieved bet-
ter results than statistical word aligners. For the
languages that multilingual BERT (Devlin et al.,
2019) supports, we use SimAlign to generate word
alignments. For the remaining languages, we use
Eflomal (Östling and Tiedemann, 2016a), an effi-
cient word aligner using a Bayesian model with
Markov Chain Monte Carlo (MCMC) inference.
The alignments generated by SimAlign are sym-
metric. We use atools3 and the grow-diag-final-and
heuristic to symmetrize Eflomal alignments.

Lexicon Induction. We exploit the generated
word alignments to induce lexicons for all 889,111
language pairs. To this end, we consider aligned
words as translations of each other. For a given
word from the source language, we count the num-
ber of times a word from the target language is
aligned with it. The higher the number of align-
ments between two words, the higher the probabil-
ity that the two have the same meaning. We filter
out translations with frequency less than 5%.

5 Backend Design

An overview of our architecture can be found in
Figure 4. The code is available online.4

Parallel Data Format. We use the PBC corpus
format (Mayer and Cysouw, 2014): each verse has
a unique ID across languages / editions, the verse-
ID. The verse-ID is an 8-digit number, consisting
of two digits for the book (e.g., 41 for the Gospel of
Mark), three digits for the Chapter, and two digits
for the verse itself. There are separate files for each
edition. In each edition file, a line consists of the
ID and the verse, separated by a tab.

Indexing. We identify a PBC verse using the
following format: {verse-ID}@{language-code}-
{edition-name}. We use this identifier to save and
retrieve sentences with Elasticsearch. In addition,
we store all metadata identifiers within Elastic-
search. Thus, we can search for a sentence by
keyword, sentence number (= verse-ID), language
code, or edition name.

ParCourE also supports the Corpus Alignment

3https://github.com/clab/fast_align
4https://github.com/cisnlp/parcoure
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Figure 4: Overview of the system architecture. We
use a standard front-end stack with d3.js for visual-
ization. The backend is written in Python, which we
use for computing alignments and performing analy-
ses such as lexicon induction. We use Elasticsearch
for search. The input is a multiparallel corpus for
which all alignments are precomputed. For speeding
up the system we use smart caching algorithms for our
analyses. Icons taken without changes from https:

//fontawesome.com/license.

Encoding (CES)5 format. One can download par-
allel corpora in CES format and use our tools to
adapt them to ParCourE’s input format.

Alignment Computation. Since Eflomal’s per-
formance depends on the amount of data it uses
for training, we concatenate all editions to create
a bigger training corpus for languages that have
more than one edition. If language l1 has two, and
language l2 three different editions, then the final
training corpus for this language pair will contain
six aligned edition pairs.

System Architecture. ParCourE is built on top
of modern open source technologies, see Figure 4.
The back-end uses the Flask web framework,6 Gu-
nicorn web server,7 and Elasticsearch.8 The front-
end utilizes the Bootstrap CSS framework,9 and
the d3 visualization library.10 Since all these tools
are free and open-source, there is no restriction on
setting up and releasing a new ParCourE instance.
To extract word alignments, one can use any tool,
such as Eflomal, fast align or SimAlign.

Performance Improvements. For good run-
time performance, we precompute the word align-
ments. Regarding LEXICON, given a query word
and a target language, ParCourE first looks for a
precomputed lexicon file; if it does not exist, Par-

5https://www.cs.vassar.edu/CES/
6https://flask.palletsprojects.com
7https://gunicorn.org/
8https://www.elastic.co/
9https://getbootstrap.com/

10https://d3js.org/

CourE obtains the translations for the query word
online. To accelerate the translation process, Par-
CourE employs Python’s multiprocessing library.
The number of CPU cores is decided online based
on the number of editions available for source and
target languages.

For a corpus with 1334 languages, we will end
up with 890,445 alignment files and the same num-
ber of lexicon files. We cache alignment / lexicon
files to speed up access. We use the Last Recently
Used (LRU) cache replacement algorithm.

6 ParCourE Use Cases

Languages differ in how they encode mean-
ings/functions. There are various aspects that make
such differences an interesting problem when deal-
ing with a dataset that has good coverage of the
entire variation of the world’s languages. (i) Many
such differences between languages are not widely
acknowledged in linguistic theory, so to document
the extent of variation becomes a discovery of sorts.
For example, the fact that interrogative words might
distinguish between singular and plural (Figure 6)
turns out to be a typologically salient differentiation
(Mayer and Cysouw, 2012). (ii) The variation of
linguistic marking is even stronger in the domain
of grammatical function, like the differentiation
between the interrogative and relative pronoun in
Figure 6. (iii) In lexical semantics, ParCourE sup-
ports the investigation of how languages carve up
the meaning space differently (cf. Figure 5), espe-
cially when it comes to the ≈1000 low-resource
languages covered in PBC. Massively parallel texts
are an ideal resource to investigate such variation
(Haspelmath, 2003).

Grammatical differences between languages,
like differences in word order, have a long his-
tory in research on worldwide linguistic variation
(Greenberg, 1966; Dryer, 1992). However, being
able to look at the usage of word order in specific
contexts (and being able to directly compare ex-
actly the same context across languages) is only
possible by using parallel texts. For example, spe-
cific orders of more than two elements can be di-
rectly extracted from the parallel texts, like the
order of demonstrative, numeral and noun “these
two commandments” in Figure 7 (Cysouw, 2010).

For lack of space, we describe four more use
cases only briefly: grammatical markers vs. mor-
phology as devices to express grammatical features
(Figure 8); differences in how languages use gram-
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Figure 5: Use case 1, lexical differentiation. French
“femme” has two different translations in English
(“wife” and “woman”) whereas German also conflates
the two different meanings.

Figure 6: Use case 2, grammatical differentiation. En-
glish “who” has three different translations in this Span-
ish example: relative pronoun (“que”), and singular
(“quién)” and plural (“quiénes”) interrogative pronoun.

matical case (Figure 9, ablative/dative in Latin can
correspond to five different cases in Croatian); and
exploration of paraphrases (Figure 10). See the
captions of the figures for more details.

7 Extension to Other Corpora

Our code is available on GitHub and can be generi-
cally applied: you can create a ParCourE instance
for your own parallel corpus. Parallel corpora are
essential for machine translation (MT); ParCourE’s
functionality is useful for analyzing the quality of
a parallel corpus and the difficulty of the transla-
tion problem it poses. We give three examples
i) Incorrect sentence alignments can be identified,
e.g., cases in which a target sentence is matched
with the merger of two sentences in the source:
cf. Figure 11 where a short sentence in English
is aligned with German and French sentences that
also contain a second sentence that is missing in
English. This functionality is particularly helpful
for mined parallel corpora that tend to contain er-

Figure 7: Use case 3, word order variation. The En-
glish order is demonstrative, numeral, noun whereas
Swahili has noun, demonstrative, numeral.

Figure 8: Use case 4, grammatical markers. In contrast
to English, Seychelles Creole does not inflect verbs for
tense and uses the past tense marker “ti” instead.

roneous sentence pairs. ii) Suppose an MT system
trained on the parallel corpus makes a lexical error
in a particular context c by mistranslating source
word ws with target word wt. The LEXICON view
can be consulted for ws and the user can then click
on the erroneous target word wt to get back to a
MULTALIGN view of aligned sentence pairs con-
taining ws and wt. She can then analyze why the
MT system mismatched c with these contexts. Ex-
amples of the desired translation are easy to find
and inspect to support the formation of hypotheses
as to the source of the error. iii) For multi-source
approaches to MT (Zoph and Knight, 2016; Fi-
rat et al., 2016; Libovický and Helcl, 2017; Crego
et al., 2010), ParCourE supports the inspection of
all input sentences together. The MT system output
can also be loaded into ParCourE for a view that
contains all input sentences and the output sentence.
Since any of the input sentences can be responsible
for an error in multi-source MT, this facilitates anal-
ysis and hypothesis formation as to what caused a
specific error.

7.1 Computing Infrastructure and Runtime

We did all computations on a machine with 48
cores of Intel(R) Xeon(R) CPU E7-8857 v2 with
1TB memory. In this experiment only one core was
used.

We created a corpus of 5 translations in 4 lan-
guages, with around 31k parallel sentences (over-
ally 155k sentences) and applied the ParCourE
pipeline to it. Runtimes for different parts of the
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Figure 9: Use case 5, morphology. The Latin ending
“ibus” in “fratribus” (dative/ablativ plural) corresponds
to five different cases in Croatian: accusative, loca-
tive/dative, nominative, genitive, instrumental (clock-
wise starting from “braću”).

Figure 10: Use case 6, paraphrases. PBC is a rich
source of paraphrases since high-resource languages
have several translations (32 for English). ParCourE
can be used to explore these paraphrases. Here, the
paraphrases “kill” and “murder” are correctly aligned,
“always ready” and “run quickly” are not.

pipeline are reported in Table 2. The installation
of the package is straightforward and as shown
in the table, it takes around 12 minutes to initiate
ParCourE on a small corpus with 4 languages.

Method Runtime

Conversion from CES to ParCourE format 153
Indexing with Elasticsearch 14
Alignment generation with Eflomal 537
Stats calculation 22

Overall 726

Table 2: Runtime in seconds for each part of the
pipeline to initiate a ParCourE instance on a corpus
with 4 languages and 31K parallel sentences.

8 Conclusion

Progress in multilingual NLP is an important goal
of NLP and requires researching typological prop-
erties of languages. Examples include assessing
language similarity for effective transfer learning,
injecting inductive biases into machine learning
models and creating resources such as dictionaries
and inflection tables. To serve such use cases, we

Figure 11: Use case 7, quality analysis. ParCourE
makes it easy to analyze the quality of the parallel cor-
pus. For this sentence, part of a Bible verse present in
German and French is missing in English. Note that
the alignment of holy, heiligen to French fraternel is
not discovered.

have created ParCourE, an online tool for browsing
a word-aligned parallel corpus of 1334 languages,
and given evidence that it is useful for typological
research. ParCourE can be set up for any other par-
allel corpus, e.g., for quality control and improve-
ment of automatically mined parallel corpora.
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9 Ethical Considerations

Word alignments and lexicon induction as tasks
themselves may not have ethical implications.
However, working on a biblical corpus requires
special consideration of the following issues.

i) The Bible is the central religious text of Chris-
tianity and the Hebrew Bible that of Judaism. It
contains strong opinions and world views (e.g., on
divorce and homosexuality) that are not generally
shared. We would like to emphasize that we treat
the PBC simply as a multiparallel corpus, and the
corpus does not necessarily reflect the opinions of
the authors nor of the institutions funding the au-
thors. ii) In a similar vein, while the PBC has great
language coverage and allows for typological anal-
ysis, we need to be aware that languages might not
be accurately and completely reflected in the PBC.
The language used in the PBC might be outdated
and is restricted to a relatively small subset of top-
ics and thus cannot be considered a balanced and
complete view of the language. iii) We also need to
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be aware of selection bias. The PBC only covers a
subset of the world’s languages. The selection cri-
teria are unknown and may be based on historical
and cultural biases that we are not able to assess.
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Abstract

With the advent of end-to-end deep learning
approaches in machine translation, interest in
word alignments initially decreased; however,
they have again become a focus of research
more recently. Alignments are useful for ty-
pological research, transferring formatting like
markup to translated texts, and can be used in
the decoding of machine translation systems.
At the same time, massively multilingual pro-
cessing is becoming an important NLP sce-
nario, and pretrained language and machine
translation models that are truly multilingual
are proposed. However, most alignment algo-
rithms rely on bitexts only and do not leverage
the fact that many parallel corpora are multi-
parallel. In this work, we exploit the multi-
parallelity of corpora by representing an ini-
tial set of bilingual alignments as a graph and
then predicting additional edges in the graph.
We present two graph algorithms for edge pre-
diction: one inspired by recommender systems
and one based on network link prediction. Our
experimental results show absolute improve-
ments in F1 of up to 28% over the baseline
bilingual word aligner in different datasets.

1 Introduction

Word alignment is a challenging NLP task that
plays an essential role in statistical machine trans-
lation and is useful for neural machine translation
(Alkhouli and Ney, 2017; Alkhouli et al., 2016;
Koehn et al., 2003). Other applications of word
alignments include bilingual lexicon induction, an-
notation projection, and typological analysis (Shi
et al., 2021; Rasooli et al., 2018; Müller, 2017;
Lewis and Xia, 2008). With the advent of deep
learning, interest in word alignment initially de-
creased. However, recently a new wave of publica-
tions has again drawn attention to the task (Jalili Sa-
bet et al., 2020; Dou and Neubig, 2021; Marchisio
et al., 2021; Wu and Dredze, 2020).

∗ Equal contribution.

Figure 1: Bilingual alignments of a verse in English,
German, Spanish, and French. Two of the alignment
edges not found by the bilingual method are German
“Schritt” to French “pas” and Spanish “largo” to En-
glish “thousand miles”. By looking at the structure of
the entire graph, one can infer the correctness of these
two edges.

In this paper we propose MPWA (MultiParal-
lel Word Alignment), a framework that employs
graph algorithms to exploit the information latent
in a multiparallel corpus to achieve better word
alignments than aligning pairs of languages in iso-
lation. Starting from translations of a sentence
in multiple languages in a multiparallel corpus,
MPWA generates bilingual word alignments for all
language pairs using any available bilingual word
aligner. MPWA then improves the quality of word
alignments for a target language pair by inspect-
ing how they are aligned to other languages. The
central idea is to exploit the graph structure of an
initial multiparallel word alignment to improve the
alignment for a target language pair. To this end,
MPWA casts the multiparallel word alignment task
as a link (or edge) prediction problem. We explore
standard algorithms for this purpose: Adamic-Adar
and matrix factorization. While these two graph-
based algorithms are quite different and are used in
different applications, we will show that MPWA ef-
fectively leverages them for high-performing word
alignment.
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Link prediction methods are used to predict
whether there should be a link between two nodes
in a graph. They have various applications like
movie recommendations, knowledge graph comple-
tion, and metabolic network reconstruction (Zhang
and Chen, 2018). We use the Adamic-Adar index
(Adamic and Adar, 2003); it is a second-order link
prediction algorithm, i.e., it exploits the informa-
tion of neighbors that are up to two hops aways
from the starting target nodes (Zhou et al., 2009).
We use a second-order algorithm since a set of
aligned words in multiple languages (representing
a concept) tends to establish a clique (Dufter et al.,
2018). This means that exploring the influence of
nodes at a distance of two in the graph provides
informative signals while at the same time keeping
runtime complexity low.

Matrix factorization is a collaborative filtering
algorithm that is most prominently used in rec-
ommender systems where it provides users with
product recommendations based on their interac-
tions with other products. This method is especially
useful if the matrix is sparse (Koren et al., 2009).
This is true for our application: Given two transla-
tions of a sentence with lengths M and N , among
all possible alignment links (M ×N ), only a few
(O(M +N)) are correct. This is partly due to fer-
tility: words in the source language generally have
only a few possible matches in the target language
(Zhao and Gildea, 2010).

A multiparallel corpus provides parallel sen-
tences in more than two languages. This type of
corpus facilitates the study of multiple languages
together, which is especially important for research
on low resource languages. As far as we know, out
of all available multiparallel corpora, the Parallel
Bible Corpus (Mayer and Cysouw, 2014) (PBC)
provides the highest language coverage, supporting
1334 different languages, many of which belong to
categories 0 and 1 (Joshi et al., 2020) – that is, they
are languages for which no language technologies
are available and that are severely underresourced.

MPWA has especially strong word alignment
improvements for distant language pairs for which
existing bilingual word aligners perform poorly.
Much work that addresses low resource languages
relies on the availabiliy of monolingual corpora.
Complementarily, MPWA assumes the existence
of a very small (a few 10,000s of sentences in our
case) parallel corpus and then takes advantage of
information from the other languages in the paral-

lel corpus. This is an alternative approach that is
especially important for low resource languages for
which monolingual data often are not available.

The PBC corpus does not contain a word align-
ment gold standard. To conduct the comparative
evaluation of our new method, we port three exist-
ing word alignment gold standards of Bible trans-
lations to PBC, for the language pairs English-
French, Finnish-Hebrew and Finnish-Greek. We
also create artificial multiparallel datasets for four
widely used word alignment datasets using ma-
chine translation. We evaluate our method with
all seven datasets. Results demonstrate substantial
improvements in all scenarios.

Our main contributions are:

1. We propose two graph-based algorithms for
link prediction (i.e., the prediction of word
alignment edges in the alignment graph), one
based on second-order link prediction and one
based on recommender systems for improving
word alignment in a multiparallel corpus and
show that they perform better than established
baselines.

2. We port and publish three word alignment
gold standards for the Parallel Bible Corpus.

3. We show that our method is also applicable,
using machine translation, to scenarios where
multiparallel data is not available.

4. We publish our code1 and data.

2 Related Work

Bilingual Word Aligners take different ap-
proaches. Some are based on statistical analysis,
like IBM models (Brown et al., 1993), Giza++ (Och
and Ney, 2003a), fast-align (Dyer et al., 2013) and
Eflomal (Östling and Tiedemann, 2016). Another
more recent group, including SimAlign (Jalili Sa-
bet et al., 2020) and Awesome-align (Dou and Neu-
big, 2021), utilizes neural language models. The
last group is based on neural machine translation
(Garg et al., 2019; Zenkel et al., 2020). While neu-
ral models outperform statistical models, for cases
where only a small parallel dataset is available, sta-
tistical models are still superior. In this paper we
use PBC, a corpus with 1334 languages, of which
only about two hundred are supported by multilin-
gual language models like Bert and XLM-R (De-
vlin et al., 2019; Conneau et al., 2020). MPWA can

1https://github.com/cisnlp/graph-align
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leverage multiparallelism on top of any bilingual
word aligner; in this paper, we use Eflomal and
SimAlign.

Multiparallel corpus alignment. Most work
on word alignment has focused on bilingual cor-
pora. To the best of our knowledge, only one
method specifically designed for multiparallel cor-
pora was previously proposed: (Östling, 2014).2

However this method is outperformed by a “bipar-
allel” method by the same author, Eflomal (Östling
and Tiedemann, 2016). We compare with Eflomal
in our experiments.

Cohn and Lapata (2007) make use of multipar-
allel corpora to obtain more reliable translations
from small datasets. Kumar et al. (2007) show
that multiparallel corpora can be of benefit to reach
better performance in phrase-based statistical ma-
chine translation (SMT). Filali and Bilmes (2005)
present a multilingual SMT-based word alignment
model, extending IBM models, based on HMM
models and a two step alignment procedure. Since
the goal of this research is to tackle word alignment
directly without considering machine translation,
these works are not considered here.

In another line of research, Lardilleux and Lep-
age (2008a) introduce a corpus splitting method to
come up with a perfect alignment of multiwords.
Lardilleux and Lepage (2008b), and Lardilleux and
Lepage (2009) suggest to rely only on low fre-
quency terms for a similar purpose: sub-sentential
alignment. These methods solve a somewhat differ-
ent problem than what is addressed by us. Other us-
ages of multiparallel corpora are language compar-
ison (Mayer and Cysouw, 2012), typology studies
(Östling, 2015; Asgari and Schütze, 2017; Imani-
Googhari et al., 2021) and SMT (Nakov and Ng,
2012; Bertoldi et al., 2008; Dyer et al., 2013)

Matrix factorization and link prediction. Ma-
trix factorization is a technique that factors, in the
most typical case, a matrix into two lower-ranked
matrices in which the latent factors of the original
matrix are represented. Matrix factorization ap-
proaches have been widely used in document clus-
tering (Xu et al., 2003; Shahnaz et al., 2006), topic
modeling (Kuang et al., 2015; Choo et al., 2013)
information retrieval (Zamani et al., 2016; Deer-
wester et al., 1990) and NLP tasks like word sense
disambiguation (Schütze, 1998). In 2009, Netflix’s
recommender system competition revealed that this

2https://github.com/robertostling/
eflomal

technique effectively works for collaborative filter-
ing (Koren et al., 2009). Since then it has been a
state of the art method in recommender systems.

Link prediction algorithms are widely used in
different areas of science since many social, biolog-
ical, and information systems can be described as
networks with nodes and connecting links (Zhou
et al., 2009). Link prediction algorithms compute
the likelihood of links based on different heuris-
tics. One can categorize available methods based
on the maximum number of hops they consider
in their computations for each node (Zhang and
Chen, 2018). First order algorithms, such as com-
mon neighbors (CN), only consider one hop neigh-
borhoods, e.g., (Barabási and Albert, 1999). Sec-
ond order methods consider two hops, e.g., (Zhou
et al., 2009). Finally, higher order methods take
the whole network into account for making predic-
tions (Brin and Page, 1998; Jeh and Widom, 2002;
Rothe and Schütze, 2014). In this paper, we use
a two-hop method since it offers a good tradeoff
between effectiveness and efficiency.

3 Methods

3.1 The MPWA framework

While a bilingual aligner considers each language
pair separately, MPWA utilizes the synergy be-
tween all language pairs to improve word align-
ment performance. In Figure 1, Eflomal alignments
of a sentence from PBC in four different languages
are depicted. Although Eflomal has failed to find
the link between German “Schritt” and French
“pas”, we can easily find this relation by observ-
ing that the four nodes “step”, “Schritt”, “paso”,
and “pas” are fully connected, except for the edge
from “Schritt” to “pas”. In this case, the inference
amounts to a completion of a clique. However,
most cases are not that simple. In the figure, En-
glish “thousand miles” is mistakenly aligned to
Spanish “siempre” although its alignments to Ger-
man “lange” and French “mille” are correct. We
would like to infer that “thousand miles” should be
aligned to “largo”, but in this case creating a fully
connected subgraph, i.e., a clique (which would in-
clude “siempre”), would add many incorrect edges.
Given the complexity and error-proneness of ini-
tial bilingual alignments, inferring an alignment
between two languages from a multiparallel align-
ment in general is a complex problem.

Starting from a multiparallel corpus, we first gen-
erate bilingual alignments for all language pairs.

72



MPWA then employs a prediction algorithm to find
and add new alignment links. In this paper, we
focus on two prediction algorithms: non-negative
matrix factorization and Adamic-Adar link predic-
tion.

3.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) has been
used in many different applications. After discov-
ery of its effectiveness for collaborative recommen-
dation (Koren et al., 2009), it was widely accepted
as a standard method for recommender systems.

In a standard recommender system with m users
and n items, ratings (a number from 1 to 5) from
each user for the items they have seen so far are
known. The aim is to predict the ratings the user
would give to unseen items and, based on these
predictions, recommend new items to the user. As
described by (Luo et al., 2014), let W = [wu,i] ∈
Rm×n be the matrix of ratings. For NMF to work
it is essential that the matrix be sparse, thus if a
user’s rating for an item is unknown, the corre-
sponding cell is zeroed. The matrix W is then
decomposed into two low-rank non-negative ma-
trices, T = [tu,k] ∈ Rm×r and V = [vk,i] ∈ Rr×n

such that TV ≈ W and r � min(m,n). r is a
hyperparameter. By multiplication of these two ma-
trices we end up with a reduced matrix W ′ = TV
in which each zeroed cell wu,i from matrix W is
replaced with a value w′u,i that represents a predic-
tion for the rating that user u would give to item i.
NMF solves the following optimization program:

argmin
T,V

(
‖W − TV ‖2

)

subject to T, V > 0

This optimization problem can be solved by gra-
dient descent using the following updates:

tu,k ← tu,k + ηu,k((WV T )u,k − (TV V T )u,k)

vk,i ← vk,i + ηk,i((T
TW )k,i − (T TTV )k,i)

In this equation, η is the learning rate. To guar-
antee non-negativity, it is defined as:

ηu,k =
tu,k

(TV V T )u,k
, ηk,i =

vk,i
(T TTV )k,i

Note that the objective function only takes ac-
count of non-zero cells. Luo et al. (2014) propose
an approach that takes advantage of the sparseness
of the matrix for faster computation. In addition,
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I 5 1 5 1 5 1
can 5 1 5 1
see 1 1 5 1 5 1 5
ich 5 1 5 1 5 1
kann 1 5 1 5
es 5 1
sehen 1 5 1 5 1
je 5 1 5 1 5 1
vois 1 5 1 5 1 5

Figure 2: An example of how the original matrix is
filled for a sentence in three languages. Zero entries
are left blank for readability.

Tikhonov regularization is integrated to improve
precision, recall, and convergence rate.

We use the implementaion of NMF provided by
the Surprise3 library, with default hyperparameters
(r = 15, n_epochs = 50).

3.2.1 NMF in MPWA framework
We create a separate matrix W for each sentence
in the multiparallel corpus. Tokens in the sentence
play the role of both users and items, i.e., we con-
sider each token both as a row and as a column.
Figure 2 shows an example of a sentence in a toy
English-German-French multiparallel corpus. If
two tokens are aligned using the bilingual aligner,
we fill the corresponding cell with the highest rat-
ing (5). To give a few negative examples to the
algorithm, if a token x from language L1 is aligned
to token y in language L2, we pick another ran-
dom token z from L2 and fill the corresponding
cell of x to z with the lowest rating (1). We zero
out all other cells. Next we apply the matrix fac-
torization algorithm to this matrix and then com-
pute the reduced matrix W ′ from the factors. Now
we grab the predicted alignment scores between
source and target languages from W ′. To extract
new alignment edges we apply the Argmax algo-
rithm (Jalili Sabet et al., 2020). Argmax creates an
alignment edge between word wi from language
L1 and word wj from language L2 if among all
words from L2, wi has the highest alignment score
with wj , and among all words from L1, wj has the
highest alignment score with wi.

3.3 Link Prediction

A multiparallel sentence annotated with bilingual
word alignments can be considered to be a graph
with words from all translations as nodes and the

3http://surpriselib.com/
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word alignments as edges. Link prediction al-
gorithms such as Common Neighbors (CN) and
Adamic-Adar (AdAd) estimate the likelihood of
having an edge between two nodes x and y in the
graph based on the similarity of their neighbor-
hoods. The CN index weights all common neigh-
bors equally. In contrast, AdAd gives higher weight
to neighbors with low degrees because sharing a
neighbor that in turn has few neighbors is more
significant. Therefore, we use the AdAd index. It
is defined as:

AdAdx,y =
∑

z∈Γ(x)∩Γ(y)

1

log |Γ(z)| (1)

where Γ(x) is the neighborhood of x.
If we use a word aligner that produces a score for

each alignment edge, we can use Weighted Adamic-
Adar (Lü and Zhou, 2010):

WAdAdx,y =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y)

log(1 + S(z))
(2)

wherew(x, z) is the similarity score of x and z gen-
erated by the aligner and S(x) =

∑
z∈Γ(x)w(x, z).

For embedding-based aligners we use embedding
similarity as the score w(x, z). If an aligner does
not provide scores, we set all weights to 1.0.

Given a scored word alignment, we create a mul-
tilingual word alignment matrix W for each sen-
tence as shown in Figure 2. Each cell contains 0
or 1 for Adamic-Adar or the alignment score for
Weighted Adamic-Adar. We again apply Argmax
to extract new alignment edges and then add them
to the original alignment.

4 Experimental setup

4.1 PBC
The PBC corpus (Mayer and Cysouw, 2014) con-
tains 1758 editions of the Bible in 1334 languages.
The editions are aligned at the verse level and to-
kenized. A verse can contain more than one sen-
tence, but we treat it as one unit in the parallel
corpus since a true sentence level alignment is not
available. There are some errors in tokenization
(e.g., for Tibetan, Khmer and Chinese), but the
overall quality of the corpus is good. For the ma-
jority of languages one edition is provided, while a
few languages (in particular, English, French and
German) contain up to dozens of editions. The
verse coverage also differs from language to lan-
guage. Some languages have translations of both

New Testament and Hebrew Bible while others
contain only one. Table 2 gives corpus statistics.

4.2 Word alignment datasets

PBC does not provide gold word alignments. To
evaluate MPWA, we port two word alignment gold
datasets of the Bible to PBC: Blinker (Melamed,
1998) and the recently published HELFI (Yli-Jyrä
et al., 2020). We further experiment with bilin-
gual datasets, using Machine Translation (MT) to
create multiparallel corpora. Table 1 gives dataset
statistics.

The HELFI dataset consists of the Greek New
Testament, the Hebrew Bible and translations of
both into Finnish. In addition, morpheme align-
ments are provided for Finnish-Greek and Finnish-
Hebrew. We reformatted this dataset to the format
used by PBC. In more detail, we added three new
editions for the three languages to PBC. We iden-
tified the PBC verse identifier for each verse of
HELFI to ensure proper verse alignment of these
three new editions. The Finnish-Hebrew dataset
has 22,291 verses and the Finnish-Greek dataset
7,909. We split these datasets 80/10/10 into train,
validation and test.

The Blinker Bible dataset provides word level
alignments of 250 Bible verses between English
and French. The French side of this dataset matches
with the edition Louis Segond 1910 in PBC. How-
ever, the tokenizations (Blinker vs PBC) are differ-
ent. We therefore create a mapping of the tokens
using character n-gram matching. For English, we
created and added a new edition to PBC.

MT datasets. To more broadly evaluate MPWA,
we also create multiparallel datasets for four non-
Bible word alignment gold standards; these are
listed in Table 1 as “Non-Bible” corpora. For these
gold standards, we translate from English to all lan-
guages available in Google Translate, using their
API.4 For the added languages, we create align-
ments for the gold standard sentences using SimA-
lign.

4.3 Initial word alignments

We compare with two state of the art models, one
statistical, one neural. Eflomal (Östling and Tiede-
mann, 2016) is a Bayesian statistical word aligner
using Markov Chain Monte Carlo inference. SimA-
lign (Jalili Sabet et al., 2020) obtains word align-

4https://cloud.google.com/translate/
docs/basic/translating-text
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Language Pair Name # Sentences (train/valid./test)

Bible

FIN-HEB HELFI (Yli-Jyrä et al., 2020) 22291 (17832/2229/2230)
FIN-GRC HELFI (Yli-Jyrä et al., 2020) 7909 (6327/791/791)
ENG-FRA BLINKER (Melamed, 1998) 250

Non-
Bible

ENG-DEU EuroParl-baseda 508
ENG-FAS (Tavakoli and Faili, 2014) 400
ENG-HIN WPT2005b 90
ENG-RON WPT2005b 203

a www-i6.informatik.rwth-aachen.de/goldAlignment/
b http://web.eecs.umich.edu/~mihalcea/wpt05/

Table 1: Overview of datasets. We use ISO 639-3 language codes. # Sentences: the number of available verses
(i.e., sentences). FIN-HEB and FIN-GRC datasets split into train, validation and test.

# editions 1758
# languages 1334
# verses 20,470,892
# verses / # editions 11,520
# tokens / # verses 28.6

Table 2: PBC corpus statistics

ments from multilingual pretrained language mod-
els with no need for parallel data. For the sym-
metrization of Eflomal, we use grow-diag-final-and
(GDFA) and intersection, and for SimAlign we use
Argmax and Itermax. Intersection and Argmax gen-
erate accurate alignments while GDFA and Itermax
are less accurate but have better coverage (Jalili Sa-
bet et al., 2020).

We evaluate on a target language pair parallel
sentence as follows: First, we create the matrix
(Figure 2) for this sentence for all languages in the
multiparallel corpus. Then we run link prediction
on the matrix – this accumulates evidence from a
set of languages in the multiparallel corpus. Finally,
we take the predictions for the target language pair
and add them to the original (bilingual) alignment.

NMF works best if it starts with high-accuracy
(i.e., non-noisy) bilingual alignments – errors can
result in incorrectly predicted alignment edges. We
therefore use SimAlign Argmax and Eflomal In-
tersection, two word alignment methods with high
precision, to create the initial alignments that are
then fed into NMF. We then add the predictions to
any desired original alignments; e.g., NMF (GDFA)
uses Eflomal Intersection as the initial alignments
and adds the predictions to Eflomal GDFA. See the
Appendix for more details.

SimAlign offers high quality word alignments
for well-represented languages from pretrained lan-
guage models; however, our experiments show
that its performance is far behind Eflomal for less
well resourced languages like Biblical Hebrew and
Koine Greek. Also, Eflomal is a better match for

MPWA because it can provide word alignments
for all languages available in a multiparallel cor-
pus. In contrast, SimAlign is limited to languages
supported by pretrained multilingual embeddings.

To feed Eflomal with enough training data for a
target language pair, we use all available data from
different translations of the language pair. For ex-
ample if one language has two translations and the
other one has three translations, Eflomal’s training
data will contain six aligned translation pairs for
these two languages.

We use the standard evaluation measures for
word alignment: precision, recall, F1 and Align-
ment Error Rate (AER) (Och and Ney, 2003b;
Östling and Tiedemann, 2016; Jalili Sabet et al.,
2020).

5 Results

5.1 Multiparallel corpus results

We perform the first set of experiments on the
Blinker Bible and the HELFI gold standards in
the PBC. The baseline results are calculated on the
original language pairs. MPWA can be applied
to both Eflomal and SimAlign alignments. Since
the default version of SimAlign can only generate
alignments for the 84 languages that multilingual
BERT supports,5 for a better comparison, we use
the same set of languages in the alignment graph
for both SimAlign and Eflomal.

Table 3 shows the results for our methods ap-
plied on SimAlign and Eflomal baselines.6 AdAd,
NMF and WAdAd substantially improve the per-
formance for all language pairs. SimAlign gener-
ates high-quality alignments for the English-French
dataset, but cannot properly align underresourced
languages like Biblical Hebrew and Koine Greek.

5https://github.com/google-research/
bert/blob/master/multilingual.md

6We only consider SimAlign IterMax, not SimAlign
ArgMax, because IterMax performed better throughout.
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FIN-HEB FIN-GRC ENG-FRA
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

Baseline

Eflomal (intersection) 0.818 0.269 0.405 0.595 0.897 0.506 0.647 0.353 0.971 0.521 0.678 0.261
Eflomal (GDFA) 0.508 0.448 0.476 0.524 0.733 0.671 0.701 0.300 0.856 0.710 0.776 0.221
SimAlign 0.190 0.113 0.142 0.858 0.366 0.265 0.307 0.693 0.886 0.692 0.777 0.221

Init SimAlign
AdAd 0.199 0.127 0.155 0.845 0.402 0.289 0.336 0.664 0.878 0.731 0.798 0.200
WAdAd 0.186 0.165 0.175 0.825 0.353 0.350 0.351 0.649 0.856 0.752 0.801 0.197
NMF 0.122 0.100 0.110 0.890 0.396 0.337 0.364 0.636 0.835 0.700 0.762 0.236

Init Eflomal

WAdAd (intersection) 0.781 0.612 0.686 0.314 0.849 0.696 0.765 0.235 0.938 0.689 0.794 0.203
NMF (intersection) 0.78 0.576 0.663 0.337 0.864 0.669 0.754 0.248 0.948 0.624 0.753 0.245

WAdAd (GDFA) 0.546 0.693 0.611 0.389 0.707 0.783 0.743 0.257 0.831 0.796 0.813 0.186
NMF (GDFA) 0.548 0.646 0.593 0.407 0.72 0.759 0.739 0.261 0.844 0.767 0.804 0.195

Table 3: Comparison of results from different methods on PBC. The best results in each column are in bold. The
three methods exploiting multiparallelism (AdAd, WAdAd, NMF) generally outperform the baselines on F1 and
AER.

In such cases, MPWA uses the accumulated infor-
mation from all other language pairs in the graph
to improve the performance. When starting with
the SimAlign alignment (“Init SimAlign”), both
methods improve the result for both FIN-HEB and
FIN-GRC.

Eflomal generates better alignments for FIN-
HEB and FIN-GRC. This means that Eflomal also
generates better alignments between FIN, HEB and
GRC on the one hand and the other languages in
the graph on the other hand and therefore can pro-
vide a better signal for MPWA. The improvements
of our models applied on Eflomal are higher than
the ones applied on SimAlign for these language
pairs.

When changing the initial alignments from Eflo-
mal (intersection) to Eflomal (GDFA), we see dif-
ferent behaviors: GDFA improves the results for
Blinker while it does not help for HELFI. We be-
lieve this is caused by the different ways the two
datasets were annotated. In Blinker, many phrases
are “exhaustively” aligned: if a phrase DE in En-
glish is aligned with FG in French then all four
alignment edges (D-F, D-G, E-F, E-G) are given as
gold edges.7

So Blinker contains a lot of many-to-many links.
In contrast, most alignments are one-to-one in
HELFI. This partially explains why intersection
as initial alignment works much better for HELFI
than GDFA and vice versa for Blinker.

In summary, compared to the baselines, we see
very large improvements through exploiting mul-
tiparallelism for one type of alignment methodol-
ogy (HELFI, F1 improved by up to 20% for FIN-

7For example, the alignment of the phrases “trembled vio-
lently” and “fut saisi d’und grande, d’une violente émotion”
consists of 2 · 8 gold edges.

HEB) and improvements of up to 3.5% for the other
(ENG-FRA).

5.2 MT dataset results

We perform the second set of experiments on gold
standard alignments for language pairs that are not
part of a multiparallel corpus such as PBC. To this
end, we create artificial multiparallel corpora by
translating the English side to all languages avail-
able in the Google Translate API. The main goal
is to give broader evidence for the effectiveness of
our method, beyond the specialized domain of the
Bible.

Eflomal’s alignments generally have good qual-
ity. However, they get worse when less parallel
data is available (Jalili Sabet et al., 2020). Since
the size of the multiparallel corpus created by ma-
chine translation is rather small, we use SimAlign
for generating initial alignments. SimAlign has
been shown to have good performance even for
very small parallel corpora; in fact, it does not need
any parallel data at all.

Table 4 shows the results of the experiments.
Both NMF and WAdAd, improve the performance
of the baseline by using the alignment graph. Im-
provements range from 0.8% (ENG-DEU) to 3.3%
(ENG-HIN). This again demonstrates the utility of
exploiting multiparallelism for word alignment. It
is worth mentioning that in this case the translations
are noisy since they were automatically generated.
But even with these noisy translations (instead of a
“true” multiparallel corpus), our models effectively
leverage multiparallelism.
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ENG-PES ENG-HIN ENG-RON ENG-DEU
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

Baseline SimAlign 0.756 0.645 0.696 0.304 0.709 0.493 0.582 0.418 0.807 0.663 0.728 0.272 0.829 0.795 0.812 0.188

Init SimAlign
AdAd 0.751 0.700 0.725 0.276 0.693 0.544 0.610 0.390 0.799 0.696 0.744 0.256 0.818 0.823 0.820 0.179
WAdAd 0.705 0.740 0.722 0.278 0.643 0.574 0.607 0.394 0.725 0.717 0.721 0.279 0.749 0.844 0.794 0.207
NMF 0.734 0.698 0.716 0.284 0.684 0.559 0.615 0.385 0.780 0.696 0.736 0.265 0.804 0.827 0.815 0.185

Table 4: Results with gold standards translated into other languages using machine translation. The best results in
each column are in bold. The three methods exploiting multiparallelism (AdAd, WAdAd, NMF) outperform the
baselines on F1 and AER.

Figure 3: F1 of MPWA for the target language pair
FIN-HEB as a function of the number of additional lan-
guages. There is a clear rise initially. The curve flattens
around 75.

5.3 Analysis

5.3.1 Effect of number of languages
The effect of adding more languages to the align-
ment graph is depicted in Figure 3. This plot shows
F1 for FIN-HEB. As seen in the figure, the slope
is pretty steep up to 25 languages, but even adding
just three languages can still improve the results.
For 75 languages we have almost reached the peak
and after 100, adding more languages is not im-
proving the results. This means that MPWA can
also be helpful for corpora with a smaller number
of languages – a massively parallel corpus with
thousands of languages is not required.

5.3.2 Size of the training set
To assess the effect of dataset size on the perfor-
mance of MPWA, we perform a set of experiments
on ENG-FRA and NMF. To this end, we take the
training data for ENG-FRA and train models on
subsets of it. The training data consists of 6.4M
sentence pairs – this number is so high because we
use the crossproduct of all editions in English and
French (§4.3).

The results are shown in Figure 4. Eflomal per-
formance increases with training set size initially

Figure 4: Word alignment F1 on ENG-FRA as a func-
tion of the size of the training set, ranging from 30K to
6.4M training sentence pairs

and is then less predictable. NMF consistently im-
proves the scores.

5.3.3 Effect of task difficulty
Table 3 shows large improvements for all datasets,
and especially for FIN-HEB and FIN-GRC. To get
more insight into the reasons for this improvement,
we stratify FIN-HEB verses by dividing the interval
[0, 1] of initial F1 performance of Eflomal into five
equal-sized subintervals: [0, 0.2], . . . , (0.8, 1].

Figure 5 indicates that MPWA is most effective
for difficult verses, but brings little improvement
for easy verses. We attribute this to two reasons:

1. An easy to align verse in a language pair can-
not use help from other languages since it al-
ready has good alignment links (although the
language pair would still be of benefit in im-
proving alignments for the sentence in other
languages). So there is no way for MPWA to
get better results in this scenario.

2. MPWA only tries to get better results by
adding new alignments, and as an easy verse
already has many alignment links, adding new
links almost inevitably results in a drop in pre-
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Figure 5: How helpful is MPWA for different difficulty
levels? For this analysis, FIN-HEB verses were strat-
ified according to Eflomal F1 (x-axis). We see that
MPWA brings the largest improvements for difficult
sentences.

ENG-FRA FIN-HEB FIN-GRC
Lang. ∆ Lang. ∆ Lang. ∆

SPA +2.0% TGL +17.7% LAT +7.5%
ITA +1.9% FRY,ELL +17.3% ELL +6.6%
DEU +1.8% SWE +17.3% ENG +6.1%
NLD +1.4% NLD +16.8% FRY +5.8%
AFR +1.3% YOR +14.2% BEL +5.7%

Table 5: The five most helpful languages and WAdAd’s
absolute improvements in F1 over the initial bilingual
aligner SimAlign. For example, MPWA improves the
bilingual FIN-GRC alignment by 7.5% if applied to
the trilingual corpus FIN-GRC-LAT, i.e., Latin can be
viewed as the best bridge between Finnish and Greek.

cision. It may also be possible to inspect and
prune existing Eflomal links using MPWA to
get better results in this scenario.

5.3.4 Most helpful languages
For each dataset, the five most helpful languages
with their corresponding improvements are listed
in Table 5. We hypothesize that these languages
serve to bridge the typological gap between the two
target languages. Table 5 suggests one should be
able to achieve excellent results – even for a corpus
with a small number of languages – if we utilize an
intelligent selection of languages.

5.3.5 Multiple translations in two languages
There are some datasets that contain few languages,
but many translations of a text in one language.
PBC is one example of such a dataset, many liter-
ary works another (e.g., many novels have many
translations in English). To see whether MPWA
can also help in this scenario, we picked all avail-
able 49 English and French editions from PBC and
used them as additional translations for the ENG-
FRA dataset. The outcome of this experiment is

Prec. Rec. F1 AER

Eflomal (intersection) 0.971 0.521 0.678 0.319
Eflomal (GDFA) 0.856 0.710 0.776 0.221

NMF (target languages) 0.830 0.749 0.787 0.213
NMF (other languages) 0.837 0.753 0.793 0.205

Table 6: F1 for ENG-FRA. MPWA can exploit a mul-
tiparallel corpus with languages different from the tar-
get languages (“other languages”) better than one that
contains additional translations in the target languages
(“target languages”).

compared with the outcome of the same setup, but
with translations from languages other than French
and English in Table 6. From this table we can
conclude that translations from the target language
pair can also assist, but not as much as translations
from other languages.

6 Conclusion and Future Work

We presented MPWA, a framework for leverag-
ing multiparallel corpora for word alignment. We
used two prediction methods, one based on recom-
mender systems and one based on link prediction
algorithms. By adding new alignment edges to the
output of bilingual aligners, both methods show
large improvements over the bilingual baselines,
with absolute improvements of F1 of up to 20%.
We have also ported Blinker and HELFI word align-
ment gold standards to the Parallel Bible Corpus
in the hope that this will help foster more work on
exploiting multiparallel corproa.

Future work. In this paper, we have mainly fo-
cused on adding new alignment edges to baseline
word alignments based on properties of the mul-
tiparallel alignment graph. This increases recall,
but can harm precision. In future work, we plan to
expand on the possibility of deleting edges based
on evidence from the multiparallel alignment graph
(cf. 5.3.3), thereby potentially improving both pre-
cision and recall.
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A Pipeline Details

There are several elements of the MPWA pipeline
that can be configured by the user, e.g., depending
on whether precision or recall are more important
for an application. Here we show in Figures 6 and
7 the two pipeline configurations we used for the
results in the paper.

Figure 6: The pipeline for NMF alignments
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Figure 7: The pipeline for AdAd and WAdAd align-
ments
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Abstract
Count-based word alignment methods, such as
the IBM models or fast-align, struggle on very
small parallel corpora. We therefore present
an alternative approach based on cross-lingual
word embeddings (CLWEs), which are trained
on purely monolingual data. Our main con-
tribution is an unsupervised objective to adapt
CLWEs to parallel corpora. In experiments
on between 25 and 500 sentences, our method
outperforms fast-align. We also show that our
fine-tuning objective consistently improves a
CLWE-only baseline.

1 Introduction

Some parallel corpora, such as the Universal Dec-
laration of Human Rights, are too small to apply
count-based word alignment algorithms.

Sabet et al. (2016) show that integrating mono-
lingual word embeddings into IBM Model 1
(Brown et al., 1990) decreases word alignment er-
ror rate on a parallel corpus of 1000 sentences.
Pourdamghani et al. (2018) exploit monolingual
embedding similarity scores to create synthetic
training data for Statistical Machine Translation
(SMT), and report an increase in alignment F1.

Recent advances have made it possible to cre-
ate cross-lingual word embeddings (CLWEs) from
purely monolingual data (Zhang et al. (2017a),
Zhang et al. (2017b), Conneau et al. (2017),
Artetxe et al. (2018a)). We propose to leverage
such CLWEs for a similarity-based word align-
ment method, which works on corpora as small as
25 sentences. Like Sabet et al. (2016), our method
relies only on monolingual data (to train the em-
beddings) and on the small parallel corpus itself.

Our CLWE-only baseline aligns source and
target words in a parallel corpus if their CLWEs
have maximum cosine similarity. This approach is
independent from the size of the parallel corpus,
but has the following problems:

• Semantics may differ between the embedding
training domain and the parallel corpus.

• CLWEs sometimes fail to discriminate be-
tween words with similar contexts, e.g.,
antonyms.

We therefore propose to fine-tune the CLWEs
on the small parallel corpus using an unsuper-
vised embedding monogamy objective. To eval-
uate the proposed method, we simulate sparse
data settings using Europarl sentences and Bible
verses. Our method outperforms the count-based
fast-align model (Dyer et al., 2013) for corpus
sizes up to 500 (resp., 250) sentences. The
proposed fine-tuning method improves over the
CLWE-only baseline in terms of both precision
and recall.

a) b) c) d)

Figure 1: Schematic representation of the monogamy
objective. a) one-to-one (“monogamous”) alignment:
l(s, t) = 0, b) many-to-many alignment: l(s, t) = 1,
c) one-to-many alignment: l(s, t) = 1, d) minimiz-
ing l(s, t) means making the red nodes more similar
to each other, and less similar to the white nodes.

2 Method

2.1 CLWE-only baseline
Our CLWE-only baseline uses a cross-lingual em-
bedding space derived from purely monolingual
data (Artetxe et al., 2018a). Let D be our small
corpus, and let s (source) and t (target) be parallel
sentences from D. Let clwe(si) and clwe(tj) be
the embedding vectors of tokens si and tj . We
align si to argmaxtj∈t[cos(clwe(si), clwe(tj)].
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Any ties are broken by proximity to the diagonal
of the alignment matrix.

2.2 Fine-tuning method
Intuition. Assume that we have the following
sentence pair: aaa bbb xxx ||| 111 000 222. As-
sume further that we know from CLWEs that aaa
≈ 111 and bbb ≈ 222, but we lack informative
embeddings for 000 and xxx. We may hypothesize
that xxx ≈ 000, as they are the only tokens that
lack translations. We may also hypothesize that
xxx 6≈ 111, xxx 6≈ 222, as 111 and 222 already
have translations of their own.

In the following, we will refer to this principle
as embedding monogamy. We assume that in the
absence of evidence to the contrary, a source em-
bedding should have

• high similarity to one target embedding

• low similarity to other target embeddings1

This principle is related to the IBM Model (Brown
et al., 1990), where Expectation Maximization in-
creases p(f |e) if e and f co-occur in sentences
where f is not explained by other source words.

Embedding monogamy objective. We define
the probability of tj given si as:

p(tj |si, t) =
e

1
τ
cos(clwe(si),clwe(tj))

∑
j′ e

1
τ
cos(clwe(si),clwe(tj′ ))

(1)

where τ is a temperature hyperparameter. This
definition is similar to the definition of translation
probability in Artetxe et al. (2018b) and Lample
et al. (2018). But while they normalize over the
vocabulary, we normalize over the target sentence.
As a consequence, the probability of tj depends
not only on si, but also on competitor tokens in t.

With these translation probabilities, we model
a two-step random walker Rs→t→s that starts at
si, steps to a random target word and then to si′ :
rs→t→s
ii′ =

∑len(t)
j=1 p(tj |si, t)p(si′ |tj , s). To max-

imize monogamy, we maximize the entries on the
diagonal of Rs→t→s, i.e., the probability of the
walker returning to its origin. To avoid penaliz-
ing long sentences, we minimize the negative log-
arithm to the base of the source sentence length:
l(s, t) = 1 − loglen(s)

∑len(s)
i=1 rs→t→s

ii . This loss
has the following properties:

1 Of course, this assumption is over-simplistic, as one-to-
n alignments exist (e.g., English not should be similar to both
French ne and pas).

• In a fully “monogamous” situation (see Fig-
ure 1 a), rs→t→s

ii → 1 =⇒ l(s, t)→ 0.

• In a situation where all source words are
equidistant from all target words (see Figure
1 b), rs→t→s

ii = 1
len(s) =⇒ l(s, t) = 1.

Reversing the roles of source and target results
in the following bidirectional loss: Lbi(s, t) =
1
2 [l(s, t) + l(t, s)]. Both terms are necessary, since
a given alignment may appear highly monoga-
mous from the perspective of one sentence but
not the other (especially when there are left-over
words due to a difference in length).

Adding position information. At this point, our
objective ignores word positions, which we know
to be useful from count-based methods (e.g., Dyer
et al. (2013)). Therefore, we add position embed-
dings inside the translation probability equation:

p(tj |si, t) =
e

1
τ
cos[clwe(si)+a(i),clwe(tj)+a(j)]

∑
j′ e

1
τ
cos[clwe(si)+a(i),clwe(tj′ )+a(j′)]

where a(i) is a sinusoid embedding vector for
position i (Vaswani et al., 2017). As a result,
word pairs near the diagonal have higher round
trip probabilities initially. Since the monogamy
objective aims to strengthen strong links, simi-
lar position embeddings act as attractors for non-
positional embeddings. Note that we use only the
non-positional embeddings for alignment, as the
position prior is too strong at test time.

Alignment retention objective. In initial exper-
iments, we found that the monogamy objective in-
creases recall but risks losing precision, relative
to the CLWE-only baseline. Therefore, we add
an additional objective that aims to increase round
trip probability for alignments made by the base-
line, but does not influence unaligned words:

Lret(s, t) =
1

2
[lret(s, t) + lret(t, s)]

lret(s, t) = −log

∑
i,j p(tj |si, t)p(si|tj , s)mst

ij∑
i,j m

st
ij

mst
ij = I[(si, tj) ∈ align0]

where align0 is the intersection of the s-to-t and t-
to-s alignments made with the initial CLWEs (see
Section 2.1). Our final loss function is: L(D) =
1
|D|

∑
(s,t)∈D[Lbi(s, t) + αLret(s, t)].
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Figure 2: Alignment precision, recall and F1 as a func-
tion of corpus size.

3 Evaluation

We evaluate our model on subsets of different
sizes from the English-German Europarl gold
alignments2 and French-English Bible gold align-
ments (Melamed, 1998)3. We initialize CLWEs
with the unsupervised algorithm of Artetxe et al.
(2018a) on monolingual FastText embeddings
(Bojanowski et al., 2017)4. Fine-tuning is done
in keras, using the adam optimizer (Kingma and
Ba, 2014). We set α = 1.0 and τ = 0.001, and
apply 50% dropout to the embeddings.

We use fast-align (Dyer et al., 2013) as a count-
based baseline, since it outperformed the IBM
models in initial experiments. We symmetrize
alignments by either intersection or the grow-diag-
final-and (GDFA) heuristic (Koehn et al., 2007).
We train fast-align and our fine-tuning method for
500 iterations.

4 Discussion

4.1 Corpus size

The performance of fast-align is highly dependent
on corpus size, which is not surprising, seeing that
it has to infer word semantics from the small cor-
pus alone. The CLWE-only baseline on the other
hand is independent from corpus size, resulting in
decent performance even on 25 parallel sentences.
Importantly, the positive effect of our fine-tuning
method seems to be robust to corpus size, as we
see improvements in F1 for all sizes.

2www-i6.informatik.rwth-aachen.de/
goldAlignment/

3nlp.cs.nyu.edu/blinker/. We consider links
with inter-annotator agreement as sure, others as possible.

4fasttext.cc, top-200000 words per language

4.2 Benefits of fine-tuning

We find that the proposed fine-tuning method has
a positive effect on alignment precision and recall,
relative to the CLWE-only baseline. We assess
some sentence pairs qualitatively to find reasons
for this improvement:

Resolution of ambiguities. Word embeddings
sometimes fail to differentiate between words with
similar contexts, such as antonyms. In Figure
3 (top), our fine-tuning method resolves such an
ambiguity: Here, the initial CLWE of answer is
slightly more similar to German frage (= question)
than to the true translation antwort. Since frage al-
ready has a round trip partner, the monogamy ob-
jective pushes answer away from frage, resulting
in the addition of a correct alignment between an-
swer and antwort.

In-domain word translations. Since word em-
beddings are trained on general-purpose corpora,
CLWEs can fail to reflect domain-specific word
translations. One such example is the transla-
tion of lord as French éternel (≈ “eternal one”)
in Figure 3 (bottom). While the translation
is common in this particular Bible version, the
CLWEs do not reflect it well (cos(lord, éternel) <
cos(wicked, éternel)). Through fine-tuning, and
due to their frequent coocurrence in the small cor-
pus, the similarity between éternel and lord in-
creases enough for a successful alignment.

5 Use case: Aligning the UDHR

In practice, our method would not be applied to
English-German or English-French, as there is no
lack of parallel data for these language pairs. For
a more realistic use case, we align the 50 articles
of the Universal Declaration of Human Rights5 in
Macedonian and Afrikaans. While we do not have
gold alignments for an evaluation, a preliminary
qualitative analysis suggests that our method finds
a reasonable semantic word alignment, while fast-
align mainly predicts the diagonal (see Figure 4
for examples).

6 Related Work

Embeddings for word alignment. Sabet et al.
(2016) reformulate the IBM 1 model to predict
the probability of monolingual target embedding
vectors. They report improvements in AER for

5https://unicode.org/udhr/
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Figure 3: Similarity matrices before (left) and after (right) fine-tuning. Red dots: our alignment (intersection).
White squares: sure gold alignments. Empty white squares: possible gold alignments.

English-French on parallel corpora between 1K
and 40K sentences, as well as improvements in
precision on words with frequency ≤ 20.

Pourdamghani et al. (2018) exploit similar-
ity scores from monolingual embeddings to cre-
ate synthetic training data for an SMT sys-
tem. They report improvements for English-
Chinese, English-Arabic and English-Farsi align-
ment (∆F1 = 0.2%, 0.5%, 1.7%). Their small-
est parallel corpus has 500K sentences, while we
align a few dozen to hundred sentences.

Two-step round trip objective. Our use of two-
step round trips is inspired by Haeusser et al.
(2017). They optimize domain adaptation using a
random walker that steps from image representa-
tions with known labels to image representations
with unknown labels and back. While their tar-
get is a uniform distribution over images with the
same label as the image of origin, ours is to have
maximum probability mass on the word of origin.

Low resource CLWEs. Our approach relies on
the availability of high-quality CLWEs. Wada
and Iwata (2018) report that in settings with lit-

tle monolingual data (< 1M sentences), mapping
approaches like Artetxe et al. (2018a) are not ro-
bust. Instead, they propose to learn CLWEs from a
language model trained on the union of two small
monolingual corpora. Their work is orthogonal
to our fine-tuning method, since we make no as-
sumptions about how the CLWEs are created.

7 Conclusion

We have presented a similarity-based method to
produce word alignments for very small paral-
lel corpora, using monolingual data and the cor-
pus itself. Our CLWE-only baseline uses an un-
supervised mapping of monolingual embeddings
(Artetxe et al., 2018a). Our main contribution is
an unsupervised embedding monogamy objec-
tive, which adapts CLWEs to the small parallel
corpus. Our model outperforms count-based fast-
align (Dyer et al., 2013) on parallel corpora up to
500 (resp., 250) sentences.

We expect that our method will be useful in low-
resource settings, e.g., when aligning the Univer-
sal Declaration of Human Rights.
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Figure 4: Articles 14(1) and 26(3) from the UDHR. Similarity matrices before (left) and after (right) fine-tuning.
Red dots: our alignment (intersection). Red boxes: fast-align (intersection). White squares: sure gold alignments.
Empty white squares: possible gold alignments (by the authors).
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Abstract

Annotation projection is an important area
in NLP that can greatly contribute to creat-
ing language resources for low-resource lan-
guages. Word alignment plays a key role in
this setting. However, most of the existing
word alignment methods are designed for a
high resource setting in machine translation
where millions of parallel sentences are avail-
able. This amount reduces to a few thou-
sands of sentences when dealing with low-
resource languages failing the existing estab-
lished IBM models. In this paper, we pro-
pose subword sampling-based alignment of
text units. This method’s hypothesis is that the
aggregation of different granularities of text
for certain language pairs can help word-level
alignment. For certain languages for which
gold-standard alignments exist, we propose an
iterative Bayesian optimization framework to
optimize selecting possible subwords from the
space of possible subword representations of
the source and target sentences. We show that
the subword sampling method consistently
outperforms word-level alignment on six lan-
guage pairs: English-German, English-French,
English-Romanian, English-Persian, English-
Hindi, and English-Inuktitut. In addition, we
show that the hyperparameters learned for cer-
tain language pairs can be applied to other lan-
guages at no supervision and consistently im-
prove the alignment results. We observe that
using 5K parallel sentences together with our
proposed subword sampling approach, we ob-
tain similar F1 scores to the use of 100K’s of
parallel sentences in existing word-level fast-
align/eflomal alignment methods.

1 Introduction

Annotation projection is an important area in Nat-
ural Language Processing (NLP), which aims to

∗ Equal contribution

exploit existing linguistic resources of a particu-
lar language for creating comparable resources in
other languages (usually low resource languages)
using a mapping of words across languages. More
precisely, annotation projection is a specific use of
parallel corpora, corpora containing pairs of trans-
lated sentences from language ls to lt. In anno-
tation projection, a set of labels available for lan-
guage ls is projected to language lt via alignment
links (the mapping between words in parallel cor-
pora of ls and lt). Ls labels can either be obtained
through manual annotation or through an analysis
module that may be available for ls, but not for lt.
The label here can be interpreted broadly, includ-
ing, e.g., part of speech labels, morphological tags
and segmentation boundaries, sense labels, mood
labels, event labels, syntactic analysis, and coref-
erence (Yarowsky et al., 2001; Diab and Resnik,
2002; Agić et al., 2016).

Language resource creation for low-resource lan-
guages, for the purpose of automatic text analysis
can create financial, cultural, scientific, and polit-
ical value. For instance, the creation of a senti-
ment lexicon for a low resource language would
be an excellent help for customer reviews analy-
sis in big corporations having branches all over
the world, where 7000 languages are spoken, or
such a resource can be used to predict stock market
movements from social media in a low resource
setting. Furthermore, such resources can contribute
to creating knowledge (Östling, 2015; Asgari and
Schütze, 2017) for linguists, which pure scientific
value aside, the linguistic knowledge can be incor-
porated into machine learning models for natural
language understanding as well.

The mapping between words across languages
as a basis for annotation projection is automatically
generated using statistical word alignment, mod-
eled on parallel corpora. This means that given
parallel corpora for a set of languages and linguis-

ar
X

iv
:2

01
2.

11
65

7v
2 

 [
cs

.C
L

] 
 1

5 
Ju

n 
20

21

92



tic resources for only one language, we can auto-
matically create resources for the other languages
through annotation projection. One of the main
challenges for annotation projection is that cor-
pora are often relatively small for low resource lan-
guages. The existing IBM-based alignment mod-
els work well for high-resource settings, but they
fail in the low-resource case (Poerner et al., 2018).
The most popular dataset for low resource align-
ment, the Bible Parallel Corpus, containing a large
number (1000+) of languages, are characteristically
low-resource, i.e., having only around 5000-10000
parallel sentences per language pair. This paper
aims to introduce a framework to reliably relate lin-
guistic units, words, or subwords, in a low resource
parallel corpus, based on sampling from the space
of possible subwords.

2 Methods

2.1 Dataset
We work on the word alignment gold standards
from the WPT 2003 and 2005 shared tasks on
word alignment. Those language pairs include
French, Hindi, Romanian, and Inuktitut always
paired with English. In addition, we add English-
Persian and English-German. As per the standard
scenario in the world alignment literature, we com-
pute an alignment model on an independent corpus
of training materials. To simulate a low-resource
scenario, we sample the number of parallel train-
ing sentences down to 5000, except for Hindi with
3000 sentence pairs. This is the order of magnitude
in training data when dealing with low-resource lan-
guages contained, e.g., in the Bible Parallel Corpus.
In addition, we experiment on mid-resource cases
when using the complete set of available training
sentences in English-Romanian, English-Inuktitut,
English-Persian, in which their complete set is nei-
ther low-resource nor contain more than 1M paral-
lel sentences. See Table 1 for details on the data.

2.2 Evaluation
We evaluate word alignments with F1 score com-
puted by

prec =
|A ∩ P |
|A| , rec =

|A ∩ S|
|S| , F1 =

2 prec rec
prec + rec

,

where |A| is the set of predicted alignment edges,
|S| the set of sure and |P | the set of possible align-
ment edges. Note that S ⊂ P , and both are known
from the gold standard.

2.3 Sentence subword space
For splitting text into subwords, we use Byte-Pair-
Encoding by Sennrich et al. (2016). The BPE algo-
rithm for a certain random seed and a given vocab-
ulary size (analogous to the number of character
merging steps) breaks a sentence into a unique se-
quence of subwords. Continuing the merging steps
would result in the enlargement of the subwords,
resulting in fewer tokens.
Hypothesis: Let Spq =

⋃N
j=1(s

(j)
p , s

(j)
q ) be a col-

lection of N parallel paired sentences in the lan-
guage pair lp and lq. We assume that for a certain
Spq there exists an optimal segmentation scheme
constructed by accumulation of different granulari-
ties of (lp,lq), ξ∗, among all possible segmentation
schemes (ξ’s), which depends on the morphologi-
cal structures of this language pair.

The space of possible segmentations of a sen-
tence s, denoted as Φl(s) for language l, is created
by variations in the segmentation by varying the
number of merging steps.

In this notation Φl(s) =
⋃Ml
i=1 Φ

(i)
l (s), where

Φ
(k)
l (s) refers to a specific vocabulary size selec-

tion for the segmentation of s considering the first
k merging steps in the BPE algorithm for language
l. Ml is the maximum number of merging steps in
l. We define Φpq as the set of all possible segmen-
tation pairs in language pair lp and lq:

Φpq =

Ml1⋃

i=1

Φ(i)
p ×

Ml2⋃

i=1

Φ(i)
q

When we deal with a single language, to explore
the possible segmentations, Monte Carlo sampling
from Φl can be used to have different views on
the segmentation, where the likelihood of certain
segmentation Φ

(k)
l is proportional to the number

of sentences affected in the corpus by introduc-
ing the kth merging step, as proposed in (Asgari
et al., 2019a; Asgari, 2019; Asgari et al., 2019b) for
the segmentation of protein and DNA sequences.
However, in the alignment problem, we deal with
a 2D space (can be represented as a grid as in Fig-
ure 4) of possibilities for the vocabulary sizes (≈
the number of merging steps in BPE) of lp and lq.
The inclusion of each cell in this grid introduces
new instances to the parallel corpus, potentially
transferring a low-resource setting to a high-or-
mid resource setting. In this high resource setting,
the subwords of a certain sentence are assigned in
T ways (the number of cells we select from the
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Gold Parallel Training
Lang. Standard # Sentences |S| |P \ S| Data # Sentences
English-German EuroParl-baseda 508 9612 921 EuroParl (Koehn, 2005) 1920k
English-Persian (Tavakoli and Faili, 2014) 400 11606 0 TEP (Pilevar et al., 2011) 600k
English-French WPT2003, (Och and Ney, 2000), 447 4038 13400 Hansards (Germann, 2001) 1130k
English-Hindi WPT2005b 90 1409 0 Emille (McEnery et al., 2000) 3k
English-Inuktitut WPT2005b 75 293 1679 Legislative Assembly of Nunavutb 340k
English-Romanian WPT2005b 203 5033 0 Constitution, Newspaperb 50k
a www-i6.informatik.rwth-aachen.de/goldAlignment/
b http://web.eecs.umich.edu/˜mihalcea/wpt05/

Table 1: Details on gold standards and training data. |S| is the number of sure edges in the gold standard and
|P \ S| the number of additional possible edges.

Φpq grid). Finally, to confirm an alignment link
at word-level, we set a threshold λ; λ is the min-
imum ratio of subword segmentation is required
to confirm a word alignment link. Note that not
necessarily all cells of the grid improve the align-
ment, we thus need a strategy to pick a subset of
cells ξ∗ ⊂ Φpq maximizing the ultimate alignment
score. Having language pairs with ground-truth
alignment, we can solve this problem via hyperpa-
rameter optimization using Bayesian optimization.
Subsequently, we investigate whether applying the
same hyperparameters, on another language pair
yields improvements. To solve this the optimiza-
tion problem for the supervised case, we propose
an iterative greedy subword sampling algorithm.

2.4 Iterative subword sampling algorithm
To maximize the alignment score for the known
links (the ground-truth) at the word-level, we are
seeking for ξ∗ a set of cells in the Φpq grid, and
their corresponding thresholds λ∗ satisfying the
following equation:

ξ∗, λ∗ = argmin
ξi,0≤λ≤1;i∈{1,2,..,T}

−f(Φpq, Spq,ypq),

where f refers to the alignment F1 score based
on ground-truth, which its underlying alignment
model does not have any closed form nor gradi-
ent. ypq is the ground-truth we have for the lan-
guage pair lp and lq, and Spq refers to the paral-
lel sentences, which are going to be segmented
in T different schemes (T cells from the Φpq

grid, 0 < i < T ). These T cells can be se-
lected in any order. However, to reduce the search
space, we propose a sequential greedy selection
of the segmentations (ξi, λ), and solve each step
in a Bayesian optimization framework. The it-
erative process is detailed in Algorithm 1. The
core computation of this algorithm is ξi, λ =
argmin
ξi,λ

−f(Φpq, Spq,ypq, ξ0:i−1), for which the

selected vocabulary sizes up to the current iteration

(ξ0:i−1) are used for segmentation and the measure-
ment of the alignment score. We perform Bayesian
optimization to find the next optimal values for ξi
and λ. As discussed in §2.3, in the Bayesian op-
timization, we explore the cells from the grid of
Φpq using logarithmic priors for each of Φp and
Φq. We continue this process until the the moment
where introducing more segmentations does not im-
prove the alignment score, setting an early stopping
condition.

Algorithm 1: Iterative subword sampling
Result: graph G of word-aligned sentence pairs

f1prev = 0; i = 0;
ξ = < empty >; % history of selected cells

λ = < empty >; % history of selected λ’s

δ = +∞; E = early-stopping parameter;
while ∃δ > 0 in the last E iterations do

ξi, λ = argmin
ξi,λ

−f(Φpq, S, y, ξ, λ);

ξ.push(ξi);
λ.push(λ);
f1∗ = f(S, y, ξ, λ);
δ = f1∗ − f1prev;
f1prev = f1∗;
i = i+ 1;

end
G = alignment(segment(S, ξ, λ))

2.5 Intuition behind the use of logarithmic
priors for the vocabulary size

Figure 1 provides an intuition behind the use of
logarithmic priors. This diagram shows that by
introducing a new merging step (increasing the vo-
cabulary size by one) in the BPE algorithm, which
portion of sequences are affected. As proposed
for protein sequences (Asgari et al., 2019a), this
can be served as an approximation for the relative
likelihood of including a merging step (which is
analogous to introducing a new subword).
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Figure 1: An example of English BPE on a collection
of 10000 sentences. This diagram shows that with in-
troducing new merging steps how many sentences are
going to be affected .

2.6 Subword sampling in other languages

After training how to choose ξ∗, λ∗ for a particu-
lar language pair, we apply the same vocabulary
settings on new language pairs and evaluate the re-
sulting alignment scores. This would help us in the
investigation of the generalizability of a language
pair on other language pairs.

2.7 Experimental Setup

Evaluate Low-Resource Alignment
Since the main motivation of subword sampling
alignment is for the low-resource scenario1, we
first evaluate the method for an analogous use
case, where only a few thousands of parallel
sentences are available, similar to the Bible Par-
allel Corpus of 1000+ languages. To produce
a similar scenario for the evaluation, we get
samples of 5K aligned sentences from the train-
ing datasets of English-German, English-French,
English-Romanian, English-Persian, English-
Hindi, and English-Inuktitut and concatenate the
gold-standard datasets to them. The statistical word
aligners generate forward, and backward align-
ments need a post-processing step of symmetriza-
tion (Koehn, 2010). We compared intersection and
grow-diag-final-and (GDFA), which produce com-
parable results in terms of F1 score, and the inter-
section method having a higher precision. Since the
final alignments are produced from the aggregation

1The language itself is not necessarily a low-resource lan-
guage, but the number of sentence pairs is relatively low (less
than 10K)

of all segmentations’ alignments, the intersection
method with higher precision is a proper candidate.
Thus, we use the intersection method throughout
the experiments.

For each language pair, we evaluate the word-
level alignment, as well as the Bayesian optimiza-
tion subword sampling. In addition, in order to
investigate how the vocabulary size of a particu-
lar language pair generalizes to the other language
pairs, we also evaluate the optimized ξ∗l1,l2 , λ

∗
l1,l2

for each pair on all other language pairs.

Evaluate Mid-Resource Alignment
In addition to the low-resource alignment, we eval-
uate our approach against the word-level align-
ment of fast-align and eflomal in the mid-resource
scenario (having less than 1M sentence pairs).
Therefore, From the six language pairs with gold-
standard alignment, we select English-Persian,
English-Inuktitut, and English Romanian, contain-
ing 600k, 340k, 50k sentence pairs, respectively.
For each language pair, we use the vocabulary sizes
optimized in the low-resource alignment experi-
ment.

3 Results

3.1 Iterative Subword Sampling

An example space of Φpq (for English-German)
that is explored in the Bayesian optimization to
find the ξ∗ is shown in Figure 3, a 2D representa-
tion of the selected cells and the order of selection
by Bayesian optimization on the English-German
corpus is provided in Figure 4. We observe that
the new segmentation in each iteration consistently
improves the alignment scores in the next iteration.
Furthermore, as may be expected, the sampled vo-
cabulary sizes are mainly chosen from the lower
sizes, i.e., affecting more sentences (Figure 1). All
studied language pairs show similar behaviour in
selecting subword vocabulary sizes (Figure 2).

3.2 Low-Resource Alignment Results

Table 2 shows F1 scores of alignment across six
language pairs in the low-resource alignment (hav-
ing a maximum set of 5K aligned sentence pairs).
This table compares the word-level and subword-
level alignments as well as the generalizability of
the ξ∗l1,l2 , λ

∗
l1,l2

on the other language pairs. In-
terestingly, across all language pairs, we observe
improvements of 1.4 to 8.0 percentage points in the
alignment F1 score in comparison with the word-
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German, English-French, English-Romanian, English-Persian, English-Hindi, and English-Inuktitut.

Figure 3: The space of Φpq that is explored in the Bayesian
optimization in the first 3 iterations. The exploring steps are
colored with their alignment F1 scores.
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Figure 4: An example of the space Φpq for
English and German and the selected cells
by the Bayesian optimization.

level alignment. Subword-sampling optimized on
a specific pair consistently improves the word-level
alignment also of the other languages. Certain
language pairs, like Romanian-English and Hindi-
English, proved better generalizability when ap-
plied to the other language pairs. This result sug-
gests that although the gold standard is decisive for
a significant improvement of the alignment through
optimizing the vocabulary sizes, then optimal vo-
cabulary sizes trained on different language pairs
(potentially with similar morphological complex-
ity) can be efficiently applied to increase the align-
ment performance for a new language pair .

3.3 Mid-Resource Alignment Results

F1 scores of alignment across three language pairs
in the mid-resource alignment (having less than 1M
aligned sentence pairs) is shown in Table 3. This
table compares the word-level and subword-level
alignments and the generalizability of the hyper-
parameter optimized on other language pairs in
low-resource for a mid-resource setting. Again,
across all language pairs, we observe improve-
ments of 2.7 to 7 percentage points in the align-
ment F1 score compared to the word-level align-
ment. Interestingly, the F1 we achieved, using 5K
parallel sentences and subword sampling, is simi-
lar to the word-level F1 score of English-Inuktitut
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English-German English-French English-Romanian English-Persian English-Hindi English-Inuktitut
word-level 0.685 0.897 0.616 0.527 0.508 0.771

Vocab-size Sampling Optimization 0.746 0.913 0.662 0.579 0.548 0.858*
Apply <English-German> 0.899 0.645 0.560 0.532 0.845*
Apply <English-French> 0.743 0.651 0.541 0.524 0.853
Apply <English-Romanian> 0.745 0.905 0.579 0.547 0.821
Apply <English-Persian> 0.743 0.908 0.663 0.521 0.816
Apply <English-Hindi> 0.742 0.904 0.663 0.580 0.804
Apply <English-Inuktitut> 0.744 0.914 0.655 0.530 0.529

Table 2: The alignment performances (in terms of F1 score) of six language pairs in the low-resource scenario,
where the subword sampling and word-level alignments are compared. In addition, the results on applying the
hyper-parameters of language pairs on all other pairs are also provided. We experimented systematically on the
use of both eflomal and fast-align for every setting. However, for simplicity, in each cell, the best performance of
fast-align and eflomal is reported. With the exception of the marked F1 ’s with *, the best results obtained using
eflomal method for all the alignments.

using 240K parallel sentences and the word-level
F1 score of English-Persian using 600K parallel
sentences.

3.4 Qualitative Analysis

We performed a qualitative analysis for English-
German and showed six examples in Figure 5. We
observed two sources of improvements: i) Com-
pounds, which are frequent in German, obtain bet-
ter alignments and ii) As we aggregate alignment
edges through a λ-weight vote, we observe an “en-
sembling” effect which mainly affects fertility. Ex-
amples 1, 2 and 3 show the compound effect: “Men-
schenrechte” is correctly aligned to “Human rights”
only when using sampling optimization. Similarly,
“Mobiltelefonlizenzen” gets successfully aligned to
“mobile phone license” whereas pure eflomal only
aligns it to “licenses”. In addition, the differently
formatted year numbers in Example 2 are easy to
align once subword sampling is used. Examples 4
and 5 show the presumed ensembling effect. We hy-
pothesize that “EVP” is aligned to different words
in the English sentence across different subword
samples. Once aggregated, “EVP-Fraktion” has
high fertility, which is useful in this scenario. Sim-
ilarly, “des” (meaning “of the”) receives a better
alignment through subword sampling as some mod-
els align “des” to “of” and some others to “the”.
Subword sampling cannot resolve all errors of eflo-
mal and can also be harmful in rare cases. Example
6 shows a case where the word “Abmessungen”
(“dimensions” or “measurements”) obtains two in-
correct alignment edges, presumably because it
frequently gets split into subwords like “Ab” or
“ungen” which carry only little semantic informa-
tion.

4 Related Work

Classical models. Statistical word alignment meth-
ods (e.g., GIZA++ (Och and Ney, 2000), fast-
align (Dyer et al., 2013), eflomal (Östling and
Tiedemann, 2016)) are mostly based on IBM mod-
els (Brown et al., 1993), which are generative mod-
els describing how a source language sentence S
generates a target language sentence T using align-
ment latent variables. These models use an expec-
tation maximization (EM) algorithm to train the
alignment and only require sentence-aligned paral-
lel corpora.

Neural models. In 2014, seq2seq recurrent neu-
ral network (RNN) models introduced for ma-
chine translation providing an end-to-end transla-
tion framework (Sutskever et al., 2014). Attention
was a key component to improve such models (Bah-
danau et al., 2014; Luong et al., 2015). Two modi-
fications to attention were proposed to improve the
quality of underlying alignment and consequently,
the quality of translation. (i) Model guided align-
ment training is introduced (Chen et al., 2016; Mi
et al., 2016; Garg et al., 2019; Stengel-Eskin et al.,
2019) where the cross-entropy between attention
weights and the alignment coming from an IBM
model (GIZA++) or a manual gold standard is used
as an additional cost function. Garg et al. (2019)
find that operating at the subword-level can be ben-
eficial for alignment models. Note that they only
consider a single subword segmentation. (ii) A dis-
advantage of neural architectures in comparison
with IBM models in producing alignments is that
in the neural model the attention weights have only
observed the previous target words; in contrast, the
IBM models benefit from full observation of the tar-
get sentence in alignment generation. Target fore-
sight (Peter et al., 2017) improves translation by
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Alignment method English-Romanian (50K) English-Inuktitut (340K) English-Persian (600K)
fast-align 0.643 0.794 0.552

word-level
eflomal 0.692 0.864 0.58

fast-align 0.667 0.915 0.525
Apply <English-German> parameters

eflomal 0.715 0.849 0.638
fast-align 0.664 0.913 0.534

Apply <English-French> parameters
eflomal 0.709 0.885 0.647

fast-align 0.663 0.873 0.534
Apply <English-Romanian> parameters

eflomal 0.712 0.826 0.587
fast-align 0.677 0.897 0.562

Apply <English-Persian> parameters
eflomal 0.711 0.812 0.587

fast-align 0.659 0.865 0.521
Apply <English-Hindi> parameters

eflomal 0.719 0.813 0.606
fast-align 0.654 0.911 0.519

Apply <English-Inuktitut> parameters
eflomal 0.71 0.898 0.65

Table 3: The alignment performances (in terms of F1 score) of three language pairs in mid-resource scenario,
where the subword sampling and word-level alignments are compared. In addition, the results on applying the
hyper-parameters of language pairs on all other pairs are also provided. For each setting, both eflomal and fast-
align results are reported.

considering the target word of the current decoding
step as an additional input to the attention calcu-
lation. The main purpose of the above-mentioned
alignment structures has been to improve transla-
tion quality. In contrast, our main motivation is
providing a framework to reliably relate linguis-
tic units, words, or subwords in parallel corpora,
which can be used in linguistic resource creation
(Agić et al., 2016; Asgari et al., 2020) and typolog-
ical analysis (Östling, 2015; Asgari and Schütze,
2017). The above mentioned methods work well
for the large parallel corpora, but they fail when
parallel sentences are scarce. Insufficiency of par-
allel sentences is usually the case for low-resource
languages, which are usually the most interesting
scenarios for linguistic resource creation and lin-
guistic analysis (Cieri et al., 2016).

Low-resource alignment models. The most pop-
ular dataset for low resource alignment is the
Bible Parallel Corpus containing a large number
(1000+) of languages, but are characteristically low-
resource, i.e., have little text per language (Mayer
and Cysouw, 2014). Some recent work touched
upon this problem using unsupervised cross-lingual
embeddings and a monogamy objective (Poerner
et al., 2018). However, this method could not im-
prove the fast-align results for the parallel corpora
containing more than 250 sentences. We showed
that our method improves the fast-align and eflomal
on six language pairs consistently on the size of
5000K parallel sentences, in the range of parallel
sentences of 1000+ languages in BPC, the most
interesting parallel corpora for the low-resource
scenario (in terms of the number of covered lan-
guages). Our proposed method improved the mid-

resource alignments (50K-600K parallel sentences)
as well.

Subword sampling. The use of multiple sub-
word candidates has improved the machine trans-
lation performance (Kudo, 2018). BPE-Dropout
(Provilkov et al., 2020) followed the same idea, in-
troducing dropout in the merging steps of a fixed
BPE to create multiple segmentations. The prob-
abilistic use of multiple subword candidates has
been proposed to segmentation protein sequences
(Asgari et al., 2019a). We use the inspiration from
the latter approach for the word-alignment of paral-
lel sequences of language pairs, using a multitude
of possible subword segmentations.

5 Conclusion

Motivated by the important NLP area of anno-
tation projection, used to create linguistic re-
sources/knowledge in the low-resource languages,
we proposed subword sampling-based alignment
of text units. This method’s hypothesis is that
the aggregation of different granularities of text
for specific language pairs can help with word-
level alignment. For individual languages where
a gold-standard alignment corpus exists, we pro-
posed an iterative Bayesian optimization frame-
work to optimize selecting subwords from the
space of possible BPE representations of the source
and target sentences. We showed that the sub-
word sampling method consistently outperforms
the pure word-level alignment on six language
pairs of English-German, English-French, English-
Romanian, English-Persian, English-Hindi, and
English-Inuktitut in a low-resource scenario. Al-
though the subword samples are selected in a super-
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Figure 5: Examples from the English-German gold standard. Dark green represent sure alignment edges. Light
green possible edges (only on edge in Example 5). Circles are edges predicted by word-level eflomal, boxes are
predicted when applying our proposed subword sampling with eflomal.

vised manner, we show that the hyperparameters
can fruitfully be used for other language pairs with
no supervision and consistently improve the align-
ment results. We showed that using 5K parallel
sentences together with our proposed subword sam-
pling approach, we obtain similar F1 scores to the
use of 340K and 600K parallel sentences and word-
level alignment in English-Inuktitut and English-
Persian, respectively. The proposed method can
efficiently improve the creation of linguistic re-
sources (POS tagging, sentiment lexicon, etc.) for
low-resource languages, where only a few thousand
parallel sentences are available.
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Héctor Alonso Martı́nez, Natalie Schluter, and An-
ders Søgaard. 2016. Multilingual projection for
parsing truly low-resource languages. Transactions
of the Association for Computational Linguistics,
4:301–312.

Ehsaneddin Asgari. 2019. Life Language Processing:
Deep Learning-based Language-agnostic Process-
ing of Proteomics, Genomics/Metagenomics, and
Human Languages. Ph.D. thesis, UC Berkeley.

Ehsaneddin Asgari, Fabienne Braune, Benjamin Roth,
Christoph Ringlstetter, and Mohammad Mofrad.
2020. UniSent: Universal adaptable sentiment lex-
ica for 1000+ languages. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 4113–4120, Marseille, France. Euro-
pean Language Resources Association.

Ehsaneddin Asgari, Alice C McHardy, and Moham-
mad RK Mofrad. 2019a. Probabilistic variable-
length segmentation of protein sequences for dis-
criminative motif discovery (dimotif) and sequence
embedding (protvecx). Scientific reports, 9(1):1–16.

Ehsaneddin Asgari, Philipp C Münch, Till R Lesker,
Alice C McHardy, and Mohammad RK Mofrad.
2019b. Ditaxa: Nucleotide-pair encoding of 16s
rrna for host phenotype and biomarker detection.

99



Bioinformatics, 35(14):2498–2500.
Ehsaneddin Asgari and Hinrich Schütze. 2017. Past,

present, future: A computational investigation of the
typology of tense in 1000 languages. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 113–124,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi,
and Jan-Thorsten Peter. 2016. Guided alignment
training for topic-aware neural machine translation.
arXiv preprint arXiv:1607.01628.

Christopher Cieri, Mike Maxwell, Stephanie Strassel,
and Jennifer Tracey. 2016. Selection criteria for low
resource language programs. In LREC.

Mona Diab and Philip Resnik. 2002. An unsuper-
vised method for word sense tagging using parallel
corpora. In Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics,
pages 255–262. Association for Computational Lin-
guistics.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. Association for Computational
Linguistics.

Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy,
and Matthias Paulik. 2019. Jointly learning to align
and translate with transformer models. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4453–4462, Hong
Kong, China. Association for Computational Lin-
guistics.

Ulrich Germann. 2001. Aligned Hansards of the 36th
parliament of Canada.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Machine Transla-
tion Summit, volume 5.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 66–75, Mel-
bourne, Australia. Association for Computational
Linguistics.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Thomas Mayer and Michael Cysouw. 2014. Creat-
ing a massively parallel bible corpus. Oceania,
135(273):40.

Anthony McEnery, Paul Baker, Rob Gaizauskas, and
Hamish Cunningham. 2000. Emille: Building a cor-
pus of South Asian languages. VIVEK-BOMBAY-,
13(3).

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
arXiv preprint arXiv:1608.00112.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of the
38th Annual Meeting of the Association for Com-
putational Linguistics, pages 440–447, Hong Kong.
Association for Computational Linguistics.

Robert Östling. 2015. Word order typology through
multilingual word alignment. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 205–211.
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