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 Zusammenfassung (Deutsch): 

Prämenopausale Patientinnen, bei denen ein Hormonrezeptor-positiver (HR+)/humaner epider-

maler Wachstumsfaktorrezeptor-2-negativer (HER2-) Brustkrebs im Frühstadium (EBC) diagnos-

tiziert wurde, haben tendenziell eine schlechtere Prognose als postmenopausale Patientinnen. 

Luminale Mammakarzinome bei prämenopausalen Patientinnen können einzigartige molekulare 

Muster aufweisen, und Experten haben präzisere polygene Werkzeuge gefordert, um individua-

lisierte Behandlungen für diese Patientinnen zu entwickeln. Unser Projekt konzentriert sich auf 

prämenopausale HR+/HER2- EBC-Patientinnen und zielt darauf ab, molekulare Prognosefakto-

ren zu untersuchen und die altersspezifische Entwicklung und Interpretation von Genexpressi-

onstests zu unterstützen.  

In einer Fall-Kontrollstudie haben wir geeignete Patientinnen des LMU Brustzentrums mit min-

destens 10 Jahren Nachbeobachtungszeit eingeschlossen, und nach dem Auftreten von Fern-

metastasen in der Nachbeobachtungszeit gruppiert. Es konnten 97 Patienten in unsere Patien-

tenkohorte aufgenommen werden. Mittels Nanostring nCounter® -Technologie wurden die Gen-

expressionsprofile der Primärtumorproben analysiert. Im Anschluss wurde eine bioinformatische 

Analyse durchgeführt, um nach signifikant dysregulierten Signaturen/Genen zu suchen und den 

prognostischen Wert von der gefundenen Markern in unserer Kohorte sowie in Online-Datenban-

ken untersucht. 

Fünf und achtzig der 97 Tumorproben bestanden die RNA-Qualitätskontrolle und die PAM50-

Subtypanalyse zeigte, dass fast alle (81/85) Tumoren zum luminalen Subtyp gehörten. Interes-

santerweise zeigten die metastasierten Tumoren eine engere Korrelation mit der HER2-Enriched-

Biologie. In Bezug auf die Signalübertragung deutet unsere Studie darauf hin, dass ROR Score 

(Rückfallrisiko), PGR (Progesteronrezeptor) und mTORC1 (Säugetierziel des Rapamycinkomple-

xes 1) Signalübertragung bei prämenopausalen Patientinnen das Potenzial haben, als prognos-

tische Faktoren zu dienen. Neben der Ermittlung etablierter krebsbezogener Signaturen haben 

wir auch 22 Einzelgene gescreent, die bei Patienten mit Fernmetastasen signifikant unterschied-

lich exprimiert wurden und von denen 19 signifikant mit dem Fernmetastasen-freien Ü berleben 

(DMFS) assoziiert waren. Besonders hervorzuheben ist, dass der prognostische Wert von 15 der 

19 Gene in externen klinischen Datensätzen validiert werden konnte. Gemäß der multivariaten 

Analyse, die alle DMFS-bezogenen klinischen Faktoren/Signaturen/DEGs (differenziell expri-

mierte Gene) umfasste, sind LRP2 (Low Density Lipoprotein Receptor-Related Protein 2), 

PTGER3 (Prostaglandin-E-Rezeptor 3) zusammen mit dem Lymphknotenstatus unabhängige 

Prognosefaktoren. 

Unser Projekt untersuchte prognostische molekulare Faktoren bei prämenopausalen 

HR+/HER2–EBC-Patientinnen, die im Vergleich zu postmenopausalen Patientinnen z.T. ähnlich 

und z.T. einzigartig waren. Diese Ergebnisse können bei der personalisierten Behandlung von 

prämenopausalen Patientinnen weiterhelfen. 

 

Abstract (English): 

Premenopausal patients diagnosed with hormone receptor-positive (HR+) / human epidermal 

growth factor receptor 2-negative (HER2–) early breast cancer (EBC) often have a poorer prog-

nosis compared to their postmenopausal counterparts. Luminal cancer in premenopausal patients 

can display unique molecular patterns and experts call for more precise multigene tools to support 

individualized treatment concepts for these patients. Our project focused on premenopausal 
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patients with HR+/ HER2– EBC and aimed to investigate the molecular prognostic factors and 

facilitate the age-tailored development and interpretation of gene expression tests.  

In a case-control study, eligible patients treated in the LMU breast center with at least a ten-year 

follow-up were grouped according to whether they had developed distant metastases or not. 

Ninety-seven patients could be included in our patient cohort. Nanostring nCounter®  technology 

was used to decipher the gene expression profile of the tumor samples acquired in their primary 

tumor specimens. Afterwards, bioinformatics analysis was carried out to screen out the signifi-

cantly dysregulated signatures/genes and examine the prognostic value of the markers in our 

cohort and online databases. 

Eighty-five of the 97 tumor samples passed the RNA quality control, and PAM50 subtyping anal-

ysis suggested that nearly all (81/85) of the tumors belonged to the luminal subtypes. Interestingly, 

tumors that had developed metastases showed closer correlation to HER2-Enriched biology. As 

for signatures, our study indicated the potential of applying ROR (risk of recurrence), PGR (pro-

gesterone receptor), and the enrichment of mTORC1 (mammalian target of rapamycin complex 

1) signaling as prognostic factors in premenopausal patients. Except for excavating the estab-

lished cancer-related signatures, we selected out 22 single genes that were significantly differen-

tially expressed in patients who developed distant metastasis, and 19 of the 22 genes were sig-

nificantly associated with distant metastasis-free survival (DMFS). When we used online data-

bases to confirm the prognostic power of the 19 genes, 15 of them are prognostic. According to 

the multivariate analysis that included all DMFS-related clinical factors/signatures/DEGs (differ-

entially expressed genes), LRP2 (low density lipoprotein receptor-related protein 2), PTGER3 

(prostaglandin E receptor 3) along with node status are the most independent prognostic factors.  

Our project studied prognostic molecular factors for premenopausal patients with HR+/ HER2– 

EBC that possess both similarities and uniqueness compared to their relevance in postmenopau-

sal patients. These findings could further contribute to the personalized management of premen-

opausal patients. 
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1. Introduction 

Breast cancer is the most common cancer and the leading cause of cancer-related death in 

women [1]. Though diagnosis and treatment of breast cancer have evolved to a comprehensive 

and evidence-guided routine, individualized or personalized treatment is not yet a reality and a 

considerable proportion of patients are experiencing treatment failure, or over-/under-treatment. 

Exploring personalized prognostic factors/treatment targets is crucial for optimizing breast cancer 

management. 

1.1 A brief review of the development of diagnosis and 

treatment of breast cancer 

Cancer has been on this planet long before our civilization. The earliest evidence of cancer in 

mammals was discovered in the fossils of dinosaurs and the earliest cancer in humans was found 

in a fossilized foot from pre-historic times (around 1.7 million years ago). The earliest written 

record of cancer dates to around 1500BC in Egypt. According to the document, the tumors in 

chest (breast cancer) were treated by wound suturing and cauterization with a tool called the “fire 

drill”, and were considered nonetheless incurable. The term “cancer” originates from around 400 

BC, when the Greek physician, Hippocrates, who was considered as “the father of medicine”, 

used the term “carcinoma” (which means crab in English) to refer to an abnormal body swelling. 

Later, the term was translated into its Latin form: “cancer”. According to Hippocrates’s theory, the 

diagnosis of cancer was based on visual observation and the treatment was a combination of 

medicine, surgery, and cauterization [2]. 

Though the notice of breast cancer was early, it was until the 18th century that the research and 

treatment of breast cancer embraced the breakthrough which was fueled by the rapid develop-

ment of modern science and shaped the modern management of breast cancer. The invention of 

microscopes brought people’s sight to the cell level. The discovery of anesthesia, asepsis, and 

antibiotics, and the improved medical support propelled the upgrade of surgery, which was later 

refined into current mastectomy and lumpectomy. The discovery of X-rays and radioactive ele-

ments (namely uranium, radium, and polonium) gave rise to modern diagnostic and therapeutic 

radiology and nuclear medicine [2]. The anti-recurrence effect of oophorectomy, adrenalectomy 

and hypophysectomy lay the foundation for the wide application of endocrine treatment [3]. The 

anticancer potential of mustard gas that discovered during world war marked the beginning of the 

chemotherapy era [2]. By the end of 20 century, the basic frame of modern management of breast 

cancer was formed as a comprehensive diagnostic routine based on physical checks, pathology, 

and imaging together with a comprehensive treatment procedure composed of operation, radio-

therapy, and systemic treatment [4]. 

Incubated during the 19th century, and rocketed since the middle 20th century, molecular research 

started a revolution in the field of biology and gave people the possibility to decipher the nature 

of life in the molecular world where direct visual observation is impossible [5, 6]. Genetic research 

in the breast cancer led to discovery of several oncogenes and tumor suppressor genes, thereby 

ending the era of blaming lifestyle as the main cause of cancer. A classic example is that BRCA1 

(BRCA1 DNA repair associated) and/or BRCA2 (BRCA2 DNA repair associated) mutations were 

established as risk factors for breast cancer development and are now frequently tested in pa-

tients with metastatic breast cancer [6, 7]. Besides, the association between overexpression of 

human epidermal receptor 2 (HER2) gene and breast cancer development is also a remarkable 
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achievement of molecular research [6]. This finding led to identification of a distinctive breast 

cancer subgroup and assisted in generating the first monoclonal antibody against breast cancer 

[4].  

High throughput testing methods again boosted the knowledge of breast cancer. Publishing the 

human genome sequence in the beginning of 21st century marked the dawn of precision medicine 

[8]. By analyzing the gene expression patterns in 65 tumor samples from 42 individuals with locally 

advanced breast cancer with a microarray representing 8102 human genes, Perou et al. discov-

ered that breast cancer is not homogenous, but composed of four distinct molecular pattens: 

luminal-like, basal-like, Erb-B2+, normal-like [9]. Discovery of the heterogeneity of breast cancer 

reformed the clinical routine of breast cancer treatment: the subtype of breast cancer should be 

evaluated before the starting systemic treatment [4, 10]. Due to the high cost of multigene tests, 

surrogate subtyping of breast cancer which relies on immunohistological tests of key molecules 

is in wider clinical use and helps to stratify patients into five groups for treatment consideration: 

triple-negative, HER2-enriched (HER2-E), luminal B-like (HER2+), luminal B-like (HER2–), lu-

minal A-like [10]. 

Diagnosis and treatment of breast cancer has a long history, yet today it has been experiencing 

the fastest development in recent centuries. Currently, breast cancer diagnosis relies on a com-

bination of traditional physical examination, imaging, pathology, and gene tests; breast cancer 

treatment, meanwhile, is composed of local treatment including surgery and radiotherapy and 

systemic treatment, encompassing chemotherapy, endocrine therapy, and targeted therapy [10, 

11]. Both, diagnosis and treatment of breast cancer await further improvement regarding effi-

ciency, convenience, and affordability and aim to offer the best possible quality of life for each 

patient.  

1.2 Refining the treatment for patients with HR+/HER2– EBC 

Thanks to the evolvement of modern medicine, early breast cancer is now a curable disease. But, 

regarding the treatment of each subtype of breast cancer, quite a few conundrums remain un-

solved. HR+/HER2– EBC, the subtype studied in this dissertation, is the most common breast 

cancer subtype (about 70%) [10, 12]. It has a relatively favorable prognosis compared to HER2+ 

or triple-negative subtype; nevertheless, given its frequency, more patients die from this subtype 

[12].  

The mainstay of systemic therapy for HR+/ HER2– EBC is endocrine therapy and chemotherapy. 

But the current treatment is far from perfect: some patients respond very well to endocrine therapy 

and could safely omit chemotherapy [13, 14]. Around half of the patients are resistant to endocrine 

therapy [12] and nearly one third of the patients will experience distant metastases [15]. Therefore, 

more accurate stratification is necessary to select patients who do not need chemotherapy and 

patients who need more than endocrine therapy or chemotherapy: de-escalation and escalation 

[16].  

1.2.1 De-escalation of systemic treatment  

De-escalation is a cautious strategy that considers both treatment efficiency and quality of life 

[16]. Along with the development of modern medicine, de-escalation is gaining growing attention, 

and one question is now frequently asked before an aggressive regimen is prescribed: is this 

treatment absolutely necessary? The de-escalation concept has reformed and is still reforming 
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many aspects of breast cancer management including screening, diagnosis, surgery, radiother-

apy and systemic therapy [10]. 

Chemotherapy is a key component of systemic therapy and often prescribed along with endocrine 

therapy for HR+/ HER2– EBC. It targets all fast-growing cells including cancer cells, but thereby 

also impairs growth of normal cells like hair follicle cells, skin cells, and gastro-intestinal cells. 

Therefore, besides fighting cancer, chemotherapy frequently leads to unpleasant side effects like 

nausea, vomiting, fatigue, decreased appetite, changes in taste, hair loss, dry mouth, constipation, 

and myelosuppression [4, 17]. Most patients will experience some side effects of chemotherapy, 

but only a small percentage of them will actually substantially benefit from the cytotoxic therapy. 

According to an early meta-analysis, the absolute improvement for ten-year survival was about 

10% for patients diagnosed before age 50, and under 3% for those diagnosed between age 50 

and 69 [18]. Moreover, for node-negative patients under age 50, the ten-year survival rate was 

77.6% if they had received chemotherapy and 71.9% if not [4, 18]. This means that out of 100 

patients who received chemotherapy, only 5 patients actually benefited.  

Considering the frequent and unpleasant reactions to cytotoxic therapies, avoiding chemotherapy 

in low-risk patients has frequently been advocated [4, 16, 19] (Figure 1-1). Besides clinical risk 

factors, intrinsic subtyping is also important for choosing a systemic treatment regimen [10]: the 

molecular patterns of breast cancer are heterogenous and possess prognostic/predictive signifi-

cance for patients [20]. The intrinsic subtypes based on PAM50 analysis [9] of HR+/ HER2– breast 

cancers are mostly luminal A (around 60%) and luminal B (around 30%). The differences between 

the two luminal subtypes consist of the following: Luminal B tumors have higher expression of 

 

Figure 1-1 Algorithm for treating luminal early breast cancer [10] 
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proliferation/cell-cycle related genes or proteins, and lower expression of several luminal-related 

genes such as PGR (progesterone); luminal A tumors have a lower number of mutations across 

the genome and chromosomal copy-number changes, and less TP53 and more PIK3CA (phos-

phatidylinositol-4,5-bisphosphate 3-kinase catalytic) /MAP3K1 (mitogen-activated protein kinase 

kinase kinase 1) mutations. It is generally accepted that luminal A tumors have better prognosis 

and benefit less from chemotherapy than luminal B tumors [10, 21].  

Intrinsic subtypes based on hierarchical clustering are not stable, have no accurate standard for 

diagnosis, and therefore hard to implement [22]. Therefore, surrogate intrinsic subtypes were 

proposed to stratify HR+/HER2– breast cancer into luminal A-like (ER (estrogen receptor) + 

and/or PR (progesterone receptor) +, HER2–, low proliferation) and luminal B-like (ER+ and/or 

PR+, HER2–, high proliferation) [23]. For evaluating proliferation, Ki-67 is a frequently used nu-

clear marker that can be evaluated by IHC (immunohistochemistry) staining. The cutoff point for 

Ki-67 to differentiate between luminal A-like and luminal-B like is not officially determined, but 14% 

and 20% are both widely accepted. Besides Ki-67 index, PR status is also used to predict prog-

nosis: For patients with a Ki-67 index over 14%, PR < 20% indicates poorer prognosis than PR > 

20% [24]. Although surrogate intrinsic subtyping cannot completely reproduce the PAM50 sub-

types, it is clinically useful and practical. Studies compared the survival of patients with luminal 

A-like breast cancer who received chemotherapy and who did not, and found that a strong benefit 

of chemotherapy was not visible, neither in node-negative nor in node-positive patients [25-27].  

Yet, the surrogate intrinsic subtyping is insufficient to support treatment choices in the rather com-

plex clinical scenario of luminal breast cancer. Most importantly, it is difficult to distinguish be-

tween luminal A-like and luminal B-like subtypes in tumors with intermediate Ki-67 levels and 

therefore difficult to decide whether to apply chemotherapy or not [24, 28]. Enlightened by the 

molecular heterogeneity of breast cancer [9], the heterogeneity of gene expression was investi-

gated to identify patients with HR+/HER2– EBC who have a low risk of recurrence and may there-

fore not benefit from chemotherapy [13, 14, 29-34].   

1.2.2 Multigene assays as risk predictors  

Several molecular assays have been successfully established and widely applied, namely Onco-

type DX®  (Genomic Health, Redwood City, CA, U.S.A), MammaPrint®  (Agendia, Irvine, CA, 

U.S.A), Prosigna®  (NanoString Technologies, Seattle, WA, U.S.A), EndoPredict®  (Sividon Diag-

nostics GmbH, Cologne, Germany) [35]. Eligibility criteria are similar for these assays; they are 

suitable for patients with HR+/HER2– EBC that is lymph node-negative or has not more than 

three positive lymph nodes [34]. 

1.2.2.1 Oncotype DX®  

Oncotype DX®  evaluates expression of 16 target genes and 5 reference genes [36] via qRT-PCR 

in FFPE breast cancer samples [37]. The selected 16 target genes have important functions in 

tumor proliferation, invasion, and estrogen signaling. A recurrence score (RS) is offered based 

on the relative expression of these 16 genes to predict the risk of breast cancer recurrence in ten 

years [36, 38, 39].  

During development of the Oncotype DX®  algorithm in breast cancer, Paik et al. selected 250 

candidate genes from published resources that were associated with disease outcomes and then 

reduced them to 16 genes, which were most closely correlated with long-term distant recurrence 

free survival, and five reference genes. Based on the published trial NSABP-14 (National Surgical 
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Adjuvant Breast and Bowel Project), they then tested the original 21-gene assay in 668 samples 

of which 194 samples were from premenopausal patients (under the age of 50). They found that 

distant recurrence was significantly less in the low-risk patients than that in the high-risk ones. 

According to their multivariate Cox model, the predictive power of the 21-gene recurrence score 

(RS) is independent of age and tumor size (NSABP-14) [36]. 

Two years later, the same study group released another publication based on the NSABP-20 trial 

and suggested that RS not only determines the likelihood of breast cancer recurrence but also 

independtly predicts the magnitude of chemotherapy benefit. In this validation study, 289 out of 

651 patients were under the age of 50 (NSABP-20) [39]. Later in 2010, the predictive power of 

RS regarding locoregional recurrence was tested as well based on both NSABP-14 and NSABP-

20. In total, 895 patients, among whom 293 patients were below the age of 50 when they received 

treatment, were included in this study. A significant association between RS and locoregional 

recurrence rate was found; multivariate Cox regression suggested that RS is a significant inde-

pendent predictor of locoregional recurrence together with age [38]. Meanwhile, a case-control 

study, which calculated RS in 790 node-negative patients, among whom 209 patients were 

premenopausal, also verified the predictive value of RS for ten-year survival (Habel, et al.) [40]. 

From 2004 to 2015, the use of Oncotype®  steadily increased in HR+ N0 patients and improved 

patient survival [41].  

To further validate and refine the clinical utility of Oncotype DX®  to reduce unnecessary use of 

chemotherapy in patients with HR+/ HER2–, axillary node-negative breast cancer, a prospective 

Trial Assigning Individualized Options for Treatment (TAILORx) was designed. According to the 

first report which was released in 2015, patients who had an RS of 0 to 10 had a sufficiently low 

five-year recurrence rate, even if they only received endocrine therapy. Among the analysed 1626 

patients, 480 patients were premenopausal. Multivariate analysis showed that age is not associ-

ated with the recurrence rate (TAILORx) [42]. Similar evidence was also offered by the PlanB trial 

from West Germany Study Group (WSG) in 2017. Plan B was designed to investigate the potential 

of RS to help avoid chemotherapy overtreatment in HER2–, pN0 and pN1 EBC patients who had 

a high clinical risk of recurrence. As concluded in the report, patients with an RS ≤11 had an 

excellent five-year disease-free survival rate when treated with endocrine therapy alone (Plan B) 

[43]. Moreover, a retrospective study (109 out of studied 709 patients were younger than 50 years 

upon diagnosis) suggested that patients with micrometastases/1–3 positive nodes and RS ≤ 18 

could safely omit chemotherapy (Stemmer, et al.) [44]. Clinical practice reports also validated the 

feasibility of using Oncotype DX®  to reduce chemotherapy use in ER+/HER2− patients [45-47]. 

In 2018, an update from TAILORx was released. According to the results, ER+/HER2–/axillary 

node-negative patients older than 50 years who have a RS of less than 26 could omit chemother-

apy safely. However, for patients who are younger than 50 years with an RS between 16 and 25, 

chemotherapy may be beneficial (TAILORx) [48]. Moreover, in 2021, the most recent update from 

TAILORx indicated that premenopausal women with one-three positive lymph nodes should re-

ceive chemotherapy, but postmenopausal patients could omit chemotherapy if they have an RS 

that is under 26 [49]. 

1.2.2.2 MammaPrint®  

MammaPrint®  evaluates the expression of 70 genes [14] via DNA microarray in fresh or freshly 

frozen breast cancer tissues or formalin-fixed, paraffin-embedded (FFPE) samples [37]. By meas-

uring the relative expression of these genes, MammaPrint®  stratifies tumors into a high or low-
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risk group, which predicts patients’ risk of recurrence within five years [50] overall survival [30], 

disease-free survival [29, 51], and benefit from adjuvant chemotherapy [52, 53].  

MammaPrint®  was initially developed in 2002 when the expression of 70 genes was measured 

by microarray analysis in 295 EBC patients, who were under the age of 53. The assay demon-

strated the predictive power of the 70-gene signature regarding outcome with a higher accuracy 

than the traditional subtyping method (Van de Vijver, et al.) [29]. Twelve-year follow-up of this 

study presented a significant difference in long-term distant metastasis-free survival between pa-

tients defined as low-risk and those as high-risk  [54]. The follow-up data of 302 patients who 

were all under the age of 61 from the TRANSBIG (Translational Breast International Group) con-

sortium also suggested an independent prognostic value of Mammaprint®  in node-negative 

premenopausal patients who had not received adjuvant systemic therapy (TRANSBIG) [51]. 

To study the clinical impact of MammaPrint®  on AST (adjuvant systemic treatment) decision mak-

ing, a prospective study was conducted, namely the microarRAy prognoSTics in breast cancER 

(RASTER) study. During risk estimation, a considerable discrepancy between clinical parameters 

and the MammaPrint®  prediction was observed. Implementation of the MammaPrint®   in daily 

clinical practice appeared feasible, since adding the MammaPrint®  results to standard clinico-

pathological factors changed advice on adjuvant systemic treatment in nearly one-fifth of the pa-

tients  [55]. For patients who used the 70-gene expression classifier to determine the regimen of 

adjuvant systemic treatment, RASTER then tracked their outcomes.  In 2013, Drucker et al. re-

ported the five-year follow-up results of RASTER and suggested that the low-risk group has a low 

distant recurrence rate and could omit chemotherapy without compromising outcomes. Although 

no multivariate analysis was performed, 292 of the 427 patients were younger than 50 years, so 

that premenopausal patients account for a substantial portion of the RASTER results (RAS-

TER)[56]. 

To investigate the power of MammaPrint®  to support clinicopathological tools while selecting pa-

tients for adjuvant chemotherapy, a randomized, phase 3 study MINDACT (Microarray in Node-

Negative and 1 to 3 Positive Lymph Node Disease May Avoid Chemotherapy) was launched. The 

study enrolled 6693 women with EBC and determined their genomic (using MamaPrint® ) and 

clinical risk (using Adjuvant! Online). Median age of the patients was 55 years. Among 1550 pa-

tients who had a high clinical risk plus a low genomic risk, the five-year distant metastasis rate of 

those who did not receive chemotherapy was 1.5% higher than those who received chemotherapy, 

suggesting that a considerable part of patients with high clinical risk received no significant benefit 

from chemotherapy.  Therefore, the authors concluded that using MammaPrint®  to guide treat-

ment for patients with high clinical risk can reduce the application of unnecessary chemotherapy 

(MINDACT) [57]. Clinical practice also suggested that the use of MammaPrint®  increased physi-

cians’ confidence in treatment decisions [58]. 

1.2.2.3 Prosigna®  

Prosigna®  measures the expression of 50 genes that are included in PAM50 gene signature [59, 

60]. Prosigna®  uses the Nanostring®  nCounter mRNA detection system, examines FFPE sam-

ples [9], and generates a risk of recurrence (ROR) score which estimates patients’ risk of distant 

recurrence over ten years based on the PAM50 gene signature, intrinsic subtype, tumor size, 

nodal status and proliferation score [61-63]. 

The algorithm of Prosigna®  in breast cancer was developed based on PAM50 (prediction analysis 

of microarray) [63], which selected 50 genes that showed the highest correlation to each intrinsic 



Introduction 15 

 

subtype from a list of 1906 “intrinsic” genes [20]. Wallden et al. tested the capacity of Prosigna®  

to define intrinsic subtypes and predict distant recurrences over ten years in ER+, node-negative 

patients treated with 5 years of adjuvant tamoxifen [59]. No age information of the patients was 

offered in this paper, but the original study, in which the samples were collected included a con-

siderable number of premenopausal patients [64, 65]. Later, the prognostic value of Prosigna®  

was evaluated in 653 patients with HR+/HER2− EBC. Results showed that patients with a low 

ROR score have a high 15-year survival rate even without adjuvant therapy, suggesting that the 

ROR score has a high prognostic value (Oslo1). Among the 653 patients, 382 patients were under 

the age of 55 [31]. Clinical practice also suggested that applying Prosigna®  in patients with 

ER+/HER2− EBC at low-to-intermediate risk of recurrence could change adjuvant therapy rec-

ommendation, increase physicians’ confidence in decision-making and improve patients’ emo-

tional well-being [32]. 

Most recently, in 2020, a retrospective study analyzed the potential of PAM50 for predicting long-

term breast-cancer survival (over 15 years of follow-up). In 1253 patients (median age 50 years), 

PAM50 was confirmed as an independent prognostic indicator for long-term, disease-free survival, 

irrespective of menopausal status (Pu, et al.). Yet, it is worth mentioning that this study adopted 

a NanoString nCounter analysis system with a custom-made codeset containing probes for 123 

gene expression targets, rather than Prosigna®  for direct analysis and it generated five intrinsic 

subtypes rather than four. So, results of this study do not directly represent the predictive power 

of Prosigna [66].  

For predicting chemotherapy benefit in patients with ER+ EBC, Prosigna®  is currently only rec-

ommended to predict the risk of recurrence in postmenopausal women treated with endocrine 

therapy alone [63, 64]. Evidence from a prospective, multicenter study suggested that the ROR 

score was correlated with the probability of distant recurrence at 10 years for postmenopausal 

patients with HR+ EBC who received no chemotherapy [67]. Meanwhile, the Austrian Breast & 

Colorectal Cancer Study Group (ABCSG)-8 trial also validated the ROR score for predicting the 

risk of distant recurrence in postmenopausal patients with ER+ EBC who were treated with adju-

vant endocrine therapy [68].  

1.2.2.4 EndoPredict®  

EndoPredict®  ( EPclin® ) measures the expression of eight proliferative and HR-associated genes 

and four reference genes via qRT-PCR in FFPE breast cancer samples [37]. The EndoPredict®  

algorithm generates a risk score based on the gene expression results, nodal status and tumor 

size, thus recognizing the patients who could safely forgo chemotherapy [69]. 

The original training set of EndoPredict® consisted of 964 ER+/HER2− tumors from patients 

treated by adjuvant tamoxifen. Among these patients, 245 patients were premenopausal [70]. 

EndoPredict®  was verified to be an independent prognostic factor in the node-positive, chemo-

therapy-treated, ER+/HER2− EBC patients. In 2014, Martin, et al investigated the prognostic 

power in 555 ER+/HER2− tumors in the GEICAM 9906 trial which included both pre- and post-

menopausal women. Patients in this trial were randomized to anthracycline-containing chemo-

therapy +/- paclitaxel followed by endocrine therapy; distant metastasis-free survival was the pri-

mary endpoint. The analysis suggested that EndoPredict®  is prognostic not only in postmeno-

pausal but also in premenopausal patients [71]. 

For predicting chemotherapy benefit, the initial clinical validation of EndoPredict®  was based on 

two clinical aromatase inhibitor trials (Austrian Breast and Colorectal Cancer Study Group, 
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ABCSG-6 and ABCSG-8), which incorporated data exclusively from postmenopausal women. 

According to the report, the continuous EndoPredict®  score is an independent predictor of distant 

recurrence in patients with ER+/HER2− EBC treated with endocrine therapy alone, regardless of 

nodal status [72]. Although no evidence implied that EndoPredict®  would also be predictive for 

chemotherapy benefit in premenopausal patients, experience from clinical practice suggested 

that EndoPredict®  could help to reduce chemotherapy use also in premenopausal patients with 

HR+/HER2−, T1–T2, and N0–N1 breast cancer and thus be practical in clinical routine [73]. 

1.2.3 Escalation of systemic treatment 

Although most patients with luminal early breast cancer will fully recover after standard treatment, 

about one third of the patients will eventually develop distant metastasis. For patients who are at 

a high risk of developing distant metastasis, treatment “escalation” may be necessary. According 

to the definition made by the St. Gallen international expert consensus conference, “escalation” 

means to identify areas where optimal care may be achieved with “more” treatment [16]. For 

systemic treatment of HR+/HER2– EBC, “escalation” could be achieved through applying ovarian 

suppression in premenopausal patients, extending treatment duration in postmenopausal patients, 

and applying bisphosphonate in postmenopausal patients to prevent recurrence [16].  

Meanwhile, resistance to current systemic treatment regimens, especially resistance to endocrine 

therapy is deemed as a major cause of poor prognosis [12, 22]. The underlying cause of endo-

crine resistance is complicated and could be associated with the following factors: 1) heteroge-

neity of ER expression, 2) changes in the metabolism of antiestrogens, 3) “late recurrence” phe-

notypes induced dormancy, 4) therapy induced adaptation, and 5) growth factors [12]. As for 

growth factors driving endocrine resistance, the most widely studied factors include the EGFR 

(epidermal growth factor receptor) superfamily, insulins/IGFs (insulin-like growth factors), MAPK 

(mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinases) /AKT (protein kinase B) 

/mTOR (mammalian target of rapamycin) signaling [12, 74].  

ER-signaling is a complex biological pathway that controls a variety of functions such as prolifer-

ation, apoptosis, and angiogenesis. The function of ER signaling has a close association with 

proliferative-associated factors including EGFR, insulins/IGFs, MAPK, and PI3K/AKT/mTOR sig-

naling (Figure 1-2) [75]. EGFR is a transmembrane glycoprotein, activation of which participated 

actively in cellular proliferation, differentiation, and survival. EGFR is abnormally activated by var-

ious mechanisms like receptor overexpression and mutation, and is associated with variety of 

human cancers [76]. The IGF system regulates multiple physiological processes, including mam-

malian development, metabolism, and growth. It is also widely implicated in cancer progression 

and identified as a clinically important therapeutic target [77]. MAPK signaling regulates a wide 

variety of cellular processes, including proliferation, differentiation, apoptosis, and stress re-

sponses. It is also actively involved in survival and development of tumor cells [78]. The 

PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been con-

sidered a promising therapeutic target [79]. Studies suggested that alteration of these elements 

can modulate ER activity or act as escape pathways to provide alternative proliferation and sur-

vival stimuli [75] 
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Figure 1-2 The mechanism of estrogen receptor (ER) in breast cancer [75] 

Next to the extensively investigated proliferative pathways, CDK4/6 (cyclin-dependent kinases 4 

and 6) has recently become a major target for treating endocrine resistant cancer. CDK4/6 is a 

key regulator of the cell cycle which functions through interfering with the phosphorylation of RB 

(retinoblastoma) protein. Inhibitors of CDK4/6 can induce cell-cycle arrest, invoke a senescence-

like phenotype, modulate the mitogenic kinase signaling, and enhance immunity and improve 

patient survival [80].   

For battling endocrine resistance in advanced breast cancer, targeted therapies are clinically 

available that modulate proliferation-related pathways (e.g., cyclin D-cyclin dependent kinase 

(CDK) 4/6-inhibitor of CDK4 (INK4)-retinoblastoma (Rb) pathway [81], PI3K (phosphoinositide 3-

kinase)/AKT (proteinase B)/ mTOR (mammalian target of rapamycin) pathway [10, 82]). Recently, 

a first CDK 4/6 inhibitor, abemaciclib, has become available for patients with early luminal cancer 

based on results of the monarch-E trial [83]: further studies are ongoing to determine whether 

other CDK 4/6 inhibitors also bring survival benefit to patients with high risk of recurrence without 

causing significant harm to quality of life. 

1.3 The necessity of establishing molecular tests for 

premenopausal patients 

Although it is more often found in elderly women, breast cancer, and especially HR+/ HER2– 

breast cancer is associated with a worse prognosis in young patients [33, 84-86]. The following 

biological causes for recurrences have been reported for breast cancer in premenopausal pa-

tients: it is more commonly resistant to endocrine therapy [87] and frequently diagnosed with a  

higher histological grade [84, 88]; it presents more aggressive molecular patterns and could thus 

have a unique biology that requires novel therapeutic strategies [89-91].  
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Similar to postmenopausal patients, premenopausal patients with a low risk of recurrence could 

omit chemotherapy without compromising their overall survival [31, 92]. However, there are con-

cerns that the gene expression assays may lead to false conclusions about the actual risk of 

recurrence in premenopausal patients. Firstly, most of the tests have been established mainly by 

using cancer samples from postmenopausal patients who are the majority of all breast cancer 

patients [93, 94] (Table 1-1). The risk calculation algorithm developed from postmenopausal can-

cers may fail to accurately reflect the recurrence risk in premenopausal patients. The second 

concern is that hormonal fluctuations in premenopausal patients may affect the risk scores calcu-

lated by some multigene tests. In vitro studies suggested that concurrent treatment with estrogen 

and progesterone in breast cancer cells could regulate growth factor pathways, result in switching 

the PAM50-determined intrinsic breast cancer subtype from luminal A to basal-like, and increase 

the Oncotype DX®  recurrence score [95]. Therefore, the clinical utility of the four multigene profil-

ing assays in premenopausal patients requires detailed evaluation and eventual adjustment of 

the prediction algorithm. 

Table 1-1 Clinical validation of gene expression tests in premenopausal patients with 

HR+/HER2−, early breast cancer (EBC) 

Study Type Proportion of Pre-P LN Focus 

Oncotype DX®  

NSABP-B14 [36] Retro 29.0% under age 50 N Prognosis* 

NSABP-B20 [48] Retro 44.3% under age 50 N Chemo-

benefit** 

NSABP-14 and 

NSABP-20 [38] 

Retro 32.7% under age 50 N Prognosis 

Habel, et al. [40] 

+ 

Case-

control 

26.4% under age 50 N Prognosis 

TAILORx [42] Pro 29.5% N Prognosis 

Plan B [43] Pro The median age was 56  58.8% N Prognosis 

Stemmer, et al. 

[44] 

Retro 15.3% under age 50 P Chemo-

benefit 

TAILORx [48] Pro 38.9%  N Chemo-

benefit 

TAILORx [49] Pro 33.2% P Chemo-

benefit 

MammaPrint®  

van de Vijver, et 

al. [29] +, Druk-

ker, et al. [54] + 

Retro All under age 53 51.2% N Prognosis 

TRANSBIG [51]+ Retro All under age 61  N Prognosis 
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Table 1-1 (continued) 

RASTER [56] + Pro 68.3% under age 50 N Prognosis 

MINDACT [57] + Pro 33.2% under age 50 79.0% N Prognosis 

Prosigna®  

Oslo1 [31] + Retro 58.5% under age 55 64.1% N Prognosis 

EndoPredict®  

GEICAM 9906  

[71] 

Retro 54.0%  Positive Prognosis 

HR = Hormone Receptor; HER2 = Human Epidermal Growth Factor Receptor 2; EBC = Early-

stage Breast Cancer; Pre-P = premenopausal patients; LN = lymph node; Retro = retrospective; 

Pro = prospective 

+ This study contains part of HR− or HER2+ patients. 

* In studies focusing on predicting ‘‘prognosis’’, the prognostic value of one assay was validated 

by comparing the prognosis of patients in different risk groups.  

** In studies focusing on predicting ‘‘chemo-benefit’’, the predictive value of one assay was vali-

dated by comparing the prognosis of patients in certain risk group who received endocrine therapy 

alone and who received both endocrine therapy and chemotherapy. 

New tools are in urgent need to more precisely predict risk of recurrence for premenopausal pa-

tients with HR+/ HER2– EBC. These tools will help clinicians to further individualize treatments, 

including decisions on chemotherapy use, type and duration of endocrine therapy, and to identify 

patients who may need novel strategies [86].  

 



Material and Methods 20 

 

2. Material and Methods1 

2.1 Patient 

2.1.1 Study design 

We performed a case-control study in premenopausal patients with luminal-like early breast can-

cer. Two hundred and seventy-eight premenopausal patients were included in the original cohort. 

All patients had been treated at the LMU breast center after 1998 and followed for more than ten 

years after the first surgery. They were originally diagnosed with early-stage invasive breast can-

cer, and their histological subtype was confirmed to be hormone receptor-positive (HR+) and hu-

man epidermal growth factor receptor 2-negative (HER2–). Treatment regimens were selected 

based on guidelines and according to investigators’ choices. A total of 124 patients were lost to 

follow-up, and for 57, there was not enough tumor tissue left for RNA extraction. In total, we 

identified 97 premenopausal patients with sufficient follow-up duration of whom 48 patients had 

developed distant metastases during follow-up(M1) and 49 patients had not (M0; shortest follow-

up was 10 years) (the study design is summarized in Figure 2-1) [96].   

 

Figure 2-1 Study design [96] (Reproduced with permission from Ni et al. J Pers Med, 2021) 

2.1.2 Ethical approval  

This project is permitted by the Institutional Review Board of the Ludwig-Maximilians-University 

of Munich (LMU) (Germany) (Number: 19–745), and the original approval is submitted along with 

this dissertation. 

2.1.3 Sample collection 

Patients’ clinical information was documented in the patient records. Tumor samples from the 

primary surgery were stored in formalin-fixed paraffin-embedded (FFPE) blocks and under room 

temperature. Histopathological diagnosis and classification were confirmed by two experienced 

pathologists at the LMU Institute of Pathology. HR and HER2 scoring were performed during 

routine diagnostics: HR+ was defined as ER and/or PR with immunohistochemistry (IHC) scores 

 
1 Part of the material and methods has been published by us in “Ni et al., Molecular Prognostic Factors for 

Distant Metastases in Premenopausal Patients with HR+/HER2- Early Breast Cancer. J Pers Med 2021, 
11(9)”. According to the regulation of the publisher, the authors retain the copyright and this article was 
licensed under an open access Creative Commons CC BY 4.0 license. The permission from the pub-
lisher is submitted with this dissertation. 
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of at least 1/100 following the international council on archives (ICA) standard or 1/12 according 

to the immunoreactive score (IRS) standard; HER2 was considered negative with IHC scores of 

0–1+ or IHC 2+ and negative fluorescence in situ hybridization (FISH) analysis.  

Sections from (FFPE) tumor blocks were prepared followed by hematoxylin-eosin (H&E) staining 

of one slide. The process of collecting samples is summarized in Figure 2-2. Microdissection was 

performed by specialists in the pathology institute on areas with a minimum percentage of 50% 

tumor cells from subsequent unstained sections and used for RNA preparation. Detailed infor-

mation for every tumor sample can be found in Table 2-1 [96].  

 

Figure 2-2 Work flow for sample collection  

Table 2-1 Tumor content in FFPE samples  [96] (Reproduced with permission from Ni et al. J Pers Med, 2021) 

NO. G 

Size 

(cm×cm) Percent NO. G 

Size 

(cm×cm) Percent 

1 M0 0.8×0.8 60% 50 M1 0.4×0.1 70% 

2 M0 0.8×1.0 80% 51 M1 1.0×0.5 80% 

3 M0 0.5×0.3 80% 52 M1 1.6×0.5 90% 

4 M0 0.8×0.5 70% 53 M1 0.5×0.5 70% 

5 M0 0.6×0.6 60% 54 M1 0.7×0.7 70% 

6 M0 1.0×0.8 90% 55 M1 0.4×0.4 90% 

7 M0 0.6×0.6 80% 56 M1 1.5×1.0 80% 

8 M0 0.6×0.6 70% 57 M1 1.0×1.0 90% 

9 M0 0.5×0.6 70% 58 M1 0.5×0.4 80% 

10 M0 1.0×0.5 50% 59 M1 0.5×0.5 70% 

11 M0 1.0×0.6 90% 60 M1 0.5×0.3 80% 

12 M0 1.0×0.7 70% 61 M1 0.5×0.2 70% 



Material and Methods 22 

Table 2-1 (continued) 

13 M0 0.8×0.5 80% 62 M1 1.0×0.7 90% 

14 M0 0.6×0.5 70% 63 M1 0.8×0.2 50% 

15 M0 0.6×0.5 60% 64 M1 1.0×0.9 70% 

16 M0 0.6×0.6 60% 65 M1 0.8×0.5 50% 

17 M0 1.0×0.5 80% 66 M1 2.0×0.5 80% 

18 M0 0.7×0.5 60% 67 M1 1.0×0.5 70% 

19 M0 0.6×0.5 60% 68 M1 0.5×0.5 80% 

20 M0 0.8×0.8 80% 69 M1 0.6×0.6 80% 

21 M0 0.6×0.5 80% 70 M1 0.5×0.5 80% 

22 M0 0.6×0.6 70% 71 M1 1.0×0.6 70% 

23 M0 0.6×0.5 90% 72 M1 1.0×0.8 70% 

24 M0 1.0×0.9 70% 73 M1 1.1×1.0 80% 

25 M0 0.6×0.6 60% 74 M1 1.0×0.6 70% 

26 M0 0.7×0.5 80% 75 M1 0.2×0.2 60% 

27 M0 0.5×0.5 90% 76 M1 1.2×0.5 90% 

28 M0 1.0×0.5 80% 77 M1 2.0×0.5 70% 

29 M0 0.7×0.5 80% 78 M1 0.8×0.5 80% 

30 M0 0.7×0.6 50% 79 M1 1.5×0.5 70% 

31 M0 0.6×0.3 60% 80 M1 1.0×1.0 60% 

32 M0 1.0×0.5 80% 81 M1 0.5×0.5 90% 

33 M0 0.8×0.2 70% 82 M1 0.7×0.2 70% 

34 M0 0.7×0.7 70% 83 M1 1.0×0.9 80% 

35 M0 0.5×0.2 50% 84 M1 0.5×0.2 60% 

36 M0 0.5×0.5 70% 85 M1 1.0×0.7 70% 

37 M0 1.0×0.5 70% 86 M1 0.5×0.5 80% 

38 M0 1.0×0.5 60% 87 M1 1.0×0.8 50% 

39 M0 0.5×0.2 80% 88 M1 0.5×0.5 80% 

40 M0 1.2×1.0 90% 89 M1 0.5×0.5 70% 

41 M0 0.6×0.6 70% 90 M1 0.6×0.6 70% 

42 M0 0.4×0.4 60% 91 M1 0.5×0.4 50% 
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Table 2-1 (continued) 

43 M0 0.7×0.7 80% 92 M1 0.5×0.7 80% 

44 M0 0.7×0.7 70% 93 M1 0.8×0.6 80% 

45 M0 1.0×1.0 80% 94 M1 0.2×0.2 50% 

46 M0 0.5×0.3 60% 95 M1 0.8×0.4 80% 

47 M0 1.0×0.5 70% 96 M1 0.6×0.5 60% 

48 M0 1.0×1.2 90% 97 M1 1.5×0.6 70% 

49 M0 1.0×0.3 70%     

* G = group; areas containing invasive tumor cells were circled and measured; the tumor percent-

age was counted according to following rules. Except for tumor cells, the other components in-

clude elastin, necrosis, white blood cells, vessels, and normal cells. 1) 50%. Half of the marked 

region consists of tumor cells. The quality of this slide is not satisfying, but usable. 2) 60%. This 

marked tumor region has a fair content of tumor cells. 3) 70%. This marked tumor region has a 

nearly high tumor cell content. 4) 80%. This marked tumor region has a high tumor cell content. 

5) 90%. This marked tumor region has a very high tumor cell content. The marked area was then 

scratched down from 4-8 corresponding unstained FFPE tissue sections which are 2-5µm thick. 

The number of needed FFPE tissue sections were decided based on the size of the marked tumor 

area, an area which is less than 5×5 mm2 needs 8 sections, an area which is more than 10×7 

mm2 needs 4 sections, and area which is between 5×5 mm2 and10×7 mm2 needs 6 sections. 

2.2 Reagents 

2.2.1 RNA extraction 

1. QIAGENE RNeasy®  FFPE kit (50 preps, NO.73504) (QIAGEN, Hilden, Germany)  

1) RNeasy Min Elute spin columns (pink) (each in a 2ml collection tube)  
2) Collection tubes (1.5ml) 
3) Collection tubes (2ml) 
4) Buffer RBC (red blood cell) (avoid bleach) 
5) Buffer PKD (protein kinase D) 

6) RNase-Free DNase Ⅰ (lyophilized) 

7) RNase-Free Water (for use with RNase-Free DNase Ⅰ) 

8) DNase Booster Buffer 
9) Buffer RPE (R-Phycoerythrin) (concentrate) 
10) RNase-Free Water 

2. Deparaffinization solution (16ml, NO.19093) (QIAGEN, Hilden, Germany) 

3. RNase-Free DNase Set (50 preps, NO.79254) (QIAGEN, Hilden, Germany) 

1) 500 units RNase-free DNase Ⅰ 

2) RNase-free buffer RDD (to dilute DNase Ⅰ) and RNase-free water 
 

4. Filter tip (1000µl, 8×128, NO.990352) (QIAGEN, Hilden, Germany) 

5. Rotor adapter (10×24, NO.990394) (QIAGEN, Hilden, Germany) 

6. SafeSeal reaction tube (2ml, 250, NO.72.695.700) (SARSTEDT, Nümbrecht, Germany) 

7. Reaction tube (1.5ml, 2×250, NO.72.690.001) (SARSTEDT, Nümbrecht, Germany) 

8. Pipette tips (2.5µl, 10×96, NO.69005) (Biozym, Hessisch Oldendorf, Germany) 
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9. Pipette tips (10µl, 50×96, NO.VT0210X) (Biozym, Hessisch Oldendorf, Germany) 

10. Pipette tips (100µl, 10×96, NO.VT0230) (Biozym, Hessisch Oldendorf, Germany) 

11. Pipette tips (1250µl, 10×96, NO.VT0270) (Biozym, Hessisch Oldendorf, Germany) 

12. Scalpel holder (13cm, NO.502) (BAYHA, Tuttlingen, Germany) 

13. Scalpel blade (NO.23) (BAYHA, Tuttlingen, Germany) 

2.2.2 Nanostring analysis 

1. Nanostring Master Kit (9×12 reactions)(Nanostring technology, Seattle, WA, USA) 

1) Reporter Codeset 
2) Capture Codeset 
3) Hybridization buffer 
4) 12-tube hybridization strips 
5) Cartridge 
6) Sheath 
7) Tips 
8) Reaction plates 

2. Pipette tips (2.5µl, 10×96, NO.69005) (Biozym, Hessisch Oldendorf, Germany) 

3. Pipette tips (10µl, 50×96, NO.VT0210X) (Biozym, Hessisch Oldendorf, Germany) 

4. Pipette tips (100µl, 10×96, NO.VT0230) (Biozym, Hessisch Oldendorf, Germany) 

5. Pipette tips (1250µl, 10×96, NO.VT0270) (Biozym, Hessisch Oldendorf, Germany) 

6. RNase-Free Water from RNase-Free DNase Set (50 preps, NO.79254) (QIAGEN, Hilden, 

Germany) (to dilute RNA) 

7. Nanostring BC360®  (Breast cancer 360) panel (an RLF file in one USB-stick, for further anal-

ysis) (Nanostring technology, Seattle, WA, USA) 

2.3 Equipment 

2.3.1 RNA extraction 

1. Eppendorf®  microcentrifuge 5417 (Eppendorf, Hamburg, Germany) 

2. Eppendorf®  Thermomixer comfort with 2ml block (Eppendorf, Hamburg, Germany) 

3. QIAcube (NO.080001578) (QIAGEN, Hilden, Germany) 

4. Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) 

5. Freezers (–80℃, –20℃, 4℃) (Eppendorf, Hamburg, Germany)/(Thermo Fisher Scientific, 

Waltham, MA, USA) 

2.3.2 Nanostring  

1. Eppendorf®  centrifuge 5430 (Eppendorf, Hamburg, Germany) 

2. Nanostring PTHMG001 nCounter®  Prepstation (Nanostring technology, Seattle, WA, USA) 

3. Nanostring PTHMG002 nCounter®  Analyzer (NO.2-4-103) (Nanostring technology, Seattle, 

WA, USA) 

4. Neolab®  D-6020 Mini star centrifuge (neoLab Migge GmbH, Heidelberg, Germany) 

5. Sunlab®  Replacement rotor for 2×8 0.2 ml PCR-Strips D-8554 (Sunlab, Aschaffenburg, Ger-

many) 

6. Veriti®  Thermal Cycler 96-well (Thermo Fisher Scientific, Waltham, MA, USA) 
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7. Freezers (–80℃, –20℃, 4℃) (Eppendorf, Hamburg, Germany)/(Thermo Fisher Scientific, 

Waltham, MA, USA) 

2.4 Tools/Software 

1. Naonostring®  nSolver 4.0 (Nanostring technology, Seattle, WA, USA) 

2. GSEA(gene set enrichment analysis) 4.1.0 (http://www.gsea-msigdb.org/gsea/index.jsp) 

3. R studio (version 1.4.1106) (https://www.rstudio.com/) 

4. R (version 4.0.4) (https://www.r-project.org/) 

5. SPSS 23.0 (IBM, Armonk, NY, USA) 

6. Graphpad prism 5 (GraphPad Software, Inc., San Diego, CA, USA) 

7. STRING (search tool for the retrieval of interacting genes/proteins) tool (https://string-db.org/) 

8. Kaplan-Meier Plotter Tool (https://kmplot.com/analysis/) 

2.5 Methods 

2.5.1 RNA extraction  

 

Figure 2-3 Overview of the RNA extraction procedure 

The extraction was conducted following the protocol which was supplied along with the kit. The 

basic procedures include: 

1. Prepare the reagents and equipment. 

2. Scratch down the tumor tissue from the FFPE sections. Use the H&E-stained slide as a ref-

erence (the tumor region should be marked with a marker before wise), scratch down the 

tumor region from the sections with a scalpel (easier when the tip of the scalpel is soaked 

with deparaffinization solution). 

3. Digest the tissue and release RNA. Detailed instructions could be found in QIAGEN RNeasy®  

FFPE handbook [97].  
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4. Place the sample tubes, rotor adapter, filter tips, DNase mix (for 12 samples: 145µl DNase 

mix + 232µl DNase Booster Buffer), and reagent bottle rack (Buffer RBC, 96–100% ethanol, 

Buffer RPE, RNase-free water) into the right position in the QIAcube instrument. 

5. Set the QIAcube instrument as follows and start the extraction procedure. 

Application RNA 

Kit RNeasy®  FFPE kit, protocol 1770 

Sample material 1–2 FFPE tissue sections 

Short protocol name DNase digest 

Version 1 

Full protocol name Purification of total RNA from up to two 10µm FFPE tissue 

sections   

Elution volume 20µl 

Software versions Firmware version FIW-50-001-J_FW_MB.hex and PLC 

program version; FIW-50-002-G-PLC_MB.prs or higher; 

available from the QIAcube Web Portal 

6. Remove the collection tubes from the QIAcube after accomplishment and measure the RNA 

concentration with Nanodrop 1000. 

7. RNA quality control: RNA concentration should be more than 20ng/µl, A260/A280 should be 

within 1.8 and 2.0. 

2.5.2 Nanostring profiling 

 Nanostring profiling was accomplished following the protocol provided along with the kits. Briefly, 

the profiling has the following three steps: hybridization, purification and immobilization, counting 

and analysis [98, 99] . 

1. Set up the hybridization. Detailed instructions could be found in NanoString CodeSet Hybrid-

ization manual [100]. 

2. Run the mixed hybridization reactions on the nCounter®  Prep Station 

3. Scan the sample cartridge with the nCounter®  Analyzer, and set the parameter as follows 

Sensitivity Very high 

Panel NS_BC_360_V2.0 rlf 

4. Scanned raw data (RCC files) should be imported into the nSolver 4.0 for data quality control 

and normalization. Detailed instructions could be found in nSolver 4.0 Quick Start Guide and 

nSolver 4.0 User Manual that are included in the USB-stick provided along with the Master 

Kit. Briefly, the software will exclude outliers that have strange data of positive control, nega-

tive control and house keeper genes. As for normalization, genes in the TIS (tumor inflam-

mation signature) signature are normalized using a ratio of the expression value to the geo-

metric mean of the housekeeper genes used only for the TIS signature, genes in the PAM50 

signature are normalized using a ratio of the expression value to the geometric mean of the 

housekeeper genes used only for the PAM50 signature, and other genes are normalized 
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using a ratio of the expression value to the geometric mean of all housekeeping genes on the 

panel. 

 

Figure 2-4 Methodology of Nanostring nCounter®  technology [99] 

2.5.3 Data analysis 

1. Differential expression of BC360®  signatures and genes 

Among the 97 tumor samples, 85 passed the data quality control and were further analyzed. In 

total, 46 signatures and 758 genes were analyzed. Differential expression is fit on a per gene or 

per signature basis using a linear model for analyses without a blocking factor. The statistical 

model uses the expression value or signature score as the dependent variable and fits a grouping 

variable as a fixed effect to test for differences in the levels of that grouping variable. 

Expression (gene or signature)= μ+Group+ε 

P-values are adjusted within each analysis, gene or signature, and on the grouping variable level 

difference t-test using the Benjamini and Yekutieli False Discovery Rate (FDR) adjustment to 

account for correlations amongst the tests [101, 102]. All models are fit using the limma package 

in R [103]. 

2.  PAM50 subtypes and Risk of Recurrence (ROR) 

PAM50 subtype calls are the result of a three-step algorithm. The first step involves a scaling 

using two sets of scaling factors to bring the housekeeper and reference sample expression val-

ues into the scale necessary for the next step. This second step calculates the correlation be-

tween the observed scaled expression for the PAM50 genes and a centroid for each of the four 

subtypes resulting in a set of four correlation values for each sample. The remaining step is to 

identify the subtype correlation with the greatest value and set that subtype as the subtype call 

for that sample. ROR scores are the result of a multiple step algorithm. The first step involves a 

scaling using two sets of scaling factors to bring the housekeeper and reference sample expres-

sion values into the scale necessary for the next step. This second step calculates the correlation 

between the observed scaled expression for the PAM50 genes and a centroid for each of the four 

subtypes that is different than that for calling subtypes and results in a set of four correlation 

values for each sample. The next step is to calculate a proliferation score for each sample, fol-

lowed by taking a weighted sum of the proliferation score and the four subtype correlations. The 

penultimate step is to calculate the weighted sum of this last score and a binned tumor size meas-

ure. This last score is then scaled to be between 0 and 100 [60, 62]. 
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3.  GSEA analysis 

Gene Set Enrichment Analysis (GSEA) determines whether an a priori defined set of genes shows 

statistically significant, concordant differences between two groups (Table 2-2). The GSEA anal-

ysis of 751 genes (7 genes were not included in the GSEA database) between M1 and M0 pa-

tients was performed in the GSEA 4.1.0 software following the instructions. FDR q-value < 0.25 

was considered significant (an FDR of 25% indicates that the result is likely to be valid 3 out of 4 

times) [104]. 

Table 2-2 Tested GSEA sets  [104] 

Gene 

set 

Annotation Source 

H Hallmark gene sets Coherently expressed signatures that represent 

well-defined biological states or processes 

C1 Positional gene 

sets 

Each human chromosome and cytogenetic band 

C2 Curated gene sets From online pathway databases, publications, and 

knowledge of domain experts 

C3 Regulatory target 

gene sets 

Based on gene target predictions for microRNA 

seed sequences and predicted transcription factor 

binding sites 

C4 Computational 

gene sets 

Defined by mining large collections of cancer-ori-

ented microarray data 

C5 Ontology gene sets Consist of genes annotated by the same ontology 

term 

C6 Oncogenic signa-

ture gene sets 

Defined directly from microarray gene expression 

data from cancer gene perturbations 

C7 Immunologic signa-

ture gene sets 

Represent cell states and perturbations within the 

immune system 

 

4. Analysis of differentially expressed genes 

The gene expression between groups were further analyzed and compared by using limma pack-

age in R. The differentially expressed genes (DEGs) were selected out based on the following 

standard: p < 0.05 and abs (logFCsingle gene)> (mean(abs(logFC all genes))+2SD(abs(logFC 

all genes))). Heatmaps and volcano plots of Signatures/DEGs were created with the pheatmap 

and “ggplot2” functions in R. respectively. GO (Gene Ontology) analysis and KEGG (Kyoto En-

cyclopedia of Genes and Genomes) analysis of DEGs were performed by using the Clusterprofiler 

package in R [105] to investigate the functions of the DEGs. STRING analysis was conducted 

online to investigate the functional interactions of the identified DEGs [96]. Crucial codes used in 

R were summarized in Appendix A. 
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5.  Survival analysis 

The “survfit” and “ggsurvplot” function in R were used to fit and plot Kaplan–Meier curves, respec-

tively. And for survival curve plotting, the median of the observed gene expression or signature 

data was set as the cut point. The Cox proportional hazards regression model in the SPSS 23.0 

software was used to carry out univariate and multivariate survival analyses. Statistically signifi-

cant variables in univariate analyses were included in the multivariate analysis. For multivariate 

analysis, the method “Forward Stepwise (likelihood ratio)” was used to filter out the most signifi-

cant factors in the survival model. There were three steps in the overall screening of “Forward 

Stepwise (likelihood ratio)”. At each step, the algorithm would select out the most significant prog-

nostic factor to be included into the survival model (at step two and step three, the impact of the 

already selected one or two factors would be considered, therefore, the factor should have inde-

pendent prognostic values from the factors that are already in the model). The correlation analysis 

between prognostic factors was carried out using the Spearman correlation model. A p-value < 

0.05 was considered significant. 

6. Other statistical analysis 

Other comparative analyses between groups were performed using SPSS 23.0 software. For 

clinical parameters, linear variables were compared using Mann–Whitney test; non-linear varia-

bles were compared using Person Chi-square test or Fisher’s exact test. PAM50 subtype scores 

were compared with the Mann–Whitney test and plotted in GraphPad PRISM 5. All significance 

tests (where applicable) were two-tailed. 

7. Online database validation 

The Kaplan Meier plotter is a widely accepted tool to assess the correlation between the expres-

sion of genes and survival in more than 25,000 samples from various tumor types including breast 

cancer. Sources for the databases include GEO (gene expression omnibus), EGA (European 

genome-phenome archive), and TCGA (the cancer genome atlas) [106].  

We used this tool to confirm the prognostic value of survival-related genes for relapse-free sur-

vival (RFS). The analyses were performed following the instructions, and the inclusion criteria for 

patients’ selection were: ER+ (IHC)/HER2− (array), had at least 10 years follow-up, received ad-

juvant systemic treatment (the menopausal status was unavailable). The survival-related genes 

were tested both as single genes and as a signature (the mean expression of genes was calcu-

lated). During the test process, mRNA gene chip data of 2301 breast cancer patients across 55 

independent databases was included [106].  
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3. Results2 

3.1 Patient characteristics 

3.1.1 Follow-up information 

The study design was summarized in the material and method part. In brief, our study included 

ninety-seven premenopausal patients who were treated for invasive HR+/HER2− early breast 

cancer. For patients who did not develop metastases during the follow-up period (M0 group, n = 

49), follow-up time was between 121 and 191 months, with a median follow-up of 149 months. 

For patients who developed metastases (M1 group, n = 48), distant metastasis-free survival 

(DMFS) was between 7 and 184 months, with a median survival of 54 months [96] The survival 

swimmer plot shows the follow-up time or DMFS for each patient (Figure 3-1).  

 

Figure 3-1 Survival swimmer plot (each line represents one patient) 

3.1.2  Patient information  

Clinical patient characteristics was summarized in Table 3-1. According to the analysis, patients 

who developed metastasis has larger tumor size (p =0.037), higher tumor grade (p =0.040), higher 

tumor stage (p =0.019), and more lymph node involvement (p =0.002). Patients received 

 
2 Part of the results has been published by us in “Ni et al., Molecular Prognostic Factors for Distant Metas-

tases in Premenopausal Patients with HR+/HER2- Early Breast Cancer. J Pers Med 2021, 11(9)”. Ac-
cording to the regulation of the publisher, the authors retain the copyright and this article was licensed 
under an open access Creative Commons CC BY 4.0 license. The permission from the publisher is 
submitted with this dissertation. 
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treatment according to applicable guidelines: all patients received surgery and endocrine therapy. 

Application of chemotherapy or radiotherapy was decided based on patients’ clinical risk of recur-

rence and surgical choice [96]. 

Table 3-1 Patient clinical characteristics [96] (Reproduced with permission from Ni et al. J Pers Med, 2021) 

Parameters M1 (n = 49) M0 (n = 48) p-value Test-method 

Age at diagnosis (y) 43(30-50)  47(29-50) 0.292 Mann-Whitney 

U test 

Tumor size (cm) 2.3(0.2-6.3)  1.7(0.3-8.0) 0.037 Mann-Whitney 

U test 

Grade 1 1  2.1% 6 12.2% 0.040 Pearson Chi-

Square test  2 26  54.2% 31 63.3%  

 3 21  43.8% 12 24.5%  

pT 1 17  35.4% 31 63.3% 0.019 Pearson Chi-

Square test  2 25  52.1% 13 26.5%  

 3 6  12.5% 5 10.2%  

pN 0 13  27.1% 32 65.3% 0.002 Fischer's exact 

test  1 19  39.6% 11 22.4%  

 2 11  22.9% 4 8.2%  

 3 5  10.4% 2 4.1%  

Surgery Lumpectomy 31 64.6% 35 71.4% NA NA 

 Mastectomy 17 35.4% 14 28.6%   

ALND Yes 43 89.6% 24 49.0% NA NA 

 No 5 10.4% 25 51.0%   

Radio-

therapy 

Yes 39 86.7% 44 100.0% NA NA 

No 6 13.3% 0 0.0%   

Chem-

other-

apy 

Yes 41 89.1% 29 60.4% NA NA 

No 5 10.9% 19 39.6%   

Taxane Yes 23 62.2% 11 47.8% NA NA 

No 14 37.8% 12 52.2%   

Antra-

cycline 

Yes 32 86.5% 22 100.0% NA NA 

No 5 13.5% 0 0.0%   

Endo-

crine 

therapy 

TAM 31 81.6% 33 75.0% NA NA 

AI + GnRHa 2 5.3% 3 6.8%   

sequence of 

both 

5 13.2% 8 18.2%   

M1: Metastasis, M0: No metastasis, pT: pathological tumor stage, pN: pathological node status, ALND: 

axillary lymph node dissection, TAM: tamoxifen, AI: aromatase inhibitor, GnRHa: gonadotropin-releasing 

hormone agonist. 
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3.1.3 Survival relevance of clinical parameters 

Among the clinical parameters, pN and pT were associated with survival. Specifically, compared 

to negative lymph node, positive lymph node is associated with poorer survival (p = 0.001); 

compared to stage one, stage higher than one is associated with poorer survival (p = 0.033). 

Tumor side, size, and histological type are not significantly associated with survival. Considering 

that the treatment option is highly dependent on the clinical parameters, no survival analysis 

was carried out specifically by treatment group (Table 3-2). 

Table 3-2 Univariate survival analysis of clinical parameters 

 Factors p-value HR 95%CI 
lower upper 

pN (positive vs negative) 0.001 3.2 1.6 6.4 

pT (more than one vs one) 0.033 2.0 1.1 3.7 

Tumor size 0.6 1.1 0.9 1.3 

Tumor grade (three vs less than three) 0.1 1.7 0.9 3.1 

3.2 PAM50 analysis 

3.2.1 Subtype distribution 

Eight-five of the 97 tumor samples passed data quality control and were analyzed. PAM50 (pre-

diction analysis of microarray) analysis confirmed that 81 of the 85 tumor samples had luminal 

subtype. There was a higher proportion of luminal A tumors in the overall cohort and in each 

subgroup (M0, M1). A slightly higher proportion (not statistically significant) of luminal A subtypes 

(M0, 64%; M1, 56%) and lower luminal B subtypes (M0, 33%; M1, 37%) was noticed in patients 

who had not developed distant metastasis (Table 3-3) [96]. 

Table 3-3 Subtypes’ distribution 

Subtype M1(n=43) M0 (n=42) p-value Test method 

Luminal A (n = 51) 24 55.8% 27 64.3% 0.425 Pearson Chi-Square 

test (Luminal A vs 

non -Luminal A) 
Luminal B (n = 30) 16 37.2% 14 33.3% 

Basal (n=2) 1 2.3% 1 2.4% 

HER2-enriched (n=2) 2 4.7% 0 NA 

3.2.2 PAM50 subtype scores and risk of distant metastasis 

As explained in the Materials & Methods part, PAM50 subtyping not just generates an overall risk 

of recurrence (ROR) score, but also provides scores of all molecular subtypes for each sample. 

Therefore, we analyzed whether the ROR score and subtype (luminal A, luminal B, HER2-E, 

basal) scores are associated the risk of developing metastasis. It turned out that, in our premen-

opausal patients, patients who developed distant metastasis had higher ROR scores (p = 0.01), 
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similar to the established trend in postmenopausal patients. Patients who developed distant me-

tastasis had lower Luminal A scores (p = 0.04) and higher HER2-E scores (p = 0.006). Moreover, 

luminal B specimens had significantly higher HER2-E score than luminal A ones (p < 0.001) (Fig-

ure 3-2A) [96]. Subtype scores of luminal B and basal were not significantly different between M1 

and M0 patients. Besides, higher ROR and HER2 scores and lower luminal A score were asso-

ciated with shorter survival (p = 0.002, p < 0.001, p = 0.037) (Figure 3-2B). We also evaluated 

whether HER2-E score or luminal A score are correlated with ROR score. Of note, ROR scores 

had a negative correlation with luminal A scores (p < 0.001) and a positive correlated with HER2-

E score (p < 0.001) (Figure 3-2C) [96].  

 

A 

 

B 

 

C 

Figure 3-2 Differential analysis of the subtype scores [96] (Reproduced with permission from Ni et al. J 

Pers Med, 2021) 
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3.3 BC360® signature analysis 

3.3.1 Signature score overview for each subtype 

Based on the signature expression scores of samples, the overall signature score was calculated 

for each subtype. Besides, the correlation between subtypes was calculated (Figure 3-3). Accord-

ing to the calculation, luminal A subtype and luminal B subtype are closest to each other and most 

irrelevant to basal subtype. The reading of the wheel plots follows the following principle: the 

BC360®  signatures scores are in the outer cycle of the wheel, and the scores are between 0 to 

16; the overall subtype scores are in the inner cycle (the length of the line represents the subtype 

score, and the direction of the line represents whether the correlation is positive or negative, 

where a clockwise line represents a positive correlation and an anti-clockwise line represents a 

negative correlation). Of note, the wheel plots only showed the overview of each subtype, and no 

statistical comparison was performed. 

 

A 
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D 

 

 

Figure 3-3  The overview of signature analysis for each subtype 

3.3.2 BC360®  signature expression 

In order to investigate metastasis-related signatures, we compared the expression of BC360®  

signatures between the two group of patients. Four significantly different signatures include: pa-

tients who developed metastasis had higher expression of ROR (p = 0.006), and lower expression 

of claudin-low (p = 0.04), mammary stemness (p = 0.02), and PGR (progesterone receptor) (p = 

0.02) (Figure 3-4) [96]. The other signatures that were not statistically significant include: ESR1, 

differentiation, FOXA1, AR, ERBB2, BC proliferation, APM, HRD, BC P53, macrophages, IFN-γ, 

CDK expression, hypoxia, cell adhesion, IDO1, PD-L2, MHC2, Treg, BRCAness, SOX2, TGF-β, 
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TIS, apoptosis, inflammatory chemokines, cytotoxicity, Rb1, mast cells, B7-H3, TIGIT, ER signal-

ing, cytotoxic cells, endothelial cells, PTEN, CD8 T cells, PD-1, stroma, PD-L1, CDK6 expression 

(signatures were listed according to the fold change difference between M1 and M0). 

 

A 

 

 

 

B 

Figure 3-4 The differentially expressed BC360®  signatures [96] (Reproduced with permission from Ni 

et al. J Pers Med, 2021) 

3.3.3 The four significant signatures were also associated with survival  

Through deferential analysis, we figured out four BC360®  signatures that had different expression 

between M0 and M1 patients. To confirm the importance of these four signatures, we then carried 

out univariate survival analysis. It turned out, the signatures that were distant metastasis-related 
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were also survival-related. Specifically, shorter survival was observed in patients with higher ex-

pression of ROR (p = 0.002), and lower expression of claudin-low (p = 0.04), mammary stemness 

(p = 0.04), and PGR (p = 0.02) (Figure 3-5) [96].  

Figure 3-5 Survival analysis of four significant signatures [96] (Reproduced with permission

from Ni et al. J Pers Med, 2021)

3.3.4 Subgroup analysis of BC360®  signatures 

We were curious if the signatures are consistently associated with distant metastasis and survival 

in luminal A and luminal B patients and carried out subgroup analyses to investigate the fact. The 

results showed that, both in luminal A and in luminal B subgroups, patients that developed distant 

metastasis had higher expression of ROR (p = 0.02, p = 0.04). Besides, only in the luminal A 

subgroup, patients that developed distant metastasis had lower expression of PGR than patients 

who did not (p = 0.002) (Figure 3-6A,3-6B) [96]. Univariate survival analysis of four significant 

signatures was also performed in patient subgroups. The results showed that ROR was signifi-

cantly associated with survival in both luminal A and luminal B subgroups of patients (p = 0.017, 

p = 0.042); PGR was associated with survival in luminal A patients (p = 0.002) (Figure 3-6C) [96]. 
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Claudin-low and mammary stemness were neither metastasis-related nor survival-related in sub-

groups. 

 

A 

 

B 

 

C 

Figure 3-6 Subgroup analysis of BC360®  signatures [96] (Reproduced with permission from Ni et al. J 

Pers Med, 2021) 
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3.4 GSEA analysis 

GSEA was carried out to test for associations between tested 751 genes (7 tested genes were 

not included in the platform) and defined gene sets. Hallmark gene sets are the core gene sets 

of GSEA analysis and were tested first. In our patients, we found that gene expression of M1 

patients has enrichment in the HALLMARK_MTORC1_SIGNALING (FDR q = 0.241). Subgroup 

analyses showed that the enrichment was more obvious in luminal B patients (FDR q = 0.047) 

and not significant in luminal A M1 patients (FDR q = 0.5421) (Figure 3-7) [96]. Besides Hall mark 

gene sets, C1–C7 gene sets (the introduction of the gene sets was covered in the method part) 

were also analyzed. The significant enrichments were summarized in Table 3-4. Briefly, gene 

expression of luminal A M1 patients has enrichment in C3 (regulatory target gene sets) and C6 

(oncogenic signature gene sets); gene expression of luminal B M1 patients has enrichment in C2 

(curated gene sets); and gene expression of luminal B M0 patients has enrichment in C3 (regu-

latory target gene sets) and C7 (immunologic signature gene sets). Limited by that the GSEA 

analyses had neither quantitative nor qualitative report for each patient, no survival analysis was 

carried out. 

 

Figure 3-7  GSEA analysis of hallmark gene sets in all patients/subgroups [96] (Repro-

duced with permission from Ni et al. J Pers Med, 2021) 

Table 3-4 Overview of significant gene set enrichments 

Patients In Sets Gene Set NES Nominal p FDR q 

All M1 H Hall-

mark_MTORC1_Sig-

naling 

1.58 0.017 0.241 

 M0 C6 BMI1_DN_MEL18_D

N.V1_DN 

–1.66 0.008 0.247 

Luminal A M1 C3 MIR9983_3P 1.88 <0.001 0.233 

  C6 IL15_UP.V1_UP 1.82 <0.001 0.151 

   E2F1_UP.V1_DN 1.74 0.002 0.193 
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Table 3-4 (continued) 

Luminal B M1 H Hall-

mark_MTORC1_Sig-

naling 

1.81 <0.001 0.047 

  C2 LY_AGING_PREMA-

TURE_DN 

1.88 <0.001 0.117 

 M0 C3 MIR4755_5P –2 <0.001 0.079 

   MIR5006_3P –2 <0.001 0.040 

  C7 GSE25677_MPL_VS_

R848_STIM_BCELL_

DN 

–1.97 0.002 0.165 

   GSE35685_CD34PO

S_CD38NEG_VS_CD

10POS_BONE_MAR-

ROW_UP 

–1.95 0.002 0.143 

   GSE6259_33D1_POS

_VS_DEC205_POS_

SPLENIC_DC_DN 

–1.91 <0.001 0.165 

   GSE39820_TGF-

BETA3_IL6_VS_TGF-

BETA3_IL6_IL23A_T

REATED_CD4_TCEL

L_UP 

–1.89 <0.001 0.182 

   GSE26488_WT_VS_

VP16_TRANS-

GENIC_HDAC7_KO_

DOUBLE_POSI-

TIVE_THYMO-

CYTE_UP 

–1.84 0.002 0.228 

3.5 Analysis of differentially expressed genes  

3.5.1 Differential expression of single genes  

Except for established signatures which consist of several or dozens of genes, analysis of single 

gene was also performed to investigate the single prognostic genes for HR+/HER2− premeno-

pausal EBC, as significant single genes might help to develop novel and more specific signatures 

for this special group of patients. As suggested in the method part, the expression of 758 genes 

were normalized and compared through the limma-t test, and 22 genes passed the cutoff (log2 

FC > 0.586 and p < 0.05) for differentially expressed genes (Figure 3-8A). The overlap between 



Results 42 

 

the differentially expressed genes and the genes included by the significant signatures was sum-

marized. As could be seen in Figure 3-8B, not much overlap was observed. Three of the DEGs, 

namely PGR, MIA and SFRP1, were included by ROR signature, and one DEG, namely STC1, 

was involved in the mTORC1 signaling pathway [96].  

 

A 

 

B 

Figure 3-8 The differentially expressed genes between two groups of patients [96] (Reproduced 

with permission from Ni et al. J Pers Med, 2021) 
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3.5.2 Survival relevancy of the DEGs 

Univariate survival analysis was carried out for each DEG to confirm their significancy. As the 

results suggested, among the 22 DEGS, 19 were survival-related (Figure 3-9A). In order to further 

validate our findings, we used Kaplan-Meier Plotter tool to test the survival relevancy of the 19 

genes as a whole signature and as single genes in patients from online databases. Excitingly, the 

nineteen-gene signature was survival-related in the larger cohort from other databases (Figure 3-

9B), and 15 out of 19 genes were survival-related as single genes (Figure 3-9C) [96]. 

 

A 
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Figure 3-9 Survival analysis of the differentially expressed genes [96] (Reproduced with permission 

from Ni et al. J Pers Med, 2021) 
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3.5.3 Functional analysis of the 19 survival-related DEGs 

In order to understand the functions of the survival-related DEGs, we carried out GO, KEGG and 

STRING analyses. KEGG analysis suggested that the 19 DEGs were significantly associated with 

PI3K-Akt (phosphatidylinositol 3-kinase/protein kinase B) signaling, breast cancer, focal adhesion, 

proteoglycans in cancer, and hedgehog signaling pathway (Figure 3-10A). GO analysis sug-

gested that several biological processes and molecular functions were involved (Figure 3-10B，

Figure 3-10C). Functional interactions between the 19 DEGs were determined by STRING anal-

ysis, and several functional interactions were noticed (Figure 3-10D). The involved BC360 path-

ways of the 19 DEGs were summarized in Table 3-5 and Table 3-6. 

 

A 

 

B 
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C 

 

D 

Figure 3-10 Functional analysis of nineteen survival-related DEGs [96] (Reproduced with permission 

from Ni et al. J Pers Med, 2021) 

Table 3-5 The involved BC360®  pathways of the19 survival-related DEGs 

Gene 
Expression 

(M1 vs M0) 
BC360®  pathway 

LRP2 DOWN Hedgehog  
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Table 3-5 (continued) 

SFRP1 DOWN EMT, Subtypes, Triple negative Biology, Wnt 

CDC14A DOWN Proliferation 

OGN DOWN Proliferation, Triple negative biology 

ABCA8 DOWN Triple negative biology 

IGF1 DOWN 
EMT, MAPK, PI3K, Proliferation, Transcrip-

tional misregulation, Triple negative biology 

BCAS1 UP EMT 

IBSP UP Adhesion and migration, PI3K, Proliferation 

WNT11 DOWN Hedgehog, Wnt 

IRX1 DOWN Triple negative biology 

ERBB4 DOWN Triple negative biology 

SOX10 DOWN Triple negative biology 

MIA DOWN Subtypes, Triple negative biology 

PGR DOWN ER signaling, Subtypes 

HOXA5 DOWN Transcriptional misregulation 

THBS4 DOWN 
Adhesion and migration, PI3K, Proliferation, 

TGF-beta 

PTGER3 DOWN ER signaling 

SCUBE2 DOWN ER signaling, Triple negative biology 

ZBTB16 DOWN Transcriptional misregulation 

Table 3-6 The distribution of 19 DEGs in BC360®  pathways 

BC360®  Pathway (n=24) All Genes DEGs 
Percentage  

(DEGs/All Genes) 

Triple Negative Biology 50 9 18.0% 

ER Signaling 27 3 11.1% 

Hedgehog 20 2 10.0% 

Transcriptional Misregulation 63 3 4.8% 

Subtypes 70 3 4.3% 

Wnt 51 2 3.9% 
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Table 3-6 (continued) 

Proliferation 144 5 3.5% 

PI3K 96 3 3.1% 

Adhesion and Migration 83 2 2.4% 

TGF-beta 57 1 1.8% 

MAPK 100 1 1.0% 

Angiogenesis 34 0 0 

Antigen Presentation 21 0 0 

Apoptosis 9 0 0 

Cytokine and  

Chemokine Signaling 50 0 0 

DNA Damage Repair 143 0 0 

Epigenetic Regulation 18 0 0 

Immune Infiltration 34 0 0 

Internal Reference Gene 18 0 0 

JAK-STAT 47 0 0 

Notch 22 0 0 

Stromal Markers 6 0 0 

Tumor Metabolism 15 0 0 

SUM 1263 37 2.9% 

3.5.4 Differentially expressed genes in luminal A and luminal B 

subgroups 

As was noticed in the signature analysis, the underlying biology of distant metastasis was incon-

sistent between luminal A and luminal B patients. Therefore, we carried out subgroup analyses 

where applicable, and the differentially expressed genes were also separately compared in lu-

minal A and luminal B patients. As could be seen in Figure 3-11, twenty-eight DEGs were 

screened out in luminal A patients, and 14 DEGs were screened out in luminal B patients. DEGs 

in Luminal A patients have more similarity to the overall DEGs, and DEGs in luminal B have much 

less similarity. Only two DEGs were consistent in overall analysis and two subgroup analyses: 

LRP2 and OGN. The DEGs have prominent difference between luminal A and luminal B patients, 

rendering separate analyses in two subgroups necessary. 
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Figure 3-11 The differentially expressed genes in subgroups 

3.6 Multivariate survival analysis 

The survival relevance of the signatures and single genes were determined. Considering that pN 

and pT also have a significant impact on survival, we wanted to investigate all factors in one run. 

Therefore, a multivariate survival analysis including pN and pT, ROR score, HER2-E score, lu-

minal A score, four significant signatures (ROR, PGR, claudin-low, mammary stemness), and 19 

DMFS-related DEGs was performed. “Forward Stepwise (likelihood ratio)” was used to find the 

most representative factors (Table 3-7). The results suggested that besides pN (p = 0.016), the 

single genes LRP2 (p < 0.001) and PTGER3 (p = 0.017) were most representative prognostic 

factors (Table 3-8). In order to evaluate whether expression of LRP2 was correlated with other 

prognostic factors, we performed Pearson’s correlation analysis. It turned out that LRP2 was 
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correlated with most of the prognostic factors (18/25) (Table 3-9), especially HER2-E score, ROR 

score, SFRP1, CDC14A and ABCA8 (p < 0.001).  

Table 3-7 Prognostic factors included in the multivariate analysis (the starting block) 

Factor Score p-value Factor Score p-value 

pT (>1 vs 1) 4.7 0.030 BCAS1 6.9 0.009 

pN (>0 vs 0) 12.4 <0.001 IBSP 7.6 0.006 

ROR score 10.0 0.002 WNT11 6.0 0.015 

HER2-E 

score 

17.1 <0.001 IRX1 6.5 0.011 

Luminal A 

score 

4.4 0.035 ERBB4 5.0 0.025 

Claudin-low 4.3 0.039 SOX10 5.5 0.020 

Mammary 

stemness 

4.2 0.040 MIA 6.1 0.013 

PGR  5.4 0.020 PGR 5.4 0.020 

LRP2 18.1 <0.001 HOXA5 4.4 0.035 

SFRP1 9.6 0.002 THBS4 3.9 0.047 

CDC14A 8.0 0.005 PTGER3 5.2 0.023 

OGN 7.2 0.007 SCUBE2 4.1 0.042 

ABCA8 7.8 0.005 ZBTB16 4.1 0.042 

IGF1 6.2 0.013    

Table 3-8  Multivariate survival analysis of 28 prognostic factors (method: forward stepwise) 

Step Factors p-value HR 
95%CI 

lower upper 

Step1 LRP2 <0.001 0.69 0.58 0.82 

Step 2 LRP2 <0.001 0.67 0.56 0.80 
 

PTGER3 0.004 0.69 0.53 0.89 

Step 3 LRP2 <0.001 0.71 0.60 0.85 
 

PTGER3 0.017 0.74 0.57 0.95 
 

pN (>0 vs 

0) 

0.016 2.4 1.2 5.1 
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Table 3-9 Correlation analysis of LRP2 and other prognostic factors 

Factor CC p-value Factor CC p-value 

pN (>0 vs 0) −0.17 0.106 BCAS1 0.08 0.498 

pT (>1 vs 1) −0.20 0.062 IBSP −0.08 0.464 

HER2-E score −0.49** <0.001 WNT11 0.27* 0.014 

Luminal A score 0.32** 0.003 IRX1 0.30** 0.005 

ROR score −0.46** <0.001 ERBB4 0.28** 0.01 

PGR  0.32** 0.003 SOX10 0.36** 0.001 

Mammary stem-

ness 

0.20 0.070 MIA 0.36** 0.001 

Claudin-low 0.20 0.063 PGR 0.32** 0.003 

SFRP1 0.45** <0.001 HOXA5 0.24* 0.027 

CDC14A 0.41** <0.001 THBS4 0.34** 0.001 

OGN 0.32** 0.003 PTGER3 0.03 0.795 

ABCA8 0.41** <0.001 SCUBE2 0.03 0.759 

IGF1 0.35** 0.001 ZBTB16 0.29** 0.006 

CC = correlation coefficient; * p < 0.05, ** p < 0.01. Negative values indicate negative correlations, and pos-

itive values indicate positive correlations.  

Of note, for multivariate analysis, when different factors were included in the starting block, the 

final output may vary. We also tried including pN, pT, four differentially expressed signatures, 22 

DEGs into the multivariate analysis without considering luminal A scores and HER2-E scores. 

And in this approach, LRP2 was also calculated as an independent prognostic factor, along with 

pN, IBSP, SCUBE2 [96] (Table 3-10). Therefore, the importance of LRP2 was confirmed, and the 

complexity of the interactions between the prognostic factors should be noticed and carefully in-

terpreted. 

Table 3-10 Multivariate survival analysis of pN, pT, and differentially expressed signatures/genes 

(method: forward stepwise) (Reproduced with permission from Ni et al. J Pers Med, 2021) 

Step Factors p-value HR 
95%CI 

lower upper 

Step 3 pN 0.007 2.75 1.33 5.68 
 

LRP2 <0.001 0.73 0.62 0.86 
 

IBSP 0.03 1.44 1.05 1.97 

 SCUBE2 0.04 0.82 0.68 0.98 
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4. Discussion  

4.1 Clinical risk factors for developing distant metastasis in 

HR+/HER2− early breast cancer 

Early breast cancer is curable, yet distant metastasis may develop and lead to inevitable death. 

Distant metastasis is the most common type of breast cancer recurrence [107], and it marks the 

time point at which the patient has entered the late stage and can no longer be cured [28]. There-

fore, we selected distant metastasis as the endpoint of our follow-up, which is also common prac-

tice of clinical trials [29, 56, 108]. Besides, we set the minimum follow-up period as 10 years, 

because even though the peak for cancer relapse is 2-3 years, in particular in luminal EBC, re-

lapses can occur much later as well and consequently, the common follow-up period is between 

5 and 15 years [15, 107, 109]. Normally, the percentage of early breast cancer that develops 

distant metastasis is around 30% [10, 15]. In the final cohort of our case control study, we included 

49 patients who had developed distant metastasis during follow-up and 48 who did not. 

Though the exact drivers for distant metastases are not known, widely accepted prognostic fac-

tors for developing distant metastasis include tumor size, nodal status, histological grade, molec-

ular subtype, and appropriate treatment [10, 11, 107, 110]. As shown by the patient characteristics 

in our study, tumor size, grade, tumor stage (based on tumor size and nodal status) are associ-

ated with risk of distant metastasis. It is generally accepted that nodal status and tumor size are 

interacting prognostic factors and nodal status is a more powerful prognostic factor than tumor 

size [111, 112], as a small tumor with extensive lymph node involvement holds a higher risk of 

metastasis than a larger tumor with less lymph node involvement [113]. Limited by the sample 

size, we did not divide patients into detailed subgroups, as this approach needs a much larger 

sample size to show the statistical significance. Instead, we generally divided the patients into the 

following subgroups: patients with positive lymph nodes and patients without; patients at stage I 

and patients at stage > I, to perform univariate survival analysis for investigating their prognostic 

value. According to the results, nodal status and tumor stage are both associated with survival, 

but nodal status has a much higher impact with higher significance (lower p-value and higher 

hazard ratio). Therefore, in our cohort, nodal status is the most important prognostic factor among 

the common clinical parameters.  

HR+/HER2− breast cancer has a relatively favorable prognosis compared to triple-negative or 

HER2+ breast cancer, and the treatment routine is generally clear: A combination of local and 

systemic treatment [10, 28]. For local treatment, lumpectomy and mastectomy are two mainstays 

and should be selected based on the patient's clinical risk, contradictions, and personal prefer-

ence. If lumpectomy was the choice, radiotherapy must be prescribed to limit local recurrence. If 

mastectomy was chosen, radiotherapy may be spared based on tumor extent [10, 11, 114]. In 

our cohort, 71.4% of patients who did not develop metastasis received lumpectomy plus radio-

therapy, and the statistical results suggested that the surgery method did not influence metastasis 

development. Therefore, our small cohort confirmed that it is safe to conduct lumpectomy plus 

radiotherapy for patients with a low risk of recurrence. As for axillary lymph node management, 

axillary lymph node dissection (ALND) is only suggested for high-risk patients, and selective sen-

tinel lymph node biopsy (SLNB) is the current standard of care for node-negative breast cancer. 

Even for positive SLNB, a low axillary disease burden could be sufficiently treated by radiotherapy 

[11, 114]. In our cohort, in the patient who did not develop distant metastasis, 51% of patients did 
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not have axillary lymph node dissection after SLNB. Moreover, among the 30 patients without 

further ALND, only 5 developed metastases. Considering that replacing ALND with SLNB (with 

or without radiotherapy) is associated with better post-surgery life quality [114], de-escalation of 

lymph node management should be advocated in patients with a low risk of recurrence.  

For systemic treatment, the mainstay is endocrine therapy. Although established later than chem-

otherapy, endocrine drug therapy has taken over the leading role as it directly targets the under-

lying cause of HR+ breast cancer and is thus more efficient and less toxic [3, 115]. For premen-

opausal patients, tamoxifen is the standard of care [11, 114], although aromatase inhibitor plus 

gonadotropin-releasing hormone agonist (GnRHa) was reported to render more survival benefit 

[116]. In young patients at high risk of recurrence, pros and cons should be thoroughly considered 

before selecting aromatase inhibitors [114]. In our patient cohort, most patients (93%) were 

treated with tamoxifen, and the selection of endocrine therapy did not significantly influence the 

survival result. Yet, the small sample size limits the power of the conclusion. As for chemotherapy, 

considering that it does not bring substantial survival benefits for most patients with HR+ EBC, 

prudent avoidance of chemotherapy should be implemented [4, 114]. In our patient cohort, 39.6% 

of the patients without metastases did not receive chemotherapy. Of the patients with distant 

metastasis, most patients had received chemotherapy (89.1%). Thus, even though patients at 

higher clinical risk had been prescribed chemotherapy, they still experienced distant metastases. 

And for patients with lower risk of recurrence, omitting chemotherapy did not their harm survival 

chances. The most commonly used chemotherapy regimen contained anthracyclines and/or tax-

anes [114, 115].  

A combination of anti-cancer medications with different mechanisms improves efficiency, loweres 

the possibility of resistance, and reduces toxicity [10, 114]. According to the basic statistical anal-

ysis of our cohort, the fact whether the chemotherapy contained anthracyclines or taxanes did not 

influence development of distant metastasis. Yet, as our study is retrospective and did not match 

patients regarding their (neo-)adjuvant chemotherapy, we cannot offer definitive conclusions re-

garding the best chemotherapy regime. Besides endocrine therapy and chemotherapy, targeted 

therapy and immunotherapy are potential systemic treatment choices that may help to further 

individualize the treatment in order to improve survival and reduce toxicity [4, 10]. But these ad-

ditional therapies are not first choice for HR+/HER2− breast cancer, and therefore not evaluated 

by our study. Briefly, our patients were all treated by standard of care according to national guide-

lines, and no significant impact of any treatment was noticed.  

Based on the analysis of clinical factors and treatment of our patient cohort, we concluded that 

nodal status and tumor stage are prognostic factors for survival of premenopausal patients, and 

that nodal status has the strongest prognostic power. By retrospective analysis of treatment mo-

dalities, we found that - at least in our cohort - escalated treatment (mastectomy, ALND, chemo-

therapy) may not be necessary for some patients and not effective enough for some patients to 

avoid distant metastasis.  

Furthermore, analysis of the clinical risk factors revealed the necessity for researching into mo-

lecular risk factors. As seen in our cohort, 35% of pT1 tumors developed distant metastasis, and 

28.8% of tumors with no lymph node involvement developed metastasis. For these patients, ag-

gressive tumor biology may be the crucial driver for distant metastasis [10, 111]. 
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4.2 Molecular subtype and risk of developing distant 

metastasis 

Molecular subtypes based on the PAM50 test are well-established prognostic markers and pre-

dictors of treatment benefit. It is generally considered that luminal subtypes have a better prog-

nosis than HER2-enriched or basal subtypes [10, 109]. The luminal subtype can be further divided 

into luminal A and luminal B subtypes, and the latter one is considered to be associated with a 

poorer prognosis [10, 21, 109]. Clinically, molecular subtyping is not routinely performed. Instead, 

surrogate subtyping based on the immunohistochemical expression of hormone receptors, HER2 

and Ki-67 index is more common in clinical practice [10, 21, 65]. Our cohort included patients 

based on expression of HR and HER2, and an excellent coherence between surrogate subtyping 

and molecular subtyping was observed: 95.3% of the included HR+/HER2− tumors belong to 

luminal subtypes. Limited by the incomplete Ki-67 index data, a differentiation between luminal 

A-like and luminal B-like could not be done for the surrogating subtyping, which therefore could

be compared with the molecular subtyping results. 

In our patient cohort, the risk of developing distant metastasis was not significantly different be-

tween luminal A and luminal B tumors. Among the 51 patients with luminal A subtype, 47% had 

developed metastasis, and among the 30 patients of luminal B subtype, 53.3% had developed 

metastasis. Although the actual metastasis rate in our case-control study is not fully representa-

tive, the difference between the group was not notable. Meanwhile, it is clinically interesting that 

both patients with a HER2-enriched molecular subtype developed early distant metastasis, spe-

cifically 7 months and 11 months. Reviewing their clinical risk, we found they were not the patients 

with the highest clinical risk of recurrence: one patient had pT1 and pN1, and the other pT2 and 

pN1 disease. They all had received lumpectomy, ALND, radiotherapy, chemotherapy, and endo-

crine therapy. Although they had clinically been diagnosed with HR+/HER2− tumors at moderate 

risk of recurrence, they had the worst prognosis. Tumor biology was likely the underlying cause. 

Yet, since only two patients with HER2-enriched (HER2-E) molecular subtype were found, no 

statistical conclusions could be made. In brief, referring to PAM50 molecular subtypes in our pa-

tient cohort, the survival difference between luminal A and luminal B patients were small; but 

prognosis was poor for those patients with HER2-E subtype.  

The molecular subtypes were not prognostic in our patients, but we found that the subtype scores, 

especially the HER2-E subtype scores, were significantly associated with the risk of distant me-

tastasis and survival. Basically, this means that even for patients with luminal-like tumors, the 

prognosis is poor if their tumor biology is closer to the HER2-E subtype. The widely applied score 

based on the PAM50 algorithm is the risk of recurrence (ROR) score, which is currently recom-

mended for clinical use in post-menopausal patients [31, 68]. In our premenopausal cohort, ROR 

score is prognostic for distant metastasis as well. Interestingly, our survival analysis suggested 

that HER2-E score has more significant prognostic power (lower p-value and higher hazard ratio) 

than ROR score. Further correlation analysis suggested that the three scores that are survival-

related are correlated (luminal A score, HER2-E score, and ROR score). This is easy to under-

stand considering they are all calculated based on expression of the same set of genes. As shown 

in the dot plots, patients with a HER2-E score higher than 0.25 were at a high risk of recurrence 

(all 7 patients developed distant metastasis), and patients with a ROR score lower than 30 were 

at relatively low risk (only 1 patient experienced distant metastasis out of 11 patients). Therefore, 

combined consideration of ROR score and HER2-E score has the potential to better stratify the 

patients. As far as we know, no other report has mentioned the prognostic value of the HER2-E 
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subtype score in HR+/HER2− patients. Therefore, validation of this observation in larger cohorts 

is necessary. 

The in-depth evaluation of the molecular subtypes showed that even in luminal-like breast cancer, 

HER2-E biology exists and strongly influences patient survival. By reviewing related research, we 

found this is not a new finding. While reviewing HER2 amplification status in breast cancer, Dae-

men et al. noticed that HER2 amplification was not limited to breast cancer with HER2-E subtype 

but present in all breast cancer subtypes [117]. The association between HER2 amplification and 

early recurrence in HR+/HER2− breast cancer was also recently reported by Yamashita et al 

[118]. Besides, research into borderline HER2 expressing tumors also tried to further stratify the 

current HR+/HER2− breast cancer [119]. Taking together these investigations and our results, 

we suggest evaluation of HER2-E biology in luminal breast cancer to predict risk of recurrence. 

4.3 BC360® signatures and the risk of developing distant 

metastasis 

Based on the expression of 758 genes, expression of 46 breast cancer-related signatures was 

calculated for each patient. These signatures represent different aspects of cancer biology: anti-

tumor immune activity, breast cancer prognosis, breast cancer receptors, breast cancer signaling 

pathways, breast cancer subtyping, immune cell abundance, inhibitory immune mechanisms, in-

hibitory immune signaling, inhibitory metabolism, stromal factors, tumor immunogenicity,  tumor 

mutational response, and tumor regulation [99]. The wheel plot depicted the signatures scores 

for each subtype of patients and the correlation between the subtypes. Subtypes were not prog-

nostic in our patient cohort. Therefore, the BC360®  signatures of each subtype were not further 

compared statistically. The correlation between subtypes was not the emphasis of our study, but 

this information deepened our understanding of the subtypes: the subtypes are not completely 

independent, they had either positive or negative connection (e.g., luminal B subtype has a posi-

tive correlation with HER2-E subtype, while luminal A subtype has a negative correlation with 

HER2-E). 

Four signatures were correlated with distant metastasis and survival in our cohort: ROR (as a 

signature, only the gene expression was calculated), PGR (progesterone receptor), claudin-low, 

and mammary stemness. Biologically, ROR belongs to “breast cancer prognosis”, PGR belongs 

to “breast cancer receptors”, claudin-low belongs to “breast cancer subtyping” and mammary 

stemness belongs to “tumor regulation”. ROR has the most significant p-value, while p-values of 

claudin-low and mammary stemness were only borderline significant. In order to avoid false dis-

covery [120], the adjusted p-value was calculated for each signature [101] and no significance 

was noticed. Therefore, caution must be taken while interpreting the results and further validation 

with larger cohorts remains necessary. Moreover, according to the subgroup analysis, ROR ex-

pression remains prognostic in both luminal A and luminal B subgroups, and expression of PGR 

is more prognostic in the luminal A subgroup than in all patients. 

ROR, as a signature, is the basis of the ROR score, which combines both the gene expression 

of ROR signature and clinical parameters [31, 68]. ROR score predicts the risk of distant recur-

rence in postmenopausal patients with ER+ EBC who were treated with adjuvant endocrine ther-

apy [7, 68]. In our premenopausal cohort, ROR remains prognostic. But as discussed in the last 

chapter, ROR score was not as prognostic as HER2-E score. Therefore, whether ROR score is 

the best choice for predicting survival of premenopausal patients warrants further investigation. 
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The PGR signature includes one single gene PGR encoding the Progesterone Receptor (PR), 

which mediates the physiological effects of progesterone. Low PR expression is an established 

indicator for poor prognosis [10], and high PR expression is an indicator for better survival [121]. 

The prognostic power of PGR in luminal A patients needs to be stressed: PGR may not predict 

prognosis in luminal B patients.  

The claudin-low subtype is defined by low expression of cell-cell adhesion genes, high expression 

of epithelial-mesenchymal transition genes, and stem cell-like/less differentiated gene expression 

patterns [122]. It is a complex additional phenotype which is poorly understood. There are differ-

ent opinions regarding the prognostic impact of the claudin-low subtype: even though some re-

search suggested that the claudin-low subtype related to poor prognosis, a recent cohort analysis 

suggested that claudin-low subtype was not an indicator of good or poor survivals [123]. The 

mammary stemness signature measures a cluster of EMT (Epithelial to mesenchymal transition) 

genes and stem cell relevant genes. Previous research suggested that breast stem cells are to 

blame for cancer relapse[124]. Considering the borderline p-values in our analysis of claudin-low 

and mammary stemness, and the discordant results in prior research, we believe that the current 

evidence is not enough for fully understanding their prognostic value. 

The analysis of BC360 signatures helped us to connect our output with the established cancer 

biology. Higher expression of ROR is linked to poorer survival in our premenopausal cohorts, 

while higher expression of PGR is a favorable prognostic factor in luminal A breast cancer. Further 

validation remains necessary. 

4.4 GSEA pathways and the risk of developing distant 

metastasis 

Since its development, gene set enrichment has been widely used in bioinformatic analysis to 

explore the pathways involved in disease development [104, 125, 126]. We performed GSEA 

analysis with the same purpose as performing the BC®  360 signature analysis: To understand 

the underlying biology driving distant metastasis in our premenopausal cohort. 

Overall, the most important finding lay in hallmark gene sets. In our cohort, mTORC1 (mammalian 

target of rapamycin complex 1) signaling was enriched in patients who developed distant metas-

tasis, and enrichment was more prominent in luminal B patients. The phosphatidylinositol 3-ki-

nase (PI3K)/protein kinase B (AKT)/ mTOR pathway is crucial for breast cancer growth, progres-

sion, and insensitivity to endocrine interventions[10, 127, 128]. And mTORC1 signaling regulates 

many biological processes, including cell cycle progression, growth, and metabolism [129]. As a 

mTORC1 signaling inhibitor, everolimus is a validated medication for treating advanced breast 

cancer [11, 130]. The use of everolimus as second-line medication after disease progression is a 

standard of care [11] and subject of trials for therapy optimization [128, 131, 132]. Meanwhile, 

effort has been made to investigate the benefit of everolimus in earlier lines of treatment as a 

maintenance therapy, yet no survival benefit was noticed between patients who received evero-

limus and who did not [133]. As our results suggested, the enrichment of mTORC1 signaling is 

associated with distant metastasis and could be detected before the start of adjuvant treatment. 

Therefore, stratification of patients according to mTOC1 signaling enrichment may help to select 

patients who might benefit from an early combination of everolimus. Of note, mTORC1 activation 

marker was suggested as a predictive factor for everolimus benefit in advanced breast cancer 

[134]. Whether evaluation of mTOC1 signaling could lead to a more effective use of everolimus 
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in breast cancer requires a cautious judgement of pros and cons, and further exploration. Another 

enriched pathway is “BMI1_DN_MEL18_DN.V1_DN” belonging to “oncogenic gene sets”. This 

gene set includes genes that were downregulated in DAOY cells (medulloblastoma) upon knock-

down of BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) and PCGF2 (polycomb group 

ring finger 2) [135]. Since no clear former evidence was found regarding this pathway and breast 

cancer, we offer here first-time evidence, and wait for further validation of the observed correlation. 

As discussed in an earlier chapter, even though luminal B subtype is considered as a more unfa-

vorable prognostic marker than luminal A subtype [10], this difference was not obvious in our 

cohort. Since the metastasis rate was high in both luminal A and luminal B subtype, we were 

wondering if luminal A and luminal B have the same drivers for distant metastasis. Therefore, 

where applicable, after we carried out the analysis in all patients, we repeated the analyses in the 

luminal A and luminal B subgroup separately. Normally, a smaller sample size leads to weaker 

statistical significance. Yet, we found more significant results in subgroup analysis. In luminal A 

tumors, pathways regarding miR-9983-3p, IL-2 and IL-15, and E2F1 (retinoblastoma-associated 

protein 1) were significantly associated with distant metastasis. In luminal B tumors, besides 

mTORC1 signaling, a pathway regarding pre-mature aging was related to distant metastasis. 

Moreover, in luminal B tumors without distant metastasis, besides pathways regarding two mi-

croRNAs (miR4755-5p, miR5006-3p), an extra abundant enrichment of immunological gene sets 

was observed (five gene sets in total). Though no prior research regarding a connection between 

these specific pathways and breast cancer was found, immunological reaction was suggested as 

a crucial prognostic marker [136]. According to bioinformatic analyses, immunological signatures 

are not generally favorable or unfavorable prognostic factors [136], but presence of lymphocytic 

infiltration is generally considered as intense antitumor responses and a favorable prognostic 

marker [137]. In our luminal B cohort, several immunological pathways were protective against 

distant metastasis, and further investigation is crucial in understanding their actual function and 

potential application. 

BC360®  signature analysis offered us a possibility to understand the underlying biology of distant 

metastasis, GSEA further widened the tested range of the biological signatures. The advantage 

of GSEA results is that the false discovery rate of their p-values was also within the significant 

range, and therefore the conclusion is more reliable. The disadvantage is that except for the hall-

mark gene sets, the connection between other gene sets and breast cancer was not clear, and 

therefore requires further investigation. In brief, GSEA analysis confirmed the importance of 

mTORC1 signaling in predisposition for distant metastasis, especially in luminal B breast cancer. 

The underlying drivers of distant metastasis were not identical between luminal A and luminal B 

tumors: Immunology played a more significant role in distant metastasis of luminal B breast can-

cer. 

4.5 Single gene markers and the risk of distant metastasis 

Unlike signatures, which calculate the expression of several or dozens of genes at the same time, 

single-gene markers are more specific. Considering the lack of molecular signatures developed 

based on premenopausal patients [33, 91], single-gene markers could be more sensitive prog-

nostic markers and more representative for our cohort. Therefore, we used the standard method 

[105] to explore prognostic single genes. In brief, in our study, twenty-two genes were defined as

differentially expressed genes (DEGs), nineteen of which were significantly related to survival. 

Further database validation verified the prognostic value of fifteen DEGs as single markers and 
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the nineteen-gene signature as an integrated marker. Most of the DEGs were not covered by the 

prognostic signatures, which confirmed the necessity of researching single genes. 

Among the nineteen survival-related DEGs, higher expression of two genes was linked to poor 

survival: IBSP and BCAS1, and low expression of the other seventeen genes were associated 

with poor survival: LRP2, SCUBE2, SFRP1, ZBTB16, MIA, OGN, ABCA8, PGR, IGF1, SOX10, 

ERBB4, IRX1, PTGER3, HOXA5, WNT11, CDC14A, and THBS4. Interactions between genes 

were also established in other analyses: IGF1 has a functional connection to ERBB4, PGR, OGN, 

IBSP LRP2, and SOX10; PGR has a functional connection to SCUBE2, ERBB4, HOXA5, and 

IGF1; SOX10 has a functional connection to MIA, BCAS1, and IGF1. Functional analyses sug-

gested that these genes were significantly involved in the PI3K-AKT signaling pathway, breast 

cancer, focal adhesion, proteoglycans in cancer, and hedgehog pathway. As for the BC360®  

pathways of the genes, the significantly involved pathways are triple-negative biology (SFRP1, 

OGN, ABCA8, IGF1, IRX1, ERBB4, SOX10, MIA, SCUBE2), ER signaling (PGR, PTGER, 

SCUBE2), and hedgehog pathway (LRP2, WNT11). Of note, functional analysis only suggested 

functional enrichment of the 19 DEGs rather than functional involvement of pathways in distant 

metastasis, and therefore did not define the upper or lower regulation of certain pathways in can-

cers that developed distant metastasis. 

4.5.1 The prognostic value of LRP2 in breast cancer 

LRP2 (LDL receptor related protein 2), also known as megalin or glycoprotein 330, encodes a 

membrane glycoprotein belongs to the low-density lipoprotein receptor protein family [138]. This 

protein is typically present at the apical surface of the epithelial cells of embryonic and adult tis-

sues, and the latter includes central nerve system, kidney, lung, thyroid, gallbladder and mam-

mary gland [138]. The presence of LRP2 is crucial for normal differentiation of embryos [139] and 

the aberration of LRP2 has been recognized in many clinical situations, including diabetic 

nephropathy, Lowe syndrome, Dent disease, Alzheimer’s disease, and gallstone disease [138]. 

Besides, higher expression of LRP2 has recently been reported as a favorable prognostic factor 

in renal cell carcinoma [140]. In our study, LRP2 had a lower expression in patients who devel-

oped metastasis and higher LRP2 levels were significantly associated with better survival, which 

implies that LRP2 is a favorable prognostic factor in premenopausal breast cancer. 

Former direct evidence regarding the prognostic value of LRP2 in breast cancer is rare, but con-

nections between LRP2 and breast cancer have been investigated. One connection was estab-

lished through the vitamin D metabolism. Besides being a modulator of calcium homeostasis and 

osteosynthesis, vitamin D is also a regulator of the immune, muscular, and nervous systems [141]. 

Studies suggested that vitamin D deficiency is related to higher risk of breast cancer [141, 142], 

and the vitamin D receptor (VDR) is a potential tumor suppressor [143]. Therefore, mechanisms 

regarding metabolism of vitamin D were suggested to be influential in breast cancer biology [142, 

143]. To be noted, LRP2 functions in the uptake and activation processes of vitamin D in mam-

mary cells [139, 144], and the single nucleotide polymorphism of the LRP2 gene influence breast 

cancer risk in premenopausal women [145]. Nevertheless, due to the lack of direct evidence, 

further investigations are necessary to determine whether LRP2 influences the distant metastasis 

of breast cancer in premenopausal patients through influencing vitamin D metabolism. Besides, 

LRP2 is noticed as a critical regulator in the sonic hedgehog pathway, which is important in de-

velopmental processes and tumorigenesis [146, 147]. Other connections lie in the regulation of 

LRP2 expression. First, the peroxisome proliferator activated receptor (PPAR) α agonist is a tu-

mor suppressor in breast cancer [148] and could increase the LRP2 expression [138]. Second, 
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PGR is a favorable prognostic factor in breast cancer [10], and one study suggested that LRP2 is 

a target gene of progesterone and PGR [149]. Third, retinoic acid prevents migration of breast 

cancer cells [150] and could induce expression of LRP2 [144]. Fourth, AGTR1 (angiotensin II 

receptor type 1) overexpression promotes proliferation of breast cancer [151] and was suggested 

as a new maker to select patients that may be better targeted with an AGTR antagonist [152]. 

One study suggested that an AGTR antagonist has a protective effect regarding LRP2 expression 

[138]. Considering the scarcity of direct evidence, further validation of the connections between 

LRP expression and breast cancer is necessary. 

Our study highlighted the highly significant prognostic value of LRP2 in premenopausal patients 

with HR+/HER2− breast cancer, and further studies remain necessary to validate its prognostic 

value, investigate the underlying mechanism, and develop treatment approaches. 

4.5.2 The prognostic value of SCUBE2 in breast cancer 

SCUBE2 (signal peptide, CUB domain and EGF like domain containing 2) encodes a secreted, 

membrane-associated protein which was reported as a breast tumor suppressor [153, 154], a 

favorable prognostic factor [155] and is included in both MammaPrint®  and Oncotype DX® , which 

are widely used diagnostic molecular tests to predict the risk of recurrence for breast cancer [153, 

156]. Studies suggested that the anti-progression effect of SCUBE2 relies on reversing the epi-

thelial-mesenchymal transition [157], antagonizing bone morphogenetic protein, suppressing the 

β-catenin pathway [154], and mediating the hedgehog signaling pathway [158]. Although the 

prognostic value of SCUBE2 is clear, the prognostic power of SCUBE2 in premenopausal patients 

has not yet not been elucidated. According to our study, SCUBE2 was a favorable prognostic 

factor in premenopausal patients with HR+/HER2− breast cancer.  

4.5.3 Other single prognostic gene markers in breast cancer 

The tumor suppressing capacity and prognostic value of SFRP1, ZBTB16, OGN, PGR, PTGER3, 

and HSPA2 in breast cancer have been examined by other studies. SFRP1(secreted frizzled-

related protein 1) encodes a secreted protein that interacts with the cell membrane and Wnt pro-

teins [159]. SFRP1 protein inhibits the Wnt signaling pathway, which is critical in developmental 

processes and involved in tumorigenesis [159]. Decreased expression of SFRP1 is a predictor 

for poor prognosis in breast cancer patients [160]. ZBTB16 (zinc finger and BTB domain contain-

ing 16) encodes a zinc finger transcription factor in the nuclear that functions in the cell cycle, 

transcription process, and protein dimerization transformation [161]. ZBTB16 is under-expressed 

or silenced in multiple cancer tissues, including breast cancer [161]. According to a recent study, 

decreased ZBTB16 expression is associated with poor survival, and restoration of ZBTB16 ex-

pression inhibits proliferation, cell cycling, and invasion of breast cancer cells [161]. OGN (osteo-

glycin) encodes a secreted proteoglycan that is associated with bone metabolism, endocrine reg-

ulation [162], and tumorigenesis [163]. According to a recent study, low expression of OGN was 

observed in breast cancer samples compared to normal breast tissues and in tumors with poor 

prognosis. Moreover, overexpression of OGN could inhibit the malignant biology of breast cancer 

cells and reverse EMT through PI3K/Akt/mTOR signaling pathway [163]. The prognostic value of 

PGR was discussed earlier in the signature chapter. In brief, PGR is a validated favorable prog-

nostic factor in breast cancer [10]. PTGER3 (prostaglandin E2 receptor 3) or EP3 encodes a G-

coupled protein that locates in the membrane and mediates the function of PGE2 (prostaglandin 

E2), which actively participates in the physiological processes, inflammation, and tumorigenesis. 
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One recent study established a connection between EP3 expression and patient survival: Positive 

EP3 expression was linked to good prognosis [164]. HSPA2 (heat shock protein family A member 

2) encodes a molecular chaperone that interact with unfolded, mis-folded, and semi-native pro-

teins. Recent studies advocated the favorable prognostic value of high HSPA2 expression in 

breast cancer [165, 166].  

The tumor suppressing capability of ERBB4, IRX1, SFRP4 in breast cancer has previously been 

investigated by other studies. ERBB4 (epidermal growth factor receptor 4) encodes a membrane 

receptor that regulates embryonic development [167]. As an exception in the family, ERBB4 was 

recognized as a tumor suppressor in multiple cancers, including breast cancer. In breast cancer 

cells, overexpression of ERBB4 could impair proliferation and even induce apoptosis [167]. IRX1 

(Iroquois Homeobox 1) encodes a transcription factor that is crucial in embryonic development 

[168]. The tumor suppressing effect of IRX1 was first validated in gastric cancer [169]. One recent 

study examined the tumor suppressing function of IRX in breast cancer: Down-regulation of IRX 

in ductal carcinoma compared to normal breast tissue was seen, and overexpression of IRX in 

breast cancer cells significantly hindered cell proliferation [170]. SFRP4 (secreted frizzled-related 

protein 4) encodes a protein that belongs to the same family as SFRP1. SFRP4 is a Wnt antag-

onist and could induce apoptosis and inhibit angiogenesis in cancer [171]. Activation of SFRP4 

helps to alleviate chemoresistance of breast cancer cells [171] and inhibits the viability of breast 

cancer stem cells [172]. But the prognostic value of SFRP4 has not yet been investigated. 

The tumor suppressing capability of ABCA8 and CDC14A in other cancers was investigated by 

prior studies. ABCA8 (ATP binding cassette subfamily A member 8) encodes a membrane asso-

ciated protein functioning as a transmembrane transporter for organics, such as efflux of choles-

terol and drugs. Down-regulation of ABCA8 was noticed in hepatocellular carcinoma (HCC) [173] 

and breast cancer tissues [174]. ABCA8 was suggested as a favorable prognostic factor for pa-

tients with HCC and low expression of ABCA8 induced EMT via the ERK (Extracellular-signal 

regulated kinase)/ZEB1(Zinc finger E-box binding homeobox 1) signaling pathway [173]. Yet, no 

studies have investigated the prognostic value of ABCA8 expression in breast cancer so far. 

CDC14A (cell division cycle 14A) encodes a cellular phosphatase that drives mitotic exit in Sac-

charomyces cerevisiae. In human cells, CDC14A was found to target p53 and to interact with 

Cdk1/cyclin B and epithelial protein in order to participate in carcinogenesis [175, 176]. Reduced 

CDC14A levels were associated with the risk of colorectal carcinoma and poor patient prognosis 

[176]. The prognostic value of CDC14A has not yet been validated in breast cancer. 

The tumor driving potential of IBSP, BCAS1 and STC1 has been evaluated by prior studies. IBSP 

(integrin binding sialoprotein) encodes a secreted glycoprotein that was first discovered in miner-

alized tissues and subsequently found to be aberrantly expressed in various kinds of malignan-

cies [177]. Increased expression of IBSP (also known as BSP, bone sialoprotein) was reported 

to be associated with a increased risk of bone metastasis in breast cancer [177, 178], especially 

in estrogen receptor positive tumors [179]. BCAS1 (brain enriched myelin associated protein 1, 

also known as NABC1, novel amplified breast cancer 1) encodes a cytoplasmic protein that am-

plifies in breast cancer cells [180]. BCAS1 was considered as an oncogene in breast cancer [180], 

but its functioning mechanism and prognostic value remain unclear. STC1 (Stanniocalcin‑1) en-

codes a secreted glycoprotein that functions as a hormone in regulating calcium and phosphate 

homeostasis [181]. The oncogenic role of STC1 in breast cancer has been previously investigated 

and high STC1 levels were associated with poor patient outcome [182, 183].  
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Regarding these genes, our study offered further evidence for premenopausal patients with 

HR+/HER2− breast cancer. Our result and prior studies all support the potential utility of theses 

single gene markers as prognostic indicators. 

Inconsistent evidence regarding MIA, IGF1, SOX10, HOXA5, WNT11, and THBS4 was found. 

MIA (melanoma inhibitory activity), as the name suggested, encodes a protein that can be se-

creted to the extracellular space and that is highly prognostic in malignant melanoma [184]. Re-

cent studies believed that MIA is an oncogene and could promote distant metastasis and immune 

suppression in malignant melanoma and lung cancer [185, 186], but no evidence regarding MIA’s 

functions in breast cancer has yet been published. IGF1 (insulin-like growth factor 1) encodes a 

secreted protein that can bind to IGF-1R (insulin-like growth factor 1 receptor type 1) and activate 

downstream transduction events. IGF1 was generally considered as an oncogene in multiple can-

cers, including breast cancer [187]. But the prognostic value of IGF1 regarding breast cancer 

recurrence is inconsistent and therefore under discussion [188]. SOX10 (Sry-related high-mobil-

ity-group/HMG box 10) encodes a transcription factor that regulates embryonic development and 

cell death. SOX10 is a frequently used marker for recognizing melanoma and triple negative 

breast cancer [189]. The prognostic value of SOX10 in luminal breast cancer is not established. 

HOXA5 (homeobox A5) encodes a transcription factor that is crucial in embryogenesis and in-

volved in multiple cancers, including breast cancer [190]. Discrepancy has been noticed in deci-

phering the contribution of HOXA5 to breast cancer evolvement. Altough one study acknowledged 

the anti-tumor potential of HOXA5 [191], another study found that HOXA5 propels endocrine re-

sistance in breast cancer [190]. HOXA5 was confirmed as a tumor suppressor in gastric cancer, 

and low expression of HOXA5 was associated with poorer survival [192]; yet, the prognostic value 

of HOX5A remains unestablished. WNT11 (Wnt family member 11) mainly encodes a secreted 

glycoprotein that is associated with the extracellular matrix and plays an important part in the 

development process and tumorigenesis [193]. The exact role of WNT11 in cancer has not yet 

been defined: wihile one study suggested that WNT11 is an oncogene, others noticed a tumor 

suppressing effect of WNT11 [193]. No direct evidence has validated the prognostic value of 

WNT11 in breast cancer. THBS4 (thrombospondin 4) encodes an extracellular calcium-binding 

protein that interacts with extracellular matrix and functions in embryogenesis, wound healing, 

and cancer development [194]. One study suggested that, in normal breast, THBS4 has the most 

abundant expression in the basement membrane surrounding ducts, fibroblasts and endothelial 

cells. During tumor progression, THBS4 was up-regulated in the extracellular matrix. Therefore, 

the author concluded that THBS4 may contribute to the invasion of breast cancer cells [194]. 

Nevertheless, in this case, THBS4 may also present to repair the lesions caused by cancer. Due 

to lack of direct evidence, the actual function of THBS4 and its prognostic value in invasive breast 

cancer is not yet clear. Regarding these genes, the inconsistency of their roles in cancer reflects 

the complexity of their functioning mechanisms. Further basic and clinical research would be nec-

essary to clarify their actual contributions in cancer development and progression. 

Among the 22 metastasis-associated genes, 19 genes showed significant survival relevance and 

were defined as DMFS-related DEGs. Furthermore, the prognostic values of fifteen of the DMFS-

related DEGs in HR+/HER2− breast cancer (of note, both postmenopausal and premenopausal 

patients were included using online databases) were further validated by online databases. 

Through literature review, we found supportive evidence for 13 out of the 19 genes, while the 

other six genes showed more complex functions in carcinogenesis. Briefly, our sample-based 

case-cohort study offered direct evidence for the prognostic values of 19 genes in premenopausal 

patients with HR+/HER2− breast cancer: Both uniqueness and similarity exist in the molecular 

drivers for distant metastasis of breast cancer in premenopausal vs. postmenopausal patients. 
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Nevertheless, further validation is necessary for developing molecular prognostic tests for 

premenopausal patients with HR+/HER2− breast cancer. 

4.6 Summary of the prognostic factors 

As could be foreseen, there are certain correlations between prognostic factors: Some prognostic 

factors may be the underlying drivers for changes in other factors, and the factors could influence 

each other in the complex processes of distant metastasis. Most importantly, the prognostic im-

pact of novel prognostic factors must be compared with that of the classic prognostic factors (pN, 

pT, ROR) to confirm their clinical value [36]. Therefore, multivariate survival analysis that included 

all significant DMFS-related prognostic factors (pN, pT, DMFS-related PAM50 subtype scores, 

DMFS-related BC360®  signature scores, nineteen DMFS-related DEGs) was performed in our 

study as a final summary of all prognostic factors. 

The analysis details of the multivariate survival analysis was introduced in the Methods chapter 

and the output in the Results section. Briefly, LRP2 was selected as the most significant prognos-

tic factor. Besides, PTGER3 and pN have independent prognostic values and could further refine 

the survival model. Meanwhile, multivariate analysis did not show interactions of the prognostic 

factors and could not explain why other significant prognostic factors were not selected in the final 

survival model.  

We therefore investigated the correlation between LRP2 and other prognostic factors. As corre-

lation analysis suggested, expression of LRP2 was not correlated with pN or pT, but was corre-

lated with most of the molecular prognostic factors (18/23). LRP2 had the most significant survival 

relevance among these factors and therefore was selected out as a representative factor. Based 

on both the multivariate and correlation analysis, we assumed that the lowered expression of a 

gene set that was LRP2-centered and included SFRP1, CDC14A, OGN, ABCA8, IGF1, IRX1, 

ERBB4, SOX10, MIA, PGR, THBS4, ZBTB16 was associated with a high risk of distant metasta-

sis. Besides, the highly significant negative correlation between LRP2 and HER2-E score/ROR 

score confirmed the potential of LRP2 as a prognostic marker. As for BCAS1, IBSP, SCUBE2, 

and PTGER3, they were not correlated with LRP2, and therefore may represent other independ-

ent drivers in distant metastasis. 

Regarding the mechanism of LRP2’s functions in breast cancer, no direct evidence has yet been 

published, but indirect evidence indicates LRP2 may function through regulating vitamin D me-

tabolism [139] and the hedgehog signaling pathway [146]. As our correlation analysis suggested, 

LRP2 has a significant correlation with the HER2-E score (negatively), SFRP1, CDC14A, and 

ABCA8. Therefore, the functions of LRP2 might relate to HER2 biology (negatively), Wnt signaling 

(negatively), membrane transport, and cell cycle regulation. But direct evidence remains neces-

sary in deciphering the exact roles of LRP2 in breast cancer.  

The prognostic impact of the molecular factors was summarized by multivariate analysis and the 

result confirmed the importance of the molecular prognostic factors, especially that of LRP2. How-

ever, more validation studies are necessary to establish a reliable molecular signature to predict 

prognosis or even chemotherapy benefit in premenopausal patients with HR+/HER2- breast can-

cer. Besides, the exact functions of theses DMFS-related molecular factors seem more complex 

than what we already know. Therefore, basic research is warranted to decipher important con-

nections and their exact roles in carcinogenesis.  
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Apendix A:  Key codes used in R analysis 

Packages BiocManager::install('CLL') 

install.packages('corrplot') 

install.packages('gpairs') 

install.packages('vioplot') 

install.packages('ggplot2') 

install.packages('glue') 

library(CLL) 

library(corrplot) 

library(gpairs) 

library(vioplot) 

library(ggplot2) 

DEG logFC_cutoff <- with(DEG,mean(abs(logFC)) + 2*sd(abs( logFC)) ) 

DEG$change = as.factor(ifelse(DEG$P.Value < 0.05 & 

abs(DEG$logFC) > logFC_cutoff, ifelse(DEG$logFC > logFC_cut-

off ,'UP','DOWN'),'NOT') 

this_tile <- paste0('Cutoff for logFC is ',round(logFC_cutoff,3), 

'\nThe number of up gene is ',nrow(DEG[DEG$change =='UP',]) , 

'\nThe number of down gene is ',nrow(DEG[DEG$change 

=='DOWN',])) 

nrDEG <- DEG 

rm(DEG) 

DEG= nrDEG[which(abs(nrDEG$logFC)> logFC_cutoff),] 

DEG= DEG[which(DEG$P.Value<0.05),] 

gene<- DEG$SYMBOL 

write.csv(DEG,"D:\\.csv") 

Volcano plot g = ggplot(data=nrDEG, aes(x=logFC, y=-log10(P.Value), 

color=change)) + 

geom_point(alpha=0.4, size=3.5, aes(color=change)) + 

ggtitle( this_tile ) + theme(plot.title = element_text(size=15,hjust = 

0.5))+ 

scale_color_manual(values=c("blue", "grey","red"))+ 

geom_vline(xintercept=c(-0.578,0.583),lty=4,col="black",lwd=0.8) 
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+ 

geom_hline(yintercept = -log10(0.05),lty=4,col="black",lwd=0.8) + 

theme_bw() ## corresponding to the levels(res$change) 

print(g) 

g + 

geom_point(size = 3, shape = 1, data =DEG) + 

ggrepel::geom_label_repel( 

aes(label = SYMBOL), 

data = DEG, 

color="black") 

Pheatmap library(pheatmap) 

sample_info <-`85.patients.subtype.group` 

annotation_col = sample_info 

a1 <- `11.survival.significant.DEGs` 

rownames(annotation_col) = colnames(a1) 

pheatmap(a1, annotation_col = annotation_col) 

Survival cur-

ves 

install.packages(c("survival", "survminer")) 

library("survival") 

library("survminer") 

fit <- survfit(Surv(month, status) ~ ROR.score, data = 

ROR.score.85.patients.3) 

print(fit) 

install.packages('markdown') 

install.packages('G Gally') 

ggsurvplot(fit, 

pval = FALSE, conf.int = TRUE, 

risk.table = TRUE, # Add risk table 

risk.table.col = "strata", # Change risk table color by groups 

linetype = "strata", # Change line type by groups 

ggtheme = theme_bw(), # Change ggplot2 theme 

palette = c("#E7B800", "#2E9FDF")) 
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