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Summary

The results of methodological research in computational statistics and machine learning are
increasingly called into question concerning their general replicability, reliability, and trust-
worthiness. Thus, the fundamental guiding principle of this thesis is to work towards an
improvement of these important aspects of machine learning. While assessing the reliability of
supervised learning methods is already relatively well researched and established in the form
of benchmark studies, the question of reliability and trustworthiness in unsupervised learning
is much more involved, mainly because evaluating methods in unsupervised learning is very
difficult since there is usually no "ground truth" to compare the results against.
The main focus of this work is to elaborate on a better understanding of the underlying
conceptual principles and towards improved practical reliability of manifold learning. Man-
ifold learning or nonlinear dimension reduction is concerned with learning low-dimensional
representations that faithfully reflect the intrinsic structure of ostensible high-dimensional
and complex data. Finding such embeddings is of great importance for data exploration,
visualization, and interpretable analysis. However, how to assess and evaluate whether such
embeddings faithfully and reliably reflect the intrinsic structure is a fundamental open problem
and manifold learning is prone to overoptimistic and unreliable findings. In particular, many
manifold learning methods depend on several hyperparameters that substantially affect the
embedding results. First of all, it is thus investigated whether and how reliably existing embed-
ding evaluation measures can be used for tuning manifold learning methods. Secondly, outlier
detection and cluster analysis are investigated from a manifold learning perspective. First, a
general conceptualization of outlier detection as a geometrical problem is developed within the
specific context of functional data. It is demonstrated with extensive experiments that simple,
well-established manifold learning methods in combination with standard outlier detection
methods can improve conceptual understanding and practical feasibility of functional outlier
detection. The proposed ideas are then generalized to other high-dimensional and non-tabular
data types such as graphs and images. In a similar vein, cluster analysis is considered from
a topological perspective. Concepts from topological data analysis and manifold learning
are brought together to improve the understanding of principles underlying the problem of
cluster analysis. The recently proposed manifold learning method UMAP is used to infer
the topological structure of a data set and the well-established method DBSCAN for cluster
detection. Extensive experiments with simulated and real data show that exploiting the
topological structure of a data set before clustering can considerably improve cluster analysis.
In addition to this main contribution, the thesis also contributes to reliability in supervised
learning. First of all, it includes an example of a benchmark study focusing on survival
prediction methods in multi-omics cancer data. Moreover, it describes a follow-up study that
assesses the effects of the multiple design and analysis options on the results of benchmark
studies.



Zusammenfassung

Die Ergebnisse methodischer Forschung im Bereich der computergestützten Statistik und des
maschinellen Lernens werden hinsichtlich ihrer Reproduzierbarkeit, Zuverlässigkeit und Ver-
trauenswürdigkeit zunehmend in Frage gestellt. Daher ist der grundlegende Leitgedanke dieser
Arbeit, auf eine Verbesserung dieser essentiellen Aspekte des maschinellen Lernens hinzuar-
beiten. Während Ansätze zur Bewertung der Zuverlässigkeit und Reproduzierbarkeit von
Ergebnissen im überwachten Lernen bereits relativ gut erforscht und in Form von Benchmark-
Studien etabliert sind, ist die Frage nach der Zuverlässigkeit und Vertrauenswürdigkeit von
unüberwachtem Lernen sehr viel komplizierter. Das liegt vor allem daran, dass es beim
unüberwachten Lernen in der Regel keine "Grundwahrheit" gibt, mit der die Ergebnisse der
unüberwachten Methoden verglichen werden können.
Das Hauptaugenmerk dieser Arbeit liegt auf einem besseren Verständnis der zugrunde liegen-
den konzeptionellen Prinzipien und auf einer verbesserten praktischen Verlässlichkeit des
Manifold Learning. Beim Manifold Learning (auch nichtlineare Dimensionsreduktion genannt)
geht es darum, niedrigdimensionale Repräsentationen zu finden, die die intrinsische Struktur
vermeintlich hochdimensionaler und komplexer Daten getreu wiedergeben. Solche Einbettun-
gen sind für die Exploration, Visualisierung und interpretierbare Analyse von Daten von großer
Bedeutung. Wie jedoch beurteilt und bewertet werden kann, ob solche Einbettungen die
innere Struktur getreu und zuverlässig widerspiegeln, ist ein grundlegendes, offenes Problem,
und Manifold Learning ist anfällig für überoptimistische und unzuverlässige Ergebnisse. Ins-
besondere hängen viele Methoden von verschiedenen Hyperparametern ab, die die Ergebnisse
erheblich beeinflussen. Zunächst wird daher untersucht, ob und wie zuverlässig bestehende
Evaluationsmaße für die Spezifizierung von Hyperparametern von Manifold-Learning-Methoden
verwendet werden können. Zudem werden Ausreißererkennung und Clusteranalyse aus einer
Manifold-Learning-Perspektive untersucht. Zunächst wird eine allgemeine Konzeptualisierung
der Ausreißererkennung als geometrisches Problem im spezifischen Kontext von funktionalen
Daten entwickelt. Mit umfangreichen Experimenten wird gezeigt, dass einfache, gut etablierte
Manifold-Learning-Methoden in Kombination mit Standardmethoden zur Ausreißererken-
nung das konzeptionelle Verständnis und die praktische Durchführbarkeit der funktionalen
Ausreißererkennung verbessern können. Die vorgeschlagenen Ideen werden dann auf andere
hochdimensionale und nicht-tabellarische Datentypen wie Graphen und Bilder verallgemeinert.
In ähnlicher Weise wird die Clusteranalyse aus einer topologischen Perspektive betrachtet.
Konzepte aus der topologischen Datenanalyse und dem Manifold Learning werden zusam-
mengeführt, um das Verständnis der Prinzipien, die dem Problem der Clusteranalyse zugrunde
liegen, zu verbessern. Die kürzlich vorgeschlagene Manifold-Learning-Methode UMAP wird
verwendet, um die topologische Struktur eines Datensatzes zu ermitteln, und die etablierte
Methode DBSCAN für die Clustererkennung. Umfangreiche Experimente mit simulierten und
realen Daten zeigen, dass das Herausarbeiten der topologischen Struktur eines Datensatzes
vor dem Clustering die Clusteranalyse erheblich verbessern kann.
Neben diesem Hauptbeitrag leistet die Arbeit auch einen Beitrag zur Zuverlässigkeit beim
überwachten Lernen. Zunächst enthält sie ein Beispiel einer Benchmark-Studie, die sich auf
Überlebenszeitvorhersagemethoden in Multi-Omics-Krebsdaten konzentriert. Darüber hinaus
wird eine Folgestudie beschrieben, in der die Auswirkungen der verschiedenen Design- und
Analyseoptionen auf die Ergebnisse von Benchmark-Studien untersucht werden.
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Part I.

Introduction and Background





1. Introduction

So we really ought to look into theories that don’t work, and science that isn’t
science.
— Richard Feynman

1.1. Motivation and Scope

In Caltech’s 1974 commencement address, Richard Feynman coined the term Cargo Cult
Science. He described certain practices and habits he had observed among researchers to
adhere to a certain form, but which he believed were contrary to the basic principles of the
scientific method. Among other things, he stated that “if you’re doing an experiment, you
should report everything that you think might make it invalid—not only what you think is
right about it” and that if “you’ve made up your mind to test a theory, or you want to explain
some idea, you should always decide to publish it whichever way it comes out” (Feynman,
1974).

In 2005, John Ioannidis showed “Why Most Published Research Findings Are False” (Ioannidis,
2005, p. 0698). For example, he outlined that “the hotter a scientific field (with more scientific
teams involved)” and “the greater the flexibility in designs, definitions, outcomes, and analytical
modes in a scientific field, the less likely the research findings are to be true”.

In 2016, Monya Baker reported that of 1576 researchers who responded to a Nature online
survey, 70 % could not reproduce the results of others and over 50 % could not reproduce
their own results. Selective reporting, pressure to publish, and low statistical power or poor
analysis are mentioned most often as the driving forces contributing to irreproducibility (Baker,
2016).

Now there are increasing warnings that methodological research in computational sciences
and artificial intelligence also faces a replication crisis (Boulesteix et al., 2020; Hutson, 2018)
and a large number of terms have been established to describe practices that can also be
considered to fall under the umbrella term Cargo Cult Science: p-hacking, data dredging,
hypothesizing after the results are known (HARKing), or state-of-the-art (SotA) hacking are
examples of procedures consciously or unconsciously conducted by researchers to meet the
form of reporting positive results, but which eventually lead to overoptimistic findings and
making research unreliable to a large extent (Gencoglu et al., 2019; Munafò et al., 2017).

Even though there is still a lack of neutral comparison and replication studies and a publication
bias favoring positive research findings (Boulesteix et al., 2020; Munafò et al., 2017), a
growing body of empirical evidence from systematic benchmark studies supports the warnings
of a replication crisis in machine learning research and suggests that there are also Cargo
Cult Science practices taking place to some extent. Reported methodological improvements,
which often amount to proposed novel methods outperforming existing ones in terms of some
(prediction) performance metric, cannot be confirmed if assessed systematically in independent
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1. Introduction

comparison studies, for example, for research on generative adversarial networks (Lucic et
al., 2018), deep reinforcement learning (Henderson et al., 2018), machine translation (Marie
et al., 2021), or in bioinformatics (Buchka et al., 2021). Without assuming bad faith on
the part of individuals, there is little other conclusion than that institutional pressures and
dysfunctional routines and standards guide researchers toward conducting these practices at
least unconsciously.

In conclusion, this raises serious concerns about the reliability and trustworthiness of method-
ological results and calls into question the scientific progress in the field of machine learning to
some extent (Van Mechelen et al., 2018; Zimmermann, 2020). This is why this thesis aims to
work towards conceptual insights and practical approaches to improving reliability in machine
learning research. As will be outlined in the remainder of Part I, there are a variety of general
and domain-specific facets to the problem so one has to focus on certain aspects.

Here the main focus lies on manifold learning as an approach for unsupervised learning and
dimensionality reduction. In addition to this main contribution, the thesis also provides some
insights into supervised benchmarking studies within two articles that are not concerned
with manifold learning. That said, it should be emphasized: proposing novel computational
algorithms or learning methods is not in the scope of this work and only established methods
introduced elsewhere are used. In contrast, the thesis contributes to more reliability as follows:
(1) sharpening conceptual and methodological underpinnings and (2) providing extensive
practical evaluations and comparisons of existing methods. If the general assumption is that
learning methods create theories to explain data (Wolpert, 2020), the basic goal of this work
can be summarized in the words of Richard Feynman as to look into theories about data that
do not work.

1.2. Outline and Contributions

This cumulative thesis is divided into eleven chapters in four parts. The remainder of Part
I builds the basis for a comprehensive understanding and provides the background on the
considered topics. Chapter 2 first specifies what is understood under reliability in machine
learning in general. Chapter 3 then discusses reliability in the context of supervised learning
with a focus on benchmark studies. Chapter 4 finally gives an overview of the relevant aspects
of manifold learning and the issue of reliability in unsupervised learning.

Part II and III represent the main body of the thesis and include the six contributing papers
in Chapters 5 - 10. Part II is devoted to supervised benchmark studies and includes Chapter
5, which presents such a benchmark study in the context of high-dimensional multi-omics
data, and Chapter 6, which describes a follow-up study substantially expanding the analysis
of the results presented in Chapter 5.
Part III then includes four papers on unsupervised manifold learning. Chapter 7 first inves-
tigates tuning approaches of manifold learning methods in the context of functional data.
Chapters 8 and 9 then focus on outlier detection and consider the problem from a manifold
learning perspective. Chapter 8 again has a specific focus on functional data, while Chapter 9
generalizes the proposed ideas for outlier detection to other data types such as graphs and
images. Chapter 10 finally draws on connections from topological data analysis, manifold
learning, and density-based clustering to provide conceptual insights and practical approaches
to enhance cluster detection.

Part IV finally concludes the thesis and points out future research directions.
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2. Definition of Terms

Every genuine test of a theory is an attempt to falsify it, or to refute it.
— Karl Popper

In this thesis, the term reliability is used to refer to the trustworthiness of a study in a broad
sense, i.e., that others can, in general, rely on the results, findings, and conclusions reached.
However, this requires some discussion. First of all, it means reliability is closely related to
aspects often described under the rather well-established terms reproducibility and replicability
and there should be justification for deviating from this terminology. Secondly, reliability has
a specific meaning in other research areas. For example, in quantitative research fields such
as medicine, psychology, or educational studies, reliability describes the “extent to which the
results are consistent if the study would be replicated” (Frambach et al., 2013) and there
have been attempts to transfer this quality criterion (together with validity and objectivity) to
machine learning (Myrtveit et al., 2005; Segebarth et al., 2020). Moreover, note that there
are several other terms in machine learning research that describe similar or related aspects,
for example, credibility (D’Amour et al., 2020; Marie et al., 2021), overoptimism (Boulesteix,
2010; Jelizarow et al., 2010), or comparability (Aßenmacher & Heumann, 2020; Klemenjak
et al., 2020). In general, there is no established and generally agreed-upon terminology in
machine learning to describe the topic. Certainly, the most frequently used terms in this
regard are reproducibility and replicability and Barba (2018) provides a systematic overview of
these aspects, pointing out that these terms are not used consistently (see also Plesser, 2018).
Moreover, they are not sufficient for our purpose. Therefore, reliability is understood here
as a three-level concept including reproducibility and replicability, but also an aspect we call
conceptual reliability, specified as follows.

Reproducibility of Computational Research Results Reproducibility is understood as “au-
thors provide all the necessary data and the computer codes to run the analysis again,
re-creating the results” (Barba, 2018, p. 3). Note that Tatman et al. (2018) further dif-
ferentiate low, medium, and high reproducibility. Low reproducibility means that a result
should be reproducible by other researchers solely by the specification provided in the re-
spective paper. Raff (2019) calls this independent reproducibility because reproducibility
does not depend on the availability of code and data. In contrast, medium reproducibility
requires providing the code and data, and high reproducibility additionally the complete
software environment (including, for example, all dependencies) employing virtual machines,
containers, or hosting services. However, meeting these reproducibility requirements is not
the standard. For example, Raff (2019) found that 63.5 % of the 255 considered papers not
to be independently reproducible. Moreover, at NIPS less than 40 % of papers provided
code in 2017 (Tatman et al., 2018) and less than 50 % in 2018 (Pineau et al., 2020). After
changing the code submission policy, 74.4 % of papers provided code at camera-ready in
2019 (Pineau et al., 2020). Consequently, further fostering all levels of reproducibility is very
important and there are increasing efforts in this direction (Heil et al., 2021; Pineau et al.,
2020). However, technical complexity (Sculley et al., 2015) and ever-growing models requiring
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2. Definition of Terms

increasing amounts of computation and storage resources (Aßenmacher et al., 2021), make
reproducibility a non-trivial task even if a high level of reproducibility is met.

Replicability Despite its importance, reproducibility is not sufficient for reliability as under-
stood here. Reproducibility as considered above is limited to technical aspects. In contrast to
that, replicability here means that studies “arrive at the same scientific findings as another
study, collecting new data (possibly with different methods) and completing new analyses”
(Barba, 2018, p. 3). Note, some authors are using the terms reproducibility and replicability
in quite the opposite way (Drummond, 2009). The crucial aspect is that replicability does
not mean that the results of a study are exactly reproduced, but the same conclusions can be
drawn from a different study, in particular on different data. In terms of reliability, this makes
replicability more important than reproducibility. In machine learning research, replicability
is particularly relevant when it comes to the question of method superiority, for example, in
terms of prediction performance. Supervised benchmark studies as considered in Part II are
approaches to systematically compare methods proposed elsewhere given a larger and more
diverse selection of benchmark data sets than the data the methods were initially developed
and evaluated on. They are thus tools to improve replicability in machine learning research.
If the choice of data sets follows strict inclusion criteria and the number of included data sets
is large enough, the results may also be generalizable in terms of null hypothesis significance
testing (NHST) (see Boulesteix et al., 2017). Note, given this definition, replicability appears
closely related to reliability as used in quantitative research fields, where it is defined as the
“extent to which the results are consistent if the study would be replicated” (Frambach et al.,
2013).

Conceptual Clarity We would argue, however, that replicability does not sufficiently reflect
an aspect we refer to as conceptual clarity (cf. generalizability, Arnold et al., 2019; Pineau
et al., 2020). In some areas of machine learning research, there appears to be a fundamental
vagueness or ambiguity about the concepts of interest. To the best of our knowledge, this
aspect has not yet been described and demonstrated comprehensively and clearly enough and
it is best illustrated with a few examples.
In their recent overview on outlier detection, Zimek & Filzmoser (2018, p. 7) devote a complete
section to the epistemological question of what constitutes an outlier, discuss several vague
and contradicting definitions in the literature, and emphasize that there are “different types
of data objects occasionally termed ‘outliers’ ”. This may be the reason for Unwin (2019, p.
635) to state: “Outliers are a complicated business. It is difficult to define what they are, it is
difficult to identify them, and it is difficult to assess how they affect analyses”. In a similar vein,
Shalev-Shwartz & Ben-David (2014, p. 307) define clustering as “the task of grouping a set of
objects such that similar objects end up in the same group and dissimilar objects are separated
into different groups”, only to emphasize that “this description is quite imprecise and possibly
ambiguous” and that, “surprisingly, it is not at all clear how to come up with a more rigorous
definition”. In manifold learning, Y. Wang et al. (2021, pp. 1, 4) outline that there “are two
primary types of approaches to DR [dimension reduction] for visualization, commonly referred
to as local and global methods”, but that there is also “no single definition of what it means
to preserve local or global structure”, and that “the choice of which components to preserve is
important”. And regarding comparisons in supervised learning, Hand (2006, p. 12) states that
the considered collection of real data sets “will not be representative of real data sets in any
formal sense”.
To rely upon results, findings, and conclusions of a study, it appears inevitable to have a
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clear understanding of the underlying concepts the study builds upon, for example, what an
outlier is or what cluster detection exactly means. Without clear conceptualizations, this
understanding will be hard to reach. Consequently, conceptual clarity seems to be a crucial
aspect of reliability not sufficiently covered by reproducibility and replicability as specified
above. That said, conceptual clarity appears related to the concept of validity in quantitative
research fields such as medicine or psychology, which describes “the extent to which a measure
accurately represents the concepts it claims to measure” (Roberts & Priest, 2006).

In summary, we use the term reliability as an umbrella term that encompasses reproducibility,
replicability, and conceptual reliability as specified above. While benchmark studies, the subject
of Part II, can be a tool to improve reliability in supervised machine learning in terms of
replicability, conceptual clarity appears particularly relevant for unsupervised learning, where a
ground truth to compare results against is usually not available (Shalev-Shwartz & Ben-David,
2014; Zimmermann, 2020). Part III is devoted to reliability in unsupervised learning from a
manifold learning perspective. We provide further background on these two aspects in the
next chapters. Chapter 3 focuses on supervised benchmark studies and Chapter 4 on manifold
learning and reliability in unsupervised learning.
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3. Benchmark Studies and Reliability in
Supervised Learning

It is easy to obtain confirmations, or verifications, for nearly every theory — if we
look for confirmations.
— Karl Popper

3.1. Overview

Part II is concerned with supervised benchmark studies on real data. As already noted,
Chapter 5 presents an example of such a study with a focus on survival prediction in cancer
data. Comparing methods proposed elsewhere based on systematically selected real data sets,
benchmark studies are an important tool to improve reliability in machine learning. However,
researchers conducting benchmark studies face a multiplicity of design and analysis options,
which can in turn affect the outcome of such studies. Chapter 6 provides a follow-up on the
study presented in Chapter 5 elaborating on this issue.
That is, Part II is concerned with how to properly conduct method comparisons in supervised
learning on multiple real data sets and in what follows we provide some background. Note that
a substantial amount of work has been devoted to the question of how to draw conclusions
about methods’ performance differences based on real data, in particular, by null hypothesis
significance testing (NHST). For example, Dietterich (1998), Alpaydin (1999), Nadeau &
Bengio (2003), Bouckaert (2004), Bouckaert & Frank (2004), Bengio & Grandvalet (2004),
and Hothorn et al. (2005) elaborate on performance comparison given a single data set, while
Demšar (2006), Eugster et al. (2012), Boulesteix et al. (2015), and Eisinga et al. (2017)
consider settings with multiple data sets. The latter is specifically relevant for methodological
research as it is usually intended to generalize performance differences to other domains,
i.e., to other than the observed real data sets (Boulesteix et al., 2015), and multiple data
set comparisons have long been a practically established tool in machine learning research
(Demšar, 2006). However, in contrast to the single data setting, only small advances have
been achieved towards a sound statistical underpinning of method comparisons based on
multiple real data sets (Boulesteix et al., 2015). It may be for that reason that the conducted
experiments often do not justify the intended generalizations in practice. In particular, there
are regularly too few data sets and, additionally, the data set selection is often considerably
biased (Boulesteix et al., 2013). In the following, it is described why comparison studies based
on a sufficient number of real data sets are crucial when comparing prediction methods and
we exemplify why such comparisons should be conducted as neutral comparison studies.
Before going into the details, we briefly recap the principles of supervised learning. Note that
with the main focus on method comparison, the following exposition does not cover all aspects of
supervised learning in full detail. For example, we consider resampling approaches such as cross-
validation (CV) the standard procedure for model assessment and selection, although there are
other approaches such as Structural Risk Minimization, AIC, BIC, or Minimum Description
Length (e.g., see Hastie et al., 2009, Ch. 7). Moreover, we do not explicitly elaborate on
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3. Benchmark Studies and Reliability in Supervised Learning

important concepts such as the Bias-Complexity-Tradeoff (e.g., see Shalev-Shwartz & Ben-
David, 2014, Ch. 5) and the difference between parameters and hyperparameters (e.g., see
Guyon et al., 2010), assuming readers are familiar with the problem of overfitting and the
importance of hyperparameters in controlling the Bias-Complexity-Tradeoff.

3.2. Principles of Supervised Learning

Learning Prediction Models via Empricial Risk Minimization In essence, the fundamental
goal in supervised machine learning is to obtain (learn) a function or prediction model f
that allows computing some unobserved output y from some observed input x known or
assumed to be associated with y (Shalev-Shwartz & Ben-David, 2014). For example, one
might be interested in the expected survival time of patients suffering from cancer given a
set of features such as the patients’ age, vital status, or genetic attributes, as is the case
in the study presented in Chapter 5. Statistical learning theory now provides a regime to
obtain f based on a finite sample S = {(x1, y1), ..., (xn, yn)} ∈ X × Y of initially observed
input-output pairs (xi, yi), in such a way that it encodes (learns) also some information about
the structure of the unknown joint distribution P (X,Y ) of which the input-output pairs are
assumed to be independent and identically distributed (i.i.d.) random samples of (Hastie et
al., 2009). This means, the prediction model f generalizes to some extent to i.i.d., but unseen
data and thus allows to output y from inputs x that are not in the initially observed set S.
Theoretically, one would like f to minimize the generalization error ε(f) = E[L(f(X), Y )],
with E the expectation and L a loss function measuring the discrepancy between the actual
outcome y and the predicted value ŷ = f(x). But since P (X,Y ) is unknown, this is not
feasible and it is approximated based on the observed data S by minimization of the empirical
risk (Hastie et al., 2009; Shalev-Shwartz & Ben-David, 2014)

RS(f) = 1
n

n∑
i=1

L(f(xi), yi)). (3.1)

Performance Assessment and Model Selection The basic criterion to assess a trained
prediction model f is its prediction performance, which means how well it generalizes to
unseen data. For that, an independent test set is required that has not been used in any
way in training the model since the empirical risk RS(f) computed on instances used for
training would be a biased estimate of the generalization performance. In the simplest case
(the number of observations in S is large), S is split into non-overlapping training and test
sets. The training set is used to fit the model via empirical risk minimization (ERM) and the
test set is used to approximate the generalization error as a more accurate estimate of the
prediction performance, i.e., for performance assessment (Hastie et al., 2009).
The prediction model f is usually selected from a set of candidate functions, often called
hypothesis space, and the hypothesis space is usually restricted to a set of candidates from a
specific model class that imposes a more or less specific structural assumption about possible
prediction models f (this is called inductive bias) (Shalev-Shwartz & Ben-David, 2014).
Performance assessment is thus closely related to model selection (Guyon et al., 2010) and
selecting a model from the model class requires a further data split into train and validation
set. Model selection then amounts to fitting different models f to the training data, computing
the models’ performance on the validation set, and selecting the one with the best prediction
performance on the validation set. Again, the overall selected model’s prediction performance
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can then be assessed using the test set (Hastie et al., 2009). In general, this data splitting
principle for model selection and performance assessment involves more complex resampling
schemes such as repeated CV as conducted in the benchmark study presented in Chapter
5, particularly to account for small sample sizes. It should be noted that ERM induces an
estimation error depending on the sample size n. Since CV reduces the training set size, it
increases the estimation bias. For a detailed discussion of resampling approaches see, for
example, Bischl et al. (2012).
To keep it simple, a model class is considered to be defined by a specific prediction method or
learning algorithm, for example, Lasso regression or random forest. Such prediction methods can
be adapted to specific tasks by a set of hyperparameters (Hastie et al., 2009) and performance
assessment and model selection can be delineated based on the difference of (a method’s)
hyperparameters, which are specified during model selection, and (a model’s) parameters,
which are specified during ERM. Guyon et al. (2010) refer to the latter as the first level of
inference and the former as the second level of inference. That said, it should be noted that
hyperparameter optimization (HPO) can have a very general scope including preprocessing and
postprocessing steps leading to complex machine learning pipelines to optimize over. There
are supervised learning frameworks incorporating HPO in full generality (e.g., see Bischl et
al., 2021), which go beyond the ones presented in standard references such as Hastie et al.
(2009) or Shalev-Shwartz & Ben-David (2014).

3.3. Comparing Prediction Methods

With these principles in place, we return to the problem of comparing the performance of
prediction methods. Choosing between different prediction methods is one of the fundamental
goals in machine learning (Dietterich, 1998; see also Boulesteix et al., 2015) and doing so over
different domains, i.e., based on different real data sets, “is perhaps the most fundamental and
difficult question in machine learning” (Dietterich, 1998, p. 4). Model selection involves the
comparison of different models on the validation set as well, but there is a crucial difference
between performance assessment and model selection as specified above on the one side,
and the identification of superior methods on the other side (Hothorn et al., 2005). Recall
that (methodological) researchers usually intend to compare prediction methods in terms of
their capabilities to produce prediction models. Moreover, they usually do not restrict their
conclusions to the specific data sets at hand but (intend to) generalize the performance to
other data sets not part of the data set selection used for the experiments (Boulesteix et al.,
2015). Both differentiations are important and we discuss these two aspects based on the
statistical framework provided by Boulesteix et al. (2015).

Comparing Methods versus Comparing Models Again, let P be the joint distribution over
X × Y and let S denote an observed i.i.d. sample of size n drawn from P . Moreover, M
denotes a prediction method and fSM a prediction model obtained by training M on S as
outlined above. Then, Boulesteix et al. (2015) specify the generalization error as defined in
Eq. 3.1 more precisely as the conditional generalization error

ε(fSM , P ) = EP [L(fSM (X), Y )]. (3.2)

Note that ε(fSM , P ) is conditional on the method M , distribution P , and – in particular – to
the observed sample S through the fitted model fSM (see also Hastie et al., 2009, Ch. 7). If the
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goal is, for example, to compare two trained prediction models fSM1
and fSM2

, approximating
and comparing the conditional errors ε(fSMk

, P ), k = 1, 2, is of major concern. Note that this
is different from model selection as specified above as we compare models obtained with two
different prediction methods M1 and M2. This sort of comparison is of more interest for
applied researchers, who are given a specific data set they intend to analyze (Boulesteix et al.,
2015) but also Hastie et al. (2009, Ch. 7) consider estimating the conditional error ε(fSM , P )
as the major goal. In contrast, the unconditional generalization error is defined as

ε(n,M,P ) = EPn [ε(fS
M , P )], (3.3)

with S a random i.i.d. sample following the distribution Pn. The error ε(n,M,P ) only depends
on M , the sample size n, and the distribution P but is no longer conditional on the specific
sample S. It is the expected value of the performance of a method M over different samples
S ∼ Pn. It thus allows comparing the performance of two prediction methods M1 and M2
conditional on the underlying distribution P , in contrast to the comparison of two prediction
models trained on a specific sample from that P (Boulesteix et al., 2015). Thus, comparing
unconditional errors ε(n,M1, P ) and ε(n,M2, P ) is of more concern to methodological research
as understood here because the intention is to compare prediction methods (Boulesteix et al.,
2015). More precisely, to test for a significant difference in performance the test hypothesis
can be defined as

H0 : ε(n,M2, P )− ε(n,M1, P ) ≥ 0
versus H1 : ε(n,M2, P )− ε(n,M1, P ) < 0.

(3.4)

However, while ε(n,Mk, P ) can be approximated using resampling procedures such as CV
or bootstrapping, it is not as straightforward to estimate the variance of such estimators,
which is crucial for NHST (Nadeau & Bengio, 2003; see also Bates et al., 2021). For a
specific form of CV Nadeau & Bengio (2003) provide a sound variance estimate but there
is no “unbiased estimator of the variance of K-fold cross-validation” in general (Bengio &
Grandvalet, 2004, p. 1089). In contrast, Hothorn et al. (2005) define a general framework
for method comparisons based on CV on bootstrap samples from the given data set ensuring
independence so that statistical tests can be applied for performance comparison. Yet, overall
there is still no established standard to test for performance differences of methods “based
on a real dataset with unknown underlying distribution” (Boulesteix et al., 2015, p. 204).
Even more importantly, ε(n,Mk, P ) is conditional on a specific distribution P . A synonym for
distribution is data generating process (DGP) (e.g., see Hothorn et al., 2005) and we use the
two terms interchangeably in the following. Researchers, however, usually intend to generalize
methods’ performance differences obtained on real data sets to other settings, i.e., DGPs.
This is a crucial difference as the test reflected by the hypotheses in 3.4 allows to generalize
performance differences to samples following the underlying distribution P that generated
the observed data but not to samples generated by a different DGP (see also Hothorn et al.,
2005). Instead, for the latter form of generalization one needs to assume a “distribution of
distributions” (Boulesteix et al., 2015, p. 209) to define a suitable hypothesis. This reflects a
crucial paradigm change.
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Comparing Methods on Multiple Real Data Sets To test for performance difference over
multiple real data sets, Boulesteix et al. (2015) define the test hypotheses as

H0 : E(ε(N,M2,Φ))− E(ε(N,M1,Φ)) ≥ 0
versus H1 : E(ε(N,M2,Φ))− E(ε(N,M1,Φ)) < 0,

(3.5)

with E the expectation over Φ : Ω → V, V a set of distributions, and N : Ω → N, random
variables generating a distribution P and a sample size n, respectively. That means the
unconditional error ε(n,Mk, P ) of a method Mk is the realization of the random variable
ε(N,Mk,Φ). Given estimates of the unconditional errors obtained via resampling on a given
data set D ∼ Pn, the hypotheses in 3.5 can be reformulated as

H0 : E(ε(N,M2,D))− E(ε(N,M1,D)) ≥ 0
versus H1 : E(ε(N,M2,D))− E(ε(N,M1,D)) < 0,

(3.6)

with D a random variable generating data sets Dj and its distribution conditional on Φ = Pj
and N = nj equal to P

nj

j . This is more amenable as we can estimate ε(n,M2, Dj)−ε(n,M1, Dj)
given a set of j = 1, ..., J observed data sets of size nj , while the distributions Pj underlying
the data sets are of course unobservable (Boulesteix et al., 2015). However, there are two
assumptions here. First of all, it must hold that the bias introduced by resampling to compute
ε(n,Mk, Dj) is equal for both methods. Boulesteix et al. (2015) provide adjusted hypotheses
to account for a situation where this is not the case.
In contrast, the second assumption is much more crucial as one needs to assume that the
data sets Dj are surrogates for i.i.d. samples “from the set of all possible distributions in the
considered area of application” (Boulesteix et al., 2015, p. 205), which we simply refer to
as DGP population or population of DGPs in the following. Arguably, this assumption does
not hold in many comparison studies as there is seldom a clearly defined DGP population
from which the data sets are randomly sampled nor in any other way clearly defined inclusion
criteria. In particular, in studies proposing a new method there is often even a strong bias
in favor of a new method because researchers “tend to overfit their new method to specific
example datasets” (Boulesteix et al., 2015, p. 207). This issue is discussed in more detail in
Section 3.4.
In summary, all approaches based on a single data set essentially only allow to generalize
performance differences to data stemming from the same DGP that generated the initially
observed data set. In contrast, multiple real data set comparisons as discussed above are an
approach to generalizing performance differences to data that is generated by another DGP,
or using the terminology of Dietterich (1998), to other domains. However, this framework
rests on strong assumptions about the considered data sets which are hard to meet in practice.
Conducting neutral comparison studies accounts for this complexity at least to some extent
and, in particular, protects against unfair comparisons.

Neutral Comparison Studies According to Boulesteix et al. (2013), a neutral comparison
study fulfills three criteria:

1. Focus on comparison: The primary research goal is to conduct a comparison of methods
proposed elsewhere. A neutral comparison study does not propose a new method.
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2. Neutrality: The authors of a neutral comparison study should be approximately equally
familiar with all methods under comparison.

3. Systematic study design: Data set, method, and evaluation criteria selection should be
based on strict inclusion criteria.

The first two criteria protect against introducing implicit biases and conducting unfair com-
parisons, for example, by indirectly optimizing a method to the considered data sets or
misspecification of an unfamiliar method. Beyond that, a systematic study design protects
against overoptimistic findings and the data set selection plays a particularly important role.
First of all, when it comes to NHST, power considerations are a crucial issue. For example,
Boulesteix et al. (2015) provide an approach for a one-sided, one-sample t-test and emphasize
that two sorts of variability must be accounted for. First, the variability across data sets is
usually large and this variability can only be accounted for if enough data sets are included.
Secondly, on each of the data sets the unconditional error is estimated for the methods
under comparison, with all the variability of error estimation this entails. While this can be
controlled to some extent by choosing appropriate resampling procedures, some effect of the
data set sizes on the number of data sets needed remains (Boulesteix et al., 2015). Moreover,
clearly defining and reporting data set inclusion criteria is crucial to avoid including data sets
specifically fitting specific methods or dismissing data sets post hoc. Ideally, one randomly
samples data sets from the domain of interest such that they yield enough power for NHST.
However, the more narrow and specific the population of DGPs is defined and the more strict
the inclusion criteria are, the less likely it will be to find available data sets meeting the
requirements and ending up in the study. Consequently, there is often a trade-off between a
well-defined domain on the one side and a sufficient amount of data sets on the other side.
Finally, neutral comparison studies are usually not limited to two methods (as considered
so far) but include several methods to compare. This requires suitable tests and possibly
corrections for multiple testing.
In summary, systematically conducting a neutral comparison study includes specifying the
domain of interest, deriving strict inclusion criteria, power calculations, and selecting data sets
accordingly. Note that Boulesteix et al. (2017) compare neutral comparison studies to medical
trials with methods playing the role of treatments and data sets the role of patients.

3.4. Implications for Reliability in Supervised Learning

The terms benchmark study and benchmark experiment are often used interchangeably in
the literature, including the study presented in Chapter 5. For the following discussion it is
convenient to distinguish these two terms. Hothorn et al. (2005) use the term benchmark
experiment specifically for method comparisons based on a single data set and we follow this
example. In contrast, the term benchmark study is used as a synonym for a neutral comparison
study, i.e., studies based on multiple data sets that fulfill the three criteria outlined above.

Benchmark Studies versus Method Demonstrations Consequently, benchmark studies can
be seen as a tool to come to (more reliable) conclusions about prediction methods’ performance
differences. In that, they have to be distinguished from method comparisons which are usually
conducted as a part of a paper introducing a new method. Boulesteix (2013) calls such
experiments illustrative method comparisons. In the following, they are referred to as method
demonstration to more clearly distinguish them from benchmark studies because the main
purpose there is to demonstrate the practical value of the new method. Contrasting it to other,

14



already existing methods using benchmark experiments is an important aspect. However, in
contrast to a benchmark study, method demonstrations are far less suited to draw conclusions
about the superiority of one method over the other. First of all, method demonstrations are
usually based on a very limited number of data sets. For example, Boulesteix et al. (2013)
report that often only up to 10 data sets are included. That means, method demonstrations are
usually underpowered and do not allow drawing statistically significant conclusions alone for
that reason. Moreover, they usually lack a systematic data set selection. Properly defining a
DGP population to sample from is a general and fundamental problem also affecting benchmark
studies but the data sets in method demonstration usually do not follow strict inclusion criteria
and are often considerably biased in favor of the newly proposed method in addition. As
Boulesteix et al. (2015, p. 207) emphasize, researchers

“tend to overfit their new method to specific example datasets while developing
them. The variance across datasets being high, this new method that has been
optimized to these particular datasets is likely to perform much worse on other
datasets.”

This is all the more relevant as there is always a setting in which a method performs poorly
while other methods perform well (Shalev-Shwartz & Ben-David, 2014, Ch. 5.1). Consequently,
one of the driving forces for replicability issues in machine learning research appears to be that
results of method demonstrations are used as (empirical) evidence for conclusions concerning
the superiority of the newly proposed method over existing ones that generalize to other
domains like the ones considered in the study (see also SotA-hacking, Gencoglu et al., 2019).
This is not to say that method demonstrations are not useful and valuable contributions. This
is more to emphasize the importance of benchmark studies and that method demonstrations
are used for a purpose they are not suited for (comparing methods over distributions of DGPs),
and not brought to their full potential for the purpose they are suited for (demonstrating
a method’s capabilities). That said, great effort is usually put into demonstrating where a
method performs well. It would be of equally great value if a similar effort were made to also
show where a method does not work or, as Rendsburg et al. (2020, p. 9) put it: “Finding
examples where an algorithm works is important — but maybe even more important is to
understand under which circumstances the algorithm produces misleading results”. Recalling
Feynman (1974), method demonstrations can thus be considered a perfect tool to illustrate
“everything that you think might make it invalid—not only what you think is right about it”
(of course, the pressure to report positive findings works against this). As will be outlined
in Chapter 4, this is specifically relevant in unsupervised settings where approaches toward
benchmark studies are still in their infancy.

Limitations of Benchmark Studies Despite their clear advantages over method demonstra-
tions in terms of generalizability and their importance to improve reliability in machine
learning research, there are also some important limitations of benchmark studies. First of all,
the various design decisions a researcher faces when conducting and analyzing a benchmark
study can affect the results. That means, benchmark studies also carry the risk of drawing
improper and overly optimistic conclusions (Dehghani et al., 2021; cf. Li et al., 2019). The
study presented in Chapter 6 illustrates the effects of different data sets but also of different
performance measures, aggregation methods, and approaches to handle missing performance
values.
The most crucial aspect arguably remains the data set selection and we, therefore, discuss it
in more detail here. The fundamental problem is that without being able to come up with a
precise definition of the population of DGPs, it can – from a very principled perspective – be
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argued that it is difficult to define what a benchmark study measures. In other words, even if
the selected data sets are randomly sampled and provide enough power to detect significant
differences, it is not clear what this generalizes to.
First of all, the domain of interest is often simply defined to be data sets from a specific
database. This is certainly a useful and practically feasible approach that allows specification
of further inclusion criteria such as the number or type of features or some other external
characteristics. But in principle this does not solve the issue as it is questionable that a sample
of data sets from a given database (even if randomly drawn) generalizes to data sets from
other databases. Boulesteix et al. (2015, p. 205) emphasize this issue by stating that “it may
be difficult, if not impossible, to draw independent realizations from the set of all possible
distributions in the considered area of applications”. More generally, recall the statement
of Hand (2006, p. 12) (who they also cite) that the considered data set “collection will not
be representative of real data sets in any formal sense”. Moreover, note that the choice of a
prediction method “should ideally be based on some prior knowledge about the problem to
be learned” (Shalev-Shwartz & Ben-David, 2014, p. 37) as this choice introduces inductive
bias (before any training takes place). In addition, another important aspect is that there is
no guarantee that the considered data sets are intrinsically similar to each other in any way
whatsoever. For example, two data sets that are very different in terms of numbers of features
or any other external characteristic can be very similar to each other in terms of intrinsic
properties such as the extent of class separability or the number of distinct clusters.
It appears to be one of the most pressing problems to come up with approaches that reflect
all these aspects and which allow to consistently define common characteristics of the data
sets, i.e., to more clearly define common structures and characteristics of relevant DGPs in
the domain of interest.

A Note on Reproducibility In summary, benchmark studies are an important contribution
toward more reliable machine learning in terms of replicability. Yet, they may not be easily
reproducible. In general, Li et al. (2019) describe several aspects affecting the reproducibility
of benchmark studies including issues arising from hardware and programming language
differences. Another important aspect is that benchmark studies that take several competing
methods into account based on a sufficient amount of data sets to allow, for example, for
significance testing, quickly require considerable computation times and resources. For example,
the benchmark study comparing 13 methods on 18 data sets presented in Chapter 5 took about
two weeks to compute in parallel on a personal computer. While this appears still feasible,
the computations of a study comparing time series classification methods on 85 data sets took
more than six months on a High-Performance-Cluster (HPC) (Bagnall et al., 2017), which is
less likely to be reproduced. Similar holds for state-of-the-art deep learning approaches, for
example, in natural language processing (Aßenmacher et al., 2021). Considering these limiting
factors, it may be better to put the effort into replicating a benchmark study on different
data (for example, with data from a different database) instead of exactly reproducing it
because this implicitly broadens insight into the domains the method comparison is valid
on. Moreover, this again stresses the importance of reproducibly demonstrating a method’s
capacities and caveats already on the level of papers introducing new methods, as those are
usually limited to a smaller number of data sets and competing methods and thus are more
likely to be reproduced.
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4. Manifold Learning and Reliability in
Unsupervised Learning

There is no unique picture of reality. — Stephen Hawking

4.1. Overview

Manifold learning is based on the assumption that observed high-dimensional data only occur
on or near to a typically non-linear, lower-dimensional manifold embedded in the observation
space. That means that the data is intrinsically actually much lower dimensional than observed.
Manifold learning methods try to (1) infer this intrinsic structure and (2) find a low-, usually
2-dimensional representation that faithfully preserves the crucial characteristics of the manifold
(Lee & Verleysen, 2007; Ma & Fu, 2011). The manifold assumption is usually formalized
as follows: the high-dimensional data observed in a D-dimensional space H lie on or close
to a d-dimensional manifold M ⊂ H, with d < D (Cayton, 2005). The goal is to infer
an embedding function e : H → Y from the high-dimensional space to a low-dimensional
embedding space Y such that Y is as similar toM as possible. Often it is simply considered
that H = RD. Note that the terms manifold learning and nonlinear dimensionality reduction
are used interchangeably in the literature (Cayton, 2005; Gisbrecht & Hammer, 2015; Lee &
Verleysen, 2007; Ma & Fu, 2011).
Many methods have been developed (or can be used) for manifold learning. For example, this
includes multidimensional scaling (MDS, Cox & Cox, 2008), generalized principal component
analysis (GPCA, Vidal et al., 2016), Isomap (Tenenbaum et al., 2000), Local Linear Embeddings
(LLE, Roweis & Saul, 2000), Laplacian Eigenmaps (Belkin & Niyogi, 2003), Diffusion Maps
(Coifman & Lafon, 2006), t-distributed stochastic neighbor embedding (t-SNE, Maaten &
Hinton, 2008), and uniform manifold approximation and projection (UMAP, McInnes et al.,
2020) to name only a few prominent examples. Most of these methods share a fundamental
design principle consisting of two steps: (1) constructing a weighted k-nearest-neighbor (k-NN)
graph from a pairwise distance matrix and (2) finding a (low-dimensional) representation of the
graph which preserves as much of its structure as possible. The methods differ in how exactly
they perform these two steps. However, most methods crucially depend on the hyperparameter
steering the neighborhood size. We describe MDS and UMAP, the two methods of particular
relevance in Part III, in more detail in Section 4.3.
Manifold learning as considered here has found widespread application in many domains,
including single cell data (e.g., see Becht et al., 2019; Kobak & Berens, 2019), multi-omics cancer
data (Cantini et al., 2021), or cardiac arrhythmia classification (Rajagopal & Ranganathan,
2017), to name only a few examples. However, it should be noted that this constitutes a
selected perspective on manifold learning, that there are other approaches based on different
principles, for example, neural-network-based approaches such as self-organizing maps and
autoencoders, and that manifold learning can be regarded as a part of representation learning
(Agrawal et al., 2021; Bengio et al., 2013; Gisbrecht & Hammer, 2015; Lee & Verleysen,
2007).
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4.2. Problem Specification

The most prominent approach to structure manifold learning is to differentiate methods
according to whether they focus on local or global characteristics (e.g., see Becht et al., 2019;
Cayton, 2005; Y. Wang et al., 2021). Local methods focus on preserving the local neighborhood
structures of the observations, while global methods “aim mainly to preserve relative distances
or rank information between points, resulting in a stronger focus on the preservation of
distances between points that are farther away from each other” (Y. Wang et al., 2021, p. 4).
However, terminology and concepts are not consistent overall. First of all, note that Cayton
(2005, p. 13) and Ma & Fu (2011, p. 2) consider Isomap a global method because it tries to
preserve all pairwise (geodesic) distances. Y. Wang et al. (2021, p. 5f), in contrast, consider
Isomap – together with LLE and Laplacian Eigenmaps – a local method because it tries
“to preserve local Euclidean distances from the original space when creating embeddings”.
In addition, Lee & Verleysen (2007, Ch. 7.4) provide a taxonomy differentiating topology
preserving and distance preserving methods, where Isomap belongs to the former and LLE to
the latter, for example. The difference is that distance preserving methods operate on a matrix
of all pairwise distances (cf. global, Cayton, 2005; Ma & Fu, 2011), in contrast to topology
preserving methods which operate on sparse distance matrices.
Finally, note that with regard to cluster analysis, some sources argue that “the existence of
one or several underlying manifolds must be questioned” and that the “manifold assumption
is probably wrong (or useless)” (Lee & Verleysen, 2007, p. 242). This understanding of
the manifold assumption is in stark contrast to the following aspects: first of all, modern
manifold learning methods, in particular t-SNE and UMAP, are used to draw conclusions
about cluster structure in practice (Becht et al., 2019; Kobak & Berens, 2019). Moreover, it
has been shown – experimentally for UMAP (Allaoui et al., 2020), theoretically for t-SNE
(Linderman & Steinerberger, 2019) – that they can be used for clustering. Third, clustering
can be considered a natural example of topological data analysis (Niyogi et al., 2011) and, as
outlined, many manifold learning methods are considered topology preserving.
Moreover, the manifold learning methods considered above do not explicitly learn the mapping
e but provide only vector representations of the high-dimensional observations in the low-
dimensional embedding space. This has two important consequences: first of all, it is not
straightforward to embed new data points into an existing embedding without recomputing
the embedding completely. More importantly, it is not possible to assess the quality of an
embedding, i.e., a method’s performance, using the reconstruction error E[L(x, e−1(y))], with
L a loss function quantifying the difference between x ∈ H and its reconstruction e−1(y),
y ∈ Y (Lee & Verleysen, 2009). The reconstruction error would reflect a well-defined and
objective criterion for performance assessment and method comparison. We discuss alternative
performance measures in Section 4.3.3.
In general, this raises the question of what these different, underlying conceptual perspectives
on manifold learning actually mean and how to assess them properly. In particular, the notion
of local and global is usually specified by reference to differences in methods, without precisely
specifying what exactly is meant by local and global from a problem- or data-driven perspective,
i.e., whether global and local means the same in all data set and analysis situations. For
example, does it mean the same in a situation where outliers are present or where the data
is distributed in clusters? Moreover, is the assumption of a single manifold appropriate for
such settings? Note that Lee & Verleysen (2007, Ch. 7.7) consider a setting with disconnected
manifolds a general open question and, in particular, different from a setting with cluster
structure. Lacking a well-defined and objective criterion to assess manifold learning outputs,
this vagueness can easily lead to overoptimistic, misleading, or wrong conclusions about
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methodological aspects as well as domain-specific aspects (e.g., see Kobak & Linderman,
2021; Y. Wang et al., 2021; Wattenberg et al., 2016). We demonstrate in Part III that the
standard manifold assumption of a single (connected) manifold does not sufficiently reflect
outlier and cluster structure. To overcome the issue, we argue that it is important to more
clearly differentiate between the inner geometry, the outer geometry, and the topology of a
data set (cf. Lee & Verleysen, 2007, Ch. 7.4; Tenenbaum et al., 2000). We give an introductory
overview of these concepts in Section 4.5.3.

4.3. Methods

The methods MDS, Isomap, Diffusion Maps, t-SNE, and UMAP are applied in Part III. Of
particular interest, however, are MDS and UMAP. The focus lies on MDS in Chapters 8 and 9,
while Chapter 10 focuses on UMAP. We briefly discuss these two methods in the following.

4.3.1. MDS

Given (non-negative) dissimilarities between a set of n objects, the general aim of MDS is to
find a layout or map, more precisely a set of coordinates usually in Euclidean space, where
a point reflects an object and distances between the n points in the map should reflect the
observed pairwise dissimilarities as closely as possible. Being originally developed as a tool
in psychometrics and not for dimensionality reduction, these dissimilarities may also reflect,
for example, interpersonal preferences that a psychologist assigns to a group of people. That
said, MDS can be considered a method class rather than a single method depending on the
dissimilarities used. That is also reflected by the fact that usually (classical) metric MDS is
differentiated from non-metric or ordinal MDS (Cox & Cox, 2008; Mead, 1992). The major
difference lies in the properties the dissimilarities have to fulfill.

Definition 4.1 (Metric space). Let X be a set. A metric is a mapping dm : X × X →
R, (xi, xj) 7→ dm(xi, xj) with the following properties:

1. dm(xi, xj) = 0 iff xi = xj
2. ∀xi, xj ∈ X : dm(xi, xj) = dm(xj , xi) (Symmetry)
3. ∀xi, xj , xk ∈ X : dm(xi, xk) ≤ dm(xi, xj) + dm(xj , xk) (Triangle inequality)

A metric space Xdm is then a tuple (X , dm).

Metric MDS requires the dissimilarities to fulfill all three metric properties, while non-metric
MDS does not require the dissimilarities to adhere to the triangle inequality (Mead, 1992). In
the following, we outline how to use metric MDS for dimensionality reduction, i.e., how to
obtain a d-dimensional representation of a D-dimensional data set via metric MDS (d < D).
For a detailed discussion of MDS in general see, for example, Mead (1992) or Cox & Cox
(2008), and for more details from the manifold learning perspective, see Lee & Verleysen (2007,
Ch. 4.2.2) or Ma & Fu (2011, Ch. 1.4.2).
Let X ⊂ RD be a data set of n observations and ∆ = (δij) a (n × n)-distance matrix with
δij = dm(xi, xj), xi, xj ∈ X. That is, X can be considered a subset of the metric space
(RD, dm). Given ∆, lower dimensional representations y1, ..., yn (principal coordinates) in a
d-dimensional embedding space Y = Rd can be computed via MDS as follows (see Cox & Cox,
2008, p. 319; Ma & Fu, 2011, p. 13):
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1. Compute a matrix A = (−1
2δ

2
ij)

2. Compute a matrix B = HAH, with H = I − n−11n1Tn the centering matrix and 1n a
vector of ones.

3. Compute B = V ΛV T , the spectral decomposition of B, with Λ = diag{λ1, · · · , λn} a
diagonal matrix of the (decreasingly ordered) eigenvalues of B, and V = (v1, ...,vn) the
matrix of corresponding eigenvectors1.

4. Compute VdΛ
1
2
d = (

√
λ1v1, ...,

√
λdvd) = Y . The rows of Y yield the d-dimensional

coordinates y1, ..., yn ∈ Y.

To assess the distortion induced by reducing the dimension to d, one can compute the goodness
of fit of the embedding via (Cox & Cox, 2008)

∑d
i=1 λi∑n−1
i=1 |λi|

or
∑d
i=1 λi∑

j∈{i:λi>0} λj
.

In most applications of manifold learning, ∆ is computed using simple Euclidean (L2) distances
deuc(xi, xj) =

√∑D
l=1(xil − xjl)2 between the observations in the high-dimensional observation

space H, for which lower dimensional representations in Rd, d < D, are sought (Ma & Fu,
2011, Ch. 1). In this case, MDS is equivalent to PCA. If, however, another metric is chosen,
for example, a different Lp metric, this no longer holds (Cox & Cox, 2008). For that reason
we consider PCA a special form of MDS.

Similarly, we consider Isomap a special form of MDS (see also Lee & Verleysen, 2007 Ch.
4.3.2; Ma & Fu, 2011 Ch. 1.5.1). Given a distance matrix ∆ (usually, but not necessarily,
of L2 distances) of high-dimensional observations as input, Isomap consists of three steps
(Tenenbaum et al., 2000):

1. Compute a k-NN graph G with edge weight δij if xi is in the k-neighborhood of xj .
2. Given G, compute the shortest path distances between all pairs of points.
3. Use the resulting n× n matrix ∆geo of shortest path distances as input to MDS.

In other words, Isomap is MDS applied to a distance matrix of shortest path distances. These
distances approximate the geodesic distances on the nonlinear lower-dimensional manifold
M⊂ H the observed high-dimensional data are assumed to lie on (or near to). The important
difference is that MDS based on geodesic distances preserve all pairwise distances according
to the manifold, i.e., the intrinsic or inner geometry of the data manifold, while MDS based
on Euclidean distances preserves the outer geometry, i.e., the geometry inherited from the
ambient space (Tenenbaum et al., 2000).

Using geodesic distance (based on a properly chosen k) results in coordinates y1, ..., yn such that
a 2-dimensional, unclosed surface non-linearly embedded in R3 is unfolded in a 2-dimensional
embedding with little or no distortion at all. In contrast, using L2 distances instead, a
2-dimensional embedding will lead to distortions because the manifold is essentially projected
on the linear subspace spanned by the eigenvectors corresponding to the largest variance.
This is the reason why MDS is considered a linear method. However, if ∆ is a L2 distance
matrix, the inner product matrix B is positive semi-definite. Computing an embedding
of dimension d = rank(B) with MDS based on ∆ will lead to coordinates y1, ..., yn with

1Given distances based on the Euclidean metric, B is non-negative definite. If rank(B) = t < n, the largest
t eigenvalues are positive and the remaining 0. If distances are computed with another metric, negative
eigenvalues can occur.
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Euclidean distance matrix exactly matching ∆ (Young & Householder, 1938; see also Cox
& Cox, 2008; Torgerson, 1952). This means, if the D-dimensional data live on a nonlinear
manifold in a d-dimensional subspace, constructing a d-dimensional embedding with MDS
based on L2 distances will exactly reproduce the manifold. This is important to keep in mind
for the functional data setting. There it is straightforward to produce, say, a 50-dimensional
observation space based on a 2-dimensional nonlinear manifold that can then be reconstructed
in terms of its outer geometry using MDS (see Chapter 7). Similarly, assuming a data set to
consist of two disconnected manifolds, it does not make sense to compute geodesic distances
between all observations, i.e., inferring the inner geometry, but it does make sense to compute
L2 distances, i.e., inferring the outer geometry, a fact relevant for outlier detection as outlined
in Chapters 8 and 9. In summary, the mapping eMDS : H → Y implicitly learned by MDS is
an isometric mapping and MDS tries to preserve the metric structure induced by the metric
dm chosen to compute the pairwise distances between observations.

4.3.2. UMAP

The method UMAP is based on three important assumptions (or “axioms”). It is assumed
that “there is a manifold on which the data would be uniformly distributed”, “the underlying
manifold of interest is locally connected”, and “preserving the topological structure [. . . ] is
the primary goal” (McInnes et al., 2020, p. 13). In its basic computational structure, UMAP
is rather similar to MDS and other manifold learning methods and we briefly outline the
computational side of UMAP in the following. We then try to build up some intuition about
the theoretical underpinnings of the computational steps.
Given a distance matrix ∆ (of observations in a high-dimensional data set X), UMAP computes
an embedding by first constructing a weighted k-nearest-neighbor graph G (graph construction
step) and then finding a representation based on G (graph layout step). In particular, first a
directed graph Ḡ is computed, where edge weights are defined by the weight function

v((xi, xij )) = exp
(
−max(0, d(xi, xij )− ρi)

σi

)
, (4.1)

with xij a k-nearest-neighbor of xi, ρi the distance to the nearest neighbor of xi, and σi a
normalization factor specific to xi (McInnes et al., 2020). This means that there are different
(local) metric spaces around each xi due to ρi and σi. This is necessary as the underlying
theory requires the data to be uniformly distributed on the manifold, which is not a realistic
assumption for real-world data. Defining different metrics at each point allows circumventing
this issue. Moreover, note that ρi in Eq. 4.1 implies that xi is at least connected to its
nearest neighbor. This local connectivity constraint warrants that a single observation is not
completely separated from the rest of the observations. The weighted adjacency matrix A of
the directed graph Ḡ can then be transformed into an adjacency matrix B = A+AT −A ◦AT ,
with ◦ the pointwise product, of an undirected graph G. The resulting edge weights of G
can be understood as the probability that the edge exists. Low-dimensional representations
y1, ..., yn are then obtained by minimizing the cross entropy

CUMAP =
∑
i 6=j

vij log
(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)
(4.2)
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via stochastic gradient descent (SGD), with vij representing the (dis)similarity based on G
and wij = (1 + a||yi − yj ||2b2 )−1. Importantly, the two parts in Eq. 4.2 reflect attractive and
repulsive forces (McInnes et al., 2020). That means, CUMAP becomes minimal if vij = wij . If
vij = 0, the embedding vectors yi and yj should be placed as far from each other as possible
as this will drive wij towards zero. In particular, this means UMAP increases inter-cluster
distances and decreases intra-cluster distances (see Chapter 10).
From a theoretical perspective, UMAP builds on sophisticated topological underpinnings
and is closely related to topological data analysis (TDA). Note that we can not describe the
theoretical aspects underlying UMAP and TDA in full detail but instead we try to build up
some intuition. In particular, the basic conceptual and computational building blocks of both
approaches are simplicial complexes. Intuitively, a simplicial complex K can be seen as the set
of k-simplices that can be constructed based on the k + 1 points in a given set. That means,
points are 0-simplices, edges between points are 1-simplices, triangles are 2-simplices and so
on. Moreover, a face of a k-simplex is a subset and thus a (lower order) simplex itself. Each
k-simplex consists of k + 1 points (0-faces), and a triangle, for example, additionally has three
edges (1-faces) (Wasserman, 2016; Zomorodian & Carlsson, 2005). Chazal & Michel (2021, p.
3f), for example, provide the following more precise definitions.

Definition 4.2 (k-dimensional simplex). Given a set X = {x0, ..., xk} ⊂ RD of k + 1 affinely
independent points, the k-dimensional simplex s = [x0, ..., xk] spanned by X is the convex hull
of X. The points of X are called the vertices of s, and the simplices spanned by the subsets of
X are called the faces of s.

Definition 4.3 (Geometric simplicial complex). A geometric simplicial complex K in RD is a
collection of simplices where any face of a simplex of K is a simplex of K and the intersection
of any two simplices of K is either empty or a common face of both.

Definition 4.4 (Abstract simplicial complex). Given a set X , an abstract simplicial complex
with the vertex set X is a set K̃ of finite subsets of X such that the elements of X belong to
K̃ and for any s ∈ K̃, any subset of s belongs to K̃.

Chazal & Michel (2021, p. 4) emphasize that “abstract simplicial complexes can be seen
as topological spaces and geometric complexes can be seen as geometric realizations of
their underlying combinatorial structure”. This has two important implications from a data
analysis perspective. First of all, constructing a simplicial complex from a given data set
X = {x1, ..., xn} allows to infer topological features of the data such as connected components
(clusters) or holes. Secondly, since simplicial complexes are combinatorial objects they allow
for efficient computations (Chazal & Michel, 2021).
There are different ways to obtain simplicial complexes from data in practice. For example,
constructing Čech complexes Čr(X) or Vietoris-Rips complexes V Rr(X) are common
approaches (Chazal & Michel, 2021; Wasserman, 2016; Zomorodian & Carlsson, 2005). Given
a set of points of a metric space Xdm and r ∈ R+

0 , a Vietoris-Rips complex is the set of
simplices [x0, ..., xk] with dm(xi, xj) ≤ r. In contrast, a Čech complex is the set of simplices
such that the k + 1 closed balls B(xi, r) of radius r have a non-empty intersection (Chazal &
Michel, 2021). The value r thereby steers the resolution at which the topological features are
inferred from the (finite) data set. Basically, r = 0 will let each observation (point) appear as
one of n unconnected components. That means, no observation is connected with another
observation, respectively every connected component is a single data point. A very large r,
on the other hand, will result in one single connected component, i.e., all observations will
appear connected to each other (Bubenik, 2015).
A family of nested simplicial complexes (Kr)r∈I is called a filtration, when Kr ⊆ Kr′ if r < r′
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for any pair r, r′ ∈ I ⊆ R (Chazal & Michel, 2021). Computing filtrations, that is, a series
of Čech or Vietoris-Rips complexes for increasing values of r, is a very important approach
in TDA called persistent homology (Wasserman, 2016; see also Chazal & Michel, 2021;
Zomorodian & Carlsson, 2005). Wasserman (2016, p. 17) states that “homology characterizes
sets based on connected components and holes”. That means, starting from the observations
in a data set as n (un)connected components, other topological features, including holes or
voids, will appear and vanish with increasing r (Wasserman, 2016). The birth and death times
of these topological features can be used to create a persistence diagram, with the birth time
plotted on the horizontal axis and the death time plotted on the vertical axis. Persistent
topological features, i.e., features with long lifetimes, appear far from the diagonal. If, for
example, a data set consists of three well separable clusters of similar density, the persistence
diagram would indicate three persistent connected components. If a data set consists of
observations drawn from a circle and uniformly distributed noise points, the persistence
diagram would indicate a single persistent connected component and a single persistent hole.
Note that there are approaches based on bootstrapping to assess the statistical significance of
persistent topological features (Wasserman, 2016).
UMAP, on the other hand, constructs a single Vietoris-Rips complex in its graph construction
step in principle. And if the data were uniformly distributed on the manifold, this would
already yield a good approximation. However, since uniformity is too strong an assumption
in reality, the Vietoris-Rips complex is not constructed based on a resolution or radius r
but instead by specifying a number of nearest neighbors k to include. This means, the
(individual) radius of the ball B(xi, rk) around a point xi is determined by the distance to its
k-th neighbor (and not by a fixed r). Since k is the same for all points, this results in locally
different metrics (smaller radii in dense regions, larger radii in sparse regions) (McInnes,
2018). In particular, it does not necessarily hold that dmi(xi, xj) = dmj (xj , xi), i.e., each edge
(1-simplex) can have two different weights depending on the point (0-face) from which the
distance is measured. More specifically, this means one obtains a family of fuzzy simplicial
sets. A difference between simplicial sets and simplicial complexes is that the former include
directed edges, while the latter do not. Moreover, the simplicial sets are fuzzy because of the
two different weights an edge can obtain and a fuzzy union of the fuzzy simplicial sets results
in an undirected graph approximating the underlying manifold structure (McInnes, 2018).
In summary, that means that both TDA and UMAP approximate continuous structures by
building simplicial complexes and sets from the (discretely) observed data points. UMAP
constructs a topological representation of a manifold assumed to underlie the data using fuzzy
simplicial sets and persistent homology, as a specific example of TDA, yields a persistence
diagram that indicates (statistically significant) topological features based on filtrations.
These close connections between TDA and UMAP emphasize UMAP’s topological “nature”.
In particular, if the parameter k steering the neighborhood size is much smaller than the
number of observations n, many edge weights will become 0 in the graph construction step.
On the other hand, the local connectivity constraint ensures that the data set is not separated
into many connected components consisting of a single point only. Together with optimizing
the cross-entropy in the graph layout step this results in increasing inter-cluster distances
and decreasing intra-cluster distances. In general, that means eUMAP : H → Y should not
be considered an isometric mapping but rather a homeomorphism (a function preserving
topological features but not distances). Chapter 10 elaborates on this aspect in more detail
and demonstrates how this can considerably enhance cluster analysis in practice. On the
other hand, unlike MDS, UMAP appears not very suited for outlier detection as understood
in Chapters 8 and 9, where it is important to isometrically retain the outer geometry.
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4.3.3. Performance Measures

As already pointed out in Section 4.2, the reconstruction error E[L(x, e−1(y))] is often not
available in manifold learning. Yet, there are alternative approaches to assess the quality of
an embedding (e.g., see Kraemer et al., 2018; Lee & Verleysen, 2009). For example, just as in
cluster analysis and outlier detection, external information such as labels can be used to assess
an embedding (Lee & Verleysen, 2009). Another important approach is based on comparing
g-neighborhoods in the high-dimensional space H and the low-dimensional embedding space
Y specified by the ranks of pairwise distances, which is why they are commonly referred to
as rank-based criteria (Lee & Verleysen, 2009). We also use the term surrogate performance
measures to stress their heuristic basis. For example, this includes the trustworthiness and
continuity (T&C) measures (Venna & Kaski, 2001), the local continuity meta-criterion (LCMC)
(L. Chen & Buja, 2009), and the more recent local rank correlation (LRC) (Liang et al., 2020).
A simple example of such a criterion is

QNX(g) = 1
g

1
n

n∑
i=1
|NHg (i) ∩NYg (i)|, (4.3)

where 1
g is a normalization factor and NHg (i) and NYg (i) reflect the neighborhood of size g of

observation i in the high-dimensional space H and the embedding space Y, respectively (L.
Chen & Buja, 2009). We use measures based on the LCMC criterion to automatically select
hyperparameters of manifold learning methods in Chapter 7.
Note that Lee & Verleysen (2009) provide a unifying perspective on ranking-based criteria
using the so-called co-ranking matrix (Lee & Verleysen, 2008). Following Lueks et al. (2011),
the co-ranking matrix Q has entries

qkl = |{(i, j) : rHij = k and rYij = l}|, (4.4)

with

rHij = |{k : δik < δij or (δik = δij and 1 ≤ k < j ≤ n)}| and
rYij = |{k : dm(yi, yk) < dm(yi, yj) or (dm(yi, yk) = dm(yi, yj) and 1 ≤ k < j ≤ n)}|

the neighborhood ranks in H (recall ∆ = (δij)) and the embedding space Y , respectively. For
example, criterion 4.3 can then be reformulated as

QNX(g) = 1
g

1
n

g∑
i=1

g∑
j=1

qij . (4.5)

One can differentiate (mild and hard) g-intrusions and (mild and hard) g-extrusions according
to the matrix Q. Mild and hard g-intrusion are defined as rYij < rHij ≤ g and rYij ≤ g < rHij ,
respectively (mild and hard g-extrusion are defined accordingly by changing the direction of
the inequalities). Intrusions and extrusions are reflected in the lower and upper triangle of
Q, respectively. A perfect embedding would result in a diagonal co-ranking matrix (Lueks et
al., 2011). Important here is that the LCMC criterion yields a single scalar value to measure
mild intrusions and extrusions, which makes it well suited for hyperparameter tuning. On the
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other hand, this means it does not differentiate between (mild) intrusion and extrusion. T&C,
for example, differentiates between (hard) intrusion and (hard) extrusion and, respectively,
expresses the effects on trustworthiness and continuity by two different values (Lee & Verleysen,
2009).

4.4. Manifold Learning in Functional Data

Functional data analysis (FDA) (Ferraty & Vieu, 2006; Ramsay & Silverman, 2005; J.-L.
Wang et al., 2016) is an active research area in statistics. The focus lies on data where the
units of observation are realizations of stochastic processes over compact domains. While
functional PCA is a highly investigated topic (Happ et al., 2019; Happ & Greven, 2018; Shang,
2014) and there are approaches to infer manifold means and modes of variation (D. Chen &
Müller, 2012) as well as template curve estimation (Dimeglio et al., 2014) on simple functional
manifolds, manifold learning has not found widespread application in functional data analysis
in general. From a manifold learning perspective, however, functional data has three important
properties. Functional data

1. is high-dimensional but highly structured.
2. is theoretically/analytically well accessible.
3. can be easily visualized in bulk.

The first characteristic means that the manifold assumption is specifically realistic and useful.
On the one hand, functional data is usually observed/measured at a large number of evaluation
points resulting in high-dimensional data sets. On the other hand, there are usually only a
few modes of variation, i.e., a low intrinsic dimensionality.
The second characteristic allows to precisely define and investigate different manifolds theo-
retically and, as a consequence, to simulate ostensibly complex, D-dimensional data based
on precisely definable d-dimensional manifolds: Let φ : Θ → F be a mapping from some
parameter space Θ ⊂ Rd to a function space F . Usually, F = L2(T ), the space of square
integrable functions over domain T . The parameter space Θ and the mapping φ specify a
functional manifoldMF ⊂ F that can be defined asMF = {x(t) : x(t) = φ(θ) ∈ F , θ ∈ Θ}.
In practice, the functions are observed on a grid T = {t1, ..., tD} ⊂ T . This extends the
manifold learning formalization to

Θ φ→MF e→ Y. (4.6)

Setting, for example, Θ = R and x(t) = θ1t + θ2, θ1, θ2 ∈ Θ, we have a well accessible
functional manifold and can sample a (D-dimensional) data set X = {x1(t), ...., xn(t)} ⊂ MF
of n functional observations with the specified intrinsic structure accordingly. Combined with
the good visualization capability, this makes functional data extremely useful to qualitatively
evaluate, analyze, and compare manifold learning approaches and results. We make extensive
use of these aspects in Chapters 7, 8, and 9.
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4.5. Reliability in Unsupervised Learning

4.5.1. A Fundamental Problem

In unsupervised learning “the machine simply receives inputs x1, x2, ..., but obtains neither
supervised target outputs, nor rewards from its environment” (Ghahramani, 2004, p. 74). In
particular, it is usually assumed the inputs are i.i.d. observations following a distribution P ,
but there is no vector of outputs y1, ..., yn as in supervised learning. Unsupervised learning
encompasses tasks such as clustering, outlier detection, (nonlinear) dimension reduction, and
manifold learning to name the examples most relevant for this work.
Just as in supervised learning, reliability of results is a general issue but the problem here
is much more involved. In particular, approaches to systematic benchmark studies are still
in their infancy (Van Mechelen et al., 2018). To illustrate the extent of the problem, a few
lengthy passages from the literature on the subject are collected here and reproduced verbatim.
Hastie et al. (2009, p. 487) state:

“In the context of supervised learning, there is no such direct measure of success.
It is difficult to ascertain the validity of inferences drawn from the output of most
unsupervised learning algorithms. One must resort to heuristic arguments not only
for motivating algorithms as is often the case in supervised learning as well, but
also for judgments as to the quality of results. This uncomfortable situation has
led to heavy proliferation of proposed methods, since effectiveness is a matter of
opinion and cannot be verified directly.”

In contrast, Zimmermann (2020, p. 3) emphasizes:

“Many unsupervised pattern mining algorithms are rarely, if ever, evaluated on
additional data after they have been published. Clustering algorithms are often
evaluated time and again on the same data sets, typically in comparison to newer
techniques. Algorithms are rarely extensively compared against each other.”

Finally, Van Mechelen et al. (2018, p. 2) point out that

“in this domain there is much less of a benchmarking tradition. This is, for instance,
evidenced by the fact that very often new methods are proposed without a sound
comparison with predecessors, which obviously seriously hampers a cumulative
building of knowledge. Also, within the clustering domain there is a dearth of
recommendations and guidelines for benchmarking.”

So, while Zimmermann (2020) and Van Mechelen et al. (2018) emphasize a general lack
of proper method comparisons, Hastie et al. (2009) point out the fundamental underlying
problem that there is no “direct measure of success” and that thus performance assessment and
method comparison is, in general, much less objective in unsupervised learning. This makes
overoptimistic and non-reliable findings even more likely in unsupervised learning. Consider
the following examples that illustrate this problem.
In a study comparing the two manifold learning methods UMAP and t-SNE in single-cell
data, Becht et al. (2019) conclude that UMAP better preserves the global structure of data
sets than t-SNE and underpin this with extensive and elaborate experiments. Yet, Kobak
& Linderman (2021) show in a follow-up that these conclusions only follow because t-SNE
was randomly initialized, while UMAP used a PCA-based initialization. They conclude that
“there is currently no evidence that the UMAP algorithm per se has any advantage over t-SNE
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in terms of preserving global structure” (Kobak & Linderman, 2021, p. 156). Note that
well reproducible experiments by Becht et al. (2019) enabled Kobak & Linderman (2021)
to pin this down, which again demonstrates the importance of reproducibility but also that
reproducibility alone is not a sufficient condition for reliability.
In a study entitled “DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation”, Gan
& Tao (2015) claim that the run time complexity of the well-established clustering method
DBSCAN does not hold. They propose a new method and demonstrate that it is more
efficient. However, in a follow-up Schubert et al. (2017) in turn point out inaccuracies in
that study and show that the new method does not lead to practical improvements because
DBSCAN’s hyperparameters were poorly specified in the experiments by Gan & Tao (2015),
again emphasizing how easily misspecified methods can lead to unreliable conclusions.
The last example goes in a slightly different direction. Bojchevski et al. (2018) proposed
NetGan, a generative model to generate graphs that are satisfactorily similar to real-world
examples. Yet, Rendsburg et al. (2020) show that the generative adversarial network (GAN)
is essentially unnecessary and that the same goal can be achieved by a much simpler approach
leveraging the crucial transition matrix approximation step only. As Rendsburg et al. (2020, p.
1) emphasize, “being much simpler on the conceptual side, we reveal the implicit inductive bias
of the algorithm — an important step towards increasing the interpretability, transparency
and acceptance of machine learning systems”.
So, while the first two examples illustrate that proper performance assessment and method
comparison are hard to achieve in unsupervised learning regardless of the complexity of the
methods, the third example points to the more subtle aspect that a lack of clear understanding
of the underlying problem may lead to more complex methods than necessary. We provide
some more background on these aspects in the following.

4.5.2. Methodological and Conceptual Aspects

The fundamental problem in unsupervised learning is the lack of an outcome y that would
allow to clearly define a learning objective (such as the ERM criterion reflected in Eq. 3.1) to
optimize. In other words, there is no ground truth to compare the results of unsupervised
learning methods against (Shalev-Shwartz & Ben-David, 2014; Zimmermann, 2020). This
affects the entire analysis chain as described in Chapter 3 from performance assessment,
through model selection, to method comparison and benchmark studies.

Performance Assessment How to properly assess performance and evaluate results is the
most important question and a lot of work has been devoted to this question. For outlier
detection, see, for example, Schubert et al. (2012), Goix (2016), Marques et al. (2020); for
clustering see Rand (1971), Ben-David & Ackerman (2008), Vinh et al. (2010), Rendón et
al. (2011), Ullmann et al. (2022); and for manifold learning see Lee & Verleysen (2008), Lee
& Verleysen (2009), L. Chen & Buja (2009), Rieck & Leitte (2015), Kraemer et al. (2018),
Liang et al. (2020). In general, external evaluation and internal evaluation criteria need to
be distinguished in cluster analysis. The external criteria make use of external information
about the data, in particular, class labels, and compare the partition obtained by a clustering
method with the partition induced by the external information. Internal measures, in contrast,
compute absolute or average intra- and inter-cluster distances of a obtained partition. The
external evaluation approach is also very common in outlier detection where observations from
a class are chosen as inliers and contaminated by observations from another class. In general,
this approach needs to assume that external information reflects the inherent structure of the
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data sufficiently, i.e., it constitutes a meaningful ground truth for the problem at hand, and
may lead to misleading conclusions otherwise (e.g., see Campos et al., 2016; Luxburg et al.,
2012; Van Mechelen et al., 2018). In manifold learning, the performance is often evaluated by
comparing the overlap of neighborhoods in the low-dimensional embedding to neighborhoods in
the high-dimensional observation space. What would be of major interest is the reconstruction
error, which, however, is not accessible for many manifold learning methods as they do not
provide an embedding function explicitly (see Section 4.2).

Hyperparameter Selection and Method Comparison Moreover, some authors have paid
particular attention to how to set hyperparameters. For example, Thomas et al. (2016) develop
a general tuning approach for unsupervised outlier detection methods based on the area-under-
the-mass-volume-curve (AUMVC). However, the computational complexity increases with the
dimension of the data set as it requires Monte-Carlo integration. It is thus not well applicable
to high-dimensional data. Alaız (2015) proposes to select hyperparameters of the manifold
learning method Diffusion Maps using neighborhood preservation measures introduced by Lee
& Verleysen (2009). In contrast, Belkina et al. (2019) propose an approach for automatic
selection of t-SNE’s hyperparameters within the context of single cell data.
Finally, notwithstanding the general lack of comparison studies (Van Mechelen et al., 2018;
Zimmermann, 2020), there have been efforts in this direction as well, see, for example, Campos
et al. (2016), Goldstein & Uchida (2016), and Domingues et al. (2018) for outlier detection,
and Y. Wang et al. (2021) and Cantini et al. (2021) for manifold learning. In their white paper,
Van Mechelen et al. (2018) even provide general guidelines for benchmarking in clustering
and discuss several examples.
Despite these efforts, Zimmermann (2020) nevertheless emphasizes that it remains mostly
unclear (1) how to evaluate whether a method’s results reflect the relevant structures of the
underlying data generating process, (2) how to select the various hyperparameters many
unsupervised learning methods are adjusted to a specific setting with, (3) how to compare
different methods and how to decide on the superiority of one over the other. He concludes
that there “is therefore need for more, and more extensive, evaluations in both pattern mining
and clustering” (Zimmermann, 2020, p. 3).

Conceptualizations Moreover, note that there are approaches toward general conceptualiza-
tions and frameworks. For example, outlier detection has been formalized based on minimum
level sets (Scott & Nowak, 2006) and M-estimation (Clémençon & Jakubowicz, 2013). In prin-
ciple, this means that outliers are defined as objects in low-density regions of the distribution
assumed to generate the data.
In contrast, Kleinberg (2002) provides an impossibility theorem that suggests that deriving a
unifying framework for clustering is complicated: in particular, he shows that no clustering
function fulfills scale-invariance, richness, and consistency, three fundamental properties of a
clustering function according to the author. Scale-invariance means that a clustering func-
tion is robust to changes in the unit used to measure distances between observations, while
richness implies that for a set of observations all possible partitions can be the result of a
given clustering function. Finally, consistency requires that increasing inter-cluster distances
and decreasing intra-cluster distances does not change the clustering result. However, in a
follow-up, Ben-David & Ackerman (2008) shift the focus from clustering functions to quality
criteria. Based on another set of axioms that clustering quality criteria should fulfill, they
show that a consistent conceptualization of clustering is possible. Further examples in this
direction include a conceptualization of linkage-based clustering (Ackerman et al., 2010) and
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clustering approaches in general (Carlsson & Mémoli, 2013). In manifold learning, Agrawal
et al. (2021) provide a very general framework called minimum-distortion embedding that
provides a unifying perspective on different embedding methods, but also semi-supervised
learning and sphere packing, for example.
On the other hand, despite the described efforts, there is also evidence of considerable con-
ceptual ambiguity in these areas (recall the examples from outlier detection, cluster analysis,
and manifold learning provided in Chapter 2). This partially explains why different research
communities treat these problems – for example clustering or outlier detection – more or less
in isolation: there is (so far) no established common ground the problems can be traced back
to. Consider, for example, that in functional data analysis outlier detection has been a highly
investigated research topic in recent years and many complex methods that are highly specific
to functional data have been developed. Potentially useful approaches from the pattern mining
community, however, have not gained much attention as pointed out in Chapter 8. Similarly,
clustering is a highly investigated problem in the pattern mining community as well as in
topological data analysis and manifold learning, yet there appear to be only loose connections
between these areas as pointed out in Chapter 10.
In summary, to improve reliability in unsupervised machine learning, two aspects appear
crucial: (1) more extensive and systematic method evaluations and comparisons and (2)
improving conceptual clarity and systematic underpinnings. The contributions in Part III are
devoted to these issues with a specific focus on manifold learning and we provide a structural
overview on the contribution in the following.

4.5.3. Structural Overview of Part III

As outlined, the major part of the thesis is concerned with unsupervised learning from a
manifold learning perspective. That means, Part III has a much broader scope than Part II.
To make the overall context and relationship to reliability more accessible, it is helpful to
structure the contributions in Part III in advance according to their specific methodological
and application-oriented aspects on the one side, and a common, more general conceptual
aspect on the other side.
First of all, within the individual contributions, we (1) elaborate on methodological aspects of
manifold learning as a specific unsupervised learning task itself. For example, we investigate
tuning approaches for manifold learning methods based on surrogate performance measures.
On the other hand, we (2) also use manifold learning as a kind of auxiliary procedure to provide
insights on methodological and conceptual issues in other data analysis tasks (functional
data analysis, outlier detection, clustering). These conceptual aspects are specifically related
to the individual tasks. For example, we argue that two types of outliers, structural and
distributional, have to be distinguished and we use concepts from manifold learning to make
this explicit. Moreover, we argue that settings with clearly separable clusters should be
more strictly differentiated from those where clusters (are allowed to) overlap. Again this
is demonstrated based on concepts and approaches from manifold learning. Recall that we
consider improving conceptual clarity a crucial part of improving reliability. We argue that
these contributions can reduce some of the conceptual ambiguity present in the specific tasks.
However, these specific conceptual aspects considered within the individual contributions are
not to be confused with a more general, overarching conceptualization we intend to more
clearly establish. This general conceptualization is (implicitly) developed across the individual
contributions and allows to more precisely trace the individual, task-specific problems back to
a common ground. In the following, we shortly outline this general conceptualization, as it
can be seen as a common thread running through the individual papers as a whole. The exact
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implications, however, will likely become fully tangible only after considering the individual
contributions. Therefore, we provide a concluding summary on this general aspect in Part IV
and postpone a more detailed discussion until then.
We argue that, for the problem of outlier detection, different intrinsic data structures will be
relevant than for the problem of cluster analysis (or for manifold learning, at least based on
the standard assumption), but that these structures are usually not made explicit enough.
As a consequence, some of the described conceptual ambiguity surrounding these tasks may
be reduced if the relevant structures were made more precise. We show that a more general
notion of manifold learning that goes beyond the standard assumption that there is a single,
connected manifold, allows for a more precise conceptualization of these tasks. For that, we
refer to the underlying structures as inner geometry, outer geometry, and the topology of a
data set (cf. Lee & Verleysen, 2007, Ch. 7.4; Tenenbaum et al., 2000). In particular, we argue
that the inner geometry is specifically relevant for the standard notion of manifold learning,
outer geometry is specifically relevant for outlier detection, and the topology for clustering.
The outer geometry requires the notion of an ambient or surrounding space to correctly reflect
the relevant data structures. This is particularly relevant for outlier detection because we
assume that structural or off-manifold outliers stem from a different manifold than the bulk of
the observations. Therefore, the spatial position and distances in the ambient space must be
inferred and retained to reflect the outlier structure. The inner geometry, on the other hand,
does not require the notion of an ambient space. Assuming a single, connected manifold, the
goal is to infer the structure of this manifold. In both cases, however, isometry (i.e. preserving
distances) is important. Yet, for problems where the topology of a data set is particularly
important, for example, in cluster detection, neither structure induced by some ambient space
nor the specific (intrinsic) structure of a manifold is of major interest. In contrast, leveraging
topological features such as connected components is important. The crucial point is that
not all aspects may be accessible in a suitable manner at once. In particular, when obtaining
low-dimensional representation, some structures, for example, outliers, likely get lost if the
representation of other structures, for example, topological aspects, is prioritized.
In summary, the central theme in Part III is manifold learning. Yet, the contributions also
focus on functional data (analysis), outlier detection, and cluster analysis in particular. Again,
the overarching goal is to work towards more reliability in these areas. The contributions in
Part III elaborate on these aspects as follows.
Chapter 7 investigates how suitable embedding quality measures as described in Section 4.3.3
are for hyperparameter tuning of manifold learning methods. From a conceptual perspective,
we concentrate on data stemming from a single connected manifold, i.e., settings where the
inner geometry is of interest. In doing so, we leverage the favorable properties of functional
data outlined in Section 4.4 to assess the tuning approach.
Chapters 8 and 9 are concerned with outlier detection. Chapter 8 again focuses on the
application to functional data. Assuming that there are two fundamental and distinct outlier
types, we demonstrate that a conceptualization based on two manifolds much better reflects
the problem. That means, we are in a setting where the outer geometry is of most interest and
we demonstrate that this improves functional outlier detection conceptually and practically.
Chapter 9 then generalizes the approach to other data types such as images or graphs.
Moreover, we review concepts and terminology from the literature indicating a general
conceptual ambiguity. We show that the provided conceptualization based on two manifolds
can considerably advance conceptual clarity in outlier detection in general.
Finally, Chapter 10 focuses on cluster analysis. We show that focusing on (parts of) the
topology of the data set is crucial for this task. In particular, we demonstrate – applying the
clustering method DBSCAN (Ester et al., 1996) to UMAP embeddings – that leveraging the
unconnected components of a data set can considerably enhance clustering.
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5. Large-scale Benchmark Study of Survival
Prediction Methods Using Multi-omics
Data

Chapter 5 describes a benchmark study of 13 survival prediction methods that are applied
to 18 cancer data sets from ‘The Cancer Genome Atlas’ (TCGA). These high-dimensional
data sets consist of five feature groups including clinical and four different types of molecular
features.
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scale benchmark study of survival prediction methods using multi-omics data. Briefings in
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Supplementary material available at:
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Note on originality:
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First of all, three additional methods – SGL, blockForest, GRridge – were included (and
implemented). Note that implementing GRridge led to a bug fix (see https://github.com/m
arkvdwiel/GRridge/issues/2). The (extended) experiment was then completely rerun and
re-evaluated. In particular, model failures and differences in computation time were examined
more closely. In addition, statistical tests were carried out and confidence intervals calculated.
Furthermore, reproducibility and neutrality were considerably increased: (1) the existing
code was thoroughly reworked, restructured, and re-implemented, (2) code and data were
made available on GitHub and OpenML, respectively, and (3) for the methods GRridge, SGL,
glmboost, CoxBoost, and ranger the developers were contacted and asked for an evaluation of
the implementation and setup (e.g., this resulted in an extensive adaptation of the GRridge
procedure).
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Abstract

Multi-omics data, that is, datasets containing different types of high-dimensional molecular variables, are increasingly often
generated for the investigation of various diseases. Nevertheless, questions remain regarding the usefulness of multi-omics
data for the prediction of disease outcomes such as survival time. It is also unclear which methods are most appropriate to
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Introduction
In the past two decades, high-throughput technologies have
made data stemming from molecular processes available on
a large scale (‘omics data’) and for many patients. Starting
from the analysis of whole genomes, other molecular entities
such as mRNA or peptides have also come into focus with the
advancing technologies. Thus, various types of omics variables
are currently under investigation across several disciplines
such as genomics, epigenomics, transcriptomics, proteomics,
metabolomics and microbiomics [1].

It may be beneficial to include these different data types
in models predicting outcomes, such as the survival time of
patients. Until recently, only data from a single omics type were
used to build such prediction models, with or without the inclu-
sion of standard clinical data [2]. In recent years, however, the
increasing availability of different types of omics data measured
for the same patients (called multi-omics data from now on)
has led to their combined use for building outcome predic-
tion models. An important characteristic of multi-omics data is
the high-dimensionality of the datasets, which frequently have
more than 10 000 or even 100 000 variables. This places particular
demands on the methods used to build prediction models: they
must be able to handle data where the number of variables by
far exceeds the number of observations. Moreover, practitioners
often prefer sparse and interpretable models containing only a
few variables [3]. Last but not the least, multi-omics data are
structured: the variables are partitioned into (nonoverlapping)
groups. This structure may be taken into account when building
prediction models.

Several methods have been specifically proposed to han-
dle multi-omics data, while established methods for high-
dimensional data from the fields of statistics and machine
learning also seem reasonable for use in this context. Although
there are studies with a limited scope comparing some of
these methods, there has not yet been a large-scale systematic
comparison of their pros and cons in the context of multi-omics
using a sufficiently large amount of real data.

The pioneering study by Bøvelstad et al. [4] investigates the
combined use of clinical and one type of molecular data, using
only four datasets. In one of the first studies devoted to method-
ological aspects of multi-omics-based prediction models, Zhao
et al. [5] compare a limited number of methods for multi-omics
data based on a limited number of datasets. Lang et al. [6] inves-
tigate automatic model selection in high-dimensional survival
settings, using similar but fewer prediction methods than our
study. Moreover, again only four datasets are used. A study by
De Bin et al. [7] investigates the combination of clinical and
molecular data, with a focus on the influence of correlation
structures of the feature groups, but it is based on simulated
data.

Our study aims to fill this gap by providing a large-scale
benchmark experiment for prediction methods using multi-
omics data. It is based on 18 cancer datasets from The Can-
cer Genome Atlas (TCGA) and focuses on survival time predic-
tion. We use several variants of three widely used modeling
approaches from the fields of statistics and machine learning:
penalized regression, statistical boosting and random forest.
The aim is to assess the performances of the methods and the
different ways to take the multi-omics structure into account. As
a by-product of our study, we also obtain results on the added
predictive value of multi-omics data over models using only
clinical variables.

The remainder of the paper is structured as follows. The
Methods section briefly outlines the methods under investi-
gation. In the subsequent Benchmark experiment section, we
describe the conducted experiment. The findings are presented
in the Results section, which is followed by a discussion.

Methods
Preliminary remarks

There are essentially two ways to include multi-omics data in a
prediction model. The first approach, which we term as naive,
does not distinguish the different data types, i.e. does not take
the group structure into account. In the second approach, the
group structure is taken into account. The advantage of the naive
approach, its simplicity, comes at a price. First of all, physicians
and researchers often have some kind of prior knowledge of
which data type might be especially useful in the given con-
text [3]. If so, it is desirable to include such information by
incorporating the group structure. Well-established prognostic
clinical variables which are known to be beneficial for building
prediction models for a specific disease are an important special
case. In this situation, it may be useful to take the group structure
into account during model building or even to treat clinical
variables with priority. Otherwise, these clinical variables might
get lost within the huge amount of omics data [2]. To some
extent, the same might be true for different kinds of omics data.
If, for example, gene expression (rna) is expected to be more
important than copy number variation (cnv) data for the purpose
of prediction, it might be useful to incorporate the distinction
between these two data types into the prediction model or even
to prioritize rna in some sense.

Other important aspects of prediction models from the per-
spective of clinicians are sparsity, interpretability and trans-
portability [3]. Methods yielding models which are sparse with
regard to the number of variables and number of omics types
are often considered preferable from a practical perspective.
Interpretation and practical application of the model to the
prediction of independent data are easier with regression-based
methods yielding coefficients that reflect the effects of variables
on the outcome than with machine learning algorithms [8].

Finally, in addition to the prediction performances of the dif-
ferent methods, the question of the additional predictive value of
omics data compared with clinical data is also interesting from
a clinical perspective [2]. Many of the omics-based prediction
models which were claimed to be of value for predicting disease
outcomes could eventually not be shown to outperform clinical
models in independent studies [2, 4, 9]. However, some findings
suggest that using both clinical and omics variables jointly may
outperform clinical models [4, 10, 11]. In our benchmark study,
we can address this issue by systematically comparing the per-
formance of clinical models and combined models for a large
number of datasets.

The methods included in our study can be subsumed in three
general approaches, which are briefly described in the follow-
ing subsections: penalized regression-based methods, boosting-
based methods and random forest-based methods. A more tech-
nical description of the methods can be found in the supplemen-
tary material. It should be noted, however, that several multi-
omics specific penalized regression-based methods have already
been developed and have readily available implementations in R,
while the same is not true for the other two classes of methods
to the same extent. Consequently, there is an imbalance in the

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/3/bbaa167/5895463 by guest on 14 April 2022

5. Large-scale Benchmark Study of Survival Prediction Methods Using
Multi-omics Data

36



Large-scale multi-omics benchmark study 3

number of methods included for each class. Moreover, our study
does not include deep learning approaches. To the best of our
knowledge, studies using deep learning based on multi-omics
data mostly focus on classification. For the two approaches we
are aware of that successfully applied deep learning on multi-
omics data to predict survival times [12, 13]—the latter not yet
formally published— there are at the moment no thorough,
established and easy to use implementations in R. Similar to
extended boosting methods, we did not include deep learning
approaches for these reasons.

Moreover, two reference methods are considered: simple
Cox regression, which only uses the clinical variables, and the
Kaplan–Meier estimate, which does not use any information
from the predictor variables.

Penalized regression-based methods

The penalized regression methods briefly reviewed in this sec-
tion have in common that they modify maximum partial likeli-
hood estimation by applying a regularization, most importantly
to account for the n << p problem.

Standard Lasso, introduced more than two decades ago [14]
and subsequently extended to survival time data [15], applies
L1-regularization to penalize large (absolute) coefficient values.
The result is a sparse final model: a number of coefficients are
set to zero. The number of nonzero coefficients decreases with
increasing penalty parameter λ and cannot exceed the sample
size. The method does not take the group structure into account.
The parameter λ is a hyper-parameter to be tuned.

Two-step (TS) IPF-Lasso [16] is an extension of the standard
Lasso specifically designed to take a multi-omics group structure
into account. This method is an adaptation of the integrative
Lasso with penalty factors (IPF) [17], which consists in allowing
different penalty values for each data type. In TS-IPF-Lasso,
the ratios between these penalty values are determined in a
first step (roughly speaking, by applying standard Lasso and
averaging the resulting coefficients).

Priority-Lasso [3] is another Lasso-based method designed
for the incorporation of different groups of variables. Often,
clinical researchers prioritize variables that are easier, cheaper
to measure or known to be good predictors of the outcome. The
principle of priority-Lasso is to define a priority order for the
groups of variables. Priority-Lasso then successively fits Lasso-
regression models to these groups, whereby at each step, the
resulting linear predictor is used as an offset for the Lasso model
fit to the next group. For the study at hand, however, we do not
have any substantial domain knowledge, so we cannot specify
a meaningful priority order. We therefore alter the method into
a TS procedure similar to the TS IPF-Lasso. More precisely, we
order the groups of variables according to the mean absolute
values of their coefficients fitted in the first step by separately
modeling each group. This ordering is used as a surrogate for a
knowledge-based priority order.

Sparse group Lasso (SGL) [18] is another extension of the
Lasso, capable of including group information. The method
incorporates a convex combination of the standard Lasso
penalty and the group-Lasso penalty [19]. This simultaneously
leads to sparsity on feature as well as on group level.

Adaptive group-regularized ridge regression (GRridge) [20]
is designed to use group specific co-data, e.g. p-values known
from previous studies. Multi-omics group structure may also be
regarded as co-data, although the method was originally not
intended for this purpose. It is based on ridge regression, which
uses a L2-based penalty term. Feature selection is achieved post

hoc by exploiting the heavy-tailed distribution of the estimated
coefficients, which clearly separates coefficients close to zero
from those which are further away [20].

Boosting-based methods

Boosting is a general technique introduced in the context of clas-
sification in the machine learning community, which has then
been revisited in a statistical context [21]. Statistical boosting can
be seen as a form of iterative function estimation by fitting a
series of weak models, so-called base learners. In general, one is
interested in a function that minimizes the expected loss when
used to model the data. This target function is updated itera-
tively, with the number of boosting steps mstop, i.e. the number
of iterations, being the main tuning parameter. This parameter,
together with the so-called learning rate, which steers the contri-
bution of each update, also leads to a feature selection property.
In this study, we use two different boosting approaches.

Model-based boosting [22], the first variant, uses simple lin-
ear models as base learners and updates only the loss minimiz-
ing base learner per iteration. The learning rate is usually fixed
to a small value such as 0.1 [23].

Likelihood-based boosting [24], in contrast, uses a penalized
version of the likelihood as loss and the shrinkage is directly
applied in the coefficient estimation step via a penalty parame-
ter. It is also an iterative procedure: the updates of previous iter-
ations are included as an offset to make use of the information
gained.

Random forest-based methods

Random forest is a tree-based ensemble method introduced by
Breiman [25]. Instead of growing a single classification or regres-
sion tree, it uses bootstrap aggregation to grow several trees and
aggregates the results. Random forest was later expanded to
survival time data [26]. For each split in each tree, the variable
maximizing the difference in survival is chosen as the best
feature. Eventually, the cumulative hazard function is computed
via the Nelson–Aalen estimator in each final node in each tree.
For prediction, these estimates are averaged across the trees to
obtain the ensemble cumulative hazard function.

Block forest [27] is a variant modifying the split point selec-
tion of random forest to incorporate the group structure (or
‘block’ structure, hence the name of the method) of multi-omics
data. It can be applied to any outcome type for which a random
forest variant exists.

Benchmark experiment
Study design

Our study is intended as a neutral comparison study; see
[28, 29] for an exact definition and discussions of this concept.
Firstly, we compare methods that have been described elsewhere
and do not aim at emphasizing a particular method. Secondly,
we tried to achieve a reasonable level of neutrality, which we
disclose here following the example of Couronné et al. [30]. As
a team, we are approximately equally familiar with all classes
of methods. Some of us have been involved in the development
of priority-Lasso, IPF-Lasso and block forest. As far as the other
methods are concerned, we contacted the person listed in CRAN
as package maintainer via email and asked for an evaluation of
our implementation including the choice of parameters.
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A further important aspect of the study design is the choice
and number of datasets used for the comparison, since the per-
formance of prediction methods usually strongly varies across
datasets. Boulesteix et al. [29] compare benchmark experiments
to clinical trials, where methods play the role of treatments
and datasets play the role of patients. In analogy to clinical
trials, the number of considered datasets should be chosen
large enough to draw reliable conclusions, and the selection
of datasets should follow strict inclusion criteria and not be
modified after seeing the results; see the Datasets section for
more details on this process. Finally, a benchmark experiment
should be easily extendable (and, of course, reproducible). It is
almost impossible to include every available method in a single
benchmark experiment, and it should also be easy to compare
methods proposed later without re-running the full experiment
and without too much programming effort. For this reason, we
use the R package mlr [31], which offers a unified framework for
benchmark experiments and makes them easily extendable and
reproducible.

Technicalities and implementation

The benchmark experiment is conducted using R 3.5.1 [32]. We
compare the 13 learners described in the Method configurations
section on 18 datasets (see the Datasets section). The code
to reproduce the results is available on GitHub (https://github.
com/HerrMo/multi-omics_benchmark_study), the data can be
obtained from OpenML [33, 34] (https://www.openml.org/). To
further improve reproducibility, the package checkpoint [35] is
used. Because the computations are time demanding but par-
allelisable, the package batchtools [36] is used for parallelisation.
The package mlr [31], used for this benchmark experiment, offers
a simple framework to conduct all necessary steps in a unified
way.

The focus of our study is the general performance of
prediction methods. In this context, cross-validation (CV) is a
standardly used procedure to obtain estimates of the prediction
performance of a prediction method when applied to data with
similar characteristics as the training data. We use 10 × 5-fold
CV for datasets with a size less than 92 MB (11 datasets) and
5 × 5-fold CV for datasets with a size larger than 112 MB
(7 datasets) to keep computation times feasible.

The proportion of patients with events is very small for
some datasets. We avoid training sets with few or even zero
events using stratification by event status, i.e. the resulting
training sets have comparable censoring rates. Moreover, hyper-
parameter tuning is performed. This could in principle also
be implemented via mlr, but in this study, the tuning proce-
dures provided by the specific packages are used. We denote
the resampling strategy used for hyper-parameter tuning inner-
resampling and the repeated CV used for performance assess-
ment outer-resampling. For inner-resampling we use out-of-bag
(OOB) samples for random forest learners and 10-fold CV for the
other learners.

Performance evaluation

The performance is evaluated in three dimensions. First of all,
the prediction performance is assessed via the integrated Brier
score and the C-index suggested by Uno et al. [37] (hereinafter
simply denoted as ibrier and cindex). The time range for calcula-
tion is set to the maximum event time of the individual CV test
set. While the cindex only measures discriminative power, the
ibrier also measures calibration. Moreover, the cindex, unlike the

ibrier, is not a strictly proper scoring rule [38]. The ibrier should
therefore be used as the primary measure for prediction accu-
racy. If, however, one is interested in ranking patients according
to their risk, the cindex is also a valid measure. Ranking the
patients according to their risks is relevant from a practical
point of view because in many applications of risk prediction,
the goal is to assign the patients to fixed, ordered risk classes.
Another reason we included the cindex as a secondary measure
in our study is that it is routinely used as a standard measure
in benchmarking, thus allowing easier comparison with other
studies.

The second dimension is the sparsity of the resulting models,
which has two aspects: sparsity on the level of variables and
sparsity on group level. The latter refers to whether variables
of only some groups are selected. Sparsity on feature level, in
contrast, refers to the overall sparsity, i.e. the total number of
selected features. As random forest does not perform variable
selection, it is not assessed in this dimension. Computation
times are considered as a third dimension.

Another important aspect is the different use of group
structure information. Some of the methods do not use any
such information, some favor clinical data over molecular
data, and some differentiate between all groups of variables
(i.e. also between omics groups). Thus, the differences in
performance might not only result from using different
prediction methods. They may also arise from the way in
which the group structure information is included. Therefore,
comparability in terms of predictive performance is only given
for methods that use the same strategy to include group
information: (i) naive methods not using the group structure;
(ii) methods using the group structure and not favoring clinical
features; (iii) methods using the group structure by favoring
clinical features, where we subsume methods favoring clinical
and not distinguishing molecular covariates and methods
favoring clinical and additionally also distinguishing molecular
covariates.

Method configurations

Following the terminology of the package mlr [31], we denote
a method configuration as a ‘learner’. There may be several
learners based on the same method. An overview of learners
considered in our benchmark study is displayed in Table 1, while
the full specification is given in the paragraph devoted to the
corresponding method. In the following, the R packages used to
implement the learners can be found in parentheses after the
paragraph heading.

Penalized regression-based learners

Lasso (glmnet [39, 40]). The penalty parameter λ is chosen via
internal 10-fold CV. No group structure information is used.

SGL (SGL [41]). The model is fit via the cvSGL function. Tuning of
the penalty parameter λ is conducted via internal 10-fold CV. The
parameter α steering the contribution of the group-Lasso and the
standard Lasso is not tuned and set to the default value 0.95, as
recommended by the authors [18]. All other parameters are set
to default as well.

TS IPF-Lasso (ipflasso [42]). The penalty factors are selected in
the first step by computing separate ridge regression models
for every feature group and averaging the coefficients within
the groups by the arithmetic mean. These settings have shown
reasonable results [16]. The choice of the penalty parameters λm
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Table 1. Summary of learners used for the benchmark experiment.

Learner Method Package::function Tuning

Lasso Standard Lasso glmnet::cv.glmnet 10-f-CV
ipflasso∗ TS IPF-Lasso ipflasso::cvr.ipflasso 10-f-CV
prioritylasso∗ Priority-Lasso priortiylasso::prioritylasso 10-f-CV
prioritylasso favoring∗ Priority-Lasso priortiylasso::prioritylasso 10-f-CV
grridge∗ GRridge GRridge::grridge 10-f-CV
SGL∗ SGL SGL::cvSGL 10-f-CV
glmboost Model-based boosting mboost::glmboost 10-f-CV
CoxBoost Likelihood-based boosting CoxBoost::cv.CoxBoost 10-f-CV
CoxBoost favoring∗ Likelihood-based boosting CoxBoost::cv.CoxBoost 10-f-CV
ranger Random forest tuneRanger::tuneMtryfast OOB
blockForest∗ Block forest blockForest::blockfor OOB
Clinical only Cox model survival::coxph No
Kaplan–Meier Kaplan–Meier estimate survival::survival No

The use of group structure information is indicated with ∗.

is conducted using 5-fold-CV in the first step and 10-fold CV in
the second.

Priority-Lasso (prioritylasso [43]). The priority order is deter-
mined through a preliminary step realized in the same way
as in the first step of TS IPF-Lasso. The priority-Lasso method
takes into account the group structure. Even though the version
with cross-validated offsets delivers slightly better prediction
results [3], the offsets are not estimated via CV in order to not
increase the computation times further. To select the parameter
λ in each step of priority-Lasso, 10-fold CV is used.

Priority-Lasso favoring clinical features (prioritylasso [43]). The set-
tings are the same as before, except that the group of clinical
variables is always assigned the highest priority. The preliminary
step only determines the priority order for the molecular groups.
The clinical variables are used as an offset when fitting the
model of the second group. Furthermore, the clinical variables
are not penalized (setting parameter block1.penalization = FALSE).

GRridge (GRridge [44]). This method was not originally intended
for the purpose of including multi-omics group structure but
is capable of doing so. To better fit the task at hand, a spe-
cial routine was provided by the package author in personal
communication. In addition, the argument selectionEN is set to
TRUE so post-hoc variable selection is conducted, and maxsel, the
maximum number of variables to be selected, is set to 1000.

Boosting-based learners

Model-based boosting (mboost [45]). Internally, mlr uses the func-
tion glmboost from the package mboost and sets the family argu-
ment to CoxPH(). Furthermore, the number of boosting steps
(mstop) is chosen by a 10-fold CV on a grid from 1 to 1000 via cvrisk.
For the learning rate ν the default value of 0.1 is used. Group
structure information is not taken into account.

Likelihood-based boosting (CoxBoost [46]). The maximum number
of boosting steps maxstepno is set to default, i.e. 100. Again, mstop is
determined by 10-fold CV. The penalty λ is set to default and thus
computed according to the number of events. No group structure
information is used.

Likelihood-based boosting favoring clinical features (CoxBoost [46]).
The settings are the same as before. Additionally, group structure
information is used by specifying the clinical features as manda-
tory. These features are favored as in the case of priority-Lasso
by setting them as an offset and not penalizing them. Further

group information is not used, so the molecular data are not
distinguished.

Random forest-based learners

Random forest (ranger [48]). Tuning of mtry is conducted via
the tuneMtryfast function of package tuneRanger. The minimal
node size is 3 (the ranger default settings). The other hyper-
parameters are set to default as well. Note that we also investi-
gated the randomForestSRC [47] implementation of random forest,
which leads to comparable results, but worked only on Windows
and not on Ubuntu if parallelization was conducted via package
batchtools. We thus show only the results obtained with ranger.

Block forest (blockForest [49]). Block forest is a random forest
variant able to include group structure information. The imple-
mentation is based on ranger. With function blockfor the models
are fit via the default settings.

Reference methods

The clinical reference model is a Cox proportional hazard model,
computed via the coxph function of the survival package [50]
and only uses clinical features. The Kaplan–Meier estimate is
computed via survfit from the same package.

Datasets

From the cancer datasets that have been gathered by the TCGA
research network (http://cancergenome.nih.gov), we selected
those with more than 100 samples and five different multi-
omics groups, which resulted in a collection of datasets for
26 cancer types (a list of these 26 cancer types is provided
in the supplement). As described below, further preprocessing
eventually lead to 18 usable datasets. Table 2 gives an overview
of these 18 datasets and the abbreviations used to reference
them within the study.

For each cancer type, there are four molecular data types and
the clinical data type, i.e. five groups of variables. The molecular
data types comprise cnv, rna, miRNA expression (mirna) and
mutation. It should be noted that the choice of data types was
motivated by practical issues to a certain extent. In particular,
methylation data would have been interesting to consider but
could not be included due to their massive size, which would
have led to long downloading and computation times. However,
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Table 2. Summary of the datasets used for the benchmark experiment. The third to the seventh column show the number of features in the
feature group, the eighth column the total amount of features (p). The last three columns show, in this order, the number of observations (n),
the number of effective cases (n_e) and the ratio of the number of events and the number of observations (r_e).

Dataset Cancer Clin. cnv mirna mutation rna p n n_e r_e

BLCA Bladder urothelial 5 57964 825 18577 23081 100455 382 103 0.27
BRCA Breast invasive C. 8 57964 835 17975 22694 99479 735 72 0.10
COAD Colon adenocarcinoma 7 57964 802 18538 22210 99524 191 17 0.09
ESCA Esophageal C. 6 57964 763 12628 25494 96858 106 37 0.35
HNSC Head–neck squamous CC. 11 57964 793 17248 21520 97539 443 152 0.34
KIRC Kidney renal clear CC. 9 57964 725 10392 22972 92065 249 62 0.25
KIRP Cervical kidney RP. CC. 6 57964 593 8312 32525 99403 167 20 0.12
LAML Acute myeloid leukemia 7 57962 882 2176 29132 90162 35 14 0.40
LGG Low grade glioma 10 57964 645 9235 22297 90154 419 77 0.18
LIHC Liver hepatocellular C. 11 57964 776 11821 20994 91569 159 35 0.22
LUAD Lung adenocarcinoma 9 57964 799 18388 23681 100844 426 101 0.24
LUSC Lung squamous CC. 9 57964 895 18500 23524 100895 418 132 0.32
OV Ovarian cancer 6 57447 975 13298 24508 96237 219 109 0.50
PAAD Pancreatic AC. 10 57964 612 12392 22348 93329 124 52 0.42
SARC Sarcoma 11 57964 778 10001 22842 91599 126 38 0.30
SKCM Skin cutaneous M. 9 57964 1002 18593 22248 99819 249 87 0.35
STAD Stomach AC. 7 57964 787 18581 26027 103369 295 62 0.21
UCEC Uterine corpus EC. 11 57447 866 21053 23978 103358 405 38 0.09

Abbreviations: C. indicates carcinoma; CC., cell carcinoma; PP, renal papilla; AC., adenocarcinoma; M., melanoma; EC., endometrial carcinoma.

such compromises for practical reasons are inevitable and other
data types could have been considered.

The number of variables differs strongly between groups but
is similar across datasets. Most molecular features (about 60
000) belong to the cnv group but only a few hundred features
to mirna, the smallest group. There is a total of about 80 000 to
103 000 molecular features for each cancer type.

Of the 26 available datasets, three were excluded because
they did not have observations for every data type. Furthermore,
since the outcome of interest is survival time, not only the
number of observations is crucial but, most importantly, the
number of events (deaths), which we call the number of effective
cases. A ratio of 0.2 of effective cases is common [10]. The five
datasets that had less than 5% effective cases were excluded.

Since the majority of the clinical variables had missing val-
ues, the question arose of which to include for a specific dataset
while saving as many observations as possible. As we did not
have any domain knowledge, we adopted a two-step strategy.
Firstly, an informal literature search was conducted to find stud-
ies where the specific cancer type was under investigation.
Variables mentioned to be useful in these studies were included,
if available. Secondly, we additionally used variables that were
available for most of the cancer types. These comprised sex,
age, histological type and tumor stage. These were included as
standard, if available. Of course, sex was not included for the
sex-specific cancer types.

Finally, note that our study considers only one dataset per
cancer type, i.e. per prediction problem. It evaluates the can-
didate learners using CV, which reasonably estimates the pre-
diction performance that would be obtained for a population
with similar characteristics (in statistical terms, with similarly
distributed data). From a practical clinical perspective, it is cru-
cial to evaluate prediction rules on independent external data
before implementing them in practice. The resulting estimated
prediction performance is usually less impressive than the CV
estimate [51]. However, although some discrepancies between
the rankings can be observed, the difference between rankings is
less prominent than the difference between errors. We assume

that methods performing best in CV also range among the best
ones when applied to external datasets, which is compatible
with the extensive results presented in Bernau et al. [52].

Results
Failures and refinement of the study design

As a consequence of the repeated 5-fold CV, 11 · 10 · 5 + 7 · 5 ·
5 = 725 models are fit for each learner in total. Some of these
model fittings—i.e. some CV iterations—were not successful.
This is common in benchmark experiments of larger scale [53].
Such a failure does not affect the other 4 CV iterations and the
remaining nine repetitions of CV but leads to missing values for
the assessment measures for the failing iterations, which have
to be handled when computing averaged measures. To cope with
such modeling failures, we follow strategies described previously
[53, 54]. If a learner fails in more than 20% of the CV iterations
for a given dataset, we assign (for the failing iterations) values of
the performance measures corresponding to random prediction
(0.25 for ibrier and 0.5 for cindex) and the mean of the other
iterations for the computation time and the number of selected
features. If a learner fails in less than 20%, the performance
means of the successful iterations are assigned for all measures.
See Table 4 for the learners’ failure rates averaged over the
datasets.

Modeling failures are mainly learner related, that is, there
are no datasets for which many or all learners are unstable, but
individual learners are particularly unstable. For every dataset,
there are at least seven learners yielding no failures. In contrast,
learners Lasso, CoxBoost and glmboost are rather unstable, with
31.2%, 28.6% and 19.7% failures in total. IPF-Lasso is more stable
overall, but also considerably unstable for specific datasets. The
other learners are very stable, with not a single failure for the
random forest variants, the reference methods and CoxBoost
favoring. Dataset specific failure rates can be taken from the
tables in the supplement, which show the learner performances
like in Table 4 broken down by dataset.
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Table 3. Performance of SGL on four small datasets. Column ‘All’ represents the total number of selected features, the subsequent columns the
numbers of selected features of the respective groups.

Data cindex ibrier Time All clin cnv mirna rna mut

LAML 0.496 0.231 1.9 8149 0.5 7822 4.7 0 323
LIHC 0.533 0.198 9.0 3617 0.3 3250 28 264 75
PAAD 0.650 0.255 4.5 1483 3.2 62 30 12 1375
SARC 0.629 0.278 7.5 3081 2.7 1906 51 40 1082
mean 0.58 0.24 5.7 4083 1.7 3260 28 79 714

Besides such modeling failures, more general issues related
to usability occurred while conducting the experiment. First
of all, using SGL with the considered large numbers of fea-
tures always leads to a fatal error in R under Windows, but not
using the Linux distribution Ubuntu 14.04. More importantly, the
extremely long computation times for SGL were problematic.
Since we received no feedback from the authors, we used the
standard settings. These lead to computations lasting several
days for one single model fit for large datasets. Altering some
of the parameters did not strongly reduce the computational
burden. Running the whole experiment as planned was thus not
possible for SGL. Here, we briefly present the results of SGL which
could be obtained based on four of the smallest datasets. For the
rest of the study we exclude SGL from the analysis. On average,
over all iterations and the four datasets, SGL leads to a cindex of
0.58 and an ibrier of 0.24. The resulting models are neither sparse
on feature level, with an average of 4083 selected features, nor
on group level. The mean computation time of 5.7 h for one CV
iteration confirms the problem of extremely long computation
times. In comparison, the next slowest method needs 1.2 h for
one iteration, on average over all datasets. Table 3 shows the
performance values of SGL for each of the four datasets and the
mean values.

Computation time

Table 4 shows the average performance measures for every
method and is ordered by the ibrier. All values are obtained by—
firstly—averaging over the outer-resampling CV iterations and—
secondly—averaging over the datasets. For the methods not
yielding model coefficients the corresponding cells contains ‘-’.

The ninth column of Table 4 displays the mean computation
time. The computation times are measured as the time needed
for model fitting (training time). The fastest procedures are stan-
dard Lasso and ranger, followed by glmboost and the CoxBoost
variants. The three penalized regression methods using group
structure (IPF-Lasso, priority-Lasso, GRridge) are about two to
three times slower, with GRridge being the fastest of the three
methods. Of the two prioritylasso variants the one favoring clin-
ical features is a little slower. Finally, blockForest is the slowest
method.

Of course, the computation times depend on the size of
the datasets. Figure 1 displays the mean computation time of
one outer-resampling iteration for the different learners and
datasets. The datasets are ordered from smallest (LAML) to
largest (BRCA).

The long computation times of priority-Lasso and IPF-Lasso
for COAD and KIRP are notable. COAD and KIRP are among the
smaller datasets with 17 (9%) and 20 (12%) events, respectively.
Generally, computation times vary more over the CV iterations
for these methods. For KIRP and COAD this variation is partic-
ularly strong, with individual model fittings taking up to 50 h.

However, the CV iterations which lead to these extreme compu-
tation times for IPF-Lasso and priority-Lasso, lead to modeling
failures for the unstable learners Lasso, glmboost and CoxBoost.
That means, especially priority-Lasso and to lesser extent
IPF-Lasso are more stable for particular CV iterations than
the unstable learners, but this comes at the price of increased
computation times. Note, moreover, all Lasso variants rely on
the same implementation of Lasso (glmnet). The more specific
methods improve the Lasso approach in terms of stability,
because where standard Lasso fails, often the more specific
variants do not.

Model sparsity

To assess sparsity, the number of nonzero coefficients of the
resulting model of each CV iteration is considered. As random
forest models do not yield such coefficients, this aspect is not
assessed for random forest variants.

Sparsity on the level of variables

Sparsity in terms of the number of included variables is par-
ticularly interesting for practical purposes, since sparse models
are easier to interpret and to communicate. On average, as
Table 4 shows, ipflasso leads to the sparsest models with an
average of seven variables, followed by CoxBoost with on average
10 variables. CoxBoost favoring and Lasso are also reasonably
sparse (13, 16), but the variability is higher for Lasso (Figure 2).
glmboost, prioritylasso and prioritylasso favoring yield models
with more than 20 features (22, 26, 30). Least sparse is grridge;
the average grridge model size (984) is close to the maximum
number of features to be selected (maxsel = 1000). grridge seems
not to be able to appropriately select variables in this setting
(recall that it is not intended to do so).

Sparsity on group level

Table 4 (see also Figure 1 in the supplement) shows that grridge
and priority-Lasso choose variables from all groups and are
thus not sparse on group level. Among the other methods, IPF-
Lasso yields strong sparsity on group level. Mostly clinical fea-
tures are selected. Furthermore, with boosting variants CoxBoost
and glmboost and with standard Lasso no clinical features are
selected. CoxBoost favoring does not select mirna features. IPF-
Lasso does not include cnv and rna features. This exemplifies the
problem of methods treating high- and low-dimensional groups
equally. As already pointed out, due to their low dimension,
clinical variables get lost within the huge number of molecular
variables. It becomes obvious that this also applies for some
of the molecular variables. The mirna group is, in comparison
with the other molecular groups, lower dimensional with 585 to
1002 features. Learners which do not consider group structure
fail to include clinical variables and include at most one mirna
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variable. CoxBoost favoring, which differentiates clinical and
molecular variables, does not select mirna features. In contrast,
learners taking into account the multi-omics group structure
generally include variables of both lower dimensional groups.
Using the group structure thus prevents low-dimensional groups
from being discounted.

Prediction performance

Overview and main findings

Figure 2 shows the distributions of the values of the performance
metrics across the datasets. Again, grridge is excluded from the
sparsity panel. Three important findings can be highlighted.
First of all, regarding Figure 2, most of the learners perform
better than the Kaplan–Meier estimate (indicated by the dashed
horizontal line). This indicates that using the variables is, in
general, useful. Only Lasso performs worse than the Kaplan–
Meier estimate (based on the ibrier). Secondly, only blockForest
outperforms the reference clinical Cox model (red horizontal
line), which stresses the importance of the clinical variables for
these datasets. Finally, methods taking into account the group
structure in some way in general outperform the naive methods.

Comparing prediction methods

All analyses in this section refer to Table 4.
Naive methods The learners CoxBoost, glmboost, ranger and

standard Lasso are fit with the naive strategy. In general, the
results are not consistent over the two measures. With regards
to the ibrier, likelihood-based boosting performs best. Moreover,
model-based boosting performs better than Lasso but gets out-
performed by random forest which is close to likelihood-based
boosting. According to the cindex, random forest performs best
followed by likelihood-based boosting and Lasso. Model-based
boosting performs the worst. All methods are at least slightly
better than the Kaplan–Meier estimate. To sum up, although the
results differ depending on the considered measure, random
forest shows a tendency to outperform the other methods, since
it is among the best methods based on the ibrier and performs
best based on the cindex.

Methods not favoring clinical features The learners block
forest, ipflasso, prioritylasso and grridge use the group structure
but do not favor clinical features. The random forest variant
blockForest outperforms the other methods. It performs better
on average than any other method based on both measures.
Among the penalized regression methods, IPF-Lasso performs
best according to the ibrier and priority-Lasso according to the
cindex. GRridge ranks third according to the ibrier and second
according to the cindex. Moreover, priority-Lasso and GRridge
perform equal to or even worse than the Kaplan–Meier estimate
based on the ibrier. Since IPF-Lasso yields the sparsest models,
it might be preferable when sparsity is important.

Methods favoring clinical features There are two learners
favoring clinical features: CoxBoost favoring and prioritylasso
favoring. The results are unambiguous with CoxBoost favoring
performing better than prioritylasso favoring. Furthermore, both
learners perform better than the Kaplan–Meier estimate based
on the cindex, but only CoxBoost favoring performs better than
the Kaplan–Meier estimate based on the ibrier. Thus, according
to these findings, likelihood-based boosting yields better results
than priority-Lasso when clinical variables are favored, even
though priority-Lasso here further distinguishes the molecular
data.
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Figure 1. Computation time. (A) Computation times in seconds. (B) Computation times in log(seconds). The datasets are ordered form smallest (LAML) to largest (BRCA).

However, when comparing the described performances—
especially if based on the aggregated results in Table 4—it is
very important to consider the heterogeneity over the datasets.
As the standard deviations and confidence intervals in Table 4
and the boxplots in Figure 2 show, the performance of the
methods varies strongly over the datasets (the confidence
intervals are obtained by using the learners’ average values
over the CV iterations as observations, i.e. one observation
per dataset). The dataset specific learner performances are
depicted in the supplementary tables. Moreover, paired two-
sided t-tests comparing, for example, blockForest with CoxBoost
favoring and the clinical only model show no statistically
significant differences in performance with p-values of 0.81
and 0.86 (cindex) and 0.95 and 0.78 (ibrier). For all t-tests in the
study, the normal distribution assumption was checked with
Shapiro–Wilk tests and Q-Q plots. Thus, considering the small
differences in performance and the variability of the method
performances across datasets, conclusions about the superiority
of one method over another should be treated with great
caution.

Using multi-omics data

In the first part of this section, we summarize our results regard-
ing the added predictive value of multi-omics as a by-product of
our benchmark study, before eventually focusing on the method-
ological comparison of the different approaches of taking the
structure of the clinical and multi-omics variables into account.

Added predictive value To assess the added predictive value
of the molecular data, we follow approach A proposed by
Boulesteix and Sauerbrei [2], thus comparing learners obtained
by only using clinical features and combined learners, i.e.
learners using clinical and molecular variables. Since it is
emphasized that for this validation approach the combined
learners should not be derived by the naive strategy, these
learners are not considered here.

In general, the findings indicate that the multi-omics data
may have the potential to add predictive value. First of all,
blockForest outperforms the Cox model based on both measures.
Secondly, as Table 5 shows, there are several datasets for which
there is at least one learner that takes the group structure into
account and outperforms the clinical learner. For some of the
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Figure 2. Performance of the learners. A: cindex. B: ibrier. C: total number of selected features; only learners yielding model coefficients are included and grridge is

excluded since it yields models on a much larger scale. The solid red and dashed black horizontal lines correspond to the median performance of the clinical only model

and the Kaplan–Meier estimate, respectively. Colors indicate membership to one of the general modeling approaches: penalized regression (blue), boosting (orange),

random forest (green), reference methods (white). Abbreviations: KM indicates Kaplan–Meier; Lasso, Lasso; glmB, glmboost; CoxB, CoxBoost; CoxPH, clinical only; prior,

priority-Lasso; prior_f, priority-Lasso favoring; IPF, ipflasso; CoxB_f, CoxB favoring; GRr, grridge; BF, blockForest; ranger, ranger.

datasets, e.g. LAML and COAD, the performance differences are
substantial. Thus, using additional molecular data leads to better
prediction performances in some of the considered cases. On the
other hand, it must be taken into account that in the other cases
the differences are small and, again regarding the confidence
intervals, one has to be careful when drawing conclusions about
the superiority over the Cox model. Moreover, for six datasets the
Cox model does not get outperformed by methods which use the
omics data. This raises serious concerns regarding a beneficial
effect of the omics data as far as the considered TCGA data are
concerned.

Including group structure In general, the results suggest
that using the naive strategy of treating clinical and molecular

variables equally leads to a worse performance in comparison
to methods that take the group structure into account. Table 6
shows the mean performance of the naive learners and the
structured learners (both favoring and not favoring the clinical
features) by dataset. That is, we compare methods using multi-
omics data and additionally its structure (structured learners:
ipflasso, priortylasso variants, grridge, CoxBoost favoring,
blockForest) against methods using the multi-omics data but
not taking into account its structure (naive learners: Lasso,
ranger, CoxBoost, glmboost). The clinical only model and the
Kaplan–Meier estimate are not considered here. Each value is
computed as average over the naive respectively the structured
learners’ mean cindex and ibrier values. Only in five cases is
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Table 6. Comparing naive learners and structured learners. The
performance of structured learners, i.e. learners using the group
structure, and naive learners are compared for every dataset. The
cindex and ibrier columns show the mean performance values for
the corresponding dataset and learner types. Bold values indicate
better values for the given dataset.

ibrier cindex

Data Structured Naive Structured Naive

BLCA 0.198 0.201 0.618 0.595
BRCA 0.152 0.187 0.598 0.512
COAD 0.104 0.120 0.518 0.480
ESCA 0.235 0.234 0.506 0.477
HNSC 0.210 0.210 0.562 0.557
KIRC 0.154 0.156 0.721 0.690
KIRP 0.132 0.136 0.560 0.532
LAML 0.207 0.217 0.634 0.558
LGG 0.169 0.153 0.695 0.726
LIHC 0.171 0.167 0.566 0.559
LUAD 0.181 0.194 0.636 0.539
LUSC 0.220 0.229 0.501 0.457
OV 0.172 0.192 0.575 0.448
PAAD 0.196 0.203 0.663 0.588
SARC 0.197 0.180 0.667 0.624
SKCM 0.200 0.221 0.580 0.509
STAD 0.199 0.210 0.556 0.525
UCEC 0.103 0.119 0.646 0.538

the average performance of the naive learners better than the
average performance of the structured learners: regarding the
ibrier, the naive learners perform better than the structured
learners for four datasets; regarding the cindex, only for the LGG
dataset is the performance of the naive learners higher than
the performance of the structured learners. Unpaired, one-sided
t-tests for the four naive and the six structured learners, using
the mean performance values of the individual methods over
the datasets as observations, yield p-values of 0.1273 and 0.0002
for the ibrier and cindex, respectively.

In summary, if multi-omics data are used—although there
is a general concern regarding the usefulness of models using
multi-omics compared with simple clinical models—its struc-
ture should also be taken into account.

Favoring clinical features According to our findings, favor-
ing clinical variables leads to better prediction results. For
likelihood-based boosting, this is in line with the findings
of others (see [57] and the reference therein). Differentiating
the clinical variables from the molecular features strongly
increases the prediction performance of likelihood-based
boosting (CoxBoost and CoxBoost favoring), according to the
average cindex. Favoring clinical features raises likelihood-based
boosting from one of the worst to one of the best performing
methods. Moreover, our findings show this might also hold
for methods which use the multi-omics group structure. For
priority-Lasso the increase is not as strong, but still notable
when considering the cindex. Yet, the ibrier does not confirm
this.

Discussion
In general, one should be very careful when interpreting the
results of our benchmark experiment and drawing conclusions.
Most importantly, the findings highly depend on the consid-
ered prediction performance measure, as the method ranking

changes drastically between the two measures. For example,
CoxBoost performs poorly based on the cindex but performs
third best regarding the ibrier. These findings indicate that the
performance of a method may change dramatically if a differ-
ent performance measure is used for its assessment. Moreover,
according to ibrier, two methods perform better than the Cox
model (though only slightly), and six methods perform worse
than the Kaplan–Meier estimate. Generally, since the cindex only
measures discrimination and is not a strictly proper scoring rule,
the ibrier should be considered more important. In particular, if
prognostic accuracy is of interest, preference should be given to
the ibrier. However, given its interpretability, the cindex could be
preferred if risk classification is the main objective.

Another important aspect of the performance assessment is,
as shown in Figure 2 and Table 5, the variability across datasets.
The superiority of one method over the other strongly depends
not only on the considered performance measure but also, most
importantly, on the considered datasets. This stresses the impor-
tance of large-scale benchmarks, like this one, which use many
datasets. Since the variability between datasets is huge, we need
many datasets—a fact well known by statisticians performing
sample size calculations, which however tends to be ignored
when designing benchmark experiments using real datasets
[58]. If we had conducted our study with, say, 3, 5 or 10 datasets
(as usual in the literature), we would have obtained different—
more unstable—results.

Regarding prediction performance, blockForest outperforms
the other methods on average overall datasets. Moreover, it
is the only method which outperforms the simple Cox model
on average regarding both measures. The other methods using
the molecular data do not perform better than the simple Cox
model. The better prediction performance of blockForest, how-
ever, comes at the price of long computation times. Apart from
SGL, blockForest is the slowest method. The fastest learners,
standard Lasso and ranger, are about 10 times faster and block-
Forest is still 2 times slower than the next slowest learner
prioritylasso favoring. Moreover, like the standard random for-
est variant, it does not yield easily interpretable models, even
though the strengths of the variables can be assessed via the
variable importance measure(s) output as a by-product of the
random forest algorithms. Thus, taking the other assessment
dimensions into account, e.g. CoxBoost favoring clinical features
is very competitive. It is quite fast, leads to reasonably sparse
models at group and feature level and yields performances only
slightly worse than (cindex) or equal to (ibrier) blockForest.

From a practical perspective, even simpler modeling
approaches, such as a simple Cox model using clinical variables
only, might be preferable. This model is easily interpretable,
needs only a fraction of the computation time and, with a
mean cindex of 0.618 and a mean ibrier of 0.175, performs
only slightly worse than blockForest (0.620 and 0.172) and
comparable to or even better than all other methods. Note,
however, that blockForest also offers the possibility of favoring
clinical covariates using the argument always.select.block of the
blockfor function. Hornung and Wright [27] show that this can
improve the prediction performance of block forest considerably.
However, since this option was not yet available at the time of
conduction of the analyses performed for the current paper, we
were not able to consider this block forest variant here.

In general, conclusions about the superiority of one method
over the other with respect to the prediction performance must
be drawn with caution, as the differences in performance can be
very small and the confidence intervals often show a remarkable
overlap. Exemplary t-tests comparing blockForest with CoxBoost
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favoring and the Clinical only model showed no significant
differences in performance. Furthermore, we do not believe that
the recommendation of a single method is generally appropriate
because even if some methods have a better average perfor-
mance than others, the ranking between methods depends in
large part on the specific dataset used. On the other hand, if there
is no independent, external dataset available for performance
estimation it is also not advisable to try out too many methods
in practice because this increases the risk that the maximum
of the cross-validated performance estimates is optimistic [59]
and correction methods to adjust for this over-optimism are still
in their infancy [60]. In this situation, it is likely best to strike
a balance by taking into account the learners which perform
reasonably well. Our study identifies methods worth taking into
closer consideration in practice. Apart from the clinical model,
these are all methods which take the multi-omics structure into
account or favor the clinical covariates, as on average those
methods performed better than the naive methods not using the
group structure (note again, however, that we did not observe
statistically significant differences). A method should then be
chosen based on the methodology described in the paper using
the dataset at hand.

More generally, it should be noted that the choice of a method
should result from the simultaneous consideration of various
aspects beyond performance. If (i) performance is the main
criterion, (ii) the model is intended solely as a prediction tool, and
implemented, say, as a shiny application [61], and (iii) sparsity
and interpretability are not considered important, blockForest is
certainly a very good choice. Other methods may prove attrac-
tive in different situations. Finally, let us note that one of the
methods that did not perform very well in the present study
in terms of performance, priority-Lasso, may perform better
in practice when accurate prior knowledge on the groups of
variables is available, and allows the user to favor some of the
groups—a dimension that could not be taken into account in our
comparison study.

A potential limitation of our study is that the datasets were
already used by Hornung and Wright [27] in their comparison
study. Since they selected the most promising blockForest based
on this comparison study, our results may be slightly optimistic
regarding the performance of blockForest—a bias mechanism
that has been previously described [62]. More precisely, Hor-
nung and Wright [27] initially considered five different variants
of random forest taking the block structure into account and
identified the best-performing variant using a collection of 20
datasets including the 18 considered in our study. They named
this best-performing variant ‘block forest’. It is in theory possible
that part of the superiority of the selected ‘block forest’ variant
on the specific 20 datasets is due to chance. In this case, our
study, which uses 18 of these datasets again, would (slightly)
favor block forest. However, this over-optimism only exists if a
different one of the five Block Forest variants compared in the
Block Forest paper were the best in reality, i.e. if the superiority
of the Block Forest variant considered in our paper were just
the result of random fluctuations in the paper of Hornung and
Wright [27]. Given the fact that Hornung and Wright [27] used
a lot of datasets this is rather unlikely and it is plausible that
block forest is indeed the best option, in which case the over-
optimistic effect for our study can be ruled out. In addition,
although our study is based on data from the same cancer stud-
ies, there are several notable differences. Hornung and Wright
[27] included two additional datasets and did not use the same
sets of clinical variables as in our study. Furthermore, to reduce
the computational burden, they used only a subset of 2500

variables when groups had more than 2500 variables. Taking
all these aspects into account, it is unlikely that our study is
noticeably biased, although such a bias is possible in principle.
Regarding the advantage of favoring the clinical variables, it
is important to note that it strongly depends on the level of
predictive information contained in these variables. If clinical
variables contain less information than for the datasets used in
our analysis, favoring of these covariates might be less useful
than they were found to be in this study, or even detrimental.
While we strongly recommend considering favoring the clinical
variables, this should not necessarily be performed by default.

Another limitation of our study is that it is based on CV—as
usual in the context of large-scale benchmarking. We assume
that methods performing best in CV also range among the
best ones when applied to external datasets, which is compat-
ible with the results presented in Bernau et al. [52]. However,
in principle, differences may occur. For example, the perfor-
mance of methods tending to strongly overfit the training data is
expected to drop more when considering external data instead
of using CV than the performance of methods that do not
strongly overfit. These subtle issues could be addressed in future
studies using the recently suggested cross-study validation tech-
nique. This approach, however, requires the availability of sev-
eral external datasets for each cancer type that include exactly
the same prediction and outcome variables and consider com-
parable target populations. Currently, such data is simply not
available.

Extending the benchmark to further methods (e.g. methods
that do not rely on the proportional hazards assumption, which
are only represented by random forest in our study) and further
data pre-processing approaches as well as further datasets are
desirable. In the same vein, it may be interesting to consider
alternative procedures to handle model failures in the outer-
resampling process, which may lead to different results. There
is to date no widely used standardized approach to deal with
missing values in this context. This issue certainly deserves fur-
ther dedicated research. This benchmark experiment is designed
such that such extensions are easy to implement. Using the
provided code, further methods can be compared to the ones
included in this study.

Key Points
• For the collection of the datasets used in this study,

the standard Cox model only using clinical variables
is very competitive compared with complex methods
using multi-omics data. Among the investigated com-
plex methods, only block forest outperforms the Cox
model on average over all datasets, and the difference
is not statistically significant.

• If multi-omics data is used, its structure should be
used as well: on average it increases the predictive
performance and prevents low-dimensional feature
groups from being discounted.

• Favoring clinical variables over molecular data in-
creases the prediction performance of the investigated
methods on average.

• In general, the findings indicate that assessing and
comparing prediction methods should be based on a
large number of datasets to reach robust conclusions.

• Aside from the main results of the study, we also
observed that using multi-omics data can improve
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the performance of prediction methods for particu-
lar datasets, but the average performance was not
improved for the data investigated in our study.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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6. Over-optimism in Benchmark Studies and
the Multiplicity of Design and Analysis
Options when Interpreting their Results

Chapter 6 presents a study discussing the effects of analysis and design options on the results
of benchmark studies. For illustration, it builds on the benchmark study presented in Chapter
5 and extends the analysis of the results therein. An approach deploying multidimensional
unfolding is used to assess the impact of the different options.
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Abstract

In recent years, the need for neutral benchmark studies that focus on the com-

parison of methods coming from computational sciences has been increasingly

recognized by the scientific community. While general advice on the design

and analysis of neutral benchmark studies can be found in recent literature, a

certain flexibility always exists. This includes the choice of data sets and per-

formance measures, the handling of missing performance values, and the way

the performance values are aggregated over the data sets. As a consequence of

this flexibility, researchers may be concerned about how their choices affect

the results or, in the worst case, may be tempted to engage in questionable

research practices (e.g., the selective reporting of results or the post hoc modifi-

cation of design or analysis components) to fit their expectations. To raise

awareness for this issue, we use an example benchmark study to illustrate how

variable benchmark results can be when all possible combinations of a range

of design and analysis options are considered. We then demonstrate how the

impact of each choice on the results can be assessed using multidimensional

unfolding. In conclusion, based on previous literature and on our illustrative

example, we claim that the multiplicity of design and analysis options com-

bined with questionable research practices lead to biased interpretations of

benchmark results and to over-optimistic conclusions. This issue should be

considered by computational researchers when designing and analyzing their

benchmark studies and by the scientific community in general in an effort

towards more reliable benchmark results.
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1 | INTRODUCTION AND RELATED WORK

With the constant development of new methods in computational sciences (e.g., machine learning and bioinformatics),
it is becoming increasingly difficult for data analysts to keep pace with scientific progress and to select the most appro-
priate method for their data and research question out of the many existing approaches. This problem is addressed by
benchmark studies, which systematically analyze and compare the performance of several methods in different condi-
tions using simulated or real data sets.

In many cases, benchmark studies are performed as part of a paper introducing a new method, usually with the
intention to demonstrate the superiority of the new method over existing ones. Accordingly, they can be considered as
biased in favor of the newly proposed method and should be seen as an informal method comparison rather than a real
benchmark study (Boulesteix et al., 2013; Buchka et al., 2021; Norel et al., 2011). In contrast, so-called neutral bench-
mark studies are defined as benchmark studies that focus on the comparison itself and are ideally performed by reason-
ably neutral authors, that is, authors who (1) are equally experienced with all considered methods and (2) design and
analyze the study in a rational way (Boulesteix et al., 2017). These characteristics make neutral benchmark studies
essentially unbiased. Therefore, recommendations resulting from such studies are especially relevant both for method
users and developers (Boulesteix et al., 2018).

Regarding the appropriate design and analysis of benchmark studies, the available literature ranges from general
guidelines (Boulesteix, 2015; Weber et al., 2019) and statistical frameworks (Boulesteix et al., 2015; Demšar, 2006;
Eugster et al., 2012; Hothorn et al., 2005, all with focus on supervised learning), to recommendations for context-
specific benchmarks (e.g., Bokulich et al., 2020; Kreutz, 2019; Mangul et al., 2019; Zimmermann, 2020). However, for
many issues relevant in practice (e.g., the selection of data sets and performance measures), no concrete guidance or
methodology can be found. This means that researchers are usually faced with a high amount of flexibility when con-
ducting their benchmark study.

As a consequence, researchers who are aware of these issues, although making well-considered design and analysis
choices prior to conducting the benchmark study, might be concerned about how their choices affect the results. On
the other hand, the high amount of flexibility could tempt less aware researchers to engage in questionable research
practices (see John et al., 2012, in the context of applied research) when conducting their benchmark study. This
includes the selective reporting of results (e.g., reporting the results of only one performance measure although perfor-
mance was originally assessed by two measures) and the modification of specific design and/or analysis components of
the benchmark study after seeing the results (e.g., using performance measures other than those originally selected). Of
course, these practices are not questionable on their own. For example, it is fine to use an alternative performance mea-
sure if the current one does not produce meaningful results as long as the change of performance measure is adequately
justified and documented. However, practices such as the selective reporting of results or the post hoc modification of
benchmark components do become questionable if they are applied to fit the researchers' expectations or hopes. For
example, researchers might seek an “exciting” result (e.g., a clear-cut result suggesting a univocal winner as opposed to
vague tendencies) or have a specific presumption in mind that they want to be confirmed by the results (e.g., the superi-
ority of a certain method or class of methods that they are more familiar with or that has performed well in previous
benchmark studies).

The problem with such research practices is that they are likely to produce over-optimistic results, that is, results
with an optimistic bias towards the researchers' expectations and hopes. While we are convinced that very few
researchers have the actual intention to cheat (Ioannidis et al., 2014), it should not be understated that “even an honest
person is a master of self-deception” (Nuzzo, 2015), meaning that every researcher is at risk of engaging in questionable
research practices. Moreover, the non-neutrality that leads to such practices in the first place is difficult to avoid
completely and is likely to arise in a subconscious manner even in studies intended as neutral. Note also that the actual
neutrality of neutral benchmark studies can only be checked to a certain extent. For example, one may review the
authors' publication lists to identify the methods they are most familiar with, but this gives only a partial picture of
someone's (non-)neutrality.
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In application fields of statistics (e.g., medicine and psychology), the multiplicity of analysis strategies and the asso-
ciated risk of over-optimistic results are well-known issues (Hoffmann et al., 2021; Ioannidis, 2005; Simmons
et al., 2011) and terms such as “p-hacking” or “fishing expeditions” have been discussed by many (Head et al., 2015;
Wagenmakers et al., 2012). However, in methodological research including benchmark studies, this topic is covered
rather sparsely. Existing literature on the risk and prevention of over-optimism in benchmark studies is either limited
to general considerations in benchmarking guidelines (Boulesteix et al., 2017; Weber et al., 2019) or to benchmark stud-
ies that are performed as part of a paper introducing a new method (Boulesteix, 2015; Norel et al., 2011), which can be
transferred to neutral benchmark studies only to a limited extent. Similarly, the scarce literature that empirically inves-
tigates the effects of over-optimism in benchmark studies in a quantitative manner is either also devoted to the bias
affecting evaluations of a newly proposed method to other existing methods (Buchka et al., 2021; Jelizarow et al., 2010),
or focusing on the selection of data sets (MacIà et al., 2013; Yousefi et al., 2010).

In this paper, we illustrate and discuss the multiplicity of options regarding the design and analysis of neutral
benchmark studies based on real data sets, and examine its effect on the results. Note that although we focus on neutral
benchmark studies based on real data, our results are also relevant to benchmarks comparing new to existing methods
and, to some extent, benchmarks based on simulated data. We will empirically address the multiplicity of options and
its effects in a twofold approach. In the first step, in order to raise awareness of the multiplicity of possible results and
the over-optimism that may arise from questionable research practices, we use the results of a recently published
benchmark study to illustrate how variable the resulting method rankings are when different options for design and
analysis are considered. In the second step, we propose a framework based on multidimensional unfolding (Borg &
Groenen, 2005) that enables researchers to assess the impact of each choice on the method rankings. More precisely,
the framework allows to analyze when and how using alternative options for a specific choice affects the results and
can thus be an effective strategy to prevent biased interpretations and over-optimistic conclusions.

The exemplary study we will use throughout the paper to illustrate our proposed framework and the multiplicity of
possible options and results is a benchmark experiment by Herrmann et al. (2021) comparing the performance of 13 sur-
vival prediction methods based on 18 real so-called multi-omics” data sets. Note that our paper does not intend to ques-
tion the results of this study. Instead, it should be seen as extended analysis of the benchmark study, which by
assessing the multiplicity of results and examining the impact of each choice, makes the results of Herrmann
et al. (2021) even more reliable and meaningful.

While the framework proposed in this paper can be utilized by all researchers who conduct benchmark studies of
computational methods (e.g., in the fields of machine learning, data mining, statistics, etc.), the illustrated multiplicity
of results should ideally also raise awareness among the readers of such studies. The concepts and results presented in
this paper may therefore be useful for method developers and methodological researchers as well as applied researchers
and data analysts.

The remainder of this paper is structured as follows: we review and discuss a selection of design and analysis choices
in the context of benchmark studies in Section 2, and describe the design of the study as well as the principle of multi-
dimensional unfolding in Section 3. The results are presented in Section 4, which is followed by a discussion in Section 5
and concluding remarks in Section 6.

2 | EXAMPLES OF DESIGN AND ANALYSIS CHOICES IN BENCHMARK
STUDIES

2.1 | Setting

In this section, we discuss some of the choices that researchers are faced with when conducting a benchmark study
based on real data sets. In general, most choices that have to be made to conduct a benchmark study relate to (1) the
general aim of the study, (2) the design of the study, or (3) the analysis of the performance results; see the left part of
Figure 1. Choices that belong to the first category are, for instance, the choice of methods to be compared or the type of
outcome variable to be considered. However, in this paper, we focus on choices regarding the design of the study
(i.e., how the aim of the study is addressed) and the analysis of performance results (i.e., how the L�M matrix of
results generated by each considered performance measure is analyzed, where L and M are the numbers of data sets
and methods, respectively). It is important to note that these choices should ideally be made prior to conducting the
benchmark study. However, we conjecture that they are in practice often made post hoc, that is, after seeing the
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results—which can amount to questionable research practices. When reading a benchmark study, there is no way to
check when the choices were made.

For each choice, we will give concrete examples of possible options that will later be analyzed with regard to their
effect on the results; see the right part of Figure 1. For this purpose, we consider the benchmark study by Herrmann
et al. (2021) mentioned above. The authors compare the performance of M¼ 13 survival prediction methods (here den-
oted as BlockForest, Clinical Only, CoxBoost, CoxBoost Favoring, Glmboost, Grridge, Ipflasso, Kaplan–Meier, Lasso,
Prioritylasso, Prioritylasso Favoring, Ranger and Rfsrc) on L¼ 18 real multi-omics data sets. See the original paper
(Herrmann et al., 2021) for details on the methods, the benchmark experiment, and the results. We selected this study
as an example because some of the authors of the present paper were also involved in conducting the benchmark study

FIGURE 1 Examples of choices that researchers are usually faced with when conducting a benchmark study including options used in

the example benchmark study by Herrmann et al. (2021) (second column) and alternative options (third column). Options that are

considered in our illustration are colored in pink
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by Herrmann et al. (2021). We therefore had first hand insight about the issues Herrmann et al. (2021) faced while
designing and analyzing the benchmark study, which we believe to be reasonably representative of the important chal-
lenges encountered in most benchmark studies, as we will discuss in the remainder of this section.

2.2 | Design choices

2.2.1 | Data sets

The selection of data sets is an important design choice in every benchmark study, as the performances are usually
highly variable across data sets (Novianti et al., 2015; Weber et al., 2019). To make meaningful statements and prevent
the study from being underpowered, it is recommended to consider an adequate number of data sets (Boulesteix
et al., 2017). Although there are suggestions on how to calculate the minimum required number (Boulesteix
et al., 2015), it seems that the number of included data sets is usually based on practical criteria (such as availability or
computational cost) rather than statistical considerations (MacIà et al., 2013). Moreover, if the benchmark study aims
at external validation, the number of data sets that can be included in the benchmark study is usually limited, as for
many data sets there is often no comparable data set available that could be used for external validation.

Concerning the type of data sets, researchers should include data sets that are representative for the domain of inter-
est and diverse enough to make sure the methods can be evaluated under a wide range of conditions (Gatto et al., 2016;
Weber et al., 2019). Corresponding inclusion criteria for the data sets should be defined before conducting the bench-
mark study (Boulesteix et al., 2017). However, the decision on how the inclusion criteria are defined lies with the
researcher. In many benchmark studies, the exact search strategy or inclusion criteria are not reported transparently,
suggesting that in these cases, there might be no clearly defined inclusion criteria at all.

In the benchmark study by Herrmann et al. (2021), the authors selected all cancer data sets with five different
multi-omics groups and more than 100 samples from the TCGA research network (http://cancergenome.nih.gov). Addi-
tionally, they excluded data sets that did not have observations for every data type or less than 5% effective cases
(i.e., patients with event), resulting in a total of L¼ 18 data sets. However, depending on their research interest, Herr-
mann et al. (2021) could have set additional constraints. For example, if the authors had been interested in the perfor-
mance of the methods on data sets with a small number of effective cases, they could have adjusted the inclusion
criteria accordingly (e.g., set ne <30). The other way around, one may decide to ignore data sets with a small number of
events (e.g., set ne ≥ 30) because it is questionable if it makes sense to fit models in this case at all.

In this paper, we will address the multiplicity of possible options regarding the selection of data sets and its impact
on the results by considering subgroups of the original L¼ 18 data sets defined based on some of the data sets' charac-
teristics. The considered characteristics are the number of clinical variables (clin), the number of observations (n), the
number of effective observations (ne), and the number of variables (p). For each data set characteristic, we will only
consider data sets that are smaller ( < ) or greater or equal (≥ ) than the median value of the respective data set charac-
teristic over the 18 considered data sets. This results in eight groups with 8–10 data sets.

2.2.2 | Quantitative performance measure

Another important aspect of benchmarking is the choice of evaluation criteria, which usually includes both quantitative
performance measures and other measures such as runtime or qualitative features such as user-friendliness. Although
all these evaluation criteria are important, we will focus on quantitative performance measures in this paper.

The choice of performance measure is usually context-specific, that is, it depends on the type of methods and data
addressed in the benchmark study, as well as on the aspects of performance that are considered the most important by
the researcher (Morris et al., 2019; Weber et al., 2019). It is also often a nontrivial choice. For some tasks such as classifi-
cation, researchers are spoilt for choice considering the variety of measures they can choose from (e.g., accuracy, sensi-
tivity/specificity, area under the curve or F1-score), which makes decisions difficult (Mangul et al., 2019; Robinson &
Vitek, 2019). In contrast, for more complex situations they might have to design their own performance measures,
which can also be challenging (Weber et al., 2019). To provide a more complete picture of the methods' behavior and
avoid over-optimism, it can be useful to consider more than one performance measure (Norel et al., 2011). However,
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there is no way to objectively determine the adequate number of performance measures as this is highly context
dependent.

In the benchmark study by Herrmann et al. (2021), the primary performance measure is the integrated Brier score
(Graf et al., 1999; denoted as ibrier). Additionally, they consider Uno's C-index (Uno et al., 2011; denoted as cindex).
The authors justify their decision to use the ibrier as primary measure by the fact that cindex only measures the dis-
criminatory power and is not a strictly proper scoring rule (Blanche et al., 2019), while the ibrier additionally measures
calibration. However, they argue that if the main interest lies in ranking patients according to their risk, then the cindex
would also be a valid measure. Furthermore, they reason that it makes sense to include the cindex for the purpose of
comparability with other studies, since it is a widely used performance measure. Accordingly, depending on which
aspect of performance they would have considered more important, Herrmann et al. (2021) could have also used the
cindex as primary performance measure or only selected one of the two performance measures. In this paper, we will
thus compare the results of ibrier and cindex.

2.3 | Analysis choices

2.3.1 | Handling of missing performance values

Because of non-convergence or other computational issues, methods sometimes fail to output a result for a specific
data set. In the context of resampling procedures such as cross-validation or bootstrapping, the consequence is that
performance values may be missing for all or part of the resampling iterations for some data sets. This problem seems
to be common especially in benchmarks of larger scale (Bischl et al., 2013). While there is at least some literature
devoted to the selection of data sets and performance measures, the issue of missing performance values in some
combinations of data sets and methods is almost completely ignored. Many authors of benchmark studies do not
report how they handled missing performance values, and there is to our knowledge no corresponding guidance
available.

Bischl et al. (2013) mention several possible ad hoc options that could be applied if the missing values occur only on
a subset of resampling iterations, namely that missing values could be imputed by the worst possible value or by the
mean of the remaining performance values obtained for this combination of data set and method—although both
options are not ideal in their opinion. Another ad hoc option they actually use for their benchmark study is a mixed
strategy, where the imputed value is sampled from an estimated normal distribution of the remaining values if the
method fails in less than 20% of the resampling iterations. If the method fails in more than 20% of the resampling itera-
tions, the worst possible value is used for imputation. Herrmann et al. (2021), who use cross-validation as resampling
procedure and also face the problem of failing iterations, use a similar 20%-threshold rule as Bischl et al. (2013). How-
ever, instead of sampling from a normal distribution, they use the mean performance value of the remaining iterations
and instead of the worst possible value, they assign values of the performance measures corresponding to random pre-
diction (i.e., 0.25 for ibrier and 0.5 for cindex).

Since there seems to be no common agreement on how to handle missing values in this context, other sensible
options would also be justifiable. For example, missing values could be imputed by a formula that weights the mean
performance value and the random performance value used by Herrmann et al. (2021) according to the proportion of
missing values, thus avoiding the choice of an arbitrary threshold. For the ibrier, where 0 corresponds to the best possi-
ble value and 0.25 to random prediction, the imputed value for the considered combination of data set and method
could be defined as

ximpute ¼ 0:25� 0:25�
P

i ∈ Ixi
Ij j

� �
� 1� rð Þ, ð1Þ

where I is the set of indices of the non-failed iterations, xi is the ibrier value for iteration i∈I , and r is the proportion
of missing values. For two methods with the same mean value for non-failed iterations, the method with more missing
values obtains a worse performance value. Moreover, the imputed value is equal to 0.25 if a method has 100% failures
for a data set, or a mean value greater or equal than 0.25 (which makes sense since fluctuations above the value 0.25
corresponding to random prediction are not relevant). Another advantage of this weighted imputation procedure is that
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it reduces to the mean when the proportion of missing values r tends to 0—as intuitively expected. The corresponding
formula for the cindex can be found in the Supplementary material.

In this paper, we will consider four imputation methods that can be used to handle the issue of missing performance
values: the 20%-threshold rule used by Herrmann et al. (2021), the weighted method in Equation (1), imputation using
values that correspond to random prediction, and imputation using the average of the non-failed iterations.

2.3.2 | Aggregation of performance values across data sets

Although it is common to analyze the methods' individual performances across data sets (e.g., using graphical tools),
most benchmark studies ultimately aggregate the performance values over the data sets to generate an overall method
evaluation. This is done, for example, in the form of a ranking (often taking not only the rank order into account, but
also the aggregated performance values that generate these ranks) or a list of methods that show statistically significant
differences in performance. While there is much literature addressing statistical testing procedures in benchmark exper-
iments based on a single data set (Dietterich, 1998; Hothorn et al., 2005) or several data sets (Demšar, 2006; Eisinga
et al., 2017), there seems to be no consensus on how to generate an overall method ranking from several data sets,
which we will focus on in this section.

For example, the performance values can be aggregated using standard summary measures such as the mean,
median, minimum, maximum, or standard deviation (Mersmann et al., 2015). Since the distribution of performance
values can be considerably skewed, some authors advise against using the mean or median as aggregation method.
Instead, they recommend assigning ranks to the methods for each data set such that the best method in the
corresponding data set obtains rank 1 and the worst method rank M, where M is the number of considered methods
(Demšar, 2006; Hornik & Meyer, 2007). The resulting ranks are then usually aggregated using the mean
(e.g., Kibekbaev & Duman, 2016; Verenich et al., 2019) or, less often, the median (e.g., Orzechowski et al., 2018).

Other possible aggregation methods include counting the number of times a method performs best, often divided by
the number of data sets to obtain a value between 0 and 1 (e.g., De Cnudde et al., 2020; Fern�andez-Delgado et al., 2014;
Wu et al., 2020). Some of these authors suggest to not only consider the best performing method for each data set but
also the set of methods performing similarly to the best method. Accordingly, Fern�andez-Delgado et al. (2014) consider
the number of data sets in which a method achieves 95% or more of the maximum accuracy (i.e., the accuracy achieved
by the best performing method in that data set) divided by the total number of data sets. In the same vein, Wu
et al. (2020) estimate the probability of achieving good performance as the number of data sets for which the method is
among the top three methods divided by the total number of data sets.

Note that all aggregation methods presented so far are based on point estimates of the methods' performances.
Although less frequently used in practice, it is also possible to generate method rankings based on the results of statisti-
cal tests (i.e., pairwise comparisons indicating if Method 1 performs significantly better than Method 2) using consensus
rankings (Hornik & Meyer, 2007).

If more than one performance measure and/or other evaluation criteria (e.g., runtime) are considered, researchers
also have to decide if rankings arising from multiple criteria should be combined in some form (e.g., Eugster
et al., 2012) or should be considered separately, as suggested by Weber et al. (2019). Specifically, Weber et al. (2019) rec-
ommend to identify a set of consistently high performing methods based on the individual rankings and then highlight
the different strengths of each method.

Herrmann et al. (2021) aggregate the performance values based on ibrier and cindex using the mean and consider
each ranking separately. To assess the heterogeneity of performances across data sets, they also calculate the resulting
standard deviations and confidence intervals and perform paired t-tests. In our illustration, we will consider four aggre-
gation methods that can be used to generate method rankings: mean (as used by Herrmann et al., 2021), median, mean
rank, and number of times a method performs best. If two methods obtain the same rank according to the number of
times they perform best, they are additionally ranked by the number of times their performance lies within the 5% envi-
ronment of the best performing method. This applies if jxm�xbest j

xbest
<0:05, where xm denotes the performance (cindex or

ibrier) of method m and xbest the performance of the best performing method in the corresponding data set. We denote
this aggregation method (i.e., counting the number of times a method performs best and the number of times it lies
within the 5% environment as secondary ranking method) as best0.05.

Note that we will focus on the ranks resulting from each aggregation method instead of the aggregated performance
values that generate these ranks since the four aggregation methods have different scales (cindex/ibrier for mean and
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median, mean ranks for mean rank and counts for best0.05), which would require appropriate normalization to compare
them in a meaningful way. While this normalization would be specific to the type of considered evaluation criteria and
aggregation methods, ranks can be generated in almost every benchmark study, which is why they are used in this illustra-
tive example. Moreover, since we only evaluate the results of one performance measure at a time (ibrier or cindex), we are
not considering different options for combining rankings that result from more than one performance measure.

3 | METHODS

3.1 | Design of the study

To illustrate the variability of benchmark results with respect to design and analysis choices, we use the benchmark
results from Herrmann et al. (2021) and systematically examine different combinations of design and analysis options.
Specifically, we consider all combinations of options regarding the choice of data sets (9 options), performance measure
(2 options), imputation method (4 options), and aggregation method (4 options) described in Section 2 and Figure 1.
This results in 9�2�4�4¼ 288 combinations. We then compare the 288 resulting rankings of the 13 survival predic-
tion methods, where a rank of 1 corresponds to the best performing method and a rank of 13 to the worst performing
method (average ranks are assigned in case of ties).

3.2 | Multidimensional unfolding

The impact of each choice on the method rankings is assessed using multidimensional unfolding (Borg &
Groenen, 2005; Coombs, 1964), which we will briefly introduce in the remainder of this section. Multidimensional
unfolding is a technique that represents preference data as distances in a low-dimensional space. It locates K ideal
points representing the subjects (in our case, K ¼ 288 combinations) and M object points representing the objects
(in our case, M¼ 13 methods) such that the distances from each ideal point to the object points correspond to the
observed preference values. The closer an object point lies to a subject's ideal point, the stronger the subject's preference
for that object. Accordingly, the ideal point itself corresponds to maximal preference (Borg et al., 2013). Note that this
intuitive representation of preferences is the main reason why multidimensional unfolding is preferred over other, more
widely used methods for dimension reduction, such as principal component analysis, that could alternatively be used to
analyze the method rankings (for details on the differences see Chapter 16.2 in Borg & Groenen, 2005).

Multidimensional unfolding takes non-negative dissimilarities δkm (k¼ 1,…,K; m¼ 1,…,M) as input, which are the
preference values possibly converted in a way that small values correspond to high preferences. In our case, where the
preference values are ranks, this is not necessary since a small rank already indicates high preference. Moreover,
the number of dimensions dim must be specified, which we set to dim¼ 2 as it is done in most applications of multi-
dimensional unfolding. To find the coordinates for the points representing the K subjects and M objects, a loss function
(stress) is minimized. It is defined as

σ2 D̂,Z1,Z2
� �¼XK

k¼1

XM
m¼1

wkm d̂km�dkm Z1,Z2ð Þ
� �2

, ð2Þ

where wkm denotes a non-negative a priori weight (which is set to wkm ¼ 1 by default), and Z1∈ℝK�dim and
Z2∈ℝM�dim are the coordinates for the points representing the subjects and objects, respectively. Moreover, dkm Z1,Z2ð Þ
denotes the fitted Euclidean distances

dkm Z1,Z2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXdim
s¼1

z1ks� z2msð Þ2
vuut : ð3Þ

The matrix D̂∈ℝþK�M
0 contains the disparities d̂km ¼ f δkmð Þ, which are the optimally scaled dissimilarities. This means

that the loss function in Equation (2) is not only minimized with respect to Z1 and Z2 but also with respect to a

8 of 19 NIEßL ET AL.

59



function f �ð Þ that transforms the dissimilarities δkm into disparities d̂km (the function class depends on the assumed
scale level). If, as in our example, the preference data are available in the form of ranks, f δkmð Þ reflects a monotone step
function that is found through monotonic regression on the dissimilarities. This type of multidimensional unfolding is
referred to as ordinal or non-metric unfolding. However, multidimensional unfolding can also be easily applied if the
preference data are on a metric scale level by simply employing a different function class. In our example benchmark
study, such metric preference data could be aggregated ibrier or cindex values, for instance.

To avoid degenerate solutions due to equal disparities which occur particularly often in non-metric unfolding, it is
recommended to use a penalized version of the stress function in (2) that involves the coefficient of variation v D̂

� �
. The

penalized stress function is minimized through numerical optimization using a strategy called SMACOF (Stress
Majorization of a Complicated Function) and is implemented in an R package of the same name (de Leeuw &
Mair, 2009). For details on multidimensional unfolding and its implementation see Mair et al. (2021), Borg and
Groenen (2005), and Busing et al. (2005).

4 | RESULTS

For full reproducibility, the entire analysis and the results presented in this section are publicly available in the GitHub
repository https://github.com/NiesslC/overoptimism_benchmark.

4.1 | Overall variability and step-wise optimization

As a first step, we compare the method rankings resulting from all 288 combinations of design and analysis options.
Figure 2 shows the corresponding rank distribution for each method. Importantly, it reveals that any method can
achieve almost any rank. On one hand, all methods but one achieve rank 1 (8 methods) or 2 (4 methods) for at least
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FIGURE 2 Rank distribution of 13 methods generated by 288 combinations of design and analysis options
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one combination. The exception is Kaplan–Meier, which does not use any feature information and can achieve ranks
as small as 3. On the other hand, 10 methods are found to be the worst or one of the two worst methods (i.e., have rank
13 or 12.5, respectively) for at least one combination. The highest rank obtained by the remaining methods (Clinical
Only, BlockForest, and CoxBoost Favoring) ranges from 10 to 11.5. Figure 2 also reveals that the ranks are distributed
differently for each method. For example, while Clinical Only obtains rank 1 or 2 in approximately 50% of the combina-
tions, the ranks of Ranger are more evenly distributed.

While considering all combinations of options provides valuable information on the overall variability of
results, it is not a realistic scenario concerning over-optimism in the sense that no researcher conducting a bench-
mark study would try all possible combinations to obtain a favorable result (unless they are actively cheating,
which we do not assume here). Therefore, we additionally illustrate how easy it is to modify the method rankings
if the design and analysis options are selected in a step-wise optimization process, which might represent a more
realistic scenario. In our illustration, the step-wise optimization for each method is performed as follows: In each
step (i.e., for each choice), the option that yields the best rank for the considered method (or the best performance
value in case of equal ranks) is selected. If all options yield the same result, the default option is used. As default
options, we use all 18 data sets, ibrier as primary performance measure, the 20%-threshold rule as imputation
method, and the mean as aggregation method. This corresponds to the setting of Herrmann et al. (2021). Moreover,
we assume that a favorable result is a small rank for a specific method. Note that this may not always be the case,
for example, if one expects a reference method such as Kaplan–Meier to obtain a high rank or considers a group of
several methods as target.

Figure 3 displays the optimization process if the ranks are optimized in the order: (1) imputation method, (2) aggre-
gation method, (3) performance measure, and (4) data sets. It shows that for 8 of 13 methods, the best rank achieved by
step-wise optimization corresponds to the smallest possible rank for the corresponding method (i.e., the smallest rank
that can be achieved when all 288 combinations are considered) and for another three methods, the step-wise optimiza-
tion achieves one rank higher than the smallest possible rank. Only two methods (Prioritylasso and Grridge) show a
larger discrepancy between step-wise optimization and considering all possible combinations. However, this is not too
surprising considering the few cases and thus very specific combinations where they achieve small ranks (see Figure 2).
If a step is missing in the optimization process of a certain method, this indicates that the corresponding step did not
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improve the rank of that method. In fact, all methods except Lasso and Prioritylasso Favoring require no more than
two optimization steps.

Note that the results of the step-wise optimization depend on the default options. For example, when cindex
instead of ibrier is used as default option, the resulting ranks are higher (see Figure S1). Moreover, the results depend
on the order in which the ranks are optimized. The order shown in Figure 3 is realistic in the sense that researchers
might find it more problematic to modify components of the benchmark study that are generally considered as
important (i.e., performance measure or data sets) and thus only resort to them if the previous optimization steps
(i.e., imputation method or aggregation method) do not yield a favorable result. However, other orders in which the
ranks are optimized would also be conceivable. For example, the selection of data sets could be optimized first since
it offers many options and can be easily modified by eliminating specific data sets. In this case, the selection of data
sets remains the only optimization step for many methods since the subsequent steps do not lead to an improvement
(see Figure S2), which already indicates the large impact of data set selection, discussed in more detail in the next
section.

4.2 | Impact of individual design and analysis choices

To gain additional insight concerning the impact of each design and analysis choice, the method rankings are analyzed
using multidimensional unfolding. Figure 4 displays the resulting unfolding solution that represents the rankings of all
288 combinations regarding the 13 methods. Before looking at the different colorings of the ideal points in Figure 4a–d,
we can make some general observations on how the combinations and methods are scaled in the plot (which is identi-
cal for each figure). First, the unfolding solution clearly shows that the method rankings can differ widely depending
on which combination of design and analysis options is considered, which is consistent with the results presented in
Section 4.1. Second, similar to the rank distribution in Figure 2, the unfolding solution indicates that some methods
tend to achieve smaller ranks than other methods. This applies specifically to Clinical Only, CoxBoost Favoring, and
BlockForest, which are scaled close to the origin and thus have a small distance to most ideal points. In contrast, other
methods such as Lasso and Kaplan–Meier can be found in the periphery of the plot, indicating that they obtain rather
high ranks by most combinations.

Of course, the degree to which the presented unfolding solution reflects the actual rankings depends on its
goodness-of-fit (a perfect fit usually requires as many dimensions as there are methods, i.e., dim¼M¼ 13). However,
following Mair et al. (2016), the unfolding solution in Figure 4 fits the ranking data reasonably well (see the Supple-
mentary material for diagnostic figures and measures).

An important feature of the unfolding solution in Figure 4 is that not only the distances between ideal and object
points can be interpreted, but also the distances within ideal and object points. This means that, in contrast to the
rank distribution in Figure 2, the unfolding solution also provides information about which methods are ranked simi-
larly and which combinations of design and analysis options yield similar rankings. We make use of the latter
(i.e., the fact that the unfolding solution indicates which combinations yield similar rankings) to assess the impact of
each design and analysis choice on the method rankings. For this purpose, the unfolding solution is supplemented
with additional information, which results in Figure 4a–d: For each choice, the ideal points are colored according to
the option that was used in the respective combination, with the default option (i.e., the option used in Herrmann
et al., 2021) colored in gray. Moreover, we connect each ideal point representing the default option to the ideal points
representing the alternative options given that the other three choices remain the same. Although this makes the rep-
resentation dependent on which option is used as the default, for reasons of clarity, we refrain from additionally con-
necting the alternative options with each other.

The resulting plot for the choice of performance measure is displayed in Figure 4a. The gray lines indicate that the
distances between most ideal points corresponding to pairs of ibrier and cindex within one specific setting
(i.e., combinations where the other three choices remain the same) are large. Accordingly, the choice of performance
measure strongly impacts the resulting method ranking for most settings. Figure 4a also reveals that the ideal points
corresponding to ibrier and cindex form two clearly separated clusters. Accordingly, the variability in the method rank-
ings is reduced if the performance measure is fixed. This applies in particular to the cindex, whose corresponding ideal
points show considerably less variation than the ideal points corresponding to the ibrier. With regard to the remaining
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three choices (data sets, imputation method, and aggregation method), this means that their impact is smaller if the
cindex is used as performance measure. This finding might be explained by the fact that the cindex only measures dis-
criminatory power (see Section 2) and might thus be more robust to changes in the remaining design and analysis
choices than the ibrier.
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FIGURE 4 Unfolding solution representing the rankings of 288 combinations of design and analysis options (ideal points; circles)

regarding 13 methods (triangles). For each choice, the ideal points are colored according to the option that was used in the respective

combination (default options corresponding to Herrmann et al., 2021 are gray). Each ideal point representing a default option is connected

to the ideal points representing alternative options, given that the other three choices remain the same. (a) Performance measure, (b) data

sets, (c) imputation method, and (d) aggregation method
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As can be seen from Figure 4b, another important choice that accounts for a large part of the variability in the
method rankings is the selection of data sets, especially if the ibrier is used as performance measure (compare with
Figure 4a). Figure 4b also reveals that within the two clusters corresponding to cindex and ibrier, the ideal points are
roughly clustered according to the group of data sets that was used in the respective combination. This indicates that
keeping the data sets fixed in addition to the performance measure again reduces the variability in the method rank-
ings. Regarding the type of data sets used in each combination, Figure 4b shows that within both clusters of perfor-
mance measure, the ideal points corresponding to small and large values of each data set characteristic lie
approximately opposite to each other while the ideal points representing all 18 data sets are located between them. With
regard to the choice of data sets, the largest discrepancy between two rankings can thus be expected when comparing
the results of two groups that correspond to small and large values of one of the considered data set characteristics.
Using all 18 data sets, on the other hand, results in a compromise between the two extremes.

As already stated above, the variability in the method rankings is considerably reduced if performance measure and
data sets are fixed, which in turn means that the variations caused by using different imputation or aggregation
methods are expected to be small. This finding is confirmed by Figure 4c,d. The gray lines indicate that variations in
the method rankings caused by deviations from the default imputation or aggregation method mainly arise for ibrier as
the performance measure and all groups of data sets except those with many clinical variables or large values of n or ne

(compare with Figure 4a,b). In some of the other settings, the impact of the choice of imputation and aggregation
method is so small that the ideal points corresponding to different imputation/aggregation methods have the same
coordinates (i.e., yield the same ranking). This applies in particular to the choice of imputation method, which gener-
ally has less impact on the method rankings than the choice of aggregation method, as can be seen from comparing
Figure 4c and Figure 4d.

The distances between ideal points of default and alternative options that are represented as gray lines in
Figure 4a–d can also be summarized as boxplots, which are displayed in Figure 5. This representation provides informa-
tion that is technically also included in Figure 4a–d, but is presented more clearly in Figure 5. For example, it shows for
each choice which alternative option used instead of the default option tends to yield the highest variations in the
method rankings (e.g., for the choice of imputation method, it is the option that uses the mean of the non-failed itera-
tions as imputation value). Moreover, Figure 5 reveals that according to the unfolding solution, the largest discrepancy
between two rankings generated by only varying one design or analysis option is achieved by using the median instead
of the mean as aggregation method. This is an unexpected finding since it has already been stated above and can also
be seen from Figure 5 that in most settings (i.e., combinations where the other three choices remain the same), the
choice of aggregation method tends to have a smaller impact on the method rankings than the choice of performance
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measure and data sets. A major drawback of Figure 5 is that in contrast to Figure 4a–d, it does not provide any informa-
tion about how similar the rankings generated by the alternative options are, nor about how the ranks of the individual
methods change.

Of course, all findings concerning the impact of the individual design and analysis choices depend on the number
and type of options considered for each choice. Specifically, for the choice of data sets, we only consider a small subset
of possible options and we focus, in addition to the 18 original data sets, on groups of approximately equal size (8–10
data sets) generated by specific data set characteristics. We thus complement our analysis by illustrating the impact of
the choice of data sets if more options are considered, especially with regard to the number of data sets. For this pur-
pose, we keep performance measure, imputation method, and aggregation method fixed to their respective default
option and randomly draw 50 permutations of the 18 original data sets. For each of these permutations we store the
method rankings generated by only considering the first l data sets with l¼ 1,…,17, and remove duplicate groups of data
sets (which mainly occur for groups with 1, 2, or 17 data sets). This results in 774 rankings including one ranking gener-
ated by the 18 original data sets, which are all represented in the unfolding solution in Figure 6. The widely distributed
ideal points clearly indicate that the choice of data sets is even more essential if the number of data sets is not restricted
and the groups of data sets are not defined based on specific data set characteristics (as it was the case above in
Figure 4). As one might have expected, we also observe that the variability in the method rankings increases if the num-
ber of data sets decreases. Accordingly, the most extreme rankings (i.e., rankings that differ the most from the ranking
generated using all 18 data sets) occur for groups with only a few data sets. Since Figure 4a revealed that the impact of
the choice of data sets strongly depends on the choice of performance measure, we repeat the analysis using cindex as
performance measure (see Figure S3). Similar to Figure 4b, the impact of the choice of data sets is considerably reduced.
However, as in Figure 6, the variability in the method rankings increases with decreasing number of data sets.

5 | DISCUSSION

5.1 | Summary

In this paper, we addressed the multiplicity of design and analysis options in the context of benchmark studies and the
associated risk of over-optimistic results. As a preliminary step, we reviewed literature related to the choice of four
design and analysis choices that researchers are usually faced with when conducting a benchmark study based on real
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data sets, namely the choice of data sets, the choice of quantitative performance measure, the choice of imputation
method for missing performance values, and the choice of aggregation method to generate an overall method ranking.

We then used the benchmark study by Herrmann et al. (2021) to illustrate how variable the resulting method rankings
of a benchmark study can be when all possible combinations of a range of design and analysis options are considered. In
fact, in this example, the results were so variable that any method could achieve almost any rank, that is, each method could
almost be presented as best or worst method for at least one combination of design and analysis options. For the more realis-
tic scenario where the design and analysis options are not systematically examined for each combination but selected in a
step-wise optimization process, we observed that the variability in the method rankings is smaller but still remarkable.

In addition to examining the overall variability in the method rankings, we also investigated the individual impact
of each choice on the results using multidimensional unfolding. As might be expected, the choice of performance mea-
sure and data sets accounts for a large part of the variability in the method rankings. The impact of the choice of impu-
tation and aggregation method, on the other hand, tends to be considerably smaller but still non-negligible in many
settings. In general, the impact of each choice depends on the options used for the other three choices, with the choice
of performance measure affecting the impact of the remaining choices most strongly. In an additional analysis, we
increased the number of considered options for the choice of data sets, which clearly showed that the variability in the
method rankings increases if the number of data sets decreases and once again emphasized the importance of the
choice of data sets.

5.2 | Limitations

Of course, the specific results obtained for the example study by Herrmann et al. (2021) should only be seen as an illus-
tration that cannot be generalized to other benchmark studies. Moreover, one possible reason why the method rankings
are so variable is that in our example benchmark study, many performance differences are small and the performance
values differ widely across data sets, as discussed in the original study by Herrmann et al. (2021). The focus of our study
was on ranks, which do not reflect the size of the differences between the methods' performances or the heterogeneity
across data sets. On the one hand, taking these aspects into account rather than focusing on ranks may lead to much
less variable results, particularly if one relies on statistical tests. On the other hand, the multiplicity of possible analysis
options is not limited to the analysis of ranks: there are also plenty of possibly ways to analyze performance differences
and the heterogeneity across data sets, even if statistical tests are performed (e.g., paired t-test or Wilcoxon signed-rank
test with or without correction for multiple testing, or global tests such as the Friedman test).

5.3 | Negative consequences and possible solutions

Despite these limitations, our illustration suggests that, as a consequence of the multiplicity of design and analysis
options, the results of benchmark studies could be much more variable than many researchers realize. Combined with
questionable research practices (e.g., the selective reporting of results or the targeted modification of specific design and
analysis components), this potentially high variability of benchmark results can lead to biased interpretations and over-
optimistic conclusions regarding the performance of some of the considered methods. Given the high level of evidence
that is attributed to neutral benchmark studies (Boulesteix et al., 2017), a “neutral” benchmark study that is in fact
biased could thus negatively affect both methodological and applied research by misleading method users and devel-
opers (Weber et al., 2019).

Fortunately, there are several strategies to prevent over-optimistic benchmark results that arise from the multiplicity
of design and analysis options, some of which are already applied by many researchers, including Herrmann
et al. (2021). For example, strategies inspired from blinding in clinical trials can help to reduce non-neutrality and/or
the potential to exploit the multiplicity of possible options. Specifically, blinding could be realized by labeling the
methods with non-informative names (e.g., Method A, Method B, etc.) such that researchers have no information about
the performance of each method until the end of the study (Boulesteix et al., 2017). If the benchmark study is based on
simulated data, researchers could also be blinded to the data generation process, which prohibits the possibility to tune
the parameters of selected methods according to the known ground truth (e.g., Kreutz et al., 2020).

The remaining strategies to prevent over-optimistic results can be summarized using the work of Hoffmann
et al. (2021), who formalize the effect of both random sources of uncertainty (including sampling uncertainty) and
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epistemic sources of uncertainty (resulting in a multiplicity of possible analysis strategies and thus opening the door to
questionable research practices) on the replicability of research findings. They outline six steps researchers from all
empirical research fields can take to make their own research more replicable and credible. In brief, researchers should
(1) be aware of the multiplicity of possible analysis strategies, (2) reduce uncertainty, (3) integrate uncertainty, (4) report
uncertainty, (5) acknowledge uncertainty, and (6) publish all research code, data and material. Although Hoffmann
et al. (2021) focus on applied rather than methodological research, we argue that their recommended steps can also be
applied to address the sources of uncertainty that arise from the design and analysis of benchmark studies.

Step 1. In the context of benchmark studies, the first step to reduce the risk of over-optimistic results is to simply be
aware of the multiplicity of possible design and analysis options and the potential for questionable research practices.
We can only speculate about how much awareness for this issue is already present in methodological research but hope
that this paper contributes to raising it.
Step 2. The second step suggested by Hoffmann et al. (2021) is to reduce sources of uncertainty. In the context of bench-
mark studies, this could be realized by consulting existing benchmarking guidelines found in literature. However, as dis-
cussed in this paper, guidelines for many issues relevant in practice are still lacking. We claim that more guidance and
standardized approaches are needed in this context. Regarding the choice of data sets, uncertainty could be reduced if the
number of data sets to include in the study would be consequently based on statistical considerations such as power calcu-
lation (e.g., Boulesteix et al., 2015) and if data sets would be selected according to strict and well-considered inclusion
criteria. Both aspects are facilitated if structured and well-documented databases exist for the type of data to be studied.
Step 3. As a third step, Hoffmann et al. (2021) recommend to integrate remaining sources of uncertainty that could not
be reduced in the second step. Analysis approaches such as confidence intervals, statistical tests, or boxplots that take
the heterogeneity of performance values across data sets into account can be seen as first steps towards integrating the
uncertainty regarding the choice of data sets. However, they do not provide much information about how the bench-
mark results would change if only certain subgroups of data sets would be considered. A more advanced but less com-
mon way to integrate uncertainty regarding the choice of data sets is to analyze the relationship between method
performance and data set characteristics (e.g., Eugster et al., 2014; Kreutz et al., 2020; Oreski et al., 2017). Concerning
the choice of evaluation criteria (including quantitative performance measures), the aggregation of method rankings
resulting from different criteria into an overall ranking can be seen as an attempt towards integrating uncertainty. How-
ever, to our knowledge, currently existing approaches such as consensus rankings (Hornik & Meyer, 2007) do not pro-
vide any measure of uncertainty.
Step 4. For all sources that cannot be adequately integrated, Hoffmann et al. (2021) suggest to systematically report the
results of alternative analysis strategies, which, in the context of benchmark studies, would be alternative design and
analysis options. While reporting the results of alternative analysis strategies, for example, in the form of a sensitivity
analysis, is a common procedure in applied research (Hoffmann et al., 2021), to our knowledge it is rarely performed in
benchmark studies (especially if they are based on real data sets). However, considering the lack of ways to reduce and
integrate uncertainty when designing and analyzing benchmark studies, adequately reporting the results of alternative
options seems to be all the more important. One reason for the lack of uncertainty reporting in benchmark studies
could be that, to our knowledge, no suitable framework has been available so far. This gap could be filled by the frame-
work based on multidimensional unfolding that we used in this paper. It can be seen as a systematic version of standard
sensitivity analysis that allows to graphically assess the variability of the method rankings with respect to a large num-
ber of different combinations of design and analysis options. It also provides information about the individual impact of
each choice on the method ranking and thus enables researchers to analyze when and how using alternative options
for a specific choice affects the results. In this way, the risk of misleading readers is reduced and the benchmark results
become even more reliable and valuable. Moreover, using the framework allows to identify critical choices that substan-
tially affect the results and should therefore be particularly well justified in future benchmark studies and be given
more consideration in benchmarking guidelines.
Step 5. The next important step suggested by Hoffmann et al. (2021) is to accept the inherent uncertainty of scientific
findings. In the context of benchmark studies, this implies that researchers should clearly state that the benchmark
results are conditional on the selected design and analysis options (Boulesteix et al., 2013; Hornik & Meyer, 2007). In
this vein, researchers should also acknowledge that just as in applied research, generalizations from a single study are
usually not appropriate (Amrhein et al., 2019; Hoffmann et al., 2021). This emphasizes the need for more high-quality
benchmark studies and for meta-analyses of benchmark studies (e.g., Gardner et al., 2019), which, however, are still
rare and unfortunately sometimes not considered as full-fledged research by the scientific community (Boulesteix
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et al., 2020). Another aspect also related to the acceptance of uncertainty is to recognize that statistical inference within
exploratory analyses should be treated with great caution (Amrhein et al., 2019; Hoffmann et al., 2021). Similar to
applied research, strictly confirmatory benchmark studies could be realized by pre-registration of design- and analysis
plans, as recently implemented in the context of the so-called pre-registration experiment (see https://preregister.
science) or through the registered report” publication format (Chambers, 2013), which has meanwhile been adopted by
several interdisciplinary journals that also accept computational papers. It is also important to recall that there is usu-
ally no best method for all scenarios and data sets (the well-known “no free lunch” theorem; Wolpert, 2002). Especially
for data sets and evaluation criteria, it might thus be advisable to accept the uncertainty that is associated with their
choice by putting more focus on the analysis of the individual strengths and weaknesses of each method than on an
aggregated overall ranking. This can for example be realized by individually analyzing the rankings generated by each
evaluation criterion and by investigating the relationship between method performance and data set characteristics (see
Step 3).
Step 6. As a final step, the publication of codes and (if possible) data sets that ideally allow the extension to alternative
options and additional methods can reduce the impact of over-optimism since it enables readers to run alternative ana-
lyses and to reveal potentially biased results.

The strategies provided in this section are also summarized in a checklist (Table S1), which can assist researchers
when designing and analyzing benchmark studies.

6 | CONCLUSION

In conclusion, our illustration suggests that benchmark results can be highly variable with respect to design and analy-
sis choices, which can lead to biased interpretations and over-optimistic conclusions. However, there is a wide range of
strategies that can help to avoid these pitfalls. We hope that our proposed framework makes a useful contribution
towards this objective. While a certain amount of over-optimism can probably never be completely avoided, addressing
this problem will lead to more reliable and valuable benchmark results.
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ABSTRACT

In recent years, manifold methods have moved into focus as tools
for dimension reduction. Assuming that the high-dimensional data
actually lie on or close to a low-dimensional nonlinear manifold,
these methods have shown convincing results in several settings. This
manifold assumption is often reasonable for functional data, i.e., data
representing continuously observed functions, as well. However, the
performance of manifold methods recently proposed for tabular or
image data has not been systematically assessed in the case of func-
tional data yet. Moreover, it is unclear how to evaluate the quality
of learned embeddings that do not yield invertible mappings, since
the reconstruction error cannot be used as a performance measure for
such representations. In this work, we describe and investigate the
specific challenges for nonlinear dimension reduction posed by the
functional data setting. The contributions of the paper are three-fold:
First of all, we define a theoretical framework which allows to sys-
tematically assess specific challenges that arise in the functional data
context, transfer several nonlinear dimension reduction methods for
tabular and image data to functional data, and show that manifold
methods can be used successfully in this setting. Secondly, we subject
performance assessment and tuning strategies to a thorough and sys-
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tematic evaluation based on several different functional data settings
and point out some previously undescribed weaknesses and pitfalls
which can jeopardize reliable judgment of embedding quality. Thirdly,
we propose a nuanced approach to make trustworthy decisions for or
against competing nonconforming embeddings more objectively.

Keywords Dimension reduction · Functional data analysis ·
Manifold methods · Unsupervised learning.

1 Introduction

The ever-growing amount of easily available high-dimensional data has led to an in-
creasing interest in methods for dimension reduction in several contexts, for example,
image processing [13] and single cell data [2, 16]. Next to standard dimension reduction
methods such as Principal Component Analysis (PCA) and Multidimensional Scaling
(MDS), manifold methods have moved into focus in recent years. If the assumption
that high-dimensional data actually lie on or close to a lower-dimensional Riemannian
manifold holds, i.e., if the data have low intrinsic dimension, nonlinear dimension
reduction methods are often capable of detecting this intrinsic low-dimensional structure
even if standard, in particular linear, methods fail to do so. In this paper, we describe
and assess a general approach for extending established and state of the art manifold
methods ISOMAP [37], DIFFMAP [9], t-SNE [28], and UMAP [29] to functional data
and use MDS as a default reference method for benchmarking.
Functional data analysis (FDA) [34, 41, e.g. ], which is an active field of research in
statistics with many close connections to time series analysis, focuses on data in which
the units of observation are realizations of stochastic processes over compact domains.
This kind of data is another data type for which the manifold assumption is often rea-
sonable: On the one hand, such data is infinite dimensional in theory and typically very
high-dimensional in practice – functional observations are usually recorded on fine
and dense grids: For example, spectroscopic measurements are typically evaluated on
thousands of electromagnetic wavelengths or electrocardiograms, measured at 100 Hz
for 10 minutes, would yield 60,000 grid points each. On the other hand, such signals
typically contain a lot of structure, and it is often reasonable to assume that only a few
modes of variation suffice to describe most of the information contained in the data, i.e.,
such functional data often have low intrinsic dimension, at least approximately.
An important complication is that FDA often faces the challenge of two kinds of vari-
ation, both of which can be of major interest: amplitude (i.e., “vertical”) variation
affecting the slope, level, and size of local extrema of a function and phase (i.e., “hori-
zontal”) variation affecting the location of extrema and inflection points. Phase variation,
which can be conceptualized as elastic deformations of the domain of the functional
observations, often results in complex nonlinear intrinsic structure [7]. As our results
show, this is true even for fairly simple phase variation structures. Despite some prior
work [7, 10] showing that manifold methods for functional data – specifically, func-
tional versions of ISOMAP [37] – can successfully deal with structured phase variation
and yield efficient and compact low-dimensional representations and despite recent
substantial progress in the development and application of manifold methods to tabular,
image and video data [16, 42, e.g.], manifold learning for functional data remains an
underdeveloped topic. However, low-dimensional representations of functional data are
highly relevant for real-world problems. Finding reliable low-dimensional – especially
2- or 3-dimensional – representations of data is beneficial for visualization, description,
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and exploration purposes in general. In FDA settings, this is especially crucial as the
visualization of large data sets of functional observations is particularly challenging
and quickly overwhelms analysts with ostensible complexity even if the underlying
structures are actually fairly low-dimensional and simple, c.f Figure 2. Moreover,
finding informative low-dimensional representations of functional data is an essential
preprocessing step for functional data, since these representations can be used as feature
vectors in supervised machine learning algorithms which require tabular, not functional
data inputs [32].
In this work, we thoroughly assess if manifold methods can be used to embed functional
data, perform a careful evaluation of hyper-parameter tuning approaches for functional
manifold methods and investigate the suitability of the derived embeddings in various
settings. Specifically, we address the following questions:
(1) Are the manifold methods under investigation able to detect low-dimensional mani-
fold structure of functional data? Special attention is given to assessing the effects of
phase variation.
(2) To what extent can automatic tuning strategies replace laborious and subjective
visual inspection in order to obtain reliable embeddings in unsupervised FDA settings?

The remainder of the paper is structured as follows: In section 2 we specify notation
and the theoretical framework, give a description of the embedding methods used, and
an overview of performance assessment and tuning approaches. Moreover, we motivate
our study design. In section 3 we describe the design of the synthetic data simulations
and assess the tuning and embedding approaches in these settings, in which the “ground
truth” is available for verification. The concepts and insights developed on synthetic
data are then brought to bear on three real data sets in section 4. The findings of the
study are finally discussed in section 5.

2 Background

2.1 Problem specification and framework

Nonlinear dimension reduction [(NDR) 3, 23, e.g.] is based on the assumption that
high-dimensional data observed in a D-dimensional spaceH actually lie on or close to
a d-dimensional manifoldM⊂ H, with d < D [6]. One is then interested in finding
an embedding e : H → Y from the high-dimensional space to a low-dimensional
embedding space Y such that Y is as similar toM as possible.

In most NDR applications, one simply considersH = RD. In a functional data setting,
the situation is more involved: We define a d-dimensional parameter space Θ ⊂ Rd
while F = L2(T ), the space of square integrable functions over the domain T , takes
on the role ofH, and φ : Θ→ F is a mapping from the parameter space to the function
space. We then observe functions xi(t) ∈ F with xi(t) = φ(θi), which can have a
complex but intrinsic low dimensional structure, depending on both the structure and
dimensionality of Θ and the complexity of φ.

Transferring this to the NDR terminology,M = Θ, i.e. the low-dimensional manifold
is the parameter space. However, the observed data are functions in the subspace
MF ⊂ F , i.e., using the terms of [7], a functional manifold. Thus, using manifold
methods, an embedding e :MF → Y can be constructed. Specifically, that means we

have the mappings Θ
φ→MF e→ Y , but only e : F → Y can be learned from the data
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Figure 1: Framework for nonlinear dimension reduction of functional data.

(s. Figure 1). The question we try to answer is this: how well can the underlying global
structure of Θ be recovered in an embedding learned from data onMF?

In general, however, it is not straightforward to define what “recovering well" is supposed
to mean in a specific NDR setting [12], a rarely discussed but crucial aspect. In particular,
the fact that manifolds which are locally homeomorphic to Rd by definition need not be
homeomorphic to Rd globally needs to be taken into account. E.g., a 2-sphere, although
locally homeomorphic to the plane R2, can not be embedded into R2 globally by a single
embedding e without distortions. In differential geometry terms, only specific manifolds
M like the famous “Swiss roll” can be represented by a single chart. However, since
learning an embedding function is roughly equivalent to estimating a chart of the data
manifold, manifold learning faces an ill-posed problem if the atlas of a data manifold
requires more than one chart.

Since it is not known in practice whether a single chart is sufficient or not, assessment
of the embeddings achieved by manifold methods must always be considered under
both local and global perspectives: (1) successful on a local level if the embedding
e : H → Rd yields an embedding space Y in which local structures are similar to local
structures inM ⊂ H, i.e., if e preserves neighborhoods of (small) membership size
g, and (2) globally successful if Y is as close toM as possible, e.g., if an underlying
“Swiss roll” manifold is “unrolled” into a plane. Note that the latter is not possible for
every manifold. Thus, we consider a learned embedding to be successful if the resulting
configurations of data units in Y are as similar to the corresponding configurations in Θ
as possible in the following sense: In the conducted simulation study, we use simple
parameter manifolds Θ which are mostly homeomorphic to Rd with d ∈ {1, 2}, and
– in one case – homeomorphic to the circle. This allows us to evaluate embedding
methods and tuning approaches for the functional data generated from Θ from a global
perspective, both by visual inspection and quantitatively. Local characteristics are
additionally investigated for the real data sets.

As phase variation typically transforms the domain non-linearly, phase-varying func-
tional data is very likely to live on a non-simple functional manifoldMF that is no
longer globally isometric to Rd even if the generating parameter manifold Θ is a simple
linear subspace, an issue leading to additional complexity in the FDA setting. By restrict-
ing our simulation study in part to fairly simple, linear Θ, we are able to assess these
non-obvious and previously undescribed effects of domain warping on the embeddings.
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2.2 Assessing performance of manifold methods

Since the methods we employ do not yield invertible embeddings e, we cannot eval-
uate them based on their reconstruction error E[L(x, e−1(y))], where L is some loss
function measuring the divergence between x and its reconstruction e−1(y), which
would objectively quantify the quality of an embedding in terms of the fidelity of its
low-dimensional compression to the original data. Assessing embeddings qualitatively
by visual inspection, as is widely done [e.g. 1, 6, 29], cannot be automated, and so it
does not scale to large-scale comparison and benchmark studies nor to the important
task of tuning a method’s hyperparameters.

Instead, several surrogate measures have been developed, often based on comparing the
ranks of pairwise distances between the high-dimensional data space and the learned
embedding space [8, 24, 25, 39, e.g.]. We employ measures based on the normalized
local continuity meta-criterion (LCMC) [22], since they are parameter free, yield a
single scalar value – a property particularly desirable if the measure is supposed to be
used for tuning – and allow to assess local and global performance. The LCMC is based
on the measure

QNX(g) =
1

g

1

n

n∑

i=1

|NHg (i) ∩NYg (i)|
︸ ︷︷ ︸

Ng

,

which quantifies the amount of overlap between the memberships of neighborhoods
of a certain size in the two spaces [19, 24]. The g-neighborhood Ng(i) is defined as
the set of those g objects which are closest to i in the respective space according to a
suitable distance measure, and Ng measures the mean overlap obtained by averaging the
cardinalities of the intersections between all such neighborhoods in the high dimensional
spaceH and the low dimensional embedding space Y . The factor 1

g is a normalization
factor. The normalized LCMC is then defined as

RNX(g) =
(n− 1)QNX(g)− g

n− 1− g ,

which also accounts for random overlap [8, 22]. A value of 0 is expected for a random
embedding, i.e., the agreement between g-neighborhoods in Y and in H is the same
as that of a random configuration of objects in Y . A value of 1 indicates a perfect
embedding with complete identity of all g-neighborhoods in the two spaces [22, 24].

The choice of neighborhood size g, however, is crucial and has a strong influence on
whether an embedding is judged to be successful or not. For large g, these metrics quan-
tify the preservation of global structure in the embedding, for small g, the preservation
of local structure.

To circumvent the problems that come with the choice of g, one can compute parameter
free measures based on RNX(g) [19]. Regarding RNX(g) as a function of g and
averaging the function values on either side of its maximum at gmax, leads to both a
local and a global performance measure:

Qlocal =
1

gmax

gmax∑

g=1

QNX(g) and Qglobal =
1

n− gmax

n−1∑

g=gmax

QNX(g).
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To quantify the overall performance of an embedding, the area under theRNX(g)-curve

AUCRNX
=

∑n−2
g=1 RNX(g)
∑n−2
g=1

1
g

can be computed [19]. Given such a scalar measure of performance, embedding methods
can then be tuned by maximizing this measure over the different hyperparameter settings.

However, while it is known that the choice of the distance metric has a strong influence
on embedding methods [40], the influence of the distance metric used to compute
the g-neighborhoods in the surrogate performance measures remains unclear. Since
these measures are based on g-neighborhoods, the proximity metric used to define the
neighborhoods in the respective spaces is crucial, especially if the goal of the analysis is
to “unfold” the global structure of the manifold. In order to recover the global manifold
structure, neighborhoods in the high-dimensional space should be defined using geodesic
distances rather than Euclidean distances, since only the former represent long-range
distances on the manifold correctly, while the latter are merely distances in the ambient
space. This distinction is likely to be highly relevant especially if the observed high-
dimensional data manifold has a complex structure, such asMF in our situation, and
when the measures are supposed to be used for automatic parameter tuning for optimal
recovery of global structure. In the following, we use AUCmRNX

and Qmlocal, where
m ∈ {dir, geo} indicates the distance metric used to calculate the neighborhoods for
performance assessment, i.e. in this study g-neighborhoods in RNX(g) are computed
either using L2 distances (i.e. Euclidean distances in RD) or geodesic distances. In
the following, we use the term direct distance instead of L2 distance to emphasize
the conceptual difference of distance measures which merely quantify proximity in
the ambient space (hence direct distance) and geodesic distance measures quantifying
proximity on a (nonlinear) manifold. Note, this is a general conceptual difference. Most
standard distance metrics can be regarded as direct distance measures in the particular
space and geodesic distances as computed here can be obtained based on several of
these direct distance metrics. We will show that direct distances such as the L2 distance
can yield very misleading results when used in the surrogate performance measures and
that tuning approaches can thus lead to far from optimal configurations.

2.3 Embedding methods and tuning approach

In this study, we compare nonlinear dimension reduction methods isometric feature
mapping (ISOMAP) [37], diffusion map (DIFFMAP) [9], t-distributed stochastic neigh-
borhood embedding (t-SNE) [28], and uniform manifold approximation and unfolding
(UMAP) [29] for functional data. All these methods have locality parameters that
control whether (rather) local structures or (rather) global structures are considered,
that is how much “context" of the respective data points is taken into account while
constructing the embedding. These parameters influence the result strongly and need to
be tuned. We apply MDS as a simple tuning-free benchmark reference method.

ISOMAP is based on classical MDS. In contrast to MDS it is capable of unfolding
the intrinsic structure of a data set. The algorithm consists of three steps. First, a
nearest-neighbor graph is constructed based on a suitable direct distance metric, usually
the L2 metric. This requires defining a neighborhood size either by a distance threshold
ε or by the number of neighbors k to be included. This parameter is the main tuning
parameter of the algorithm. In the next step, shortest-path or geodesic distances among

6

79



Unsupervised Functional Data Analysis PREPRINT

all points are computed based on the nearest-neighbor graph. These distances are then
supplied to classical MDS, which embeds the observations accordingly. ISOMAP is
supposed to be particularly suited to detect global structures [37].
DIFFMAP is another spectral embedding method projecting on the eigenvectors of a
diffusion operator on the data manifold. Proximity of data points is defined by a kernel
function whose width acts as a tunable locality parameter [9, 27].
t-SNE, which has been state-of-the-art for several years [29], builds upon stochastic
neighborhood embedding (SNE). In contrast to the aforementioned methods, (t-)SNE
transforms proximities between data points into conditional probabilities of them being
neighbors in the respective space and then minimizes the Kullback–Leibler divergence
of the implied distribution in the original space from that in the embedding space. The
perplexity of the implied distribution in the original space acts as a tunable locality
parameter.
UMAP [29] is a state-of-the-art manifold learning method based on three assumptions
– uniformly distributed data on a locally connected manifold equipped with a locally
constant metric. It computes a fuzzy topological representation of the manifold based
on a nearest-neighbor graph. The number of nearest neighbors serves as a tunable
locality parameter.

In addition to the investigation of how successfully the intrinsic manifold structure of a
functional data set can be detected and unfolded in general, we also want to investigate
how reliably automatic tuning approaches identify suitable hyper-parameter settings.
We consider the parameters steering the degree of locality as the main tuning parameter
of these embedding methods. Using the terminology of the respective R packages, these
are the neighborhood sizes k for ISOMAP, n_neighbors for UMAP, the perplexity
for t-SNE and eps.val for DIFFMAP. Hereinafter we refer to these parameters as
locality parameters. Moreover, the methods are not supplied with the raw data matrices,
but with distance matrices instead. Note, this means that an initialization via PCA is not
performed for t-SNE using Rtsne. To investigate these aspects, we compute both the
direct and geodesic distance matrix for each simulated data set in the function space as
well as in the parameter space. For a given parameter configuration, the direct distance
matrix obtained from the function space is then input to the respective embedding
method. Finally, direct distances of the learned embeddings are computed. As the
performance measures are based on the comparison of g-neighborhoods in the high
dimensional and the embedding spaces, we compute the performance measures with
respect to both the parameter space as well as the function space based on direct and the
geodesic distance neighborhoods in the simulation settings. Recall, direct distances
represent distances in the ambient space rather than distances on the manifold and the
resulting neighborhoods are thus unlikely to be well suited for performance assessment
and tuning if the intrinsic structure is nonlinear, especially for larger neighborhood
sizes.
Parameters are tuned for optimal performance via an extensive grid search, c.f. Table 1.
For DIFFMAP we compute a dataset-specific starting value εs via epsilonCompute,
which is the default value of the method, and use this to define the search grid of
the locality parameter. In the synthetic data settings of Section 3, we can perform a
“ground truth”-based meta assessment, in which we evaluate the effect of direct and
geodesic distances. Moreover, we can compare the results achieved by tuning based
on performance measures computed in the function space with those achieved by a
practically infeasible “oracle” tuning method that uses corresponding performance
measures computed in the unobservable true parameter space instead.
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Table 1: Parameters of the manifold methods which are subjected to tuning. The second
column shows the total amount of different parameter configurations in the tuning
parameter grid, the third column the locality parameter, the fifth column the embedding
dimension parameter, and the last column further parameters tuned. The “grid”-columns
display the search grids of the parameters in the preceding column. The embedding
dimension grid for t-SNE differs from the other grids because the implementation does
not allow the embedding dimension to be greater than three.

Method # locality param. grid embedding dim. grid further param.
MDS 4 - - k [2, 5] -
ISOMAP 1300 k [3, 975] ndim [2, 5] -

step size: 3
DIFFMAP 6000 eps.val [0.15εs, 1.85εs] neigen [2, 5] t

length: 250
UMAP 18720 n_neighbors [5, 975] n_components [2, 5] min_dist

step size: 5 n_epochs
init

t-SNE 21184 perplexity [3, 333] dims [2, 3] theta
step size: 1 max_iter

eta
exaggeration

2.4 Study design

Since we are interested in whether manifold methods and tuning approaches can be
used for functional data sets in general, a thorough evaluation design is inevitable. For
supervised learning algorithms a wide and comprehensive body of literature exists on
the conduction of neutral and objective comparison and benchmark studies [5, 11, 38,
e.g.].

How to reliably evaluate algorithms and meta-learning approaches in unsupervised
settings, however, is not as clear. Due to the lack of an outcome variable, clearly defined
objectives to optimize against are usually not available. This makes the comparison
of unsupervised learning algorithms in general, and the assessment of meta-learning
approaches such as tuning in particular, prone to overoptimistic findings. General
frameworks for systematic benchmarks in this context are still in their infancy [38].

In particular, nonlinear dimension reduction and manifold learning are often confronted
with the lack of a clearly defined objective in terms of the achieved reconstruction error
if the methods do not yield an invertible mapping. Since there is no standard benchmark
procedure for unsupervised learning generally agreed upon, we devised the following
procedure in order to avoid overoptimistic conclusions in our study as much as possible:

Based on the problem specification and the theoretical framework defined in Section 2.1,
we first conduct a simulation study to assess embedding methods and the considered
tuning approaches in settings where the ground truth is known. This allows us to
investigate possible strengths, weaknesses, and pitfalls in settings that allow for objective
evaluations based on a known “ground truth”. We then apply the approach to real
data sets where qualified assumptions about the intrinsic structure of the data can be
made due to substantial considerations and analysis of previous studies. Although
knowledge of the intrinsic structure is less certain than in the ground truth simulations,
it is still possible to “objectively" evaluate the embeddings, at least conditional on
certain substantially justified assumptions, in these settings. To some extent, this lets
us examine whether the insights obtained in simulated data settings also hold for real
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data. Finally, we compute embeddings for a real data set for which information about
its intrinsic structure can not be justifiably inferred from prior substantial considerations
– i.e., a fully unsupervised problem. We will show that such a setting can pose severe
problems due to nonconforming embeddings that are hard to tackle, but that “principled”
choices between nonconforming embeddings may nevertheless be possible based on
the insights gained from the simulation study and from data applications in which some
prior knowledge is available.

3 Simulation study

Based on the framework described in Section 2.1 we can systematically assess the utility
of the described manifold methods for functional data settings by means of a simulation
study. This allows to comparing the embeddings to a ground truth which is essential
in an unsupervised learning problem to come to reliable conclusions. In particular, we
can assess the influence of some factors likely to lead to strongly nonlinear intrinsic
structure of functional data manifolds, i.e., nonlinear domain warping (phase variation)
and an underlying nonlinear parameter space Θ, by systematically controlling these
sources of variation.

3.1 Experiment design

Loosely speaking, the simulation design is based on two peaked functions derived from
Gaussian pdfs over domain [0, 1]. Variation is achieved by randomly changing the
locations, widths, and heights of the peaks, in total leading to eleven considered settings,
six based on a linear parameter space, including three with nonlinear phase variation,
and five based on a nonlinear parameter space and amplitude variation only. We can thus
assess the effect of nonlinear phase variation and a nonlinear parameter space separately
using the first six settings and the last five settings, respectively.

Specifically, we consider the following functional manifold

MF =
{
x ∈ L2([0, 1]) : x(t) = φ(θ)

}
,

with θ = (a,p) and φ(θ) = b(w(t;p);a). Amplitude variation inMF is parameterized
as

b(t;a) =
a1√
0.1π

{a2 · n(t, 0.25) + a3 · n(t, 0.75)}+ a4,

with n(t, µ) = exp
(
− (t−µ)2

0.1

)
. Depending on the setting, phase variation is parameter-

ized as the identity warping w(t;p) = t, a linear warping

w(t;p) =

{
p1t for t ∈ [0, 0.5]

(2− p1)(t− 1) + 1 for t ∈ (0.5, 1]
,

a power warping w(t;p) = tp2 or as w(t,p) = B(t; p3, p4), where B(·; a, b) is the cdf
of a Beta(a, b) distribution.

The considered settings are obtained by selecting up to three of the parameters
a1, a2, a3, a4, p1, p2, p3, p4, i.e., the considered settings have at most 3 degrees of
freedom (df). Inactive parameters are set to constant values, e.g., a1 = 1 and a4 = 0.

9
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Table 2: Overview of simulation settings.

setting df parameter space variation parameter warping
a1-l 1 linear amplitude a1 identity
p1-l 1 linear phase p1 linear
c1-l 1 linear coupled a1 = p2 power
a2-l 2 linear amplitude a2, a3 identity
p2-l 2 linear phase p3, p4 beta cdf
i2-l 2 linear independent a1, p2 power
a2-sr 2 1D Swiss roll amplitude a2, a3 identity
a3-hx 3 1D helix amplitude a2, a3, a4 identity
a3-sr 3 2D Swiss roll amplitude a2, a3, a4 identity
a3-sc 3 2D S-curve amplitude a2, a3, a4 identity
a3-tp 3 2D tp surface amplitude a2, a3, a4 identity

Figure 2: Example functions with 1 df coupled joint amplitude and phase variation
(c1-l), 1 df phase variation (p1-l), and 2 and 3 df amplitude variation (a2-sr and a3-hx).
c1-l and p1-l are based on linear, a2-sr and a3-hx are based on nonlinear parameter
manifolds.

If no warping parameter is selected, identity warping is applied. Varying both ampli-
tude and warping parameters in a setting induces joint amplitude and phase variation.
Dependencies between amplitude and phase parameters induce dependencies between
amplitude and phase variation.

The active parameters are either drawn uniformly from a linear parameter space, i.e., the
manifold Θ is a linear subspace, or from a nonlinear parameter space, i.e, a (nonlinear)
manifold. Note that the power function and the beta cdf warping are nonlinear transfor-
mations of the domain, thus we obtain a non-linear functional data manifold even if the
parameter space Θ is linear. In the linear case we let ai, pj ∼ U [0.5, 3], i = {1, ..., 4}
and j = {2, 3, 4}, and p1 ∼ U [0.01, 0.99]. In the nonlinear case, parameter values
are drawn uniformly from one of five different manifolds: the Swiss roll (1D and 2D),
the 1D helix, the 2D S-curve, and the 2D two-peaked (tp) surface as provided by the
R package dimRed [19]. For each setting, 1000 functional observations are generated
based on 200 grid points. A summary of the simulation settings is provided in Table 2
and Figure 2 displays samples of functions with phase variation, amplitude variation,
and joint, coupled amplitude and phase variation.
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3.2 Results

The results show that functional data can – in principle, i.e. given the ground truth to
compare against – be embedded with methods developed primarily for images or tabular
data.

To start with we also sketch the effect of nonlinear warping in the next subsection.
For that, we consider settings a1-l, p1-l, c1-l, a2-l, p2-l, i2-l with simple parameter
spaces Rd first. Based on embeddings of the reference method MDS we analyze some
specific pitfalls which result from the drawbacks of the performance measures described
in Section 2.2. We finally turn to the settings with more complex parameter spaces,
a2-sr, a3-hx, a3-sr, a3-sc, a3-tp, additionally evaluating tuning approaches based on the
surrogate performance measures. We show that based on the correct tuning approach, it
is possible to (automatically) obtain high-quality embeddings for these settings as well.

3.2.1 Embedding functional data with phase and amplitude variation

In this section, we highlight two essential aspects. First of all, the findings indicate that
it is possible to successfully embed functional data using manifold methods, at least
in these simple settings. In addition, we provide evidence that things can get rather
complicated quickly if warping comes into play even if the underlying parameter space
is a simple linear one. That said, the settings we consider here, a1-l, p1-l, c1-l, a2-l, p2-l,
i2-l, include amplitude as well as phase variation and also both coupled and independent
joint phase and amplitude variation.
As can be seen in Figure 3, ISOMAP is particularly successful. Clearly, perfect linear
embeddings are achieved in settings with one degree of freedom and two degrees of
freedom alike (a1-l, p1-l, c1-l, a2-l). Note that phase variation is induced by a nonlinear
polynomial warping function in the setting with coupled phase and amplitude variation
c1-l. Nevertheless, the functional manifold can be perfectly unfolded into its underlying
linear structure. This is not the case for setting p2-l, where phase variation is induced
by the Beta cdf. Here, the resulting structure of the functional manifold becomes more
challenging to unfold into R2. This shows why embedding functional data can be
especially complex and why it is important to use simple, low-dimensional parameter
spaces for this study: the functional manifolds we are dealing with become nonlinear
even though they are based on a deceptively simple parameter space. Moreover, consider
setting i2-l, which has independent amplitude and phase variation (based on power
warping). Even though the data are embedded nearly linearly, the distribution of the
parameter values of the amplitude variation, indicated by colour code, no longer follows
a simple linear direction in the embedding space. This also indicates the more complex
structure of the functional manifold induced by the power warping.

For the embeddings of the other methods, similar findings can be reported, however
overall they are not as successful as the ISOMAP embeddings. In the 1-dimensional
settings, most embeddings are not perfectly linear. Moreover, unlike t-SNE, UMAP and
DIFFMAP fail to recover setting i2-l respectively i2-l, p2-l, and a2-l. To sum up,
manifold methods apparently seem to be able to recover the manifold structure of
functional data, but how successfully they do so strongly depends on the complexity
induced by the transformation of the parameter space. Structured phase variation can
quickly lead to very complex functional manifolds which may not be embeddable
faithfully in the sense that the functional data manifold is no longer isometric to a
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Figure 3: Embeddings for settings a1-l, p1-l, c1-l, a2-l, p2-l, i2-l. Color scale encodes
the value of the first parameter in Θ. Since units for the embeddings are arbitrary, we
omit axis labels here and in the following figures to save space.

low-dimensional linear subspace even if it is based on a very simple linear parameter
space.

3.2.2 Pitfalls of surrogate performance measures

As outlined in section 2.2, the proposed surrogate performance measures suffer from
some drawbacks. Here we show that one of the most worrisome resulting pitfalls is that
these measures can frequently indicate high performance values even if the embedding
is not of high quality in terms of ground-truth performance in the underlying parameter
space.
To demonstrate the issue we concentrate on MDS embeddings of the nonlinear settings
a2-sr, a3-hx, a3-sr, a3-sc, a3-tp. As can be seen in Figure 4, simple MDS is not able
to unfold the functional manifolds into embeddings on linear subspaces or the circle.
However, assessing the embedding, e.g. of setting a3-hx, usingAUCdirRNX

based on direct
L2-distance neighborhoods in the function space F , i.e. the standard way of calculating
distances, would indicate a perfect embedding quality of 1. However, assessing the
embedding based on direct-distance-based neighborhoods in the parameter space Θ
yields a much lower AUCdirRNX

of only 0.78. Computing AUCgeoRNX
, i.e. computing

neighborhoods using geodesic distances, in the parameter space – recall that this is
assumed to be the appropriate way to capture long-range distances on the manifold –
leads to a further reduction, with an AUCgeoRNX

of only 0.553. This corresponds more
closely to the visual impression since MDS is not able to unfold the intrinsic structure
correctly.

So we see that naive application of standard performance measures can indicate high-
quality embeddings even if the manifold is not accurately recovered at all – at least if
recovering is defined as also unfolding non-linear manifolds. The example also shows

12

85



Unsupervised Functional Data Analysis PREPRINT

Figure 4: MDS embeddings for settings with nonlinear parameter space. Color scale
encodes value of the first parameter in Θ.

that the assessment of the quality of an embedding provided by these performance
measures is highly sensitive to the choice of the distance metric used to determine the
neighborhood structure in the space against which the embedding space neighborhoods
are compared.

These two pitfalls make the assessment of real data embeddings using surrogate per-
formance measures particularly challenging since, in reality, the intrinsic structure is
obviously unknown. In particular, automatic tuning approaches based on these measures
have to be chosen and evaluated very carefully.

3.2.3 Evaluation of automatic parameter tuning

To assess the overall approach of tuning and embedding functional data, we concentrate
on the more challenging nonlinear settings a2-sr, a3-hx, a3-sr, a3-sc, a3-tp. Since we
want to assess the ability to detect and unfold intrinsic structure induced by a nonlinear
parameter space here, identity warping is applied in all settings. To thoroughly evaluate
the effects of the distance metric, we tuned each method on each setting based on
AUCdirRNX

and AUCgeoRNX
, both based on the function space as well as the ground truth

parameter space. That is, in total each method has been tuned four times for each setting.
Computing performance based on the parameter and the function space allows us to
compare what is theoretically possible – based on the ground truth parameter space – on
the one hand, and what is practically feasible – based on the observable function space –
on the other hand. Reliable tuning and evaluation methods based on the functional data
should provide similar answers and results as those achieved by tuning and evaluating
on the true underlying parameter space.

Figures 5 and 6 display the resulting embeddings for the considered settings. The em-
beddings have been obtained via tuning based on the parameter space, i.e., maximizing
agreement between parameter space neighborhoods and embedding space neighbor-
hoods in Figure 5 and obtained via tuning on the function space, i.e., maximizing
agreement between function space neighborhoods and embedding space neighborhoods,
in Figure 6. Successful embeddings should unfold these data either to a circle (a3-hx,
2nd column) or to linear subspaces. However, regarding the parameter space-optimized
embeddings in Fig. 5, it becomes obvious that – even if the true parameter space is used
– tuning can lead to embeddings that do not withstand visual inspection in that sense
(e.g., see t-SNE and ISOMAP embeddings of a2-sr and a3-hx based on AUCdirRNX

; Fig.
5 A, second and third row). For setting a2-sr, AUCdirRNX

indicates perfect embedding
for ISOMAP and good embedding for t-SNE. The corresponding embeddings based
on AUCgeoRNX

(Fig. 5 B, second and third row), however, withstand visual inspection
far better. This already indicates that tuning based on geodesic distances can lead to
better results than simply relying on direct distances. Turning to the function space
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optimized embeddings (Fig. 6), we see that things can get even more involved in reality.
Consider, for example, the ISOMAP embeddings again. The embeddings based on
AUCdirRNX

(Fig. 6 A) for a3-sc as well as for settings a2-sr, a3-hx, and a3-sr are not
satisfactory, even though high performances are indicated by the measure.

These discrepancies between measured and actual performance are due to the fact
that, in the case of direct distances, the performance measure is based on a suboptimal
distance metric in the high-dimensional spaces Θ and F . For strongly nonlinear settings,
direct distances seem to be insufficient for tuning methods so that they correctly reflect
the intrinsic structure. Analogously, this applies to the function space as well, since
the L2 metric in the function space is structurally very similar to Euclidean distance
in a Euclidean space. So L2-based neighborhoods are likely to be different from
neighborhoods based on geodesic distances in the function space whenever the functional
manifold is nonlinear. Due to the more complex structure of the function space, the
effect seems to be intensified (for example, see ISOMAP embeddings for a3-sc: based
on the parameter space, direct distances were sufficient to recover the manifold, whereas
in the function space the intrinsic structure was only recovered if tuned based geodesic
distances). Next to the effects of nonlinear domain warping, this is another example of
the specific challenges of nonlinear dimension reduction in FDA settings.

Turning to the remaining methods, the picture is a little more difficult to make sense
of, because the embeddings do not yield such clear differences as ISOMAP and t-SNE.
In general, DIFFMAP and UMAP show arguably better embedding results based on
AUCgeoRNX

(e.g. a2-sr, a3-hx, Fig. 5), but, on the other hand, they benefit less from using
geodesic distances for tuning (e.g. a3-sc, a3-hx, a2-sr, Fig. 6). DIFFMAP embeddings,
in particular, differ the least among AUCdirRNX

and AUCgeoRNX
. Moreover, in some

cases, the underlying manifold is hardly recognizable or not successfully unfolded, in
particular, this holds for the DIFFMAP embeddings in settings a3-sr, a3-sc, and a3-tp.

To quantify the differences between using geodesic rather than direct distances to
optimize and compute performance measures, Figure 7 shows the different optimal
AUCmRNX

-values for all nonlinear settings obtained on the function space and the pa-
rameter space. The best values achieved based on the function space differ strongly
from the ones based on the parameter space in several cases. In general, optimization
via AUCgeoRNX

leads to smaller differences between tuning on function and parameter
space distances. This is also reflected in Table 3, which shows the absolute differ-
ences ∆m

ā := |āmps − āmfs|, with āmps and āmfs the mean optimal AUCmRNX
based on

parameter respectively function space. The mean values āmps and āmfs are computed
over the ISOMAP, DIFFMAP, t-SNE, and UMAP embeddings and the settings a2-sr,
a3-hx, a3-sc, a3-tp. Since setting a3-sr could not be embedded successfully with any
of the methods even if optimized over the parameter space, it is excluded. Clearly,
optimal AUCgeoRNX

(values based on the geodesic distances) differ less between function
space and parameter space than AUCdirRNX

(values based on the direct distances) for
ISOMAP and t-SNE, while there is not much of a difference for UMAP and DIFFMAP.
This is in line with the visual impression that ISOMAP and t-SNE yield clearly better
embeddings based on tuning via AUCgeoRNX

for these settings.
This also indicates that it is frequently more appropriate to use geodesic distances –
especially in function spaces – for performance assessment and tuning.

To sum up, we have seen that it is possible to obtain successful embeddings for functional
data and that automatic parameter tuning can be applied in these simulation settings.
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A: Embeddings optimized via AUCdirRNX
in Θ

B: Embeddings optimized via AUCgeoRNX
in Θ

Figure 5: Parameter-space optimal embeddings of nonlinear settings a2-sr, a3-hx, a3-sr,
a3-sc, a3-tp. A: first four rows based on parameter space AUCdirRNX

-optimization. B:
lower four rows based onAUCgeoRNX

. Color scale encodes the value of the first parameter
in Θ.
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A: Embeddings optimized via AUCdirRNX
in F

B: Embeddings optimized via AUCgeoRNX
in F

Figure 6: Functions-space optimal embeddings of nonlinear settings a2-sr, a3-hx, a3-sr,
a3-sc, a3-tp. A: first four rows based on function space AUCdirRNX

-optimization. B:
lower four rows based onAUCgeoRNX

. Color scale encodes the value of the first parameter
in Θ.
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Figure 7: Function (fs) and parameter (ps) space optimal AUCmRNX
values based on

geodesic and direct distances for settings a2-sr, a3-hx, a3-sr, a3-sc, a3-tp.

Table 3: Comparing performance assessment based on geodesic and direct distances
using absolute difference of mean AUCmRNX

in parameter space and function space.
Setting a3-sr is excluded because no visually appropriate embeddings could be obtained.

Method ∆dir
ā ∆geo

ā

ISOMAP 0.246 0.081
t-SNE 0.146 0.060
UMAP 0.064 0.052
DIFFMAP 0.085 0.043

Moreover, using distances in function space seems to be a reliable alternative to using
distances in ground truth parameter space. In some of the complex settings a2-sr, a3-hx,
a3-sr, a3-sc, a3-tp, however, tuning is successful only if based on geodesic distances
rather than direct distances to define the neighborhoods in the high-dimensional space.
In general, these are promising results indicating that (automatically) obtaining high-
quality embeddings for real functional data is feasible. Yet, the approaches should
not be applied lightly to real data. As we have seen, some of the methods may yield
suboptimal or nonconforming embeddings even if tuned properly. Moreover, not every
setting seems to be amenable to a successful embedding (e.g. see setting a3-sr) – factors
that can lead to multiple nonconforming or misleading embeddings and overoptimistic
or invalid conclusions if not assessed carefully.

4 Real data application

We now turn to real data examples in this section in order to verify the practical utility
of the insights from our simulation study. As motivated in Section 2.4, we first apply our
approach to two settings where the intrinsic structure of the data can be inferred from
domain knowledge to a certain extent. Subsequently, we investigate a fully unsupervised
real data example with completely unknown structure. In addition to AUCmRNX

, we also
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evaluate embedding performance via Qmlocal here in order to investigate the distinctions
between local and global performance measures. To begin with, we give a short
description of all three date sets.

4.1 Data sets

We apply the embedding methods to two functional and one image data set. For two
data sets, the COIL data and the earthquake data, the intrinsic structure can be inferred
from prior knowledge in advance, at least to a certain extent. The intrinsic structure
of the third data set, a spectrography data set, is not known. Figure 8 shows example
observations of the three real data sets. More details are given in the sections devoted to
the specific data set.

4.1.1 COIL data

COIL20 [30] is an image data set consisting of 128 x 128 pixel images of 20 objects.
We use this data set albeit it is not functional, because it is a real data set for which the
intrinsic structure can be inferred from substantial considerations and is nonlinear. For
each object, 72 pictures were obtained by rotating the object around itself and taking a
picture every 5 degrees of rotation. The end position equals the starting position and
each picture reflects the object at a different angle. Thus, for each object, the COIL20
data set contains 72 observations with 16384 features containing single pixel intensities.

For this study, we use a subset of the COIL20 data containing only the pictures of the
first object as the high-dimensional data to be embedded. This means the data set we
use contains 72 pictures of the same object depicted in Figure 8 at different angles
ranging from 0 to 360 degrees. Considering this setup, the 5-degree-picture should
– for example – have approximately the same distance to the 0-degree-picture as the
355-degree-picture. The intrinsic structure of the data set is thus expected to be circular
and one-dimensional, i.e., a setting supposed to be comparable to setting a3-hx.

Aside from these insights – which can be inferred from the original description of the
data generating design and applies to all of the 20 COIL objects – for the specific object
regarded here further considerations can be made, if one closely examines Figure 8. Due
to the axial symmetry of the object, it appears to be more similar to itself at positions 0
and 180 degrees than at 90 and 270 degrees. This can be an indication of further existing
structure which might be present in this specific example, but whether and how this is
reflected in the embeddings is difficult to assess.

4.1.2 Earthquake data

The second real data set contains functional data of a seismological in silico experiment
with both phase and amplitude variation described in [14]. It contains 1558 observations
observed on 61 grid points. Each observation represents 60 seconds of absolute ground
movement velocities at a virtual seismometer location for a simulated earthquake. The
original investigation based on multivariate functional PCA of phase and amplitude
variation revealed a two-dimensional linear structure of the data [14] reflecting the spatial
distances of the virtual seismometers to each other and to the simulated earthquake’s
hypocenter. That is, from the analyses of the previous study we can infer that this is a
data set with phase and amplitude variation and – following our framework – supposedly
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Figure 8: Upper row: Ten example observations of each the earthquake data (Eq) and
the spectrography data (Sp). Lower row: Four images of the COIL object.

a relatively simple (linear) underlying parameter space, so a setting assumed to be
comparable to settings i2-l or a2-l, for example.

4.1.3 Spectrography data

Finally, we consider another functional data set with 1004 functional observations
observed on a grid of length 1751. The data was originally generated to investigate how
forged spirits can be detected noninvasively via vibrational spectroscopy of the ethanol
level, i.e. each observation is a spectrograph based on 1751 different wavelengths (see
[21] for more details on the data set). The data is usually used as a classification problem
and can be obtained2 separated into a training set with 504 observations and a test set
with 500 observations. Since we are in an unsupervised setting, we merged the training
and test set and use the joined data set as the high-dimensional data to be embedded.
Here, we cannot make any justifiable assumptions about the intrinsic structure and it is
unclear what a successful embedding should look like.

4.2 Application to real data with known structure

Figure 9 displays the embeddings for the earthquake data and Figure 10 for the COIL
data. The first two columns for each data set are obtained by tuning via the local
performance measure Qmlocal, while the latter two columns are obtained by tuning via the
global performance measure AUCmRNX

.

2http://www.timeseriesclassification.com/description.php?Dataset=
EthanolLevel
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Earthquake data

Figure 9: Embeddings of the earthquake data. First two columns obtained by opti-
mization via Qmlocal, latter two columns via AUCmRNX

. Color scale encodes distance to
hypocenter.

Most importantly, the results show that what has been observed for the simulated
data also holds for real data: the low dimensional intrinsic structure – both linear and
nonlinear – can be successfully embedded. Several embeddings of the COIL data show
a 1-dimensional, circular structure, while a 2-dimensional linear structure results for the
earthquake data. Moreover, closer examination reveals further interesting insights.

First of all, considering the earthquake data it appears that there is not much of a differ-
ence between embeddings based on AUCgeoRNX

and AUCdirRNX
in a setting with a nearly

linear intrinsic structure. The t-SNE and UMAP embeddings based on AUCdirRNX
visu-

ally appear to be inferior to the ones based on AUCgeoRNX
. Based on the performance

values all embeddings based on AUCgeoRNX
perform somewhat worse. But in general,

the performance differences are negligible. This is a desirable result in line with theo-
retical considerations: On approximately linear subspaces, geodesic distances ought to
resemble direct distances.

Next to these findings, the COIL data opens up a rich pool of interesting insights that
extend the understanding of embedding methods beyond that obtained in the simulation
study. First of all, as outlined in Section 4.1.1, a 1-dimensional circular structure can
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be assumed from the data generating procedure and this structure is detected by four
of the embeddings. However, due to the symmetries of the rotating object, additional
structure could be assumed and this additional structure seems to be recovered in several
embeddings as well – in the case of some of the methods only if the global performance
measure AUCmRNX

is used for tuning, however. Consider the t-SNE embeddings where
the effect is most prominent. In the two rightmost columns tuned for AUCmRNX

, the
structure is ellipsoid, while it is circular in the two leftmost columns tuned for Qmlocal.
These nonconforming embeddings can be explained by the axial symmetry of the object.
Due to the symmetry, the object is more equal to itself at positions 0 and 180 degrees
than at 90 and 270 degrees, which is a global characteristic (locally, i.e. within a
small range of rotation angles, the object looks similar to itself everywhere). The
local performance measure Qmlocal is not able to reflect this global characteristic of the
data sufficiently and the aspect is lost in UMAP, t-SNE, and DIFFMAP embeddings if
tuned based on Qmlocal. These examples demonstrate that global structural properties can
easily be “lost in translation” if an embedding is not tuned properly. It also has to be
emphasized that – in contrast to t-SNE – those UMAP embeddings which sufficiently
preserve global structure do not simultaneously preserve local structure in this setting.
The situation is a little different for ISOMAP. As can be seen in Figure 10, the global
structure is recovered in the embeddings, both based on Qmlocal and AUCmRNX

. However,
an additional dimension is needed to reflect this in the embedding, since all embeddings
result in a twisted ring with an upward bend at two positions opposed to each other.
That is, ISOMAP is not able to fully recover the structure in this example in the lowest
possible number of embedding dimensions (similiar to DIFFMAP). Considering the
MDS embeddings of the COIL data, we see that they are almost completely equal to the
ISOMAP embeddings (only the performance indicated by the values of Qmlocal is slightly
worse for MDS). A possible explanation is that due to the low amount of observations
(only 72 for COIL), the geodesic distances do not differ sufficiently from the direct
distances and ISOMAP basically reflects MDS embeddings. This is supported by a
couple of insights that can be gained by contrasting these results with the results of the
simulations study.
First of all, regarding the MDS embeddings of the COIL data and the a3-hx data, we see
that in both situations the intrinsic structure (a twisted ring and the helix, respectively)
is recovered in principle. Yet, while the intrinsic structure of a3-hx gets unfolded by
ISOMAP, the same is not true for COIL. The most fundamental difference between
these two examples is the number of observations (1000 for a3-hx, 72 for COIL),
which points towards the conclusion that, based on the low number of observations,
a sufficient shortest path graph cannot be constructed for the COIL data such that
MDS would benefit from it compared to simply using direct distances. Moreover,
additional experiments in which the number of observations was increased from 1000
to 5000 in setting a3-sr showed that increasing the number of observations can lead to
embeddings that successfully unroll the manifold – the failure of the methods to do so
in our original experiment in setting a3-sr is likely to be due to too few observations.
Finally, the conclusion is also supported by the fact that there are in general almost no
differences between the COIL embeddings tuned via AUCdirRNX

and AUCgeoRNX
– neither

visually nor quantitatively. Recall, however, that in the simulated settings there have
been large differences and – despite the fact that t-SNE and UMAP are able to recover
the global structure here – it was frequently crucial to use geodesic distances so that the
intrinsic structure could be unfolded.
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COIL data

Figure 10: Embeddings of the COIL data. First two columns obtained by optimization
via Qmlocal, latter two columns via AUCmRNX

. Color scale encodes rotation angle.
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To sum up, the investigation of these two examples confirms that low dimensional intrin-
sic structure of real (functional) data can be automatically and successfully embedded.
However, some pitfalls were clearly identified. For one, certain structural properties of
the functional manifold can easily get lost in the embedding if it is not tuned with the
correct strategy, which makes the assessment of fully unsupervised settings specifically
challenging. Secondly, we saw that using geodesic instead of direct distances is only
beneficial if the number of observations is sufficiently large in a nonlinear setting. Re-
gardless, their use does not seem to be harmful even in settings with few observations
and/or settings with linear structure of the functional manifold.

4.3 Application to real data with unknown structure

So far, we have seen that in several settings – simulated as well as real – where the
intrinsic structure is known at least to a certain extent, functional data can be embedded
successfully and that automatic tuning can be used to obtain suitably faithful embeddings.
On the other hand, we identified some specific pitfalls. In this subsection, we illustrate
the resulting challenges of nonconforming embeddings with a fully unsupervised real
data example and point out an approach possibly allowing to gain some further insights
in such fully unsupervised settings.

The embeddings of the spectrography data are depicted in Figure 11. The major
problem is that there are – overall – two nonconforming structures that are detected.
On the one hand, a closed, circular 3-dimensional structure – a “donut" –, detected
by MDS, all ISOMAP embeddings except the one tuned via AUCgeoRNX

, and arguably
also the t-SNE embeddings based on Qmlocal. On the other hand, there is a curved,
open 3-dimensional structure detected by ISOMAP based on AUCgeoRNX

, t-SNE based
on AUCgeoRNX

and to a lesser extent AUCdirRNX
, and UMAP. In this example, it is not

possible to decide which of the embeddings better describes the true structure by visual
inspection or reference to prior knowledge, nor is it expedient to simply maximize
performance measures. E.g., AUCmRNX

is similarly high for ISOMAP both based on
geodesic as well as direct distances, yet they lead to nonconforming embeddings. The
drawbacks and pitfalls of the performance measures described in the simulation study
are fully apparent here. Although performance measures are available, deciding between
nonconforming embeddings is far from straightforward.

However, the results gathered so far allow us to introduce additional decision criteria:
First of all, we saw that, in the COIL and the a3-hx examples, closed structures were
detected and recovered by all methods irrespective of the performance measures used
for tuning. That is, in a setting with a not “fully” unfoldable structure that is closed in
some way or the other, this structure was recovered in all cases considered. Specifically,
that included embeddings obtained with AUCgeoRNX

. On the other hand, if a nonlinear
structure is ‘fully’ unfoldable, we saw that, in several cases, a fully unfolded embedding
was achieved only if the embeddings were based onAUCgeoRNX

(e.g. see a3-sc) – provided
there was enough data. Considering the spectrography data, we see that none of the
embeddings based on AUCgeoRNX

– except MDS of course – show the closed circular
structure. It may thus not be too far-fetched to infer that, if the intrinsic structure of this
data set were closed and circular in reality, this would also be reflected by at least some
of the embeddings based on AUCgeoRNX

(as was observed for example for the COIL and
the a3-hx data) and that the “donut" does not actually resemble the true intrinsic structure
sufficiently. In fact, one possible explanation could be that direct distances might falsely
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Spectrography data

Figure 11: Embeddings of the spectrography data. First two columns obtained by
optimization via Qmlocal, latter two via AUCmRNX

. To improve visual differentiation,
points are colored according to their observation number.

indicate that two objects at opposite ends of an open, but curved manifold are close
together by taking a shortcut “through" the ambient space and thus connect these parts
of the functional manifold in the embedding space. Similarly, based on local measures
– that is, from a local perspective – such points might also appear close and global
characteristics cannot be reflected sufficiently as was the case in the COIL example.
This might result in unconnected manifold regions being pulled together, which might
be appropriate locally but yields a wrong impression from a global perspective. The
fact that UMAP, a method that is mainly concerned with an accurate representation
of the local structure [29], does not show a closed structure even if based on Qmlocal,
contributes to this conclusion. Note, however, that other explanations might be possible.
For example, MDS embeddings reflected the true intrinsic structure in the simulated
settings, which may also be the case here, and the other, “unclosed" structure might
result from undiscovered effects of the approaches. Nevertheless, this example points in
a direction to gaining insights into settings where so far no judgment is possible.
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5 Discussion

Our results indicate that nonlinear dimension reduction methods can detect and “unfold"
the manifold structure of functional data. For our settings, ISOMAP and t-SNE were
seen to be particularly successful methods. Based on the same tuning regime, the other
methods under comparison – DIFFMAP, UMAP, and MDS – frequently did not obtain
similarly useful embeddings. However, we focused on recovery of the global data
manifold structure in the embedding space. This is likely to affect UMAP adversely
since it is optimized for high-fidelity reconstruction of local structures. The conclusion
should thus not be that t-SNE or ISOMAP are superior for embedding functional data
in general. Similar remarks apply for DIFFMAP, which is also a local method and
performed less well than UMAP in our experiments. Especially in higher-dimensional
real data settings, it frequently led to degenerate embeddings.

Furthermore, tuning strategies based on surrogate performance measures such as
AUCmRNX

should be applied with caution, since they may lead to very misleading
embeddings with far from optimal configurations. In fact, we found evidence that
embedding performance strongly depends on the distance metric m supplied to the
performance measure used for tuning. Our results suggest that the use of geodesic
distances – in particular in function space – is more likely to yield suitable embeddings
if faithful representation of global structure is of importance: tuning embeddings based
on the functional geodesic distances rather than direct distances yielded embeddings
that were frequently much more similar to the ground truth structure in the simulation
study and the expected structure in the real data examples.

Taking all insights obtained in this study into account, we propose to use the following
nuanced approach to achieve more reliable embeddings of functional data: (1) Em-
beddings should be computed automatically by the described tuning approach. (2)
At least two embedding methods should be included to account for different method
performances. In addition, a tuning-free reference method should be included, for which
we suggest MDS since it can recover intrinsic structures in simple cases although it
does not “unfold” them. (3) Embeddings should be computed based on optimizing a
local as well as a global performance measure. (4) Geodesic distances should be used.
Tuning based on geodesic distances worked better for some methods, specifically in
complex nonlinear settings, and did not have adverse effects on performance in any
other settings. In addition, discrepancies between geodesic-based embeddings and
direct-distance-based respectively local-performance-based embeddings can provide
clues on the likely complexity of the intrinsic structure (closed vs. nonclosed, linear vs.
nonlinear).

Moreover, some general questions are raised as well, as the last aspect strongly affects
how to appropriately tackle specific unsupervised problems with manifold methods. For
problems such as clustering or outlier detection, where preserving local structure can
be sufficient, relying on non-geodesic distances can be appropriate. Yet, according to
our findings, this can not simply be transferred to other tasks where global structure
is more important, for example using manifold methods as a preprocessing or feature
engineering step. In this setting, unfolding the manifold, i.e., detecting and simplifying
the global structure, is important because reliable low dimensional representations
not only improve visualization and exploration of functional data, but the embedding
coordinates can also be exploited as features, which preserve the essential information
contained in the functional data, for supervised learning (i.e., modeling and inference)
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tasks. Using direct distances to assess embeddings quantitatively or to optimize learned
embeddings in an automated fashion is (more) likely to lead to misleading results in this
context.

In summary, our results show the potential of extending manifold methods for NDR to
function-valued data, but also reveal challenges that are likely to come up in applications.
In order to achieve reliable low-dimensional representations of functional data for
visualization and exploration or to serve as feature inputs in supervised learning tasks,
these issues will require additional attention by the research community. In future
work, we will investigate the effect of noise-corrupted observations on the estimation
of geodesic distances for functional data, since errors that shift observed functions off
the functional manifold are likely to affect the recovery of geodesic distances adversely.
In addition, the effects of grid resolution and data set size as well as the definition
of alternative distance metrics that specifically account for certain characteristics of
functions – for example, separate amplitude and phase distances [36] – are further
important aspects.

More generally, this study should be considered in the light of a growing debate on
replicability in methodological research. As has been outlined by many [4, 15, 17, 26,
e.g.], methodological research claiming to show superior performance of its proposed
methods and approaches in one way or another can frequently not be confirmed in
independent replications. Our aim in this work was to provide a fairly neutral evaluation
by design, pointing out specific pitfalls and drawbacks of several widely used manifold
learning algorithms and possible meta-learning methods in a wide range of functional
data settings. However, other evaluation frameworks are certainly possible and may
yield additional insights and qualifications for our conclusions. As long as there is no
general benchmarking and evaluation regime generally agreed upon, the results of all
such studies will depend on the choice of this framework to some extent. In that regard,
our study is also intended to serve as a starting point and we hope that it may contribute
to initiating a discussion – similar to the ones in supervised learning and cluster analysis
– on how to conduct neutral evaluations and foster replicable results in the important
field of NDR and manifold learning.

Technical details

All code necessary to reproduce the experiment can be found on GitHub https://
github.com/HerrMo/fda-ndr. To conduct the experiments we used R 3.6.3 [33] on
a system with Linux Mint Cinnamon 19.2 and R packages vegan [31] for ISOMAP,
diffusionMap [35] for DIFFMAP, Rtsne [20] for t-SNE, and umap [18] for UMAP.
For the performance measures we used code of the functions auc_rnx and q_local
from the dimRed package [19]. To compute MDS we used cmdscale of package stats
and isomapdist of package vegan to compute geodesic distances.
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8. A Geometric Perspective on Functional
Outlier Detection

Chapter 8 deals with functional outlier detection. Based on a geometric perspective on the
problem motivated by manifold learning, two different types of outliers – off-manifold and
on-manifold – are differentiated. Extensive qualitative and quantitative experiments based on
simulated and real-world data using MDS as a primary manifold learning method demonstrate
the practical and theoretical utility of the approach. This includes comparisons with existing
functional-data-specific methods.
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Abstract: We consider functional outlier detection from a geometric perspective, specifically: for
functional datasets drawn from a functional manifold, which is defined by the data’s modes of
variation in shape, translation, and phase. Based on this manifold, we developed a conceptualization
of functional outlier detection that is more widely applicable and realistic than previously proposed
taxonomies. Our theoretical and experimental analyses demonstrated several important advantages
of this perspective: it considerably improves theoretical understanding and allows describing and
analyzing complex functional outlier scenarios consistently and in full generality, by differentiating
between structurally anomalous outlier data that are off-manifold and distributionally outlying data
that are on-manifold, but at its margins. This improves the practical feasibility of functional outlier
detection: we show that simple manifold-learning methods can be used to reliably infer and visualize
the geometric structure of functional datasets. We also show that standard outlier-detection methods
requiring tabular data inputs can be applied to functional data very successfully by simply using their
vector-valued representations learned from manifold learning methods as the input features. Our
experiments on synthetic and real datasets demonstrated that this approach leads to outlier detection
performances at least on par with existing functional-data-specific methods in a large variety of
settings, without the highly specialized, complex methodology and narrow domain of application
these methods often entail.

Keywords: functional data analysis; outlier detection; manifold learning; dimension reduction;
multidimensional scaling; local outlier factors

1. Introduction
1.1. Problem Setting and Proposal

Outlier detection for functional data is a challenging problem due to the complex
and information-rich units of observations, which can be “outlying” or unusual in many
different ways. Functional outliers are often categorized into magnitude and shape out-
liers [1,2], whereas Hubert et al. [3] differentiated between isolated and persistent outliers,
the latter were further subdivided into shift, amplitude, and shape outliers. However,
neither of these taxonomies yield precise, explicit, fully general definitions, which makes
it difficult to theoretically describe, analyze, and compare functional outliers. Magnitude
outliers, for example, have been defined as functional observations “outlying in some part
or across the whole design domain” [1] (p. 1), or as “curves lying outside the range of
the vast majority of the data” [2] (p. 2), whereas Hubert et al. [3] (p. 3) defined isolated
outliers as observations that “exhibit outlying behavior during a very short time interval”,
in contrast to persistent outliers, which “are outlying on a large part of the domain”.

To cut through the confusion, we propose a geometric perspective on functional
outlier detection based on the well-known “manifold hypothesis” [4,5]. This refers to
the assumption that ostensibly complex, high-dimensional data lie on a much simpler,
lower-dimensional manifold embedded in the observation space and that this manifold’s
structure can be learned and then represented in a low-dimensional space, often simply
called embedding space. We argue that such a perspective both clarifies and generalizes the
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concept of functional outliers, without the need for any strong assumptions or prior knowl-
edge about the underlying data-generating process or its outliers. In terms of theoretical
development, the approach allows us to consistently formalize and systematically analyze
functional outlier detection in full generality. We also demonstrate that procedures based
on this perspective simplify and improve functional outlier detection in practice: this sug-
gests a principled, yet flexible approach for applying well-established, highly performant
standard outlier-detection methods such as local outlier factors (LOF) [6] to functional data,
based on embedding coordinates obtained via manifold learning or dimension-reduction
methods. Our experiments show that doing so performs at least on par with existing
functional-data-specific outlier-detection methods, without the methodological complexity
and limited applicability that methods specific to functional data often entail. Moreover,
such lower-dimensional representations serve as an easily accessible visualization and
exploration tool that helps uncover complex and subtle data structures that cannot be
sufficiently reflected by one-dimensional outlier scores or labels, nor captured by many of
the previously proposed 2D diagnostic visualizations for functional outliers.

1.2. Background and Related Work

Functional data analysis (FDA) [7] focuses on data where the units of observation are
realizations of stochastic processes over compact domains. In many cases, the intrinsic
dimensionality of functional data (FD) is much lower than the observed. First, while
FD are infinite-dimensional in theory, they are high-dimensional in practice: functional
observations are usually recorded on fine and dense grids of argument values. Second, the
dominant drivers of the differences among functional observations are often comparatively
low-dimensional, so that just a few modes of variation capture most of the structured
variability in the data.

However, FD usually contain shape and translation, as well as phase variation, i.e.,
both “vertical” and “horizontal” variability. These different kinds of variability contribute
to the difficulty of precisely defining and differentiating the various forms of functional
outliers and developing methods that can “catch them all”, making outlier detection a
highly investigated research topic in FDA. For example, Arribas-Gil and Romo [2] argued
that the proposed outlier taxonomy of Hubert et al. [3] can be made more precise in terms
of expectation functions f (t) and g(t), with f (t) a “common” process; see Figure 1.

Figure 1. Functional outlier taxonomies. Bottom: standard taxonomy. Top: the taxonomy as
introduced by Hubert et al. Reprinted by permission from Springer Nature: Springer, Statistical
Methods & Applications, Discussion of “Multivariate functional outlier detection”, Arribas-Gil Ana,
Romo Juan, Copyright 2015.

Despite these attempts, some fundamental issues remain unsolved. The proposed
taxonomies do not provide precise definitions, and some of the definitions are contradictory
to some extent. Finally, many outlier scenarios for realistic data-generating processes are
not covered by the described taxonomies at all. As Arribas-Gil and Romo [2] themselves
pointed out that settings with phase-varying data (i.e., “horizontal” variability through
elastic deformations of the functions’ domains) are not sufficiently reflected, as functions
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deviating in terms of phase may be considered as shape outliers in cases where there are
only a few such functions, but not in settings where all functions display such variation.

In addition, the taxonomy in Figure 1 provides a reasonable conceptual framework
only if the nonoutlying data from the “common” data-generating process is characterized
adequately just by its global mean function. This cannot be assumed for many real datasets,
which often contain highly variable sets of functions, which display several modes of phase,
shape, and/or amplitude variation simultaneously and/or come from multiple classes
with class-specific means and higher moments (see Figure 5).

Published research focuses mostly on the development of outlier detection methods
specifically for functional data, and a multitude of methods based on a variety of different
concepts such as functional data depths [8,9], functional PCA [10], functional isolation
forests [11], robust functional archetypoids [12], or functional outlier metrics such as
directional outlyingness [13,14], often narrowly focused on detecting specific kinds of
functional outliers, have been put forth. Dai et al. [1] proposed a transformation-based
approach to functional outlier detection and claimed that sequentially transforming shape
outliers, which “are much more challenging to handle”, into magnitude outliers makes
them easier to detect with established methods [1] (p. 2). The approach allows defining
functional outliers more precisely in terms of the transformations being used, such as
normalizing or centering functions or taking their derivatives, but practitioners still need
to be able to come up with appropriate transformations for the data at hand first.

Recently, Xie et al. [15] introduced a decomposition of functional observations into
amplitude, phase, and shift components, based on which specific types of outliers can
be identified in a more general geometric framework without necessarily requiring func-
tional data to be of comparatively low rank. Similar in spirit to our proposal, Hyndman
and Shang [16] used kernel density estimation and half-space depth contours of two-
dimensional robustified FPCA scores to construct functional boxplot equivalents and
detect outliers, and Ali et al. [17] used data representations in two dimensions obtained
from manifold methods for outlier detection and clustering, but the focus of both was on
practicalities without considering the theoretical implications and general applicability of
embedding-based approaches, nor did they consider the necessity of higher-dimensional
representations. While Hyndman and Shang’s HDR boxplots were based on a similar
combination of methods as our approach, they did not consider their geometrical founda-
tions and, thus, did not make use of their full potential, firstly by considering only the two
largest PCs and secondly by dichotomizing observations into outliers and inliers instead
of providing continuous scores of outlyingness. Yu et al. [18] developed a test statistic
for outlier detection based on the observed maxima of scaled PC score vectors, i.e., outly-
ingness defined in terms of a single mode of variation. However, this NHST framework
for outlier detection needs to assume both that the common data have a single consistent
mean function and that all deviations from this mean function are i.i.d. realizations of a
mean-zero Gaussian process. Both of these assumptions seem highly restrictive to us and
are likely to be untenable in many real-world applications.

The remainder of the paper is structured as follows: We provide a theoretical formal-
ization and discussion of our geometric approach in Section 2. Based on these theoretical
considerations, Section 3 presents extensive experiments. Section 3.1 covers a detailed
qualitative analysis of real-world data, while Section 3.2 provides quantitative experiments
and systematic comparisons to previously proposed methods on complex synthetic outlier
scenarios. We conclude with a discussion in Section 4.

2. Functional Outlier Detection as a Manifold-Learning Problem

In this section, we first define two forms of functional outliers from a geometric view
point: off- and on-manifold outliers. We then illustrate how this perspective contains and
extends existing outlier taxonomies and how it can be used to formalize a large variety of
additional scenarios for functional data with outliers.

8. A Geometric Perspective on Functional Outlier Detection
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2.1. The Two Notions of Functional Outliers: Off- and On-Manifold

Our approach to functional outlier detection rests on the manifold assumption, i.e.,
the assumption that observed high-dimensional data are intrinsically low-dimensional.
Specifically, we put forth that observed functional data x(t) ∈ F , where F is a function
space, arise as the result of a mapping φ : Θ → F from a (low-dimensional) parameter
space Θ ⊂ Rd2 to F , i.e., x(t) = φ(θ). Conceptually, a d2-dimensional parameter vector
θ ∈ Θ represents a specific combination of values for the modes of variation in the observed
functional data, such as level or phase shifts, amplitude variability, class labels, and
so on. These parameter vectors are drawn from a probability distribution P over Rd2 :
θi ∼ P ∀ θi ∈ Θ, with Θ = {θ : fP(θ) > 0} and fP the density to P. Mapping this
parameter space to the function space creates a functional manifoldMΘ,φ defined by φ
and Θ: MΘ,φ = {x(t) : x(t) = φ(θ) ∈ F , θ ∈ Θ} ⊂ F , and an example is depicted in
Figure 2. For F = L2 with data from a single functional manifold that is isomorphic to
some Euclidean subspace, Chen and Müller [19] developed the notions of a manifold mean
and modes of variation. Similarly, Dimelgio et al. [20] developed a robust algorithm for
template curve estimation for connected smooth submanifolds of Rd.

Figure 2. Functional data from a manifold-learning perspective. Image source: Herrmann and
Scheipl [21]; use permitted under the Creative Commons Attribution License CC BY-SA 4.0.

Unlike these single-manifold settings, our conceptualization of outlier detection is
based on two functional manifolds. That is, we assume a dataset X = {x1(t), . . . , xn(t)}
with n functional observations coming from two separate functional manifolds
Mc = MΘc ,φc and Ma = MΘa ,φa , with Mj ⊂ F , j ∈ {c, a} and X ⊂ {Mc ∪Ma},
withMc representing the “common” data-generating process andMa containing anoma-
lous data. Moreover, for the purpose of outlier detection and in contrast to the settings
with a single manifold described in the referenced literature, we are less concerned with
precisely approximating the intrinsic geometry of each manifold. Instead, it is crucial
to consider the manifoldsMc andMa as submanifolds of F , since we require not just
a notion of distance between objects on a single manifold, but also a notion of distance
between objects on different manifolds using the metric in F . Note that function spaces
such as C or L2, which are commonly assumed in FDA [22], are naturally endowed with
such a metric structure. Both C(D) and all Lp(D) spaces over compact domain D are
Banach spaces for p ≥ 1 and, thus, also metric spaces [23].

Finally, we assume that we can learn from the data an embedding function e : F → Y
that maps observed functions to a d1-dimensional vector representation y ∈ Y ⊂ Rd1 with
e(x(t)) = y, which preserves at least the topological structure of F , i.e., ifMc andMa are
unconnected components of F , their images under e are also unconnected in Y and ideally
yield a close approximation of the ambient geometry of F .

Definition 1. Off- and on-manifold outliers in functional data.

Without loss of generality, let r = |{xi(t):xi(t)∈Ma}|
|{xi(t):xi(t)∈Mc}| ≪ 1 be the outlier ratio, i.e.,

most observations are assumed to stem from Mc. Furthermore, let Θc and Θa follow
the distributions Pc and Pa, respectively. Let Ω∗α,P be an α-minimum volume set of P
for some α ∈ (0, 1), where Ω∗α,P is defined as a set minimizing the quantile function
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V(α) = infC∈C{Leb(C) : P(C) ≥ α}, 0 < α < 1} for i.i.d. random variables in Rd with
distribution P, C a class of measurable subsets in Rd, and Lebesgue measure Leb [24], i.e.,
Ω∗α,P is the smallest region containing a probability mass of at least α.

A functional observation xi(t) ∈ X is then:

• An off-manifold outlier if xi(t) ∈ Ma and xi(t) /∈ Mc;
• An on-manifold outlier if xi(t) ∈ Mc and θi /∈ Ω∗α,Pc

.

To paraphrase, we assume that there is a single “common” process generating the
bulk of observations onMc and an “anomalous” process defining structurally different
observations onMa. We follow the standard notion of outlier detection in this, which
assumes that there are two data-generating processes [1,25,26]. Note that this does not
necessarily imply that off-manifold outliers are similar to each other in any way: Pa could
be very widely dispersed and/orMa could consist of multiple unconnected components
representing different kinds of anomalous data. The essential assumption here is that the
process from which most of the observations are generated yields structurally relatively
similar data. This is reflected by the notion of the two manifoldsMc andMa and the
ratio r. We consider settings with r ∈ [0, 0.1] as suitable for outlier detection. By definition,
the number of on-manifold outliers, i.e., distributional outliers onMc as opposed to the
structural outliers onMa, only depends on the α-level for Ω∗α,Pc

.
Note that outlyingness in functional data is often defined only in terms of shape

or magnitude, but the concept ought to be conceived much more generally. The most
important aspect from a practical perspective is that any kind of structural difference will
be reliably reflected in low-dimensional representations that can be learned via manifold
methods, as we show in Section 3. These methods yield embedding coordinates y ∈ Y that
capture the structure of data and their outliers.

2.2. Methods

To illustrate some of the implications of our general perspective on functional out-
lier detection and showcase its practical utility, we mostly use metric multidimensional
scaling (MDS) [27] for dimension reduction and local outlier factors (LOF) [6] for outlier
scoring in the following. Note, however, that the proposed approach is not at all limited
to these specific methods, and many other combinations of outlier detection methods
applied to lower-dimensional embeddings from manifold-learning methods are possible.
However, MDS and LOF have some important favorable properties: First of all, both
methods are well understood and widely used and tend to work reliably without extensive
tuning since they do not have many hyperparameters. Specifically, LOF only requires a
single parameter minPts, which specifies the number of nearest neighbors used to define
the local neighborhoods of the observations, and MDS only requires specification of the
embedding dimension.

More importantly, our geometric approach rests on the assumption that functional
outlier detection can be based on some notion of distance or dissimilarity between func-
tional observations, i.e., that abnormal or outlying observations are separated from the
bulk of the data in some ambient (function) space. As MDS optimizes for an embedding,
which preserves all pairwise distances as closely as possible (i.e., tries to project the data
isometrically), it also retains a notion of the distance between unconnected manifolds in
the ambient space. This property of the embedding coordinates retaining the ambient
space geometry as much as possible is crucial for outlier detection. This also suggests that
manifold-learning methods such as ISOMAP [28], t-SNE [29], or UMAP [30], which do
not optimize for the preservation of ambient space geometry via isometric embeddings
by default, may require much more careful tuning in order to be used in this way. Our
experiments support this theoretical consideration, as can be see in Figure 11. For LOF,
this implies that larger values for minPts are to be preferred here, since such LOF scores
take into account more of the global ambient space geometry of the data instead of only
the local neighborhood structure. In Section 3, we show that minPts = 0.75n, with n the

8. A Geometric Perspective on Functional Outlier Detection
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number of functional observations in a dataset, seems to be a reliable and useful default for
the range of datasets we consider.

Two additional aspects need to be pointed out here. First, throughout this paper,
we compute most distances using the L2 metric. This yields MDS coordinates that are
equivalent to standard functional PCA scores (up to rotation). The proposed approach,
however, is not restricted to L2 distances. Combining MDS with distances other than
L2 yields embedding solutions that are no longer equivalent to PCA scores, and suitable
alternative distance measures may yield better results in particular settings. We illustrate
this aspect using the L10 metric and two phase-specific distance measures in Section 3.3,
which we apply to simulated data with isolated outliers and a real dataset of outlines of
neolithic arrowheads, respectively. Similarly, using alternative manifold-learning meth-
ods could be beneficial in specific settings, as long as they are able to represent not just
the local neighborhood structure or on-manifold geometry, but also the global ambient
space geometry.

Second, even though the LOF could also be applied directly to the dissimilarity matrix
of a functional dataset without an intermediate embedding step, most anomaly-scoring
methods cannot be applied directly to such distance matrices and require tabular data
inputs. By using embeddings that accurately reflect the (outlier) structure of a functional
dataset, any anomaly-scoring method requiring tabular data inputs can be applied to
functional data as well. In this work, we apply LOF on MDS coordinates to evaluate
whether functional data embeddings can faithfully retain the outlier structure. Further-
more, embedding the data before running outlier-detection methods often provides large
additional value in terms of visualization and exploration, as the ECG data analysis in
Section 3.1 shows.

2.3. Examples of Functional Outlier Scenarios

We can now give precise formalizations of different functional outlier scenarios and
investigate the corresponding low-dimensional representations. In this section, we first
show that the geometrical approach is able to describe existing taxonomies (see Figure 1)
more consistently and precisely. We then illustrate its ability to formalize a much broader
general class of outlier detection scenarios and discuss the choice of the distance metric
and the dimensionality of the embedding.

2.3.1. Outlier Scenarios Based on Existing Taxonomies

Structure induced by shape: In the taxonomy depicted in Figure 1, top, the common
data-generating process is defined by the expectation function f (t). This can be formalized
in our geometrical terms as follows: the set of functions defined by the “common process”
f (t) defines a functional manifold (in terms of shape), i.e., the structural component is
represented by the expectation function of the common process. That means we can define
Mc = {x(t) : x(t) = θ f (t) = φ(θ, t)} orMc = {x(t) : x(t) = f (t) + θ = φ(θ, t), θ ∈ R}.
More generally, we can also model this jointly withMc = {x(t) : θ1 f (t) + θ2 = φ(θ, t),
θ = (θ1, θ2)

′ ∈ R2}. In each case, magnitude and (vertical) shift outliers as defined in the
taxonomy correspond to on-manifold outliers in the geometrical approach, as such observa-
tions are elements ofMc. Isolated and shape outliers, on the other hand, are by definition
off-manifold outliers, as long as “g is not related to f ” is specified as g 6= θ f ∀ θ ∈ R. For
example, if we defineMa = {x(t) : x(t) = θg(t)}, it follows thatMc ∩Ma = ∅. The
same applies to isolated outliers, because g(t) = f (t) + IU(t)h(t) 6= θ1 f (t) + θ2.

Figure 3 shows an example of such an outlier scenario taken from [8]. Following
their notation, the two manifolds can be defined as Mc = {x(t)|x(t) = b + 0.05t +
cos(20πt), b ∈ R} and Ma = {x(t)|x(t) = a + 0.05t + sin(πt2), a ∈ R} with t ∈ [0, 1]
and a ∼ N(µ = 5, σ = 4), b ∼ N(µ = 5, σ = 3). Note that the off-manifold outliers
lie within the mass of data in the visual representation of the curves, whereas in the
low-dimensional embedding, they are clearly separable.
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However, we argue that the way shape outliers are defined in Figure 1 is too restrictive,
as many isolated outliers clearly differ in shape from the main data, but are not captured
by the given definition if the shape is considered in terms of “g not related to f ”. In
contrast, the geometrical perspective with its concepts of off- and on-manifold outliers
reflects that consistently. Another issue with the considered taxonomy concerns horizontal
shift outliers f (t + α) or f (h(t)). Aribas-Gil and Romo [2] specifically tackled that aspect
in their discussion. They distinguished between situations where “all the curves present
horizontal variation” (Case I), which is the no-outlier scenario for them, and situations
where only a few phase-varying observations are present (Case II), which constitutes an
outlier scenario. Again, the geometric perspective allows reflecting that consistently. In
Appendix A, we make these two notions explicit by defining manifolds accordingly.
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Figure 3. Functional outlier scenario (n = 54, r = 0.09) with shape variation inducing structural
differences. Off-manifold outliers colored in blue; two on-manifold outliers colored in red.

2.3.2. General Functional Outlier Scenarios

As already noted, the concept of structural difference we propose is much more
general. It is straightforward to conceptualize other outlier scenarios with an induced
structure beyond shape. Consider the following theoretical example: take a parameter
manifold Θ ⊂ [0, ∞]× [0, ∞]× [0, ∞]× [0, ∞] and an induced functional manifoldM =
{ f (t); t ∈ [0, 1] : f (t) = θ1 + θ2tθ3 + I(t ∈ [θ4 ± 0.1])}. Each dimension of the parameter
space controls a different characteristic of the functional manifold: θ1 the level, θ2 the
magnitude, θ3 the shape, and θ4 the presence of an isolated peak around t = θ4. One can
now define a “common” data-generating process, i.e., a manifoldMc, by holding some
of the dimensions of Θ fixed and only varying the rest, either independently or not. On
the other hand, one can define an “anomalous” data-generating process, i.e., a structurally
different manifoldMa, by letting those fixed inMc vary, or simply setting them to values
unequal to those used forMc, or by using different dependencies between parameters
than forMc, e.g., if θ1 = θ2 forMc, let θ1 = −θ2 forMa. This implies that one can define
data-generating processes so that any functional characteristic (level, magnitude, shape,
“peaks”, and their combinations) can be on-manifold or off-manifold outliers, depending
on how the “common” data manifoldMc is defined.

Figure 4 shows a setting in whichMc is defined purely in terms of complex shape
variation, whileMa contains vertically shifted versions of elements inMc: LetMc be the
functional manifold of Beta densities fB(t; θ1, θ2) with shape parameters θ1, θ2 ∈ [1, 2], and
letMa be the functional manifold of Beta densities with shape parameters θ1, θ2 ∈ [1, 2]
shifted vertically by some scalar quantity θ3 ∈ [0, 0.5], that isMc = { f (t); t ∈ [0, 1] : f (t) =
fB(t; θ1, θ2)} with Θc = [1, 2]2 andMa = { f (t); t ∈ [0, 1] : f (t) = fB(t; θ1, θ2) + θ3} with
Θa = Θc × [0, 0.5].

As can be seen in Figure 4, both manifolds contain substantial shape variation that is
identically structured, but those fromMa are also shifted upwards by small amounts. Note

8. A Geometric Perspective on Functional Outlier Detection
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that many shifted observations lie within the main bulk of the data on large parts of the
domain. In the 2D embeddings based on unnormalized L1-Wasserstein distances [31] (also
know as the “Earth mover’s distance”, top right) and 3D embeddings based on standard
L2 distances (bottom right), we see that this structure is captured with high accuracy, even
though it is hardly visible in the functional data, with most anomalous observations clearly
separated from the common manifold data, whose embeddings are concentrated on a
narrow subregion of the embedding space. An observation onMa that is very close toMc,
lying well within the main bulk of functional observations, also appears very close toMc
in both embeddings. This example shows that the two functional manifolds do not need to
be completely disjoint, nor yield visually distinct observations for our approach to yield
useful results. It also shows that the choice of an appropriate dissimilarity metric for the
data can make a difference: a 2D embedding is sufficient for the more suitable Wasserstein
distance, which is designed for (unnormalized) densities (top right panel), while a 3D
embedding is necessary for representing the relevant aspects of the data geometry if the
embedding is based on the standard L2 metric (lower right panels). For a comparison
with currently available outlier visualization methods for this example, see Figure A4 in
Appendix D.
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Figure 4. Functional outlier scenario (n = 100, r = 0.1) with vertical shifts inducing structural
differences. MDS embeddings based on unnormalized L1-Wasserstein distances and L2 (Euclidean)
distances on the right.

In summary, we propose that the manifold perspective allows defining and represent-
ing a very broad range of functional outlier scenarios and data-generating processes. We
argue that these properties make the geometrical approach very compelling for functional
data, because it is flexible, conceptualizes outliers on a much more general level (for ex-
ample, structural differences not in terms of shape) than before, and allows theoretically
assessing a given setting.

Beyond its theoretical utility of providing a general notion of functional outliers, it
has crucial practical implications: outlier characteristics of functional data, in particular
structural differences, can be represented and analyzed using low-dimensional representa-
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tions provided by manifold-learning methods, regardless of which functional properties
define the “common” data manifold and which properties are expressed in structurally
different observations. From a practical perspective, on-manifold outliers will appear
“connected”, whereas off-manifold outliers will appear “separated” in the embedding, and
the clearer these structural differences are, the clearer the separation in the embedding
will be. Note that this implies that shape outliers, which pose particular challenges to
many previously proposed methods, will often be particularly easily detectable. Moreover,
all methods for outlier detection that have been developed for tabular data inputs can
be (indirectly) applied to functional data as well based on this framework, simply by
using the embedding coordinates as feature inputs: The embedding space Y is typically a
low-dimensional Euclidean space in which conventional outlier detection works well and
the essential geometrical structure encoded in the pairwise functional distance matrix is
conserved in these lower-dimensional embeddings. In the next section, we illustrate this
practical utility in detail by extensive quantitative and qualitative analyses.

3. Experiments

To illustrate the practical relevance of the outlined geometrical approach, we first
qualitatively investigate real datasets. In the second part of this section, we quantitatively
investigate the anomaly detection performance of several detection methods based on
synthetic data.

3.1. Qualitative Analysis of Real Data

We start with an in-depth analysis of the ECG200 data [32,33], a functional dataset with
a complex structure: it seems to contain subgroups with phase and amplitude variation and
different mean functions. As a result, the dataset appears visually complex (Figure 5, left).
Without the color coding, it would be challenging to identify the three subgroups (as in the
lower left plot in Figure 6). Moreover, there are five left-shifted observations (apparent at
t ∈ [10, 25]) and a single (partly) vertically shifted outlier (apparent at t ∈ [50, 75]), clearly
detectable by the naked eye.
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V(α) = infC∈C{Leb(C) : P(C) ≥ α}, 0 < α < 1} for i.i.d. random variables in Rd with
distribution P, C a class of measurable subsets in Rd, and Lebesgue measure Leb [24], i.e.,
Ω∗α,P is the smallest region containing a probability mass of at least α.

A functional observation xi(t) ∈ X is then:

• An off-manifold outlier if xi(t) ∈ Ma and xi(t) /∈ Mc;
• An on-manifold outlier if xi(t) ∈ Mc and θi /∈ Ω∗α,Pc

.

To paraphrase, we assume that there is a single “common” process generating the
bulk of observations onMc and an “anomalous” process defining structurally different
observations onMa. We follow the standard notion of outlier detection in this, which
assumes that there are two data-generating processes [1,25,26]. Note that this does not
necessarily imply that off-manifold outliers are similar to each other in any way: Pa could
be very widely dispersed and/orMa could consist of multiple unconnected components
representing different kinds of anomalous data. The essential assumption here is that the
process from which most of the observations are generated yields structurally relatively
similar data. This is reflected by the notion of the two manifoldsMc andMa and the
ratio r. We consider settings with r ∈ [0, 0.1] as suitable for outlier detection. By definition,
the number of on-manifold outliers, i.e., distributional outliers onMc as opposed to the
structural outliers onMa, only depends on the α-level for Ω∗α,Pc

.
Note that outlyingness in functional data is often defined only in terms of shape

or magnitude, but the concept ought to be conceived much more generally. The most
important aspect from a practical perspective is that any kind of structural difference will
be reliably reflected in low-dimensional representations that can be learned via manifold
methods, as we show in Section 3. These methods yield embedding coordinates y ∈ Y that
capture the structure of data and their outliers.

2.2. Methods

To illustrate some of the implications of our general perspective on functional out-
lier detection and showcase its practical utility, we mostly use metric multidimensional
scaling (MDS) [27] for dimension reduction and local outlier factors (LOF) [6] for outlier
scoring in the following. Note, however, that the proposed approach is not at all limited
to these specific methods, and many other combinations of outlier detection methods
applied to lower-dimensional embeddings from manifold-learning methods are possible.
However, MDS and LOF have some important favorable properties: First of all, both
methods are well understood and widely used and tend to work reliably without extensive
tuning since they do not have many hyperparameters. Specifically, LOF only requires a
single parameter minPts, which specifies the number of nearest neighbors used to define
the local neighborhoods of the observations, and MDS only requires specification of the
embedding dimension.

More importantly, our geometric approach rests on the assumption that functional
outlier detection can be based on some notion of distance or dissimilarity between func-
tional observations, i.e., that abnormal or outlying observations are separated from the
bulk of the data in some ambient (function) space. As MDS optimizes for an embedding,
which preserves all pairwise distances as closely as possible (i.e., tries to project the data
isometrically), it also retains a notion of the distance between unconnected manifolds in
the ambient space. This property of the embedding coordinates retaining the ambient
space geometry as much as possible is crucial for outlier detection. This also suggests that
manifold-learning methods such as ISOMAP [28], t-SNE [29], or UMAP [30], which do
not optimize for the preservation of ambient space geometry via isometric embeddings
by default, may require much more careful tuning in order to be used in this way. Our
experiments support this theoretical consideration, as can be see in Figure 11. For LOF,
this implies that larger values for minPts are to be preferred here, since such LOF scores
take into account more of the global ambient space geometry of the data instead of only
the local neighborhood structure. In Section 3, we show that minPts = 0.75n, with n the) in

the top decile shown in black.

Much of the general structure (and the anomaly structure in particular) becomes
evident in a 5D MDS embedding. To begin with, in the first two embedding dimensions,
depicted on the right-hand side of Figure 5, three subgroups are easily recognizable.
The color coding in Figure 5 is based on this visualization. It makes apparent that the
substructures correspond to two smaller, horizontally shifted subgroups of curves (orange:
left-shifted, purple: right-shifted) and a central subgroup encompassing the majority of
the observations (green). In addition, we computed LOF scores on the 5D embedding
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coordinates. The observations with LOF scores in the top decile are shown in black in
Figure 5. This set contains all the clearly outlying observations.

More importantly, note that these observations are clearly separated from the rest
in the 5D embedding shown in Figure 6: the five clearly left-shifted observations in the
fourth embedding dimension and the single vertically shifted observation in the subspace
spanned by the first and third embedding dimension. The figure shows a scatterplot
matrix of all five embedding dimensions with observations color-coded according to the
5D-embedding LOF scores. The clearly left-shifted outliers obtain the highest LOF scores
due their isolation in the subspaces including the fourth embedding dimension. Note,
moreover, that other observations with higher LOF scores appear in peripheral regions
of the different subspaces, but they are not as clearly separable as the six observations
described before. Regarding Figure 7A, which shows the 20 most outlying curves according
to LOF scores, this can be explained by the fact that these other observations stem from
one of the two shifted subgroups and can thus be seen as on-manifold outliers, whereas
the six other, visually clearly outlying observation, are clearly off-manifold outliers.
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Figure 6. ECG data: scatterplot matrix of all 5 MDS embedding dimensions and curves; lighter colors
for the higher LOF scores of 5D embeddings.

We contrast these findings with the results of directional outlyingness [14,34], which
performs very well (see Section 3.2) on simple synthetic datasets. Figure 7 shows the ECG
curves color-coded by the variation of directional outlyingness (B), the 20 most outlying
curves by the variation of directional outlyingness (C), and the observations labeled as
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outliers by directional outlyingness respectively by the MS-plot (D). First of all, it can
be seen that many observations yield a high variation of directional outlyingness, and
observations in the right-shifted subgroup obtain most of the highest values. In fact, among
the twenty observations with the highest variation of directional outlyingness, only one
is from the left-shifted group, and thirteen are from the right-shifted group. Moreover,
applying directional outlyingness to this dataset results in 72 observations being labeled as
outliers, which is about 36% of all observations. We would argue that it is questionable
whether 36% of all observations should be labeled as outliers.
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Figure 7. ECG data: LOF on MDS embeddings in contrast to directional outlyingness.

In this regard, the ECG data serve as an example that illustrates the advantages of
the geometric approach. First of all, it yields readily available visualizations, which reveal
much more of the inherent structure of a dataset than just its anomaly structure. This is
specifically important for data with a complex structure (i.e., subgroups or multiple modes
and large variability). Moreover, it allows applying well-established and powerful outlier
scoring methods such as LOF to functional data. This exemplifies that the approach not
only improves theoretical understanding and consideration as outlined in the previous
section, it also has large practical utility in complex real data settings in which previously
proposed methods may not provide useful answers.

8. A Geometric Perspective on Functional Outlier Detection
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In the ECG example, we saw that a 5D embedding yielded reasonable results and
sufficiently reflected many aspects of the data. In particular, the extremely left-shifted
observations became clearly separable in the fourth embedding dimension. In Appendix E,
we analyze a synthetic dataset in the same way as the ECG data, which yields similar
findings. Moreover, note that the Spearman rank correlation between LOF scores computed
on the 5D embedding and LOF scores computed directly on the ECG data distances is 0.99.
This shows that the outlier structure retained in the 5D embedding is highly consistent
with the outlier structure in the high-dimensional observation space, an important aspect
with respect to anomaly-scoring methods requiring (low-dimensional) tabular inputs.

Finally, note that even fewer than five embedding dimensions may suffice to reflect
much of the inherent structure. Consider the examples depicted in Figure 8, which shows
the functional observations and the first two embedding dimensions of a corresponding
5D MDS embedding of another four real datasets. The Octane data consist of spectra from
60 gasoline samples [35,36], the Spanish weather data of annual temperature curves of
73 weather stations [37], the Tecator data of spectrometric curves of meat samples [37,38],
and the Wine data of spectrometric curves of wine samples [32,39]. As before, the obser-
vations are colored according to LOF scores based on the 5D embedding. In addition, the
12 observations with highest LOF scores are depicted as triangles. These datasets are much
simpler than the ECG data, and the first two embedding dimensions already reflect the
(outlier) structure fairly accurately: observations with high LOF scores appear separated in
the first two embedding dimensions, and more general substructures are revealed as well.
The substructure of the weather data is rather obvious already regarding the functional
observations, for example, the observations with less variability in terms of temperature,
all of which obtained high LOF scores. The substructure of the wine data—for example,
the small cluster in the lower part of the embedding—is much harder to detect based on
visualizations of the curves alone.

Appendix B summarizes a more detailed analysis of the sensitivity of the approach
to the choice of the dimensionality of the embedding. We conclude that sensitivity seems
to be fairly low. For all five real datasets we considered, the rank order of LOF scores is
very similar or even identical whether based on two-, five-, or even twenty-dimensional
embeddings (cf. Table A1).

Following Mead [40], we quantified the goodness of fit (GOF) for a d1-dimensional

MDS embedding as: GOF(d1) =
∑

d1
i=1 max(0,λi)

∑n
j=1 max(0,λj)

, where λk are the eigenvalues (sorted in

decreasing order) of the kth eigenvectors of the centered distance matrix. For all of the
considered real datasets, a 5D embedding achieved a goodness of fit over 0.8, the four
less-complex examples even over 0.95 (see Figure A2). As a rule of thumb, the embedding
dimension does not seem crucial as long as the goodness of fit (GOF) of the embedding
is over 0.8 for L2 distances. This rule of thumb also yielded compelling quantitative
performance results, as shown in Section 3.2.

Figures 6 and 8 show visualizations that combine MDS embeddings with LOF outlier
scores. To put them into context, we compare them to existing visualization techniques in
this section. For the sake of clarity, only the results are summarized here. The figures for
the various alternative methods can be found in Appendix D. Figure A5 shows the results
for the MBD-MEI “Outliergram” by Aribas-Gil and Romo [41] (implementation: [42]) for
shape outlier detection and the magnitude–shape plot method of Dai and Genton [34].
Figures A6 and A7 show the results for the translation–phase–amplitude boxplots by
Xie et al. [15] and the elastic depth boxplot for shape outlier detection by Harris et al. [9].
Finally, Figures A8–A13 show the corresponding functional and bivariate HDR boxplots by
Hyndman and Shang [16] (implementation: [43]). Considering the MBD-MEI outliergram
and the magnitude–shape plots, both of these visualization methods mostly fail to identify
shift outliers (by design, in the case of the outliergram). The outliergram tends to mislabel
very central observations as outliers in datasets with little shape variability (e.g., the
supposed “shape outliers” detected by MBD-MEI in the central region of the Tecator data)
and fails to detect even egregious shape outliers in datasets with high variability (e.g., not
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a single MBD-MEI outlier in ECG 200), as well as shape outliers that are also outlying in
their level (e.g., the three shape outliers identified by msplot in the upper region of the
Tecator data). Note that some central functions of the Spanish weather data, which are
labeled as outliers by the magnitude–shape plot (and partly by the outliergram) are also
reflected in the 2D embedding in Figure 8.
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Figure 8. Further examples of real functional data colored by LOF score. The 12 most outlying
observations depicted as triangles in the embedding.
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They are fairly numerous relative to the overall sample size and are very similar to
each other. As such, they form a clearly defined separate cluster within the data, which can
be seen in the middle bottom part of the embedding. The translation–phase–amplitude
boxplots mostly fail to detect outliers in data with high variability: no outliers at all are
detected for the Spanish weather data despite their visually apparent anomalies, and only a
single translation outlier is detected for the ECG data. Moreover, the implementation of the
approach seems to break down for data with very little variation, and it was not possible to
compute the phase boxplot for the Wine data, a dataset with almost no variability in terms
of phase.

The results of the elastic depth boxplots do not seem to be consistent over all consid-
ered datasets. The results appear reasonable for the Octane, the Wine, and, in part, for the
ECG data, where both amplitude and phase outliers are detected. However, in the ECG
data, mostly observations from the left-shifted subgroup are detected as phase outliers and
only two from the right-shifted subgroup. The results for the Spanish weather and the
Tecator data are even less convincing. Among the Tecator data, the method labels 41 curves,
i.e., 19% of all observations, as outliers, while it does not discover a single outlier in the
Spanish weather data. Note, however, that the elastic depth boxplots are more robust than
the translation–phase–amplitude boxplots. While the latter method only detected a single
translation outlier and was not able to compute the phase boxplot for the Wine data at
all, the elastic depth boxplots detect several amplitude outliers and simply do not yield
phase outliers.

Finally, HDR boxplots based on PC projections of the data yield mostly similar results
as the L2-distance-based MDS embeddings. However, we would argue that dichotomizing
the observations into inliers and outliers by a fixed outlier threshold makes the visualiza-
tions much less suited as an exploratory tool. Consider, for example, the Spanish weather
data. The small cluster of observations with rather constant temperature (∼17–25◦) does
not fall into the outlier region according to the dichotomization threshold, and so, they are
also not shown individually in the functional HDR boxplots. Whether they are considered
to be outliers or rather a subgroup surely depends on the observer, but we would argue
that an outlier visualization method should emphasize and not hide such structures. Our
approach of colors according to continuous scores does that very well, reflecting at the same
time both the general and the outlier structure. More importantly, the outlier structure of
the ECG dataset is not captured in the embedding used by the HDR boxplots. As outlined,
more than two embedding dimensions are necessary to fully reflect the outlier structure
of this dataset, and the density estimators underlying the HDR boxplot will break down
fairly rapidly as the number of embedding dimensions increases. As such, the available im-
plementation is limited to only using the first two PC scores for the embedding, regardless
of the actual rank of the underlying data.

3.2. Quantitative Analysis of Synthetic Data

In this section, we investigate the outlier detection performance quantitatively, based
on synthetic datasets for which the true (outlier) structure is known.

3.2.1. Methods

In addition to applying LOF to 5D embeddings and directly to the functional data,
we investigate the performance of four “functional data”-specific outlier-detection meth-
ods: directional outlyingness (DO) [14,34], total variational depth (TV) [44], elastic depth
(ED_amp, ED_pha) [9], and the approach based on translation, phase, and amplitude
boxplots (AP_BOX) presented by Xie et al. [15]. For the first two methods, we use imple-
mentations provided by the package fdaoutlier [45] and use the variation of directional
outlyingness as returned by the function dir_out as outlier scores for DO and the total
variation depths as returned by the function total_variation_depth for TV. For the latter
two methods, we use implementations provided by Harris et al. [9]. Outlier scores for
these methods are based on elastic depths as computed by the function depth.R1 from
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the package elasticdepth [9] and time-warped functions as computed by the function
time_warping from the package fdasrvf [46]. Note that the elastic depth approach does
not produce a single outlier score per observation, but scores amplitude and phase outliers
separately. Both amplitude (ED_amp) and phase (ED_pha) scores are shown in Figure 9.

3.2.2. Data-Generating Processes

The methods are applied to data from four different data-generating processes (DGPs),
the first two of which are based on the simulation models introduced by Ojo et al. [25]
and provided in the corresponding R package fdaoutlier [45]. We also provide the
results of additional experiments based on the original DGPs from the package fdaoutlier
in Appendix C. However, we consider most of these DGPs as too simple for a realistic
assessment, as most methods achieve almost perfect performance on them, and we use
more complex DGPs here. In both DGPs 1 and 2, the inliers from simulation_model1
from the package fdaoutlier serve as Mc, i.e., the common data-generating process.
This results in simple functional observations with a positive linear trend. In addition,
simulation_model1 generates simple shift outliers. Additionally, our DGP 1 also includes
shape outliers stemming from simulation_model8, which serves asMa. In contrast, DGP
2 contains shape outliers from all of the other DGPs in fdaoutlier, which means Ma
contains observations from several different data-generating processes.

For DGPs 3 and 4, we defineMc by generating a random, wiggly template function
over [0, 1] for each dataset, generated from a B-spline basis with 15 or 25 basis functions,
respectively, with i.i.d. N (0, 1) spline coefficients. Functions in Mc are generated as
elastically deformed versions of this template, with random warping functions drawn from
the ECDFs of Beta(a, b) distributions with a, b ∼ U[4, 6] (DGP 3) or a, b ∼ U[3, 8] (DGP
4). Functions inMa are also generated as elastically deformed versions of this template,
with Beta ECDF random warping functions with a, b ∼ U[3, 4] for DGP 3 and with 50:50
Beta mixture ECDF random warping functions with a, b ∼ 0.5U[3, 8] : 0.5U[0.1, 3] (DGP
4). Finally, white noise with σ = 0.1, 0.15, respectively, for DGPs 3 and 4 is added to all
resulting functions. Appendix F shows visualizations of example datasets drawn from
these DGPs.

3.2.3. Performance Assessment

From these four DGPs, we sampled data B = 500 times with three different outlier
ratios r ∈ {0.1, 0.05, 0.01}. Based on the outlier scores, we computed the area under
the ROC curve (AUC) and Mathew’s correlation coefficient (MCC) as the performance
measures and report the results over all 500 replications. Note that, for r ∈ {0.1, 0.05}, the
number of sampled observations was n = 100, whereas for r = 0.01, we sampled n = 1000
observations. Since computing the elastic depths and time-warped functions requires more
than an hour for a single dataset with 1000 observations, we only included them for the
settings with 100 observations.

3.2.4. Results

We note that LOF applied directly to functional data distances yielded very similar
results as LOF applied to their 5D embeddings. This agrees with our findings in the
qualitative analyses. In the following, we simply refer to the geometrical approach and do
not distinguish between the LOF based on MDS embeddings and the LOF applied directly
to the functional distance matrix. Figure 9 shows that the proposed geometrical approach
is highly competitive with existing functional-data-specific outlier-detection methods. It
yields better results than TV for all of the four DGPs and performs at least on par with DO.
In comparison to DO, it performs better on DGP 1 and DGP 3, on par on DGP 4, and worse
on DGP 2. Note that DO struggles to detect simple shift outliers: among these methods,
it performs worst on the first DGP. Similar conclusions can be reported for other settings,
where it performs even worse if there are only shift outliers (cf. Figures A3 and A15).
Moreover, while the approaches based on elastic depth proposed by Harris et al. (ED_amp
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and ED_pha) and the approach proposed by Xie et al. (AP_BOX) perform well on DGP 2,
they are outperformed by DO in this setting, and on DGPs 1, 3, and 4, they clearly perform
the worst. Thus, these two methods yield the worst performances overall.
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Figure 9. Distribution of the AUC and MCC over the 500 replications for the different data-generating
processes (DGPs), outlier-detection methods, and outlier ratios r.
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Note that the insights we gain on synthetic data are confirmed by all of the real data
applications we investigate in Section 3.1. In addition to the experiments conducted here,
we applied the considered methods and their accompanying visualization approaches to
these five real datasets. The results of the previously proposed visualizations are presented
in detail in Appendix D, Figures A5–A7. In contrast to the proposed geometrical approach,
none of them yields satisfactory results consistently for all of the considered datasets.
For example, the outliergram, as well as the approach based on translation, phase and
amplitude boxplots and the elastic depth approach fail to identify any outliers in some of
these datasets, while the magnitude–shape plot, for example, labels an entire third of all
observations in the ECG data as outliers (as already outlined in Section 3.1).

In summary, based on the conducted experiments, the proposed geometrical approach
yields very compelling results: On synthetic data, it leads to outlier scoring performances
at least on par with specialized functional-outlier-detection methods even in its simplest
version (MDS with L2 distances and LOF). Moreover, in contrast to the other methods, it
yields consistently useful and sensible results on all of the considered real datasets, while
providing more intuitive and more easily interpretable visualizations. Going further, our
approach can be adapted to specific settings simply by choosing metrics other than L2. As
the next section shows, this can improve the outlier-detection performance considerably.

3.3. General Dissimilarity Measures and Manifold Methods

So far, we have computed MDS embeddings mostly based on L2 distances. In the
following, we show that the approach is more general. The geometric structure of a
dataset is captured in the matrix of pairwise distances among observations. Different
metrics emphasize different aspects of differences in the data and can thus lead to different
geometries. MDS based on L2 distances yielded compelling results in many of the examples
considered above, but other distances are likely to lead to better performance in certain
settings. To illustrate the effect, we consider two additional settings—one simulated and
one on real data—in the following. The results are displayed in Figure 10.

The simulated setting is based on isolated outliers, i.e., observations that deviated
from functions inMc only on small parts of their domain. In such settings, higher-order Lp
metrics lead to better results, since such metrics amplify the contribution of small segments
with large differences to the total distance. We use as an example data generated from
simulation_model2 from the package fdaoutlier. Figure 10A shows the AUC values
of LOF scores on MDS embeddings based on L2 and L10 distances. Again, 500 datasets
were generated form the model over different outlier ratios. In contrast to L2-based MDS,
using L10 distances yielded almost perfect detection. In embeddings based on L10, isolated
outliers are clearly separable in the first two or three embedding dimensions.

As a second example, we consider the ArrowHead dataset [47,48], which contains
outlines of three different types of neolithic arrowheads (see Appendix G for visualizations
of the dataset). Using the 78 structurally similar observations from class “Avonlea” as our
data onMc and sampling outliers from the 126 structurally similar observations from the
other two classes, we can compute AUC values based on the given class labels. We generate
500 datasets for each outlier ratio r ∈ {0.05, 0.1}. Since there are only 78 observations in
the class “Avonlea”, we do not use r = 0.01 for this example. Embeddings are computed
using three different dissimilarity measures: the standard L2 metric, the unnormalized
L1-Wasserstein metric [31], and the dynamic time warping (DTW) distance [49]. Note that
the DTW distance does not define a proper metric [50].

Figure 10B shows that small performance improvements can be achieved in this case
if one uses dissimilarity measures that are more appropriate for the comparison of shapes,
but not as much as in the isolated outlier example. Note that even though the DTW distance
is not a proper metric, it improves the outlier-scoring performance in this example. This
indicates that, from a practical perspective, general dissimilarity measures can be sufficient
for our approach to work. This opens up further possibilities, as there are many general
dissimilarity measures for functional data, for example the semimetrics introduced by
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Fuchs et al. [51]. Overall, these examples illustrate the generality of the approach: using
suitable dissimilarity measures can make the respective structural differences more easily
distinguishable.
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Figure 10. Comparing the effects of different distance measures. Depicted are the distributions of the
AUC over 500 replications for the LOF based on MDS embeddings computed with the respective
distance measures for different outlier ratios r. (A) Comparing the L10 and L2 metrics on a dataset
with isolated outliers generated via Simulation Model 2 from the package fdaoutlier. (B) Comparing
the DTW, L2, and unnormalized L1-Wasserstein distance measures on the real dataset ArrowHead.
Note: the DTW distance is not a metric.

More complex embedding methods, on the other hand, do not necessarily lead to
better or even comparable results as MDS. Figure 11 shows the distribution of the AUC for
embedding methods ISOMAP and UMAP. Both methods require a parameter that controls
the neighborhood size used to construct a nearest neighbor graph from which the manifold
structure of the data is inferred. The larger this value, the more of the global structure is
retained. For both methods, embeddings were computed for very small and very large
neighborhood sizes of five and ninety.

The results show that neither method performs better than MDS; UMAP even performs
considerably worse. Note that ISOMAP is equivalent to MDS based on the geodesic
distances derived from the nearest neighbor graph, and the larger the neighborhood size
the more similar to direct pairwise distances these geodesic distances become. This is also
reflected in the results, as ISOMAP-90 performs better than ISOMAP-5 on average. For
DGP-2, ISOMAP-90 slightly outperforms MDS, indicating that more complex manifold
methods could improve the results somewhat in specific settings.

In general, however, these findings confirm the theoretical considerations sketched in
Section 2.2. Embedding methods that preserve the geometry of the space F of whichMc
andMa are submanifolds, i.e., the ambient space geometry, are more suited for outlier de-
tection than methods that focus on approximating the intrinsic geometry of the manifold(s).
Thus, more sophisticated embedding methods, which often focus on approximating the
intrinsic geometry, should not be applied lightly and certainly require careful parameter
selection in order to be applicable for outlier detection. Since hyperparameter tuning for
unsupervised methods remains an unsolved problem, this is unlikely to be achieved in
real-world applications. In particular, consider that both UMAP and t-SNE [29] have been
found to be—in general—oblivious to local density, which means that clusters of different
density in the observation space tend to become clusters of more equal density in the
embedding space [52]. Although there may exist a parameter setting where this effect is
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reduced (note that there are now density-preserving versions of t-SNE and and UMAP [52]),
we are skeptical that outliers can be faithfully represented in such an embedding given the
difficulties of hyperparameter tuning in unsupervised settings. Moreover, these methods
are not designed to preserve important aspects of the outlier structure. For example, UMAP
is subject to a local connectivity constraint, which ensures that every observation is at least
connected to its nearest neighbor (in more technical terms: that a vertex in the fuzzy graph
approximating the manifold is connected by at least one edge with an edge weight equal
to one [30]), which makes it unlikely that UMAP can be tuned so that it is able to sensibly
embed off-manifold outliers, which should, by definition, not be connected to the common
data manifold. The poor performance of UMAP embeddings in our experiments confirms
these concerns.
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Figure 11. Comparing UMAP and ISOMAP to MDS. UMAP and ISOMAP embeddings were com-
puted for two different locality parameter values: 5 and 90. The distribution of the AUC over
500 replications of the four DGPs for different outlier ratios r. The AUC computed on LOF scores
based on 5D embeddings.

4. Discussion

Based on a geometrical perspective of functional outlier detection, we defined two
general types of functional outliers: off- and on-manifold outliers. Our investigation
showed that this perspective clarifies the theoretical concepts and improves practical
results. From a theoretical perspective, it allows formalizing functional outlier scenarios
in precise and consistent terms, beyond differences in terms of either shape, level, or
magnitude. This simplifies reasoning about specific outlier settings and provides a fully
general theoretical conceptualization of the problem.

From an applied perspective, we formulated two important consequences. First of
all, as was demonstrated with a comprehensive analysis of a complex, real dataset of
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ECG curves, the geometrical approach allows for easily accessible and highly informative
visualizations. These are obtained by means of low-dimensional embeddings reflecting the
inherent structure of a functional dataset in much detail. Such visualizations provide more
accurate and complete pictures of the (outlier) structure of functional data. In particular,
off-manifold outliers reliably appear as clearly separated (groups of) points in the low-
dimensional embeddings.

Second, the proposed approach makes it possible to apply highly developed and
performant standard outlier-detection methods to functional data, since the geometric
structure of the data is captured and reflected in their pairwise distance matrices. Outlier
detection and scoring methods that can be applied to distance matrices can therefore
directly be used for functional data as well. Furthermore, detection methods requiring
tabular inputs can also be applied simply by using the embedding coordinates obtained
with embedding methods as proxy data for the original functions. Our experiments
using LOF scores showed that the two approaches yielded very similar results. This
simultaneously simplifies and improves functional outlier detection: It simplifies since
functional data analysis becomes more accessible to a broader audience with general
outlier-detection methods that are widely used in other areas and that do not require an
understanding of complex methodological details of functional data methods. It improves
the state-of-the-art since many functional outlier methods can only detect specific kinds of
functional outliers by design or fail in more complex realistic data that are widely dispersed
or that contain multiple nonoutlying subgroups, such as the ECG data. Moreover, note
that our proposal is not limited to univariate functional data. Extending it to multivariate
functions is completely straightforward, as long as a suitable dissimilarity measure is
available to compute pairwise distances.

In this paper, most embeddings were obtained using MDS based on L2 distances.
This implies a close similarity to functional bagplots and highest-density region (HDR)
boxplots [16], which are based on the first two robust principal component scores. However,
this similarity only applies if our geometrical approach is implemented with 2D MDS
embeddings based on L2 distances. As outlined, our proposal is neither limited to the L2
metric as a distance measure nor to MDS as an embedding method or just two embedding
dimensions. Other metrics and (higher-dimensional) embedding methods can be used as
well, and our results indicate that an alternative distance measure can further improve the
performance in specific settings, sometimes considerably. In particular, even nonmetric
dissimilarity measures may be applicable as our results based on DTW distances indicate.
On the other hand, the results also show that more sophisticated embedding methods
such as ISOMAP and UMAP cannot be used as straightforwardly as MDS. Such methods,
which do not take into account the ambient space geometry by default, at least require very
careful parameter selection.

In terms of practical applicability, the O(n3) time complexity and O(n2) storage com-
plexity of standard MDS may prove problematic for large data, but generalizations such as
Landmark MDS [53], Pivot MDS [54], or multilevel MDS exploiting GPU performance [55]
scale much better with the number of available observations.

Finally, we would argue that existing functional outlier detection approaches mostly
lack the principled geometrical underpinning and conceptualization presented here. As
outlined, we argue that such a conceptualization is necessary to make functional outlier
detection tractable in full generality. Specifically, consider that existing methods typically
limit themselves to creating a 1D or 2D representation of each curve (e.g., MBD-MEI,
MO-VO, functional bagplots, HDR plots), often based on preconceived notions of the
characteristics of functional outliers. Our investigations and experiments suggested that
this is often not sufficient for real-world functional outlier detection: there is no valid reason
to limit our representations to two dimensions with modern outlier-detection methods,
and the geometrical perspective often strongly suggests otherwise in the case of complex
functional data. Even more importantly, it is much more flexible to learn maximally
informative low-dimensional representations directly from data instead of starting with
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rigid notions of which characteristics to look at and to ignore the rest. The latter is likely
to lead to results not capturing the entire (outlier) structure of a given dataset, which is
essential in real-world unsupervised settings and exploratory analyses.

Based on the theoretical considerations and the empirical results outlined above, we
conclude that the proposed approach is well suited for both the theoretical conceptual-
ization and the practical implementation of functional outlier detection. In particular, the
choice of embedding method should consider whether it is able to preserve the extrinsic
geometry of the function space, and simple MDS embeddings based on functional dis-
tances provide a very strong baseline for that. On the basis of this work, we intend to
further investigate the implications of the geometrical perspective, such as the effects other
dissimilarity measures, embedding, and outlier-detection methods, in future research. We
are also investigating the use of mass volume curves [56] for hyperparameter tuning in
functional outlier detection. Such a criterion will permit analysts to optimize the combi-
nation of the functional distance metric, embedding dimensionality, and outlier-scoring
method parameters. In the absence of quantitative criteria for optimizing these settings,
our recommendations are to (1) use the standard L2 metric as the default, which proved to
be a very strong baseline in our experiments for a wide variety of data settings and outlier
types, (2) make use of substantive knowledge about the data at hand, either from an initial
exploratory data analysis or expertise about the data-generating process, in order to choose
metrics that are sensitive to the relevant kinds of structural deviations, and (3) supplement
and verify the results with results based on alternative metrics, since our proposal has a
low computational cost for typical functional dataset sizes.
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The following abbreviations are used in this manuscript:

LOF Local outlier factor
FD(A) Functional data (analysis)
(F)PCA (Functional) principle component analysis
HDR High-density region
NHST Null hypothesis significance testing
ECG Electrocardiogram
MDS Multidimensional scaling
DTW Dynamic time warping
MS-plot Magnitude–shape plot
GOF Goodness of fit
DO Directional outlyingness
TV Total variational depth
ED Elastic depth
DGP Data-generating process
ECDF Empirical cumulative distribution function
AUC Area under the ROC curve
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MBD Modified band depth
MEI Modified epigraph index
MO Mean directional outlyingness
VO Variability of directional outlyingness

Appendix A. Formalizing Phase Variation Scenarios

Appendix A.1. Phase Variation: Case I

The manifold M = {x(t) : x(t) = θ1 ϕ(t − θ2), θ = (θ1, θ2)
′ ∈ Θ}, with ϕ(.) the

standard Gaussian pdf and Θ = [0.1, 2]× [−2, 2], defines a functional data setting with
independent amplitude and phase variation. Since there is a single manifold only, there are
no structural novelties. Figure A1, top, depicts the functional observations on the left and a
2D embedding obtained with MDS on the right. Note that all of the curves are subject to
amplitude and phase variation to a varying extent; however, there are no clearly “outlying”
or “outstanding” observations in terms of either amplitude or phase. This is reflected in
the corresponding embedding, which does not show any clearly separated observations in
the embedding space, indicating that there are no structurally different observations. The
situation in the second case of phase-varying data, however, is different.
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Figure A1. Functional data with phase variation and different levels of structural difference. Top:
scenario with no off-manifold outliers. Middle: scenario with clear off-manifold outliers. Bottom:
intermediate scenario.
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Appendix A.2. Phase Variation: Case II

The two manifoldsMc = {x(t) : x(t) = θϕ(t + 1), θ ∈ Θ} andMa = {x(t) : x(t) =
θϕ(t), θ ∈ Θ}, with Θ = [0.1, 2] describe a similar scenario as before; however, there are
two structurally different manifolds induced by the shift in the argument of ϕ. In contrast
to the first case, there are on-manifold and off-manifold outliers. Figure A1, middle, depicts
the functional observations and the corresponding embedding. Clearly, in this example, a
few (blue) curves, the ones fromMa, show a horizontal shift compared to the normal data,
and consequently, those few curves appear horizontally “outlying”. Within the main data
manifold, only on-manifold outliers in terms of amplitude exist. These aspects are reflected
in the corresponding embedding: the low-dimensional representations of the blue curves
are clearly separated from those of the main data in grey.

Of course, such clear settings—in particular, phase-varying functional data with
fixed and distinct phase parameters—will seldom be observed in practice. A more
realistic example is given by Mc = {x(t) : x(t) = θ1 ϕ(t − θ2), (θ1, θ2)

′ ∈ Θc} and
Ma = {x(t) : x(t) = θ1 ϕ(t − θ2), (θ1, θ2)

′ ∈ Θa}, with Θc = [0.1, 2]× [−1.3,−0.7] and
Θa = [0.1, 2]× [−0.5, 0.1]. Here, we have again two structurally different manifolds. This
is more realistic, since the “phase parameters” θ2 are not fixed, but are subject to random
fluctuations. In addition, the structural difference induced by the phase parameters is
much smaller. Considering Figure A1, bottom, again, this is reflected in the embedding:
there are two separable structures; however, the differences are not as clear as in the second
example above.

The three examples together show that the less similar the processes are and/or the
less variability there is within the phase parameters defining the manifolds, the clearer
structural differences induced by horizontal variation become visible in the embeddings.

Appendix B. Sensitivity Analysis

The differences in complexity among the ECG and the other four real datasets become
apparent in Figure A2 as well, which shows how the goodness of fit (GOF) of the embed-
dings is affected by their dimensionality. For the L2 metric, a goodness of fit over 0.9 is
achieved with two to three embedding dimensions for the less complex datasets. Moreover,
all of them reach a saturation point at five dimensions. This is in contrast to the ECG data,
where the first five embedding dimensions lead to a goodness of fit of 0.8. Moreover, the
ranking induced by LOF scores is very robust to the number of embedding dimensions. As
Table A1 shows, the rank correlations between LOF scores based on five and LOF scores
based on twenty embedding dimensions are very high for all datasets.

Table A1. Spearman correlation between LOF scores based on embeddings of different dimensionality
for the 5 considered real datasets and metrics L0.5, L1, ..., L10, and unnormalized L1-Wasserstein.
MDS embeddings with 5 dimensions are compared to embeddings with 2 (2 vs. 5) and 20 (5 vs.
20) dimensions.

L0.5 L1 L2 L3 L4 L5

2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20

ECG 0.96 0.97 0.98 0.97 0.97 0.99 0.94 0.99 0.94 0.98 0.90 0.97
Octane 0.94 0.99 0.96 0.98 0.97 0.99 0.98 0.99 0.98 0.99 0.96 0.98
Weather 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Tecator 0.97 0.99 0.96 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
Wine 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

L6 L7 L8 L9 L10 Wasserstein

2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20

ECG 0.89 0.96 0.87 0.96 0.86 0.95 0.86 0.95 0.85 0.94 0.98 0.97
Octane 0.96 0.98 0.95 0.99 0.96 0.98 0.94 0.97 0.94 0.97 0.95 0.96
Weather 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Tecator 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.96 0.99
Wine 0.99 1.00 0.98 1.00 0.98 1.00 0.98 0.99 0.98 0.99 0.99 1.00
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Figure A2. Goodness of fit (GOF) of different embedding dimensions for the five considered real
datasets and L0.5, L1, ..., L10, and unnormalized L1-Wasserstein metrics.

Appendix C. Quantitative Results on the fdaoutlier Package DGPs

The simulation models presented by Ojo et al. [25] cover different outlier scenarios:
vertical shifts (Model 1), isolated outliers (Model 2), partial magnitude outliers (Model 3),
phase outliers (Model 4), various kinds of shape outliers (Models 5–8), and amplitude
outliers (Model 9). A detailed description can be found in the vignette (https://cran.r-
project.org/web/packages/fdaoutlier/vignettes/simulation_models.html, accessed on 15
November 2021) accompanying their R package. In the following, the proposed geometrical
approach is compared to directional outlyingness (DO) and total variational depth (TV)
using the AUC as a performance measure.

As Figure A3 shows, (almost) perfect performance is achieved by at least two methods
for Models 1, 3, 4, 8, and 9; DO shows almost perfect performance for all models except
Model 1. For Models 2, 5, 6, and 7, the methods based on the geometric approaches do not
perform equally well (as does TV). However, as outlined in Section 3.3, perfect performance
can be achieved for Model 2 by using L10 distances instead of L2 distances.

Furthermore, for Models 5, 6, and 7, it has to be taken into account that the AUC
values only reflect the detection of “true outliers”, which can now—given the geometric
perspective—be specified more precisely as off-manifold outliers (observations fromMa).
However, this does not take into account possible on-manifold outliers. Due to their
distributional nature, by chance, some on-manifold outliers (observations onMa) can be
“more outlying” than some of the off-manifold outliers and thus correctly obtain higher
LOF scores. However, such cases are not correctly reflected in the performance assessment
approach, as—in contrast to off-manifold outliers—such on-manifold outliers are not
labeled as “true outliers”. The observed lower performance in terms of the AUC thus
can simply mean that there are on-manifold outliers obtaining relatively high LOF scores.
In particular, this also does not imply that off-manifold outliers fail to be separated in a
subspace of the embedding, as will be outlined in Appendix E in more detail, nor that
perfect AUC performance cannot be obtained via the geometric approaches for these
settings. If the geometric approach is applied to the derivatives instead (depicted in

127



Stats 2021, 4 995

Figure A3 as “deriv”), almost perfect performances can be achieved. Obviously, functions
of the same shape (i.e., all observations fromMc) are very similar on the level of derivatives
regardless of how strongly dispersed they are in terms of vertical shift.

n_in = 100,  r = 0.1

n_in = 100,  r = 0.05

n_in = 1000,  r = 0.01
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Figure A3. Distribution of the AUC over the 500 replications for the different outlier-detection
methods, simulation models (Mod) from the package fdaoutier, and outlier ratios r.

Appendix D. Visualization Methods: roahd::outliergram, fdaoutlier::msplot,
Translation–Phase–Amplitude Boxplots, Elastic Depth Boxplots, and HDR Boxplots

Figure A4 shows the results for the synthetic data example of Figure 4 with ten true
outliers, where the MS plot yields six false positives and only three true positives, while
the Outliergram fails to detect even a single outlier. The elastic depth boxplots labels
twenty-six observations as outliers, only two of which are among the shifted observations.
Moreover, note that observations labeled phase outliers are also labeled amplitude outliers
at the same time. In contrast, the translation–phase–amplitude boxplots correctly detect
the 10 shifted observations as translation outliers; however, 15 other observations are also
labeled outliers. Note that some observations obtain multiple labels, for example, all phase
outliers are also labeled as amplitude outliers. The HDR boxplots yield six false positives
and no true positive (see Figure A13). In summary, neither of the methods are capable
of correctly capturing the outlier structure of this dataset, in contrast to the proposed
geometrical approach.

Figure A5 shows results for the MBD-MEI “Outliergram” by Aribas-Gil and Romo [41]
(implementation: [42]) for shape outlier detection, and the magnitude–shape plot method of
Dai and Genton [34] for the example datasets shown in Figures 5 and 8. Figures A6 and A7
show the results for the translation–phase–amplitude boxplots by Xie et al. [15] and the
elastic depth boxplot for shape outlier detection by Harris et al. [9] for these datasets.
Finally, Figures A8–A13 show the results of the HDR boxplots by Hyndman and Shang [16]
(implementation: [43]). For a detailed discussion, see Section 3.1.
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Figure A4. First column of first two rows: data with true outliers in blue; subsequent columns: data
with detected outliers in color. First row: magnitude–shape plot of mean directional outlyingness
(MO) versus variability of directional outlyingness (VO) and outliergram of the modified epigraph
index (MEI) versus modified band depth (MBD) with the inlier region in grey. Second row: Elastic
depth boxplots. Third row: translation–phase–amplitude boxplots. For the results of the HDR
boxplots on the data, see Figure A8.
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Figure A5. Left column: data; middle column: magnitude–shape plots of mean directional out-
lyingness (MO) versus variability of directional outlyingness (VO); right column: outliergram of
the modified epigraph index (MEI) versus modified band depth (MBD) with the inlier region in
grey. Curves and points are colored according to outlier status as diagnosed by fdaoutlier::msplot
and/or roahd::outliergram.
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Figure A6. First column: data; second column: translation boxplots of average curve heights;
third and fourth column: amplitude, respectively phase boxplots with the maximum and minimum
extreme curves (Max, Min), the first and third quartile curves (Q1 and Q3), and the 0.05- and
0.95-quantile curves (Q1a, Q3a). Curves in the first column colored according to the outlier status
by translational outlyingness, amplitude outlyingness, and phase outlyingness (the latter two as
diagnosed by fdasrvf::AmplitudeBoxplot and fdasrvf::AmplitudeBoxplot). Note, for the Wine
data, it was not possible to compute the phase boxplot.
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Figure A7. Left column: data; right column: elastic depth boxplots for amplitude and phase
variability. Curves in the left column colored according to the outlier status by amplitude outlyingness
and phase outlyingness as diagnosed by elasticdepth::elastic_outliers.

8. A Geometric Perspective on Functional Outlier Detection

132



Stats 2021, 4 1000

0.0

0.5

1.0

1.5

t

x(
t)

Inlier

Detected outlier

True outlier

Synthetic data

0.00.20.40.60.81.0

0.
0

0.
5

1.
0

1.
5

t

x(
t)

Functional HDR boxplot

−0.06 −0.02 0.020.040.06

−
0.

02
0.

00
0.

01
0.

02

PC score 1

P
C

 s
co

re
 2

Bivariate HDR boxplot

Figure A8. Upper row: synthetic data. Lower row, left column: functional HDR boxplot; right col-
umn: bivariate HDR boxplot. Colored curves/points are outliers according to a coverage probability
of 0.05 for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.
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Figure A10. Upper row: Octane data. Lower row, left column: functional HDR boxplot; right column:
bivariate HDR boxplot. Colored curves/points are outliers according to a coverage probability of
0.05 for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.
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bivariate HDR boxplot. Colored curves/points are outliers according a coverage probability of 0.05
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Appendix E. In-Depth Analysis of Simulation Model 7

The analysis of the ECG data in Section 3.1 showed that embeddings can reveal
much more (outlier) structure than can be represented by scores and labels. To illustrate
the effects described in Appendix C, we conducted a similar qualitative analysis for an
example dataset with observations sampled from Simulation Model 7; see Figure A14.
The dataset consisted of 100 observations with 10 off-manifold or—in more informal
terms: “true”—outliers. The functions were evaluated on 50 grid points. The analysis
showed that a quantitative performance assessment alone may yield misleading results and
again emphasizes the practical value of the geometric perspective and low-dimensional
embeddings.
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Figure A14. Model 7 data: scatterplot matrix of all 5 MDS embedding dimensions and curves; lighter
colors for higher LOF score of 5D embeddings. True outliers depicted as triangles. Note that the true
outliers are clearly separated from the rest of the data in embedding subspace 3 vs. 4.

First of all, note that the AUC computed for this specific dataset was 0.9, thus close to
the median AUC value for LOF applied to MDS embeddings of Model 7 data, as depicted in
Figure A3. Nevertheless, the “true outliers” are clearly separable in a 5D MDS embedding.
As Figure A14 shows, they are clearly separable in the subspace spanned by the third and
fourth embedding dimension. Note, moreover, that there is an outlying observation with
an extreme shift, which also obtains a high LOF score. This observation is not labeled as
a “true outlier”, as it stems fromMc. This example shows that evaluation approaches
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for outlier detection methods that are based on “true outliers” may not always reflect the
outlier structure adequately and may result in misleading conclusions. However, those
approaches are frequently used to compare and assess different outlier-detection methods.
Again, this illustrates the additional value low-dimensional embeddings have for outlier
detection as such aspects become accessible.

Finally, note that the DO/MS-plots are not sensitive to vertical shift outliers as the
extreme shift outlier is neither scored high based on DO nor labeled as an outlier based on
the MS-plot; see Figure A15.

−3

0

3

6

0 0.2 0.4 0.6 0.8 1
t

x(
t)

A: 10 most outlying curves by LOF scores based on 5D embedding

−3

0

3

6

0 0.2 0.4 0.6 0.8 1
t

x(
t)

B: Model 7 curves colored by variation of directional outlyingness

−3

0

3

6

0 0.2 0.4 0.6 0.8 1
t

x(
t)

C: 10 most outlying curves by variation of directional outlyingness

−3

0

3

6

0 0.2 0.4 0.6 0.8 1
t

x(
t)

D: The 14 observations labeled as outliers based on MS−Plot

Figure A15. Model 7 data: the LOF on MDS embeddings in contrast to directional outlyingness.
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Appendix F. Examples of the DGPs Used for the Quantitative Evaluation

Depicted in Figure A16 are two example datasets for each of the data-generating
processes (DGPs) used in Section 3.2 for the comparison of the different outlier-detection methods.
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Figure A16. Example datasets for the DGPs used in the simulation study (2 each). Inliers in black;
outliers in red. Outlier ratio 0.1; n = 100.
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Appendix G. ArrowHead Data

Depicted in Figure A17 are the ArrowHead data used in Section 3.3.

−2

−1

0

1

2

0 50 100 150 200 250
t

x(
t)

Type Avonlea Clovis Mix

−2

−1

0

1

2

0 50 100 150 200 250
t

x(
t)

−2

−1

0

1

2

0 50 100 150 200 250
t

x(
t)

Figure A17. ArrowHead data. Top: the complete dataset. Middle and bottom: two example outlier
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9. A Geometric Framework for Outlier
Detection in High-Dimensional Data

Chapter 9 generalizes the insights gained in the study presented in Chapter 8. It is demonstrated
that the approach straightforwardly extends to other non-tabular, high-dimensional data types
such as graphs and images practically and theoretically. Moreover, it provides a review of
conceptual aspects of outlier detection in general discussed in the literature. In particular, there
are two vague notions of outliers that are not sufficiently reflected by existing conceptualizations.
These notions can be made precise with the proposed geometrical concepts differentiating
off-manifold and on-manifold outliers, which are termed structural and distributional outliers
in this contribution.

Contributing article:

Herrmann, M., Pfisterer, F., & Scheipl, F. (2022). A geometric framework for outlier detection
in high-dimensional data. arXiv preprint arXiv:2207.00367. https://arxiv.org/abs/2207.003
67

Copyright information:

This article is licensed under a Creative Commons Attribution 4.0 International license
(https://creativecommons.org/licenses/by/4.0/).

Author contributions:

Moritz Herrmann had the idea of dealing with the topic in this way and wrote the paper. Florian
Pfisterer and Fabian Scheipl made contributions by continuously revising the manuscript and
adding ideas.

Supplementary material available at:

Code and data: https://github.com/HerrMo/geo-outlier-framework

145

https://arxiv.org/abs/2207.00367
https://arxiv.org/abs/2207.00367
https://creativecommons.org/licenses/by/4.0/
https://github.com/HerrMo/geo-outlier-framework


A geometric framework for outlier detection in
high-dimensional data
Moritz Herrmann∗, Florian Pfisterer, and Fabian Scheipl

Department of Statistics, Ludwig Maximilians University, Munich, Germany

Abstract

Outlier or anomaly detection is an important task in data analysis. We discuss the problem from a geometrical
perspective and provide a framework which exploits the metric structure of a data set. Our approach rests on the
manifold assumption, i.e., that the observed, nominally high-dimensional data lie on a much lower dimensional
manifold and that this intrinsic structure can be inferred with manifold learning methods. We show that exploiting
this structure significantly improves the detection of outlying observations in high dimensional data. We also
suggest a novel, mathematically precise and widely applicable distinction between distributional and structural
outliers based on the geometry and topology of of the data manifold that clarifies conceptual ambiguities prevalent
throughout the literature. Our experiments focus on functional data as one class of structured high-dimensional
data, but the framework we propose is completely general and we include image and graph data applications. Our
results show that the outlier structure of high-dimensional and non-tabular data can be detected and visualized
using manifold learning methods and quantified using standard outlier scoring methods applied to the manifold
embedding vectors.

1 Introduction
Detecting atypical observations that deviate substantially from the bulk of the data is an important
task in data analysis with applications across domains like, e.g., intrusion detection (Zhang &
Zulkernine, 2006), medical imaging (Fritsch et al., 2012), or network analysis (Azcorra et al.,
2018). The most common terms for this task are outlier or anomaly detection, but many different
terms are used (Zimek & Filzmoser, 2018). Although there is a vast amount of literature on
the topic, there is neither a commonly accepted, precise definition of what exactly constitutes
outliers or anomalies, nor agreement on whether these two terms are synonymous. As Unwin
(2019, p. 635) puts it:

“Outliers are a complicated business. It is difficult to define what they are, it is
difficult to identify them, and it is difficult to assess how they affect analyses.”

Overviews on the topic are given by Zimek et al. (2012) or Goldstein & Uchida (2016) from
a computer science perspective, and by Rousseeuw & Leroy (2005) or Unwin (2019) from a

∗Corresponding author, e-mail: moritz.herrmann@stat.uni-muenchen.de, Department of Statistics, Ludwig
Maximilians University Munich, Ludwigstr. 33, D-80539, Munich, Germany.
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statistical perspective. Kandanaarachchi & Hyndman (2020) provide a short summary including
both perspectives, while Campos et al. (2016) as well as Marques et al. (2020) focus on the
evaluation of unsupervised outlier detection. Zimek & Filzmoser (2018) provide a comprehensive
survey bringing together both perspectives with in-depth epistemological discussion. In particular,
Zimek & Filzmoser (2018) discuss that there are two different notions of outliers and different terms
used to describe these notions – including, for example, apparent, discrepant, real, contaminating,
or true outlier – in the literature. From this discussion, it can be inferred that (1) Zimek &
Filzmoser (2018, p. 7) distinguish “true” and “apparent” outliers and consider “those objects
as ‘(true) outliers’ that have been ‘generated by a different mechanism’ than the remainder or
major part of the data or than the whatsoever defined reference set”, (2) there is neither a clear
understanding of how these two notions are different and actually manifest in practice nor (3) a
“language” to precisely describe the problem theoretically.
In the more statistically flavored literature, the problem of unsupervised outlier detection is
usually tackled by defining outliers based on a single probability distribution P . If P allows for a
density, outliers are simply observations in low-density regions. From this perspective, we have
distributional outliers whose outlyingness is defined relative to a single probability distribution.
The notion of distributional outliers is easy to define precisely in probabilistic terms, for example,
based on minimum level sets (Scott & Nowak, 2006) or M-estimation (Clémençon & Jakubowicz,
2013), and has yielded a multitude of results and algorithms. In practical terms, this requires
access to (an estimate of) the underlying density and finding a suitable (local) density level below
which observations are to be classified as outliers. Note that both are infeasible for general,
non-tabular data types like shapes, functions, or images whose domains frequently do not admit
probability densities. However, Zimek & Filzmoser (2018) emphasize that “observations which
are in the extremes of the model distribution [i.e., distributional outlier] should be distinguished
from ‘real’ outliers (contaminants)” (Zimek & Filzmoser, 2018, p. 13). This second notion
of outliers (“true” or “real” outliers) is not reflected by the statistical concept because such
outliers are assumed to be observations generated by a different data-generating process. This is
reflected in statements like “different mechanism” or “any observation that is not a realization
from the target distribution” (Beckman & Cook, 1983, p. 121). That means, for the second
notion (“real outliers”) it is implicitly assumed that outliers are not independent and identically
distributed (IID) observations. So next to distributional outliers there are also structural outliers
whose outlyingness is caused by the structural differences between the underlying data generating
processes. The two outlier types are complementary and both are necessary to fully address the
challenges of outlier detection. In contrast to distributional outliers, structural outliers are much
more difficult to formalize, but also more general.
With this work, we intend to “broaden” the view on the problem of unsupervised outlier detection
to account for the two notions of outliers present in the literature. We show that a geometric
approach to the problem, which does not require the availability of probability densities defined
over the data space but only some metric structure (i.e., suitable dissimilarity or distance
measures), allows for a more precise conceptualization and terminology. To do so, we focus
on building up intuition and demonstrating the application of these concepts to diverse and
comprehensive practical examples and visualizations. However, to be able to “speak” of this new
perspective without referring to vague and subjective perceptions as done previously (see Zimek
& Filzmoser, 2018), we also consider it necessary to introduce a certain degree of mathematical
terminology. The provided degree of formality is exhausted in the definition of distributional and
structural outliers in precise mathematical terms and thus serves the need for precise terminology
but does not overload the work with more formalism than we think necessary to contribute to
the overall scope of the study. Readers interested in more rigorous mathematical approaches to
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infer structures in data may, for example, consult Mordohai & Medioni (2010) for dimensionality
estimation and manifold learning based on tensor voting, Niyogi et al. (2011) for a topological
perspective on unsupervised learning, Guan & Loew (2021) of a distance-based measure of class
separability, and Kandanaarachchi & Hyndman (2020) for outlier detection in tabular data based
on dimensionality reduction.

The rest of the paper is structured as follows. Section 2 describes the scope and contribution of
the study and outlines its background and related work. The proposed theoretical framework is
defined in section 3 and its practical relevance is demonstrated in section 4 using qualitative and
quantitative experiments for a variety of data sets of different data types. Section 5 discusses
our findings and the resulting conceptual implications, before we conclude in section 6.

2 Preliminaries
2.1 Scope and contribution of the study
With this focus article, we intend to draw connections between different conceptual aspects
provided in the overview article by Zimek & Filzmoser (2018) and as proposed by us in a
paper focusing on functional data analysis (FDA). Therefore, we recapitulate the underlying
conceptualization presented in the earlier paper in a more general form and different terminology
in Section 3. This framework builds on principles from manifold learning (Lee & Verleysen, 2007;
Ma & Fu, 2011), i.e., dimension reduction methods that infer the intrinsic lower-dimensional
manifold structure of high-dimensional data and yield low-dimensional vector representations of
the data. This perspective allows us to formalize structural and distributional outliers jointly in a
single mathematical framework, where structural outliers are data that are separate from the
main data manifold, and distributional outliers are data that are situated at the periphery of, but
still on the main data manifold. While the first paper exclusively focused on the functional data
setting, the present focus article generalizes the underlying conceptualization of outlier detection
to other data types. This is straightforward theoretically but has important general conceptual
implications that have never been described in detail and demonstrated on diverse real data
problems before. In particular, we draw connections between and provide a unifying perspective
on different data types (functions, images, graphs, tabular data) which were previously often
treated separately from a theoretical as well as a practical perspective, in particular when it comes
to outlier detection.
The main contribution of this review paper is to discuss and demonstrate two conceptual aspects
of outlier detection in general. First of all, as already outlined, there seems to be a lack of
clarity about what defines outliers, evidenced also by the plethora of terms used to describe
the issue (Zimek & Filzmoser, 2018). Several recent reviews on the topic also point out this
conceptual ambiguity (Goldstein & Uchida, 2016; Unwin, 2019; Zimek & Filzmoser, 2018). In
particular, the comprehensive overview of Zimek and Filzmoser (2018, p. 4) devotes a complete
section to the question of “what an ‘outlier’ possibly means”. Recall that they define “true
outliers” as objects “that have been ‘generated by a different mechanism’ than the remainder
or major part of the data or than the whatsoever defined reference set” and distinguish them
from “objects that appear to be outliers (independent of whether or not they actually are (true)
outliers”) (Zimek & Filzmoser, 2018, p. 7). As we will show, the geometrical framework provides
suitable mathematical terminology to delineate “true” and “apparent” outliers much more cleanly
and thus reduces the conceptual ambiguity that surrounds the topic: We transfer concepts
established in manifold learning to the problem of outlier detection, deriving a novel underlying
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conceptualization of the problem of outlier detection that (1) is capable of reflecting two types
of outliers, (2) replaces vague notions of “real”, “contaminant”, or “apparent” outliers with a
precise definition, (3) incorporates the well-established concept of distributional outliers in a
unified fashion. With this, we can abandon vague notions of outlier subtypes in favor of two
precisely defined concepts.
Second, our framework also suggests that outlier detection in high-dimensional (and/or non-
tabular) data is not necessarily more challenging than in low-dimensional settings once the
underlying manifold structure is recovered and exploited. This is important because high
dimensionality is often reported to be particularly problematic for outlier detection and many
outlier detection methods break down or at least face particular challenges in such settings
(Aggarwal, 2017; Aggarwal & Yu, 2001; Goldstein & Uchida, 2016; Kamalov & Leung, 2020;
Navarro-Esteban & Cuesta-Albertos, 2021; Ro et al., 2015; Thudumu et al., 2020; Xu et al.,
2018; Zimek et al., 2012, e.g.).
To highlight these aspects, we again provide simple and easily accessible functional data examples
to demonstrate the principal practical implications (in addition to the recapitulation of the
theoretical conceptualization). Functional data analysis (Ramsay & Silverman, 2005, e.g.) deals
with data that are (discretized) realizations of stochastic processes over a compact domain.
Functional data is well suited to illustrate the underlying conceptualization both practically and
theoretically because it is usually highly structured (the manifold assumption is specifically realistic
and useful), theoretically/analytically well accessible, and easily visualized in bulk. Beyond the
FDA setting, we also use examples of other data types including image, graph, curve, and tabular
data.
Finally, our framework is fully general and does not rely on a specific combination of manifold
learning and outlier detection methods. To demonstrate its practical performance, we show that
one of the simplest and most established manifold learning methods – Multidimensional Scaling
(MDS) (Cox & Cox, 2008) – combined with a standard outlier detection algorithm – Local Outlier
Factors (LOF) (Breunig et al., 2000) – already yields a flexible, reliable, and generally applicable
recipe for outlier detection and visualization in complex, high-dimensional data.

2.2 Background and related work
The fundamental assumption of manifold learning is that the high-dimensional data observed in a
D-dimensional space H actually lie on a d-dimensional manifoldM⊂ H with d < D. Manifold
learning methods yield an embedding function e : H → Y from the high-dimensional data space
to a low-dimensional embedding space Y such that the configuration of embedded data reflects
the characteristics ofM. The terms manifold learning and nonlinear dimension reduction are often
used interchangeably (Lee & Verleysen, 2007; Ma & Fu, 2011). Typically, the fundamental step is
to compute distances between the high-dimensional observations. Methods based on this approach
are, for example, Multidimensional Scaling (MDS) (Cox & Cox, 2008), Isomap (Tenenbaum et al.,
2000), diffusion maps (Coifman & Lafon, 2006), local linear embeddings (Roweis & Saul, 2000),
Laplacian eigenmaps (Belkin & Niyogi, 2003), t-distributed stochastic neighborhood embeddings
(t-SNE) (Maaten & Hinton, 2008), and uniform manifold approximation and projection (UMAP)
(McInnes et al., 2018), to name only a few. The methods differ in how they infer the manifold
structure from these distances and how they obtain low-dimensional embedding vectors from
these.
Despite their promising results in other settings, manifold learning methods have not found
application for outlier detection to a significant extent so far. Kandanaarachchi & Hyndman
(2020) define an outlier detection method explicitly based on dimension reduction, while Pang
et al. (2018) make use of ranking model-based representation learning. However, they do not
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provide a general conceptual framework and focus on tabular data. For functional data, Xie
et al. (2017) introduce a geometric approach that decomposes functional observations into
amplitude, phase, and shift components in order to identify specific types of outliers. However,
the approach is only applicable to functional data and does not make use of the intrinsic structure
of the functional observations from a manifold learning perspective. Ali et al. (2019) analyze
time series data using 2D-embeddings obtained from manifold methods for outlier detection and
clustering and Toivola et al. (2010) compare specific dimensionality reduction techniques for
outlier detection in structural health monitoring, but both focus on practical considerations and do
not provide a theoretical underpinning. Another line of work focuses on projection-based outlier
detection, for example for high-dimensional Gaussian data (Navarro-Esteban & Cuesta-Albertos,
2021), financial time series (Loperfido, 2020), or functional data (Ren et al., 2017).

3 Geometrical framework for outlier detection
The framework we propose generalizes an approach for outlier detection in functional data
developed recently (Herrmann & Scheipl, 2021). Since the approach exploits the metric structure
of a functional data set, it is straightforward to generalize it to other data types, both from
a theoretical as well as a practical perspective. Theoretically, the observation space needs to
be a metric space, i.e. it needs to be equipped with a metric. Practically, there only needs
to be a suitable distance measure to compute pairwise distances between observations. Two
assumptions are fundamental for the framework. First of all, the manifold assumption that
observed high-dimensional data lie on or close to a (low-dimensional) manifold. Note that
functional data typically contain a lot of structure, and it is often reasonable to assume that only
a few modes of variation suffice to describe most of the information contained in the data, i.e.,
such functional data often have low intrinsic dimension, at least approximately, see Figure 1 for a
simple synthetic example. Similar remarks hold for other data types such as image data (Lee
& Verleysen, 2007; Ma & Fu, 2011). Secondly, it is assumed that outliers are either structural
outliers – or in the terminology of Zimek and Filzmoser (2018, p. 10) “real outliers” stemming
from a different data generating process than the bulk of the data – or distributional outliers,
observations that are structurally similar to the main data but still appear outlying in some sense.
We make these notions mathematically precise in the remainder of this section based on the
exposition in Herrmann & Scheipl (2021) before we demonstrate the practical relevance of the
framework in section 4 and summarize its general conceptual implications in section 5.
Given a high-dimensional observation space H of dimension D, a d-dimensional parameter space
Θ ⊂ Rd, such that the elements θi ∈ Θ are realizations of the probability distribution P over the
domain Rd, i.e., θi ∼ P , and given an embedding space Y ⊂ Rd′ , define the mappings φ and e
so that

Θ φ→MH e→ Y,
withMH ⊂ H a manifold in the observation space. The structure ofMH is determined by the
structure and dimensionality of Θ, P , and the map φ, which is isometric for the appropriate
metrics in Θ and H. Conceptually, the low-dimensional parameter space Θ represents the modes
of variation of the data and the mapping φ represents the data generating process that yields
high-dimensional data xi = φ(θi) ∈MH characterized by these modes of variation. We assume
that low-dimensional representations of the observed data in the embedding space Y, which
capture as much of the metric structure ofMH as possible, can be learned from the observed
data. A successful embedding e then also recovers as much of the structure of the parameter
space Θ as possible in the low dimensional representations yi = e(xi) ∈ Y.
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Figure 1: Example data types. A: Functional inliers (grey) with a structural outlier (red) and
distributional outliers (blue). B: Graph data with a structural outlier (lower right graph). C:
Image data with a structural outlier (lower right image).

In our framework, distributional outliers are defined w.r.t. minimum volume sets (Polonik, 1997)
of P in this parameter space Θ:
Definition 1: Minimum volume set
Given a probability distribution P over (a subset of) Rd, a minimum volume set Ω∗α is a set
that minimizes the quantile function V (α) = infC∈C{Leb(C) : P (C) ≥ α}, 0 < α < 1} for i.i.d.
random variables in Rd with distribution P , C a class of measurable subsets in Rd and Lebesgue
measure Leb.
So Ω∗α,P is the smallest region containing a probability mass of at least α. We can now define
structural outliers and distributional outliers as follows:
Definition 2: Structural and distributional outlier
DefineMΘ,φ as the codomain of φ applied to Θ.
Define two such manifoldsMa =MΘa,φa

andMc =MΘc,φc
and a data set X ⊂Ma ∪Mc.

W.l.o.g., let r = |{xi:xi∈Ma∧xi /∈Mc}|
|{xi:xi∈Mc}| ≪ 1 be the structural outlier ratio, i.e. most observations

are assumed to stem fromMc. Then an observation xi ∈ X is
• a structural outlier if xi ∈Ma and xi /∈Mc and
• a distributional outlier if xi ∈Mc and θi /∈ Ω∗α, where Ω∗α is defined by the density of the

distribution generating Θa.
Figure 1 shows examples of three data types with structural outliers (in red) and some distributional
outliers for the functional data example. Since distributional outliers are structurally similar to
inliers, they are hard to detect visually for graph and image data, as doing so requires a lot of
“normal” data to reference against and we can only display a few example observations here. As
outlined, this is one reason why we again use functional data for our exposition in the following.
Summarizing the framework’s crucial aspects in less technical terms, we assume that the bulk of
the observations comes from a single “common” process, which generates observations in some
subsetMc, while some data might come from an “anomalous” process, which defines structurally
distinct observations in a different subsetMa. This follows standard notions in outlier detection
which often assume (at least) two different data-generating processes (Dai et al., 2020; Zimek &
Filzmoser, 2018). Note that this does not imply that structural outliers are in any way similar
to each other: Pa could be very widely dispersed or arise from a mixture or several different
distributions and/orMa could consist of several unconnected components representing various
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kinds of structural abnormality. The only crucial aspect is that the process from which most of
the observations emerge yields structurally similar data. We consider settings with a structural
outlier ratio r ∈ [0, 0.1] to be suitable for outlier detection. The proportion of distributional
outliers onMc, in contrast, depends only on the α-level for Ω∗α,Pc

. Practically speaking, neither
prior knowledge about these manifolds nor specific assumptions about structural differences are
necessary for our approach. The key points are that (1) structural outliers are not on the main
data manifoldMc, (2) distributional outliers are at the edges ofMc, and (3) these properties
are preserved in the embedding vectors as long as the embedding is based on an appropriate
notion of distance in H.

4 Experiments
This section lays out practical implications of the framework through experiments on several
different data types, via a comprehensive qualitative and visual analysis of six examples. In
addition, we provide quantitative results for six labeled data sets.

4.1 Methods
The focus of our experiments is to evaluate a general framework for outlier detection, which is
motivated by geometrical considerations. With these experiments, we support the claim that the
perspective induced by the framework lets us visualize, detect, and analyze outliers in a principled
and canonical way. For this demonstration, we chose Multidimensional Scaling (MDS) (Cox &
Cox, 2008) as our embedding method and Local Outlier Factors (LOF) (Breunig et al., 2000)
as our outlier scoring method. Note that the experiments are not intended to draw conclusions
about the superiority of these specific methods and other combinations of methods may be as
suitable or even superior for the purpose (see for example results for Isomap in Herrmann &
Scheipl (2021)).
However, more sophisticated embedding methods than MDS require tuning over multiple hyper-
parameters, whereas MDS has only one – the embedding dimension. Moreover, an advantage
of MDS over other embedding methods is that it aims for isometric embeddings, i.e., tries to
preserve all pairwise distances as closely as possible, which is crucial in particular to reflect
structural outlyingness. In fact, Torgerson Multidimensional Scaling (tMDS, i.e., MDS based on
L2 distance) – that is: a simple linear embedding equivalent to standard PCA scores – seems
to uncover many outlier structures sufficiently well in many data settings despite its simplicity.
For similar reasons, we chose to use LOF as an outlier scoring method. This method also has a
single hyperparameter, minPts, the number of nearest neighbors used to define a point’s (local)
neighborhood, which we denote as k in the following. Moreover, in contrast to many other
outlier scoring methods such as one-class support vector machines (Muñoz & Moguerza, 2004)
which require low-dimensional tabular data as input (i.e. which can only be applied to complex
data types indirectly by using embedding vectors as feature inputs), LOF can also be applied
to high-dimensional and non-tabular data directly as it only requires a distance matrix as input.
Experiments on functional data have shown that LOF applied directly to a distance matrix of
functional data and LOF applied to the corresponding embedding vectors yield consistent results
(Herrmann & Scheipl, 2021).
Note, however, that beyond the ability to apply outlier scoring methods to low-dimensional em-
bedding vectors of high-dimensional and/or non-tabular data, such embeddings provide additional
practical value: In particular, scalar scores or ranks as provided by outlier scoring methods are not
able to reflect differences between distributional and structural outliers whereas such differences
become accessible and interpretable in visualizations of these embeddings.
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This also points to a major caveat of the quantitative (in contrast to the qualitative) experiments,
in which we use ROC-AUC to evaluate the accuracy of outlier ranks obtained with LOF with
respect to the “outlier” structure defined by the different classes of labeled data. Setting one
class asMc and contaminating this “normal” class with observations from other classes, which
are assumed to be structurally different and thus formMa, we obtain data sets X ⊂Mc ∪Ma.
Although this is a widely used approach (Campos et al., 2016; Goldstein & Uchida, 2016; Pang et
al., 2018), such an evaluation only considers outliers as defined by the class labels and poor AUC
values may not necessarily imply poor performance if there are observations from the “normal”
data class which are (distributionally or structurally) more outlying (and thus obtain higher
scores) than some of the “labeled” outliers, see also Campos et al. (2016). This is why we do
not merely report potentially problematic quantitative measures (Section 4.3), and instead put
more emphasis on qualitative experiments that are much closer to the way we would recommend
using these methods in practical applications.

4.2 Qualitative assessment
In this section, we provide extensive qualitative analyses to demonstrate the practical relevance of
the framework. First, we demonstrate that the distinction between structural and distributional
outliers is preserved in embeddings using two simulated functional data sets. Secondly, using
two real-world data sets – a functional and an image data set – we show that the approach can
be applied flexibly to different data structures. Thirdly, we illustrate the general applicability
to more general data types based on synthetic graph data and real-world curves data. In the
following, all LOF results are obtained using k = 0.75n, where n is the number of observations.

4.2.1 Demonstrating the framework’s practical implications on idealized synthetic data
Figure 2 shows two simulated functional data sets (A & B, left) and their 2D PCA/tMDS
embeddings (A & B, right). One can observe that data set A is an example with structural
outliers in terms of shape and slope. This is an extended version of an example by Hernández
& Muñoz (2016) and, following their notation, the two manifolds can be defined as Ma =
{x(t)|x(t) = b + 0.05t + cos(20πt), b ∈ R} ∪ {x(t)|x(t) = (c − 0.05t) + et, c, et ∈ R} and
Mc = {x(t)|x(t) = a + 0.01t + sin(πt2), a ∈ R} with t ∈ [0, 1] and a ∼ N(µ = 15, σ = 4),
b ∼ N(µ = 5, σ = 3), c ∼ N(µ = 25, σ = 3), and et ∼ N(µ = 0, σ = 4). Note that the
structural outliers are not all similar to each other in shape or slope, which is reflected inMc

being a union of two structurally different manifolds.
In contrast, data set B of various (vertically shifted) Beta-distribution densities is an example
where distributional outlyingness is defined by phase – i.e. horizontal – variation and structural
outlyingness by vertical shifts. The respective manifolds are defined as Ma = {x(t)|x(t) =
b+B(t, α, β), (b, α, β)′ ∈ R×R+×R+} andMc = {x(t)|x(t) = B(t, α, β), (α, β)′ ∈ R+×R+}
with t ∈ [0, 1], α, β ∼ U [0.1, 2], b ∼ U [−5, 5] and B the density of the beta distribution. For
both, we generate 100 “normal” observations fromMc and 10 structural outliers fromMa, with
D = 500 evaluation points in the first and D = 50 evaluation points in the latter example.
Structural outliers are clearly separated from observations onMc in both cases and appear as
outlying in the 2D embeddings. Moreover, we see that distributional outliers are embedded at
the periphery ofMc. Numbers in the figures are ascending LOF score ranks of the outliers. Note
thatMc ⊂Ma in data set B. Nevertheless, most structurally outlying observations fromMa

are clearly separated in the embedding. Two structural outliers are in or very close toMc ∪Ma

and thus appear in the main bulk of the data. The LOF scores also reflect this, as one of the
distributional outliers is ranked as even more outlying.
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Figure 2: Simulated functional data and their 2D embeddings. Numbered labels are ascending
LOF score ranks of the outliers (k = 0.75n).
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Summarizing, we see that in these simulated situations, practically relevant outlier sub-structure
– deviations in terms of functional shape, slope, or vertical shifts – are represented accurately
by low-dimensional embeddings learned from the observed high-dimensional data. In particular,
structural outliers do not need to be similar to each other as Example A demonstrates. Also,
note that Example B illustrates as a by-product that there can be situations where the approach
yields meaningful results even though the two manifold are not completely disjoint. However, this
does not necessarily hold in general. See Souvenir & Pless (2005) for an approach to disentangle
intersecting manifolds. Moreover, we see that situations where distributional outliers appear
“more” outlying than structural outliers are captured as well. Note that this is a crucial aspect.
Although this aspect is quantified correctly by an outlier scoring method such as LOF, the two
outlier types can be distinguished only if visualizations, as provided by embedding methods, are
considered. Consider that evaluation of unsupervised outlier detection is often performed using a
labeled data set, setting observations from one class as inliers and sampling observations from
another class as outliers, and then computing binary classification performance measures such as
the AUC (Campos et al., 2016; Goldstein & Uchida, 2016; Pang et al., 2018). Different class
labels do not guarantee that the classes do not overlap, i.e., that the respective manifolds are
disjoint in H, nor that there are no distributional outliers appearing more outlying than structural
outliers. Thus, there may be distributional outliers among the inliers which are scored as more
outlying than structural outliers (see data set B) and a purely quantitative assessment is likely to
mislead. Being able to create faithful visualizations of such more complex outlier structures for
high-dimensional data is a crucial benefit of the proposed approach.

4.2.2 Demonstrating flexibility on real functional and image data
Of course, real-world data settings are usually more complicated than our simulated examples.
First of all, real data are much more difficult to assess since the underlying manifolds are usually
not directly accessible, so it is impossible to define the exact structure of the data manifolds
like in the simulated examples. In addition, some data sets may not contain any clear structural
outliers, while others may not contain any clear distributional outliers, or both. A crucial aspect
of the approach is that, although it is based on a highly abstract conceptualization involving
unobservables like the parameter space Θ and its probability measure P , it is not at all necessary
to come up with any such formalization of the data generating process to put the approach into
practice and obtain meaningful results, as will be demonstrated in the following.
Consider Figure 3, which shows a real functional data set of 591 ECG measurements (Dau et al.,
2019; Goldberger et al., 2000) with 82 evaluation points per function, i.e. a D = 82 dimensional
data set (A), and a sample of the COIL20 data (Nane et al., 1996) (B). It is impossible to
define the exact structure of the ECG data manifold. However, the visualizations of the functions
on the left-hand side suggest that there are no observations with clear structural differences in
functional form: none of the curves are clearly shifted away from the bulk of the data, nor are
there any curves with isolated peaks, or observations with clearly different shapes. In accordance
with this observation, there is also no clearly separable structure in the embedding. However,
observations that appear in low-density regions of the embedding can be regarded as distributional
outliers in terms of horizontal shift, i.e., phase variation, like the three observations with the
earliest minima colored in blue. This is also reflected in the scoring of the embeddings, as
the observations with the lowest LOF ranks are clear distributional outliers in function space.
However, the embedding provides much more complete information in this example than LOF
ranks and the functional visualization alone. For example, they also pinpoint a vertical shift
outlier in the first and last thirds of the domain (green curve, which would be hard to detect
based on its functional representation alone). This apparently represents a second “dimension”
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of distributional outlyingness.
The COIL20 data (Nane et al., 1996) consists of 1440 pictures (128 × 128, grayscale) of 20
different objects. The 72 pictures in each class depict one and the same object at different
rotation angles with a picture taken at every 5° within [0°, 355°]. We use all 72 pictures of a
rubber duck to represent observations fromMc and randomly sample 7 observations (i.e. r ≈ 0.1)
from the 72 pictures of a toy car as structural outliers fromMa. We compute L2 distances of
the vectorized pixel intensities (D = 1282 = 16384). Figure 3 B, left column, shows a sample of
6 inlier and 3 structural outlier pictures, the right column shows embeddings of all 79 images.
Since the inlier data are images of a rotated object,Mc is the image of a one-dimensional closed
and circular parameter space defining the rotation angle (c.f. Ma & Fu, 2011), i.e., other than in
the ECG example substantial considerations yield at least some knowledge about the specific
structure of the data manifold(s) in this case.
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Figure 3: Real functional and image data and their 2D tMDS embeddings. Numbered labels
are ascending LOF score ranks of the outliers (k = 0.75n).

The 2D embedding reflects the expected structure of our COIL20 subset very well, with clear
separation of the 7 pictures of the toy car as structural outliers. In addition, the embedding of
Mc indeed yields a closed, but not quite a circular loop, as does the embedding of the 7 rotated
images fromMa. The corresponding 3D embedding (not shown) reveals that the embeddings
of the inliers lie on a rough circle folded over itself. In summary, in the ECG example there
seem to be no clearly separable, structurally different outliers that could be detected with tMDS,
but only distributional outliers, whereas in the COIL data there are clearly separate structural
outliers, but no distributionally outlying observations. These two examples with very different
intrinsic structures (single connected manifold with distributional outliers versus disconnected
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manifolds without clear distributional outliers) illustrate that it is not necessary to have explicit
prior knowledge about the data generating process or its outlier characteristics for the approach
to work and that it is able to handle different data manifold structures flexibly and successfully.

4.2.3 Demonstrating generalizability on graph and curve data
Note that the COIL example illustrates that the framework also works in image data and that a
fairly simplistic approach of computing L2 distances between vectorized pixel intensities yields
very reasonable results in this example. The framework is, however, not at all restricted to these
two data types nor such a simple distance metric. Recall that the approach can be applied to any
data type whatsoever as long as a suitable distance metric is available. Beyond 1D functional
and image data, the framework can also be extended to more general and complex data types,
for example, graphs or 2D curves as depicted in Figures 4. We use more specialized distance
measures to show that good results can also be obtained on such data.
We simulate two structurally different classes of Erdős-Rényi graphs with 20 vertices (see Fig. 4
A). This structural difference results from different edge probabilities pv that two given vertices
of the graph are connected, setting pv = 0.1 forMc and pv = 0.4 forMa. We randomly sample
100 observations fromMc and 10 fromMa, i.e. r = 0.1, and obtain a pairwise distance matrix
by computing the Frobenius distances between the graph Laplacians.
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Figure 4: Curve and graph data as further examples to demonstrate the flexibility and general
applicability of the approach, and their 2D MDS embeddings based on Frobenius (graphs) and
Elastic shape distances (curves). Numbered labels are ascending LOF score ranks of the outliers
(k = 0.75n).

The curves data (Fig. 4 B) consists of spiral curve drawings from an Archimedes spiral-drawing
test that is used to diagnose patients with Parkinson’s disease (Alty et al., 2017; Steyer et
al., 2021). Taking data from the dynamic version of the test (Isenkul et al., 2014), we use 15
curves drawn by healthy controls not suffering from Parkinson’s disease and two curves drawn by
Parkinson patients to represent potential structural outliers, where each curve is evaluated on
200 points. Previous investigations have shown that an elastic shape distance is better suited
than L2 distances to discriminate between the two groups (Steyer et al., 2021).
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So, in contrast to the previous examples, we use more specialized distance measures to capture
the relevant structures in these settings. This illustrates that the approach is not only flexible
with respect to the actual structure present in a given data set as demonstrated in the previous
section but that it is also very generally applicable to a variety of data types. The approach can
be used for any kind of data simply by defining an appropriate (data-specific) distance measure.
In both, the embeddings of the graphs, as well as the embeddings of the curves, structurally
different observations (in red) are clearly separated from the observations onMc. This is also
reflected by their LOF scores. Moreover, in both settings, there are observations fromMc (in
blue) which appear in peripheral, sparser regions of the “normal” data and thus can be considered
distributional outliers. Note that it is not always immediately obvious on the level of the original
data why observations appear distributionally outlying. For example, in the graph data, note that
other than in previous examples (e.g. Fig. 2 A) comparing them to a few inliers does not reveal a
striking difference at first (in contrast to the structural outliers!): Figure 4 A, left column, shows
six inlier graphs in the 1st and 2nd row, the three distributional outlier graphs in the 3rd row,
and three structural outlier graphs in the 4th row.
Nevertheless, the embedding vectors and their LOF ranks indicate that the distributionally
outlying observations have obtained some specific characteristics setting them apart from most
inlying observations. For example, further analysis reveals that the graph with LOF rank 11
contains the node with maximum connectedness of all nodes in all inlier graphs. Its degree is 8
(i.e., it is directly connected to 8 other nodes), while the average of the maximum degree in the
graphs onMc is just 4.39. In contrast, the graph with LOF rank 13 contains 8 isolated nodes of
degree 0, while the average number of nodes with degree 0 is only 2.47 onMc. The respective
values of the graph with LOF rank 10 are above the upper quartile for both of these metrics,
with 4 unconnected nodes and a maximally connected node with degree 6.

4.3 Quantitative assessment
In order to provide less subjective experimental results, we assess the approach quantitatively,
using labeled data with at least two classes. For each data set, we consider four outlier ratios
r ∈ {0.01, 0.025, 0.5, 0.1}. Setting one class asMc, with nin = |Mc|, and contaminating this
“normal” class with nout = r · nin “structural” outliers from other classes, which form Ma,
we obtain data sets X ⊂ Mc ∪Ma with n = nin + nout. For each setting, we repeat the
contamination process 50 times, sampling outliers at random fromMa. Based on outlier ranks
computed with LOF, we use ROC-AUC as a performance measure and report the mean AUCs
over the 50 replications for each combination of settings. Note that we only use the labels
of the “structural” outliers for computing this performance measure, not for the unsupervised
learning of the embeddings themselves. For all data sets considered in this section, plots of
typical embeddings for r = 0.05 can be found in Figures 5 and 6 in appendix A. We consider
three additional functional data sets for this experiment: dodgers (Dau et al., 2019), a set of
times series of daily traffic close to Dodgers Stadium, with days on weekends formingMa and
weekdays forming Mc; phoneme (Febrero-Bande & Oviedo de la Fuente, 2012), discretized
log-periodograms of five different phonemes, with phoneme “dcl” formingMa and phonemes
“sh”, “iy”, “aa”, and “ao” formingMc; starlight (Dau et al., 2019; Rebbapragada et al., 2009),
phase-aligned light curves of Eclipsing Binary, Cepheid, and RR Lyrae stars, the first formingMa

and the latter two formingMc. All results are based on simple, linear tMDS/PCA embeddings
with the LOF algorithm applied to the resulting 2D embedding vectors.
In addition, we consider three tabular data sets, two real and one simulated. This includes the
well-known Iris data (Anderson, 1935; Fisher, 1936) where class Setosa formsMc and the other
two classesMa. Moreover, we use the Wiscon Breast Cancer (wbc) data (Street et al., 1993)
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Table 1: Mean ROC-AUC values over 50 replications based on the ranks as assigned by LOF.
Each data set consists of n observations, nin fromMc and nout = nin · r fromMa. Ma and
Mc are defined by classes of the original labeled data sets. D is the dimensionality of a data set
(i.e, evaluations per function for functional data) and k the number of nearest neighbors used in
the LOF algorithm. A: Functional data. B: Tabular data.

A dodgers phoneme starlight
nin = 97, D = 289 nin = 400, D = 150 nin = 6656, D = 1025

k 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n

r : 1.0% 0.78 0.98 0.96 0.96 0.78 1.00 0.99 0.99 0.96 1.00 0.69 0.78
r : 2.5% 0.62 0.97 0.96 0.96 0.54 1.00 0.99 0.99 0.55 1.00 0.88 0.88
r : 5.0% 0.59 0.97 0.96 0.96 0.56 0.99 0.99 0.99 0.53 1.00 0.92 0.92
r : 10% 0.54 0.84 0.97 0.96 0.57 0.75 0.99 0.99 0.56 0.98 0.95 0.87
B iris wisconsin breast cancer simulated data

nin = 50, D = 4 nin = 357, D = 30 nin = 750, D = 1000

k 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n

r : 1.0% 1.00 1.00 1.00 1.00 0.76 0.96 0.94 0.89 0.66 1.00 1.00 1.00
r : 2.5% 0.71 1.00 1.00 1.00 0.64 0.97 0.95 0.92 0.56 1.00 1.00 1.00
r : 5.0% 0.52 1.00 1.00 1.00 0.60 0.97 0.94 0.91 0.58 1.00 1.00 1.00
r : 10% 0.61 0.69 1.00 1.00 0.58 0.96 0.94 0.92 0.56 1.00 1.00 1.00

as provided by the UCI Machine Learning repository (Dua & Graff, 2017). This tabular data
set comprises 30 features containing information about the cell nuclei of breast tissue and has
been used by Goldstein & Uchida (2016) for outlier detection before. Following their approach,
the healthy patients formMc and patients with malignant status formMa. Yet, other than
Goldstein & Uchida (2016), we do not fix outliers to the first 10 observations from the latter class
but – as outlined – repeatedly sample outliers at random fromMa. Finally, we include a simple
simulated example where Mc = {x : x ∼ N1000(0,Σ)} and Ma = {x : x ∼ N1000(1,Σ)},
Σ = diag(1). That is, 1000-dimensional data with observations sampled from two multivariate
normal distributions where the class difference stems from the difference in the mean vectors, 0
forMc and 1 forMa.
The results depicted in Table 1 show that outlier detection does not need to be specifically
challenging in nominally high-dimensional data. In each of the data sets, which have very different
numbers of observations and numbers of dimensions, high ROC-AUC ≥ 0.95 can be achieved
for all considered outlier ratios r. This indicates that most of the observations fromMa indeed
appear to be outlying in the embedding space and thus obtain high LOF scores. Furthermore, as
in the qualitative analysis, a global setting of k = 0.75n seems to be a reasonable default for the
LOF algorithm. Only for r = 0.01, 0.025 in the starlight data, we see a large improvement (AUC
= 1.00) with k = 0.1n. For small r < 0.1, in all other settings the achieved ROC-AUC is very
robust against changes in this tuning parameter.

5 Discussion
5.1 Summary
We propose a geometrically motivated framework for outlier detection, which exploits the
metric structure of a (possibly high-dimensional) data set and provides a mathematically precise
distinction between distributional outliers and structural outliers. Experiments show that the
outlier structure of high-dimensional and non-tabular data can be detected, visualized, and
quantified using established manifold learning methods and standard outlier scoring. The decisive
advantage of our framework from a theoretical perspective is that the resulting embeddings make
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subtle but important properties of outlier structure explicit and – even more importantly – that
these properties are made accessible based on visualizations of the embeddings. From a more
practical perspective, our proposal requires no prior knowledge nor any specific assumptions about
the actual data structure in order to work, an important aspect since data generating processes
are usually inaccessible. This is highly relevant in practice, in particular since a well-established,
computationally cheap combination of widely used and fairly simple methods like (t)MDS and
LOF proved to be a strong baseline that yields fairly reliable results without the need for tuning
hyperparameters. In addition, the proposed framework has several more general conceptual
implications for outlier detection which will be summarized in the following.

5.2 Implications
Outlier taxonomy We propose a clear taxonomy to distinguish between frequently interchange-
ably used terms anomalies and outliers in a canonical way: we regard anomalies as observations
from a different data generating process than the majority of the data (i.e. as observations that
are onMa but not onMc), which can be more precisely identified as structural outliers. Recall
that Zimek and Filzmoser (2018, p. 10) refer to such observations as “real” outliers that need to
be distinguished from “observations which are in the extremes of the model distribution”. On
the other hand, regarding outliers as observations from low-density regions of the underlying
“normal” data manifoldMc, they can be more precisely identified as distributional outliers. Based
on our reading of the literature, this distinction is usually not made explicit. Since there is
rarely a practical reason to assume that a given data set contains only distributional or only
structural outliers, some of the confusion surrounding the topic (Goldstein & Uchida, 2016;
Unwin, 2019; Zimek & Filzmoser, 2018) might be because such conceptual differences have not
been made sufficiently clear. As outlined, the concept of structural difference is very general.
For example, structural differences in functional data may appear as shape anomalies in data
mainly characterized by vertical shift variation (see Fig. 1 A) or as vertical shift anomalies in data
dominated by shape variation, as phase anomalies in data with magnitude variation or magnitude
anomalies in data with phase variation, etc.
In real unlabeled data, there may not always be a clear distinction between somewhat structurally
anomalous observations with “off-manifold” embeddings and merely distributionally outlying
observations with embeddings on the periphery of the data manifold, as in the ECG data in
Figure 3 A. Nevertheless, the theoretical distinction between these two kinds of outliers adds
conceptual clarity even if the practical application of the categories may not be straightforward.
Curse of dimensionality As outlined in section 2.1, outlier detection is often reported to suffer
from the curse of dimensionality. For example, Goldstein & Uchida (2016) show that most outlier
detection methods under consideration break down or perform poorly in a data set with 400 di-
mensions and conclude that unsupervised outlier detection is not possible in such high dimensions.
Some [Aggarwal (2017); e.g.] attribute this to the fundamental problem that distance functions
can lose their discriminating power in high dimensions (Beyer et al., 1999), which is linked to the
concentration of measure effect (Pestov, 2000). However, this effect occurs only under fairly
specific conditions (Zimek et al., 2012), which means that outlier detection does not have to be
affected by the curse of dimensionality: In addition to the effects of dependency structures and
signal-to-noise ratios (Zimek et al., 2012), the necessary conditions for concentration of measure
are not fulfilled if the intrinsic dimensionality of the data is smaller than the actually observed
dimensionality, or if the data is distributed in clusters that are relatively well separable (Beyer et
al., 1999). Exactly these two characteristics are reflected in our framework in the form of (1) the
manifold assumption, which implies low-ish intrinsic dimensionality, and (2) the assumption that
structural outliers come from different manifolds than the rest of the data, i.e., from different
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“clusters” in H. This has two important consequences: First of all, the geometric perspective our
framework is based on makes these important aspects for outlier detection in high-dimensional
data explicit, while a purely probabilistic perspective obscures them. Secondly, it mitigates
many of the problems associated with high-dimensional outlier detection: any outlier detection
method that performs well in low dimensions becomes – in principle – applicable in nominally
high-dimensional and/or complex non-tabular data when applied to suitable low-dimensional
embedding coordinates. In addition, our results show that outlier sub-structure, specifically the
differences between distributional and structural outliers, can be detected and visualized with
manifold methods. This opens new possibilities for descriptive and exploratory analyses:
Visualizability of outlier characteristics If the embeddings provided by manifold methods are
restricted to two or three dimensions, they also provide easily accessible visualizations of the data.
In fact, manifold learning is often used in applications specifically to find two- or three-dimensional
visualizations reflecting the essential intrinsic structure of the high-dimensional data as faithfully
as possible. Consequently, structural and distributional outliers, which are rather glaring data
characteristics if the manifolds are well separable, can often be separated clearly even in two- or
three-dimensional representations as long as the embedding is (approximately) isometric with
respect to a suitable dissimilarity measure. This is specifically important for complex non-tabular
or high-dimensional data types such as images or graphs, where at most a few observations can
be visualized and perceived simultaneously. In the same vein, substructures and notions of data
depth are reflected in the embeddings, making the approach also useful as an exploration tool for
settings with unclear structure.
Generalizability Since the central building block of the proposed framework is to capture the
metric structure of data sets using distance measures, the framework is very general and applicable
to any data type for which distance metrics are available. In Section 4.2, we illustrated this
generalizability using high-dimensional as well as non-tabular data; in particular, we applied it to
functional, curve, graph, and image data. This also makes the framework very flexible as one
can make use of non-standard and customized dissimilarity measures to emphasize the relevant
structural differences in specific situations based on domain knowledge: Representing image
data as vectors of pixel intensities, we computed distances between those vectors, for example.
Dissimilarities between different graphs were captured, for example, by constructing their graph
Laplacians and computing Frobenius distances between them, and we used a specific elastic
depth distance for the spiral curve data as suggested by earlier results in Steyer et al. (2021).

5.3 Limitations and outlook
If in an exploratory setting, observations appear clearly separated in the (first few) embedding
dimensions, we can be sure they are structural outliers. Note that if D-dimensional data actually
live in a d′-dimensional subspace, constructing a d′-dimensional embedding with MDS based on
L2 distances will lead to an embedding with a distance matrix exactly matching the distance
matrix in the D-dimensional space, i.e. MDS is isometric by design. If other than L2 distances
are used this still holds approximately (Young & Householder, 1938; see also Cox & Cox, 2008;
Torgerson, 1952). Note that this is an important difference from many other dimension reduction
methods. For example, UMAP is based on a local connectivity constraint (McInnes et al., 2020)
which ensures that each point is at least connected to its nearest neighbor and which runs counter
to a reliable embedding of structural outliers. In addition, more sophisticated methods require
parameter tuning for any given setting, which is inherently difficult for unsupervised tasks, and
it is not always clear how to tune other embedding methods so that they yield (approximately)
isometric embeddings.
Clear structural outliers are the source of large variation in data sets with low intrinsic dimension-
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ality. Since MDS embedding dimensions are sorted according to the decreasing variation, they
will be reflected in the first few embedding dimensions. It may be that some of the distributional
outliers are masked due to projection if the embedding dimension d is smaller than d′ but following
Zimek & Filzmoser (2018) we consider faithfully reflecting structural outliers more important.
However, inliers, i.e. observations onMc, may show large “within class” variation and/or may
be spread over several disconnected clusters in some situations. For example, object images on
Mc, which are structurally similar in terms of the depicted objects’ shape, may vary in rotation,
scale, or location, and may have different colors or textures. In functional data, observations
onMc may show phase and amplitude variation and form clusters due to different shapes. In
such settings,Mc can yield complex substructure and highly dispersed observations and it may
be hard to distinguish whether separable structures observed in embeddings are due to groups
of homogeneous structural outliers or due to multimodality in Mc in which some modes are
sparsely sampled. Moreover, in such cases, the dispersion ofMc accounts for large parts of the
data’s variability, and two- or three-dimensional MDS embeddings may not be sufficient to also
faithfully represent structural outliers, since MDS embedding vectors are sorted decreasingly by
explained “variance”. However, this does not mean that structural outliers are not necessarily
separable. Instead, they appear as outliers in higher embedding dimensions, requiring higher
order embeddings to reflect the outlier structure. That means, if in an exploratory setting, there
are no clearly separated observations in the (first few) embedding dimensions, there are either
no clear structural outliers or they appear in later embedding dimensions if there are sources in
Mc that induce more variation than the structural outlier. For example, objects in images may
be structurally different in texture but not in color, orientation, and scale. In such a case – all
observations differ in color, orientation, and scale but only some observations in texture –, these
other aspects can induce large variation within observations on Mc, and the structural difference
in texture is loaded on latter embedding dimensions. In such a situation, one can use scatterplot
matrices and Scagnostics (scatterplot diagnostics, Wilkinson et al., 2005) for visual inspection.
In addition, one can check out the kurtosis of the LOF scores in different embedding dimensions
or high contrast subspaces for density-based outlier ranking (HiCS, Keller et al., 2012), to find
pairs of dimensions that are “interesting” in terms of structural outliers. Moreover, techniques
from multi-view learning such as “distance-learning from multiple views” may likely yield better
results, because different structures (e.g. structure induced by color vs structure induced by
texture) should be “treated separately as they are semantically different” (Zimek & Vreeken,
2015, p. 128). Note, however, that suitable inductive biases can also be brought to bear in
our framework fairly easily. If substantial considerations suggest that specific structural aspects
are important, specifying dissimilarity metrics focused on these aspects allows to emphasize the
relevant differences. For example, if isolated outliers in functional data (i.e. functions which yield
outlying behavior only over small parts of the domain such as isolated peaks) are of most interest,
higher order Lp metrics such as L10 will be much more sensitive to such structural differences
than general L2 distances. If phase variation should be ignored, the unnormalized L1-Wasserstein
or the Dynamic Time Warping (DTW) distance can be used. Such problem-specific distance
measures can reduce the number of MDS embedding dimensions necessary for faithful embeddings
of structural outliers (Herrmann & Scheipl, 2021). In future work, we will investigate these
aspects and possible extensions w.r.t. to multi-view learning approaches. Moreover, we will
elaborate more on the specifics of other data types, in particular, image data.
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6 Conclusion
In conclusion, our illustration suggests that the proposed geometric conceptualization, which
distinguishes distributional and structural outliers on a general level, provides a more precise
terminology and shows that outlier detection in high-dimensional and complex non-tabular data
does need to be specifically challenging per se. Convincing results could be achieved in a wide
range of settings and data types by a combination of the simple methods MDS for dimension
reduction and visualization and LOF for outlier scoring. We hope that the proposed framework
contributes to a better understanding of unsupervised outlier detection and provides some guidance
to practitioners as well as methodological researchers in this regard.
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A Example visualizations of the data used in the quantita-
tive experiments

0

20

40

60

0 100 200 300

t

x(
t)

dodgers: functional observations

−80

−40

0

40

80

120

0 100 200

y_1
y_

2

dodgers: tMDS embedding

0

10

20

0 50 100 150

t

x(
t)

phoneme: functional observations

−50

−25

0

25

−50 0 50 100

y_1

y_
2

phoneme: tMDS embedding

−2.5

0.0

2.5

5.0

0 250 500 750 1000

t

x(
t)

starlight: functional observations

−30

−20

−10

0

10

−30 −20 −10 0 10 20

y_1

y_
2

starlight: tMDS embedding

Figure 5: Plots to Table 1 A: Functional data and tMDS embeddings. Inlier class in grey, outlier
class in red. r = 0.05
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10. Enhancing Cluster Analysis via
Topological Manifold Learning

Chapter 10 focuses on cluster analysis. It is demonstrated that leveraging the topological
structure of data sets improves cluster detection. The manifold learning method UMAP is
used to infer the connected components of a data set and the resulting embedding vectors are
then used as inputs for the density-based clustering methods DBSCAN. Based on theoretical
arguments and extensive qualitative and quantitative experiments the advantages and caveats
of this approach are evaluated. As a by-product, the results are compared to the results of
other clustering approaches presented in the literature.
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Abstract

We discuss topological aspects of cluster analysis and show that infer-
ring the topological structure of a dataset before clustering it can
considerably enhance cluster detection: theoretical arguments and empir-
ical evidence show that clustering embedding vectors, representing the
structure of a data manifold instead of the observed feature vectors
themselves, is highly beneficial. To demonstrate, we combine manifold
learning method UMAP for inferring the topological structure with
density-based clustering method DBSCAN. Synthetic and real data
results show that this both simplifies and improves clustering in a
diverse set of low- and high-dimensional problems including clusters
of varying density and/or entangled shapes. Our approach simplifies
clustering because topological pre-processing consistently reduces param-
eter sensitivity of DBSCAN. Clustering the resulting embeddings with
DBSCAN can then even outperform complex methods such as SPEC-
TACL and ClusterGAN. Finally, our investigation suggests that the
crucial issue in clustering does not appear to be the nominal dimen-
sion of the data or how many irrelevant features it contains, but rather
how separable the clusters are in the ambient observation space they
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2 Enhancing cluster analysis via topological manifold learning

are embedded in, which is usually the (high-dimensional) Euclidean
space defined by the features of the data. Our approach is successful
because we perform the cluster analysis after projecting the data into
a more suitable space that is optimized for separability, in some sense.

Keywords: Cluster analysis, Manifold learning, Topological data analysis

1 Introduction

Clustering is the task of uniting similar and separating dissimilar observations
in a dataset (Kriegel et al, 2009; Aggarwal, 2014). It is a fundamental task
in data analysis and is thus widely investigated in many fields. With this
study, we intend to raise awareness for topological aspects of clustering and to
provide empirical evidence that topologically-informed approaches which are
conceptually and computationally simple can compete with or even outperform
much more complex existing methods on a wide range of problems.

1.1 Problem specification

Cluster analysis is usually approached in an algorithm-driven manner, and con-
siderations about the underlying principles of data generating processes and
data structures are often limited to a probabilistic conceptualization assuming
that the dataX follow a joint probability distribution P (X) (Hastie et al, 2009)
or, more precisely, a mixture of distributions (Aggarwal, 2014). In contrast,
connections to topological data analysis (TDA) (Chazal and Michel, 2021;
Wasserman, 2018), a branch of statistical data analysis inferring the structure
of data leveraging topological concepts, are usually not considered. In general,
the topological aspects of cluster analysis appear to be an under-investigated
topic. Current textbooks on cluster analysis (Aggarwal and Reddy, 2014;
Aggarwal, 2015; Giordani et al, 2020; Scitovski et al, 2021; Hennig et al, 2015,
e.g) and recent reviews of the field (Jain et al, 1999; Kriegel et al, 2009; Assent,
2012; Pandove et al, 2018; Mittal et al, 2019, e.g.) rarely mention the term
“topology”.

Following Niyogi et al (2011), we consider clustering a natural example of
TDA. Since an improved understanding of the underlying principles governing
the problem is likely to lead to more suitable methods and novel solutions,
our work aims to reduce this lack of awareness of topological aspects in the
clustering literature. Specifically, our approach follows Niyogi et al (2011, p.
2) who state that “clustering is a kind of topological question” which tries
to separate the data into “connected components.” One particularly relevant
consequence of this topological perspective is its implication that the difficulty
of a clustering problem is not necessarily determined by the data’s (nominal)
dimensionality.
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1.2 Scope of the study

In this work, we make use of the well-known algorithm DBSCAN (Ester et al,
1996) for cluster detection and the recently developed manifold learning algo-
rithm UMAP (McInnes et al, 2018) to infer the topological structure of a
dataset.

UMAP has a decidedly topological underpinning, so it is suitable for a the-
oretical analysis from the clustering perspective we take here. In particular,
it builds on simplicial complexes to obtain a fuzzy topological representa-
tion of the inherent structure of a dataset. As such, it is based on the same
theoretical principles as topological data analysis (Chazal and Michel, 2021;
Wasserman, 2018). In addition, it has already been shown that preprocess-
ing by UMAP can improve clustering results (Allaoui et al, 2020) and that
the resulting embeddings frequently yield “more compact clusters than t-SNE
[another state-of-the-art manifold learning method] with more white space in
between” (Kobak and Linderman, 2021, p. 157).

To be specific, “inferring the topological structure” as we do here with
UMAP has two aspects: first, a fuzzy graph representation of the dataset is
used to find the (number of) connected components. Second, this structure is
represented by embedding vectors (i.e. coordinates in a representation space)
that are optimized for the separability of the connected components. As we
show in section 3, UMAP’s graph construction and graph embedding steps
both increase cluster separability, and their combined effect thus improves
clusterability dramatically.

DBSCAN, on the other hand, is a widely used and well-established method
for cluster detection (Schubert et al, 2017). In particular, it neither requires a
pre-specified number of clusters nor does it make any assumptions about their
specific shapes or patterns. This is important, as inferring the connected com-
ponents of a dataset is largely equivalent to identifying the clusters it contains.
Moreover, the optimized representation of the topological approach focuses
on the separability of clusters, not on the specific shapes the clusters might
have. Also note that UMAP’s developers conjectured that it might enhance
density-based clustering, but that this requires further investigation (McInnes,
2018).

From a practical perspective, this means we use UMAP to preprocess the
data such that its representation is optimized for separability and use the
resulting embedding vectors as inputs for DBSCAN. Although the theoretical
and empirical considerations outlined above show that these two methods are
suitable, it has to be emphasized that this does not mean that we consider
UMAP and DBSCAN the most suitable combination in general. Certainly,
additional research has to focus on the pros, cons, and differences between
UMAP and other manifold learning methods, in particular t-SNE, and some
efforts have already been made in this direction (Kobak and Linderman, 2021;
Wang et al, 2021). In this paper, we intend to show that a topological per-
spective, in general, can improve understanding and practical feasibility of
clustering and not whether that specific combination of methods is the most
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suitable. Other combinations of clustering and/or manifold learning methods
than UMAP and DBSCAN are possible and certainly deserve investigation as
well.

Moreover, note that there are other approaches to infer the topological
structure of a dataset. For example, persistent homology – which also builds
on simplicial complexes – quantifies the topological structure of a dataset by
providing information on statistically significant persistent topological features
such as connected components, holes, or voids, e.g. (Wasserman, 2018). In
contrast, measures of data separability such as the distance-based separability
index (Guan and Loew, 2021) quantify the separability of datasets in a single
scalar value. However, both approaches only contribute to the first aspect of
inferring the topological structure, i.e. they do not provide data representation
optimized for separability.

1.3 Contributions

This study makes three distinct contributions: First, section 3 illustrates that
approaches motivated by a topological perspective can dramatically reduce
the complexity of clustering for both low- and high-dimensional data. This is
achieved with an in-depth analysis of simulated data specifically designed to
reflect some often described problems of clustering including high-dimensional
data, clusters of different densities, and irrelevant features. In addition, a sim-
ple toy example demonstrates why and how inferring the intrinsic topological
structure of a dataset with UMAP before clustering improves the clustering
performance of DBSCAN.

Secondly, with intuition and motivation in place, section 4 is devoted to
specific implications of the topological perspective. We describe which struc-
tures of a dataset are preserved when inferring the topological structure by
finding connected components and enhancing separability (using the UMAP
algorithm), in particular by contrasting topological against geometrical charac-
teristics in a detailed qualitative and quantitative analysis of simple synthetic
examples.

Finally, in section 5, we report extensive experiments using real-world data.
Our results show that inferring the topological structure of datasets before
clustering them not only improves – dramatically, for some examples such as
MNIST – performance of DBSCAN, but also drastically reduces its parame-
ter sensitivity. The comparatively simple approach of combining UMAP and
DBSCAN can even outperform recently proposed clustering methods such as
ClusterGAN (Mukherjee et al, 2019), which require expensive hyperparameter
tuning, on complex datasets.

In addition, related work and the methods used are described in section 2,
while the results are discussed in section 6 before we conclude in section 7.

175



Enhancing cluster analysis via topological manifold learning 5

2 Methods and related work

In this section, we first describe the background of the study and related
work, before we outline the methods DBSCAN and UMAP, which are used
for clustering and inferring topological structure, respectively, in this study.
Readers which are familiar with the methods might skip the corresponding
paragraphs. However, note that we will refer to some of the more technical
details outlined here in section 3.2.

2.1 Background and related work

The body of literature on clustering, topological data analysis, and manifold
learning is extensive and has seen contributions from many different areas and
perspectives. General reviews on clustering have been provided for example by
Jain et al (1999) and more recently by Saxena et al (2017). Moreover, there a
several reviews focusing on cluster analysis for high-dimensional data (Kriegel
et al, 2009; Assent, 2012; Pandove et al, 2018; Mittal et al, 2019). In addition,
there exist overviews on TDA (Niyogi et al, 2011; Chazal and Michel, 2021;
Wasserman, 2018, e.g.) as well as on manifold and representation learning
(Cayton, 2005; Bengio et al, 2013; Wang et al, 2021) including the textbooks
by Ma and Fu (2012) and Lee and Verleysen (2007).

The variety of clustering algorithms is vast and endeavors have been made
to capture this diversity through taxonomies. DBSCAN, the algorithm used
here, is a density-based approach. One of its major advantages is that it does
not require a pre-specified number of clusters and that the clusters can have
arbitrary shapes and patterns. Its hierarchical version (HDBSCAN, Campello
et al, 2013) does not use a global ε-threshold but computes on its own multiple
cut-off values resulting in clusters of different densities and therefore requires
only the minPts parameter. Similar to HDBSCAN, the OPTICS algorithm
(Ankerst et al, 1999) calculates an ordering of the observations without a global
ε-threshold that provides broader insight on the structure of the data. However,
the method does not explicitly assign cluster memberships. Instead, it allows
viualizing the hierarchical cluster structure for example via reachability plots
(Ankerst et al, 1999).

Further categories are hierarchical and partitioning algorithms (Jain et al,
1999), where the latter can be divided further into sub-taxonomies. Some of
them are based on the minimization of distances to certain prototypes (cen-
troids, medoids, etc.), this includes algorithms like k-means (Lloyd, 1982), or
its more general archetype of algorithms: Gaussian Mixture Models (GMMs)
among which the Expectation-Maximization (EM) algorithm (Dempster et al,
1977) is a prominent exponent. A major caveat, however, is that these methods
estimate a specific probabilistic model which includes the number of clusters
to be detected and often fail if the data is distributed differently (Liu and Han,
2014).

In contrast, spectral clustering, a family of algorithms that shares some
common ground with many manifold learning methods that are also based
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on spectral decompositions of pairwise (dis)similarity matrices, is more robust
with respect to the shape and distribution of the clusters. However, these meth-
ods require the number of clusters to be specified in advance (Von Luxburg,
2007; Liu and Han, 2014).

Subspace clustering approaches emerged specifically for high-dimensional
settings (Kriegel et al, 2009; Assent, 2012; Pandove et al, 2018; Mittal et al,
2019). The fundamental assumption here is that objects within a cluster do
not exhibit high similarities among all dimensions but only within a small
subset of features that can either (a) span an axis-parallel subspace or (b) an
affine projection to an arbitrarily-oriented subspace (“correlation clustering”).
In both cases, the objects of a cluster are assumed to be located on a common,
low-dimensional linear manifold.

In contrast, manifold learning is based on the assumption that data
observed in a high-dimensional ambient observation space is distributed on
or near a potentially nonlinear manifold with a much smaller intrinsic dimen-
sion than the ambient space (Ma and Fu, 2012). In general, the aim is to
find low-dimensional representations of datasets preserving as much of the
structure of the observed data as possible. A synonymous term is nonlinear
dimension reduction (NDR) (Lee and Verleysen, 2007). However, there is no
general definition of which characteristics are to be preserved and represented
and different methods infer the intrinsic structure and provide low-dimensional
representations in different ways.

For instance, principal component analysis (PCA) yields embedding vec-
tors that optimally preserve global Euclidean distances in the original data
space, while other methods such as Isomap (Tenenbaum et al, 2000) yield
embedding vectors that aim to preserve geodesic distances on a single, glob-
ally connected data manifold. Methods like t-distributed Stochastic Neighbor
Embedding (t-SNE, van der Maaten and Hinton, 2008) and uniform manifold
approximation and projection (UMAP, McInnes et al, 2018) have been suc-
cessfully applied to complex high-dimensional datasets with cluster structure.
More recently, methods with a specific topological focus such as general pur-
pose Topomap (Doraiswamy et al, 2021) as well as domain specific Paga (Wolf
et al, 2019), which focuses on the analysis of single cell data, have been pro-
posed. The manifold learning-based clustering approach of Souvenir and Pless
(2005) relies on the assumption that data is sampled from multiple intersecting
lower-dimensional manifolds.

Several studies that precede ours also focus on the combination of mani-
fold learning techniques and cluster analysis, with applications to cytometry
data (Putri et al, 2019), brain tumor segmentation (Kaya et al, 2017), spec-
tral clustering (Arias-Castro et al, 2017), or big data (Feldman et al, 2020),
the latter three based on PCA. DBSCAN was used in combination with
multi-dimensional-scaling (MDS) in Mu et al (2020), and UMAP was used for
time-series clustering (Pealat et al, 2021) as well as clustering SARS-COV-2
mutation datasets (Hozumi et al, 2021). However, these all focus on specific
domains and not on the underlying topological principles. In contrast, we base
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our work on a topological perspective on clustering first described theoreti-
cally by Niyogi et al (2011), who conceptualize clustering as the problem of
identifying the connected components of a data manifold. We show the theoret-
ical and practical utility of this perspective by means of extensive experiments
based on synthetic and real datasets. Similar in spirit to our work, Allaoui
et al (2020) perform a comparative study with real data to show that UMAP
can considerably improve the performance of clustering algorithms. Among
other things, they combined UMAP with HDBSCAN and report comparable
clustering results for three of the real-world datasets (Pendigits, MNIST and
FMNIST) also used here. However, in contrast to our study, Allaoui et al (2020)
do not provide insights into the conceptual topological underpinnings, nor do
they describe how the data structures preserved in UMAP embeddings lead
to these performance improvements. Note that their results also show empiri-
cally that the benefits of the proposed approach are not tied to any particular
combination of NDR and clustering methods.

2.2 UMAP

The principle idea behind UMAP essentially consists of two steps:
1) Constructing a weighted k-nearest neighbor (k-NN) graph from a pairwise
distance matrix.
2) Finding a (low-dimensional) representation of the graph which preserves as
much of its structure as possible.
Note that this is the fundamental principle in manifold learning and the details
of the two steps constitute the differences between manifold learning methods
(Wang et al, 2021). However, unlike many other manifold learning methods,
UMAP is based on a solid theoretical foundation that ensures that the topology
of the manifold is faithfully approximated by its fuzzy simplical set represen-
tation. We concentrate on the computational aspects outlined in McInnes et al
(2018) and refer interested readers to the original study for theoretical details.

2.2.1 Graph construction

Given a dataset X = {x1, ..., xnobs
} sampled from a space equipped with a dis-

tance metric d(xi, xj), UMAP constructs a directed k-NN graph Ḡ = (V,E,w)
with the vertices Vi being observations xi from X, E the edges and w the
weights, based on the following definitions.

Definition 1 The distance ρi of an observation xi to its nearest neighbor xij is
defined by

ρi = min{d(xi, xij )|1 ≤ j ≤ k, d(xi, xij ) > 0}.

Definition 2 A (smooth) normalization factor σi is set for each xi by

k∑

j=1

exp

(−max(0, d(xi, xij )− ρi)
σi

)
= log2(k).

10. Enhancing Cluster Analysis via Topological Manifold Learning
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This defines a local (Riemannian) metric at point xi.

Definition 3 Weight function: The edge weights of the graph are defined by

w((xi, xij )) = exp

(−max(0, d(xi, xij )− ρi)
σi

)
.

Note, the distance to the nearest neighbor ρi ensures that xi is connected to at least
one other point with an edge of weight 1 (local connectivity constraint).

For the theory to work it is essential to assume that the data is uniformly
distributed on the manifold, which is too strong an assumption for real-world
data. The issue is bypassed by defining independent notions of distance at
each observed point through σi and ρi. However, these local metrics may not
be mutually interchangeable, which means that the “distance” between neigh-
boring points xi and xj may not be the same if measured w.r.t xi or w.r.t. xj ,
i.e., d(xi, xj) 6= d(xi, xj), so edge weights in Ḡ depend on the direction of the
edges.

A unified, undirected graph G with adjacency matrix B is obtained by

B = A+AT −A ◦AT , (1)

with A the weighted adjacency matrix of Ḡ and ◦ the point-wise product. Note
that Eq. (1) represents the well-defined operation of unioning fuzzy simplicial
sets (with which the manifold is approximated). The resulting entries in B can
be interpreted as the probability that at least one of the two directed edges
between two vertices in Ḡ exists, or more generally as a measure of similarity
between two observations xi and xj . Note that it has recently been shown
that a stricter notion of connectivity induced by mutual nearest neighbors can
further improve the topology preserving property of standard UMAP used here
(Dalmia and Sia, 2021).

2.2.2 Graph embedding

The objective is to find a configuration of points in the representation space
Y whose fuzzy simplicial set is as similar as possible to the fuzzy simplicial
set of the original data, as represented by G. To find this low-dimensional
representation, UMAP optimizes the cross entropy of edge weights in the two
spaces. Similarities in the observation space are represented in terms of the
local smooth nearest neighbor distances as

vij = (vj|i + vi|j)− vj|ivi|j , (2)

with vj|i = exp[(−d(xi, xj) − ρi)/σi] (c.f. Eq. (1)), and similarities in the
representation space Y as

wij = (1 + a||yi − yj ||2b2 )−1, (3)
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the cross entropy between the two fuzzy simplicial set representations

CUMAP =
∑

i 6=j

vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)
(4)

is minimized via stochastic gradient descent (SGD) to obtain the graph lay-
out (by default a ≈ 1.929 and b ≈ 0.7915). The two terms in Eq. (4) represent
the attractive and repulsive forces for the graph layout algorithm used here.
Next to a and b, UMAP’s central tuning parameters are the number of nearest
neighbors k (often denoted as n or n_neighbors), the number of SGD optimi-
sation iterations n-epochs, the dimension d of the representation space, and
min-dist, a parameter controlling how close neighboring points can appear in
the representation.

2.3 DBSCAN

The principle idea behind DBSCAN is captured within 6 definitions we adapt
from Ester et al (1996) and elaborate on:

Definition 4 ε-neighborhood of an object: The ε-neighborhood of an object xi
denoted by Nε(xi), is defined by:

Nε(xi) = {xj ∈ X|d(xi, xj) ≤ ε}
where X denotes a given dataset.

Definition 5 Directly density-reachable: An object xi is direct density-reachable
from an object xj w.r.t. a given ε-range and MinPts if:
1) xi ∈ Nε(xj) and
2) |Nε(xj)| ≥MinPts (core point condition)

Definition 6 Density-reachable: An object xi is density-reachable from another
object xj w.r.t. ε and MinPts if there is a chain of objects x1, ..., xc, x1 = xi, xc = xj
such that xl+1 is directly density-reachable from xl.

Definition 7 Density-connected: An object xi is density-connected to another
object xj w.r.t. ε and MinPts if there is an object o such that both, xi and xj are
density-reachable from o w.r.t. ε and MinPts.

Definition 8 Cluster: Let X be a given dataset of objects. A cluster C w.r.t. ε and
MinPts is a non-empty subset of X satisfying the following conditions:
1) ∀xi, xj : if xi ∈ C and xj is density-reachable from xi w.r.t. ε and MinPts, then
xj ∈ C (Maximality)
2) ∀xi, xj ∈ C : xi is density-connected to xj w.r.t. ε and MinPts (Connectivity)

Definition 9 Noise: Let C1, ..., Cnc be the nc clusters of the given dataset X w.r.t.
parameters εi and MinPtsi, i = 1, ..., nc. Then noise is defined as the set of objects in
the dataset X that do not belong to any cluster Ci, i.e. noise = {xi ∈ X|∀i : xi /∈ Ci}

10. Enhancing Cluster Analysis via Topological Manifold Learning
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In Definition 5 an object is a core point if it has at least MinPts number of
objects within its ε-neighborhood. In the case that no objects in a given dataset
are density-reachable then we would obtain nc clusters where nc denotes the
number of core-points in a dataset X for a given ε and MinPts. This means
that the number of core points can be considered as an upper bound for the
number of emerging clusters for a given ε and MinPts. Further it can be
deduced from the core point definition that the region surrounding a core
point is more dense compared to density-connected objects that do not satisfy
|Nε(xj)| ≥MinPts meaning that they are objects in more spare regions.

3 Inferring the topological structure enhances
clusterability

In this section, we demonstrate that the correct use of manifold learning (here,
specifically: UMAP), as motivated by our topological framing, largely avoids
several frequently described challenges in cluster analysis.

A major problem affecting cluster analysis is that clustering often becomes
more challenging in high-dimensional datasets. Specifically, the presence
of many irrelevant and/or dependent features potentially degrades results
(Kriegel et al, 2009). However, contrary to widespread “folk-methodological”
superstitions and some sources like Assent (2012), the well-known result that
Lp distances lose their discriminating power in high dimensions (Beyer et al,
1999, e.g.) is entirely irrelevant for well-posed clustering problems: both the
original publication and subsequent works like Kriegel et al (2009) and Zimek
and Vreeken (2015) show that the conditions for this result do not apply if
the data is distributed in well separable clusters. In particular, this means
that DBSCAN, being based on pairwise distance information, can easily detect
clusters in high-dimensional datasets.

Nevertheless, there are other problems specific to density-based cluster-
ing, and DBSCAN in particular, among which finding a suitable density level
is one of the most important (Kriegel et al, 2011; Assent, 2012). A recent
review (Schubert et al, 2017), outlined some heuristic rules for specifying ε
for DBSCAN, but domain knowledge should mostly determine such decisions.
More importantly, density-based clustering is likely to fail for clusters with
varying densities. In such cases, a single global density level – for example,
specified via ε in DBSCAN – cannot delineate cluster boundaries successfully
(Kriegel et al, 2011).

In addition to these well-known issues, we outline another more subtle,
less well-known aspect: not only does the difficulty of a clustering problem
not necessarily increase for high-dimensional X, but clusters may even become
easier to detect in higher dimensional (embedding) spaces.

3.1 Enhancing clusterability of DBSCAN with UMAP

The four example datasets we consider here illustrate the following three
points: (1) Density-based clustering works in some but not all high-dimensional
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settings. (2) Perfect performance may not be achievable even for extensive
parameter grid searches, and suitable ε values are highly problem-specific. (3)
Most importantly, manifold learning can considerably enhance clustering both
by improving performance and by reducing parameter sensitivity of DBSCAN
to the extent that it becomes almost tuning-free.

The datasets we consider here consist of three clusters sampled from three
multivariate Gaussian distributions with different mean vectors. In the first
two examples, denoted by E100 and E1000, the covariance matrix for all three
Gaussians is the identity matrix, inducing clusters of similar densities. In
the latter two examples, U3 and U1003, the covariance matrices differ, induc-
ing clusters of different density. In addition, we consider problems with very
different dimensionalities. Observations in setting E100 are sampled from 100-
dimensional Gaussians, while observations in setting E1000 are sampled from
1000-dimensional Gaussians. In contrast, observations for U3 and U1003 are
sampled from 3-dimensional Gaussians. For U1003, an additional 1000 features
that are irrelevant for cluster membership are sampled independently and uni-
formly from [0, 1]. For each setting, we sample 500 observations from each of
the three clusters, i.e. each example dataset consists of 1500 observations in
total. The complete specifications of the examples are given in Table 1.

Table 1 Specifications of the settings E100, E1000, U3, and U1003. In setting U1003 clusters
are defined by means of p = 3 dimensional Gaussians, yet an additional 1000 irrelevant
features are sampled uniformly from [0, 1], leading to a total dimensionality of 1003.

Setting p Means Variances

E100 100 µi ∈ {0, 0.5, 1} σi = 1
E1000 1000 µi ∈ {0, 0.5, 1} σi = 1
U3 3 µi ∈ {0, 3, 7} σi ∈ {0.1, 1, 3}
U1003 3 µi ∈ {0, 3, 7} σi ∈ {0.1, 1, 3}

Figure 1 shows the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985,
Eq. 5) and the Normalized Mutual Information (NMI) with maximum nor-
malization (Vinh et al, 2010, Tab. 2) for different ε values obtained by either
applying DBSCAN directly to the observed data or to their 2D UMAP embed-
dings. Both measures compare two data partitions and return a numeric value
quantifying the agreement. While the NMI strictly ranges between [0, 1] (with
a value of 1 indicating perfect concordance), the ARI is 0 only if the Rand
Index exactly matches its expected value under the null hypothesis that the
partitions are generated randomly from a hypergeometric distribution (Hubert
and Arabie, 1985).

Several aspects need to be emphasized. First of all, the effect of the dimen-
sionality of the dataset on the performance of DBSCAN applied to the original
data is complicated (Figure 1, first column (A)). Contrary to preconceived
notions, it can be easier to detect clusters in higher dimensions. Figure 1
A shows that using only DBSCAN, clusters are more easily detected in the

10. Enhancing Cluster Analysis via Topological Manifold Learning
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1000-dimensional data (2nd row) than in the 100-dimensional data (1st row,
although perfect performance is not achieved by DBSCAN in either of the two.

Fig. 1 ARI and NMI as a function of ε for the synthetic settings E100, E1000, U3, U1003.
First column: DBSCAN directly applied to the data. Second column: DBSCAN applied to
a 2D UMAP embedding with k = 5. Clusters sampled from multivariate Gaussian distribu-
tions (see Table 1 for specifications). For setting U1003, additional 1000 irrelevant variables
are sampled uniformly from [0, 1]. DBSCAN computed for ε ∈ [0.01, 50], step size: 0.01;
minPts = 5.
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The dimension of the Gaussian distributions defining the clusters is the
only difference between these two settings. On the other hand, Figure 1 A,
shows that it can also be the other way round. In the 1003-dimensional dataset
with 1000 irrelevant features (4th row), cluster performance is much lower
than in the corresponding 3-dimensional dataset with only 3 relevant variables
(3rd row). Again, perfect cluster performance is not achieved by DBSCAN
alone. Note that settings U3 and U1003 define clusters with varying densities,
so DBSCAN is expected not to provide a perfect result.

Secondly, finding a suitable value of ε is very challenging using DBSCAN
alone. Note that the optimal εopt varies between 0.9 and 42.64 for these
examples. Identifying a suitable ε is even more problematic since the sensible
ε-ranges are very small (e.g. see U1003). In some cases, clustering does not seem
feasible at all even with an optimally chosen ε – optimal results are very poor
for setting E100 with ARI (NMI) = 0.003(0.05) for εopt = 11.32(10.98). More-
over, while εopt is not necessarily consistent for datasets with approximately
the same dimensionality – compare εopt = 42.64 for E1000 to εopt = 12.48
for U1003 – it can be similar for datasets with very different dimensionality –
compare εopt ∼ 11 for E100 to εopt = 12.48 for U1003.

Finally, the crucial point we want to highlight with these examples is that
inferring the topological structure before clustering by applying DBSCAN
on UMAP embeddings instead of directly to the data makes all these issues
(almost) completely disappear (see Figure 1 B). First of all, clustering per-
formance is increased in all four examples; in three it even leads to perfect
performances. But not only is performance increased, but UMAP also dramat-
ically reduces the complexity of finding a suitable ε. In all considered cases the
sensible ε-ranges start near zero, rapidly reach the optimal value, and remains
optimal over a wide range of ε-values in three of the four examples. Note that
we do not tune UMAP at all – we simply set k = 5 and leave all other settings
at their default values.

We emphasize that perfect performance is obtained for large swaths of the
ε-range we consider for the two high-dimensional examples. This suggests that
the crucial issue in clustering is not the nominal dimension of the dataset
or whether it contains irrelevant features, but rather how separable the clus-
ters are in their ambient space, which is usually simply the p-dimensional
Euclidean space spanned/defined by the dimensions/features of the data, while
the approach taken here attempts to cluster observations after projecting them
into a space that is optimized for separability.

In summary, applying DBSCAN on UMAP embeddings not only improved
performance considerably, but it also reduced the sensitivity of DBSCAN
w.r.t. ε. In particular, suitable ε-ranges started near zero for all considered
examples. Our experiments described in section 5 show that this holds for
complex real data such as fashion MNIST (Xiao et al, 2017) as well, where
applying DBSCAN on UMAP embeddings not only dramatically improved

10. Enhancing Cluster Analysis via Topological Manifold Learning
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DBSCAN’s performance but even outperformed the recently proposed Clus-
terGAN (Mukherjee et al, 2019) method. In the next subsection, we examine
the technical aspects that explain this behavior in a simple toy example.

3.2 Reasons for improved clusterability

This section lays out possible reasons for the observed improvements w.r.t
clusterability with a detailed analysis of the underlying technical mechanisms
in a simple toy example. Consider the following distance matrix between six
objects:




0 0.6 0.7 1.3 1.2 1.5
0.6 0 0.5 0.75 1.6 1.3
0.7 0.5 0 1.4 1.3 1.1
1.3 0.75 1.4 0 0.7 0.75
1.2 1.6 1.3 0.7 0 0.75
1.5 1.3 1.1 0.75 0.75 0




(5)

Inspecting this distance matrix reveals two clusters of objects, shown here
in green and cyan. We set DBSCAN’s core point condition parameter to
minPts = 2. Note that the object itself is not considered part of its ε-
neighborhood. We set ε = 0.75, so that every object whose row (or column) in
the distance matrix contains at least two entries ≤ 0.75 is considered a “core
point”. Since two objects from the different clusters have a distance of exactly
0.75 (orange entries), all objects are part of a single connected component, and
the two dense regions are subsumed into a single large cluster for ε = 0.75, as
can be seen in the matrix below:




0 0.6 0.7 1.3 1.2 1.5
0.6 0 0.5 0.75 1.6 1.3
0.7 0.5 0 1.4 1.3 1.1
1.3 0.75 1.4 0 0.7 0.75
1.2 1.6 1.3 0.7 0 0.75
1.5 1.3 1.1 0.75 0.75 0




(6)

To avoid this collapsed solution, one could try to reduce the ε parameter
to e.g. ε = 0.74. However, as a consequence, now all the objects in the second
(cyan) cluster become “noise”: They no longer satisfy the “core point” condi-
tion for minPts = 2, since at most one distance in each of their rows is ≤ 0.74.
This means only one cluster (top left, green) is detected, as can be seen in the
following matrix:




0 0.6 0.7 1.3 1.2 1.5
0.6 0 0.5 0.75 1.6 1.3
0.7 0.5 0 1.4 1.3 1.1
1.3 0.75 1.4 0 0.7 0.75
1.2 1.6 1.3 0.7 0 0.75
1.5 1.3 1.1 0.75 0.75 0




(7)
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From this first example, we conclude 1) that there may be cases where even
a single object may connect two clusters, yielding a single collapsed cluster
and 2) that the sensitivity of clustering solutions to hyperparameter settings is
large: A small change of the ε-parameter by only 0.01 led to a fundamentally
different solution.

Thus, we should look for improvements that (i) reduce the sensitivity of
results towards the parameter settings and (ii) increase the separability of
the data and thereby reduce the susceptibility of DBSCAN to merge multiple
poorly separated clusters via interconnecting observations at their respective
margins. Sharpening the distinction between dense and sparse regions within
the dataset, i.e. increasing separability, improves clusterability. As we will now
see, UMAP is able to do exactly that by arranging objects into clusters with
fairly constant density within and empty regions in between.

To illustrate this, we consider the representation of the toy example via
the fuzzy graph as constructed by UMAP. This reflects the fuzzy simplicial
set representation of the data and crucially depends on the number of nearest
neighbors k. We start with k = 6. This leads to a graph with adjacency matrix




0 1.0 0.95 0.29 0.53 0.25
1.0 0 1.0 0.9 0.19 0.30
0.95 1.0 0 0.24 0.45 0.58
0.29 0.9 0.24 0 1.0 1.0
0.53 0.19 0.45 1.0 0 1.0
0.25 0.3 0.58 1.0 1.0 0




(8)

Each cell represents the fuzzy edge weight vij (Eq. 2) connecting two points,
so each value represents the affinity of two observations, not their dissimilarity
as in the distance matrices before. As before, the cluster structure is obvious
in this representation, with high affinities (≥ 0.95) where distances had been
low (≤ 0.75). The representation learned by UMAP in the graph construction
step clearly reflects the cluster structure of the dataset.
Note that this fuzzy topological representation by itself already amplifies the
cluster structure: if we stopped UMAP at this point and converted the affinities
vij into dissimilarities e.g. via dij = 1− vij , i 6= j, DBSCAN with minPts = 2
would yield perfect cluster results for ε ∈ [0.01, 0.09]!
Note as well that UMAP’s graph layout optimization has not even been per-
formed yet and that the nearest-neighbor parameter k has been set to 6, the
largest possible value in this example. Thus, the vast improvement in sepa-
rability we observe is due only to the way UMAP learns and represents the
structure of the data in the fuzzy graph G alone. The improvement can be
driven even further both by decreasing the parameter k and by conducting the
graph layout optimization.

First, consider the effect of k. In the following, blanks in the matrices
denote zero entries. Graph 9 shows G for k = 3. Clearly, the beneficial effects

10. Enhancing Cluster Analysis via Topological Manifold Learning
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we noted for k = 6 are considerably amplified.




1.0 0.83
1.0 1.0 0.58
0.83 1.0

0.58 1.0 1.0
1.0 1.0
1.0 1.0




(9)

Almost all vij become zero (i.e. there is no affinity/similarity between the two
points) except for those joined in one of the clusters and the two entries which
caused DBSCAN to break. Turning vij into dij as above, DBSCAN yields cor-
rect clusters for ε ∈ [0.01, 0.42].
By setting k = 2, the smallest possible value due to the local connectiv-
ity constraint, we can further distill the cluster structure down to its bare
essentials: 



1.0
1.0 1.0

1.0
1.0 1.0

1.0
1.0




(10)

Based on this graph, DBSCAN yields correct clusters for ε ∈ [0.01, 0.99]! Thus,
by setting the nearest neighbor parameter of UMAP to a very small value, the
cluster separability is dramatically amplified and DBSCAN’s sensitivity w.r.t.
ε is significantly reduced.
However, the graph layout optimization step has not even been performed
yet. This additional step is crucial, in particular for reducing the parameter
sensitivity of clustering methods. This is due to the fact dij = 1−vij only con-
verts affinities into dissimilarities. Finding a graph layout via the cross-entropy
CUMAP as defined in Eq. 4 instead not only converts affinities (indirectly) into
dissimilarities but also improves the conversion itself w.r.t. to separability (on
top of the separability gained by the graph construction), since the optimiza-
tion procedure optimizes the graph layout for increased cluster separability.
This can be explained as follows:

CUMAP becomes minimal for vij = wij . For vij = 0, the further away
from each other the embedding vectors yi and yj are placed, the better, since
this will drive wij towards zero. Considering graphs 9 and 10, we see that
vij is zero mostly for observations from different clusters. Minimizing CUMAP

thus increases cluster separability in the embedding space by driving objects
from different clusters apart. Note that minimizing the cross entropy “can be
seen as an approximate bound-optimization (or Majorize-Minimize) algorithm
[...] implicitly minimizing intra-class distances and maximizing inter-class dis-
tances” (Boudiaf et al, 2020, p. 3). The optimization in the graph embedding
step of UMAP thus leads to tighter clusters with more white space in between.
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The most relevant additional benefit this graph embedding step provides is
the large expansion of well-performing ε-ranges for DBSCAN. Since the graph
layout optimization uses stochastic gradient descent, the resulting embedding
vectors are not deterministic. To account for this randomness, we perform 25
embeddings for each value of k and compute separate averages of the lower
and the upper interval boundaries of the ε-ranges yielding optimal cluster
performance. On average, the obtained embedding coordinates yield correct
clusters for k = 6 with ε ∈ [0.83, 1.03], for k = 3 with ε ∈ [0.70, 6.76], and
for k = 2 with ε ∈ [0.79, 20.94]. Even the smallest (optimal) ε-ranges we
observed over the 3× 25 replications are at least as large as the ones obtained
on the fuzzy graph for k = 6, and still considerably larger for k = 3 and
k = 2: [0.94, 1.03], [0.72, 1.33], [1.16, 4.57], respectively. Further analysis of the
variability resulting from optimizing embedding vectors via SGD can be found
in appendix A.

These results indicate how crucial optimizing separability by computing
embedding vectors is for clustering performance. Appendix B confirms its
importance on real data.

In these and the following experiments, all of UMAP’s other hyperparam-
eters were left to the implementation defaults, in particular min_dist = 0.1.
Additionally adjusting these parameters might further increase separability.
However, tuning parameters in an unsupervised setting is a notoriously diffi-
cult task and since the results are already convincing by setting k to a small
value, we concentrate on the effect of k.

In summary, both the graph construction and the graph embedding steps
in the UMAP algorithm independently contribute to an increased separabil-
ity of clusters in a dataset, and their combined effect improves clusterability
dramatically.

4 The price to pay: structures preserved and
lost

As we have outlined in the previous sections, UMAP is able to infer and even
enhance the topological, i.e. the cluster, structure of a dataset. However, these
improvements come at a price which will be outlined in this section.

4.1 Topology vs. geometry

Beyond topological structure, i.e., mere “connectedness”, datasets also have
geometrical structure – the shapes of the clusters and how the clusters are
positioned relative to each other in the ambient space.

Consider the example of a dataset consisting of three nested spheres embed-
ded in a 3-dimensional (Euclidean) space (see Figure 2 A). What kind of
structure does this dataset yield? First of all, from a purely topological per-
spective, we have three unconnected topological subspaces, i.e. clusters: the
three spheres.

10. Enhancing Cluster Analysis via Topological Manifold Learning
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A

B

C

Fig. 2 Effects of UMAP: preservation of topological vs. geometrical structure. A: Three
nested spheres in 3D (nobs = 30000, part of the data omitted to make the nested structure
visible). B: UMAP embeddings for k = 7 and k = 15. The clusters, i.e. topological structure,
is preserved. Geometrical structure is not preserved: Ambient space geometry (”nestedness”)
is lost; for k = 7, less of the spherical/circular shape is preserved. C: Clustering performances
for ε ∈ [0, 10] (step size: 0.01, minPts = 5) for DBSCAN directly applied to the data (left)
and applied to the UMAP embeddings (k = 7: middle, k = 15: right).
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Moreover, from an additional geometrical perspective, we have information
on the shape of the individual clusters: they form spheres, i.e. 2-dimensional
surfaces. Finally, we have information on the relative position of the clusters
to each other within the ambient feature space: the spheres are nested.

What happens if these data are represented in a 2D UMAP embedding?
Since a sphere cannot be isometrically mapped to a 2-dimensional plane, some
distortion of the geometric structure will be unavoidable in any 2D embedding.
Figure 2 B shows that, in fact, most of the geometrical structure is lost in
UMAP embeddings: the relative positioning of the clusters diverges from the
original data and is not consistent over different embeddings. The effect on the
shape of the clusters is less severe. While for k = 15 the embeddings are similar
to circles, i.e. 2D spheres, for k = 7 the general circular shape is retained, yet
less uniformly. In contrast, the topological structure of the different clusters
is not only preserved in full but even exaggerated – clusters are much more
separated in the embeddings, which is also reflected once again in much wider
ε-ranges that yield sensible results (Figure 2 C). DBSCAN alone provides
perfect clustering performances only over a much smaller ε range than when
applied to these UMAP embeddings.

As a further example, we consider the complex 2D synthetic dataset by
Jain (2010), “who suggest that it cannot be solved by a clustering algorithm”
(Barton et al, 2019, p. 2). This “impossible” data contains seven clusters with
complex structure, see Figure 3 A. The clusters have different densities, are in
part non-convex, and are not linearly separable. DBSCAN by itself is not able
to detect the full cluster structure and choosing ε from [0, 15] (step size: 0.01
minPts = 5) based on an optimal ARI value yields a very different cluster
result than choosing ε based on the optimal NMI value (see Figure 3 B & C).
This challenging example further demonstrates two important points:

First, how successfully UMAP embeddings preserve the connected com-
ponents (i.e. topological structure) and simultaneously distort geometric
structure. In Figure 3 D, we can see that the nested structure of the circles
and the entanglement of the spirals are completely lost and that the spirals
have been “unrolled” in the embedding space, but the different clusters are
very clearly separated.

Second, the example illustrates that “dimension inflation” via UMAP can
have a positive effect on cluster performance. “Dimension inflation” means that
the data is embedded into a space of higher dimensionality than the observed
data. Although this is uncommon and we are not aware of any work where
this has been investigated before, there are no restrictions that prevent UMAP
from being used in this way. Consider Figure 3 F, which shows ARI- and NMI-
curves obtained with DBSCAN applied (1) to the data, (2) a 2D UMAP-5, and
(3) a 3D UMAP-5 embedding. Although the 2D UMAP-5 embedding already
improves performance and strongly reduces parameter sensitivity, it does not
yield a perfect solution. In the 2D embedding (Fig. 3 D), the two spirals are
very close to each other, with a gap between them that is smaller than the gap
appearing within the black cluster.

10. Enhancing Cluster Analysis via Topological Manifold Learning
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Fig. 3 Another example of complex synthetic data and the beneficial effect of “dimension
inflation”. 1st row: the “impossible” data with color according to true cluster structure.
2nd row: data colored according to DBSCAN cluster results if applied directly to the data
(different optimal ε values for ARI and NMI). 3rd row: Visualizations of a 2D and 3D
UMAP-5 embedding with colors according to true cluster structure. 4th row: ε-curves for
DBSCAN applied to the data, a 2D UMAP-5, and a 3D UMAP-5 embedding. Last row: 2D
visualizations of the 3D UMAP-5 embedding with colors according to true cluster structure.
In all settings: DBSCAN computed for ε ∈ [0.01, 15], step size: 0.01; minPts = 5.
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However, the three dimensional UMAP-5 embedding not only further
reduces parameter sensitivity but also allows for perfect cluster performances.
A 3D visualization of this embedding is depicted in Figure 3 E, but note that
a static 3D visualization does not make the improved separability visible very
well. Figures 3 G-I show all pairwise plots of the three embedding dimensions
of the 3D UMAP embedding, even though none of these 2D projections reflects
the cluster structure well. We recommend basing exploratory analysis on 3D
embeddings as they are more likely to yield good results in complex data than
2D embeddings and still allow for very reasonable visualizations with dynamic
plotting tools.

4.2 Outliers and noise points

Outliers are another important property of a dataset, but their distinctiveness
and relative isolation is unlikely to be preserved in their UMAP embeddings.
Consider Figure 4 A & C, which shows two 2D datasets with two clusters and,
firstly, with two outliers (in blue) on the left-hand side, and, secondly, with
additional, uniformly distributed noise points (in grey) on the right-hand side.
Corresponding UMAP embeddings for k = 15 are depicted in Figure 4 B & D.
Although the cluster structure is preserved, in both cases the outliers are no
longer detectable as such (note that no dimension reduction has taken place).
Similarly for noise points, which are embedded into proximal clusters and then
no longer detectable as noise.

Fig. 4 Effect of UMAP on data with outliers and noise points. First column: 2D datasets
with two clusters and two outliers (A) and two outliers and noise points (C). Second column:
UMAP embeddings with k = 15 (B & D, respectively). The cluster structure is preserved.
Outliers and noise points are forced into the clusters.
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It has recently been shown for functional data that outlyingness can be seen
as a metric structure of a dataset (Herrmann and Scheipl, 2021). Since UMAP
does not preserve metric structure (i.e. distances) but connected components,
the loss of the outlier structure is not surprising. Moreover, note that UMAP’s
local connectivity constraint, which ensures that each point is at least con-
nected to its nearest neighbor, may render it generally impossible to preserve
outlier structure in UMAP embeddings. Applying outlier detection methods
in an additional preprocessing step before computing UMAP embeddings may
solve this issue.

4.3 Overlapping and diffuse clusters

Clusters with considerable overlap or diffuse boundaries that result in a large
likelihood of “bridge” points between nominally distinct clusters are especially
challenging for most clustering algorithms.

First of all, consider Figure 5 A, which shows a 2D dataset consisting of two
clusters that are connected by a small “bridge” of points (blue). From a purely
topological perspective, we have a single connected topological subspace. A
2D UMAP representation, however, breaks the connected components apart,
see Figure 5 B & C. Note, that this holds for a small value of k = 15 as
well as for a very large value of k = 505. Another issue concerns clusters
with substantial overlap, which are often modeled as diffuse components of
a Gaussian mixture (Rasmussen, 2000). In such cases, UMAP and similar
manifold learning methods are unlikely to improve clustering performance.
Consider Figure 5 D. It shows a 2D dataset with two clusters following 2-
dimensional Gaussian distributions with mean vectors (0, 2)′ and (2, 2)′ and
unit covariance matrix. Note that in both embeddings (Figure 5 E & F) the
clusters are not clearly separable, and the less so the larger UMAP’s locality
parameter k is chosen.

For strongly overlapping clusters, it is questionable to even consider such
settings as (“pure”) clustering tasks. From a topological perspective, such set-
tings cannot be considered a well-posed clustering problem as there are no
separable components in the data. However, in the presence of bridges, it
seems reasonable to consider the dataset as consisting of two clusters. Whether
overlapping clusters should be merged or considered separate must surely be
answered w.r.t. the specific domain. Practitioners should be aware of how
UMAP tends to behave in such settings: it typically breaks “bridges” apart
and merges highly overlapping clusters.

4.4 Quantitative analysis of further synthetic data

In addition to the qualitative analyses of these toy datasets we investigate
further examples quantitatively in this paragraph. The datasets under con-
sideration are those from the Fundamental Clustering Problem Suite (FCPS)
(Ultsch, 2005). These datasets are constructed such that they reflect specific
clustering problems. Table 2 shows key characteristics of these datasets and the
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Fig. 5 Effect of UMAP on data with connected components. Upper row: 2D data with two
bridged clusters. Lower row: 2D dataset with two strongly overlapping clusters. A & D:
data. B, C, E, F: UMAP embeddings with k = 15 and k = 505, respectively. UMAP breaks
the bridged components up into two clusters but does not break up the strongly overlapping
components.

problems they present. More details including visualizations can be found in
the corresponding papers (Thrun and Ultsch, 2020; Ultsch and Lötsch, 2020).

The results of applying DBSCAN directly to the data and on 2D UMAP
embeddings with k = 10 are shown in Table 3. Depicted are the highest achiev-
able ARI and NMI values by approach and dataset as well as the ε-range
ε[ARI>0] for which ARI is greater than zero.

The results show that DBSCAN alone already yields perfect clustering
performance for the datasets Hepta, Lsun, Chainlink, Atom, Target, WingNut,
and GolfBall. However, note that UMAP clearly reduces ε sensitivity (much
wider ε-range), i.e. it increases clusterability for Hepta, Lsun, Chainlink, Atom,
Target.

On the datasets Tetra and TwoDiamonds, DBSCAN does not perform
perfectly. These datasets represent problems (specified as “almost touching
clusters” (Tetra) and “cluster borders defined by density” (TwoDiamonds))
with less clearly separable clusters. Consistent with the examples presented in
section 3.1, inferring the topological structure via UMAP not only drastically

10. Enhancing Cluster Analysis via Topological Manifold Learning
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Table 2 Characteristics of the FCPS datasets: the number of clusters nc, the number of
observations nobs, the number of features (dimensionality) p, and the problem as specified
in corresponding papers (Thrun and Ultsch, 2020; Ultsch and Lötsch, 2020).

Name nc nobs p Problem

Hepta 7 212 3 different variances
LSun 3 400 3 different variances & inter cluster distances
Tetra 4 400 3 almost touching clusters
Chainlink 2 1000 3 not linearly separable
Atom 2 800 3 different variances & not linearly separable
EngyTime 2 4096 2 Gaussian mixture
Target 6 770 2 outliers
TwoDiamonds 2 800 2 cluster borders defined by density
Wingnut 2 1070 2 density vs. distance
Golfball 1 4002 3 no clusters at all

reduces ε sensitivity of DBSCAN, but it also improves clustering performance
to (almost) perfect results in these examples.

In contrast to that, inferring the relevant structure is not possible with
UMAP in the settings EngyTime and Target and thus it does not improve the
performance of DBSCAN, it even reduces it. This is consistent with the results
of the previous subsections: EngyTime is a setting with clusters that overlap
strongly, while the Target data is a setting with six clusters of which four are
defined by a few outliers.

Table 3 Maximum ARI and NMI and ε ranges corresponding to ARI > 0 for FCPS data.

DBSCAN UMAP + DBSCAN
Data ARI NMI ε[ARI>0] ARI NMI ε[ARI>0]

Hepta 1 1 [0.0, 2.3] 1 1 [0.1, 19]
Lsun 1 1 [0.1, 0.7] 1 1 [0.1, 14]
Tetra 0.91 0.85 [0.2, 0.5] 0.99 0.99 [0.1, 7]
Chainlink 1 1 [0.0, 0.8] 1 1 [0.0, 7]
Atom 1 1 [0.8, 20] 1 1 [0.0, 13]
EngyTime 0.36 0.23 [0.0, 1] 0.29 0.26 [0.0, 0.9]
Target 1 0.97 [0.0, 2.3] 0.97 0.88 [0.0, 11]
TwoDiamonds 0.95 0.85 [0.0, 0.1] 1 1 [0.0, 4.7]
WingNut 1 1 [0.1, 0.3] 1 1 [0.0, 8.1]
GolfBall 1 NaN [0.0, 20] 1 NA [0.0, 20]

In summary, the synthetic examples investigated in this and the previous
section show that inferring the topological structure of a dataset can dramat-
ically improve and simplify clustering: improvement in the sense that cluster
detection with DBSCAN is considerably more reliable, and simplification in
the sense that finding good parameters for DBSCAN becomes significantly less
challenging: the suitable ε-ranges are typically much wider, they consistently
start near zero and ARI/NMI quickly reach their optimum in this range, so
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that a quick and simple coarse grid search over small values of ε is likely to be
successful.

We emphasize that these conclusions apply to diverse and challenging syn-
thetic data settings that include low-dimensional as well as high-dimensional
data, data with equal and unequal cluster densities, data with (many) irrele-
vant features, clusters of arbitrary shape, and not linearly separable clusters.
In the next section, we show that this also holds for several real datasets.

5 Experiments on Real-World Data

An overview of the real datasets used in this study is given in Table 4. Since
some of these datasets have already been used in other studies, we can inves-
tigate not only how the clustering performance of DBSCAN is improved if the
topological structure of a dataset is inferred beforehand. We can additionally
compare our results to those reported for other clustering methods. The set of
datasets includes the well known Iris data (Anderson, 1935; Fisher, 1936), the
Wine data (Aeberhard et al, 1994; Forina et al, 1988; Dua and Graff, 2017), the
Pendigits data (Alimoğlu and Alpaydin, 2001; Dua and Graff, 2017) as well as
the COIL (Nane et al, 1996), MNIST (Lecun et al, 1998) and fashion MNIST
(FMNIST) (Xiao et al, 2017) data. Following Mukherjee et al (2019), we use
two different versions of FMNIST: one with the original ten clusters and a ver-
sion reduced to five clusters which are pooled from the original ten based on
their similarity. The results of applying DBSCAN directly to the datasets and
to the embeddings obtained with UMAP are depicted in Figure 6 and Table 5.

Table 4 Characteristics of the real datasets: the number of clusters nc, the number of
observations nobs, and the number of features (dimensionality) p. As in the ClusterGAN
paper (Mukherjee et al, 2019) we investigate two versions of FMNIST: FMNIST-10 and
FMNIST-5, the clusters in the latter are: 1: Tshirt/Top, Dress; 2: Trouser; 3: Pullover,
Coat, Shirt; 4: Bag; 5: Sandal, Sneaker, Ankle Boot.

Name nc nobs p

Iris 3 150 5
Wine 3 176 14
COIL 20 1440 16385
Pendigits 10 10992 17
MNIST 10 70000 784
FMNIST-10 10 70000 784
FMNIST-5 5 70000 784
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Fig. 6 ARI and NMI as functions of ε for the real datasets. Parameters: k = 10 and d = 3
(UMAP); minPts = 5, ε-step-size = 0.01 (DBSCAN).
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Figure 6 shows ARI and NMI as a function of ε for the different datasets.
Table 5 details the optimum ARI and NMI achieved within the considered ε-
ranges. We inferred the topological structure of the datasets for three different
values of k ∈ {5, 10, 15}. Note that we did not tune UMAP at all and used
min_dist = 0.1, n_components = 3 and spectral initialization throughout.
Iris and Wine data features were scaled respectively standardized.

In general, the results show that what has been observed for the synthetic
examples also holds for real data. For all considered settings, inferring the topo-
logical structure of the dataset via UMAP before applying DBSCAN leads to
better clustering performances than applying DBSCAN directly, dramatically
so for MNIST and FMNIST. Moreover, it reduces ε sensitivity of DBSCAN
with suitable ε-ranges starting close to zero and with high (> 0.5) ARI and
NMI values for large parts of the ε-range. For DBSCAN directly applied to
(F)MNIST, we additionally scanned the ε-range [0, 100] with a step size of 0.1,
but performance did not improve over this extended search grid.

We also investigate the effect of optimizing the separability by constructing
embedding vectors instead of using the fuzzy edge weights directly for datasets
Iris, Wine, COIL, and Pendigits. Clustering using UMAP’s fuzzy graph weights
directly performs worse, as expected. For example on the Iris data, computing
embedding vectors with UMAP-10 leads to optimal ARI/NMI = 0.89/0.86 over
an ε-range of [0.67, 4.82] in contrast to 0.88/0.84 over [0.6, 0.61] if only the fuzzy
graph weights of UMAP-10 are used. Both variants still yield better results
than applying DBSCAN directly to the data (optimal ARI/NMI = 0.75/0.67).
We found similar results for Wine, COIL, and Pendigits, see appendix B.

Table 5 Maximum ARI and NMI for the real datasets. DBSCAN directly applied to the
data and to 3D UMAP embeddings for k ∈ {5, 10, 15}. For the explored ε-ranges, see Fig. 6.

DBSCAN DBS+UMAP-5 DBS+UMAP-10 DBS+UMAP-15

ARI NMI ARI NMI ARI NMI ARI NMI

Iris 0.75 0.67 0.70 0.75 0.89 0.86 0.89 0.86
Wine 0.44 0.52 0.81 0.77 0.81 0.78 0.80 0.79
Pendigits 0.58 0.70 0.80 0.82 0.86 0.85 0.83 0.85
COIL 0.66 0.85 0.82 0.93 0.75 0.91 0.70 0.88
MNIST 0.00 0.00 0.69 0.70 0.90 0.85 0.87 0.85
FMNIST-10 0.00 0.00 0.41 0.59 0.40 0.54 0.38 0.54
FMNIST-5 0.00 0.00 0.60 0.62 0.75 0.71 0.63 0.63

In addition, our results show that the fast, simple and very easily tune-
able approach we have proposed leads to comparable or superior clustering
performances than recently proposed clustering methods such as ClusterGAN
(Mukherjee et al, 2019) and SPECTACL(N) (Hess et al, 2019) in some settings.
Table 6 lists the highest results obtained on the respective datasets in other
studies (Goebl et al, 2014; Mautz et al, 2017; Mukherjee et al, 2019; Hess et al,
2019). On Pendigits and FMNIST-5, DBSCAN applied to UMAP embeddings
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performs better than the best-performing methods FOSSCLU and Cluster-
GAN as reported by Goebl et al (2014), Mautz et al (2017), and Mukherjee
et al (2019). On MNIST, comparable performance is achieved w.r.t. Cluster-
GAN and better performance w.r.t. SPECTACL(N). Only for the Wine data
and FMNIST-10 are better performance reported for methods FOSSCLU,
LDA-k-means, and ClusterGAN.

Table 6 Optimal ARI and NMI for some of the real datasets reported in other studies
and the methods used. The last two columns show the corresponding optimal
performances achieved with DBSCAN & UMAP.

Study Conf. Data ARI NMI Method(s) ARI NMI
(DBS+UMAP)

Goebl et al, IEEE Pendigits NA 0.77 FOSSCLU 0.86 0.85
2014 Wine NA 0.87 FOSSCLU 0.80 0.79
Mautz et al, KDD Pendigits NA 0.77 FOSSCLU 0.86 0.85
2017 Wine NA 0.93 LDA-k-means 0.80 0.79
Mukherjee et al, AAAI Pendigits 0.65 0.73 ClusterGAN 0.86 0.85
2019 MNIST 0.89 0.90 ClusterGAN 0.90 0.85

FMNIST-10 0.50 0.64 ClusterGAN 0.41 0.59
FMNIST-5 0.48 0.59 ClusterGAN, 0.75 0.71

GAN with bp
Hess et al, 2019 AAAI MNIST NA 0.76 SPECTACL(N) 0.90 0.85

It must be emphasized that these methods also require analysts to pre-
specify a fixed number of clusters that are to be found. ClusterGAN’s optimal
performances reported in Table 6 were achieved only if the true number of
clusters was supplied (Mukherjee et al, 2019). The performance on MNIST
considerably deteriorated if the number of clusters was not correctly speci-
fied. Recall that one of the major advantages of DBSCAN is that it does not
require pre-specifying the number of clusters, in contrast to the complexity
of specifying and training ClusterGAN. It should be taken into account, first
of all, that a suitable network architecture needs to be defined. Note that
standard architectures specified elsewhere had to be adapted for ClusterGAN
to achieve satisfactory performance. In addition, the various hyperparameters
for the GAN, the SGD optimizer, and the generator-discriminator updating
require substantial tuning. Finally, note that our approach works well in set-
tings with both few and many clusters and for both small and large numbers
of observations. This is also in contrast to ClusterGAN, which was “particu-
larly difficult [... to train ...] with only a few thousand data points” (Mukherjee
et al, 2019, p. 4616).

6 Discussion

In summary, the presented results show that considering clustering from a
topological perspective consistently simplified analysis and improved results in
a wide range of settings: from a practical perspective, inferring the topologi-
cal structure of datasets and representing this structure in suitable embedding
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vectors that are, in some sense, optimized for separability between the differ-
ent connected components (dramatically) increased clustering performances of
DBSCAN, even outperforming a highly complex deep learning-based clustering
method, as long as the clusters did not exhibit large overlap. These insights sug-
gest some conceptual conclusions and raise a number of fundamental questions
for cluster analysis, which we will discuss in the following.

To begin with, we argue that two “perspectives” on cluster analysis should
be more strictly distinguished: on the one hand, settings where the aim is
to infer the number of connected components in a dataset (the “topologi-
cal perspective”), and on the other hand, settings where clusters may show
considerable overlap (in the following the “probabilistic perspective”). If the
“perspective” (implicitly) taken is not clearly specified, the results of clus-
ter analysis can be misleading. For example, in applied, exploratory analyses
relevant information may be lost, while in methodological analyses method
comparisons can be misleading.

Consider a truly unsupervised and exploratory setting (i.e. the true number
of clusters is not known and determining it is a crucial part of the problem)
in an applied context. From the “topological perspective” applying methods
that yield a fixed, pre-specified number of clusters is highly questionable in
this situation. If the number of clusters is determined a priori for example via
domain knowledge, the analysis cannot falsify these a priori assumptions about
the data and may hide any unexpected structure. This seems contradictory
to the purpose of an exploratory analysis, where the discovery of unexpected
structures can yield valuable new insights. If, on the other hand, approaches
such as elbow-plots of cluster quality metrics are used to determine the number
of clusters nc in a data-driven way, methods inferring and enhancing connected
components should be used in the first place.

Another issue concerns the evaluation of competing methods for clustering
using datasets with label information. Label information can be misleading,
in particular, if it is (also) used to pre-specify nc, as the label information
may not be consistent with the unconnected components of a dataset. Con-
sider the FMNIST example, where a simple modification of label information
– merging the original 10 into 5 broader categories – leads to considerably dif-
ferent results. Note that this change of labels was not introduced here, but in
Mukherjee et al (2019). We assume that the performance of ClusterGAN on
FMNIST – as measured based on the original labels – was not as convincing
as for the other datasets. Since it requires no specialized domain knowledge
to assess the general similarity of clusters in this dataset containing images
of pieces of apparel, a change of labels is easy to do. But while this change
did not improve the performance of ClusterGAN in terms of ARI and NMI
by much, it considerably improves the performance of DBSCAN + UMAP. In
other words: the labels were presumably changed such that they were much
more consistent with the actual unconnected components – i.e. clusters – in the
data. If only the original ten categories of clothing had been considered here,
the method comparison would have been misleading, as the different ability
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of the methods to identify the (un)connected components of the data would
have gone unnoticed. The original label information arguably does not reflect
the actual cluster structure of the data. This is likely to be the case in many
labeled datasets.

On the other hand, consider settings with overlapping clusters. Taking the
topological perspective does not make a lot of sense here, as there are no
unconnected components if clusters (strongly) overlap, and our investigations
showed that it is, in general, questionable that it is possible to infer such
cluster structure with methods that aim to infer connected components. In
such settings, one should rather take a “probabilistic perspective” and assume
that the data follow a joint multi-modal probability distribution, i.e., a mix-
ture of probability distributions. Note that this usually implies some kind of
domain knowledge from which it makes sense to assume such structure. Many
prominent clustering methods such as k-means, Gaussian Mixture models, or
approaches based on the EM algorithm are based on this perspective. It has to
be emphasized that our experiments on several widely used real-world bench-
mark datasets showed that an approach based on the topological perspective,
which does not use the true number of clusters as a parameter, can perform
comparable or even better than methods that do so.

These considerations raise some important questions. First of all, from a
rather practical perspective: Is it fair to compare methods that require nc
as a parameter with those that do not? How trustworthy is the widely used
approach to evaluate clustering methods using labeled data? Is it at all useful
to apply non-probabilistic clustering methods on data with assumed strong
cluster overlap?

Moreover, from a rather general conceptual perspective: Can there be
methods that work optimally both in settings with large cluster overlap and
settings of high separability? As Schubert et al (2017, p. 19) state in that
regard:

“To get deeper insights into DBSCAN, it would also be necessary to evaluate with
respect to utility of the resulting clusters, as our experiments suggest that the
datasets used do not yield meaningful clusters. We may thus be benchmarking
on the ‘wrong’ datasets (but, of course, an algorithm should perform well on any
data).”

This already points to the problem of “wrong” datasets, while on the other
hand, they state a method should perform well in any setting. In the light of
the insights presented here, we would argue that it is very fruitful to investigate
the characteristics of settings in which a method or combination of methods
works specifically well or even optimally. As outlined, we consider in particu-
lar high cluster overlap in contrast to well separable clusters examples of such
settings. The underlying principles are fundamentally different (disconnected
domains of the clusters vs. connected domains of the clusters) and may require
different, maybe even contradictory objectives to be optimized. This is specif-
ically relevant as a dataset may consist of both sorts of (assumed) structures.
We think the insights and results presented here support this view.
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7 Conclusion

This work considered cluster analysis from a topological perspective. Our
results suggest that the crucial issue in clustering is not the nominal dimension
of the dataset or whether it contains many irrelevant features, but rather how
separable the clusters are in the ambient observation space they are embed-
ded in. Extensive experiments on synthetic and real datasets clearly show that
focusing on the topological structure of the data can dramatically improve and
simplify cluster analysis both in low- and high-dimensional settings. To demon-
strate this principle in practice, we used the manifold learning method UMAP
to infer the connected components of the datasets and to create embedding
vectors optimized for separability, to which we then applied DBSCAN.

Using synthetic data, we showed that this makes results much more robust
to hyperparameters in a diverse set of problems including low-dimensional as
well as high-dimensional data, data with equal and unequal cluster densities,
data with (many) irrelevant features and clusters of arbitrary, not linearly
separable shapes. The parameter sensitivity of DBSCAN is consistently and
dramatically reduced, simplifying the search for a suitable ε-value. Moreover,
the cluster detection performance of DBSCAN was considerably improved
compared to applying it directly to the data.

Experiments in real data settings corroborated these insights. In addi-
tion, our results showed that the simple approach of combining UMAP and
DBSCAN can even outperform complex clustering methods SPECTACL and
deep-learning-based ClusterGAN on complex image data such as Fashion
MNIST.

All these results were obtained with very little hyperparameter tuning
for UMAP. In particular, we always used a small value of the parameter
k/n_neighbors – k ∈ {5, 10, 15} in most of our experiments – markedly reduc-
ing the complexity of the parameter choice in density-based clustering. All
other parameters were set to the default values. Based on a simple toy exam-
ple we provided a detailed technical explanation of why the choice of a small
k is reasonable for the purpose of clustering.

Finally, we propose a conceptual differentiation of cluster analysis sug-
gested by the topological perspective and the presented results. Specifically,
we argue that settings with high cluster overlap in contrast to well separa-
ble clusters should be considered as fundamentally different settings which
require different kinds of methods for optimal results, a distinction usually not
made explicit enough. We also propose that using external label information
to evaluate clustering solutions should only be done if these labels actually
correspond to the (un)connected components of the data manifold from which
observations are sampled. If this is not the case, we would argue that evalua-
tion metrics diverge from what clustering algorithms should properly optimize
for – identifying (un)connected components – and results will be misleading.

We think these considerations point out important questions to be inves-
tigated in future work.

10. Enhancing Cluster Analysis via Topological Manifold Learning
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Appendix A Embedding variability

In section 3.2, we showed that although the computation of embedding vectors
induces some variability with respect to the meaningful ε-range, it also leads
to considerably improved separability and is therefore crucial from a clustering
perspective. Here we provide additional experiments on this which are based
on the synthetic settings from section 3.1 and the three smallest (nobs < 104

observations) real datasets Iris, Wine, and COIL. We computed 25 embed-
dings for each of the datasets (and k values in the case of the real datasets)
and corresponding clusterings on ε-grids [0.01, 15] and [0.01, 25], respectively,
with a step size of 0.01. For each ε-value, the individual minimal, mean, and
maximal ARI and NMI values are computed over the 25 replications. Figures
A1 and A2 depict the corresponding minimum, mean, and maximum ARI and
NMI curves. Note that the curves do not reflect a single embedding, but the
worst/mean/best case over all 25 embeddings for each individual ε-value. In
addition, the maximum ARI and NMI values obtained by applying DBSCAN
directly to the data are shown as a black dashed horizontal line and the
corresponding ε-value as a black dashed vertical line.

In summary, the results again show that optimizing embedding vectors
induces some variability with respect to the sensible ε-range across different
embeddings. However, this variability can be neglected if the main focus is
on improving cluster detection. First of all, the variability does not affect the
fact that the sensible ε-ranges start near zero and quickly reach the optimal
value, which is in stark contrast to DBSCAN directly applied to the data (see
the black dashed horizontal and vertical lines, and Fig. 1). In addition, in all
settings, the mean ARI and NMI curves are higher on larger parts of the ε-
ranges as the maximum ARI and NMI for DBSCAN directly applied to the
data. Note that, except for UMAP-5 on Iris and UMAP-15 on COIL, this holds
for the minimum curves as well!
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Fig. A1 Maximum, mean, and minimum ARI (left column) and NMI (right column) curves
summarized over 25 embeddings of the four synthetic settings E100, E1000, U3, U1003. Note,
the curves do not reflect a single embedding, but the worst/mean/optimal case over all 25
embeddings for each individual ε-value. The maximum ARI and NMI values obtained by
applying DBSCAN directly to the data are shown as a black dashed horizontal line and the
corresponding ε-value as a black dashed vertical line. DBSCAN computed for ε ∈ [0.01, 15],
step size: 0.01; minPts = 5.
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Fig. A2 Maximum, mean, and minimum ARI (A) and NMI (B) curves summarized over
25 embeddings of the Iris, Wine, and COIL data. Note, the curves do not reflect a single
embedding, but the worst/mean/optimal case over all 25 embeddings for each individual ε-
value. The maximum ARI and NMI values obtained by applying DBSCAN directly to the
data are shown as a black dashed horizontal line and the corresponding ε-value as a black
dashed vertical line. DBSCAN computed for ε ∈ [0.01, 25], step size: 0.01; minPts = 5.
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Appendix B Using just the fuzzy graph
weights versus using embedding
vectors

Figure B3 shows ARI and NMI as a function of ε for four of the real datasets.
Cluster results were computed using just the fuzzy graph weights, without
additionally computing embedding vectors. Converting the graph weights into
dissimilarities via dij = 1 − vij , i 6= j, means that the meaningful ε-range
is restricted to [0, 1]. Moreover, the sensible ε-ranges (yielding optimal or
high ARI/NMI values) are smaller than those resulting based on additionally
optimized embedding vectors.

Fig. B3 ARI and NMI as a function of ε for four of the real datasets. Results obtained by
applying DBSCAN on the fuzzy graph computed by UMAP (converted into a dissimilarity
matrix via dij = 1 − vij , i 6= j, with vij an edge weight). Embedding vectors optimized
for separability have not been constructed. DBSCAN computed for ε ∈ [0.01, 1.5], step size:
0.01; minPts = 5.
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Here we shortly detail this effect for the Wine, COIL, and Pendigits data
based on the UMAP-10 results. The Iris data results are exemplarily discussed
in section 5.

For the Wine data, only computing the fuzzy graph with UMAP-10 leads
to optimal ARI/NMI = 0.7/0.61 for a single ε = 0.5/0.52. In contrast,
additionally computing optimized embedding vectors leads to ARI/NMI =
0.81/0.78 for ε ∈ [0.64, 0.69]/[1.11, 1.16]. Unlike the Iris and Wine data, the
optimal ARI/NMI value for the Pendigits and COIL data is only achievable
for a single ε-value. Using embedding vectors is nevertheless beneficial. To
see this, consider that on Pendigits an ARI/NMI > 0.6 can be obtained over
[0.17, 4.04]/[0.16, 4.13] with embedding vectors. Only using the fuzzy graph
would mean that an ARI > 0.6 is not at all achievable and NMI > 0.6
only for ε ∈ [0.48, 0.56]. Similar holds for COIL, with ARI/NMI > 0.6 for
ε ∈ [0.25, 0.8]/[0.18, 4.07] in contrast to [0.52, 0.68]/[0.45, 0.79].

Again, it needs to be emphasized that only using the fuzzy graph still
yields better results than applying DBSCAN directly to the data. For exam-
ple, applying DBSCAN directly to the Wine data yields optimal ARI/NMI
= 0.44/0.52.

In summary, these investigations also show that computing embedding vec-
tors optimized for separability on top of the fuzzy graph not only reduces
parameter sensitivity of the clustering method but can also lead to a better
clustering performance due to improved separability.

Appendix C Real data embedding
visualizations

Figure C4 shows 2D UMAP-10 embeddings of the real datasets under inves-
tigation. Colors correspond to the class labels. As can be seen, the inferred
connected components clearly agree with the labels for most of the datasets.
In FMNIST this holds much better for the 5-label-set. However, note that
although 3D embeddings are used in the experiments as they are better suited
for cluster detection, they are less well suited for static visualizations (see
section 4). That is why we depict UMAP-10 embeddings optimized in two
dimensions (i.e. d = 2) here.
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Fig. C4 Visualizing 2D UMAP-10 embeddings of the real datasets. Note that an embedding
dimension of d = 2 was chosen for the purpose of optimal static visualization, in contrast to
d = 3 used for better cluster detection in the quantitative experiments in section 5.
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Kaya IE, Pehlivanlı AÇ, Sekizkardeş EG, et al (2017) PCA based clustering for
brain tumor segmentation of T1w MRI images. Comput Methods Programs
Biomed 140:19–28. https://doi.org/10.1016/j.cmpb.2016.11.011

Kobak D, Linderman GC (2021) Initialization is critical for preserving global
data structure in both t-SNE and UMAP. Nat Biotechnol 39(2):156–157.
https://doi.org/10.1038/s41587-020-00809-z
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Scitovski R, Sabo K, Mart́ınez Álvarez F, et al (2021) Cluster Analy-
sis and Applications, 1st edn. Springer, Cham, https://doi.org/10.1007/
978-3-030-74552-3

Souvenir R, Pless R (2005) Manifold clustering. In: Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, IEEE, pp 648–653,
https://doi.org/10.1109/ICCV.2005.149

Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework
for nonlinear dimensionality reduction. Science 290(5500):2319–2323. https:
//doi.org/10.1126/science.290.5500.2319

Thrun MC, Ultsch A (2020) Clustering benchmark datasets exploiting the
fundamental clustering problems. Data Brief 30:105,501. https://doi.org/10.
1016/j.dib.2020.105501

Ultsch A (2005) Clustering with SOM: U*C. In: Proc. Workshop on Self-
Organizing Maps, Paris, France, https://doi.org/10.13140/RG.2.1.2394.
5446

213



Enhancing cluster analysis via topological manifold learning 43

Ultsch A, Lötsch J (2020) The fundamental clustering and projection suite
(FCPS): A dataset collection to test the performance of clustering and data
projection algorithms. Data 5(1). https://doi.org/10.3390/data5010013

Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clus-
terings comparison: Variants, properties, normalization and correction for
chance. J Mach Learn Res 11(95):2837–2854. URL https://jmlr.org/papers/
v11/vinh10a.html

Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput
17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z

Wang Y, Huang H, Rudin C, et al (2021) Understanding how dimension
reduction tools work: An empirical approach to deciphering t-SNE, UMAP,
TriMap, and PaCMAP for data visualization. J Mach Learn Res 22:1–73.
URL http://jmlr.org/papers/v22/20-1061.html

Wasserman L (2018) Topological data analysis. Annu Rev Stat Appl 5(1):501–
532. https://doi.org/10.1146/annurev-statistics-031017-100045

Wolf FA, Hamey FK, Plass M, et al (2019) PAGA: graph abstraction
reconciles clustering with trajectory inference through a topology preserv-
ing map of single cells. Genome Biol 20(59):1–9. https://doi.org/10.1186/
s13059-019-1663-x

Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint URL https:
//arxiv.org/abs/1708.07747

Zimek A, Vreeken J (2015) The blind men and the elephant: on meet-
ing the problem of multiple truths in data from clustering and pattern
mining perspectives. Mach Learn 98(1):121–155. https://doi.org/10.1007/
s10994-013-5334-y

10. Enhancing Cluster Analysis via Topological Manifold Learning

214



Part IV.

Conclusion

215





11. Concluding Remarks and Outlook

The first principle is that you must not fool yourself — and you are the easiest
person to fool.
— Richard Feynman

11.1. Summary and General Implications

The main goal of this thesis was to work toward more reliability in machine learning research.
The focus was on unsupervised manifold learning, yet we also elaborated on benchmark studies
as an approach to improve replicability in supervised learning. In general, various existing
methods and concepts in these two fields have been extensively reviewed and evaluated, i.e.,
tested, which allowed us to identify strengths and weaknesses and draw some general conceptual
conclusions that – we would argue – considerably contribute to an improvement of reliability
in machine learning.
In particular, the provided contributions improve conceptual clarity in functional data analysis,
outlier detection, cluster analysis, and manifold learning. For example, regarding outlier
detection, we provide a framework that distinguishes structural and distributional outliers.
This fills a gap in the field because – as outline based on the discussion of Zimek & Filzmoser
(2018) – (1) there are two more or less vague notions of outliers (“real” and “apparent” in
the terminology of Zimek & Filzmoser (2018)) and (2) there is no principled, underlying
conceptualization that allows moving from the vague notions to a precise definition that is
capable of reflecting the two types of outliers. We provide such a conceptualization in Chapters
8 and 9. Note that this particularly improves the theoretical understanding of outlier detection
in functional data, since there are also imprecise and contradictory definitions of outliers in
FDA (e.g., see Arribas-Gil & Romo, 2015). Moreover, it is often claimed that outlier detection
in high-dimensional data is problematic, if not impossible. Chapters 8 and 9 demonstrate that
high-dimensional settings need not be more challenging than low-dimensional settings.
However, this implies that the intrinsic structure of the data set is not fully reflected by a single,
connected manifold, as is assumed in the standard notion of manifold learning. There the goal
is to infer and reflect the structure of this single manifold, i.e., isometrically retaining the inner
geometry of a data set. In other settings, however, this assumption appears inappropriate. For
example, in outlier detection, we specify two different manifolds that allow us to reflect the
two different outlier types. It is crucial to explicitly consider these manifolds to be subsets
of an (metric) ambient space that induces a notion of distance between the manifolds. We
call this the outer geometry of a data set that is inherited from the observation space defined
by the variables/features. In cluster analysis, on the other hand, we show that preserving
(parts of) the topological structure of the data set, specifically: its unconnected components, is
the most important aspect, not inferring or preserving its metric structure as expressed in its
inner or outer geometry.
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In summary, from a general conceptual viewpoint, this thesis argues that:

1. The standard manifold assumption of a single, connected manifold is not appropriate
for exploratory data analysis tasks outlier detection and cluster analysis.

2. There are two types of outliers, structural and distributional, that can be precisely
specified based on a more general notion of manifold learning assuming at least two
distinct data manifolds in a shared ambient space.

3. Cluster detection can be considerably enhanced if one focuses on leveraging unconnected
components, i.e., topological features, of a data set. Settings where clusters are allowed
to overlap should be more strictly distinguished from settings where clusters are clearly
separated.

4. These aspects correspond to the inner geometry, outer geometry, and the topology of a
data set. In particular, we would argue these terms much better reflect the discussed
aspects than the notions of local and global structure preservation that manifold learning
methods are usually evaluated on and distinguished by.

These insights improve conceptual clarity and theoretical understanding but also have crucial
practical implications. Equipped with these problem-adequate and usefully clear conceptual-
izations, we can employ suitably adapted simple and well-established methods in a variety of
situations that are often tackled with highly complex and/or specialized approaches.
For example, we have demonstrated that the simple approach of using MDS and LOF for
outlier detection yields performances comparable to those of methodologically complex and
functional-data-specific methods. At the same time, the approach naturally extends to other
non-tabular and high-dimensional data types such as images and graphs. Furthermore, the
simple approach of combining DBSCAN and UMAP can lead to better performances than
specialized (deep-learning based) methods for cluster detection on regularly used benchmark
data (without the need to specify the number of clusters). In all cases, very little hyperparam-
eter tuning was necessary, a crucial aspect in unsupervised settings where there is so far no
established procedure to reliably select a method’s hyperparameters.
In essence, the thesis contributes to a better understanding of possible structures in data from
a general conceptual perspective. These structures (unconnected components, structural and
distributional outliers, connected (nonlinear) manifolds) can be (jointly) present in a data
set in some situations but not in others. Since the methods vary in their ability to detect
certain structures, it may not be possible to simultaneously infer and reflect all structures
present in a data set optimally. This is an important aspect to keep in mind in applications
and it should be very clearly specified which structures are to be inferred. The present thesis
provides concepts and terminology to do so.

11.2. Future Directions

In general, concepts from (topological) manifold learning and topological data analysis gain
increasing attention in methodological research and application. For example, they are used
to improve and explain supervised, in particular, deep learning methods and to inform about
data in specific applications (e.g., see Birdal et al., 2021; Gardner et al., 2022; Gong et al.,
2019; Guan et al., 2020; Kim et al., 2020; Ross et al., 2022). In addition to these important
research directions, we would like to point out two directions we consider particularly relevant
given the insights of the thesis.
First of all, our contributions to outlier detection and cluster analysis suggest that the
procedure of using label information to evaluate and compare unsupervised methods should be

218



treated with great caution. This is not a new insight, but with the concepts of distributional
in contrast to structural outliers and the connected components of a data set in contrast to
a data set’s classes induced by labels, it is possible to more clearly specify and evaluate the
problem. For example, it would be interesting to investigate how consistent the connected
components and the classes induced by labels of frequently used benchmark data sets are (cf.
Guan & Loew, 2021). In outlier detection, methods could be compared based on data sets
with different outlier structures: distributional and structural, only distributional or only
structural, different forms of structural outliers versus a single form, etc.
Finally, drawing a connection between the two distinct contributions of the study, it would be
interesting to investigate how manifold learning can inform benchmark studies. For example,
researchers could use (topological) manifold learning to infer the intrinsic structures of the
considered data sets to assess which data sets are related in terms of internal characteristics.
Even more importantly, it would be of great interest to investigate whether it is possible to use
the different concepts of intrinsic data structures to more precisely define the DGP populations
real data benchmark studies intend to generalize to.
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