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Zusammenfassung

Die Galaxienentstehung und -entwicklung ist eines der vielfältigsten Forschungsthemen auf
dem Gebiet der Astrophysik und wurde deshalb bereits in einer Vielzahl von Forschungsarbeiten
sowohl aus theoretischer als auch aus beobachtender Perspektive untersucht. Insbesondere Schei-
bengalaxien stoßen auf großes Interesse, da sie vermutlich die ersten Strukturen sind, die sich
direkt nach dem Kollaps von Gas in Halos aus dunkler Materie bilden, als Folge des Drehimpulses,
der von der einfallenden Materie erhalten bleibt. Die Entwicklung der entstehenden Scheibe ist
besonders faszinierend aufgrund der Fülle interner und externer physikalischer Prozesse, die auf
das System einwirken. Im Einführungskapitel dieser Arbeit diskutieren wir die diesbezügliche
Theorie der Galaxienentstehung genauer.

In dieser Forschungsarbeit beschäftigen wir uns mit der konkreten Frage, wie Materie in-
nerhalb der schmalen Ebene einer galaktischen Scheibe radial transportiert wird. Wir möchten
untersuchen, wie Gas von den äußeren in die zentralen Regionen der Galaxie geleitet wird und
welche strukturellen Eigenschaften der Scheibe dazu beitragen, stärkere Gasströme zu induzieren.
In Bezug auf die stellare Komponente ist es unser Ziel zu verstehen, ob und inwieweit sich Sterne
zu anderen Radien als die, bei denen sie geboren wurden, bewegen, ein Prozess, der als Sternmi-
gration bezeichnet wird, und welche Mechanismen dieses Verhalten antreiben. Wir nähern uns
diesen Fragen aus einer theoretischen Perspektive, indem wir leistungsstarke Vorhersagewerk-
zeuge nutzen, die durch numerische Simulationen und sogenannte semi-analytische Modelle der
Galaxienentstehung bereitgestellt werden.

Im ersten Hauptkapitel untersuchen wir die Radialbewegungen von kaltem, sternbildendem
Gas in der säkularen Entwicklungsphase eines Satzes von 14 kosmologischen magnetohydrody-
namischen Simulationen von Galaxien mit einer Masse ähnlich der Milchstraße. Diese Modelle
stammen aus dem sogenannten Auriga-Projekt. Wir untersuchen den radialen Materialtransport
innerhalb der Scheibenebene auf Basis einer Reihe konzentrischer Ringe. Für das Gas, das sich
zu einem gegebenen Zeitpunkt in einem Ring befindet, berechnen wir für jeden Ring zwei Größen
als Funktion von Zeit und Radius: 1) die radiale Massenströmung des Gases; und 2) die radiale
Ausbreitung des Gases relativ zur Massenströmung. Durch Mittelung der Daten aller Galaxien
finden wir, dass die radiale Ausbreitung mit dem Radius in Form eines Potenzgesetzes zunimmt,
mit starken sekundären Abhängigkeiten wie dem Anteil des angesammelten Materials und der
lokalen radialen Geschwindigkeitsdispersion des Gases. Die Bewegung des Gases in den inneren
Scheibenregionen wird durch eine radial unabhängige mittlere Einwärtsströmungsgeschwindig-
keit von −2, 4 km s−1 gut beschrieben. Die Streuung um diesen Wert wird durch die Änderung
des Drehimpulses des Gases und auch durch die Menge an angelagertem Material bestimmt.
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Im zweiten Hauptkapitel untersuchen wir das Vorhandensein und die Bedeutung der Stern-
migration in der Entwicklung von 17 milchstraßenähnlichen Scheibengalaxien aus den Auriga
Simulationen mit einer Sternmasse 10 < log(𝑀∗/M⊙) < 11. Wir vergleichen die Geburtsradien
der Sterne mit ihren Radien bei 𝑧 = 0 für jedes System und präsentieren Mittelwerte der Stärke
der Sternwanderung als Funktion von Radius und Sternalter, die zwischen 1-4 kpc variieren.
Wir untersuchen auch die Auswirkung der Migration auf das Alter und die radialen Profile der
Metallizität in den Scheiben. Wir finden mehrere Fälle einer Abflachung des Altersgradienten
aufgrund von Migration, sowie signifikante Änderungen der Metallizitätsprofile für ältere Stern-
populationen und in Scheibengalaxien, die einen starken Balken entwickeln. Darüber hinaus
untersuchen wir die Sternmigration aus der Sicht der Änderung des galaktozentrischen Radius
(Δ𝑅) und aus Sicht von Änderungen des orbitalen Führungsradius (Δ𝑅𝑔) von Sternteilchen zwi-
schen gegebenen Zeitintervallen. Wir finden, dass Sterne nur in den äußeren Teilen der Scheiben
und für bestimmte Galaxien, die einen schwachen Balken haben, näherungsweise in der Form
eines Diffusionsprozesses wandern. Galaxien mit starken Balken zeigen eine stärkere Sternmi-
gration, aber ihre zeitliche Entwicklung ist langsamer als bei einer Diffusion. Abschließend geben
wir Parametrisierungen an, die die Abhängigkeit der Stärke der radialen Migration als Funktion
von Zeit und Radius beschreiben.

Im dritten Hauptkapitel wenden wir die Parametrisierungen, die wir durch Analyse der Auriga
Simulationen bestimmt haben, auf das semi-analytische Modell “L-Galaxies” der Galaxienent-
stehung und -entwicklung an. Wir aktualisieren dabei das radiale Strömungsrezept, das derzeit
in L-Galaxies verwendet wird, und fügen eine neue Funktionalität hinzu, die die Sternmigration
berücksichtigt. Wir beschreiben unsere algorithmische Implementierung zusammen mit den not-
wendigen Anpassungen, um diese neuen Prozesse in das Modell zu integrieren. Wir diskutieren
auch Punkte, die weiterer Forschung bedürfen. In den vorläufigen Ergebnissen, die wir in dieser
Dissertation präsentieren, haben wir die Auswirkungen dieser neuartigen Implementierung auf
das Ergebnis des Modells sowohl in Bezug auf globale Eigenschaften, wie auch hinsichtlich
der Stern- und Gasmasse der Galaxien, als auch bezüglich der radial aufgelösten Profile unter-
sucht. Eine wichtige Erkenntnis ist, dass die neue Implementierung je nach zugrundeliegender
räumlicher Auflösung des Modells noch unterschiedliche Ergebnisse liefert.

Am Ende dieser Arbeit fassen wir unsere Schlussfolgerungen zusammen und diskutieren
mögliche Erweiterungen in zukünftiger Forschung.



Abstract

Galaxy formation and evolution is the most diverse topic of research in the field of astrophysics and
has been studied in a vast number of research projects both from a theoretical and an observational
perspective. Disc galaxies in particular draw much interest since they are thought to be the first
structures that form directly after the collapse of gas into dark matter halos, as a consequence
of the angular momentum which is carried by the infalling matter. The evolution of the disc is
even more fascinating because of the plethora of internal and external physical processes that
have an effect on the system. We present a discussion on the theory of galaxy formation in the
Introduction chapter of this work.

In this thesis we are concerned with the specific question of how matter is transported radially
within the narrow plane of a galactic disc. We wish to explore how gas is funnelled from the outer
towards the central regions of the galaxy and what structural properties of the disc contribute in
inducing stronger gas flows. Regarding the stellar component our goal is to understand whether
and to what extent stars move to radii other than the one they were born in, a process called
stellar migration, and what mechanisms are driving this behaviour. We approach these questions
from a theoretical perspective by utilising the powerful predictive tools provided by numerical
simulations and semi-analytic models of galaxy formation.

In the first main chapter, we study the radial motions of cold, star-forming gas in the secular
evolution phase of a set of 14 Milky Way-mass galaxies from the Auriga suite of zoom-in
cosmological magnetohydrodynamical simulations. We study the radial transport of material
within the disc plane in a series of concentric rings. For the gas in each ring at a given time we
compute two quantities as a function of time and radius: 1) the radial bulk flow of the gas; and
2) the radial spread of the gas relative to the bulk flow. Averaging the data from all the halos, we
find that the radial spread increases with radius in the form of a power law with strong secondary
dependencies on the fraction of accreted material and the local radial velocity dispersion of the
gas. We find that the bulk motion of gas is well described in the inner disc regions by a radially-
independent mean inward flow speed of −2.4 km s−1. The spread around this value relates to the
change in angular momentum of the gas and also the amount of accreted material.

In the second main chapter we study the presence and importance of stellar migration in the
evolution of 17 Milky-Way like discs with stellar mass 10 < log(𝑀∗/M⊙) < 11 in Auriga. We
compare the birth radii of the stars to their radii at 𝑧 = 0 for each system and present mean values of
the strength of stellar migration as a function of radius and stellar age which vary between 1-4 kpc.
We also investigate the effect of migration on age and metallicity radial profiles in the discs. We
find several cases of age gradient flattening due to migration, but significant changes to metallicity
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profiles only for older stellar populations and discs that develop a strong bar. Furthermore, we
study stellar migration from the perspective of the change of the galactocentric radius (Δ𝑅) and
orbital guiding centre radius (Δ𝑅𝑔) of stellar particles between given time intervals. We find that
stars migrate approximately as a diffusion process only in the outer parts of the discs and for
particular galaxies that have a weak bar. Strongly barred galaxies in our sample show larger stellar
migration but its timestep evolution is slower-than-diffusion. Finally, we give parametrizations
that encapsulate the dependence of the strength of the radial migration as a function of time and
radius.

In the third main chapter we apply the parametrizations that were extracted in the analysis
of Auriga into the L-Galaxies semi-analytic model of galaxy formation and evolution. We are
updating the radial flow recipe that is currently used in L-Galaxies and adding anew functionality
that accounts for the stellar migration. We describe our algorithmic implementation along with
the necessary adaptations in order to incorporate the new recipes to the model as well as potential
caveats that require further research. In the preliminary results that we present in this thesis, we
have explored the effect of this novel implementation in the outcome of the model both with respect
to global properties, such as the stellar and gas mass of the galaxies, and in the radially resolved
profiles of the same quantities. The most important finding is that the new implementation yields
different results depending on the underlying spatial resolution of the model.

In the end of this thesis we summarize our conclusions and discuss potential extensions of
this work in future research.



Chapter 1

Introduction

1.1 Introductory remarks

Galaxies are some of the most complex systems that form in our universe. Consequently, they
have been subject to extended research since the early days of the 20th century when Edwin
Hubble’s observations conclusively pointed to the fact that there are nebular structures at such
extreme distances that could not constitute part of our own Galaxy (Hubble, 1929a,b).

Hubble’s understanding of galaxy formation and evolution was based on a morphological
classification of different types of galaxies in what is known as the Hubble’s tuning fork diagram.
In this picture galaxies are split into two main evolutionary types; the featureless elliptical
galaxies which may have a varying degree of ellipticity, ranging from almost circular to highly
oblate/prolate objects and the spiral galaxies characterised by a thin disc with active star formation
and the presence of spiral arms. Spiral galaxies are further separated into those who contain or
not an elongated mass concentration in their central regions, which is called a bar. Moreover in
the transition between spirals and ellipticals lies the category of lenticular galaxies which have
a smooth light distribution, similarly to ellipticals, but also contain a thin disc and a bulge like
spirals. Finally, in later years the category of irregular galaxies, which are usually asymmetric
without a pronounced bulge or clearly defined disc, was added to this morphological classification.
This picture is shown schematically in Figure 1.1.

This thesis is mainly concerned with the disc structures that we most often encounter in
spiral galaxies, hence we explain more extensively their formation and evolution scenarios in
the following sections. Even more specifically, we are interested in the secular evolution of
these galaxies which refers to internal processes that operate during the lifetime of the disc and
include among others the accretion of new gas onto the disc, the onset of instabilities that cause the
formation of bars and spiral arms and the redistribution of material within the disc via radial flows
of gas and stellar migration. All these processes are explored in the remainder of this introduction
chapter as well as the main chapters of this thesis. For more extended relevant discussion some
of the most useful resources include reviews by Sellwood & Sánchez (2010) and Kormendy &
Kennicutt (2004) regarding secular evolution, van der Kruit & Freeman (2011) more generally
on disc evolution as well as the textbooks by Binney & Tremaine (2008) on galactic dynamics
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Figure 1.1: Representation of a modern version of the Hubble tuning fork diagram adapted from
Kormendy (2013). Elliptical galaxies are shown on the left and spiral galaxies on the right with
the various degrees of spiral arm tightness and branching between barred and ordinary spirals.
Lenticular galaxies, named S0/SB0, are on the transition between the two populations.

and Mo, van den Bosch & White (Mo et al., 2010) on galaxy formation and evolution as a whole.

1.2 Formation and evolution of disc galaxies
In the standard picture of galaxy formation proto-galaxies form in the central parts of over-dense
regions of the universe, called dark matter halos. The study of the properties of dark matter
halos such as their spatial distribution, mass and angular momentum, are the subject of the
broader field of cosmology which immediately ties galaxy formation with the underlying large
scale structure of the universe. The currently accepted standard cosmological paradigm is the
Lambda-Cold Dark Matter (ΛCDM) cosmology (Springel et al., 2006). ΛCDM suggests that
the universe comprises of 1) a cosmological constant Λ which gives rise to a ’dark energy’
field that drives today’s accelerated expansion of space, 2) cold dark matter, a non-relativistic,
weakly interacting form of matter and 3) ordinary baryonic matter. According to the most recent
measurements by the Planck satellite (Planck Collaboration, 2020) the energy density associated
with the cosmological expansion has a value of ΩΛ ≈ 0.68 whereas the mass density accounts
Ω𝑚 ≈ 0.32 out of which only 15% is in the form of baryonic matter and the rest constitutes the
dark matter component. It is this ∼ 5% of the total mass of the universe that accounts for the
stellar and gas light that we collect at all wavelengths of the electromagnetic spectrum and gives
us the magnificent observations of galaxies (such as the spiral galaxy Fig. 1.2). However, the
importance of the existence of the elusive ’dark matter’ cannot be stressed enough with regards
to providing the gravitational attraction required to initiate and subsequently regulate the process
of galaxy formation.

Baryonic matter in the gaseous phase becomes confined to the bottom of the deep gravitational
potential well which is produced by the dark matter overdensities. Infalling gas is initially shock
heated to the virial temperature of the dark matter halos but for the gas to collapse to the centre
of the well it needs to dissipate its internal energy and lose its pressure support. This happens
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via the process of radiative cooling, as pointed out by early seminal papers on galaxy formation
(Rees & Ostriker, 1977; White & Rees, 1978). While infalling and because cooling is thought
to be isotropic, the baryons are subject to the conservation of their angular momentum and they
eventually settle to a disc like structure supported by rotation. It has been postulated for long
that the specific angular momentum of the baryons (i.e. angular momentum divided by mass) is
similar to that of the dark matter halo and this has been confirmed in simulation studies such as
in van den Bosch et al. (2002).

The angular momentum of a galaxy is often characterized by the dimensionless spin parameter
which is defined as 1:

𝜆 =
𝐽 |𝐸 |1/2

𝐺𝑀5/2 (1.1)

where 𝐽 is the angular momentum, 𝑀 the mass and 𝐸 the total energy of the galaxy (Peebles,
1971).

The question of how the gas settles in a disc and what determines the subsequent size of the
system has been theorised by early work by Fall & Efstathiou (1980) and further explored by Mo
et al. (1998). Following the derivation in Mo, Van Den Bosch & White (Mo et al., 2010) we can
show how a realistic self-gravitating disc is formed inside a dark matter halo. If the dark matter
halo follow a density profile

𝜌(𝑟) = 1
4𝜋𝑟2

𝑑𝑀 (𝑟)
𝑑𝑟

(1.2)

the energy of the halo is:

𝐸 = −
𝑀vir𝑉

2
vir

2
𝐹𝐸 (1.3)

where 𝑀vir is the virial mass, 𝑉vir the virial velocity and the factor 𝐹𝐸 depends on the form
of the density profile. Under the assumptions that the baryons have the same specific angular
momentum as the dark matter and that orbits are exactly circular then the disc has angular
momentum given by:

𝐽𝑑 = 2𝑀𝑑𝑅𝑑𝑉𝑣𝑖𝑟𝐹𝑅 (1.4)

where the subscript 𝑑 refers to disc properties and 𝐹𝑅 = 0.5
∫ 𝑟𝑣𝑖𝑟/𝑅𝑑

0 𝑢2𝑒−𝑢 𝑉𝑐 (𝑢𝑅𝑑)
𝑉𝑣𝑖𝑟

𝑑𝑢, with 𝑉𝑐 (𝑟)
being the circular velocity. Substituting Eq. 1.3 into Eq. 1.1 yields the relation for the disc radius:

𝑅𝑑 =
1
√

2
( 𝑗𝑑

𝑚𝑑

)𝜆𝑟𝑣𝑖𝑟𝐹−1
𝑅 𝐹

−1/2
𝐸

(1.5)

where 𝑗𝑑 = 𝐽𝑑/𝐽𝑣𝑖𝑟 is the specific angular momentum of the disc.
Once the gas in the disc becomes sufficiently cold and dense, star formation can occur, building

a stellar component in the disc that evolves in parallel with the gas. It must be noted that the
gas and stars follow different dynamics; gas behaves as collisional fluid subject to many energy
dissipation processes whereas stars act like a collisionless fluid, i.e. the relaxation time of the
stellar disc is much larger than the age of the universe. Moreover the typical velocity dispersion

1The same expression is used for the spin of a dark matter halo
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of the gas component is around ∼10 km s−1 while the stellar discs have usually much higher
values of ∼40 km s−1.

1.2.1 Stellar component

Figure 1.2: Optical image of the spiral galaxy Messier 101 which nicely illustrates the extended
disc with the significant presence of spiral arms. In this image one can observe that at the location
of the spiral arms there is predominantly blue color, an indication of young stellar populations,
and brown stripes of material which is dust in the interstellar medium. On the contrary the reddish
hues in the center of the disc are a sign of older stars. Credits: Hubble Image: NASA, ESA,
K. Kuntz (JHU), F. Bresolin (University of Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould
(NOAO), Y.-H. Chu (University of Illinois, Urbana) and STScI;

The stellar mass of a spiral galaxy is distributed between four main components.

1. Central Bulge

2. Thin disc

3. Thick disc

4. Stellar halo
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The bulge is a concentration of stars at the central regions of many galaxies. Contrasting to
the nearly circular orbits of the disc stars, those in the bulge have more random motions resulting
in high velocity dispersion in that region of the galaxy. In addition bulge stars are on average older
and richer in metals. Bulges fall into two categories depending on their formation mechanism,
a) true bulges and b) pseudo-bulges. The former result from galaxy merger events whereas the
latter are related to the secular evolution of the disc and form likely from instabilities (discussed
further in a following section). The surface brightness of the bulge component of a galaxy is
usually modeled by a Sercić profile 𝐼𝑏 (𝑟) = 𝐼𝑏exp(−𝛽𝑛 (𝑅/𝑅𝑏)1/𝑛), where 𝑛 denotes the Sercić
index. This expression with 𝑛 = 4 is also used as fit to the surface brightness profiles of elliptical
galaxies (de Vaucouleurs’s law).

The thin disc is the main component associated with a spiral galaxy. It contains young stars
that rotate in a narrow plane while star formation is still active in it, especially around the spiral
arms. Observational evidence suggests that the stellar discs follow a surface brightness radial
profile of exponential form 𝐼 (𝑟) = 𝐼𝑑exp(−𝑅/𝑅𝑑), where 𝑅𝑑 is the scale radius. The exact
mechanisms that lead to the formation of exponential discs are not clear. Some of the suggested
theories are that the exponential profile is shaped by the specific angular momentum distribution
of the early proto-galaxy, the viscosity in the disc, or the supernova outflows removing low angular
momentum gas from the disc (Dutton, 2009; Mo et al., 2010).

Despite the term ’thin disc’, all discs have a vertical extent which is usually modeled by a
function of the form sech2/𝑛 ( 𝑛𝑧

2𝑧𝑑 ) where 𝑧𝑑 is the vertical scale height. The 𝑛 = 1 case corresponds
to the equilibrium structure of a an isothermal infinite sheet. Thin discs are subject to heating
mechanisms which increase the velocity dispersion of their stars. Stars formed near the mid-
plane of the disc with low velocity dispersion move to larger scale-heights as they are heated,
resulting in the observed vertical profiles. There are various proposals for these mechanisms in
the literature such as the interactions and mergers with satellites or the scattering of stars against
massive clouds of gas in the disc.

The thick disc appears as a separate component to the thin disc both in terms of kinematics
and chemical content of its stars. In particular, thick disc stars are found to be older, more metal
poor and more enriched in 𝛼 elements compared to thin disc stars. In addition the thick disc
is kinematically hotter and appears more diffuse, extending to larger scale heights but having
roughly the same radial extent as the thin disc. The formation of the thick disc and the origin of
thick disc stars is a matter of debate. Thick disc stars could 1) be thin disc stars that have been
kinematically heated, 2) have formed in-situ as part of the thick disc in a star-formation episode
in the early phases of the galaxy formation or, 3) have formed in external systems such as small
merging satellites.

Finally, the galactic halo constitutes a component of much lower density that surrounds the
disc at much larger scaleheights. The stellar population in the halo has kinematically hot orbits,
older ages and low metallicities. The stellar halo of the Milky Way contains a wealth of globular
clusters and remnants of merger events in the form of elongated stellar streams. The recent review
by Helmi (2020) is excellent material for more discussion on the stellar halo as well as the thick
disc component of our Milky Way.
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Milky Way

Our own Milky Way is a typical spiral galaxy. Because of our position within it, considerable
research has been carried out concerning its history, formation and evolution which can also
give an indication to how spiral galaxies have evolved more generally in the universe. Indeed
most theoretical works on disc galaxies (simulations and analytic models) aim to reproduce
the well constrained characteristics of our galaxy. In terms of its structural characteristics, the
Milky Way’s disc has a scale length of of ∼ 3 kpc and ∼ 3.3 kpc for its thin and thick disc
respectively (McMillan, 2011) while the vertical scaleheight of its thick disc is roughly three
times larger than its thin disc (0.9 vs 0.3 kpc) according to Jurić et al. (2008). Observations
have shown that in addition to four spiral arms (Georgelin & Georgelin, 1976; Vallée, 2014),
the Milky Way is a barred spiral galaxy with a peanut-shaped bar (Wegg & Gerhard, 2013).
Furthermore, it is now firmly established that it harbours a central supermassive black hole with
mass ∼ 4 × 106𝑀⊙ (Genzel et al., 2010). Recently the most significant advances in Milky Way
research are being made by the GAIA survey (Gaia Collaboration, 2016) which has mapped with
unprecedented precision the positions and properties of ∼ 1.5 billion stars in the latest data release
(Gaia Collaboration, 2021). The purpose of such large scale surveys is to disentangle the history
of Milky Way’s formation by studying both the kinematics and chemical content of the stars in
order to determine their origins and how their orbital characteristics have changed over the course
of Milky Way’s lifetime.

1.2.2 Gas component
Spiral galaxies are gas rich systems with most of the gas being in the molecular (H2) and neutral
(HI) hydrogen phases (contrasting with the mostly ionised gas in ellipticals). Similarly to the stars
the gas in the disc moves in an ordered rotation, in mostly circular orbits and in a relatively narrow
plane. The neutral hydrogen extends radially to larger distances compared to the stellar disc but
most of the molecular hydrogen distribution follows that of the stellar component. Observationally
these gas motions can be traced by the strong emission line produced by the spin-flip transition
of neutral hydrogen at the wavelength of 21cm. These observations are available at very large
distances and are extremely useful in studying the dynamics of the galaxy and constructing the
rotation curves of the disc, i.e. the mean rotational velocity at any given galactocentric radius.
For most spiral galaxies the rotation curve reaches values in the range of 150-300 km s−1 and then
flattens around these values at the outer regions. The rotation curve can give us a measurement of
the total mass enclosed within a radius by simply invoking the relation 𝑀 (< 𝑟) = 𝑟𝑣2

𝑟𝑜𝑡/𝐺 from
gravitation theory. The observed flat rotation curves and the absence of a Keplerian fall-off were
instrumental for postulating the presence of an additional ’dark’ component of mass.

Motivated by the discussion of the rotational velocity measurements being obtained from the
gas in the disc, we mention here, as an aside, that a well-established correlation exists between
the rotational velocity and the luminosity of a spiral galaxy a finding called the Tully-Fischer
relation (Tully & Fisher, 1977).

𝐿 ∝ 𝑉𝑎
𝑟𝑜𝑡 (1.6)

The Tully-Fischer relation has an important physical implication because it directly links a
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property of the baryonic component of the galaxy (luminosity) with the rotational velocity which
is largely determined by the mass of the dark matter halo, thus pointing out the co-evolution of
galaxies and the dark matter haloes within which they reside.

The molecular gas is harder to observe directly and most studies use other molecular tracers,
such as carbon monoxide (CO) in order to infer its mass. Nevertheless the existence of H2 is of
utmost importance since it forms dense clouds that become sites for the formation of stars.

The gas that is consumed from star formation is replenished by new gas that is accreted onto
the disc. In the literature there are two gas accretion mechanisms that are discussed, a ’hot mode’
accretion where gas is shock heated at the virial radius of the halo and slowly settles onto the disc
(White & Rees, 1978) and a ’cold mode’ accretion where gas is directly funneled onto the disc
by filaments (e.g. Kereš et al., 2005).

The gaseous component is continuously stirred by turbulence which is sourced by a number of
mechanisms (Elmegreen & Scalo, 2004). These include the energy expelled from the supernovae
and stellar winds, infall of new gas, interactions with satellite galaxies, magnetic fields and even
the presence of spiral arms.

1.2.3 Orbits
In this thesis we are concerned with the motions of stars and gas within the galactic plane so
it is essential to outline how material orbits under the effect of gravity in the disc. The central
regions of a dark matter halo, that are populated with baryons, are dominated by the gravitational
potential that is generated by the galaxy. An axisymmetric potential is a good approximation in
particular for a disc galaxy because of its ordered rotation around a preferred axis.

The motion of a particle under the effect of an underlying gravitational potentialΦ is described
by Newtons’s equation of motion:

𝑑2r
𝑑𝑡2

= −∇Φ (1.7)

Considering the symmetry of a galactic disc it is natural to solve this equation using cylindrical
coordinates (𝑅, 𝜙, 𝑧). In that case an equation of motion is obtained for each coordinate:

𝑑2𝑅

𝑑𝑡2
− 𝑅

(𝑑𝜙
𝑑𝑡

)2
= −𝜕Φ

𝜕𝑅
(1.8)

𝑑

𝑑𝑡

(
𝑅2 𝑑𝜙

𝑑𝑡

)
= 0 (1.9)

𝑑2𝑧

𝑑𝑡2
= −𝜕Φ

𝜕𝑧
(1.10)

Eq. 1.9 denotes the conservation of the term in the brackets which can be identified as the
angular momentum in the perpendicular direction to the plane, 𝑧, 𝐿𝑧 =

(
𝑅2 𝑑𝜙

𝑑𝑡

)
.

Using this conserved quantity it is useful to define the effective potentialΦeff(𝑅, 𝑧) = Φ(𝑅, 𝑧)+
(𝐿2

𝑧/2𝑅2) and express the equations of motion for the two remaining coordinates in terms of it
as:
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𝑑2𝑅

𝑑𝑡2
= −𝜕Φeff

𝜕𝑅
,

𝑑2𝑧

𝑑𝑡2
= −𝜕Φeff

𝜕𝑧
(1.11)

Important quantities derive from these equations and are widely used in literature in galactic
dynamics. The guiding centre, 𝑅𝑔, is the minimum of the effective potential, 𝜕Φ𝑒 𝑓 𝑓

𝜕𝑅
(𝑅𝑔, 𝑧) = 0.

The guiding centre corresponds to the radius of a circular orbit with energy equal to the effective
potential. Associated with this orbit is the circular frequency Ω(𝑅) = 𝑉𝑐 (𝑅)

𝑅
=

𝐿𝑧

𝑅2

The epicyclic frequency, 𝜅, is the second derivative of the effective potential 𝜅2 =
𝜕Φ𝑒 𝑓 𝑓

𝜕𝑅2

evaluated at the guiding centre. In the epicyclic approximation where higher than second order
terms are excluded it reduces to a relation that connects 𝜅 to the circular frequency Ω:

𝜅 =

(
𝑅
𝑑Ω2

𝑑𝑅
+ 4Ω

)1/2
(1.12)

All in all the motion of a star in the frame of the disc is, in general, a rosette, described by a
circular motion at a mean radius (guiding centre) on which smaller radial oscillations around the
guiding radius are superimposed, called epicycles.

1.2.4 Disc stability
Another useful concept in understanding galactic discs is that of their stability against gravitational
collapse. Disc instabilities can occur both in a global and local fashion.

Local instabilities happen on scales much smaller than the disc size such as for example the
gravitational collapse of a cloud of gas that can lead to th formation of stars.

Toomre (1964) introduced the dimensionless parameter 𝑄 to determine the local stability of
a disc. For a gaseous disc this parameter is defined as:

𝑄 =
𝜅𝑐𝑠

𝜋𝐺Σ
(1.13)

where 𝜅 is the epicyclic frequency, 𝑐𝑠 the speed of sound and Σ is the surface density of the disc.
The corresponding equation for the stellar component is:

𝑄 =
𝜅𝜎𝑟

3.36𝐺Σ
(1.14)

where 𝜎𝑟 is the radial velocity dispersion of the stars.
In either case the local stability criterion requires 𝑄 > 1 whereas 𝑄 ≤ 1 in gaseous discs will

lead to fragmentation into smaller clumps.
The physical interpretation of the above equations is that some sort of internal pressure

(numerator) in the disc is required in order to counteract gravity (denominator). Depending on
whether we are concerned about the gaseous or stellar disc this internal pressure can result from
the kinetic energy of either the gas particles or the stars that form the disc, expressed by the sound
speed and the velocity dispersion respectively.

Global instabilities have an effect on the whole disc and can lead to structural changes, such
as the formation of a bar (bar instability). Efstathiou et al. (1982) suggested that the disc becomes
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stable against the bar instability if it is embedded in a dark matter halo since the additional dark
matter mass increases the rotation velocity and provides support against gravitational collapse.
However it has also been argued that the presence of a dense mass concentration at the galactic
centre, such as a bulge, can also contribute as a stabilizing mechanism (Sellwood & Moore, 1999;
Sellwood & Evans, 2001).

1.2.5 Non-axisymmetries in disc galaxies
As discussed in section 1.1 the properties of the spiral arms and the presence of a bar are central in
classifying spiral galaxies. Besides the morphological aspect, these so-called non-axisymmetric
features have a profound effect on the evolution of a galaxy and their formation mechanism is a
matter of intense research. Such non-axisymmetries are particularly relevant in this thesis since
they are main sources of torque to the surrounding material which in turn can cause changes to
the orbital properties of both the gaseous and stellar components of the disc.

Spiral arms are transient structures in the disc and are associated with enhanced star formation
activity. A spiral arm is fundamentally a density perturbation of the disc that manifests itself both
in the gas and stellar component. One theory for the formation of spiral arms is the ’spiral density
waves theory’ (originally introduced in Lin & Shu (1964)). It suggests that spiral arms are created
by stationary spiral-like density waves propagating in the plane of the disc and rotating with a
defined pattern speed. Gas and stars move in and out of the wave congesting in the enhanced
density regions. However, this hypothesis has been challenged on the basis that the density waves
that form the spiral arms are not stationary (Binney & Tremaine, 2008).

Bars are elongated structures that are found in the centres of spiral galaxies. According to
Sheth et al. (2008) 65% of the spiral galaxies in their sample have a bar at 𝑧 = 0 but that number
declines down to 20% for higher redshift (𝑧 ∼0.85) while bars are found in both massive spiral
galaxies like our own Milky Way as well as in the smaller dwarf galaxies such as the Large
Magellanic Cloud. As mentioned before, the formation of a bar is thought to happen because of
a global instability in the disc. Bars are rotating structures that, unlike the differential rotation of
the surrounding disc, follow a solid-body rotation with an angular speed that is called bar pattern
speed Ω𝑏.

This specific frequency acts as a forcing frequency that creates resonances in the disc which
interact with the stellar orbits when crossing them. The most important of these resonances are
the corotation resonance (CR) where the angular frequency of the stellar orbit at the guiding
centre (Ω0) equals the bar pattern speed:

Ω0 = Ω𝑏 for corotation resonance (1.15)

and the Lindblad resonances which occur where:

𝑚(Ω0 −Ω𝑏) = ±𝜅0 for Lindblad resonance (1.16)

where 𝑚 is an integer. The plus sign corresponds to the inner Lindblad resonance (ILR)
where the star moves faster and overtakes the pattern speed whereas the minus sign refers to the
outer Lindblad resonance (OLR) where the star lags behind the forcing (Binney & Tremaine,
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Figure 1.3: Examples of a non-resonant epicyclic orbit (left panel) and epicyclic orbits trapped
at the Inner Lindblad (middle) and corotation (right) resonances. The circular dashed line is the
guiding radius. Adapted from Athanassoula (2013).

2008) 3. Resonances are of critical importance for the redistribution of material within the
disc because it is where exchange of angular momentum happens more efficiently. In particular
angular momentum is thought to be gained at the ILR and absorbed at the OLR (Lynden-Bell
& Kalnajs, 1972; Athanassoula, 2013). Moreover in barred galaxies there is significant radial
transport of material around the corotation radius where strong torques are exerted resulting in
material within the CR moving outwards and material outside the CR being pushed inwards.

1.2.6 Chemical content
In addition to its dynamical properties, a galaxy is also characterized by its chemical properties.
The latter are useful indicators of the evolution of the system and can help in identifying the star
formation as well as merger histories. The most common measure of the chemical composition
of a galaxy is the metallicity, i.e. its mass in metals compared to its total baryonic mass. In
the astrophysical context metals refer to any element other than hydrogen (H) and Helium (He)
therefore the metallicity in the simplest form is defined as:

𝑍 =
𝑀metals

𝑀tot,baryons
(1.17)

A well-known scaling relation in disc galaxies is that between their mean gas phase metallicity
and luminosity which because of the mass-luminosity proportionality yields also a relation
between the stellar mass and metallicity (Tremonti et al., 2004).

Furthermore, additional information is obtained from the abundances of individual elements,
which are usually expressed as a ratio of the specific element number density with respect to the
mass in hydrogen. Such abundance ratios can be used as indicators of the total metallicity which
is much harder to measure observationally since many different elements need to be traced in the

3The same resonances are created by the pattern speed of the spiral arms
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spectra of the galaxies. The most useful tracer of the gas metallicity is the abundance in oxygen,
which is by convention expressed as the scaled ratio:

12 + log(O/H) ≡ 12 + log(𝑛𝑂/𝑛𝐻) (1.18)

When measuring the stellar metallicity a more commonly used option is the iron abundance
owing to the importance of iron in stellar evolution as well as the strong lines that produces in
spectra of individual stars and galaxies. The iron abundance is usually normalised by the solar
values:

[Fe/H] = log
(
𝑛Fe/𝑛⊙
𝑛𝐻/𝑛⊙

)
(1.19)

Another useful chemical tracer regarding the evolution of a galaxy is the ratio of their content
in alpha elements to iron, [𝛼/Fe], called alpha enhancement. Alpha elements refers to those
elements that consist of nucleons in multiples of four, the most important being example oxygen
(O) but also neon (Ne), magnesium (Mg), silicon (Si), calcium (Ca) and sulfur (S). These elements
are byproducts of type two supernovae (SNe-II) by massive stars that happen on short timescales.
Therefore a high presence of alpha elements in a galaxy signifies a rapid formation of their
stellar mass. On the other hand when there is increased presence of iron, that is produced over
longer timescales predominantly in type Ia supernovae (SNe-Ia), it is an indication of more time
extended star formation.

Besides the global metallicity, a most interesting question is the radial metallicity profiles or
equivalently whether there are metallicity gradients in discs. In a standard scenario of inside-
out formation of a galactic disc the inner regions will have older stars and gas that has been
chemically enriched by previous supernovae events. On the other hand the outskirts of the
disc are fueled with unprocessed, low metallicity gas which will form stars that are also less
chemically enriched. Therefore it is expected that metallicity will decrease monotonically with
radius creating a negative radial gradient. The observations of galaxies with very flat gradients
or even a reversed (i.e. positive) gradient at the outer regions thus strongly point to the fact
that throughout the evolution of the disc there is exchange of material between different radii.
Examples for this would be the flow of gas towards inner regions or the transport of chemically
rich stars from the more central regions to the outside. Such processes are the core subject of this
thesis as discussed in the following subsection.

1.2.7 Radial motions of material
There are a number of physical mechanisms that can induce radial flows of gas within the disc.
Lin & Pringle (1987), for example, explore the effect of the viscosity of the disc in instigating
radial transport of the gas and eventually leading to the observed exponential profiles of galactic
discs. In addition, the presence of a bar in the centre of the disc is often associated with inflowing
streams of gas on either end of the elongated bar structure. Spiral arms can similarly to the
bar apply torques that can alter the gas’s angular momentum and result in it moving inwards or
outwards (Sellwood & Binney, 2002). Mergers or interactions with smaller satellite galaxies can
also cause gas to flow inwards. These radial flows of gas are extremely important in the evolution
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of the galaxy because a) the location of the gas dictates where star formation is happening b)
inflowing gas towards the centre can end up in the central black hole, triggering an active galactic
nucleus (AGN) c) there can be considerable mixing of newly inflowing gas to the existing ISM,
hence altering the metallicity profiles that are observed.

Stars, during their lifetime, are also subject to changes in their radial position which has
been termed ’stellar migration’. Stellar migration is caused by changes in the orbital angular
momentum of the stars that lead to changes in the mean orbital radius, the guiding centre. If by
some mechanism the star gains angular momentum then it moves to an orbit with a larger radius
and vice versa loss of angular momentum leads to the star orbiting at a smaller radius. Similar to
the gas it is the presence of spiral arms or a bar that primarily causes these changes to the angular
momentum that lead to migration (Minchev & Famaey, 2010; Sellwood & Binney, 2002). Stellar
migration is thought to be a process that also contributes to the shaping of metallicity gradients
of disc galaxies and the mixing of younger/metal-rich and older/metal-poor stellar populations
at different radii within the galaxy. We discuss more extensively about radial migration in the
introductory section of Chapter 3.

1.3 Numerical simulations of galaxy formation and evolution
The scales and energies involved in astrophysical processes make it impossible to conduct exper-
iments to study these phenomena in laboratory conditions in the same way as in other fields of
physics. Hence, astrophysicists resort to computational modelling, that is combining their knowl-
edge of the physics involved in the universe’s evolution with sophisticated numerical algorithms
in order to simulate whole regions of the universe, individual galaxies, parts of galaxies or even
individual stars in a controlled environment in a computer. Upon years of constant development
these so called ’numerical simulations’ have proven to be the most powerful theoretical tools
through which astrophysicists can test the validity of their theories by comparing their simulated
output against real astrophysical observations.

In this thesis we focus on simulations that study the formation and evolution of galaxies.
Such simulations are primarily hydrodynamical simulations meaning that one solves both the
gravitational equations for all the collisionless components of a galaxy (stars and dark matter)
and the hydrodynamical and radiation equations that govern the dynamics of gas.

All mass components in a simulation interact via gravitational forces, the computation of
which requires knowledge of the gravitational potential at any point of space. The potential is
created by the underlying density distribution and is described by the Poisson equation:

∇2Φ = 4𝜋𝐺𝜌 (1.20)

Once Φ is computed, the forces (or accelerations) on the particles are given by the simple
equation of motion: a = −∇Φ. Knowing the accelerations, the velocities and positions of the
particles can then be updated. There are numerous numerical algorithms that are used to integrate
the equations of motion, however discussion on them is beyond the scope of this chapter and we
refer to useful summary reviews such as Springel (2016).
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The dynamics of the gas is dictated by the three Euler equations which describe the conser-
vation of mass, momentum and energy of the fluid and can be written as: 2

𝜕𝜌

𝜕𝑡
+ ∇(𝜌v) = 0, (1.21)

𝜕 (𝜌v)
𝜕𝑡

+ ∇(𝜌vv𝑇 + 𝑃) = 0, (1.22)

𝜕 (𝜌𝜖)
𝜕𝑡

+ ∇[(𝜌𝜖 + 𝑃)v] = 0, (1.23)

where 𝜌 is the density, 𝑃 the pressure, v the velocity vector and 𝜖 the total energy per unit
mass. The above equations describe an ideal fluid and can be transformed to the Navier-Stokes
equations for real fluids when a viscosity term is added on the right-hand sides of Eq. 1.22 and
1.23.

Different codes are using different algorithms in order to solve the hydordynamical equations
but most fall in one of the two most prevalent methods which are 1) the smoothed-particle
hydrodynamics (SPH) codes and 2) grid-based codes.

The former use a Lagrangian approach and the fluid is simulated by particles that sample the
mass. Translating the discrete distribution of the point particles to a continuum requires the use of
a kernel function which describes how the mass of each particle is distributed to the surrounding
space. So in SPH the fields, (𝐹 (r)) related to the particles, such as the density, are represented as
a convolution of the field with a kernel function.

𝐹𝑠 (r) =
∫

𝐹 (r′)𝑊 (r − r′, ℎ)𝑑r′ (1.24)

Grid-based codes on the other hand solve the equation of the hydrodynamics in a -usually
Cartesian- grid of fixed points. This is the Eulerian approach. The equations of hydrodynamics
are solved across the faces of the 3D cells of the grid and the fluxes from one cell to another are
computed as a result. Because of the varying scales of the astrophysical phenomena an adaptive
mesh is commonly utilised. That is to say the size of the cells is reduced in regions of higher
density achieving higher spatial resolution.

Each of these methods has its specific shortcomings; SPH for example suffers from poor
resolution of shock discontinuities and a suppression of fluid instabilities whereas mesh codes
show no Galilean invariance and exhibit a tendency for prefered spatial directions (Springel,
2016).

Recent advanced codes such as AREPO (Springel, 2010; Pakmor et al., 2016; Weinberger
et al., 2020) are combining the advantages of each of the aforementioned methods by solving the
hydrodynamics equations on a moving mesh. That is to say the cells that constitute the fluid mass
are dynamically changing in shape and size following the underlying flow of the gas. AREPO in

2This is the Eulerian form of the Euler equations. There is also the Lagrangian representation of these equations,
describing the same dynamics from a different frame of reference and with a different notation
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particular uses a Voronoi tessellation of the space to compute the sizes and shapes of the cells.
Similar to the grid codes, moving-mesh codes are computing the fluxes across the cell faces.

A fundamental problem of all galaxy formation simulations is the fact that different processes
work on very different length scales and densities. In order to simulate very high densities it is
necessary to increase significantly the resolution of the simulation, by including more particles
(in SPH) or more cells (in grid codes) but in either case, as mentioned before, the computational
cost is prohibitive and each simulation has a certain resolution limit. Processes that fall below
the resolution limit need to be modelled with a sub-grid prescription. These are theoretically or
observationally motivated recipes that aim to approximate the phenomena. Some of the most
important evolutionary processes in galaxies in need of a sub-grid treatment are the star formation
and stellar and AGN feedback. There is variety of feedback recipes which differ mainly on the
fashion in which the energy is coupled to the surrounding medium.

Apart from the code that is used, galaxy simulations differ in their box size and resolution,
and depending on the science goals of each project a different type of simulation is employed.

The first category are the ’cosmological simulations’, which aim to reproduce a relatively
large region of the universe and millions of galaxies over all mass scales. Such simulations
include IllustrisTNG (Nelson et al., 2018; Pillepich et al., 2018; Springel et al., 2018), EAGLE
(Schaye et al., 2015), Magneticum (Hirschmann et al., 2014), SIMBA (Davé et al., 2019) and
Horizon-AGN (Dubois et al., 2014). The large number of galaxies in these simulations can
be used to extract statistically robust conclusions for the galaxy population. However, large
simulated volume cannot be easily combined with very fine mass resolution due to the immense
computational expenses. Recent advances in computational power and the invention of more
efficient algorithms have expanded the limits of those simulations achieving high resolution in a
relatively large box (Nelson et al., 2019).

The second type are the ’zoom-in’ simulations. These simulations are performed by extracting
a particular region from a parent dark-matter-only simulation and re-simulating this part of the
universe with much higher resolution. The advantage of zoom-in simulations in galaxy formation
is that they combine relatively high resolution (comparing to cosmological simulations) while
the simulated galaxy is fully embedded in a cosmological environment. Hence, the very crucial
process of gas accretion from the circum-galactic medium (CGM) is included in the simulation.
Examples of suites of zoom-in simulations of galaxies include Auriga (Grand et al., 2017), FIRE-2
(Hopkins et al., 2018) and NIHAO (Wang et al., 2015).

The last type are simulations of isolated galaxies. In this approach, the focus is on reproducing
single galaxies in controlled conditions without the effect of their surroundings. These simulations
are ideal for studying secular processes in the discs of galaxies such as the development of bar
(e.g. Fanali et al., 2015) and spiral structures, radial migration of stars (e.g. Kubryk et al., 2013)
or the effect of stellar feedback on the interstellar medium of the galaxies. Moreover, mergers of
two or more galaxies can be studied in an isolated environment with great control over the mass
ratios and incidence angle of the merger (e.g. Naab & Burkert, 2003). However, in contrast to the
’zoom-in’ simulations effects from the interaction of the galaxy with the circum-galactic medium
are excluded. The review by Vogelsberger et al. (2020) offers a comprehensive summary of these
simulation types and their design techniques.

It is interesting to note that early numerical simulations of individual disc galaxies suffered
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from what is called ’angular momentum catastrophe’ (Navarro & Benz, 1991). In those sim-
ulations the gas that was infalling into dark matter halos during mergers was losing angular
momentum to the surrounding dark matter via the dynamical friction mechanism, a process that
is intensified when the gas is falling in as clumps rather than with a smooth distribution. Because
of the loss of angular momentum the resulting discs were too small in size and could not repro-
duce the extended gas distribution that we observe in real objects. This issue has been alleviated
in modern simulations (Grand et al., 2017) owing to the realisation that the injection of some
sort of thermal energy in the baryons of the infalling galaxy is needed in order to counteract the
gravitational collapse of the gas into clumps and limit the effect of the dynamical friction and
loss of angular momentum. Such heat-injection mechanisms include the supernova explosions
of massive stars and the activity of a central black hole. Another possible contributing factor to
angular momentum losses could be the numerical implementation of the simulation (Mayer et al.,
2008).

1.4 Semi-Analytic models of galaxy formation and evolution
An alternative approach to the modelling of galaxy evolution is the use of Semi-Analytic Models
(SAMs). These models offer a much more simplified approach compared to the full numerical
simulations, which were discussed before, since the complex hydrodynamical equations are not
solved exactly. Instead, several physical processes are modelled with simple, but physically
motivated, recipes/prescriptions which are governed by a set of free parameters. This leads to
the main advantage of SAMs over numerical simulations which is the fact that many different
realisations of the universe can be simulated in considerably faster and in a less computationally
expensive manner by simply altering and tuning the free parameters.

Dark matter halo merger trees are used as the backbone of semi-analytic models by providing
the properties of the halos (such as mass, spin etc.) on top of which the galaxy properties are
approximated using the recipes of the model. Initial semi-analytic models were using theoretically
computed trees arising from the extended Press-Schechter formalism (Press & Schechter, 1974).
However, in recent years most models are built using halo trees extracted from large scale dark-
matter-only cosmological simulations, such as the Millennium simulation (Springel et al., 2005).

Several groups of researchers have developed versions of semi-analytic models. Some of the
best known models include L-Galaxies (Henriques et al., 2020; Springel et al., 2001), GALFORM
(Lacey et al., 2016), the Santa-Cruz model (Somerville et al., 2008) and SAGA (Croton et al.,
2016). Despite the many differences in the choice of the recipes and the free parameters, all
semi-analytic models follow a similar pathway to populate the dark matter halos with galaxies
and subsequently evolve these galaxies in time. In brief, hot/non-star forming gas is assigned to
each halo based on the cosmic baryon fraction. A fraction of the hot gas is allowed to cool, using
a cooling recipe, which turns into the cold-star forming gas that most closely models a galaxy.
Based on a star formation prescription cold gas is turned into stars while usually stellar and AGN
feedback are modelled as an energy input to the gas that decreases the cooling rate. Furthermore,
galaxies can merge following the merger trees of their dark matter halos and a recipe based on
dynamical friction principles needs to be introduced to determine how much the baryonic merger
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lags behind the dark matter halo merger. Recent advances in SAMs also include tidal stripping of
satellite galaxies and detailed analysis of the chemical evolution by tracking a number of elements
and metals.

Semi-analytic models aim to reproduce observables that are central for in the understanding
of galaxy evolution such as the galaxy mass function, the black hole - stellar bulge relation or the
color dichotomy between star forming and non-star forming galaxies.

We discuss in greater detail the structure and the several recipes of the L-Galaxies semi-
analytic model in Chapter 4.

1.5 Chemodynamical models of disc galaxies
Semi-analytic models study the galaxy evolution in a holistic approach, trying to simulate a
range of different galaxies and physical processes. Another type of theoretical models, called
chemodynamical models, bear great resemblance to the semi-analytic approach but are more
focused on the chemical evolution of disc galaxies with a particular emphasis on trying to
replicate the properties of our own Milky Way (Schönrich & Binney, 2009; Kubryk et al.,
2015). For example, chemodynamical models aim to reproduce the metallicity distribution and
metallicity gradients observed in Milky Way discs as well as the ages and velocity dispersion of
the stars.

In most chemodynamical models the disc of the galaxy is decomposed in a series of concentric
rings. This ring decomposition allows for information about the radial profiles of the studied
properties to be obtained that can be directly compared with observations. Initially the rings
contain low (or zero) metallicity gas. For example, in the model by Schönrich & Binney (2009)
the rings are populated with cold (∼ 30K) and warm (∼ 104K) gas of which only the former is
available for star formation. As the processes of star formation and stellar evolution proceed,
this gas is enriched with metals that are expelled during the stellar evolution. Moreover new
gas is allowed to accrete with a given radial profile onto each ring. The rings in the models
evolve in an independent fashion, however there can be exchanges of material between different
rings in the form of radial flows of gas and migration of stars. Schönrich & Binney (2009) in
particular employed two mechanisms that redistribute mass between the rings, which they termed
’churning’ and ’blurring’, a nomenclature that has prevailed in the literature in studies of stellar
migration. ’Churning’ applies to both the cold gas component and the stars and refers to the
exchange of angular momentum between non-axisymmetries in the disc and these components.
In the ’churning’ process there is a change in the angular momentum of the affected material but
no change in the eccentricity of the orbit. In this model the ’churning’ probability, that is the
probability that a star or gas particle moves from ring 𝑖 to ring 𝑗 is given by:

𝑝𝑖 𝑗 =

{
𝑘𝑐ℎ𝑀 𝑗/𝑀max, for 𝑗 = 𝑖 ± 1
0, otherwise

(1.25)

where 𝑘𝑐ℎ is a free parameter, and 𝑀max = max(𝑀 𝑗 ).
The process of ’blurring’, which refers only to the stellar component, is the result of changes in
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the amplitude of the oscillations around the guiding centre of the stellar orbit. Schönrich & Binney
(2009) present their application of the ’blurring’ with a rigorous mathematical formulation, that
is not necessary to repeat in this section, and they obtain a probability distribution for the radius
of a star with a given angular momentum 𝐿. We return to a discussion of these two processes in
the introductory part of Chapter 3.

1.6 Outline of the thesis
The goal of this thesis is to study the radial transport of mass within the plane of disc galaxies.
Whereas it is established that both radial flows of gas and the change of orbital properties of
stars happen during the lifetime of a galaxy, their importance for the overall evolution is still not
well constrained. The semi-analytic and chemodynamical models, mentioned above, have mostly
approached the modelling of these processes from a purely theoretical/first principles standpoint.
Moreover, in numerical simulations there is limited exploration of the stellar migration and radial
gas flows compared to other physical processes such as the stellar and AGN feedback and on
top of that a quantitative description is usually lacking. In this thesis we look at this relatively
unexplored topic of theoretical astrophysics and aim to constrain the two processes using a state
of the art numerical simulation as well as one of the most advanced semi-analytic models.

We use a set of simulated galaxies from the Auriga suite of cosmological ’zoom-in’ sim-
ulations. In Chapter 2 we present an analysis of the radial gas flows in a selection of these
galaxies, we provide a parametrization that describes these radial flows and we discuss several
physical processes that can induce or influence the radial transport of gas. Material from this
chapter was published in Okalidis et al. (2021). In Chapter 3 we focus on the stellar component
in our simulations and in particular study the radial migration of stars during their lifetime. We
analyse the effect of stellar migration on the metallicity and age profiles of the disc and arrive
in a parametrized form that quantifies the strength of migration as a function of radius and time.
Material from this chapter was published in Okalidis et al. (2022). In Chapter 4 we present a
preliminary application of the aforementioned parametrizations in the L-Galaxies semi-analytic
model. We explore the effect of our implementation in a simple toy model as well as in the output
of the full scale L-Galaxies model. Finally, in Chapter 5 we provide a summary of the findings
of this work and the future paths of research that arise from it.
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Chapter 2

Radial gas flows in the Auriga simulations

2.1 Introduction

Examining the kinematics and flow of gas within the disc can give us useful insights into some
key aspects of the disc evolution. Gas inflowing through the disc plane is directed to the central
regions, fuelling star formation. Furthermore, radial flows result in mixing of metal poor gas
accreted in the outer regions of the disc with more metal-enriched gas due to the stellar evolution
in the plane and can influence the metallicity gradients we observe in disc galaxies (Spitoni &
Matteucci, 2011; Schönrich & McMillan, 2017; Yates et al., 2021). Similarly, the redistribution
of gas due to these flows determines the locations of star formation hence influences the star-
formation rate (SFR), stellar and gas density profiles.

There have been studies of, and recent interest in, how gas flows across the virial radius of
dark matter (DM) haloes (e.g. Nelson et al. 2015) and eventually reaches the central galaxy.
However, in the field of numerical simulations there are relatively fewer studies concerning how
gas flows in the plane of the disc affect the galaxies within these haloes.

Therefore, in this study, we focus on the path of the gas inside the galactic disc. The gas that is
in place in the disc along with the newly accreted gas (Stevens et al., 2017), are subject to angular
momentum loses, resulting in infalls towards the centre of the potential well, while following the
rotational pattern of the galaxy. The collisional nature of the gas means that turbulent behaviour
can become important, while the gas is also subject to external torques from surrounding subhalos
or non-axisymmetric structures such as bars.

Radial gas flows have been studied in early work by Lacey & Fall (1985), who concluded
that flows of the order of a few kms−1 are necessary in their galactic disc models to reproduce
the exponential gas density profiles observed in discs (Bigiel & Blitz, 2012; Wang et al., 2014).
Their arguments for the emergence of radial flows were based on physical grounds relating to
three processes. Firstly, the viscosity of the gas whereby the gas clouds interact which each other,
dissipating energy and leading to inwards flows. Secondly, the angular momentum difference
between the newly accreted onfalling gas and the gas already present in the disc. And thirdly, the
presence of non-axisymmetric density patterns, such as bars and spirals arms, which can add or
remove angular momentum from the gas.
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Following this work, many models that study the evolution of disc galaxies include recipes for
the transport of gas mass within the disc, usually by modelling the fluxes across different radii,
or the radial inflow velocity of gas at a given radius (Kubryk et al., 2015; Cavichia et al., 2014;
Bilitewski & Schönrich, 2012; Schönrich & Binney, 2009). These recipes, based on the physical
grounds laid-out by Lacey & Fall (1985), are necessary in most cases to reproduce the observed
metallicity profiles and construct accurate chemical evolution models.

From a theoretical perspective, Krumholz et al. (2018) have developed a model that includes
radial transport of gas via differential equations which depends on parameters such as the surface
density and velocity dispersion of the gas, the presence of non-axisymmetric torques and also
energy injection and dissipation from star-formation feedback and turbulence. This model is
based on previous works (Krumholz & Burkert, 2010; Forbes et al., 2012, 2014) that were aimed
at establishing the processes that relate to the radial mass transport in discs. These developments
are very useful in constructing advanced semi-analytic models that include radial transport of
gas and stars (Forbes et al., 2019). Similarly, Stevens et al. (2018), using the DARK SAGE
semi-analytic model (Stevens et al., 2016), allows for radial transport of material in the discs,
transferring mass between different annuli when there is a gravitational instability in a given
annulus, while conserving the angular momentum in the process.

From an observational perspective, gas movement in the disc plane can be studied using
high-resolution 21 cm atomic hydrogen (HI) (Sellwood & Sánchez, 2010; Schmidt et al., 2016;
Speights et al., 2019) or CO (Wong et al., 2004) gas maps of nearby galaxies. These studies
look for residual non-circular components of the gas motions in the disc by removing the bulk
rotational motions. They consistently report radial speeds in the range of a few km s−1 towards
the center (i.e. inflows). Schmidt et al. (2016) have found evidence of inflowing gas in most of
the HI THINGS galaxy sample, but also find some galaxies with no clear inflow, and some with
outward gas motions or more complex kinematics, showing that there is substantial variation
between different galaxies.

Using zoom-in simulations of disc galaxies, Nuza et al. (2019) have measured fluxes for
the gas through cylindrical shells at given radii, looking separately at the inflowing/outflowing
gas but also for the fluxes of gas leaving/entering the disc in the perpendicular direction. They
report net inwards radial flux in the discs, which is more pronounced in the inner regions and
also during the presence of merger events. Goldbaum et al. (2015, 2016) have run isolated disc
simulations with and without star formation feedback to study the effect of gravitational instability
driven turbulence as a mass transport mechanism in discs. They conclude that the gravitational
instability, expressed by the Toomre Q parameter, is a dominant source of radial transport of
material even when feedback is present and they find that this transport of gas is sufficient to fuel
the star formation in the inner part of discs. They show radial profiles of gas mass fluxes in the
disc, measuring fluxes of the order of ∼ 1𝑀⊙ yr−1 with high variability around the median values
at any given radius, with both radially inwards and outwards flows dominating at different times.

With the advent of new generations of high-resolution simulations and numerical codes,
modelling gas flows has become more detailed and accurate. Many simulations have also
managed to reproduce disc-dominated, rotationally-supported, star-forming systems (e.g. Font
et al. 2020; Marinacci et al. 2014; Aumer et al. 2013; Agertz et al. 2013) and have also studied
bar formation (Fragkoudi et al., 2020). Driven by these advances, we are opting to use the Auriga
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simulation suite (Grand et al., 2017) as a means to study detailed gas flows in galactic discs. The
gas properties in the Auriga simulations have been studied in Marinacci et al. (2017), finding
good agreement with observed properties such as the extent of the gas disc and the radial gas
profiles. It has been established in many simulations that merger events are drivers of gas flows to
the central regions of galaxies (Bustamante et al., 2018). Furthermore, bars have been shown to
be responsible for strong gas flows within the co-rotation radius. In this study, we focus more on
the epochs of the disc galaxies evolution that are free of major merger events, in order to examine
the gas inflow that arises from the internal processes of the disc evolution or smooth gas accretion
from the environment.

Our approach is to use our knowledge of gas flows gained from the Auriga simulation to
provide parametrizations that can be readily implemented into semi-analytic models (SAMs) of
galaxy formation. More specifically, we would like to later apply the results of this study to
the L-Galaxies SAM, that has recently been updated to include radial rings that allow the study
of radial dependencies in galactic discs (Henriques et al., 2020). The new model version also
includes the radial flow recipe presented by Fu et al. (2013), which allows gas to be transferred
from outer to inner rings with an inflow speed proportional to the galactocentric radius of the gas.
SAMs have the advantage over hydrodynamical simulations of requiring shorter computational
times, allowing for an easier exploration of the parameter space describing sub-grid physical
processes, and thus helping us understand which processes are primary and which are secondary
in influencing different observational phenomena.

We structure this chapter as follows. First, we outline the Auriga galaxy formation model
and the characteristics of the halos that we choose to use. Then, we describe our analysis, which
is done using the tracer particles that are implemented in the Auriga runs and is based on a
decomposition of the galactic discs into a set of concentric radial rings. In the next section we
present our results, looking at the effect of several physical quantities on the process of radial gas
inflow and finally, we extract parametrizations that describe this process and we provide a basic
method for including these in the context of a semi-analytic model.

2.2 Simulations
Auriga is a set of high resolution, magneto-hydrodynamical cosmological “zoom” simulations
for the formation of Milky-Way-mass galaxies. Our sample for this study comprises 14 Auriga
halos; 6 halos from the original simulation suite (Grand et al., 2017) with a halo mass1 in the
range 1−2×1012𝑀⊙, and 8 simulations of slightly lower halo masses of 0.5−1×1012𝑀⊙ (Grand
et al., 2019). We have selected these halos because they include tracers particles which are
necessary for our analysis. In addition to their mass, halos are selected based on a mild isolation
criterion from the 𝑧 = 0 snapshot of the dark matter-only counterpart to the cosmological Eagle
simulation of comoving side length 100 cMpc (L100N1504) introduced in Schaye et al. (2015).
The cosmological parameters that are used are Ω𝑚 = 0.307, Ω𝑏 = 0.048, ΩΛ = 0.693, 𝐻0 = 100ℎ
km s−1 Mpc−1 and ℎ = 0.667, taken from Planck Collaboration (2014).

1Defined to be the mass inside a sphere in which the mean matter density is 200 times the critical density,
𝜌crit = 3𝐻2 (𝑧)/(8𝜋𝐺).
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The initial conditions of the zoom simulations are set at 𝑧 = 127. The high-resolution regions
of these simulations have a mass resolution of ∼ 5×104 M⊙ per baryonic element and a comoving
softening length of 500 pc ℎ−1. The physical softening length grows until 𝑧 = 1, after which
time it is kept fixed. The physical softening value for the gas cells is scaled by the gas cell radius
(assuming a spherical cell shape given the volume), with a minimum softening set to that of the
collisionless particles.

The simulations are then evolved forward in time with the quasi-Lagrangian magneto-
hydrodynamics code AREPO (Springel, 2010; Pakmor et al., 2016) and a galaxy formation
model that includes the physical processes important for the formation and evolution of galaxies
(for a detailed overview, see Grand et al., 2017). In AREPO, gas cells are modelled with an
unstructured mesh in which cells move with the local bulk flow. The galaxy formation model
includes primordial and metal-line cooling (Vogelsberger et al., 2013) and a prescription for a
spatially uniform background UV field for reionization. Gas that becomes denser than 0.11 atoms
cm−3 is considered part of the star-forming interstellar medium (ISM), which is modelled as a
two phase medium: cold clouds embedded in a hot, volume filling phase (Springel & Hernquist,
2003) assumed to be in pressure equilibrium. Star particles form stochastically from this gas fol-
lowing a Schmidt-type star formation law, and are modelled as Simple Stellar Populations (SSPs)
defined by an age, mass and metallicity. The stellar evolution model follows type Ia supernovae
(SNe-Ia) and winds from Asymptotic Giant Branch (AGB) stars that return mass and metals (9
elements are tracked: H, He, C, O, N, Ne, Mg, Si and Fe) to the surrounding gas. Supernovae
type II are also assumed to return mass and metals following the instantaneous recycling ap-
proximation. Galactic winds from SNII are modelled by the wind particle scheme for non-local
energetic feedback (Vogelsberger et al., 2013), which effectively models the removal of mass
from star-forming regions and deposits mass, momentum and energy into gas of density lower
than 5% of the density of star-forming gas. The model includes prescriptions for the accretion of
gas onto black holes and energetic feedback from Active Galactic Nuclei (as described in Grand
et al., 2017). Magnetic fields are seeded at 𝑧 = 127 with a comoving field strength of 10−14 cG
(Pakmor et al., 2014). The magnetic field strength in the Milky Way-like halo has been shown to
quickly amplify to a strength and radial profile in excellent agreement with observations (Pakmor
et al., 2017, 2018, 2020).

For each halo we have 252 snapshots down to redshift 0, spaced at intervals ranging between
45 - 75 Myr with a median value of ∼ 60 Myr.

2.3 Methods

2.3.1 Tracer particles
Owing to the quasi-Lagrangian nature of the AREPO code, gas cells move both with the bulk
local gas flow and advect mass across their boundaries to neighbouring cells. In order to track
the evolution of fluid elements, therefore, we need to follow tracer particles that connect gas cells
at different snapshots in time. The tracers are initialized at the beginning of the simulation with
one tracer particle per gas cell. Tracers can move across neighbouring cell faces in a probabilistic
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Figure 2.1: Top left: Tracers selected in a ring centered at 8kpc for one of the haloes. Shown here
are their x and y positions in the plane of the disc. The next three panels show the evolution of
the planar distribution of tracers at the next three snapshots, with the lookback time from redshift
0 quoted on top.
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way depending on the ratio of the outward-moving mass flux across the face and the mass of the
cell, which is essentially a Monte Carlo sampling of the outward mass flux for each gas cell in
the simulation box (Genel et al., 2013; Grand et al., 2019; DeFelippis et al., 2017).

Tracer particles are not exclusively locked in the gas state but can occupy five different
cell/particle types depending on the physical processes they are subject to:

• non-star forming gas cells

• star-forming gas cells

• wind particles

• star particles

• black hole particles

A tracer can alternate between the different states. For example if a star-forming gas cell
creates a new star particle, the tracer associated initially with the star-forming gas cell will
subsequently track the star particle. Tracers can also alternate between the star-forming (SF) and
non-star-forming (non-SF) gas phases based on their cell density. Thermal dumps from AGN
feedback can directly heat SF to non-SF gas, while cooling processes naturally change non-SF gas
to SF. In addition, tracers can transfer into wind particles via supernova activity and potentially
return via fountain flows at a later time (Grand et al., 2019). Finally, tracers can move from star
particles back to gas cells via stellar evolution, e.g. AGB winds, though this is not a dominant
pathway, as Grand et al. (2019) find that comparatively small number of tracers move from star
particles to gas cells via AGB winds compared to supernova events.

The Auriga simulation volume is a cube of side length equal to 100 Mpc, with the high-
resolution region around the central galaxy being of order 1 Mpc (no low-resolution particles/gas
cells are found within this region). In this project, we are interested in the kinematics of the main
disc galaxy which in the majority of cases is under 50 kpc in diameter with regard to both its
stellar and gas content. Matter structures farther than a few times the disc radius at any given
snapshot should not immediately influence the gas flows in the disc, however they may become
relevant at a subsequent snapshot. For example, a subhalo just entering the virial radius of the
main halo does not influence the central disc. However the material (hence the tracers) carried
by this subhalo may potentially become part of the main disc at a later time, should it merge with
the main galaxy. Tracers locked in structures that never arrive at the vicinity of the main galaxy
are thus ignored during the analysis.

We make a selection of all the tracers which at the final snapshot of the simulation are within
a radius of 500 kpc from the centre of the galaxy. When initially selecting tracers, we do not
differentiate between those in the gas phase, winds or in stars, since a tracer locked in a star
particle at 𝑧 = 0 was most likely in the gas phase at an earlier time and hence was part of the
gas inflow that we study. The gas tracers at the final snapshot that are inside or in the vicinity
of the disc could either have been in place from early times or been accreted at a later stage
smoothly or by merging. Our radial cut is sufficiently large that tracers are unlikely to escape
this boundary even if they are launched in winds, ensuring that we do not lose information about
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the flow elements even at earlier times. Once selected, tracers can be tracked back in time to get
information on their positions and velocities.

2.3.2 Ring analysis
Motivated by the implementation of ring decomposition of the cold gas disc in L-Galaxies, we
decide to perform a similar kind of ring analysis in Auriga. We aim to have a description of the
kinematics of the gas that belongs to a ring centred at a given galactocentric radius in the plane of
the disc. We split galactic discs into a series of concentric rings of equal width extending out to
20 kpc from the galactic centre and 2 kpc above and below the galactic plane. In order to do this,
we rotate the coordinate system of the simulation box so that the plane of the disc is described by
the x and y coordinates, and the z-coordinate indicates the distance above or below the plane. The
disc plane itself is determined using information on the angular momentum of the stellar disc in
the simulation (as described in Grand et al., 2017). More specifically, the z-axis of the disc plane
is identified by calculating the dot product of the eigenvectors of the moment of inertia tensor of
star particles within 0.1 𝑅200, with the angular momentum vectors of the same star particles in
the coordinate reference frame of the simulation box. The eigenvector of the inertia tensor that is
most closely aligned with the principal angular momentum axis is chosen as the z-axis.

Our height and radius cuts are chosen so that they include most of the cold gas that comprises
the disc in the majority of cases. The radial cut was selected by inspecting the extent of the cold
gas distribution in the different halos. In only one halo did the cold gas disc extend further than
20 kpc, but for the rest of the cases the disc was fully included within the cut. Cold gas tracers
above our height cut are not directly associated with the radial motions in the disc that we want
to study, but are rather in an accretion phase perpendicular to the disc plane. These tracers are
also at a much lower density, so would not significantly contribute to the median properties of
the flows we compute for the disc.

Each ring is simply characterised by its galactocentric radius. Given that the extent of cold
gaseous discs varies between haloes and snapshots, we choose to normalise the radius of each
ring by dividing by the disc radius, of the star-forming gas disc at each snapshot. The radius is
calculated as the radius which encloses 95 per cent of the star forming gas in the disc, hence we
name it 𝑅95. We choose this definition for the disc edge, instead of 100 per cent of the SF gas, to
account for cases where blobs of cold gas are potentially accreting in the outer edges of the disc
without yet constituting part of it. It should be noted that we do not vary the width of the rings
between galaxies or snapshots, and we also use the same number of rings (20) in each case.

For each ring, we identify the tracers in the star-forming gas phase that lie in it at snapshot
𝑛 and then ask what the positions of these tracers are at the next snapshot 𝑛 + 1. In the absence
of major disturbances in the disc, a given parcel of gas initially confined within one ring and
at a specific azimuth, will be spread in the next snapshot in a way that follows the rotational
motion of the disc. That is to say, the parcel is stretched in the azimuthal direction. Together with
radial motion ascribed to bulk flows and/or diffusion, this creates an arc like feature in planar
configuration space. This is illustrated in Fig. 2.1, which shows how tracers spread out in the x-y
plane from an initial ring, centered at 8 kpc from the galactic centre, over the subsequent three
snapshots. We can see from the figure that, after three snapshots, there is considerable radial
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Figure 2.2: Examples of the histograms that are computed in order to extract the information for
the dispersion of tracers. At the top row we show the histograms in terms of the galactocentric
radius of the tracers. The initial distributions (in gray) are calculated at snapshot n and the final
(in blue) at the subsequent snapshot n+1. At the bottom row we show the histograms for the
same rings in terms of the difference in galactocentric radii Δ𝑅 = 𝑅𝑛+1;𝑛 − 𝑅𝑛. In this case the
distribution at snapshot 𝑛 is a delta function whereas the one at 𝑛 + 1 displays the spread and
median shift of the tracers. The median of the distributions in all cases is marked with the vertical
arrows. Over-plotted is the Gaussian fit to the final distribution. The red horizontal arrows show
the 16-84 percentile ranges of the final distribution. Here we select the cases for an inner ring
(left) at ∼ 2 kpc and an outer ring (right) at ∼ 14 kpc to show the difference in the spread of the
tracers.
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movement of the tracers spreading both inwards and outwards from the initial ring boundaries.
We can quantify this effect of gas redistribution by constructing the histogram of the new

radial position of tracers at snapshot 𝑛 + 1. Initially, at snapshot 𝑛, the distribution of tracers is
approximately a top hat function with the width of the ring and median at the centre of the ring.
At the next snapshot, the movement of tracers outside the ring leads to a new distribution with an
different width (usually larger) and a shift (inwards or outwards) of the median of the distribution.
We can directly utilize the information of the distribution at 𝑛 + 1 to describe the radial motion of
the gas, using the difference between the new and initial median as a measure of the bulk radial
motion and the width of the distribution as the measure of the spread of values around the new
median. The caveat with this approach is the introduction of a floor in the value of the width
because the width of the top hat distribution at snapshot 𝑛 is inherently included in the width of
the distribution at snapshot 𝑛 + 1. This can become more problematic at the inner rings where
gas is naturally more constrained in its radial motion. To avoid the presence of a floor value we
can alternatively look at the distribution of tracers expressed by the difference in their initial and
final galactocentric radii, by computing Δ𝑅 = 𝑅 𝑓 𝑖𝑛𝑎𝑙 − 𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for each individual tracer. Then by
construction the initial distribution at snapshot 𝑛 is a delta function at Δ𝑅 = 0 and the distribution
at 𝑛 + 1 is a histogram centered at the new median with its the width similarly measuring the
spread around the median, unconstrained from of a floor value. By testing both approaches we
find that the resulting values for the widths are comparable, apart from the innermost rings, so
the effect of the width of the ring does not appear very pronounced in the spread of the tracers
between the two snapshots. Nevertheless, it is more reliable to use the histograms of Δ𝑅 in our
analysis, eliminating the possible effect of the width of the rings on the results. In Fig. 2.2 we
show the histograms both in terms the galactocentric radii of the tracers and the difference Δ𝑅.

Tracking gas motions

In our analysis, we exclude the tracers that in the time between the two snapshots have been in
the wind phase. Although wind particles are launched in random directions in the Auriga wind
implementation, the enhanced matter density in the plane of the disc restricts the outflows mainly
in the perpendicular direction to the disc in a fountain flow. As a result, between the two snapshots
a tracer can be launched from an inner ring in fountain trajectory and re-deposited in an outer
ring. Hence, tracers that have been or are in winds may contaminate the information about pure
radial motions within the plane. Tracers that have entered a wind particle are removed only for
the snapshot pair but once they have returned to the disc later they may be included again as long
as they have not entered a wind particle between the next pair of snapshots.

We further clean the sample by removing the data for rings belonging to halos that are in
a merger state or more generally experiencing interaction with a satellite subhalo at a given
snapshot. We choose 1/50 as the limit for the subhalo-to-central total mass ratio for a merger of
importance. Merger cases are excluded on the reasoning that the disruption of the disc in the
merger process can be significant enough that the cylindrical symmetry is lost and assigning rings
cannot accurately represent the geometry of the gas motions. Mergers with the central galaxy
can be identified using the SUBFIND (Springel et al., 2001) catalogs that are available for the
simulations. We remove the snapshots at which the merger occurs according to SUBFIND and
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3 snapshots, or equivalently ∼ 180 Myr, before and after the merger to partially account for the
tidal interactions in the gas and stellar distribution that happen during the merger process and the
time for the disc to settle after the merger. Changing the merger ratio limit to higher values (e.g.
1/10) does not influence significantly the results owing to the fact that most of the halos in the
last 6 Gyr have very quiet merger histories and there are not many mergers in the mass ratio range
1/10 to 1/50. The number of halos we study is small enough that we have also visually checked
the positional distribution of the gas tracers between the different snapshots and confirmed that
this method successfully removes periods of significant disturbance by mergers. Filtering out the
snapshots during merger phases removes 30 per cent of the total rings in the sample.

In Fig. 2.2, we choose to demonstrate characteristic examples of histograms obtained for
two rings in the same halo, one inner and one outer one. We find that the histograms tend to
be reasonably symmetric around the new median position of the gas, i.e. gas tracers travel both
inwards and outwards in the radial direction by roughly the same amount. In the majority of
cases, the histograms can be accurately fit by a Gaussian function and we can use the standard
deviation of the Gaussian to approximate the width of the distribution. However, there are cases
for which the distribution of tracers in the next snapshot is not well approximated by a Gaussian
(see example in Appendix A Fig. A.1). These cases arise almost exclusively in the outer rings
of discs, which are more susceptible to external interactions (from subhalos) or mixing with the
newly accreted gas because of their lower surface density. Furthermore, in the case of mergers,
we observe more irregular distributions because the incoming subhalo can disturb the outer
regions of the disc, leading to histograms that appear skewed or more random with large amounts
of material having moved much further inwards or outwards. Skewed distributions are mostly
eliminated by the merger cut.

Due to the possibility of such asymmetric distributions, we prefer to use the percentile ranges
in order to describe the width of the distribution in this work. The 16-84 percentile range in
particular is useful for evaluating the goodness of Gaussian fitting. If the histogram resembles a
Gaussian, then the 16-84 percentile range should be very similar to twice the width of a Gaussian
fit, 2𝜎. We find that in most cases the two quantities can be used interchangeably, as shown in
Fig. A.2 in the Appendix A.

We thus extract two quantities from the shape of the histograms: the 16th-84th percentile
divided by 2, which we will refer to as the ‘width’, 𝑤, in kpc; and the difference in median
galactocentric radius between the initial (at snapshot 𝑛) and final (at snapshot 𝑛 + 1) tracer
distribution, which we will refer to as the ‘median shift’, Δ𝜇, in km s−1 (i.e. normalising by the
time difference Δ𝑡 between the snapshots).

There is a potential caveat that, to perform this kind of analysis, we ideally need to have
a large number of tracers in a given annulus. Annuli with an insufficient number of tracers
can contaminate the sample by mere lack of statistics, which leads to low confidence in the
measurement of the percentile range. This becomes a problem usually in the outermost rings,
where the density of cold/star-forming gas is low. Therefore, in this work we only consider annuli
with a minimum of 500 tracers at snapshot 𝑛. This cut only removes 0.8 per cent of the rings.

We repeat the above process between all pairs of consecutive snapshots. This gives us a set
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of data for each ring that is its radius, its initial snapshot, the spread, and the median shift,

Ring (halo 𝑗 , 𝑟𝑖, 𝑡𝑘 , 𝑤𝑖 𝑗 𝑘 , Δ𝜇𝑖 𝑗 𝑘 ) (2.1)

where halo 𝑗 is the 𝑗 th halo to which the 𝑖th ring belongs at the 𝑘th snapshot. Carrying out the
analysis for the 14 halos, splitting each disc into 20 rings and working over 100 snapshot pairs,
provides 28000 data points in the raw sample. We use the 100 last snapshots of the simulation ,
which is a total of lookback time of approximately 6 Gyr.

Furthermore, each ring has a set of associated properties that can be measured, such as the gas
surface density Σgas, total surface density Σtot, gas fraction 𝑓gas, velocity dispersion 𝜎tot (as well
as in individual directions 𝜎r, 𝜎z), the Toomre Q parameter for the gas𝑄 = (𝜎𝑔𝑎𝑠𝜅𝑔𝑎𝑠)/(𝜋𝐺Σ𝑔𝑎𝑠),
𝜅 being the epicyclic frequency and 𝜎𝑔𝑎𝑠 the total gas velocity dispersion using all three spatial
components, and finally the star formation rate. These quantities can be extracted from the tracer
particle data which inherit their properties from their parent gas cells. The velocity dispersion is
calculated using the individual velocities of each tracer in the gas phases. The surface densities,
are computed by counting the number of tracers in the gas phases (Σgas) and stars and gas phases
(Σtot), multiplying by the associated masses and dividing by the surface area of the ring. In
addition, we calculate the accretion rate onto a given ring ¤𝑀acc and the accreted mass fraction
,that is the accreted mass divided by the gas mass already present in the ring, 𝑓acc = 𝑀acc/𝑀gas.
The accreted mass is calculated by counting the tracers which are in the gas phases (non-SF and
SF) and which at snapshot 𝑛 are outside the ring limits and at snapshot 𝑛 + 1 within them. This is
strictly accretion of material that is external to the defined disc region at the initial snapshot and
does not include material exchange between different rings. The accretion rate is then given by the
total mass of accreted tracers divided by the time between the two snapshots, ¤𝑀acc = 𝑀acc/Δ𝑡. We
also divide the accreted mass fraction by the snapshot spacing to get a time-normalised quantity:
¤𝑓acc = 𝑓acc/Δ𝑡 = ¤𝑀acc/𝑀gas. The quantity ¤𝑓acc is essentially the inverse of an accretion timescale.

Evolution over time

In the fiducial case, we calculate𝑤 andΔ𝜇 between consecutive snapshots (i.e. between snapshots
𝑛 and 𝑛 + 1), but we can equally compute them for the time between snapshots n and 𝑛 + 2 or
𝑛 + 3. In these cases, the time difference is roughly two and three times longer, so the histograms
appear naturally broader. The quantity 𝑤, as expressed in kpc, is therefore dependent on different
timestep or snapshot spacing selections. By looking at the evolution of 𝑤 in a given ring between
𝑛 + 1, 𝑛 + 2 and 𝑛 + 3, we can identify its time dependence, assuming it follows a proportionality
of 𝑤 ∼ Δ𝑡𝑎, where Δ𝑡 is the time difference between the two snapshots. This is important if we
want to have our parametrized quantities in a timestep invariant form, so that the result can be
generally applied to models or simulations with different timestep widths. In Figure 2.3, we show
an example of how the radial positions of a group of tracers in a given ring have evolved after 1,
2 and 3 snapshots. We stop at 3 snapshots after snapshot n, which is a time interval comparable
to the dynamical time of the disc for most radii, because is sufficient to capture the radial flows
that we want to study. Using n+4 or n+5 gives convergent results in the radial and time evolution
of w and Δ𝜇. If we proceed further, the histograms deviate from a Gaussian distribution, losing
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Figure 2.3: Radial distribution of the tracers selected in a ring initially at snapshot n as it evolves
at subsequent snapshots 𝑛 + 1, 𝑛 + 2 and 𝑛 + 3. The arrows show the medians of the distributions
and the horizontal lines the 16-84th percentile.

a clear peak. In addition as we use larger time difference we increase significantly the error on
the measurement of the quantity 𝑤.

In section 2.4, we provide the exact time dependence of 𝑤 and how different snapshot spacings
influence it and Δ𝜇.

Redshift and mass dependencies

In order to check if there is any significant redshift dependence to the radial flows studied here, we
have initially split all the output snapshots into three broad time bins of 2 Gyr. Each bin contains
approximately 30 snapshots, for which we calculate the tracer positions at all the snapshot pairs
𝑛 and 𝑛 + 1. We find that the there is no significant redshift evolution in the trends that we present
in Section 2.4. Furthermore, we have split the sample between the seven most massive and least
massive halos, but find no evidence for any mass dependence. Therefore, for our final study we
combine the data over the last ∼6 Gyr (100 snapshots) for all the halos.
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Figure 2.4: Radial dependence of the spread 𝑤 (left) and the median shift Δ𝜇 (right). The data
points, for all 14 halos over the range of 6 Gyr, are represented as a number histogram and the red
line shows the median curve. Also shown the contours enclosing a given percentage of the points.
For these plots, we evaluate the quantities using consecutive snapshots with time difference 60
Myr on average. We observe an increasing trend with the radius for 𝑤 which can be fit with a
power law. In this plot we present 𝑤 normalised by the snapshot spacing Δ𝑡 to account for the
small differences in the exact spacing between the different snapshot pairs. For Δ𝜇 there is a flat
trend up to 0.75 disc radii and a linear drop in the outer regions where there is faster inflow of
material.
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2.4 Results
The first observation that we naturally want to test is how 𝑤 and Δ𝜇 vary with the radial position
of the ring. We find that 𝑤 is larger on average for rings at larger galactocentric radius. The
median of the 𝑟 – 𝑤 relation for the whole sample can be best fit with a power law of with slope
< 1, as shown in the left panel of Fig. 2.4. In the inner regions of discs, Δ𝜇 is a constant value of
around −3 km s−1 up to almost 70% of the disc radius, in agreement with the observations that
show gradual inflows of gas in disc galaxies (e.g. Schmidt et al. (2016)). In the outer regions, the
value of Δ𝜇 becomes more negative, ranging between -3 and -15 km s−1 on average, indicative
of enhanced gas inflow. In the very centre of galaxies, positive (outwards) values of low speed
are a manifestation of the fact that the gas in the innermost ring cannot travel any further inwards
but also that higher outflow speeds are driven by central AGN feedback.

The above statements are visualised in Figure 2.4, which displays the compilation of data
for all the halos over the selected rings (excluding merger cases and low number of tracers, as
discussed in Section 2.3.2) and over the aforementioned snapshot range.

These statements hold true if we average the data for all halos (as shown in Fig. 2.4) but also
if we look at each halo individually. For an individual halo, the curve of 𝑤 and Δ𝜇 versus radius
can be less smooth in some cases, although the radial trends are still similar. We find that before
removing the merging stages, halos with quieter merger histories and a more stable disc evolution
return more consistent results between different time intervals.

For three of the halos from the higher mass sample (1−2×1012𝑀⊙) in our simulation suite, we
measure high 𝑤 and irregular Δ𝜇 values at inner radii. Looking directly at the cold gas tracer x-y
plane for these halos, we see large holes devoid of gas in the inner regions which have bubble like
profiles. These holes are created by feedback from the AGN, which pushes gas out of the central
region, increasing the 𝑤 measured and giving positive (outwards) Δ𝜇 values in these rings. We
mitigate these feedback effects by removing the tracers that have been in wind particles, but the
overall feedback effect cannot be removed completely. However, these bubbles are only present
in a small subset of the snapshots, so do not influence our conclusions statistically.

We test for the convergence of the results by varying the number of radial bins and the height
cut. In the first case, if we use a very small number of rings (e.g. 5-7, compared to the 20 rings
we use by default), we get higher values for the spread at a given radius. Using more than 25
is oversampling and results in a low number of tracers per ring. In general, we get convergent
results if between ∼ 10 and 25 rings are used. Varying the maximum height above and below the
disc plane between 2 and 4 kpc does not have any qualitative effect on the median trend, although
there is no convergence if we use a very conservative height cut (<1 kpc), because not all the
tracers that are relevant for disc flows are included.

2.4.1 Timestep invariant expression of 𝑤 and Δ𝜇

As mentioned above, in Fig. 2.4 we present the quantities 𝑤 and Δ𝜇 as calculated between two
consecutive snapshots in the simulation. The time difference, Δ𝑡, between consecutive snapshots
is on average 60 Myr, with a range between ∼50-70 Myr. Given this, when looking between
snapshot 𝑛 and 𝑛+2 or 𝑛+3, Δ𝑡 increases to ∼ 100−140 Myr and ∼ 150−210 Myr, respectively.
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Δ𝜇 is presented in units that already account for such differences in Δ𝑡, but this is not the case
for 𝑤. In Fig. 2.5, we show how 𝑤 and Δ𝜇 vary on average if calculated between snapshots 𝑛

and either 𝑛 + 1, 𝑛 + 2, or 𝑛 + 3. For Δ𝜇, we find a convergence in the results around the value of
−3 km s−1. For 𝑤, a dependence on the number of snapshots chosen is clear. From the distance
between the median curves in the top-left panel, we get an indication of how 𝑤 varies as we
double or triple the size of Δ𝑡. The increase is not directly proportional to Δ𝑡, as shown in the
top-right panel where we plot the quantity 𝑤/Δ𝑡. Instead, for the quantity 𝑤2/Δ𝑡, corresponding
to a

√
Δ𝑡 time dependence, we see better convergence within the scatter. However, we also find a

systematic trend where 𝑛 + 3 lies lower on average than 𝑛 + 2, which in turn is lower than 𝑛 + 1.
Whether the spread of the tracers was governed by a pure diffusion process, we would expect a
time invariance with 𝑤2/Δ𝑡. Finally, 𝑤3/Δ𝑡 converges very well in all three cases in the inner
disc, and the deviation in the outer parts shows no systematic (i.e. the 𝑛 + 3 median line now lies
in between the other two) so it is also consistent within the scatter. Hence, 𝑤3/Δ𝑡 appears to be
the quantity that is most timestep invariant when describing the spread of the tracers.

We want to quantitatively confirm the cubic power dependence by running the following
test. Based on the assumption that 𝑤 ∼ Δ𝑡𝑎, it follows that 𝑤𝑏/Δ𝑡 = const., where 𝑎 = 𝑏−1,
independently of whether 𝑤 is calculated between the pairs of snapshots [𝑛, 𝑛 + 1], [𝑛, 𝑛 + 2] or
[𝑛, 𝑛 + 3]. So, in order to identify the best value for the power 𝑏, which will show us how 𝑤

evolves with time, we calculate the following three ratios,

𝑞12 =(𝑤𝑏
1/Δ𝑡1) / (𝑤

𝑏
2/Δ𝑡2)

𝑞13 =(𝑤𝑏
1/Δ𝑡1) / (𝑤

𝑏
3/Δ𝑡3) (2.2)

𝑞23 =(𝑤𝑏
2/Δ𝑡2) / (𝑤

𝑏
3/Δ𝑡3)

where the subscripts on the right-hand side 1, 2, 3 show, respectively, whether 𝑤 and Δ𝑡 have been
calculated between [𝑛, 𝑛 + 1], [𝑛, 𝑛 + 2] or [𝑛, 𝑛 + 3] for the tracers in a given ring at snapshot 𝑛.
We can also combine the data for the three ratios to include the information for all three timesteps
that are examined. If 𝑤𝑏/Δ𝑡 = const. holds, these ratios should ideally be equal to 1 for the value
of 𝑏 that better describes the process of radial spreading. We thus identify the value of 𝑏 that
minimizes the difference of ∑︁

𝑟𝑖𝑛𝑔𝑠

(𝑞 − 1)2 , (2.3)

where 𝑞 can either be each of the above ratios independently or the combined data for all three
of them. The above sum is minimised very close to the value 𝑏 = 3 (exact value 2.97) when
using all the data, as shown in Fig. 2.6, indicating that the quantity 𝑤3/Δ𝑡 is the most timestep
invariant. When using the individual ratios the minimum values range around 𝑏 = 3 from 2.7 to
3.4. If we consider only the outer part of the disc (𝑟/𝑅95>0.75) the minimum value for b is 2.7
or only for the inner part (𝑟/𝑅95<0.75) b𝑚𝑖𝑛 = 3.2. We will define 𝛿 = 𝑤3/Δ𝑡 for simplicity from
now on. This will be the quantity we aim to parametrize along with Δ𝜇. In Fig. 2.7 we show the
radial dependence of 𝛿 for the whole sample of rings.
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2.4.2 Dependence on physical properties

We would like to check whether the radial dependence of 𝑤 and Δ𝜇 are driven by some physical
process, or are correlated with physical properties either of the individual rings or the galactic
disc as a whole.

If any dependencies present are not due to a global disc property, i.e. do not vary significantly
among galaxies, then we can treat each ring as an independent data point no matter which halo it
belongs to. Then, the premise is that the width of the histogram is driven by some local, internal
property within the ring or process associated with it (for example the perturbing effect of a local
feature such as a spiral arm). As mentioned before, we observe an increase in 𝑤 with increasing
radius (see Fig 2.4). There is a considerable scatter in this relation, but the overall trend is clearer
when taking mean values of the spreads for given radii.There is also large scatter in the relation
of Δ𝜇 versus radius towards both negative and positive values, which become more pronounced
in the larger radii.

The source of the scatter could be due to a lack of homogeneity among the halos or a
dependence on a secondary parameter that could be either directly measurable in the simulation
output or acting in between the snapshots. When separating the data between the different halos
and reproducing the 𝑤 – 𝑟 and Δ𝜇 – 𝑟 relations for each, we find that their median relations
lie very close to each other and hence we cannot attribute the scatter in the full dataset to halo
variance.

We have chosen to examine a number of local properties that could potentially influence 𝑤.
Firstly, we consider the total baryonic surface density (Σ𝑡𝑜𝑡), the gas surface density (Σ𝑔𝑎𝑠), and
their ratio the gas fraction ( 𝑓𝑔𝑎𝑠). These properties can tell us whether there is a direct relation
between the flows and the amount of material in the ring, as well as distinguish between the
effect of gas and total baryonic mass. We also consider the gas velocity dispersion (𝜎), which is
a measure of the internal kinetic energy of the material and of the amount of turbulence. This
is further split into the velocity dispersion in the radial direction (𝜎𝑟) and that perpendicular
to the disc plane (𝜎𝑧), in order to identify which is dominant. We also examine the effect of
accretion, which has been postulated as a driver of radial flows, by computing the mass accretion
rate ( ¤𝑀𝑎𝑐𝑐) onto a ring and the accreted gas mass fraction ( ¤𝑓𝑎𝑐𝑐). Finally, the star formation
rate (SFR), which relates the energy deposition from stellar feedback to the gas that could drive
flows and the Toomre parameter Q as a measure of the gravitational instability that, as mentioned
before, has also been related to gas flows.

In Figure 2.8, we plot 𝛿 against the four properties which correlate most strongly with it.
The median curves are plotted above the density histograms to show the trends more clearly.
Again, these plots have a non-trivial amount of scatter but also well-defined loci where we have
the highest point density. We choose to present 𝛿 here, rather than 𝑤, as the trends seen are
qualitatively similar and 𝛿 is the quantity we decide to parametrize in the following section.

We can see in Fig. 2.8 that 𝛿 increases with increasing gas fraction, increasing accreted gas
fraction, and decreasing total (and gas) surface density. We also find that there is an increasing
trend with the velocity dispersion 𝜎𝑡𝑜𝑡 , which is mainly driven by the radial component 𝜎𝑟 . There
is no trend seen with SFR or Toomre Q. It essential to differentiate which of these trends are just
correlations with radius, and which have an independent contribution. For example, the increase
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in 𝛿 and decrease in Σ𝑡𝑜𝑡 with radius naturally leads to an anti-correlation between 𝛿 and Σ𝑡𝑜𝑡 , but
does not necessarily mean that the two are causally connected.

The correlation with 𝜎𝑟 can be understood on physical grounds since the tracers in a ring
with high velocity dispersion, are more likely to travel to larger distances resulting in broader
histograms with higher values of 𝛿. Concerning ¤𝑓𝑎𝑐𝑐, a larger amount of accreted material is
likely to disturb the existing material in the ring, driving radial motions. There is a similar,
although weaker, trend with the accretion rate to the ring.

Concerning Δ𝜇 there are only weak trends with the gas accretion rate, accreted gas fraction,
and the velocity dispersion. Larger accretion and velocity dispersion lead to more negative
velocities (i.e. larger inflow speeds). The quantity that correlates most strongly with Δ𝜇 is the
mean change in the specific angular momentum of the gas, as shown in Fig. 2.9. The specific
angular momentum in the z-direction of a gas cell is expressed as 𝑙𝑧 = |x × v| or simply 𝑟𝑣𝑟𝑜𝑡 .
We calculate the change in angular momentum Δ𝑙𝑧 for each tracer by taking the difference in the
angular momentum in the 𝑧-direction (i.e. out of the plane of the disc), 𝑙𝑧, between snapshots 𝑛 and
𝑛+1. The values for 𝑙𝑧 are drawn from the parent gas cell for each tracer as it is for the other tracer
properties. The correlation between Δ𝜇 and Δ𝑙𝑧 is expected, since a loss of rotational angular
momentum will lead to inward motions, expressed as the negative change in the gas’ median
position. Following the definition of 𝑙𝑧 and since most of the gas is in nearly circular orbits in
the disc and the rotational velocity curves are reasonably flat, a change in angular momentum
Δ𝑙𝑧 is correlated with a change in radius, which is expressed as the median shift, Δ𝜇, in our case.
Further insight is needed with regard to the process that causes the angular momentum change,
and hence the bulk flow, in each case.

2.4.3 Identifying the strongest correlations and causations in the data
We have tested for secondary dependencies of 𝛿 and Δ𝜇 at fixed radius by plotting the residuals
around the median 𝛿 − 𝑟 and Δ𝜇 − 𝑟 relations. The residual is simply the distance of a given data
point from a fit to the median relation, which in the case of 𝛿 − 𝑟 is parametrized as a power law
and in the case of Δ𝜇 − 𝑟 as a piece-wise linear fit. Looking at the residuals allows us to make
a distinction between quantities that are actual drivers of trends in 𝛿 and Δ𝜇, and those that only
correlate because of a third property (in our case the radius). We quantify the strength of the
relation between the residual and a secondary property by calculating the correlation coefficient
between the two. Table 2.1 shows the values of these correlation coefficients for the selected
quantities, both for the residuals in 𝛿 andΔ𝜇. A higher absolute value of the correlation coefficient
is an indication that this quantity is more likely to drive the scatter we observe around the median.

First of all, we find that the residuals do not show evidence of time dependence as there is
an absence of correlation with redshift, and nor any correlation with a specific halo. 𝑓𝑔𝑎𝑠 is an
example of a quantity that shows positive correlation with 𝛿 but no trend with the 𝛿 − 𝑟 residuals.
On the other hand, the velocity dispersion 𝜎𝑡𝑜𝑡 has a positive correlation with the 𝛿 − 𝑟 residuals.
Upon splitting the velocity dispersion into different components, we find that this correlation is
driven mostly by the dispersion in the radial direction 𝜎𝑟 . In other words, the scatter in the 𝛿 − 𝑟

plane is produced primarily by the different 𝜎𝑟 among rings at a given radius. Differences in the
accreted gas fraction also play a role in producing the scatter seen. The residuals as a function of
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Figure 2.5: Mean radial profile of 𝑤 (top left), 𝑤/Δ𝑡 (top right), 𝑤2/Δ𝑡 (middle left), 𝑤3/Δ𝑡
(middle right) when calculated between snapshots 𝑛 and 𝑛 + 1 (green), 𝑛 + 2 (blue) and 𝑛 + 3
(magenta). 𝑤 naturally has higher values for the larger timestep case, between 𝑛 and 𝑛 + 3. The
quantity 𝑤3/Δ𝑡 is the one that leads to the best convergence between the three cases in contrast to
a simple 𝑤/Δ𝑡 expression which does not represent the time evolution of w accurately or 𝑤2/Δ𝑡
which shows a systematic dependence. Bottom right panel: The radial profile of the median shift
Δ𝜇 is similar in all three cases showing a consistent calculation of the bulk inflow velocity. The
shaded regions show the 1𝜎 intervals around the median curves.
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Figure 2.6: The ratios described by Eq. 2.2 in Section 2.4.1 help us identify the best fit value
for the power in the expression 𝑤𝑏/Δ𝑡. The x-axis has a range of b values and the y-axis is the
measure of the deviation of the ratios from 1 where a smaller value in the y-axis indicates a better
fit around 1. The combined data (solid circular points) yield a minimum for the parameter 𝑏 at a
value 𝑏 = 3, while also taking each ratio individually (semi-transparent points) gives us minima
values around 𝑏 = 3.



38 2. Radial gas flows in the Auriga simulations

0.0 0.2 0.4 0.6 0.8 1.0
R/R95

0

10

20

30

40

50

60

70

δ
(k
p
c3
G
yr
−

1
)

0.99

0.99

0.95

0.82

0.68
0.46

0.34 0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

lo
g(
N
p
oi
n
ts
)

Figure 2.7: Radial dependence of 𝛿, similar to Fig. 2.4, showing the best fit to the median relation.
The best fit power is 1.1, slightly different to a linear relation in the inner radii.
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Figure 2.8: Top row: Accreted-to-total gas mass fraction normalised by snapshot spacing (left)
and gas velocity dispersion in the radial direction (right) plotted against the spread measure 𝛿.
The points are represented as a number histogram and the red line shows the median curve. Also
shown the contours enclosing a given percentage of the points. Bottom row: Total surface density
and gas fraction plotted against the spread measure 𝛿. The points are represented as a number
histogram, the red line shows the median curve. Also shown the contours enclosing a given
percentage of the points. There is an anti-correlation in the case of total surface density and a
correlation with gas fraction. These trends arise as a consequence of the radial dependence of 𝛿
and the radial dependence of these quantities and do not indicate a direct physical relation.
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Figure 2.9: The correlation between the median shift and the change in the specific angular
momentum of the tracers is an indication that we observe a phenomenon where the inwards
motion of gas (negative Δ𝜇 values) is associated with a loss of angular momentum (negative Δ𝑙𝑧).
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Quantity 𝑅𝑐𝑜𝑟𝑟 with 𝛿 𝑅𝑐𝑜𝑟𝑟 with Δ𝜇

𝑧 -0.09 0.07
Σ𝑡𝑜𝑡 -0.01 0.18
Σ𝑔𝑎𝑠 0.06 0.16
𝑓𝑔𝑎𝑠 0.09 -0.07
𝜎𝑡𝑜𝑡 0.25 0.08
𝜎𝑟 0.28 0.03
𝜎𝑧 0.23 -0.04
¤𝑀𝑎𝑐𝑐 0.11 0.22

𝑓𝑎𝑐𝑐/Δ𝑡 0.24 -0.29
SFR -0.11 0.14

Table 2.1: Evaluation of the correlation factor, 𝑅𝑐𝑜𝑟𝑟 , between the residuals and the quantities
of interest. A stronger correlation coefficient is an indication that the particular quantity is more
important in influencing the scatter in the 𝛿 − 𝑟 or Δ𝜇 − 𝑟 plots.

𝜎𝑟 and ¤𝑓𝑎𝑐𝑐 are shown in Fig. 2.10. We present the residual plots of the quantities that correlate
more strongly.

Regarding Δ𝜇, Table 2.1 shows that there is a weak but clear anti-correlation with ¤𝑓acc,
followed by a positive correlation with the surface density. This is reasonable, since the primary
quantity from which we extract the residuals is the radius, and since Δ𝜇 shows no correlation
with radius in the disc proper, the direct relation of it with ¤𝑓acc is reflected in the residuals. The
residual plot for Δ𝜇 as a function of ¤𝑓acc is shown in Fig. 2.11.

Based on the information from the residuals discussed above, we include the quantities with
the strongest residual correlations alongside radius in the final parametrization.

2.4.4 Best fits

The mean evolution of 𝛿 with radius can be fit accurately with a power law of ∼ 1.1 (Fig. 2.7).
The power law fit is slightly preferred over a linear fit in 𝑟 because it better describes the 𝛿 − 𝑟

dependence in the innermost parts of the discs. Of all the secondary quantities that we consider,
¤𝑓𝑎𝑐𝑐 and 𝜎𝑟 show the strongest correlations in the residuals around the mean 𝛿 − 𝑟 curve (see

Table 2.1). We normalise the secondary quantities with some characteristic values to always have
non-dimensional terms in the right-hand side of the parametrizations.

Our final parametrization is the combination of the power law fit to the radius and a linear fit
to the secondary quantity, extracted from the residual information. Consequently, we present two
possible parametrizations:
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Figure 2.10: The residuals in the around the median in the 𝛿 − 𝑟 plot correlate with the radial
velocity dispersion of the gas. At a given radius, higher velocity dispersion of the material leads
to larger values of the spread 𝛿. Positive values for the residuals mean that at the given ring the
measured spread is above the median curve of the whole sample.
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Figure 2.11: There is a weak correlation of the residuals around the mean Δ𝜇 with the accreted
gas fraction ( ¤𝑓𝑎𝑐𝑐), where the more gas is accreted compared to the existing gas in the ring the
larger is the inflow speed.
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𝛿 / kpc3 Gyr−1 = 35.9 (𝑟/𝑅95)1.1 + 21.8
(
𝑓acc ∗

60Myr
Δ𝑡

)
− 2.8 (2.4)

𝛿 / kpc3 Gyr−1 = 35.9 (𝑟/𝑅95)1.1 + 14.9
(

𝜎𝑟

40 km s−1

)
− 9.9 (2.5)

In Fig. 2.12, we show the calculated 𝛿 using these parametrizations and plot it against the
actual value for 𝛿 for each ring measured from the data. The median line for the dataset in this
𝛿meas − 𝛿calc plot lies on the 1-1 relation (dashed black line) out to around 20 kpc3 Gyr−1, as
expected. The scatter around the 1-1 relation follows from the scatter around the linear fit of the
residual plots.

There is a set of points for 𝛿 ≳ 30 kpc3 Gyr−1 (or equivalently 𝑤 ≳ 1.6) that are not well-
described by the parametrization. This is a consequence of how the surface created by the
parametrization traces the 3D point distribution of 𝑟 − 𝑓acc − 𝛿 or 𝑟 −𝜎𝑟 − 𝛿. Isolating these points
and trying to identify if they are caused by some specific process or depend on a given property
shows no conclusive results. This is not a big concern, as these points account for less than 20
per cent of the data. They are found mostly in the outer parts of the discs and may be caused by
residual merger interactions but also gas accretion.

With regards to a parametrization for Δ𝜇, we can fit the inner part of the disc (𝑟 < 0.75 ∗ 𝑅95)
with a constant with respect to radius, which from the data is found to be −2.4 km s−1 and the
outer part (𝑟 > 0.75 ∗ 𝑅95) with a linear fit indicating faster inflow speed. The value of 0.75 is
found by applying the fit. The scatter around the fit is then given by the residual plots of either
Δ𝑙𝑧 or ¤𝑓acc. However, Δ𝑙𝑧, as mentioned before, is merely a different expression of Δ𝜇 in the case
of a flat rotation curve, so it is not very informative to build a parametrization of Δ𝜇 in terms of
it. ¤𝑓acc can be used as a secondary parameter as it is an independently measured quantity of an
external process that could potentially be a driver of the bulk flows.

For the purposes of arriving at a parametrization that can be useful in semi-analytic models,
we thus arrive to the following equations:

Δ𝜇 / km s−1 =

{
−2.4 if 𝑟 ≤ 0.75 𝑅95
−15.9 (𝑟/𝑅95) + 9.5 if 𝑟 > 0.75 𝑅95

(2.6)

If we further include the parameter ¤𝑓𝑎𝑐𝑐 to describe the scatter alongside the median relation, the
above equations are modified to

Δ𝜇 / km s−1 =

=

{ −1.7 − 6.8 ( 𝑓acc
60Myr
Δ𝑡

) if 𝑟 ≤ 0.75 𝑅95

−15.9
(

𝑟
𝑅95

)
− 6.8 ( 𝑓acc

60Myr
Δ𝑡

) + 10.2 if 𝑟 > 0.75 𝑅95
(2.7)
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Figure 2.12: The selected parametrizations for the quantity w, using two different sets of param-
eters, radius - accreted gas fraction (left) and radius - radial velocity dispersion (right). In these
plots the data should be lying around the one-to-one relation if the fitting is ideal. This line is
plotted for reference (dashed). The red line is the median of the data which for the most part
agrees well with the dashed line.
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These parametrizations give a most accurate description in the regime of values −10 < Δ𝜇 <

0, which contain the majority of points, but are not representative for cases with Δ𝜇 > 0, where
we have radial outflow of the material.

2.5 Discussion
We have identified the accreted gas fraction, ¤𝑓𝑎𝑐𝑐, and gas velocity dispersion, 𝜎, as the two
main parameters driving variations in gas spread, 𝑤 (or its timestep-invariant equivalent, 𝛿), with
radius in the Auriga simulations. On physical grounds, 𝜎 in a given ring is partially a measure of
the total internal kinetic energy and the amount of turbulence that is present in the gas. This is
the case no matter which mechanism injected the energy into the system, be it for example kinetic
heating from some interaction or stellar feedback. Furthermore, as we study radial motions, the
radial component of the dispersion, 𝜎𝑟 , is expected to be more dominant. Studies like Forbes
et al. (2014) and Yang & Krumholz (2012), modelling the diffusion of metals in the disc, suggest
diffusion coefficients scaling with the velocity dispersion of the gas multiplied with the scale
height of the disc. We have tested whether such a quantity (𝜎𝑔ℎ𝑔) shows any relation with the
spread measure 𝛿 and we find that it yields similar strength of correlation to the residuals to when
simply using 𝜎𝑔 as a parameter.

The accretion process is also very relevant to the radial motions, as has also been shown
in earlier studies (Pezzulli & Fraternali, 2016). The accretion rate of new gas could also be a
candidate parameter but we found that ¤𝑓𝑎𝑐𝑐 correlates better with 𝑤 and 𝛿. Besides, ¤𝑓acc carries
more information, as it is a measure of both the material entering the ring and the material already
present. We could connect the effect of the accreted gas to the radial motions by considering
that larger amounts of accreted material result in more kinetic energy that can be converted into
turbulence, leading to larger random radial motions which then translate to the larger values of
𝛿. Especially at the outer, lower-density regions of the disc, turbulence can dominate the energy
density, as low-density gas has less inertia and responds more readily to perturbations from the
external material.

The fact that w scales as 𝑤 ∼ Δ𝑡1/3 is not straightforward to justify. In a simple diffusive
process, where gas diffuses out of the initial ring to lower density regions, we would expect a
𝑤 ∼ Δ𝑡1/2 dependence. The cubic power that we find instead gives a better fit, suggestive of
a process slower than pure diffusion. The overall radial spread of the gas in the disc is likely
the result of a combination of physical processes, some of which are of diffusive nature, that are
active during the disc evolution within the disc plane. On top of this, it must be noted that the
cubic power is the average of all the data in the 14 different halos and over the whole redshift
range that we use. Thus, we cannot clearly state why 𝑤 ∼ Δ𝑡1/3, but only acknowledge that this
time dependence better brings the data from different snapshot spacings in agreement.

The radial dependence of Δ𝜇, the bulk flow, as seen in Fig. 2.4, can be explained by two
separate regimes in the disc. The regime where we observe a nearly constant radial dependence
with inflow a few km s−1, and the one where there is inflow with much larger velocities, increasing
as we head in the outer parts of disc. In the first case, we are essentially describing the equilibrium
part of the disc where the material has settled in more regular motions and is rotationally supported.
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In the second case, we are in a regime where we have significant accretion of new material, coming
in as patchy accretion in many cases. These blobs of gas can travel relatively unimpeded until
they encounter the comparatively higher densities at the edge of the star forming disc. Fig. 2.13
shows evidence for this statement, as beyond ∼ 0.75𝑅95 we find higher 𝑓𝑎𝑐𝑐 values and a steeper
slope in its radial profile. Goldbaum et al. (2016) have calculated the time-averaged radial gas
mass flux in their simulated galaxy, finding a radial profile that points to a net inflow with little
radial evolution in the absolute value of the flux, which can be consistent with the radial profile
that we find for Δ𝜇. Aside from these two regimes, we also attribute the surplus of positive
(outflowing) Δ𝜇 values at 𝑟 ≲ 0.1 to AGN feedback, which empties of gas the innermost regions
of galaxies with active black holes. This effect appears strongly only in 3 halos in the sample,
for specific timespans, so does not significantly alter our conclusions. We must also notice that
the constant value that we find in the inner parts for the inflow is representative of the set of the
halos that are available in Auriga and is likely limited to the specific mass range. We have no
indication that is a value that can be generalised to very different galaxy mass regimes.

The range of values that we find forΔ𝜇 are consistent with the observational data from Schmidt
et al. (2016) where they find that most of their data points are within ±15 km s−1. The exact
radial flow speed profiles presented in this paper may not necessarily match the average radial
profile we show in Fig. 2.4 but this is expected as we present the compilation of all the data for a
large number of snapshots. The galaxies used in Schmidt et al. (2016) show an object-to-object
variability with strong inflows or outflows at given objects exceeding ±30 km s−1 and at different
radii. This is also true in our simulations if we look at specific snapshots where we have instances
of extreme inflows or outflows, comparing to the average, with no clear radial trend. Concerning
the values of the spread 𝑤, it is much harder to test against observations since it is not a directly
measurable quantity in observational data.

The Δ𝜇 parametrization we provide describes the average behaviour we observe over all
halos in the suite. As seen from the data, there are many instances where tracers move on
average outwards between two snapshots. This is not captured in the best fit, which gives only
a time-averaged representation. The correlation with Δ𝑙𝑧 shows us that the gas moves inwards
or outwards because its angular momentum has been altered. This indicates the presence of
a torque that has driven this loss or gain. However, identifying the source of this torque, and
more importantly reliably connecting it with the movement of gas, is a difficult proposition. One
possibility is the presence of spiral arms that by interacting with the gas can input or remove
angular momentum from it.

Both Krumholz et al. (2018) and Goldbaum et al. (2016) discuss the relevance of the Toomre
Q parameter in radial flows, and although we have examined the Q values for our model discs, we
found no convincing dependence between them and Δ𝜇 or 𝛿 but only weak correlations with a lot
of scatter and driven by high values of Q. Given that in the Krumholz et al. (2018) model and its
variants, Q is often set to a constant value, or subject to a floor value, we should not necessarily
expect a correlation but the lack of it means that we cannot use Q in the way we construct the
parametrizations. All in all, we do not rule out the importance of gravitational instability as a
source of turbulence, but rather suggest that the ring analysis we perform may not capture this
effect. Further, the ISM model in the Auriga simulations, which is designed to prevent clump
formation and generally yields higher Q values, is not conducive in resolving perturbations from
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Figure 2.13: Radial dependence of the accreted gas fraction. At the outer parts of the discs,
beyond 70% of the disc radius, we have larger contribution from the accreted material.
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gas clumps that could be a main physical reason underlying any dependence on Q.
We have tested the resolution dependence on one of our halos that was re-simulated with

lower resolution, to evaluate the consistency in the results that we obtain. The results between the
two resolution simulations of this single halo are mostly consistent within the error, but the lower
resolution simulation shows overall higher values for 𝑤 (on average 1.3 times higher) with the
effect being more pronounced in the very inner radii where also Δ𝜇 appears to deviate from the
fiducial run. In other words, at lower resolution, with a lower number of tracers (similar number
of tracers per cell but lower amount of cells overall), the tracers appear more diffusive. In general,
gas flows are less well captured in the lower resolution simulation because of the low number of
tracers that sample the cold gas. This is shown in Fig. A.3 in Appendix A.

Further it must be noted that by using ring-like annuli in our analysis we smooth out any
azimuthal variation in the two quantities we study. For example, the presence of a strong bar
can lead to material funneling to the centre at particular azimuthal angles but being expelled in
another direction. This information in a given ring is captured in the spread 𝛿, resulting in a
symmetric distribution but the median bulk flow Δ𝜇, being the average value of the speeds of
inflowing and outflowing material, will be lower than if we look at the speed of material in a
particular direction.

We see a small difference in the merger history between the 6 higher-mass (1 − 2 × 1012𝑀⊙)
and the 8 lower-mass (0.5− 1× 1012𝑀⊙) halos. In almost half of the lower-mass haloes, there are
mergers and encounters even at later stages, whereas the higher-mass ones are relatively quiet.
This may indicate that the higher-mass sample is in a slightly different evolutionary stage, but
this does not seem to influence the conclusions for the properties that describe the radial flows.

As a final remark, we acknowledge that the simulations do not explicitly model the small-scale
turbulence generated by stellar feedback and could impact the radial movement of the tracers on
small scales, but that the effective pressure applied by the sub grid model provides some similar
effect to the turbulent pressure in star-forming gas. Getting a better understanding of these effects
would require simulations that explicitly model the multi-phase ISM, which is beyond the scope
of this work.

2.6 Conclusions
We have performed an analysis of the gas kinematics in disc galaxies in the Auriga simulation
suite. We have focused only in the ‘quiet’ phases of the disc evolution, excluding the snapshots
when the discs have a violent merger. In our method, we examine the disc in a local fashion,
by considering a ring of gas at a given radius. We describe the radial flows of gas with two
parameters; the median bulk flow, Δ𝜇, and radial spread, 𝑤, of the gas in each ring. We have
identified 𝛿 = 𝑤3/Δ𝑡 as a timestep invariant quantity. As the radius increases, we observe an
increase in 𝑤 and hence 𝛿, indicating that tracers in the outer regions diffuse out of the initial
ring more effectively than in the inner regions. This can be attributed to the lower densities (of
gas and stars) or the larger accretion rates observed at larger radii. The bulk flows expressed by
Δ𝜇 have a flat radial dependence in the inner parts of the disc, whereas in the outer parts we
observe increased inflow speeds. Both quantities appear to be closely connected to the amount of



50 2. Radial gas flows in the Auriga simulations

accreted material in the disc, as expressed by the accreted mass fraction ¤𝑓𝑎𝑐𝑐. We have presented
parametrizations of Δ𝜇 as a function of radius r and ¤𝑓𝑎𝑐𝑐, differentiating between the inner disc
(equilibrium region) and outer disc (accretion-dominant region). For 𝛿, our parametrizations are
expressed as functions of radius and a secondary parameter which is either ¤𝑓𝑎𝑐𝑐 or the radial
velocity dispersion of the gas 𝜎𝑟 . In combination, these two quantities describe the process of
gas mass exchange in different radii inside discs. Since we have not yet tested how the results
of this study apply to models, we choose to present several different parametrizations that arise
from our data, with a goal of checking their performance in the future.



Chapter 3

Stellar migration in the Auriga simulations

3.1 Introduction

During the lifetime of a star its orbital radius within the galactic plane is subject to changes that
can result in the star inhabiting a radius different than the one it was born at, a concept referred as
stellar radial migration (e.g. Lynden-Bell & Kalnajs, 1972). There are two terms that are widely
discussed in the literature, describing two entirely distinct types of stellar migration, ‘churning’
and ‘blurring’ (Schönrich & Binney, 2009).‘Churning’ refers to the direct change of the guiding
centre, the mean radius of the stellar orbit, and relates to permanent changes in the orbital angular
momentum without changing the “random” component of its orbital energy (e.g. Grand et al.,
2012b). ‘Blurring’ is associated with temporary changes in the orbital kinetic energy close to
peri/apo-centre (thus away from the mean orbital radius), while the angular momentum remains
constant. There are several mechanisms that are responsible for inducing these changes in the
orbital radii, including non-axisymmetric features in the galactic disc, such as a bar (e.g. Halle
et al., 2018), transient spiral arms (e.g. Sellwood & Binney, 2002) and interactions with giant
molecular clouds (GMCs). Furthermore, minor mergers with satellite systems have also been
explored as drivers of radial migration (e.g. Quillen et al., 2009). However, disentangling all of
these mechanisms is a far from trivial task.

Radial migration has been invoked in order to potentially explain many observables in the
Milky Way, such as planar dynamical streams (Kawata et al., 2018; Hunt et al., 2018), the
large spread of stellar metallicities (e.g. Nordström et al., 2004; Haywood, 2008; Kubryk et al.,
2013; Minchev et al., 2013; Grand et al., 2015) and the presence of supersolar metallicity
stars (Kordopatis et al., 2015) in the solar neighbourhood as well as the large scatter in the
age-metallicity relation (Casagrande et al., 2011), although recent studies (Haywood et al., 2013;
Bergemann et al., 2014; Walcher et al., 2016) point to an age-metallicity anti-correlation especially
for stars older than ∼ 9 Gyr. Additionally, migration is a possible mechanism that may explain
disc truncations and the upturn of age gradients observed in the outer regions of galaxies (e.g.
Bakos et al., 2008; Roškar et al., 2008; Radburn-Smith et al., 2012; Ruiz-Lara et al., 2017; Herpich
et al., 2017) and the bi-modality in the [𝛼/Fe]-[Fe/H] relation in the Milky Way, which has been
studied both from an observational (Fuhrmann, 1998; Haywood et al., 2013; Anders et al., 2014;
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Nidever et al., 2014; Hayden et al., 2015) and theoretical (Schönrich & Binney, 2009; Brook
et al., 2012; Minchev et al., 2014; Grand et al., 2018; Mackereth et al., 2019; Clarke et al., 2019;
Buck, 2020; Renaud et al., 2021; Khoperskov et al., 2021) perspective. Radial migration has
been linked also to the formation of the geometrically-defined galactic thick disc (Loebman et al.,
2011; Solway et al., 2012; Vera-Ciro et al., 2014) and shaping vertically “flared” distributions of
coeval stellar populations (e.g. Minchev et al., 2015). However, there is also contrasting evidence
that stellar migration is ineffective in thick disc formation and rather contributes to cooling the
disc in the cosmological context (Minchev et al., 2012b, 2014; Grand et al., 2016; Ma et al.,
2017). Observational studies of the migration process are non trivial, since it is not possible to
get direct information about the initial (birth) conditions of a single star’s orbit. Rather, migration
can be inferred indirectly from measuring metallicity and age gradients and identifying different
regions in the age-metallicity plane. One useful tracer of stellar migration in the Milky Way are
stellar clusters. Netopil et al. (2022) used the ages and metallicities of a number of open clusters
to measure metallicity gradients and inferred a mean migration rate of 1 kpc/Gyr−1 for younger
objects and half of this value for older objects.

Radial migration has been consistently studied in chemodynamical models of disc galaxies
that aim to reproduce the observed age-metallicity relations and the radial gradients of these quan-
tities in the solar neighbourhood. In models such as Sellwood & Binney (2002) and Minchev
et al. (2014), radial migration is treated using self-consistent angular momentum redistribution
from an N-body disc, whereas Schönrich & Binney (2009) and Kubryk et al. (2013, 2015) add
prescriptions that describe separately the churning and blurring processes. In their chemody-
namical model, Frankel et al. (2018) introduce an analytic formulation for stellar migration that
follows a Gaussian diffusion process where older stars spread to increasingly larger radii from
their birth radius. In their formulation, the overall shape of the Gaussian function is regulated
by a single migration strength parameter. APOGEE data was used to fit the best parameters
for their model (Majewski et al., 2017). In a later study (Frankel et al., 2020), their model was
expanded to study the effect of churning and blurring separately, concluding that churning has an
order of magnitude stronger effect than blurring. Johnson et al. (2021) use data from a numerical
simulation and test different prescriptions for their chemodynamical model to study the migration
process, in a similar way to Minchev et al. (2013).

Similarly, several studies have been carried out using numerical simulations to study the
presence and strength of the migration process in simulated disc galaxies. These studies can
be split between those of relying on isolated disc systems (e.g Di Matteo et al. 2013; Aumer
et al. 2016; Halle et al. 2018; Mikkola et al. 2020) and those that analyse discs embedded in a
cosmological environment using zoom-in simulations (e.g Martig et al. 2014; Grand et al. 2016;
Buck 2020). The advantage of the former is that they can isolate and study in a controlled
setup the effect of non-axisymmetries forming during the lifetime of the disc have on the stellar
orbits. The latter, though, create a more realistic analogue of a real galaxy where the deviation
of the positions of stars from their birth radii is the cumulative result of not only all the angular
momentum changes induced by bars or spiral arms but also by any merger events that may have
happened to the particular system.

Minchev & Famaey (2010) explored the combined effect arising from overlapping resonances
when both a bar and spiral arms are present in a simulated disc. Minchev et al. (2012a) concluded
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from their numerical simulations that the effect of bars is dominant with regards to stellar migration
compared to the effect of transient spiral arms, and also confirm the importance of migration for
the flattening and reversal of age gradients in the disc outskirts which are found to be populated
by stars that have transferred outwards from the inner parts of the disc. Similarly, Agertz et al.
(2021) confirmed that metal rich stars preferentially migrate from inner to outer regions in their
simulated Milky Way galaxy, affecting the metallicity distribution function around the solar
neighbourhood. Finally, Verma et al. (2021) applied sophisticated forward-modelling techniques
to halos from the Auriga cosmological simulations to put constraints on the strength of migration
based on measures of the metallicity dispersion at the Solar cylinder.

In this project, we study the process of radial migration of stars in a number of different Milky
Way-mass halos from the high-resolution cosmological zoom-in simulation suite Auriga (Grand
et al., 2017), which includes environmental effects such as mergers and gas accretion. We study
the total migration of the stars over their lifetime, measure the migration strength in each galaxy
model, and also compare the simulated profiles of age and metallicity with fictitious profiles
that would result if there was no evolution in the positions of the stellar particles. In a separate
analysis we look at the migration of stars between different output snapshots of the simulations,
and we arrive at a simple parametrization for the stellar radial migration in Auriga that can be
easily incorporated into (semi-)analytic models of galaxy evolution.

This chapter is structured as follows. In Section 3.2, we briefly review the simulation suite
we use for this study. In Section 3.3 we analyze the strength of migration from the perspective
of the birth radius of stars, while in Section 3.4 we focus on the rate of migration by comparing
stellar positions in subsequent simulation outputs. Finally, we give a discussion or our results and
summarize our conclusions in Section 3.5.

3.2 Simulations
We make use of the Auriga suite of high-resolution, magneto-hydrodynamical cosmological
“zoom-in” simulations (Grand et al., 2017) which are designed to reproduce Milky-Way analogue
disc galaxies in the concordance ΛCDM cosmology. We select a total of 17 Auriga halos; 9 halos
from the original runs of the project with a halo mass1 ranging between 1 − 2 × 1012 M⊙, and 8
halos of a recent lower mass extension in the range 0.5 − 1 × 1012 M⊙ (Grand et al., 2019).

These halos were originally selected based on a mild isolation criterion in the 𝑧 = 0 snap-
shot of the dark matter-only counterpart to the cosmological EAGLE simulation of co-moving
side length 67.8 ℎ−1cMpc (L100N1504) presented in Schaye et al. (2015). The values of the
cosmological parameters for these simulations are Ω𝑚 = 0.307, Ω𝑏 = 0.048, ΩΛ = 0.693,
𝐻0 = 100 ℎ km s−1 Mpc−1 and ℎ = 0.667, taken from Planck Collaboration (2014).

The zoom simulations are initialized at redshift 𝑧 = 127 with the high-resolution regions
having a mass resolution of ∼ 5× 104 M⊙ per baryonic element and a comoving softening length
of 500 ℎ−1pc. The physical softening length grows until 𝑧 = 1, after which time it is kept fixed.

1Defined to be the mass inside a sphere in which the mean matter density is 200 times the critical density of the
Universe, 𝜌crit = 3𝐻2 (𝑧)/(8𝜋𝐺).
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The physical softening value for the gas cells is scaled by the gas cell radius (assuming a spherical
cell shape given the volume), with a minimum softening set to that of the collisionless particles.

Unlike in EAGLE, the time evolution in Auriga is carried out with the quasi-Lagrangian
magneto-hydrodynamics simulation code AREPO (Springel, 2010; Pakmor et al., 2016; Wein-
berger et al., 2020), using the galaxy formation model outlined in Grand et al. (2017) that
accounts for the most important physical processes relevant for galaxy formation and evolution.
In AREPO, gas cells are modelled with an unstructured mesh in which gas cells move with the
local bulk flow. This numerical approach combines the accuracy of a mesh-based representa-
tion of hydrodynamics with the geometrical flexibility and low advection errors of a Lagrangian
treatment.

3.2.1 Included galaxy formation physics
The physical processes incorporated into Auriga’s galaxy formation model include primordial and
metal-line cooling (Vogelsberger et al., 2013), as well as an externally imposed spatially uniform
UV background for modelling cosmic reionization. The star-forming interstellar medium (ISM)
comprises gas that has become denser than 0.11 atoms cm−3 and is modelled by a subgrid
model that describes a two phase medium of cold clouds embedded in a hot volume filling phase
(Springel & Hernquist, 2003) assumed to be in pressure equilibrium.

Stellar particles are spawned stochastically from the gas using a Schmidt-type star formation
prescription with a gas consumption timescale calibrated to observed star formation densities.
Each particle represents a Simple Stellar Population (SSP) characterised by properties such as
its age, mass and metallicity. The stellar evolution model applied to each SSP follows type Ia
supernovae (SNe-Ia) and winds from Asymptotic Giant Branch (AGB) stars that return mass and
metals (9 elements are tracked: H, He, C, O, N, Ne, Mg, Si and Fe) to the surrounding gas.
Supernovae type II (SNe-II) are also assumed to return mass and metals, but are treated with an
instantaneous recycling approximation.

Galactic winds from SNe-II are modelled by a wind particle scheme mediating non-local
kinetic feedback (Vogelsberger et al., 2013), which effectively models the removal of mass
from star-forming regions and deposits mass, momentum and energy into adjacent gas in the
circumgalactic medium with density lower than 5% of the density of star-forming gas. These
winds are an important feedback channel for regulating the total stellar mass forming in the
galaxies.

In addition, there are prescriptions in the model accounting for the accretion of matter onto
black holes and energetic feedback from Active Galactic Nuclei (as described in Grand et al.,
2017). Also, magnetic fields are seeded at 𝑧 = 127 with a co-moving field strength of 10−14 cG
(Pakmor et al., 2014), and are subsequently amplified by small-scale dynamo processes during
the simulations. While several studies have shown that the resulting magnetic field strength
evolution and radial profile in Milky Way-like halos are in good agreement between Auriga and
observational findings (e.g Pakmor et al., 2017, 2018, 2020), they play only a minor role for the
regulation of star formation in Auriga, and thus are probably of negligible influence on the stellar
migration rates. Similarly, the impact of central supermassive black holes is probably minor, at
least in the outer part of discs, whereas their feedback can indirectly have an impact in the inner
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regions through influencing the mass of the stellar bulge and bar properties (see Irodotou et al.,
2022).

In our runs, we have 252 time-slice outputs (‘snapshots’) down to redshift 𝑧 = 0, with a
median time resolution of ∼ 60 Myr between two consecutive snapshots (the time interval ranges
between 45-75 Myr). Between the different simulated galaxies, we observe a variety of structural
properties, with nearly half of them developing a bar at some point in their evolution. In addition,
the discs have varying merger histories, with the lower-mass halos experiencing more significant
merger events at lower redshift, whereas the higher-mass ones have no significant mergers in the
last 3 Gyr of the simulation.

3.2.2 Galactic properties

In Table 3.1, we summarize some of the 𝑧 = 0 properties of the 17 simulated galaxy discs which
we consider relevant in this study. Halos belonging to the lower halo mass simulations are named
with prefix ’L’. The stellar masses in the Table refer to the mass enclosed within 2 kpc of the disc
plane and within 20 kpc in galactocentric radius and ranges between 10 < log(𝑀∗/M⊙) < 11.
We also report the radii which enclose 50 per cent (𝑅50) and 90 per cent (𝑅90) of the disc stellar
mass. Because our discs have a variety of sizes, we use scaled radii in the presentation of many
results in the next sections. We have tested three options for the scaling, (1) the disc scale length
taken from the slope in a power law fit of the stellar density, (2) 𝑅90 and (3) 𝑅50. 𝑅90 and
𝑅50 have the advantage that they do not require a fitting, which can come with an error, so are
more trustworthy in using them as scaling factors of the radii. 𝑅90 has slightly more stable time
evolution but all the results are qualitatively equivalent if we use 𝑅50 instead.

Additional quantities include the mean stellar age at 𝑧 = 0, and information about the stellar
kinematics such as the mean stellar velocity and velocity dispersion. We also measure the A2(𝑟)
coefficient of the Fourier decomposition of the planar (𝑥-𝑦) stellar surface density (its maximum
value at 𝑧 = 0 reported in Table 3.1). This is a measure of the strength of the non-axisymmetry
at any given radius, and its peak value is usually taken as the strength of the bar in the galaxy. In
Fig. 3.2, we show in more detail the radial profiles of the A2 coefficient for each halo at different
selected lookback times. Some of our halos have a very strong bar for most of their lifetime with
values of A2 > 0.3.

On top of the global disc properties, we also track the properties of individual stellar particles
at any given snapshot which include their masses, positions, velocities, ages and metal content
and we also have information about the birth radius of each star which is a useful quantity in this
study.

In Fig. 3.1 we present stellar projections at 𝑧 = 0 where the radial extent of each disc, the
presence or not of the bar and the presence of spiral arms can be visually examined. The colours
are composites of the g,r and i filters.
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Table 3.1: Properties of the different galactic discs at 𝑧 = 0. We show in order the stellar mass
enclosed within 2 kpc from the plane and 20 kpc in radius (𝑀∗), characteristic radii of 50%
and 90% of the stellar mass (𝑅50, 𝑅90), the maximum A2 coefficient, mean stellar age (⟨𝑡∗,age⟩),
maximum rotational velocity (𝑣𝑟𝑜𝑡,𝑚𝑎𝑥), mean stellar velocity (⟨𝑣∗⟩), stellar velocity dispersion
(𝜎∗), and the ratio of the velocity to the velocity dispersion.
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Figure 3.1: Stellar projections at 𝑧 = 0. The images are composites of the 𝑟, 𝑔 , and 𝑖 filters, and
are rotated into the 𝑥-𝑦 plane of the disc. The extent of all panels is 25×25 kpc.

3.3 Migration from the birth radius
Similar to previous stellar migration studies, we look at the change in the galactocentric radius of
stars between their birth time and the final snapshot of the simulation at 𝑧 = 0. We select all the
stars in the disc at 𝑧 = 0, under the condition that they (a) have a circularity parameter of 𝜖 > 0.7,
to probe the cold stellar disc and exclude the bulge component, (b) are within 2 kpc of the galactic
plane, and (c) are within 20 kpc from the centre of the galaxy. Furthermore, we only include stars
that have been born in the main halo and not those that are accreted from other systems.

3.3.1 Overall changes in radius

A first direct measurement from the simulation data is the computation of the overall change in
radius, Δ𝑅 = 𝑅𝑧=0 − 𝑅birth, for each star. Fig. 3.3 shows that, if we take the average of this value,
⟨Δ𝑅⟩, for all the stars selected as part of the disc, we find that in all our systems we get values that
are very close to 0. In the same figure, we show the average of the absolute value of Δ𝑅, ⟨|Δ𝑅 |⟩,
which for all our systems has values of around 1-3 kpc. In contrast to our findings, El-Badry et al.
(2016) find consistently positive values for ⟨Δ𝑅⟩ as well as higher values for ⟨|Δ𝑅 |⟩ in similar
plots. It should be noted however that they probe a very different mass range in their study and a
different mechanism of migration due to stellar feedback.

In Fig. 3.4 we compute the same average but instead selecting only stars that at 𝑧 = 0 are
either inside or outside the half mass radius of the galaxy. We find that stars that are in the outer



58 3. Stellar migration in the Auriga simulations

0.0
0.1
0.2
0.3
0.4
0.5
0.6

halo_5 halo_6 halo_9 halo_13 halo_17 halo_23

0.0
0.1
0.2
0.3
0.4
0.5
0.6

halo_24 halo_26 halo_28 halo_L1 halo_L2 halo_L3

0 3 6 9 12 150.0
0.1
0.2
0.3
0.4
0.5
0.6

halo_L5

0 3 6 9 12 15

halo_L7

0 3 6 9 12 15

halo_L8

0 3 6 9 12 15

halo_L9

0 3 6 9 12 15

halo_L10

Lookback time
5.1 Gyr
3.9 Gyr
2.7 Gyr
1.4 Gyr
0.0 Gyr

A2

R (kpc)
Figure 3.2: Measurements of the A2 coefficient in different radii as an indicator of bar strength
for our systems at several different lookback times (shown with the different color curves). The
bold purple line is the measured at 𝑧 = 0. A strong bar is considered to be present when A2 has
values above 0.3 in the inner radii.
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Figure 3.3: Mean change between the birth radius and the galactocentric radius at 𝑧 = 0 ,
Δ𝑅 = 𝑅𝑧=0 − 𝑅birth, for all disc stars and for all the systems in our sample plotted against the
stellar mass at 𝑧 = 0. The black points show the average of the difference and the red the absolute
value of the same quantity. The mean migration is very close to zero for all the systems.

radii at 𝑧 = 0 have on average positive Δ𝑅, meaning that they have migrated outwards during
their lifetime. The opposite is true for the stars that are within 𝑅50 by 𝑧 = 0, which have a mean
inwards migration.

Figs. 3.3 and 3.4 illustrate the combined effect of stars migrating both inwards and outwards
within the disc, with a mean absolute migration scale in the range of a few kpc. This indicates
significant mixing of material with different properties from the exchange of stars from inner and
outer regions. We also see that there are no variations with the stellar mass of the system in our
narrow mass range.

We further look into the differences between the birth and final radii of stars by comparing
directly the birth and final radii for stellar particles in each of our discs separately. In Fig. 3.5 we
plot these two quantities against each other for the 17 indivdual systems. We find that most of
the distributions are reasonably symmetric around the one-to-one lines, confirming the presence
of both inwards and outwards moving migrators in roughly equal numbers, as also confirmed
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Figure 3.4: As Fig. 3.3, but for the mean migration for the stars within (blue) or outside (magenta)
the half mass radius of the galaxy at redshift 𝑧 = 0. The former show on average negative values
for most systems, indicating that their birth radius was in an outer region, whereas the latter have
the opposite trend.
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Figure 3.5: Birth radius versus final radius at 𝑧 = 0 for all the stellar particles with circular orbits
in the simulated discs. The solid line represent the median 𝑅final in bins of 𝑅birth and the dashed
line is the one-to-one line where 𝑅final = 𝑅birth. Most distributions appear symmetric around
the one-to-one line but there are also cases like ‘halo_17’ (5th top row) or ‘halo_9’ (3rd top
row), where there are several stars above the one-to-one line, born between 5-10 kpc but having
migrated outwards to 10-15 kpc.
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by the median line. However, some systems, such as ‘halo_5’, ‘halo_9’, and ‘halo_17’, show an
excess of positive migrators (above the one to one line) for stars that have been born between 5-15
kpc. These can be identified as systems that have a strong bar in their centres which drives more
significant migration. The other systems in our sample which exhibit a strong bar at 𝑧 = 0, such
as ‘halo_24’ and ‘halo_26’ (see Fig. 3.2), also show evidence of a ‘bump’ in their distribution in
Fig. 3.5 out to higher 𝑅 𝑓 𝑖𝑛𝑎𝑙 .

We can decompose the information in Fig. 3.5 further by looking at the differences between
birth and final radii in different radial bins and also for stars of different ages. To do this, we
select stars in broad bins of birth radius and measure the distributions of their redshift zero
radii. In addition, within each radial bin we split the stars based on their age at 𝑧 = 0, so that
we can examine the strength of the migration for different stellar ages. We can compare our
resulting distributions with the predictions from the study by Frankel et al. (2018), which models
stellar migration around the solar radius as a diffusion process following a Gaussian function
depending on one ‘migration strength’ free parameter and the time 𝜏 after the birth of a star with
a dependence that varies with the square root of 𝜏.

In Fig. 3.6, we show an application of this method for four distinct radial bins in one of
our systems, ‘halo_6’, which is a typical Milky-Way-like disc with a quiet merger history and
no strong bar in the centre. The resulting distributions are fairly symmetric and we find that
their peaks can be fit reasonably well with a Gaussian function. However, the wings of the
distributions, particularly in the inner part of the galaxy, are not fully described by a simple
Gaussian distribution. Older stars appear to have diffused more from their birth radius, resulting
in broader distributions, and additionally they show a larger shift away from the centre of their
initial radial bin. In this particular case the shifts are inwards, as seen mainly in the two rightmost
panels, but this is not the case for all systems and depends on the selection of the radial bin.
Qualitatively this figure agrees with the similar Fig. 1 from Johnson et al. (2021) both in terms
of the widening of the histograms with age and the largest shift of the peak occurring for older
populations.

In addition, this representative example agrees quite well with the Frankel et al. (2018, 2020)
model at radii around the middle of the stellar disc (i.e. ∼ 5.4 − 13.8 kpc), in terms of the
predicted spread of the histograms.This is encouraging because the Frankel models were fit to
APOGEE DR12 data of Milky Way stars between galactocentric radii of 5 and 14 kpc. Although,
we note that the small median shift we find in Auriga is not included in their functional form of
migration. In order to present an average picture of what we observe in our whole sample, we
measure the widths of these histograms in all cases for four stellar ages and four radial bins. We
have checked that measuring either the 16-84 percentile or getting the variance of a Gaussian fit
gives consistent results and we select the former to quantify the width of the histograms. We
define this quantity, 𝜎𝑚𝑖𝑔𝑟 , to be a measure of the migration strength.

In Fig. 3.7, we show the average values for 𝜎𝑚𝑖𝑔𝑟 as a function of the stellar age, for each
of the radial bins. We show the exact datapoints that were used to construct these curves in the
Appendix B Fig. B.1. For this figure, we have selected the radial bins to be normalised by the
half-mass radius of each disc, thus accounting for the variation in disc size across the sample.
We consider the centres of the four bins as the radii at 0.5, 1 , 1.5 and 2 times 𝑅50 and select all
the stars which have been born within 1 kpc of these radii. We obtain the mean age dependence
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Figure 3.6: Probability distributions of final galactocentric radii for given birth radii bins, split
by stellar age at 𝑧 = 0 for ‘halo_6’. We overplot with the dashed lines the Gaussian fit to each
histogram and in the legends we quote the 16-84 percentile of the histograms. We observe that
the distributions become more extended with increasing stellar age as well as for stars that have
been born in larger radii. The distributions are fairly symmetric and the peak is shifted from the
centre of the selection region especially for the older populations. We stress that these Gaussian
fits are meant to guide the eye, and are not used to quantify migration, which is instead measured
by the 16-84 percentile range.

for these four radial bins, and compare these to the radially-independent models by Frankel et al.
(2018, 2020) which we overplot. The median age dependence appears shallower in Auriga (for
each of the radial bins) than in the Frankel models. However, the range of 𝜎𝑚𝑖𝑔𝑟 values found for
our radial bins with 𝑅 ≳ 1 𝑅50 is roughly consistent with the model of Frankel et al. (2020), which
is tuned to Milky Way stars at similar radii. The slope predicted by the Frankel et al. models
is noticeably steeper than our curves at the three outer radial rings. In particular a power law fit
to the 𝜎𝑚𝑖𝑔𝑟-age curves gives us values of 0.4 (cyan), 0.28 (green), 0.25 (yellow), compared to
the square root age dependence of 0.5 employed in the models. The median values that we find
for 𝜎migr are in the range of 1-4 kpc depending on the radial bin and the age of the stars, which
connects well to the values of ⟨Δ𝑅⟩ from Fig. 3.3 for the whole population of stars. This is
also broadly consistent with the values reported by Verma et al. (2021) derived from the stellar
metallicity dispersion of forward-modelled mock data for cross-matched Gaia, APOGEE, and
Kepler observations.
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kpc centered on multiples of the stellar half mass radius, 𝑅50. The dashed grey and black curves
show two radially-independent models by Frankel et al. (2018, 2020), for comparison.
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3.3.2 Effect of migration on radial profiles of age and metallicity

As a further step, we would like to investigate the effect of stellar migration on the metallicity
and age profiles in Auriga. To do this, we plot the mean age and metallicity radial profiles for
the stars in each of our simulated galaxies at 𝑧 = 0 in Figs. 3.8 and 3.9 (solid lines). We use the
𝑧 = 0 galactocentric radii of the stars, normalised to 𝑅90, which gives us the true profile observed
in the simulation. The profiles are computing by averaging over the metallicities and ages of all
stellar particles at a given bin of 𝑅90. Additionally, we calculate the same profiles but assuming
the birth radius of each star as its final radius, in other words simulating a scenario without any
stellar migration (dashed lines in Fig. 3.8, 3.9). We then compare in each case the solid and
dashed curves to evaluate the effect of stellar migration.

In the case of the mean age profiles (Fig. 3.8), we find differing results, depending on the
halo, when comparing profiles with or without migration. In a number of halos, such as ‘halo_9’,
‘halo_23’ or ‘halo_L3’, migration of stars leads to the flattening of the profiles at outer radii,
meaning that older stars have migrated outwards, increasing the mean age in those regions by
𝑧 = 0. On the other hand, there are cases such as ‘halo_L7’ or ‘halo_13’ where there is minimal
difference between the two profiles, hinting towards very little stellar migration in these systems.
There is no evident change in the overall scatter around the median. We already find an inherent
scatter in the ages within each radial bin, suggesting that stars have formed at varying times at all
radii, and migration does very little in further amplifying this spread.

In the case of the mean metallicity profiles (Fig. 3.9), we choose to plot the solar-normalised
iron abundance (in Auriga solar iron abundance is taken from Asplund et al. (2009)), [Fe/H],
which is a common indicator of a stellar population’s metallicity. We calculate the total radial
[Fe/H] profile for (a) all stars, and (b) stars that belong to different age bins. These are shown
in Fig. 3.9. Strikingly, we observe that the effect of migration appears not to be evident at all
in the total profile, and barely noticeable for the younger stars in all the cases. However, for the
older stars, in most cases, there is a flattening of the metallicity profile, due to more chemically
enriched stars migrating to larger radii over cosmic time. This suggests that the lack of evolution
in overall metallicity profiles is due to the outer disc being dominated by younger stars, which
have not migrated as strongly as older populations.

To make a quantitative statement of this flattening, we fit both the true and the ‘birth-radii’
profiles, excluding their core (i.e. only for 𝑅/𝑅90 > 0.2), with a linear fit that gives a slope 𝛼.
We then measure the change in 𝛼 between the true profile and the one without stellar migration,
Δ𝛼 = 𝛼𝑧=0 − 𝛼birth. Fig. 3.10 shows the change in this outer slope for each different profile,
plotted against the maximum A2 coefficient for the given disc (left panel) and its stellar mass
(right panel). We examine the strength of the correlation between the change in the slope and these
two quantities by calculating the Pearson correlation coefficient for each of the age sub-samples.
A correlation is present with respect to both the stellar mass and the A2 coefficient despite the
two quantities not being strongly correlated with each other.

The normalization of the best fit lines changes with the stellar age in the fashion we expect, with
older stars showing higher Δ𝛼 values. This reflects the clear flattening over time of metallicity
profiles for older stellar populations. Nonetheless, there is also a shallower trend of increasing
flattening with increasing bar strength and/or stellar mass for younger stellar populations. Indeed,
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Figure 3.8: Mean stellar age profiles for the 17 halos in the simulation suite. The solid bold lines
represent the true 𝑧 = 0 profiles whereas the dashed lines are the profiles that would have been
obtained if the stars were located at their birth radii instead. With the thinner lines we show the
variance of stellar ages around the mean.

the correlation appears stronger for the younger stars despite the small values of Δ𝛼. But in
all cases, the two-tailed p-values are sufficiently small to guarantee that the measured Pearson
coefficients could not be drawn by a random uncorrelated sample. This demonstrates that
migration is a more significant effect in (a) barred and (b) more massive Milky-Way-like galaxies
in Auriga.

The results of this section highlight the advantage of studying a number of disc galaxies with
different properties since the importance of stellar migration is not uniform for all the systems and
diverging conclusions could be drawn if each system was to be studied individually. Furthermore,
the decomposition of the metallicity profiles into age bins shows that migration does not leave the
same imprint for stars of different age, and computing only the change in the overall metallicity
profile would hide the fact that stellar migration is occurring.

3.4 Snapshot-to-snapshot migration
The analysis carried-out above gives us a view of the total migration that has happened over the
whole lifetime of the disc, but does not necessarily show us how migration evolves on shorter
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Figure 3.9: Radial metallicity profiles for the 17 halos in the simulation suite in three different
stellar age bins. The solid lines represent the true 𝑧 = 0 profiles whereas the dashed lines give
the profiles that would have been obtained if the stars were located at their birth radii instead.
In many cases, for the older populations, there is considerable flattening of the true metallicity
profile compared to what would be produced if there was no migration. This is similar to what is
presented in Minchev et al. (2013).
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Figure 3.10: Change in the slope of the metallicity profiles (Δ𝛼) presented in Fig. 3.9 measured
for radii 𝑅/𝑅90 > 0.2. We show the same three stellar age bins and we plot the Δ𝛼 against the
maximum A2 coefficient (top) and stellar mass in the disc (bottom) at 𝑧 = 0. The lines are the
linear fits to each data set, and we quote in the legend the Pearson correlation coefficient. There
is a clear evolution with stellar age in the values of Δ𝛼, and loose correlations of Δ𝛼 with both
A2 and the stellar mass are present.
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timescales. We are interested in this information as we are looking for an implementation of
stellar migration for semi-analytic models of galaxy evolution where the model is updated on
timesteps with a typical length of order 10 Myr. Therefore, in this section we analyze the changes
in the position of stars that happen between two consecutive simulation snapshots.

For each stellar particle we compute both the galactocentric radius and the guiding centre
so that we can analyse the effect of each on the ‘churning’ and ‘blurring’ processes. A change
in the galactocentric radius can result from both mechanisms but the changes in the guiding
centres are solely due to torques exerted on the stars and directly relate to the ‘churning’ process.
The galactocentric radii are inferred directly from the simulation output as the distance between
the position of a star and the centre of the disc. The guiding centres are computed using the
information of the orbital angular momentum of a star, 𝑙𝑧,𝑐 = 𝑅𝑉𝑐, and interpolating this value to
the rotation curve of the galaxy. From now on we refer to any quantity associated with guiding
centres with a subscript ‘g’. Similar to the 𝑅𝑧=0 − 𝑅𝑏𝑖𝑟𝑡ℎ calculations, we can look at initial, 𝑅𝑖

(or 𝑅𝑔,𝑖), and final 𝑅 𝑓 (or 𝑅𝑔, 𝑓 ), radii for the stellar particles, but in the subsequent analysis they
are referring to any two snapshots in the simulation.

Firstly, we directly estimate the difference between the initial and final radii (guiding or
galactocentric) for our different halos and at a pair of snapshots. In Fig. 3.11 we plot this
difference in galactocentric radii Δ𝑅 = 𝑅 𝑓 − 𝑅𝑖 against the initial galactocentric radius 𝑅𝑖, and
similarly in Fig. 3.12 the difference in guiding centres Δ𝑅 = 𝑅𝑔, 𝑓 − 𝑅𝑔,𝑖 against the initial guiding
centre 𝑅𝑔,𝑖. These figures are analogous to similar plots shown in previous studies such as
(Minchev et al., 2012a; Minchev & Famaey, 2010) (showing change in angular momentum Δ𝐿

in the y-axis) or Halle et al. (2018) (showing both Δ𝑅 and Δ𝑅𝑔). We present examples of two
characteristic halos from our sample; one develops a strong bar during its lifetime (‘halo_5’)
and the other does not at any point in time (‘halo_6’). We show in both of these figures three
different time intervals between the two snapshots, where the initial snapshot is always the same,
at lookback time of 1 Gyr, and the final differs by the given Δ𝑡, in this case with values of 200
Myr, 800 Myr and 1.4 Gyr.

In the case of the galactocentric radii (Fig. 3.11), the resulting patterns may not be identical
between the two halos but they show similarities in the overall spread of amplitudes in the 𝑦-axis
as well as little evolution with increasing Δ𝑡. The particular halo that we choose, ‘halo_6’, has
a well-developed spiral arm pattern, which manifests in the Δ𝑅 − 𝑅𝑖 plot as a series of diagonal
regions of stronger migration around the location of the over-densities. It is interesting to observe
that this effect becomes less pronounced if we look at snapshots that are separated by a longer
timestep as it is most likely smoothed out by the longer time averaging and the transient nature
of spiral arms (Sellwood & Binney, 2002; Grand et al., 2012b,a; Baba et al., 2013).

Regarding the guiding centres (Fig. 3.12), there is a clear distinction between the two galaxies.
In the case of the barred galaxy (‘halo_5’), there is an extended ridge of more strongly migrated
(inwards and outwards) stars, the location of which matches with the co-rotation radius of the
bar. Stars in this region have migrated up to 5 kpc outwards or inwards whereas in the other radii
they are constrained within 2 kpc. The same pattern for a system without a bar (‘halo_6’) has no
distinct features, and we can only observe that the values for the migration are slightly larger in
outer radii compared to the inner ones, although overall most stars appear to migrate less than
1 kpc. What is common in both halos is the widening of the patterns in the 𝑦-axis as we allow
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Figure 3.11: Change in galactocentric radius of the stars indentified in two snapshots plotted
against their initial radius. The top row is an example of a galaxy in our suite which has a strong
bar (‘halo_5’) for most of its lifetime, whereas in the bottom row the galaxy has developed no
bar (‘halo_6’). From left to right, we show three cases where the initial snapshot is the same
but a different final snapshot separated by Δ𝑡 is chosen each time. Despite the galaxy specific
differences in both discs we find that most stars have changes in their galactocentric radii between
-5 to 5 kpc no matter how how large Δ𝑡 is.

more time between the snapshots, indicating a process that is time (or timestep) dependent.
These examples are representative of the behaviour that systems with or without a bar develop.

Each halo in our sample could be studied on its own to get a much deeper understanding of each
individual object, but we are more interested in this work in an average description of what we
observe in our 17 systems. Thus, we would like to arrive at a formulation that describes, as
generally as possible, the variations that we see in the 𝑦-axis of these plots for the galactocentric
radii and the guiding centres.

3.4.1 Stellar migration at different radii
Our aim is to describe the effect of stellar migration at different radii and for this reason we
perform a radial ring analysis. We split each galactic disc into a series of concentric annuli
(rings) in the 𝑥-𝑦 spatial plane extending out to 15 kpc in radius and 2 kpc above and below the
disc plane in the 𝑧-direction. For the vast majority of snapshots, this radial extent is sufficient
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Figure 3.12: Similar as in Fig. 3.11 but for the guiding centres of the stars. The same two galaxies
are shown for the same snapshots. Here the difference between the barred and unbarred system
is evident with the former having more extreme stellar migration, especially for stars located
between 5-10 kpc. We also observe a widening of the migration pattern with time (from left to
right).



72 3. Stellar migration in the Auriga simulations

to enclose the entire stellar content of the disc. We choose a number of 20 rings, based on the
radius 𝑅, that are of equal width and are linearly spaced in order to have a statistically reasonable
number of stellar particles for each ring. We have tested for different height cuts and find that as
long as we use a cut more than 1 kpc we obtain convergent and robust results.

Each stellar particle falls in a given ring based on its galactocentric radius. At the initial
snapshot, n, we record both its radius and compute its guiding centre. We then look for the same
quantities at a subsequent snapshot, 𝑛 + 𝑚. The selected stars have associated individual IDs
which can be used to identify them at a later snapshot times in Auriga. Similarly to the analysis
of birth-final radii above, we also impose a cut of 𝜖 > 0.7 in the circularity parameter.

For each star, we compute the change in galactocentric radius as Δ𝑅 = 𝑅𝑛+𝑚 − 𝑅𝑛, and the
change in the guiding centre as Δ𝑅𝑔 = 𝑅g,𝑛+𝑚 − 𝑅g,𝑛. We then create distributions of Δ𝑅 or
Δ𝑅𝑔, associated with each ring, for a given halo and at a given initial snapshot n. We show in
Fig. B.2 examples of these histograms at two different radii for a particular halo. For a number
of cases, the histograms can be approximately fit with a Gaussian function with the peak shifted
from zero either to the negative (median inwards migration) or to the positive (median outwards
migration), and are mostly symmetric around the median. However, since there are instances
of heavily skewed distributions or distributions with broadened wings (as seen, for example, for
‘halo_6’ in Fig. B.2), we refrain from universally fitting a Gaussian to extract the properties of
each histogram. Instead, similar to the analysis of radial gas flows in Auriga presented in Okalidis
et al. (2021), we quantify the resulting distribution by (a) its median, Δ𝑟 and Δ𝑟𝑔, and (b) its
width (i.e radial spread), 𝑤 and 𝑤𝑔. We choose to measure the width as the value of the 16-84th
percentile of the distribution divided by 2 that corresponds to 1𝜎 of a normal distribution. We
carry out this process for different values of the initial snapshot 𝑛, starting from 𝑛 = 150, which
corresponds to a lookback time of 𝑡𝑙𝑜𝑜𝑘 ∼ 6 Gyr in our simulations, up to the last available
snapshot based on the value of m. We do not look further back in time because we are interested
in the regimes when our halos have formed a well-developed rotationally supported stellar disc,
which may not be the case in some of our systems at earlier redshifts.

We repeat this analysis varying the value of m, namely we use 𝑚 = 1, 3, 5, 7, 10, and 15,
to constrain the evolution of 𝑤, 𝑤𝑔 and Δ𝑟, Δ𝑟𝑔 with increasing snapshot spacing. The option
of 𝑚 = 1 equates to about 60 Myr in our simulations and 𝑚 = 15 to a timespan of 1 Gyr. For
the presentation of some results in the next sections we choose as a default the value of 𝑚 = 10,
which corresponds to Δ𝑡 = 600 − 700 Myr between two snapshots which is approximately 3
dynamical times at the Solar radius. We believe this is a sufficient period of time to approximate
migration as a diffusive process. To summarize, we obtain data points for the four 𝑤, 𝑤𝑔, Δ𝑟 , and
Δ𝑟𝑔 quantities which are associated with a set of variables, the centre of the ring, the initial and
final snapshot times and their difference and the specific halo that the ring belongs to (𝑅𝑟𝑖𝑛𝑔, 𝑗 , 𝑡𝑛
; Δ𝑡 = 𝑡𝑚 − 𝑡𝑛, halo𝑘 ).

Furthermore, for a given choice of m, we analyse how migration depends on stellar age by
binning stars into groups of 0-1 Gyr, 1-3 Gyr, 3-5 Gyr, and 5-8 Gyr based on their ages at the
initial snapshot of selection, and applying the same analysis as above.
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3.4.2 Radial Profiles
In this section we analyze how 𝑤, 𝑤𝑔, Δ𝑟 , and Δ𝑟𝑔 vary according to radius. For each ring, we
get a normalised value for the ring’s mid-radius, 𝑅𝑠𝑐 = 𝑅𝑚𝑖𝑑/𝑅90, where 𝑅90 refers to the 90%
mass radius at the initial snapshot n. In Fig. 3.13 we show the normalised radial profiles for our
four quantities that result from averaging the data from all our systems. In each panel the curves
represent a different value of Δ𝑡 between the initial and final snapshot.

The first important result to take away from Fig. 3.13 is that there are qualitative and quanti-
tative differences in the radial profiles when using the galactocentric radii or the guiding centres
as indicators of migration. In general, the values for 𝑤 and Δ𝑟 are larger than the corresponding
values for 𝑤𝑔 and Δ𝑟𝑔 for the same time difference. In both cases, the width of the distributions
increase as we move towards the outer rings, but in the case of the median shifts we find higher
negative values (inflow) for Δ𝑟 as we move outwards in the disc than we do for Δ𝑟𝑔. It is worth
noticing that Δ𝑟𝑔 and Δ𝑟 have almost exclusively negative values at all radii which corresponds to
stars moving inwards on average in the given ring. That is simply the median of the histograms
that comes out negative in most cases, but there is always a significant number of stars that have
migrated outwards. This information is better captured in the values of 𝑤 and 𝑤𝑔.

3.4.3 Time interval dependence
Concerning the dependence of the median shift and the spread on the snapshot spacing, we see a
clear evolution in the radial profiles over all radii for 𝑤𝑔 and Δ𝑟𝑔. As expected, if we allow more
time between the two selected snapshots the width of the histograms is larger, that is to say stars
appear to have diffused more strongly out from their initial positions. The respective evolution
for 𝑤 is much more obscure and in particular the curve for the case where we allow our minimum
timestep (𝑛 + 1) does not follow the same trend as the other choices of Δ𝑡. Moreover, in the case
of Δ𝑟 it can be argued that there is no clear timestep dependence at all as the several mean curves
for the different timesteps overlap significantly.

If we assume that migration, as the change of the guiding centres, was a pure diffusion process,
we would expect to recover a 𝑤𝑔 ∼ Δ𝑡0.5 dependence. Therefore, following the approach used
by Okalidis et al. (2021), we assume that there is a more general time dependence of the form
𝑤 ∼ Δ𝑡𝑎 and construct logarithmic plots of 𝑤 and 𝑤𝑔, with the aim to extract the slope, thus
giving us a measurement of the actually realized exponent 𝑎. From Fig. 3.13, it is already evident
that this time dependence is not the same in different radial scales. Thus, we split the data into
three broad bins of normalised radius to determine if there is also a radial dependence of 𝑎.

This is shown in Fig. 3.14 for the 𝑤𝑔 − Δ𝑡 relation for the combined data for all the halos.
In this case, we do not recover the 𝑎 = 0.5 exponent expected for pure diffusion in any radial
bin, but there is a radius evolution that approaches this theoretical value at larger radii. We
should not necessarily expect to get the theoretical slope for the average of all the halos, which
may have significantly different evolutionary history and structural properties. So, we further
calculate the exponents in each individual system. This is shown in the Appendix B Fig. B.3,
from which it immediately becomes evident that there is a range of values for 𝑎 obtained for the
different halos. Overall, in the innermost radial bin, the slope is significantly flatter in all cases.
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This appears reasonable because these central regions are often dominated by a bulge or a bar
rather than featuring a very flat rotation dominated stellar disc and indeed there is a correlation in
that strongly barred systems have a lower exponent for the inner ring. In contrast, at large radii,
there are cases where the values of 𝑎 are reasonably close to the diffusion case (for example, in
‘halo_6’) and we do not see a strong correlation between the bar strength and the slope.

The same figure, Fig. 3.15, for the 𝑤 − Δ𝑡 confirms what was found before, that the shortest
timestep does not follow the same linear trend in the log-log plot resulting in a bad fit which
yields a very low value for the exponent 𝑎. On top of that, 𝑎 varies significantly if we calculate
it individually for each halo and is in most cases much flatter than the diffusion value of 0.5. It
must also be noted that although it looks like in the combined dataset that the rest of the points
follow a linear trend, this does not appear in many of the individual systems. Therefore, from our
data, we cannot conclude the presence of a robust time dependence such as we found in the case
of guiding centre quantities.

There is also a clear timestep dependence in the median shift in guiding centre radius, Δ𝑟𝑔.
Although it can also be quantified at the different radial bins, we find that it varies much more
significantly from halo to halo, and in many individual cases there is no discernible time interval
dependence at all.

All in all we cannot safely suggest that the migration process is purely diffusive in the average
of our sampled discs, however it can be described as such in certain individual systems. Moreover,
it is only when we compute the changes in the guiding centres that we can retrieve a timestep
dependence that is similar to a diffusive process, since the changes in galactocentric radii seem
to be following a much flatter time evolution both in the average and the individual systems.

3.4.4 Bar and age dependence
In Fig. 3.16, we plot the radial profiles for one fixed value of Δ𝑡 (𝑛 + 10), in order to study the
effect of the presence of a bar in the disc, as well as any differences between stars of different
ages. We split our sample in two sub-samples of strongly-barred and weakly-barred systems,
based on the maximum A2 value at redshift zero, with each sub-sample then having 10 and 7
galaxies, respectively, if we take 0.3 as the separating value.

We find that, in the case of the galactocentric-radii-based quantities Δ𝑟 and 𝑤, on average,
the radial profiles are consistent with each other between the strongly-barred and weakly-barred
galaxies, suggesting that the information conveyed by these two quantities cannot be directly
associated with the presence or absence of a bar. This is reasonable as (1) Δ𝑟 is largely influenced
by the exact position the star particle is captured at the particular snapshot time during its orbit,
and (2) there are additional factors that can alter the galactocentric radius of a stellar particle.

There is a greater distinction in the radial profiles for guiding-centre-based quantities. The
barred galaxies have on average higher values of 𝑤𝑔 at all radii, with the difference being
maximised at the central part of the disc around the co-rotation radius of the bar. This is more
evident if we study the radial profiles for individual galaxies. It is not very pronounced when
averaging all the barred systems because of the different strengths and radii of the bars so that
we can have a partial cancelling of the bar effect by averaging a region which is dominated by
the bar co-rotation in one halo and a region that is further in or out of the co-rotation radius in
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Figure 3.13: Mean radial profiles of the quantities that describe the distributions of Δ𝑟 and Δ𝑟𝑔
plotted in terms of the normalised ring radii. In the left panels we plot the spread of the histograms
and in the right the median. The top panels are for galactocentric radii and the bottom ones for
the guiding centres. Here we plot these profiles for different selections of snapshot spacings
between the initial and final positions to show the evolution with Δ𝑡. The latter appears to be
more pronounced and more clearly defined when changes in guiding centres are considered.
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Figure 3.14: Logarithmic plot of the spread 𝑤𝑔 against the time interval Δ𝑡 based on the average
of the combined data for all the halos. We show the trend in three different radial bins and observe
a variation of the time interval dependence with radius, with a stronger effect being found in the
outer radii.
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Figure 3.15: Logarithmic plot of the spread 𝑤 against the time interval Δ𝑡 based on the average
of the combined data for all the halos. We show the trend in three different radial bins.
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another. These profiles reflect what we observe, plotted in a different manner, in the Δ𝑅𝑔 − 𝑅𝑔,𝑖

(Fig. 3.12) and Δ𝑅 − 𝑅𝑖 (Fig. 3.11) plots.
Concerning Δ𝑟𝑔, there is significantly increased inward migration in the innermost regions of

strongly-barred systems compared to weakly-barred systems, as shown in Fig. 3.16. This feature
appears in both the average profiles and each individual barred halo. The weakly-barred systems
have very flat profiles for radii ∼ 0.6 𝑅90 with less inward migration.

In Fig. 3.16, we also explore the stellar age dependence of each of the quantities 𝑤, 𝑤𝑔, Δ𝑟,
and Δ𝑟𝑔 by showing four different age bins. When measuring the total migration in the previous
sections, there is a hint of an age dependence, with older stars experiencing larger migration (Fig.
3.6, 3.7). This is not immediately reflected in the values of our measured quantities in the different
age bins. The spread 𝑤 shows no evidence of a consistent age dependence with the different
curves overlapping with each other. The corresponding spread 𝑤𝑔 has a clear age dependence
with up to a 30 per cent difference between the youngest and oldest bin. This dependence is
the opposite to what was found before for the total migration – stars in the earlier stages of their
lives appear to be more diffusive in terms of the changes in their guiding centres. We must stress
though, that the age definitions in this and the previous sections are not identical since in section
3.3 we refer to the age of the star at 𝑧 = 0 whereas in this section it is the age of the star at a
given snapshot. The effect itself can be explained on the basis that younger stars, having lower
velocity dispersion, are more prone to be impacted by angular momentum exchanges that can
happen in the disc (e.g. Vera-Ciro et al., 2014). The overall larger effect for the older stars when
looking only at the difference between 𝑧 = 0 and the star’s birth radius is merely due to the fact
that the small instantaneous changes are adding up for a longer time. The median shifts, Δ𝑟𝑔 and
Δ𝑟, show a similar age dependence, with older stars having more negative values, meaning that
they are on average shifted more strongly inwards although the trend reverses in the outer rings
for Δ𝑟𝑔.

3.4.5 Parametrization of stellar migration in Auriga

Our goal in this section is to present a simple parametrization of the strength of radial migration
in Auriga, which we have so far described either by 𝑤 and Δ𝑟 (for changes in galactocentric
radii) or 𝑤𝑔 and Δ𝑟𝑔 (for changes in guiding centre radius). In the case of the galactocentric
radii, as we saw in the previous sections, there are weak but quantifiable trends with the size of
the timestep interval between the analyzed snapshots. However, there are no trends with respect
to the presence or absence of a bar, and a dependence on the different stellar ages only for the
quantity Δ𝑟. For the guiding centre radii, the difference in the median shift radial profiles for the
barred and unbarred populations, seen in Fig. 3.16, suggests that separate parametrizations for
them may be needed. Indeed, we do not recover the exact same timestep dependence for weakly
and strongly barred galaxies, but for sake of simplicity in the parametrization and to increase the
number statistics we opt to focus on the average of all the 17 halos. The dependence of some of
the fit parameters in the presence of a bar is stated later in the text. In the previous section we
presented variations of the time dependence that exist at different radii but for the purposes of a
global parametrization we want to collectively describe the curves that we extract for the radial
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Figure 3.16: Similar profiles as in Fig. 3.13 for a fixed snapshot spacing of 𝑛 + 10, corresponding
to 600-700 Myr. We split the sample between the halos that develop a strong bar, 𝐴2,𝑧=0 > 0.3, for
most of their evolutionary history (solid lines) and those that have a weaker or no bar, 𝐴2,𝑧=0 < 0.3,
(dashed). The different colored curves in each panel show the quantities as obtained by using
only stars belonging to different age bins (legend in top left panel) selected based on their age at
the initial snapshot 𝑛.
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profiles using a single functional form to capture the average effect.
We fit the radial profiles of 𝑤 and 𝑤𝑔 with power law fits of the form given by Eq. 3.1 below,

with the time interval dependence entering both in the exponent and the normalization of the
power law.

𝑤;𝑤𝑔 = 𝐴(Δ𝑡)𝑅𝑏(Δ𝑡)
𝑠𝑐 , (3.1)

where 𝐴(Δ𝑡) = Δ𝑡𝑎/𝐶1 and 𝑏(Δ𝑡) = Δ𝑡𝛽/𝐶2. In Fig. 3.17 we show fits for the 5 selections
of time intervals, and how the exponents and normalization constants vary with increasing time
interval. We find that both the coefficient 𝐴 and the exponents of the power laws in radius vary
with the selected time interval Δ𝑡 in a linear fashion when plotted in a logarithmic plot. So each
has a power law like dependence on Δ𝑡.

We note that we have excluded the 𝑛 + 1 case from these fits because it significantly deviates
from the trend that the rest of the cases follow. We argue that this is because the timespan of only
∼ 60 Myr is not long enough to robustly measure the diffusion of star particles driven by radial
migration, as it is shorter than one rotational period of the stars at most radii. Once we move to
time intervals with widths of a few hundred Myr, we find a time evolution that can be expressed
accurately with the same power law fit.

The equations that then express 𝑤 and 𝑤𝑔 are:

𝑤𝑔/kpc =
(Δ𝑡/Myr)0.45

12.2
𝑅
((Δ𝑡/Myr)0.27 / 6.9)
𝑠𝑐 (3.2)

𝑤/kpc =
(Δ𝑡/Myr)0.18

1.2
𝑅
((Δ𝑡/Myr)0.1 / 2.3)
𝑠𝑐 (3.3)

where 𝑅𝑠𝑐 = 𝑅/𝑅90.
As mentioned before we must caution that the exact coefficients and exponents in these

equations strictly describe the average of a diverse set of galactic discs and they would be
different if we had only considered a particular type of systems such as those with a strong bar. In
particular we find that regarding the quantity 𝑤𝑔 the best fit exponent 𝛽 in the radial term has the
same value for both the subsamples of weakly and strongly barred galaxies in our simulations.
However, the exponent 𝛼 that regulates the timestep dependence in the term 𝑤𝑔 ∼ Δ𝑡𝛼 has a
value of 0.38 for the strongly barred subsample and 0.5 for the weakly barred one, these values
being on either side of the value of 0.45 for the whole sample. Hence, we can conclude that the
presence of the bar does not influence significantly the shape the radial profile of 𝑤𝑔 , regulated
by the term 𝑏(Δ𝑡), however it has an effect on how the normalization term 𝐴(Δ𝑡) increases with
the timestep and in particular leads to slower-than-diffusion behaviour. Regarding the quantity 𝑤

we recover the same exponent in the dependence 𝑤 ∼ Δ𝑡𝛼 for either subsample as well as for the
whole sample.
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Figure 3.17: Left panel: Power law fits to the radial profiles of the spread 𝑤𝑔, referring to the
spread of the Δ𝑅𝑔 histograms, each curve showing a different timestep identical to Figure 3.13.
We show the exact values for the fit in the legend. Middle and right panels: We show the
logarithmic plots of the coefficient (middle) and exponent (right) of the power law against the
time interval Δ𝑡 as well as the best fit line through the data points with its functional form stated
in the legend.
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Figure 3.18: Similar to Fig. 3.17, but for the quantity 𝑤 which refers to the spread of Δ𝑅

histograms.
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3.5 Discussion and Conclusions
We have investigated the effect of stellar radial migration in 17 disc galaxies from the Auriga
simulations. We consider a narrow sample of disc stellar mass, 10 < log(𝑀∗/𝑀⊙) < 11, but with
diverse properties in disc kinematics, radii and bar strengths, as well as different evolutionary
histories in terms of merger events.

We have measured the amount of radial migration in our simulations by (1) comparing the
radii of disc stars at 𝑧 = 0 with their birth radii, and (2) comparing changes in galactocentric
radii and orbital guiding centres between pairs of snapshots spanning varying periods of time.
The former study allows us to make conclusions about the cumulative effect of migration in the
observable quantities of the disc. We note that naively averaging over the difference between
birth and present day radius yields values close to zero but in further analysis we see that this
is due to the net effect of stars moving both inwards and outwards from their birth positions. In
systems with strong bars, we find an excess of “positive migrators” (Fig. 3.5), indicating stars
that have been ‘pushed’ to the outer disc because of the interaction with the bar. This feature is
similar to that shown in Roškar et al. (2008) (although their simulated disc does not develop a
bar). Minchev et al. (2014) also presents a similar result for the guiding radii of the stars. We
have reproduced our Fig. 3.5 in terms of guiding radii instead of galactocentric radii but the
differences are negligible.

We have also probed into the relation of the age of the stars at redshift zero to the amount
that they have migrated using the histograms of Δ𝑅 = 𝑅𝑧=0 − 𝑅𝑏𝑖𝑟𝑡ℎ in different age and radius
bins, quantifying the migration as the width of these distributions. For some systems (e.g those
with quieter merger histories), we find that these histograms can be reasonably fit with a Gaussian
function. However, for other systems, we find deviations in the wings of the distributions
(especially in the inner regions of our simulated discs) which are not conducive to a simple
Gaussian fit. Nevertheless, the histograms widen with both increasing stellar age and larger
radius for all rings in the studied galaxies. We found average values of the age-𝜎migr dependence
that are consistent with the model proposed by Frankel et al. (2020); the predicted range of values
of this model lie within the scatter of our simulated relations, albeit with a slightly steeper slope
compared to our median relation.

We further identify that there is a radial dependence in the normalization and position of
the peak of the distributions with respect to the centre of the initial ring of selection. Verma
et al. (2021), using some of the same Auriga halos in their study, find upper limits for the radial
migration of 2.21 kpc for stars with age less than 4 Gyr and 3.7 kpc for stars with ages between
4-8 Gyr in the solar neighbourhood. Although we do not use the same age bins we find that for
younger stars (<3 Gyr) the mean migration strength varies between 1-2.5 kpc depending on the
radial bin.

In Auriga, the stellar age radial profiles are not significantly affected by migration in a
considerable number of the cases. However, we do observe in a subset of the systems a flattening
of the age gradients at larger radii.

In terms of the metallicity gradients (Fig. 3.9), we observe a dependence similar to Minchev
et al. (2013) (Fig. 5 of that paper) where the gradients for the younger stellar populations are at
most marginally affected by migration but for the older stars there is a more significant flattening
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in the majority of cases. This age effect is clearly shown in our simulations and we further present
possible correlations of the amount of flattening with the stellar mass and the strength of the bar
in the disc. However, overall metallicity profiles (i.e. accounting for stars of all ages) do not
appear to evolve strongly with cosmic time in Auriga.

In the second part of our analysis, we focused on pairs of snapshots spaced by a time difference
Δ𝑡, so that we can extract information about how the migration process proceeds in given time
intervals. We allow the Δ𝑡 to vary between 60 Myr and 1 Gyr. The two measures that we use to
describe the histograms, the median shift (Δ𝑟 or Δ𝑟𝑔) and the spread (𝑤 or 𝑤𝑔), can be used in
combination to give a description of the migration process. We find that the values for the median
shifts are in any case smaller compared to the spread and highly variable from halo to halo,
indicating a secondary effect. However, we deem that is more physically motivated to use the
quantities 𝑤 and 𝑤𝑔 as main indicators of the migration since this scatter measure contains more
information about the radial motions of the stars which are selected in the given ring compared
to the median. Still, it must be noted that we find average negative values for the median shift
radial profiles, showing a small inwards median motion of the selected stars in the given rings.
Although this looks contradictory to the standard picture of stars migrating to and populating the
outer parts of discs, it is reconciled by considering that there is always a rather symmetric spread
around the median value meaning that we have in all cases a considerable number of stars that
have migrated outwards between two snapshots.

We find that, when considering the changes of the guiding centres of the stars, there is a
migration process that follows a diffusion-like evolution. The exponent of the timestep dependence
is not exactly 0.5, as would be expected for pure diffusion, but slightly lower. This ‘slower’
diffusion could be attributed to the fact that we average over our different systems with different
structural properties and lifetime evolution. In individual halos, we do observe exponents that
closely match 0.5. As stated before the diffusion exponent is recovered if we consider only the
weakly-barred halos in our sample but the strongly barred systems seem to be regulated by a
slower-than-diffusion timestep evolution following 𝑤𝑔 ∼ Δ𝑡0.38. Indeed, most of the halos in Fig.
B.3, that have exponents closer to 0.5 do not have a strong bar in their centre. The mechanism
due to which the presence of a strong bar leads to this behaviour could be explore in a future
study. The corresponding time evolution of the changes in the galactocentric radii is flatter and
less clear than the respective one for the guiding centres. Although it can still be parametrized,
we are cautious about any strong statements on the physical significance of this result because
there are several processes that could contribute to changes in the galactocentric radii that would
require much deeper analysis to disentangle them cleanly.

The parametrizations we present in Eq. 3.2,3.3 describe how strongly stars migrate out of a
ring as a function of the radial location of the ring as well as the timestep that is used to between
the initial and final observations of the stellar positions. However, as shown in Fig. 3.16, there
are secondary dependencies that contribute to scatter about the median relation that we provide.
For this figure, we have used a fixed time interval of 𝑛 + 10, but the dependence is similar for
all other selections of 𝑛 + 𝑚 when 3 < 𝑚 < 15. In the case of considering changes in guiding
centres, we find that our sub-sample of barred systems has consistently higher values of 𝑤𝑔

than the weakly-barred systems, of the order of 30 per cent in the middle parts of the disc. We
must caution that the criterion we choose to distinguish between strongly/weakly barred systems
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(namely, systems with 𝐴2 above/below 0.3) is at some level arbitrary. However, we have tested
that if we instead split the sample into three sub-samples with max(A2) < 0.2 as weakly barred
systems, 0.2 < max(A2) < 0.4 as intermediate and max(A2) > 0.4 as strongly barred, we find that
the mean radial profiles of 𝑤𝑔 and Δ𝑟𝑔 for the intermediate sub-sample lie in between the other
two. This indicates that our results are consistent with a continuous dependence based on the
value of the bar strength. The stellar age adds another source of scatter, with stars in the youngest
age bin showing higher values by 20-40 per cent, depending on the radius, compared to those in
the oldest age bin. This is similar for both the strongly and weakly barred sub-samples, implying
that this source of scatter is independent of the presence of a bar.

In terms of the overall description of radial migration, we do not give distinct parametrizations
that each describe the effects of ‘churning’ and ‘blurring’ as it has been presented, for example,
in Schönrich & Binney (2009) but we can indirectly associate our computed quantities with these
suggested modes of stellar migration. The quantities 𝑤𝑔 and Δ𝑟𝑔 show the amount of change
of the guiding centres, hence the change of orbital angular momentum of the stars, which is
predominantly related to the process of ‘churning’, however the 𝑤 and Δ𝑟 are more general and
incorporate information about all possible processes that can result in the change of the orbital
radius of a stellar particle.

Indeed, we find that if we create similar histograms in terms of the changes in angular
momentum Δ𝑙𝑧 and extract the related quantities 𝑤𝑙𝑧 and Δ𝑙𝑧, we see that there is a very tight
correlation between the corresponding quantities for the guiding centres, as shown in Fig. 3.19
This is expected, as by construction the change of the guiding centre is due to a change in the
angular momentum of the star. A correlation between 𝑤𝑙𝑧 and 𝑤 is present, although looser than
the one with respect to 𝑤𝑔. This is an indication that the quantity 𝑤 encapsulates the information
from 𝑤𝑔, as well as some additional scatter that can be associated with the ‘blurring’ process,
which describes the changes in the epicyclic amplitudes on top of the effects that change the
angular momentum of the star. On the other hand, there is no correlation at all between Δ𝑙𝑧 and
Δ𝑟. Whereas there is a median change in the galactocentric radius of the stars selected in the
ring, this does not result exclusively from a change in the angular momentum, and this is why a
correlation does not arise.

Finally, it must be noted that the parametrizations that we extract are calibrated in our available
sample, therefore they are describing the migration process at systems that are comparable in size
to our Milky-Way but may not be readily available to disc galaxies of different mass range.

All in all, in this study we find that:

• The average change in the radius for a stellar particle over its lifetime, ⟨Δ𝑅⟩, is close to
zero for all our systems. However, this is due to the fact that stars experience both negative
and positive migration in comparable amounts which cancel out to a close-to-zero average.
The typical star experiences a migration of the order of 2 kpc.

• At 𝑧 = 0, we find that older stars (9-12 Gyr) have experienced up to twice the amount of
migration compared to newly formed stars (0-3 Gyr). We find a clear age dependence in
the migration strength as well as a radial dependence. Stars that have been born at larger
radii show broader distributions of 𝑧 = 0 radii, regardless of their 𝑧 = 0 age.
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Figure 3.19: The quantities describing the histograms ofΔ𝑟 (top) andΔ𝑟𝑔 (bottom) plotted against
similarly obtained quantities describing the histograms of the change in angular momentumΔ𝑙𝑧 of
the stars. We overplot the median lines in red and the density contours in the density colourmaps
while the red data points lie outside the 99th percentile contour. We find very strong correlations
between the guiding centre changes and angular momentum changes. This is not true for the
galactocentric radii changes, and in particular there is hardly any correlation between the median
shifts Δ𝑟 and Δ𝑙𝑧.
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• Stellar migration has a varied effect on the age profiles of the discs at 𝑧 = 0, depending on
the particular halo, but it does not affect the scatter around the mean stellar age at a given
radius.

• There is no imprint of migration on the total metallicity profiles or the profiles for young
stars (< 3 Gyr), but we find significant flattening of the profile gradients in many systems
for the older stellar populations. The extent of the flattening is correlated with the presence
of a bar in the disc.

• We create distributions of the change in the galactocentric radius Δ𝑟 and the change in
guiding centre Δ𝑟𝑔 between two simulation snapshots for the stars within different annuli
and quantify them using a measure of their spread 𝑤 and 𝑤𝑔, and a measure for their
median Δ𝑟 and Δ𝑟𝑔, respectively. This shows that 𝑤 and 𝑤𝑔 have a power law radial
dependence, increasing in the outer regions of the discs as well as a dependence in the
time interval between the two snapshots. We present parametrizations that describe these
effects. 𝑤𝑔 appears to approach a diffusion process at the outermost rings but there is
significant halo-to-halo variability.

• Δ𝑟𝑔 correlates exactly with changes in the orbital angular momentum Δ𝑙𝑧 of the stars,
as expected in the ‘churning’ process. Δ𝑟𝑔 is uncorrelated to Δ𝑙𝑧, being a more random
measure that includes the additional effect of ‘blurring’.

• Combining the findings presented in Figs. 3.10,3.12, and 3.16 we argue that in our sample
the systems with a stronger bar are associated with a stronger migration of the stellar
particles. This is manifested both in terms of larger values in the changes of guiding
radii, Δ𝑟𝑔 as well as producing shallower slopes in the metallicity profiles for older stellar
populations.

We note that our results are subject to the limitations of the Auriga galaxy formation model.
While dynamical interactions of the stellar particles with the bar are accurately captured, smaller
scale effects that could result in stellar migration, such as scattering with molecular clouds, cannot
be accounted from the modelling of the ISM. We aim to introduce and test the parametrizations for
stellar migration in the latest version of the L-Galaxies semi-analytic model of galaxy formation
(Henriques et al., 2020; Yates et al., 2021). Here, we present a basic form of such possible
parametrizations, focusing on the radial dependence of the migration strength which can be
implemented directly into the radial ring model of L-Galaxies. This will allow stars to migrate
from ring to ring based on the radial position in each snapshot. As we mention above, the
secondary effects of stellar age or bar strength could be also implemented as a scatter around the
median radial dependence. Furthermore, it would be of interest to extend this study to discs of
smaller masses in order to compare our findings.



Chapter 4

Radial flows in the L-Galaxies
semi-analytic model

In this chapter we present a preliminary application of the parametrizations that were derived in
the previous two chapters in the L-Galaxies model.

4.1 L-Galaxies Model
L-Galaxies or the ’Munich semi-analytic’ model is one of the pioneering SAMs and includes one
of the most comprehensive descriptions of galaxy formation. This has emerged from a series of
model versions by White & Frenk (1991), Springel et al. (2001), Springel et al. (2005), Croton
et al. (2006), De Lucia & Blaizot (2007), Guo et al. (2011), and Henriques et al. (2015), each
of which introduced improvements to the model. The current version of L-Galaxies is presented
in Henriques et al. (2020) while the model is still continuously updated as illustrated by the two
recently created branches by Yates et al. (2021) and Ayromlou et al. (2021).

Regardless of the model version, a galaxy in L-Galaxies is built inside dark matter halos and
subhalos that are drawn from the merger trees of either the Millennium (Springel et al., 2005)
or the higher resolution Millennium-II (Boylan-Kolchin et al., 2009) simulations. These merger
trees are created using the SUBFIND algorithm (Springel et al., 2001; Dolag et al., 2009) which
identifies all gravitationally bound substructures in the dark matter. Galaxies are separated into
three ‘types’ according to their subhalo status in the merger trees. "Type 0" galaxies are the
central galaxies of each main halo while "Type 1" refers to the satellite galaxies which are within
bound subhalos. Finally, "Type 2" galaxies refers to objects which have been stripped of their
dark matter subhalo but have not yet merged with the central galaxy.

Each galaxy is modelled by a number of mass reservoirs that represent the different compo-
nents of a real galaxy. At any time the baryonic mass associated with a particular galaxy can be
in one of the following states:

1. ‘Hot gas’

2. ‘Cold gas’
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Figure 4.1: The ring structure in the L-Galaxies model. Shown with blue in the left panel are the
inner six rings, and in the right panel the five outer rings. In both panels the ring at 1.6 ℎ−1kpc is
plotted in red.

3. ‘Stellar disc’

4. ‘Stellar bulge’

5. ‘Ejected Gas’

6. ‘Central Black Hole’

Furthermore, starting with the Henriques et al. (2020) version of L-Galaxies, a radial ring
structure has been incorporated in order to allow the modelling and observational comparison
of radial profiles in galactic discs. In the default model, both the ‘stellar disc’ and the ‘cold
gas’ reservoirs are divided into 12 rings spaced logarithmically in radius with the following
configuration.

𝑟𝑖 = 0.01 × 2𝑖 [ℎ−1kpc]; 𝑖 ∈ [1, 12] (4.1)

where 𝑟𝑖 is the outer edge of each ring. Although we are not concerned with the ‘stellar bulge’ in
this work, we note that a separate ring structure also exists for this component.

In the remainder of this section, we briefly introduce some of the main physics modelling pre-
scriptions in L-Galaxies but for a complete description of the model we point to the supplementary
material of Henriques et al. (2020).

• The galaxy building process begins with populating dark matter halos with baryonic matter.
The initial baryonic mass within each halo is decided by the mean cosmic baryon fraction
𝑓𝑏,cos = 15.5% and the halo mass, and is placed in the ‘hot gas’ reservoir, 𝑀hot = 𝑓𝑏,cos𝑀halo.
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The baryon fraction needs to be modified in order to account for the heating from the
UV-background radiation:

𝑓𝑏 (𝑧, 𝑀200) = 𝑓𝑏,cos

(
1 + (2𝛼/3 − 1)

[
𝑀200

𝑀𝐹 (𝑧)

]−𝛼)−3/𝛼
. (4.2)

This primarily affects the smaller mass halos, where this heating prevents baryons from
accreting into the halo.

• The amount of gas that moves from the ‘hot’ to the ‘cold’ gas reservoir is set by the cooling
rate. In L-Galaxies there are two cooling pathways corresponding to (1) a rapid cooling
regime at earlier times and in small halos when the cooling time is smaller than the free fall
time and the gas settles into a cold disc at the dynamical time of the system, (2) a cooling
flow regime for later times and more massive halos where gas is shock-heated at the virial
radius, forming a hot atmosphere, and then settles onto the disc at a slower rate regulated
by the cooling time (White & Frenk, 1991; Guo et al., 2011). In the first case the cooling
rate is given by:

¤𝑀cool = 𝑀hot
𝑟cool

𝑅200

1
𝑡dyn,ℎ

; 𝑟cool < 𝑅200 (4.3)

and in the second by:

¤𝑀cool =
𝑀ℎ𝑜𝑡

𝑡𝑑𝑦𝑛,ℎ
; 𝑟cool > 𝑅200 (4.4)

In these expressions, 𝑟cool is the cooling radius, which is the radius where the cooling time
is assumed to be equal to the dynamical time. The cold gas is assumed to accrete onto
the ring structure that represents the disc with an exponential profile regulated by a scale
radius dependent on the specific angular momentum and the circular velocity of the halo.

• L-Galaxies includes the creation of molecular hydrogen which is used for the formation of
stellar mass. The amount of molecular hydrogen is given by a fraction 𝑓H2 that dictates
how much of the cold gas is in the molecular and how much in the neutral phase:

𝑓H2 =

{
2(2−𝑠)

4+𝑠 , 𝑠 < 2
0, 𝑠 ≥ 2

(4.5)

The parameter 𝑠 is a function of the metallicity 𝑍 and the surface density Σgas of the cold
gas.

• Star formation follows a Kennicutt-type law (Kennicutt, 1998) where the star formation
rate density is proportional to the density of the molecular hydrogen (H2) divided by the
dynamical time of the disc (Fu et al., 2013):

ΣSFR = 𝛼H2ΣH2/𝑡dyn. (4.6)
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• The inflow of gas between the different rings follows the prescription by Fu et al. (2013).
In this work the authors invoke that the rate of change of the angular momentum of the gas
is proportional to its angular momentum, i.e. d𝐿gas

d𝑡 = 𝐶𝐿gas, which yields an expression for
the inflow velocity that is proportional to the radial distance of the ring from the centre of
the disc,

𝑣inflow = 𝛼𝑟, (4.7)

where 𝛼 is a free parameter of the model. This proportionality means that the inflow
velocity goes to zero in the central parts, and depending on the choice of 𝛼 one obtains
values of 10-20 km s−1 at the outskirts of a typical disc at around 15-20 kpc.

• During stellar evolution, a significant amount of energy is released to the surrounding
medium by stellar winds and supernova explosions. In L-Galaxies these processes are
modeled as an energy input that a) is heating the cold gas moving it into the ‘hot’ reservoir,
b) is heating the ‘hot’ component directly and c) moves ‘hot’ gas out of the galaxy into the
‘ejected gas’ reservoir.
The energy released by the stellar winds and supernovae is:

Δ𝐸𝑆𝑁 = 𝜖haloΔ𝑀∗,𝑅𝜂𝑆𝑁𝐸𝑆𝑁 , (4.8)

where Δ𝑀∗,𝑅 is the mass returned to ISM, 𝜂𝑆𝑁 the number of supernovae per Δ𝑀∗,𝑅, and
𝐸𝑆𝑁 the energy of 1051 erg released by each supernova. Finally, 𝜖halo is a free parameter.
The mass that moves from the ‘cold’ to the ‘hot’ reservoir is Δ𝑀reheat = 𝜖discΔ𝑀∗,𝑅 where
𝜖disc is another free parameter of the model. The energy required to drive this mass transition
is Δ𝐸reheat = 0.5Δ𝑀reheat𝑉

2
200. Δ𝐸reheat is subtracted from Δ𝐸𝑆𝑁 and any residual energy is

used to expel gas into the ‘ejected gas’ reservoir.

• Gas from the ‘ejected gas’ reservoir is allowed to be reincorporated into the ‘hot gas’
atmosphere with a rate of reincorporation:

¤𝑀reinc =
𝑀ejec

𝑡reinc
, (4.9)

where the reincorporation time, 𝑡reinc, is inversely proportional to the mass of the halo.

• The treatment of black hole evolution in L-Galaxies is mainly based on Croton et al. (2006).
The central black hole grows primarily whenever a merger of two galaxies occurs in the
model. Apart from summing the masses of the pre-existing black holes in each of the two
galaxies, the merger causes cold gas to be funnelled into the central regions, feeding the
black hole in what is called quasar mode. Then the black hole mass increases by:

Δ𝑀𝐵𝐻 =
𝑓𝐵𝐻 (𝑀sat/𝑀cen)𝑀cold

1 + (𝑉𝐵𝐻/𝑉200)2 . (4.10)

It is evident from this expression that the mass increase depends on the mass ratio of the
merger, the amount of cold gas in the two galaxies, and the virial velocity𝑉200 of the halo of
the central galaxy. The quantities with the subscript 𝐵𝐻 are free parameters of the model.
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Besides the quasar mode, L-Galaxies also considers a radio mode accretion onto the
black hole. In this mode, gas from the ’hot gas’ component directly feeds the black hole
over long time scales. Since there is a rate of increase of the black hole mass, energy is
released producing the radio mode feedback. This energy enters into the ’hot gas’ reservoir,
essentially reducing the total cooling rate. In particular, the amount of energy is given by:

𝐸𝐵𝐻 = 𝜂 ¤𝑀𝐵𝐻𝑐
2, (4.11)

where
¤𝑀𝐵𝐻 = 𝑘𝐴𝐺𝑁

(
𝑀hot

1010𝑀⊙

) (
𝑀𝐵𝐻

108𝑀⊙

)
(4.12)

and 𝑐 is the speed of light, 𝜂 the efficiency parameter set to 0.1, and 𝑘𝐴𝐺𝑁 is a free parameter.

• The merger of the baryonic components of the galaxies lags behind the dark matter halo
merger by a time set by the dynamical friction time-scale:

𝑡friction = 𝛼friction
𝑉200𝑟

2
sat

𝐺𝑀satlnΛ
, (4.13)

where lnΛ = ln(1 + 𝑀200/𝑀sat) is the Coulomb logarithm. Because all galaxies have
the same ring structure, when two of them merge the masses in gas and stars are added
between the corresponding rings. Moreover, in L-Galaxies a merger triggers a burst in star
formation which forms new stellar mass at each ring given by:

𝑀∗ = 𝛼burst

(
𝑀1

𝑀2

) 𝛽burst

𝑀cold, (4.14)

where 𝑀1 and 𝑀2 are the baryonic masses of the two objects, 𝑀cold is the cold gas mass in
the ring and 𝛼burst, 𝛽burst are free parameters.

• The bulge formation and growth in L-Galaxies can result from two channels. The first
is after merger events where the mass of the formed bulge is computed from energy
considerations with regards to the binding energies of the two merging systems. Bulges
can also grow via the secular evolution of the disc by invoking that a disc instability forms
a bar that eventually buckles to add to the bulge component. The criterion for the disc
instability in the model depends only on the stellar mass and scalelength of the disc:

𝑉max <

√︂
𝐺𝑀∗
3𝑅∗

. (4.15)

When this criterion is satisfied, mass is transferred from the ‘stellar disc’ to the ‘stellar
bulge’ component.

• L-Galaxies contains a comprehensive galactic chemical enrichment model presented in
Yates et al. (2013). In particular, eleven chemical elements are tracked (H, He, C, N, O, Ne,
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Mg, Si, S, Ca, Fe) which are products of the stellar evolution processes via stellar winds
and supernovae (SNe-Ia and SNe-II) explosions. The rate of ejection of a given element 𝑋
at some time 𝑡 is:

𝑒𝑋 (𝑡) =
∫ 𝑀𝑈

𝑀𝐿

𝑀𝑋 (𝑀, 𝑍0)𝜓(𝑡 − 𝜏𝑀)𝜙(𝑀)d𝑀, (4.16)

where 𝜓 is the star formation rate at the star’s birth, 𝜙 gives the number of stars in given
mass, 𝑍0 is the initial metallicity and 𝑀𝑋 is the mass of element 𝑋 per star.

Besides the aforementioned modelling prescriptions, we note that in L-Galaxies there is also
treatment of environmental processes such as tidal and ram-pressure stripping (Ayromlou et al.,
2021), and a model for the dust (De Lucia & Blaizot, 2007) which includes extinction due to
the interstellar medium and molecular clouds. Including the extinction factor is important in
correctly computing the colours of galaxies.

One can observe that the L-Galaxies model has a large number of free parameters. All these
parameters influence the evolution of the galaxies, creating a multidimensional parameter space
that needs to be searched in order to identify which parameter values produce the model output
that reproduces observations best. L-Galaxies uses a Monte Carlo Markov Chain (MCMC)
algorithm to evaluate the best fit values and the uncertainties for the set of parameters. Following
Henriques et al. (2020), the observational constraints that are usually used to calibrate the model
are the stellar and HI mass functions at redshift 𝑧 = 0, and the fraction of the red/passive galaxies
as a function of stellar mass at two different redshifts (𝑧 = 0, 𝑧 = 2).

In this work we are only concerned with the modelling of the inflow of gas which we aim to
update by using as input our analysis of the Auriga simulations. Furthermore, there is no treatment
in the current version of the model for stellar migration at all. Whereas gas is exchanged between
rings, stars remain exclusively in the ring that they were formed. Hence, we also aim to introduce
a prescription with similar functionality to the gas inflow recipe that will allow stars to move
between the rings.

4.2 Algorithm description
In the previous two chapters we presented parametrizations that describe how the radial migration
of stars and the radial inflow of gas behave in the selected sample of disc galaxies in Auriga.
These parametrizations need to be adapted for an integration in the L-Galaxies model, and in this
section we describe the algorithmic implementation of the resulting numerical relations in the
code.

We start by recalling the equations from the earlier chapters, for the gas flows:

𝑤gas / kpc =

[
35.9 𝑅1.1

𝑠𝑐 + 21.8
(
𝑓acc ∗

60Myr
Δ𝑡

)
− 2.8

]1/3
Δ𝑡1/3, (4.17)
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Figure 4.2: Schematic representation of how we distribute the material using the Gaussian
functions. In this toy example, material is moved out of the initial ring (shaded in blue) and is
distributed across the different radii with the probability function in red. We note in this plot the
significance of the parametrized quantities 𝑤 and Δ𝜇 which control, respectively, the width and
the median of the distribution. Since Δ𝜇 is measured in km s−1 it needs to be multiplied by a
timestep Δ𝑡 to get a displacement in units of radius. For comparison, the magenta curve has twice
the width and the median shift of the red curve.
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Δ𝜇gas / km s−1 =

{
−1.7 − 6.8 ( 𝑓acc

60Myr
Δ𝑡

) if 𝑟 ≤ 0.75 𝑅𝑠𝑐

−15.9 𝑅𝑠𝑐 − 6.8 ( 𝑓acc
60Myr
Δ𝑡

) + 10.2 if 𝑟 > 0.75 𝑅𝑠𝑐

. (4.18)

And for the stellar migration:

𝑤∗ / kpc =
(Δ𝑡/Myr)0.45

12.2
𝑅
((Δ𝑡/Myr)0.27 / 6.9)
𝑠𝑐 , (4.19)

Δ𝜇∗ / km s−1 = 0. (4.20)

In both processes, the first equation, for 𝑤, measures the amount of spreading of the material
around some radius. In particular, we have defined 𝑤 as half of the 16-84 percentile of a
distribution, which in the case of a purely Gaussian distribution corresponds to the 1𝜎 interval
around the median. On the other hand Δ𝜇, which is non-zero only for the gas component,
measures the bulk flow velocity of the material, or equivalently, how much has median of the
distribution has shifted from the point of origin after a given time period. For the case of the
stars, we use Eq. (3.2) for the guiding centres, which are the mean circular radii of a stellar orbit,
instead of the corresponding expression for the galactocentric radii.

As mentioned in the previous section, the disc of every galaxy is represented by twelve fixed
rings, both for the stellar and the cold gas components. At any snapshot time, we have access to
stored arrays which give us information about the stellar and gas mass of each ring. The purpose
of our algorithmic design is to decide how much mass is to be exchanged between the rings after
every update of the model. In more detail, at the initial time the mass within a given ring is
thought to be a top-hat function, evenly spread between the radial boundaries of the ring. After
a timestep Δ𝑡 we postulate that the gas from this particular ring has diffused to radii outside the
ring boundaries, following a Gaussian profile. The median and the spread of this new distribution
are determined by the values of 𝑤 and Δ𝜇 which we calculate based on the properties of the
ring (mainly its radius) before the update of the quantities. The fraction of mass from the initial
ring that is outside the ring boundaries is assigned to the other rings depending on how much
overlap there is between the distribution function and the ‘receiving’ ring. The choice of the
Gaussian-shaped distribution is motivated by the shape of the distributions that we measured in
the Auriga simulation, which in the majority of instances were well approximated by a Gaussian
function. We show a basic schematic representation of these distributions in Fig. 4.2, where also
the meaning of 𝑤 and Δ𝜇 is more clearly illustrated.

We now present the mathematical formulation of the redistribution process. To begin with,
a ring 𝑖 is centred at a radius 𝑅𝑐𝑒𝑛 and contains mass 𝑀𝑖. Depending on the total mass of the
galaxy, which is the sum of the masses in all rings, we compute the radii which enclose 90%
and 95% of the total mass. This is necessary because the parametrizations are cast in terms of
normalised radii, 𝑅𝑠𝑐; for the stellar component 𝑅𝑠𝑐 = 𝑅𝑐𝑒𝑛/𝑅90 whereas for the gas component
𝑅𝑠𝑐 = 𝑅𝑐𝑒𝑛/𝑅95. Given the integration timestep Δ𝑡 of the model and 𝑅𝑠𝑐 we can then calculate
the values for the spread 𝑤 and the median shift Δ𝜇.
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These are the required parameters so that we can construct the distribution function 𝑓 , which
gives the probability that mass from the initial ring will end up in any radius 𝑟,

𝑓 (𝑟; 𝑅𝑠𝑐, 𝑤,Δ𝜇,Δ𝑡) =
1

√
2𝜋 𝑤(𝑅𝑠𝑐,Δ𝑡)

exp
(
− (𝑟 −M)2

2𝑤2(𝑅𝑠𝑐,Δ𝑡)

)
, (4.21)

where M is the median of the distribution expressed as:

M(Δ𝜇,Δ𝑡) = 𝑅𝑐𝑒𝑛 + Δ𝜇(𝑅𝑠𝑐) × Δ𝑡. (4.22)

Eq. (4.21) is a normalised probability distribution therefore the integration over all radii should
be equal to unity, ensuring that all of the mass 𝑀𝑖 has been assigned to a radius within the galaxy,∫ ∞

0
𝑓 (𝑟; 𝑅𝑠𝑐, 𝑤,M,Δ𝑡) d𝑟 = 1. (4.23)

In the model we have a certain number of rings with their centres set at specific values at
all snapshots. This immediately leads to a discretized, rather than a continuous problem, and
Eq. (4.23) should be expressed in a discrete form as well:∑︁

𝑗

𝑓 𝑗 (𝑟 𝑗 ;𝑤𝑖,M𝑖,Δ𝑡) Δ𝑟 𝑗 = 1. (4.24)

The amount of mass that is being been transferred from a given ring i to a ring j is computed
as the product of a) the distribution function associated with ring i, evaluated at a radius 𝑟 that
corresponds to the centre of the ring j, and b) the width of the ring j, Δ𝑟 𝑗 .

We define the quantity inside the sum as:

𝑞𝑖, 𝑗 = 𝑓 𝑗 (𝑟 𝑗 ;𝑤𝑖,M𝑖,Δ𝑡) Δ𝑟 𝑗 , (4.25)

where 𝑞𝑖, 𝑗 represents a weighting factor that informs us about which fraction of the mass has
moved from ring i to ring j.

Because of the discrete nature of this redistribution, and the fact that we deal with a very
coarse resolution of only 12 rings, it is expected that in most instances the normalisation condition
of Eq. (4.24) is not automatically satisfied. However, it is necessary that mass conservation is
obeyed in the code, meaning that all the mass that exits a given ring should subsequently be found
in one of the other rings.

Therefore we must enforce the normalisation which we do by adjusting the value of the
weights by a correction factor, 𝐶, for each ring. Expressed in mathematical notation, we define
this factor for every ring i as:

𝐶𝑖 =
∑︁
𝑗

𝑓 𝑗 (𝑟 𝑗 ;𝑤𝑖,M𝑖,Δ𝑡) Δ𝑟 𝑗 =
∑︁
𝑗

𝑞𝑖, 𝑗 (4.26)

where𝐶𝑖 can obtain vales different than 1, both larger and smaller. We then compute the corrected
weights as:

𝑞𝑖, 𝑗 =
𝑞𝑖, 𝑗

𝐶𝑖

(4.27)
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By this construction it then follows that:∑︁
𝑗

𝑞𝑖, 𝑗 =
∑︁
𝑗

𝑞𝑖, 𝑗

𝐶𝑖

=
1
𝐶𝑖

∑︁
𝑗

𝑞𝑖, 𝑗 =
𝐶𝑖

𝐶𝑖

= 1 (4.28)

Using the weights 𝑞𝑖, 𝑗 , we then assign the fraction of the mass that ‘originates’ from ring i
and moves into ring j as:

𝑚𝑖→ 𝑗 = 𝑞𝑖, 𝑗𝑀𝑖 (4.29)

After the redistribution process, the mass at the ‘receiving’ ring j is simply the sum of all the
masses transferred from the other rings, that is:

𝑀 𝑗 =
∑︁
𝑖

𝑚𝑖→ 𝑗 . (4.30)

The same equations apply for the gas mass and stellar mass in each ring, as well as the masses of
the individual metals and elements that are simulated in L-Galaxies.

The only modification in the redistribution algorithm between the gas and stellar components
is that the stellar migration parametrization includes only a spread quantity and not a shift to the
median. Under this condition the equation for the new median of the distribution is simply given
by M = 𝑅𝑐𝑒𝑛, where 𝑅𝑐𝑒𝑛 refers to the ring out of which the mass is originating.

4.2.1 Probability at 𝑅 < 0

From a mathematical standpoint any Gaussian function is well-defined and extends to infinity
in both directions. However, in our application our independent variable is the radius from the
centre of the galaxy, at 𝑅 = 0, so negative values have no physical meaning. The algorithm that
we use deals naturally with this issue. When there is a fraction of the distribution that enters
negative radii, it follows that the sum of the weights in the 12 rings will be less than 1. The
difference will be accounted for by the correction factor, which will scale the weights accordingly.
Essentially this creates a fictitious outwards flow of material, because the weights of all the rings
at 𝑅 > 0 will be increased. This issue is quite negligible for the majority of the rings because
the distributions are sufficiently peaked so that only a negligibly small fraction gets negative radii
assigned. However, this is not always the case for the three innermost rings. The probability
distributions at these very small radii are extremely peaked (very low values of 𝑤) and because
of the negative bulk flow (Δ𝜇) the median of the distribution can end up at a negative value.
As a result the area under the curve is predominantly at 𝑅 < 0 and there is little contribution at
𝑅 > 0 where our rings are located. It then follows that the correction factor 𝐶𝑖, being the sum
of the weights at all rings, becomes unrealistically small. We alleviate this problem by imposing
a condition that when the median M becomes negative, we set it at the centre of the innermost
ring at 0.01 kpc. This issue is much less pronounced in the stellar component since the median
always remains at the centre of the rings.
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4.2.2 Probability at 𝑅 > 𝑅gal

A similar problem is encountered on the other end of the radial ring structure, where the probability
distribution extends at a radius that is larger than the radius of the last ring in L-Galaxies. To put
a concrete number, that is whenever 𝑅 > 𝑅max = 40.96 ℎ−1kpc.

In contrast to what was discussed in the previous paragraph, the outer boundary affects
primarily the treatment of stellar migration. In the case of the gas radial flows there is an inwards
bulk flow of mass with the inflow velocity (Δ𝜇) increasing linearly with radius. Hence, in the
outermost ring, despite the Gaussian distribution being much broader, it is also more strongly
shifted inwards. As a result only a small fraction of the mass in the tail of the distribution falls at
𝑅 > 𝑅max, and the correction factor 𝐶𝑖 remains reasonably close to one. However, in the stellar
migration treatment there is no net inwards flow but rather only a spreading of the material around
the centre of each ring. Therefore, for the outermost rings there can be a considerable fraction
of the mass that has moved outside the maximum ring radius. Because of the scaling that we
apply with the correction factors, the mass that has been moved beyond 𝑅max will artificially be
‘compensated’ by increasing the values of the masses in each of the rings within the disc. The
eventual state can be a non-physical build up of mass in the outer ring. It must be noted that
this issue is not too problematic in the greater picture of the model because the stellar profiles in
galactic discs follow an exponential radial profiles and thus only a small fraction of the mass is
located at the outer rings. A potential solution that can be explored in the future is to consider
a secondary ‘ejecta’ reservoir which will store the mass that has barely exited the ring structure,
and use some mechanism that will more smoothly re-incorporate this mass to the rest of the rings.

4.2.3 Modification to the semi-analytic modelling prescriptions
The incorporation of a recipe obtained from a simulation to a different model is not a trivial
task. The most challenging aspect in our application is the default ring structure in L-Galaxies
which places much emphasis on the innermost regions of the galaxy. Because of the logarithmic
spacing, 6 out of the 12 rings are centred at a radius less than 1 kpc. In our studies with Auriga, we
similarly used a ring decomposition for the simulated discs which was however linearly spaced.
As a result, our innermost ring was placed around the 1 kpc region from which it follows that
we did not realistically probe any regions further inwards. Therefore the interpolation of the
equations within the inner kpc should be treated with caution.

The profile for the median shift Δ𝜇 that is described by Eq. (4.18) will tend to a non-zero
value with Δ𝜇 < −1.7 km s−1 as 𝑅 → 0. We argue that it is not physically sound to adopt this
interpolation, and instead it must be imposed that Δ𝜇 → 0 as 𝑅 → 0. Because we lack any input
from our analysis in Auriga, we resort to using the existing inflow recipe of L-Galaxies at these
inner radii since that implementation naturally tends to zero as we approach the centre of the
galaxy. Hence we use Δ𝜇 = −𝛼𝑟 km s−1 when 𝑅 < 1 kpc.

In the case of the spreading parameter 𝑤, we do interpolate safely to low radii as the function
monotonically increases with radius and approaches zero at the centre. That applies both to 𝑤gas
and 𝑤∗. The modification that needs to be implemented in the case of 𝑤 is a scaling to the width
of the ring. The rings that were used to extract the parametrizations were of equal width of
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about 1 kpc. In the L-Galaxies structure there is an extreme difference between the width of the
inner and outer rings spanning three orders of magnitude. We find that if we blindly apply the
parametrization for 𝑤, material diffuses too much in the inner rings and does not spread enough
in the outer rings with the extreme case in the largest/outermost ring where no material spreads
beyond the ring boundaries. Upon testing with higher resolution runs and several scalings of the
values of 𝑤, we conclude that it is reasonable to scale the value of 𝑤 by the width of the respective
ring. Hence, the quantity that enters Eq. (4.21) is �̃� = 𝑤/Δ𝑅𝑟𝑖𝑛𝑔, in place of 𝑤.

4.2.4 Modification to the ring resolution
We have conducted several tests with a different ring structure (e.g. linear spacing) and number
of rings, the presentation of which is beyond the scope of this thesis. Nevertheless, we note that
the model yields different results when we have a higher radial resolution (i.e. larger number of
rings) not only in the radial profiles but also in the global properties of galaxies (see following
section 4.4). This is not surprising as we expect that to some extent all recipes that operate on a
ring level will perform differently in higher resolution. Ideally, one would like to achieve as high
resolution as possible for the radial decomposition of the disc. However, there is a significant
computational cost associated with adding more rings to the model since then every calculation
needs to be repeated considerably more times. In particular, we find that tripling the number
of rings causes the code to run three times slower. This is still acceptable when using a subset
of trees but if the full Millennium box is to be used then the increasingly longer running time
cancels the advantage of a semi-analytic model which is to run much faster compared to a full
scale numerical simulation.

We have employed a partial workaround by increasing the ring resolution only within our
recipes for the radial gas flows and stellar migration instead of applying it globally to the rest of
the code. We input the same radial ring structure from Eq. (4.1) and because the resolution in
the 8 inner rings is already high enough we preserve the structure for them. The width of the
outer four rings is a factor of 2 larger than the previous ones so we split each ring by dividing
by this factor and we create equal radial width annuli. That is to say the 9th ring is split in
2, 10th in 4, 11th in 8 and the outermost 12th ring into 16 subrings. The mass of the parent
ring is also split equally between each of the subrings. We then apply our recipes to this higher
resolution structure which in total has 38 rings. The new resolution is ∼ 1.5 kpc in the outer
radii, comparable to our analysis in Auriga. This implementation reduces the running time by
50% compared to initializing the model with 38 rings.

4.3 Single galaxy toy model
As we discussed before, L-Galaxies is an extensive code that models several physical processes
that happen during galaxy formation and evolution. Our additions are incorporated as part of
this code and perform the radial transport of mass while at the same time gas accretion, star
formation, AGN and stellar feedback and mergers are triggered by the corresponding modelling
prescriptions. Naturally, these processes are interconnected in a non-linear fashion, and the output



4.3 Single galaxy toy model 99

of one recipe can immediately affect another. When testing for the robustness and accuracy of
our modelling it is preferable to isolate its effect, therefore we have created a simple toy model of
a single ‘galaxy’ where the only process that operates is the transport of mass between different
rings. Because of the similar implementation of the stellar and gas radial transport, for this toy
application we use only one mass component, and in particular we assume the parametrizations
that describe the gas transport as they include non-zero bulk inflow therefore providing a more
generalised picture.

We use the same code that is written for the recipe in L-Galaxies with minor modifications to
allow it to function outside the full model, and we set arbitrary initial conditions for the mass at
each ring. Within this framework, we can also choose the number of time iterations, the timestep
Δ𝑡 that we desire while the ring structure can also be modified for further experimentation.

A most useful check is to confirm that a diffusive process is simulated by our toy code. For
that purpose we employ a setup with a large number of rings to improve the resolution, and we
populate with gas only one of these rings at 𝑡 = 0. The initial gas distribution in this example is
a narrow top hat which according to the functionality of the code should evolve with time into
a Gaussian-shaped distribution which becomes broader and more shifted to inner radii at every
timestep. This is shown in Fig. 4.3 where we indeed see that the initially spiked distribution
broadens with time and moves inwards owing to the Δ𝜇 parameter for the bulk inflow.

In order to approximate the functionality of the recipes in L-Galaxies, we copy the ring
structure that is used in the model’s main code, that is 12 rings with a logarithmic spacing
(Eq. 4.1). We choose arbitrarily a monotonically decreasing initial mass profile with the form
𝑀𝑖 = 1000 × (12 − 𝑖). The exact shape of the profile is not important in this application. Finally
we assume a timestep of Δ𝑡 = 15 Myr which is comparable with the integration timestep in
L-Galaxies.

In Fig. 4.4 we show how the mass and surface density evolve from the initial profile after
integrating for 3 Gyr (that is 200 iterations). We present two separate versions of the parametriza-
tions, a) where we assume that the bulk velocity is a non-zero constant at 𝑅 = 0 and b) where
the bulk velocity tends to 0 at 𝑅 = 0 as in Fu et al. (2013). Comparing the two results we see
a difference in the evolution of the profiles for the inner rings during the first few iterations. In
the default version of the parametrizations, (a) mass from the second and third rings is rapidly
pushed to the centre of the galaxy and builds up in the innermost rings while these rings become
depleted because mass from outside was not transported fast enough to refill them. However,
after integrating for longer times we see that mass gradually moves inwards and the mass in the
second and third rings increases again. In the modified version (b) the transport of mass to the
innermost ring is much more gradual, and we observe peaks of the profile which move inwards
with time in a wave-like fashion. Interestingly, after the full 3 Gyr integration time the same
steady state is obtained. The behaviour at the outer rings is identical since the modification to the
parametrizations does not impact these outer radii. In the Appendix C, Fig. C.1 shows the same
plot with only the 10 first iterations to stress that this early evolution deviates between the two
versions.

We further expand this toy model by adding the increased resolution treatment that was
discussed in the previous section. In Fig. 4.5 we show the outcome of the toy model with the
same initial conditions when we have modified the inflow velocity profile at the inner radii and
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Figure 4.3: Diffusion of mass from a single ring to its neighbouring rings. On the top panel,
we show the mass and on the bottom the cumulative mass. For this example we are using 100
rings linearly spaced between 0 and 40 kpc where only one ring centred at 28.5 kpc is populated
with mass 𝑀 = 100 at 𝑡 = 0. We show 20 time iterations with lighter colors representing later
times. We point to the Gaussian like distributions that are created with time and which become
increasingly broader and shifted to smaller radii.
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Figure 4.4: In this plot we show the redistribution of mass in a toy galaxy when applying our
algorithm. We use the same structure as in L-Galaxies of 12 logarithmically spaced rings,
initialized with an arbitrary mass profile which decreases monotonically with radius (red curve).
We show in this plot 200 iterations with Δ𝑡 = 15 Myr. The top panels show the cases where we
extrapolate our recipe in the inner 1 kpc, whereas the bottom panels where we use the Fu et al.
(2013) recipe for these regions. It is interesting to note that whereas the evolution appears different
at the early times (purple hued curves) the same steady state is approached when integrating for
3 Gyr (yellow curve).
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Figure 4.5: Similar plot to Fig. 4.4 with the same initial conditions and iterations but for the
case where we have increased the resolution in the outer rings. The final steady state remains the
same, however, the mass progresses slower towards the inner radii. There is also a build up of
mass in the outer ring as expected due to the presence of a hard boundary at the outer radius.

adopting higher resolution in the outer rings. It is worthwhile to compare with the bottom panels
of Fig. 4.4. We observe that the profile within 0.1 kpc is identical at the final time (yellow curve),
despite the fact that the mass arrives at much later times in these radii. The outer rings are split
into a series of smaller subrings, therefore mass transport becomes much more gradual through
them as it is better tracked by the increased resolution. In this example we also note the build
up of mass at the outer edge of the system which is not observed in the default ring resolution
case. This can be explained in light of the slower rate of inwards mass transport. Mass remains
for longer in the outermost ring, and because of the spreading parameter some part of it is moved
to radii larger than the edge of the system. Since we do not allow mass to escape the system it is
forced to concentrate in this outer boundary. This is a topic that needs potential improvement in
our model.

It must be stressed that in all these examples there is neither the addition of new gas onto the
rings nor the transformation of gas mass into stellar mass via the star formation process. Therefore
it is expected that outer rings will be significantly depleted with time as mass flows inwards and
at the same time gas mass will significantly build up in the centre of the galaxy. This toy model
has no physical significance other than showing how the algorithm yields different results when
modifying several parameters. However, in the full scale L-Galaxies model the differences that
we find in how fast and to what extent mass builds up in given radii may significantly influence
the outcome. For example, a very rapid concentration of gas at small radii and at early redshifts
may trigger very high rates of star formation and subsequently an immediate depletion of gas in
the inner regions that cannot be replenished in time, as well as induce larger amounts of stellar
and AGN feedback which alter the cooling rates of these halos. This once again shows how each
recipe is intertwined with the rest of the modelling in the L-Galaxies code, and highlights the
necessity to re-calibrate the model after any modification to its structure.
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4.4 Results from L-Galaxies
In this section we present results from a preliminary application of the new recipes in L-Galaxies.
We choose to present a subset of results which are relevant to the topic of this thesis and highlight
the differences between the model versions. In particular, we compare two versions of our
implementation. In the first (orange color) we are using our parametrizations for the gas radial
flow and stellar migration with the default radial ring structure and the modification to the velocity
profile for the gas inflow at low radii that was mentioned before. The second run (green color)
is using the exact same equations but we have employed the high resolution treatment for the
outer rings, or in other words there is no change in the applied physics but only in the underlying
structure on which the recipes are applied. In all cases we also compare with the result from the
Henriques et al. (2020) model (blue color, referred to as Hen20). We do not run the model in the
whole volume of the Millennium simulation but only in a selected merger tree file. This file has
been specifically used for test runs of L-Galaxies because it has enough galaxies and produces a
representative stellar mass function.

4.4.1 Mass Functions
In Fig. 4.6 we show the neutral hydrogen (HI) mass function at redshift 𝑧 = 0 along with
observational data (Jones et al., 2018; Haynes et al., 2011; Zwaan et al., 2005). Focusing on the
masses above 109 M⊙ and comparing with the Hen20 curve we see that the low resolution version
forms fewer gas rich objects whereas the opposite is true for the high resolution version. It is
interesting that in the latter case the shape of the curve is very similar to the Hen20 model but
shifted to the right, which indicates that a potential re-calibration of the model parameters could
actually yield convergent results with two versions as well as with the observational data.

In Figures 4.7 and 4.8, we present gas (total and molecular), stellar and SFR mass functions
at five different redshifts. The differences between the three curves in the stellar mass functions
are minor in all cases showing that the stellar migration recipe is not as radical in changing global
disc properties. Regarding the gas mass functions we find, as discussed for HI, that the high
resolution version tracks the Hen20 model better, and we also see that any deviations arise at late
times since for large redshifts there is extremely tight matching. In the low resolution version,
we encounter the formation of a large number of galaxies with low gas (total and 𝐻2) masses, a
phenomenon starting at the largest redshift and persisting at all redshift values. In the future, we
plan to use observational data to compare with these curves in detail, but doing so at this stage,
before re-calibrating the model, is not conclusive.



104 4. Radial flows in the L-Galaxies semi-analytic model

6 7 8 9 10 11
log10(MHI) [M ]

6

5

4

3

2

1

lo
g 1

0(
dN

/d
lo

gM
)

Jones+18
Haynes+11
Zwaan+05
Hen20
New Recipes
New Recipes (High Res)

Figure 4.6: Neutral hydrogen mass functions by considering all the central galaxies in the single
tree file. We plot the Henriques et al. (2020) result in blue and the outcome of our recipes in
the default implementation (orange) and with increased resolution in the outer rings (green). We
also show for comparison observational results from Jones et al. (2018); Haynes et al. (2011);
Zwaan et al. (2005). It is expected that the Hen20 model matches the observations since it has
been specifically calibrated to do so.
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Figure 4.7: Mass functions for the stellar mass (top) and total gas mass (bottom) using all the
central galaxies in the single tree file computed at five different redshifts. We plot the Henriques
et al. (2020) result in blue and the outcome of our recipes in the default implementation (orange),
and with increased resolution in the outer rings (green). We notice that the green curve shows
better agreement with the Hen20 model over all redshifts.
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Figure 4.8: Star formation rate functions (top) and molecular gas mass functions (bottom) using
all the central galaxies in the single tree file computed at five different redshifts. We plot the
Henriques et al. (2020) result in blue and the outcome of our recipes in the default implementation
(orange) and with increased resolution in the outer rings (green). We notice that the green curve
shows better agreement with the Hen20 model over all redshifts.
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4.4.2 Global relations
In the previous sub-section we have discussed how the change in ring resolution results in a
substantially different outcome in the model’s mass functions. We expand further on this topic
by looking at relations between global properties of the galaxies.

In Fig. 4.9 we plot the total gas mass against the total stellar mass of all the galaxies that
are produced in our runs at five redshift values. This figure confirms the findings of Fig. 4.7 in
that from the earliest redshift there is an overproduction of galaxies with low gas mass in the
low-resolution run while the range of stellar masses is similar for all models. Our explanation
for this phenomenon is that gas is consumed by star formation very early in the evolution of the
galaxies. Gas is funneled too rapidly towards the innermost rings where densities are high and
star formation is efficient, while there is not enough time to be replenished by newly accreted
gas onto the disc. We observe that the discrepancy between the low-resolution and the Hen20
models becomes smaller at lower redshifts as the systems approach a steady state. However,
galaxy evolution is a sequential, causal process, thus the fact that many early galaxies are gas-
depleted permeates into the subsequent evolution and cannot be completely washed out resulting
in different outcomes by 𝑧 = 0. On the other hand, the high-resolution run is consistent with the
Hen20 model at high redshifts to a large degree, but at 𝑧 = 0 we find an a excess of high-gas mass
galaxies at large stellar masses and a deficit of low-gas mass galaxies at small stellar masses.

In Fig. 4.10 we plot the mean gas metallicity against the stellar mass at the same redshift values,
where the gas metallicity is approximated by the ratio of the oxygen to hydrogen abundances.
The low-resolution run produces an extreme range of metallicity values at early redshifts which is
not agreeing with the predictions from the Hen20 and high-resolution models, while late redshift
results are more divergent. A distinctive feature in the Hen20 contour plots is the dichotomy of
low and high metallicity galaxy populations at low stellar masses. The high-resolution model is
successful in reproducing this dichotomy although the locus is not as pronounced as in Hen20.
Besides, the median curves for both Hen20 and the high-resolution run are in excellent agreement
within the error bars for all the redshift values.

Fig. 4.11 shows the mean stellar metallicity plotted against the stellar mass. Much of the
observations for the gas component also apply in this case, including the better agreement
between the high resolution run and Hen20. At early redshifts the contour shapes in the low
resolution model are comparable with Hen20 but the median is systematically higher. At later
redshifts the low resolution model fails completely to reproduce the metallicity dichotomy at low
stellar masses, whereas the high resolution model shows a more promising outcome.
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Figure 4.9: Total gas mass versus total stellar mass for all the central galaxies at five different
redshifts. We plot the Henriques et al. (2020) result in blue and the outcome of our recipes in
the default implementation (orange) and with increased resolution in the outer rings (green). We
present the data points with the contour plots and also show the median curve with the 1 standard
deviation error bars. The default implementation of the new recipes fails to match the gas-stellar
mass relation in Hen20 starting from early redshifts. However, when we increase the resolution
the results are in better agreement, although the Hen20 model is producing a higher number of
low stellar mass-low gas mass galaxies at 𝑧 = 0 which are not present in the high resolution run.
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Figure 4.10: Similar to Fig. 4.9 but showing the global gas phase metallicity traced by the [O/H]
ratio as a function of stellar mass. The default implementation (orange) again fails beginning at
early redshifts but seems to match better the Hen20 model (blue) at later times. The increased
resolution model (green) manages to reproduce to some extent the bimodality that is present in
the contour plots of the Hen20 model.
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Figure 4.11: Similar to Fig. 4.10 but showing instead the global stellar metallicity in the galaxies
against the stellar mass. In this case the default implementation (orange) is not extremely different
to the Hen20 model (blue) although the stellar metallicity appears systematically higher. The
increased resolution model (green) is closer to the Hen20 model but the locus of high metallicity-
low mass galaxies at low redshifts is not as pronounced.
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4.4.3 Radially resolved properties
We now turn our attention to radially resolved properties. We are only using the information
for the stellar and gas mass in each ring in central galaxies (“Type 0”) in the model in order to
compute mean radial profiles of the gas, stellar and star formation rate surface densities. These
are shown, respectively, in Fig. 4.12 (gas), Fig. 4.13 (stars) and Fig. 4.14 (SFR) at redshift 𝑧 = 0.
We are splitting the galaxies into three mass bins, and we also add observational data from Leroy
et al. (2008), for comparison. The observations are available mostly within 10 kpc hence the
values from our model at the outer rings are not shown in these Figures. Despite some qualitative
differences, all models fall within the range of the observations, rendering it difficult to extract a
strong conclusion in favor of any of the versions. We notice that in the low resolution version, the
gas (and by extension the star formation rate) appears much more concentrated in the innermost
ring, resulting in steeper radial profiles, especially for the most massive bin.

In Figures 4.15 (gas), 4.16 (stars), and 4.17 (SFR) we show the radial profiles for the same
three quantities for the whole range of the ring structure. We use the same mass bins and plot the
results for five different redshift values. The main takeaway from all three plots is that the mean
radial profiles predicted by the low resolution version are steeper than the Hen20 outcome in all
mass bins and over all redshifts. On the other hand, the ones for the high resolution version are
universally shallower than Hen20. This is in large part due to the larger concentration of mass in
the outer ring which is the same observation that was discussed in the toy model above. We note
that the mean radial profiles for all the individual elements that are tracked in L-Galaxies follow
the shape of the gas surface density radial profiles.

We refrain from adding a more extensive discussion for these plots since this is ongoing
work which is still subject to changes. Nevertheless, the differences that arise in the global
disc properties when altering the ring resolution, primarily in the gas mass-stellar mass relation
and secondarily in the mass functions, need careful exploration and a deeper understanding of
how all physical processes interact during the evolution of the model galaxies. Moreover, the
results in this section are obtained using the model parameters from Henriques et al. (2020) with
readjustment. In this paper it is already shown that there are some best fit parameters that are
significantly changed comparing to the previous model versions. As a future goal we would like
to re-run the MCMC fitting process with our new recipes which may alter parameters in the model
such as the star formation rate scaling or the supernova feedback strength significantly. Once
there is enough confidence on the robustness of the new recipes the model can be run in the whole
volume of Millennium as well as the high resolution Millennium-II. We also defer more rigorous
comparisons with observations to future work when the new model has been fully established.
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Figure 4.12: Mean gas surface density radial profiles for central galaxies at three different mass
ranges. We plot the Henriques et al. (2020) result in blue and the outcome of our recipes in the
default implementation (orange) and with increased resolution in the outer rings (green). We
also plot observational data from Leroy et al. (2008) with the black points. However, it is not
straightforward to decide which model matches the observations best.
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Figure 4.13: Similar to Fig. 4.12 but for the stellar surface density of the disc. The observational
data are also drawn from Leroy et al. (2008). We arrive to the same conclusion that all three
models seem to match the range of the observations.
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Figure 4.14: Similar to Fig. 4.12 but for the star formation rate surface density.
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Figure 4.15: Mean gas surface density radial profiles for all the central galaxies at five different
redshifts and three different mass ranges. The exact values are written on the top of each panel.
We plot the Henriques et al. (2020) result in blue and the outcome of our recipes in the default
implementation (orange) and with increased resolution in the outer rings (green). The default
implementation tends to produce in general steeper radial gradients, while if we increase the
resolution in the outer rings the gradients appear flatter than the Hen20 model.
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Figure 4.16: Similar to Fig. 4.15 but showing the mean radial profiles for the stellar surface
density. The same conclusion that was discussed in terms of the steepness of the gas radial
profiles applies for the stars. This is not surprising since the location of the gas determines the
radii where star formation happens.
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Figure 4.17: Similar to Fig. 4.15 but showing the mean radial profiles of the star formation rate
density. The same conclusion that was discussed in terms of the steepness of the gas radial profiles
applies for the star formation rate which is a reasonable consequence since the star formation rate
is proportional to the gas surface density.



Chapter 5

Summary and future outlook

In the final chapter of this thesis we restate and summarize the main results from the previous
three chapters while exploring their importance in the field of disc galaxy evolution. We conclude
the thesis by suggesting possible new directions of research that can follow from this work.

Study of radial transport processes in Auriga

Gas component
In Chapter 2, we studied the radial gas flows in a sample of Milky Way-like disc galaxies from
the Auriga simulation suite. The choice of this simulation for our analysis was made due to the
fact that Auriga is specifically designed to simulate realistic disc galaxies in relatively isolated
environments with very high resolution. These are ideal conditions to study the secular processes
of galaxy evolution. Furthermore, Auriga includes a comprehensive galaxy formation model
and has been produced using the state-of-the-art moving mesh code AREPO which combines the
advantages of both grid-based codes and SPH codes.

In order to track the flow of gas between different cells and by extension different radii within
the plane of the galaxies we have used tracer particles that are exchanged between different cells,
following the flow of material. We applied a ring decomposition of the discs and measured the
amount of radial displacement of the tracers within each ring between pairs of snapshots. We
quantified the strength of the radial flow at each ring/radius with two parameters, a bulk flow
velocity Δ𝜇 which indicates how much the median position of the selected tracers have changed
and a radial spread 𝑤 which shows the radial dispersion of the tracers around the new median. We
list below our main conclusions for the mean properties of these quantities over all our galaxies.

• The spread 𝑤 increases with the timestep Δ𝑡 in a 𝑤 ∝ Δ𝑡1/3 fashion which is slower than
true diffusion which would have an exponent with value 0.5.

• The spread 𝑤 increases almost linearly with radius from the centre of the disc, that is the
tracers diffuse more strongly in the outer regions.

• The bulk flow velocity Δ𝜇 has a flat radial profile for radii at the inner part of the disc
(between 10-70% of the disc radius) with a median value of −2.4 km s−1, while beyond
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70% of the disc radius the inflow velocities increase linearly with radius reaching values
of tens of km s−1. Hence, we conclude that there are two different regimes, an equilibrium
region for the inner part of the discs and an accretion dominated region at the outer parts
of the discs which drives larger flows.

• The analysis of the residuals around the median curves shows that larger values of 𝑤 are
obtained in rings with higher velocity dispersion and higher accretion rate of new gas. This
can be connected to having larger turbulence and therefore more energy dissipation. On
the other hand, there is no strong correlation with the surface density of the ring or its star
formation rate.

• Δ𝜇 correlates very strongly with the change of the specific angular momentum of the tracers,
confirming that the inwards bulk flow is connected to the loss of angular momentum of the
gas. From the residual analysis we also find that there are increased inward flows in rings
where there is a higher accretion rate of new gas.

• We find no redshift dependence of the strength of the radial flows for the time period of
6 Gyr that we study.

• Finally, we are presenting parametric equations for 𝑤 and Δ𝜇 that describe their radial
dependence as well as their dependence on the secondary properties, the radial velocity
dispersion 𝜎𝑟 and the accreted mass fraction ¤𝑓𝑎𝑐𝑐. These parametrizations can be cast into
theoretical models of galaxy evolution.

Stellar component
In Chapter 3, we worked with the same sample of Auriga galaxies, focusing on the stellar
component. We have asked how the galactocentric radii and guiding centres of stellar orbits
change from the birth radii of stars and also between different snapshots. Furthermore, we have
investigated the effect of the stellar migration process on the metallicity and age profiles of the
discs, and we have provided a quantification of the strength of migration in different types of
systems. We have applied a similar radial decomposition, as in the gas analysis, and within each
ring, we have measured the change in the median galactocentric radii, Δ𝑅, of stars and the spread
𝑤 around the median for different pair of snapshots. However, for the stellar component we have
tracked additionally the corresponding changes in the guiding centres of the stellar orbits, Δ𝑅𝑔

and 𝑤𝑔. The findings from this chapter can be summarized as follows:

• We have quantified the migration strength 𝜎migr during the lifetime of the stars in individual
systems as well as in the average of our sample. We find that at redshift 𝑧 = 0 young stars
(∼ 2 Gyr) have migrated on average 1-2 kpc whereas older stars (∼ 10 Gyr) moved between
2-4 kpc. This age dependence agrees with the theoretical modeling by Frankel et al.
(2020). Furthermore we find that stars that have been born at larger radii have experienced,
on average, stronger migration, meaning that they were most affected by torques in the disc.

• The effects of stellar migration on the total metallicity profiles are minute, and this is also
the case when we look only into the young (< 3 Gyr) stars in the disc. However, we find that
if we isolate the older stellar populations (9-12 Gyr) there is a considerable flattening of the
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radial metallicity profiles for most systems. This is explained on the basis that older stars
were subject to changes in their orbital characteristics for longer time, enough to imprint
the effect of stellar migration.

• Upon further exploring the flattening of metallicity profiles we have found correlations of
the change in the outer slope Δ𝛼 with the strength of the non-axisymmetries in the disc
(i.e. presence or absence of a bar) as well as the stellar mass of the systems.

• By measuring the timestep dependence of 𝑤 and 𝑤𝑔 we have explored whether the stellar
migration can be treated as a diffusion process. For the galactocentric radii, 𝑤, we find
a very weak dependence on the snapshot spacing, Δ𝑡, which does not follow a diffusion
evolution. On the other hand, changes in the guiding centres resemble to a good degree a
diffusion process (i.e. 𝑤𝑔 ∼ Δ𝑡0.5) in many of our systems, but only if we consider stars
that are located at outermost radii of the discs, while for inner radii the exponent decreases
and becomes sub-diffusive.

• We find that galaxies in our sample that develop a stronger bar are linked with enhanced
stellar migration, i.e. stars on average experience larger changes in their guiding centres.
This statement is further supported by the fact that for barred galaxies we measure shallower
slopes in the metallicity profiles for older stellar populations. The physical explanation is
that the bar is exerting strong torques onto the orbits of the stars, altering their angular
momentum and causing them to migrate inwards or outwards. Consequently, metallicity
gradients are washed out by the mixing of populations with different metallicities that have
been born at different radii in the disc.

• Finally, we parametrize the migration strength via the quantities 𝑤 and 𝑤𝑔 as a function of
radius 𝑅 and time Δ𝑡. In particular our best fit equations suggest a power law dependence
with regards to both 𝑅 and Δ𝑡. We find that for the same time period and at the same radius,
𝑤 obtains larger values than 𝑤𝑔, however, 𝑤𝑔 has a stronger dependence on 𝑅 and Δ𝑡.

Study of radial transport processes in L-Galaxies
In Chapter 4, we described the introduction of two new physical prescriptions in the L-Galaxies
semi-analytic model. We have updated the existing recipe of radial flows in the model while also
adding a new prescription that allows stars to be exchanged between different radii in an attempt
to simulate the stellar migration process. The core difference between our gas flow recipe and the
current L-Galaxies version is that we apply a spreading of the gas on top of the median bulk flow.
This means that at any given radius there are fractions of the total mass that move both to inner and
outer rings. The contents of Ch. 4 are part of ongoing work and further tests are required to extract
robust, meaningful conclusions. However, we summarize here some preliminary observations
and results that are already available from our new implementation.

• We redistribute the gas between different rings in the model using a Gaussian probability
distribution function the width of which is derived by our parametrizations from the previous
two chapters. We employ an algorithmic design to decide what fraction of mass from a
given ring ends in all of the other rings, while ensuring mass conservation.
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• There is a need for adjustments to the parametrizations that were derived from Auriga in
order to incorporate them in a different model. In particular we are scaling the spreading
parameter 𝑤 by the width of the rings in L-Galaxies and we do not interpolate our equation
for the gas bulk flow velocity, Δ𝜇, in the inner rings but rather force it to approach zero as
𝑅 → 0.

• We find an intriguing dependence of the output of the model to the resolution of the ring
structure. In particular the results of our version agree better with the Henriques et al.
(2020) model if we increase the number of rings in the outer radii of the discs. Besides in
the default lower resolution version our parametrizations do not yield reasonable gas mass
– stellar mass, and metallicity – stellar mass relations.

• The mean radial profiles predicted by different versions of our model are all within the
range of observational data. Therefore, arriving at a definite conclusion as to which model
version is better in reproducing these observations is not trivial.

Future prospects
In this work we presented for the first time a qualitative and quantitative description for the radial
gas flows and stellar migration as obtained from the analysis of a relatively large number of sim-
ulated disc galaxies, compared to earlier works were either such a quantitative description was
lacking or the study was limited to a very small number of galaxies. Moreover, we were able to
pinpoint the physical characteristics of the discs that are contributing in the redistribution of ma-
terial within the galactic plane. The parametrizations that we derived can have useful applications
in theoretical modelling of galaxy evolution, both in semi-analytic and chemodynamical models.
Since they are directly describing the behaviour that is observed in a reliable high resolution
hydrodynamic simulation they are complimentary to purely theoretically derived recipes.

Within this thesis we already presented such a preliminary application into the L-Galaxies
semi-analytic model. In future work, we aim to extend the work that was presented in Ch. 4
by conducting more tests for the behaviour of our new models in L-Galaxies and in particular
checking the limits of their application in galaxies of different masses. Ultimately we aim to
run the updated version of the model in the whole volume of the Millennium and Millennium-II
simulations, allowing us to create catalogues of the properties of a vast number of galaxies with
higher physical fidelity, and make to statistically significant statements for the whole galaxy
population.

A further path of great interest would be to repeat the same analysis that we did for Auriga in a
different set of simulations. This could include either a) other zoom-in cosmological simulations
with a different treatment of several physical mechanisms and in particular a different treatment
of the physics of the interstellar medium, b) simulations of isolated discs where there is no effect
from the surrounding cosmological environment, or c) large-scale hydrodynamical simulations,
such as Illustris-TNG, which despite the lower resolution in the disc, can offer a much larger
statistical sample and many different galaxy types.
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Fig. A.1 shows a case where the radial distribution of the tracers at snapshot 𝑛 + 1 is highly
asymmetric, and a Gaussian fit is not accurately describing the shape of it. There is a considerable
difference in the value of the 16-84 percentile range and the width of the Gaussian fit. Such
histograms appear mostly at outer regions of the discs and are probably pointing to material in
the accretion phase. In Fig. A.2 we see that for the total sample of the rings the calculation of the
width of the distribution described by the 16-84 percentile range and the 𝜎 of the Gaussian fit is
on average consistent. There are outlier points mostly in the lower right part of the plot which
indicates that for these rings the Gaussian fit underestimates the width comparing to the percentile
range calculation (as shown in Fig. A.1). In Fig. A.3 we examine the resolution convergence by
calculating the median profiles for 𝑤 and Δ𝜇 for a single halo from the simulation suite simulated
with the fiducial and lower resolution.
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Figure A.1: Asymmetric histogram example where a Gaussian is not well fit.
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Figure A.2: Comparison of the Gaussian width (𝑦-axis) and the 16-84 percentile range values
(𝑥-axis). We observe that there is very close 1-1 correspondence of the two measurements, and
they can mostly be used interchangeably.
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In Fig. B.1 we plot the migration strength 𝜎𝑚𝑖𝑔𝑟 versus the age of the stars at 𝑧 = 0. We use four
radial bins, each shown in the four panels and we also split the stars based on their age at 𝑧 = 0 in
four further bins. In this figure, each datapoint is drawn from a separate halo and represents the
width of histograms, such as those presented in 3.6. The same information is conveyed in Fig. 3.7
in a more concise presentation, showing the scatter of the data points with error bars around the
median curves.

In Fig. B.2 we give examples of how the histograms in Δ𝑅 look like. From such histograms
we extract the median (Δ𝑟) and the width (𝑤) which we use to describe stellar migration for the
stars in the given ring. Histograms in terms of Δ𝑅𝑔 look very similar.

In Fig. B.3 we show the time interval dependence of the quantity 𝑤𝑔, similar to Fig. 3.14,
for each individual galaxy in three different radial bins. We notice that in some disks, in the two
outermost rings the value of the slope is near or around the diffusion value of 0.5.
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we compute the median shift (Δ𝑟) shown with the dashed line, and the 16-84 percentile range
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examples is slightly positive.
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Figure B.3: Logarithmic plots of the spread 𝑤𝑔 against the time interval Δ𝑡 for individual halos.
The different curves are for different normalised radii within the disks. The slope of the best fit
line is quoted in the legend in each panel. We find a variety of different values for the slopes,
ranging between 0.3-0.6 in most galaxies for the two outermost rings (cyan and green).
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Figure C.1: Same as Fig. 4.4 but plotting only the first 10 iterations to stress the early times
response.
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