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Zusammenfassung

Analoge Quantensimulatoren ermöglichen die experimentelle Untersuchung von stark
wechselwirkenden Quantenvielteilchensystemen, die auf klassischen Computern nicht
mehr numerisch berechnet werden können. Eine bemerkenswert erfolgreiche Erfindung
bei der Entwicklung dieser Simulatoren ist das Quantengasmikroskop. Diese Mikroskope
mit hoher numerischer Apertur ermöglichen es ultrakalte Atome in optischen Gittern
zu detektieren und können dabei einzelne Gitterplätze auflösen. Bisher verwenden die
meisten Experimente mit Quantengasmikroskopen Alkaliatome, jedoch zielen kürzlich
realisierte Experimente darauf ab, die besonderen Eigenschaften von Erdalkaliatomen
zu nutzen.

Erdalkaliatome besitzen zwei Valenzelektronen, was zu einer vielfältigen Struktur atom-
arer Zustände mit Singulett- und metastabilen Triplettzuständen führt. Diese Atom-
struktur beinhaltet ultraschmale Interkombinationsübergänge im optischen Bereich, die
zahlreiche Anwendungen in den Quantenwissenschaften finden. Die bekannteste An-
wendung von Strontium ist die optische Gitteruhr, die auf dem ¹S₀-³P₀-Übergang basiert.
Diese Erfolgsgeschichte trieb kürzlich Entwicklungen im Bereich der Quantensimulation
und Quantencomputer voran, die die metastabilen Zustände und die im Sekundenbere-
ich liegenden Kohärenzzeiten nutzen.
Unser Ansatz besteht darin, stark zustandsabhängige optische Gitter für die Grund-

und metastabilen Triplettzustände zu erzeugen und die darin auftretenden Quantenviel-
teilchenphänomene mit einem Quantengasmikroskop zu untersuchen. Erdalkaliatome
unter einem Quantengasmikroskop zu verwenden, erfordert es Atome oder Qubits lokal
auslesen oder manipulieren zu können. Dieses Adressieren kann man dadurch erre-
ichen, dass ein optischer Strahl mit demMikroskop fokussiert wird. Die beugungsbegren-
zte Auflösung führt jedoch dazu, dass benachbarte Gitterplätze ebenfalls angesprochen
werden. Durch die Verwendung von Magnetfeldgradienten in Kombination mit mag-
netfeldempfindlichen Übergängen kann die Auflösung über die Beugungsgrenze hinaus
gesteigert werden. Dadurch können der Spin oder der elektronische Zustand der Atome
auf den gewünschten Gitterplätzen innerhalb eines größeren Systems von Hunderten
von Atomen verändert werden. Lokales Adressieren von Strontiumatomen zu realisieren
ist technisch anspruchsvoll, da die meisten magnetfeldempfindlichen Übergänge zu breit
sind. Eine vielversprechende Lösung ist den Millihertz breiten und magnetisch sensitiven
¹S₀-³P₂ magnetischen Quadrupolübergang zu verwenden, der durch seine schmale Lin-
ienbreite eine hervorragende Frequenzdiskriminierung selbst bei moderate Magnetfeld-
gradienten aufweist. Obwohl dieser Übergang einzigartige Anwendungen ermöglicht,
wurden viele Eigenschaften des Übergangs, wie die exakte Übergangsfrequenz oder das
Fallenpotential des ³P₂-Zustands, vor der in dieser Dissertation beschriebenen Arbeit nicht
untersucht.
Diese Arbeit berichtet über die erste hochauflösende und dopplerfreie Laserspektros-

kopie des ¹S₀-³P₂-Übergangs mit Kilohertz-Präzision in einem optischen Gitter frei von
Linienverschiebungen durch das Lichtfeld. Wir unterdrücken die Linienverschiebung, in-
dem wir die Vektor- und Tensorpolarisierbarkeit des angeregten ³P₂-Zustands einstellen.
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Wir messen die absolute Übergangsfrequenz mit drei Größenordnungen kleineren Fehler-
balken als alle Messungen zuvor. Abschließend zeigen wir lokales Adressieren im optis-
chen Gitter unter Verwendung des ¹S₀-³P₂-Übergangs. Dies ist ein erster entscheidender
Schritt auf dem Weg zur Kontrolle einzelner Atome unter dem Quantengasmikroskop.
Das Adressieren wird es uns in naher Zukunft ermöglichen, eine einzelne Ebene des op-
tischen Gitters im Fokus des ersten Strontium-Quantengasmikroskops zu isolieren.
Die demonstrierte experimentelle Kontrolle über den ¹S₀-³P₂-Übergang ebnet den Weg,

das entsprechende optische Qubit in Quantencomputern mit neutralen Atomen zu ver-
wenden, bei denen einzelne Qubits lokal manipuliert und ausgelesen werden können.
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Abstract

Analog quantum simulators enable the experimental investigation of strongly interacting
quantum many-body systems, for which numerical calculations are often out of reach for
classical computers. One remarkably successful invention in the development of these
simulators is the quantum gas microscope. These high-numerical-aperture microscopes
enable the detection of ultracold atoms in optical lattices and can resolve individual lattice
sites. Until now, most quantum gas microscope experiments use alkali atoms, but recent
experiments aim to make use of the special properties of alkaline earth atoms.

Alkaline earth atoms possess two valence electrons, giving rise to a rich electronic-level
structure featuring singlet and metastable triplet states. This internal structure results in
ultranarrow optical intercombination transitions, opening up numerous applications in
quantum sciences. Themost prominent application of strontium is the optical lattice clock
based on the ¹S₀-³P₀ transition. Based on this success story, there has been a recent effort
to use the metastable states and the achieved second-scale coherence time for quantum
computing and quantum simulation.
Our approach is to implement highly state-dependent optical lattices for the ground

and metastable triplet states and to study the emerging quantummany-body phenomena
using a quantum gas microscope. Working with alkaline earth atoms under a quantum
gas microscope requires developing local readout and manipulation of atoms or qubits.
This addressing can be realized by focusing an optical beam through the microscope.
However, the diffraction-limited resolution results in cross-talk between adjacent lattice
sites. The addressing resolution can be enhanced beyond the diffraction limit by ap-
plying magnetic field gradients in combination with magnetic-field-sensitive transitions.
Doing so allows controlling the atoms’ spin or electronic state on dedicated lattice sites
within a larger sample of hundreds of atoms. Implementing local addressability for stron-
tium atoms is technically challenging since most magnetic-field-sensitive transitions are
too broad. A promising solution is to use the millihertz-wide and magnetically-sensitive
¹S₀-³P₂ magnetic quadrupole transition, which features excellent frequency discrimina-
tion for even moderate magnetic field gradients due to its narrow linewidth. Although
this transition opens up unique applications, many of the key features of the transition,
such as the exact transition frequency, or the ³P₂ state’s trapping potential have not been
investigated prior to the work described in this thesis.
This thesis reports on the first high-resolution and Doppler-free laser spectroscopy of

the ¹S₀-³P₂ transition with kilohertz precision in a light-shift-compensated optical lattice.
We engineer the light-shift-free lattice by tuning the vector and tensor polarizability of
the excited ³P₂ state. We measure the absolute transition frequency with an improvement
of three orders of magnitude compared to previously reported values. Finally, we demon-
strate local addressing on the ¹S₀-³P₂ transition in the optical lattice, a first crucial step
towards single-particle control under the quantum gas microscope. In the near future,
the addressing will allow us to isolate a single layer of the optical lattice in the focus of
the first strontium quantum gas microscope.
The demonstrated experimental control over the ¹S₀-³P₂ transition paves the way to
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use the corresponding optical qubit for neutral atom quantum computation, where single
qubits can be locally manipulated and read out.



Contents vii

Contents

1 Introduction 1

2 Strontium 10
2.1 Isotope abundances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Level structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Resonant light-matter interaction 14
3.1 Light-matter interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . 15
3.2 Multipole transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Multipole expansion of the plane wave . . . . . . . . . . . . . . . . 18
3.2.2 Electric multipole transition operator . . . . . . . . . . . . . . . . . 21
3.2.3 Magnetic multipole transition operator . . . . . . . . . . . . . . . . 25

3.3 Relative transition strength of multipole transitions . . . . . . . . . . . . . 28
3.4 Angular dependence of multipole transition amplitudes . . . . . . . . . . . 29

3.4.1 Electric dipole transition . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Magnetic dipole transition . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Electric quadrupole transition . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Magnetic quadrupole transition . . . . . . . . . . . . . . . . . . . . 39

4 Dynamical Stark shift 43
4.1 Optical dipole potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Optical dipole trap . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Optical lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Theory of atomic polarizability . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Transformation from beam frame to atomic frame . . . . . . . . . . 51

4.3 Atomic polarizability of strontium . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 ¹S₀ and ³P₀ polarizabilities . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 ³P₁ polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 ³P₂ polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Magic 3D lattice for ³P₁ and ³P₂ . . . . . . . . . . . . . . . . . . . . 57
4.3.5 Tune-out wavelengths for strontium . . . . . . . . . . . . . . . . . 60

5 Experimental apparatus 64
5.1 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Main chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Science chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Horizontal magnetic fields . . . . . . . . . . . . . . . . . . . . . . . 69



Contents viii

5.2.2 Vertical magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Current stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Laser systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Blue laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Red laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Repump laser system . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.4 ³P₂ laser systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.5 High-power laser system . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.6 Ti:Sapphire laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Optical transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Moving Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 The 1S0-3P2 magnetic quadrupole transition in neutral strontium 90
6.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Probing the magnetic quadrupole transition . . . . . . . . . . . . . . . . . 93
6.3 Magnetic-field-insensitive quadrupole transition . . . . . . . . . . . . . . . 95
6.4 Absolute transition frequency in ⁸⁸Sr and ⁸⁷Sr . . . . . . . . . . . . . . . . 98
6.5 Magnetic-field-sensitive quadrupole transition . . . . . . . . . . . . . . . . 102
6.6 Local addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion and Outlook 107

A Time-of-flight expansion from a deep optical lattice 111

References 113

Acknowledgements 131



List of Tables ix

List of Tables

2.1 Natural isotopes of strontium . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Selection rules of multipole transitions . . . . . . . . . . . . . . . . . . . . 41

4.1 Polarizability ³P₀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Polarizability ³P₁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 ³P₂ polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Measured ¹S₀-³P₂ absolute transition frequencies . . . . . . . . . . . . . . . 101
6.2 Isotope-shift comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Figures x

List of Figures

1.1 Simplified electronic level structure . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Quantum simulation of light-matter interfaces . . . . . . . . . . . . . . . . 5

2.1 Electronic level structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 ⁸⁷Sr hyperfine level structure . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Natural coordinate system to describe the transition amplitude’s angular
dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Visualization of the electric dipole transition’s vector spherical harmonics . 32
3.3 Electric dipole transition amplitude’s angular dependence . . . . . . . . . 34
3.4 Visualization of the magnetic dipole transition’s vector spherical harmonics 35
3.5 Magnetic dipole transition amplitude’s angular dependence . . . . . . . . 36
3.6 Visualization of the electric quadrupole transition’s vector spherical har-

monics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Electric quadrupole transition amplitude’s angular dependence . . . . . . 38
3.8 Visualization of the magnetic quadrupole transition’s vector spherical har-

monics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Magnetic quadrupole transition amplitude’s angular dependence . . . . . 40

4.1 ³P₀ polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 ³P₁ polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 ³P₂ polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Polarizability tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Magic 3D lattice ³P₁ and ³P₂ . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Horizontal 914 nm magic lattice ³P₂ . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Strontium tune-out wavelengths . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Crossed cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Vertical magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Bias field for slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Current stabilization circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 ³P₂ laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8 Seed laser setup: Transport and lattice . . . . . . . . . . . . . . . . . . . . 79
5.9 Transport and vertical lattice laser setup . . . . . . . . . . . . . . . . . . . 80
5.10 Ti:Sapphire laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 Transport waist vs gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of Figures xi

5.12 Transport setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.13 Temperature after transport . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Experimental setup ¹S₀-³P₂ transition spectroscopy . . . . . . . . . . . . . 92
6.2 Experimental study of the ¹S₀-³P₂ transition absorption pattern . . . . . . . 94
6.3 Sideband spectrum of the ¹S₀-³P₂ ∆mJ = 0 transition . . . . . . . . . . . . 96
6.4 ⁸⁷Sr¹S₀-³P₂ F = 9/2 full spectrum . . . . . . . . . . . . . . . . . . . . . . . 99
6.5 ⁸⁷Sr absolute frequency measurement . . . . . . . . . . . . . . . . . . . . . 100
6.6 Magic lattice ellipticity angle ¹S₀-³P₂ ∆mJ = −1 . . . . . . . . . . . . . . . 103
6.7 ¹S₀-³P₂ ∆mJ = −1 sideband spectrum . . . . . . . . . . . . . . . . . . . . 104
6.8 Local addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Chapter 1 Introduction 1

Chapter 1

Introduction

Understanding systems of many interacting quantum particles is one of the major
outstanding challenges in quantum physics. Such systems can be found in many

research areas like unconventional superconductors [1], quantum chemistry [2], or the
quantum mechanical states of a nucleon [3]. The many-body interactions in these sys-
tems determine their physical properties.
In quantum mechanics, the number of possible states scales exponentially with the

number of particles in the system. Due to this scaling, calculating or simulating quan-
tum many-body systems quickly becomes prohibitively difficult to impossible on classical
computers. Richard Feynman offered a solution to this problem by proposing to use a
well-controllable quantum system to simulate the more “inaccessible” quantum system
of interest [4, 5].

The developments in cooling and trapping neutral atoms [6–8] allow to prepare bosonic
and fermionic atoms at ultracold temperatures and to use their interactions for quantum
simulations [9]. At ultracold temperatures, atoms stop behaving like classical particles
and enter the regime of quantum mechanics, where atoms can form quantum degener-
ate states of matter such as Bose-Einstein condensates [10, 11] and degenerate Fermi
gases [12].

However, cooling atoms to ultracold temperatures is only the starting point for most
quantum simulation experiments. Simulating quantum systems also requires the abil-
ity to engineer the interactions between the constituent particles to enter the regime
of strongly correlated quantum systems. One approach to directly control the inter-
atomic interactions is using Feshbach resonances [13]. This technique was used to realize
strongly interacting ultracold Bose [14] and Fermi gases [15]. Various experiments ex-
ploited Feshbach resonances to study the pairing of fermions in the BEC to BCS crossover
regime [16–18], which possesses analogies to the pairing mechanisms of electrons in su-
perconductors [19]. Another very successful approach to realizing strongly-correlated
quantum gases is trapping ultracold atoms in an optical lattice [20]. Using optical lat-
tices one can tune the ratio of the atoms’ kinetic to the on-site interaction by adjusting the
lattice depth. If the on-site interaction dominates the energy scales, the atoms trapped in
the lattice enter the strongly-correlated regime. For increasing lattice depth the kinetic
energy given the tunneling energy decreases while the on-site interaction increases. This
behavior has been demonstrated by observing a phase transition between the weakly
interacting superfluid and the strongly interacting Mott insulator phase in an optical
lattice [21]. The excellent control over ultracold atoms and their isolation from the envi-
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ronment make ultracold quantum gases in optical lattices an ideal platform for quantum
simulation [20, 22–24].

Experimentally studying strongly correlated systems of ultracold atoms requires suit-
able detection methods. Typically, the atoms are imaged after their release from the trap,
giving access to the momentum distribution [25] containing information about the ini-
tial quantum state [20]. Absorption or fluorescence imaging techniques allow detection
of the in situ density distribution. However, the resolution of these techniques are in-
sufficient to measure observables on the scale of a few lattice sites preventing one from
obtaining the full information about the quantum state.

Obtaining the full information about a quantum many-body system requires detecting
each of the constituents [26]. For ultracold atoms, this detection can be achieved by
confining atoms in deep optical lattices and taking fluorescence images through a micro-
scope objective with a high numerical aperture resulting in images that resolve individual
lattice sites [27–36]. These systems are known as quantum gas microscopes. The single-
site resolution enables the detection of quantum fluctuations andmeasuring local density-
density correlations characterizing the quantum many-body system. Combining the high
resolution with spin-sensitive imaging gives access to spin correlations. Hence, quantum
gas microscope experiments are very well suited to experimentally investigate strongly
correlated quantum systems such as the Bose-Hubbard or Fermi-Hubbard model [24, 37,
38]. Using the microscopes, one can fully access the quantum statistics [28], detect exci-
tations [39] and investigate local dynamics [40]. These experiments were extremely suc-
cessful in studying entanglement entropy [41], antiferromagnetic spin correlations [42,
43] and many more phenomena, see e.g., Refs. [44–48].

Until now, most quantum gas microscope experiments use alkali atoms, but recent
experiments aim to make use of the special properties of alkaline earth atoms. Alkaline-
earth atoms also have applications in quantum technologies like metrology and quantum
computing. In the following, we will discuss these applications.

Quantum technologies with ultracold strontium

We briefly introduce alkaline-earth atomic clocks and discuss the properties of these el-
ements concerning their application in quantum simulation and quantum computation.
Afterwards, we discuss how we will use strontium atoms in optical lattices to simulate
open quantum systems.

Metrology Alkaline-earth atoms have two valence electrons where the electron spins can
form singlet and triplet states. The presence of spin-singlet and triplet states results in
a rich atomic-level structure depicted for strontium in Fig. 1.1. In strontium, the inter-
combination transition between the ¹S₀ ground state and the ³P₀ excited state has an
extremely narrow linewidth of 1.35(3) mHz [49] and a transition wavelength of 698 nm
in the visible spectrum. Hence, the ¹S₀-³P₀ transition in strontium provides one of the
highest atomic quality factors in nature with 6.5(1.1) × 1016 [50, 51]. Moreover, due to
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1P1
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CLOCK
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LOCAL
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3P1
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Fig. 1.1 Simplified electronic level structure of strontium. A detailed diagram of the level structure and
corresponding transition properties can be found in Fig. 2.1.

this vanishing angular momentum, these states are insensitive to magnetic field fluctu-
ations. The development of the optical frequency comb [52, 53], which provides a link
between optical and radio frequencies, enables using such ultranarrow optical transitions
for precision metrology.
Nowadays, the most precise atomic clocks are based on ultracold strontium atoms

trapped in optical lattices [54, 55]. The lattice confinement results in many micro-traps
for the atoms [56]. The individual atoms act as independent simultaneously interrogated
oscillators. The simultaneous interrogation enables averaging their response and allows
reaching a lower fractional uncertainty. Creating the lattices with light at the so-called
magic wavelengthminimizes the perturbing effects of the trapping potential. At this wave-
length, the transition states have equal polarizability, resulting in a vanishing differential
light shift and thus a vanishing shift of the transition frequency.

Very recently, strontium optical lattice clocks reached a precision with a fractional un-
certainty of 7.6 × 10−21 [57, 58], enabling measurements of the gravitational red-shift
over a distance of 1 mm. Further improving the accuracy and precision of optical clocks
will enable testing of fundamental physics [57], such as the search for possible variations
in the fundamental constants [59]. The spectral resolution of clock experiments also
allows to study weak interactions in quantum many-body systems [60] like the dipole-
dipole interaction of atoms in neighboring lattice sites [61].

Quantum computing Besides alkaline-earth atoms being used in optical atomic clocks,
they also offer advantageous properties for quantum computing applications. One can
encode a qubit in the ¹S₀ ground state and the ³P₀ state. Due to the excited state’s lifetime
of 120 s and the insensitivity of both states to environmental effects, the ¹S₀-³P₀ qubit
of strontium can have coherence times of several tens of seconds, as demonstrated in
recent experiments [50, 51, 57, 58, 62]. Because the energy separation of the states is
in the optical domain, the qubit is a so-called optical qubit. Optical qubits provide faster
manipulation and detection schemes than hyperfine qubits [63–66], used in quantum
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computing schemes with alkali atoms. In optical qubits, one can realize single-qubit
gates with single-photon transitions, while hyperfine qubits require two-photon Raman
transitions.

In neutral atom systems, one can realize multi-qubit gates via the interaction of Ry-
dberg states [67]. In alkali atoms, the excitation to the Rydberg state is a two-photon
process, where the spontaneous decay from the intermediate state shortens the coher-
ence time [68]. An advantage of the optical qubit in alkaline-earth atoms is that the
Rydberg excitation is a single-photon transition [69, 70], allowing long coherence times
and fast qubit rotations.
The fermionic alkaline-earth isotopes have a non-vanishing nuclear spin. Due to the

vanishing angular momentum of the ¹S₀ state and the ³P₀ state, the nuclear spin is decou-
pled from the electronic structure [71]. This decoupling enables encoding qubits in the
well-protected nuclear spin states [72–75] and allows manipulating the atom optically
without influencing the qubit.
In alkaline-earth atoms, one can also encode information in the ³P₀-³P₂ fine-structure

states [76]. This qubit configuration offers faster single-qubit gates than the optical qubit.
Additionally, the fine-structure qubit also allows fast, Rydberg-mediated two-qubit gates.

Several research groups have built quantum information experiments with neutral
strontium and ytterbium atoms [77–81]. The capabilities already demonstrated in these
experiments have led to many more quantum computing setups based on alkaline-earth
atoms being currently constructed.
All current quantum information experiments using neutral atoms trap individual atoms

in tightly focused laser beams, so-called optical tweezers. These tweezers offer micro-
scopic control and detection similar to quantum gas microscopes [82] but at much larger
atom distances of several µm. In addition, these platforms can run with roughly ten
times higher repetition rates than quantum gas microscope experiments. However, the
available laser power to generate the tweezers currently limits the system size to several
hundreds of tweezers [83, 84]. Furthermore, the trap depths in a tweezer array are not
as homogeneously distributed as in an optical lattice. Therefore, some new experiments
are starting to combine tweezers and optical lattices by preparing the atoms in tweezer
arrays and loading them into an optical lattice [85].

Quantum simulation The properties of alkaline-earth atoms also pave the way for novel
analog quantum simulation schemes that go beyond the possibilities of alkali atoms.
These simulations make use of the well-protected nuclear states [72] or the ability to
generate state-dependent optical traps at several wavelengths [74, 86].
The decoupling of the nuclear spin in the fermionic isotopes from the electronic struc-

ture results in a scattering length and thus an interaction energy that is independent of
the nuclear spin state [60]. Mathematically, this dependence leads to a system Hamilto-
nian with an SU(N) symmetry, where N = 2I + 1 = 10 for ⁸⁷Sr. For fermions, collisions
between the same spin states are forbidden by the Pauli exclusion principle. These sym-
metric interactions can be used to simulate a wider range of many-body systems than
possible with alkali atoms with two spin states [87]. For example the SU(N) symmetric
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Fig. 1.2 Quantum simulation of light-matter interfaces (adapted from Ref. [94]). (a) The ground g (blue
circles) and the excited state e (red circles) of strontium atoms are trapped in state-dependent
lattices, where e experiences strong confinement, while g can tunnel through the lattice. The
tunneling rate is described by the parameter J . A resonant laser beam can couple g and ewith
the coupling strength Ω. (b) Mapping between ultracold strontium atoms in state-dependent
lattices and light-matter interactions. (c) Extending the simulation of light-matter interfaces
to two dimensions. The beam coupling ground and excited state is depicted in red.

Mott insulator is predicted to give rise to exotic quantum magnetism [88–90]. A recent
experiment investigated the thermodynamics of a degenerate SU(N = 10)-symmetric
Fermi gas using ultracold strontium atoms demonstrating enhanced interactions [91].
Because the ¹S₀ ground state and the ³P₀ (³P₂) metastable states are energetically sep-

arated by optical frequencies, the states’ polarizabilities depend differently on the trap-
ping light wavelength. Due to the different dependency, we can find wavelengths where
the polarizability of one state vanishes while the other state has a finite polarizability.
At these so-called tune-out wavelengths, we can realize highly state-dependent optical
traps [92]. Due to the extremely narrow transition linewidths in strontium, the tune-out
wavelengths are far detuned from atomic resonances, resulting in lower photon scattering
rates than possible in state-dependent traps for Rb [93].

Quantum simulation of light-matter interfaces

Our experiment is mostly tailored toward using ultracold atoms in a state-dependent op-
tical lattice to simulate strongly coupled light-matter interfaces [95] and open quantum
systems [96–98]. Naturally, we can find such systems in the field of nanophotonics. The
simulation using ultracold atoms allows us to study regimes that are difficult to realize in
nanophotonic systems. The simulation requires a mapping between light-matter inter-
actions and ultracold atoms, which we will discuss briefly in the following. We start by
generating an optical lattice close to the ground state tune-out wavelength. This state-
dependent lattice strongly confines the ³P₁ state (e) and only weakly traps the ¹S₀ state
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(g) as shown in Fig. 1.2(a). The strong confinement of e atoms results in the localization
of these atoms in the lattice wells. Atoms in g experience a weak trapping potential, al-
lowing them free propagation through the lattice with the tunneling parameter J . The
absence (presence) of an e atom at a given lattices site maps to an emitter in its ground
(excited state), playing the role of matter in the light-matter interactions as shown in
Fig. 1.2(b). The moving g atoms map to bath particles and play the role of light. We
realize the coupling of light and matter of strength Ω by driving the ¹S₀-³P₀ transition
with a laser beam. The de-excitation from e to g results in a matter-wave emission. This
emission corresponds to a photon emission in the nanophotonic system. Using two or-
thogonal state-dependent lattices, we can extend the simulations to two dimensions, as
shown in Fig. 1.2(c).
Using the scheme above to simulate light-matter interfaces with ultracold atoms gives

us control over various experimental parameters that are difficult to adjust in a nanopho-
tonic system. We can tune the coupling strength between light and matter by varying the
intensity of the ¹S₀-³P₀ laser beam. Choosing a laser detuning corresponding to a tran-
sition into the band gap of the optical lattice, we can simulate an atom-photon bound
state [95]. In the simulation, this bound state is a trapped-untrapped atom bound state
where the g atom remains exponentially localized around e’s initial position. Further-
more, we can also vary the optical lattice band structure by adjusting the lattice power.
The Schneble group already demonstrated simulations using rubidium atoms trapped in
a 1D state-dependent lattice [99, 100]. Extending the simulations to ultracold strontium
in 2D optical lattices will enable the study of even richer physical phenomena.
To enable these quantum simulations, we require state-dependent lattices, large 2D

optical lattices, and a quantum gas microscope for detection and manipulation. In the
following, we discuss these three technical challenges in more detail, where we demon-
strated the feasibility of the first two in previous experiments.

State-dependent lattice We can generate highly state-dependent optical lattices for the
optically separated ¹S₀ ground state and the excited ³P₀ clock state, using the ground
state tune-out wavelength [92, 94]. At this wavelength, the polarizability of the ground
state vanishes, and the polarizability of the clock state is finite. Using this wavelength to
generate optical traps, we can obtain highly-independent control over the ¹S₀-³P₀ optical
qubit.
To realize the simulation of light-matter interfaces discussed above, we generate a lat-

tice close to the tune-out wavelength of the ¹S₀ ground state. Doing so results in weak
confinement of atoms in the ¹S₀ state, while atoms in the ³P₀ clock state experience a
strong trapping potential localizing them. In previous experiments, we have experimen-
tally measured the ground state tune-out wavelength [92] and demonstrated trapping
³P₀ atoms in the tune-out lattice. These results show that we can successfully implement
state-dependent lattices allowing us to focus on the challenge of generating large and
uniform optical lattices.
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Large optical lattice systems In quantum technology, scaling the system size is one of the
major outstanding challenges for all currently available experimental platforms, where
ultracold atoms in optical lattices offer the largest systems. These lattices are generated
by overlapping Gaussian laser beams and, because the beams have a finite extent, also
the lattices have a finite system size. Due to the limited available laser power, an in-
creased beam size results in a smaller potential depth, and the atoms are not confined
tightly enough for imaging with the quantum gas microscope. Typically, optical lattice
experiments contain ∼ 30 × 30 usable lattice sites [32, 101, 102]. Apart from the gen-
eral applications, simulating the light-matter interfaces in large lattice systems allows
observing matter-wave propagation over much longer distances than possible in other
systems.
We overcome the limitation by using a 2D buildup cavity to generate our lattices [103].

Our cavity assembly enhances the circulating power in the cavity at certain design wave-
lengths by up to a factor of 1, 000. The combination of power enhancement and a mode
size of∼ 450 µm allows us to create optical lattices with∼ 200×200 usable sites [93]. We
experimentally characterized the resulting system by performing high-resolution spec-
troscopy confirming the expected mode size and homogeneity [104].

Strontium quantum gas microscope Implementing the quantum gas microscope is the
last missing piece towards realizing our quantum simulator for light-matter interfaces.
Most microscope experiments work with alkali atoms [27–32, 35, 36] while only two
experiments use the alkaline-earth-like element ytterbium [33, 34]. Our system will be
the first strontium quantum gas microscope. The microscope will enable us to spatially
resolve atoms in light-matter quantum simulation and allow observing the atom-photon
bound state [95]. Moreover, we can use the objective to focus a laser beam onto individual
lattice sites to spatially manipulate the atoms.

In this thesis, we report on the progress of one of the most demanding tasks in setting
up a quantum gas microscope experiment: the isolation of a single atomic layer [26].
Our microscope objective has a depth of focus of ∼ 2 µm. Along the microscope’s optical
axis, we confine the atoms in an optical lattice with a lattice spacing of 532 nm. Hence,
several lattice planes can be in focus or close to focus, preventing a unique assignment
of a signal to its initial lattice layer. Therefore, we have to isolate a single atomic layer
in the experiment’s preparation stage. Because the buildup cavity limits the optical ac-
cess, we can not implement a lattice with variable spacing to initially load only a single
plane as done by other experiments [29, 32, 105]. We follow the approach of optically
removing atoms in all planes but one using the magnetic field sensitive ¹S₀-³P₂ transition.
We separate the lattice planes in frequency space by applying a magnetic field gradient
and locally address an individual layer by shining in a laser beam at the corresponding
¹S₀-³P₂ resonance.

The ¹S₀-³P₂ transition is magnetic-quadrupole allowed and, in contrast to the famous
clock transition, remains to be investigated in detail. The Takahashi group experimen-
tally investigated this transition in Yb [106–109] and only very recently, the Schreck
group measured the transition frequency for the first time in ⁸⁷Sr with an uncertainty
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of 30 MHz [110]. Due to this little knowledge of the ¹S₀-³P₂ transition, we extensively
investigate it in the scope of this thesis.
In our microscope experiment, we confine the atoms along all three spatial directions

with a 3D optical lattice. After the isolation, we obtain a single lattice layer extended
along the microscope’s focal plane. We can spatially read out and manipulate the atomic
state by focusing an optical trough the microscope objective. However, the diffraction-
limited resolution results in cross-talk between adjacent lattice sites. Applying amagnetic
field gradient along the plane and using the magnetic-field-sensitive ¹S₀-³P₂ transition en-
hances the addressing resolution beyond the diffraction limit. This addressing technique
gives us another state-manipulation tool at hand relevant for most quantum simulation
and quantum computation experiments using strontium atoms. For example, local ad-
dressing allows preparing spin impurities [111] or excited-state impurities and observing
their dynamics.

Thesis outline

The main topic of this thesis is the first comprehensive study of the ¹S₀-³P₂ magnetic
quadrupole transition in strontium with the aim of using it to prepare a single lattice
plane in the focus of a microscope objective. This step is a major milestone towards
realizing the first strontium quantum gas microscope experiment.
In Chapter 2, we discuss the basic properties of strontium, including the naturally oc-

curring isotopes and the electronic level structure.
In Chapter 3, we study resonant light-matter interaction from first principles to obtain

a quantitative description of atomic multipole transitions. These transitions differ signif-
icantly from the well-known electric dipole transitions. We discuss the selection rules of
multipole transitions and explain the dependence of the transition amplitude on the light
polarization and the light propagation direction.

In Chapter 4, we calculate the polarizabilities of the ¹S₀ ground state and the lowest
triplet states. We discuss their magic wavelengths and investigate tuning of the polariz-
ability of the ³P₁ state and the ³P₂ state by adjusting their vector and tensor polarizabil-
ities. We use this polarizability tuning to realize a vanishing differential ac Stark shift
of the ¹S₀-³P₁ and ¹S₀-³P₂ transitions in an 1064 nm optical lattice. Furthermore, we find
the conditions for realizing a 3D magic lattice for the ¹S₀-³P₂ transition with horizontal
lattices at 914 nm and a vertical lattice at 1064 nm. At the end of the chapter, we calculate
the tune-out wavelengths for the ¹S₀, the ³P₀ and the ³P₂ states.

In Chapter 5, we discuss the experimental apparatus. We give an overview of the
vacuum system, including the crossed cavity design. We explain our considerations re-
garding the magnetic field coils, which generate the bias fields and the field gradient used
to isolate a single lattice layer. Moreover, we describe our various low- and high-power
laser systems from which we derive the cooling and trapping beams. We also explain the
upgraded transport setup combining an optical dipole trap with a tunable focus position
and a running-wave lattice.
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Chapter 6 is devoted to the experimental study of the ¹S₀-³P₂ magnetic quadrupole
transition. We investigate the transition probability as a function of the probe beam
polarization and propagation direction. For the magnetic-field-insensitive ¹S₀-³P₂∆mJ =
0 transition, we engineer a Stark-shift-free optical lattice by adjusting the excited state’s
polarizability. In this magic lattice, we resolve the transition with a precision of 2 kHz.
We measure the absolute ¹S₀-³P₂ transition frequency in ⁸⁸Sr and ⁸⁷Sr with three orders
of magnitude reduced uncertainty compared to previous measurements. Furthermore,
we achieve a magic lattice for the magnetic-field-sensitive ¹S₀-³P₂ ∆mJ = −1 transition
by adjusting the lattice polarization. As a proof-of-principle experiment, we demonstrate
local-addressing using this transition.
In the last chapter, we conclude and give an outlook on the future directions of the ex-

periment. We discuss possible applications of the ¹S₀-³P₂ magnetic quadrupole transition
in quantum simulation, quantum computing, and metrology.

Publications

The following papers were published in the course of this PhD-thesis:

• State-dependent optical lattices for the strontium optical qubit.
A. Heinz∗, A. J. Park∗, N. Šantić, J. Trautmann, S. G. Porsev, M. S. Safronova, I.
Bloch, and S. Blatt. Physical Review Letters 124, 203201 (2020).
∗ Equal contributions

• Crossed optical cavities with large mode diameters.
A. Heinz, J. Trautmann, N. Šantić, A. J. Park, I. Bloch, and S. Blatt. Optics Letters
46, 250 (2021).

• Cavity-enhanced optical lattices for scaling neutral atom quantum technologies.
A. J. Park, J. Trautmann, N. Šantić, V. Klüsener, A. Heinz, I. Bloch, and S. Blatt.
PRX Quantum 3, 030314 (2022).

• The ¹S₀-³P₂ magnetic quadrupole transition in neutral strontium.
J. Trautmann, D. Yankelev, V. Klüsener, A. J. Park, I. Bloch, and S. Blatt. in prepa-
ration

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.203201
https://doi.org/10.1364/OL.414076
https://doi.org/10.1364/OL.414076
10.1103/PRXQuantum.3.030314
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Chapter 2

Strontium

In this Chapter, we discuss the properties of strontium, which is our element of choice
to simulate open quantum systems and light-matter interfaces. Strontium is an alkaline-
earth atom with two valence electrons.

The first Section discusses the different strontium isotopes and their natural abun-
dances. Afterward, we explain the electronic level structure and summarize the proper-
ties of the transitions between electronic states that make strontium special.

2.1 Isotope abundances

Strontium has three naturally occurring bosonic isotopes (⁸⁴Sr, ⁸⁶Sr, ⁸⁸Sr) and one natu-
rally occurring fermionic isotope (⁸⁷Sr). We list the isotope abundances and background
scattering lengths in Tab. 2.1. In our experimental apparatus, we can cool the bosonic
⁸⁸Sr isotope with a nuclear spin of I = 0 or the fermionic ⁸⁷Sr isotope with a nuclear
spin of I = 9/2. Here, the vanishing nuclear spin of the bosonic isotopes results in a
vanishing hyperfine structure. Furthermore, we can see that ⁸⁸Sr is non-interacting due
to its scattering length of −2 a0 which prevents evaporative cooling techniques [112].

Scattering length a(a0)
Isotope Abundance Nuclear spin Statistics ⁸⁴Sr ⁸⁶Sr ⁸⁸Sr ⁸⁷Sr

⁸⁴Sr 0.56 % 0 bosonic 123 32 1700 −57
⁸⁶Sr 9.86 % 0 bosonic 32 800 97 162
⁸⁸Sr 82.58 % 0 bosonic 1700 97 −2 55
⁸⁷Sr 7.00 % 9/2 fermionic −57 162 55 96

Tab. 2.1 Abundance, nuclear spin and scattering length of the naturally occurring strontium isotopes.
The background scattering lengths are given in units of the Bohr radius a0. The data is taken
from Ref. [113].

The experiments presented later in this thesis, mostly use the non-interacting ⁸⁸Sr due
to its high abundance. The absence of hyperfine structure allows simpler cooling schemes
compared to ⁸⁷Sr. Moreover, the low scattering length allows us to realize non-interacting
bath particles analog to photons.
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Fig. 2.1 Electronic level diagram of 88Sr (adapted from Refs. [94, 93]). The diagram shows the transi-
tion that are relevant for this thesis and lists the corresponding lifetimes and branching ratios.
The presented spectroscopic data is taken from Refs. 1 [115] 2 [77] 3 [116] 4 [49].

2.2 Level structure

The two valence electrons of alkaline-earth atoms result in an atomic level structure con-
sisting of singlet and triplet states similar to helium [114]. For two electrons, the total
spin can be either S = 0 or S = 1, corresponding to the singlet and triplet states, re-
spectively. We show the energy level diagram of strontium in Fig. 2.1. The electronic
structure offers a variety of broad transitions in the megahertz regime and narrow inter-
combination transitions between singlet and triplet states with linewidths reaching from
the millihertz to the kilohertz regime.
The ¹S₀ ground state of strontium is a singlet state with vanishing angular momentum

J = 0. Starting from the ground state, we can drive the ∼ 30 MHz broad transition to
the ¹P₁ state. Typically, we use this transition for processes that require large scattering
rates or large momentum transfers, such as imaging, initial laser cooling, or slowing of
atoms effusing from the oven [117].

The ground state can also be coupled to the ³PJ triplet states by narrow transitions. The
strongest of these transitions is the ¹S₀-³P₁ transition. It is a spin-forbidden electric dipole
transition with a linewidth of∼ 7 kHz. This transition is weakly allowed due to spin-orbit-
interaction-inducedmixing of the ³P₁ state with the ¹P₁ state. We use the ¹S₀-³P₁ transition
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for narrow-line laser cooling in a second stage of the magneto optical trap (MOT) [118]
or for direct sideband cooling in an optical lattice to reach µK temperatures [119].

The metastable ³P₀ state has a lifetime of 118(3) s [49]. This state has a vanishing
angular momentum J = 0 that makes the state insensitive to most environmental effects
such as trapping light polarization and magnetic fields. The ¹S₀ ground state and the
³P₀ state are connected by a doubly forbidden electric dipole transition. This transition
is enabled by hyperfine interaction-induced mixing [71]. The interaction mixes the ³P₀
state with the ³P₁, ³P₂ and ¹P₁ states. As the ¹S₀-³P₀ transition forms the basis of strontium
optical lattice clocks, it has been thoroughly investigated [62, 51, 49, 56, 120–122] and is
known as the clock transition. The bosonic isotopes do not experience the mixing due to
the lack of hyperfine structure. However, this mixing can be induced by a strong external
magnetic field [77, 78, 92, 123–126]. Remarkably, in the absence of state mixing, the
clock transition is forbidden in all higher-order multipole transitions because it connects
two states with an angular momentum of J = 0.
In contrast to the ³P₀ state, the ³P₂ state possesses a largemagneticmoment of 2.1G/cm,

which allows controlling the energy of the excited states with magnetic fields [127]. This
metastable state has a natural lifetime of hundreds of seconds [128]. The ³P₂ state’s
non-vanishing angular momentum of J = 2 enables engineering of the atomic polariz-
ability in optical traps [77, 78, 119], extending the scope of experimental manipulation
tools. The ¹S₀-³P₂ single-photon transition is magnetic-quadrupole allowed [129]. The
quadrupole transition enables us to couple the states without a large external magnetic
field or hyperfine mixing. In the fermionic isotope, the hyperfine mixing leads to an ad-
ditional excitation branch via an electric dipole transition. The transitions to the Zeeman
sublevels with |mJ | > 0 are magnetically sensitive, which we use for single-addressing
within a magnetic field gradient [73, 130, 106, 107]

Hyperfine levels Since ⁸⁷Sr is relevant for many quantum computing and quantum sim-
ulation proposals, we discuss its hyperfine level structure shown in Fig. 2.2. The ¹S₀
ground state and ³P₀ clock state have a single hyperfine level with F = 9/2 resulting in
10magnetic substates (mF ), which are also called nuclear spin states in this context. Due
to the vanishing angular momentum J = 0, the nuclear spin states are decoupled from
the electron. The excited states with J > 0 split into multiple hyperfine states. Because
the ¹S₀-³P₁ transition and the ¹S₀-³P₂ transition have narrow linewidths, one can resolve
the hyperfine levels with laser spectroscopy.
Later in this thesis, we present spectroscopy data of the ¹S₀-³P₂ transition in ⁸⁸Sr and

⁸⁷Sr. In ⁸⁷Sr, we probe the F ′ = 5/2, F ′ = 7/2, F ′ = 9/2, and F ′ = 11/2 hyperfine levels.
From the measurements we can extract the hyperfine splittings and can compare them
with the literature values calculated from Ref. [131]. Furthermore, we can deduce the
isotope shift between ⁸⁸Sr and ⁸⁷Sr of the ¹S₀-³P₂ transition of ∆88

87 = ν(88Sr)− ν(87Sr) =
62.93(6) MHz, which is the first direct isotope-shift measurement of this transition.
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the course of this thesis.

Conclusion

The experiments presented later in this thesis mostly use the non-interacting bosonic ⁸⁸Sr
isotope. From the ¹S₀ ground state of strontium, one can reach the metastable ³P₀ and
³P₂ states using millihertz-wide optical transitions. The states and transitions offer vari-
ous applications in metrology, quantum computing, and quantum simulation. To locally
address atoms in our quantum simulation of light-matter interfaces, we use the magnetic-
field-sensitive ¹S₀-³P₂ magnetic quadrupole transition, which has not been studied before
in detail. To understand the properties of this transition, we first build intuition by work-
ing through the general theory of multipole transitions in the next Chapter.
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Chapter 3

Resonant light-matter interaction

The interaction of light and matter is one cornerstone of quantum optics and atomic
physics. Understanding this interaction laid the foundation for developing modern

technologies that nearly everybody comes across daily, like light-emitting diodes, solar
cells, and lasers. The origin of the light-matter interaction is the coupling of electro-
magnetic fields to charge carriers in matter. We are especially interested in the coupling
between light and atoms, whose charge carriers are their valence electrons.
If the light frequency is resonant with the energy splitting of electron levels inside the

atom, the electron changes its state from one level to the other. This process is called
an atomic transition. Driving atomic transitions is one of the main tools in quantum
simulation, quantum computing, and metrology with neutral atoms.
Coherently driving optical atomic transition allows laser cooling, atomic state prepa-

ration, and state readout. The physical applications of a transition depend on properties
like the selection rules and the coupling strength. Hence, understanding the transition’s
properties is the first step to later applications.
In this chapter, we introduce the light-matter interaction Hamiltonian in a semiclas-

sical theory, where we describe the atom as a two-level system and treat the electro-
magnetic field classically. This Hamiltonian includes the interaction responsible for all
atomic multipole transitions. Typically, only electric dipole transitions are considered.
Here, we extend the discussion to higher-order electric and magnetic multipole transi-
tions. The higher-order multipole transitions have remarkably different selection rules
than the well-known electric dipole transitions. Moreover, the multipole transition am-
plitudes depend differently on beam polarization and beam propagation direction than
we are used to from an daily work in the laboratory with electric dipole transitions.
We start this Chapter with the light-matter interaction Hamiltonian. To begin with

something familiar to most readers, we derive the well-known electric dipole transition
operator. In Sec. 3.2, we generate an understanding of multipole transitions. We calcu-
late the multipole transition operators and derive selection rules for the corresponding
transitions. In the last Section, we investigate the geometric dependence of multipole
transitions, describing which polarization and which probe beam direction is required to
drive the transition.
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3.1 Light-matter interaction Hamiltonian

We start our discussion of the light-matter interaction by writing down the interaction
Hamiltonian. The electromagnetic field of the light couples to matter via the interaction
with charged particles inside the matter. For the light-atom interaction the coupling
occurs between the light and the valence electrons of the atom. We describe the light
field in terms of the electromagnetic vector potential A(r, t) and the scalar potential
Φ(r, t). The result is the Hamiltonian [132, 133]

H =
1

2me
[p− eA(r, t)]2 + eΦ(r, t) + V (r), (3.1)

where an electron of charge e and mass me interacts with the electromagnetic poten-
tials. In our case, the electron is bound to the atom by the potential V (r). Including the
electron’s spin S, the interaction is governed by the minimal coupling Hamiltonian [132]
plus the interaction between S and A(r, t), resulting in

H =
p2

2me
+ V (r)− e

me
p ·A(r, t) + gBµBS · [∇×A(r, t)] + eΦ(r, t) +

e2

2me
A2, (3.2)

where h = 2πℏ is the Planck constant, gB is the gyromagnetic factor, and µB = eℏ/(2me)
is the Bohr magneton. The first two terms describe the bound electron, the next three
terms characterize the interaction of the electron with the light field, and the last term
corresponds to the ponderomotive potential which can be neglected because at typical
laser powers it is only a small correction [114]. For simplicity we work through the
following calculations assuming a single electron, but we can easily extent the formalism
to many-electron systems [133, 134].
Before we take a closer look at the interaction, we recall briefly the basics of electrody-

namics. We introduce the gauge transformation of the electromagnetic potentials, which
will become important to calculate the electric multipole transition operator. The gauge
transformation has the form

A(r, t) → A′(r, t) = A(r, t) +∇χ(r, t), (3.3)

Φ(r, t) → Φ′(r, t) = Φ(r, t)− ∂Φ(r, t)

∂t
, (3.4)

whereχ(r, t) is the gauge function. Using the gauge-dependent potentialsA andΦ for the
interaction Hamiltonian is the result of making the corresponding Schrödinger equation
invariant to local phases of the electron wave function [135].

Instead of the potentials, we can also express the interaction in terms of the electro-
magnetic fields E(r, t) and B(r, t). The fields are gauge-independent and are given by

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
, (3.5)

B(r, t) = ∇×A(r, t). (3.6)
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Calculating transition rates using the gauge-independent field or the gauge-dependent
potential should give the same result. Generally speaking this argument means that a
gauge transformation must not change the result of measurable quantities. To satisfy
this requirement we have to keep in mind that a gauge transformation also transforms
the wavefunctions by Ψ(r, t) → Ψ(r, t) exp[iχ(r, t)] [135]. Only if the potentials and the
wavefunctions are transformed we obtain the correct result.
Above, we derived the light-matter interaction for general electromagnetic potentials.

Now, we shift the focus towards experimentally relevant light fields. In our experiments,
atoms interact with a laser beam which we approximate as a monochromatic plane wave
described by

A(r, t) = ϵ̂A0 exp(ik · r− iωt). (3.7)

Here, ω is the oscillation frequency, k is the wave vector, ϵ̂ is the polarization vector, and
A0 is the scalar amplitude ofA(r, t). Here and in the following we mark unit vectors with
a hat. To relate the vector potential to a specific electric field, we choose the Coulomb
gauge, also known as the radiation or transverse gauge, defined by [136, 137]

∇ ·A(r, t) = 0, (3.8)
Φ(r, t) = 0. (3.9)

The first line implies that the momentum p = −iℏ∇ and the vector potentialA commute.
Using this gauge, the electric field of the plane wave is given by

E(r, t) = iωϵ̂E0 exp(ik · r− iωt). (3.10)

The electric field amplitude and the amplitude of the vector potential are related by
E0 = ωA0. We rewrite the first interaction term of Eq. (3.2) by replacing the vector
potential with the electric field and obtain

e

me
p ·A(r, t) = i

eE0

meω
p · ϵ̂ exp(ik · r) exp(−iωt) (3.11)

≈ i
eE0

meω
p · ϵ̂ (1 + ik · r+ . . . ) exp(−iωt). (3.12)

In the second line, we approximated the exponential by its Taylor expansion for k · r ≪
1. This condition is satisfied since the atom has a much smaller spatial extent than the
wavelength λ = c

ν = 2π c
ω which is the characteristic length scale of the light. If the

electromagnetic field’s oscillation frequencyω is resonant with the frequencyωki = ωk−ωi

of the atomic transition |i⟩ → |k⟩, the field can drive this transition. The corresponding
coupling is described by

i
eE0

meωki
⟨k|p|i⟩ · ϵ̂ exp(−iωt), (3.13)

where we only kept the first term of the expansion of the exponential compared to
Eq. (3.12), which is known as the electric dipole approximation. In principle, we can
use this expression to calculate the population dynamics of the states |i⟩ and |k⟩ with



Chapter 3 Resonant light-matter interaction 17

the aid of time-dependent perturbation theory [138]. A resonant coupling results in the
well-known Rabi oscillations [135]. However, here we are not interested in the time
dynamics and instead refer to the discussion in Ref. [135, 114, 139].

The coupling strength of the transition is characterized by the matrix element

dki =
1

meωki
⟨k|p|i⟩ · ϵ̂ =

1

ωki
⟨k|v|i⟩ · ϵ̂. (3.14)

This form of the matrix element is known as the velocity form [137]. The associated
length form [137] can be obtained by using the commutation relation of the momentum
operator and the bare atomic Hamiltonian [r,H] = iℏ/(me)p [114] and the resulting
relation ⟨k|p|i⟩ = me/(iℏ)ωki⟨k|r|i⟩. Inserting this relation into Eq. (3.14) leads to

dki =
1

meωki
⟨k|p|i⟩ · ϵ̂ = i⟨k|r|i⟩ · ϵ̂. (3.15)

We note that the length form of electric dipole operator can also be obtained by using the
length gauge χ(r, t) = −A(r, t) · r. Rewriting the coupling in the length form leads to

− E0⟨k|er|i⟩ · ϵ̂ exp(−iωt) = −E0⟨k|d|i⟩ · ϵ̂ exp(−iωt), (3.16)

where we defined the electric dipole transition operator d = er. We can see that the
light-matter coupling can be expressed as the interaction between an electric dipole and
the electric field. This is the reason why the approximation of exp(ik · r) ≈ 1 is called the
electric dipole approximation.
We derived the matrix element of an electric dipole transition from first principles of

the light-matter interaction Hamiltonian. The matrix element are identical to the semi-
classical description of the light-atom interaction where the electric dipole moment of
the electron-nucleus pair interacts with the oscillating electric field [114]. The reader
may ask why did we do this complicated derivation if the field-dipole interaction leads
to the same result. The answer is that we can easily extend our derivation to multipole
transitions which is not possible in the field-dipole interaction derivation.

3.2 Multipole transitions

In the previous Section, we derived the well-known electric dipole transitions by applying
the electric dipole approximation to the electromagnetic potentials. The selection rules
of electric dipole transitions allow a coupling between atomic states that differ in their
angular momentum by |∆J | = 0, 1[114]. The change in angular momentum is the result
of the absorption process where the atom acquires the photon’s angular momentum. For
an electric dipole transition, the photon’s angular momentum is given by its spin of s = 1.

However, in experiments we can observe single-photon transitions that violate the elec-
tric dipole selection rules by connecting states with |∆J | ≥ 2. These transitions are so-
called multipole transitions and are already used in trapped ions for metrology applica-
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tions [140, 141] and in quantum-computing research [63]. One example of a multipole
transition in neutral atoms is the ¹S₀-³P₂ transition in bosonic alkaline-earth atoms [106,
142]. This transition in ⁸⁸Sr is of special interest for us since we would like to use it as an
optical qubit and for local addressing. To guide these experiments, we first have to under-
stand the selection rules of multipole transitions and transition amplitude’s dependence
on probe beam polarization and probe beam orientation.
Hence, we have to derive these dependencies from the interaction Hamiltonian. The

first question the reader may ask is which part of the light-matter interaction Hamiltonian
contains these transitions. Therefore, we revisit the interaction term p · A and take a
closer look at the expansion of the plane wave for k · r ≪ 1

p ·A(r, t) ∝ ϵ̂ · p exp(ik · r) = ϵ̂ · p
[
1 + ik · r− i

2
(k · r)2 + · · ·

]
. (3.17)

We already saw that the first term is responsible for the electric dipole (E1) transitions.
The multipole transitions occur from the higher-order terms, where the second term
drives magnetic dipole (M1) and electric quadrupole (E2) transitions, the third term
drives magnetic quadrupole (M2) and electric octupole (E3) transitions, and so on. Qua-
drupole (octupole) transitions couple atomic states with |∆J | ≤ 2 (|∆J | ≤ 3). The light
field contributes additional angular momentum to satisfy the conservation of angular
momentum.
The strength of the multipole transitions decreases from lower to higher order. Typi-

cally, only the lowest non-vanishing order is considered because it dominates the transi-
tion. Which transitions are non-vanishing is determined by the selection rules containing
the conservation of angular momentum and the conservation of parity. Therefore, the
angular momentum difference ∆J , the parity of the atomic states, and the parity of the
corresponding transition operator determine whether a specific multipole transition can
occur [114]. For the ¹S₀-³P₂ transition the first non-vanishing contribution is the magnetic
quadrupole. Typically, contributions from transitions of higher order than the dominant
one are very small and can be neglected.

3.2.1 Multipole expansion of the plane wave

Themagnetic dipole (M1) and the electric quadrupole (E2) transitions can be obtained by
separating the interaction p(k · r) into the magnetic and the electric multipole transition
operators as carried out in Ref. [114]. However, this approach is not very convenient and
becomes relatively involved for higher-order multipoles [133]. Therefore, we choose a
different method and expand the vector potential of the plane wave in terms of vector
spherical harmonics, following Ref. [137]. By calculating the action of the operator p on
the vector spherical harmonics, we can derive the multipole transition operators.
Before we start with the expansion, we construct the vector spherical harmonics YKLq

by combining standard spherical harmonics Y q
L(θ, ϕ) with spherical basis vectors êp and
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obtain

YKLq(θ, ϕ) = (−1)K−q
√
2K + 1

+1∑
p=−1

(
K 1 L
−q p q − p

)
Y q
L(θ, ϕ)êp, (3.18)

where the definition contains the Wigner 3-j symbols [137]. In many textbooks the (vec-
tor) spherical harmonics are labeled with JLM , whereas we use KLq to avoid confusion
with the angular momentum associated with the atomic states. The spherical basis vec-
tors are given by

ê+1 = − 1√
2
(x̂+ iŷ),

ê0 = ẑ,

ê−1 =
1√
2
(x̂− iŷ).

The constructed vector spherical harmonics are a combination of angular momentum
components, given by Y q

L , and eigenfunctions of the spin operator for particles with s = 1.
This combination makes these vectors ideal to describe light fields containing angular
momentum and the photon spin.
The expansion of the vector potential of a plane wave in terms of the vector spherical

harmonics YKLq is given by

A(r) = A0ϵ̂ exp(ik · r) = A0

∑
KLq

AKLqYKLq(r), (3.19)

where ϵ̂ is the polarization vector. For simplicity, we drop the explicit time dependence
because it does not play a role in the following derivations. The expansion coefficients
AKLq can be calculated with the relation

AKLq =

∫ π

0
sin(θr)dθr

∫ 2π

0
dϕr[YKLq(r̂] · ϵ̂) exp(ik · r). (3.20)

To solve the integral we insert the well-known expansion of the plane wave in terms of
spherical harmonics and spherical Bessel functions jL′(kr) [136]

exp(ik · r) = 4π
∑
L′q′

iL
′
jL′(kr)Y q′∗

L′ (k)Y q′

L′ (r), (3.21)
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where we use the abbreviation Y q
L(r̂) ≡ Y q

L(θr, ϕr) and Y q
L(k̂) ≡ Y q

L(θk, ϕk). We obtain

AKLq =4π
∑
L′q′

iL
′
jL′(kr)Y q′∗

L′ (k̂)

∫ π

0
sin(θr)dθr

∫ 2π

0
dϕ(YKLq(r) · ϵ̂)Y q′

L′ (r̂) (3.22)

=4π
∑
L′q′

+1∑
p=−1

iL
′
jL′(kr)Y q′

L′ (k̂)(−1)K−qêp · ϵ̂p
√
2K + 1

×
(

K 1 L
−q p q − p

)∫
dΩrY

q′∗
L′ (r̂)Y q

L(r̂) (3.23)

=4πiLjL(kr)YKLq(k) · ϵ̂. (3.24)

Due to the orthogonality of the spherical harmonics, the integral gives the Kronecker
deltas δL,L′δq,q′ , which collapse the sums overL′ and q′. Including the spherical harmonics
Y q
L(k̂) in the sum over q results in the vector spherical harmonics YKLq(k). With the

coefficients AKLq we rewrite the expansion of the vector potential which is now given by

A(r) = 4πA0

∑
KLq

iL[YKLq(k] · ϵ̂)jL(kr)YKLq(r). (3.25)

In this expansion, the electric andmagnetic contributions are not separated yet. To obtain
a convenient separation we use a different set of vector spherical harmonicsY(λ)

Kq, defined
by

Y
(−1)
Kq (r̂) =

r

r
Y q
K(r̂), (3.26)

Y
(0)
Kq(r̂) =

1√
K(K + 1)

LY q
K(r̂), (3.27)

Y
(1)
Kq(r̂) =

r√
K(K + 1)

∇Y q
K(r̂), (3.28)

where L is the angular momentum operator. This new set of vectors and the old vectors
YKLq(r) satisfy the following relations [137]

YKK−1q(r̂) =

√
K

2K + 1
Y

(−1)
Kq (r̂) +

√
K + 1

2K + 1
Y

(1)
Kq(r), (3.29)

YKKq(r̂) = Y
(0)
Kq(r), (3.30)

YKK+1q(r̂) = −
√

K + 1

2K + 1
Y

(−1)
Kq (r̂) +

√
K

2K + 1
Y

(1)
Kq(r). (3.31)

Using the Y
(λ)
Kq for the expansion results in

A(r) = 4π
∑
Kqλ

iK−λ(Y
(λ)
Kq(k̂) · ϵ̂)a

(λ)
Kq(r). (3.32)
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We can see that the sum overL is replaced by the sum over λ. We introduced the functions
a
(λ)
Kq(r) given by

a
(0)
Kq(r) =A0jK(kr)Y

(0)
Kq(r̂), (3.33)

a
(1)
Kq(r) =A0

√
K + 1

2K + 1
jK−1(kr)YKK−1q(r)

−A0

√
K

2K + 1
jK+1(kr)YKK+1q(r). (3.34)

Due to the fact that Y(−1)
Kq (k) = k/kY q

K(k̂) is perpendicular to the polarization vector ϵ̂,
the terms with λ = −1 vanish and only λ = 0 and λ = 1 contribute to the multipole ex-
pansion. The terms with λ = 0 describe the magnetic contribution of the vector potential
and the λ = 1 terms describe the electric contribution [137].

The expansion of the vector potential allows us to rewrite the interaction part of the
full Hamiltonian in Eq.(3.2) in the Coulomb gauge to be

Hint = − e

me
p ·A(r, t) + gBµBS · [∇×A(r, t)] (3.35)

= 4π
∑
Kqλ

iK−λ
(
Y

(λ)
Kq(k̂) · ϵ̂

)
︸ ︷︷ ︸

C
(λ)
Kq (k,ϵ̂)

[
− e

me
p · a(λ)Kq(r) + gBµBS ·

[
∇× a

(λ)
Kq(r)

]]
︸ ︷︷ ︸

H
(λ)
Kq

, (3.36)

where λ takes the values 0 and 1, corresponding to magnetic and electric contributions,
respectively. We can see that the expansion in the vector spherical harmonics enables us
to separate the Hamiltonian into a geometric factor C(0,1)

Kq and an interaction component
H

(λ)
Kq that acts on the electronic wave functions of the involved atomic levels.
The multipole transition operators of the light-matter interaction in H

(λ)
Kq can be ob-

tained by calculating the tensor operator p·a(λ)Kq(r)which has rankK. We derive the elec-
tric transition operators in Sec. 3.2.2 and the magnetic transition operators in Sec. 3.2.3.
We note that the term C

(λ)
Kq (k, ϵ̂) contains the full information about the light polar-

ization and its propagation direction. Hence, these terms describe the spatial angular
dependence of the multipole transition amplitude [114], which we also call absorption
patterns in the following. Understanding the absorption patterns is necessary to know
which polarization and laser beam orientation is required to probe a givenmultipole tran-
sition. Therefore, we take a closer look at the transition amplitude’s angular dependence
in Sec. 3.4.

3.2.2 Electric multipole transition operator

In this Section, we generate a better a better understanding of electric multipole transi-
tions by deriving the associated transition operator from the interaction term p · a(1)Kq(r).
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In Coulomb gauge, the electric interaction Hamiltonian is given by

H
(el)
Kq ≡ H

(λ)
Kq = − e

me
p · a(1)Kq(r). (3.37)

For the electric transitions, the spin term does not contribute because the electric compo-
nent of the vector potential a(1)Kq(r) does not couple to the spin S of the electron. Hence,
the spin term is not part of the Hamiltonian. We begin the derivation of the transition
operator by expressing a

(1)
Kq(r) in terms of the vector spherical harmonics Y

(1)
Kq(r). We

insert Eq. (3.29) and Eq. (3.31) into Eq. (3.34) and find

a
(1)
Kq(r) =A0

√
K(K + 1)

2K + 1
Y

(−1)
Kq (r̂) [jK−1(kr) + jK+1(kr)]

+A0
1

2K + 1
Y

(1)
Kq(r̂) [(K + 1)jK−1(kr)−KjK+1(kr)] (3.38)

=A0

[
jK(kr)

kr
+

∂jK(kr)

∂(kr)

]
Y

(1)
Kq(r̂) +A0

√
K(K + 1)

jK(kr)

kr
Y

(−1)
Kq (r), (3.39)

where we used the following identities of the spherical Bessel functions [137]

jK−1(kr) =
K + 1

kr
jK(kr) +

∂jK(kr)

∂(kr)
, (3.40)

jK+1(kr) =
K

kr
jK(kr)− ∂jK(kr)

∂(kr)
. (3.41)

Because the atom has a much smaller spatial extent than the wavelength of the light, we
have kr ≪ 1. Using this relation to evaluate p · a(1)Kq(r), we obtain the electric multipole
transition operator in the velocity form as carried out in Ref. [137]. We note that the
calculation above is carried out in the Coulomb gauge and hence, we associate the cor-
responding gauge function with the velocity form. We can calculate the length form by
using the gauge function

χKq(r, t) = −1

k

√
K + 1

K
jK(kr)Y q

K(r̂) exp(iωt). (3.42)

To show the gauge transformation in a formally correct way, we include the time depen-
dencies. The gauge transforms a(1)Kq(r, t) and results in a non-vanishing vector potential
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Φ(r, t),

a
(1)
Kq(r, t) → a

(1)
Kq(r, t) +A0∇χKq(r, t) (3.43)

= −A0jK+1(kr)

[
Y

(1)
Kq(r, t)−

√
K + 1

K
Y

(−1)
Kq (r, t)

]
, (3.44)

Φ(r) → Φ(r, t) + iωΦ0χKq(r, t) (3.45)
= 0 + iωΦ0χKq(r, t), (3.46)

where Φ0 is the amplitude of the scalar potential. Now, we neglect the time dependence
again since it is not important for the further derivations. We note that a gauge transfor-
mation does not change the matrix elements of the corresponding operators. With the
gauge above, the interaction Hamiltonian of Eq. (3.2) transforms into

H
(el)
Kq =− e

me
p · a(1)Kq(r) +

e

c
Φ(r) (3.47)

=
e

me
A0p ·

(
−jK+1(kr)

[
Y

(1)
Kq(r̂)−

√
K + 1

K
Y

(−1)
Kq (r̂)

])

+ i
e

c

ω

k
Φ0

√
K + 1

K
jK(kr)Y q

K(r̂). (3.48)

The condition kr ≪ 1 allows us to approximate the spherical Bessel function by jK(kr) ≈
(kr)K/[(2K + 1)!!] [136]. We can see that the interaction from the vector potential is by
orders in kr smaller than the interaction resulting from the scalar potential. Hence, we
can neglect the vector potential component and the interaction Hamiltonian is given by

H
(el)
Kq ≈ iΦ0

√
K + 1

K

(kr)j

(2K + 1)!!
Y q
K(r̂) (3.49)

= iΦ0

√
(2K + 1)(K + 1)

4πK

kK

(2K + 1)!!
e

√
4π

(2K + 1)
rKY q

K(r̂) (3.50)

= iΦ0

√
(2K + 1)(K + 1)

4πK

kK

(2K + 1)!!
Q

(el)
Kq . (3.51)

In the last line we defined the electric multipole transition operator Q(el)
Kq [134], which is

a tensor operator of rank K. For K = 1, the derived operator corresponds to the electric
dipole transition operator defined in Eq. (3.16), which is given here in the spherical
basis [114]

êq · d = eêq · r = e

√
4π

3
rY q

K(r̂) = Q
(el)
1q ,

where êq is a basis vector of the spherical basis.
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The transition operator H(el)
Kq in Eq. (3.49) couples to the electron wave functions of

the atomic states involved. Hence, the operator contains the selection rules of the corre-
sponding transition. Using the parity operator PΨ(r) = Ψ(−r), we investigate the parity
of H(el)

Kq and we obtain

PH
(el)
Kq = P[rKY q

K(r̂)] = | − r|KY q
K(−r̂) = rK(−1)KY q

K(r̂). (3.52)

Hence, the electric multipole transition operator has a parity of (−1)K . Due to the parity
conservation law, electric dipole (E1) transitions connect states of different parity and
electric quadrupole (E2) transitions states of equal parity, where the parity of an atomic
state depends on the angular momentum L with (−1)L. At the same time, this means
that for E1 ∆L = ±1 and for E2 ∆L = 0,±2.

The light field contains angular momentum K described by the spherical harmonic
Y q
K(r̂) resulting transition specific selection rules. We can obtain these selection rules

by calculating the matrix element between the states of the transition. This matrix ele-
ment depends on the radial |γ⟩ and the angular |J,m⟩ component of the electronic wave
function [114]. Since Q

(el)
Kq is an irreducible tensor operator of rank K, we can use the

Wigner-Eckart theorem [114] to obtain [143, 144]

⟨γ′, J ′,m′|Q(el)
Kq |γ, J,m⟩ = (−1)J

′−m′
(

J ′ K J
−m′ q m

)
⟨γ′, J ′||Q(el)

K ||γ, J⟩, (3.53)

where ⟨γ′, J ′||Q(el)
K ||γ, J⟩ is the reduced matrix element. The Wigner 3j-symbols are re-

lated to the Clebsch-Gordan coefficients described in Ref. [144]. The Wigner 3j-symbols
follow the triangle condition |J ′ − K| ≤ J ≤ J ′ + K [133] and vanish otherwise. This
condition results in the fact that dipole transitions (K = 1) cannot drive J = 0 ↮ J ′ = 0
transitions and quadrupole transitions (K = 2) cannot drive J = 0 ↮ J ′ = 0, 1 transi-
tions, giving us additional selection rules.
Due to the conservation of angular momentum reflected by the Wigner 3j-symbols, we

find that K ≥ |∆J | = |J ′ − J |. Furthermore, the projection of the angular momentum
onto the quantization axis has to satisfy the condition q = ∆m = m′ − m. For elec-
tric dipole transitions, the angular momentum of the light field is given by the photon’s
spin, whereas for higher order multipole transitions, the field provides additional angular
momentum.
Now, we briefly give explicit examples of one electric dipole and one electric quadrupole

transition. In strontium, the ¹S₀-³P₁ transition is an electric dipole transition. The ¹S₀ state
with L = 0 has even parity and angular momentum of J = 0. The excited ³P₁ state with
L′ = 1 has odd parity and J ′ = 1. Therefore, the transition connects states of different
parity and an angular momentum difference of ∆J = 1. One example of an electric
quadrupole transition is the 2S1/2-2D5/2 transition in Ca+ [145], where both states have
odd parity and ∆J = 2.
In this Section we have demonstrated how to obtain the electric multipole transition

operator from our general interaction Hamiltonian and the expansion of the plane-wave
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vector potential. We calculated the length form of the operator by applying the corre-
sponding gauge transformation. We deduced the parity of the multipole operator and the
maximum transfer of angular momentum transfer occurring during an electric multipole
transition. By calculating the transition matrix element, we derived that the rank K of
the transition operator has the meaning of the amount of angular momentum that can
maximally be transferred during a transition.

3.2.3 Magnetic multipole transition operator

In the previous Section, we derived the electric multipole transition operator starting from
the interaction Hamiltonian and the expansion of the plane wave. Now, we will generate
a basic understanding of magnetic multipole transitions by deriving the corresponding
transition operator. The light-matter interaction associated with the magnetic part of the
vector potential is given by

Hmg
Kq ≡ H

(λ)
Kq = − e

me
p · a(0)Kq(r) + gBµB

[
∇× a

(0)
Kq(r)

]
· S, (3.54)

where we again omit the time dependence and use the Coulomb gauge. The Hamiltonian
consists of two terms. The first term contains the interaction between a charged particle
and the magnetic components of the vector potential. This term has a form similar to
the starting point of our derivation of the electric multipole transition operator. The
second term can be seen as the electron spin S directly interacting with the magnetic
field B = ∇×A.

To obtain the magnetic multipole transition operator, we combine the two terms by
calculating p · a(0)Kq = −iℏ∇ · a(0)Kq and ∇× a

(0)
Kq. The functions a(0)Kq consist of the vector

spherical harmonics and since they are defined in a spherical basis, it is convenient to also
express our operators in a spherical basis. We use the following identities [136]

L = r× p =
h

i
r×∇, (3.55)

∇ =
r

r

∂

∂r
− i

ℏr2
r× L. (3.56)

Because we want to combine both interaction terms, we bring the first one into a form
closer to the spin-field interaction [134]

p · a(0)Kq = −iA0ℏ
(
r

r

∂

∂r
− i

ℏr2
r× L

)
·
[
jK(kr)Y

(0)
Kq(r̂)

]
(3.57)

= −iℏA0
r

r
· L√

K(K + 1)
Y q
K(r̂)

∂jK(kr)

∂r
−A0

jK(kr)

r2
(r× L) ·Y(0)

Kq(r̂) (3.58)

= A0
1

r2
jK(kr)

[
r×Y

(0)
Kq(r̂)

]
· L, (3.59)

wherewe inserted the definition of the vector spherical harmonicsY(0)
Kq(r̂) from Eq. (3.27).
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The first term of the second line vanishes because r and L are perpendicular, resulting
in r · L = 0. The vector spherical harmonic Y

(0)
Kq ∝ L commutes with L and hence, we

can use the permutation rules of the triple product to obtain the last line.
We obtained an expression for the first interaction term containing the angular mo-

mentum operator L and therefore, we try to group L with the spin operator S. Before
we can actually group the operators, we rewrite both interaction terms into forms similar
to the electric multipole operator Q(el)

Lq . We start with the interaction containing L and
transform the expression into [134]

1

r2
jK(kr)

[
r×Y

(0)
Kq(r̂)

]
=

1

r2
jK(kr)

[
r× L√

K(K + 1)
Y q
K(r̂)

]
(3.60)

=
ℏ
i

jK(kr)

r2
(r− r2∇)

1√
K(K + 1)

Y q
K(r̂), (3.61)

=
ℏ
i

(
∂jK(kr)

∂r

)
1√

K(K + 1)

r

r
Y q
K(r̂)− ℏ

i

jK(kr)√
K(K + 1)

∇Y q
K(r̂) (3.62)

= − iℏ√
K(K + 1)

∇
[
jK(kr)Y q

K(r̂)
]
. (3.63)

The result allows us to bring the first term of H(mg)
Kq into the form

− e

me
p · a(0)Kq(r) = i

eℏ
me

A0
1√

K(K + 1)
∇
[
jK(kr)Y q

K(r̂)
]
· L. (3.64)

This term has a very similar shape as the electric multipole transition operator. We iden-
tify our result as the magnetic multipole transition operator for the light-matter interac-
tion of a spinless charged particle. The next step is to calculate the spin-field interaction
given by

∇× a
(0)
Kq(r) = (∇× L)A0

jK(kr)√
K(K + 1)

Y q
K(r̂). (3.65)

Using the identity ∇×L = −ir∇2 + i∇(r ·∇+ 1) [136], we can simplify the spin-field
interaction to [134]

∇× a
(0)
Kq(r) = −iA0r∇2 jK(kr)√

K(K + 1)
Y q
K(r̂) +A0∇(r ·∇+ 1)

jK(kr)√
K(K + 1)

Y q
K(r̂)

(3.66)

= iA0

√
K + 1

K
∇
[
jK(kr)Y q

K(r̂)
]
. (3.67)

The first term of the first line vanishes because∇2a
(0)
Kq = 0 as one can easily prove [146].
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We combine both interaction terms and the light-matter Hamiltonian becomes

H
(mg)
Kq =i

eℏ
2me

A0
2√

K(K + 1)
∇
[
jK(kr)Y q

K(r̂)
]
· L

+ igBµBA0

√
K + 1

K
∇
[
jK(kr)Y q

K(r̂)
]
· S. (3.68)

The spatial extent of the atom is much smaller than the wavelength of the light with
kr ≪ 1, leading to the approximation of the spherical Bessel function by [136]

jK(kr) ≈ (kr)K/[(2K + 1)!!]. (3.69)

The approximation results in [129]

H
(mg)
Kq =iA0

√
(2K + 1)(K + 1)

4πK

kK

(2K + 1)!!
µB

√
4π

(2K + 1)

×∇
[
rKY q

K(r̂)
]
·
(

2

K + 1
L+ gBS

)
(3.70)

=iA0

√
(2K + 1)(K + 1)

4πK

kK

(2K + 1)!!
Q

(mg)
Kq , (3.71)

where we define the magnetic multipole transition operator Q(mg)
Kq . ForK = 1, we obtain

the magnetic dipole operator, which is similar to the magnetic dipole moment q = µB(L+
gBS) [114].

In analogy to the discussion of the electric multipole operator’s parity in the previous
Section, we can calculate the parity of the magnetic multipole operator

PH
(mg)
Kq = P{(∇

[
rKY q

K(r̂)
]
· [L+ S]} = (−1)K+1H

(mg)
Kq . (3.72)

The ∇ operator has odd parity, the spherical harmonics a parity of (−1)K , and both the
angular momentum operator L and spin operator S have even parity. Hence, magnetic
dipole (M1) transitions can connect states of the same parity with ∆L = 0 and magnetic
quadrupole (M2) transitions of unequal parity with ∆L = ±1. Similar to the electric
transition, magnetic multipole transitions can connect states with a maximum difference
in total electronic angular momentum |∆J | = K.

In analogy to the electric multipole transition operator, themagnetic multipole operator
is also an irreducible tensor operator of rank K, resulting in [147]

⟨γ′, J ′,m′|Q(mg)
Kq |γ, J,m⟩ = (−1)J

′−m′
(

J ′ K J
−m′ q m

)
⟨γ′, J ′||Q(mg)

K ||γ, J⟩, (3.73)

where ⟨γ′, J ′||Q(mg)
K ||γ, J⟩ is the reduced matrix element. By comparing this equation

to Eq. (3.53), we observe that electric and magnetic multipole transitions with equal K
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and q possess the same Clebsch-Gordan coefficients and the same angular momentum
selection rules.

Magnetic dipole transitions can be found in alkali atoms, connecting the hyperfine
ground states. In strontium, the ³P₂ state decays predominately to the ³P₁ state via an
M1 transition with∆L = 0 and |∆J | = 1. The ¹S₀-³P₂ transition is a magnetic quadrupole
one with ∆L = 1 and |∆J | = 2, where both state have even parity.
In this Section we obtained the magnetic multipole transition operator from the in-

teraction Hamiltonian consisting of the minimal coupling Hamiltonian and a coupling
of the vector potential to the electron spin S. The multipole operator that we derived
directly contains the angular momentum operator L and the spin operator S. Therefore,
the operator takes into account the interaction between a magnetic field and the elec-
tron spin, while the electric field does not couple to the spin. We note that the magnetic
multipole operator is given in the velocity form because we used the Coulomb gauge in
the derivation.

3.3 Relative transition strength of multipole transitions

In this section, we estimate the relative transition strength between electric and magnetic
multipole transitions of the same rank K. Moreover, we compare the strength of electric
and magnetic transitions.
The scattering rate of magnetic and electric multipole transitions is given by

Γ(mg)

Γ(el)
=

|H(mg)
Kq |2

|H(el)
Kq |2

∝
(
B0µBr

K−1

E0erK

)2

, (3.74)

where B0 is the magnetic field amplitude and E0 = cB0 is the electric field amplitude.
For atomic transitions we can approximate the radius r ≈ a0

Zeff
, where a0 = ℏ

mecα
is the

Bohr radius, Zeff the effective charge, and α the fine-structure constant. Inserting these
relations into the equation above, we obtain

Γ
(mg)
K

Γ
(el)
K

∝ α2Z2
eff . (3.75)

This relation shows that atomic magnetic multipole transition rates are suppressed by a
factor of α2 compared to electric transitions of the same K. Hence, electric quadrupole
transitions are ∼105 times stronger than magnetic quadrupole transitions.
We can also estimate the relative strength of electric or magnetic multipole transitions

of different ranks. For example, we study the relative transition rates of electric transitions

Γ
(el)
K+1

Γ
(el)
K

=
|H(el)

K+1q|2

|H(el)
Kq |2

=

(
E0k

K+1rK+1

E0kKrK

)2

= (kr)2. (3.76)
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For atomic transitions we can use k = E
ℏc , where E is the energy splitting between the

atomic levels of the transition. For estimates this energy is given by two times the Rydberg
energy with E = Zeff

mee4

4ϵ20h
2 and we obtain

Γ
(el)
K+1

Γ
(el)
K

∝

mec

ℏ
α2Z2

eff︸ ︷︷ ︸
k

ℏ
mecαZeff︸ ︷︷ ︸

r


2

= α2Z2
eff . (3.77)

From the derived relative transition rates, we observe that in atoms electric dipole transi-
tions will always dominate the total transition strength if they are allowed by the selection
rules. For nuclear transitions, the wavelength of emitted X-rays or γ-rays can become com-
parable to the size of the nucleus. Hence, the rates of quadrupole or octupole transitions
can become comparable to dipole transitions [136]. Furthermore, nuclei can possess
large magnetic moments resulting in a dominant higher order magnetic multipole tran-
sition.

3.4 Angular dependence of multipole transition amplitudes

In this Section, we discuss the transition amplitude’s angular dependence [114] for elec-
tric and magnetic multipole transitions. In general, these geometric characteristics de-
pend on the probe beam polarization and the beam propagation direction with respect
to the atomic quantization axis. The angular dependence of multipole transitions is re-
markably different from the one of the well-known electric dipole transitions.
We remember that the expansion of the vector potential in vector spherical harmonics

Y
(λ)
Kq in Sec. 3.2 allowed us to separate the angular dependence of a transition from the

transition operator
Hint = 4π

∑
K,q,λ

iK−λ
[
Y

(λ)
Kq(k̂) · ϵ̂

]
H

(λ)
Kq . (3.78)

Here, we can extend the equation describing a single electron to describing many elec-
trons, since the polarization and wave vector do not depend on the electrons and only
H

(λ)
Kq is modified [134]. The transition operator H(λ)

Kq interacts with the electrons’ wave
functions describing the total transition strength and can be ignored for the discussion of
the angular dependence.
This dependence is described by C

(λ)
Kq = Y

(λ)
Kq(k̂) · ϵ̂. The transition amplitude is given

by AKq = |C(λ)
Kq |2.

To simplify the calculations, we use the natural coordinate system shown in Fig. 3.1,
based on a quantization along ẑ given by an external magnetic field B, and the beam
propagation direction k̂. This coordinate system allows us to describe the relevant vectors



Chapter 3 Resonant light-matter interaction 30

x̂ = (B̂ × k̂) × B̂

̂2 = k̂× ̂1

ẑ∥ B̂

k̂

θ

̂1 ∥ ŷ = B̂ × k̂

Fig. 3.1 Natural coordinate system to describe the angular dependence of atomic multipole transition
amplitudes. The magnetic field B defines the quantization axis and atomic frame. The wave
vector k is related to B by cos(θ) = k̂ · B̂, where a hat indicates a unit vector. We construct
the polarization basis vectors ϵ̂1 = B̂× k̂ and ϵ̂2 = k̂× ϵ̂1.

using

B̂ = ẑ,

k̂ = sin(θ)x̂+ cos(θ)ẑ,

ϵ̂1 = B̂× k̂ = ŷ,

ϵ̂2 = k̂× ϵ̂1 = − cos(θ)x̂+ sin(θ)ẑ.

We construct the normalized Jones vectors (α, β)⊤ [148] enabling the description of ar-
bitrary polarizations ϵ̂ = αϵ̂1 + βϵ̂2 with |α|2 + |β|2 = 1. These polarizations are per-
pendicular to the wave vector k̂ · ϵ̂ = 0 due to our assumption of transverse fields for the
plane wave expansion.
By choosing the natural coordinate system, k̂ is oriented in the xz-plane resulting in

vanishing second argument of the (vector) spherical harmonics leading to Y
(λ)
kq (k̂) =

Y
(λ)
kq (θ, ϕ = 0). Then the interaction Hamiltonian is given by

Hint =4π
∑
K,q

iK+1

√
(2K + 1)(K + 1)

4πK

kK

(2K + 1)!!

×
([

iY
(1)
Kq(θ, 0) · ϵ̂

]
Q

(el)
Kq +

[
Y

(0)
Kq(θ, 0) · ϵ̂

]
Q

(mg)
Kq

)
,

(3.79)

where the angular dependence of the corresponding multipole transition is given by
[Y

(λ)
Kq(θ, 0) · ϵ̂]2. Typically, the polarization ϵ̂ is described in terms of the polarization

basis vectors ê±1 and ê0 corresponding to σ±- and π-polarization in the atomic frame.
To investigate the angular dependence, we decompose the vector spherical harmonics
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using the same basis vectors, resulting in

Y
(1)
Kq(θ, 0) =

+1∑
µ=−1

[
c(+)
µ Y q−µ

K+1(θ, 0) + c(−)
µ Y q−µ

K−1(θ, 0)
]
êµ (3.80)

Y
(1)
Kq(θ, 0) =

+1∑
µ=−1

c(0)µ Y q−µ
K (θ, 0)êµ, (3.81)

where the coefficients c(±,0)
µ weight the projections onto the individual basis vectors and

can be obtained from the definition of the vector spherical harmonics. In the following,
we will drop the arguments of the (vector) spherical harmonics for brevity.
From the expression above, we can observe the conservation of angular momentum

during multipole transitions. The projection of the photon spin onto the quantization
axis provides angular momentum of ms = 0,±1 according to the light polarization given
by the basis vectors ê0,±, respectively. The light field can provide additional angular
momentum ml = q, q ± 1 described by the spherical harmonics Y q−µ

K . Both angular
momenta follow the relation ∆m = m′ − m = ms + ml satisfying the conservation of
angular momentum, where ∆m is the difference between the Zeeman sublevels.
We can use the decomposition in Eq. (3.80) and in Eq. (3.81) to visualize the angular

dependence of the vector spherical harmonics. This visualization will help us to gain first
insight into the transition amplitude’s angular dependence [114].

Before we show the visualization, we briefly discuss the emission patterns of multipole
transitions. We can calculate these patterns by averaging over the all polarizations with
equal contributions along the vectors ê0 and ê±. Hence, the emission patterns can be
obtained from the decomposition by calculating the normalized strengths

P
(el)
K,q =

∣∣∣ +1∑
q=−1

(
c(+)
µ Y q−µ

K+1 + c(−)
µ Y q−µ

K−1

) ∣∣∣2 (3.82)

P
(mg)
K,q =

∣∣∣ +1∑
µ=−1

c(0)µ Y q−µ
K

∣∣∣2 (3.83)

We note that the emission pattern is the coherent sum of the vector spherical harmonic’s
decomposition.
In the following Subsections, we present a visualization describing the angular depen-

dence of dipole and quadrupole transition amplitudes. We show this visualization at the
example of dipole transitions between states of J = 0 → J ′ = 1 resulting in∆J = K = 1
and for quadrupole transition between states of J = 0 → J ′ = 2 with ∆J = K = 2. The
visualization helps us to develop intuition about the geometric dependencies of the transi-
tions. Moreover, our method can easily be adapted to higher-order multipole transitions.
At the end of each Subsection, we show the transition amplitude’s angular characteristics
for a general linear polarization.
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3.4.1 Electric dipole transition
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Fig. 3.2 (a) Visualization of the angular characteristics of the electric dipole transition’s vector spherical
harmonics describing transitions with a difference ∆m between the Zeeman sublevels. Due
to the choice of coordinate system, the second argument of the spherical harmonics vanish
with Y q

0,2(θ, 0). We decompose the vector spherical harmonics into contributions along the
basis vectors ê0 and ê± corresponding to the polarization π and σ± in the atomic frame. We
note that this visualization contains also unphysical combinations of k̂ and ϵ̂ with k̂ · ϵ̂ ̸= 0
reflected by combinations of θ and the basis vectors. ∆m describes the difference in Zeeman
sublevels for an absorption of a photon. (b) Emission pattern of an electric dipole transition.

We study the geometric dependence of the electric dipole transition (K = 1) with a
difference of ∆m between the Zeeman sublevels. Using the decomposition in Eq. (3.80),
we show the angular dependence of the vector spherical harmonics in Fig. 3.2(a), de-
scribing the electric dipole transition. Due to the choice of the coordinate system with
ϕ = 0, all spherical harmonics are real, and we plot their value as a function of θ in polar
coordinates.
This visualization may seem intuitively wrong since, we know that only ê+1 (corre-

sponding to σ+-polarized light) drives the ∆m = +1 transition, while here also ê0 and
ê−1 show non-vanishing contributions. The reason is that this visualization contains all
combinations of k̂ and ϵ̂ even if k̂ · ϵ̂ ̸= 0, which may become relevant when the light field
cannot be approximated as a plane wave like a beam focused through a high-numerical
aperture objective.
We observe in the visualization of ∆m = 0 for ê0 (π-polarization) that the spherical

harmonic is vanishing for θ = 0. This behavior agrees with the expectation since π-
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polarization can never be achieved with k̂ being parallel to the quantization axis.
In Fig. 3.2(b) we show the emission patterns of the electric dipole transition calcu-

lated with Eq. (3.82). The patterns agree with the classical dipole patterns presented in
Ref. [136].

As a sanity check, we calculate the electric dipole transition amplitude’s angular depen-
dence of the different∆m = q = 0,± transitions for a general polarization ϵ̂ = αϵ̂1+βϵ̂2
with |α|2 + |β|2 = 1 and the normalized Jones vectors (α, β)⊤. Using this polarization,
the transition amplitude is given by

A1,0 ≡ (Y1,0 · ϵ̂)2 = [Y1,0 · (αϵ̂1 + βϵ̂2)]
2 =

3

8π
|β|2 sin2 θ, (3.84)

A1,±1 ≡ (Y1,±1 · ϵ̂)2 = [Y1,±1 · (αϵ̂1 + βϵ̂2)]
2

=
3

16π
(α± iβ cos θ) (α∗ ∓ iβ∗ cos θ) ,

(3.85)

We compare the results obtained with the general formalism to the results corresponding
to calculating the transition amplitude using d ·E. We expect that only π-polarization in
the atomic frame drives the ∆m = 0 transition. We obtain the angular dependence by
projecting the electric field ϵ̂E0 onto ê0 resulting in

A1,0 =

(
[αϵ̂1 + βϵ̂2] · ê0

[
−
√

4

30
Y 0
2

(π
2
, 0
)
+

√
20

30
Y 0
0

(π
2
, 0
)])2

=
3

8π
|β|2 sin2 θ.

(3.86)

We note that pure π-polarization can only be obtained for θ = π/2 and insert the decom-
position of the vector spherical harmonic shown in Fig. 3.2(a). This result agrees with the
one obtained above, demonstrating that our general formalism agrees with the physical
intuition from d ·E.
For ∆m = ±1, we can perform analogous calculations by projecting the electric field

onto the basis vectors ê±, which correspond to σ±-polarization. There, we use θ = 0,
since only for k̂ ∥ B̂ we can obtain pure σ±-polarization. The calculation gives us the
expected result

A1,±1 =

(
[αϵ̂1 + βϵ̂2] · ê±1

[√
1

30
Y 0
2 (0, 0) +

√
20

30
Y 0
0 (0, 0)

])2

=
3

16π
(α± iβ cos θ) (α∗ ∓ iβ∗ cos θ) .

(3.87)

Now, we calculate the transition amplitude’s angular dependence using a linear polar-
ization given by

ϵ̂lin = sin(ρ)ϵ̂1 − cos(ρ)ϵ̂2 = sin(ρ)ŷ + cos(ρ) [− cos(θ)x̂+ sin(θ)ẑ] . (3.88)
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Fig. 3.3 Contour plot of the transition amplitude’s angular dependence of the electric dipole transitions
[Y

(1)
1q (θ, 0) · ϵ̂lin]2 with the linear polarization ϵ̂lin = sin(ρ)ϵ̂1 − cos(ρ)ϵ̂2 and q = ∆m. In the

first row, we show the angular characteristics as a function of θ and ρ in a contour plot, where
the color from dark to light corresponding to a relative amplitude ranging from 0 to 1. In the
second, third, and fourth row, we choose a specific ρ and present the corresponding transition
amplitude in a 3D plot. Because the transition amplitude is an absolute value, phase factors
vanish and the angular dependence is radially symmetric. The colors of the 3D plots are
chosen for visibility and do not have a physical meaning.

We note that for ρ = 0 the polarization is in the xz-plane and for ρ = π/2, the polarization
is oriented along ŷ. We show the transition amplitude’s angular characteristics obtained
from A(el)

1,q = [Y
(1)
1q (θ, 0) · ϵ̂lin]2 in the first row of Fig. 3.3. The colors encode the relative

transition amplitude from 0 (dark) to 1 (bright).
We observe that where the ∆m = ±1 transition have an amplitude of 1, the ∆m = 0

transition’s amplitude vanishes as a function of θ. This behavior is caused by the fact
that the ∆m = ±1 (∆m = 0) transitions are driven by σ±-polarization (π-polarization)
in the atomic frame, oriented perpendicular to each other. Furthermore, for ρ = π/2,
the polarization is oriented along ŷ regardless of θ, corresponding to mixture of σ+- and
σ−-polarization with vanishing π-polarization. Therefore, the∆m = ±1 transitions have
a constant amplitude while the ∆m = 0 transition vanishes.

In the second, the third, and the fourth row of Fig. 3.3, we choose a specific ρ and
show the transition amplitude in a 3D plot. Because the transition amplitude is given
by |Y(λ)

Kq · ϵ̂|2 the phase factor depending on ϕ vanishes resulting in radially symmetric
transition amplitudes. These 3D plots are just a different visualization of the contour



Chapter 3 Resonant light-matter interaction 35

plots for the chosen ρ. The ∆m = 0 transition amplitude vanishes in the center, since for
θ = 0, we can not obtain a π-polarization with k̂ · ϵ̂lin = 0. For ρ = π/2, we observe the
discussed constant amplitudes of the ∆m = ±1 transitions.
The presented formalism of calculating the angular dependence of the electric dipole

transition agrees with our expectations. In the next Section, we will use this formalism
to calculate the angular characteristics of magnetic dipole transitions.

3.4.2 Magnetic dipole transition
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ê+

ê0
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Fig. 3.4 (a) Visualization of the angular characteristics of the magnetic dipole transition’s vector spher-
ical harmonics describing transitions with a difference ∆m between the Zeeman sublevels.
Due to the choice of coordinate system, the second argument of the spherical harmonics
vanish with Y q

1 (θ, 0). We decompose the vector spherical harmonics into contributions along
the basis vectors ê0 and ê± corresponding to the polarization π and σ± in the atomic frame.
We note that this visualization contains also unphysical combinations of k̂ and ϵ̂ with k̂ · ϵ̂ ̸= 0
reflected by combinations of θ and the basis vectors. ∆m describes the difference in Zeeman
sublevels for an absorption of a photon. (b) Emission pattern of a magnetic dipole transition.

In analogy to the previous Section about the electric dipole transition, we now investi-
gate the geometric dependence of the magnetic dipole transition (K = 1). We show the
visualization of the corresponding vector spherical harmonics in Fig. 3.4(a). Although the
decomposition into vector spherical harmonics is different than the electric dipole transi-
tion ones, the emission patterns presented in Fig. 3.4(b) agree with the electric dipole’s
ones. The reason is that the emission patterns depend on the multipole order and not on
whether a transition is of electric or magnetic nature.
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Fig. 3.5 Contour plot of the transition amplitude’s angular dependence of the magnetic dipole transi-
tions [Y(0)

1q (θ, 0) · ϵ̂lin]2 with the linear polarization ϵ̂lin = sin(ρ)ϵ̂1 − cos(ρ)ϵ̂2 and q = ∆m.
In the first row, we show the angular characteristics as a function of θ and ρ in a contour plot,
where the color from dark to light corresponding to a relative amplitude ranging from 0 to 1.
In the second, third, and fourth row, we choose a specific ρ and present the corresponding
transition amplitude in a 3D plot. Because the transition amplitude is an absolute value, phase
factors vanish and the angular dependence is radially symmetric. The colors of the 3D plots
are chosen for visibility and do not have a physical meaning.

We show the transition amplitude’s angular characteristics obtained from A(mg)
1,q =

[Y
(0)
1q (θ, 0) · ϵ̂lin]2 in Fig. 3.5. The colors of the contour plot in the first row encode the rel-

ative transition amplitude from 0 (dark) to 1 (light). Remarkably, the calculated angular
dependence of the magnetic dipole transition amplitude agrees with electric dipole ones
up to a phase shift of ∆ρ = π/2. This phase shift makes perfect sense since the electric
and the magnetic field are perpendicular to each other, corresponding to a phase shift of
ρ.

3.4.3 Electric quadrupole transition

Now, we discuss the angular characteristics of the electric quadrupole transition ampli-
tude. In Fig. 3.6(a), we present the visualization of the vector spherical harmonics de-
composition in Eq. (3.80) withK = ∆J = 2. Since the component of the light field which
is responsible for quadrupole transition can provide additional angular momentum of up
to two quanta, transitions between Zeeman sublevels of ∆m = ±2 become accessible.
We stress that this visualization does not describe the transition amplitude’s angular
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Fig. 3.6 (a) Visualization of the angular characteristics of the electric quadrupole transition’s vector
spherical harmonics describing transitions with a difference ∆m between the Zeeman sub-
levels. Due to the choice of coordinate system, the second argument of the spherical harmon-
ics vanish with Y q

1,3(θ, 0). We decompose the vector spherical harmonics into contributions
along the basis vectors ê0 and ê± corresponding to the polarization π and σ± in the atomic
frame. We note that this visualization contains also unphysical combinations of k̂ and ϵ̂ with
k̂ · ϵ̂ ̸= 0 reflected by combinations of θ and the basis vectors. ∆m describes the differ-
ence in Zeeman sublevels for an absorption of a photon. (b) Emission pattern of an electric
quadrupole transition.

dependence since it contains also unphysical polarizations with ϵ̂·k̂ ̸= 0. However, we can
still use it to obtain the angular characteristics. We find that the ∆m = ±2 and ∆m = 0
transitions vanish for the wave vector k being parallel to the magnetic field (θ = 0),
regardless of the polarization. Furthermore, we observe that the ∆m = 0 transition also
vanishes for θ = π/2 and has a maximum transition strength for θ = π/4. We cross-
checked our calculations with the results of Ref. [149], which agree when we rotate our
coordinate system into their system.
Using Eq. (3.82) we calculate the emission patterns of the electric quadrupole tran-

sition and show them in Fig. 3.6(b). We observe that these patterns are combinations
of the decomposed spherical harmonics. The emission agrees with the one of classical
quadrupole [136].

We show the electric quadrupole transition amplitude’s angular characteristics ob-
tained from A(el)

2,q = [Y
(1)
2q (θ, 0) · ϵ̂lin]2 in Fig. 3.7. The colors of the contour plot in the

first row encode the relative transition amplitude from 0 (dark) to 1 (light). As expected,
the contour plots contain a different structure than the plot of the dipole transitions. We
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Fig. 3.7 Contour plot of the transition amplitude’s angular dependence of the electric quadrupole tran-
sitions [Y(1)

2q (θ, 0) · ϵ̂lin]2 with the linear polarization ϵ̂lin = sin(ρ)ϵ̂1 − cos(ρ)ϵ̂2 and q = ∆m.
In the first row, we show the angular characteristics as a function of θ and ρ in a contour plot,
where the color from dark to light corresponding to a relative amplitude ranging from 0 to 1.
In the second, third, and fourth row, we choose a specific ρ and present the corresponding
transition amplitude in a 3D plot. Because the transition amplitude is an absolute value, phase
factors vanish and the angular dependence is radially symmetric. The colors of the 3D plots
are chosen for visibility and do not have a physical meaning.

find that the ∆m = ±2 transitions vanish for θ = 0 and that the ∆m = 0 transition
vanishes for θ = 0 and θ = π/2. Both observations agree with the conclusion we draw
from discussing the decomposition of the vector spherical harmonic in Fig. 3.6.
In the second, the third, and the fourth row of Fig. 3.7, we choose a specific ρ and

show the transition amplitude in a 3D plot. The transition amplitude is an absolute value
resulting in vanishing phase factors and a radial symmetry independent of phi. That
the ∆m = 0 transition always vanishes for θ = 0 and θ = π/2 shows that the electric
quadrupole transition amplitude depends on the orientation of k̂ and the polarization.
For ρ = π/4 and θ = π/2, the polarization vector decomposes into a mixture of σ±- and
π-polarization in the atomic frame, but the transition amplitude still vanishes. Hence the
quadrupole transition amplitude depends on θ and not exclusively on the polarization in
the atomic frame as for dipole transitions.
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Fig. 3.8 (a) Visualization of the angular characteristics of the magnetic quadrupole transition’s vec-
tor spherical harmonics describing transitions with a difference ∆m between the Zeeman
sublevels. Due to the choice of coordinate system, the second argument of the spherical
harmonics vanish with Y q

2 (θ, 0). We decompose the vector spherical harmonics into con-
tributions along the basis vectors ê0 and ê± corresponding to the polarization π and σ± in
the atomic frame. We note that this visualization contains also unphysical combinations of
k̂ and ϵ̂ with k̂ · ϵ̂ ̸= 0 reflected by combinations of θ and the basis vectors. ∆m describes
the difference in Zeeman sublevels for an absorption of a photon. (b) Emission pattern of a
magnetic quadrupole transition.

3.4.4 Magnetic quadrupole transition

Finally, we discuss the magnetic quadrupole transition amplitude’s angular dependence.
Magnetic quadrupole transitions are connecting states with ∆J = 2 = K. We show the
visualization of the decomposition of the vector spherical in Fig. 3.8(a). We find that the
∆m = ±2 transition vanishes for θ = 0. Moreover, the ∆m = 0 transition can not be
driven for θ = 0 and θ = π/2 regardless of the polarization.

The emission patterns are presented in Fig. 3.8(b), where we plot the transition ampli-
tude as a function of θ. These patterns agree with the ones of classical electromagnetic
quadrupoles [136].
In Fig. 3.7, we show the magnetic quadrupole transition amplitude’s angular charac-

teristics obtained from A(mg)
2,q = [Y

(0)
2q (θ, 0) · ϵ̂lin]2. The colors of the contour plot in the

first row encode the relative transition amplitude from 0 (dark) to 1 (light).
We observe that the angular characteristics of the magnetic quadrupole and electric

quadrupole transition agree up to phase factor∆ρ = π/2, which can be explained by the
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Fig. 3.9 Contour plot of the transition amplitude’s angular dependence of the magnetic quadrupole
transitions [Y(0)

2q (θ, 0) · ϵ̂lin]2 with the linear polarization ϵ̂lin = sin(ρ)ϵ̂1 − cos(ρ)ϵ̂2 and q =
∆m. In the first row, we show the angular characteristics as a function of θ and ρ in a contour
plot, where the color from dark to light corresponding to a relative amplitude ranging from 0 to
1. In the second, third, and fourth row, we choose a specific ρ and present the corresponding
transition amplitude in a 3D plot. Because the transition amplitude is an absolute value, phase
factors vanish and the angular dependence is radially symmetric. The colors of the 3D plots
are chosen for visibility and do not have a physical meaning.

perpendicular orientation of the electric and magnetic field.
Using the equations we derived, we can calculate the angular dependence of the ¹S₀-

³P₂ magnetic quadrupole transition. The understanding we obtained enables us to choose
probe beam polarizations and probe orientations and to investigate the transition exper-
imentally. We present the corresponding experimental results in Chapter. 6.

Conclusion

In this Chapter we discussed the light-matter interaction in the context of a monochro-
matic plane wave driving multipole transitions in atoms. We started with the interaction
Hamiltonian and expanded the electromagnetic potentials, describing the light, to derive
themultipole transition operators. We summarize our findings by inserting the calculated
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expressions into the full Hamiltonian of bound electrons interacting with light,

H =
p

2me
+ V (r) + 4πA0

∑
Kq

iK+1

√
(2K + 1)(K + 1)

4πK

kK

(2K + 1)!!

×
[(

Y
(1)
Kq(k) · ϵ̂

)
e

√
4π

(2K + 1)
rKY q

K(r̂)

+
(
Y

(0)
Kq(k) · ϵ̂

)
µB

√
4π

(2K + 1)
∇
[
rKY q

K(r̂)
]
·
(

2

K + 1
L+ gBS

)]
. (3.89)

The derivations allowed us to separate the geometric dependence of a transition from the
multipole transition operator describing the atomic physics. The electric and magnetic
transition operator has a parity of (−1)K and (−1)K+1, respectively, with the transition
rank K. In addition to the photon’s spin, the light field can provide angular momentum
to satisfy the conservation of angular momentum. Following the the rule of parity con-
servation, we can deduce the states a multipole transition couples. We summarize the
selection rules for transitions between the atomic states |i⟩ and |k⟩ in Tab. 3.1.

Angular momentum
State parity J m Example

E1 Pi = −Pk ∆J = 0,±1 (0 ↮ 0) ∆m = 0,±1 ¹S₀-¹P₁
M1 Pi = Pk ∆J = 0,±1 (0 ↮ 0) ∆m = 0,±1 ³P₁-³P₂
E2 Pi = Pk ∆J = 0,±1,±2 (0 ↮ 0, 1) ∆m = 0,±1,±2 2S1/2-2D5/2

M2 Pi = −Pk ∆J = 0,±1,±2 (0 ↮ 0, 1) ∆m = 0,±1,±2 ¹S₀-³P₂

Tab. 3.1 Summary of the selection rules of multipole transitions derived from the multipole transition
operators. Dipole transitions with J = 0 ↮ J ′ = 0 are forbidden due to the triangle condition
of the Wigner 3j-symbols that result from calculating the angular part of the transition matrix
element. [133]. For quadrupole transitions, (J = 0 ↮ J ′ = 0, 1) is forbidden following the
same argument. The combination of parity and the angular momentum selection rules also
enforce selection rules concerning the electron’s angular momentum L, which are not shown
here.

In the last part of this Chapter, we calculated the transition amplitude’s angular de-
pendence given by (Y

(λ)
Kq(k) · ϵ̂)2 of the electric and magnetic dipole and quadrupole

transitions. We decomposed the vector spherical harmonics Y
(λ)
Kq into the polarization

basis vectors and visualized the angular characteristics. Additionally, we showed the
transition amplitude’s angular dependence of a general linear polarization. We observed
that the quadrupole transition amplitude depends on the probe beam orientation and
polarization. We find that the transition amplitude’s angular dependence of electric and
magnetic multipole transitions (for a linear polarization) only differ by a phase factor of
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π/2, which can be explained by the perpendicular orientation of the electric and mag-
netic fields. In addition, we calculated the emission patterns of electromagnetic dipole
and quadrupole transitions. The patterns agree with the ones of classical dipoles and
quadrupoles.
Now, we have the theoretical background to study the ¹S₀-³P₂ magnetic quadrupole

transition in neutral strontium and make this transition accessible for applications in
neutral-atom quantum technologies.
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Chapter 4

Dynamical Stark shift

Manipulating atoms with light is a foundational technique in atomic physics and in
ultracold atom experiments. Resonant laser light drives transitions between atomic

states enabling cooling, imaging, and state preparation of the atomic ensemble [143].
But not only resonant radiation has effects on the atoms, also off-resonant light fields
do. Off-resonant electromagnetic fields perturb the energies of the atomic states, which
can be used to trap the atoms in optical fields [150]. Because the energies are shifted by
the oscillating electromagnetic field, this light shift is called dynamical Stark shift or also
ac-Stark shift.
Nowadays, optical traps have developed into standard tools in quantum simulation [20,

22], quantum computation [67, 69] and metrology [54, 50] with neutral atoms. How-
ever, the light shift used in optical traps can shift an atomic transition frequency by typ-
ically several hundreds of kilohertz. Hence, understanding and controlling this shift be-
comes especially important for transitions with a linewidth below the megahertz scale,
for example the singlet to triplet transitions in alkaline-earth atoms like Sr [119]. The
frequency shift is given by the differential light shift between the states of the transition.
Because the light shift of the individual states depends on the wavelength of the trapping
light and the light polarization, one can achieve a situation in which the differential light
shift vanishes – the so-called magic condition. The concept of magic optical traps is used
in optical lattice clocks for metrology applications [56]. Due to the recent development
of using alkaline-earth atoms for quantum simulations and quantum computation, magic
traps are becoming more important in these fields.
In Sec. 4.1 of this Chapter, we will discuss the basic models of the light shift and its

application to trap neutral atoms in optical fields. We give a brief introduction to optical
dipole traps and optical lattices. The light shift and the depth of these optical traps
depends on the dynamical polarizability of the atomic state. Hence, we explain how to
calculate the polarizability of an atomic state in Sec. 4.2. In Sec. 4.3, we use the concepts
we derived to calculate the polarizability of the ¹S₀ ground state and the metastable 3PJ
triplet states of neutral strontium. In addition, we show how the magic condition can
be achieved for the transitions between the ground state and these excited states. At
the end of this Chapter, we calculate the tune-out wavelength of strontium enabling the
realization of state-dependent optical lattices.
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4.1 Optical dipole potential

The derivations in this Section mostly summarize the discussions in Ref. [150]. The inter-
action of an atomwith an off-resonant oscillating electromagnetic field can be understood
in a semiclassical picture as the interaction between an induced dipole moment d and the
electric field E. The dipole moment oscillates at the driving frequency ω of the electric
field

E(r, t) = ϵ̂E(r) exp(−iωt) + c.c.,

d(r, t) = ϵ̂ d(r) exp(−iωt) + c.c.,

where ϵ̂ is the polarization vector and c.c. is the complex conjugate. The amplitude d of
the dipole moment is related to the electric field amplitude E by [114]

d(r) = α(ω)E(r). (4.1)

Here, we introduced the complex polarizability α, which depends on the frequency ω.
For now, we treat α as a known scalar quantity. Later in this section we will calculate the
polarizability of a two-level system and in Sec. 4.2 the polarizabiliy of a multilevel atom.
The potential energy due to the interaction of the electric field with the induced dipole

moment, can be obtained by calculating the time average

Udip(r) = −1

2

1

T

∫ T

0
d(r, τ) ·E(r, τ)dτ = −1

2
Re(α)|E(r)|2, (4.2)

Udip(r) = − 1

2ε0c
Re(α)I(r). (4.3)

In the second line, we express the potential as a function of the light intensity I(r), where
c is the speed of light and ε0 is the vacuum permittivity. The factor 1/2 reflects that the
dipole is an induced dipole and not a permanent one. We see that the atom’s potential
energy is proportional to the real part of the polarizability as well as to the light intensity.
The corresponding dipole force is given by the gradient of the potential energy

Fdip = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r). (4.4)

This dipole force is conservative and hence, can be used to confine atoms in the maximum
(minimum) of the light intensity for Re(α) > 0 (Re(α) < 0).

Before we discuss the traps resulting from the dipole potential, let’s have a look at
another effect resulting from the light-atom interaction. This effect is the scattering of
photons by the atom. The associated scattering rate Γsc is given by the absorbed power
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Pabs per photon [150]

Γsc =
Pabs

ℏω
=

1

ℏω
1

T

∫ T

0

[
∂

∂τ
d(r, τ)

]
·E(r, τ)dτ (4.5)

=
1

ℏε0c
Im(α)I(r). (4.6)

This scattering can lead to heating of the atoms confined in an optical trap due to the
photon recoil. The heating results in decoherence of the atomic state and therefore, has
to be taken into account during the design of these traps.
To obtain insight into the relation between the dipole potential and the scattering

rate, we use a simplified model to describe the atom and its transitions. We assume that
the atom can be described by a perfect two-level system. We describe the atom as a
Lorentz-oscillator, where the electron is elastically bound to the core with the oscillation
frequency ω0, which corresponds to the atomic transition frequency. This simple classical
model allows us to derive several properties of the atom related to transitions. Using this
model, the polarizability α(ω) is given by [150]

α(ω) = 6πε0c
3 Γ

ω2
0

(
ω2
0 − ω2 − iΓω3

ω2
0

) , (4.7)

where Γ is the spontaneous decay rate of the excited state. By substituting Eq. (4.7) into
the equation of the dipole potential [Eq. (4.3)], we obtain

Udip(r) = −6πc2

2

Γ(ω2
0 − ω2)ω2

0

(ω2
0 − ω2)2ω4

0 + ω6Γ2
I(r) = −3πc2

2

1

ω3
0

2Γω0

ω2
0 − ω2 + ω6

ω4
0
Γ2

I(r) (4.8)

≈ −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (4.9)

where we can neglect the last term in the denominator of Eq. (4.8) for far off-resonant
light fields. In analogy, the scattering rate (Eq. 4.6) becomes

Γsc =
6πc2

ℏ
ω3Γ2

(ω2
0 − ω2)2ω4

0 + ω6Γ2
I(r) =

3πc2

2ℏω3
0

(
ω

ω0

)3 4Γ2ω2
0

(ω2
0 − ω2)2 + ω6

ω4
0
Γ2

I(r) (4.10)

≈ 3πc2

2ℏω3
0

(
ω

ω0

)3( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (4.11)

We define the detuning∆ = ω0−ω and use the rotating wave approximation [114]. This
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approximation allows us to drop the terms of Γ/(ω0 + ω) and to set ω0 ≈ ω, resulting in

Udip(r) = −3πc2

2ω3
0

Γ

∆
I(r), (4.12)

Γsc =
3πc2

2ℏω3
0

(
Γ

∆

)2

I(r). (4.13)

Although we simplified the atom with a classical model, the derived equations contain
the basic principles of the light-atom interaction for far off-resonant laser fields. We can
see that atoms are trapped in the intensity maxima for red-detuned light (∆ < 0) and in
the minima for blue-detuned light (∆ > 0).

The dipole potential scales with I/∆, whereas the scattering rate scales with I/∆2.
To obtain a deep trapping potential, we should use a high intensity and to reduce the
scattering rate we should use a large detuning. Typically, the scattering is not the domi-
nant heating source in optical traps. The dominant heating source of these traps is usually
parametric heating caused by intensity noise [151]. However, to prepare quantummany-
body states with very low entropy [152, 153] or when atoms are confined in extremely
deep optical potentials [154] the scattering has to be considered.

Above, we covered the basic concepts of the optical dipole potential. Now, we discuss
two specific traps generated by laser beams that use the optical dipole force to confine the
atoms in space. First, we elaborate on the optical dipole trap and second, on the optical
lattice. Both of these traps are used in the experiments presented in this thesis.

4.1.1 Optical dipole trap

Confining atoms in a light field requires a restoring force along all spatial directions given
by the intensity gradient. The most simple optical dipole trap is realized with a red-
detuned, focused Gaussian beam. The intensity profile of a Gaussian beam propagating
along the z-axis is described by [148]

I(r, z) = I0

(
w0

w(z)

)2

exp

(
− 2r2

w(z)2

)
, (4.14)

where w0 is the waist at the focus of the beam. I0 is the peak intensity defined by I0 =
(2P )/(πw2

0)with the beam power P . The beamwaistw(z) changes along the propagation
direction given by

w(z) = w0

√
1 +

(
z

zR

)2

, (4.15)

where zR = (πw2
0)/λ is the Rayleigh range which depends on the wavelength λ. We can

see that the intensity of the beam decreases radially, resulting in a restoring force towards
the beam center. By moving along the z-direction away from the focus, the beam waist
becomes larger and the intensity decreases. Therefore, the atoms located inside the red-
detuned beam experience a force towards the focus. The result is a conservative trapping
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potential along all spatial directions with a potential depth of

U0 = − 1

2ε0c
Re(α)

2P

πw2
0

. (4.16)

If the temperature T of the trapped atoms is much smaller than the potential depth
(kBT ≪ U0), the atoms are confined radially in a region of ∆r ≪ w0 and axially in
a region of ∆z ≪ zR. Under this condition, we can approximate the potential by a
harmonic oscillator of the form

U(r, z) ≈ −U0

[
1−

(
r

w0

)2

−
(

z

zR

)2
]
. (4.17)

Within this harmonic approximation, we can calculate the radial trap frequency νr =
ωr/(2π) with

1

2
mω2

rr
2 = 2U0

(
r

w0

)2

(4.18)

⇔ ωr =

√
4U0

mw2
0

(4.19)

an the axial trap frequency νz = ωz/(2π) with

ωz =

√
2U0

mz2R
. (4.20)

Typically, one realizes optical dipole traps with ω0 < zR. Hence, the trapped atoms
experience much steeper radial confinement than axial.

4.1.2 Optical lattice

In an optical lattice trap, atoms are confined inside the intensity pattern of a standing
light wave. The optical lattice is created by overlapping a retro-reflected propagating
laser beam. Here, we approximate the laser beam with a plane wave. The resulting
intensity pattern is given by

I(z) =
1

2
cε0|E0 exp(−ikz − iωt) + E0 exp(+ikx− iωt)|2 = 4I0 cos

2(kz), (4.21)

with k = 2π/λ. The factor of 4 is the result of the interference between the beam and its
retro-reflection. The intensity pattern leads to a periodic trapping potential of periodicity
λ/2 along the propagation direction. Similar to the dipole trap, each lattice well can be
approximated by a harmonic potential of the form

U(z) = −U0 cos
2(kz) ≈ −U0[1− k2x2], (4.22)
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where the trap depth is given by U0 = 2Re(α)I0/(cε0). The trap frequency of the optical
lattice can be calculated with

2πνz = ωz =

√
2U0k

2

m
=

√
4U0Erec

ℏ2
. (4.23)

We define the recoil energy as Erec = ℏ2k2/(2m) = hνrec. Using the recoil frequency νrec
we can relate the trap frequency to the trap depth by νt/νrec =

√
4U0/Erec.

In reality, optical lattices are created with Gaussian beams and not plane waves. The
finite extent of the Gaussian beams results in a Gaussian envelope of the potential depth
along the radial direction. The radial trap frequency is given by Eq. (4.19). This envelope
leads to a radial harmonic confinement on top of the lattice, which limits the number of
usable lattice sites for quantum simulation, quantum computation, and optical lattice
clocks [104].

4.2 Theory of atomic polarizability

In this Section we discuss how to calculate the atomic polarizability of a multilevel atom.
In the further content of this thesis, the term polarizability α refers to the real part of
the complex polarizability. The following results are based on the explanations given in
Ref. [155, 156, 86] and on our work carried out in Ref. [104, 92, 142].
In general, the polarizability α is a tensor of rank 2 resulting from the Stark shift

interaction Hamiltonian [155]. We can decompose the tensor into three irreducible parts:
scalar αS, vector αV, tensor αT polarizability [157]. For the atomic state |i⟩ the total
polarizability is given

αi = αi
S + αi

V + αi
T. (4.24)

Each of these term describes the interaction of the valence electrons with the light field.
Additionally, the scalar polarizability contains the interaction with electrons on lower
atomic orbits, the core electrons.
In Sec. 4.1 we discussed the polarizability of a two-level system in terms of the inter-

action between an induced electric dipole moment and the electric field. Besides this
interpretation, we can understand the polarizability as the coupling of the electric field,
oscillating at the frequency ω, to the atomic states’ multipole transitions contributing in
second order. In the previous Chapter 3, we derived that electric diopole transitions are
dominate in terms of transitions strength and we can neglect contributions from higher
order multipole transitions. We can calculate the interaction with second-order pertur-
bation theory [114]. The scalar polarizability of the atomic state |i⟩ with the angular
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momentum J is given by [156, 86]

αi
S =

1

3(2J + 1)

1

ℏ
∑
k

|⟨k|d|i⟩|2Re

(
1

ωki − ω − iΓki
2

+
1

ωki + ω + iΓki
2

)
(4.25)

=
1

3(2J + 1)

2

ℏ
∑
k

|⟨k|d|i⟩|2ωki

ω2
ki − ω2

, (4.26)

where ωki is the transition frequency between the states |i⟩ and |k⟩ with the partial
linewidth Γik. To obtain the second line, we neglect the last term of the denominator
of Eq. (4.25) which is valid for large detunings. The sum is carried out over all electric
dipole transitions connecting the states |i⟩ and |k⟩. The coupling strength of the transi-
tions is described by the dipole matrix element ⟨k|d|i⟩. The coupling strengths and the
detunings determine the contributions of the individual states |k⟩ to the polarizability.
Hence, transitions with small detunings and large matrix elements contribute heavily to
the polarizability of the state |i⟩. If the frequency of the electric field is approaching the
transition frequency, the polarizability will diverge. For ω > ωki, the transition has a
negative polarizability contribution to the sum.
We note that the frequency dependency is very similar to the dependency of our sim-

plified polarizability model in Sec. 4.1. Furthermore, we can see that the scalar polariz-
ability is independent of the light polarization and hence, independent of the orientation
of the electric field with respect to the quantization axis of the atom.
The light-matter interaction determining the vector polarizability αi

V has the character
of a vector. Hence, αi

V depends on the orientation of the electric field characterized by the
polarization vector ϵ̂. We describe the vector in a Cartesian coordinate system {x̂, ŷ, ẑ}
with the quantization axis orientated along the z-direction, defined by a strong external
magnetic field. The polarization is given by its components along the basis vectors with
ϵ̂ = ϵxx̂+ ϵyŷ+ ϵzẑ. For the vector polarizability we have to include the projection of the
angular momentum Ji along the quantization axis, described by the quantum number
mi. With these definitions, the vector polarizability can be calculated [155],

αi
V =

mi

2Ji
α′i
V2 Im(ϵ∗xϵy). (4.27)

We define the bare vector polarizability α′i
V, which is independent of ϵ̂ and mi

α′i
V =−

√
6Ji

(Ji + 1)(2Ji + 1)

∑
k

(−1)Ji+Jk+1

{
1 1 1
Ji Jk Ji

}
× |⟨k|d|i⟩|2

ℏ

(
1

ωki − ω
− 1

ωki + ω

)
.

(4.28)

This expression contains the Wigner 6-j symbols and depends on the angular momentum
Jk of the state |k⟩. We note that αi

V vanishes for light polarized along the quantization
axis. A beam propagating along the quantization axis has a polarization oriented in the
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xy-plane and can be described in terms of the ellipticity angle γ [158, 77],

ϵ̂ = cos(γ)x̂+ i sin(γ)ŷ. (4.29)

For γ = 0 the light is linearly polarized and for γ = π/4 the light has circular polarization.
Since the beam propagates parallel to the quantization axis, we only have one definite axis
determining the geometry. Hence, the vector polarizability is radially symmetric around
the z-axis and αi

V does not depend on the choice of x̂ and ŷ. With this polarization we
obtain

2 Im(ϵ∗xϵy) = sin(2γ). (4.30)

We can see that αi
V vanishes for light polarized linearly in the plane perpendicular to

the quantization axis. Moreover, the vector polarizability vanishes for atomic states with
mi = 0. Since αi

V depends on the polarization ellipticity, we can use γ to tune the total
polarizability of a specific atomic state [77].

The interaction determining tensor polarizability has the character of a tensor. The
tensor polarizability αi

T is given by [155]

αi
T =

3m2
i − Ji(Ji + 1)

2Ji(2Ji − 1)
α′i
T

(
3|ϵz|2 − 1

)
(4.31)

We define the bare tensor polarizability α′i
T, which is independent of ϵ̂ and mi,

α′i
T =−

√
10Ji(2Ji − 1)

3(Ji + 1)(2Ji + 1)(2Ji + 3)

∑
k

(−1)Ji+Jk

×
{
1 2 1
Ji Jk Ji

}
2

ℏ
|⟨k|d|i⟩|2ωki

ω2
ki − ω2

.

(4.32)

For a linear polarization, we can simplify the polarization dependency with(
3|ϵz|2 − 1

)
= 3 cos2(β)− 1, (4.33)

This means that we can tune the tensor polarizability by adjusting the polarization rela-
tive to the quantization axis. Either we can rotate the polarization or we fix the polariza-
tion in the beam frame and rotate the quantization axis defined by a magnetic field [119].
Later, we will show how to transform between beam frame and atomic frame.
With the equations above, we have the tools to calculate the polarizability of a state

of a multilevel atom. However, the accuracy of the calculations strongly depends on the
precise knowledge of the dipole matrix elements. It is possible to extract these matrix
elements from experimentally available lifetimes. However, calculating exact branching
ratios can become very difficult since for high |J,m⟩ states the LS-coupling is not a good
approximation anymore. Hence, the results of our own calculations are often only valid
as a rough estimate. It is better to take measured dipole matrix elements from available
databases [159] or from atomic-structure theory calculations if experimental data is not
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available.
The calculations above are valid for the atomic fine-structure states in the absence

of nuclear spin, for example, in the bosonic isotopes of neutral strontium. However, the
equation can easily be extended to describe the polarizability of the hyperfine levels [155,
92].

4.2.1 Transformation from beam frame to atomic frame

We have seen that the vector and tensor polarizabilities depend on the light polariza-
tion in the atomic frame defined by the quantization axis. In our case, we define the
quantization axis by applying a strong external magnetic field. For the daily work in the
laboratory it is more convenient to describe the beam polarization in the beam frame.
Therefore, we will show how to transform any polarization from the beam frame into the
atomic frame.

In the beam frame, the propagation direction k̂ defines the z-axis. The basis vectors,
the polarization vector ϵ̂, and the magnetic field vector B̂ are given by

êb,1 = x̂,

êb,2 = ŷ,

êb,3 = ẑ = k̂,

ϵ̂b = cos(ϕ)x̂+ sin(ϕ)ŷ,

B̂b = sin(θ)x̂+ cos(θ)ẑ.

With these definitions the basis vectors of the atomic frame are given by

ê3 = sin(θ)x̂+ cos(θ)ẑ,

ê2 = ŷ,

ê1 = e3 × e2 = − cos(θ)x̂+ sin(θ)ẑ.

The matrix T transforming from the atomic into the beam frame is simply

T =

 − cos(θ) 0 sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 = T−1 (4.34)

and hence, T also describes the transformation from the beam frame into the atomic
frame. This allows us to describe the light polarization in the convenient beam frame
and for calculations transform the polarization into the atomic frame with

ϵ̂ = T ϵ̂b. (4.35)



Chapter 4 Dynamical Stark shift 52

4.3 Atomic polarizability of strontium

In this Section, we calculate the atomic polarizabilities of the states ¹S₀, ³P₀, ³P₁, and ³P₂
of neutral ⁸⁸Sr. We use the calculations to obtain the magic wavelengths of the corre-
sponding transitions, which are of high relevance for several applications. At these wave-
length the differential polarizability vanishes resulting in Stark-shift-free optical traps.
The magic wavelength of the ¹S₀-³P₀ transition is a key ingredient for building neutral
strontium optical lattice clocks for metrology research [56]. An optical dipole trap or an
optical lattice at the magic wavelength of the ¹S₀-³P₁ transition allows very efficient laser
cooling on this narrow-line transition. Using the magnetic field sensitive ¹S₀-³P₂ transi-
tion for local addressing in an optical lattice within a magnetic field gradient requires a
magic lattice. The results of our calculations are presented in Sec. 4.3.1, Sec. 4.3.2, and
Sec. 4.3.3.

In the previous Section, we already mentioned the tunability of the vector and tensor
polarizability. We use this tunability and calculate the configuration to obtain a 3D magic
lattice for the ¹S₀-³P₁ transition and for the ¹S₀-³P₂ transition at our lattice wavelengths
of 914 nm and 1064 nm.
In the last part of this Section, we focus on the tune-out wavelengths [92]. At the

tune-out wavelength the polarizability of an atomic state vanishes. This condition is of
high interest to generate highly state-dependent optical lattices which can be used in
simulations of open quantum systems [99, 100] and in proposed quantum computing
schemes [74].

4.3.1 1S0 and 3P0 polarizabilities

We use the formalism carried out in Sec. 4.2 to calculate the polarizability of the 5s5p
¹S₀ state and the 5s5p ³P₀ state. In Tab. 4.1 we list the relevant transitions and their
contributions to the polarizability at a wavelength of 813 nm. The transition energies
∆E can be converted into transition frequencies with ωki = ∆E/ℏ. The listed matrix
elements are the result of atomic structure calculations provided by Marianna Safronova.
The energies (matrix elements) are carefully checked against precision measurements in
optical lattice clocks resulting in typical uncertainties of 0.5% (0.8 %), respectively.
We can see that the dominant contribution to the polarizability of the ¹S₀ state is given

by the ¹S₀-5s5p ¹P₁ transition. This high contribution is the result of the matrix element
beeing one order of magnitude larger than the other matrix elements. For the polariz-
ability of the ³P₀ state, the largest contribution arises from the ³P₀-5s6s ³S₁ transition.
The reason is that this transition has the smallest detuning to the light.
The contribution of states that are not listed explicitely are summarized inOther, which

depends on the wavelength. This contribution is difficult to calculate but can be deter-
mined from the comparison to experimentally measured polarizabilities.
In Fig. 4.1 we plot the polarizability of the ¹S₀ state and the ³P₀ state of ⁸⁸Sr as a func-

tion of the wavelength. Because both states have a vanishing angular momentum, only
the scalar polarizability contributes, while the vector and tensor polarizabilities vanish.
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k ∆E (cm−1) ⟨k|d|i⟩ (a.u.) αi
S (a.u.)

i = 5s5p¹S₀
5s5p³P₁ 14504 0.1510 0.82
5s5p¹P₁ 21698 5.248 273.66
5s6p³P₁ 33868 0.034 0.01
5s6p¹P₁ 34098 0.282 0.39
Other 5.8
Core 5.3
Total 286.0(1.3)

i = 5s5p³P₀
5s4d³D₁ 3842 2.671 −29.37
5s6s³S₁ 14721 1.968 127.53
5s5d³D₁ 20689 2.450 65.66
5p2³P₁ 21083 2.605 71.39
5s7s³S₁ 23107 0.515 2.34
Other 42.1
Core 5.6
Total 285.2(2.6)

Tab. 4.1 Contributions to the scalar polarizability αS of the states 5s5p1S0 and 5s5p3P0 in 88Sr at
813 nm. Because both states have an angular momentum of J = 0, the vector and ten-
sor polarizabilities vanish. The transition energies ∆E are listed in cm−1 and the reduced
electric-dipole matrix elements ⟨k|d|i⟩ in atomic units. The energies and matrix elements are
taken from Refs. [160] and Ref. [156, 161]. Other refers to contributions from states which
are not listed explicitly and Core to the core polarizability. Uncertainties for individual con-
tributions are the result from propagating uncertainties in the matrix elements and are not
shown here [161].

Hence, the total polarizabilities do not depend on the light polarization and they only
depend on the wavelength. We extract a magic wavelength with equal polarizabilities
at 813(1) nm. Our calculated value is in agreement with the experimentally used magic
wavelength for ⁸⁸Sr of 813.43 nm [125]. This is not surprising since the atomic structure
calculation are fine-tuned to reproduce this value.

4.3.2 3P1 polarizability

In Tab. 4.2 we list the relevant transitions to calculate the polarizability of the 5s5p ³P₁
state. We can see that more transitions are contributing compared to the ³P₀ state. The
reason is that the ³P₁ state is connected to more states via electric dipole transitions than
the ³P₀ state. Because the ³P₁ state has an angular momentum of Ji = 1, it has non-
vanishing vector and tensor polarizabilities.
We show the polarizabilities of the ³P₁ state and the ¹S₀ state of ⁸⁸Sr as a function of
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Fig. 4.1 Polarizability of the 1S0 and the 3P0 state of 88Sr as a function of the wavelength. Both states
have J = 0 and hence, have vanishing contribution from the vector and tensor polarizability.
The polarizabilities of the states only depend on the wavelength of the light. We marked the
magic wavelength at 813(1) nm.

the wavelength and the light polarization in Fig. 4.2. The Zeeman sublevels (m-states)
of the ³P₁ state differ in their polarizability and depend on the light polarization ϵ̂.

For a linear polarization along the quantization axis (ϵ̂ = ê0), the vector polarizability
vanishes. Hence, for π-polarization, the difference between the m-states is given by the
tensor polarizability. We note that for ϵ̂ = ê±1 the polarizability of the mi = 0 state
is equal to the polarizability of the state m = 1 for ϵ̂ = ê0. The reason for this is that
the difference in the factor (3m2

i − Ji(Ji + 1))/(2Ji(2Ji − 1)) of the tensor polarizability
(Eq. 4.31) is compensated by the term (3 sin2(θ) − 1)/2, with θ = 0 (θ = π) for π-
polarization (σ±-polarization), respectively. For the mi = 0 state, this applies for all
polarizations in the xy-plane.
For the mi = ±1 states, the degeneracy between σ+- and σ−-polarization is lifted by

the vector polarizability. By changing the ellipticity angle, the region between σ+- and
σ−-polarization becomes accessible.
Furthermore, we extract the magic wavelength for the ¹S₀-³P₁ ∆m = ±1 transition to

be 914(1) nm for π-polarized trap light. Operating a lattice at this wavelength enables
efficient direct sideband cooling with uniform cooling frequency over the entire sample
trapped in an optical lattice.
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k ∆E (cm−1) ⟨k|d|i⟩ (a.u.) αi
S,k (a.u.) α′i

V,k (a.u.) α′i
T,k (a.u.)

i = 5s2 ¹S₀
5s5p ³P₁ 14504 0.397 0.53
5s5p ¹P₁ 21698 5.248 249.04
5s6p ³P₁ 33868 0.034 0.01
5s6p ¹P₁ 34098 0.282 0.38
Other 5.8
Core 5.3
Total 261.1(1.2) 0 0

i = 5s5p ³P₁
5s2 ¹S₀ −14505 0.151 −0.18 −0.40 0.18
5s4d ³D₁ 3655 2.318 −9.00 40.44 −4.50
5s4d ³D₂ 3714 4.013 −27.55 −121.71 2.75
5s4d ¹D₂ 5645 0.190 −0.11 −0.33 0.01
5s6s ³S₁ 14534 3.435 91.37 −103.16 45.68
5s6s ¹S₀ 16087 0.045 0.01 −0.02 −0.01
5s5d ¹D₂ 20223 0.061 0.01 0.01 0.00
5s5d ³D₁ 20503 2.005 13.37 −10.70 6.69
5s5d ³D₂ 20518 3.671 44.76 35.80 −4.48
5p2 ³P₀ 20689 2.658 23.12 −36.68 −23.12
5p2 ³P₁ 20896 2.363 17.96 −14.10 8.98
5p2 ³P₂ 21170 2.867 25.84 20.03 −2.58
5p2 ¹D₂ 22457 0.228 0.14 0.11 −0.01
5p2 ¹S₀ 22656 0.291 0.24 −0.34 −0.245
5s7s ³S₁ 22920 0.921 2.34 −1.67 1.17
Other 42.2
Core 5.6
Total 230.1(1.9) −192.7 30.5(7)

Tab. 4.2 Contributions to the scalar αi
S, the bare vector α′i

V and the bare tensor polarizability α′i
T of

the states 5s2 1S0 and 5s5p 3P1 of 88Sr at 914 nm. The transition energies ∆E are shown
in cm−1, the reduced electric-dipole matrix elements ⟨i|d|k⟩ and polarizabilities are listed in
atomic units. The energies andmatrix elements are taken fromRef. [160] and Refs. [156, 161].
Here, Other refers to contributions to the scalar polarizability from states which are not listed
explicitly and Core to the core polarizability. Uncertainties for individual contributions are the
result from propagating uncertainties in the matrix elements and are not shown here [161].

4.3.3 3P2 polarizability

We list the relevant transitions and their contributions to the polarizability of the 5s5p ³P₂
state at a wavelength of 1064 nm in Tab. 4.3. Due to its angular momentum of Ji = 2, the
³P₂ state has non-vanishing vector and tensor polarizability. The wavelength of 1064 nm
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³P₁ mi = ± 1 ε̂= ê±1
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Fig. 4.2 Polarizability of the 1S0 and the 3P1 state as a function of the wavelength at for various po-
larizations ϵ̂. The polarization is defined with respect to the quantization axis, where ϵ̂ = ê0
is along the quantization axis. ê±1 are the circular polarizations in the plane perpendicular to
the quantization axis. In a π-polarized light field, the 1S0-3P1 ∆m = 1 transition is magic at
914 nm. The states mi = 0 for ϵ̂ = ê± and mi = 1 for ϵ̂ = ê0 have the same polarizability.

is of interest because commercial high-power fiber amplifiers with powers of up to several
tens of Watts are available for this wavelength. The high power enables the generation of
large and deep optical potentials.

In Fig. 4.3 we show the polarizability of the Zeeman sublevels (m-states) of the ³P₂
state of ⁸⁸Sr as a function of the wavelength and for various light polarizations. With a
linear polarization along the quantiization axis (ϵ̂ = ê0 the ¹S₀-³P₂ ∆m = 0 transition is
magic at 1081(1) nm and the ¹S₀-³P₂ ∆m = ±1 transition is magic at 994(1) nm.
By changing the ellipticity of a beam polarized in the plane perdendicular to the quan-

tization axis, the polarizability can be tuned between the extreme cases of σ+- and σ−-
polarization. This tuning allows to obtain a magic condition for the magnetic field sen-
sitive ¹S₀-³P₂ ∆m = ±1 transition in a setup where the lattice propagation direction is
along the quantization axis. This case is extremely relevant for us because we want to
use the ¹S₀-³P₂∆m = ±1 transition for local addressing within a magnetic field gradient.
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k ∆E (cm−1) ⟨k|d|i⟩ (a.u.) αi
S,k(a.u.) α′i

V,k (a.u.) α′i
T,k (a.u.)

i = 5s2 ¹S₀
5s5p ³P₁ 14504 0.397 0.40
5s5p ¹P₁ 21698 5.248 228.61
5s6p ³P₁ 33868 0.034 0.01
5s6p ¹P₁ 34098 0.282 0.37
Other 5.8
Core 5.3
Total 240.5(1.1) 0 0

i = 5s5p ³P₂
5s4d ³D₁ 3260 0.6021 −0.45 3.85 0.45
5s4d ³D₂ 3320 2.331 −6.83 19.33 −6.83
5s4d ³D₃ 3421 5.530 −39.95 −219.52 11.41
5s4d ¹D₂ 5251 0.102 −0.03 0.05 −0.03
5s6s ³S₁ 14140 4.521 75.78 −151.10 −75.78
5s5d ¹D₂ 19829 0.365 0.25 −0.12 0.25
5s5d ³D₁ 20108 0.460 0.39 −0.55 −0.39
5s5d ³D₂ 20123 1.956 7.12 −3.32 7.12
5s5d ³D₃ 20146 4.994 46.30 43.20 −13.23
5p2 ³P₁ 20502 2.992 16.18 −22.25 −16.18
5p2 ³P₂ 20776 5.119 46.41 −21.00 46.41
5p2 ¹D₂ 22062 0.682 0.75 −0.32 0.75
5s7s ³S₁ 22526 1.264 2.51 −3.15 −2.51
Other 43.1 0.3
Core 5.6
Total 197.1(2.0) −354.9 −48.6(1.2)

Tab. 4.3 Contributions to the scalar αi
S, the bare vector α′i

V and the bare tensor polarizability α′i
T of

the states 5s2 1S0 and 5s5p 3P2 of 88Sr at 1064 nm. The transition energies ∆E are shown
in cm−1, the reduced electric-dipole matrix elements ⟨i|d|k⟩ and polarizabilities are listed in
atomic units. The energies andmatrix elements are taken fromRef. [160] and Refs. [156, 161].
Here, Other refers to contributions to the scalar polarizability from states which are not listed
explicitly and Core to the core polarizability. Uncertainties for individual contributions are the
result from propagating uncertainties in the matrix elements and are not shown here [161].

4.3.4 Magic 3D lattice for 3P1 and 3P2

In the previous Sections, we extracted the magic wavelengths for the ¹S₀-³PJ transitions
of ⁸⁸Sr. Here, we explain how the vector and tensor polarizabilities of the ³P₁ mi = ±1
and ³P₂ mi = 0,±1 states can be tuned to obtain a magic condition while keeping the
wavelength fixed. We derive the required parameters at the example of a 1064 nm optical
lattice propagating along the z-axis. At the end of the section, we apply these techniques
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³P₂ mi = ± 1 ε̂= ê¨1

Fig. 4.3 Polarizability of the 1S0 and 3P2 mi = 0,±1 state as a function of the wavelength at for
various polarizations ϵ̂. The polarization is defined with respect to the quantization axis, where
ϵ̂ = ê0 is along the quantization axis. ê±1 correspond to the circular polarizations in the
plane perpendicular to the quantization axis. In a π polarized light field, the 1S0-3P2 ∆m = 0
transition is magic at 1081 nm and the 1S0-3P2 ∆m = ±1 transition at 994 nm.

to our 3D optical lattice setup composed of a vertical 1064 nm lattice and horizontal
lattices with a wavelength of 914 nm.
In Sec. 4.2, we derived that the tensor polarizability depends on the angle β between

the polarization and the quantization axis. Here, we tune the tensor polarizability by
tilting the magnetic field that defines the quantization axis by an angle θ and keep the
trapping light propagation direction fixed. Tilting the magnetic field changes the light
polarization given by ϵ̂ = − cos(θ)x̂+ sin(θ)ẑ in the atomic frame. For this special polar-
ization, we obtain the relation β = θ − π/2. In Fig. 4.4(a), we plot the polarizabilities
of the ¹S₀, ³P₁ and ³P₂ states as a function of θ. The polarizabilities are calculated at
a fixed wavelength of 1064 nm. Because the ¹S₀ state has only a scalar polarizability
component, α does not depend on θ. The polarizabilities of the triplet states follow a
sinusoidal modulation in θ [see Eq. (4.31)]. However, only the ³P₂ mi = 0 state has a
modulation amplitude large enough to cross the polarizability of the ¹S₀ state. With this
state it is possible to obtain a magic condition for the ¹S₀-³P₂∆m = 0 transition by tilting
the magnetic field. The magic condition is reached at an angle of θ = 0.409π.
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Fig. 4.4 Tuning the polarizability of the 3P0 and the 3P2 state by using the vector and the tensor polar-
izability at an example wavelength of 1064 nm. (a) We assume a quantization axis along z and
a linear polarization ϵ̂ = − cos(θ)x̂+ sin(θ)ẑ. By adjusting the angle θ between quantization
axis and beam propagation direction, we change the tensor component of the polarizability.
Since 1S0 has only a scalar polarizability component, the polarizability is constant. (b) The to-
tal polarizability can also be tuned by changing the vector polarizability. We assume elliptical
polarization ϵ̂ = cos(γ)x̂+ i sin(γ)ŷ, where γ is the ellipticity angle.

We can also adjust the vector polarizability to obtain magic conditions. For the light
polarization ϵ̂ = cos(γ)x̂ + i sin(γ)ŷ, the vector polarizability depends on the ellipticity
angle γ [see Eq. (4.27)]. We plot the polarizability of the ¹S₀, ³P₀, ³P₁, and ³P₂ states as
a function of the ellipticity angle at a wavelength of 1064 nm in Fig. 4.4(b). The m = 0
states have vanishing vector polarizability and therefore, their polarizability is constant
with respect to γ. The polarizabilities of the m = ±1 states follow the derived sin(2γ)
modulation. Since the amplitude of the vector polarizability is larger than the tensor
polarizability, we can obtain magic conditions for the ¹S₀-³P₁ ∆m = ±1 transition at
γ = ±0.153π and the ¹S₀-³P₂ ∆m = ±1 transition at γ = ±1.08π.
We have shown that we can obtain a magic condition for the ¹S₀-³P₂∆m = 0 transition

in a 1064 nm vertical lattice by tilting the magnetic field. Furthermore, it is possible to
make the lattice magic for the ¹S₀-³P₁ ∆m = ±1 transition and for the ¹S₀-³P₂ ∆m = ±1
transition by tuning the ellipticity of the lattice polarization. The tilting and the ellipticity
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can easily be adjusted during an experimental sequence and enable magic lattices for
these transitions using the same laser setup.

In our experiment, we use a 3D optical lattice setup composed of a vertical 1064 nm
lattice and two 914 nm horizontal lattices. During the cooling of our atomic sample, the
3D lattice should be magic for one of the ¹S₀-³P₁ ∆m = ±1 transitions. After the cooling,
the lattices should be magic for the ¹S₀-³P₁ ∆m = ±1 transition for applications like
spatial addressing. To obtain these conditions we can adjust the angle θ and we can tune
the polarizations’ ellipticity γ. We plot the relevant polarizabilties as a function of γ in
Fig. 4.5. In the left column, we present the polarizabilties in the 1064 nm lattice oriented
along the z-direction with a polarization of ϵ̂z,lat = cos(γ)x̂+i sin(γ)ŷ in the beam frame.
The right column corresponds to a 914 nm lattice with a propagation direction along the
x-axis and a polarization of ϵ̂x,lat = i sin(γ)ŷ + cos(γ)ẑ in the beam frame. The angle θ
is encoded in the rows of the figure.
We can see that for θ = 0 and θ = π/4 the 3D lattice can be magic for the ¹S₀-³P₁

∆m = ±1 transition as well as for the ¹S₀-³P₂ ∆m = ±1 transition. Furthermore, at
θ = π/4 both states of the ³P₀-³P₂ fine-structure qubit [76] can have equal polarizability.
However, it is not possible to obtain a magic 3D lattice for the ¹S₀-³P₂ ∆m = 0 transition.

We find that for a 914 nm horizontal lattice with a quantization axis along the z-
direction, the tensor shift offers enough tunability to obtain a magic condition for the
¹S₀-³P₂ ∆m = ±1 transition. A horizontal lattice propagating along x̂ has a polarization
in the yz-plane. By rotating a linear polarization with a half-wave plate, we can adjust
the angle between the quantization axis and polarization, enabling us to tune the ten-
sor polarizability. This method is analog to rotating the quantization axis. We plot the
polarizability as a function of the polarization angle in Fig. 4.6. A polarization angle of
0 corresponds to a linear polarization along the z-axis. This tuning method allows us to
realize a 3D magic lattice with a quantization axis along the z-direction. For the vertical
1064 nm lattice, we achieve a magic condition by tuning the ellipticity angle. We make
the horizontal 914 nm lattice magic by adjusting the polarization angle with a half-wave
plate.

In this Section, we outlined that the tunability of the vector and the tensor polariz-
abilites offer the tools to obtain magic conditions at non-magic wavelengths. We can use
these tools to create magic lattices for the ¹S₀-³P₁∆m = ±1 transition and for the ¹S₀-³P₁
∆m = ±1 transition.

4.3.5 Tune-out wavelengths for strontium

State-dependent lattices are highly relevant for the implementation of novel quantum
simulation [96–100] and quantum computation schemes [74, 72, 73]. In strontium,
state-dependent lattices can be realized for the optical qubits ¹S₀-³P₀ and ¹S₀-³P₂ by using
tune-out wavelengths [92]. At the tune-out wavelength the polarizability of one state
vanishes while the other state has a finite polarizability. Hence, one state can move
around freely while the other state is tightly trapped.

In Fig. 4.7 we calculate the tune-out wavelengths for the states ¹S₀, ³P₀ and ³P₂ in
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Fig. 4.5 Achieving a magic 3D optical lattice in our experimental setup with 1064 nm vertical and
914 nm horizontal lattices by tilting the quantization axis and by using elliptical polarizations.
We plot the polarization of the 1S0, the 3P0, the 3P1 mi = ±1, and the 3P2 mi = 0,±1 states
as function of the ellipticity for various angles θ between quantization axis and vertical lattice
propagation direction. In the left column we show the polarizability in the 1064 nm vertical
lattice and in the right column the polarizability in the horizontal 914 nm lattices.

⁸⁸Sr. The tune-out wavelengths occur at frequencies close to atomic resonances. At the
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Fig. 4.6 Polarization of a horizontal 914 nm lattice and a quantization axis along the z-direction. We
adjust the tensor polarizability by tuning the angle between quantization axis and polarization.
This angle can be tuned using a half-wave plate to rotate a linear polarization. A polarization
angle of 0 corresponds a polarization along the quantization axis.

resonances, the polarizabilities diverge and hence, the polarizabilities change their sign.
The tuneout wavelengths are 689.25(5) nm for ¹S₀, 679(2) nm for ³P₂, and 631(2) nm for
³P₀. In Ref. [92], we experimentally measured the ¹S₀ tune-out wavelength and obtained
689.22222(1) nm, which agrees with our calculations.
In the figure, the resonances of the ³P₁-³S₁ transition at 679 nm, the ¹S₀-³P₁ transitions at

689.449 nm, and the ³P₂-³S₁ transition at 707 nm are nicely visible. The ¹S₀-³P₁ resonance
is much narrower due to its orders of magnitudes smaller dipole-matrix element.
Independent control over the trapping potentials of the ¹S₀-³P₀ qubit can be achieved by

operating one optical lattice at the ground state tune-out wavelength of 689.22222(1) nm
and another lattice at the ³P₀ tune-out wavelength of 631(2) nm. At the tune-out of the
¹S₀ (³P₀) state, the ³P₀ (¹S₀) state has a positive polarizability resulting in trapping of this
state in the intensity maxima of the lattice.

Independent potentials for the ¹S₀-³P₂ qubit can be achieved by using the ¹S₀ tune-out
wavelength and the ³P₂ tune-out wavelength at 679(2) nm. We note that at 689 nm the
³P₂ state has a negative polarizability resulting in ³P₂ atoms being trapped in the intensity
minima of the lattice. This setup allows the realization of a state-dependent lattice with
a similar structure as an anti-magic lattice[74] with applications for the simulation of



Chapter 4 Dynamical Stark shift 63

550 600 650 700 750 800
Wavelength (nm)

-1000

-750

-500

-250

0

250

500

750

1000
Po

lar
iza

bi
lity

 (a
.u

.)

689.25(5) nm

631(2) nm 679(2) nm

¹S₀ mi = 0 ³P₀ mi = 0 ³P₂ mi = 0

Fig. 4.7 Tune-out wavelength for the 1S0, 3P0 and 3P2 states. We refer to the term tuneout when the
polarizability of the corresponding state vanishes. The polarizabilities diverge at the wave-
length corresponding to the resonances of the 1S0-3P1, 3P0-3S1, and 3P2-3S1 transitions.

artificial gauge fields [162].

Conclusion

In this Chapter, we outlined the interaction between far off-resonant light and atoms.
We used a semi-classical model to derive the polarizability of a two-level system and
calculated the optical dipole potential. The associated dipole force allows trapping of
atoms inside laser beams as used in optical dipole traps or optical lattices. Furthermore,
we calculated the polarizability of the ground state and metastable triplet states of ⁸⁸Sr.
The calculations allowed us to extract the magic wavelength of the singlet- to triplet-state
transitions. Moreover, we elaborated on adjusting the vector and tensor polarizabilities
to achieve magic conditions even at non-magic wavelengths. Finally, we discussed the
tune-out wavelength of the ¹S₀-³P₀ and the ¹S₀-³P₂ qubit.
Our calculations have been verified by our own precision measurements presented in

Refs. [92, 104] and in Cha. 6 of this thesis.
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Chapter 5

Experimental apparatus

The quantum systems that we can study in the lab are tied to the capabilities of our
experimental apparatus. Constructing new and unique experiments often requires

new technical developments to overcome the limitations of already existing systems. One
such technical innovation is our crossed-cavity assembly which increases the system size
of state-of-the-art quantum simulators by an order of magnitude to 200× 200 usable lat-
tice sites. We aim to extend the detection and control capabilities of ultracold strontium
atoms by installing a high numerical-aperture imaging system to realize the first stron-
tium quantum gas microscope worldwide. Constructing a microscope experiment with a
new atomic species requires adapting and modifying existing techniques to suit the prop-
erties of the chosen species. One major challenge of microscope experiments is isolating
a single layer of atoms in the optical lattice in the focus of the microscope.
In this Chapter, we describe the construction of our experimental apparatus, overcom-

ing the technical challenges to realize a strontium quantum gas microscope with 200×200
usable lattice sites. In Sec. 5.1, we introduce our vacuum system and the in-vacuum
crossed-cavity assembly. In Sec. 5.2, we explain the design considerations for the mag-
netic fields. These fields are used during the isolation of a single plane and require careful
stabilization schemes. We discuss our laser setups for cooling and trapping of the stron-
tium atoms in Sec. 5.3. Finally, we describe our optical transport in Sec. 5.4, which
combines a focus-tunable optical dipole tap and a travelling-wave lattice. This transport
setup allows us to transport atoms ten times faster than with our previously used trans-
port scheme.

5.1 Vacuum system

Setting up new ultracold atoms experiments requires a careful design of the vacuum
system since it can only modified by rebuilding the whole experiment. The key features
of our experimental apparatus are the in-vacuum crossed cavities generating the large
optical lattices and the microscope objective installed during the writing of this thesis.
We use two vacuum chambers spatially separating the preparation of ultracold strontium
atoms from the quantum simulation under the microscope. These chambers are the so-
called “main chamber” and the “science chamber”, respectively.

A render of our complete vacuum system is shown in Fig. 5.1. In Sec. 5.1.1, we discuss
the part of the vacuum system used for the preparation of ultracold strontium atoms. This
part includes the oven, the transverse cooling region, the Zeeman slower, and the main
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Fig. 5.1 Render of the vacuum system of our strontium apparatus.

chamber. In Sec. 5.1.2, we focus on the science chamber including the crossed cavities.
The content of Sec. 5.1.1 and Sec. 5.1.2 was already well-described in the theses of André
Heinz [94] and Annie Jihyun Park [93] and we briefly summarize the main ideas here.

5.1.1 Main chamber

Oven All ultracold atoms experiments start with acquiring atoms in the gas phase. Due
to the highmelting point of strontium (777 °C at standard pressure), we heat up strontium
in an oven to 500 °C, resulting in atoms leaving the solid phase and becoming gaseous. In
our experiment, we use a commercial oven (CREATEC) to heat solid chunks of naturally
abundant strontium at ∼10−8 mbar. The hot gas of strontium atoms leaves the oven
through a nozzle forming a collimated atomic beam [94].
Heating the oven to higher temperatures results in a higher atomic flux reducing the

loading times of the magneto optical trap (MOT). Running the oven at 50 °C higher in-
creases the atomic flux in the main chamber by a factor of 3 [93]. However, higher oven
temperatures reduce the oven’s lifetime and require to reload the ovenmore often. There-
fore, we run the oven at 500 °C when working with ⁸⁸Sr and increase the temperature to
550 °C when working with ⁸⁷Sr to partially compensate for the lower abundance.
A differential pumping tube between the oven and the rest of the vacuum systems

allows reaching a lower pressure in the main chamber.
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Transverse cooling In addition to the atomic flux, the collimation of the atomic beam
determines the efficiency of the Zeeman slower [143] and the loading of the magneto-
optical trap (MOT) [143]. We collimate the atomic beam after the differential pumping
tube using molasses cooling [143] on the blue transition along the transverse directions
of the atomic beam. The cooling reduces the transverse velocities increasing the overlap
of the Zeeman slower beam and the atomic beam. The increased overlap results in a
higher Zeeman slower efficiency. This higher efficiency allows for shorter MOT loading
times, where the transverse cooling reduces the loading time by a factor of ∼2− 3 [93].

Zeeman slower Our Zeeman slower is about∼40 cm long and uses a configurable “Bitter-
coil-like” design [94] generating the magnetic field gradient. In our setup, we slow down
the lower tail of the longitudinal velocity distribution resulting in a new peak of the
distribution at ∼30 m/s which is the capture velocity of the blue MOT. The light for
the Zeeman slower enters the vacuum system at the very end of the chamber through a
viewport.

Main chamber In this chamber, we finally capture and cool the atoms using the blue
MOT. In this part of the vacuum system, we measure a magnetic trap lifetime of atoms
in the ³P₂ state of 51(2) s [94].
Before we appended our vacuum system with the science chamber, we also performed

experiments in the main chamber. For example, we acquired the data presented in
Ref. [118] and Ref. [92] in the main chamber.

5.1.2 Science chamber

The main chamber and the science chamber are connected by a bellows and a pneumatic
valve. The bellows relieves possible mechanical stress between the two chambers. By
closing the valve, we can isolate the chambers, for example during the reloading of the
oven.

The science chamber is a custom-manufactured steel chamber in the shape of an oc-
tagon [92]. To ensure a ultra-high-vacuum environment, we use two ion and two non-
evaporative-getter (NEG) pumps reaching a pressure of ∼3× 10−11 mbar. In Fig. 5.2 we
show a render of the science chamber. On the top and bottom of the chamber, we in-
stall viewports shaped like buckets, the so-called bucket windows. These windows have
a glass diameter of 75 mm providing sufficient optical access to install the microscope
objective from the top. The science chamber also houses the crossed cavities in which
we generate our horizontal lattices. In the horizontal direction, six additional viewports
provide optical access, and we use four of the seven viewports for the cavity lattices.
To enable manipulating the atoms trapped inside the cavity with magnetic fields, we

install several sets of magnetic field coils around the science chamber. To generate hori-
zontal magnetic fields, we place two pairs of square-shaped coils at the horizontal view-
port where the cavity beams enter, see Fig. 5.1. We insert round coils into the bucket
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Fig. 5.2 Render of the science chamber including the cavity assembly, the vertical coils, and the mi-
croscope objective.

windows creating vertical magnetic field gradients and bias fields. We designed a mount-
ing structure, enabling us to align the tip-tilt of the magnetic field to the planes of the
optical lattice. In Sec. 5.2, we will discuss the properties of the magnetic fields in detail.

Crossed cavities

The crossed cavities are unique features of our experimental apparatus. The cavity as-
sembly consists of an octagon-shaped spacer out of ultra-low expansion (ULE) glass and
two mirror sets. Each mirror set is composed of one flat mirror and one curved mirror,
which has a radius of curvature of ∼10 m. The mirrors are optically contacted onto the
cavity spacer forming two cavities that overlap in the center of the spacer. We designed
a mechanical assembly that allows us to position the mirrors with the help of an inter-
ferometer [94] before contacting. This positioning enables us to optically contact the
mirror with interferometric precision achieving an overlap of the two cavity modes of
99 % [103].

After constructing the cavity, we mount the assembly to the bucket window using a
cage system [103]. A render of this structure is shown in Fig. 5.3(a). The spacer rests
inside the cage with a distance of 100 µm to the glass of the viewport. The cage was
the only tested mounting structure that preserved the overlap of the cavity modes during
several bakeout tests.
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(a) (b) (c)

Fig. 5.3 (a). Render of the crossed cavities mounted to the top viewport. Adapted from Ref. [104]. (b)
Photo of the crossed cavities from the top. To illuminate the cavities we scatter a red and a
blue laser beam at the cavity spacer. (c) Photo of the illuminated cavity spacer through one
of the horizontal viewports. ( Photos ©Axel Griesch).

In Figs. 5.3(b) and (c), we present artistic photos of the cavity inside the vacuum
chamber through the top bucket window and through one of the horizontal viewports,
respectively. In panel (c), we are facing one of the cavity mirrors. We can see the mirror
mask as a filled blue circle. Moreover, we can see parts of the cage mount. To illuminate
the assembly, we scattered a red and a blue laser beam at the bores of the cavity spacer.

We characterize the power buildup inside the cavity by measuring the input power,
the transmitted power, and the cavity finesse. We find that the cavity enhances the light
intensity at the ¹S₀-³P₀ magic wavelength of 813 nm by a factor of 161(5) and at the ¹S₀-³P₁
magic wavelength of 914 nm by a factor of 1132(13). A reader interested in the details of
the cavity characterization can find more information in Ref. [94] and Ref. [103].
A careful characterization of the optical lattices generated inside the cavity using atoms

is the subject of Ref. [104]. In this publication, we experimentally confirmed a cavity
mode waist of 489(8) µm agreeing with our expectations of a large and homogeneous
lattice potential.

5.2 Magnetic fields

For our experiment, we require the ability to apply bias magnetic fields along all spatial
directions and a strong magnetic field gradient along the vertical direction at the posi-
tion of the atoms inside the cavities. The magnetic fields are especially relevant for the
isolation of a single lattice plane and the local addressing. To isolate a single plane we
apply the magnetic field gradient resulting in a lattice layer dependent shift of the ¹S₀-³P₂
resonance frequency due to the Zeeman effect. Each layer has a different resonance fre-
quency enabling addressing of individual layers using the magnetic-field-sensitive ¹S₀-³P₂
transition. Coils in an anti-Helmholtz configuration generate a quadrupole magnetic field
with a strong vertical gradient. To compensate the gradient curvature, we apply a bias
field of ∼80− 150 G in the vertical direction and use a horizontal bias field of ∼5− 10 G
to align the gradient field horizontally.
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We installed large coils outside the optical table to compensate Earth’s magnetic field
and the field of the ion pumps. At the long side of the table the coils have dimensions of
1.9 × 1.3 m and at the short side 1.4 × 1.3 m with ∼50 windings each. Using a current
of a few Amperes the coils generate a field of ∼1− 2 G which is sufficient to compensate
the environmental magnetic fields.
Now, we take a closer look at our coil designs and the magnetic field stabilization of

the vertical bias field. We begin by briefly discussing the horizontal coils. Afterward,
we focus on the coils generating the gradient and the vertical bias field. In addition, we
explain a scheme to stabilize a current of ∼150− 200 A running through the vertical bias
field coils to a relative field stability of ∼3× 10−5.

5.2.1 Horizontal magnetic fields

The horizontal coils are square-shaped with inner dimension of 76×76mm. They consist
of 15 turns of hollow-core wire. We use hollow-core wire to enable water cooling while
running high electrical currents. For water-cooling, we connect the coils to a chiller pro-
viding a pressure of 3.5 bar resulting in a sufficient water flow through the coils. We mon-
itor the water flow through each coil using a flow meter read out via a microcontroller.
Currently, we do not use this possibility but are planning to integrate the monitoring
capability into an interlock system.
Coils installed on opposite viewports are connected in series and form a coil pair. We

connect each pair to two switching power supplies¹. In our setup, running currents of
more than ∼70 A requires voltages higher than 15 V. Hence, we connect the supplies in
series, providing up to 30 V and 100 A. We can run the coils with a maximum at 100 A
at ∼20 V, corresponding to heat deposit of 2 kW requiring water cooling to remove the
heat.
With the spacing of 268mm between the coils, we can only generate fields of 89mG/A

with a single coil pair. Hence, we can apply along one horizontal direction a magnetic
field up to 8.9 G. The power supplies offer relative current stability of 9× 10−5 resulting
in magnetic field stability of 0.8 mG at full load. As we will see in the next Chapter, this
stability is better than the vertical field stability. Therefore, we do not actively stabilize
the horizontal fields.

5.2.2 Vertical magnetic fields

We require large magnetic fields along the vertical direction for two reasons: (i) spatially
translating the zero of the field gradient for isolating a single lattice layer and (ii) inducing
the ¹S₀-³P₀ clock transition in ⁸⁸Sr [123]. Isolating a single plane puts more stringent
constraints on the field strength and the field stability than inducing the clock transition.
Therefore, we will focus our discussion on using the vertical magnetic fields for the layer
isolation.

¹Delta Elektronika SM15-100
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First, we explain the design of our coil mount. Afterward, we calculate the fields gen-
erated by the coils and briefly discuss our considerations regarding water-cooling.

Coil mount The mounting structure of the coils is shown in Fig. 5.2. To maximize the
magnetic field at the position of the atoms, we place the coils as close as possible to the
atoms. For that purpose, we design a coil mount that allows us to insert the coils inside the
bucket windowswithout connecting themmechanically to the vacuum chamber. The coils
are clamped inside custom holders manufactured from PEEK which we insert into the
bucket windows. We connect these holders with the optical table via four rods of stainless
steel. The complete coils mount looks like a spider with four legs. The rods consist of
several components with left and right handed threads enabling us to individually adjust
the height of the coil holders. In addition, we can control the tip-tilt of the holders. These
degrees of freedom allow us to align the vertical magnetic field to the planes of the optical
lattice.
Inside each holder, we clamp four individual coils with 2×9 turns. We use hollow-core

wire with outer dimensions of 3× 4 mm to wind the coils. After their winding, the coils
are encased with epoxy to maintain their form. We connect the two axially inner and
two axially outer coils, where we use the inner ones to generate a magnetic field gradient
and the outer ones for a bias field.
The innermost layer of the top and bottom coils have a distance of 47.5mm to the posi-

tion of the atoms. The coil holders have an inner diameter of 69 mm providing sufficient
space to insert the microscope objective with its diameter of 49 mm.

Magnetic field We calculate the magnetic field gradient and the bias field that we can
generate with our vertical coils. These calculations form the basis to discuss the param-
eters of the magnetic field necessary to isolate a single lattice layer using the ¹S₀-³P₂
transition.
We simplify a coil with N number of turns by a wire loop in the xy-plane with radius

R. Running a current NI through the loop generates a radial magnetic field Bρ and a
perpendicular axial field Bz given by [163]

Bρ(ρ, z) =
µ0NI

2π

z

ρ
√
(ρ+R)2 + z2

(
R2 + ρ2 + z2

(R− ρ)2 + z2
E(m) +K(m)

)
, (5.1)

Bz(ρ, z) =
µ0NI

2π

1√
(ρ+R)2 + z2

(
R2 − ρ2 − z2

(R− ρ)2 + z2
E(m) +K(m)

)
, (5.2)

where m = 4Rρ/[(R + ρ)2 + z2]. We use a cylindrical coordinate system. Here, K(m)
and E(m) are the complete elliptic integral of first and second kind, respectively. These
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integrals are defined by

K(m) =

∫ π/2

0

dϕ√
1−m2 sin2 ϕ

(5.3)

E(m) =

∫ π/2

0
dϕ

√
1−m2 sin2 ϕ (5.4)

One can obtain the values of these integrals using software libraries such as “scipy”, en-
abling fast computations of magnetic fields. We can calculate the radial and the axial
magnetic field of a coil pair spaced by a distance d with

B(tot)
ρ (ρ, z) = Bρ(ρ, z + d/2) +Bρ(ρ, z − d/2), (5.5)

B(tot)
z (ρ, z) = Bz(ρ, z + d/2) +Bz(ρ, z − d/2). (5.6)

To calculate the magnetic field of anti-Helmholtz coils, we insert a negative current into
the equation describing one of the coils.
We use the equations derived above to calculate the magnetic fields generated by our

configuration, which connects two coil pairs in series to produce a gradient and the other
two to supply a bias field. Because the coils have a finite radial and axial extent, we
calculate the fields using the following dimensions

R = 53 mm,

d(gradient)/2 = ±51.5 mm,±59.5 mm,

d(bias)/2 = ±67.5 mm,±75.5 mm,

where R is the averaged radius and d is the averaged axial spacing of the coils.
In Fig. 5.4(a) we show the calculated bias magnetic field with a strength of 1.78 G/A

at the position of the atoms. The anti-Helmholtz coils produce a quadrupole magnetic
field as shown in Fig. 5.4(b). This field possesses a vertical gradient [Fig. 5.4(c)] of
0.8 G/(A cm). With a lattice spacing of 532 nm and a Zeeman shift of 2.1 MHz/G for the
³P₂ mJ = 1 state, the vertical gradient separates neighboring lattice layers in frequency
by 89 Hz/A for ⁸⁸Sr. We can run a current of 280 A through the gradient coils, resulting a
frequency splitting of 24 kHz, which we can easily resolve using the ultranarrow ¹S₀-³P₂
transition.
Let us study the vector magnetic field shown in Fig. 5.4(b) in more detail. In the center

between the coils, the orientation of the magnetic field changes drastically over a small
spatial region. The reason for this behavior is the quadrupole nature of the field which
consists of vertical gradient and a half-as-strong horizontal gradient shown in Fig. 5.4(d).
Hence, the horizontal gradients lead to circles of equal magnetic field strength, prevent-
ing a uniform atomic resonance frequency over the extent of a lattice layer. Away from
the center, the radii of these circles increase, resulting in more homogeneous resonance
frequency over a single layer. We can access such a less-curved field region by applying
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Fig. 5.4 Calculated vertical magnetic fields. (a) Calculated bias magnetic field along the vertical di-
rection. (b) Vector plot of the magnetic field produced by the gradient coils. (c) Magnetic field
along the vertical direction produced by the gradient coils. (d) Horizontal magnetic field in the
plane of the atoms produced by the gradient coils.

a bias magnetic field, which is equivalent to moving the zero-position of the gradient. In
such a region, we can isolate a single layer.

We investigate the frequency shift of several neighboring lattice layers when we si-
multaneously apply a gradient of 224 G/cm (∼=280 A) and bias field of variable strength.
Along the radial direction, we allow a variation of the resonance frequency of 8 kHz over
a single layer. This frequency band corresponds to a third of the frequency spacing be-
tween neighboring layers. In Fig. 5.5, we plot the resonance frequency shift of the ¹S₀-³P₂
∆m = 1 transition as a function of the radial position ρ. We observe that the layer below
the central one is at some radial distance in resonance with the frequency interval of the
central layer. If this crossing region occurs inside the spatial extent of the atomic cloud,
we can not isolate a single layer. The region inside our frequency interval increases as
we increase the bias magnetic field. Assuming a cloud size of ∼150 µm, we require a
bias field larger than ∼150 G to move the crossing region sufficiently far away from the
position of the atoms.
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(d) 200 G bias field

Fig. 5.5 1S0-3P2 resonance frequency detuning of individual optical lattice planes, where the central
layer is red and its neighboring layers are green. We apply a gradient of 224 G/cm and a bias
field of variable strength. The red-shaded area corresponds to a frequency interval of 8 kHz.
The dashed, vertical lines indicate the size of the isolated layer. To move the region in which
the central layer is resonant with a neighboring one outside the spatial extent of the atomic
cloud (radius of ∼150 µm), we have to apply a bias field larger than 150 G.

By running a current of ∼85 A through our bias field coils, we can generate such a
field. To limit magnetic field noise induced broadening of the ¹S₀-³P₂ transition to several
kilohertz, we have to stabilize the magnetic field to a relative stability in the lower 10−5

regime. Before we explain our stabilization scheme in Sec. 5.2.3, we briefly discuss our
considerations regarding water-cooling the coils.

Water cooling We briefly discuss how we dimension water flow and pressure to cool the
science chamber coils generating the vertical magnetic fields. We base our estimates on
the parameters used to cool the MOT coils and scale them accordingly.

To generate the magnetic fields of the blue MOT, we run a current of 200 A at a voltage
of 30 V through 6 coils. The corresponding electric power results in a heat deposit of
1 kW per coil. We cool these coils by running water through the hollow core of the wire
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with an input pressure of 4.5 bar. The resulting water flow rate is sufficient to remove
the deposited heat. In analogy to Ohm’s law U = RI, the flow rate Q is given by

Q =
∆P

Rhyd
, (5.7)

whereRhyd is the hydrodynamic resistance and∆P is the pressure drop. To calculate the
flow rate of the MOT coils, we first calculate the hydrodynamic resistance of the wire’s
rectangular hollow core given by [164]

1

Rhyd
=

h3w

12ηL

1− ∑
n,odd

192h

n5π5w
tanh

(
nπ

w

2h

) , (5.8)

Rhyd = 0.86× 1011 Pa s/m3, (5.9)

where w = 2 mm is the core width, h = 1 mm is the core height, L = 9.8 m is the length
of the coil wire and η = 1 mPa s is the viscosity of water. This equation assumes w > h.
With the hydrodynamic resistance and the pressure drop of ∆P = 4.5 bar, we obtain a
flow rate of 0.31 l/min.

Assuming that the cooling power scales linearly with the flow rate, we can estimate
the flow required to cool the science chamber gradient coils, through which we run the
highest current. To generate the gradient we use a current of 280 A at a voltage of ≈40 V,
resulting in a deposited power of 11.2 kW. This deposited power means that each of
the four coils experiences a deposited heat of 2.8 kW. The deposited heat is a factor of
2.8 higher than in the MOT coils resulting in a required flow rate of 2.8 × 0.31 l/min =
0.87 l/min. Each gradient coil has a wire length of L = 9.9 m with the same hollow
core dimensions as the MOT coils resulting in comparable hydrodynamic resistance of
0.87× 1011 Pa s/m3. Hence, to achieve comparable temperature stability of the coils, we
have to apply a pressure of ≈13 bar.
As a compromise between the chiller’s cooling power, output flow rate, and output

pressure, we decided on a commercial chiller with an output pressure of 10 bar. While
running the coils during the experimental sequence, we observe that the temperature of
the coils increases, but in an acceptable regime of a few degrees Kelvin.

5.2.3 Current stabilization

In this Section, we discuss our current stabilization scheme for the bias field. The stability
of the bias field is relevant during the isolation of a single lattice layer, where we apply a
magnetic field gradient and a bias field and locally address atoms using the field-sensitive
¹S₀-³P₂ ∆mJ = ±1 transitions. The applied gradient splits the resonance frequency of
neighboring layers by 24 kHz. As an upper bound, we can allow a broadening of the
linewidth up to 12 kHz corresponding to a relative field stability of ∼4× 10−5.
Our feedback loop to stabilize the current running through the bias field coils is shown

in Fig. 5.6. Our stabilization is based on measuring the current with a Hall-probe and
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Fig. 5.6 Schematic of the current stabilization circuit for the science chamber offset coils. A commer-
cial Hall-probe measures the current flowing through the coils. The probe signal is used to
feed back to eight MOSFETS connected in parallel. We are able to switch off the current within
∼150 µs using an IGBT and a quarter-wave circuit. The dashed line indicates a separation
between two rooms.

using 8 metal–oxide–semiconductor field-effect transistors (MOSFETs) connected in par-
allel as actuators. We use a commercial Hall-probe (LEM 400-S ultrastab) to measure
currents up to 400 A. A home-built electronics board converts the transducer output cur-
rent into a voltage which we feed into a proportional-integral (PI) controller. The PI
controller acts on the gates of the MOSFETs to regulate the current. We modified the PI
controller to linearize the MOSFETs’ transfer function.
To enable fast current switch-offs, the circuit in Fig. 5.6 contains an additional insulated

gate bipolar transistor (IGBT) and a so-called quarter-wave circuit. When we open the
IGBT, the current stops flowing and the coils and the capacitor form an LC-circuit. A fast
recovery diode stops the oscillations of the circuit after a quarter of the oscillation period
enabling a switch-off within 150 µs. The capacitor is discharged via a resistor connected
in parallel. However, eddy currents in the vacuum chamber and bucket windows increase
the settling time of the magnetic field by an order of magnitude.
To avoid acoustic noise of the power supplies in the lab, we place them inside a separate

room. The supplies are connected to the stabilization circuit via cooper cables with a
cross-section of 35 mm2.

We quantify the magnetic field stability out-of-loop using a fluxgate sensor. We find a
relative stability of 3.5×10−5 corresponding to a broadening of the ¹S₀-³P₂ transition to a
linewidth of 11 kHz. This broadening is sufficiently small for isolating a single layer. We
believe that electronic noise in our current read-out circuit and the PI controller limits
the stability. To further improve the stability, one can think about adding a slow feedback
system that measures the magnetic field directly and then servoing on currents of tens of
milliampere.
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5.3 Laser systems

Cooling and trapping strontium requires several lasers at different wavelengths. In the
following, we briefly explain the steps required to prepare a cloud of ultracold stron-
tium and a detailed explanation can be found in the Refs. [93, 94]. The first steps are
slowing down the atoms emitted from the oven and trapping them in a magneto optical
trap (MOT) [165]. These two steps use laser cooling on the ¹S₀-¹P₁ transition with a
wavelength of 461 nm. From the ¹P₁ state the atoms decay via the ¹D₂ state to the ³P₂
state, which is metastable. We optically pump the atoms back to the ¹S₀ ground state by
driving the ³P₂-³S₁ transition at 707 nm. From the ³S₁ state, the atoms can decay to all
³PJ states. Atoms that end up in the ³P₀ state are pumped again to the ³S₁ state with
the corresponding transition at 679 nm. Atoms in the ³P₁ state decay quickly to the ¹S₀
state. After the blue MOT stage, the atoms have a temperature of ∼1 mK. To cool the
atoms further, we apply a red MOT [166] on the ¹S₀-³P₁ transition at 689 nm. With this
cooling stage, we reach a temperature of 1 − 2 µK [118]. A detailed description of the
experimental parameters, such as frequency detuning, beam size, etc., can be found in
Refs. [93, 94].

From the discussion above, we see that preparing strontium atoms at ultracold tem-
peratures requires four different lasers at wavelengths of 461 nm, 679 nm, 689 nm, and
707 nm. To drive the ¹S₀-³P₂ transition, used for local addressing, we need an additional
laser at 671 nm. Fortunately, all these wavelengths can be derived from diode lasers. Our
diode laser systems use a single frequency-stabilized master laser and several injection-
locked laser diodes to amplify the power [94].
Transporting and trapping of atoms with light requires lasers with high output pow-

ers, such as solid-state lasers or fiber-based amplifiers. For our optical transport and the
vertical lattice, we use three Yb-doped fiber amplifiers with output powers of 30− 40 W
at a wavelength of 1064 nm. Such high-power beam paths require careful design consid-
erations to avoid thermal-lensing effects [154].

We create our horizontal lattices inside our crossed buildup cavities at the ¹S₀-³P₀ magic
wavelength of 813 nm or at the ¹S₀-³P₁ magic wavelength of 914 nm. We derive the laser
light from a Ti:sapphire laser which we frequency stabilize to the cavities. Trapping
atoms in optical cavities is challenging due to the cavity’s frequency-noise to amplitude-
noise conversion that compromises the trap lifetime [167]. We overcome this challenge
by carefully adjusting the feedback loop of the frequency stabilization.
In the following, we only briefly discuss the blue and the red laser systems, since

Refs. [93, 94] contain detailed information about these setups. We focus on the ³P₂
laser setup, the high-power 1064 nm laser systems and the frequency stabilization of the
Ti:sapphire laser to our crossed cavities.

5.3.1 Blue laser system

We use our blue laser system to derive the 461 nm beams required for various cooling
stages, including the Zeeman slower and the blue MOT. In addition, the laser setup pro-
vides the probe beams for imaging on the ¹S₀-¹P₁ transition. The system consists of one
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commercial diode laser (Toptica DL Pro) and several home-built injection-locked laser
diodes. We frequency-stabilize the diode laser to a spectroscopy cell [117] using a fre-
quency transfer modulation technique [168]. Using a double-pass acousto-optic modu-
lator (AOM) to compensate for the isotope shift, we can stabilize the laser frequency to
the ¹S₀-¹P₁ atomic resonance of ⁸⁸Sr or ⁸⁷Sr.

We split the laser beam into multiple beam paths for frequency stabilization, imaging,
the transverse cooling of the atomic beam after the oven, Zeeman slower, and blue MOT
beams. If required, we shift the light frequency using AOMs. Since each beam of the
transverse cooling, the Zeeman slower, and the blue MOT requires several milliwatts of
power, we use injection locks to amplify the laser power. A schematic of the beam paths
can be found in Ref. [94].

5.3.2 Red laser system

The red laser system consists of a frequency-stabilized diode laser (Toptica DL Pro) and
one injection lock. Since the ¹S₀-³P₁ transition has a natural linewidth of ∼7 kHz, the red
laser frequency has to be orders-of-magnitude more stable than the blue laser frequency.
We stabilize the red laser frequency to an ultrastable high-finesse reference cavity us-

ing the Pound-Drever-Hall (PDH) technique [169]. The cavity has a finesse of 280, 000
at 689 nm, providing a cavity linewidth of 5.4 kHz. To maintain a stable resonance
frequency, we place the cavity under vacuum, including two temperature-isolating cop-
per heat shields. Additionally, we stabilize the temperature of the chamber to the cav-
ity’s zero-crossing temperature [170]. We generate the frequency sidebands for the PDH
scheme using a fiber-based electro-optic modulator (EOM). A high-bandwidth PID con-
troller (Toptica FALC) servos on the laser current and laser cavity piezo and narrows the
linewidth to the Hertz regime.
We amplify the laser power with the help of an injection-lock module. After the ampli-

fication, we split the beam into several beam paths and shift their frequencies with AOMs
if required. A detailed description of the red laser system is given in Ref. [93].

5.3.3 Repump laser system

To repump the atoms during the blue MOT stage, we use two diode lasers (Toptica DL
Pro) operating at 679 nm and 707 nm. We do not actively stabilize the laser frequency and
keep them free-running. To adjust the frequencies to the ³P₀-³S₁ and the ³P₂-³S₁ repump
transitions, we optimize the laser frequency to maximize the blue MOT fluorescence sig-
nal. For the fermionic isotope ⁸⁷Sr, the ³P₂ level splits into several hyperfine states, and
we modulate the 707 nm laser frequency by scanning the laser cavity piezo.

5.3.4 3P2 laser systems

To drive the ¹S₀-³P₂ transition at 671 nm, we use a laser system based on a frequency-
stabilized external cavity diode laser (ECDL) and an injection-locked laser diode. A
schematic of the setup is shown in Fig. 5.7.
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Fig. 5.7 Schematic of the 3P2 laser system including injection lock and reference cavity. To drive
the 1S0-3P2 at 671 nm, we use a home-built external cavity diode laser (ECDL) frequency
stabilizized to a reference cavity using the PDH technique. We amplify the laser power with
an injection locked diode resulting in ≈ 26 mW power at the atoms. We can use a frequency
comb to measure the absolute laser frequency.

We frequency-stabilize the laser using the dual sideband locking technique [171],
where a fiber-EOM and an additional home-built EOM generate the sidebands. This
technique allows us to stabilize the laser at arbitrary frequencies even if the desired laser
frequency and the cavity resonance are several hundreds of megahertz detuned from
each other.
The reference cavity is placed in a similar environment as the reference cavity of the

red laser system [170]. We use a high-bandwidth PID controller (Toptica FALC) to servo
on the laser current and the laser cavity piezo resulting in a laser linewidth of about
1 kHz. The laser linewidth at 671 nm is limited by the cavity finesse of 20, 000. Using a
cavity with a higher finesse will immediately allow us to reduce the laser linewidth to a
few hertz. Such a cavity is already ordered and will be installed soon.
We amplify the laser power using a home-built injection lock resulting in ∼26 mW

of usable laser power at the atoms. Reference. [93] gives a detailed description of our
injection lock design. A double-pass AOM after the injection lock enables us to scan the
laser frequency over a few megahertz. Since we found that the master laser frequency be-
comes unstable once we seed the injection lock, we installed an additional optical isolator
between the injection lock and the ECDL to prevent optical feedback.
A fiber connecting the ³P₂ laser with a frequency comb allows us to measure the laser’s
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Fig. 5.8 Schematic of the laser setup to seed the high-power Yb-doped fiber amplifiers generating
the transport and vertical lattice beams. We use acousto-optic modulators (AOMs) to shift
the frequencies of the individual beams. Before we couple the beams into fiber, their powers
are monitored with photodetectors.

absolute frequency. We highly appreciated being able to measure the laser frequency
with the comb during the spectroscopy measurements of the ¹S₀-³P₂ transition presented
in Ch. 6.

5.3.5 High-power laser system

Here, we describe our optical setup of the high-power 1064 nm laser beams. A nonpla-
nar ring oscillator laser seeds high-power Yb-doped fiber amplifiers deriving beams with
powers of 30− 40 W. We use two beams to realize an optical transport and one beam to
generate the vertical lattice.

The optical setup of the seed laser is shown in Fig. 5.8. The seed light is generated by a
commercial low-noise nonplanar ring oscillator laser (Coherent Mephisto) with ∼1.2 W
output power. We split the laser beam into three beam paths, where we use two beams for
the optical transport of atoms and one beam for the vertical lattice. We shift the frequency
of the transport (vertical lattice) beams by +200 MHz (−80 MHz) using acousto-optic
modulators (AOMs). After the AOMs, we monitor the laser power using photodetectors.
We couple the beams into optical fibers, seeding the fiber amplifiers.
We transport our atoms from the main chamber into the science chamber using a

travelling-wave optical lattice (see Sec. 5.4 for further details). Such a lattice requires
two phase-coherent beams with a variable frequency difference. Since we generate both
transport beams from a single seed laser, they are naturally phase-coherent. We use an
AOM in double-pass configuration to sweep the frequency of one beam, while the fre-
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Fig. 5.9 Schematic of transport and vertical lattice laser path. We stabilize the laser intensity with a
PI control loop acting on the individual AOMs. The light polarization of the lattice beam can
be controlled via a motorized half-wave plate and a quarter-wave plate.

quency of the other beam is fixed. The double-pass configuration allows us to sweep the
frequency within a bandwidth of ∼5 MHz, while the fiber-coupled laser power varies by
10%, which is sufficiently small for the amplifiers to provide constant output powers.
During the characterization of the atom transport, we observed that the phase noise

and the phase coherence of the radio frequency signals, that seeds the AOMs is crucial
to achieve a high transport efficiency. Hence, we use a dual-channel arbitrary function
generator² as a radio-frequency source for the AOMs.

We use the third beam path to seed the amplifier generating the vertical lattice beam.
To avoid interference between the lattice and the transport beams, we detune the lattice
by −280 MHz from the transport frequency.

The high-power beams are derived fromYb-doped fiber amplifiers. We depict a schematic
of the beam path in Fig. 5.9. The design follows the considerations of Ref. [154] to build
the setup as stable as possible. In the beam path, we use fused-silica optics to minimize
thermal lensing effects that result in beam pointing and focus instabilities.
We generate the transport beams with amplifiers from Nufern and the lattice beam

with an amplifier from ALS³. The Nufern amplifiers have output fibers which we mount
in custom-manufactured fiber chucks. We ensure high beam qualities by collimating

²Tektronix AFG3252C
³Azurlight Systems 1064 nm 50 W
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the beams with air-spaced fused silica lens triplets⁴. The lattice beam is emitted from
the ALS laser head as a collimated beam. To avoid damaging back-reflections into the
amplifiers, we equip each beam path with two isolators providing 60 dB isolation in total.
We replaced the cube beam splitters of the isolators with half-wave plates and fused-silica
Brewster polarizers because the cubes are susceptible to thermal lensing. We prevent
thermal drifting of the isolator crystals by water-cooling them.
We stabilize the beam intensity using shear-mode AOMs⁵ as actuators, which we water-

cool. We measure the beam power with InGasAs photodetectors and use the detector
signal as an input for the control loop. After the AOMs, each beam hasmaximum available
laser power of about 20 W.

Using a motorized half-wave and a quarter-wave plate, we can control the lattice po-
larization during the experimental sequence. We adjust the lattice waist and focus with
a telescope. Because the available space to set up the telescope was very limited, we also
used air-spaced fused-silica lens triplets.

5.3.6 Ti:Sapphire laser

The final laser system we discuss is the Ti:Sapphire laser. The laser can produce light at
the ¹S₀-³P₀ magic wavelength of 813 nm or at the ¹S₀-³P₁ magic wavelength of 914 nm.
We pump the Ti:Sapphire laser (M2 SolsTis) with 18 W of 532 nm light derived from a
solid-state laser (Verdi V18). We split the light emitted from the Ti:Sapphire laser into
two beam paths. Each path is coupled into one arm of our crossed cavities generating
the horizontal optical lattice. Here, we focus on the technical details of stabilizing the
frequency of the individual beam paths onto the cavity resonance. The reader interested
in the optical setup may look at Ref. [94] for further details.

Using optical cavities to generate traps for neutral atoms is technically challenging. The
reason is that cavities convert frequency noise into intensity noise [167] reducing the trap
lifetime via parametric heating [151]. If we frequency-stabilize the laser to the resonance
of one cavity arm directly, we can not turn off the cavity lattice without unlocking the
laser which results in mode hops. Hence, we develop the more complicated, but at the
same time more robust, stabilization scheme shown in Fig. 5.10.
We frequency-stabilize the Ti:Sapphire laser to the resonance of a transfer cavity using

the PDH technique. The feedback loop acts on the slow piezo and the fast piezo of the
laser cavity to control the frequency. The purpose of the transfer cavity is to keep the laser
frequency constant in the range of tens to hundreds of kilohertz. Hence, the stabilization
can be relatively loose. Using this additional cavity as a prestabilization stage, we can
turn off or ramp the power of the cavity lattices without disturbing the laser.
The transfer cavity has a finesse of 5000 at 914 nm. One mirror of the transfer cavity

is glued onto a piezo stack, to actively control the cavity length. We stabilize the cavity
length to the frequency of the several-hertz-wide clock diode laser using the PDH tech-
nique. We obtain this narrow laser by frequency-stabilizing it to a reference cavity with

⁴Optosigma HFTLSQ-30-40PF1
⁵Gooch & Housego I-FS080-2S2G-3-LV1
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Fig. 5.10 Schematic of the Ti:Sapphire laser system including the frequency stabilization to the
crossed cavities. A frequency stabilized diode laser at 698 nm, the so-called clock laser,
is used to stabilize the length of a transfer cavity. We use the transfer cavity to stabilize
the Ti:Sapphire laser frequency. The two Ti:Sapphire beam paths are stabilized to the res-
onances of the crossed cavities using double-pass AOMs. All frequency stabilizations are
based on the PDH technique. In addition, we stabilize the intensity of the cavity arms.

a finesse of 280, 000.
We stabilize the two beams to the crossed cavities’ resonances using double-pass AOMs

as the actuators. A PI controller uses the cavity reflection as an input signal and actively
controls a voltage-controlled oscillator (VCO). We use the VCO as a frequency source for
the double-pass AOM closing the control loop.

Additionally, we stabilize the intensities of the cavity beam paths. A photodetector
measures the beam intensity. The photovoltage serves as an input for another PI con-
troller servoing on the amplitude of the rf signal seeding the AOM.

Our stabilization scheme allows us to control the power inside the crossed cavities
independently from each other without disturbing the Ti:Sapphire laser frequency. By
carefully adjusting the PI parameters, we can obtain a trap lifetime of 59(2) s [104]
demonstrating that we can overcome the challenge of frequency noise to amplitude noise
conversion.
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5.4 Optical transport

We have separated our vacuum system into the main chamber and the science chamber.
However, this design requires transporting the atoms from the MOT to the overlap region
of the crossed cavities over a distance of 55 cm. Transporting a sample of ultracold atoms
increases the cycle time of the experiment as well as the complexity of the experimental
sequence. Hence, a transport should be fast and reliable.
Typically, one transports atoms by translating the potential minimumofmagnetic or op-

tical traps. Several experiments use a magnetic transport by translating a coil pair [172,
173] or sequentially running current through overlapping coils [174] realizing a reliable
transport over large distances. At the same time, magnetic traps can provide deep po-
tentials combined with large trap volumes and passive stability. However, moving a coil
pair or installing several coil pairs along the transport path requires a lot of space around
the chamber, which reduces the optical access. In addition, magnetic transport can only
be used for atoms with sufficiently large magnetic moments, which is not the case for the
¹S₀ ground state of strontium.
However, an optical transport scheme can instead be used for every polarizable atom.

For this transport scheme, one confines the atoms in an optical dipole trap and dynam-
ically moves the beam’s focus position by mechanically moving a lens on a linear trans-
lation stage [175]. A more compact design uses a focus-tunable lens [176] to translate
the focus of an optical dipole trap transporting the atoms. Our experiments described in
Ref. [104, 93] successfully used such a scheme. The disadvantage of using stale beam
optical dipole potentials is the small longitudinal confinement that limits the maximum
transport velocity. This limitation resulted in transport durations of 7 s in our previous
experiments.
One can realize an optical transport on much faster timescales using a travelling-wave

lattice [177, 178]. The travelling-wave lattice is generated by two overlapped, counter-
propagating laser beams that are detuned in frequency which results in a lattice with
moving nodes. The velocity of the nodes depends linearly on the frequency difference.
The lattice traps the atoms tightly along the longitudinal direction enabling atomic trans-
port over tens of centimeters in tens of milliseconds [178].

To reduce the transport duration, we also incorporated a travelling-wave lattice. The
small size of the cavity bores and the long transport distance restrict us to lattice beam
waists of ∼450 µm. For smaller waists, the beams diverge significantly over the transport
distance and deposit their power on the cavity which leads to expansion of the cavity.
However, we do not have strong-enough laser sources to confine atoms against gravity in
such a lattice. Therefore, we choose a hybrid approach which combines an optical dipole
trap with a moving focus and a travelling-wave lattice [179].
We begin this Section by deriving the basic formulas describing the travelling-wave

lattice. Afterward, we calculate the beam parameters required to trap atoms against
gravity. Finally, we discuss our transport setup and characterize it.
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5.4.1 Moving Lattice

To understand the basic principles of the travelling-wave lattice, we derive the describing
equations. We begin by calculating the intensity pattern of two overlapping Gaussian
laser beams propagating along the x-axis with wave vectors k1 and k2, respectively. The
corresponding electric fields oscillate with the angular frequencies ω1 and ω2. The result-
ing intensity pattern is given by

I(x, t) =
1

2
cε0|E1 exp(ik1 · x− iω1t) + E2 exp(−ik2 · x− iω2t)|2, (5.10)

=
1

2
cε0
(
E2

1 + E2
2 + 2E1E2 cos [(k1 + k2) · x− (ω1 − ω2)t]

)
, (5.11)

where ε0 the electric permittivity, and Ei is the electric field amplitude. We introduce the
detuning ∆ω = ω1 − ω2, which is typically in the regime of tens of Megahertz. For these
frequency differences, we can approximate the wave vectors by k = k1 ≈ −k2. With this
approximation the intensity pattern is given by

I(x, t) ≈ 1

2
cε0
(
E2

1 + E2
2 + 2E1E2 cos [2k · x−∆ωt]

)
. (5.12)

The first and the second term result in an intensity offset. The third term generates a
standing wave pattern with an oscillating phase. The nodes of the standing wave have a
spacing of λ/2. The oscillating phase results in an effective movement of the nodes with
a velocity of v = ∆ω/(2k) = λ∆ν/2, where ν = ω/(2π) is the oscillation frequency of
the electromagnetic field.
In Cha. 4, we derived that the potential energy of atoms in a light field is proportional

to the light intensity. Using Eq. (4.3) the intensity pattern above generates an optical
potential given by

Ulatt(x, t) ∝ − 1

2ε0c
α
√
I1I2 cos(2k · x−∆ωt), (5.13)

where α is the polarizability and Ii = 1/2ε0c|Ei|2 is the peak intensity of the correspond-
ing light field. The dipole potential has the form of a travelling-wave lattice. By sweeping
the frequency difference we can use the lattice to transport the atoms.
By sweeping the frequency difference, an atom of mass m experiences an acceleration

alatt corresponding to a force of

F = malatt = m
∂v

∂t
= m

λ

2

∂∆ν

∂t
. (5.14)

To confine the atoms in the lattice while accelerating them, the trapping force has to
be larger than the accelerating force. For a deep optical lattice, we can approximate
the atoms as classical particles. The restoring force of the lattice potential can then be
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calculated using Eq. (4.4), and we obtain

Flatt = −∇Ulatt(x, t) = −U02k sin(2k · x−∆ωt), (5.15)

where U0 = 1/(2ε0c)α
√
I1I2 is the trap depth. At the maximum of the restoring force we

obtain the condition
malatt < 2U0k. (5.16)

If this condition is satisfied, we can transport the atoms without losing them from the
trap. The reader may ask what happens for a shallow optical lattice, where we have to
treat the atoms as quantum mechanical particles. In this scenario, the accelerating force
induces Bloch oscillations. To not lose the atoms, the acceleration has to be small enough
to prevent the excitation to higher bands of the optical lattice. A detailed discussion is
beyond the scope of this thesis but can be found in Ref. [180].
In this Section, we derived the basic equations describing the transport of atoms in a

travelling-wave lattice. In the next Section, we discuss the beam parameters required to
confine the atoms against gravity.

5.4.2 Gravity

While the lattice confines the atoms in the longitudinal direction very tightly, the radial
potential is less tight. To transport atoms in the horizontal direction, the radial confine-
ment has to be sufficiently strong to trap the atoms against gravity. Typically, one uses
Gaussian beams with a static focus position to generate the travelling-wave lattice. At the
focus position, the waist is small enough to generate a strong radial potential. However,
over transport distances of several tens of centimeters, the waist of the beams expands
which decreases the radial confinement. Depending on the initial waist and power, the
confinement may be so weak that it can not trap the atoms against the gravitational force
anymore. In this Section, we discuss the required transport beam parameters. Our ex-
periment is special because our parameters are constrained by the crossed cavities and
the long transport distance. Therefore, we cannot use a non-diverging Bessel beam [178]
and are restricted to Gaussian beams.
The radial confinement increases with decreasing beam waist. However, a Gaussian

beam with small waist diverges strongly over our transport distance of 55 cm. The waist
w along the transport direction x is given by

w(x) = w0

√
1 +

(
x

zR

)2

, (5.17)

where w0 is the waist at the focus and zR = (πw2
0)/λ is the Rayleigh range which depends

on the wavelength λ. We assume that the beam is focused in the center between the MOT
and the crossed cavities.
In Fig. 5.11(a), we plot the waist of a 1064 nm beam as function of x for various w0.

We can see that beams with w0 ∼ 300 µm or larger have a relatively constant waist over
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Fig. 5.11 (a) Waist of a Gaussian beam as a function of propagation distance for various waist sizesw0.
We place the beam focus at half the transport distance. (b) We use two counter-propagating
1064 nm beams with an individual power of 20 W and the waists of panel (a) to generate
a travelling-wave lattice. We plot the force of the radial confinement as a function of the
transport position. We normalize the force to gravity. The horizontal line shows were the
confinement is sufficiency strong to trap the atoms against gravity.

the transport distance. However, we have to calculate whether our laser powers of 20 W
per beam provide sufficient confinement to trap atoms against gravity.
To simplify the calculation, we assume that the beams forming the moving lattice have

equal power and equal waist. The resulting radial intensity profile of the overlapping
beams is given by

I(r) = 4I0

(
w0

w(x)

)2

exp

(
− 2r2

w(x)2

)
, (5.18)

where I0 = (2P )/(πw2
0) is the peak intensity. The factor of 4 takes into account the

constructive interference of the beams. Using Eq. (4.3) and Eq. (4.4) the radial trapping
force is given by

Fr(x) =
∂

∂r

1

2ε0c
αI(r) (5.19)

= −8I0

(
w0

w(x)3

)2 αr

ε0c
exp

(
− 2r2

w(x)2

)
. (5.20)
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The maximum confining force is given at r = w(x)/2 with

Ftrap = − 4

cε0

w0

w(x)2
α

2P√
eπw2

0

. (5.21)

For |Ftrap| > Fgrav = mg, we can confine atoms in the lattice against gravity with g =
9.81 m/s2.
We assume that we generate a travelling-wave lattice using two counter-propagating

1064 nm beams with a power of 20 W and the beam waists shown in Fig. 5.11(b). We
calculate the resulting radial confinement force Ftrap and plot the force as function of
the transport position in Fig. 5.11(b). We normalize the magnitude of the confinement
force to the gravitational force Fgrav. We can see that the confinement of a lattice with
focus waists up to w0 ∼ 300 µm can trap atoms against gravity close to the focus position.
However, the expansion of the beam at the start or end position of the transport prevents
holding atoms there. This behavior shows that with our available laser power we cannot
transport the atoms using a travelling-wave lattice generated by two Gaussian beams.
Our solution is to generate a travelling-wave lattice from one beam with a waist of

50 µm, but tunable focus position, and a counter-propagating beam with a more or less
constant waist over the transport distance. We achieve the tunability of the focus position
by sending the beam through a focus-tunable lens. The small waist results in a strong
confinement against gravity, while the travelling-wave lattice allows for a fast transport.
In the next Section, we discuss our transport scheme in detail and characterize it.

5.4.3 Setup

Due to our long transport distance of 55 cm and limited available laser power, we can not
hold the atoms against gravity with a travelling-wave lattice generated by two Gaussian
beams with a static focus position. Our transport scheme combines a travelling-wave
lattice with a focus-tunable lens similar to the transport characterized in Ref. [179].
A schematic of our atomic transport is shown in Fig. 5.12. The beam with a tunable

focus has a waist of 50 µm and a power of 6W, generating a radial confinement sufficiently
strong to trap atoms against gravity. The interference between this beam and a focus-
fixed counter-propagating beam results in a travelling-wave lattice when detuning their
frequencies. The focus-fixed beam has a waist of ∼420 µm and a power of 30 W. To
transport the atoms we synchronously translate the focus position and the lattice.
We transport the atoms over the distance of 55 cm in 600 ms using a linear frequency

sweep. We ramp up the frequency of the focus-fixed beam by 1.624718 MHz in 300 ms
using an AOM and afterward, ramp the frequency down again in the same duration. The
linear frequency change results in a constant acceleration and an s-shaped position ramp.
The frequency difference corresponds to amaximum lattice velocity of 0.86m/s. The total
transport time is one order of magnitude shorter than our previously used scheme and
reduces the experimental cycle time significantly.
Staring at the position of the MOT, we load ∼7 − 9 × 106 atoms into the transport

lattice and we obtain ∼3× 106 atoms in the science chamber. These atom numbers cor-
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Fig. 5.12 Schematic of the transport setup. We combine a beam with a tunable focus position and a
focus-fixed beam to generate a travelling-wave lattice. The focus-tunable beam has a waist
of 50 µm and provides sufficient radial confinement to trap the atoms against gravity. The
interference of this beam and the focus-fixed counter-propagating beam form a travelling-
wave lattice. The MOT beams are shown in red, and the strontium atoms are shown in blue.
Inset (a) is a schematic of the optics setup generating the focus tunable beam. In insets
(b) and (c), atoms are trapped in the travelling-wave lattice. The lattice moves towards the
cavity assembly in the science chamber.

respond to a transport efficiency of 32− 42%. We believe that our transport efficiency is
limited by how synchronously we move the focus and the lattice. After careful optimiza-
tion, Ref. [179] reported a transport efficiency of 50% which we can probably also reach
following their optimization procedure.
We characterize the temperature of the atoms after transport via time of flight expan-

sion. We suddenly release the atoms from the trap mapping momentum distribution into
spatial distributions. A Gaussian cloud of atoms expands according to their temperature
T given by [25]

σ(t, T ) =

√
σ2
0 +

(
kBT

m

)2

t2, (5.22)

where kB is the Boltzmann constant, and σ0 is the initial cloud size. We extract the
temperature of the atoms by fitting the measured cloud size as a function of the time-
of-flight (TOF) t. In Fig. 5.13 we plot the cloud sizes along all three spatial directions
with the corresponding fits. Compared to a temperature of ∼1 − 2 µK in the MOT, the
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Fig. 5.13 Temperature along all three spatial directions measured via time of flight (TOF). We release
the atoms from the transport lattice in the science chamber and take absorption images of
the cloud after TOF. From the images we extract the cloud size σ and we fit the size as a
function of the expansion time.

transport heats the atoms slightly along the horizontal direction. This small heating is
no problem since we can easily cool the atoms again using the red ¹S₀-³P₁ transition. The
transport does not change the vertical temperature.
In this Section, we discussed our new transport scheme reducing the transport time by

one order of magnitude compared to our previously used transport scheme. The mea-
sured temperatures show minimal heating, which we can easily remove by cooling on the
red transition.
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Chapter 6

The 1S0-3P2 magnetic quadrupole transition in neutral
strontium

In this Chapter, we investigate the ¹S₀-³P₂ magnetic quadrupole transition in neutral
strontium. This transition possesses a natural linewidth on the millihertz level similar

to the famous ¹S₀-³P₀ electric dipole clock transition [56, 120–122, 51, 62, 49]. While
the ³P₀ state is insensitive to magnetic fields, the potential energy of the ³P₂ state can be
tuned using these fields [127]. This tunability opens up new opportunities for quantum
computing and quantum simulation [73, 130].
Magnetic-field-sensitive transitions can be used to locally control and manipulate the

electronic state of atoms trapped in individual sites of an optical lattice within a magnetic
field gradient [111]. Themagnetic field gradient splits the transition resonance frequency
of neighboring lattice sites due to the Zeeman effect. If the splitting is larger than the
transition linewidth, one can drive the transition on a given lattice site without influencing
atoms on neighboring sites. This technique is called local addressing.

We can also use local addressing to isolate a single two-dimensional (2D) layer within
a three-dimensional (3D) optical lattice in the focus of the quantum gas microscope ob-
jective [26, 107]. Without this isolation, we cannot be certain when assigning detected
atoms to a single lattice layer. Removing all atoms from unwanted layers is called “slic-
ing” and is a technically demanding task [26] since it requires highly stable optical setups
and large magnetic fields with relative stability on the∼10−5 level. Using the ¹S₀-³P₂ tran-
sition for local addressing increases the complexity in terms of atomic physics because it
requires understanding and probing magnetic quadrupole transitions. In Ch. 3, we devel-
oped a theoretical understanding of multipole transitions, which helps us to experimen-
tally investigate the magnetic quadrupole transition. Furthermore the ¹S₀-³P₂ absolute
transition frequency has only been measured very recently in ⁸⁷Sr with an uncertainty of
30MHz. [110]. In this Chapter, we overcome these challenges and our results will enable
future experiments to easily incorporate the magnetic quadrupole transition for various
applications.

Since the ¹S₀ state and the ³P₂ state are separated in energy by optical frequencies,
they can experience very different ac Stark shifts caused by the same light field. Their
differential Stark shift results in light-shift-broadened transition lines. Using the ¹S₀-³P₂
transition to isolate a single layer requires the broadening to be smaller than the splitting
between neighboring lattice layers. Therefore, we implement the polarizability tuning
techniques discussed in Cha. 4 in our experiment.
Using these techniques, we achieve a magic lattice for the magnetic-field-insensitive
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¹S₀-³P₂ ∆mJ = 0 transition which possesses applications as an optical qubit. In addition,
wemeasure the absolute transition frequency in ⁸⁸Sr with an uncertainty of 5 kHz. We can
also engineer amagic lattice for themagnetic-field-sensitive ¹S₀-³P₂∆mJ = −1 transition.
Within this Stark-shift-free lattice, we demonstrate local addressing, paving the way to
isolate a single lattice layer and to prepare a 2D system in the microscope’s focus.
At the beginning of the Chapter, we explain our experimental setup and the preparation

of ultracold strontium atoms in the optical lattice. In this lattice, we experimentally inves-
tigate the transition probability of the magnetic quadrupole transition as a function of the
angle between the quantization axis and the wave vector of the probe beam (Sec. 6.2).
Afterwards, we use the tensor polarizability of the ³P₂ mJ = 0 state to engineer a magic
lattice for the ¹S₀-³P₂∆mJ = 0. In Sec. 6.3, we probe this transition with high resolution
in the magic lattice, enabling us to observe the motional lattice sidebands. In Sec. 6.4, we
measure the absolute frequency of the ¹S₀-³P₂ transition in ⁸⁸Sr and ⁸⁷Sr. Thereafter, we
apply our knowledge of tuning the vector polarizability to generate a magic lattice for the
¹S₀-³P₂ ∆mJ = −1 transition (Sec. 6.5), which we use in Sec. 6.6 to demonstrate local
addressing. The content of this Chapter is based on the experimental data presented in
Ref. [142].

6.1 Sample preparation

The experiment begins by cooling a hot beam of Sr atoms in a fast and robust two-stage
magneto optical trap to reach ultracold temperatures of 1 − 2 µK [118]. We optically
transport the atomic sample into the science chamber by combing a focus-tunable dipole
trap and a running-wave lattice, as discussed in Sec. 5.4. From the transport, we adiabat-
ically load the atoms into a one dimensional (1D) vertical optical lattice perpendicular to
the cavity-enhanced lattices.
A schematic of the experimental setup is shown in Fig. 6.1(a). We generate the optical

lattice by retro-reflecting a 1064 nm beam focused to a waist of ∼140 µm at the position
of the atoms. For a typical beam power of 5W, the lattice has a trap depth of ∼30 µK and
an axial trap frequency of ∼70 kHz. We can dynamically adjust the lattice polarization
using motorized half-wave and quarter-wave plates. The adjustable lattice polarization
allows tuning the vector light shift of the excited ³P₂ state, as we will see later in this
chapter.
Wemeasure the number of ground state atoms in the science chamber using absorption

imaging. A 461 nm probe beam propagating along the x-axis illuminates the atomic
cloud. The probe beam has a frequency resonant with the ¹S₀-¹P₁ transition, and hence,
ground state atoms absorb the light. We image the resulting shadow on a CCD camera
and extract the atom number from the image.
Using the horizontal and vertical coils, we can apply magnetic fields in all spatial di-

rections. We choose a coil configuration that enables us to tilt the magnetic field B the
xz-plane. The tilt is described by the angle θ between B and the z-axis. For θ = 0, the
field points along the −z-axis which lets us compensate the background magnetic field
of the ion pumps.
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Fig. 6.1 (a) Schematic of our experimental setup to study the 1S0-3P2 transition. We generate a vertical
lattice by retro-reflecting a 1064 nm laser beam. We use a beam at 689 nm propagating along
the z-direction to cool the atoms on the 1S0-3P1 transition via direct sideband cooling. We
use a 671 nm beam to probe the 1S0-3P2 transition. From the side, we shine in a blue 461 nm
beam for absorption imaging. We can apply a strong magnetic field in the xz-plane tilted
by an angle θ from the z-axis. (b) Axial Tz and radial temperatures Tr in the vertical lattice
measured using time of flight (TOF) expansion.

We use a 689 nm beam aligned collinearly with the vertical lattice beam to cool the
atoms on the ¹S₀-³P₁ transition. Because the transition linewidth of 7.4 kHz is much
smaller than the trap frequency of 70 kHz, we can cool the atoms into the axial vibra-
tional ground state of the lattice using direct sideband cooling [104]. We define the
quantization axis by applying a magnetic field of 1 G pointing along the −z-axis. The
magnetic field splits the Zeeman sublevels. To optimize the cooling efficiency, we use an
elliptically polarized lattice with an ellipticity angle γ = 0.17π. This ellipticity results in
a magic lattice for the ¹S₀-³P₁ ∆mJ = −1 cooling transition.

After cooling, we measure the axial (radial) temperatures Tz (Tr) in the vertical lattice
using time of flight (TOF) expansion. We plot the cloud size as a function of the TOF in
Fig. 6.1(b). We extract an axial temperature of 1.5 µK and a radial temperature of 7.1 µK.
Due to the axial sideband cooling, the axial temperature is much lower than the radial
one. In the vertical lattice, the atoms are radially hotter than in the transport lattice. We
attribute the heating to an imperfect transfer of atoms from the transport into the lattice.
Using additional horizontal lattices will enable us to cool the radial direction with direct
sideband cooling as well. For the spectroscopy of the ¹S₀-³P₂ transition, additional cooling
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is not required since the radial temperature has a negligible effect on the spectroscopic
resolution if the probe beam is well-aligned with the lattice axis.

We probe the ¹S₀-³P₂ transition by interrogating the atoms with a 671 nm laser beam
propagating parallel to the vertical lattice. The beam is focused to a 1/e2 waist of∼450 µm
at the position of the atoms with a typical power of 25.8 mW. To measure the absolute
laser frequency, we beat a few mW of laser light with a commercial frequency comb. We
measure the beat frequency with a counter and average about 1000 counts to extract the
beat frequency.
We study the magnetic quadrupole transition using loss spectroscopy. We excite the

atoms into the ³P₂ state, where they are lost from the lattice via inelastic collisions [104,
109, 122, 124, 181, 182]. Therefore, a resonant excitation results in a reduction of
ground state atoms, which we measure using absorption imaging.

6.2 Probing the magnetic quadrupole transition

In Ch. 3, we derived a theoretical model of the magnetic quadrupole transition probability
as a function of the probe polarization ϵ̂ and the orientation of the probe beam wave
vector k̂. Here, we experimentally investigate this dependence at the example of ¹S₀-³P₂
magnetic quadrupole transition in strontium.
For the first time, we investigate the M2 absorption pattern with a simple experimental

procedure. We record spectra of the ¹S₀-³P₂ transition to all Zeeman sublevels mJ as
a function of the angle θ between the probe wave vector and the quantization axis. A
schematic of the setup is shown in Fig. 6.2(a). We use a fixed linear lattice polarization
ϵ̂l. We apply a magnetic field of 1 G, which we can tilt by an angle θ with respect to
k̂, defining the quantization axis. The field splits the adjacent mJ states by 2.1 MHz as
illustrated in Fig. 6.2(b).

We interrogate the atoms with a probe beam polarization ϵ̂ ≈ 1/
√
2(0.68, 0.18, 0)⊤.

This polarization has components perpendicular to the plane in which we can orient the
magnetic field. This configuration allows driving the ¹S₀-³P₂ transition to all Zeeman sub-
levels mJ . We can calculate the corresponding absorption patterns using the derivations
of Ch. 3. We plot the transition probability as a function of θ in a polar coordinate sys-
tem in Fig. 6.2(c). The transition probability depends on θ since the decomposition of ϵ̂
in the atomic frame changes. Because we orient the quantization axis in the xz-plane,
the major polarization component along the x-axis transforms into a π-polarization in the
atomic frame as θ approaches π/2. The ¹S₀-³P₂∆mJ = 0 transition can not be driven with
pure π-polarization and only the small amount of σ±-polarized light contributes to the
transition amplitude resulting in a 10 times smaller transition probability as for the other
Zeeman states. According to Eq. (3.73) all the transitions have equal Clebsch-Gordan
coefficients.
To experimentally study the magnetic quadrupole transition, we interrogate the atoms

for 500 ms and afterward measure the number of remaining ground state atoms. We
probe all mJ states for various angles θ. The recorded spectra are shown in Fig. 6.2(d).
In the first row, the probe beam and the quantization axis are aligned parallel (θ = 0).
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Fig. 6.2 The figure is adapted from Ref. [142]. (a) Schematic of the setup used to probe the 1S0-3P2
absorption pattern. (b) Zeeman sublevel structure of the 1S0 and the 3P2 state split by a mag-
netic field. (c) With the probe beam polarization ϵ̂ ≈ 1/

√
2(0.68, 0.18, 0)⊤ we calculate the

expected absorption pattern. (d) We apply a magnetic field and record the spectra of the 1S0-
3P2 transition for all possiblemJ -states as a function of θ. The line strength of the measured
spectra follows the calculated pattern of (c), but the spectra are broadened according to the
differential light shifts of the 1S0 and the 3P2 mJ states.

Here, we can drive the ∆mJ = ±1 transitions, similar to what one would expect for an
electric dipole (E1) transition. For θ > 0, the mJ = ±2 transitions appear. Remarkably,
we can drive the∆mJ = ±1 transitions for all θ. If the transitionwere an E1 transition, we



Chapter 6 The 1S0-3P2 magnetic quadrupole transition in neutral strontium 95

would expect that the ∆mJ = ±1 transitions would vanish, and that only the ∆mJ = 0
transition can be driven as we approach θ = π/2. However, we can drive the ∆mJ = 0
transition for θ ̸= 0 and θ ̸= π/2 as we already expected from the absorption pattern
calculations. We conclude that the strengths of the recorded spectra qualitatively agree
with the calculated transition probabilities.
Two effects prevent us from performing a more quantitative analysis of the amplitudes

of the spectra. First, we are using interrogation times and probe beam powers optimized
to drive the ∆mJ = 0 transition which results in a plateau of the depleted atom number
of the other states. Hence, the amplitudes of the mJ ̸= 0 spectra reach a finite value.
Second, we observe that the lines broaden and shift as a function of θ, caused by a varying
ac Stark shift of the optical lattice as θ changes.
The lines broaden and shift because the ¹S₀ and ³P₂ states have different polarizabilities

at the lattice wavelength of 1064 nm. According to the derivations in Chapter 4, the
polarizability α of an electronic state with angular momentum J in the Zeeman sublevel
mJ is given by

αi = αi
S +

mJ

2J
α′i
V sin(2γ) +

m2
J − J(J + 1)

2J(2J − 1)
α′i
T

3 cos(θ − π/2)− 1

2
, (6.1)

where αS is the scalar, α′
V is the vector, and α′

T is the tensor polarizability. We describe
the lattice polarization using the ellipticity angle γ [158, 77]. A linearly polarized lattice
with γ = 0 results in a vanishing vector polarizability. The ¹S₀ ground state only depends
on the scalar polarizability since the vector and the tensor light shifts vanish due to J = 0
and mJ = 0. The polarizability of the ³P₂ state depends on θ via the tensor component
which allows us to adjust the differential polarizability of ¹S₀-³P₂ transition.

In the fourth row of Fig. 6.2(d), we observe a narrow linewidth of the transition to the
mJ = 0 state as the result of the vanishing differential polarizability. Hence, by tilting the
quantization axis, we can make the 1064 nm optical lattice magic for the ¹S₀-³P₂∆mJ = 0
transition. Furthermore, we observe the motional sidebands of the lattice, which we will
discuss in detail in the next Section.
Because we understand magnetic quadrupole transitions and atomic polarizabilities,

we can drive the ¹S₀-³P₂ ∆mJ = 0 transition in a Stark-shift-free optical lattice. This
transition is insensitive to magnetic fields and has an ultranarrow linewidth. These are
excellent properties required to use the transition as an optical qubit in quantum com-
puting with neutral strontium. In the next Section, we further investigate the ¹S₀-³P₂
∆mJ = 0 transition by probing it with higher frequency-resolution.

6.3 Magnetic-field-insensitive quadrupole transition

In this Section, we investigate the magnetic-field-insensitive ¹S₀-³P₂ ∆mJ = 0 magnetic
quadrupole transition in a linearly polarized optical lattice of vanishing differential ac
Stark shift. We achieve the magic condition by tilting the magnetic field by θ = 0.41π.
To maximize the transition probability to the ³P₂ mJ = 0 state, we use a probe beam
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Fig. 6.3 Sideband spectrum of the 1S0-3P2 ∆mJ = 0 transition in a Stark-shift-free optical lattice. We
use a probe beam polarization ϵ̂ = 1/

√
2(1, 1, 0)⊤ and interrogate the carrier (dots) for 35ms.

We achieve a magic condition for the linear polarized 1064 nm optical lattice by tilting the
quantization axis by θ = 0.41π. We observe the motional red and blue sideband (square) of
the lattice. The sidebands are probed with ten times longer interrogating times to compensate
the suppression of their amplitude in the Lamb-Dicke regime with a Lamb-Dicke parameter
of η = 0.26. This figure is taken from Ref. [142].

polarization ϵ̂ = 1/
√
2(1, 1, 0)⊤ and interrogate the carrier for 35 ms.

The resulting spectrum is shown in Fig. 6.3. The carrier has a symmetric lineshape, and
we fit it with a Gaussian. We extract a full-width-at-half-maximum (FWHM) linewidth
of 2.12(5) kHz. We believe that the laser linewidth limits the frequency resolution. In the
near future, we will frequency stabilize the 671 nm laser to a new cavity with a finesse
of ∼ 200, 000, where we expect a laser linewidth of a few Hertz. With the much more
narrow laser, we hope to resolve the carrier with an even higher resolution. We note
that carrier spectroscopy in a deep optical lattice is free of motional effects [183] as well
as recoil-free [184], enabling the observation of a linewidth on the kHz level and much
smaller.

The measured linewidth is one order of magnitude smaller than the axial trap fre-
quency νt enabling us to resolve the motional sidebands of the optical lattice as shown in
Fig. 6.3. These sidebands are transitions between the resolved vibrational states of the
lattice that are spaced in energy by hνt. The blue sideband drives a transition to a higher
vibrational state and therefore heats the atoms. The red sideband transition removes one
vibrational excitation, lowering the atoms’ temperature. The relative strength between
the red and the blue sideband contains the full information about the atomic sample’s
temperature [185]. Here, we intentionally probe a hot sample to amplify the red side-
band. Later, we show a spectrum of a cooled cloud, where the red sideband is nearly
vanishing. Since the amplitude of the sidebands is suppressed by η2 = νrec/νt [119,
183], where η = 0.26 is the Lamb-Dicke parameter, and νrec is the recoil frequency of the
probe beam, we probe the sidebands with 10 times longer interrogation times.
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Sideband theory To explain the model used to fit the motional sidebands, we briefly
discuss the theoretical background of the sidebands. We assume a tight axial confinement
such that the atoms is localized in single lattice site and we can approximate the trap as
a 1D harmonic oscillator potential. We base the following discussion on the explanations
given in Ref. [186].
A single atom at the position x experiences the probe beam’s electric field oscillating

with frequency ω = 2πν given by

E(x, t) = E0 sin(kx− ωt), (6.2)

where E0 is the electric field amplitude, k = 2π/λ is the wave number and t is the time.
The atom is confined in the 1D harmonic oscillator and oscillates in space with the trap
frequency νt. We describe the position of the atom inside the trap with

x(t) = x0 sin(2πνtt+ ϕ0), (6.3)

where x0 is the oscillation amplitude and ϕ0 is a phase factor. We choose ϕ0 = 0 and
insert the atomic motion into the equation of the electric field, obtaining

E(x, t) = E0 sin[kx0 sin(2πνtt)− 2πνt]. (6.4)

This expression is equivalent to a frequency modulated signal, where kx0 is the mod-
ulation index. We can substitute the amplitude x0 with the harmonic oscillator length√

ℏ/(2mνt). Using the recoil energy Erec = ℏ2k2/(2m) = hνrec we can rewrite the mod-
ulation index into

η =

√
Erec

ℏνt
=

√
νrec
νt

. (6.5)

Having the modulation index at hand, we express the electric field as a series of Bessel
functions of first kind

E(x, t) = E0

∑
n

Jn(η) sin[2π(ν ± nνt)t], (6.6)

where ν = ω/(2π) and n is the order of the sideband. Hence, the spectrum of the electric
field consists of one carrier frequency ν and sidebands at ν ± iνt.
When we interrogate the atoms with the probe light, the intensity couples to an atomic

transition of Lorentzian lineshape. We can describe the resulting spectrum by the function

F (ν) = a
n∑
i

J2
i (η)

1

(ν − νik ± iνt)2 + (Γ/2)2
, (6.7)

where a is the amplitude, νki is the transition frequency, and Γ is the linewidth. The de-
rived function F agrees with the recorded spectrum in Fig. 6.3, describing the frequencies
and the amplitude of the sidebands. However, we observe asymmetric broadening of the
sidebands caused by the radial motion of the atoms in the lattice, which we neglected so
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far.
At finite temperatures, the atoms experience a reduced light intensity of the trap away

from the center. The reduced intensity results in smaller axial confinement and hence, a
reduced axial trap frequency. Probing these spatially dependent trap frequencies causes
asymmetric broadening. We can describe the resulting lineshape by [77, 183, 187]

f(ν) = a(ν − νt) exp[−b(ν − νt)]Θ(ν − νt), (6.8)

where a is the amplitude, b is a parameter describing the width of the sideband, and Θ
is the Heaviside function. We use this lineshape to fit the sidebands in Fig. 6.3.
Themeasured amplitudes of the sidebands are related to the temperature of the sample

by [185, 187]

T ≈ ℏωt

kB

1

ln(ablue/ared)
, (6.9)

where ωt = νt/(2π), kB is the Boltzmann constant and ablue (ared) is the amplitude of
the blue (red) sideband. For the spectrum shown in Fig. 6.3, we extract a temperature
of 9.2 µK.
In conclusion, we realized a 1064 nmmagic lattice for themagnetic-field-insensitive ¹S₀-

³P₂ ∆mJ = 0 transition. In this magic lattice, we can accurately model the observed line
shapes. The demonstrated control and understanding of the ¹S₀-³P₂ ∆mJ = 0 magnetic
quadrupole transition paves the way to use this transition as an optical qubit for quantum
computing with neutral strontium atoms.

6.4 Absolute transition frequency in 88Sr and 87Sr

Although the ¹S₀-³P₂ transition has many applications for quantum simulation and quan-
tum computing, its absolute transition frequency was measured only very recently in ⁸⁷Sr
with an uncertainty of 30 MHz [110]. Here, we will present measurements of the abso-
lute transition frequency in ⁸⁸Sr and ⁸⁷Sr with three to four orders of magnitude improved
uncertainty. The measurements allow us to extract the isotope-shift of this transition.

88Sr

In ⁸⁸Sr, we probe the magnetic field insensitive ¹S₀-³P₂ ∆mJ = 0 transition in the magic
lattice as presented in Fig. 6.3. We set the laser frequency to the carrier position and beat
the laser light with a commercial frequency comb. We measure the beat frequency using
a counter. By averaging about ∼ 1000 counts, we obtain a statistical uncertainty of the
beat frequency of 22 Hz. The fit of the carrier frequency has an uncertainty of 27 Hz. We
add the errors quadratically, resulting in a total statistical uncertainty of 35 Hz.
To estimate the uncertainties caused by density shifts, we perform additional mea-

surements with atom numbers reduced by one order of magnitude. From these measure-
ments, we conclude that density shifts are negligible.
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Fig. 6.4 Spectrum of the 1S0-3P2 F = 9/2 transition in 87Sr. We apply a magnetic field of 3 G to split
the mF Zeeman sublevels. This figure is taken from Ref. [142].

Due to the insensitivity of the ¹S₀-³P₂ ∆mJ = 0 transition to magnetic fields, field
fluctuations can only influence the magic condition leading to light shifts. Taking into
account residual light shifts, we use a conservative bound of 2.5 times the measured
FWHM, resulting in a systematic uncertainty of 5 kHz.

We add the estimated uncertainties and deduce an absolute frequency of the ¹S₀-³P₂
∆mJ = 0 transition in ⁸⁸Sr of (446, 647, 242, 704± 0.04stat± 5sys) kHz, where we combine
the estimated uncertainties.

87Sr

In ⁸⁷Sr, the ¹S₀-³P₂ F = 7/2, 9/2, 11/2 transitions are electric-dipole-allowed due to
the hyperfine interaction induced state mixing [110] and at the same time magnetic-
quadrupole-allowed. In principle, we could distinguish the multipole transition order
by measuring the transition amplitude’s geometric dependence or by trying to drive an
∆mF = ±2 transition after spin polarizing the atomic sample. However, we leave this
task as an open question to be investigated in future experiments.

Measuring the ⁸⁷Sr transition frequency is more involved than for ⁸⁸Sr. The reason
is that due to the hyperfine structure of ⁸⁷Sr all Zeeman subselevels are magnetically
sensitive. In Fig. 6.4, we show a spectrum of the ¹S₀-³P₂ F = 9/2 transition. To split the
differentmF Zeeman sublevels we apply a magnetic field of 3 G. We can observe the lines
of all mF states with varying width and amplitude. The lines are broadened due to the
differential ac Stark shift. Note that for the presented measurements, we did not operate
at magic conditions. In principle, it is possible to generate a 1064 nm magic lattice using
the developed light shift tuning techniques.
In Fig. 6.5(a), we show the recorded spectra of the magnetic quadrupole transition

to the ³P₂ F = 9/2 mF = ±9/2 states. We fit the lines using the asymmetric broad-
ened lineshape we introduced in Eq. (6.8) in the context of the motional sidebands. By
averaging the frequencies of two mF states with opposite signs, we obtain the magnetic-
field-insensitive transition frequency.
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Fig. 6.5 Spectra of the 1S0-3P2 F = 9/2, F = 7/2, and F = 11/2 transitions in 87Sr to determine
the absolute transition frequency. (a) (left) Transition to the excited F = 9/2 mF = ±9/2
states. We fit the lines using the asymmetric broadened lineshapes derived in Eq. (6.8) and
average the line centers to obtain the magnetic-field-insensitive transition frequency. (right)
Averaged frequencies plotted as a function of the lattice power and linear fit to extract the
Stark-shift-free frequency. (b) and (c) Spectra of the F = 7/2 and F = 11/2 transitions
fitted with Gaussian lineshapes. Averaged frequencies are interpolated to the Stark-shift-free
frequency. This figure is adapted from Ref. [142].

Because the lattice is not free of ac Stark shifts, we probe the transition for several
lattice powers. We plot the extracted frequencies as a function of the power in Fig. 6.5(a)
and fit the data with a linear function enabling us to estimate the ac Stark shift. The fitted
intercept corresponds to the Stark-shift-free transition frequency. We obtain a statistical
frequency uncertainty of 5 kHz.
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In an additional set of measurements, we vary the atomic density in the lattice and
extract the transition frequency enabling us to estimate the density shift. We observe
shifts up to 40 kHz which are the result the two orders-of-magnitude larger scattering
length of ⁸⁷Sr than ⁸⁸Sr. We use a conservative upper bound of 60 kHz as a systematic
uncertainty caused by density shifts.
Using an optical frequency comb, we measure the ¹S₀-³P₂ F = 9/2 transition frequency

of (446, 647, 798, 423± 5stat ± 60sys) kHz in ⁸⁷Sr.
To measure the frequency of the transitions to the F = 7/2 and F = 11/2 states, we

follow the procedure for the F = 9/2 state. However, we fit the spectra of themF = ±1/2
states in Fig. 6.5(b) and (c) using a Gaussian lineshape. We only measure the frequency
for two lattice powers, resulting in a larger statistical uncertainty attributed to the ac
Stark shift. We summarize the transition frequencies in Tab. 6.1. In addition we can
extract the hyperfine state energies which agree with the literature values within the
errorbars [131].

Isotope Transition ν

⁸⁸Sr ¹S₀-³P₂ 446, 647, 242, 704(5) kHz
⁸⁷Sr ¹S₀-³P₂ F = 9/2 446, 647, 798, 423(60) kHz
⁸⁷Sr ¹S₀-³P₂ F = 7/2 446, 648, 776, 833(80) kHz
⁸⁷Sr ¹S₀-³P₂ F = 11/2 446, 646, 628, 232(80) kHz

Tab. 6.1 Summary of the 1S0-3P2 absolute transition frequencies measured in the context of this the-
sis. The uncertainties contains both statistical and systematic errors.

Isotope shift

The energy of the F = 9/2 manifold lies 618.65 MHz [131] above the ¹S₀-³P₂ line’s
center of gravity resulting in an ⁸⁸Sr-⁸⁷Sr isotope-shift of ∆88

87 = ν(88Sr) − ν(87Sr) =
62.93(6)MHz. We can confirm this isotope-shift by comparing the probe beam frequency
shifts of subsequent measurements for the two isotopes.

Transition ∆88
87 = ν(88Sr)− ν(87Sr) Reference

¹S₀-³P₁ 62.19(1) MHz [188]
³P₁-5s5d ³D₂ 30.2(6) MHz [189, 190]

¹S₀-³P₂ 62.93(6) MHz This work
³P₂- 5s5d ³D₂ 17(2) MHz [191]

Tab. 6.2 Comparison of the measured isotope-shift with the existing data. By adding the measured
shifts, we observe a discrepancy of about 13 MHz.
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In Tab. 6.2, we compare the measured to existing data. By adding the ¹S₀-³P₁ shift
with the ³P₁-5s5d ³D₂ shift and adding the ¹S₀-³P₂ shift with the ³P₂- 5s5d ³D₂ shift, we
observe a discrepancy of about 13 MHz. We believe that this discrepancy is caused by
a systematic effect in one of the frequency measurements of the transitions to 5s5d ³D₂
state, calling for further investigations.

6.5 Magnetic-field-sensitive quadrupole transition

Our procedure to isolate a single lattice layer requires a magnetic field gradient and a
magnetic-field-sensitive transition. We use the magnetic-field-sensitive ¹S₀-³P₂ ∆mJ =
−1 transition, which we investigate in this Section. Addressing the individual layers
requires the transition linewidth to be smaller than the frequency spacing of the layers.
Therefore, we engineer a Stark-shift-free lattice by tuning the lattice polarization to adjust
the polarizability of the ³P₂ mJ = −1 state.
A schematic of the experimental setup is shown in Fig. 6.6(a). We use an elliptical

probe polarization, similar to Sec. 6.2, and a static magnetic field oriented along the −z-
direction. We use an elliptically polarized lattice of ϵ̂l = x̂ cos(γ) + iŷ sin(γ), where γ is
the ellipticity angle [158, 77]. Because the polarizability of the ³P₂ mJ state depends on
the lattice polarization ∝ sin(2γ), we tune the differential ac Stark shift by adjusting γ.
In Fig. 6.6(b), we show example spectra of the ¹S₀-³P₂∆mJ = −1 transition in a lattice

with γ = 0.17π for two lattice powers. We observe that the lines are asymmetrically
broadened by the light shift and that the carrier frequency moves. We fit the lines using
the asymmetric lineshape function of Eq. (6.8).
In Fig. 6.6(c), we present spectra in a nearly Stark-shift-free lattice at γ = 0.09π. The

lines are symmetric and barely move as a function of the lattice power. We find that these
lineshapes are best described by Gaussians.
For several ellipticity angles, we record transition spectra as a function of the lattice

power and extract the carrier frequencies. We plot the carrier frequencies as a function
of the power in Fig. 6.6(d) and fit the data with a common linear offset. As expected, the
carrier frequencies depend linearly on the lattice power. From the fitted slope, we can
extract the Stark shift.

We plot the extracted light shift coefficients as a function of the ellipticity angle in
Fig. 6.6(e). To obtain the magic ellipticity angle γ0, where the lattice is free of Stark-
shifts, we fit the data with κ = a0(sin(2γ)− sin(2γ0)), where a0 is the amplitude. We find
γ0 = 0.106(3) π, which is in excellent agreement with the theoretical expectation 0.108 π
calculated in Ch. 4.

Now, we use the ¹S₀-³P₂ ∆mJ = −1 transition in this Stark-shift-free lattice to char-
acterize our cooling by recording sideband spectra. In Fig. 6.7(a) and (b), we show
sideband spectra of a hot and a cold atomic sample, respectively. The hot sample has a
temperature of 10.4 µK, estimated from the sideband amplitudes, and is obtained by not
cooling the atoms after loading them to the lattice. The cold sample has a temperature
of 1.8 µK being a typical temperature after direct sideband cooling. This temperature
corresponds to a vibrational ground state fraction of 84%.
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Fig. 6.6 Magic lattice ellipticity angle for 1S0-3P2 ∆mJ = −1 transition. (a) Schematic of the setup.
(b) Transition line in an optical lattice of elliptical polarization with ellipticity angle γ = 0.17π.
We use lattice powers of 2.5 W (dots) and 7.5 W (squares). The sidebands (open markers)
are not fitted. (c) Spectrum in a lattice of γ = 0.09π polarization and a powers of 2.5 W
(dots) and 7.5 W (squares). (d) For various ellipticity angles, we plot the carrier frequency
as a function of the lattice power. The data is fitted with a common offset. (e) Stark shifts
coefficient extracted from the slopes in (d) plotted as function of the ellipticity angle γ. We
fit the stark shift coefficient with κ = a0(sin(2γ) − sin(2γ0)) and obtain the magic ellipticity
angle of γ0 = 0.106(3) π. This figure is adapted from Ref. [142].

We fit the carrier in Fig. 6.7(b) and extract a full-width-at-half-maximum (FWHM)
of 10.8(2) kHz, which is roughly 5 times larger than the carrier FWHM of the ¹S₀-³P₂
∆mJ = 0 transition. The broadening is caused by fluctuations of the magnetic field on
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Fig. 6.7 Sideband spectrum of the 1S0-3P2 ∆mJ = −1 transition a Stark-shift-free lattice. We probe
the sidebands (squares) with 10 times longer interrogation times than the carrier (dots). (a)
Spectrum of a hot sample with a temperature of 10.4 µK. (b) Cold sample with a temperature
of 1.8 µK, corresponding to vibrational ground state fraction of 84%. Fig. (b) is adapted from
Ref. [142]

the 2 mG level.
The experiments in this section demonstrate that we can engineer a Stark-shift-free

optical lattice for the magnetic-field-sensitive ¹S₀-³P₂ ∆mJ = −1 transition. Moreover,
we obtain a FWHM linewidth of 10.8(2) kHz being sufficiently small for local addressing.

6.6 Local addressing

In this Section, we demonstrate local addressing using the magnetic-field-sensitive ¹S₀-
³P₂ ∆mJ = −1 quadrupole transition in a Stark-shift-free optical lattice. To engineer the
magic condition, we use an elliptical lattice polarization of γ0, see the previous Section
for details.
A schematic of the setup is shown in Fig. 6.8(a). Before loading the atoms to the lattice,

we compress them spatially using a tightly focused elliptical light sheet. This light sheet
is focused at the position of the atoms with a 1/e2 waist of ∼15 µm (∼300 µm) along the
z-axis (horizontal axis) with a typical power of 40 W, resulting in an optical dipole trap
with a vertical trap frequency of 2.2 kHz. We measured the trap frequency via parametric
heating by modulating the light intensity [151].
We cool the atoms inside the light sheet via Doppler-cooling on the ¹S₀-³P₁ ∆mJ =
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Fig. 6.8 Local addressing in a Stark-shift-free optical lattice using the 1S0-3P2 ∆mJ = −1 transition.
(a) Setup for local addressing with exaggerated dimensions for visibility. We compress the
atomic cloud using a light sheet. With a magnetic field gradient of 215 G/cm we split neigh-
boring lattice sites by 24 kHz on the 1S0-3P2 ∆mJ = −1 transition. (b) Local addressing in 1D
optical lattice using the 1S0-3P2 transition in a magnetic field gradient. Atoms in the layer that
is resonant with the detuning of preparation pulse are depleted resulting in a depletion dip of
the atomic cloud (lattice sites frequency separation is approximately to scale). The spectrum
without the dip is fitted with a Gaussian (dashed line). This figure and caption is taken from
Ref. [142].

−1 transition. To increase the cooling efficiency, we engineer a vanishing differential
light shift for that transition. We rotate the magnetic field along the sheet propagation
direction and use circular beam polarization to achieve a vanishing differential shift. After
cooling, we obtain a sample temperature of∼0.6 µK and adiabatically load the atoms into
the lattice. Using this compression via the light sheet, we typically populate 6-8 layers of
the optical lattice. Without the compression stage, the atoms spread over 20 layers.
Once the atoms are loaded to the lattice, we cool them again via direct sideband cooling

along the vertical direction. We apply a vertical magnetic field gradient of 215 G/cm and
a bias magnetic field of 80 G along the −z-direction. This gradient splits the resonance
frequency of the ¹S₀-³P₂ ∆mJ = −1 transition of neighboring lattice layers by 24 kHz as
depicted in Fig. 6.8(a). We use the bias magnetic field to spatially translate the zero of
the field gradient reducing the gradient curvature at the position of the atoms.

We expose the atomic sample to a first pulse. Atoms trapped in the lattice layer reso-
nant with the probe pulse are excited to the ³P₂ state and are lost via inelastic collisions.
Because the transition linewidth is smaller than the frequency spacing of neighboring lay-
ers, the pulse does not influence atoms in other layers. After the first pulse, we apply a
second pulse and record the spectrum as shown in Fig. 6.8(b). At the detuning of the first
pulse, we observe a depletion dip of the atomic cloud, demonstrating local addressing in
the lattice.
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We characterize the spatial resolution corresponding to the depletion dip in the spec-
trum using the Rayleigh criterion. We adapt the Rayleigh criterion sin(θ) = λ/d to the
diffraction of light at a slit [192]. We consider two diffracted light beams, where after
the slit, the intensity profile of each beam is described by a sinc2(x) function. If the max-
imum of one is located in the first minimum of the other profile, the summed intensity
drops to 81 % between the peaks. Adapting this criterion to two Gaussian peaks, the
depletion dip’s FWHM of 20(2) kHz corresponds to a spatial resolution of 494(40) µm.
This resolution should be sufficient to isolate a single lattice layer as soon as we install a
more stable retro-reflector.
In this Section, we demonstrated local addressing using the ultranarrow ¹S₀-³P₂ mag-

netic quadrupole transition. This technique required to engineer a Stark-shift-free optical
lattice. Our experiments pave the way to prepare a single layer of ultracold strontium
atoms in the focus of a high-resolution imaging system to realize the first strontium quan-
tum gas microscope.

Conclusion

In this Chapter we presented narrow-line spectroscopy of the ¹S₀-³P₂ magnetic quadrupole
transition in optical lattice paving the way for applications of this transition in quantum
simulation and quantum computing.
We experimentally investigated the absorption pattern of the quadrupole transition and

found qualitative agreement with the expected pattern, which is significantly different
than the pattern of an electric dipole (E1) transition. For a quantization axis perpen-
dicular to the probe propagation, we can drive the ∆mJ = ±1,±2 transition, which is
impossible for an E1 transition.
We adjusted the polarizability of the ³P₂ mJ = 0 state by tilting the quantization axis

with respect to the lattice polarization to engineer a Stark-shift-lattice for the magnetic-
field-insensitive ¹S₀-³P₂ ∆mJ = 0 transition. In this lattice, we performed Doppler-free
spectroscopy and achieve a kilohertz resolution of the line. The magnetic-field-insensitive
transition provides an optical qubit for quantum computing.
Tuning the polarizability of the ³P₂mJ = −1 state by adjusting the lattice polarization

enabled us to realize a magic lattice for the magnetic-field-sensitive ¹S₀-³P₂ ∆mJ = −1
transition. Using this transition we demonstrated local-addressing in the optical lattice
within a magnetic field gradient. The demonstrated addressing will allow us to control
and manipulate the atomic sample on the level of single atoms and single qubits in an
optical lattice.



Chapter 7 Conclusion and Outlook 107

Chapter 7

Conclusion and Outlook

Conclusion

This thesis reported on the first local addressing of strontium atoms on the ¹S₀-³P₂ mag-
netic quadrupole transition in an optical lattice presented. This demonstration is the first
crucial step towards single-particle control of strontium under a quantum gas microscope.
In the near future, we will use this local addressing to isolate a single layer of the optical
lattice in the focus of the microscope. Recently, our team used the techniques developed
during the work described in this thesis to isolate a few lattice layers and obtained first
site-resolved images of strontium atoms under the microscope.
Magnetic quadrupole transitions are fundamentally different than electric dipole tran-

sitions in terms of their selection rules, angular momentum, and the transition ampli-
tude’s dependence on probe beam polarization and propagation direction. Therefore,
we theoretically investigated multipole transitions starting from a fundamental descrip-
tion of light-matter interaction in Ch. 3. We derived selection rules and found that the
driving light can provide additional angular momentum apart from the spin of the pho-
tons. In addition, we calculated the transition-amplitude-dependence on the probe beam
orientation and polarization. This new understanding supported an experimental inves-
tigation of the ¹S₀-³P₂ transition including its geometric dependence, which agreed well
with our theoretical models.
Local addressing required suppressing line broadening effects caused by the trapping

potential’s light shifts. We engineered a Stark-shift-free optical lattice by adjusting the
excited ³P₂ state’s polarizability using an elliptical lattice polarization. On the way to this
result, we were also able to achieve a vanishing differential light shift for the magnetic-
field-insensitive ¹S₀-³P₂∆mJ = 0 transition by tilting the quantization axis with respect to
the lattice in Ch. 6. This light-shift-free lattice allowed us to resolve the ¹S₀-³P₂ ∆mJ = 0
transition with a full-width-at-half-maximum linewidth of ∼2 kHz. Finally, we measure
the absolute transition frequency with an improvement of three orders of magnitude
compared to previously reported values.
The presented results pave the way to realize the first strontium quantum gas micro-

scope. With this microscope, we will be able to perform a quantum simulation of light-
matter interfaces. Beyond these specific quantum simulations, our detailed investigation
of the ¹S₀-³P₂ magnetic quadrupole transition enables various applications of this transi-
tion in more general quantum simulation and quantum computing. We will discuss these
aspects in the following.
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Outlook

Beyond the practical use of the ¹S₀-³P₂ transition to isolate a single layer in the focus
of the microscope, this transition can have general applications in quantum technology
using ultracold strontium atoms. Due to their minute-scale lifetime and their insensitivity
to magnetic fields, the ¹S₀ and the ³P₂ ∆mJ = 0 states can serve as an optical qubit for
neutral atom quantum computing. Using the magnetic-field-sensitive ¹S₀-³P₂ ∆mJ =
±1 transition can enable local manipulation of the atom’s electronic state in-plane of an
isolated lattice layer. In the following, we will discuss these applications in more detail
and present further examples.
The magnetic-field-insensitive ¹S₀-³P₂ ∆mJ = 0 transition provides an optical qubit

for quantum computation. Using the metastable ³P₂ state, one can implement Rydberg-
mediated two-qubit gates via a single photon process already demonstrated in Yb [68].
In strontium, these gates were recently realized using the ³P₀ clock state [69, 70]. We
see two advantages in using the ¹S₀-³P₂ qubit instead of the ¹S₀-³P₀ clock qubit. First, in
⁸⁸Sr we can drive the ¹S₀-³P₂ transition without applying a strong magnetic field, which is
required to open the ¹S₀-³P₀ transition in the bosonic isotopes. Second, one can engineer
the polarizability of the ³P₂ state, allowing the realization of Stark-shift-free optical traps
at convenient wavelengths such as 1064 nm.
The magnetic-field-sensitive ¹S₀-³P₂ ∆mJ = ±1 transitions enable local addressing

within a magnetic field gradient demonstrated in this thesis. The addressing allows us
to manipulate and control atoms on the level of single lattice sites or tweezer arrays for
quantum computing and quantum simulation [74, 72, 111]. Beyond isolating a single
lattice layer, we can also use the transition to spatially manipulate atoms in-plane by
exploiting a horizontal magnetic field gradient.
Besides the discussed optical qubits, alkaline earth atoms can be used to encode the fine

structure qubit between ³P₁ and ³P₂ mJ = 0 [76] that recently became of major interest
for quantum computing. The ³P₀ state is insensitive to most environmental effects ideally
suited for information storage. The magnetic-field-sensitive ³P₂ mJ = ±1 states enable
local manipulation and readout. In addition, one can implement Rydberg-mediated two-
qubit gates from both states. The developed techniques, such as engineering the ³P₂
state’s profitability and driving the ¹S₀-³P₂ transition, offer tools to investigate this fine
structure qubit.
The availability of two ultranarrow transitions allows the construction of an optical lat-

tice clock that sequentially interrogates each of the transitions. The sequential operation
enables one to directly compare the ratios of the transition frequencies and search for
variations of the fine-structure constant α. However, the ¹S₀-³P₀ and the ¹S₀-³P₂ transi-
tion in neutral strontium depend only weakly on α [193]. Typically, optical transitions
depend on α via relativistic corrections that scale with (Zα)2, where Z is the nuclear
charge [194]. Hence, the ¹S₀-³P₀ and ¹S₀-³P₂ transitiosn in neutral ytterbium is better
suited for these experiments than strontium [59]. Relativistic many-body amplitude cal-
culations showed that comparing the clock transition and an electric quadrupole tran-
sition in neutral ytterbium possesses the highest relative sensitivity to α variations [59,
195].
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In the scope of this thesis, inelastic ³P₂-³P₂ collisions and too low probe beam powers
prevented driving Rabi oscillations on the ¹S₀-³P₂ transition. We can prevent these colli-
sions in a sparsely filled 3D optical lattice. Stabilizing the laser to a reference cavity with
higher finesse will enable us to reduce the laser linewidth to the low Hertz regime, which
makes it possible to observe Rabi flopping for small Rabi frequencies.
By probing the ¹S₀-³P₂ transition in a magic 3D lattice while applying a bias magnetic

field, we can also search for magnetic Feshbach resonances between the ground and the
excited state as already observed in ytterbium [108]. If one can resolve such a reso-
nance with a factor of 3 improved resolution compared to Ref. [108], one could obtain
a more than 10 times higher elastic to inelastic scattering rate. For this estimation, we
assumed that the ³P₀ and ³P₂ inelastic losses are comparable between ytterbium and
strontium [124, 122, 181].
In the future, improving the probe laser linewidth to the mHz regime may enable us to

resolve the quadrupole-quadrupole interaction of atoms in the ³P₂ state on neighboring
lattice sites. This interaction results in frequency shifts of tens of mHz for spacings of
∼500 nm [196]. The quadrupole-quadrupole interaction potential is given by [197]

V qq ∝ 1

r5
(35 cos4 θ − 30 cos2 θ + 3), (7.1)

where θ is the angle between the quadrupole orientation and the interatomic axis. This
interaction possesses a different anisotropy than the dipole-dipole interaction V dd ∝
1/r3(1 − cos θ) between atoms in the ³P₀ state and allows tuning the interaction from
attractive to repulsive. If the quadrupole interactions dominate the energy scales of the
system, they can give rise to a rich phase diagram [196, 197].

Another potential project could be to drive the ¹S₀-³P₂ transition using beams that
carry orbital angular momentum as demonstrated for an electric quadrupole transition
in trapped ions [145, 149]. There, the structure of the Gaussian vortex beam enhanced
the transition probability.
Probing the ultranarrow transitions under a quantum gas microscope combines sub-

hertz frequency resolution with sub-micron spatial resolution acting as a multiaxis sensor
of field gradients [62]. Applying this idea to the magnetic-field-sensitive ¹S₀-³P₂∆mJ = 1
transition, one can realize such a sensor of magnetic field gradients with a resolution on
the mG/cm level.
The local addressing demonstrated in this thesis was one of the major technical chal-

lenges toward isolating a single optical lattice layer in the focus of the microscope. Once
we achieve single site resolution, the large systems size and new experimental capabilities
will allow us to study open quantum systems in new ways.
For these simulations of open quantum systems, we will use ultracold strontium atoms

to realize artificial emitters that can decay via a matter-wave emission [99]. We will
generate a large, two-dimensional, state-dependent lattice by coupling individual lattice
sites with clock laser light, slightly detuned from the ¹S₀ tune-out wavelength into our
crossed cavities. In these lattices, the ³P₀ excited state (e) is tightly trapped, while the
¹S₀ ground state (g) experiences a very shallow potential such that atoms in g can tunnel
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in the lattice. In this system, the e-g decay results in the emission of a matter-wave in
analogy to the emission of radiation from a physical emitter. Using the quantum gas
microscope, we will be able to observe the matter-wave emission in real space and in a
time-resolved way.
The advantage of this simulation is that one can tune the parameters of the open sys-

tem. The state-dependent lattice imposes a band structure on the atoms in analogy to
photonic crystals [198]. By varying the lattice depth, one can adjust the band struc-
ture and the corresponding dispersion relation of the matter-wave. Furthermore, one
can control the coupling to the vacuum by tuning the laser frequency that drives the e-g
transition. This tuning will allow us to couple an emitter into the band gap resulting
in a bound state that is exponentially localized. Such a bound state has been realized
in photonic crystals [199] and an open quantum system simulator in 1D measuring ob-
servables in momentum space [99]. Our experimental platform will enable us to study
this bound state in a 2D system and image this state in real space. In the long-term, in
these 2D systems, one can use the interactions between bound states to realize subra-
diant states with strongly enhanced lifetimes [98] with applications for metrology and
quantum computing.
Using alkaline earth atoms for metrology applications has a long-standing history re-

sulting in optical lattice clocks with outstanding precision [57, 58]. The techniques de-
veloped for optical clocks laid the basis for using alkaline earth atoms for quantum sim-
ulation and, very recently, also for quantum computing. Similarly, manipulation and
controlling methods for quantum simulations, such as state-dependent lattices [92], op-
tical buildup cavities [103, 104], or local addressing on the ¹S₀-³P₂ [142] transition, may
boost developments in quantum computing with alkaline earth atoms [72, 74, 73] and
vice versa. In the near future, both platforms will co-exist [200], and the interplay be-
tween these platforms will enable realizing proposed applications that range from chem-
istry [2, 201] to solving optimization problems [202] and artificial intelligence [203,
204].
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Appendix A

Time-of-flight expansion from a deep optical lattice

In this Section we derive an analytic expression for the expansion of a thermal cloud
suddenly released from a harmonic trap when the energy-scale of the temperature is
comparable to or smaller than the trap frequency.

We start with a single harmonic oscillator state and calculate its free space time evolu-
tion. The corresponding Schrödinger equation in momentum space is given by

iℏ∂tΨ(p) = ĤΨ(p) =
p2

2m
Ψ(p), (A.1)

where Ψ(p) is the momentum space wave function, p is the momentum, m the mass of
the wave packet, and t is the time.This differential equation is solved by

Ψ(p, t) = exp
(
− i

p2

2mℏ
t
)
Ψ(p, t = 0). (A.2)

Here we can see that in momentum-space the time propagator is simply a multiplication
by a quadratic phase factor. The momentum-space wave function Ψ(p) is the Fourier
transform of the real-space wave function φ and vice versa. By solving the harmonic
oscillator Schrödinger equation in dimensionless symmetric coordinates one can show
that Ψ(p) can be obtained from φ(x) by the substitutions

x → p

mω → 1/(mω),

where ω is the harmonic oscillator frequency. This means that the initial momentum-
space wave function has the form of a harmonic oscillator state. The procedure to cal-
culate the expansion is then to multiply the initial momentum-space harmonic oscillator
state by the quadratic phase factor and afterwards to calculate the real-space wave func-
tion by the inverse Fourier transformation. We then see that this procedure is exactly the
same as calculating the diffraction of a Hermite-Gaussian beam in optics. Adjusting the
equations of a Hermite-Gaussian mode to the n-th real-space Harmonic oscillator wave
function at t = 0 ,we obtain

φn(t = 0) =
1

2nn!

(mω

πℏ

)1/4
exp

(
− mωx2

2ℏ

)
Hn

(√mω

ℏ
x
)
, (A.3)
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where Hn is the Hermite polynomial of the order n. The associated waist at t = 0 is
defined as w0 =

√
2ℏ/(mω). In analogy to a Gaussian beam, the waist scales with w(t) =

w0

√
1 + ω2t2.

We model the thermal atomic cloud expanding from the harmonic trap as a thermal
mixture of harmonic oscillator states at temperature T

n(x) ≡ 1

N

N∑
n=0

exp
[
− ℏω

kBT

(
n+

1

2

)]
|φn(x)|2. (A.4)

Here, N is a cutoff due to the finite depth of the trap. We insert the explicit form of φn

and include the waist scaling to obtain

n(x) =
1

N

(mω

πℏ

)1/2 w2
0

w(t)2
exp

(
− 2x2

w(t)2

)
×

N∑
n=0

exp
(
− ℏω

kBT
n
) 1

2nn!
H2

n

(√2x

w(t)

)
.

(A.5)

For deep traps we can let N → ∞ with the result

n(x) =
(mω

πℏ

)1/4 w2
0

w(t)2
tanh

( ℏω
2kBT

)
exp

[
− 2x2

w(t)2
tanh

( ℏω
2kBT

)]
.

(A.6)

From the equation above we can conclude that the fitted 1/e2 waist of the cloud is given
by

w(t, T ) =

√
2ℏ
mω

√
1 + ω2t2√

tanh
( ℏω
2kBT

) . (A.7)

For the case of kBT ≪ ℏω/2, we approach tanh
( ℏω
2kBT

)
≈ 1.

For kBT ≫ ℏω/2, we approximate tanh

(
ℏω

2kBT

)
≈
√

2kBT

ℏω
. We convert the waist

into σ = w/4 of a Gaussian to obtain the standard expression.

σ(t, T ) = σ0

√
2kBT

ℏω

√
1 + ω2t2 =

√
2ℏ
mω

1

4

2kBT

ℏω

√
1 + ω2t2 =

√
σ2
0 +

kBT

m
t2 (A.8)

The calculations above are for the case of the expansion from a single harmonic trap
and are valid for all temperature regimes. Nevertheless, it can be easily extended to
a cloud of atoms expanding from individual harmonic confinements, e.g. in an optical
lattice. If the atomic cloud has a Gaussian shape with waist w′, the total expansion is
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given by the convolution of two Gaussians, leading to

w′(t, T ) =
√
w′2
0 + w(t, T )2. (A.9)

We can see that the expression for the whole cloud just changes the initial cloud size, but
the expansion itself is not changed.
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